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Editorial on the Research Topic

Radiomics-Based Tumor Phenotyping in Precision Medicine

Radiomics applies quantitative methods to medical images and derives phenotypic information that
might not be obvious during traditional visual inspection. The potential for radiomics to identify
previously unrecognizable imaging biomarkers for tumor genotype and pathology has sparked
considerable interest in exploring the clinical potential of radiomics (1). Since its initial presentation
in 2012 (2), radiomics has been widely applied in oncology (Wu et al.) and has achieved robust
performance in assessment of genomic features (Shen et al.) (3); tumor subtypes (4, 5); nodal
metastases of various cancers such as colorectal cancer, gastric cancer, breast cancer (6–8) and
occult distant metastases (9). In addition, radiomics has been used in evaluation of treatment
response (10, 11) and outcome prediction (12, 13). The recent rapid development of artificial
intelligence and its application in mining medical “big data” have further advanced the field of
radiomics in both oncological research and clinical practice.

Precision medicine refers to tailoring treatments to patient-specific information, such as
genomic makeup and molecular characteristics, to optimize the treatment strategy for each
patient (14). Radiomics can identify tumor features that reflect the underlying tissue
characteristics for each patient and can inform precision medicine (15). The field of radiomics
has already accomplished a great deal toward promoting personalized medicine and assisting
clinical decision-making. However, there are still several issues preventing its wide application for
precision medicine. These issues include challenges with the interpretability, reproducibility and
biological correlation of radiomic features. In addition, data mining and processing techniques for
radiomic analysis need improvement.

Therefore, we launched this Research Topic, “Radiomics-Based Tumor Phenotyping in Precision
Medicine”, to provide a platform for reporting radiomic studies focusing on precision medicine. We
received more than 60 manuscripts focused on various tumors throughout the body, including brain
glioma, brain metastasis, nasopharyngeal carcinoma, lung cancer, breast cancer, gastric cancer, renal
cancer, rectal cancer, andprostate cancer. After peer review, 43paperswere selected for publicationwith
this Research Topic in Frontiers in Oncology. Among the cancers studied, lung cancer stood out as
having themost publications, with 11 papers. In addition,more than half of the papers were focused on
March 2022 | Volume 12 | Article 85394818
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diagnosis (Zhang et al.), staging (Zhou et al.), and genetic prediction
(Song et al.). Response to immunotherapy, which is a hot topic in
oncologyresearch,was studied in twopapers (Shenet al.) (Liu et al.).
Furthermore, a wide range of computational methods, such as
conventional radiomics, deep learning (Zhang et al.), delta-
radiomics (Ma et al.), and intra-peritumoral radiomics (Li et al.),
were reported in this Research Topic. For instance, Zhang et al.
developed a multi-parametric MRI radiomic model to differentiate
clinically significant and insignificant prostate cancer. The authors
evaluated 159 patients with prostate cancer from two centers for
radiomic features extracted from MRI, including a T2-weighted
sequence, diffusion-weighted imaging results, and apparent
diffusion coefficient (ADC) images. Minimum-redundancy
maximum-relevance (mRMR) and least absolute shrinkage and
selection operator (LASSO) analysis methods were used to select
keyMRI features. Theirwork showed that themodel combining the
radiomic signature and ADC values produced better classification
performance than either model alone.

Regarding radiogenomic analysis, Song et al. conducted a CT
radiomic study for predicting anaplastic lymphoma kinase (ALK)
mutation in patients with lung adenocarcinoma. This study
retrospectively analyzed 335 patients with lung cancer from a
single center and developed three models (radiomic, radiological,
and integrated models). Their integrated model, which combined
radiomic features, conventional CT features, and clinical features,
achieved the best performance for predicting ALK mutation in
patients with lung cancer. In another study of lung cancer, Chen
et al. used lung CT radiomics to differentiate small cell lung cancer
(SCLC) from non-small cell lung cancer (NSCLC) in 69 patients.
The researchers built predictive models with a multilayer artificial
neural network and their SCLC/NSCLC classifier achieved robust
performance with an area under the curve (AUC) of 0.93.

A timely study of imaging biomarkers for predicting response to
immunotherapy in advanced NSCLC was performed by Liu et al.
The researchers retrospectively enrolled 197 patients with NSCLC
from nine centers. Each patient had undergone immunotherapy
with immune checkpoint inhibitors, such as anti-PD-1 therapies,
and received follow-up assessment for treatment response
(responder/non-responder). They found that a combined
prediction model incorporating a delta-radiomic signature and a
clinical factor (distant metastasis) performed well in distinguishing
responders fromnon-responders withAUCs of 0.83 and 0.81 in the
training and validation cohorts, respectively. This study indicated
that delta-radiomics could be useful for identifying imaging
biomarkers to assess the early response to immunotherapy in
patients with NSCLC and facilitate precision medicine.

Jiang et al. developed a radiomic model to predict the stage,
size, grade, and necrosis (SSIGN) score preoperatively in patients
with clear cell renal cell carcinoma (ccRCC). The investigators
enrolled 330 patients with ccRCC from three centers and placed
them randomly into a training cohort and two external validation
cohorts. A radiomic signature was built with the 16 selected image
features fromCTimages acquired in thenephrographicphase.They
found that the signature performed better than the image feature
model constructed by intra-tumoral vessels (all p < 0.05) and
showed similar performance to the fusion model integrating
Frontiers in Oncology | www.frontiersin.org 29
radiomic signature and intra-tumoral vessels (all p > 0.05) in
terms of the discrimination in all cohorts. The radiomic signature
showed promising results in predicting tumor aggressiveness in
patients with ccRCC.

Feng et al. explored the correlation between PET/MRI
radiomic features and the metabolic parameters in patients
with nasopharyngeal carcinoma (NPC). All 100 NPC patients
in the study underwent whole-body PET/MR examinations.
Radiomic features from both the MRI and PET images, along
with metabolic parameters from the PET images, were analyzed.
To discriminate early-stage from advanced-stage NPC, they built
MRI and PET models, which achieved reasonable performance
with AUCs ranging from 0.69 to 0.90. They also showed
correlations between the metabolic parameters and radiomic
features of primary NPC based on PET/MRI.

This Research Topic, which contains a unique collection of
radiomic studies, contributes important new information to the
body of knowledge related to using artificial intelligence for
precision medicine. We are encouraged by the great support
from the research community; a total of 376 authors contributed
to the 43 selected papers. In addition, this Research Topic has
generated significant attention in the field, with over 87,000
views so far. Nevertheless, more work is needed to advance the
field of computational imaging. First, most of the studies in this
Research Topic were from a single center, which makes them
prone to selection bias. Future large-scale multi-center studies
should be performed to address the generalizability and to
validate the results. Second, all studies in this Research Topic
were retrospective, and may be limited by inherent confounding
variables such as a heterogeneous study cohort, multiple
different imaging protocols and scanners, and various imaging
reconstruction methods. Lastly, we encourage sharing of
radiomic data and artificial intelligence methods, which will
undoubtedly facilitate the development of robust predictive
modeling and imaging biomarkers to guide diagnosis and
treatment in precision medicine.
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Objectives: To establish a radiomic algorithm based on grayscale ultrasound images

and to make preoperative predictions of microvascular invasion (MVI) in hepatocellular

carcinoma (HCC) patients.

Methods: In this retrospective study, 322 cases of histopathologically confirmed HCC

lesions were included. The classifications based on preoperative grayscale ultrasound

images were performed in two stages: (1) classifier #1, MVI-negative and MVI-positive

cases; (2) classifier #2, MVI-positive cases were further classified as M1 or M2 cases.

The gross-tumoral region (GTR) and peri-tumoral region (PTR) signatures were combined

to generate gross- and peri-tumoral region (GPTR) radiomic signatures. The optimal

radiomic signatures were further incorporated with vital clinical information. Multivariable

logistic regression was used to build radiomic models.

Results: Finally, 1,595 radiomic features were extracted from each HCC lesion. At the

classifier #1 stage, the radiomic signatures based on features of GTR, PTR, and GPTR

showed area under the curve (AUC) values of 0.708 (95% CI, 0.603–0.812), 0.710 (95%

CI, 0.609–0.811), and 0.726 (95% CI, 0.625–0.827), respectively. Upon incorporation of

vital clinical information, the AUC of the GPTR radiomic algorithm was 0.744 (95% CI,

0.646–0.841). At the classifier #2 stage, the AUC of the GTR radiomic signature was

0.806 (95% CI, 0.667–0.944).

Conclusions: Our radiomic algorithm based on grayscale ultrasound images has

potential value to facilitate preoperative prediction of MVI in HCC patients. The GTR

radiomic signature may be helpful for further discriminating between M1 and M2 levels

among MVI-positive patients.

Keywords: hepatocellular carcinoma (HCC), ultrasound,machine learning, algorithm,microvascular invasion (MVI)
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KEY POINTS

- A radiomic algorithm based on grayscale ultrasound images
has potential value to facilitate preoperative prediction of MVI
in HCC patients.

- Gross-tumoral region (GTR) and peri-tumoral region (PTR)
signatures were combined to generate gross- and peri-tumoral
region (GPTR) radiomic signatures.

- The GTR radiomic signature may be helpful for further
discriminating between M1 and M2 levels among MVI-
positive patients.

INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most common
type of liver malignancies all over the world and exhibits
aggressive malignant behavior and a high mortality rate (1, 2).
For HCC patients, hepatic surgery is the primary treatment, but
5-years recurrence rates after hepatic surgery could be as high
as 50% (1, 2), which varies from 20 to 44% (3). Therefore, it
is important to make pre-operative risk stratification of early
recurrence for optimizing patient management.

In recent years, microvascular invasion (MVI) has been
proved to be an independent predictor of poor outcomes
subsequent to surgical hepatic resection (4–6). Currently,
MVI status cannot be adequately determined or predicted
preoperatively, and the only method to determine MVI status
is via postoperative histopathology (4). Therefore, to make non-
invasive and accurate identification of MVI preoperatively would
be of great benefit for stratifying HCC patients before surgery
(4, 7, 8).

Preoperative serum tumor markers and gene signatures have
been investigated as possible approaches for the prediction of
MVI (5, 9). However, such methods are relatively complicated
and the prediction results are indirect, which have not yet been
validated or routinely applied in daily clinical practice (10).
Extensive studies have been proposed to use various imaging
methods to predict MVI in HCC. Current reports of MVI
classification have been mainly based on computed tomography
(CT) (11–13), magnetic resonance imaging (MRI) (14–16), and
contrast-enhanced ultrasound (CEUS) (17, 18). Several imaging
features have been proposed as predictors of MVI, such as the
status of tumor-internal arteries, hypodense halos on CT scans,
arterial peritumoral enhancements, non-smooth tumor margins,
and peritumoral hypointensities on gadoxetic-acid-enhanced
MRI (16). In combination with the numbers and sizes of
tumors, CEUS washout rate may have a role in identifying HCC
patients with MVI (17). However, such qualitative radiological
characteristics have been based on subjective evaluation by
individual radiologists and lack high-dimensional features from
different frequency scales. Unfortunately, no current imaging

Abbreviations: HCC, Hepatocellular carcinoma; MVI, Microvascular invasion;

GTR, Gross-tumoral region; PTR, Peri-tumoral region; GPTR, Gross- and peri-

tumoral region; mRMR, Minimum redundancy maximum relevance; RF, Random

forest.

methods could make a direct and accurate diagnosis of MVI
based on imaging features (19, 20).

The radiomic method is a brand new imaging technique with
the assistance of artificial intelligence software in performing
high-throughput extraction of advanced quantitative features
(21–23). By extracting high-dimensional features to quantify
tumor heterogeneity from radiological images, preoperative MVI
assessment in HCC can be hopefully realized (22, 24–27).
Previous studies have shown that radiomics may potentially be
applied via CT and MRI in classification of HCC grades, early
recurrence prediction, and evaluation of biological characteristics
in HCC patients (15, 18, 21, 28–30). Ma et al., established
radiomic signatures based on contrast-enhanced CT to predict
the status of MVI (11). Yang et al., constructed radiomic
signatures based on MRI for prediction of MVI (14). However,
CT and MRI still have limitations, such as CT having a potential
risk of radiation exposure, and MRI being relatively expensive
and time consuming.

Grayscale ultrasound is the most commonly used first-line
imaging method of HCC lesions before operation, which has
unique advantages in terms of being a non-radiation, easy-to-
perform, and cost-effective imaging method. Recent studies have
shown that radiomic analysis can also be applied to ultrasound
images (11, 14). Radiomic scores based on ultrasound images
have potential to non-invasively predict the MVI status in HCC
patients (18). In a previous study, the imaging features of CEUS
for assessment of MVI were evaluated preoperatively. However,
none of the qualitative CEUS features were proved to be directly
associated with MVI (18).

Preoperative assessments of MVI via various imaging
modalities mainly focused on features inside of tumor, while the
peri-tumoral areas have been less explored. Pathologically, peri-
tumoral areas is the first area of incidence of MVI. It acts as the
main blood dissemination path to portal venous thrombosis, as
well as metastases in both intrahepatic and extrahepatic areas
(31). Therefore, comparing to the tumor area, imaging features
involving peri-tumoral areas may reveal a more direct association
with MVI (23).

In our present study, we aimed to establish a radiomic
algorithm based on grayscale ultrasound in both tumoral and
peri-tumoral areas and to make preoperative predictions of MVI
in HCC patients.

MATERIALS AND METHODS

Institutional Board Approval
This retrospective study was approved by the institutional review
board of our institution. Informed consent was waived before
ultrasound examination. All procedures were in accordance with
the Declaration of Helsinki.

Patients
The inclusion criteria were as follows: (1) grayscale ultrasound
imaging was performed preoperatively in each patient; (2) no
prior surgical or medical treatment was administered for the
suspected HCC lesions; (3) hepatic resection was performed
within 2 weeks after preoperative ultrasound imaging; and (4)
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TABLE 1 | Baseline characteristics of patients.

Characteristic HCC MVI (-)

(n = 178)

HCC MVI (+)

(n = 144)

P-value

Age (year) 0.304

Mean ± SD 58 ± 11 57 ± 9

Range 20–81 29–74

Male/female 143/35 129/15 0.037

Etiology of liver disease

Hepatitis B 137 120

Hepatitis C 3 5

Alcohol 1 0

NAFLD 12 5

Absence 25 14

AFP (ng/l) 28 ± 10 506 ± 8 <0.001*

CA 19-9 38 ± 7 425 ± 19 0.784

CEA 4.8 ± 1.3 9.7 ± 5.5 0.635

Tumor size (mm) <0.001*

Mean ± SD 32.3 ± 23.3 48.4 ± 30.6

Range 9–144 6–176

HCC, hepatocellular carcinoma; MVI, microvascular invasion; AFP, Alpha-fetoprotein;

CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9; NAFLD, non-

alcoholic fatty liver disease.

diagnoses of HCC were confirmed by surgical resection and
histopathological results.

The exclusion criteria were: (1) patients received locoregional
therapy (i.e., radiofrequency ablation or trans-arterial
chemoembolization) before ultrasound imaging; (2) Focal
cystic liver lesion; (3) unclear or unsatisfied ultrasound images of
focal liver lesions.

Following screening based on inclusion and exclusion criteria,
322 patients were enrolled from January 2016 to December
2018. The mean time interval between ultrasound imaging
and surgery was 10 ± 1 days. The clinical characteristics
of patients—such as patients’ age, gender, tumor maximum
diameter, serum carcinoembryonic antigen (CEA) values, alpha-
fetoprotein (AFP) values, and carbohydrate antigen 19-9 (CA19-
9) values—are recorded [Table 1]. Differences in variables were
assessed by using the independent Wilcoxon rank-sum test for
continuous variables. For categorical variables, the chi-square test
was performed. The statistical significance set at 0.05 (two-sided).

Ultrasound Examination Procedure
Grayscale ultrasound examinations were performed by three
experienced radiologists (more than 10 years of experience
in liver ultrasound scans) who were aware of the patients’
clinical histories. Standardized ultrasound image acquisition
procedure were performed 2 weeks before operation. The
imaging parameters were adjusted and optimized for each image,
including (1) brightness gain set between 80 and 90%; (2) depth
set between 10 and 15 cm; (3) dynamic range set between 65 and
80 dB; (4) the HCC lesion was set in the center of field of view
during ultrasound scan; and (5) the focal zone was set in the
bottom area of image.

Ultrasound examination was performed by using one of
the following ultrasound machines: LOGIQ 9 (GE Healthcare,
United States; C1-5 convex array probes, 1–5 MHz); LOGIQ
E9 (GE Healthcare, United States; C1-5 convex array probes,
1–5 MHz); Acuson Sequoia 512 (Siemens Medical Solutions,
United States; 6C1 convex array probes, 3.5 MHz); S2000 HELX
OXANA unit (SiemensMedical Solutions, Germany; 6C1 convex
array probes, 3.5 MHz); S3000 HELX unit (Siemens Medical
Solutions, Germany; 6C1 convex array probes, 3.5 MHz); Philips
IU 22 (Philips Bothell, United States; C5-1 convex array probes,
1–5 MHz); EPIQ7 unit (Philips Bothell, United States; C5-1
convex array probes, 1–5 MHz); Aplio XV (Toshiba Medical
systems, Japan; PV1-475BX probe, 1–8 MHz); and Aplio i900
series diagnostic ultrasound system (Cannon Medical systems
Corporation, Japan; PV1-475BX probe, 1–8 MHz).

For each HCC lesion multiple slices were acquired and
recorded, among which the best one was selected for further
radiomics analysis. The criteria of ultrasound image selection
were as follows: (1) maximum diameter of the lesion; (2)
the margin of the lesion was clear and (3) the surrounding
liver parenchyma of the lesion was clearly scanned. In order
to reduce the influence of image acquisition variants, two
radiologists withmore than 10 years of liver ultrasound operating
experience reviewed all ultrasound images and excluded
unqualified slices.

Histopathologic Examination of MVI
All hepatic specimens were reviewed by a hepatic pathologist
with more than 15 years of experience in hepatic pathology. The
pathologist was blinded to clinical information or preoperative
ultrasound findings. The histopathological diagnosis of MVI was
made according to the Practice and Guidelines of the Chinese
Society of Pathology. Three subgrades of MVI included the
following: M0, no MVI; M1 (the low-risk group), ≤ 5 MVI in
adjacent liver tissue and ≤ 1 cm from the tumor; and M2 (the
high-risk group), > 5 MVI or MVI in liver tissue and > 1 cm
from the tumor (32).

Workflow of Radiomic Analysis
The workflow of radiomic analysis included the following: (1)
tumor segmentation; (2) feature extraction; (3) feature selection;
(4) radiomic model establishment; and (5) model evaluation
(Figure 1).

In our present study, the classification was performed in
two stages. MVI-negative and MVI-positive cases were classified
during the classifier #1 stage. MVI-positive cases were further
classified as either M1 or M2 at the classifier #2 stage.
For the classifier #1 stage, 221 cases were examined via six
different ultrasound machines and were used as the training
cohort, and the remaining 101 cases were examined via three
other ultrasound machines and were selected as the validation
cohort. For the classifier #2 stage, 107 cases were examined
via four different ultrasound machines and were used as the
training cohort, and the residual 37 cases were examined via
three other ultrasound machines and were selected as the
validation cohort.
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FIGURE 1 | Workflow of radiomic analysis. The workflow of radiomic analysis included the following: (a) tumor segmentation; (b) feature extraction; (c) feature

selection; (d) radiomic model establishment; and (e) model evaluation.

FIGURE 2 | Two regions of interest (ROIs) were defined in grayscale ultrasound images (a). The red area shows gross-tumor region (GTR) signatures, and the blue

area shows peri-tumoral region (PTR) signatures (b).

Step 1: Tumor Segmentation
For each HCC lesion, the segmentation of the gross-tumor
region (GTR) was accomplished by an experienced ultrasound
radiologist (with 15 years of experience) using the Medical
Imaging Interaction Toolkit (MITK; version 2013.12.0; http://
www.mitk.org/), which was confirmed by another radiologist
(with 8 years of experience). The uniform dilated half of the
tumor radius served as the peri-tumoral region (PTR) along the
border of GTR (Figure 2).

Step 2: Feature Extraction
Since nine ultrasound machines were involved in this study,
imaging normalization calculated by z-scores was applied to
achieve a zero mean and unit variance based on each ultrasound
machine. The radiomic features of both GTR and PTR at the
classifier #1 stage and classifier #2 stage were extracted using
PyRadiomic radiomic toolbox (33). The full intensity range of
each region of interest (ROI) was quantized to 32 gray levels,
and the normalization scale was set as 255. The radiomic features

were divided into three classes: 14 morphological features,
306 first-order statistical features, and 1,275 textural features.
The radiomic features were further extracted based on five
gray matrices that included the gray-level co-occurrence matrix
(GLCM), gray-level size-zone matrix (GLSZM), gray-level run-
length matrix (GLRLM), gray-level dependence matrix (GLDM),
and neighborhood gray-tone difference matrix (NGTDM). In
addition, seven imaging filters were applied to the original
imaging datasets in order to extract high-dimensional features
from different frequency scales and included the following:
wavelet, square, square root, logarithm, exponential, gradient,
and local binary pattern (LBP) filters. Finally, 1,595 quantitative
radiomic features were extracted from each ROI. A detailed
description of radiomic features is provided in Supplement A.

Step 3: Feature Selection and Classifier Modeling
In order to eliminate redundant features, Pearson correlation
analysis was performed to calculate the pair-wise feature
correlation (34). The features with a mean absolute correlation
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higher than 0.9 were considered to be redundant and were thus
eliminated (35). After the elimination of redundant features,
we used a feature-ranking algorithm (minimum redundancy
maximum relevance, mRMR) (36) to select the most important
features based on a heuristic scoring criterion. Ultimately, the top
ranked features were selected.

Step 4: Radiomic Model Establishment
A random forest (RF) (37) was employed to establish radiomic
signatures using the top-ranking radiomic features from both
GTR and PTR in our present study. Subsequently, GTR and PTR
radiomic signatures in two classifier stages were generated.

In addition, classifiers were trained using 10-fold cross-
validation to determine the optimal parameter configuration
on the training cohort. The GPTR signatures were developed
on features extracted from the combined region of GTR and
PTR. Finally, an integrated signature denoted as the gross-
and peri-tumoral volume (GPTR) signature was generated by
logistic regression using GTR and PTR signatures. The optimal
radiomic signature with the highest area under the curve (AUC)
was selected.

The radiomic algorithm was built by multivariable logistic
regression, which incorporated the optimal radiomic signatures
and clinical factors as input in the training cohort. The optimal
combinations of the radiomic signature and clinical factors were
determined by using the Akaike information criterion (AIC) and
the associations with the outcome of MVI status.

Step 5: Radiomic Model Evaluation
The radiomic signatures and models were further tested
on the independent validation cohort. Receiver operating
characteristic (ROC) curve analysis was used to evaluate
discriminative performance, and the AUC was used to quantify
the discriminative efficacy of all models that were established.
Multiple ROC curves were compared by DeLong test. The
95% CI, sensitivity, specificity, and accuracy of each AUC
was calculated.

Feature selection, classifier modeling, and statistical analysis
were conducted by R software (3.5.2), The mRMR algorithm and
RF classifier are described in Supplements B,C.

RESULTS

Feature Selection and Classifier Modeling
From each ROI, a total of 1,595 radiomic features were extracted.
Pair-wise Pearson correlation coefficients were calculated at both
the classifier #1 stage and classifier #2 stage. The threshold for
identifying highly correlated feature pairs was set at 0.9. As a
result, 311 and 331 features from GTR and PTR remained at
the classifier #1 stage. Subsequently, 282 GTR features and 107
PTR features were selected as input for the classifier #2 stage.
The remaining features were ranked by mRMR. As a result, the
top-100 features were selected for the classifier.

Radiomic Model Establishment
By using the top-ranked features, the RF classifiers were trained
on the training cohorts, which ranked from 2 to 100 with

TABLE 2 | The performance of radiomic signatures.

Classifier stage Signature AUC 95%CI ACC SEN SPE

Classifier #1 GTR 0.708 0.603, 0.812 0.624 0.784 0.531

PTR 0.710 0.609, 0.811 0.653 0.757 0.594

GPTR(1) 0.726 0.625, 0.827 0.663 0.838 0.562

GPTR(2) 0.680 0.574, 0.786 0.634 0.811 0.531

Classifier #2 GTR 0.806 0.667, 0.944 0.730 0.333 0.800

PTR 0.752 0.583, 0.921 0.757 0.333 0.929

GPTR(1) 0.770 0.616, 0.923 0.730 0.667 0.750

GPTR(2) 0.742 0.578, 0.906 0.649 0.778 0.607

AUC, area under the curve; CI, confidece interval; ACC, accuracy; SEN, sensitivity; SPE,

specificity; GTR, gross tumor region; PTR, peritumoral region; GPTR, Gross and peri

tumoral volume.

GPTR(1), the GPTR signature developed by logistic regression using GTR and

PTR signatures.

GPTR(2), The GPTR radiomic signature developed by radiomic features extracted from

GTR and PTR combination region.

increments of 1 via mRMR to develop ultrasound radiomic
signatures. The discriminative abilities of the ultrasound
radiomic signatures were tested on independent validation
cohorts, and the optimal signature with the best AUC
was selected.

For the classifier #1 stage, the optimal signatures were
obtained by combining the top-44 features selected for GTR
(AUC = 0.708), and the top-25 features were selected for PTR
(AUC= 0.710). The GPTR radiomics features extracted from the
combined region of GRT and PTR showed AUC value of 0.680.
The ultimate GPTR radiomic signature developed by logistic
regression showed an increased AUC value of 0.726.

For the classifier #2 stage, the optimal signatures were
obtained by combining the top-65 features selected for GTR
(AUC = 0.806), and the top-80 features were selected for PTR
(AUC = 0.752). The GPTR radiomics features extracted from
the combined region of GRT and PTR showed AUC value of
0.742. The ultimate GPTR radiomic signature showed an AUC
value of 0.770. The performances of all radiomic signatures are
shown in Table 2. The formulas of GPTR signatures are shown in
Supplement D.

Radiomic Model Evaluation
The radiomic algorithm incorporating the optimal radiomic
signatures and clinical factors showed better AUCs in
comparison with those from radiomic signatures in the
validation cohort. For the classifier #1 stage, after adding the
AFP value, the AUC of the radiomic nomogram that combined
the GPTR signature and the AFP value had an improved
AUC of 0.744. The GTR and PTR radiomic nomograms that
combined the radiomic signature and AFP were also evaluated,
as shown in Table 3. The ROC curves in the training and
validation cohorts—including those for GTR, PTR, and GPTR
radiomic signatures of the GPTR algorithm— were shown
in Figures 3A,B.

However, for classifier #2, none of the clinical factors were
independently associated with MVI status. Figures 3C,D show
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TABLE 3 | Formulas and performances of the models.

Classifier stage Formulas AUC 95%CI ACC SEN SPE

Classifier #1 0.327*GTR+0.375*AFP-0.043 0.723 0.622, 0.825 0.564 0.919 0.359

0.271*PTR+0.368*AFP-0.044 0.739 0.642, 0.836 0.554 0.946 0.328

0.334*GPTR+0.355*AFP-0.044 0.744 0.646, 0.841 0.634 0.892 0.484

AUC, area under the curve; CI, confidence interval; ACC, accuracy; SEN, sensitivity; SPE, specificity; GTR, gross tumor region; PTR, peritumoral region; GPTR, Gross and peri

tumoral volume.

FIGURE 3 | The receiver operating characteristic (ROC) curves of radiomic signatures and optimal nomograms. The following are shown: training cohort at the

classifier #1 stage (A); validation cohort at the classifier # 1 stage (B); training cohort at the classifier #2 stage (C); and validation cohort at the classifier #2 stage (D).

the ROC curves for GTR, PTR, and GPTR radiomic signatures
in both training and validation cohorts. The corresponding
sensitivity, specificity and accuracy values for each classifier
stages were calculated. The AUC of various radiomic models
at classifier #1 and #2 stages were compared and the result
of the DeLong test for the two-stage classifier is shown in
Supplement E.

DISCUSSION

Successful preoperative assessment of MVI may facilitate patient
management and improve survival (6, 9). Currently, assessment
of MVI can only be achieved by histopathological examination
after surgery. Subjectivity and sampling error are proved to be

potential problems in accurately evaluating MVI (5). A non-
invasive imaging method which could accurately diagnosing
MVI preoperatively would be help to better stratify HCC patients
for clinical management (38). Extensive studies have shown that
radiomics have great potential in predicting tumor biology and in
improving implementation of precision medicine (18, 23, 28, 29).
Previously, some studies have established radiomic signatures for
detecting the presence of MVI based on CT and MRI (11–14).
Radiomic signatures based on arterial phase and delay phase of
contrast-enhanced CT have yielded AUCs of 0.684 and 0.490,
respectively (11). Additionally, radiomic signatures based on
hepatobiliary-phase T1-weighted MRI have yielded an AUC of
0.705 in predicting MVI (14). A recent study incorporating
clinical risk factors into ultrasound radiomic scores yielded
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efficacious performance inMVI prediction, with an AUC of 0.731
(18). Similarly, in our present study, based on a feature-ranking
algorithm and classifier, we successfully established six grayscale
ultrasound radiomic signatures to predict MVI status in HCC
patients. The radiomic signatures based on features of GTR,
PTR, and GPTR showed AUC values of 0.708, 0.710, and 0.726,
respectively. When these radiomic signatures were combined
with clinical factors in the radiomic algorithm, the performances
of the GTR, PTR, and GPTR signatures at the classifier #1
stage were significantly improved, which demonstrated the added
value of clinical factors in grayscale-ultrasound-based radiomic
algorithms for individualized MVI prediction in HCC. On the
training cohort, a model based on AFP values was further
obtained by logistic regression. The model was tested on the
validation cohort with an AUC value of 0.585. The GPTR
signature showed an AUC of 0.726, which demonstrated that the
classifier performance of the radiomic signature was better than
that of a model built on AFP values. As a result, the nomogram
built on both radiomic signatures and AFP values showed
the highest AUC of 0.744. Hence, AFP and machine-learning-
derived knowledge were mutually complementary. Comparing
with CT or MRI imaging modalities, ultrasound is the most
widely used first line imaging modality for diagnosis of focal
liver lesions, with advantages as real time, no radiation exposure
or nephrotoxicity. Meanwhile, the radiomics model based on
ultrasound images also faces some challenges, such as limited
resolution, relatively lower accuracy, highly operator dependent
and flexible image scanning and record protocol.

Previously, various research on preoperative identifying MVI
by imaging modalities has been mainly focused on inside tumor
features. In recent years, imaging features of peri-tumoral area
have been proved to be more accurate (18), since peri-tumoral
tissue is the first area to be invaded by MVI (31). A high level
of placental growth factor (PlGF) and expression of vascular
endothelial growth factor receptor (VEGFR-1) in peri-tumoral
tissue has been associated with peri-tumoral MVI pathological
angiogenesis and potential vascular invasion (39). Therefore,
imaging features involving peri-tumoral area may reveal a more
direct association with MVI. A recent meta-analysis focused
on the association between peri-tumoral MRI features and
MVI, which revealed a significant association between MVI
and peri-tumoral enhancement and peritumoral hypointensity
on hepatobiliary-phase MRIs. However, the diagnostic accuracy
analysis of this previous study showed relatively high specificity
(0.90–0.94), low sensitivity (0.29–0.40) in assessing MVI (31). In
another study, three radiomic models were built by extracting
radiomic features from both intra-tumoral and peri-tumoral
regions of Gd-EOB-DTPA-enhanced MRI images, which yielded
an AUC value of 0.83 in predicting MVI (23). Until now,
no study has ever extracted PTR radiomic signatures based
on grayscale ultrasound for predicting MVI status. In our
current study, we made a further comparison between intra-
tumoral and peri-tumoral radiomic signatures. As our results
showed at the classifier #1 stage, the grayscale-ultrasound-
based radiomic features of GTR and PTR were both able to
discriminate MVI status in HCC patients. The performance of
the PTR signature was superior than that of the GTR signature.

By combining the PTR and GTR radiomic signatures, the
final GPTR radiomic signature performed better than GTR or
PTR radiomic signatures in discriminating MVI-negative and
MVI-positive cases. Additionally, at the classifier #2 stage, the
GTR signature performed better than the PTR signature in
further discriminating between M1 and M2 levels. By analysis
of grayscale ultrasound radiomic signatures on peri-tumoral
tissue in HCC patients, preoperative MVI assessment may
become more accurate and reliable. Numerous methods could
be used to develop GPTR signature. In our results, GPTR
signatures obtained by logistic regression performed better than
those obtained by radiomic features. Since different application
scenarios will apply to different methods, in our future study,
we will compare different methods in obtaining GPTR signatures
based on larger image data.

Radiomic features based on imaging reflect the microscopic
structure and biological behavior of the tumor, which has a direct
relation to intra-tumoral heterogeneity (18, 40). Intra-tumoral
heterogeneity may be associated with early microvascular
invasion or a worse prognosis (41, 42). The trends of precision
medicine in treatment of HCC are determined by genomic and
biological characteristics of tumors, various imaging modalities
represents a solution to elucidate these characteristics (4, 42, 43).
It is difficult to clarify the correlation between a single radiomic
feature with biological MVI behavior by selecting signatures
from thousands of radiomic features. The common approach is
to build a multi-feature parameter for radiomic analysis (44).
Several studies have indicated that adding of mRMR can improve
the performance of radiomic models (38, 45, 46). In our present
study, the mRMR feature-ranking algorithms were added before
the generation of radiomic signatures. The wavelet features
showed strong abilities to predict other factors based on different
modalities (47). Wavelet features were the primary method used
in our study in optimizing GTR and PTR radiomic signatures
at the two classifier stages (Supplement F), which can quantify
potential heterogeneity at different scales of HCC lesions.

The present study has several limitations. First, the possibility
of a selection bias cannot be excluded due to the retrospective
nature of our present study. Secondly, our study was performed
in a single center, although nine ultrasound machines were
employed and distributed among the training and validation
cohorts in our study, further multicenter validation might be
necessary to evaluate the reliability and verify the generalization
ability of our model. In addition, the number of patients with
MVI-positive HCC lesions was relatively small. In the future,
multimodality ultrasound imaging—including color Doppler-
flow imaging, ultrasound elastography, and CEUS imaging—
will be combined to improve the performance of MVI
classification. We will also directly establish a three-classification
radiomics model to distinguish the MVI-negative, M1, and
M2 groups.

In conclusion, GTR and PTR radiomic signatures based
on grayscale ultrasound imaging have potential value to
facilitate preoperative prediction of MVI in HCC patients.
Additionally, the GTR radiomic signature may be helpful for
further discriminating between M1 and M2 levels among MVI-
positive patients.
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Objectives: To predict the anaplastic lymphoma kinase (ALK) mutations in lung

adenocarcinoma patients non-invasively with machine learning models that combine

clinical, conventional CT and radiomic features.

Methods: This retrospective study included 335 lung adenocarcinoma patients who

were randomly divided into a primary cohort (268 patients; 90 ALK-rearranged; and

178 ALK wild-type) and a test cohort (67 patients; 22 ALK-rearranged; and 45 ALK

wild-type). One thousand two hundred and eighteen quantitative radiomic features were

extracted from the semi-automatically delineated volume of interest (VOI) of the entire

tumor using both the original and the pre-processed non-enhanced CT images. Twelve

conventional CT features and seven clinical features were also collected. Normalized

features were selected using a sequential of the F-test-based method, the density-based

spatial clustering of applications with noise (DBSCAN) method, and the recursive feature

elimination (RFE) method. Selected features were then used to build three predictive

models (radiomic, radiological, and integratedmodels) for the ALK-rearranged phenotype

by a soft voting classifier. Models were evaluated in the test cohort using the area under

the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity,

and the performances of three models were compared using the DeLong test.

Results: Our results showed that the addition of clinical information and conventional

CT features significantly enhanced the validation performance of the radiomic model

in the primary cohort (AUC = 0.83–0.88, P = 0.01), but not in the test cohort

(AUC = 0.80–0.88, P = 0.29). The majority of radiomic features associated with ALK

mutations reflected information around and within the high-intensity voxels of lesions. The

presence of the cavity and left lower lobe location were new imaging phenotypic patterns
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in association with ALK-rearranged tumors. Current smoking was strongly correlated

with non-ALK-mutated lung adenocarcinoma.

Conclusions: Our study demonstrates that radiomics-derived machine learning

models can potentially serve as a non-invasive tool to identify ALK mutation of

lung adenocarcinoma.

Keywords: lung neoplasms, radiomics, tomography, X-ray computed, anaplastic lymphoma kinase, genemutation

INTRODUCTION

Non-small cell lung cancer (NSCLC), especially lung
adenocarcinoma, is the leading cause of cancer-related deaths
worldwide (1, 2). The occurrence of fused anaplastic lymphoma
kinase (ALK) gene in NSCLC patients is ∼5% in western
countries, but ALK mutations have become the second most
significant molecular mutations in the regimen of NSCLC
treatment following epidermal growth factor receptor (EGFR)
mutations (2–6). The positivity rate of ALK is similar in the
Asian population with NSCLC (4.9%) and is higher in those with
lung adenocarcinomas (6.03%) (7). The accurately screening
of ALK mutation patients has thus become a pivotal step in
treating NSCLC.

Traditional molecular tests for detecting ALK rearrangements
including fluorescence in situ hybridization (FISH) and
immunohistochemistry (IHC) are limited in the detection of
genetic mutations and monitoring of therapeutic effects. Firstly,
the required biopsies or surgical resection may not be attainable
for vulnerable and advanced cancer patients. In addition,
recent studies have reported a 30–87.5% intra-tumoural genetic
heterogeneity rate for ALK fusions in NSCLCs, which challenges
the accuracy of traditional ALK fusion tests based on tissues
from a routine biopsy procedure (8–10). Moreover, given the low
occurrence of ALK mutations among NSCLCs, the purchasing
of the devices and antibodies required for such molecular tests
were cost-inefficient for both hospitals and patients. Therefore,
a non-invasive, convenient, and more reliable procedure for
detecting ALK mutations is necessary.

Computed tomography (CT) is widely used to diagnose
lung cancer. Recent studies have identified some CT imaging
features that are associated with ALK gene rearrangements,
including central tumor location, lobulated margin, solidity,
pleural effusion, and distant metastasis (11–14). However, the
evaluation of these conventional CT features depends heavily on
the radiologist’s experience and is time-consuming. Radiomics
is a computer-based approach that has been widely applied

Abbreviations:ROC, receiver operating characteristic; AUC, area under the curve;

CT, computed tomography; DICOM, digital imaging and communications in

medicine; GGO, ground-glass opacity; GLCM, gray level co-occurrence matrix;

GLSZM, gray level size zone matrix; GLRLM, gray level run-length matrix;

GLDM, gray level dependence matrix; AIS, adenocarcinoma in situ; MIA,

minimally invasive adenocarcinoma; IAC, invasive adenocarcinoma; NCCN,

National Comprehensive Cancer Network; NSCLC, non-small cell lung cancer;

CEA, carcinoembryonic antigen; DBSCAN, density-based spatial clustering of

applications with noise; RFE, recursive feature elimination; LR, logistic regression;

DT, decision tree

in the diagnosis of lung neoplasm as well as the prediction
of survival and gene mutations in lung cancer (15–18). It
could help radiologists to identify additional information about
tumor phenotype that is distinct from conventional findings of
CT images (15, 16, 19–21). So far, the efficacy of radiomics
in predicting the ALK gene in lung adenocarcinoma is still
unknown. Therefore, the aim of our study is to (1) investigate the
role of radiomic features in the prediction of ALK rearrangement
status in lung adenocarcinomas, and (2) examine whether or not
the addition of conventional CT characteristics and clinical data
can improve the performance of the predictive model.

MATERIALS AND METHODS

Patient Population
This retrospective study reviewed a total of 1,370 consecutive
patients with pathologically confirmed lung adenocarcinoma by
surgery or biopsy at our hospital fromNovember 2015 toOctober
2018. The inclusion criteria were as follows: (1) availability of
complete clinical data; (2) complete ALK mutation gene test
results; (3) availability of complete thin-slice chest CT images
(≤1mm) reconstructed in Digital Imaging and Communications
in Medicine (DICOM) format. The exclusion criteria were as
follows: (1) CT images with severe artifacts; (2) patients receiving
treatment before CT examinations; (3) interval between CT
examination and surgery or biopsy >1 month; (4) multiple
primary lung cancers. According to these criteria, 1,004 patients
(112 ALK-positive and 892 ALK-negative) were eligible for the
investigation. We randomly sampled 25% of the ALK-negative
patients for enrolment in our study. Finally, 335 patients (112
ALK+ patients and 223 ALK– patients) were enrolled in this
study. Twenty percent of the cases were randomly selected
from the ALK+ and ALK– patients, respectively, to build an
independent test cohort (67 cases, 22 ALK+ and 45 ALK–;
median age, 57 years; range, 34–78 years) while the remaining
being the primary cohort (268 cases, 90 ALK+ and 178 ALK–;
median age, 58 years; range, 26–83 years). The flowchart of the
eligibility and exclusion criteria is shown in Figure 1. The tumor
lesions were all solitary. This retrospective study was approved by
our institutional review board, and the need for informed patient
consent was waived.

In regards to molecular profiles, the Ventana ALK (D5F3)
CDx assay (the antibody cloneD5F3withOptiView amplification
and OptiView detection, Ventana Medical Systems Inc.)
coupled to a BenchMark XT automated staining instrument
(Roche/Ventana Medical Systems Inc.) was used to test ALK
fusion genes on the formalin-fixed paraffin-embedded tissues.
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FIGURE 1 | Eligibility and exclusion criteria of the study. The flowchart depicts the process of patient enrolment, including eligibility, and exclusion criteria of the study.

The numbers in parentheses are the numbers of patients. ALK, anaplastic lymphoma kinase; DICOM, Digital Imaging and Communications in Medicine.

Tissues were from either biopsy or surgical procedures.
Specimens were scored binarily as positive if strong granular
cytoplasmic brown staining was present in tumor cells. The
international consensus guideline has now regarded the Ventana
IHC method as an alternative to the conventional FISH test (22).
For the IHC score for ALK that was near the borderline, FISH
tests were conducted to make the final decision.

Image Acquisition and Lesion
Segmentation
Non-enhanced chest CT scans of 335 patients were carried out
from the lung apex to the lung base using multi-detector CT
(MDCT) scanners from Siemens (Somatom Definition Flash
or Somatom Force; Forchheim, Germany), General Electric
(Discovery CT750 HD; Milwaukee, WI), Philips (IQon CT;
The Netherlands) or Toshiba (Aquilion 64; Tokyo, Japan) at
the end of inspiration. Breath-hold training was carried out
before each examination. The following scanning parameters
were used: slice thickness/slice increment 1mm (Somatom
Definition Flash, Somatom Force and IQon CT) or 0.625mm
(Discovery CT750 HD) or 0.5mm (Aquilion 64); rotation time

0.5 s (Somatom Definition Flash, Somatom Force, Aquilion
64, IQon CT) or 0.6 s (Discovery CT750 HD); pitch 0.984
(Aquilion 64, Discovery CT750 HD) or 1.2 (Somatom Definition
Flash, Somatom Force, IQon CT); matrix 512 × 512; high
and standard resolution algorithms; tube voltage 120 kVp, tube
current adjusted automatically.

The anonymized thin-slice DICOM format non-enhanced CT
images were imported into the Dr. Wise research platform, on
which the lesions were automatically delineated with automatic
pulmonary nodule detection and segmentation algorithms
(23). The detection model was a two-stage network that
integrated both image and feature pyramids for nodule detection.
The segmentation model was built based on the recurrent
convolutional neural networks, and the attention map was used
to improve model performance. Both the detection model and
segmentationmodel were trained on a combination of public and
in-house datasets (details in Supplementary Information 1.1).
The results were confirmed and modified on axial images slice
by slice with lung window settings (width, 1,200 HU, level, −500
HU) by two thoracic radiologists with 3 and 14 years of diagnostic
imaging experience, without knowledge of pathological report
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information or other information. The volume of interest (VOI)
was drawn according to the tumor-lung interface, excluding
vascular, bronchus, atelectasis, and other adjacent normal tissues
as much as possible. The whole process of the data analysis
workflow is depicted in Figure 2.

Collection of Clinical Data and Evaluation
of Conventional CT Features
Clinical data were collected through electronic medical
records, including the following seven characteristics: age,
sex, smoking history, smoking index, clinical stage, distal
metastasis, and pathological invasiveness of the tumor.
The clinical stage was determined according to the eighth
edition of the American Cancer Society guidelines for NSCLC
staging (24). The pathological subtypes of adenocarcinoma
in situ (AIS), minimally invasive adenocarcinoma (MIA) and
invasive adenocarcinoma (IAC) were assessed according to the

latest International Multidisciplinary Classification of Lung
Adenocarcinoma guidelines (25).

All thin-slice CT images were evaluated by 2 radiologists
(with 14 and 3 years of chest CT interpretation experiences) who
were blinded to each subject’s clinical data. Decisions on CT
findings were reached by consensus. Twelve CT morphological
features were assessed, including maximum diameter, mean
CT attenuation, lesion location, involved lobe, density, margin,
cavity, calcification, pleural retraction sign, pleural effusion,
pericardial effusion, and local lymphadenopathy. The definitions
and scoring rules of the clinical features and conventional CT
features are described in Supplementary Table 1.

Radiomic Feature Extraction
The images were resampled to a pixel spacing of 1.0mm in
three anatomical directions to offset the interference caused by

FIGURE 2 | Workflow of data analysis. The workflow illustrates the radiomic, radiological, and integrated modeling and analysis workflow with one example of a CT

image and tumor segmentation. (a) A male lung adenocarcinoma patient, 44 years old. (b) Auto-detection, segmentation, and manual confirmation of the targeted

lesion. The red square in the first image mimics the detection process. The initial regions of interest (ROIs) are generated in this step. (c–e) Description of the process

of collection of radiomic, conventional CT and clinical features. (f–i) Illustrations of dataset building, feature selection, model training and validation, and model

evaluation, respectively.
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the inconsistent spatial resolution. Then high-pass and low-
pass wavelet filters or Laplacian of Gaussian (LoG) filters with
different σ parameters were employed to pre-process the original
image. The results of the pre-processed images from one ALK+
case and one ALK– case after each pre-processing technique
are illustrated in Figure 3. A total of 1,218 radiomic features
were extracted from the segmented three-dimensional VOIs of
the tumor on non-enhanced CT images and the pre-processed
images. The features quantified the phenotypic characteristics
of the tumors and were divided into three groups: first-
order features, shape features, and texture features. The texture
features included gray level co-occurrence matrix (GLCM),
gray level size zone matrix (GLSZM), gray level run length
matrix (GLRLM), and gray level dependence matrix (GLDM)

features. All steps above were performed using the PyRadiomics
tool (version 2.1.0). The demonstration of filtering and the
detailed explanations of all radiomic features can be found in
the Supplementary Informations 1.2, 1.3.

Feature Selection and Development of
Predictive Models
We grouped the features into three sets—the radiomic set
(radiomic features), the radiological set (radiomic features +

conventional CT features), and the integrated set (radiomic
features + conventional CT features + clinical features). Each
of the three sets was selected and then used to develop the
radiomic model, radiological model and the integrated model in
the primary cohort individually. To maximize the generalization

FIGURE 3 | Illustration of the pre-processing methods. The figure displays the VOIs of selected ALK+ and ALK– invasive adenocarcinoma cases after each procedure

of the image pre-processing methods. The ALK-positive case was a 44-years-old male patient, and the ALK-negative case was a 60-years-old female patient. Both of

the lesions were solid and light lobulated.
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ability of our model and to reduce the bias of the performance
evaluation, the entire feature selection and model training
procedure was fed into a repetitive (10 runs) 10-fold cross-
validation using the primary cohort. The discriminative score
for each patient was obtained from averaging the final predictive
probabilities of the classifiers. The area under the curve (AUC)
was calculated from the assembled probability. The optimized
hyper-parameters of the feature selection and model training
procedure were obtained by a grid search that maximized the
AUC of the repetitive 10-fold cross-validation. After the hyper-
parameters were determined, the model was re-trained using
the entire primary dataset and the performance on the test
cohort was viewed as the estimation of the true performance
of our model. The above procedures were performed by the
Scikit-learn software package (Version: 0.20.3) on the Dr. Wise
research platform.

Before the feature selection procedure, the features were pre-
processed to fit the machine-learning algorithm, including Min–
Max scaling for all numerical features and one-hot encoding for
categorical features. We used a three-step sequential procedure
that was consisted of the F-test-based method, the density-based
spatial clustering of applications with noise (DBSCAN) method
(26), and the recursive feature elimination (RFE) method (27).
The F-test-based method examined the difference of means of
each feature between the ALK-rearranged group and the wild-
type group, and features with smaller P-values were retained.
In the unsupervised DBSCAN method, the paired features with
high Pearson correlation coefficients were clustered. The border
of the cluster was defined by the radius of the cluster (eps) and
the minimum number of points within the cluster (min sample
size). Within each cluster, only the feature with the smallest P-
value in the previous method was remained at this step. Besides,
non-clustered features were also retained. The logistic regression
(LR) based RFE method was used as the last selection process,
in which we set the regularization intensity to 0.5 and penalty
as L1. For each iteration, two features with the least coefficients
were pruned until the desired number of features to select was
eventually reached.

A soft voting classifier was used to build the predictive model.
In this classifier, the average of the predicted probabilities of
being ALK+ trained with the LR model and that trained with
the decision tree (DT) model was used as the final predictive
probability of the predictive model.

Statistical Analysis
The differences in all variables between ALK-positive group
and ALK-negative group were assessed using Mann-Whitney
U-test or independent samples t-test for continuous variables,
and chi-square test or Fisher’s exact test for categorical variables
as appropriate. This step was performed with SPSS Statistics
20.0 (IBM Corporation, NY, USA). The predictive models were
analyzed using the receiver operating characteristics (ROC)
curve. The AUC, 95% confidence interval (CI) for AUC,
accuracy, sensitivity, and specificity were calculated. The cut-
off discriminative score to differentiate ALK-mutated patients
and ALK wild-type patients was determined by maximizing
the Youden index in the training process. The above analyses

were performed by the Scikit-learn software package (Version:
0.20.3) and the Matplotlib package (Version 3.1.0) on the Dr.
Wise research platform. Lastly, the DeLong test was used for
pairwise comparisons among the three models using MedCalc
software (Version 19.0.2). A two-sided P < 0.05 was considered
statistically significant throughout the study.

RESULTS

Clinical and Conventional CT Features
Among the entire cohort, 269 (80.3%) patients underwent
surgical procedures and 66 (19.7%) underwent diagnostic
biopsies. The results of clinical features in the primary and the
test cohort are listed in Table 1. The rates for the number of ALK-
mutated patients vs. ALK-negative patients in the primary and
the test cohort were both close to 1:2. All clinical characteristics
but the smoking history (P = 0.028) for patients in the primary
and the test cohort showed no statistical difference.

In the primary cohort, the patients in the ALK-positive group
were significantly younger than those in the ALK-negative group
(P < 0.001). In addition, more patients in the ALK mutation
group had advanced lung cancers (stages III and IV), distant
metastases and no smoking history than those in the ALK
wild-type group. In terms of conventional CT features (see
Table 2), ALK mutated lesions were found to have larger size
and hyper-attenuation, and tended to be solid, lobulated, with
more prevalence of pleural effusion, pericardial effusion, and
local lymphadenopathy (P< 0.01). There was a higher percentage
of central tumors in the ALK+ group than in the ALK– group
(P = 0.008), although the peripheral lesions were more common
within each group. Cavities were slightly more frequent in lesions
with ALK mutations (P = 0.039).

Features Selection and Model
Construction
Figure 4 depicts the procedure of feature selection sequences.
The final models contained 30, 20, and 30 features
in the radiomic, radiological, and integrated models,
respectively. The hyper-parameters associated with each
selection method in each predictive model are displayed in
Supplementary Table 2. The majority of selected radiomic
features throughout the three prediction models were
first-order features and texture features. The only shape-
based feature (Original_Shape_MajorAxisLength) was
used in the integrated model. In the radiomic model,
features that had positive non-zeros coefficients in both
DT and LR model were Original_Firstorder_90Percentile,
Original_Firstorder_Maximum, and Wavelet-
LHH_GLDM_LDHGLE. For conventional CT features,
pericardial effusion, local lymphadenopathy, lobulated margin,
and the absence of pleural retraction sign were selected in both
the radiological and integrated model as being correlated with
ALK-rearranged status. The integrated model also adopted no
cavity and left lower lobe lesions, as shown in Figure 5. The
favorable clinical features for ALK-negative status (negative LR
coefficients) were current smoking, early clinical stage (stage
I) and male sex. The list of the selected features and their
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TABLE 1 | Clinical characteristics of ALK– and ALK+ lung adenocarcinoma patients in the primary and test cohort.

Characteristics Primary cohort Independent test cohort

Total/% ALK–/% ALK+/% P-valueb Total/% ALK–/% ALK+/% P-valueb

Age (yearsa) 57 ± 10 (26–83) 59 ± 10 (28–83) 54 ± 10 (26–73) <0.001* 57 ± 11 (34–78) 59 ± 10 (40–78) 54 ± 10 (34–76) 0.116

Sex

Male 113/42.2 76/42.7 37/41.1 0.804 26/38.8 19/42.2 7/31.8 0.412

Female 155/57.8 102/57.3 53/58.9 41/61.2 26/57.8 15/68.2

Smoking history

Never 182/67.9 111/62.4 71/78.9 <0.001* 50/74.6 33/73.3 17/77.3 0.578

Current 74/27.6 65/36.5 9/10.0 10/14.9 8/17.8 2/9.1

Former 12/4.5 2/1.1 10/11.1 7/10.4 4/8.9 3/13.6

SI (pack-years)

SI ≤ 10 208/77.6 127/71.3 81/90.0 0.002* 55/82.1 36/80 19/86.4 0.581

10 < SI < 20 9/3.4 8/4.5 1/1.1 2/3.0 2/4.4 0/0

SI ≥ 20 51/19.0 43/24.2 8/8.9 10/14.9 7/15.6 3/13.6

Pathology

AIS 12/4.5 10/5.6 2/2.2 0.109 1/1.5 1/2.2 0/0 0.410

MIA 22/8.2 18/10.1 4/4.4 7/10.4 6/13.3 1/4.5

IAC 234/87.3 150/84.3 84/93.3 59/88.1 38/84.4 21/95.5

DM (−) 244/91.0 174/97.8 70/77.8 <0.001* 58/86.6 43/95.6 15/68.2 0.004*

DM (+) 24/9.0 4/2.2 20/22.2 (Fisher) 9/13.4 2/4.4 7/31.8 (Fisher)

Clinical stage

I 176/65.7 141/79.2 35/38.9 <0.001* 46/68.7 36/80 10/45.5 0.002*

II 32/11.9 16/9.0 16/17.8 4/6.0 3/6.7 1/4.5

III 15/5.6 7/3.9 8/8.9 6/9.0 4/8.9 2/9.1

IV 45/16.8 14/7.9 31/34.4 11/16.4 2/4.4 9/40.9

The data are displayed as n/%, except where otherwise noted. No significant difference exists between the primary and test cohort for all demographic characteristics (P > 0.05) but

the smoking history (P = 0.028).
aMean ± standard deviation (range).
bALK– group vs. ALK+ group.

*P < 0.05.

ALK, anaplastic lymphoma kinase; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IAC, invasive adenocarcinoma; SI, smoking index; DM, distant metastasis;

Fisher, Fisher’s exact test.

associated coefficients in DT and LR model are illustrated in
Supplementary Tables 3–5.

Evaluation of Models and Comparison of
Predictive Model Performance
The diagnostic performance of each model is shown in Table 3

and the results of ROC curve analysis are shown in Figure 6.
The optimal thresholds that maximized the Youden index for
the radiomic model, radiological model, and integrated model
were 0.40, 0.33, and 0.34, respectively. The prediction results
of each model when validating the cross-validation cohort
and in the test cohort are shown in Figure 7. We predicted
the lesion as ALK-positive if the discriminative score for that
lesion was higher than the threshold in each model, and as
ALK-negative if otherwise.

In the primary cohort, the performances of the three
predictive models in the training set were close to perfect.
In the validation set, the integrated model achieved the best
performance (AUC = 0.88). A statistically significant difference
in AUC was found between the integrated model and the

radiomic model with the DeLong test (P= 0.01), but not between
the integrated model and the radiological model (P = 0.1) or the
radiological model and radiomic model (P = 0.25). In the test
cohort, although the integrated model also showed the highest
AUC (0.88) among the three predictive models, no statistical
difference was found between any of the two models using
DeLong test (P = 0.35 for radiomic vs. radiological; P = 0.29 for
radiomic vs. integrated; P = 0.66 for radiological vs. integrated).

DISCUSSION

In this study, we developed an integrated model that combined
radiomic features, clinical data and conventional CT features
(AUC = 0.88, accuracy = 0.79, sensitivity = 0.82, and specificity
= 0.78 in the independent test cohort) for differentiating
ALK mutations in lung adenocarcinoma patients. During this
process, we identified that Original_Firstorder_90Percentile,
Original_Firstorder_Maximum, and Wavelet-LHH_GLDM_
LDHGLE were significant and robust radiomic features
associated with ALK mutation. These features reflect abstract
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TABLE 2 | Conventional CT features of ALK– and ALK+ lung adenocarcinoma patients in the primary and test cohort.

Features Primary cohort Independent test cohort

Total/% ALK–/% ALK+/% P-valueb Total/% ALK–/% ALK+/% P-valueb

mDia. (mm)a 19 ± 16 18 ± 15 21 ± 23 0.007* 22 ± 19 18 ± 15 26 ± 22 0.089

CT attenuation (HU)a −214 ± 476 −397 ± 455 −7 ± 197 <0.001* 5 ± 289 −35 ± 409 26 ± 38 0.001*

Location

Central 43/16.0 21/11.8 22/24.4 0.008* 12/17.9 4/8.9 8/36.4 0.014*

Peripheral 225/84.0 157/88.2 68/75.6 55/82.1 41/91.1 14/63.6 (Fisher)

Lobe

RUL 78/29.1 57/32.0 21/23.3 0.280 16/23.9 12/26.7 4/18.2 0.274

RML 14/5.2 10/5.6 4/4.4 0/0 0/0 0/0

RLL 58/21.6 40/22.5 18/20.0 17/25.4 11/24.4 6/27.3

LUL 65/24.3 43/24.2 22/24.4 19/28.4 14/31.1 5/22.7

LLL 51/19.0 27/15.2 24/26.7 13/19.4 8/17.8 5/22.7

Mixed 2/0.7 1/0.6 1/1.1 2/3.0 0/0 2/9.1

Density

pGGO 83/31.0 74/41.6 9/10.0 <0.001* 10/14.9 10/22.2 0/0 <0.001*

pSolid 69/25.7 51/28.7 18/20.0 25/37.3 22/48.9 3/13.6

Solid 116/43.3 53/29.8 63/70.0 32/47.8 13/28.9 19/86.4

Margin

Spiculated 115/42.9 86/48.3 29/32.2 0.004* 35/52.2 29/64.4 6/27.3 0.009*

Lobulated 120/44.8 67/37.6 53/58.9 28/41.8 13/28.9 15/68.2

Smooth 33/12.3 25/14.0 8/8.9 4/6.0 3/6.7 1/4.5

Cavity (–) 244/91.0 167/93.8 77/85.6 0.039* 63/94.0 42/93.3 21/95.5 1.000

Cavity (+) 24/9.0 11/6.2 13/14.4 4/6.0 3/6.7 1/4.5 (Fisher)

Calcification (–) 256/95.5 170/95.5 86/95.6 1.000 60/89.6 41/91.1 19/86.4 0.675

Calcification (+) 12/4.5 8/4.5 4/4.4 (Fisher) 7/10.4 4/8.9 3/13.6 (Fisher)

Plu. retraction (–) 133/49.6 85/47.8 48/53.3 0.388 26/38.8 18/40.0 8/36.4 0.774

Plu. retraction (+) 135/50.4 93/52.2 42/46.7 41/61.2 27/60.0 14/63.6

Plu. effusion (–) 237/88.4 168/94.4 69/76.7 <0.001* 57/85.1 44/97.8 13/59.1 <0.001*

Plu. effusion (+) 31/11.6 10/5.6 21/23.4 10/14.9 1/2.2 9/40.9 (Fisher)

Per. effusion (–) 258/96.3 178/100 80/88.9 <0.001* 58/86.6 43/95.6 15/68.2 0.004*

Per. effusion (+) 10/3.7 0/0 10/11.1 (Fisher) 9/13.4 2/4.4 7/31.8 (Fisher)

Lymph. (–) 205/76.5 158/88.8 47/52.2 <0.001* 48/71.6 38/84.4 10/45.5 0.001*

Lymph. (+) 63/23.5 20/11.2 43/47.8 19/28.4 7/15.6 12/54.5

The data are displayed as n/%, except where otherwise noted.
aMedian ± interquartile interval.
bALK– group vs. ALK+ group.

*P < 0.05.

ALK, anaplastic lymphoma kinase; mDia., maximum diameter; RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe; pGGO,

pure ground-glass opacity; pSolid, partial solid; Plu., pleural; Per., pericardial; Lymph., lymphadenopathy; Fisher, Fisher’s exact test.

information from the distribution of pixel intensity and the
texture morphology that cannot be detected with the naked eyes.
We also found that the addition of conventional CT features to
the radiomic model did not increase the model’s efficacy, yet the
clinical data, in combination with conventional CT features were
able to significantly enhance the performance of the prediction
model in the cross-validation set. Among the clinical features,
smoking history was the most powerful factor to differentiate
ALKmutated lung adenocarcinomas from the non-ALKmutated
ones. Moreover, our study optimized the performance of models
by using the automatic lesion segmentation techniques, involving
features from filtered images, and adopting a soft voting classifier.

The model with radiomic features alone in our study reached
an AUC of 0.83, which is not inferior to other previously
established clinical models that were based on conventional
CT features (also named as morphological or semantic CT
features) and patients’ clinical information (11, 28, 29).
This suggests the strong efficacy of radiomics as tools to
identify ALK-mutated tumours’ phenotypic patterns on CT
scans in lung adenocarcinoma patients. The construction
of the radiomic model was purely based on features within
the first-order and texture categories, which suggests that
the intensity distribution of tumors was a strong predictive
factor for ALK genetic mutation. This is consistent with

Frontiers in Oncology | www.frontiersin.org 8 March 2020 | Volume 10 | Article 36927

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Song et al. Radiomic-Based Model for ALK Mutations

FIGURE 4 | Illustration of the feature selection procedure in the three models. Each vertical panel exhibits the selection process for each of the three predictive

models. Each symbol indicates a different type of feature. The number of selected features along with the optimal AUC obtained at each selection step was shown at

the top of each sub-panel. In the radiomic model, 1,218 extracted radiomic features were used to begin the selection. In the radiological model, the initial features

included 12 conventional CT features and 1,218 radiomic features. In the integrated model, seven clinical characteristics were added in addition to the 12

conventional CT features and 1,218 radiomic features. The features were selected to maximize the AUC of the predictive model at the final step.

findings in other radiomic studies (15, 16, 20). Among the
selected radiomic features, Original_Firstorder_90Percentile,
Original_Firstorder_Maximum, and Wavelet-
LHH_GLDM_LDHGLE were the most significant and robust
features associated with ALK mutations, which reflect tumour’s
intensity and textural features surrounding and within the
high-intensity CT voxels. This finding could be related to the
revelation that ALK+ lung tumors were more likely to be solid
mass (13, 28, 30, 31).

In our study, conventional CT evaluations contained tumour’s
surrounding information that was typically not represented by
radiomic features of tumor itself. In our radiological model, three
out of the four selected conventional CT features reflected the
relationship between tumor and its surrounding tissue. They

were pericardial effusion, local lymphadenopathy, and no pleural
retraction sign. These features and their correlations with ALK
mutations have been identified in previous literature (14, 28, 30).
These pathological changes around the ALK-mutated tumor may
result from the infiltration of tumor cells, suggesting the more
invasiveness nature of ALK-rearranged tumors (30, 32). In spite
of this, the performance of the radiological model for predicting
ALK status was not significantly enhanced with the addition
of these conventional CT features. This phenomenon may be
attributed to the inclusion of the LoG-processed features in our
model. The LoG is a spatial filtering technique that enhances
the marginal features from surrounding regions, which provides
more information concerning tumour’s surroundings. Dou et al.’s
study revealed that radiomic features extracted from rims of
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FIGURE 5 | Selected features and their coefficients in the integrated model. The blue dots indicate the coefficients in the DT model. They denote the decrease of the

Gini index when such a feature is used in the DT model. A higher DT value suggests a more significant influence. The red dots represent the beta coefficient in the LR

model. Since all features were rescaled before the selection procedure, these coefficients are equivalent to the normalized LR coefficients. A higher positive LR

coefficient (right side of the figure) suggests a stronger relationship between the feature and ALK mutation, and a higher negative LR coefficient (left side of the figure)

suggests a stronger relationship between the feature and ALK-negative status.

tumors were able to predict distantmetastases in locally advanced
NSCLC (Concordance Index = 0.64) (33), which suggests that
radiomic features can reflect the invasiveness of the tumors. In
fact, radiomic features and conventional CT features were highly
correlated. Stephen et al.’s study illustrated that one radiologist-
defined imaging feature was associated with multiple radiomic
features (21). In other words, radiomic features were expansions

of the conventional CT features in detail to some degree. The
finding in Stephen et al.’s study also explains another result that
our radiological model had a much fewer number of features
compared to the radiomic one at the final selection step.

In addition to the conventional CT features discussed above,
we identified the intra-tumoural cavity and left lower lobe
location were associated with the ALK mutation status. Previous
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TABLE 3 | Diagnostic performance of each model in the primary cohort and test cohort.

Model name Primary cohort Independent test cohort

AUC (95% CI) ACC SEN SPE AUC (95% CI) ACC SEN SPE

Radiomic Train 1.00 (0.99–1.00) 1.00 1.00 0.99 0.80 (0.69–0.89) 0.73 0.73 0.73

Validation 0.83 (0.79–0.88) 0.76 0.70 0.80

Radiological Train 1.00 (0.99–1.00) 1.00 1.00 1.00 0.86 (0.75–0.93) 0.75 0.68 0.78

Validation 0.85 (0.80–0.89) 0.78 0.78 0.78

Integrated Train 1.00 (0.99–1.00) 1.00 1.00 0.99 0.88 (0.77–0.94) 0.79 0.82 0.78

Validation 0.88 (0.83–0.91) 0.79 0.78 0.80

In the primary cohort, the performance index of each model in the training and the validation set were displayed separately. The radiomic model contained the selected radiomic features

only. The radiological model contained the selected conventional CT features in addition to the radiomic features. The integrated model contained the selected radiomic features,

conventional CT features and clinical characteristics. AUC, area under the receiver operating characteristic curve; ACC, accuracy; SEN, sensitivity; SPE, specificity.

FIGURE 6 | The ROC curves of the three prediction models that indicate ALK mutation status. (A) The validation set in the primary cohort; (B) the test cohort.

studies found no difference in the prevalence of cavity between
the ALK-mutated group and the control group, yet they either
excluded both EGFR and ALK mutations in the ALK-negative
group (12, 29, 34) or generalized the definition of cavity by
including bubble lucence (12, 31). The lobar location preference
for ALK mutations was only mentioned in Yoon’s study (20).
More studies are warranted to establish a tight connection
between these two features and ALK mutations status in
lung adenocarcinomas.

The integrated model contained radiomic, conventional CT
and clinical features, and showed the highest AUC score (0.88)
in both the primary and the test cohorts. The enhancement was
statistically significant in the primary cohort but not in the test
cohort. We found that the standard errors of the discriminative
scores for patients with different ALK mutation statuses in the
test cohort were higher than those in the primary cohort in
the corresponding mutation group. It was also reflected by a
wider range of confidence interval for AUC in the test cohort.
The relatively large variance of discriminative scores for patients

was partly due to the limited sample size in the test cohort. In
spite of this, the improved efficacy of the integrated model by
adding clinical characteristics for lesions in the primary cohort
suggests that clinical information was effective to improve the
radiomic-basedmodel for detecting ALK-mutated status. Adding
more ALK-associated clinical variables such as carcinoembryonic
antigen (CEA) level and histological growth pattern may further
enhance the performance of the model (35, 36). Previously, the
best predictive model for the detection of ALK mutations was
from Yamamoto’s study (AUC = 0.846), in which it contained
age as the only selected clinical feature and several conventional
CT features (14). However, their work was based on enhanced
CT images. The promising performance of the radiomic model
in our study indicates that radiomic features extracted from non-
enhanced CT images are adequate for establishing a convincing
predictive model for ALK mutations in lung adenocarcinomas.

For the identified clinical features in our integrated model,
smoking history had the highest discriminatory power (high
weighting coefficient in both DT and LR), which is consistent
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FIGURE 7 | The discriminative scores of the three predictive models in the primary (A) and test cohort (B). The discriminative score for each patient is the average of

the final predictive probabilities in the LR and DT classifier. The columns above the horizontal axis represent tumors that were predicted to be ALK+, while the

columns below the horizontal axis represent the opposite. The color indicates the golden truth of each tumor.

with previous studies that observed more non-smokers in
the ALK+ population (29, 30). Nonetheless, some integrated
models for predicting ALK mutations did not remain smoking
status as a significant index after their selection procedures
(14, 20). This discrepancy may be caused by different model
construction strategies and smoking cultures. Furthermore, we
identified clinical stage I as an important clinical feature that was
inversely associated with ALK rearrangements. This coincides
with the finding that ALK mutations were more common in
lung adenocarcinoma of stages III and IV in the univariate
analysis. Similar results were found in Choi et al.’s study, in
which ALK gene fusion was more likely to occur in lung
cancer with a more advanced stage (37). We also noticed that
the only shape-based radiomic feature—Major_Axis_Length was
picked in the integrated model. It measures the largest axis
length in a three-dimensional VOI. Most early studies measured
the maximal diameter of tumors on a 2D plane and did not
find a correlation between tumor size and ALK mutation (20,
29, 35, 38), while others found smaller diameters in ALK
mutated tumors (39). Our study yielded a contradictory result
that ALK-mutated tumors had a significantly larger diameter.
These findings altogether suggest that the measurement of
maximum diameter on a 2D plane is not representative of
the real size of the tumor. Future studies should use the 3D
axis length of tumors when building prediction models for
better accuracy.

However, there are several limitations in our study. First,
it is a retrospective study with patients from a single medical
center. In the current study, we repeated the 10-fold cross-
validation process 10 times to avoid overfitting and to
minimize the optimism bias. Furthermore, an independent

test cohort was used to validate the performance of our
models. Despite, our model’s generalizability should be further
examined on data from a different medical center in the
future. Second, we did not evaluate the effects of CEA and
the maximum SUV value from PET/CT examination because
such data were missing in approximately one-third of the
patients. Third, we only examined radiomic and conventional
features from the non-contrast enhanced CT images in this
study due to the retrospective nature of the study. We can
perform a prospective study to include features based on
contrast-enhanced CT data of dual-energy scanning mode
using dual-energy CT scanners to explore whether this can
further improve the effectiveness of the predictive model in
the future.

In conclusion, our findings highlight the feasibility of
non-invasively predicting the ALK genetic status in lung
adenocarcinomas using an integrated model that combines
clinical, conventional CT, and radiomic features.
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Objectives: Tumor-infiltrating lymphocytes (TILs) have been identified as a significant

prognostic indicator of response to neoadjuvant therapy and immunotherapy for

triple-negative breast cancer (TNBC) patients. Herein, we aim to assess the association

between TIL levels and mammographic features in TNBC patients.

Methods: Forty-three patients with surgically proven TNBC who underwent

preoperative mammography from January 2018 to December 2018 were recruited.

Pyradiomics software was used to extract 204 quantitative radiomics features, including

morphologic, grayscale, and textural features, from the segmented lesion areas.

The correlation between radiological characteristics and TIL levels was evaluated by

screening the most statistically significant radiological features using Mann–Whitney

U-test and Pearson correlation coefficient. The patients were divided into two groups

based on tumor TIL levels: patients with TIL levels<50% and those with TIL levels≥50%.

The correlation between TIL levels and clinicopathological characteristics was assessed

using the chi-square test or Fisher’s exact test. Mann–Whitney U-test and Pearson

correlation coefficient were used to analyze the statistical significance and Pearson

correlation coefficient of clinical pathological features, age, and radiological features.

Results: Of 43 patients, 32 (74.4%) had low TIL levels and 11 (25.6%) had high TIL

levels. The histological grade of the low TIL group was higher than that of the high TIL

group (p = 0.043). The high TIL group had a more negative threshold Ki-67 level (<14%)

than the low TIL group (p= 0.017). The six most important radiomics features [uniformity,

variance, grayscale symbiosis matrix (GLCM) correlation, GLCM autocorrelation, gray

level difference matrix (GLDM) low gray level emphasis, and neighborhood gray-tone

difference matrix (NGTDM) contrast], representing qualitative mammographic image

characteristics, were statistically different (p < 0.05) among the low and high TIL groups.

Tumors in the high TIL group had a more non-uniform density and a smoother gradient
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of the tumor pattern than the low TIL group. The changes in Ki-67, age, epidermal

growth factor receptor, radiomic characteristics, and Pearson correlation coefficient were

statistically significant (p < 0.05).

Conclusion: Mammography features not only distinguish high and low TIL levels in

TNBC patients but also can act as imaging biomarkers to enhance diagnosis and the

response of patients to neoadjuvant therapies and immunotherapies.

Keywords: breast cancer, triple-negative breast cancer, tumor-infiltrating lymphocytes, mammogram, radiomics

INTRODUCTION

Triple-negative breast cancer (TNBC), which is a type of invasive
breast cancer, is characterized by severe disease progression, poor
prognosis, high recurrence rate, and short survival. Its prognosis
varies with clinical, pathologic, and genetic factors (1, 2). Tumor-
infiltrating lymphocytes (TILs) reflect an individual’s immune
tumor response. TIL levels are higher in highly proliferating
tumors, including human epidermal growth factor receptor 2
(HER2)-positive and TNBC (3). TILs have a strong prognostic
and predictive significance, and high TIL levels are positively
correlated with pathological complete response rate and patient
survival rate (4–7).

Mammography is the first screening method for breast cancer,
especially for women over the age of 45. Findings of typical breast
cancer screening mammography include architectural distortion,

mass, calcification, asymmetrical breast tissue, and adenopathy
(8). Radiomics is different from traditional methods in that it
does not use medical images for visual interpretation but instead
converts digital medical images into minable data through high-
throughput extraction based on various quantitative features
such as shape, intensity, size, or volume (9, 10). Radiomics
can provide additional information for the diagnosis, prognosis,
and prediction in clinical practice (11, 12). Certain qualitative

FIGURE 1 | The diagram of triple-negative breast cancer (TNBC) lesions segmented by mapping the area of interest [region of interest (ROI)]. (A) A craniocaudal (CC)

X-ray image of TNBC with the tumor (arrow) surrounded by lobulated projections and burrs. (B) The segmentation image of the tumor from (A) presented an irregular

tumor shape. (C) The manual segmentation by drawing an ROI on the tumor in the same image as (A) in red was extracted via ITK-SNAP software.

imaging features obtained via mammography, breast magnetic
resonance imaging (MRI), and ultrasound have been indicated to
be correlated with the diagnosis, prognosis, molecular subtyping,
and prediction of the response to treatment in breast cancer
patients (13–17). Recently, a correlation between dynamic
contrast-enhanced magnetic resonance imaging (DCE-MRI) and
TIL levels was reported in MRI computer-aided detection of
TNBC patients (18). However, breast MRI is expensive and is not
widely applied, especially in less developed countries. In contrast,
mammography is widely used for screening and diagnosis of
breast cancer because of its cost-effectiveness.

Quantitative features of radiomics can distinguish between
TNBC and non-TNBC in mammograms, as has been shown
in some studies (19, 20). Recently, the relationship between
mammographic radiomic features and molecular subtypes of
breast cancer was evaluated, which showed that quantitative
radiomics imaging features were associated with breast cancer
subtypes (21). However, no studies have explored the relationship
between TIL levels and the characteristics of mammograms of
TNBC patients. Preoperative assessment of TILs is a significant
indicator for prognosis and therapy response. In this study,
we aimed to investigate the relationship between radiomics
imaging characteristics of TNBC patients and TIL levels using
radiological methods.
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MATERIALS AND METHODS

Patients and Imaging Dataset
The Institutional Ethics Review Committee of the China-Japan
Friendship Hospital approved this retrospective study, and
informed consent was obtained from all patients. A total of
43 TNBC patients aged 24–87 years (mean age 52.3 years)
were included in the analysis. The TNBC patients received
preoperative mammograms between January and December
2018. All mammograms were obtained using the Hologic
Lorad Selenia digital mammography system (Hologic gen-
probe, San Diego, USA). The quantization was set to 14-bit
for the full-field digital mammographic images with pixel sizes
of 70µm × 70µm. Images of the craniocaudal (CC) view
and the mediolateral oblique (MLO) view were obtained from
mammograms of each patient. A total of 86 mammographic
images were analyzed.

Radiomics Feature Extraction
An experienced breast imaging professional radiologist manually
outlined tumor edges in each image of each patient in the TIK-
SNAP software (version 3.8, Philly, PA, USA) and extracted
the radiological features of the lesion area. The segmentation
methods were as follows: (1) import the breast tumor images with
DICOM format into the home page by pressing the “Open main
image” button; (2) select “Browse” tool and then click “Next” to
go to the current image in the “Main Toolbar” drop-down menu;
(3) select “PolygonMode” tomanually draw the region of interest
(ROI) along the tumor margin; (4) click “Save Segmentation
Image” to save the segmentation images into the destination
folder in “nii.gz” format. A total of 204 quantitative radiomics
features were extracted using Pyradiomics software (version
2.2.0, Boston, MA, USA). These features included morphologic
features such as perimeter, shape, size, and area. The statistical
features of gray values included pixels, such as variance, gray
average, and kurtosis. Texture features, such as correlation,
entropy, contrast, homogeneity, inertia, and energy, which can be
used to quantify intra-tumor heterogeneity, were calculated using
the grayscale symbiosis matrix (GLCM) and gray level size zone
matrix (GLSZM). A total of 204 imaging features representing
qualitative breast image features were selected as the top imaging
features through Mann–Whitney U-test and Pearson correlation
coefficient. The JET color scale from MATLAB 2018a software
(MathWorks, Natick, MA, USA) was applied to depict the
discrepancies of the mammographic image grayscale.

Pathological Analysis
We recorded the pathological data of the tumors, including
histologic subtype, histological grade, and lymphatic metastasis.
Immunohistochemical analysis of formalin-fixed paraffin-
embedded tissue specimens was performed for the 43 TNBC
patients who underwent breast cancer surgery. Standard
biomarkers such as Ki-67 proliferation, estrogen receptor,
progesterone receptor, epidermal growth factor receptor
(EGFR), P53, and HER2 were reviewed in whole-tissue sample
sections. The TIL levels of the surgical specimens of each patient
which were stained with hematoxylin and eosin were reviewed

by a pathologist with 20 years of experience in breast cancer
diagnosis. The TIL levels were defined as the average percentage
of lymphocyte infiltration per tumor and adjacent stroma and
were reported at 10% increments. The following standards
were complied with: (1) TILs should be evaluated within the
boundaries of aggressive tumor. (2) TILs outside the tumor
boundary and around the ductal carcinoma in situ (DCIS) and
normal lobules should be excluded. (3) TILs in the tumor area
with crush artifacts, necrosis, hyaline degeneration, and in the
previous core biopsy site should be excluded. (4) The average
TILs of the tumor area should be comprehensively evaluated by
the pathologist. Hot spots should not be concentrated on. (5)
All mononuclear cells (including lymphocytes and plasma cells)
should be scored, but polymorphonuclear leukocytes should be
excluded. Breast cancer with lymphocyte density >50–60% is
currently called “lymphocyte-predominant breast cancer.” The
tumor samples were divided into two groups: (1) the group with
TIL levels below 50% was defined as the low-level TIL group;
(2) the group with TIL levels higher than or equal to 50% were
defined as the high-level TIL group.

Statistical Analysis
To evaluate the differences in clinicopathologic characteristics
between the low TIL and high TIL groups, categorical
variables were analyzed by chi-square test or Fisher’s exact

TABLE 1 | Patients and tumor clinicopathologic characteristics.

Variables Number of patients Low TIL

levels

High TIL

levels

p-value

(<50%) (>50%)

(n = 43) (n = 32) (n = 11)

Patients (n) 43 32 11

Patient age, years

(mean ± SD)

52.3 ± 14.4 51.6 ± 13.6 54.8 ± 17 0.534

Lymph node

metastasis

Negative 21 (48.8%) 16 (50%) 5 (45.5%) 0.795

Positive 22 (51.2%) 16 (50%) 6 (55.5%)

Histologic grade

Low 0 0 0

Moderate 11 (25.6%) 5 (15.6%) 5 (45.5%) 0.043

High 32 (74.4%) 27 (84.4%) 6 (54.5%)

Ki-67

Low (<14%) 17 (39.5%) 16 (50%) 10 (9.0%) 0.017

High (>14%) 26 (60.5%) 16 (50%) 1 (91.0%)

EGFR

Negative 28 (65.1%) 22 (68.8%) 6 (54.5%) 0.394

Positive 15 (34.9%) 10 (31.2%) 5 (45.5%)

P53

Negative 16 (37.2%) 13 (40.6%) 3 (27.3%) 0.340

Positive 27 (62.8%) 19 (59.4%) 8 (72.7%)

EGFR, epidermal growth factor receptor; SD, standard deviation; TIL, tumor-

infiltrating lymphocyte.
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FIGURE 2 | Pearson correlation coefficient heat map of mutual analysis between six top-class radiomics features (square lattice area of upper left corner) and mutual

analysis between clinicopathologic characteristics and radiomics features (other area of square lattices). The values in the square lattices represent the magnitude of R

value of correlation analysis displayed by color difference meanwhile.

test, and continuous variables were analyzed by T-test/ANOVA
or Kruskal–Wallis test. Mann–Whitney U-test was used to
compare the discrimination radiomics features between the
low and high TIL groups, where appropriate. In addition, all
radiological features were correlated with the clinicopathological
characteristics of the patient and tumor using Pearson correlation
coefficients. SPSS software (SPSS, version 25, Chicago, IL, USA)
was used for all statistical analyses, and p < 0.05 was considered
statistically significant.

RESULTS

TNBC lesions were segmented by mapping the area of interest
(ROI) on the breast tumor, as shown in Figure 1. Table 1

shows the clinicopathologic date. Of the 43 patients, 32 (74.4%)
exhibited low TIL levels, and 11 (25.6%) showed high TIL levels.
The ages of patients ranged from 24 to 87 (mean age, 52.3) years.
The patients in the high TIL group (mean age, 54.8 years) were
older than those in the low TIL group (mean age, 51.6 years)
(p = 0.534), but the differences were not statistically significant.
All tumors were invasive ductal carcinoma, and patients in the
low TIL groups were likely to have higher histological grade than
those in the high TIL group [27/32 (84.4%) and 6/11 (54.5%)] (p
= 0.043). The Ki-67 proliferation of the 26 patients was >14%.
The Ki-67 negative threshold level in the high TIL group was
lower than that in the low TIL group, and the difference between
the two groups was statistically significant (p= 0.017).

A total of 204 features were extracted, and the selected
lesions were normalized on CC and MLO. Fifty features (p
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TABLE 2 | Analysis of radiomics features between low and high TIL levels.

Radiomics

features

Low TIL levels High TIL levels p-value

(<50%) (>50%)

(n = 32) (n = 11)

Uniformity (MLO)

Mean 0.017 0.014 0.023

Range 0.009–0.027 0.009–0.025

Variance (CC)

Mean 260,776.234 328,611.123 0.046

Range 69,059.883–638,614.685 129,976.869–592,881.928

GLCM correlation (MLO)

Mean 0.959 0.967 0.020

Range 0.926–0.989 0.925–0.983

GLCM autocorrelation (CC)

Mean 5,032.505 7,170.002 0.010

Range 1,367.669–8,852.751 3,287.865–10,759.123

GLDM low gray level emphasis (CC)

Mean 0.00057 0.00038 0.041

Range 0.00019–0.0014 0.00014–0.00063

NGTDM contrast (MLO)

Mean 0.133 0.180 0.090

Range 0.054–0.323 0.071–0.244

CC, craniocaudal; GLCM, grayscale symbiosis matrix; GLDM, gray level difference matrix;

MLO, mediolateral oblique; NGTDM, neighborhood gray-tone difference matrix; TIL,

tumor-infiltrating lymphocyte.

< 0.05) were selected through the Mann–Whitney U-test.
According to the most important characteristics selected by
the Pearson correlation coefficient (Figure 2, square lattice area
of upper left corner), six top-class features were screened out
(Table 2), including uniformity (MLO) (p = 0.023), variance
(CC) (p= 0.046), GLCM correlation (MLO) (p = 0.020), GLCM
autocorrelation (CC) (p= 0.010), GLDM low gray level emphasis
(CC) (p = 0.041), and NGTDM contrast (MLO) (p = 0.009)
(Figures 3A–F). Figures 4, 5 show that tumors in the high TIL
groups had a more non-uniform density and a smoother gradient
of tumor patterns than those in the low TIL groups as observed
in the mammographic images.

The significance testing and Pearson correlation coefficient of
clinicopathologic characteristics, age, and radiomics features are
listed in Table 3 and Figure 2. Ki-67 was significantly correlated
with uniformity, variance, and GLCM autocorrelation (p = 0.03,
r = 0.26; p = 0.006, r = −0.28; and p = 0.005, r = −0.4,
respectively). Age was significantly correlated with variance and
GLCM (p= 0.007, r= 0.44 and p= 0.03, r=−0.26, respectively).
EGFR and NGTDM contrast significantly differed among the
radiomics features (p= 0.04, r=−0.29).

DISCUSSION

Studies have proved that TIL levels have a strong prognostic
value, which can improve the distant recurrence-free survival,
disease-free, and overall survival estimates for TNBC patients
treated with adjuvant/neoadjuvant chemotherapy (22, 23).
Increased TIL levels have been observed to be positively

correlated with prolonged survival and increased pathological
complete response rates (24–26). Because of the uneven
distribution of TILs within the tumor, TIL levels obtained by
biopsy in a specific part of the tumor may not reflect the
entire tumor. We employed a radiomics approach to observe
the correlation of tumor TIL levels and quantitative imaging
characteristics of digital mammography in TNBC patients. The
results of the present study suggest that there are differences
in the clinicopathological features of TNBC and mammography
with respect to TIL levels.

Several previous studies have reported the relationship
between TIL levels and MRI findings for TNBC patients
(18, 27). However, no studies have investigated the relationship
between TIL levels and digital mammographic images. In our
study, we analyzed whether quantitative digital mammographic
image features have a similar correlation effect. MRI and
mammography show differences in underlying imaging
characteristics, but in our study, we analyzed the mammographic
image data for only breast morphology, density, or anatomical
characteristics for evaluating breast cancer TILs in terms of
imaging characteristics.

TNBC is known to be more invasive and exhibits poorer
results. Early identification of TNBC from other subtypes
of breast cancer is crucial and can help clinicians build an
ideal treatment strategy before final pathologic confirmation.
Radiomics is likely to play an important role in the detection
of breast cancer and monitoring the development and treatment
response. In this study, we found that six radiomics features were
identified as most significant variables of tumor TILs: uniformity,
variance, GLCM correlation, GLDM low gray level emphasis,
NGTDM contrast, and GLCM autocorrelation.

The measure of the sum of squares of each intensity value
denotes uniformity, which is a measure of the uniformity of
an image array; greater uniformity implies greater uniformity
or a smaller range of discrete intensity values. Variance
represents the mean of the squared distances from the mean
of each intensity value, which is the mean distribution of
measurements. Correlation can be expressed by the value
between 0 (uncorrelated) and 1 (perfectly correlated), which
represents the linear dependence between the gray value and
the corresponding voxel in GLCM and represents the smooth
gradient of the pattern in the quantitative image. Autocorrelation
is a measure of the size of texture fineness and roughness. A
measure of the distribution of low gray levels indicates that
the higher the value, the greater the concentration of low gray
values in the image, which represents the brightness in the
mammographic image. Contrast is a method of measuring spatial
intensity variation, which also depends on the entire dynamic
grayscale range. When the dynamic range and the rate of spatial
change are high, the contrast is high. Based on the above
explanation (28), our study shows that the high TIL levels may
be more uneven than low intensity values; the high TIL levels
may be smoothed by the gradient pattern, and high TIL levels
may be denoted by regions brighter than the gray values which
are lower than the level of the mammary gland image. A previous
study showed that TNBCwas more uneven on dynamic contrast-
enhanced MRI (29). Although the imaging modes used were
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FIGURE 3 | The top six ranked radiomics imaging characteristics chosen from craniocaudal (CC) and mediolateral oblique (MLO) view images. (A) View uniformity

(MLO), (B) view variance (CC), (C) grayscale symbiosis matrix (GLCM) correlation (MLO), (D) GLCM autocorrelation (CC), (E) gray level difference matrix (GLDM) low

gray level emphasis (CC), (F) neighborhood gray-tone difference matrix (NGTDM) contrast (MLO).

FIGURE 4 | The woman, 56 years old, had triple-negative breast cancer, indicating a high tumor-infiltrating lymphocyte level in her right breast (arrow). (A) Right

mediolateral oblique X-ray shows an uneven and smooth mass in the right breast. (B) X-ray image of mass density color overlay, showing uneven and smooth mass.
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FIGURE 5 | The woman, 60 years old, had triple-negative breast cancer, indicating low levels of neoplastic infiltrating lymphocytes in her left breast. (A) Oblique X-ray

of the left mid lateral shows lobulated and partial burr mass of the left breast (arrow). (B) The X-ray image with a color overlay map of mass density indicates mass

uniform and unsmooth.

TABLE 3 | The correlation analysis of clinicopathologic characteristics and radiomics features.

Features Uniformity

(MLO)

Variance

(CC)

GLCM

correlation

(MLO)

GLCM

autocorrelation

(CC)

GLDM low gray level

emphasis (CC)

NGTDM

contrast

(MLO)

Ki-67

p-value 0.0303* 0.0062* 0.4950 0.0058* 0.1757 0.1240

r-value 0.26 −0.28 0.058 −0.4* 0.13 −0.21

Histologic grade

p-value 0.2406 0.2875 0.2778 0.3813 0.3813 0.2588

r-value 0.07 −0.0061 −0.067 −0.11 0.14 −0.058

Lymph node metastasis

p-value 0.4758 0.4087 0.2149 0.4758 0.4855 0.2923

r-value −0.069 0.001 −0.093 −0.032 −0.056 0.11

Age

p-value 0.1732 0.0070* 0.0342* 0.0519 0.2278 0.1732

r-value 0.069 0.44 −0.26 0.17 −0.028 −0.027

EGFR

p-value 0.0647 0.4043 0.3750 0.4443 0.2338 0.0404*

r-value 0.19 −0.027 0.099 −0.023 0.031 −0.29

P53

p-value 0.4450 0.4057 0.3485 0.3767 0.3767 0.3672

r-value 0.088 0.054 −0.11 0.022 0.14 0.1

*Significant differences.

EGFR, epidermal growth factor receptor; CC, craniocaudal; GLCM, grayscale symbiosis matrix; GLDM, gray level difference matrix; MLO, mediolateral oblique; NGTDM, neighborhood

gray-tone difference matrix.

different compared with mammographic images, it may also
have the same effect on the radiomics feature outcome. The
significance tests of Ki-67, EGFR, radiomic characteristics, and
Pearson correlation coefficient were statistically significant (p <

0.05), suggesting that the high expressions of Ki-67 and EGFR

have uniform intensity values and dynamic grayscale ranges in
the mammographic image.

The clinicopathology of tumors can reflect tumor biology and
affect the outcome of chemotherapy in TNBC patients (30–33).
Our study found that the TNBC histological grade of the high
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TIL group was lower than that of the low TIL group (84%).
These findings are consistent with the results of Ku et al. (27).
These results indicated that tumor with low TIL levels grows
rapidly and has a high tumor necrosis rate. The proliferation rate
of Ki-67 in 26 patients was more than 14%, and the difference
between the two groups was statistically significant (p = 0.017).
The tumor proliferation of breast cancer patients can be reflected
by Ki-67 expression (34). Particularly, if the level is ≥14%, the
Ki-67 level is positive, and if the level is <14%, the Ki-67 level is
negative (35). The Ki-67marker index is considered an important
prognostic marker and a significant indicator of potential triage
to chemotherapy (36). In this study, we found that the high TIL
group had amore negative threshold Ki-67 level (<14%), and this
result verified that TNBC patients with high TIL levels probably
have low Ki-67 levels. Then, the tumors have less malignant cell
proliferation, and they exhibit a positive reaction to neoadjuvant
chemotherapy (37, 38).

This study had some limitations. First, this retrospective study
only obtained single-vendor images from single institutions,
which may have limited the universality of the findings. In
addition, the generalizability of the findings to other vendors of
the image needs to be verified. Second, the number of patients
included was very small, thus affecting the statistical significance
of the data. Therefore, further analysis of larger cohort studies
may provide other variables that are significantly associated with
TIL levels in TNBC patients. Third, most radiomics features that
differed between the two groups were not statistically significant.
Therefore, we need to generalize our results through validation
studies in the future. Finally, because of the lack of MRI data, we
could not compare the performance of mammograms and DCE-
MR images of this population. However, testing and comparing
the relationship between radiological features of mammograms
and TIL levels in TNBC patients is an important follow-up

study. Mammography is the most used routine breast cancer
screening and diagnostic method. If automatic radiomics features
are validated for analysis of TIL levels, more information can be
provided from mammograms to assist radiologists and clinicians
to diagnose and treat TNBC.

In conclusion, quantitative imaging radiomics features from
digital mammograms were found to be a useful method for
discriminating low and high TIL levels in patients with TNBC.
Research needs to be conducted on a larger scale to assess these
findings and examine their relevance to the radiological features
of DCE-MRI of the breast in the future.
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Lung cancer can be classified into two main categories: small cell lung cancer (SCLC)

and non-small cell lung cancer (NSCLC), which are different in treatment strategy and

survival probability. The lung CT images of SCLC and NSCLC are similar such that their

subtle differences are hardly visually discernible by the human eye through conventional

imaging evaluation. We hypothesize that SCLC/NSCLC differentiation could be achieved

via computerized image feature analysis and classification in feature space, as termed a

radiomic model. The purpose of this study was to use CT radiomics to differentiate SCLC

from NSCLC adenocarcinoma. Patients with primary lung cancer, either SCLC or NSCLC

adenocarcinoma, were retrospectively identified. The post-diagnosis pre-treatment lung

CT images were used to segment the lung cancers. Radiomic features were extracted

from histogram-based statistics, textural analysis of tumor images and their wavelet

transforms. A minimal-redundancy-maximal-relevance method was used for feature

selection. The predictive model was constructed with a multilayer artificial neural network.

The performance of the SCLC/NSCLC adenocarcinoma classifier was evaluated by the

area under the receiver operating characteristic curve (AUC). Our study cohort consisted

of 69 primary lung cancer patients with SCLC (n = 35; age mean ± SD = 66.91± 9.75

years), and NSCLC adenocarcinoma (n = 34; age mean ± SD = 58.55 ± 11.94 years).

The SCLC group had more male patients and smokers than the NSCLC group (P <

0.05). Our SCLC/NSCLC classifier achieved an overall performance of AUC of 0.93

(95% confidence interval = [0.85, 0.97]), sensitivity = 0.85, and specificity = 0.85).

Adding clinical data such as smoking history could improve the performance slightly.

The top ranking radiomic features were mostly textural features. Our results showed
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that CT radiomics could quantitatively represent tumor heterogeneity and therefore could

be used to differentiate primary lung cancer subtypes with satisfying results. CT image

processing with the wavelet transformation technique enhanced the radiomic features

for SCLC/NSCLC classification. Our pilot study should motivate further investigation of

radiomics as a non-invasive approach for early diagnosis and treatment of lung cancer.

Keywords: small cell lung cancer (SCLC), non-small cell lung cancer (NSCLC), computed tomography radiomics

(CT Radiomics), non-linear classifier, artificial neural network

INTRODUCTION

Lung cancer is the second most commonly diagnosed cancer for
both men and women, representing around 13–14% of yearly
cancer diagnoses for both genders. It is also the leading cause of
cancer mortality, accounting for about a quarter of all cancer-
related deaths worldwide (1). There are two major types of
lung cancer: small cell lung cancer (SCLC)—the aggressive lethal
neuroendocrine carcinoma that accounts for∼10–15% of all lung
cancer cases—and non-small cell lung cancer (NSCLC), which
accounts for 85% of all lung cancers (2). As a class, NSCLC
broadly includes adenocarcinoma, squamous cell carcinoma,
and large cell carcinoma (3). NSCLC can be divided into
subclasses based on the presence of driver mutations in proteins
such as epidermal growth factor receptor (EGFR), anaplastic
lymphoma kinase (ALK), and Kirsten rat sarcoma virus (KRAS).
Treatment options and survival largely depend on the type
of lung cancer (4–6). The new standard of care for advanced
SCLC consists of a combination of carboplatin, etoposide and
immunotherapy; however, chemoradiation, targeted therapies,
and immunotherapy are the treatment options available to
patients with advanced NSCLC (5, 7). For patients with locally
advanced disease or distant metastases, the 1-year survival
rate is 15–19% for NSCLC and < 5% for SCLC (8, 9). In
the context of personalized medicine for NSCLC, targeted
therapies for common driver mutations, and immunotherapy
targeting the PD-1 receptor and its ligand PD-L1 have shown
promising data for improving treatment and survival (10,
11). However, the primary factor in survival for both SCLC
and NSCLC is early diagnosis that can be facilitated by an
identification of radiologic phenotypes for the primary lung
cancer subtypes.

Lung CT scan is the most commonly used imaging tool for
lung cancer diagnosis. Multiple lung CT imaging characteristics

that may help predict cancer have been identified in lung
nodules. The commonly used imaging characteristics include the

following: large nodule size; change in the size of the nodules

over time; number and density of the nodules; andmorphological
signs of aggressiveness including irregular shapes and spiculated
margins of the nodules (12, 13). However, CT imaging features
for lung cancer are limited in number and the results from
traditional CT imaging analysis are subjective because it relies on
visual inspection by imaging specialists, potentially causing inter-
observer variability (14). In addition, traditional CT analysis
is limited in its ability to differentiate SCLC and NSCLC
because of overlapping CT features. Both SCLC and NSCLC

could present with spiculation, and could be associated with
ground glass opacity or pleural reaction, which makes visual
differentiation challenging in clinical practice. Biopsy is used to
supplement CT imaging and to confirm the diagnosis when lung
cancer is suspected. However, both bronchial brushing and CT-
guided biopsy are associated with risks such as post-procedure
infection, bleeding, and pneumothorax. In addition, pathological
diagnosis through invasive biopsy is usually obtained from a
focal area or areas of the tumor rather than the entire tumor,
thus lacking the overall tumor characterization. Besides, biopsy
results are not always promptly available. Therefore, it is prudent
to develop non-invasive complementary approaches such as
radiomic methods to differentiate primary lung cancer subtypes.

Radiomics is a computerized quantitative image analytical
method that extracts large number of features from radiographic
medical images using computing algorithms (15, 16). It converts
an image database into a set of quantitative radiomic features
that characterize the tumor heterogeneity regarding textural
pattern, morphology in shape and geometry, and intensity in
histogram-based statistics (17). Radiomic analysis of medical
images generates reproducible quantitative image features, which
could capture tissue microstructural patterns associated with
genetic and proteomic signatures contributing to the biological
basis of the disease (15, 18, 19). Aerts et al. identified an
association between intratumoral heterogeneity reflected by
radiomic features and the underlying gene expression patterns
in their radiogenomic study of patients with lung cancer and
head-and-neck cancer (17). Other researchers have shown that
textural features depicting spatial heterogeneity in tumors could
reflect genomic and phenotypic tumoral characteristics (19, 20).
Radiomics has also been used to classify various NSCLC subtypes
and SCLC based on lung CT images (21, 22). These promising
initial results have motivated further research to develop non-
invasive imaging methods to differentiate primary lung cancer
subtypes for the purpose of early diagnosis and targeted therapy.
There is extensive literature on radiomic research of NSCLC. For
example, recent studies have shown that the NSCLC histologic
subtypes could be effectively classified using a CT radiomic
method (23–25). In addition, PET-CT radiomics could be used
to differentiate between primary NSCLC and its metastasis (26).
However, there is limited research focusing on differentiating
SCLC from NSCLC, which is clinically relevant as early diagnosis
and treatment of the two primary lung cancer subtypes can
significantly improve prognosis.

Here, we used a radiomic approach to evaluate tumor
heterogeneity of SCLC and NSCLC adenocarcinoma. We
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hypothesized that CT radiomics would provide distinctive
features reflecting tumor heterogeneity for predictive
classification of SCLC vs. NSCLC adenocarcinoma. We aimed
to identify quantitative radiomic features for further evaluation
as non-invasive imaging biomarkers. Such biomarkers could
potentially be used to predict the pathological subtypes of
primary lung cancer and to provide valuable information for
early diagnosis and treatment of lung cancer.

MATERIALS AND METHODS

Participants
We retrospectively identified patients with pathology-confirmed
primary lung cancer who were treated at City of Hope (Duarte,
CA) from 2009 to 2017. We identified patients with SCLC first
and then matched these to patients with NSCLC during the same
study interval. Post-diagnosis pre-treatment lung CT images
were used for this study.

To be eligible for this study, patients with pathology-
confirmed SCLC or NSCLC adenocarcinoma needed to have at
least one pre-treatment lung CT scan showing a peripherally-
located lung cancer. The peripherally located lung cancers in
our study were defined to be the lung cancers located in
the periphery of lung and being separate from the central
structures such as the mediastinum and hilar structures. We
selected peripherally-located lung cancers because of the clear
tumor delineation from adjacent low-density lung parenchyma
on lung CT images. We did not select centrally-located lung
tumors because of the difficulty in identifying tumor boundaries
from the adjacent mediastinum or hilar vasculature and lymph
nodes due to similarities in tissue densities on the CT images
without intravenous administration of contrast. The exclusion
criteria included: treatment such as chemoradiation or surgery
started before the lung CT scan, suboptimal lung CT quality
due to respiration or other imaging artifacts, or having only
centrally-located lung cancers. This study was approved by the
Institutional Review Board at City of Hope National Medical
Center. Informed consent was waived due to the retrospective
nature of this study.

Lung Tumor Segmentation
We retrieved the patients’ lung CT images from the City of Hope
Picture Archiving and Communication System (PACS) database,
which were archived in three-dimensional (3D) volumes in
a matrix size of 512 × 512 × 355 with a voxel size of
0.76 × 0.76 × 1 mm3. The lung CT scan was obtained
in a GE CT 750HD with a scanning protocol including the
following: 120 kV, 150–600 Auto mA (Tube Modulation),
0.5 s tube rotation, 40.0mm coverage, helical scan (1.375:1/55
Pitch/Speed), coverage speed 110.00 mm/s and field of view with
skin-to-skin coverage.

The lung cancers from the CT lung window images were
initially segmented semi-automatically using the ITK-SNAP
software (http://www.itksnap.org/pmwiki/pmwiki.php) by the
trained research staff (NY, ZC, and BC). The supervising study
radiologist (BC) is a board-certified radiologist with over 10

years of experience working on lung cancer imaging. This semi-
automatic approach identified the locations of the tumors by
indicating the region of interest (ROI) on the lung-window CT
images and this approach should help to reduce the potential
inter-observer or intra-observer bias. Subsequently, the tumors
were then carefully assessed and delineated slice-by-slice by the
trained postdoctoral fellow (NY) who is a physician with imaging
training and who has traced tumors for radiomic research for 2
years, and by the staff scientist (ZC) who has had over 15 years of
experience in imaging research. The study radiologist (BC) and
the research team had joined sessions to visually re-check slice-
by-slice of all tumor segmentations in a magnified display for
reduction of delineation errors and for trouble shooting potential
issues during tumor segmentation.

To evaluate the reproducibility of inter-observer and intra-
observer tumor segmentation, we randomly selected 25 patients
consisting of 13 SCLC patients and 12 NSCLC patients from
our study cohort. Two trained researchers (NY and ZC)
segmented the tumors independently and the two researchers
were blinded to each other’s segmentations for assessing the
inter-observer consistency. In addition, one of the researchers
(NY) repeated the tumor segmentation 1 week later to assess
the intra-observer consistency. Both the inter- and intra-observer
agreement for tumor segmentation was assessed by inter- and
intra-class correlation coefficients (ICC). An inter-observer or
intra-observer ICC >0.80 indicated a good agreement for
tumor segmentation.

The inter-observer ICC between the two researchers (NY
and ZC) for tumor segmentation achieved 0.97 ± 0.05 ranging
from 0.93 to 0.99. The intra-observer ICC between the two
measurements by the same researcher (NY) was 0.98 ± 0.03
ranging from 0.96 to 1.00.

The results indicated favorable inter- and intra-observer
reproducibility and stability for tumor segmentation and
subsequent radiomic feature extraction.

In Figure 1, we presented the overall schema for data
analysis. Figure 1A presents the lung tumor segmentation.
Next, radiomic features were extracted via tumor image
analysis for texture, shape, intensity (Figure 1B). Finally, the
SCLC/NSCLC classification was performed and statistically
assessed in the receiver operating characteristic (ROC)
curve (Figure 1C).

Radiomic Feature Extraction
Histogram-Based Global Features
An image intensity histogram was generated for each 3D
tumor image. We derived 8 statistical quantities from each
histogram: max, min, range (max-min), mean, entropy,
variance, skewness and kurtosis. Since there was no spatial
information in the histograms, the histogram-inferred values
were considered global features. During tumor image analysis,
we retained the image intensity in original CT number, which
informed on the tumor tissue radiodensity in reference to
water at 0 (in Hounsfield unit). A high CT number in a
tumor image may indicated fibrosis or calcification within
the tumors.
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FIGURE 1 | Schema for lung cancer segmentation, radiomic feature extraction and predictive modeling. (A) Representative CT images from small cell lung cancer

(SCLC) and non-small cell lung cancer (NSCLC) showing tumor segmentation. (B) Illustrations of radiomic feature extraction for texture, shape, and intensity. (C)

Decision of SCCL/NSCLC classification (upper panel) with the receiver operating characteristic (ROC) curves (middle panel) and the heat map of radiomic features

(lower panel).

Textural Features
Textural features may represent tumor heterogeneity. We
extracted the tumor textural features using the MATLAB
radiomic package (https://github.com/mvallieres/radiomics) and
the textural analysis formula (27). Given a 3D tumor image,
we first generated the textural matrices: gray-level co-occurrence
matrix (GLCM), gray-level run-length matrix (GLRLM), gray-
level size-zone matrix (GLSZM), and neighborhood gray-tone
difference matrix (NGTDM). We then derived various textural
features from these textural matrices. Specifically, we calculated
9 gray-level co-occurrence features from the GLCM matrix, 13
run-length features from the GLRLM matrix, 13 gray-level size
zone features from the GLSZM matrix, and 5 neighborhood
gray-tone difference features from the NGTDM matrix. We
therefore obtained 40 textural features (= 9+13+13+5) from
one tumor image.

During tumor image preprocessing, we re-sampled the image
intensity with multiple quantization levels (denoted by Ng, a bin
number of intensity range). For example, with Ng= {16, 32, 64,
96}, we repeated the textural feature extraction procedure 4 times
and obtained a total of 196 image features (= 48× 4, comprising
8 global features and 40 textural features). The Ng variable
was used to find the optimal image digitization with reduced
gray levels with the Lloyd-max’ algorithm adaptive quantization

method (28). Multiple Ng values yielded a large number of image
features, which had considerable redundancy. Of these features,
we selected a few important high discriminative features through
a feature selection procedure, thereby empirically optimizing the
Ng settings.

Wavelet Transformation
We first applied 3D wavelet transformation to each 3D tumor
image to decompose it into 8 subbands (29), denoted by {LLL,
LLH, LHL, LHH, HLL, HLH, HHL, HHH}, where L and H
denoted low-pass and high-pass filtering along one dimension.
Then, we conducted inverse 3Dwavelet transforms for individual
subband image reconstruction using the same wavelet kernel. For
each reconstructed subband image, we repeated the procedures
for extracting histogram-based global features and textural
features. As such, the number of features was multiplied by 8-fold
corresponding to 8 wavelet subbands.

Feature Selection
Feature selection and measurements in this study were
performed with respect to a specific parameter. For example,
the intensity range max-min constituted a vector, called a
feature vector. Each feature vector was normalized by max = 1
(feature vector divided by its maximum entry). There existed
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FIGURE 2 | The nnet architecture of the radiomics-based SCLC/NSCLC classifier. This figure presents the input layer with 20 nodes receiving 20 radiomic features,

the 3 hidden layers for non-linear mapping, and the output layer with 2 nodes for “SCLC” and “NSCLC” decision upon a hard thresholding f(node)>0 and f(node)≤0,

respectively. SCLC, small cell lung cancer; NSCLC, non-small cell lung cancer.

considerable redundancy among the feature vectors. To correct
the issue of redundancy and to create a two-class (SCLC/NSCLC)
classifier, we estimated the feature classification performance
(also known as feature relevance) by evaluating the correlation
between the feature vector (a sequence of feature values across the
cohort) and the classification target vector (composed of entries
representing the pre-defined target classes: SCLC= 1 andNSCLC
= 0), denoted by corr (correlation in range [−1,1]). We used
mutual information to analyze the redundancy and dependence
among features.

During the feature selection procedure, we used a minimal-
redundancy-maximal-relevance method (mRMR) to remove the
redundant and less-relevant features (30). In implementation
of mRMR, we iteratively deselected the features based on a
redundancy minimization of the mutual information among
features and a relevance maximization of the mutual information
between the selected features and the pre-defined target classes,
until the feature number reduced to 20 (empirically specified).
After that, the top 20 radiomic features out of 1,731 features were
then selected for building the SCLC/NSCLC classification model.

Non-linear Classification With Artificial
Neural Network
Using the top 20 radiomic features, we constructed a multilayer
neural network (nnet) using the MATLAB procedure nnet =

patternnet (10, 7, 5), which consisted of 3 hidden layers with 10,
7, and 5 hidden neurons (nodes) in a sequential order (https://

www.mathworks.com/help/stats/machine-learning-in-matlab.
html). The nnet architecture was presented in Figure 2. The
input layer consisted of 20 neurons receiving the 20 feature
values, and the output layer consisted of 2 layers indicating
separated SCLC class (in label 1 for the thresholding f(node)>0)
and NSCLC class (in label−1 for the thresholding f(node)<0).
The non-linear mapping from 20 input nodes to 2 output nodes
involved diverse settings such as logistical mapping (2-class
problem), nodal sigmoidal activation, internetwork weights, and
biases which were integrated in the nnet configuration.

The nnet training process was performed with random
initial weights and biases prior to iteration on feed forward,
nodal non-linear activation, and error backpropagation (https://
www.mathworks.com/help/stats/machine-learning-in-matlab.
html). We specified the training function as “trainlm” with
the multivariate Levenberg-Marguardt algorithm (29), and
the activation function as “tanh” with a hyperbolic tangential
sigmoid function, and a maximum iteration of 1000 epochs and
a control error < 10−3.

With the nnet architecture and the radiomic feature set, we
developed a primary lung cancer classifier for SCLC/NSCLC
discrimination by rendering training, validating, and testing
procedures repeatedly. During the training stage, the cohort
dataset (n= 69) was randomly decomposed into three subgroups:
training (49–70% total), validation (10–15% total), and testing
(10–15% total). For example, we preset a sample split by an
allocation ratio “training 70%, testing 15%, validation 15%.”
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During nnet training, the sample set was randomly partitioned by
the preset allocation ratios: 70% training +15% validation+15%
testing. The sample set partition could be specified with other
allocation settings during the nnet configuration. The validation
and testing procedures were carried out using 15% sample
patients (∼10 patients); this number of patients was randomly
selected by data shuffling in multiple repetitions. Therefore, one
patient was allocated to the “training” cohort at one run and
the same patient could then be allocated to the “validation”
cohort at next run or to the “testing” cohort at next run as the
random allocation process continued. The validation subgroup
was necessary to avoid potential overfitting during the nnet
training. The classifier performance was further evaluated with
the testing subgroup which was an independent group reserved
for the testing purpose during random allocation of the cohort.

By fixing the random number generation (rng (“default”)
in MATLAB), the nnet classifier was reproducible for each
(training+validation+testing) trial. When the random
initialization (for nnet weights and biases) was not fixed,
the nnet classifier yielded variations from trial to trial. We
repeated the (training+validation+testing) procedure 30 times
and evaluated the classifier performance by averaging the results
of the 30 trials.

In addition to the image features, we also collected the
patients’ clinical and demographic data including age, gender,
smoking status and race (also denoted as clinical features).
We included these clinical features into the classification
of the SCLC/NSCLC discrimination depending on their
classification performance.

The SCLC/NSCLC differentiation may be implemented
using diverse pattern classification methods with radiomic
features. For example, one may use a linear discrimination
analysis and a support vector machine method to bipartite the
high-dimensional features into SCLC and NSCLC categories. For
the SCLC/NSCLC classification (a typical 2-class problem) from
high-dimensional features in a number of tens to thousands
as in our study, we used multilayer artificial neural network
classifiers (https://www.mathworks.com/help/stats/machine-
learning-in-matlab.html), which in principle could achieve more
optimal arbitrary non-linear mapping (e.g., non-linearity beyond
analytic description or mathematical tracking) with appropriate
configuration and training.

Statistical Analysis
The classification performance of the SCLC/NSCLC classifier
was evaluated using the area under the receiver operating
characteristic (ROC) curve (AUC) during the testing stage. From
the ROC curve, we calculated the AUC values and identified the
sensitivity/specificity at a point on the curve around 10:30 o’clock
position to quantify the classification performance. In addition to
performing ROC analysis on each (training+validation+testing)
trial, we used the average of 30 trials (generated with random
initializations for nnet training) to report the overall performance
of the SCLC/NSCLC classifiers. The classifier performance
was statistically assessed by the standard ROC method, which
involved the statistical comparison between the nnet output
classes and the pre-defined target classes.

TABLE 1 | Patient demographic data.

SCLC NSCLC p

N = 35 N = 34

Gender 0.01

Male 24 (68.57%) 12 (35.29%)

Female 11 (31.42%) 22 (64.70%)

Age 0.002

Mean ± SD 66.91 ± 9.75 58.55 ± 11.94

History of Smoking <0.001

Yes 34 (97.14%) 9 (26.47%)

No 1 (2.86%) 25 (73.53%)

Race 0.03

Asian 7 (20.00%) 16 (47.05%)

Caucasian 26 (74.29%) 15 (44.12%)

Other 2 (5.71%) 3 (8.82%)

NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer.

Categorical variables such as gender, history of smoking and
race between the SCLC group and the NSCLC group were tested
using Chi-square tests. Two-sample t-tests were used to compare
the group differences (SCLC/NSCLC) for a continuous variable
such as age. P < 0.05 was considered statistically significant.

RESULTS

Patient Information
Our study consisted of 69 primary lung cancer patients with
SCLC (n = 35, age range [46, 81] years, mean± SD = 66.91
± 9.75 years), and NSCLC adenocarcinoma (n = 34, age range
[36, 85] years, mean ± SD = 58.55 ± 11.94 years). The SCLC
group consisted of a higher percentage of male patients and
smokers (p < 0.05). The patient demographic data are presented
inTable 1. There were statistically significant differences between
the SCLC group and the NSCLC group regarding age (p= 0.002)
and race (p = 0.03), as determined by the default significance
level at p < 0.05.

Feature Extraction
For feature extraction, we obtained a total of 48 features (8
histogram features, 40 textural features) from each original
tumor image prior to preprocessing. After tumor image
intensity re-quantization by Ng = {16, 32, 64, 96}, we
obtained 192 (48×4) additional features. By incorporating
a 3D wavelet transformation, we obtained 1728 (= 192×9)
features. Including the clinical features (age, gender, and smoking
status), we obtained a total of 1,731 features (=192 × 9+3).
Supplementary Figure 1 presents a heat map of all radiomic
and clinical features. Supplementary Figure 2 contains the
mutual information map for the features in a 1731 × 1731
symmetric matrix, as shown in the upper triangle. A large
mutual information value indicated a high redundancy between
the features.
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FIGURE 3 | The top 20 features selected from the radiomic data set (total 1,731 features) for the small cell lung cancer (SCLC) / non-small-cell lung cancer (NSCLC)

classification. (A) Measurements for top 20 features. Each feature (matrix row) consisted of 35 SCLC measurements (index 1:35) and 34 NSCLC measurements

(index 36:69). Each feature vector was normalized by max=1. (B) Mutual information map for the top 20 features. A large mutual information value indicated a high

redundancy between the features.

Feature Selection
Using the mRMR method (30), we selected the most informative
and non-redundant quantitative radiomic features. The
correlation (Pearson) between two features assumed a value
in the range [−1,1]. In this study, some feature correlations
could approach 1 (e.g., among features extracted from different
Ng values). For the high-correlation cases (e.g., corr>0.85),
we removed one feature in the correlation pair and only kept
the other feature (as done for feature selection). The feature
selection and deselection procedure was implemented by a
minimal-redundancy-maximal-relevance (mRMR) method.
During feature selection, we removed one-feature in a high-
correlation pair (e.g., corr>0.85), thereby removing the
collinearity (corr∼1). In lieu of a correlation map, we presented
the mutual information map among the 20 features in Figure 3,
which was used to present information redundancy, correlation,
and dependence.

For our SCLC/NSCLC classifier, the top 20 features were
selected from a total of 1731 features. In Figure 3A, we presented
the selected 20 features representing 69 tumors. In Figure 3B,

we presented the mutual information map. The selected features
were also listed inTable 2. Notably, the clinical feature “smoking”
was ranked fourth in the SCLC/NSCLC classification. Figure 4
contains a scatter graph for the top 20 features for inspection of
the feature variability across the cohort. The features were sorted
according to the correlation coefficient between the specific and
the target vector (designated as the corr value).

Classifier Performance
In Figure 5, we presented 2 scenarios demonstrating the nnet
“training-validating-testing” performance. Specifically, in panels

(a1,b1,c1), we showed a 1-misclassification case. As seen in panel
(a1), the training and validation exhibited faster convergence
than the testing. As seen in panel (b1), there was 1misclassifiction
for one NSCLC tumor (marked in arrow). As seen in panel (c1),
the summary confusion matrix gave an accuracy of ∼ 98%. In
the output layer, the nodal sigmoid values (denoted by f, marked
in black dots) approached the target class values (1 and−1), and
the binary SCLC/NSCLC decision was made upon a thresholding
(SCLC: f > 0, and NSCLC: f < 0, see illustration in Figure 2).
With a similar layout in panels (a2,b2,c2), we presented a case of
0 misclassification with a 100% accuracy in the confusion matrix.

The overall performance of the SCLC/NSCLC classifier was
presented in Figure 6A with clinical features and Figure 6B

without clinical features. Our SCLC/NSCLC classification
achieved an overall performance of AUC = ∼0.93, sensitivity
= 0.85, and specificity = 0.85. This classification performance
also represented the prediction performance due to random
partitioning of the cohort for constructing the classifier.

DISCUSSION

In this study, we present a CT radiomic model with a neural
network classifier for differentiating SCLC from NSCLC
adenocarcinoma with satisfying classification performance
achieving an AUC of 0.93. We improved the model performance
by including clinical data such as smoking history, which
was relevant because smoking was a major risk factor for
SCLC. Our top-ranking quantitative radiomic features for
differentiating SCLC from NSCLC adenocarcinoma were
mostly textural that was not perceptible to the human eye. Our
study method presented the advantage of CT radiomics with
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TABLE 2 | Top 20 features for SCLC/NSCLC classification in descending order of

feature correlation with the target vector.

(a) Top 20 features including

clinical data

(b) Top 20 features excluding

clinical data

GLSZM.ZSN @ WT(HHH) GLSZM.ZSN @ WT(HHH)

NGTDM.complex @ WT(LHL) NGTDM.complex @ WT(LHL)

Global.range @ WT(LHH) Global.range @ WT(LHH)

Smoking @ Clinic GLSZM.SZLGE @ WT(LLH)

GLSZM.SZLGE @ WT(LLH) GLSZM.LGZE @ WT(HHL)

GLSZM.LGZE @ WT(HHL) GLSZM.ZSN @ WT(LHH)

GLSZM.ZSN @ WT(LHH) GLSZM.SZLGE @ WT(HHH)

GLSZM.SZLGE @ WT(HHH) GLSZM.SZLGE @ WT(HLH)

GLSZM.SZLGE @ WT(HLH) Global.variance @ WT(HLH)

Global.variance @ WT(HLH) Global.kurt @ WT(HLH)

Global.kurt @ WT(HLH) GLSZM.GLN @ WT(LHH)

GLSZM.GLN @ WT(LHH) GLSZM.ZSN @ rawNg=32

GLSZM.ZSN @ rawNg=32 GLSZM.ZP @ WT(HLH)

GLSZM.ZP @ WT(HLH) GLSZM.ZSN @ WT(LLL)

GLSZM.ZSN @ WT(LLL) Global.mean @ WT(HHL)

Global.mean @ WT(HHL) NGTDM.complex @ WT(LHH)

NGTDM.complex @ WT(LHH) Global.max @ WT(LLH)

Global.max @ WT(LLH) NGTDM.contrast @ WT(HLH)

NGTDM.contrast @ WT(HLH) GLSZM.ZSV @ WT(LHH)

GLSZM.ZSV @ WT(LHH) GLSZM.ZP @ rawNg=16

@, feature derived from image; GLCM, gray-level co-occurrence matrix; Global, whole

image statistics (no spatial attributes); GLN, gray-level non-uniformity; GLRLM, gray-level

run-length matrix; GLSZM, gray-level size zone matrix; LRLGE, long run low gray-level

emphasis; raw, original CT image (no wavelet transform); SZLGE, small zone low gray-

level emphasis; WT(xxx), wavelet-transform with 8 subbands (LLL, LLH, LHL, LHH, HLL,

HLH, HHL, or HHH); ZP, zone percentage; ZSN, zone size non-uniformity; ZSV, zone

size variance.

computational algorithms being potentially outperforming the
traditional human vision-based lung CT image assessment.
Our study showed that CT radiomics could be potentially
helpful to enhance our capability for tumor characterization and
malignancy prediction.

Our study also showed that a combination of key radiomic
features, rather than a single feature, could enhance classification
performance of differentiating SCLC from NSCLC. For example,
the best feature only attained a correlation coefficient of 0.80
in correlation with the target as shown in Figure 4 (f1), which
was the measurement for linear vector discrimination, and the
clinical feature “smoking” only attained a correlation coefficient
of 0.6. However, by assembling the individual features into
an ensemble including both radiomic and clinical features and
then using the nnet nonlinear mapping, we built a robust
SCLC/NSCLC classifier with reliable performance. It should
be noted that the clinical feature “smoking” was ranked
fourth in the SCLC/NSCLC classification and was included
in the model building. However, the clinical feature “gender”
was not sufficiently discriminative to be selected in the top
20 important features and therefore was not included for
model building.

Our study results were generally in agreement with the
literature. Linning et al. built four radiomic classification models

using extracted radiomic features to evaluate the phenotypic
differences between SCLC and NSCLC or NSCLC subtypes, and
achieved an AUC of 0.82 (21). Linning et al. also indicated
that the differences in the radiomic features may be correlated
with subtle differences in tumor heterogeneity of the lung
cancer histological subtypes. Our study had similar findings
as theirs as most of our significant radiomic features were
textural in nature reflecting tumor heterogeneity. In addition,
these textural radiomic features were useful for differentiating
primary lung cancer subtypes with subtle differences in tumor
characteristics as in our cohort. Our study also showed that
CT radiomics for SCLC/NSCLC differentiation was largely
attributed to the power of computational CT image analysis with
reproducible feature extraction, consistent texture assessment
and the subsequent non-linear classifier via a multilayer
neural network.

There were several limitations to this study. First, our
exploratory pilot single-center study results of a small sample
size without external validation may not be generalizable to other
studies. In addition, one may have concern for reliable statistical
inference since our classifier for radiomics-based lung cancer
subtypes was developed from a small study cohort. Nevertheless,
in dealing with the small sample size, we conducted a large
number of repetitions of “training-validation-testing” procedure
with random initial (weight, bias) settings and random sample
set split for assessing the nnet performance. Second, our study
used a tumor segmentation method that started with a semi-
automatic approach utilizing a software to mark the regions
of interest and then was supplemented with manual tracing
of tumor boundaries. This method was time-consuming and
required an imaging specialist throughout the segmentation
process, which was susceptible to inter-observer and intra-
observer variability (31). Nevertheless, the tumor segmentation
step was performed by trained research staff and the tumors were
carefully delineated slice-by-slice to minimize the segmentation
errors that could be propagated to the subsequent radiomic
modeling. For our future studies, we plan to test automated lung
tumor segmentation, to incorporate a robust convolution neural
network for predictivemodeling and to develop a fully automated
SCLC/NSCLC classifier.

Our study has also encountered several confounding factors
inherent in a retrospective study including a heterogeneous
study cohort, variability in imaging protocols and scanners, and
non-standardized imaging reconstruction methods (32). This
limitation may have caused subtle variations in the imaging
features of the lung cancers and may have caused variabilities
in tumor identification and segmentation. However, this was
less an issue in our cohort of peripherally-located lung cancers
because the clear demarcation and different tissue densities
between the tumors and the surrounding lung parenchyma
may have reduced ambiguity in the tumor segmentation step.
Additionally, because our study was focused on radiomic
feature extraction, we did not evaluate the semantic imaging
features described by radiologists, such as location of the
lung nodule, presence of emphysema, interstitial lung disease,
pleural effusion, ground glass opacity, and nodule attenuation
on the lung CT (33). These radiological features are usually
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FIGURE 4 | Scatter plots of the top 20 feature measurements from the dataset of 69 patients. All feature measures were normalized to a range [−1,1] (i.e., max = 1).

The correlation (corr) value indicated the correlation between the feature vector and the target vector (SCLC = 1, NSCLC = 0). The notations for the selected features

were presented in Table 2.

obtained via human vision-based traditional imaging assessment
which has been carried out in routine clinical practice. On
the other hand, the radiomic analysis with computerized
algorithms is mostly used in a research setting currently
because it is not intuitive nor perceptible to human eyes.
Nevertheless, combining these conventional radiological findings
with radiomic features may improve the SCLC/NSCLC classifier
performance, which we plan to do for our future research.
Lastly, we did not perform radiomics-based classification on the
lung cancer vs. the surrounding lung parenchyma or benign
vs. malignant lung nodules. Future research is needed to assess
the usefulness of radiomics for clinically relevant tasks such
as classifying lung nodules vs. peri-nodular lung parenchyma
(34, 35).

Despite the limitations, the promising results of our
exploratory pilot study support moving forward with a large-
scale multicenter study applying radiomics and artificial
intelligence to precision medicine in the diagnosis and
treatment of lung cancer. For our future study, we plan to

perform radiogenomic analysis combining radiomics and
genomic data to predict treatment response and survival
in primary lung cancer. In addition, we will also aim to
develop a more robust predictive modeling generalizable
to other cancer types in addition to lung cancer in our
future work.

In summary, our study showed that CT radiomic
approach could potentially be used as a non-invasive
imaging-based biomarker to differentiate primary lung
cancer subtypes such as SCLC vs. NSCLC, thereby
contributing to early diagnosis and treatment of
lung cancer.
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FIGURE 5 | Two scenarios for demonstrating the nnet “training-validating-testing” performance. Upper: one case of 1 misclassification; lower: one case of no

misclassification. The panels designated as a1 and a2 present the nnet training behaviors under random initial settings (w: weight and b: bias); The panels designated

as b1 and b2 present the output node values (in value range [−1,1], in black dots) in reference to target setting (SCLC = 1, NSCLC = -1); and the panels designated

as c1 and c2 present the confusion matrices. SCLC, small cell lung cancer; NSCLC, non-small cell lung cancer.

FIGURE 6 | Receiver operating characteristic curve (ROC) performance for the SCLC/NSCLC neural network classifications with the clinical data (A) and without the

clinical data (B). The average ROC plot was the average over 30 ROC trials with random initializations for the classifier. AUC, area under the ROC curve; FPR, false

positive rate; TPR, true positive rate; CI, confidence interval.
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Purpose: To find out the CT radiomics features of differentiating lung adenocarcinoma

from another lung cancer histological type.

Methods: This was a historical cohort study, three independent lung cancer cohorts

included. One cohort was used to evaluate the stability of radiomics features, one

cohort was used to feature selection, and the last was used to construct and

evaluate classification models. The research is divided into four steps: region of

interest segmentation, feature extraction, feature selection, and model building and

validation. The feature selection methods included the intraclass correlation coefficient,

ReliefF coefficient, and Partition-Membership filter. The performance metrics of the

classification model included accuracy (Acc), precision (Pre), area under curve (AUC),

and kappa statistics.

Results: The 10 features (First order shape features: Sphericity and Compacity,

Gray-Level Run Length Matrix: Short-Run Emphasis, Low Gray-level Run Emphasis,

and High Gray-level Run Emphasis, Gray Level Co-occurrence Matrix: Homogeneity,

Energy, Contrast, Correlation, and Dissimilarity) showed themost stable and classification

capability. The 6 classifiers, Logistic regression classifier (LR), Sequence Minimum

Optimization algorithm, Random Forest, KStar, Naive Bayes and Random Committee,

have great performance both on the train and the test sets, and especially LR has the

best performance on the test set (Acc = 98.72, Pre = 0.988, AUC = 1, and kappa

= 0.974).

Conclusion: Lung adenocarcinoma can be identified based on CT radiomics features.

We can diagnose lung adenocarcinoma with CT non-invasively.

Keywords: radiomics, texture analysis, lung adenocarcinoma, multi-instance learning, lung cancer histological

types

INTRODUCTION

Medical imaging can assess the characteristics of human tissues non-invasively and is often used
in the diagnosis, treatment guidance and monitoring of tumors in clinical practice. And radiomics
can extract and quantify the differences in tumor tissues (1–4).

The radiomics workflow is usually divided into four steps (1, 5, 6): The first step is image
collection and segmentation. All kinds of medical image formats are supported by radiomics, but
in terms of the number of studies, CT radiomics has the largest number of studies, followed by PET,
MR, and ultrasound. The segmentationmethods includemanual segmentation and semi-automatic
segmentation. The second step is feature extraction. This part of the work is easy to standardize.
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FIGURE 1 | The pipeline of our proposed radiomics analysis. (1) Original images of lung cancer patients. (2) Tumor area of interest (ROI) segmentation of each slice of

CT. (3) Extraction of shape, first-order features and higher-order features from the ROI. (4) Prediction model building based on machine learning classifiers, ROC

curves used to assess the model performance. Adc is lung Adenocarcinoma, and Oth are other lung cancer histological subtypes.

And the third step is feature selection. Feature selection methods
are divided into supervised learning and unsupervised learning.
No matter which type of feature selection, stability evaluation
and performance evaluation should be carried out. The influence
of feature redundancy varies with the algorithms. The final step
is model building. The algorithms of model building can be
roughly divided intomachine learning and deep learning, and the
selection index is data quantity. Besides, basic medical statistical
methods, such as hypothesis testing, can also be used for
radiomics analysis. Figure 1 shows the pipeline of our proposed
radiomics analysis.

The histological type diagnosis of lung cancer is fundamental
in guiding patient management. Lung biopsy is a well-established
method for the differential diagnosis of lung lesions (7), but
it is expensive and invasive. Lung Adenocarcinoma (Adc) is
the most common subtype of lung cancer (8), and diagnosing
Adc by biopsy is not beneficial to the patients unfit for the
invasive diagnostic procedure. So it is important to diagnose
Adc from others (binary classification) by radiomics so that
the patients will get accurate treatment earlier without invasive.
In addition, it could be the basis to develop a multiple class
classification model to reduce or avoid the use of invasive
diagnostic methods.

This paper tests the hypothesis that Adc can be predicted
from another lung cancer histological type (Oth) by radiomics.
To invest the evidence of that, we analyzed three independent
lung cancer cohorts, built some lung Adc classifiers that
can differentiate Adc from Oth without considering the
clinical parameters. To our knowledge, this work is the first
radiomics-based study to predict Adc from Oth (including
squamous cell carcinoma, other primary lung cancer and
metastases), and the proposed models are non-invasive
and cost-effectiveness.

RESULT

The Most Stable Features With High
Classification Capability
Table 1.1 lists the 30 most stable features ranked by intraclass
correlation coefficient (the threshold value is 0.85, p < 0.01) in
RIDER (9) data set. Most of the extracted radiomics features have
good stability. Based on the 30 most stable radiomics features,
the ReleifF (KenjiKira et al. presented at the 1992 Machine
Learning Proceedings) algorithm (10 times cross-validation)
shows 10 features with classification ability (threshold value is
0.01) in Table 1.2. The features based on shape, Gray Level Co-
occurrence Matrix (GLCM), and Gray-Level Run Length Matrix
(GLRLM) had better classification ability, where Sphericity and
Compacity based on shape describe the tumor shape such as
spherical, round or elongated, Contrast_GLCM describes the
local differences and higher value stands for greater difference
between neighboring voxels, SRE_GLRLM is a measure of
short run length distribution, and larger values represent better
texture structure.

Partition-Membership filter (PMF) used the random
Committee algorithm as the partition generator to divide the
10 features into 1940 partitions (Supplementary Material).
The minimum feature subset contained 122 partitions with the
highest classification capability selected by correlation-based
feature subset selection (CFS).

Model Performance
Table 1.3 shows the accuracy ratios in 6 machine learning
classifiers on the test set, including Logistic regression classifier
(LR), Sequence Minimum Optimization algorithm (SMO),
Random Forest (SF), KStar, Naive Bayes (NB) and Random
Committee (RC). All of them have a great performance on the
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TABLE 1 | The analysis results of three independent data sets.

Class Features

1.1 The 30 most stable features on RIDER data set

aFH Skewness, kurtosis, energy

bFS Sphericity, compacity, volume

cGLZLM Short-zone emphasis, high gray-level zone emphasis,

short-zone low gray-level emphasis, short-zone high

gray-level emphasis, long-zone low gray-level emphasis,

zone length non-uniformity, low gray-level run emphasis,

high gray-level run emphasis

dGLRLM Short-run emphasis, long-run emphasis, low gray-level

run emphasis, high gray-level run emphasis, short-run

high gray-level emphasis

eNGLDM Coarseness, contrast

fGLCM Homogeneity, energy, contrast, correlation, dissimilarity

Conventional Indices minValue, maxValue, meanValue, stdValue

1.2 The 10 most stable features with classification capability on Lung 1

data set

bFS Sphericity, compacity

dGLRLM Short-run emphasis, low gray-level run emphasis, high

gray-level run emphasis

fGLCM Homogeneity, energy, contrast, correlation, dissimilarity

Classifiers Accuracy(%)

1.3 Accuracy ratio of 6 machine learning classifiers on Lung 2 test set

gLR 98.72

hRC 98.72

iSMO 97.44

jRF 97.44

kNB 98.72

Ksrar 96.15

a First-order features-histogram.
b First order features-shape.
c Gray-Level Zone Length Matrix, provides information on the size of homogeneous zones

for each gray-level in 3 dimensions.
d Gray-Level Run Length Matrix, gives the size of homogeneous runs for each gray level.

This matrix is computed for the 13 different directions in 3D (4 in 2D) and each of the 11

texture indices derived from this matrix, the 3D value is the average over the 13 directions

in 3D (4 in 2D).
e Neighborhood Gray-Level Different Matrix, corresponds to the difference of gray-level

between one voxel and its 26 neighbors in 3 dimensions (8 in 2D).
f Gray Level Co-occurrence Matrix, takes into account the arrangements of pairs of voxels

to calculate textural indices.
g logistic regression.
h Random Committee.
i Sequential minimal optimization.
j Random Forest.
k Naive Bayes.

The best accuracy ratios are highlighted in bold.

test set, and especially LR, RF, and NB get the highest accuracy
of 98.72%. It also stands for the great classification capability of
those 10 features in diagnosing Adc.

Table 2 and Figure 2 show 6 classifiers with great performance
on the train and the test sets. The best performance metrics for
each set are highlighted in bold. As a whole, the 6 classifiers have
excellent classification performance both on the train and the
test sets, which shows that they can not only diagnose Adc but
also rule out Oth with high accuracy. There is no significance
between prediction models (P > 0.05), which can be inferred

that the selected 10 features have great ability to diagnose Adc.
On the test set, the Kappa statistics are approximately equal to 1
for all models shows that the models have great stability, and the
minimum value is 0.923 (Kstar). Meanwhile, the mean absolute
errors (MAE) are approximately equal to 0, and the maximum
value is 0.09 (Kstar).

LR classifier has the best performance on the test set, it also has
the highest accuracy, true positive rate (TPR), true negative rate
(TNR), precision, and lowest MAE on train set. Followed by RC
and NB, which have the highest TNR, precision, and area under
curve (AUC) on the test set. It is important to diagnose Adc from
Adcs so that patients will get accurate treatment earlier. Table 2
shows LR has great ability to diagnose Adc from Adcs with over
98% accuracy on the test set. And LR, RC, and NB have perfect
accuracy in diagnosing Oth from Oths.

DISCUSSION

Radiomics provides a non-invasive and fast method to predict
clinical outcomes. It could not only support precision medicine
but also be a household diagnostic tool. It is an effective
way to use radiomics to support therapy decision-making,
which will advance personalized medicine. Radiomics has been
applied to a variety of organs and systems such as brain,
breast, lung, heart, liver, kidney, adrenal gland, cervix, limbs,
and prostate (6, 10, 11). For example, Chaddad et al. (6, 12)
proposed a multiscale texture features to predict progression
free and overall survival in patients newly diagnosed with
glioblastoma, they also reviewed the clinical implementation of
radiomic in the current management of glioblastoma, which
is important for advancing the personalized treatment of
glioblastoma patients.

It has been proved the correlation between radiomics features
and tumor phenotype (12–22). Many studies have found Adc can
be predicted by radiomics (22–28). Tang et al. (27) developed
a radiomics model to discriminate Adc from squamous cell
carcinoma (Sqc) with an AUC of 0.82, Yang et al. (24) developed
an LR model to predict lymph node metastasis in solid Adc
with an AUC of 0.86. Remeo et al. (23) studied ground-glass
nodules diagnosis by radiomics, and found radiomics classifier
may be a reliable tool for clinical decision. Ferreira-Junior et
al. (28) found some radiomics features associated with Adc and
squamous cell carcinoma, and got an AUC of 0.88 with amachine
learning model.

However, from the data set point of view, the data sets
of these studies only contain Adc and Sqc, and in clinical
we can’t rule out the existence of other subtypes before
lung biopsy. So from the perspective of clinical diagnosis,
the study of predicting Adc should include all subtypes
of lung cancer as many as possible. Besides, among these
studies, the performance of CT radiomics models still needs to
be improved.

The proposed radiomics models showed great performance in
diagnosing Adc both on the train and the test sets. The models
are available and can be applied in Weka.

In this study, lung cancer patients with various histological
subtypes were included in the patient cohorts. We used stratified
random sampling to balance the covariates. In feature selection,
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TABLE 2 | Performance metrics of 6 classifiers on the train set and test set.

Performance Accuracy (%) lTPR mTNR Precision nAUC Kappa ◦MAE

gLR

Train set 98.70 0.980 0.993 0.987 0.996 0.973 0.02

Test set 98.72 0.987 1.000 0.988 1.000 0.974 0.01

hRC

Train set 96.40 0.967 0.961 0.964 0.997 0.928 0.07

Test set 98.72 0.974 1.000 0.988 1.000 1.000 0.05

iSMO

Train set 97.72 0.961 0.993 0.978 0.977 0.954 0.02

Test set 97.44 0.974 0.974 0.974 0.974 0.949 0.03

jRF

Train set 97.72 0.974 0.980 0.977 0.997 0.954 0.10

Test set 97.44 0.974 0.974 0.974 0.999 0.949 0.08

kNB

Train set 97.01 0.948 0.993 0.972 0.994 0.942 0.06

Test set 98.72 0.974 1.000 0.988 1.000 0.974 0.05

Kstar

Train set 96.08 0.922 1.000 0.964 0.997 0.921 0.10

Test set 96.15 0.949 0.949 0.974 0.997 0.923 0.10

g logistic regression.
h Random Committee.
i Sequential minimal optimization.
j Random Forest.
k Naive Bayes.
lTrue Positive Rate.
mTrue Negative Rate.
nArea under curve.
◦Mean absolute error.

The best performance metrics for each set are highlighted in bold.

we first test the stability of the feature using the public RIDER
data set. Then pick up the features with classification capability.
The selected 10 features show excellent classification ability
after PMF and CFS. PMF was used for transforming features
and CFS is good at picking the most representative minimum
feature subset. It has been proved that PMF can not only
solve the problem of binary classification but also improve the
accuracy of classification (29, 30). Meanwhile, in order to avoid
over-fitting as much as possible, the train and the test sets
were divided with stratified random sampling to keep them
balanced. For model development, independent data sets were
used for feature selection and model construction, and cross
validation method was used for resampling. In model selection,
we used many classifiers to show the classification ability of
selected features, including three frequently used classifiers LR,
RF, and NB. RF contains multiple trees, even if some trees have
over-fitting, it can reduce over-fitting by voting or averaging.
Many radiomics studies used RF for classification. RC is an
ensemble method, it will build an ensemble of randomizable
base classifiers. Each base classifier is built using a different
random number seed. The final prediction is a straight average
of the predictions generated by the individual base classifiers.
Kstar is an instance-based learner using an entropic distance
measure to solve the smoothness problem. SMO is used for

training a support vector classifier, which has good robustness
and generalization ability.

A few issues regarding the stability and reproducibility
of the radiomics features have been raised in recent years
(31–33). Multiple parameter changes (e.g., slice thickness)
in general produce greater measurement errors. Therefore,
some parameters such as slice thickness, dose, kernel, and
segmentation methods should not be altered to assess the
features of a radiomics model. In this case, we selected the most
stable features across test-retest. To find the most representative
feature subset and reduce the running time of the classifiers,
we used CFS to pick the most representative minimum feature
subset. CFS uses heuristic and best-first search methods to
evaluate feature subsets and filters out features that are highly
correlated with classes but have the lowest correlation with
each other.

Although we try our best to reduce random errors and ensure
the correctness of statistical analysis in this study, there are
several limitations. Two cohorts in our study are from public data
sets, so we cannot accurately estimate the size and direction of
systematic bias. The area of interest of the Lung 1 data set and the
Lung 2 data set are delineated in different ways, which will lead
to measurement errors. Besides, we need more cases to improve
the classification model.
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FIGURE 2 | Mean ROC curves obtained by six machine learning models for predicting lung adenocarcinoma. The black diagonal line in the diagram is the random line

which is the worst possible performance a model can achieve. (A) Logistic regression (LR), naive bayes (NB), and random committee (RC) classifiers all have the same

AUC. (B) Random forest (RF) classifier. (C) Kstar classifier. (D) Sequential minimal optimization (SMO) classifier.

In conclusion, CT based radiomics can identify Adc.
Therefore, we can distinguish Adc only from CT images. We will
include multicenter data to improve the classifier and make it a
clinical diagnostic tool.

MATERIALS AND METHODS

Our work was approved by the institutional Ethics Committee.
The tools used for statistical analysis were IBM SPSS Statistics

25.0 (USA), and Weka (Frank et al. presented at the 2009
Data mining and knowledge discovery handbook) (Weka v3.8.3,
Hamilton, New Zealand).

Data Sets
We analyzed three independent data sets including a public
RIDER data set (9), a lung cancer cohort from our institute
(Lung 1), and a public radiomics features data set (Lung
2) (4), Table 3 shows Patient characteristics of Lung 1 and
Lung 2. Patients characteristics in detail, criteria for patient
selection, and CT scan protocol of Lung 2 have been already
published (4).

The RIDER data set consists of 31 non-small cell lung cancer
patients with two CT scans obtained in an interval of about

15min. We use this data set to evaluate the stability of features
for test-retest.

Lung 1 data set consists of 180 lung cancer patients
(adenocarcinoma: squamous cell carcinoma: other types of lung
cancer: metastasis = 3:1:1:1) from our institutional database in
2010–2018. For these patients, CT images, manual delineations,
and clinical data were available. The criteria for patient
selection are the same as Lung 2. We use this data set for
feature selection.

Lung 2 data set consists of 535 lung cancer patients.
For these patients, texture features were available. We used
this data set for model building and validation. In order
to keep the data class balanced on the train and the test
sets(adenocarcinoma: squamous cell carcinoma: other types
of lung cancer: metastasis = 3:1:1:1) and include as many
patients as possible, we randomly divided it into train set (n =

306) and test set (n = 78). Specific patients were selected by
pseudorandom numbers.

According to the lung histological diagnosis, the data
class was divided into Adc and Oth (including squamous
cell carcinoma, other primary histological subtypes, and
metastatic lung cancer). The research of the data set can
be divided into two stages: training phase and validation
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TABLE 3 | Patient characteristics.

Characteristics Lung 1 Lung 2

Size, N 180 535

Mean Age 66 69

Gender (%)

Female

Male

30.6

69.4

33.3

66.7

Histological type, N

Adenocarcinoma

Squamous cell carcinoma

Other primary lung cancer

Metastases

90

30

30

30

193

132

79

131

aThe significance of radiomics features, N

P ≤ 0.05

P > 0.05

b8

33

a Paired t-test with 95% Confidence Interval, two-tailed.
b They are Volume_Shape, Long-Run Emphasis_Gray-Level Run Length Matrix,

Coarseness_Neighborhood Gray-Level Different Matrix, Contrast_Neighborhood Gray-

Level Different Matrix, Long-Zone Low Gray-level Emphasis_Gray-Level Zone Length

Matrix, Zone Length Non-Uniformity_Gray-Level Zone Length Matrix, Low Gray-level Run

Emphasis_Gray-Level Zone Length Matrix, High Gray-level Run Emphasis_Gray-Level

Zone Length Matrix.

phases. The training phase included CT image acquisition,
texture feature extraction, feature selection, and model
building. The validation phase included model testing and
performance evaluation.

CT Image Acquisition and Texture Feature
Extraction
The acquisition and processing of Lung 1 and Lung 2
CT images were carried out following Image Biomarker
Standardization Initiative (IBSI) (34). The volume of
interest (VOI) of the lung 1 data set is made by two
experienced radiologists independently. Before the work,
the physiologists did not know the histological subtype
(blindness) of the target patient. For the inconsistent segments,
they will be segmented again after comparison until the
outcomes are consistent. The VOI of the Lung 2 data set is
segmented (semi)automatically.

LIFEx package (35) used to extract texture features. It
can efficiently perform textural analysis and radiomics feature
measurements from CT images. 41 features were extracted from
CT images.

Feature Selection
The stability of the radiomics features was evaluated
by using the RIDER data set. For each patient, we
extracted image features from two scans. The stability
of each feature was calculated using the intraclass
correlation coefficient, where the higher the intraclass
correlation coefficient corresponds to the more stable
feature (1).

Based on the results of feature stability, The ReliefF algorithm
(ReliefF Attribute Eval with Ranker in WEKA) was used to
remove the irrelevant features from the lung 1 data set.

TABLE 4 | The calculation formulas of performance metrics.

Metric *Formula

TPR TP
TP+FN

TNR TN
TN+FP

Accuracy TP+TN
TP+FP+TN+FN

Precision TP
TP+FP

AUC
∫ 1
x=0 TPR(FPR

−1(x))dx, where x1 is the score for a positive

instance and x0 is the score for a negative instance.

Kappa Kappa =
Po−Pe
1−Pe

, Pe =
P(TP+FP)+N(TN+FN)

(T+N)2
where Po

= Accuracy,

MAE 1
n

n∑

i=1

|p(i)− a(i)|, where p(i) is the prediction case, and a(i) is

real case, n is the total cases.

* TP is true positive, it means that the outcome from a prediction is lung adenocarcinoma

(Adc) and the actual value is also Adc. FN is false negative, it means that the prediction

outcome is another lung cancer histological type(Oth) while the actual value is Adc. TN is

true negative, it means that both the prediction outcome and the actual value are Oth. FP

is false positive, it means that the outcome from a prediction is Adc while the actual value

is Oth. P is condition positive, N is condition negative, and MAE is the mean absolute

errors. TPR is true positive rate, it measures the proportion of actual patients with Adc

that are correctly identified. A negative result in a test with high TPR is useful for ruling in

disease, it signifies a high probability of the presence of Oth. TNR is true negative rate,

it measures the proportion of actual patients with Oth that are correctly identified. A test

with 100% TNR will recognize all patients with Oth by testing negative, and a positive test

result would definitively rule out the presence of Oth in a patient.

The selected features were filtered by propositionalization
and partition using the Partition-Membership filter (Partition
Membership Filter with option Random Committee in Weka)
on Lung 2 train and test sets. It can apply any partition
generator to a given feature vector to get these filtered vectors
for all instances, and the filtered instances are composed
of these values plus class attribute and make as sparse
instances (29).

Then we used CFS to filter the results. The CFS
can select the minimum feature set that is highly
related to the classes. In this feature set, there is a low
correlation between features, so feature redundancy
can be reduced. That is to say, the final result is the
feature set with the highest prediction ability, and
there is a low correlation between the features in this
feature set.

Model Building and Performance
Evaluation
We used 6 machine learning classifiers, including LR(logistic
with options -R 1.0E-8 -M−1 in Weka), ensemble learning
classifier RF (Random Forest with options -K 0 -M 1.0 -V
0.001 -S 1 in Weka), Sequential minimal optimization(SMO
with options -C 1.0 -L 0.001 -P 1.0E-12 -N 1 -V−1 -W
1 -K in Weka), NB (naïve Bayes in Weka), RC (Random
Committee with options -S 1 -num-slots 1 -I 10 -W in
Weka), and KStar (Kstar in Weka) with 10-folds cross
validation. The performance metrics of the classification
model included TPR, TNR, accuracy, precision, AUC, kappa
statistics, and MAE. Table 4 shows the calculation formulas of
these metrics.

Frontiers in Oncology | www.frontiersin.org 6 April 2020 | Volume 10 | Article 60260

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Yan and Wang To Diagnose Lung Adenocarcinoma From CT

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/Supplementary Material.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and
intellectual contribution to the work, and approved it
for publication.

FUNDING

This study was supported by National Key Research and
Development program [2017YFC0113904].

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2020.00602/full#supplementary-material

REFERENCES

1. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et

al. Decoding tumour phenotype by noninvasive imaging using a quantitative

radiomics approach. Nat Commun. (2014) 5:4006. doi: 10.1038/ncomms5644

2. Forghani R, Savadjiev P, Chatterjee A, Muthukrishnan N, Reinhold C,

Forghani B, et al. Radiomics and artificial intelligence for biomarker and

prediction model development in oncology. Comput Struct Biotechnol J.

(2019) 17:995-1008. doi: 10.1016/j.csbj.2019.07.001

3. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG,

Granton P, et al. Radiomics: extracting more information from medical

images using advanced feature analysis. Eur J Cancer. (2012) 48:441–

6. doi: 10.1016/j.ejca.2011.11.036

4. Kirienko M, Cozzi L, Rossi A, Voulaz E, Antunovic L, Fogliata A, et al.

Ability of FDG PET and CT radiomics features to differentiate between

primary and metastatic lung lesions. Eur J Nucl Med Mol Imaging. (2018)

45:1649–60. doi: 10.1007/s00259-018-3987-2

5. Chaddad A, Desrosiers C, Toews M, Abdulkarim B. Predicting survival time

of lung cancer patients using radiomic analysis. Oncotarget. (2017) 8:104393–

407. doi: 10.18632/oncotarget.22251

6. Chaddad A, Kucharczyk MJ, Daniel P, Sabri S, Jean-Claude BJ, Niazi T, et

al. Radiomics in glioblastoma: current status and challenges facing clinical

implementation. Front Oncol. (2019) 9:374. doi: 10.3389/fonc.2019.00374

7. Yan W, Guo X, Zhang J, Zhou J, Chen C, Wang M, et al. Lobar location of

lesions in computed tomography-guided lung biopsy is correlated with major

pneumothorax: a STROBE-compliant retrospective study with 1452 cases.

Medicine. (2019) 98:e16224. doi: 10.1097/MD.0000000000016224

8. Bashir U, Kawa B, Siddique M, Mak SM, Nair A, Mclean E, et al. Non-invasive

classifcation of non-small cell lung cancer: a comparison between random

forest models utilising radiomic and semantic features. Br J Radiol. (2019)

92:20190159. doi: 10.1259/bjr.20190159

9. Zhao B, James LP, Moskowitz CS, Guo P, Ginsberg MS, Lefkowitz R, et

al. Evaluating variability in tumor measurements from same-day repeat CT

scans of patients with non–small cell lung cancer. Radiology. (2009) 252:263–

72. doi: 10.1148/radiol.2522081593
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Objective: To develop and validate a radiomics nomogram for preoperative prediction

of tumor necrosis in patients with clear cell renal cell carcinoma (ccRCC).

Methods: In total, 132 patients with pathologically confirmed ccRCC in one hospital

were enrolled as a training cohort, while 123 ccRCC patients from second hospital

served as the independent validation cohort. Radiomic features were extracted from

corticomedullary and nephrographic phase contrast-enhanced computed tomography

(CT) images. A radiomics signature based on optimal features selected by consistency

analysis and the least absolute shrinkage and selection operator was developed. An

image features model was constructed based on independent image features according

to visual assessment. By integrating the radiomics signature and independent image

features, a radiomics nomograph was constructed. The predictive performance of

the above models was evaluated using receiver operating characteristic (ROC) curve

analysis. Furthermore, the nomogram was assessed using calibration curve and decision

curve analysis.

Results: Thirty-seven features were used to establish a radiomics signature, which

demonstrated better predictive performance than did the image features model

constructed using tumor size and intratumoral vessels in the training and validation

cohorts (p<0.05). The radiomics nomogram demonstrated satisfactory discrimination

in the training (area under the ROC curve [AUC] 0.93 [95% CI 0.87–0.96]) and validation

(AUC 0.87 [95% CI 0.79–0.93]) cohorts and good calibration (Hosmer-Lemeshow

p>0.05). Decision curve analysis verified that the radiomics nomogram had the best

clinical utility compared with the other models.
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Conclusion: The radiomics nomogram developed in the present study is a promising

tool to predict tumor necrosis and facilitate preoperative clinical decision-making for

patients with ccRCC.

Keywords: clear cell renal cell carcinoma, tumor necrosis, computed tomography, radiomics, prediction model

INTRODUCTION

Renal cell carcinoma (RCC) is the most common malignant
neoplasm of the kidney in adults, of which clear cell RCC
(ccRCC) is the most prevalent subtype, accounting for
70–80% of neoplasms (1, 2). Tumor necrosis is defined as
coagulation necrosis of tumor cells observed by microscopy,
exhibiting characteristics of dead and degraded tumor cells
formed into homogeneous clusters and sheets (3, 4). However,
histopathological features, including hemorrhage, cystic
transformation, hyalinization, as well as foci of fibrosis, should
not necessarily be regarded as tumor necrosis (3). Numerous
studies have demonstrated that the presence of tumor necrosis is
a reflection of aggressive behavior and an independent predictor
of poor survival in patients with ccRCC (5, 6). Therefore,
The International Society of Urological Pathology (ISUP)
recommended that tumor necrotic pathological information
should be routinely included in pathological reports for ccRCC
(7). Furthermore, tumor necrosis can enhance the prognostic
performance of other prognostic variables including tumor size,
TNM stage, and nuclear grade in prognostic algorithms, the
most well-known of which is the Mayo Clinic Stage, Size, Grade
and Necrosis (SSIGN) score (8, 9). It is becoming increasingly
important to obtain accurate prognostic information and to
accurately assess tumor aggressiveness before treatment to
determine the optimal treatment strategy (4, 10). However,
information regarding tumor necrosis is available only after
surgical pathological evaluations. Although preoperative biopsy
provides important histological information, it has some
limitations, including insufficient accuracy, resulting in sampling
bias and the risk for significant complications (11). Therefore, a
non-invasive and accurate method to predict tumor necrosis in
patients with ccRCC before treatment is urgently needed.

Computed tomography (CT) is generally considered a
common non-invasive imaging modality for preoperative tumor
staging and assessing aggressiveness in patients with ccRCC
(12). However, the accuracy of visually assessing CT images
is extremely limited by the subjectivity and experience of the
radiologists (13). Recent studies have proposed that images are
more than pictures; they are, in fact, data (14). An emerging
field, known as radiomics, proposes a new concept for precision
medicine based on medical images, the methodology of which

Abbreviations: CC, Renal cell carcinoma; ccRCC, Clear cell renal cell carcinoma;

SSIGN, Stage, Size, Grade and Necrosis; CT, Computed tomography; GZPPH,

Guizhou Province People’s Hospital; AHZMU, Affiliated hospital of Zunyi Medical

University; WHO, World Health Organization; ISUP, International Urological

Pathology Association; ROI, Region of interest; LASSO, Least absolute shrinkage

and selection operator; ICC, Intraclass correlation coefficient; VIF, Variance

Inflation Factor.

is to extract large numbers of quantitative features from images
to describe tumor phenotypes using advanced mathematical
algorithms (15, 16). ccRCC is a highly heterogeneous tumor, with
which radiomic features demonstrate an excellent correlation
(17, 18). Subsequently, recent advances have shown that
radiomics holds great promise in evaluating and predicting
histopathological features and treatment response (19–21). To
date, however, the feasibility of CT-based radiomics models in
preoperatively predicting tumor necrosis in patients with ccRCC
has not been evaluated.

Therefore, the purpose of this study was to evaluate the
performance of radiomics signature and image features model
in preoperatively predicting tumor necrosis, and to establish
a radiomics nomogram integrating radiomics signature and
independent image features, which is expected to categorize
tumor necrosis accurately and effectively guide individualized
treatment in patients with ccRCC.

MATERIALS AND METHODS

Participant Selection
All patients were consecutively enrolled between August 2013
and December 2017 at Guizhou Province People’s Hospital
(GzPPH; Guiyang, China) or between February 2010 and
December 2017 at the Affiliated Hospital of Zunyi medical
University (AHZMU; Zunyi, China). Inclusion criteria were
as follows: postoperative pathological diagnosis of ccRCC;
not having undergone any treatment before operation; and
availability of complete contrast-enhanced CT imaging data
within 30 days before the operation. Individuals in whom
percutaneous renal mass biopsy was performed before CT
enhancement examination, those with Ct images with obvious
noise and artifacts, and those with incomplete imaging, clinical
or pathological data were excluded.

Demographic data, including age and sex, and pathological
information were retrieved from the electronic medical records
system. The corticomedullary, nephrographic phase contrast-
enhanced CT images from all patients were retrieved and
downloaded from the image archiving and communication
system and saved in dicom format for further analysis
The ct scans from the two centers involved in this study
were performed using two different CT scanners. Specific
details of the CT equipment and parameters are detailed in
Supplementary Materials.

Pathological Assessment
Tumor necrosis in ccRCC from different hospitals was reviewed
by two senior pathologists, Y.Y.T (from GZPPH, with 21 years’
experience in pathological diagnosis) and B.Y.H. (from AHZMU,
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with 14 years’ experience in pathological diagnosis), according
to the 2016 World Health Organization (WHO) system based
on the consensus conference of the ISUP. Although the two
physicians knew that all cases were ccRCC, they were blinded to
the diagnosis of tumor necrosis.

Subjective Image Features Analysis
CT images from all cases were reviewed by two attending
radiologists (Z.X.C. and L.H., GPPH and AHZMU, with 19
years and 11 years’ experience in abdominal imaging diagnosis,
respectively). They assessed the imaging features of the cases in
their respective hospitals. All physicians knew that the tumor
was diagnosed as ccRCC, but were blinded to the pathological
diagnosis of tumor necrosis.

The image features assessed in the present study were as
follows: tumor size, defined as the maximum diameter of
the tumor at the axial level; tumor boundary, divided into
clear boundary and blurred boundary according to the signs
of infiltration around the tumor in the nephrographic phase;
necrosis imaging, defined as the non-enhanced liquid area
of the tumor is >50% of the tumor; renal vein invasion,
defined as the imaging feature of tumor thrombus in renal vein
and inferior vena cava; collecting system invasion, defined as
deformation of the collection system or tumor invading the

renal pelvis and renal cone; intratumoral vessels, defined as
visible vascular enhancement in the corticomedullary phase;
positive lymph node metastasis, defined as the short-axis
diameter of lymph nodes >10mm in the renal hilum and
retroperitoneum; visual relative enhancement, divided into
hyperattenuating (more obvious than renal cortex enhancement),
isoattenuating (similar to renal cortical enhancement), and
hypoattenuating (weaker than renal cortical enhancement)
(7); and enhancement pattern, divided into homogeneous
enhancement (90%), relative homogeneous enhancement (75–
90%), and heterogeneity enhancement (<75%) according to
the homogeneous of tumor enhancement (7). A representative
example of the above imaging features is shown in Figure 1.

Image Features Model Building
Candidate indicators of image features models included the
following: age, sex, tumor size, imaging necrosis, renal vein
invasion, collective system invasion, intra-tumoral vessels,
positive lymph node metastasis, enhancement mode, and relative
visual enhancement. Univariate analysis was used to assess the
correlation between the above indicators and tumor necrosis in
the training cohort. Important risk indicators in the univariate
analysis (i.e., those with p < 0.05) were included in the
multivariate logistic regression analysis to identify independent

FIGURE 1 | Illustration of CT features of CCRCC in axial images: (A) tumor size (white line) and blurred tumor boundary; (B) necrosis imaging; (C) renal vein invasion;

(D) collecting system invasion; (E) intratumoral vessels; (F) positive lymph node metastasis; (G–I); visual relative enhancement: (G) hypoattenuating, (H) isoattenuating,

(I) hyperattenuating; (J–L) enhancement pattern: (J) homogeneous enhancement, (K) relative homogeneous enhancement, (L) heterogeneity enhancement.
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risk indicators. A predictive model of image features was
then constructed in the training cohort and confirmed in the
verification cohort.

Tumor Segmentation
This study used ITK-SNAP version 3.8 software (www.itksnap.
org) to perform three-dimensional manual segmentation of
the tumor region of interest (ROI). First, an attending
radiologist (T.C., GZPPH, 6 years’ experience in abdominal
diagnosis) identified tumor boundaries based on CT multi-
phase enhancement images. Then, the ROI was outlined
along the borders of the tumors on the corticomedullary and
nephrographic phases, while avoiding covering adjacent vessels,
perirenal fat, and the renal parenchyma. Finally, the senior
radiologist (Z.X.C) reviewed all ROI segmentation.

Radiomics Feature Extraction
This study used the Dr. Wise Multimodal Research Platform
(https://research.deepwise.com) (Beijing Deepwise & League of
PHD Technology Co., Ltd, Beijing, China) for feature extraction
in the training cohort. First, pre-processing was performed
using B-spline interpolation resampling techniques, resampling
all of the CT images such that they were 0.75 × 0.75 ×

0.75 mm3 voxels. Then, 1,218 features were extracted from
the ROI on corticomedullary, nephrographic phase contrast-
enhanced CT images. The extracted radiomics features were
divided into three categories: features based on tumor shape and
size; first-order gray-scale statistical features; and texture-based
features, including gray-scale co-occurrence matrix (GLCM),
gray-level size zone matrix (GLSZM), gray level run length
matrix (GLRLM) and gray level difference matrix (GLDM).
Moreover, the whole radiomic feature set also contained higher
order statistical features, including the intensity and texture

features derived from the images processed with 2 types of filters
(logarithm and wavelet transformation).

Radiomics Signature Construction
The corticomedullary and nephrographic features were
combined and analyzed because different contrast-enhanced
phases can characterize tumor different biological information.
High-dimensional data may contain highly redundant and
uncorrelated information, which may lead to over-fitting and
reduce the performance of the learning algorithm. Feature
dimension reduction and screening were then performed in
two steps.

In the first step, intra- and interobserver intraclass correlation
coefficient (ICC) were used to screen radiomics features with
better robustness in feature extraction. Thirty randomly selected
patients were used to test the ICC, 15 patients of them
from the training cohort and 15 patients from the validation
cohort. The radiological attending physician (T.C.) and the
senior physician (Z.X.C.) independently delineated the ROI
for the corticomedullary and nephrographic phases of the 30
patients. Two weeks later, the radiologist repeated the two
ROIs. The consistency of the extracted features was based on
ROI delineation between the intra-observer and interobserver.
Features with ICC > 0.75 were considered to be consistent and
retained for further analysis.

In the second step, the radiomic features were standardized
by the standard scaler package in tranning cohort. The mean
of features set was mapped to zero, and the standard deviation
mapped to one in the process of features standardization. Then,
the standardized model in the training cohort was applied
to the validation cohort. Then using least absolute shrinkage
and selection operator (LASSO) logistic regression, the best
feature data set with the smallest binomial deviation was selected
by 10 fold cross-validation, and the radiomics features with

FIGURE 2 | A flowchart of radiomics analysis in this study.

Frontiers in Oncology | www.frontiersin.org 4 May 2020 | Volume 10 | Article 59266

www.itksnap.org
www.itksnap.org
https://research.deepwise.com
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Jiang et al. Radiomics Preoperatively Predict Tumor Necrosis

significant coefficient non-zero and tumor necrosis was screened
out. Based on the LASSO weighting coefficients of the selected
features, radiomics features were linearly combined to construct
a radiomics score (Rad score) formula (i.e., radiomics signature).
Based on this formula, a risk score can be calculated for each
patient that reflects the predicted risk of imaging histology
labeling for the presence of tumor necrosis. In the training set,
the best cut-off value for the Rad score was statistically analyzed
using the Youden index, then the patients were divided into
high-risk groups (with tumor necrosis) or low-risk groups (non-
tumor necrosis). Finally, the verification of radiomics signature
was performed in the verification set.

Radiomics Nomogram Construction
To provide patients and clinicians with an individualized and
easy-to-use preoperative predictive tool for tumor necrosis,
this study constructed a radiomics nomogram. The radiomics
nomogram integrated the radiomics signature and independent
image features. Then, the multicollinearity analysis between
variables in the model based on variance inflation factor (VIF).
Finally, the nomogram was tested in the verification cohort.

Model Evaluation
ROC curves were plotted and area under the ROC curve
(AUC) was used to evaluate the predictive performance of
the radiomics signature, image feature model, and radiomics
nomogram for tumor necrosis in ccRCC in the training and
validation cohorts. The optimal cut-off values for the different
models were evaluated using the Youden index, and differences
in AUC values among the three models were compared using
the Delong test in both cohorts. Consistency of the predicted
risk for tumor necrosis using actual results of the radiomics
nomogram was demonstrated by a calibration curve. And the
calibration of the nomogram was evaluated through the Hosmer-
Lemeshow goodness-of-fit test with 8 groups. To assess the
clinical usefulness of the radiomics nomogram, decision curve
analysis was used to quantify the net benefit at different threshold
probabilities in the validation cohort. A flowchart of radiomics
analysis is shown in the Figure 2.

Statistical Analysis
Statistical analysis was performed using SPSS version 21.0
(IBM Corporation, Armonk, NY, USA), R (version 3.4.0;
http://www.r-project.org), or Python version 3.6.8 (https://www.
python.org). Continuous variables are expressed as mean ±

standard deviation and categorical variables are expressed as
number (percent [%]). In the univariate analysis, the continuous
variables were tested using t-test or Mann–WhitneyU-test, while
categorical variables were analyzed using the chi-squared test
or Fisher’s exact test; a two-sided p < 0.05 was considered to
be statistically significant. Intra- and interobserver consistency
of features extracted from the ROIs was assessed using
Kappa statistics. The scikit-learn (https://scikit-learn.org/) and
Matplotlib (https://matplotlib.org/) packages of Python were
used to perform LASSO regression model analysis, as well as
to plot ROC curves, Rad-score map, and calibration curves.
The multivariate binary logistic regression and nomogram

construction were performed in R using the rms (Regression
Modeling Strategies) package. The generalhoslem and rmda
packages of R were used to perform Hosmer-Lemeshow test and
plot decision curves, respectively.

RESULTS

Patient Characteristics
In this study, a total of 255 patients with ccRCC from two
hospitals was enrolled. The AHZMU included 132 ccRCC
patients (81 male, 51 female; median age, 56 years [range,
11–85 years) as the training cohort, including 51 cases of
tumor necrosis (38.6%). The GZPPH included 123 ccRCC
patients (76 male, 47 female; median age, 56 years [range 23–
80 years]) as the independent validation cohort, including 37
cases of tumor necrosis (30.0%). Demographic, pathological
characteristics, and subjective image features of all patients are
summarized in Table 1. Except for imaging necrosis (P < 0.001)
and intra-tumoral vessels (P < 0.035), there were no statistically
significant differences in other clinical and image information
(P = 0.060–0.870).

Image Features Model Construction
Univariate analysis of demographic and subjective image features
in both cohorts are summarized in Table 1. Univariate analysis
revealed that tumor size, tumor margin, intra-tumoral vessels,
invasive system infiltration, lymph node metastasis, and tumor
necrosis were closely related (P < 0.05) in the training cohort.
However, after multivariate analysis, only tumor size (OR 1.404
[95% CI 1.129–1.795]; P < 0.001) and intratumoral vessels
(OR 8.044 [95% CI 2.407–36.971]; P = 0.002) remained as
independent predictors. Therefore, the image features model was
constructed by integrating tumor size and intratumoral vessels,
which yielded an AUC of 0.82 (95% CI 0.75–0.89) in the training
cohort and 0.72 (95% CI 0.62–0.82) in the validation cohort.

Radiomics Signature Construction
A total of 2,436 radiomics features were extracted from the
corticomedullary and nephrographic phase contrast-enhanced
CT images, and used for feature selection simultaneously. After
removing redundant features by consistency analysis, 1,194
radiomics features remained for the corticomedullary phase and
1,189 for the nephrographic phase (ICC > 0.75). Subsequently,
37 robust radiological features with non-zero coefficients (26
corticomedullary and 11 nephrographic features) were screened
using the LASSO logistic regression model. Finally, a Rad score
formula was constructed based on the above features and their
corresponding weighting coefficients (i.e., radiomics signature),
as shown in Section S2. A Rad score could be calculated for each
patient in the training and validation cohorts using this formula,
with no significant difference in Rad score between the two
cohorts (P = 0.648), while with significant differences between
the tumor necrosis group and non-tumor necrosis group in both
cohorts, as shown in Table 2. The optimal cut-off value, based
on the Youden Index Rad score, was 0.313. Radiomics signatures
demonstrated AUCs of 0.91 (95% CI 0.87–0.96) and 0.86 (95% CI
0.79–0.93) in the training and validation cohorts, respectively.
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TABLE 1 | Characteristics of CCRCC Patients in the Training and Validation Cohorts.

Characteristics Training cohort (n = 132) Validation cohort (n = 123) P-value

Tumor necrosis

(n = 51)

Non-tumor necrosis

(n = 81)

P-value Tumor necrosis

(n = 37)

Non-tumor necrosis

(n = 86)

P-value

Age, mean SD 56.02 ± 15.78 56.99 ± 11.60 0.861 56.30 ± 11.78 55.91 ± 13.27 0.877 0.632

Gender (%) 0.067 0.69 1

Male 26 (50.98%) 55 (67.90%) 24 (64.86%) 52 (60.47%)

Female 25 (49.02%) 26 (32.10%) 13 (35.14%) 34 (39.53%)

Tumor size, mean SD 6.39 ± 1.82 4.34 ± 2.02 <0.001* 6.30 ± 2.23 4.66 ± 2.10 <0.001* 0.924

Tumor boundary (%) 0.046* 0.002* 0.408

Circumscribed 39 (76.47%) 73 (90.12%) 23 (62.16%) 76 (88.37%)

Infiltrative 12 (23.53%) 8 (9.88%) 14 (37.84%) 10 (11.63%)

Necrosis imaging (%) 1 0.425 <0.001*

Absent 20 (39.22%) 33 (40.74%) 4 (10.81%) 15 (17.44%)

Present 31 (60.78%) 48 (59.26%) 33 (89.19%) 71 (82.56%)

Renal vein invasion (%) 0.285 0.007* 0.554

Absent 42 (82.35%) 73 (90.12%) 29 (78.38%) 82 (95.35%)

Present 9 (17.65%) 8 (9.88%) 8 (21.62%) 4 (4.65%)

Collecting system invasion (%) 0.001* <0.001* 1

Absent 32 (62.75%) 71 (87.65%) 21 (56.76%) 75 (87.21%)

Present 19 (37.25%) 10 (12.35%) 16 (43.24%) 11 (12.79%)

Intratumoral vessels (%) <0.001* 0.091 0.035*

Absent 3 (5.88%) 41 (50.62%) 4 (10.81%) 22 (25.58%)

Present 48 (94.12%) 40 (49.38%) 33 (89.19%) 64 (74.42%)

lymphatic metastasis (%) 0.045* 0.009* 0.153

Absent 44 (86.27%) 78 (96.30%) 27 (72.97%) 79 (91.86%)

Present 7 (13.73%) 3 (3.70%) 10 (27.03%) 7 (8.14%)

Visual relative enhancement (%) 0.509 0.835 0.171

Hyperattenuating 6 (11.76%) 8 (9.88%) 7 (18.92%) 15 (17.44%)

Isoattenuating 31 (60.78%) 57 (70.37%) 22 (59.46%) 48 (55.81%)

Hypoattenuating 14 (27.45%) 16 (19.75%) 8 (21.62%) 23 (26.74%)

Enhancement pattern (%) 0.434 0.063 0.406

Homogeneous enhancement 14 (27.45%) 31 (38.27%) 7 (18.92%) 31 (36.05%)

Relatively homogeneous enhancement 17 (33.33%) 24 (29.63%) 14 (37.84%) 34 (39.53%)

Heterogeneous enhancement 20 (39.22%) 26 (32.10%) 16 (43.24%) 21 (24.42%)

WHO/ISUP grading (%) 0.035* <0.001* 0.667

I 4 (7.84%) 19 (23.46%) 0 (0.00%) 16 (18.60%)

II 29 (56.86%) 48 (59.26%) 15 (40.54%) 64 (74.42%)

III 15 (29.41%) 12 (14.81%) 17 (45.95%) 5 (5.81%)

IV 3 (5.88%) 2 (2.47%) 5 (13.51%) 1 (1.16%)

T stage (%) <0.001* <0.001* 0.709

T1 28 (54.90%) 71 (87.65%) 16 (43.24%) 72 (83.72%)

T2 19 (37.25%) 5 (6.17%) 14 (37.84%) 10 (11.63%)

T3 4 (7.84%) 5 (6.17%) 6 (16.22%) 4 (4.65%)

T4 0 (0.00%) 0 (0.00%) 1 (2.70%) 0 (0.00%)

N stage (%) 1 0.34 0.093

N0 4 (7.84%) 6 (7.41%) 4 (10.81%) 13 (15.12%)

N1 2 (3.92%) 3 (3.70%) 1 (2.70%) 0 (0.00%)

Nx 45 (88.24%) 72 (88.89%) 32 (86.49%) 73 (84.88%)

M stage (%) 0.335 0.009* 0.321

M0 45 (88.24%) 76 (93.83%) 32 (86.49%) 85 (98.84%)

M1 6 (11.76%) 5 (6.17%) 5 (13.51%) 1 (1.16%)

(Continued)
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TABLE 1 | Continued

Characteristics Training cohort (n = 132) Validation cohort (n = 123) P-value

Tumor necrosis

(n = 51)

Non-tumor necrosis

(n = 81)

P-value Tumor necrosis

(n = 37)

Non-tumor necrosis

(n = 86)

P-value

TNM stage (%) <0.001* <0.001* 0.813

I 24 (47.06%) 66 (81.48%) 16 (43.24%) 72 (83.72%)

II 17 (33.33%) 5 (6.17%) 12 (32.43%) 9 (10.47%)

III 4 (7.84%) 6 (7.41%) 4 (10.81%) 4 (4.65%)

IV 6 (11.76%) 4 (4.94%) 5 (13.51%) 1 (1.16%)

*P < 0.05 means statistical significance.

Data are in n (%) unless otherwise indicated.

Categorical variables are compared using chi-square tests or Fisher exact tests, while continuous variables are compared using t-test or Mann–Whitney U-test, as appropriate.

TABLE 2 | Rad-score in the Training and Validation Cohorts.

Training cohort (n = 132) P-value Validation cohort (n=123) P-value P-value

Tumor necrosis (n = 51) Non-tumor necrosis (n = 81) Tumor necrosis (n = 37) Non-tumor necrosis (n = 86)

Rad-score 0.577 (0.187 to 1.193) 0.224 (-0.006 to 0.732) <0.001 0.533 (0.057 to 1.100) 0.201 (-0.054 to 0.717) <0.001 0.6478

Radiomics Nomogram Construction
By integrating radiomics signature (OR 4.472 [95% CI 0.289–
8.654]; P = 0.048), tumor size (OR 0.550 [95% CI−1.981–3.080];
P = 0.019), and intra-tumoral vessels (OR 4.472 [95% CI 0.289–
8.654]; P = 0.048), a radiomics nomogram was built in the
training cohort, as shown in Figure 3A. The VIF of radiomics
signature, tumor size, and intra-tumoral vessels are 2.177,
2.202, and 1.458 in radiomic nomogram respectively, which
demonstrated there was a multicollinearity between radiomic
signature and tumor size, but not serious. In the nomogram, the
radiomics signature demonstrated the highest weight, indicating
it was the most important predictive factor for tumor necrosis.
The radiomics nomograph demonstrated satisfactory predictive
performance, with AUCs of 0.93 (95% CI 0.89–0.97) and 0.87
(95% CI 0.81–0.94) in the training and validation cohorts,
respectively. The calibration curve revealed that the radiomics
nomogram demonstrated good agreement between the predicted
probability and the expected probability, and the Hosmer–
Lemeshow test demonstrated good similarity in the training (p=
0.695) and validation (p= 0.131) cohorts, as shown in Figure 3B.

Model Evaluation
The ROC curves of the three models for prediction of tumor
necrosis are shown in Figure 4, while predictive performance
(AUC, sensitivity, specificity, and accuracy) is summarized in
Table 3. The predictive performance of the radiomics signature
was superior to the image features in both cohorts. After
combining radiomics signature with tumor size and intra-
tumoral vessels to construct the radiomics nomogram, the
predictive performance of the clinical model was significantly
improved in the training cohort (from 0.82 to 0.93; P < 0.001).
This significant improvement was also verified in the validation
cohort (from 0.72 to 0.87; P = 0.001), indicating that the
radiomics signature had a gain value for the prediction of the

image features model. The AUC of the radiomics nomogram was
also slightly higher than the radiomics signature, although the
difference was not statistically significant (P = 0.222 [training
cohort], p= 0.425 [validation cohort]).

The clinical decision curve is presented in Figure 3C, which
shows that when the threshold probability was >5%, the
radiomics signature was higher or similar to the radiomics
nomogram in the partial threshold probability. However, within
most of the above threshold probabilities, the radiomics
nomogram demonstrated a larger net benefit than did the
radiomics signature, indicating that the nomogram had the
best clinical utility for prediction of tumor necrosis in patients
with ccRCC.

DISCUSSION

To our knowledge, this was the first study to develop and validate
a CT-based radiomics signature to preoperatively predict tumor
necrosis in patients with ccRCC from two different centers.
The results demonstrated that the predictive performance of
the radiomics signature was significantly superior to the image
features model. In addition, by integrating the radiomics
signature and significant imaging features, an easy-to-use
radiomics nomogram was established to facilitate individualized
preoperative prediction with the best performance, which is
expected to provide valuable information to support clinical
decision making.

An image features model based on tumor size and
intratumoral vessels was developed first, which demonstrated
good predictive performance for tumor necrosis in ccRCC in
both cohorts. Tumor size in the model, as a primary predictor,
suggested that larger tumors are more prone to tumor necrosis,
which is consistent with previous studies in which tumor size
was reported to be a significant independent factor for invasive
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FIGURE 3 | The radiomics nomogram, calibration curves of the radiomics nomogram and decision curve analysis. The radiomics nomogram was established based

on radiomics signature, tumor size, intratumoral vessels in the training cohort (A). Calibration curves of the radiomics nomogram in the training and validation cohorts

(B). The y-axis expresses the actual tumor necrosis rate, the x-axis expresses the predicted possibility and the 45◦gray dotted line expresses the ideal prediction.

Calibration curves demonstrated the goodness-of-fit of the radiomics nomogram. Decision curve analysis for three model. Decision curve analysis DCA) for each

model in the validation dataset (C). The DCA demonstrated that if the threshold probability was >5%, the application of radiomics nomogram to predict tumor

necrosis adds more benefit than treating all or none of the patients, radiomics signatrue and image features model.

FIGURE 4 | Comparison of ROC curves between radiomics nomogram, image features model and radiomics nomogram for prediction of tumor necrosis in the

training cohort (A) and validation cohort (B). The three colors of the curves represent different models: red, radiomics signature; blue, image features model; green,

radiomics nomogram.
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TABLE 3 | Predictive performance of the image features model, the radiomics signature, and the radiomics nomogram.

Model Training cohort (n = 132) Validation cohort (n = 123)

AUC (95% CI) Sensitivity Specificity Precision AUC (95% CI) Sensitivity Specificity Precision

Image features model 0.82 (0.75–0.89) 86.42% 84.31% 85.61% 0.72 (0.62–0.82) 59.30% 78.38% 65.04%

Radiomics Signature 0.91 (0.87–0.96) 75.31% 82.35% 78.03% 0.86 (0.79–0.93) 82.56% 70.27% 78.86%

radiomics nomogram 0.93 (0.89–0.97) 76.54% 96.08% 84.09% 0.87 (0.81–0.94) 72.26% 83.78% 76.42%

biological behavior of ccRCC (5). In addition, the results show
that the imaging findings of intratumoral vessels are more
common in ccRCC with tumor necrosis, which may be related
to the mechanism of tumor necrosis; more specifically, excessive
blood supply, immature blood vessels, and hypoxia associated
with vascular remodeling in the tumor (7, 22, 23). Therefore,
intratumoral vessels can be used to indicate the presence of tumor
necrosis in patients with ccRCC.

Tumor necrosis is a major cause of image heterogeneity
in patients with ccRCC. It is challenging to visually assess
this heterogeneity because there are significant differences in
the size, morphology, and degree of enhancement of tumor
necrotic areas in CT images (24). However, the emergence
of radiomics provides a new approach to solve this problem,
which hypothesizes that medical images contain numerous
and important phenotypic information invisible to the naked
eye, and the relationship between imaging data and tumor
characteristics can be uncovered through deep mining and
quantitative analysis of imaging data (14). As reported by
Aerts et al., intratumor heterogeneity can be described by
radiomics (25). This hypothesis was also proven by the results
of this study, in which the radiomics signature outperformed
the image features model in predicting tumor necrosis in
ccRCC. Consistent with previous studies, the radiomics signature
consists mainly of three-dimensional texture features, and its
prediction performance was significantly better than that of
morphological features and first-order features (26, 27). The
reason is that the three-dimensional texture features can provide
gross characterization of tumor heterogeneity through analysis
of the distribution and relationship with gray levels of pixels
or voxels in CT images (28). In addition, radiomics features
are better than image features with regard to repeatability and
robustness by automating high-throughput feature extraction
algorithms, thus avoiding intra- and interobserver disagreement.
Both the training and validation cohorts demonstrated good
predictive consistency, indicating that radiomics signatures
have better generalization ability between different centers. In
summary, objective and quantitative radiomics analysis offers
a new approach to the assessment of tumor invasiveness
in ccRCC.

To explore clinical use, further incorporating the radiomics
signature, tumor size and intratumoral vessels, a radiomics
nomograph was established to preoperatively evaluate the
tumor necrosis risk for each ccRCC patient, which achieved
significantly and slightly improved performance compared with
imaging features and radiomics models alone. Unexpectedly,

the tumor size were negatively correlated with tumor necrosis
in the radiomic nomogram, which opposited of that in image
feature model. Radiomic signature contains a radiomic feature
representing the maximum diameter of the tumor on the coronal
plane, that is, the Maximum_2D_Diameter_Row. Based on
the VIF, there was some multicollinearity between radiomic
signature and tumor size, but not serious. Therefore, we think
that the tumor size may be weakened in the risk forecast weight
and shows an opposite prediction trend for tumor necrosis,
but it still play an important role in the model optimization.
Moreover, decision curve analysis demonstrated that more net
benefits within the most of thresholds probabilities could be
achieved using the radiomics nomograph, meaning that using the
nomogram for therapy strategy would achieve a better clinical
outcome. Therefore, a radiomics nomograph can be regarded as
a promising assistive tool to guide clinical management in ccRCC
patients for radiologists and oncologists.

Biopsy is the primary method for preoperative diagnosis of
tumor necrosis in patients with ccRCC; however, it is limited by
its invasiveness and potential for complications. In addition, the
accuracy of diagnosing tumor necrosis through biopsy is poor
due to tumor heterogeneity and sampling error (11). In contrast,
a radiomics nomogram demonstrates better performance in
the preoperative discrimination of tumor necrosis, given
the advantage in characterization of spatial heterogeneity
of the entire tumor. In addition, a radiomics nomogram
with quantitative analysis and non-invasive examination can
be used as a simple, well-accepted method for longitudinal
assessment of tumor progression. Therefore, although radiomics
is currently not an alternative to biopsy for the assessment
of tumor necrosis, it can provide an important reference or
Supplementary Materials.

There were several notable limitations to our study. Although
this study used an independent patient population as a
validation cohort, the radiomics nomogram should be further
validated in a prospective study with a larger dataset. Due
to the two-center nature of the study, differences in the
diagnosis of tumor necrosis and the CT scan protocols
were unavoidable, which may have led to inherent bias.
Different proportions of necrosis have different prognostic
value (29); however, this study only explored the performance
of radiomics signature in discrimination of tumor necrosis.
ROI segmentation is an important preprocessing step in
radiomics analysis; as such, automated or semi-automated
segmentation is expected to improve the robustness of the
radiomics model.
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In conclusion, this study proposed a radiomics nomogram
for preoperative assessment of tumor necrosis in patients with
ccRCC, which demonstrated satisfactory performance. As a non-
invasive, efficient, quantitative approach, a radiomics signature
can add incremental value to imaging features for assessment of
tumor invasiveness and facilitate preoperative clinical decision
making and/or management of patients with ccRCC.
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Objective:To construct and validate a combined Nomogram model based on radiomic

and semantic features to preoperatively classify serous and mucinous pathological types

in patients with ovarian cystadenoma.

Methods: A total of 103 patients with pathology-confirmed ovarian cystadenoma who

underwent CT examination were collected from two institutions. All cases divided into

training cohort (N = 73) and external validation cohort (N = 30). The CT semantic

features were identified by two abdominal radiologists. The preprocessed initial CT

images were used for CT radiomic features extraction. The LASSO regression were

applied to identify optimal radiomic features and construct the Radscore. A Nomogram

model was constructed combining the Radscore and the optimal semantic feature. The

model performance was evaluated by ROC analysis, calibration curve and decision curve

analysis (DCA).

Result: Five optimal features were ultimately selected and contributed to the

Radscore construction. Unilocular/multilocular identification was significant difference

from semantic features. The Nomogram model showed a better performance in both

training cohort (AUC = 0.94, 95%CI 0.86–0.98) and external validation cohort (AUC

= 0.92, 95%CI 0.76–0.98). The calibration curve and DCA analysis indicated a better

accuracy of the Nomogram model for classification than either Radscore or the

loculus alone.

Conclusion: The Nomogram model combined radiomic and semantic features could

be used as imaging biomarker for classification of serous and mucinous types of

ovarian cystadenomas.
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INTRODUCTION

Epithelial neoplasm of the ovary accounts for 60% of all
ovary tumors and can be classified as benign, borderline, or
malignant (1). Ovarian cystadenomas are the most common
benign epithelial neoplasms. The two most common types of
cystadenomas are serous (70%) and mucinous (25%), whereas
endometrioid and clear cell cystadenoma are rare (2). The
endometrioid and clear cell cystadenoma have radiological
features similar to those of serous cystadenoma and their
diagnosis is mainly based on histopathological examinations
of surgical samples (3). The radiological presentation of
cystadenoma can be classified as serous or mucinous (2, 4).

Serous cystadenoma do not have mutations in either KRAS or
BRAF andmalignant transformation is rare (3). For patients with
asymptomatic serous cystadenoma, regular follow-ups without
invasive intervention are usually recommended (5). KRAS
mutations of mucinous cystadenoma are present in up to 58% of
cases, and transformation to borderline or malignant carcinoma
is common (6–8). In addition, the mucin within mucinous
cystadenoma could cause peritoneal seeding and appendiceal
mucocele (9, 10). Decisions regarding the treatment of mucinous
cystadenoma need to be made proactively depending on the
histologic classification.

Ultrasound (US), Magnetic resonance imaging (MRI), and

Computed tomography (CT) are widely used in the visualization
and differentiation of ovarian cystadenoma (11, 12). These

unique characteristics can be qualitative descriptors, termed

semantic features, that describe a tumor’s shape and internal
structure that are scored by radiologists to characterize
lesions, such as size, contour, septa, unilocular/multilocular,

FIGURE 1 | Workflow of the study. Workflow can be divided into four parts: image acquisition, ROI segmentation, feature extraction, and model construction.

mural nodules, texture (2, 13, 14). Semantic features are
considered qualitative since they are scored according to
the visual assessment of radiologists, which limits the extent
of the tumor description to what is observable by the
eye (15–17).

Radiomic analysis links quantitative imaging features to
clinical findings by usingmachine-learning and statistics-analysis
methods. With high-throughput computing, innumerable
quantitative features could be extracted from tomographic
images [CT, MR or positron emission tomography (PET)]
(18–20). Previous work (21, 22) has suggested that MR radiomic
features might be affected by factors such as MRI magnetic
strength and scan parameters, resulting in poor reproducibility.
CT scan has a relatively uniform protocol and CT Radiomics
has been used to evaluate grade and prognosis of multiple
types of tumors (18, 19, 23, 24). However, there were sparse
studies addressed radiomic analysis to differentiate the types of
ovarian cystadenoma.

We hypothesized that CT semantic and radiomic
features can identify the associations between the tumor
imaging phenotypes and pathophysiology. We aimed
to develop and validate a combined Nomogram model
that integrates radiomic features derived from contrast-
enhanced CT images with semantic features to improve the
type assessment of ovarian cystadenoma for personalized
precision therapy.

MATERIALS AND METHODS

This retrospective study was approved by the Medical Ethics
Committee of institution I and II and were conducted in
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accordance with relevant guidelines. Informed consent was
waived. The workflow of the analysis is summarized in Figure 1.

Patients
Patients diagnosed with ovarian cystadenoma with pathological
confirmation, who underwent conventional contrast-enhanced
CT imaging of abdominal pelvis between December 2017
and June 2019 were retrospectively collected in two
institutions. Clinical data were collected by gynecologist
including age, lesion location, CA125 level, ascites, pelvic
pain, bloating.

The inclusion criteria were as follows: (1) patient with
histologic diagnosis of ovarian cystadenomas obtained with
surgery in two institutions; (2) preoperative contrast-enhanced
CT scans; (3) no chemotherapy or radiation therapy prior to
CT scans.

Exclusion criteria were as follows: (1) any artifacts within the
scan area that affected the display of lesion; (2) the scan area did
not cover the entire lesion.

CT Examination
All patients underwent an abdominal pelvis contrast-enhanced
CT scan preoperatively. Contrast-enhanced CT scan in
Institution I was performed on a 16-slice CT (GE Healthcare,
Milwaukee, Wisconsin) and institution II was performed on

a 64-slice CT (Philips Healthcare, Cleveland, Ohio). Both
institutions applied the same imaging protocols. The non-ionic
contrast agent Ultravist R© (Bayer Schering Pharma, Berlin,
Germany) was bolus-injected (1.5 mL/kg) with a high-pressure
syringe at 3.0 mL/s. Eighty seconds after contrast medium
injection, venous phase contrast-enhanced CT images were
acquired. The scan parameters: tube voltage of 120 kVp, a
pitch value of 0.99, a matrix of 512 × 512, slice thickness and
interval were both 5mm, and milliamperage was adjusted
automatically according to the patient’s size (ranged between 220
and 400 mA).

TABLE 3 | Reproducibility analysis of significant features.

Significant features Feature class ICC (95%CI)

CSAD,o1 GLCM 0.905 (0.649∼0.975)

Ca90,o7 GLCM 0.862 (0.488∼0.963)

LRHGLEa0,o7 GLRLM 0.968 (0.882∼0.991)

LRHGLEa90,o7 GLRLM 0.923 (0.714∼0.979)

LISAE GLSZM 0.921 (0.705∼0.979)

Loculus CT semantic features 1.000

GLCM, gray level co-occurrence matrix; GLRLM, gray level run-length matrix; GLSZM,

gray level zone size matrix; AD, All Direction; a, angle; o, offset.

TABLE 1 | Clinical characteristics of training and validation cohorts.

Characteristics Training cohorts P-value Validation cohorts P-value

Serous Mucinous Serous Mucinous

(n = 34) (n = 39) (n = 15) (n = 15)

Age (mean ± SD) 47.68 ± 12.76 43.00 ± 10.83 0.451 46.64 ± 15.32 40.92 ± 13.77 0.704

Lesion location (%) 0.370 0.700

Unilateral 22 (65%) 29 (74%) 9 (60%) 11 (73%)

Bilateral 12 (35%) 10 (26%) 6 (40%) 4 (27%)

CA125 4 (12%) 6 (15%) 0.742 1 (7%) 2 (13%) 1.000

Ascites 5 (15%) 4 (10%) 0.564 2 (13%) 1 (7%) 1.000

Pelvic pain 12 (35%) 8 (21%) 0.194 5 (33%) 3 (20%) 0.682

Bloating 13 (38%) 9 (23%) 0.204 6 (40%) 3(20%) 0.427

TABLE 2 | CT semantic features of training and validation cohorts.

CT semantic features Training cohorts P-value Validation cohorts P-value

Serous Mucinous Serous Mucinous

(n = 34) (n = 39) (n = 15) (n = 15)

Size 9.69 ± 4.87 11.52 ± 5. 83 0.250 8.91 ± 5.01 10.81 ± 4.03 0.370

Lobulated contour 7 (21%) 17 (44%) 0.087 4 (27%) 7 (47%) 0.225

Thin wall 34 (100%) 36 (92%) 0.243 15 (100%) 13 (87%) 0.483

Septa 16 (47%) 27 (69%) 0.062 7 (47%) 12 (80%) 0.128

Loculus 0.001* 0.009*

Unilocular 24 (71%) 7 (18%) 10 (67%) 3 (20%)

Multilocular 10 (29%) 32 (82%) 5 (33%) 12 (80%)

*indicates statistical significance.
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Imaging Evaluation
CT semantic features were assessed by two abdominal
radiologists (both with 20 years of experience) in CT images,
who were blind to the pathological and clinical data, including
size, lobulated contour, thin wall, septa, and loculus. The
unilocular was characterized by only one closed loculus or cavity;
multilocular was defined more than or equal to two closed loculi.
Thin wall was identified <3 mm (2).

Image Processing
The contrast-enhanced CT images of enrolled patients were
exported in Digital Imaging and Communication in Medicine
(DICOM) format in two institutional picture archiving and
communication system (PACS). Two radiologists (with 4 years of
experience and 14 years of experience) who were blinded to the
clinical data, evaluated the contrast-enhanced CT images using
ITK-SNAP (Version 3.6) software. Before delineation, gray-level
standardization was applied to reduce the gray-level differences
caused by the imaging procedure. To avoid false heterogeneity
assumption at the lesion edge area, the region of interest (ROI)
was delineated manually layer by layer along the pixels on the
inner edge of the lesion to eventually show a three-dimensional
image of the tumor region (Figure 1). The ROI contours

were superimposed to improve the consistency of tumor
segmentation. All pixel’s gray levels inside the ROI were extracted
for analysis.

Feature Extraction, Radscore Building, and
Correlation
A total of 396 radiomic features from ROIs were extracted
from preprocessed images using the Artificial Intelligence
Kit Version 3.0.1.A (Life sciences, GE Healthcare, US).
Six main categories were involved, including histogram,
morphology, texture parameters, gray level co-occurrence matrix
(GLCM), gray level run-length matrix (GLRLM), and gray
level zone size matrix (GLZSM). Features were calculated
with the following parameters: window width 400, window
level 40, GLCM bin number 50, GLRLM bin number 50,
GLZSM bin number 200. ANOVA-KW (The analysis of
variance and Kruskal-Wallis test) and single-factor logistic
regression analysis were successively carried out for selecting
significant features that were highly correlated. By removing
the redundancy with correlation coefficient more than 0.90,
radiomic features were further optimally elected. In the final
step, the least absolute shrinkage and selection operator
(LASSO) regression method was applied to identify the most

TABLE 4 | Univariate analysis of radiomic features in the training and validation cohorts.

Radiomic features Training cohorts P-value Validation cohorts P-value

Serous

(n = 34)

Mucinous

(n = 39)

Serous

(n = 15)

Mucinous

(n = 15)

CSAD,o1 −0.10 (−0.42, 0.56) −0.47 (−0.62, −0.30) <0.001* 0.22 (−0.36, 0.46) −0.51 (−0.62, −0.02) 0.037*

Ca90,o7 −0.53 (−0.70, −0.31) 0.07 (−0.47, 0.56) <0.001* −0.63 (−0.70, −0.46) 0.10 (−0.51, 2.49) 0.021*

LRHGLEa0,o7 0.16 (−0.26, 1.04) −0.58 (−0.73, −0.35) <0.001* −0.12 (−0.34, 1.19) −0.59 (−0.78, −0.35) 0.026*

LRHGLEa90,o7 0.34 (−0.37, 0.93) −0.57 (−0.79, −0.24) <0.001* 0.40 (−0.40, 0.91) −0.59 (−0.78, 0.26) 0.016*

LISAE −0.32 (−0.77, 0.41) 0.42 (−0.58, 1.14) 0.002* −0.22 (−0.85, 0.58) 0.42 (−0.58, 1.12) 0.062

Radscore −1.57 (−3.33, −0.19) 1.65 (0.16, 3.41) <0.001* −1.44 (−3.16, 0.00) 1.29 (−0.36, 5.58) 0.001*

AD, All Direction; a, angle; o, offset.

*indicates statistical significance.

FIGURE 2 | The scatterplot of Radscore. The scatterplot in the training (A) and validation (B) cohort. (MC. mucinous cystadenoma; SC. serous cystadenoma).
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non-redundant and robust features among the 396 radiomic
features from the training cohort in order to improve the
class separability and optimize the representation of lesion
heterogeneity (Figure 1). The binomial deviance in the logistic
regression model fitting method was used as the criterion to
select the best value of λ (25). The λ value with the least
binomial deviance was used for the final LASSO regression
by conducting 10-fold cross validation method. Meanwhile,
the best value of λ found by 10-fold cross-validation with
a maximum area under the curve (AUC) was used for
constructing the regression model (26, 27). Details of the
procedures for extraction of radiomic features were described in
Supplementary Materials.

Radscore which defined by corresponding non-zero
coefficients of features selected by LASSO, was created
by a linear combination of selected features weighted by
their coefficients. Respective Radscore was calculated for
each patient.

The Pearson correlation analysis was performed to evaluate
the correlation between the loculus and Radscore, the pair-wise
Pearson correlation coefficients were calculated.

Nomogram Building, Calibration, and
External Validation
Both the Radscore and optimal semantic feature were
integrated by a multivariate logistic regression analysis
in the training cohort. Based on this, a Nomogram was
constructed for classification of ovarian cystadenoma.
The constructed Nomogram model was validated by
the external validation cohort using the same process
of capability assessment with the ROC analysis and
calibration curve. Decision curve analysis (DCA) was
carried out to evaluate the clinical value of the three
models (Radscore, loculus, and Nomogram model) on
the basis of calculating the net benefit for patients at each
threshold probability.

Statistical Analysis
Statistical analysis was conducted by SPSS software (Version
19.0) and R software (Version 3.3.2). Variables of a normal
distribution were shown as mean ± SD, and variables
of a skew distribution were shown as median (Quartile).
Statistical group comparisons of data were analyzed by χ2

tests and Wilcoxon using rank-sum. P < 0.05 were considered
statistically significant. The agreement between two radiologists
was evaluated using interclass correlation coefficient (ICC)
analysis, which was defined as good consistency between
0.75 and 1, fair consistency between 0.4 and 0.75, and
poor under 0.4. The correlation and collinearity of radiomic
features were evaluated using VIF function. The loculus,
Radscore, and Nomogram model were respectively subjected
to ROC analysis, by using area under the curve (AUC),
sensitivity, specificity, and accuracy to evaluate the classification
efficacy. The comparison of ROC curves was performed by
Delong’s test.

RESULTS

Patients Characteristics and Conventional
CT Findings
A total of 103 cases with pathologically confirmed
ovarian cystadenoma were selected in the final cohort.
The 103 cases were divided into a training cohort (N
= 73) and a validation cohort (N = 30) (Figure 1).
The serous and mucinous cystadenoma had an even
distribution in patient characteristics. No significant
difference was found in ovarian cystadenoma clinical
characteristics (age, location of lesion, the tumor marker
CA125 level, ascites, pelvic pain, bloating) between two
groups (Table 1).

Conventional CT semantic features including
lesion size, lobulated contour, thin-wall, septa, loculus
(Unilocular/multilocular). Size, lobulated contour, thin-
wall, septa were no significant difference between two
groups, However, loculus (Unilocular/multilocular)
identification was significant difference in both
cohorts (p < 0.05).The detailed distribution of CT
semantic features in the two groups were summarized
in Table 2.

Reproducibility Analysis
Based on the result of reproducibility analysis by two radiologists,
351 out of 396 (88.6%) radiomic features and all the
semantic features had good consistency (ICC ≥ 0.75). The
number of features with fair consistency (0.75 > ICC ≥

0.4) and poor consistency (ICC < 0.4) were 25 (6.3%) and
20 (5.1%), respectively. Table 3 showed the ICC value of
significant features.

FIGURE 3 | Correlation between the Loculus and the Radscore based on

Pearson correlation analysis. The mean absolute correlation coefficient was

0.40.
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Radscore Model Building, Correlation, and
Validation
A total of 396 radiomic features were extracted using
AK software. A significance level of 0.05 was set as
the threshold. After dimensionality reduction, which
included ANOVA and KW, univariate logistic regression
(143 features), remove the redundancy with correlation
coefficient more than 0.90 (28 features) and after the
LASSO algorithm with a value of λ = 0.001445 and
log (λ) = −2.84, five significant radiomic features
were identified. The complete details were shown in
Supplementary Materials.

To demonstrate the effectiveness of radiomic features model
at the individual scale, the quantitative values of radiomic
features for each patient regarding the classification of serous

and mucinous cystadenoma groups were shown in Table 4,
which included ClusterShade_AllDirection_offset1 (CSAD,o1),

Correlation_angle90_offset7 (Ca90,o7), Long Run High Gray

Level Emphasis_angle0 _offset7 (LRHGLEa0,o7), Long Run High
Gray Level Emphasis_angle90_offset7 (LRHGLEa90,o7), and Low
Intensity Small Area Emphasis (LISAE). A Radscore model was
further constructed based on five features with respective non-
zero coefficients selected through LASSO regression method.
There were no collinearity between the five features after being

FIGURE 4 | Nomogram, ROC and calibration curves of training cohort. Nomogram (A), To draw an upward vertical line to the “Points” bar to calculate points. Based

on the sum, draw a downward vertical line from the “Total Points” line to calculate the probability of classification of ovarian cystadenoma for each patient. For

instance, Type serous cystadenomas in a 49-years-old woman with the Radscore value of−1 calculated from the formula, manifesting uniloculus, the corresponding

value on the “Points” bar were 62 and 0, respectively. The probability of classification of serous cystadenomas was 88% by drawing a downward vertical line from the

value of 62 on “Total Points” bar. ROC curves for the Nomogram, Radscore, and Loculus model (B) corresponding calibration curves based on the Nomogram model

(C) in the training cohort.
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TABLE 5 | Performance of the Loculus, Radscore, and Nomogram models.

Model Training cohort Validation cohort

AUC (95%CI) SEN SPEC ACC AUC (95%CI) SEN SPEC ACC

Radscore 0.88 (0.79–0.95) 0.94 0.68 0.82 0.84 (0.67–0.95) 0.73 0.87 0.80

Loculus 0.76 (0.65–0.85) 0.82 0.71 0.77 0.73 (0.54–0.88) 0.80 0.87 0.73

Nomogram 0.94 (0.86–0.98) 0.90 0.88 0.89 0.92 (0.76–0.98) 0.73 1.00 0.87

AUC, area under the ROC curve; SEN, sensitivity; SPEC, specificity; ACC, accuracy; AD, All Direction; a, angle; o, offset.

FIGURE 5 | ROC and Calibration curve of validation cohort. Performance of the Nomogram, Radscore and Loculus model on external validation cohort. ROC curve

for the three model with an AUC of 0.92, 0.84, and 0.73, respectively (A). Calibration curve of the Nomogram model in the validation cohort (B).

verified by VIF function. The complete details were shown in
Supplementary Materials.

Radscore = −0.009− 0.864× CSAD,o1 + 1.417× Ca90,o7

−2.259× LRHGLEa0,o7 + 0.1× LRHGLEa90,o7

+0.799× LISAE. (1)

The Radscore had the AUC of the model in training and
validation cohorts were 0.88 and 0.84, respectively, which showed
higher value of mucinous cystadenoma than serous cystadenoma
in both two cohorts (Figure 2).

The pair-wise Pearson correlative analysis revealed that the
Radscore was moderate correlated to loculus feature (Figure 3).

Nomogram Building and Validation
The Nomogram based on both Radscore and the loculus was
constructed to visualize the results of multivariable logistic
regression analysis for classification of ovarian cystadenoma
(Figure 4A). Nomogram = −0.010 + 0.075 × Radscore +

0.346× loculus.
The total points accumulated by the various variables

correspond to the predicted probability for a patient (28). The
complete details were shown in Figure 4A.

Compared to the Radscore and the loculus alone, the
Nomogram model yielded a better performance in the training
cohort with a larger AUC value (Table 5 and Figure 4B).The
calibration curves in the training cohort demonstrated a high
accuracy of the model in the classification capability (Figure 4C).

The performance of the Nomogram model was validated
using the external dataset collected from the institution II. The
Nomogram yielded a favorable AUC value in the validation
cohort (Figure 5A). The calibration curves of the proposed
Nomogram model based on the validation cohort suggested a
favorable classification performance (Figure 5B). Specifically, the
Nomogram showed a significant improvement compared to the
Radscore and loculus alone in training cohort (p < 0.05). The
complete details were shown in Supplementary Materials.

DCA was conducted to assess the clinical utility of the three
models (Figure 6). The Nomogram demonstrated a larger net
benefit than did the Radscore and loculus alone, indicating that
the Nomogram had the best clinical utility for classification of
ovarian cystadenoma in the validation cohort.

DISCUSSION

In this study, we established and validated a Nomogram
model for classification of ovarian cystadenoma, which
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incorporated five robust radiomic features extracted from
contrast-enhanced CT and the semantic features. The
Nomogram model achieved a better performance in both
training cohort and validation cohort with a larger AUC
value than the radiomic model or loculus alone, suggesting
the reliability of the improved model for classification of
ovarian cystadenoma.

Previous studies have summarized the typical semantic
features of serous cystadenoma were often seen as unilocular,
thin-walled cystic masses with simple fluid (3). Mucinous
cystadenoma were usually seen as multilocular that may
be similar or of widely varying size, with liquids of various
viscosities (2, 4).Contrast-enhanced CT imaging can differentiate
serous from mucinous cystadenoma to a certain extent
(3). In this study, the loculus was significant difference
between the two groups, multilocular semantic feature might
be associated with proteinaceous cellular debris within
the fluid, abnormal vasculature, or papillary projections.
However, CT semantic features were defined by experienced
radiologists, which were still a subjective assessment, and large
amounts of quantitative imaging information representing
underlying histologic characteristics could not be acquired by
visual inspection.

In this study, five optimal quantitative radiomic features
were extracted: CSAD,o1; Ca90,o7; LRHGLEa0,o7; LRHGLEa90,o7;
and LISAE. ClusterShade and Correlation are both the gray
level co-occurrence matrix (GLCM) parameters. ClusterShade
quantitatively analyzes the similarity between objects in the same
cluster. Correlation is a value showing the linear dependency of
gray level values to their respective voxels in the GLCM (29).
Our results suggested that higher (CSAD,o1) values and lower
(Ca90,o7) values indicated higher heterogeneity of the lesion. Long
Run High Gray Level Emphasis (LRHGLE), which measures
image texture smoothness quantitatively, is a parameter for
the Gray level run-length matrix (GLRLM) (30). In this study,
lower LRHGLEa0,o7 and LRHGLEa90,o7 values indicating higher
heterogeneity of the lesion. LISAE values which measure the
uniformity of image texture, is a parameter for the Gray level
zone size matrix (GLSZM) (31). In this study, higher LISAE
values indicating more heterogeneous textures of the lesion.
The Radscore of mucinous group was higher value than that
of serous group in both two cohorts, which suggested that the
mucinous cystadenoma had greater heterogeneity, as evidenced
by the uneven distribution of greyscales and unorganized local
texture on the CT images. The Radscore had the AUC of
the model in training and validation cohorts were 0.88 and
0.84, respectively.

The radiomic features represented underlying histologic
characteristics could not be acquired by visual inspection,
meanwhile the loculus of semantic feature represented the
morphology of intratumor which could not be extracted
by radiomic analysis. Due to the radiomic and semantic
features complement each other, the ROC, DCA and
calibration analysis results showed the Nomogram model
to be more effective and reliable than the radiomic model or
semantic features alone. The classification performance of the

FIGURE 6 | Decision curve analysis (DCA) for the Nomogram model in

validation cohort. Compared to other models, the combined Nomogram

model, showing the highest area under the curve, is the optimal decision

making for maximal net benefit in Classification of Ovarian Cystadenomas.

Nomogram model was validated using an external cohort,
demonstrating a strong confirmation of reproducibility by a
satisfactory AUC of 0.92. The Nomogram incorporates the
five selected radiomic and semantic features which might offer
a clinically translatable paradigm easy to implement in the
clinical setting.

Although the two radiologists who worked on radiomic
analysis differed significantly in their years of experience, the
contouring results were relatively consistent (ICC > 0.75). The
advantage of a fully quantitative radiomic assessment method is
that a wealth of experience in imaging diagnosis is not required.
Even a junior physician can accurately delineate tumor at the
appropriate window level, and preliminarily classify the type of
ovarian cystadenoma.

This study has several limitations. First, we used manual
segmentation when delineating the lesion, and therefore we
could not completely avoid the interference caused by the
partial volume effect. Second, this was a retrospective study
with a relatively small dataset in external validation cohort,
and further prospective studies are expected to verify the
conclusions. Finally, Because of the low incidence of other
types of ovarian cystadenomas, they were not included in
this study.

CONCLUSION

The combined Nomogram integrated radiomic and semantic
features can be a reliable and effective model for classification
of ovarian cystadenoma, which could serve as a potential
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marker to classify the type of ovarian cystadenoma and facilitate
precision treatment.
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Purpose: To investigate the associations of MRI radiological features and prognosis of

glioma with the status of isocitrate dehydrogenase 1 (IDH1).

Material and Methods: A total of 116 patients with gliomas were retrospectively

recruited from January 2013 to December 2015. All patients were undergone routine

MRI (T1WI, T2WI, T2-FLAIR) scanning and contrast-enhanced MRI T1WI before surgery.

The following imaging features were included: tumor location, diameter, the pattern of

growth, boundary, the degree of enhancement, mass effect, edema, cross the middle

line, under the ependyma. χ2 and Fisher’s exact probability tests were used to determine

the significance of associations between MRI features and IDH1 mutation of glioma. The

survival distributions were estimated using Kaplan-Meier compared by Log-rank test.

Univariate and multivariate analyses were performed using Cox regression.

Results: Gliomas with IDH1 mutant were significantly more likely to exhibit

homogeneous signal intensity (p = 0.009) on non-contrast MRI protocols and less

contrast enhancement (p= 0.000) on contrast enhanced T1WI. IDH1mutant type glioma

was more inclined to cross the midline to invade contralateral hemisphere (p = 0.001).

The overall survival between IDH1 mutated and wild type glioma were significantly

different (p= 0.000), age≤ 40 (p= 0.003), KPS scores> 80 before operation (p= 0.000)

and low grade glioma (p = 0.000).

Conclusions: Our results suggest IDH1 mutant in gliomas is more likely to exhibit

homogeneous signal intensity, less contrast enhancement and more inclined to cross

the midline. Patients with IDH1 mutated, age ≤ 40, KPS scores > 80 before operation

and low-grade glioma may have a longer life and better prognosis.

Keywords: glioma, IDH1 mutation, MRI features, prognosis, overall survival
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INTRODUCTION

Glioma is the most common intracranial tumor in the central
nervous system (CNS). According to the Central Brain Tumor
Registry of the United States (CBTRUS), the proportion of
gliomas in CNS tumors is about 27%, accounting for 80% in
the primary malignant tumors (1). High-grade glioma is more
malignant which has a more aggressive growth pattern than low
grade glioma. This leads to unsatisfactory results after treatment
which consists of radiotherapy, chemotherapy and combination
therapy. More recent work suggests that we could differentiate
tumors of the same WHO grade and morphologic type by
using of molecular data to realize the goal of personalized
medicine (2).

The 2016 WHO Classification criteria which combined
histology with molecular phenotype, such as IDH1 (isocitrate
dehydrogenase-1), 1p/19q, BRAF, ATRX (3). Several molecular
biomarkers, including IDH1 (4), MGMT (5), epidermal growth
factor receptor [EGFR]), may be associated with overall survival
of patients with GBM (6). Grant et al. (7) noted MGMT
promoter methylation, 1p/19q codeletion, and IDH1 mutations
are useful molecular biomarkers for characterizing status of
glioma. IDH1/2 mutation was first reported by Parsons et al.
(8). IDH1/2 is a key enzyme in the process of tricarboxylic
acid cyclic metabolism. IDH1/2 are mainly found in II, III
astrocytoma and oligodendroglioma, but rarely in primary
glioblastoma or pilocytic astrocytoma (9). In addition, IDH1
has the mutation of homologous gene, IDH2 mutation was also
found in glioma. However, IDH1 mutation is more common
than IDH2 mutation (10). In previous studies the survival
period of IDH1 mutant was significantly different from that
of the IDH1 wild type (11). Different phenotypes of genes
may be related to different portions of glioma. IDH1 wild type
glioma was mainly found in GBM, but it could be found in
the temporal lobe and had a large volume in WHO II glioma.
The correlation between MRI features and gene phenotypes
in oligodendroglioma, oligodendrocytoma and GBM have been
reported (12–15). There was a correlation between MRI features
and expression of gene phenotype of glioma. The purpose of
this study is to investigate the relationships between IDH1
mutation and MRI features as well as prognosis in patients
with glioma.

MATERIALS AND METHODS

Subjects
The institutional ethics committees of our institution approved
the study and granted informed consent. From January 2013 to
December 2015 a total of 135 cases of glioma were diagnosed
by pathology in The Affiliated Hospital of Guizhou Medical
University. All patients underwent routine MRI (T1WI, T2WI,
T2-FLAIR) and contrast enhanced MRI before neurosurgery.
Imaging features of tumor include: location, diameter, pattern of
growth, boundary, degree of enhancement, mass effect, edema,
cross the middle-line, under the ependyma.

Inclusion criteria: (1) The clinical and imaging data
are complete and reliable; (2) No other adjuvant therapy

such as radiotherapy or chemotherapy was performed before
operation; (3) It is diagnosed glioma by histopathology after
surgery; (4) Important organs (heart, liver, kidney, etc.)
function basically normal; (5) Complete data were obtained
for follow-up. Exclusion criteria: (1) The patient had a
history of other malignancies; (2) The patient had related
post-operative complications, such as intracranial hematoma,
intracranial infection; (3) Patients who died from other diseases.
According to the inclusion and exclusion criteria, totally
116 patients were recruited in this study and associated
data of all patients was collected. Among them, 55 males
and 61 females had been included. The range of age was
from 18 to 86 years old, including 56 low-grade and
60 high-grade.

IDH1 Mutation Detection
PCR (nested methylation-specific PCR) methods were used
to detect the status of IDH1 mutation. There were 62 IDH1
mutant and 54 IDH1 wild type in glioma. The status of
IDH1 mutation was detected by direct sequencing and
PCR. IDH2 mutations were not detected. The sequence

TABLE 1 | Correlation between IDH1 mutation and MRI features of glioma.

MRI features All P-value Low

grade

P-value High

grade

P-value

Pattern of growth

Unilateral 61/113 0.902 51/55 0.929* 10/58 0.692*

Bilateral 1/3 1/1 0/2

Tumor margins

Sharp 13/25 0.869 13/14 0.549 0/11 0.2326

Indistinct 49/91 39/42 10/49

Signal intensity

Homogeneous 46/20 0.009 16/17 0.747 0/3 0.573*

Heterogeneous 16/96 36/39 10/57

Contrast enhancement

Absent or slight 48/57 0.000 46/50 0.627* 2/7 0.719

Significant 14/59 6/6 8/53

Mass effect

Absent or moderate 24/41 0.416 23/26 0.504 1/15 0.424

Severe 38/75 29/30 9/45

Edema

Absent or moderate 27/47 0.476 26/28 0.604 1/19 0.215

Severe 35/69 26/28 9/41

Cross the midline

Yes 4/8 0.001 3/3 0.797* 1/5 1.000*

No 58/108 49/53 9/55

Under the ependyma

Yes 33/55 0.115 23/25 0.765 10/30 0.001

No 29/61 29/31 0/30

Diameter of tumor

≥5 cm 24/46 0.978 18/19 0.874 6/27 0.486

<5 cm 38/70 34/37 4/33

*Fisher’s exact probability test.
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of sequencing was compared with the original sequence
of IDH1 to analyze whether the specific base position was
mutated. According to the operation manual of EZNA
Tissue DNA Kit (OMEGA, America), DNA was extracted
from the tumor tissue. DNA purity and content were
extracted by spectrophotometer. Primers were designed
according to IDH1 genome sequence, upstream primer
sequence: 5′-CGGTCTTCAGAGAAGCCATT-3, downstream
primer sequences: 5′-GCAAAATCACATTATTGCCAAC-3.
Annealing temperature is 60◦C, the length of PCR product
was 129bp.

Protocols
All brain MRI examinations were performed on Philips 3.0T
MRI Scanner, using 8-channel SENSE head coil. Each patient
underwent routineMRI and enhancedMRI before neurosurgery,
including axial T1-weighted imaging (T1WI), sagittal T2
weighted imaging (T2WI), axial T2-weighted fluid attenuated
inversion recovery (T2-FLAIR) and contrast-enhanced T1-
weighted imaging (T1WI+C). Scanning parameters: (1) Axial
T1WI: TR 2,270ms, TE 20ms, FOV 196mm × 196mm,
matrix: 288 × 190, NEX: 2, slice thickness:6mm, slice
gap:1mm. (2) Axial and sagittal T2WI: TR 2,500ms, TE
90ms, FOV 230mm × 230mm, matrix 420 × 306, NEX:2,
slice thickness:6mm, slice gap:1mm. (3) Axial T2-FLAIR:TR
8,000ms, TE120ms, FOV 230mm × 230mm, matrix: 304
× 216, NEX: 2, slice thickness: 6mm, slice gap: 1mm.

(4) T1WI+C: TR 200ms, TE 2ms, FOV 230mm × 230mm,
matrix 256 × 256, NEX: 2, slice thickness: 6mm, slice
gap:1mm. The enhanced scan was injected with Gadopentetate
Dimeglumine (Gd-DTPA) with a dose of 0.1 ml/kg body weight
and injection rate of 3 ml/s, the high-pressure injector was
not used.

Clinical Follow-Up
A retrospective analysis of 132 cases was made, but 16 cases were
excluded by inclusion and exclusion criteria. The ways of follow-
up consist of consulting inpatient medical records, telephone call
inquiry and questionnaire. The content of follow-up includes
post-operative survival (death or survival): if the patient survived,
his/her physical conditions post-operative radiotherapy and
chemotherapy was recorded; if the patient died, the exact cause
of death was asked for.

Statistical Analysis
The data analysis was performed using SPSS19.0 package. χ2

test and Fisher’s exact probability test were used to analyze the
correlation between MRI features of glioma and IDH1 mutation.
The survival distributions were estimated using Kaplan-Meier
and compared by Log-rank test. Univariate and multivariate
regression analyses were performed using Cox proportional
hazards regression model. P < 0.05 was considered to indicate
statistically significant.

FIGURE 1 | IDH1 mutated glioma (low grade): (A) T1WI (B) T2WI (C) FLAIR (D) T1+C (axial) (E) T1+C (sagittal) (F) T1+C (coronal). The lesion had a clear border,

homogeneous signal intensities on T1WI and T2WI, as well as on FLAIR. The lesion presented mild homogeneous enhancement on post-contrast T1WI.
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RESULTS

Correlation Between IDH1 Mutation and
MRI Features of Glioma (Table 1,
Figures 1, 2)
This study included 116 cases of glioma. Among them,
61 cases of low-grade glioma, 55 cases of high-grade

glioma, 62 cases of IDH1 mutant glioma (Figure 1) and
54 cases of IDH1 wild-type glioma (Figure 2). IDH1
mutant glioma was significantly more likely to exhibit
homogeneous signal intensity (p = 0.009) and less
contrast enhancement (p = 0.000) on MRI. IDH1 mutant
glioma was more likely to cross the midline to the other
hemisphere (p= 0.001).

FIGURE 2 | IDH1 wild-type glioma (low grade): (A) T1WI (B) T2WI (C) FLAIR (D) T1+C (axial) (E) T1+C (sagittal) (F) T1+C (coronal). The lesion had unclear border,

heterogeneous signal intensities on T1WI, T2WI, and FLAIR. The lesion presented markedly heterogeneous enhancement on post-contrast T1WI.

TABLE 2 | Factors affecting the prognosis of glioma.

Factor Cases (%) Cox univariate analysis Cox multivariate analysis

HR (95% CI) Pa-value HR (95% CI) Pb-value

IDH1

Wild-type 54 (46.6) Ref Ref

Mutant-type 62 (53.4) 0.205 (0.1, 0.419) 0.000 0.494 (0.126, 1.942) 0.313

Age

>40 37 (31.9) Ref Ref

≤40 79 (68.1) 3.67 (1.569, 8.586) 0.003 1.546 (0.24, 9.974) 0.647

Gender

women 61(52.6) Ref – –

men 55 (47.4) 0.812 (0.475, 1.385) 0.444 – –

KPS score

≥80 41 (35.3) Ref Ref

<80 50 (43.1) 5.554 (2.495, 12.361) 0.000 7.579 (2.802, 20.502) 0.000

WHO grade

Low grade 56 (48.3) Ref Ref

High grade 60 (51.7) 7.98 (3.175, 20.058) 0.000 4.2 (0.481, 36.656) 0.194
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FIGURE 3 | Survival curves associated with preoperative KPS scores, age and grade of glioma. (A) The overall survival of the preoperative KPS score < 80 was

significantly longer than the KPS score < 80; (B) Comparing the age was < 40 with the age was > 40 years old, the difference was statistically significant. The former

has a longer life; (C) The overall survival of low-grade glioma and overall survival of high-grade glioma were compared. The low-grade glioma had a longer life.

Relationship Between IDH1 Mutation and
Prognosis of Glioma (Table 2, Figure 3)
Survival distributions were estimated using the Kaplan-Meier
method. Log-rank test was used for correlation analysis. The
overall survival of patients with pre-operative KPS score > 80,
age ≤ 40 were significantly longer than patients with KPS < 80,
age> 40 (Figure 4). The overall survival of low grade glioma was
significantly longer than overall survival of high grade glioma.

Difference Between OS of IDH1 Mutant
Glioma and IDH1 Wild Type Glioma
(Figure 4)
The difference between the OS of IDH1 mutant glioma and
IDH1 wild type glioma were significant, which was statistically

significant. Hazard ratio (HR) was 0.205, 95% Confidence

interval (CI) was (0.1, 0.049). Compared with the OS of patients

>40 and ≤ 40 were significantly different, HR was 3.67, and

95% CI was (0.1, 0.049). The overall survival of the preoperative

KPS score > 80 were significantly different from that of KPS

score < 80. HR was 5.554, 95% CI was (2.495, 12.361). The

overall survival of low-grade glioma and overall survival of high-
grade glioma were compared, the difference was statistically

significant. Cox proportional risk regression multiple factor

analysis. The overall survival of the preoperative KPS score > 80

were significantly different from that of KPS score < 80. HR

was 7.759, 95% CI was (2.802, 20.502). The above results were

consistent with the Cox proportional risk regression single

factor analysis.
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FIGURE 4 | Survival curves associated with IDH1 mutation. The overall survival

of IDH1 mutant glioma was significantly longer than IDH1 wild-type glioma.

DISCUSSION

We found IDH1 mutant glioma were inclined to cross the
midline to the other hemisphere and were more likely to
exhibit homogeneous signal intensity as well as less contrast
enhancement. The findings are compatible with IDH1 wild
type glioma being more aggressive than IDH1 mutant type.
Although these features were not significantly different between
low and high grade subgroups, which may be related to the small
sample size of this study. A previous study (16) reported IDH1
mutations could reduce the pericyte coverage of microvessels in
astrocytic tumors by inhibiting the expression of angiogenesis
factors. Feyissa et al. (17) found glioma-related preoperative
seizures and post-operative seizure control may be associated
with IDH1 mutation but no other characteristic findings such as
location, grade or histopathology. Metellus et al. (18) found that a
correlation between the location of the tumor and the phenotype
in oligodendroglioma, oligocytoma and GBM. Yu et al. (19)
found an association between the anatomical location and IDH1
mutation status in low grade gliomas. However, the mechanism
of IDH1 mutation and the significance of prognosis in tumor
growth were still unclear. The larger sample is warranted to
investigate the potentially possible mechanism.

This study found the overall survival period of IDH1 mutated
glioma was significantly different from that of IDH1 wild-type
glioma. It was reported high grade gliomas with IDH1 mutations
had a longer survival period compared to those with IDH1 wild
type (20, 21). Van den Bent et al. (22) found there was no
relationship between the prognosis of IDH1 mutation glioma
and chemotherapy drug administration in a randomized study.
In another retrospective study, there was no correlation between
prognosis of IDH1 mutant and chemotherapeutic drugs for
gliomas. All the above studies have shown the prognosis of IDH1
mutant glioma was better because of its lower grade biological
behavior, rather than the treatment effect of chemotherapy itself.

Previous studies have shown age is an independent factor in
the prognosis of glioma. Most of the literatures has reported the
duration of survival of glioma patients was negatively correlated
with age (23). The reason for the prognosis of patients may
be that with the increase of age, the metabolism, regeneration,
compensatory and immune function of the middle-aged and
elderly patients are worse than those of younger patients with
glioma. Preoperative KPS score is an evaluation index for
patients’ overall functional status. Zinn et al. (24) believed that
patients with KPS score above 70 or 80 could have a better
prognosis (25). The higher the preoperative KPS score, the
better the functional status of patients, the better the tolerance
to surgery, radiotherapy and chemotherapy. In addition, Goyal
and others found qualitative diffusion signature is an adjunct
to contrast enhanced MRI, which may has the widest potential
impact on clinical care for patients with recurrent high-grade
gliomas (26). Bangalore et al. found that high IDH classification
accuracy using only T2-weighted MR images by voxelwise
deep-learning IDH classification network which showed a high
accuracy of 97% in predicting IDHmutant status in gliomas. This
represents an important milestone toward clinical translation.

This study has some potential limitations for its single center
study. The relatively small sample number may lead to the
weakness of statistical significance. It ought to group gliomas
into different grades to investigate the relationship between IDH1
mutation and prognosis. This study is a retrospective study; it is
difficult to maintain consistency of specific therapeutic regimens.
Due to the lack of IDH2 results, the positive of the study may be
reduced. In addition, We did not test other markers in this study.
we did not have any other multi-model MRI scans. In the furture
we will do Multi-model MRI scans to investigate mechanism and
prognosis in glioma.

CONCLUSIONS

Gliomas with IDH1 mutations are more likely to exhibit
homogeneous signal intensity, less contrast enhancement and
are more likely to cross the midline to the other hemisphere.
Patients with IDH1 mutated, age ≤ 40, KPS scores > 80 before
operation and low-grade glioma may have a longer life and a
better prognosis.
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Objectives: To develop and validate a predictive model for discriminating clinically

significant prostate cancer (csPCa) from clinically insignificant prostate cancer (ciPCa).

Methods: This retrospective study was performed with 159 consecutively enrolled

pathologically confirmed PCa patients from two medical centers. The dataset was

allocated to a training group (n = 54) and an internal validation group (n = 22) from

one center along with an external independent validation group (n = 83) from another

center. A total of 1,188 radiomic features were extracted from T2WI, diffusion-weighted

imaging (DWI), and apparent diffusion coefficient (ADC) images derived fromDWI for each

patient. Multivariable logistic regression analysis was performed to develop the model,

incorporating the radiomic signature, ADC value, and independent clinical risk factors.

This was presented using a radiomic nomogram. The receiver operating characteristic

(ROC) curve was utilized to assess the predictive efficacy of the radiomic nomogram in

both the training and validation groups. The decision curve analysis was used to evaluate

which model achieved the most net benefit.

Results: The radiomic signature, which was made up of 10 selected features, was

significantly associated with csPCa (P < 0.001 for both training and internal validation

groups). The area under the curve (AUC) values of discriminating csPCa for the radiomics

signature were 0.95 (training group), 0.86 (internal validation group), and 0.81 (external

validation group). Multivariate logistic analysis identified the radiomic signature and

ADC value as independent parameters of predicting csPCa. Then, the combination

nomogram incorporating the radiomic signature and ADC value demonstrated a

favorable classification capability with the AUC of 0.95 (training group), 0.93 (internal
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validation group), and 0.84 (external validation group). Appreciable clinical utility of this

model was illustrated using the decision curve analysis for the nomogram.

Conclusions: The nomogram, incorporating radiomic signature and ADC value,

provided an individualized, potential approach for discriminating csPCa from ciPCa.

Keywords: prostate cancer, magnetic resonance imaging, radiomic, nomogram, prediction

INTRODUCTION

Prostate cancer (PCa) is the second most frequently diagnosed
cancer in men worldwide (1). The serum prostate-specific
antigen (PSA) and digital rectal examination are the most widely
used in the PCa screenings in clinical practice (2). If a patient
presents with an elevated PSA, transrectal ultrasound (TRUS)-
guided biopsy is the conventional diagnostic approach. However,
about over 30% of men undergo side effects with TRUS-guided
biopsy, including pain, bleeding infection, and hematuria, and
∼1% need to be hospitalized for observation (3). Furthermore,
some patients experience unnecessary biopsies as clinically
insignificant PCa (ciPCa), defined as a Gleason score (GS) <3+4
or amaximum cancer core length of<6mm,may be detected (4).
The clinically significant PCa (csPCa) is defined as a GS≥ 3+4 in
at least one biopsy core pathology (4–6). The principal treatment
of ciPCa is active surveillance rather than radical prostatectomy,
which is routine treatment for localized csPCa. In addition, the
detection of ciPCa by transrectal ultrasound-guided biopsy may
cause overtreatment in a few patients.

Multi-parametric MRI (mp-MRI) containing anatomical
sequences (T1- and T2-weighted imaging; T1WI and T2WI)
and functional sequences [diffusion-weighted imaging (DWI)
and dynamic contrast-enhanced (DCE)] has been regarded as
an advanced imaging pattern in the identification of PCa (7, 8).
Mp-MRI plays an important role in decreasing the overdiagnosis
and overtreatment for ciPCa, arranging target biopsy, tumor
stage, or treatment for csPCa patients. However, its diagnostic
performance and evaluation capacity varies based on each
individual radiologist. The overall inter-reader consistency of
multiple reports ranges from poor (0.5) to moderate (0.71),
mainly depending on the experience and learning level of
radiologists (9, 10).

Radiomic methods are regarded as a noninvasive, efficient,
and reliable method for adopting advanced image-processing
techniques to extract a variety of quantitative features from
imaging data (11). Radiomics has been mainly used in
oncology, for instance, lung cancer, brain astrocytoma, and
breast carcinoma, wherein radiomics is utilized to identify tumor
stage, curative effect, prognosis assessment, and genetic analysis
(12–14). Radiomics has also been extended to PCa, mainly
focusing on PCa diagnosis and differentiation (15–18). Min et al.
investigated an mp-MRI-based radiomic signature for predicting
patients with csPCa (18). The results showed that the radiomic
signature had a potential to discriminate csPCa from ciPCa,
wherein the area under the curve (AUC) was 0.823 in the
validation cohort. However, the diagnostic efficacy of an mp-
MRI-based radiomic nomogram in the identification of csPCa

has not been completely determined. The use of nomograms
has been widely accepted as a reliable method for determining
quantitative risk factors for clinical events (19). In this study,
we hypothesized that a radiomic nomogram incorporating an
mp-MRI-based radiomic signature and independent clinical risk
factors can non-invasively discriminate csPCa from ciPCa in
patients with suspected PCa. Therefore, we sought to develop and
validate a radiomic nomogram that would incorporate a radiomic
signature and clinical risk factors for the pre-biopsy prediction
of csPCa.

MATERIALS AND METHODS

Patient Cohort
This retrospective study was approved by the Institutional
Ethical Committee of the Guangxing Hospital Affiliated to
Zhejiang Chinese Medical University and the First Affiliated
Hospital of Zhejiang Chinese Medical University, which waived
the requirement for written informed consent. The study
consecutively enrolled 159 patients with biopsy pathology-
proven PCa who received mp-MRI examination from January
2016 to February 2020. All patients were scanned on the
same model scanner and did not receive TRUS-guided biopsy
prior to MRI examination. Exclusion criteria were (1) prior
therapy history for PCa patients including antihormonal
therapy, radiation, cryotherapy, or prostatectomy; (2) incomplete
information or severe imaging artifacts of the MRI images; (3)
lesion diameter <5mm on mp-MRI images; and (4) lack of
serum PSA level (Figure 1). The enrolled patients were randomly
assigned to a training group (n = 54) and an internal validation
group (n = 22) from the Guangxing Hospital Affiliated to
Zhejiang Chinese Medical University along with an external
independent validation group (n = 83) from the First Affiliated
Hospital of Zhejiang Chinese Medical University another center.

Baseline clinical features were derived from medical records,
including age and PSA level with the cutoff value of 10 ng/ml.
The interval time between MRI and PSA testing was less than
1 month.

MRI Examination
All recruited patients were scanned using the same model 3.0 T
MRI (Discovery 750W 3.0T, GE Healthcare, Milwaukee, USA)
with a 32-channel pelvic coil. The protocol included transverse
T1WI; transverse, sagittal, and coronal T2WI; transverse DWI;
apparent diffusion coefficient (ADC) imaging derived fromDWI;
and dynamic contrast-enhanced. DWI was applied with a b
value of 0 s/mm2, 1000 s/mm2. The details of the imaging
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FIGURE 1 | Diagram for inclusion of patients into the study. csPCa, clinically significant prostate cancer; ciPCa, clinically insignificant prostate cancer; mp-MRI,

multi-parametric MRI; PSA, prostate-specific antigen.

sequence parameters of two medical centers are summarized in
Supplementary Table 1.

Lesion Segmentation on MR Images
Only T2WI, DWI, and ADC images were incorporated in
this study because of the availability and emphasis in Prostate
Imaging and Reporting and Data System version 2(PI-RADS
v2) (7). The software package ITK-SNAP (version 3.4.0; www.
itksnap.org) was used for manual segmentation of PCa lesion.
The region of interest (ROI) was delineated along the boundaries
of the lesion layer by layer in reference to the biopsy’s pathological
results. Given the importance of heterogeneity analysis, ROI was
designed to contain regions of calcification, necrosis, bleeding,

and cystic tissue, not including structures such as the urethra,
seminal vesicle, and other normal anatomical structures. For
differing pathological GSs, the highest biopsy GS regions were
uniquely selected for delineation. If all lesions demonstrated the
same GS onmulti-focal PCa, the ROIs were depicted at each level
manually until all lesions were incorporated.

A radiologist (W.C. with 3 years of experience of abdominal
MRI) who was blind to the GS of each PCa lesion measured
ADC value. The ROIs were placed to comprise as much of
the inner aspect of the lesion as possible without encompassing
surrounding normal structure on the ADC map. There was
between one and three ROIs of each patient with a mean area
of 40 mm2 (range, 10–80 mm2). Another abdomen radiologist
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(F.C. with 21 years of experience of abdominal MRI) who was
blind to the PCa lesion evaluated the MR-T stage for each patient
in reference to NCCN guidelines (20).

Intra- and Inter-observer Agreement
The intra- and inter-observer agreements for feature extraction
were assessed by the intra-class correlation coefficient (ICC).
Initially, integrated imaging data of 20 patients were randomly
selected from the study group. All ROIs on T2WI, DWI, and
ADC images were rigorously outlined with the same criteria by
two experienced radiologists independently. Intra-observer ICC
was analyzed by comparing two extractions of reader 1 (Y.Z.
with 10 years’ experience of abdominal MRI). Inter-observer
ICC was evaluated by comparing the extraction of a second
reader (F.C. with 21 years’ experience of abdominal MRI) and
the extraction of reader 1. An ICC that was >0.8 was regarded
as a good agreement and the remaining image segmentation was
implemented by reader 1 (21).

Radiomic Feature Extraction and Model
Building
AK software (Artificial Intelligence Kit V3.0.0.R, GE Healthcare)
was performed to extract a total of 396 radiomic features per
ROI of each MRI scan, including the histogram, second-order
statistic, Gray-Level Co-occurrence Matrix (GLCM), Run length
matrix (RLM), and form factor parameters (15). The histogram,
also called first-order statistic, represents the distribution of
values of each voxel without concern for spatial relationships.
The second-order statistic was routinely named as the texture

features, which described the statistical relationships between
voxels with similar (or dissimilar) contrast values. The overall
number of the radiomic features in this study was 1,188. Before
feature selection, the values of individual feature for the whole
patients was normalized with Z-scores ((x–µ)/σ), wherein x is the
value of the feature, µ represents the mean values of this feature
for all patients in the set, and σ describes the corresponding
standard deviation so as to get rid of the unit limits of each
feature prior to being performed for a machine learning model
for classification (22).

As the imbalance between csPCa and ciPCa patients may
impact the classification capability, the synthetic minority
over-sampling technique (SMOTE) was implemented in
the training and validation group. Then, the two-feature
selection method, minimum-redundancy maximum-relevance
(mRMR), and least absolute shrinkage and selection operator
(LASSO) were used to select the feature. At first, mRMR was
performed to eliminate the redundant and irrelevant features;
20 features were retained. Then, LASSO was conducted
to choose the optimized subset of features to construct
the final model. Tenfold cross-validations were used to
determine the optimal values of λ. Finally, only 10 of the
most predictive features were chosen and the corresponding
coefficients were evaluated. Predictive models were constructed
by multivariable logistic regression with the selected 10
features. A Radiomic signature (Rad-score) was then
calculated for each patient via a linear combination of
selected features weighted by their respective coefficients in
the predictive models. The radiomic workflow is demonstrated

FIGURE 2 | The framework for the radiomic workflow.
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TABLE 1 | Characteristics of patients in the training and validation groups.

Characteristics Training group P Internal validation group P External validation group P

csPCa (n = 41) ciPCa (n = 13) csPCa (n = 17) ciPCa (n = 5) csPCa (n = 62) ciPCa (n = 21)

Age (years) 73.830 ± 9.423 72.080 ± 7.794 0.700 78.180 ± 9.488 71.200 ± 3.421 0.054 73.230 ± 9.074 70.570 ± 9.042 0.250

PSA (ng/ml) 78.870 ± 180.596 14.498 ± 17.249 0.009 135.778 ± 262.629 13.555 ± 11.726 0.046 51.768 ± 132.283 13.217 ± 7.969 0.026

ADC value 707.710 ± 78.221 844.020 ± 183.432 0.001 702.405 ± 89.633 835.680 ± 44.353 0.003 803.974 ± 106.950 885.545 ± 134.103 0.006

MRI T-stage 0.049 0.074 0.001

T2 26 13 8 5 26 19

T3 9 NA 7 NA 26 2

T4 6 NA 2 NA 10 NA

Position 0.376 0.218 0.234

Peripheral zone 20 10 9 4 36 12

Transitional zone 9 3 3 1 20 9

Peripheral and

Transitional zone

12 NA 5 NA 6 NA

Gleason score 0.001 0.001 0.000

6 NA 13 NA 5 NA 21

7 22 NA 9 NA 25 NA

8 13 NA 6 NA 18 NA

9 5 NA 2 NA 16 NA

10 1 NA NA NA 3 NA

ADC, apparent diffusion coefficient; csPCa, clinically significant prostate cancer; ciPCa, clinically insignificant prostate cancer; NA, not available; PSA, prostate-specific antigen.

in Figure 2. The radiomics procedure is described in detail in
Supplementary Material 2.

Statistical Analysis
Categorical variables demonstrate the frequency, whereas
continuous variables demonstrate the mean and standard
deviation (SD). The Fisher’s exact test or Chi-squared test was
adopted to assess the categorical variables, when appropriate. The
Mann–Whitney U test was implemented to analyze the non-
normally distributed continuous variables. R software (v. 3.5.1,
Vienna, Austria) and SPSS 22.0 (IBM, Armonk, NY) were used
to perform statistical analysis. The LASSO logistic regression
was utilized with the “glmnet” package. The receiver operating
characteristic (ROC) plots were constructed by the “pROC”
package. Delong test was used to compare statistical difference
in AUC of patient discrimination among groups. The nomogram
construction and calibration plotting were used by the “rms”
package. The decision curve analysis curve plots were performed
using the “rmda” package. The diagnostic efficacy of the predictor
was evaluated using the values of accuracy, sensitivity, and
specificity. A P < 0.05 in two-tailed analyses was used to define
statistical significance.

RESULTS

Clinical Characteristics of Patients
Table 1 highlights the patient’s clinical characteristics. It showed
no significant statistical difference in age (p = 0.054–0.700)
and lesion location (p = 0.218–0.376), while the remaining
parameters had statistical difference (P < 0.05). Univariate
logistic analysis demonstrated the probability of csPCa having

TABLE 2 | Logistic regression analyses for discriminating between clinically

significant and clinically insignificant prostate cancer.

Variable Univariate logistic analysis Multivariate logistic analysis

OR (95% CI) P OR (95% CI) P

MR-T stage 6.081 (2.1, 10) 0.991 NA* NA*

Age 1.043 (0.980, 1.110) 0.183 NA* NA*

ADC 0.983 (0.973, 0.992) <0.001 0.985 (0.975, 0.995) 0.029

PSA 1.048 (1.007, 1.091) 0.022 1.024 (0.986, 1.064) 0.340

ADC, apparent diffusion coefficient; CI, confidence interval; NA, not available; OR, odds

ratio; PSA, prostate-specific antigen.

*These variables were eliminated in the multivariate logistic regression model. Therefore,

the OR and P values were not available.

significant associations with the ADC value and PSA level, while
other clinical factors were excluded (Table 2).

The ADC value and PSA level were entered into multivariate
logistic analysis. However, PSA was excluded due to a lack of
significant differences (p = 0.340). The ADC value was lower in
csPCa than in ciPCa and was the only remaining independent
clinical risk factor (p= 0.022).

Inter-observer and Intra-observer
Agreement
The intra-observer ICC computed based on two extractions
of reader 1 ranged from 0.827 to 0.934. The inter-observer
agreement between two readers varied from 0.783 to 0.905.
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FIGURE 3 | Texture feature selection. (A) Tuning parameter (λ) selection in the LASSO model used tenfold cross-validation via minimum criteria. The partial likelihood

deviance was plotted versus log (λ). The dotted vertical lines were drawn at the optimal values using the minimum criteria and the 1-SE criteria. (B) The most

predictive subset of feature was chosen and the corresponding coefficients were evaluated.

TABLE 3 | Predictive performance of the radiomic signature and radiomic nomogram.

Model Radiomic signature Accuracy (95% CI) ADC value Accuracy (95% CI) Radiomic nomogram Accuracy (95% CI)

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Training group 0.846 0.976 0.944 (0.846–0.988) 0.935 0.478 0.741 (0.603–0.850) 0.952 0.916 0.944 (0.846–0.988)

Internal validation

group

1.000 0.706 0.773 (0.546–0.921) 0.941 0.800 0.909 (0.708–0.989) 1.000 0.625 0.864 (0.651–0.971)

External

validation group

0.800 0.727 0.786 (0.656–0.884) 0.756 0.636 0.732 (0.597–0.842) 0.771 1.000 0.798 (0.696–0.870)

ADC, apparent diffusion coefficient; CI, confidence interval.

The results manifested high intra- and inter-observer feature
extraction agreement.

Radiomic Signature Development and
Accuracy
A total of 1,188 radiomic features were extracted from T2WI,
DWI, and ADC imaging. During mRMR and LASSO processing,
10 radiomic features (5 from DW imaging, 4 from ADC imaging,
and 1 feature from T2W imaging) were selected and were
performed to build the radiomic signature (Figure 3). The values
of the 10 selected features in each patient were input to the
formula, and the rad-score was then acquired to reflect the
probability of csPCa. The rad-score revealed a great predictive
efficacy, with an AUC of 0.95 [95% confidence interval (CI), 0.87
to 1.0] in the training group and 0.86 (95% CI, 0.70 to 1.0) in
the internal validation group. Furthermore, the AUC in external
validation group achieved 0.81 (95% CI, 0.68 to 0.94).

Development and Performance of the
Radiomic Nomogram
The rad-score and ADC value were identified as independent
predictors for discriminating between csPCa and ciPCa and
then a radiomic nomogram was developed. Each independent
predictor was allocated a weighted number of points. The overall
number of points for each patient was computed using the
nomogram and was associated with the likelihood of csPCa. The

sensitivity, specificity, and accuracy of the radiomic signature and
radiomic nomogram are demonstrated on Table 3.

To compare the discrimination performance, the ROC
curves were plotted for radiomic nomogram, rad-score, and
ADC value in the training group. The radiomic nomogram
demonstrated a favorable classification capability with the AUC
of 0.95 (training group), 0.93 (internal validation group), and
0.84 (external validation group) (Figures 4A–C). Therefore, the
nomogram was superior to the rad-score and ADC value alone
in discriminating csPCa from ciPCa, especially in the internal and
external validation group. Details of the performance of radiomic
nomogram are shown in Figure 5. Delong test was performed to
verify the statistical difference in AUC of patient discrimination
between nomogram, rad-score, and ADC score. This result was
presented in Supplementary Table 2.

Finally, a decision curve analysis was performed to evaluate
whether this nomogram would assist in differentiating between
csPCa from ciPCa (Figure 6). When the threshold probability
ranged from 0 to 1 according to the decision curve analysis, the
nomogram obtained the greatest benefit compared with a “treat
all” strategy, a “treat none” strategy.

DISCUSSION

This study developed and validated a radiomic nomogram
for discriminating between csPCa and ciPCa in the present
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FIGURE 4 | The receiver operating curves (ROC) of a combination nomogram, radiomic signatures, and clinical risk factor for discriminating clinically significant and

clinically insignificant prostate cancer were presented in the training group (A), internal validation group (B), and external validation group (C). The combination

nomogram obtained the highest area under the curve (AUC).

FIGURE 5 | Radiomic nomogram to discriminate clinically significant and clinically insignificant prostate cancer. The radiomic nomogram was built on the training

group, with the rad-score and ADC value. For example, a 74-year-old prostate cancer patient with an ADC value of 800 × 10−6 s/mm2, its radiomic signature score

was 2, the total number of points of this tumor was 100 (30 + 70), and the risk rate of clinically significant prostate cancer was determined to be 90%. ADC, apparent

diffusion coefficient.
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study. The nomogram was constructed by containing the rad-
score from the radiomic method and ADC value. Rad-score
was described as the probability of csPCa computed from
the radiomic signature, which was built based on 10 selective
radiomic features. Both the radiomic signature and nomogram
demonstrated the same capability to discriminate between csPCa
and ciPCa in the training group (AUC= 0.95 vs. 0.95). However,
the nomogram exceeded the radiomic model in the internal
(AUC = 0.93 vs. 0.86) and external (AUC = 0.84 vs. 0.81)
validation group. Thus, the results shown herein indicate that the
radiomic model may serve as a potential non-invasive method to
differentiate between csPCa and ciPCa in clinical practice.

Recently, radiomics has been successfully applied in oncology
and extended to PCa identification and evaluation (15, 23–
25). Chen et al. compared a radiomic-based model with PI-
RADS v2 scores in differentiating and grading PCa (15). This
result suggested that radiomic models offered a high diagnostic
accuracy and outperformed the corresponding PI-RADS v2
scores. Min et al. investigated an mp-MRI-based radiomic
signature for identifying csPCa with an AUC of 0.823 in the
validation group (18). The AUC of the radiomic signature for
predicting csPCa was 0.86 (internal validation group) and 0.84
(external validation group) in our study, which differed from the
result provided by Min et al. The difference may be illustrated by
differences in research populations and patient selection criteria.
In addition, our study incorporated the ADC value, PSA level,
MR-T stage, and age. These parameters were included as they are
of great importance in differentiating csPCa in clinical settings.
The nomogram constructed from the aforementioned features
may provide an individualized evaluation of csPCa. Our results
suggested that the radiomic nomogram had a great efficacy for
prediction csPCa in both training group and internal and external
validation groups (AUC= 0.95, 0.93, and 0.84, respectively).

In our present study, the overall 1,188 radiomic features
were extracted from T2WI, DWI, and ADC imaging. In
total, 10 radiomic features were selected. Of these, nine
radiomic features were derived from DWI and ADC imaging,
including six texture features, two form factor features, and
one histogram feature. The mostly radiomic features selected in
this study were texture features about the statistical correlation
between local nearby voxels with similar (or dissimilar) contrast
values (26). This indicated that radiomic signature could
support a prebiopsy potential in differentiating between csPCa
and ciPCa.

ADC value was the only risk factor found in all clinical risk
factors. The performance of both the radiomic signature and
ADC value were high and comparable in the validation group in
our study. This is consistent with a recent report with radiomic
machine learning, which showed similar results (27). It may be
the result of the principal nature of DWI and ADC that could
dramatically reflect PCa pathological status in the peripheral
zone. Indeed, most of PCa lesions lay in the peripheral zone in
our study. DWI and more specifically ADC have been regarded
as the most powerful sequence of prostate MR, especially in the
peripheral zone (28). ADC values have been suggested to be
reproducible quantitative markers to evaluate PCa aggressiveness
(29, 30).

FIGURE 6 | Decision curve analysis of clinical use assessment of the radiomic

nomogram in the validation group. The Y-axis represented the net benefit. The

method was the best for feature selection if it had the highest net benefit. The

radiomic nomogram (red line) achieved the highest net benefit compared with

the radiomic signature (green line), clinical characteristics (blue line), treat-all

strategy (gray line), and the treat-none strategy (horizontal black line).

It is worth noting that the PSA level widely used in the PCa
detection was not a significant factor regarding the differentiation
of csPCa, which makes the elimination of this variable for model
development. It is likely explained that the PSA level is specific to
prostate tissue but not to PCa lesion. Another explanation may
be related with the nuances in the data group or confounding by
other risk factors. MR-T stage demonstrating the highest odds
ratio value was also excluded to build the predictive model in
our study. This finding probably associates with the extension
degree of csPCa lesions. When csPCa lesions did not present
with invasion of extra prostate capsular tissues, such as the
neurovascular bundle, seminal vesicles, and distal sphincter, the
MR-T was ascribed to the T2 stage. Obviously, the MR-T stage of
all ciPCa patients was ascribed to the T2 stage.

The ratio of the csPCa and ciPCa patients was different (120
vs. 39) in the present study. This inter-group imbalance may give
rise to bias for the build radiomic signatures in the training group,
which would impact the prediction capability of the radiomic
signature in the validation group. To reduce the effect of the
imbalance, the SMOTE algorithm was applied to construct the
radiomic model. However, the performance of the training and
validation group was still in agreement with our original data and
sample size. The quality assurance of the MRI scanner should
also be illustrated. The present material spanned up to 3 years,
so the imaging quality of the MRI scanner was essential to
maintaining rigor to the long duration of this study. Therefore,
the quality assurance maintenance records of the MRI scanner
were reviewed and approved.

Several limitations to the current study should be noted. First,
the current study has a small sample size and is a retrospective
study from two centers. Therefore, large sample sizes from
multiple centers are necessary to validate our primary findings.
Second, systematic biopsy was applied for the pathological
standard instead of the whole-mount pathological specimen. The
experienced radiologists exerted all efforts to match the MRI
lesion and the pathological site. It is obviously unreasonable that
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all of our subjects would have the whole-mount pathological
specimen, especially for ciPCa patients. Moreover, patients
with a lesion diameter of less than 5mm on mp-MRI images
were eliminated because we could not outline the PCa region
during MRI segmentation. This may cause patient selection bias.
Although our methodical strategies have a few limitations, we
hold the view that they supply ample verification for the principal
findings of our primary study.

In conclusion, this study presents a radiomic nomogram
that incorporates both the radiomic signature and clinical
risk factors for discriminating csPCa from ciPCa. The
nomogram, incorporating radiomic signature and ADC
value, provided an individualized, potential approach for
discriminating csPCa from ciPCa. Further studies with
large sample sizes from multiple centers are necessary to
validate our primary results. With further investigation, it is
possible that this radiomic nomogram may aid clinicians in
determining prebiopsy and pre-treatment risk stratification
for PCa.
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Purpose: This study aimed to explore the role of delta-radiomics in differentiating

pre-invasive ground-glass nodules (GGNs) from invasive GGNs, compared with

radiomics signature.

Materials and Methods: A total of 464 patients including 107 pre-invasive GGNs and

357 invasive GGNs were embraced in radiomics signature analysis. 3D regions of interest

(ROIs) were contoured with ITK software. By means of ANOVA/MW, correlation analysis,

and LASSO, the optimal radiomic features were selected. The logistic classifier of

radiomics signature was constructed and radiomic scores (rad-scores) were calculated.

A total of 379 patients including 48 pre-invasive GGNs and 331 invasive GGNs with

baseline and follow-up CT examinations before surgeries were enrolled in delta-radiomics

analysis. Finally, the logistic classifier of delta-radiomics was constructed. The receiver

operating characteristic curves (ROCs) were built to evaluate the validity of classifiers.

Results: For radiomics signature analysis, six features were selected from 396 radiomic

features. The areas under curve (AUCs) of logistic classifiers were 0.865 (95% CI,

0.823–0.900) in the training set and 0.800 (95% CI, 0.724–0.863) in the testing

set. The rad-scores of invasive GGNs were larger than those of pre-invasive GGNs.

As the follow-up interval went on, more and more delta-radiomic features became

statistically different. The AUC of the delta-radiomics logistic classifier was 0.901 (95%

CI, 0.867–0.928), which was higher than that of the radiomics signature.

Conclusion: The radiomics signature contributes to distinguish pre-invasive and

invasive GGNs. The rad-scores of invasive GGNs were larger than those of pre-invasive

GGNs. More and more delta-radiomic features appeared to be statistically different

as follow-up interval prolonged. Delta-radiomics is superior to radiomics signature in

differentiating pre-invasive and invasive GGNs.

Keywords: ground-glass nodule, adenocarcinoma, invasive, radiomics, delta-radiomics, computed tomography

INTRODUCTION

Pulmonary nodules are one of the most common incidental findings (1). Ground-glass nodule
(GGN) is a distinct subgroup of pulmonary nodules, which is a complex diagnostic challenge,
including a broad array of benign and malignant lesions (2). GGN is defined as a hazy shadow
presenting intact bronchial structures and pulmonary vessels (3), which is generally associated with
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early-stage lung adenocarcinoma. The lung adenocarcinomas
are classified into three histological subtypes, namely,
adenocarcinoma in situ (AIS), minimal invasive adenocarcinoma
(MIA), and invasive adenocarcinoma (IAC), according
to the International Association for the Study of Lung
Cancer/American Thoracic Society/European Society of
Thoracic Surgeons classification (4). Some benign GGNs can
also be observed, such as interstitial fibrosis, inflammation,
hemorrhage, and atypical adenomatous hyperplasia (AAH) (5).

It is the malignant potential and aggressive characteristics
that make the diagnosis of GGN challenging for radiologists.
Generally, pre-invasive GGNs include AAH and AIS, while
MIA and IAC are categorized into invasive GGNs (6). Different
histopathological types of GGNs have different growth and
invasive speeds. The continuous process from AAH to IAC
has been proposed (7), showing the increase of diameter and
density in GGNs (8). The 5-years survival rate has been reported
to be almost 100% for early-stage lung cancer patients, who
were diagnosed as AAH and AIS. However, the 5-years survival
rate of patients with IAC is only 60–70% (9). Therefore,
early differentiation between pre-invasive and invasive GGNs is
important for clinical management.

The natural chronologic evolution of GGNs on CT scans
remains to be elucidated. Though the Fleischner Society
published the recommendations for management of subsolid
nodules and updated guidelines based on the latest data and
accumulated opinions from a multidisciplinary international
group (10). Both radiologists and pulmonologists are confronted
with the dilemma of choosing the most adequate diagnostic
scheme and optimalmanagement strategies for GGNs. Therefore,
it is difficult to determine proper follow-up examinations, due to
different growth patterns of GGNs.

Radiomic analysis is a newly emerging computer-assisted
approach, converting conventional visual images into numerous
quantitative features (11). The features covered voxel intensity,
three-dimensional shape, size, appearance of surface, and the
gray level co-occurrence. It has been widely employed in
the differentiation and diagnosis of breast lesions (12), renal
neoplasms (13), liver disease (14), and brain tumors (15) on CT
examination or magnetic resonance imaging (16). Several studies
have also attempted to elaborate on the radiomic characteristics
of pulmonary GGNs (17). Jing et al. developed computer-aided
radiomic analysis to improve the performance in discriminating
different subtypes of GGO nodules (18). The current study found
that radiomics signature showed good predictive performance
in differentiating IACs and non-invasive lesions (19). Moreover,
delta-radiomics analysis shows the changes in radiomics
features between baseline and follow-up examinations, during
treatment, and so on. It has been demonstrated that delta-
radiomic features combined with conventional radiomic features
improved performance of models in lung cancer screening (20).

To the best of our knowledge, there are no published studies
focused on delta-radiomics in differentiating pre-invasive and
invasive GGNs using 3D CT images. The purpose of our
study is to evaluate the progressive changes of delta-radiomics
CT analysis to differentiate pre-invasive and invasive GGNs,
compared with radiomics signature.

MATERIALS AND METHODS

Patient Selection
This retrospective study was approved by the institutional
review board of our hospital, which waived the written
informed consent.

Between January 2015 and August 2019, there were 391,985
chest CT scan examinations carried out in our institution and
195,238 cases diagnosed referring to pulmonary lesions. A total of
2,064 patients were histopathologically confirmed after surgical
resections or CT-guided percutaneous biopsies. After reviewing
all the images of 2,064 cases, 464 patients were eventually
enrolled in our study. The inclusion criteria for the selected
GGNs were as follows: (a) CT examinations were performed with
the same acquisition protocol; (b) histopathological diagnosis
was made after surgical resection; (c) the diameter of all
GGN was smaller than 3 cm in CT images; (d) there was
a single solitary lesion in the lung; (e) patients received
the same thin-section CT scans, with a slice thickness of
2.0mm. The exclusion criteria were as follows: (a) patients had
malignant tumor history; (b) patients had multiple pulmonary
lesions, such as interstitial pneumonia, pulmonary infection,
chronic obstructive pulmonary disease, and so on; (c) the
histopathological diagnosis was not lung adenocarcinoma; (d)
patients underwent neoadjuvant chemotherapy or radiotherapy;
(e) patients were diagnosed by biopsy (Table 1).

According to histopathological diagnosis, the enrolled 464
patients were divided into 107 pre-invasive GGNs (48 patients
with AAH, 59 patients with AIS) and 357 invasive GGNs (122
patients with MIA, 235 patients with IAC).

TABLE 1 | The flowchart of patient selection.
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CT Image Acquisition
All patients were examined by Somaton Definition AS 64/128
(Siemens Medical Solutions, Germany). Patients performed the
CT scan in the supine position from the apex to the lever of
adrenal glands during inspiration. The scan parameters were
as follows: slice thickness and reconstruction interval, 2.0mm;
tube voltage of 120 kVp and tube current of 200mA; detector
collimation, 64∗0.625mm; rotation speed, 0.75 s; beam pitch,
1.375; pixel matrix, 512∗512. The CT images were reconstructed
with a bone algorithm for the lung window and a soft tissue
algorithm for the mediastinal window. The same lung window
(width, 1,500 HU; level, −600 HU) and mediastinal window
(width, 350 HU; level, 50 HU) were adopted to assess the images.

GGNs delta-radiomic features were calculated as the change
of radiomic features from baseline CT scans to the final follow-up
CT scans before surgeries and then divided by the time interval
([follow-up time – baseline time]/30) in both pre-invasive
and invasive GGNs (delta-radiomics = [follow-up radiomics –
baseline radiomics]/time interval).

Region of Interest (ROI) Segmentation and
Radiomics Signature Analysis
The radiologists with 10 and 15 years of CT diagnosis experience
manually delineated ROIs of all the images independently
and the intra-class correlation coefficient (ICC) was calculated.
The data from two radiologists after discussing by consensus
or adjudication was adopted, ultimately. ROIs were manually
depicted in 3D CT images using the software “ITK-SNAP”
(Version 3.4.0, www.itksnap.org), keeping an∼2–3mm distance

away from the lesion margin to minimize the partial volume
effect (Figure 1A). The volume and mean intensity of 3D GGN
were calculated automatically (Figure 1B).

The radiomic features were analyzed by AK software
(Artificial Intelligence kit V3.0.0.R, GE Healthcare), including

FIGURE 2 | The LASSO coefficient profiles of radiomics signature.

FIGURE 1 | The ROI was semi-automatically delineated using the software “ITK-SNAP” (A). The volume and intensity of GGN were calculated subsequently (B).

TABLE 2 | Patients’ general characteristics.

Patients’ general characteristics Pre-invasive GGNs Invasive GGNs p

Gender (female/male) 74 (69.2%)/33 (30.8%) 215 (60.2%)/142 (39.8%) 0.058

Age 54.8 ± 10.8 58.1 ± 13.4 0.021

Lesion volume (mm3 ) 174.1 ± 253.9 841.2 ± 1380.8 <0.001

Intensity −342.4 ± 135.6 −355.1 ± 127.0 0.372

Location (right/left) 69 (64.5%)/38 (35.5%) 209 (58.5%)/148 (41.5%) 0.162

Follow-up patients (group A/B/C) 48 (30/8/10) 331 (173/79/79) /

Mean follow-up interval (months) 8.5 8.0 /

The gender and location characteristics were compared by Chi-square test, while age, lesion volume, and intensity characteristics were compared by ANOVA. p < 0.05 has

statistical significance.
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histogram, texture, form factor, gray level co-occurrence matrix
(GLCM), and gray level run-length matrix (RLM). Prior to
analysis, three preprocessing steps were taken to normalize
images, including resampling with 1.0mm at X/Y/Z-spacing,
denoising by Gaussian, and discretizing the gray level from
0.0 to 255.0. Then, we calculated radiomic features by AK
software, automatically.

Four steps were needed to reduce radiomic dimensions: First,
replacing the abnormal values by mean and standardization.
Second, partitioning the training and testing data with a
proportion of 7:3, randomly. Third, after the normality test,
analysis of variance (ANOVA) or Mann–Whitney U test (MW)
was used to select the radiomic features. Fourth, set the filter
threshold of 0.9 for the Spearman rank correlation coefficient
analysis to reduce the dimensions. Ultimately, use the Least
Absolute Shrinkage and Selection Operator (LASSO) Cox
regression model to identify the optimal features. The logistic
classifier of radiomics signature was constructed and the rad-
scores of pre-invasive and invasive GGNs were calculated. The
predictive accuracy of radiomics signature was quantified by
ROCs in both training and testing sets. More information about
radiomic dimensions and the LASSO algorithm can be found in
the Supplementary Data.

Delta-Radiomics Analysis
A total of 379 patients in the entire cohort of 464 patients
were detected at baseline and follow-up CT examination before
surgeries and were divided into three groups according to
different time intervals: (a) group A: follow-up interval was <6
months; (b) group B: follow-up interval was between 7 and
12 months; (c) group C: follow-up interval was between 13
and 24 months. The significance of selected radiomic features
in differentiating pre-invasive and invasive GGNs between
three groups was evaluated. The changes of selected optimal
radiomic features (delta-radiomic features) were calculated
between baseline and follow-up. Multivariate logistic classifier

of delta-radiomics was constructed to identify the predictive
accuracy in distinguishing pre-invasive and invasive GGNs.

Statistics
The methods of ANOVA/MW, Spearman rank correlation
coefficient analysis and LASSO Cox regression were made by R
software (Version 3.6.1) to select meaningful radiomic features.
A paired Student’s t-test was used if continuous variables were
normally distributed; otherwise, Wilcoxon rank sum test was
performed between different follow-up intervals in the delta-
radiomics analysis by SPSS (IBM Statistics SPSS 22.0). The delta-
radiomics classifier wasmodeled bymeans ofmultivariate logistic
regression, and the ROC curve was depicted. The ROC curves
of training/testing set in radiomics signature analysis and delta-
radiomics analysis were made with MedCalc (Version 15.8). A
p-value <0.05 was considered statistically significant.

RESULTS

Patients’ General Characteristics
The general characteristics of 464 patients are summarized in
Table 2. Of the patients, 107 (23.1%) were categorized as pre-
invasive GGNs (48 with AAH, 59 with AIS), and 357 (76.9%)
as invasive GGNs (122 with MIA, 235 with IAC). Among the
107 pre-invasive GGNs patients, 74 (69.2%) patients were female
(mean age, 51.3 ± 9.0 years) and 33 (30.8%) patients were male
(mean age, 62.7 ± 10.4 years). Among the 357 invasive GGNs
patients, 215 (60.2%) patients were female (mean age, 55.4 ±

13.0 years) and 142 (39.8%) patients were male (mean age, 62.3
± 12.9 years).

Radiomic Feature Selection and Prediction
of Radiomics Signature
By means of ANOVA/MW, Spearman rank correlation
coefficient, and LASSO Cox regression analysis, six features were
selected from 396 radiomic features (Figure 2). The selected
six features were standard deviation, inertia of GLCM, sum

FIGURE 3 | The AUCs of radiomics signature in differentiating pre-invasive and invasive GGNs in the training set and testing set.

Frontiers in Oncology | www.frontiersin.org 4 July 2020 | Volume 10 | Article 1017104

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Ma et al. The Role of Delta-Radiomics

Entropy, high gray level run emphasis, size zone variability,
and low-intensity small area emphasis. The AUCs of radiomics
signature classifier were 0.865 (95% CI, 0.823–0.900) in the
training set and were 0.800 (95% CI, 0.724–0.863) in the testing
set (Figure 3). The rad-scores of invasive GGNs were larger than
that of pre-invasive GGNs (Figure 4).

Delta-Radiomics Analysis
Of the 107 pre-invasive GGNs patients, 48 patients were detected
at baseline and follow-up CT examination before surgeries,
including 30 patients in group A, 8 patients in group B, and
10 patients in group C. There was no statistical difference
in the six selected radiomic features in group A, while sum
entropy (p = 0.003) and size zone variability (p = 0.028)
had a significant difference between baseline and follow-up
examinations in group B. In group C, there was significant
difference in standard deviation (p = 0.005), sum entropy (p =

0.005), high gray level run emphasis (p = 0.012), and size zone
variability (p= 0.020) (Table 3).

There were 331 patients detected at baseline and follow-up CT
examinations in the 357 invasive GGNs, including 173 patients
in group A, 79 patients in group B, and 79 patients in group C.
There were statistical differences among three radiomic features,
namely, standard deviation (p= 0.007), sum entropy (p= 0.009),
and size zone variability (p = 0.013) in group A, while there was
statistical significance among four features, including standard
deviation (p = 0.007, p = 0.000, respectively), inertia of GLCM

FIGURE 4 | The rad-scores of invasive GGNs were larger than those of

pre-invasive GGNs.

(p = 0.030, p = 0.007, respectively), sum entropy (p = 0.000, p
= 0.000, respectively), and size zone variability (p = 0.000, p =

0.000, respectively) in both group B and group C (Table 3).
The delta-radiomic features between the baseline and final

follow-up CT examinations were calculated. Multivariate logistic
regression classifier of delta-radiomics in selected six features was
built. The AUC of classifier was 0.901 (95% CI, 0.867–0.928) in
differentiating pre-invasive from invasive GGNs (Figure 5).

The Intra-Observer Agreement
The radiologists with 10 and 15 years of CT diagnosis experience
delineated ROIs of all the images, respectively. The ICC was
calculated to evaluate the intra-observer agreement of feature
selection. The parameters of the selected six features from two
radiologists were compared. The intra-observer ICC ranged
from 0.782 to 0.913. ICC, which was >0.75, showed favorable
reproducibility of feature selection between different observers.

FIGURE 5 | The AUCs of delta-radiomics logistic classifier was 0.901.

TABLE 3 | The delta-radiomic features in different follow-up intervals.

p-value Standard deviation Inertia of GLCM Sum entropy High gray level Size zone Low-intensity

run emphasis variability small-area emphasis

Pre-invasive GGNs Group A 0.843* 0.351 0.792* 0.627 0.402* 0.440

Group B 0.103* 0.878* 0.003* 0.406* 0.028* 0.203*

Group C 0.005* 0.235* 0.005* 0.012 0.020* 0.952*

Invasive GGNs Group A 0.007 0.115 0.009 0.794 0.013 0.804

Group B 0.007 0.030 <0.001 0.809 <0.001 0.867

Group C <0.001 0.007* <0.001 0.931 <0.001 0.061

Group A: follow-up interval <6 months; group B: follow-up interval of 7–12 months; group C: follow-up interval of 13–24 months.

If continuous variables were normally distributed, Paired Student’s t-test was used (*), while Wilcoxon rank sum test was performed. p < 0.05 had significant difference.

Bold values signifies p < 0.05.
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DISCUSSION

With the development of CT examination, GGNs have been
more frequently detected and became a major concern. Studies
have proven that it may take several years in process from
AAH to IAC by stepwise progression (21). Early diagnosis of
GGNs has great therapeutic significance in patient management.
How to identify pre-invasive GGNs and invasive GGNs remains
a challenge for radiologists. Lee et al. concluded that the risk
of GGNs’ invasiveness gradually increased with the increase
of maximal diameter (22). However, the optimal time of
intervention based on the maximal diameter of GGN remains
to be studied. In a previous study, a significant proportion
of GGNs showed an indolent course for more than 2 years
without size increase (23). Recent evidence suggests that GGNs
have different natural histories, including growing up, shrinkage,
or remaining stable for long periods (24). Therefore, visual
evaluation of CT imaging characteristics is insufficient to
differentiate pre-invasive GGNs from invasive GGNs. Radiomics
signature as a new emerging quantitative method is necessary to
reevaluate diagnostic performance in distinguishing pre-invasive
and invasive GGNs.

In our study, we proposed a novel 3D radiomics signature
analysis to classify GGNs, with an AUC of 0.865 in the training
set and an AUC of 0.800 in the testing set. Most studies
in either radiomic analysis or conventional CT characteristics
analysis have only focused on 2D axial CT images previously.
Meanwhile, our study evaluated the natural course of GGNs
based on delta-radiomic features measured on 3D whole tumor.
Due to the asymmetric growth pattern, 3D computer-aid analysis
offers obvious advantages for accurate distinguishing. To avoid
bias, we compared the six selected radiomic features from two
radiologists. The intra-observer ICC, which ranged from 0.782
to 0.913, indicated favorable intra-observer agreement in feature
extraction. Accordingly, questions have been raised about the
low sensitivity, specificity, and AUC of conventional CT analysis
in discriminating (6). It is becoming increasingly important to
take radiomic analysis to monitor GGNs. We synchronized all
the selected radiomic features into an indicator of rad-score.
The rad-scores of invasive GGNs were higher than those of
pre-invasive GGNs.

The Fleischner Society guidelines for the management of solid
nodules were published in 2005, and separate guidelines for
subsolid nodules were issued in 2013 (25). However, awareness
and conformance to Fleischner guidelines vary considerably, and
overmanagement or additional examinations are common (1).
The management of pulmonary GGNs remains a challenge with
some controversial issues. Tumor growth may be inconstant
throughout the tumor’s natural course as it reflects the expression
of more aggressive elements (26). Nonetheless, single volume
or intensity measurements at different follow-up time points
are inadequate. Our study focuses on the delta-radiomics of
GGNs from baseline to follow-up. For invasive GGNs, three
radiomic features already have significant difference in group
A with the follow-up interval of 0–6 months, while there is no
significant difference in radiomic features for pre-invasive GGNs

in group A. Two and four radiomic features have significant
difference in group B for pre-invasive and invasive GGNs,
respectively. Thus, as the follow-up interval goes on, more and
more radiomic features become different. These results could
assist in determining management and therapeutic strategies
for both pre-invasive and invasive GGNs. Multivariate logistic
regression analysis was used to evaluate the delta-radiomics in
discriminating invasiveness of GGNs. The corresponding ROC
curve was drawn to estimate the predictive accuracy of delta-
radiomics logistic classifier. The delta-radiomics had higher AUC
than radiomics signature in identifying invasive GGNs (0.901 vs.
0.865/0.800). It is important to note that follow-up examination
is of great significance in distinguishing pre-invasive GGNs and
invasive GGNs.

This study had several limitations. First, the follow-up
intervals between two consecutive CT examinations were
heterogeneous within 2 years. Obviously, the 2-years follow-
up period is insufficient for GGNs. Second, we abandoned the
GGNs that were followed-up without surgeries. This factor may
give rise to selecting bias. Third, the small vessels located in
the GGNs cannot be excluded during the segmentation process,
though the vessels contiguous to lesion contours were removed
manually. Fourth, multi-central prospective studies are necessary
to confirm the conclusion in this study.

In conclusion, radiomics signature helps differentiate pre-
invasive GGNs from invasive GGNs. The rad-scores of invasive
GGNs are larger than those of pre-invasive GGNs. With the
follow-up interval prolongs, the delta-radiomic features increase.
The delta-radiomics analysis has a higher AUC than radiomics
signature in identifying invasive GGNs.
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Patients with HCC receiving TACE have various clinical outcomes. Several prognostic

models have been proposed to predict clinical outcomes for patients with hepatocellular

carcinomas (HCC) undergoing transarterial chemoembolization (TACE), but establishing

an accurate prognostic model remains necessary. We aimed to develop a radiomics

signature from pretreatment CT to establish a combined radiomics-clinic (CRC) model

to predict survival for these patients. We compared this CRC model to the existing

prognostic models in predicting patient survival. This retrospective study included

multicenter data from 162 treatment-naïve patients with unresectable HCC undergoing

TACE as an initial treatment from January 2007 and March 2017. We randomly allocated

patients to a training cohort (n = 108) and a testing cohort (n = 54). Radiomics

features were extracted from intra- and peritumoral regions on both the arterial phase

and portal venous phase CT images. A radiomics signature (Rad-signature) for survival

was constructed using the least absolute shrinkage and selection operator method

in the training cohort. We used univariate and multivariate Cox regressions to identify

associations between the Rad- signature and clinical factors of survival. From these, a

CRC model was developed, validated, and further compared with previously published

prognostic models including four-and-seven criteria, six-and-twelve score, hepatoma

arterial-embolization prognostic scores, and albumin-bilirubin grade. The CRC model

incorporated two variables: The Rad-signature (composed of features extracted from

intra- and peritumoral regions on the arterial phase and portal venous phase) and

tumor number. The CRC model performed better than the other seven well-recognized

prognostic models, with concordance indices of 0.73 [95% confidence interval (CI)

108
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0.68–0.79] and 0.70 [95% CI 0.62–0.82] in the training and testing cohorts, respectively.

Among the seven models tested, the six-and-12 score and four-and-seven criteria

performed better than the other models, with C-indices of 0.64 [95% CI 0.58–0.70] and

0.65 [95% CI 0.55–0.75] in the testing cohort, respectively. The CT radiomics signature

represents an independent biomarker of survival in patients with HCC undergoing TACE,

and the CRC model displayed improved predictive performance.

Keywords: hepatocellular carcinomas, image processing (computer-assisted), radiomics, transarterial

chemoembolization, biomarkers

INTRODUCTION

Several treatment guidelines recognize that transarterial
chemoembolization (TACE) brings significant survival benefit
over supportive care in patients first diagnosed with Barcelona
Clinic Liver Cancer (BCLC) stage B hepatocellular carcinomas
(HCC) (1–3). Despite receiving similar treatment, these patients
experienced substantial survival heterogeneity after TACE (2),
rendering the building of risk stratification algorithms essential.
Several existing prognostic models, including the four-and-
seven criteria, six-and-12 score, hepatoma arterial-embolization
prognostic (HAP) scores, and albumin-bilirubin grade, have been
proposed to predict clinical outcome after TACE (4–7). Some
of cohort studies also indicated there is space for prognostic
accuracy improvement (8, 9). Developing biomarkers from
routinely collected data into an improved prognostic model will
help identify optimal candidates for TACE.

Computed tomography (CT) imaging has a fundamental
role in the diagnosis, staging, treatment guidance, and response
monitoring in HCC (10). Indeed, CT images of HCC also
provide quantifiable and non-invasive imaging biomarkers for
prognostics, including comprehensive information on the shape,
intensity, and enhancement of the entire tumor (11, 12).
According to the modified Response Evaluation Criteria in Solid
Tumors (mRECIST) criteria or the European Association for
the Study of the Liver (EASL) criteria (3, 13), axial tumor
size was routinely used to categorize tumor response. However,
this measurement is subject to interobserver variability and
inherently inexact compared to assessing 3D tumor volume (14,
15). While a few reports have proposed qualitative imaging traits
(“tumor capsule” or “internal arteries”) as potential predictors,
these remain highly dependent on radiologists’ experience (16,
17). Thus, a novel and precise method of comprehensively
quantifying the pretreatment CT information is urgently needed
to identify non-invasive biomarkers.

Radiomics, an emerging approach that converts medical
images into high-dimensional quantifiable data, has exhibited
increasing prognostic power by capturing distinct phenotypic
differences of tumors (18). A few studies reported that texture
analysis on arterial phase CT imaging predicted therapeutic

Abbreviations: CI, confidence interval; C-index, Concordance index; CRC,

combined radiomics-clinic; CT, computed tomography; HAP, hepatoma arterial-

embolization prognostic; HCC, hepatocellular carcinoma; LASSO, the least

absolute shrinkage and selection; OS, overall survival; Rad-signature, radiomics

signature; TACE, transarterial chemoembolization; VOI, volume of interest.

response and survival in patients with HCC after TACE (19, 20).
However, applying radiomics on multiphasic contrast-enhanced
CT imaging to predict survival after TACE is rarely investigated.
Some studies demonstrated that analyzing the texture of both
the intratumoral plus peritumoral regions provided superior
prognosis prediction for patients with HCC compared to the
intratumoral region alone (21, 22). Therefore, we hypothesized
that a radiomics pattern from peritumoral regions might be
valuable for prognosis prediction.

Therefore, this study aimed to improve the current survival
prediction models for patients with HCC through the following:
(1) building a radiomics signature integrating both intratumoral
and peritumoral CT radiomics patterns; (2) developing and
validating a combined radiomics-clinic (CRC) model; (3) and
comparing the ability of the CRC model and existing prognostic
models to predict survival.

MATERIALS AND METHODS

Patients and Study Design
This study was approved by the Institutional Review Board and
the need to obtain informed consent was waived because of the
retrospective nature of the study.

We retrospectively identified 911 consecutive patients with
HCC who underwent TACE between January 2007 and March
2017 as the first-line therapy at five centers in China. HCC was
diagnosed histologically or by CT image evaluation, according
to the European Association for the Study of the Liver or
American Association for the Study of Liver Diseases criteria.
The inclusion criteria included: (1) patients with HCC receiving
TACE as initial treatment who had (2) complete clinical data.
Patients were excluded based on the following criteria: (1)
Missing or inadequate baseline contrast-enhanced CT imaging
within 6 weeks before treatment initiation (n = 617); (2)
Infiltrative disease (n = 7); (3) Eastern Cooperative Oncology
Group (ECOG) performance status score > 0 (n = 17); (4)
Child-Pugh classification C or D (n = 8); (5) Presence of
macrovascular invasion or extrahepatic metastasis (n = 166).
Notably, criteria 3–5 excluded BCLC stage C patients, for which
TACE is much less effective (2). Finally, we included the patients
at BCLC stage B (n = 154) and BCLC stage A (n = 8) carefully
defined as unresectable due to tumor location or patient status.
For independent validation, we allocated patients who first
underwent TACE beforeMay 2014 to a training cohort (n= 108),
and subsequent patients were allocated to a testing cohort (n =
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54). Similar to previous study (5), we did not split data by center
(external validation) (23).

TACE Procedure
TACE was administered using mixtures of lipiodol and
chemotherapeutic drugs (pirarubicin, cisplatin, or epirubicin
were selected according to the practice of each center), followed
by embolization using a gelatin sponge. Either selective or
super-selective embolization of the tumor-feeding vessels was
performed whenever technically reasonable (24). The dose of
lipiodol and chemotherapeutic drugs was based on tumor
burden and patients’ characteristics. Investigators with at least
8 years of experience performed all procedures. When no
vital tumor tissue was observed on contrast-enhanced CT or
magnetic resonance imaging (MRI) 4–6 weeks after initial
TACE treatment, TACE was discontinued. “On-demand” TACE
procedures were repeated at an interval of 6–12 weeks in patients
with viable tumors or intrahepatic recurrences observed by
contrast-enhanced CT/MRI but without extrahepatic spread or
deterioration in clinical status (25).

Image Acquisition Parameters
All patients underwent multiphasic contrast-enhanced
abdominal CT scan using one of the following systems: Discovery
CT750 HD (GE Medical System), LightSpeed VCT (GE Medical
System), iCT 128 (Philips), iCT 256 (Philips), Mx8000 (Philips),
Sensation 64 CT (Siemens), Somatom Definition (Siemens),
or Toshiba (Aquilion). Scanning parameters are as follows:
120–140 kVp; 150–190 mAs; field of view, 350 × 350mm;
matrix, 512 × 512. Table S1 details the parameters of slice
thickness and pixel spacing. A 1.5–2.0 mL/kg body weight bolus
of contrast material iodixanol (Ultravist 370, Bayer, Germany)
was injected intravenously at a flow rate of 3–4.0 mL/sec.
Arterial phase, portal venous phase, and equilibrium phase
were performed with bolus triggering, typically ∼30, 60–70, and
180 s, respectively, after injection of contrast. We retrieved the
arterial phase and portal venous phase images from the picture
archiving and communication system of the five centers and
downloaded images in a Digital Imaging and Communications
in Medicine format.

Volume of Interest Segmentation and
Radiomics Feature Extraction
The volume of interest (VOI) included both tumor and
peritumoral regions. Firstly, a radiologist (reader 1, XM,
a radiologist with 6-years abdominal imaging experience)
manually annotated 3D tumor VOIs around the largest
lesion on both arterial and portal venous phase images using
ITK-SNAP version 3.6 (http://www.itksnap.org). To evaluate
the reproducibility of the extracted features, reader 2 (QY,
a radiologist with 5-years abdominal imaging experience)
independently segmented randomly selected 50 lesions
from both arterial and portal venous phase CT scans. The
intraclass correlation coefficient (ICC) was used to validate the
reproducibility of extracted features from the two radiologists.
Only features with an inter-reader ICC > 0.75 were included
in subsequent analyses. After the tumor VOI was segmented,

we considered the pixel size of each CT scan to perform a
morphologic dilation operation, capturing the peritumoral
region of the entire tumor VOI, with a radial distance of
10mm. A peritumoral VOI of the liver parenchyma immediately
surrounding the tumor was obtained after subtracting the tumor
VOI from this dilated VOI.Appendix E1 provides further details
on generating tumor segmentation and peritumoral VOI.

Radiomics features were extracted from each VOI by using
Pyradiomics 2.0.0 (https://pyradiomics.readthedocs.io/en/latest/
features.html) (26). Images were isotopically resampled to 1×
1× 1 mm3 voxels with a fixed bin width of 25 for image
discretization. Detailed descriptions are provided under the
“Imaging preprocessing” in Appendix E2. For each VOI, we
extracted a radiomics set of 1,288 features comprised of four
categories (Appendix E2): shape features (n = 14), the first-
order features (n = 18), the second-order features (n =

23), and high-order filters features (generated by Laplacian of
Gaussian filter and wavelet filter, n = 1,183 features). For each
lesion, we extracted 5,152 radiomics features from tumor and
peritumoral VOI in both the arterial phase and portal venous
phase images. All feature extraction methods conformed to the
image Biomarkers Standardization Initiative (IBSI) guidelines
(27). Feature Z-score normalization was performed first in the
training cohort. The testing cohort was Z-score normalized using
the training cohort as a “reference;” the mean and standard
deviation values used to z-score normalize the feature values in
the testing cohort were identical in the training cohort.

Radiomics Feature Selection and
Signature Building
Firstly, pair-wise correlations analysis was performed to remove
redundant radiomics features, by using the “findCorrelation”
function in R package “caret” with the absolute correlation cutoff
set at 0.9. Then, we employed the least absolute shrinkage and
selection (LASSO) Cox regression (28), a qualified approach
for regression of high-dimensional predictors by a penalty to
shrink some regression coefficients to exactly zero. This approach
selected the most predictive radiomics features from the training
cohort. The penalty parameter (lambda) was determined by using
5-fold cross-validation based onminimum error criteria. Selected
features were weighted by their respective coefficients obtained
from LASSO, and we computed a radiomics signature (Rad-
signature) with a linear combination of these features. Identical
coefficient values were applied to the testing cohort. An overview
of radiomics analysis is shown in Figure 1.

Statistical Analysis
Continuous variables are reported as median (interquartile range
[IQR]) and were compared using the Mann-Whitney U-test,
whereas all categorical variables were summarized as number
(percent) and compared using the Fisher’s exact test. Survival
curves were depicted using the Kaplan-Meier method and
compared by the log-rank test. Overall Survival (OS) was defined
as the time interval between initial TACE and all-cause death.
Data concerning patients who were lost to follow-up or survived
at the last follow-up (November 16, 2018) were censored.
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FIGURE 1 | Overview of radiomics analysis in this study. (A) tumor volume of interest (VOI) and peritumoral VOI segmentation. (B) Image pre-processing and feature

extraction from original and filtered images. (C) Feature reduction and development and validation of the Rad-signature.

Univariate Cox regression analyses were used to ascertain
prognostic clinical factors. A potential correlation was regarded
as present if P ≤ 0.1. With multivariate Cox regression analyses,
a combined radiomics-clinic (CRC) model was developed
using the Rad-signature and clinical factors with a potential
association with OS. Final model selections were performed
by stepwise backward selection with the Akaike information
criterion. Consistent with previously well-recognized studies,
we treated alpha-fetoprotein (AFP) (>400 vs. ≤400 ng/mL) as
a binary variable in regressions. A radiologist (YW, with 15-
years abdominal imaging experience) who was blinded to the
clinical data of patients evaluated the diameter of the largest
nodule (tumor size) and tumor number. Because of sparse data
when tumor number was >6, higher values were truncated at
six. A continuous variable as a potential risk factor was tested
further for linearity before inclusion in the CRCmodel to identify
whether transformations were needed. The linearity was checked
by a four-knot restricted cubic spline model at Harrell’s default
percentiles (i.e., 5, 35, 65, and 95th) combined with a Wald-type
test (29, 30).

Model performance, discrimination, and calibration were
measured by Harrell’s concordance-index (C-index), the time-
dependent area under receiver operating characteristic curve
(AUROC), and a calibration curve, respectively, in both the
training and testing cohorts (31). The CRC model was compared
with the seven well-recognized models [four-and seven criteria
(4), six-and-12 score (5), HAP score (6), mHAP score (8), mHAP-
II score (9), mHAP-III score (32), and ALBI grade (7)]. All
models were subjected to 1,000- bootstrap resampling validation
to calculate a relatively corrected C-index.

All statistical analyses were performed by using R version
3.5.1 (R Foundation for Statistical Computing, Vienna, Austria)

with packages survival, glmnet, rms, timeROC, caret, Hmisc, and
compareC. Statistical significance was set at P < 0.05 unless
otherwise specified. P-values were two-sided.

RESULTS

Patient Outcomes
Clinical characteristics were comparable between the training
and testing cohorts (Table 1). MedianOSwas 19 (95% confidence
interval (CI), 17.1–24.0) months in the training cohort and 21.8
(95% CI, 18.9–30.9) months in the validation cohort (log-rank
test, P = 0.122). OS was censored in nine and 15 patients,
respectively. The median survival was 19.9 (95% CI, 18.2–24.0)
months in all patients, with 1-, 2-, and 3-years overall survival
rate of 70.8, 40.1, and 26.0%, respectively. The median follow-up
period was 66.2 ± 29.6 months (range 9.8–112.1 months). There
was no significant survival difference among the five centers
(log-rank test, P = 0.12).

Construction of Radiomics Signature
Altogether, 4,288 out of 5,152 features were reproducible
following inter-observer ICC analysis (Figure S1). Further
reduction of pair-wise correlations led to 1,393 independent
features. Finally, six radiomics features with non-zero coefficients
were selected after LASSO Cox regression from the training
cohort (Figure S2). Of the six features, two were based on arterial
phase imaging from tumor VOI and peritumoral VOI, separately,
and the remaining four features were from tumor VOI on portal
venous phase imaging. These radiomics features are detailed in
Table 2. Figure 2 visualized each component’s contribution to the
Rad-signature; the stacked bars representing the six radiomics
features were plotted for each patient.
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TABLE 1 | Characteristics of patients in the training and validation cohorts.

Characteristics Median (IQR)/Number (%) P-value

Entire cohort Training cohort Validation cohort

(N = 162) (N = 108) (N = 54)

Age(year) 58 (47–66.8) 59 (47.2–72.5) 58 (47–66) 0.474

Sex

Male 136 (83.9) 91 (84.3) 45 (83.3) 1

Female 26 (16.1) 17 (15.7) 9 (16.7)

Etiology 0.076

HBV 109 (67.3) 78 (72.2) 31 (57.4)

Others 53 (32.7) 30 (27.8) 23 (42.6)

Tumor size (cm) 7.5 (4.4–10.2) 7.5 (4.2–11.1) 7.4 (4.5–10) 0.736

Tumor Number

1 95 (58.7) 58 (53.6) 37 (68.5) 0.259

2 18 (11.1) 14 (13.0) 4 (7.4)

3 13 (8.0) 11 (10.2) 2 (3.7)

>3 36 (22.2) 25 (23.2) 11 (20.4)

BCLC stage 0.775

A 8 (4.9) 5 (4.6) 3 (5.6)

B 154 (95.1) 103 (95.4) 51 (94.4)

ALBI grade 0.894

A 65 (40.1) 42 (38.9) 23 (42.6)

B 93 (57.4) 63 (58.3) 30 (55.6)

C 4 (2.5) 3 (2.8) 1 (1.8)

Child-Pugh class 1

A 140 (86.4) 93 (86.1) 47 (87.0)

B 22 (13.6) 15 (13.9) 7 (13.0)

AFP (ng/ml) 0.127

<400 64 (39.5) 38 (35.2) 26 (48.2)

≥400 98 (60.5) 70 (64.8) 28 (51.8)

AST (U/L) 47.8 (31–70.5) 44.5 (34.1–68.6) 49.5 (30.8–75.2) 0.568

ALT (U/L) 39 (26.2–59) 34.5 (24.2–56.4) 41 (27–59) 0.552

Prothrombin time (s) 12.5 (11.7–13.9) 12.2 (11.8–13.3) 12.6 (11.7–14) 0.337

Albumin (g/L) 39 (35.8–43) 39.1 (35–41.9) 39 (36–43.4) 0.534

Total bilirubin (µmol/L) 19.6 (12.4–22.9) 15.9 (10.3–21.6) 19.9 (13.2–25.2) 0.094

IQR, interquartile range; HBV, hepatitis B virus; BCLC, Barcelona Clinic Liver Cancer; ABLI, albumin-bilirubin; AFP, alpha-fetoprotein; AST, aspartate transaminase; ALT,

alanine transaminase.

Median (IQR) are shown for continuous variables, whereas numbers (%) are shown for categorical variables.

P-values were calculated by the Mann-Whitney U-test for the continuous variables and the Fisher exact test for the categorical variables.

The Combined Radiomics-Clinic Model
Development and Validation
In the analyses, tumor size, AFP, and tumor number significantly
predicted OS (P < 0.1). With multivariate analyses, continuous
variables of tumor number and the Rad-signature were
identified as independent prognostic factors (Table S2) and
were analyzed further with restrictive cubic spline function
to test linearity (Figure S3). The results showed that the
effect of the Rad-signature was linear (non-linear P-values
were 0.664 and 0.669 in the training and testing cohorts,
respectively), but the tumor number was not (non-linear P-
values were 0.059 and 0.016 in the training and testing
cohorts, respectively). Therefore, only the Rad-signature could

be treated as a continuous linear variable. For the convenience

of clinical practice, tumor number was a categorized variable
rather than a continuous variable with restrictive cubic spline

transformation. To determine the optimal cutoff dichotomizing

tumor number, we attempted all possible values by multivariate
Cox regression analyses in both the training and testing

cohorts. Results showed the models performed best in both
the training and testing cohorts with a tumor number cut-
off at four (Figure S3). The CRC model was finally established
with tumor number (<4 vs. ≥4) and the Rad-signature
(continuous). A nomogram for individualized prediction of
1- and 2-years survival probability was built based on the
CRC model (Figure 3). The calibration curves of the CRC
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TABLE 2 | Features selected for predicting OS from CT images (N = 108).

Feature No. Imaging modality VOI of feature extraction Filter type Feature class Statistic Coefficients*

F1 Portal venous phase Tumor Wavelet_LLL GLCM IMC1 −0.1487

F2 Portal venous phase Tumor Wavelet_LLL GLCM IMC2 −0.0177

F3 Portal venous phase Tumor Wavelet_HLL GLRLM SRLGLE −0.0282

F4 Arterial phase Tumor Wavelet_LHL GLRLM SRLGLE −0.0600

F5 Arterial phase Peritumoral region Log.sigma.1.0.mm GLDM DNN −0.1651

F6 Arterial phase Peritumoral region Wavelet_LHL GLSZM GLNN −0.0571

OS, Overall survival; VOI, Volume of interest; GLCM, Gray Level Co-occurrence Matrix; GLRLM, Gray Level Run Length Matrix; GLCM, Gray Level Co-occurrence Matrix; GLDM,

Gray Level Dependence Matrix; GLSZM, Gray Level Size Zone Matrix. IMC, Informational Measure of Correlation; SRLGLE, Short_Run_Low_Gray_Level_Emphasis; DNN, Dependence

Non-Uniformity Normalized; GLNN, Gray Level Non-Uniformity Normalized.

*Coefficients were derived from the LASSO Cox regression. Formula of the radiomics signature was as follows: radiomics signature = IMC1 × −0.1487 + IMC2 ×-0.0177 + SRLGLE

× −0.0282 + SRLGLE × −0.0600 +DNN × −0.1651 + GLNN × −0.0571.

FIGURE 2 | Stacked bars of the five selected features. (A) Training cohort (n = 108). (B) validation cohort (n = 54). Stacked bars of the selected features patient by

patient. The height of each bar equal to the value of each feature multiply by the absolute value of its coefficient in the LASSO regression. From the stacked bars, it is

convenient to visualize each component of the Rad-signature. LASSO, least absolute shrinkage and selection operator. F1, F2, F3, F4, F5, and F6 are corresponding

to IDMN, Correlation, IMC1, SRLGLE, and LRLGLE in Table 2.
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FIGURE 3 | Nomogram and calibration curves of the combined radiomics-clinic (CRC) model. (A) Nomogram for 1- and 2-years survival probability based on the

CRC model. Usage: Locate the patient’s Rad-signature on the Rad-signature axis. Draw a line straight upward to the Points axis to determine how many points the

patient arrived. Repeat the process for each variable. The points achieved for each of the variables were summed. Locate the sum on the Total Points axis. Draw a line

straight down and find the patient’s 1- or 2-years survival probability. Calibration curve of the CRC model for predicting 1- and 2-years survival in the training cohort

(B) and testing cohort (C). Model-predicted probability of overall survival is plotted on the x-axis; observed overall survival is plotted on the y-axis. The 45◦ line

represents perfect prediction.

model in the training and testing cohorts were presented in
Figure 3.

Performance Comparison
Table 3 summarized C-indices of the prognostic models. The
CRC model showed a favorable performance, with C-indices
of 0.73 [95% CI 0.68–0.79] and 0.70 [95% CI 0.62–0.82]
in the training and testing cohort, respectively. Among the
seven models, the six-and-12 score and four-and-seven criteria
performed better than the other models, with C-indices of 0.64
[95% CI 0.58–0.70] and 0.65 [95% CI 0.55–0.75], respectively,
in the testing cohort. Generally, time-dependent AUROC values
of the CRC model were higher than both the six-and-12

score and four-and-seven criteria in the training and testing
cohorts (Figure 4).

Survival Stratification
For the convenience of clinical practice, an individualized risk
score was generated by a linear combination of the Rad-
score and tumor number (<4 vs. ≥4) weighted by their
respective coefficients from the multivariate Cox regression
model. According to the median risk score (−0.0214) from the
training cohort, patients were divided into two strata: stratum 1,
a risk score <-0.0214., and stratum 2, the risk score >-0.0214.

In the training cohort, stratum 1 patients (median survival:
31.3 months [95%CI 24.5–4.1]) survived significantly longer than
the stratum 2 patients (median survival: 12.5 months [95%CI
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TABLE 3 | Performance of models for overall survival.

Model name Predictors involved C-index (95% CI)

Training Cohort

Rad-signature Six radiomics features 0.68 (0.62–0.74)

CRC model Tumor number (< 4/≥4), Rad-signature 0.73 (0.68–0.79)

Six-and-twelve Sum of tumor size and number 0.64 (0.58–0.70)

Four-and-seven Within four tumors and 7 cm (yes/no), Child-pugh class A/B 0.63 (0.58–0.68)

HAP Albumin (≥36 g/dl/<36 g/dl), AFP (≤ 400 ng/ml/> 400 ng/ml), bilirubin (≤ 17 µmol/l/ >17 µmol/l), tumor size (≤7 cm/>7 cm) 0.55 (0.50–0.61)

mHAP All predictors involved in HAP score but bilirubin 0.59 (0.53–0.65)

mHAP-II All predictors involved in HAP score plus tumor number (1 /≥2) 0.57 (0.52–0.63)

mHAP-III Albumin, AFP, bilirubin, tumor size, and tumor number 0.54 (0.46–0.60)

ALBI grade Albumin, bilirubin 0.52 (0.45–0.56)

Testing Cohort

Rad-signature Five radiomics features 0.67 (0.56–0.79)

CRC model Tumor number (< 4/≥4), Rad-signature 0.70 (0.62–0.82)

Six-and-twelve Sum of tumor size and number 0.64 (0.52–0.74)

Four-and-seven Within four tumors and 7 cm (yes/no), Child-pugh class A/B 0.65 (0.55–0.75)

HAP Albumin (≥36 g/dl/<36 g/dl), AFP (≤400 ng/ml/>400 ng/ml), bilirubin (≤17 µmol/l/ >17 µmol/l), tumor size (≤7 cm/>7 cm) 0.55 (0.46–0.64)

mHAP All predictors involved in HAP score but bilirubin 0.59 (0.47–0.71)

m-HAP-II All predictors of the HAP score plus tumor number (1 /≥2) 0.61 (0.50–0.73)

mHAP-III score Albumin, AFP, bilirubin, tumor size, and tumor number 0.58 (0.47–0.71)

ALBI grade Albumin, bilirubin 0.56 (0.46–0.67)

C-index, Concordance index; CI, confidence interval; Rad-signature, radiomics signature; AFP, alpha-fetoprotein; CRC, combined radiomics-clinic; HAP, hepatoma arterial-embolization

prognostic; ABLI, albumin-bilirubin.

FIGURE 4 | The time-dependent areas under receiver operating characteristic curves of the combined radiomics-clinic models, the six-and-twelve score, and the

four-and-seven criteria for overall survival prediction. (A) training cohort. (B) testing cohort.

9.6–16.1]), with a hazard ratio 3.63 (95% CI 2.36–5.60, log-rank
test P < 0.0001). Applying the same cutoff to the testing cohort,
themedian survivals of stratum 1 and 2were 30.9months (95%CI
30.5–NA) and 17.0 months (95%CI 11.3–26.8), respectively, with
a hazard ratio 2.43 (95%CI 1.91–4.98, P = 0.0014). The survival
curves of the two strata are plotted in Figure 5.

Subgroup Analysis Based on Different
Institutions
Data obtained from different institutions may be considered
a potential confounder. The effects of different institutions on

prognostic performance was investigated in the entire cohort.
Following a bootstrap resampling procedure (1,000 bootstrap
resamples), the C-indices of the radiomics signature in different
subgroups ranged from 0.60 to 0.78 (Table S3). Consistently,
Cox regression analyses applied in each center showed that the
radiomics signature significantly analyzed survival (Table S3).

DISCUSSION

Patients with HCC receiving TACE have various clinical
outcomes. In this study, we developed and independently
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FIGURE 5 | Kaplan-Meier survival curves of the 2 strata patients. (A) training cohort. (B) testing cohort.

validated a radiomics signature comprised of six radiomics
features. The radiomics signature and tumor number (<4 vs.≥4)
were incorporated into a CRC model predicting OS in patients
with HCC undergoing TACE. In comparison, seven previous
well-recognized models were validated in our population, and
the CRC model performed well-against the other models. Our
study developed an accurate prognostic model, which would
help identify the best candidates for TACE. This multicenter
study included imaging data from different machines and CT
scanning protocols in order to ensure the generalizability of the
proposed model.

Our study identified that the radiomics signature comprising
quantitative features was an independent prognostic factor
for survival in patients with HCC undergoing TACE.
Prognostic parameters from previous studies primarily measured
tumor burden and liver function, seldom quantifying spatial
heterogeneity within tumors, essential and neglected information
correlated with HCC prognosis. Our study combined a novel
radiomics approach with routinely used CT imaging to predict
prognosis for patients with HCC receiving TACE. CT is regularly
used in clinical practice to evaluate tumor burden and contains
high-dimension minable data reflecting tumor heterogeneity
(11). Both the arterial phase and portal venous phase images
were investigated in this study and the results showed that
radiomics features from portal venous phase images are also a
critical component of the radiomics signature.

Radiomics analysis on arterial phase image was useful
for prognosis prediction. This may be explained by that
tumor texture patterns in arterial phase imaging could reflect
tumor vascularization patterns, which was helpful for prognosis
prediction (33). There may be two reasons explaining the
importance of radiomics features from the portal venous images.
One is that radiomics analysis of portal venous phase image was

more useful for MVI prediction, which is a significant prognostic
factor of HCC, than arterial phase images (34). The other is that
texture of individual tumors in portal venous phase image can be
heterogeneous and analysis of this heterogeneity has prognostic
value (21). However, previous studies utilized only arterial phase
CT imaging to investigate the capabilities of CT radiomics
features to predict the treatment outcomes of HCC patients
(20). The strength of radiomics analyses based on multiphasic
enhancement images may be that multiphasic enhancement
images can provide more comprehensive information on
prognosis than single-phase images, while it also needs carefully
segment tumor on each phase. Interestingly, the proposed
radiomics signature included two peritumoral radiomics features
from arterial phase imaging rather than the portal venous phase
image. This finding was consistent with previous studies, in
which the presence of peritumoral enhancement in arterial phase
images indicated tumor biological aggressiveness (22, 35). Unlike
previous studies, in which a peritumoral expansion distance of
1, 3, or 5mm was set (21, 22), we selected a radial distance of
10mm in this study. According to the guideline of pathological
sampling of HCC specimens, liver tissue within a 10mm distance
was defined as the adjacent peritumoral region (36). The chances
of microvascular invasion are high in this region, and therefore,
10mmmay represent a better peritumoral region correlated with
prognosis evaluation (37).

When we applied the seven existing models to this population,
the six-and-12 score and four-and-seven criteria performed
better than the other five models. This result may be due to
the exclusion of patients with vascular invasion, a significant
negative factor in HCC prognosis from the target populations
of the six-and-12 score, four-and-seven criteria studies, and our
study (16). Conversely, the ALBI grade presented the worst
performance when validated in this population, probably because

Frontiers in Oncology | www.frontiersin.org 9 July 2020 | Volume 10 | Article 1196116

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Meng et al. Rad-Signature for Survival in HCC

this population preserved liver function, and various survival
outcomes mainly resulted from tumor heterogeneity. The results
of this study are largely consistent with the study that developed
the six-and-12 score, and highlight the increasing importance of
characterizing intratumor heterogeneity (5).

The study developing the six-and-12 score possessed the
most similar patient population, in terms of ethnicity, HCC
etiology, and BCLC stage distribution, with this current study.
Correspondently, we found similar C-indices of the six-and-
twelve score in our population and in the original study
developing the six-and-12 score (5). The six-and-12 score
presented as the sum of tumor size and tumor number; the
CRC model included the rad-signature and tumor number (<4
vs. ≥4). The CRC model performed better than the six-and-
12 score. This improvement may be mainly because the Rad-
signature was established with high-dimensional whole-tumor
radiomics features that measure the intensity and spatial textural
heterogeneity of tumor image. The six-and-12 score included
the tumor number as a continuous variable, which leads to
counting every tumor. Conversely, tumor number was included
as a dichotomized variable in the CRC model, and the cutoff is
consistent with most staging algorithms such as the BCLC and
Milan criteria (2). AFP was not included in the CRC model, but
the prognostics ability of AFP level requires further analysis and
validation in a large cohort study.

The retrospective nature of our study was the first of several
limitations. Further evaluations in extensive prospective studies
are needed to validate the results. Second, tumor VOI only
included the single largest indexed lesion. Previous studies have
validated the feasibility of assessing the largest lesion in survival
analysis after TACE (38, 39), primarily because the largest lesion
reflects the most aggressive behavior of HCC. Furthermore,
manual delineation of tumor VOI can be time-consuming,
limiting the model as an easy-to-use tool. With ongoing
technological improvements of computer-aided algorithms, the
tumor segmentation procedure, and feature screening could be
designed as an automated workflow streamlined by computers
and compatible with diagnostic radiology in standard clinical
practice. Finally, while overall survival might be confounded
by post-TACE variables, these variables were not involved in
this study because they could not be used prior to the first
TACE procedure. To reduce such biases, we included only
treatment-naïve patients with well-preserved liver function in
this population.

In conclusion, our study demonstrated the Rad-signature as
an independent imaging predictor of survival in HCC patients
undergoing TACE. For patients with BCLC B stage HCC or

unresectable BCLC A stage HCC, the CRC model may prove
valuable for the accurate prediction of OS and selection of best
candidates for TACE.
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Objective: The stage, size, grade, and necrosis (SSIGN) score can facilitate the

assessment of tumor aggressiveness and the personal management for patients with

clear cell renal cell carcinoma (ccRCC). However, this score is only available after the

postoperative pathological evaluation. The aim of this study was to develop and validate

a CT radiomic signature for the preoperative prediction of SSIGN risk groups in patients

with ccRCC in multicenters.

Methods: In total, 330 patients with ccRCC from three centers were classified into

the training, external validation 1, and external validation 2 cohorts. Through consistent

analysis and the least absolute shrinkage and selection operator, a radiomic signature

was developed to predict the SSIGN low-risk group (scores 0–3) and intermediate-

to high-risk group (score ≥ 4). An image feature model was developed according to

the independent image features, and a fusion model was constructed integrating the

radiomic signature and the independent image features. Furthermore, the predictive

performance of the above models for the SSIGN risk groups was evaluated with regard

to their discrimination, calibration, and clinical usefulness.

Results: A radiomic signature consisting of sixteen relevant features from the

nephrographic phase CT images achieved a good calibration (all Hosmer–Lemeshow p>

0.05) and favorable prediction efficacy in the training cohort [area under the curve (AUC):

0.940, 95% confidence interval (CI): 0.884–0.973] and in the external validation cohorts

(AUC: 0.876, 95% CI: 0.811–0.942; AUC: 0.928, 95% CI: 0.844–0.975, respectively).
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The radiomic signature performed better than the image feature model constructed by

intra-tumoral vessels (all p< 0.05) and showed similar performance with the fusion model

integrating radiomic signature and intra-tumoral vessels (all p > 0.05) in terms of the

discrimination in all cohorts. Moreover, the decision curve analysis verified the clinical

utility of the radiomic signature in both external cohorts.

Conclusion: Radiomic signature could be used as a promising non-invasive tool to

predict SSIGN risk groups and to facilitate preoperative clinical decision-making for

patients with ccRCC.

Keywords: clear cell renal cell carcinoma, SSIGN score, prognostic prediction, computed tomography, radiomics

INTRODUCTION

Renal cell carcinoma (RCC) is the most common malignancy of
the kidney in adults, among whom clear cell renal cell carcinoma
(ccRCC) accounts for 70–80% of all renal carcinomas (1, 2).
This is the most prevalent histological subtype. Surgery is the
primary treatment for ccRCC, but about 20–30% of patients
will experience metastasis or a recurrence after surgery, and
not all of them will benefit from the surgery (3, 4). Therefore,
the preoperative risk stratification of patients with ccRCC is
increasingly significant from the perspective of personalized
medicine. The use of the Stage, Size, Grade, andNecrosis (SSIGN)
score is one of the most common prognostic models for ccRCC,
and it is a scoring system developed by the Mayo Clinic Center.
This is based on the tumor staging, size, grade, and necrosis
being used to predict the survival and metastasis rate for ccRCC
(5, 6). According to the latest research done by Correa et al.
and Shao et al., the SSIGN scoring system shows the best
predictive performance in both retrospective and prospective
studies relative to other prognostic models (7, 8). However, the
clinicopathological data for the SSIGN score is only available
after the postoperative pathological evaluation. Therefore, a non-
invasive, accurate prediction method of the SSIGN risk group
preoperatively may provide great help in the assessment of tumor
aggressiveness and the personal management of ccRCC patients.

Computed tomography (CT) is recommended as the first-line
assessment tool preoperatively (9). Nevertheless, its efficacy is
limited in tumor staging which may lead to an under-staging or
over-staging for a considerable proportion of ccRCC patients (4).
Radiomics, as an emerging field, refers to transforming medical
images into mineable high-throughput feature sets and explores
the relationships between these features and the underlying
phenotypes to improve clinical decision-making (10). Recently,
studies on radiomics have reported that it can be used to predict
the RCC from benign renal neoplasms, to classify the subtype

Abbreviations: RCC, Renal cell carcinoma; ccRCC, Clear cell renal cell carcinoma;

SSIGN, Stage size, grade, and necrosis; CT, Computed tomography; GZPPH,

Guizhou Provincial People’s Hospital; AHZMU, Affiliated Hospital of Zunyi

Medical University; TCGA, The Cancer Genome Atlas; TCGA-KIRC, The Cancer

Genome Atlas-Kidney Renal Clear Cell Carcinomas; WHO, World Health

Organization; ISUP, International Society of Urological Pathology; IBSI, Image

Biomarker Standardization Initiative; ROI, Region of interest; ICC, Intra-class

correlation coefficient; Rad score, Radiomic score; ROC, Receiver operating

characteristics; AUC, Area under the curve; DCA, Decision curve analysis; LASSO,

Least absolute shrinkage and selection operator.

of RCC, to discriminate the stages of ccRCC as determined
by the World Health Organization/International Society of
Urological Pathology (WHO/ISUP), to differentiate sarcomatous
transformation, and to predict the Von Hippel–Lindau mutation
in ccRCC (11–15). However, previous radiomic studies assessing
the invasiveness of ccRCC only focused on the prediction of a
single risk index and were limited by unsatisfactory predictive
accuracy, small sample sizes, and the absence of multicenter
validation. Additionally, to our knowledge, a radiomic signature
that can preoperatively predict the SSIGN risk groups in ccRCC
has not been reported, to date.

Consequently, the study aims to develop and validate an
easy-to-use radiomic signature in multicenter cohorts for a
preoperative prediction of the low-risk and the intermediate to
high-risk groups based on the SSIGN scores.

MATERIALS AND METHODS

Participant Selection
This was a multicenter retrospective study. All patients with

ccRCC were selected from two Chinese hospitals [Guizhou
Provincial People’s Hospital (GZPPH; Guiyang, China) between

August 2013 and December 2017 and the Affiliated Hospital

of Zunyi Medical University (AHZMU; Zunyi, China) between
February 2010 and December 2017] and the Cancer Genome
Atlas (TCGA) database (https://cancergenome.nih.gov), which
is currently the largest and most comprehensive public
cancer database. Permission for the study was granted by
the ethics committee of GZPPH, and the requirement for
patient informed consent was waived because it was a
retrospective study.

The inclusion criteria were as follows: (1) patients who

had confirmed ccRCC by postoperative pathology; (2) patients

who did not receive biopsy or any treatment prior to surgery;

and (3) pretreatment contrast CT image including at least

the nephrographic phase conducted within 30 days before

surgery. The exclusion criteria were as follows: (1) patients

that received needling biopsy prior to CT examination or
any other treatment prior to surgery; (2) no nephrographic
phase contrast-enhanced CT images; (3) insufficient CT quality
that could not be subjected to analysis (e.g., owing to
artifacts or obvious noise); and (4) incomplete demographic or
clinicopathology data.
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Demographic and Clinicopathology Data
The age, gender, tumor size, tumor necrosis, T stage, N stage, and
TNM stage were obtained from the electronic medical records
system and The Cancer Genome Atlas-Kidney Renal Clear Cell
Carcinoma (TCGA-KIRC) (16, 17). A new grading system of
WHO/ISUP was recommended for ccRCC because Fuhrman
nuclear grading was characterized by strong subjectivity
and poor repeatability. Therefore, the nuclear grading for
all cases was reviewed by two subspecialized genitourinary
pathologists (B.Y.H. and Y.Y.T., with 14 and 21 years’ experience,
respectively) according to the WHO/ISUP grading.

SSIGN Score Risk Groups
As per the previous clinical study, ccRCC patients were classified
into two groups by the SSIGN score according to T stage, tumor
size, nuclear grade, and necrosis, as follows: low-risk group (0–
3) and intermediate- to high-risk group (≥4) according to the
SSIGN score (5).

Image Feature Analysis
Nephrographic phase contrast-enhanced CT images were
downloaded from the image archiving and communication
system and The Cancer Imaging Archive (TCIA), https://wiki.
cancerimagingarchive.net/) (16). Detailed description of the CT
scan equipment and parameters used in the above for both
hospitals are shown in Supplementary S1.

The image semantic features were analyzed by two senior
radiologists (L.H. and Z.X.C., with 11 and 19 years’ experience
in imaging diagnosis, who were both kept ignorant of the
clinicopathological information except for them being aware of
the diagnosis of ccRCC. The image features assessed were as
follows: tumor boundary (defined margin or ill-defined margin);
necrosis imaging (negative or positive, non-enhanced area is
approximately more than 50% of the total tumor); renal vein
invasion (negative or positive, tumor thrombogenesis is seen
in renal vein or inferior vena cava); collecting system invasion
(negative and positive, tumor infiltration of the renal pelvis and
renal cone); intra-tumoral vessels (negative or positive, visible
vascular enhancement within tumor); lymph node metastasis
(negative or positive, peri-renal, hilar, and retroperitoneal
lymph nodes >10mm in the short-axis diameter); visual
relative enhancement (hyperattenuating, isoattenuating, and
hypoattenuating, compared with the degree of renal cortical
enhancement); and enhancement pattern [homogeneity (90%),
relative homogeneity (75–90%), and heterogeneity (<75%), in
terms of the tumor enhanced homogeneity].

Tumor Segmentation
The segmentation was executed using the ITK-SNAP version
3.8 software (www.itksnap.org). First, a radiologist (T.C.) with
6 years’ experience in abdominal diagnosis was responsible for
manually delineating the region of interest (ROI) of the tumor
on each slice of the CT nephrographic images by excluding
the adjacent vessels, peri-renal fat, and renal parenchyma.
Then, these drawn ROIs were reviewed by a senior radiologist
(Z.X.C). Any disagreement was determined through mutual
negotiation between both radiologists who were kept ignorant of
the clinicopathological information.

Radiomic Feature Extraction
Radiomic feature extraction was accomplished using an
open-source python package Pyradiomics with the delineated
ROIs (18). To eliminate the impact of the different datasets
owing to inhomogeneous CT scanners and parameters,
image standardization was implemented as follows: B-spline
interpolation resampling techniques were used to standardize
the image scale in the slice, resulting in a pixel size of 0.75mm
× 0.75mm × 0.75mm. Based on the original images, six
common feature groups [(first-order features based on the
voxel intensity, shape features, and texture features including
the gray-level co-occurrence matrix (GLCM), gray-level run
length matrix (GLRLM), gray-level size zone matrix (GLSZM),
and gray-level dependence matrix (GLDM)] were extracted.
Moreover, the first-order features and texture features were
also extracted from two types of filtered images (logarithm and
wavelet transformation) from the original CT image. Detailed
definitions of the above-extracted texture features can be found
in the Pyradiomics documentation.

The feature extraction algorithms were standardized by
referring to the Image Biomarker Standardization Initiative
(IBSI) (19). In total, 1,218 radiomic features for each region
of interest (ROI) of the tumor were extracted from the three-
dimensional tumor region. In addition, these extracted features
were normalized by the z-score method based on the parameters
calculated in the training set in order to standardize the feature
values to a normal distribution.

Inter-observer and Intra-observer
Agreement Assessment
The reproducibility of intra-observer and inter-observer
agreement for the radiomic features was measured using 45 of
patients randomly chosen from three databases. To evaluate
intra-observer agreement, the radiomic features extracted
from the ROI were delineated by observer 1 (Radiologist T.C.)
around 2 weeks using the same method. The inter-observer
agreement was assessed by comparing the radiomic features
extracted from the ROI as outlined separately by observer 1
first and then by observer 2 (radiologist Z.X.C.). The intra-class
correlation coefficient (ICC) was used to evaluate the intra-
observer and inter-observer agreement, and the ICC > 0.75
indicated satisfactory agreement and so these were retained for
feature selection.

Radiomic Signature Construction
To minimize overfitting or selection bias in our radiomic
features, the least absolute shrinkage and selection operator
(LASSO) regression method fit for regression of high-
throughput data was utilized to filter the features that best
predicted the SSIGN score. The features that remained after
LASSO regression were applied to build a radiomic signature by
the logistic regression (LR) model through a linear combination
of selected features weighted by LR coefficients in the training
set. Afterwards, a radiomic score (Rad score) based on the above
model formula was calculated for each patient and the cutoff
value was statistically analyzed using the Youden index. Finally,
the verification of the radiomic signature was performed among
the external validation cohorts.
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FIGURE 1 | Flowchart of the patient recruitment process.

Image Feature Model and Fusion Model
Construction
Univariate and multivariate logistic regressions were in
succession used to select the risk factors of the image features for
predicting the SSIGN risk group, and the features with p < 0.05
were introduced into a multivariate logistic regression to build
an image feature model in the training cohort. Additionally, a
fusion model was used to integrate the radiomic signature and
the independent image features in order to predict the SSIGN
score through a multivariate logistic regression model in the
training set. In the end, the image feature model and the fusion
model were both verified in the external validation cohorts.

Multicenter Model Validation and
Assessment
The predictive value of the radiomic signature, the image feature
model, and the fusion model were assessed among the training
cohort (n = 132), external validation cohort 1 (n = 123), and
external validation cohort 2 (n = 75) regarding discriminability,
calibration, and clinical value. The discriminability performance
was carried out by the area under the receiver operator
characteristic (ROC) curve (AUC), and the differences in AUC
values between the threemodels were compared using theDelong
test. The Hosmer–Lemeshow test was used with a calibration
curve to determine the goodness of fit. Decision curve analysis
(DCA) was used to calculate the net benefits for a range of
threshold probabilities in both validation datasets to estimate
whether the models was sufficiently robust for clinical use.

Statistical Analysis
Statistical tests were performed using SPSS (version 21.0,
IBM) and R statistical software (version 3.6.0, https://www.r-
project.org) or Python (version 3.6.8, https://www.python.org).
Univariate analysis was applied to compare the differences
of the image feature factors between the two groups by
using the chi-square test or Fisher exact test for categorical
variables and theMann–WhitneyU-test for continuous variables,
where appropriate. The “glmnet” package was used to perform
the LASSO regression model analysis. Calibration curve plots
were performed using the “gbm” package, and the Hosmer–
Lemeshow test was performed using the “generalhoslem”
package. Differences in the AUC values between different models
were estimated using the DeLong test. The DCA was performed
using the “dca.R.” package. The discrimination metrics of the
established models, including the AUC, classification accuracy,
sensitivity, and specificity were also calculated, and the ROC
curves were plotted using Python. A two-sided p < 0.05 was
considered significant.

RESULTS

Patient Characteristics
As shown in Figure 1, a total of 330 eligible patients were
enrolled and divided into three independent cohorts as follows:
the training cohort consisting of 132 patients (81 low-risk group,
51 intermediate- to high-risk group) from AHZMU; external
validation cohort 1 consisting of 123 patients (78 low-risk group,
45 intermediate- to high-risk group) from GZPPH; and external
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TABLE 1 | Characteristics of ccrcc Patients in the training cohorft, validation cohort 1 and validation cohort 2.

Characteristics Training cohort (n=132) Validation cohort 1 (n=123) Validation cohort 2 (n=75)

SSIGN low

risk group

(n = 81)

SSIGN

intermediate-

high risk

group (n = 51)

P-value SSIGN low

risk group

(n = 78)

SSIGN

intermediate-

high risk

group (n = 45)

P-value SSIGN low

risk group

(n=38)

SSIGN

intermediate-

high risk

group (n = 37)

P-value

Age 56.99 ± 11.39 56.02 ± 16.03 0.708 56.08 ± 13.53 55.93 ± 11.53 0.952 57.95 ± 14.95 60.86 ± 11.55 0.348

Gender 0.714 0.703 0.489

Female 30 (37.04%) 21 (41.18%) 31 (39.74%) 16 (35.56%) 15 (39.47%) 18 (48.65%)

Male 51 (62.96%) 30 (58.82%) 47 (60.26%) 29 (64.44%) 23 (60.53%) 19 (51.35%)

tumor 4.25 ± 1.65 6.53 ± 2.20 <0.001* 4.15 ± 1.60 6.94 ± 2.18 <0.001* 3.97 ± 1.42 7.90 ± 2.54 <0.001*

Tumor boundary

(%)

0.012* <0.001* <0.001*

Circumscribed 74 (91.36%) 38 (74.51%) 72 (92.31%) 27 (60.00%) 38 (100.00%) 23 (62.16%)

Infiltrative 7 (8.64%) 13 (25.49%) 6 (7.69%) 18 (40.00%) 0 (0.00%) 14 (37.84%)

Necrosis imaging

(%)

0.857 0.010* 0.002*

Absent 32 (39.51%) 21 (41.18%) 17 (21.79%) 2 (4.44%) 23 (60.53%) 9 (24.32%)

Present 49 (60.49%) 30 (58.82%) 61 (78.21%) 43 (95.56%) 15 (39.47%) 28 (75.68%)

Renal vein invasion

(%)

0.030* <0.001* <0.001*

Absent 75 (92.59%) 40 (78.43%) 77 (98.72%) 34 (75.56%) 38 (100.00%) 28 (75.68%)

Present 6 (7.41%) 11 (21.57%) 1 (1.28%) 11 (24.44%) 0 (0.00%) 9 (24.32%)

Collecting system

invasion (%)

<0.001* <0.001* 0.007*

Absent 73 (90.12%) 30 (58.82%) 74 (94.87%) 22 (48.89%) 36 (97.30%) 27 (72.97%)

Present 8 (9.88%) 21 (41.18%) 4 (5.13%) 23 (51.11%) 1 (2.70%) 10 (27.03%)

Intratumoral

vessels (%)

<0.001* <0.001* 0.005*

Absent 39 (48.15%) 5 (9.80%) 24 (30.77%) 2 (4.44%) 28 (73.68%) 15 (40.54%)

Present 42 (51.85%) 46 (90.20%) 54 (69.23%) 43 (95.56%) 10 (26.32%) 22 (59.46%)

lymphatic

metastasis (%)

<0.001* <0.001* 0.054*

Absent 80 (98.77%) 42 (82.35%) 75 (96.15%) 31 (68.89%) 38 (100.00%) 33 (89.19%)

Present 1 (1.23%) 9 (17.65%) 3 (3.85%) 14 (31.11%) 0 (0.00%) 4 (10.81%)

Visual relative

enhancement (%)

0.073 0.343 0.931

Hyperattenuating 7 (8.64%) 7 (13.73%) 11 (14.10%) 11 (24.44%) 12 (31.58%) 13 (35.14%)

Isoattenuating 60 (74.07%) 28 (54.90%) 47 (60.26%) 23 (51.11%) 20 (52.63%) 19 (51.35%)

Hypoattenuating 14 (17.28%) 16 (31.37%) 20 (25.64%) 11 (24.44%) 6 (15.79%) 5 (13.51%)

Enhancement

pattern (%)

0.362 0.009* 0.043*

Homogeneous

enhancement

31 (38.27%) 14 (27.45%) 28 (35.90%) 10 (22.22%) 18 (47.37%) 8 (21.62%)

Relatively

homogeneous

enhancement

25 (30.86%) 16 (31.37%) 34 (43.59%) 14 (31.11%) 8 (21.05%) 8 (21.62%)

Heterogeneous

enhancement

25 (30.86%) 21 (41.18%) 16 (20.51%) 21 (46.67%) 12 (31.58%) 21 (56.76%)

Tumor Size 3.37 ± 0.96 6.40 ± 2.15 <0.001* 3.63 ± 1.17 7.64 ± 2.24 <0.001* 3.57 ± 1.15 8.85 ± 3.48 <0.001*

WHO/ISUP

grading (%)

<0.001* <0.001* 0.006*

I 20 (24.69%) 3 (5.88%) 15 (19.23%) 1 (2.22%) 10 (26.32%) 5 (13.51%)

II 53 (65.43%) 24 (47.06%) 60 (76.92%) 19 (42.22%) 16 (42.11%) 14 (37.84%)

III 8 (9.88%) 19 (37.25%) 3 (3.85%) 19 (42.22%) 12 (31.58%) 8 (21.62%)

IV 0 (0.00%) 5 (9.80%) 0 (0.00%) 6 (13.33%) 0 (0.00%) 10 (27.03%)

(Continued)
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TABLE 1 | Continued

Characteristics Training cohort (n=132) Validation cohort 1 (n=123) Validation cohort 2 (n=75)

SSIGN low

risk group

(n = 81)

SSIGN

intermediate-

high risk

group (n = 51)

P-value SSIGN low

risk group

(n = 78)

SSIGN

intermediate-

high risk

group (n = 45)

P-value SSIGN low

risk group

(n=38)

SSIGN

intermediate-

high risk

group (n = 37)

P-value

Coagulative

Necrosis.

<0.001* <0.001* 0.005*

present 10 (12.35%) 41 (80.39%) 5 (6.41%) 32 (71.11%) 11 (28.95%) 23 (62.16%)

absent 71 (87.65%) 10 (19.61%) 73 (93.59%) 13 (28.89%) 27 (71.05%) 14 (37.84%)

T stage (%) <0.001* <0.001* <0.001*

T1 76 (93.83%) 23 (45.10%) 77 (98.72%) 11 (24.44%) 36 (94.74%) 6 (16.22%)

T2 3 (3.70%) 21 (41.18%) 0 (0.00%) 24 (53.33%) 0 (0.00%) 7 (18.92%)

T3 2 (2.47%) 7 (13.73%) 1 (1.28%) 9 (20.00%) 2 (5.26%) 22 (59.46%)

T4 0 (0.00%) 0 (0.00%) 0 (0.00%) 1 (2.22%) 0 (0.00%) 2 (5.41%)

N stage (%) 0.073 0.366 0.002*

N1 1 (1.23%) 4 (7.84%) 0 (0.00%) 1 (2.22%) 0 (0.00%) 8 (21.62%)

N0+Nx 80 (98.77%) 47 (92.16%) 78 (100.00%) 44 (97.78%) 38 (100.00%) 29 (78.38%)

M stage (%) <0.001* 0.002* <0.001*

M0 81 (100.00%) 40 (78.43%) 78 (100.00%) 39 (86.67%) 38 (100.00%) 28 (75.68%)

M1 0 (0.00%) 11 (21.57%) 0 (0.00%) 6 (13.33%) 0 (0.00%) 9 (24.32%)

TNM stage (%) <0.001* <0.001* <0.001*

I 75 (92.59%) 14 (27.45%) 77 (98.72%) 11 (24.44%) 36 (94.74%) 4 (10.81%)

II 3 (3.70%) 19 (37.25%) 0 (0.00%) 21 (46.67%) 0 (0.00%) 5 (13.51%)

III 3 (3.70%) 7 (13.73%) 1 (1.28%) 7 (15.56%) 2 (5.26%) 19 (51.35%)

IV 0 (0.00%) 11 (21.57%) 0 (0.00%) 6 (13.33%) 0 (0.00%) 9 (24.32%)

*P < 0.05 means statistical significance.

Data are in n (%) unless otherwise indicated.

Categorical variables are compared using chi-square tests or Fisher exact tests, while continuous variables are compared using t-test or Mann-Whitney U-test, as appropriate.

validation cohort 2 consisting of 75 patients (38 low-risk group,
37 intermediate to high-risk group) collected from TCGA-KIRC.
There were no significant differences between these cohorts
in the SSIGN risk group (p > 0.05). The demographics, the
clinicopathology characteristics, and the image features of all
patients are shown in Table 1.

Radiomic Signature Construction
A total of 1,218 radiomic features were extracted from the
nephrographic phase contrast-enhanced CT images with 1144
radiomics features remaining by eliminating the radiomic
features with non-robustness (ICC < 0.75) between the inter-
and intra-observers. Then, 16 SSIGN risk group-related radiomic
features with non-zero coefficients were screened using the
LASSO regression analysis. A radiomic signature based on
the above radiomic features was constructed via the LASSO
logistic regression model in the training cohort. The Rad
score calculation formula is shown in Supplementary S2, and
the optimal risk cutoff value of the Rad score was 0.352
according to the maximized Youden index in the training
cohort. Consequently, a statistically significant difference was
observed in the Rad scores [median (interquartile range)]
between the low-risk group and intermediate- to high-risk
group in the training cohort [0.097 (0–0.346) vs. 0.744 (0.353–
1), respectively, p < 0.001]. This difference was confirmed in

external validation cohort 1 [0.095 (0.001–0.3441) vs. 0.727
(0.727–0.378), respectively, p < 0.001] and in external validation
cohort 2 [0.086 (0–0.311) vs. 0.813 (0.372–1), respectively, p <

0.001]. Finally, the radiomic signature demonstrated a favorable
predictive performance with an AUC of 0.940 [95% confidence
interval (CI), 0.884–0.973] in the training cohort, 0.876 (95% CI,
0.811–0.942) in external validation cohort 1 and 0.928 (95% CI,
0.844–0.975) in external validation cohort 2.

Image Feature Model and Fusion Model
Construction
In the univariate analysis, the image features of the tumor
boundary, the renal vein invasion, the collecting system invasion,
the intra-tumoral vessels, and the enhancement pattern were
significantly different between the SSIGN low-risk group and
intermediate- to high-risk group (p < 0.05). There was only one
image feature, intra-tumoral vessels (OR 11.463 [9.702–13.226],
P < 0.001), as an independent predicted factor for the SSIGN
intermediate- to high-risk groups by applying multivariate
logistic regression analysis. Consequently, an image feature
model was developed based on the intra-tumoral vessels and
yielded an AUC of 0.708 (95% CI, 0.625–0.787) in the training
cohort, 0.630 (95% CI, 0.538–0.715) in external validation cohort
1 and 0.666 (95%CI, 0.547–0.771) in external validation cohort 2.
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FIGURE 2 | Comparison of ROC curves between radiomic signature, image feature model, and fusion model for prediction of tumor necrosis in the training cohort

(A), the validation cohort 1 (B), and the validation cohort 2 (C). The three colors of the curves represent different models: green, radiomics signature; blue, image

feature model; red, fusion model. Calibration curves of the radiomic signature, fusion model in the training cohort (D), the validation cohort 1 (E), and the validation

cohort 2 (F), respectively. Calibration curves show the calibration of the nomogram in terms of agreement between the predicted probability of SSIGN risk group and

actual probability. The 45 black lines represent a perfect prediction, and the green and red lines represent the predictive performance of the radiomic signature and the

fusion model, respectively. The closer the dotted line fit is to the ideal line, the better the predictive accuracy of the model is.

In addition, a fusion prediction model was constructed
combining the radiomic signature and the independent predictor
which demonstrated AUCs of 0.942 (95% CI, 0.887 to 0.975),
0.876 (95% CI, 0.808–0.945) and 0.920 (95% CI, 0.834–0.970),
respectively, for the training and external validation cohorts.

Model Evaluation and Model Comparison
The ROC curves of the radiomic signature, the image features,
and the fusion model are demonstrated in Figures 2A–C and the
predicted performance summarized in Table 2 for all cohorts.
Through the DeLong test, the results showed that the AUCs of
the radiomic signature and the fusion model exceeded that of the
image feature model (p < 0.001 and p < 0.001, respectively, in all
cohorts), while no significant differences in the AUC values were
discovered between the radiomic signature and the fusion model
in the training and external validation cohorts (p = 0.575, 1.000,
0.304), summarized in Table 3. The results indicated that they
were equally effective in the discrimination performance between
the SSIGN low-risk and intermediate- to high-risk groups.

The calibration curves in all the cohorts are illustrated in
Figures 2D–F. The calibration curve and theHosmer–Lemeshow
test revealed that the radiomic signature and the fusion model
both demonstrated an excellent agreement between the expected
and predicted consistency probabilities in training cohorts (p
= 0.987 and p = 0.647). The favorable calibration was further

verified in external validation 1 cohort (p= 0.140 and p= 0.255)
and external validation 2 cohort (p= 0.125 and p= 0.131).

The DCA of the radiomic signature, the image features,
and the fusion model are presented in Figure 3. The radiomic
signature and the fusion model provided more net benefits
than the image model and the treat-all or treat-none scheme,
and the two models showed no significant differences in the
threshold probability >12% in the external validation cohorts,
thus indicating that both models attained similar performance
with regard to their clinical application.

DISCUSSION

In this multicenter study, a radiomic signature was proposed with

an excellent predictive accuracy to discriminate SSIGN low-risk
and intermediate to high-risk groups in patients with ccRCC.

This significantly outperformed the image feature model and
showed similar performance with the fusion model in terms of

the discrimination, calibration, and clinical value in the training
cohort and both validation cohorts. The results demonstrated
the feasibility and reproducibility of the radiomic signature in
preoperative SSIGN risk assessment between different centers for
ccRCC patients.
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TABLE 2 | Predictive performance of the radiomics signature, image feature model, fusion model in all cohorts.

Model Trainning cohort (n = 132) Validation cohort 1 (n = 123) Validation cohort 2 (n = 75)

AUC 95%CI
(AUC)

acurracy sensitivity spencificity AUC 95%CI
(AUC)

acurracy sensitivity spencificity AUC 95%
CI(AUC)

acurracy sensitivity spencificity

Radiomics
signature

0.940 0.884–
0.973

87.88% 85.19% 92.16% 0.876 0.811–
0.942

78.86% 81.61% 72.22% 0.928 0.844–
0.975

81.33% 94.74% 67.57%

Image
feature
model

0.708 0.625–
0.787

65.91% 49.38% 92.16% 0.630 0.538–
0.715

48.78% 28.74% 97.22% 0.666 0.547–
0.771

66.67% 73.68% 59.46%

Fusion
model

0.942 0.887–
0.975

87.88% 85.19% 92.16% 0.876 0.808–
0.945

80.49% 82.76% 75.00% 0.920 0.834–
0.970

80.00% 94.74% 64.86%

TABLE 3 | Model prediction performance comparison.

Training

cohort

Validation

cohort 1

Validation

cohort 2

Radiomics signature vs. image

feature model

p < 0.0001 p < 0.0001 p < 0.0001

Fusion model vs. image feature

model

p <0.0001 p < 0.0001 p < 0.0001

Radiomics signature vs. fusion

model

p = 0.575 p = 1.000 p = 0.304

A radiomic signature in the current study was constructed
using eleven selected features including shape features, first-
order feature, and texture features. Pathologically, tumor size
is an important indicator of tumor staging and associated with
higher nuclear grade, more histologic necrosis, and sarcomatoid
changes (15, 20–22). As a consequence, the shape features,
especially the major axis length, which is the largest axis
length of the tumor, contributed to predicting the SSIGN risk
groups. The only first-order feature was kurtosis, a statistical
parameter of peakedness or the sharpness of the histogram, which
increased with lower heterogeneity (23). In agreement with this
principle, the ccRCC with low risk demonstrated higher kurtosis
values when compared to high-risk ccRCC, suggesting a more
homogeneous pattern within the pixels in the SSIGN low-risk
group. Comparedwith the above two types of features, the texture
features yielded a better diagnostic performance according to the
LASSO coefficients. The texture features were used to describe
the patterns or spatial distributions of voxel intensity and proved
to be an efficient approach in characterizing tumor macroscopic
heterogeneity, which is a potential representation of tumor
aggressiveness (24, 25). In previous studies, the differentiated
distribution of texture features can be detected between low
and high WHO/ISUP grade ccRCC, sarcomatoid, and non-
sarcomatoid RCC (12, 15). Therefore, the texture features provide
important supplementary information for other features and
constitute the most relevant feature set for SSIGN risk prediction.

Consistent with the previous study, the image feature
model constructed and based on the intra-tumoral vessels was
significantly worse than the radiomic signature in discriminating
performance, further proving that the radiomic features can
produce more detailed phenotypic information about a tumor
hard to detect with the naked eye (10, 26, 27). Furthermore,
a fusion model was constructed by integrating the radiomics
signature and the image feature. However, there was no

significant difference between the radiomic signature and the
fusion model in the discrimination, calibration, and clinical value
on account of which the image feature, the intra-tumoral vessels,
could not add any incremental value to the radiomic signature.
Therefore, this study considered the single radiomic signature
with improved efficiency, reproducibility, and consistency and
pipeline systems to potentially provide an easy-to-use tool to
predict the SSIGN risk groups for patients with ccRCC.

In different centers, there was a great challenge in validating
the radiomic models reflecting the tumor’s invasiveness by
predicting a single pathological index. This was because the
evaluation of the pathological indicator may be differed among
different pathologists (28, 29). Unlike these, the SSIGN score
in this study had a better credibility and generalization among
the different centers as the multi-indicator comprehensive model
could have reduced the influence of the errors and bias caused by
a single indicator used for the diagnosis. Additionally, in order
to ensure the generalizability and reproducibility of the radiomic
signature, this study was constructed using a large sample size
and validated by two independent external datasets, including
those of the TCGA-KIRC. Therefore, the radiomic signature
capable of predicting the SSIGN risk group has great clinical and
practical value.

Overall, our study has important practical implications
because SSIGN is one of the commonest used prediction systems
for the overall survival prognosis of ccRCC patients. However,
percutaneous biopsy serves as a standard method for tumor
aggressiveness assessment in vivo. However, this kind of biopsy
cannot deliver a SSIGN score and is limited by sampling bias,
unsatisfactory accuracy, and the use of an invasive method (30).
Considering the favorable performance in predicting the SSIGN
risk groups in the multicenter datasets, radiomic analysis may be
an alternative method for the assessment of the aggressiveness
of ccRCCs and could play a more key role in the choice of
optimal treatment methods for ccRCC patients before surgery.
In addition, radiomic analysis with its non-invasive nature and
automated analysis can be seen as a promising tool to repeatedly
assess patients with ccRCC being treated conservatively, such as
them being under active surveillance and using ablative therapies
during follow-up.

There were several limitations in this study. First, although

these models were satisfactory when it came to accuracy in
the two independent external validation cohorts, the robustness

and repeatability should be validated by a larger prospective
cohort. Second, this study only focused on the value of radiomics

in the discrimination of SSIGN low-risk and intermediate-
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FIGURE 3 | Decision curve analysis (DCA) for each model in the validation cohorts. The DCA demonstrated that if the threshold probability was >12% in the validation

cohort 1 (A) and in the validation cohort 2 (B), the application of radiomics signature and fusion model to predict SSIGN risk group performance equals and adds

more benefit than does the image model and treats all or none of the patients.

to high-risk groups due to the limited sample size and the
unbalanced patient distribution. However, the prediction of
more at-risk subgroups based on the SSIGN score may be
of greater value in the diagnosis and treatment of ccRCC
patients. Third, there were greater heterogeneities in the CT scan
equipment and the parameters between inter-central and intra-
central, especially in the TCGA-KIRC cohort. Fourth, the loss
of the interpretability and explainability of the radiomic features
remained as an important challenge for the application of the
radiomic signature clinically.

In conclusion, this current study proposed a CT-
based radiomic signature that demonstrated satisfactory
predictive performance in distinguishing SSIGN low-risk
group and an intermediate- to high-risk group of ccRCC
preoperatively. As a quantitative and non-invasive predictive
tool, a radiomic signature is expected to further facilitate
clinical decision-making.
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Purpose: This study aims to explore the imaging–clinic relationship and an optional

imaging biomarker of hepatocellular carcinoma (HCC) by using texture analysis on arterial

enhancement fraction (AEF).

Materials and Methods: The HCC patients treated in No. 2 Interventional Ward,

ShengJing Hospital of China Medical University from June 2018 to June 2019 were

enrolled, for whom tri-phasic enhanced CT scans were acquired. Perfusion analysis and

texture analysis were then performed on the tri-phasic enhanced CT images. After the

region of interest (ROI) of viable HCC was drawn, 13 AEF textures describing the values

distribution were conducted. A between-groups comparison of AEF textures was made

where the cases had grouping properties, a correlation analysis was made between AEF

textures and alpha-fetoprotein (AFP) as well as other clinical data which were digital,

and regression analysis was made when a significant correlation was found. SPSS 19.0

(IBM) was utilized for statistical analysis; a significant difference was considered when

P < 0.05.

Results: Twenty-five HCC patients were enrolled. Several AEF textures were found to

have a correlation with clinical features, including previous surgery history, age, glutamic

oxaloacetylase, indirect bilirubin, creatinine, and AFP. The majority of AEF textures (up

to 9/13) were found to have a correlation with AFP (SD, variance, uniformity, energy,

entropy, inertia, correlation, inverse difference moment, and cluster prominence), while

six or seven textures have a linear or cubic relationship with AFP (SD, variance, uniformity,

inertia, correlation, cluster prominence, plus inverse difference moment).

Conclusion: The AEF textures of HCC are strongly correlated with and are impacted

by AFP, which may enable AEF to act as an optional imaging biomarker of HCC.

Keywords: texture, AEF, AFP, heterogeneity, angiogenesis, HCC
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INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most common
cancers worldwide, accounting for 90% of primary malignant
liver neoplasms (1). In China, the situation is almost the same;
85–90% of primary liver cancers are HCCs (2). An early and
precise detection is vital in the diagnosis and follow-up of HCC,
where the imaging finding featuring a unique enhancement
pattern is acknowledged as a great help, no matter if in China
(2), Europe (3), or America (4).

The liver is fed by both the portal vein (75%) and the
hepatic artery (25%). As HCC develops, portal feeding decreases,
while arterial feeding increases and becomes more and more
predominant (5–8). The changing of perfusion proportion is
a unique histological feature of HCC, which can be reflected
by arterial enhancement fraction (AEF) (9), the ratio between
hepatic artery perfusion and portal vein perfusion (10–14). AEF
can be obtained based on routine tri-phasic enhanced CT images
by using the formula CTa–Ctu/CTp–CTu (where CTa is the CT
value in arterial phase, CTp is the CT value in portal phase,
and CTu is the unenhanced CT value), which means that extra
contrast or radiation exposure can be avoided. At the same
time, AEF can define the viable tumor by depicting the region
with perfusion, which means that non-tumorous tissue like
calcification, necrosis, or lipiodol accumulation can be avoided.

Considering that the changing of blood feeding is
heterogeneous inside the tumor, an overall AEF covering
the whole tumor may not describe the inherent details of
HCC. Texture analysis had been widely applied in medical
imaging as reported (15–19), which enables a mathematical and
statistical description of an image by evaluating the distribution
of pixels. The present study performed texture analysis on AEF,
along with clinical data extraction, with the aim to explore the
imaging–clinic relationship and an optional imaging biomarker
of hepatocellular carcinoma. A good coordination between
clinicians and imaging engineers is necessary to guarantee the
practicability of this study.

MATERIALS AND METHODS

Patient Enrollment
The cases enrolled in this study were HCC patients who
were treated in No. 2 Interventional Ward, ShengJing Hospital
of China Medical University from June 2018 to June 2019.
Approved by the institutional ethical committee of our center,
the enrollment was achieved via the following route (Figure 1):
(1) patients with liver cancer, (2) age from 30–90 years old,
(3) not intending to be pregnant in the next 6 months, (4)
written informed consent was obtained, (5) tri-phasic enhanced
CT scan was performed, (6) the quality of the images was
satisfactory for post-processing, (7) the diagnosis of HCC was
defined clinically or pathologically, (8) viable HCC was found
based on CT and/or post-processing results, (9) transarterial
chemoembolization (TACE) was subsequently performed to treat
the patients, and (10) the viable HCC was confirmed by hepatic
arteriography during TACE. Cases which failed in any step of the
route would be excluded. Besides that, cases should be excluded

when any of the following situations happened: (1) images with
motion artifacts causing a difficulty in the region of interest
(ROI) drawing, (2) abnormal density artifacts involving ROI,
(3) unmatched slices between phases even though 3D non-rigid
motion registration was applied, (4) diffuse HCC, (5) tiny HCC
(<1 cm), (6) big fistula between vessels found during TACE, (7)
any later evidence against the diagnosis, and (8) patients asking
for quit.

Age, weight, gender, hepatitis type, alcoholic background, and
family history were recorded. The imaging features related to
liver cirrhosis were reviewed by two radiologists with at least
5 years of work experience, including cirrhotic deformation,
ascites, varices, splenomegaly, and hepatic encephalopathy. All
cases were then divided into three degrees (absent, mild, and
severe) based on the imaging findings. Additionally, some lab
indexes involving liver function, renal function, coagulation
function, ammonia, and alpha-fetoprotein (AFP) were gathered.
Barcelona Staging System (3), China Staging System (2), and
Child–Pugh Scoring System were used for the final classification
of the enrolled cases.

Image Processing
CT scan was acquired with a 128-row multi-detector CT (iCT
256, Philips, Netherlands). The scanning parameters were as
follows: tube voltage, 100 kVp, with automatic tube current
modulation; pitch, 0.993; rotation time, 0.5 s; collimation 128
× 0.635; field of view, 350 × 350mm; and slice thickness,
3mm. Tri-phasic enhanced images were acquired after the bolus
injection of iodixanol (Visipague 270, GE, Ireland). The volume
of contrast used was calculated as 1.2 ml/kg body weight, and the
injection rate was 4.5 ml/s, followed by 20ml of saline flush. The
acquisition times for each phase were arterial phase 23 s, portal
phase 45 s, and delay phase 120 s, which were determined by pre-
experiments where the acquisition timematched the three phases
in the majority of the patients.

The unenhanced and tri-phasic enhanced CT images (DCM
format) were loaded into C.K. Software (CT-Kinetics, GE
Healthcare, China) for the analysis based on a liver model.
3D non-rigid motion registration was applied for each data set
before analysis to overcome the complicated movement of the
liver during breathing. The aorta was chosen as the input artery
and the portal vein as the input vein, and the time–density
curve was obtained. The parametric perfusion maps of AEF were
generated automatically. A lesion ROI was delineated around the
tumor outline for the largest cross-sectional area based on both
AEF map and CT map that can best show the outline of the
tumor. All the necrosis, calcification, and lipiodol accumulation
should be excluded. It is acceptable to shrink the tumor region
a little smaller than it is shown in order to guarantee that the
whole ROI was tumorous. Two radiologists did the ROI drawing
work with an agreement to make sure that the final ROI was
correct. Another round of ROI on the liver parenchyma was also
placed as control. Then, the AEF of each pixel within the lesion
ROI was calculated based on the AEF map. The entire texture
analysis was performed using the C.K. software automatically. A
total of 13 textures showing the mathematic distribution of AEF
were generated, including mean value, SD, variance, skewness,
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FIGURE 1 | The route of case enrollment. The cases which failed in any step of the route would be excluded from the study.

kurtosis, uniformity, energy, entropy, inertia, correlation, inverse
difference moment, cluster shade, and cluster prominence.

Data Statistics
Each AEF texture group (13 groups) should be tested with
Kolmogorov–Smirnov test to judge whether they were accorded
with normal distribution prior to the statistical analysis. Then,
first, a between-groups comparison of AEF textures was made,
wherein the cases had grouping properties such as gender,
hepatitis type, cirrhotic degree, Barcelona stage, Child–Pugh
score, etc. Second, a correlation analysis was made between AEF
textures and some clinical data which were digital, such as age,
weight, albumin, bilirubin, AFP, etc. Third, for the reason that
the AFP and the AEF textures were both some sort of reflection
of the HCCs’ inherent attributes, a regression analysis was made
when a significant correlation was found to determine the causal
relationship between them. SPSS 19.0 (IBM) was utilized for
statistical analysis. A significant difference was considered when
P < 0.05.

RESULTS

Patient Enrollment
Sixty-nine patients were initially involved in this study. Informed
consent was obtained from all of them. However, eight patients
did not pass the CT scan because of either equipment
malfunction or personal condition. Two cases were diagnosed
to be intrahepatic cholangiocarcinoma and liver metastases
and were judged as failed in the enrollment. The other 59

patients were all clinically diagnosed with HCC; some of
them were defined by biopsy. After a systemic assessment,
therapeutic recommendations were given. A total of 28 patients
accepted TACE for tumor control; the others were tumor-free
or unable/unwilling to have TACE due to multiple reasons
like physical condition, fare, or risk. TACE was performed
successfully in 28 patients, with no complications observed.
The viable HCCs were confirmed during hepatic arteriography.
Two patients were excluded for the reason of diffuse HCC and
big arterioportal fistula. Additionally, one patient asked to quit
the study for personal reasons. Therefore, 25 cases were finally
enrolled, for whom the baseline characteristics are listed in
Table 1.

Image Processing
Each CT scan took about 5min. No accident occurred, no
discomfort was reported, and no contrast-related complications
arose. The image quality was satisfactory, and post-processing
was accomplished. In general, the color of the “lesion” was
warmer than that of the “control” on the AEF map (Figure 2).
For patients who had been treated with TACE previously, the
embolized region with lipiodol accumulation had no blood
perfusion. This region should show as a “hollow zone” on the
AEF map. When any abnormal color was recognized beside the
“hollow zone.” Tumor recurrence should be considered. After the
viable tumor region was delineated by hand, 13 textures were all
extracted for all 25 cases. The Kolmogorov–Smirnov test showed
that some textures fitted normal distribution while some did not.
To ensure the creditability of the following statistical analysis,
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TABLE 1 | Baseline of the enrolled cases.

Item Mean ± SD coverage or number

Sample size 25

Age 61.80 ± 9.53, 46–84 years

Weight 68.40 ± 12.40, 50–90 kg

Gender Male (n = 21); female (n = 4)

Hepatitis type B (n = 20); C (n = 3); no hepatitis (n = 2)

Alcoholic background Yes (n = 12); no (n = 13)

HCC family history Yes (n = 5); no (n = 20)

Previous surgery Yes (n = 6); no (n = 19)

Previous TACE Yes (n = 24); no (n = 1)

Diagnosis defined Pathologically (n = 6); clinically (n = 19a)

Liver cirrhotic deformation Absent (n = 5); mild (n = 13); severe (n = 7)

Ascites Absent (n = 15); mild (n = 9); severe (n = 1)

Varices Absent (n = 10); mild (n = 8); severe (n = 7)

Splenomegalyb Absent (n = 7); mild (n = 11); severe (n = 6)

Hepatic encephalopathy Absent (n = 25); mild (n = 0); severe (n = 0)

Barcelona stage A (n = 11); B (n = 7); C (n = 7); D (n = 0)

China stage Ia (n = 5); Ib (n = 6); IIa (n = 3); IIb (n = 4); IIIa (n =

2); IIIb (n = 5); IV (n = 0)

Child–pugh score A5 (n = 11); A6 (n = 4); B7 (n = 6); B8 (n = 3); B9

(n = 1); C10 (n = 0)

Albumin 36.00 ± 6.42, 21.1–48.2 g/L

Ammonia 65.74 ± 19.64, 37.0–106.7 mmol/L

Alanine aminotransferase 35.52 ± 16.35, 12–85 g/L

Glutamic oxaloacetylase 48.92 ± 25.18, 24–122 g/L

Direct bilirubin 9.016 ± 5.70, 2.3–30.6 mmol/L

Indirect bilirubin 11.28 ± 5.28, 3.8–24.3 mmol/L

Urea nitrogen 5.53 ± 1.46, 3.10–8.43 U/L

Creatinine 70.67 ± 14.61, 39.9–99.3 U/L

Prothrombin time 13.02 ± 1.60, 10.9–15.9 S

Fibrinogen 2.35 ± 0.70, 1.01–3.71 g/L

AFP 863.4748 ± 2,308.13, 2.1–11,041 µg/L (n = 25);

264.3422 ± 371.88, 2.1–1,186 µg/L (n = 23c)

aOne case in this group was judged to be false-negative despite that the biopsy found no

malignant cells because of the possibility of an unsuccessful access to the real tumorous

tissue during the procedure, which was clinically diagnosed to be HCC according to the

current guideline.
bOne patient had a history of splenectomy.
cAFP could be measured in all 25 cases, but the values in two cases were so much higher

than the others and caused the values to be extremely dispersed. This situation should

be considered in correlation and regression analysis.

non-parametric tests were used. The results showed that the AEF
mean value was, respectively, 0.578± 0.102 (range, 0.463–0.913)
for “lesion” and 0.389± 0.082 (range, 0.223–0.595) for “control.”
The difference was significant based on Mann–Whitney test (U
= 24; P = 0.000 < 0.05; Figure 3A).

Data Statistics
Group Comparison
According to the baseline of enrolled cases, the patients could
be grouped based on gender (male vs. female), hepatitis type (B
vs. C vs. others), alcoholic background (yes vs. no), HCC family
history (yes vs. no), previous surgery history (yes vs. no), liver

cirrhotic deformation level (absent vs. mild vs. severe), ascites
level (absent vs. mild vs. severe), varices level (absent vs. mild vs.
severe), splenomegaly level (absent vs. mild vs. severe), Barcelona
stage (A vs. B vs. C), China stage (I vs. II vs. III), and Child–
Pugh level (A vs. B). Mann–Whitney test was chosen for two
groups, and Kruskal–Wallis test was chosen for three or more
groups. The results are listed in Table 2, from which we could see
that (1) SD and variance of AEF were lower in males and higher
in females (Figure 3B) and (2) energy, correlation, and inverse
difference moment of AEF were higher, while entropy was lower
in patients having a previous surgery history (Figure 3C).

Correlation Analysis
According to the baseline of enrolled cases, the digital
clinical data included age, weight, albumin, ammonia, alanine
aminotransferase, glutamic oxaloacetylase, direct bilirubin,
indirect bilirubin, urea nitrogen, creatinine, prothrombin time,
fibrinogen, and AFP. Spearman correlation analysis was used for
statistical analysis. The results are listed in Table 3, from which
we could see that (1) the AEF textures having a correlation with
age (6/13) were the same as creatinine (6/13), but reverse; (2)
someAEF textures had a correlation with glutamic oxaloacetylase
(3/13) rather than with alanine aminotransferase (0/13); (3) more
AEF textures had a correlation with indirect bilirubin (6/13) than
with direct bilirubin (1/13); and (4) most AEF textures (up to
9/13) had a correlation with AFP (Figure 4).

Regression Analysis
Two-way regression analysis wasmade betweenAEF textures and
AFP since correlations were found in “Correlation Analysis” in
order to confirm the cause-and-effect relationship between them.
Given that part of AEF textures and AFP neither fitted normal
distribution by Kolmogorov–Smirnov test, linear, quadratic, and
cubic regression were all performed. The results are listed in
Table 4, from which we could see that (1) if the two cases with
much higher AFP were excluded, there was often (6/9) a two-
way causal relationship between AFP and the correlated AEF
textures in linear regression (Figure 4) and (2) if all cases were
included, there was always (7/7) a one-way causal relationship
between AFP and the correlated AEF textures in cubic regression
(Figure 5).

DISCUSSION

AEF is a perfect indicator that reflects the perfusion proportion of
HCC between the hepatic artery and the portal vein. In this study,
AEF was chosen to be analyzed instead of CT value because (9–
14) (1) it is the valid perfusion that feeds the tumor to be viable,
which means that the real tumor region should be delineated by
a perfusion map; (2) the changing of perfusion proportion is one
of the unique characteristics throughout HCC’s generation and
development; so AEF is not only a perfusion parameter but also
a biomarker of HCC; and (3) post-processing technology enables
the perfusion analysis based on routine tri-phasic enhanced CT
images and ensures that there is no more contrast injection and
radiation exposure. Texture analysis is a good method in medical
imaging analysis. Several mostly used textures had been described
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FIGURE 2 | (A,B) Follow-up CT scan and arterial enhancement fraction (AEF) map of a 54-year-old male patient with no hepatitis background. (C,D) Follow-up CT

scan and AEF map of a 48-year-old male patient with hepatitis B. (E,F) Follow-up CT scan and AEF map of a 66-year-old male patient with hepatitis B. They were all

treated with transarterial chemoembolization (TACE) previously. The previous lesion with lipiodol deposition could be seen (arrow) on CT images, which should show

as a “hollow zone” (B,F) on the AEF map despite some fake color (D) that was occasionally present due to tiny motion. Beside the “hollow zone,” a warmer region

could be detected and was delineated as the “lesion” region of interest (ROI) even though it was difficult to recognize on CT images. Another ROI of “control” was

delineated as well. The AEF mean value was significantly higher for “lesion” than for “control,” which indicated tumor recurrence, and they were confirmed by hepatic

arteriography during the following TACE.

in literatures (15–19). For better understanding in this study,
uniformity, energy, inertia, correlation, and inverse difference
moment quantified the homogeneity of AEF, entropy, cluster
shade, and cluster prominence. SD and variance quantified the
heterogeneity of AEF, and skewness and kurtosis quantified the
match between AEF distribution and normal distribution as well.

Chronic hepatitis and liver cirrhosis are the basis before HCC
develops, which may have many different causes as known.
We made comparisons between different cirrhotic baseline
characteristics with the aim to investigate their impacts on
AEF. Our results did find an increase of AEF SD and variance
in women; however, it was more likely to be a coincidence
than a regularity considering the insufficient textures showing
a difference and the big inequality of the group size. The
number of women in this study was only four, which could
easily make the data more dispersed compared with those
of 21 men. At the same time, the previous curative surgery
history group of six cases had a difference in four textures,

indicating that their AEF was more homogeneous. It is perhaps
because the post-surgery follow-up was so regular and frequent
that a recurrent HCC could be found at a small size or an
early stage, while the other 19 cases involved multiple sizes,
shapes, and appearance as a result of long and complicated
tumor development, which could probably be the reasons
causing the AEF to be more heterogeneous. Our results also
suggested that age might have a moderate positive correlation
with AEF heterogeneity. That was to say, the process of HCCs’
angiogenesis might be more complicated in older patients, which
should be correlated with longer disease history and more
risk exposure.

Creatinine is an index to evaluate renal function. Our study
found a moderate negative correlation between creatinine and
AEF heterogeneity. Studies on such relationship are very rare.
In 2016, Shao (20) reported a finding of the correlation between
serum vascular endothelial growth factor and renal function.
They explained that abnormal angiogenesis could cause the
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FIGURE 3 | Mann–Whitney test was chosen for between-group statistical analysis. (A) The arterial enhancement fraction (AEF) mean value of “lesion” was higher than

that of “control,” which meant that hepatocellular carcinomas (HCCs) had a higher AEF than normal liver parenchyma, indicating an obvious tumorous angiogenesis

present in HCC, with arterial/portal feeding proportion rising up. (B) Box plot showing that SD and variance of AEF were higher in females, showing that the

heterogeneity of HCC’s feeding proportion might be bigger in women, which indicated that the process of tumor angiogenesis might be more complicated in women

in this study. (C) Box plot showing that energy, correlation, and inverse difference moment of AEF were higher while entropy was lower in patients having a previous

surgery history, showing that the heterogeneity of HCC’s feeding proportion might be smaller in previous surgery-treated patients, which indicated that the process of

tumor angiogenesis in the recurrent HCCs after curative surgery might be less complicated than the other primary ones in this study.

TABLE 2 | Results of the group comparison.

Grouping item The AEF textures with statistical significance Mean ± SD

Gender (male vs. female) SD (U = 13; P = 0.032) 0.098 ± 0.039 vs. 0.159 ± 0.042

Variance (U = 13; P = 0.032) 0.011 ± 0.009 vs. 0.026 ± 0.013

Previous surgery historya (yes vs. no) Energy (U = 26; P = 0.049) 0.049 ± 0.044 vs. 0.014 ± 0.007

Entropy (U = 26; P = 0.049) 5.612 ± 1.435 vs. 6.898 ± 0.623

Correlation (U = 22; P = 0.026) 0.068 ± 0.032 vs. 0.035 ± 0.022

Inverse difference moment (U = 25; P = 0.042) 0.627 ± 0.168 vs. 0.480 ± 0.076

Hepatitis type (B vs. C vs. others) None

Alcoholic background (yes vs. no) None

HCC family history (yes vs. no) None

Liver cirrhotic deformation level (absent vs. mild vs. severe) None

Ascites level (absent vs. mild vs. severe) None

Varices level (absent vs. mild vs. severe) None

Splenomegaly level (absent vs. mild vs severe) None

Barcelona stage (A vs. B vs. C) None

China stage (I vs. II vs. III) None

Child–pugh level (A vs. B) None

aThe patient had undergone curative surgery to treat HCC before this enrollment. Only the textures with significant differences between groups were listed in this table. The results

showed that the heterogeneity of HCC’s feeding proportion might be bigger in women and smaller in previously surgery-treated patients.
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TABLE 3 | Results of the correlation analysis.

Clinical items Correlated textures (25 cases) Correlated textures (23 cases)

Age SD (R = 0.484; P = 0.014)

Variance (R = 0.484; P = 0.014)

Uniformity (R = −0.430; P = 0.032)

Inertia (R = 0.493; P = 0.012)

Correlation (R = −0.483; P = 0.014)

Cluster prominence (R = 0.651; P = 0.000)

Glutamic oxaloacetylase Energy (R = −0.459; P = 0.021)

Entropy (R = 0.474; P = 0.017)

Correlation (R = −0.466; P = 0.019)

Direct bilirubin Skewness (R = −0.418; P = 0.038)

Indirect bilirubin Skewness (R = −0.425; P = 0.034)

Energy (R = −0.425; P = 0.034)

Entropy (R = 0.415; P = 0.039)

Correlation (R = −0.467; P = 0.019)

Inverse different moment (R = −0.406; P = 0.044)

Cluster shade (R = −0.407; P = 0.044)

Creatinine SD (R = −0.563; P = 0.003)

Variance (R = −0.563; P = 0.003)

Uniformity (R = 0.624; P = 0.001)

Inertia (R = −0.412; P = 0.041)

Correlation (R = 0.612; P = 0.001)

Cluster prominence (R = −0.776; P = 0.000)

AFP SD (R = 0.762; P = 0.000) *SD (R = 0.755; P = 0.000)

Variance (R = 0.762; P = 0.000) *Variance (R = 0.755; P = 0.000)

Uniformity (R = −0.658; P = 0.000) *Uniformity (R = −0.593; P = 0.003)

Inertia (R = 0.692; P = 0.000) *Energy (R = −0.439; P = 0.036)

Correlation (R = −0.441; P = 0.027) *Entropy (R = 0.513; P = 0.012)

Inverse difference moment (R = −0.398; P = 0.049) *Inertia (R = 0.791; P = 0.000)

Cluster prominence (R = 0.632; P = 0.001) *Correlation (R = −0.530; P = 0.009)

*Inverse difference moment (R = −0.476; P = 0.022)

*Cluster prominence (R = 0.674; P = 0.000)

Weight, albumin, ammonia,

prothrombin time, alanine

aminotransferase, urea

nitrogen, fibrinogen

None

AFP could be measured in all 25 cases, but the values in two cases were so much higher than the others and caused the values to be extremely dispersed. Correlation analysis was

performed twice, respectively, with these two cases included and excluded (marked with “*”). Only the textures having significant correlations with clinical data were listed in this table.

The R-value referred to the correlation intensity and direction (positive or negative). The results showed that the heterogeneity of HCC’s feeding proportion or we could say that the

complexity of HCC’s angiogenesis might be moderately positively correlated with age while negatively correlated with creatinine, slightly positively correlated with glutamic oxaloacetylase,

moderately positively correlated with indirect bilirubin, and strongly positively correlated with AFP.

formation of immature blood vessels (20). Another research
(21) also proved that the increased VEGF expression could
promote abnormal blood vessel formation in diabetic kidney
disease. These studies indeed inspired us about the possible
negative correlation between angiogenesis and renal function,
which needs bigger-sized and specifically designed studies to
prove. Not like creatinine, indirect bilirubin is an index to
evaluate liver function. It is supposed to be converted to direct
bilirubin after some biochemical reaction conducted by liver cells
so it can be used to reflect the metabolic ability of liver. Our
results suggested that indirect bilirubin had a moderate positive
correlation with AEF heterogeneity. Such finding was also barely

seen in literatures. Youssry (22) described sickle cell disease in
his study. They found that indirect bilirubin was an independent
predictor of sFLT-1 that had an anti-angiogenic effect (23), and
there was a significant positive correlation between them (22).
Their finding seemed to be contrary to ours, so we can infer that
their relationship must be more complexed than that shown in
our study. Further research is certainly considered to be valuable.

As mentioned above, we believed that AEF texture could be
used as a biomarker of HCC, so we were trying to find an effective
biomarker already in use as the reference. As reported, several
biomarkers of HCC have been introduced in literatures, such as
AFP, des-gamma carboxy prothrombin, glypican-3, osteopontin,
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FIGURE 4 | Scatter plot showing the correlation between alpha-fetoprotein (AFP; in 23 cases) and nine arterial enhancement fraction (AEF) textures. Except for

energy, entropy, and inverse different moment, a linear relationship could be obtained between AFP and the other six textures. The blue line indicated a positive

two-way linear causal relationship between AFP (if not too high) and AEF heterogeneity, which meant that a moderate AFP secretion and the complexity of HCC’s

angiogenesis might have impact on each other in HCC.

versican, and so on (24–26). However, none of them was optimal
(27). In reality, AFP remains the most commonly used biomarker
of HCC in the clinic (28–31). The use of AFP has been introduced
principally not only for screening, diagnosis, and staging but also
for effect prediction, effect monitoring, and prognosis assessment
(27, 32, 33). On the other hand, angiogenesis was also reported
to be valuable as a biomarker of HCC in clinical trials (34–
39). All these existing studies mostly focused on the level of
angiogenesis. The level here only meant a mean value, just like
AEF was only a mean value of the proportion between arterial
feeding and portal feeding. It is kind of an overall description of

the tumor rather than an analysis on the tumor’s inherent details.
Our study showed that AFP was not positively correlated with
AEF level but with heterogeneity, which is textural information
derived from enhanced images that reflect the inner differences
of blood supply changing level in HCC. Our results prove that
HCC’s angiogenesis differs everywhere inside the tumor. A high
variation indicates a lack of regulation and control and suggests
a high bioactivity of HCC, which is exactly what we learn AFP
can do (27–33). Therefore, we believed that AEF heterogeneity,
whether used in combination with AFP or not, could be used as
an imaging biomarker of HCC.
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TABLE 4 | Two-way regression results between AFP and correlated AEF textures.

23 cases 25 cases

Linear Quadratic Cubic Linear Quadratic Cubic

Regression with AFP as independent variable

SD F = 26.67; P = 0.000 F = 12.77; P = 0.000 F = 10.70; P = 0.000 F = 1.062; P = 0.313 F = 6.035; P = 0.008 F = 9.845; P = 0.000

Variance F = 29.83; P = 0.000 F = 14.52; P = 0.000 F = 12.47; P = 0.000 F = 0.688; P = 0.415 F = 5.828; P = 0.009 F = 10.14; P = 0.000

Uniformity F = 15.12; P = 0.001 F = 7.253; P = 0.004 F = 5.123; P = 0.009 F = 2.446; P = 0.131 F = 5.675; P = 0.010 F = 6.165; P = 0.004

Energy F = 0.800; P = 0.381 F = 0.400; P = 0.675 F = 0.255; P = 0.857

Entropy F = 3.038; P = 0.096 F = 1.454; P = 0.257 F = 0.980; P = 0.423

Inertia F = 7.949; P = 0.010 F = 3.951; P = 0.036 F = 4.846; P = 0.011 F = 2.498; P = 0.128 F = 1.233; P = 0.311 F = 3.962; P = 0.022

Correlation F = 5.602; P = 0.028 F = 2.678; P = 0.051 F = 1.736; P = 0.052 F = 0.272; P = 0.607 F = 0.240; P = 0.789 F = 3.373; P = 0.038

Inverse difference moment F = 1.858; P = 0.187 F = 0.919; P = 0.415 F = 0.732; P = 0.547 F = 1.015; P = 0.324 F = 1.494; P = 0.246 F = 3.187; P = 0.045

Cluster prominence F = 32.42; P = 0.000 F = 21.33; P = 0.000 F = 17.03; P = 0.000 F = 0.125; P = 0.727 F = 1.773; P = 0.193 F = 8.812; P = 0.001

Regression with AFP as dependent variable

SD F = 26.67; P = 0.000 F = 14.24; P = 0.000 F = 9.681; P = 0.000 F = 1.062; P = 0.313 F = 0.964; P = 0.397 F = 0.652; P = 0.590

Variance F = 29.83; P = 0.000 F = 14.57; P = 0.000 F = 10.83; P = 0.000 F = 0.688; P = 0.415 F = 0.982; P = 0.390 F = 0.730; P = 0.546

Uniformity F = 15.12; P = 0.001 F = 7.330; P = 0.004 F = 7.332; P = 0.004 F = 2.446; P = 0.131 F = 1.669; P = 0.211 F = 1.628; P = 0.219

Energy F = 0.800; P = 0.381 F = 0.869; P = 0.435 F = 1.451; P = 0.259

Entropy F = 3.038; P = 0.096 F = 3.030; P = 0.071 F = 3.249; P = 0.060

Inertia F = 7.949; P = 0.010 F = 16.51; P = 0.000 F = 15.63; P = 0.000 F = 2.498; P = 0.128 F = 2.298; P = 0.124 F = 3.556; P = 0.032

Correlation F = 5.602; P = 0.028 F = 5.669; P = 0.011 F = 4.665; P = 0.013 F = 0.272; P = 0.607 F = 0.571; P = 0.573 F = 0.681; P = 0.573

Inverse difference moment F = 1.858; P = 0.187 F = 1.016; P = 0.380 F = 1.059; P = 0.365 F = 1.105; P = 0.324 F = 3.785; P = 0.039 F = 3.785; P = 0.039

Cluster prominence F = 32.42; P = 0.000 F = 15.63; P = 0.000 F = 11.31; P = 0.000 F = 0.125; P = 0.727 F = 0.394; P = 0.679 F = 0.857; P = 0.479

When two cases with high AFP were excluded, the AFP values were relatively concentrated; then, the relationship between AFP and AEF textures was often significant, even using a

different regression pattern. We could also notice that they had a double-way causal relationship in linear regression, indicating that they might have impact on each other. When all

the cases were included, the AFP values were relatively dispersed; then, the relationship between AFP and AEF textures was barely significant overall, but always significant only when

using cubic regression. We should also notice that there was only a one-way causal relationship between them when AFP was the independent variable in cubic regression, indicating

that AFP might have impact on AEF heterogeneity.

After the correlation was confirmed, we performed the
regression analysis in order to find the causal relationship
between AFP and AEF heterogeneity. Our results showed that
they had a two-way causal relationship when AFP was not too
high, which meant that HCC angiogenesis and AFP secretion
would be probably impacted by each other. However, when
AFP was too high, only a one-way cubic causal relationship
was observed, which meant that too-high AFP secretion would
have a strong positive impact on HCC angiogenesis. This was
a sort of impact already reported in other studies (40). This
study regarding AFP-producing gastric carcinoma and AFP–
antibody treatment also suggested that AFP itself might up-
regulate angiogenesis, and the treatment by AFP–antibody could
have anti-angiogenic effects. As for the cubic relationship, it
might have resulted from the different dimension of AFP and
AEF. The serum AFP value in this study was obtained by
a blood test, which represented the property of the whole
tumor in three dimensions, while AEF was obtained only
from a transverse section of the tumor in limited single
dimension, whose heterogeneity would, on the contrary, be
enlarged cubically.

There were several limitations of this study. First, the lack
of sufficient sample size made the grouping a big inequality.
Second, the pathological data were not enough because of
unavailability in some cases where biopsy was either unaccepted

or unnecessary. Third, survival information was not involved
because of the complexity of treatment strategy and combination.

CONCLUSION

We found that the AEF textures have strong correlations with
AFP, the most important biomarker of HCC, indicating that
the AEF textures have the potential to reflect the bioactivity
of HCC. This finding may enable AEF textures to act as an
optional imaging biomarker or assistance to AFP in monitoring
HCC during tumor screening, treatment response assessment, or
follow-up. Further research and more specific studies with big
sample sizes are worthwhile.
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FIGURE 5 | Scatter plot showing the cubic relationship between alpha-fetoprotein (AFP; in 25 cases) and correlated arterial enhancement fraction (AEF) textures

(cluster prominence not included). The blue line indicated a one-way positive cubic causal relationship between AFP (if too high) and AEF heterogeneity, which meant

that an intense AFP secretion might have a strong impact on the complexity of HCC’s angiogenesis.
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Background: Accurate evaluation of local invasion (T-stage) of rectal cancer is essential

for treatment planning. A search of PubMed database indicated that the correlation

between texture features from T2-weighted magnetic resonance imaging (T2WI) (MRI)

and T-stage has not been explored extensively.

Purpose: To evaluate the performance of texture analysis using sagittal fat-suppression

combined with transverse T2WI for determining T-stage of rectal cancer.

Methods: One hundred and seventy-four rectal cancer cases who underwent

preoperative MRI were retrospectively selected and divided into high (T3/4) and low

(T1/2) T-stage groups. Texture features were, respectively, extracted from sagittal

fat-suppression and transverse T2WI images. Univariate and multivariate analyses were

conducted to determine T-stage. Discrimination performance was assessed by receiver

operating characteristic (ROC) analysis.

Results: For univariate analysis, the best performance in differentiating T1/2 from T3/4

tumors was achieved from transverse T2WI, and the area under the ROC curve (AUC)

was 0.740. For multivariate analysis, the logical regression model incorporating the

independent predictors achieved an AUC of 0.789.

Conclusions: Texture features from sagittal fat-suppression combined with transverse

T2WI presented moderate association with T-stage of rectal cancer. These findings may

be valuable in selecting optimum treatment strategy.

Keywords: rectal cancer, local invasion, imaging informatics, intelligence, texture analysis

INTRODUCTION

Colorectal cancer is the third leading cause of cancer worldwide, and rectal cancer accounts for
30–35% of colorectal cancer cases. Accurate assessment of rectal cancer features is essential for
determining the optimal treatment strategy to reduce the risk of local recurrence and improve
patient survival (1, 2). The choice of treatment depends on tumor stage, and rectal tumors are
staged according to pathological features, including the extent of tumor invasion (pathological

141

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.01476
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.01476&domain=pdf&date_stamp=2020-08-18
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:27427848@qq.com
https://doi.org/10.3389/fonc.2020.01476
https://www.frontiersin.org/articles/10.3389/fonc.2020.01476/full
http://loop.frontiersin.org/people/679376/overview


Lu et al. Determining T-Stage Using Radiomics

T-stage) (3, 4). Due to the noninvasive advantage in assessing
tumor microcirculation, high-resolution magnetic resonance
imaging (MRI) is widely applied to stage primary rectal
cancer before treatment (5). However, the ability of MRI in
discriminating stage T2 from stage T3 tumors is limited because
tumor penetration through the rectal muscular wall is similar
to the peritumoral inflammatory reaction (6). Tissue edema,
fibrosis, and inflammation may decrease the accuracy of MRI
after neoadjuvant chemoradiotherapy (NACT) (7).

An emerging quantitative method for imaging informatics,
texture analysis (TA), is used to quantitatively describe the spatial
distribution of gray values within images, and it can detect
image patterns that are unrecognizable or indistinguishable to
the human eyes (8). TA extracts high-throughput information
to quantify tumor heterogeneity within a defined region of
interest (ROI) (9). The most commonly used texture features
can be stratified according to the statistical order of the voxel
information encoded within the image, including first-order
(also known as histogram features), second-order [run-length
matrix (GRLM) and gray-level co-occurrence matrix (GLCM)
features], and higher-order (structural and transformation-based
features) texture features (8). Certain texture features extracted
from MRI or computed tomography can be used for tumor
diagnosis, preoperative risk stratification, and prediction of
survival (10–12). Studies of rectal cancer suggest that texture
features are useful for predicting pathological complete response
after NACT (13–15).

Accurate evaluation of rectal adenocarcinoma before therapy
is essential because treatment strategies need to be personalized
following the histopathological results. Texture parameters of
primary tumors on T2-weightedMRI (T2WI) are associated with
lymph node metastasis (N stage) (16). Lu et al. (4) reported
that texture features extracted from apparent diffusion coefficient
(ADC) maps may be helpful in predicting rectal cancer T-stage.
However, a search of the PubMed database indicated that the
correlation between T2WI texture features and the extent of local
invasion has not been investigated extensively in rectal cancer.
There are no studies reporting the use of texture features derived
from sagittal fat-suppression combined with transverse T2WI
in T-stage determination of intelligence, which is a common
sequence in the evaluation of rectal cancer (17).

MATERIALS AND METHODS

Ethics
Our study was performed in accordance with the ethical
standards of the World Medical Association Declaration of
Helsinki, and approved by Ethics Committee of Shengjing
Hospital of China Medical University (Project Identification
Code: 2020PS011K) (date of approval: 7 January 2020).

Patient Cohorts
We reviewed 773 consecutive patients with rectal
adenocarcinoma confirmed by endoscopic biopsy or
postoperative pathological examination between January
2018 and November 2019 in our hospital. Patients who
underwent rectal MRI were enrolled (n = 310). One hundred

and thirty-six patients were excluded because of (1) NACT
before MRI examination; (2) poor image quality caused by
apparent motion artifacts; or (3) pathologically proven mucinous
adenocarcinoma. Finally, 174 eligible patients were included
in the study. Clinical data including sex, age, maximum tumor
diameter, tumor location, degree of tumor differentiation, and N
stage were collected. Patients were divided into high (T3/4) and
low (T1/2) T-stage groups according to the pathological results.
The flowchart of this study is shown in Figure 1.

MR Image Acquisition
All MRI examinations were conducted using a 3.0 T machine
(Ingenia 3.0, Philips Medical System, Best, The Netherlands).
A surface coil of eight-channel phased-array was applied to
patients in the supine position during imaging. Both bowel
preparation and intravenous antispasmodic agents were not
executed. High-resolution rectal MRI protocols included sagittal
fat-suppression and transverse T2WI as well as diffusion-
weighted imaging (DWI). Acquisition parameters for transverse
T2WI were showed below: repetition time (TR)/echo time (TE),
2200/65ms; flip angle, 90◦; matrix size, 288 × 288; field of
view (FOV), 250 × 250 mm2; slices, 20; slice thickness, 5mm;
spacing between slices, 0.5mm; NSA, 2. Parameters for sagittal
fat-suppression T2WI were: TR/TE, 2200/90ms; flip angle, 90◦;
fat suppression, SPAIR; matrix size, 300 × 300; FOV, 250 × 250
mm2; slices, 40; slice thickness, 3mm; spacing between slices,
0.3mm; NSA, 3.

Image Segmentation
Two radiologists who had 10 years of experience in interpreting
pelvic MRI conducted the lesion segmentation independently,
who were blinded to the pathological results during the image
reading. They imported the images into a processing software
(ImageJ; National Institutes of Health, Bethesda, MD, USA), and
determined lesions as local mass or abnormal wall thickening that
presented intermediate signal intensity on T2WI, hypointensity
on the ADC map, and hyperintensity on DWI. ROIs were
manually drawn along the border of the lesion on the sagittal fat-
suppression and transverse T2WI slice showing the maximum
lesion diameter with reference to DWI and ADCmaps. Apparent
regions of necrosis, luminal contents, or gas were avoided to
minimize bias.

Texture Analysis
TA was performed on ROIs from sagittal fat-suppression and
transverse T2W images using in-house software programmed
with MATLAB 2018a (Mathworks, Natick, MA, USA). Twelve
texture features were calculated from each type of image
including: (1) histogram parameters; (2) GLCM parameters;
(3) GRLM parameters; and (4) discrete wavelet transformation
(DWT) parameters. A total of 24 features were derived for
each case. Table 1 provides the specific information about those
texture features.

Statistical Analysis
Categorical variables (sex, N stage, degree of tumor
differentiation, and tumor location) were compared between

Frontiers in Oncology | www.frontiersin.org 2 August 2020 | Volume 10 | Article 1476142

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Lu et al. Determining T-Stage Using Radiomics

FIGURE 1 | Flowchart of the method used for T-stage classification.
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TABLE 1 | Detailed information on texture features used in this study.

Features Descriptions

Histogram parameters

Skewness (SKE) Asymmetry of intensity level distribution

Kurtosis (KUR) Peakedness of intensity level distribution

GLCM parametersa

Correlation (CORR) Image complexity

Dissimilarity (DISS) Local contrasts

Entropy (ENTR) Randomness of the intensity level distribution

GRLM parametersb

Long run emphasis (LRE) Distribution of long runs

Gray level non-uniformity (GLN) Similarity of the gray level values

Low gray-level run emphasis Distribution of low gray level values

(LGLRE)

DWT parametersc

Harr-L Low frequency components of Harr transform

Harr-H Horizontal components of Harr transform

Harr-V Vertical components of Harr transform

Harr-D Diagonal components of Harr transform

aGLCM, gray-level co-occurrence matrix. Each GLCM parameter was calculated with a

distance of 1 and four angles (0◦, 45◦, 90◦, and 135◦), and the average was used as the

feature value.
bGRLM, gray-level run-length matrix. Each GRLM parameter was calculated with four

angles (0◦, 45◦, 90◦, and 135◦), and the average was used as the feature value.
cDWT, discrete wavelet transformation. DWT parameter was calculated with two layers

and three directions (horizontal, vertical, diagonal) to produce low and high frequency

components, and second layer components were extracted for texture analysis.

T1/2 and T3/4 groups utilizing the chi-square or Fisher’s exact
test. Quantitative data (maximum tumor diameter, age, and
texture parameters) were first tested by Kolmogorov-Smirnov
test to determine if samples presented a normal distribution.
If the distribution was not normal (P < 0.05), Mann-Whitney
U test was used to compare parameters between T1/2 and
T3/4 stages. Otherwise, independent-sample t-test was used.
Independent factors predicting T3/4 tumors after collinearity
diagnosis were analyzed by multivariate logistic regression. A
variance inflation factor (VIF) > 10 indicated the existence of
collinearity. In order to evaluate the correlation between features
and T-stages, Spearman correlation analysis was executed.

Univariate and multivariate analyses were performed to
determine T-stage. Receiver operating characteristic (ROC)
theory was applied to assess the discrimination performance by
measuring the area under the ROC curve (AUC), which was
achieved by a professional statistics software MedCalc (version
14.10.20, http://www.medcalc.org/). The optimal threshold was
determined by the maximum Youden index, and the specificity
and sensitivity were automatically provided. The statistical
significance of differences among AUCs was investigated using
Delong method (18).

In this study, we also investigated the intraobserver variability
of features extracted by two radiologists using intraclass
correlation coefficients (ICCs, 0.81–1, excellent agreement;
0.61–0.8, good agreement; 0.41–0.6, moderate agreement; and
0–0.4, poor agreement).

TABLE 2 | Clinical and pathological characteristics of patients for identifying the

T-stage of rectal cancer.

Characteristics T-stage P-value

T1/2 T3/4

Total patients 62 (35.6) 112 (64.4) /

Gender 0.567a

Male 36 (58.1) 70 (62.5)

Female 26 (41.9) 42 (37.5)

Mean age (years)b 64.9 (57-83) 65.2 (54-92) 0.537c

Tumor location 0.078a

Upper rectum 24 (38.7) 26 (23.2)

Middle rectum 26 (41.9) 64 (57.1)

Lower rectum 12 (19.4) 22 (19.7)

Maximum diameter of tumor (cm) 3.9 4.1 0.673d

Tumor differentiation 0.210e

Moderate to high 58 (93.5) 98 (87.5)

Low 4 (6.5) 14 (12.5)

N stage 0.632a

N0 35 (56.4) 59 (52.7)

N1/2 27 (43.6) 53 (47.3)

aVariables were tested using the χ2 test.
bMean value (range).
cVariables were tested using independent sample t-test.
dVariables were tested using Mann-Whitney U test.
eVariables were tested using Fisher’s exact test.

Unless otherwise indicated, variable are expressed as frequencies (percentage).

All statistical analyses were conducted using SPSS 22.0 (IBM
Corporation, Armonk, NY, USA), and P < 0.05 was regard as a
statistically significant difference.

RESULTS

Patient Characteristics
The clinical and pathological characteristics of T1/2 and T3/4
cases are listed in Table 2. There were no significant differences
between the two groups in sex (P= 0.567), age (P= 0.537), tumor
location (P = 0.078), maximum tumor diameter (P = 0.673),
degree of tumor differentiation (P = 0.210), and N stage (P
= 0.632). A case randomly selected was used to illustrate the
segmentation of lesion ROI (Figure 2).

Univariate Analysis
The statistical results of texture features extracted from T1/2
and T3/4 tumors are shown in Table 3. The texture parameters
measured from the two sets of ROIs independently delineated
by two radiologists using sagittal fat-suppression and transverse
T2W images showed excellent agreement (ICCs, 0.832–0.927).
DISS, ENTR, GLN, and LGLRE extracted from sagittal
fat-suppression and transverse T2WI were significantly higher
for T3/4 than for T1/2 tumors. T3/4 tumors had significantly
lower Harr-V extracted from sagittal fat-suppression T2WI than
T1/2 tumors.

The diagnostic performance of each significantly different
feature is shown in Table 4. At cutoff values of 0.029 for
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FIGURE 2 | ROI segmentation in a randomly selected case based on sagittal fat-suppression and transverse T2WI. (a) Lesion ROI delineated on the sagittal

fat-suppression T2WI. (b) Lesion ROI delineated on the routine transverse T2WI. (c) Pathological result.

TABLE 3 | Comparison of extracted texture features for T1/2 and T3/4 tumors.

Image Features T-stage P-value

T1/2 (n = 31) T3/4 (n = 56)

Sagittal

fat-suppression

T2WI

SKE 0.023 ± 0.398 0.066 ± 0.459 0.435a

KUR 3.260 ± 0.644 3.211 ± 0.725 0.677b

CORR 0.956 ± 0.016 0.957 ± 0.015 0.598b

DISS 0.035 ± 0.017 0.049 ± 0.019 0.001a

ENTR 0.151 ± 0.084 0.209 ± 0.081 0.002a

LRE 2.443 ± 0.521 2.542 ± 0.586 0.167b

GLN 6.491 ± 6.126 11.564 ± 8.952 0.017a

LGLRE 0.537 ± 0.113 0.579 ± 0.082 0.019a

Harr-L 9.254 ± 0.259 9.308 ± 0.231 0.321b

Harr-H 0.168 ± 0.095 0.173 ± 1.063 0.439a

Harr-V 0.219 ± 0.082 0.181 ± 0.071 0.014a

Harr-D 0.039 ± 0.027 0.037 ± 0.025 0.579a

Transverse T2WI SKE 0.455 ± 0.435 0.624 ± 0.653 0.113b

KUR 4.166 ± 1.316 4.926 ± 3.386 0.362a

CORR 0.933 ± 0.021 0.935 ± 0.028 0.529a

DISS 0.031 ± 0.008 0.041 ± 0.014 0.002b

ENTR 0.109 ± 0.034 0.156 ± 0.069 0.001b

LRE 1.665 ± 0.435 1.595 ± 0.515 0.298b

GLN 5.018 ± 2.942 7.071 ± 5.356 0.002a

LGLRE 0.545 ± 0.056 0.583 ± 0.058 0.026b

Harr-L 8.973 ± 0.258 8.969 ± 0.347 0.976b

Harr-H 0.263 ± 0.092 0.256 ± 0.123 0.651b

Harr-V 0.236 ± 0.077 0.249 ± 0.104 0.562b

Harr-D 0.065 ± 0.032 0.062 ± 0.029 0.551a

aMann-Whitney U test, data represent the median ± interquartile range.
b Independent sample t-test, data represent the mean ± SD.

DISS, 0.149 for ENTR, 7.202 for GLN, 0.549 for LGLRE, and
0.187 for Harr-V, sagittal fat-suppression T2WI achieved an
AUC of 0.728 [95% confidence interval (CI), 0.637–0.807],

TABLE 4 | Diagnostic performance of significantly different texture features for

differentiating T1/2 from T3/4 stage rectal cancer.

Image Features AUC Sensitivity

(%)

Specificity

(%)

95% CI Cutoff

value

Sagittal fat-

suppression

T2WI

DISS 0.728 83.33 61.29 0.637–0.807 0.029

ENTR 0.720 75.00 70.97 0.629–0.800 0.149

GLN 0.717 80.95 64.52 0.625–0.797 7.202

LGLRE 0.715 80.95 64.52 0.623–0.795 0.549

Harr-V 0.650 61.90 67.74 0.566–0.737 0.187

Transverse

T2WI

DISS 0.730 73.81 64.52 0.640–0.809 0.031

ENTR 0.740 71.43 70.97 0.650–0.818 0.116

GLN 0.720 67.86 67.74 0.629–0.800 6.121

LGLRE 0.696 77.38 58.06 0.604–0.779 0.546

0.720 (95% CI, 0.629–0.800), 0.717 (95% CI, 0.625–0.797),
0.715 (95% CI, 0.623–0.795), and 0.650 (95% CI, 0.566–0.737),
respectively. Sensitivities and specificities were 83.33 and 61.29%
for DISS, 75.0 and 70.97% for ENTR, 80.95 and 64.52% for
GLN, 80.95 and 64.52% for LGLRE, and 61.90 and 67.74%
for Harr-V. In the pairwise comparison of AUCs, all P values
were > 0.05. The corresponding ROC curves are shown in
Figure 3.

With cutoff values of 0.031 for DISS, 0.116 for ENTR, 6.121
for GLN, and 0.546 for LGLRE, transverse T2WI achieved AUCs
of 0.730 (95% CI, 0.640–0.809), 0.740 (95% CI, 0.650–0.818),
0.720 (95% CI, 0.629–0.800), and 0.696 (95% CI, 0.604–0.779),
respectively. Sensitivities and specificities were 73.81 and 64.52%
for DISS, 71.43 and 70.97% for ENTR, 67.86 and 67.74% for
GLN, and 77.38 and 58.06% for LGLRS, respectively. There was
still no significant difference between each two discrimination
performances. The corresponding ROC curves are shown in
Figure 4.
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FIGURE 3 | ROC curves of statistically significant texture features extracted

from sagittal fat-suppression T2WI for predicting T-stage.

FIGURE 4 | ROC curves of statistically significant texture features extracted

from transverse T2WI for predicting T-stage.

Multivariate Analysis
The results of multivariate analysis are shown in Table 5. Because
there was a strong collinearity (VIF = 18.555) between GLN
from sagittal fat-suppression T2WI and other features, GLN
was excluded to reduce the effect of collinearity. The cutoff
values from the ROC curve analysis were used to convert the

TABLE 5 | Results of multivariate logistic regression analysis.

Method Features ORa 95% CI P-value rs
b

Sagittal

fat-suppression

DISS 7.937 1.411–47.381 0.036 0.351

T2WI
ENTR 3.535 0.959–24.122 0.197 0.338

LGLRE 2.157 0.434–10.335 0.582 0.331

Harr-V 1.337 0.324–3.296 0.990 −0.231

Transverse T2WI DISS 8.261 1.639–54.293 0.028 0.354

ENTR 9.884 1.911–61.474 0.016 0.370

GLN 3.230 0.891–23.142 0.255 0.339

LGLRE 1.990 0.417–8.526 0.911 0.302

aOR, odds ratio.
brs, Spearman rank correlation coefficient.

FIGURE 5 | ROC curve of a model for predicting T-stage based on

multivariate logistic regression analysis.

texture features into categorical variables for inclusion in the
logistic model. Eight variables were applied to the final logistic
model: DISS (< 0.029 or > 0.029), ENTR (< 0.149 or >

0.149), LGLRE (< 0.549 or > 0.549), Harr-V (< 0.187 or >

0.187) from sagittal fat-suppression T2WI, and DISS (< 0.031
or > 0.031), ENTR (< 0.116 or > 0.116), GLN (< 6.121 or >

6.121), and LGLRE (< 0.546 or > 0.546) from transverse T2WI.
The logistic regression analysis demonstrated that higher DISS
from sagittal fat-suppression T2WI and higher DISS and ENTR
from transverse T2WI were independent predictors of local
invasion. The logistic regression model incorporating the three
independent predictors to differentiate T1/2 from T3/4 tumors
achieved an AUC of 0.789 (95% CI, 0.703–0.859), with sensitivity
of 88.10% and specificity of 61.29%. The corresponding ROC
curve is shown in Figure 5.
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DISCUSSION

The prognosis of patients with rectal cancer depends on
many factors, including the depth that tumor lesion extends
beyond or into muscularis propria, the involved lymph node
number, invasion of the circumferential resection margin, tumor
differentiation grade, and peritumor lymphangiovascular or
neural invasion. This study investigated the correlation between
the extent of local invasion in rectal cancer and texture features
using preoperative sagittal fat-suppression and transverse T2WI
data. The results demonstrated that texture features extracted
from T2WI are potentially valuable imaging biomarkers in
predicting the pathological T-stage of rectal cancer.

Extramural invasion is a key determinant for treatment
decisions and an indication for NACT in patients with rectal
cancer (19). Despite improvements in preoperative T staging
through morphological analysis of high-resolution MRI, the
accuracy of MRI remains unsatisfactory (20–22). More advanced
and reliable techniques for detecting local invasion are necessary
to determine the optimal treatment in patients with rectal
cancer. TA can be used to quantitatively characterize the
intratumoral heterogeneity by calculating the distribution of
spatial arrangement of pixels (e.g., GLCM parameters) and gray-
level values (histogram parameters) within a given ROI (23). The
heterogeneity of a tumor arises from variations in extravascular
extracellular matrix, angiogenesis, and cellularity as well as areas
of hemorrhage and necrosis within the tumor (24). Increased
tissue heterogeneity may lead to greater MRI heterogeneity in
high-stage rectal tumors than in low-stage tumors. Yang et al. (16)
reported that patients without regional lymph node metastasis
had significantly higher energy, kurtosis, and skewness, and
lower entropy on T2WI than those with lymph node metastasis.
Jalil et al. (25) reported that texture features extracted from
T2WI of rectal cancers were biomarkers of tumor response to
NACT and long-term survival. Liu et al. (23) showed that high
skewness and entropy values extracted from ADC maps were
independent predictors of extramural invasion in rectal tumors.
However, the correlation between texture features derived from
sagittal fat-suppression combined with transverse T2WI and
local invasion of rectal cancer remains unclear.

In this study, DISS, ENTR, GLN, and LGLRE extracted
from both sagittal fat-suppression and transverse T2WI differed
significantly between T1/2 and T3/4 tumors. These features
showed significantly higher values in patients with stage T3/4
tumors than in those with T1/2 tumors. Furthermore, T3/4
tumors had a significantly lower Harr-V derived from sagittal
fat-suppression T2WI than T1/2 tumors. Advanced rectal
tumors are large, deeply infiltrated, and have high degrees of
angiogenesis, necrosis, extracellular matrix, hemorrhage, and
cellularity, which may lead to highly heterogeneous patterns on
imaging modalities. Furthermore, rectal tumor invasion results
in large areas of involvement, with additional necrotic or cystic
areas or other abnormal tissues within lesions, which can lead
to even more heterogeneity. Higher DISS values reflect greater
local contrast. ENTR indicates the randomness of the intensity
level distribution. A high GLN value represents differences in
gray levels. High LGLRE reflects a high degree of disorder of

the low gray-level distribution. Increases in these indicators
represent the increased complexity of the texture in the lesion
ROI, as well as increased tumor heterogeneity. These concepts are
important for interpreting the present findings showing that high
T-stage rectal tumors are more heterogeneous on T2WI than low
T-stage tumors.

Multivariate analysis was applied to further investigate the
correlation between the T-stage of rectal cancer and texture
parameters. High DISS on sagittal fat-suppression T2WI and
high DISS and ENTR on transverse T2WI were independent
predictors of T-stage, with odds ratios of 7.937 for sagittal
fat-suppression DISS, and 8.261 and 9.884 for DISS and ENTR on
transverse T2WI, respectively. The AUC of the logistic regression
model incorporating the three independent predictors was higher
than that of significant texture features alone for differentiating
rectal cancer T-stage.

The intraobserver variability for texture features extracted
from both sagittal fat-suppression and transverse T2WI was
evaluated. The results indicated excellent agreement between
two radiologists with the respect to the measurement of texture
features by a single-slice method, with ICCs ranging from 0.832
to 0.927. In fact, intraobserver variability was highly associated
with the ROI delineation and slice selection, as texture feature
calculation was conducted within the ROI from a single slice
using in-house software with MATLAB 2018a. That means the
approaches used for ROI definition are very important.

This study had several limitations. First, this was a
retrospective study, which may lead to the selection bias. Second,
the small sample size may limit the generalizability of the
findings. Third, TA was applied to a single-slice MR image with
the maximum tumor diameter rather than the whole tumor (26).
Unlike most solid tumors, rectal tumors usually grow along the
rectal wall and present an irregular shape; therefore, delineating
the ROI using a single-slice method may not accurately represent
the actual volume of the tumor. Fourth, DWI sequence was
not used for TA. Probably, TA of DWI sequence could be
more appropriate for the study aim since DWI reflects tumor
biology; thus, TA of DWI images should be integrated in
our further study. Fifth, the fact that all these patients came
from the single center might limit the reproducibility of the
results. The results should be further investigated by using
data acquired using different scanners and imaging protocols.
Hence, a future randomized multi-center prospective trial should
be conducted. Finally, T3a- and T2-stage rectal cancers might
have similar locoregional recurrence. T3-stage subgroups were
not evaluated in this study and should be investigated in
future studies.

CONCLUSIONS

Texture features derived from preoperative T2WI were
moderately associated with rectal cancer T-stage. In particular,
high DISS on sagittal fat-suppression T2WI and high DISS and
ENTR on transverse T2WI were independent predictors of high
T-stage. These features could be helpful for assessing the T-stage
of rectal cancer and thus for making treatment decisions.
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Background: Radiomics can quantify tumor phenotypic characteristics non-invasively

by applying feature algorithms to medical imaging data. In this study, we investigated

the association between radiomics features and the tumor histological subtypes, and

we aimed to establish a nomogram for the classification of small cell lung cancer (SCLC)

and non-small-cell lung cancer (NSCLC).

Methods: This was a retrospective single center study. In total, 468 cases including

202 patients with SCLC and 266 patients with NSCLC were enrolled in our study, and

were randomly divided into a training set (n = 327) and a validation set (n = 141)

in a 7:3 ratio. The clinical data of the patients, including age, sex, smoking history,

tumor maximum diameter, clinical stage, and serum tumor markers, were collected. All

patients underwent enhanced computed tomography (CT) scans, and all lesions were

pathologically confirmed. A radiomics signature was generated from the training set using

the least absolute shrinkage and selection operator algorithm. Independent risk factors

were identified by multivariate logistic regression analysis, and a radiomics nomogram

based on the radiomics signature and clinical features was constructed. The capability

of the nomogram was evaluated in the training set and validated in the validation set.

Results: Fourteen of 396 radiomics parameters were screened as important factors

for establishing the radiomics model. The radiomics signature performed well in

differentiating SCLC and NSCLC, with an area under the curve (AUC) of 0.86 (95%

CI: 0.82–0.90) in the training set and 0.82 (95% CI: 0.75–0.89) in the validation set.

The radiomics nomogram had better predictive performance [AUC = 0.94 (95% CI:

0.90–0.98) in the validation set] than the clinical model [AUC= 0.86 (95% CI: 0.80–0.93)]

and the radiomics signature [AUC = 0.82 (95% CI: 0.75–0.89)], and the accuracy was

86.2% (95% CI: 0.79–0.92) in the validation set.

Conclusion: The enhanced CT radiomics signature performed well in the classification

of SCLC and NSCLC. The nomogram based on the radiomics signature and clinical

factors has better diagnostic performance for the classification of SCLC and NSCLC

than the simple application of the radiomics signature.
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INTRODUCTION

Lung cancer is the most common malignant tumor in the
world, ranking first in cancer-related deaths (1, 2). One study
showed that the annual survival rate of lung cancer patients
after early diagnosis and treatment can be increased from 14 to
49% (3). There are two main types of lung cancer: small cell
lung cancer (SCLC) and non-small-cell lung cancer (NSCLC)
(4). SCLC is highly malignant and sensitive to radiotherapy
and chemotherapy (5); NSCLC is relatively less malignant, and
the probability of early metastasis is relatively low. It is not
as sensitive to chemoradiotherapy as SCLC (6). Treatment for
SCLC is mainly based on chemotherapy and radiotherapy (5),
whereas treatment for NSCLC is mainly based on surgical
resection or surgery plus radiotherapy and chemotherapy (5,
7, 8). Histological classification can help doctors determine
the best treatment plan and strategy for lung cancer patients
(9, 10). Currently, the most widely used methods to obtain
pathological tissue are tracheoscopy and computed tomography
(CT)-guided percutaneous lung biopsy (11–14). However, both
of these technologies are invasive, with certain risks and high
costs (15, 16). In addition, for a certain proportion of lung
cancer cases adjacent to the mediastinum, aorta, and other large
blood vessels, CT-guided biopsy is highly risky and difficult (16),
while bronchoscopy has a low success rate in the extraction
of lesions below grade 5 of the bronchus (17). Therefore,
thoracic surgeons and pulmonary oncologists hope to find a
non-invasive and cost-effective alternative. In recent years, a
large number of basic studies have suggested that radiomics
provides promising opportunities in this regard. It assesses
the tumor tissue characteristics non-invasively. Furthermore,
radiomics is relatively cost-effective and has been used for
oncological diagnosis, staging, and treatment guidance with high
accuracy (18–22).

A limited number of studies have investigated the association
of radiomic features and NSCLC tumor histology (23–28). It
is believed that imaging features can independently predict
the histological subtypes of lesions and provide a basis for
the formulation and modification of clinical treatment plans.
However, because no clinical parameters were added, the
prediction efficiency of these models was still not as expected
(23–28). Therefore, this study aimed to establish a prediction
model based on enhanced CT images and clinical features
for the histological classification of SCLC and NSCLC and to
preliminarily explore the clinical application value of this model.

MATERIALS AND METHODS

Data Cohort
The protocol was approved by the Institutional Review Board
of the Affiliated Hospital of Qingdao University. The need for
informed consent was waived by the Institutional Review Board.
A cohort of consecutive 3,971 patients with lung cancer who were
confirmed by biopsy or surgery between January 2014 and June
2018 was identified for this retrospective study.

The inclusion criteria were as follows: (1) pathological
confirmation of lung cancers based on the histological

examination of surgical resection or biopsy specimens;
and (2) availability of dual-phase contrast-enhanced CT
before treatment.

The exclusion criteria were as follows: (1) no enhanced CT
examination in our hospital (n = 1,537); (2) no thin-layer
recombination images or poor image quality (n = 528); (3)
patients with incomplete clinical data (n= 864); (4) patients who
received previous treatment (e.g., radiotherapy, chemotherapy)
before surgery (n = 423); (5) difficulty in precisely drawing the
regions of interest (ROIs) due to small size (long diameter <

1 cm) (n = 166); and (6) patients with a history of other primary
malignancies (n= 85).

Finally, a total of 468 cases (202 patients with SCLC and 266
patients with NSCLC) were enrolled in our study (Figure 1).

The clinical data included age, sex, smoking history, clinical
stage, maximum tumor diameter, and serum tumor markers
[serum gastrin-releasing peptide precursor (ProGRP), squamous
cell carcinoma antigen (SCCA), carcinoembryonic antigen
(CEA), neuron specific enolase (NSE), and cytokeratin 19
fragment (cYFRA21-1)]. According to previous studies (29, 30),
the correlation between a small amount of smoking or occasional
smoking and lung cancer remains uncertain, therefore, the
smoking history in this study was defined as those who had a
history of smoking for more than 1 year and smoked more than
20 cigarettes per day on average based on the WHO definition of
heavy smokers.

CT Image Acquisition
The radiomics workflow is displayed in Figure 2. Contrast-
enhanced CT images were acquired at our hospital using
either a SOMATOM (Siemens Medical Systems, Germany)
scanner or a Brilliance iCT 256 (Philips Healthcare, Netherlands)
scanner. The CT scanning project in our hospital was based
on our country’s conventional technical specifications for chest-
enhanced CT scans. The scanning parameters used in this study
were as follows: tube voltage, 120 kVp; detector collimation, 64
× 0.6 and 128 × 0.625mm; pixel size, 512 × 512; slice interval,
0mm; slice thickness, 5mm; and reconstructed section thickness,
1mm. Contrast-enhanced CT images were acquired after the
injection of 1.0 mL/kg contrast material (iohexol injection, 300
mg/mL, Beilu Pharmaceutical Co., Ltd., Beijing, China) into the
antecubital vein at a rate of 3.0–3.5 mL/s using a power injector
(Ulrich CT Plus 150, Ulrich Medical), followed by a saline flush
(20mL). All patients in our cohort were scanned 25 and 70 s after
injection of the contrast agent to obtain the images in the arterial
phase and venous phase, respectively.

Pathological Evaluation
According to the World Health Organization (WHO)
classification of lung tumors (2015 version), all histopathological
sections were retrospectively analyzed by two pathologists
(WHW and JGW, with 13 and 11 years of experience,
respectively, in pathological diagnosis of lung cancer). In
cases of disagreement, the third pathologist (ZMW, with 19
years of experience in pathological diagnosis of lung cancer)
made the final decision. All pathologists were blinded to the
clinicopathological information.
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FIGURE 1 | Flowchart of the study group inclusion process.

FIGURE 2 | Flow chart of radiomics implementation in this study.

CT Radiomics Feature Extraction
Lesion outlining on CT images was performed using ITK-
SNAP software (http://www.itksnap.org, version: 3.8.0, USA).
The arterial and venous images were analyzed following the same
procedure. One radiologist (YBH) with 8 years of experience
in lung imaging interpreted CT images and outlined the edge
of the target lesion. One week later, another radiologist (HLY)
with 11 years of experience in lung imaging performed ROI
segmentation and feature extraction independently. The two
radiologists were blinded to the clinicopathological information.
The lung cancer lesions were manually identified by a radiologist
and confirmed by another radiologist, who were both blinded
to the clinicopathological information of the patients. Each
ROI was manually outlined along the margin of the lesion on
the largest slice. The original images were normalized before
feature extraction. Commercial software (Analysis Kit 1.0.3;
GE Healthcare, China) was used to extract features. A total
of 396 quantified features were extracted automatically from
the delineated ROIs with four categories of radiomics features,

including 10 Haralick features, 42 histograms, 9 form factors, 11
gray-level size zone matrix (GLSZM) features, 60 gray-level run-
length matrix (GLRLM) features with an offset of 1/4/7, and 48
gray-level cooccurrence matrix (GLCM) features with an offset
of 1/4/7.

Development of the Radiomics Signature
and Radiomics Nomogram
To reduce overfitting and select the most informative clinical
and radiomics features to develop a predictive model, the least
absolute shrinkage and selection operator (lasso) regression
method was utilized to select the most valuable features from
the primary datasets. These radiomics features with non-zero
coefficients were thus selected, and radiomics scores (Rad-scores)
were calculated for each patient using a linear combination
of the selected features that were weighted by their respective
coefficients. The diagnostic performance of the radiomics
signature was quantified by the area under the receiver operating
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TABLE 1 | Comparison of clinical factors and clinical stages between SCLC and NSCLC patients (number).

Clinical features SCLC

(n = 202)

NSCLC

(n = 266)

p-value t-value or χ
2-value

Sex Male 152 (75.2%) 188 (70.7%) 0.272 1.207*

Female 50 (24.8%) 78 (29.3%)

Age (years) 61.6 ± 9.37 62.3 ± 9.62 0.401 0.840

Tumor maximum diameter (cm) 4.6 ± 2.5 4.9 ± 2.4 0.203 1.276

Smoking Yes 160 (79.2%) 162 (60.9%) <0.001 17.924*

No 42 (20.8%) 104 (39.1%)

Clinical stage Early (I, II) 68 (33.7%) 101 (40.0%) 0.337 0.923*

Late (III, IV) 134 (66.3%) 165 (60.0%)

*χ2-value (continuous variables were analyzed by the t-test and categorical variables were analyzed by the chi-square test).

characteristic (ROC) curve (AUC) in the primary cohort and then
validated in the validation cohort.

For validation, we evaluated the Rad-score difference between
the two classes and used the “compare the mean between two
groups” method to calculate the sample size of the validation
cohorts, which satisfied the statistical power of more than 0.8. In
our study, the difference in Rad-score between the two groups
was 1.5. The necessary sample size of the validation cohort was
44 and we used 141 cases to validate the model. We did not
retrain the model in the validation cohort. We used the cutoff
obtained from the training cohort to calculate the metrics in the
validation cohort.

Clinical risk factors for SCLC, including sex, age, tumor
maximum diameter, smoking, clinical stage and tumor marker
indicators, were first assessed in the primary cohort by using
correlation analysis and multiple logistic regression analysis.
Clinical features with P < 0.05 and the radiomics signature
were applied to develop a diagnostic model for distinguishing
SCLC and NSCLC by using multivariate logistic regression in the
primary cohort. Backward stepwise selection was applied using
a likelihood ratio test with Akaike’s information criterion as the
stopping rule.

To provide clinicians with a quantitative tool to predict the
pathological type of lung cancer, a radiomics nomogramwas built
on the basis of the multivariable logistic analysis in the primary
cohort. Rad-scores were also calculated in the validation set by
using the algorithm built with the training set.

Validation and Assessment of the
Radiomics Nomogram
The diagnostic value of the radiomics nomogram was
assessed in both the training and validation cohorts regarding
discrimination, calibration and clinical value. The discrimination
performance of the radiomics nomogram was quantified using
ROC curves and AUC values. Calibration curves were plotted to
evaluate the goodness-of-fit of the radiomics nomogram, and the
Hosmer-Lemeshow test was also performed (a non-significant
test statistic implies that the model calibrates well). To estimate
whether the nomogram is sufficiently robust for clinical use,
decision curve analysis (DCA) was applied to calculate the net
benefits for a range of threshold probabilities in both the training

and validation sets. The net benefit was assessed by calculating
the difference between the true-positive rate and weighted
false-positive rate across different threshold probabilities in the
validation set.

Statistical Analysis
The differences in continuous variables were analyzed by an
independent t-test. Fisher’s exact test or the chi-square test
was used for categorical variables. The diagnostic performance
of the multivariate models was evaluated using ROC analysis
and AUC values. The diagnostic sensitivity, specificity, accuracy,
positive likelihood ratio, and negative likelihood ratio were
also calculated.

The intraclass correlation coefficient (ICC) was calculated
to evaluate the interobserver variability of radiomics feature
extraction. Radiomics features with ICC values no lower than
0.75 were regarded as highly reproducible features.

All statistical analyses were performed using R statistical
software (http://www.Rproject.org, version 3.4.4). Lasso
regression was performed using the “glmnet” package.
Multivariate logistic regression, nomogram construction,
and calibration plot construction were performed using the
“rms” package. DCA was performed using the “dca.r” function.
ROC curves were drawn and analyzed using the “proc” package.
A two-tailed P < 0.05 was considered statistically significant.

RESULTS

Comparison of Clinical Factors Between
SCLC and NSCLC Patients
The results showed that there was a statistically significant
difference in the proportion of smoking between SCLC and
NSCLC patients (P < 0.001), and there was no statistically
significant difference in sex, age, tumor maximum diameter,
or preoperative clinical stage (P > 0.05), as shown in Table 1.
Comparing the clinical data and clinical stages of the training
and validation sets, the results showed that there was no
significant difference in age, sex, preoperative clinical stage,
tumor maximum diameter, or pathological stage between the
training set and the validation set (P > 0.05), as shown in Table 2.
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TABLE 2 | Composition ratio and clinical data of patients with different pathological types in the training and validation sets.

Set Number

of cases

Age

(years)

Sex Smoking Clinical staging Tumor

maximum

diameter

(cm)

Pathological type

M F I II III IV Small cell

lung cancer

Squamous

cell

carcinoma

Adenocarcinoma Large cell

lung

cancer

Training set 327 62.2 ± 9.60 232 95 223 12 112 95 108 4.77 ± 2.42 141 70 70 46

Validation set 141 61.5 ± 9.33 108 33 97 6 45 46 44 4.80 ± 2.53 61 30 30 20

t or χ2 0.730 1.581* 0.016 0.766* 0.114 0.003*

p-value 0.466 0.209 0.898 0.858 0.909 1

*χ2-value (continuous variables were analyzed by the t-test and categorical variables were analyzed by the chi-square test).

The Predictive Efficacy of the Radiomics
Signature for the Classification of SCLC
and NSCLC
Through the reproducibility evaluation (inter- and intra datasets
with a consistency coefficient >0.75) and the removal of highly
correlated features (correlation coefficient >0.6), 14 features
were screened out using lasso logistic regression, as shown in
Figures 3A–C. Figure 4 shows the Rad-scores for each patient in
the training and validation sets.

Predictive Efficacy of the Radiomics
Signature and the Radiomics Nomogram
The radiomics signature established in this study has good ability
to distinguish and predict the pathological types of SCLC and
NSCLC. The AUC of the prediction model in the training set was
0.86 (95% CI: 0.82–0.90), and the AUC in the validation set was
0.82 (95% CI: 0.75–0.89), as shown in Figures 5A,B.

Clinical factors found to be significantly associated with the
classification of SCLC and NSCLC by univariate analysis are
presented in Table 3. They include smoking and serum NSE
and cYFRA21-1 values (P < 0.05 each). A clinical model was
built based on the results of the multivariate logistic regression
analysis of clinical variables. The results of multivariate logistic
regression analysis suggested that smoking, serum NSE and
cYFRA21-1 and Rad-score were independent predictors for the
classification of SCLC and NSCLC (Table 4), with AUCs of 0.86
and 0.82, respectively. A radiomics nomogram incorporating the
predictors, including smoking, NSE, cYFRA21-1 and Rad-score,
was constructed (Figure 6).

The calibration curve shows good agreement between the
predicted probability of the nomogram and the actual probability
(Figure 7). Compared with the results of the radiomics signature
and clinical model, the nomogram has better prediction efficiency
(Table 5 and Figure 8). In the training and validation sets,
the AUC values were 0.93 (95% CI: 0.90–0.96) and 0.94 (95%
CI: 0.90–0.98), and the accuracy was 0.85 (95% CI: 0.80–0.88)
and 0.86 (95% CI: 0.79–0.92), respectively. The DCA for the
radiomics nomogram is displayed in Figure 9, which shows
that the radiomics nomogram is superior to the clinical model
regarding the “treat all” vs. “treat none” strategies when the
threshold probability is within the 0.1–1.0 range.

DISCUSSION

In traditional single-energy CT imaging, tumors are assessed
based on attenuation, morphology, and invasiveness. The effect
of treatment is assessed based on changes in solid tumor
volume and density (31). However, it is usually not possible
to determine the pathological type of tumors based only on
tumor morphology. Radiomics focuses on extracting a large
number of quantitative imaging features, which can provide
a detailed and comprehensive characterization of the tumor
phenotype, and uses statistics and/or machine learning methods
to screen the most valuable radiomics characteristics to analyze
clinical information for the diagnosis and treatment of tumors
(32–34). In recent years, a large number of basic studies
have suggested that radiomics could evaluate tumor tissue
characteristics in a non-invasive manner with high predictive
accuracy (35, 36).

In this study, we observed 14 radiomics features with a
significant association with the histological subtypes of lung
cancer. The radiomics model established in this study has
good predictive performance for the pathological classification
of SCLC and NSCLC. The AUCs of the radiomics signature
predictive model in the training set and the validation set were
0.86 and 0.82, respectively.

Furthermore, we found that clinical features including
smoking status, NSE and cYFRA21 had potential ability to
differentiate between SCLC and NSCLC. We built a radiomics
nomogram including smoking status, NSE, cYFRA21, and Rad-
score for individualized SCLC and NSCLC prediction. The
AUC value of the radiomics nomogram in the validation set
was 0.94, indicating that it has better predictive performance
than the clinical model (AUC = 0.86) and the radiomics
signature (AUC = 0.82). The accuracy, specificity and sensitivity
were also improved, and the results of the validation set were
as follows: accuracy: 86.2%; sensitivity: 84.7%; and specificity:
87.3%. The nomogram visualized the radiomic signature and
clinical prediction factors into an easy-to-use tool for the
individualized prediction of SCLC and NSCLC. In addition,
calibration curves were constructed to indicate the performance
of the radiomics nomogram for the classification of SCLC and
NSCLC. The curves demonstrated good agreement between the
predicted and observed values in the training and validation
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FIGURE 3 | (A) The binomial deviation from the lasso regression

cross-validation model is plotted as a log (λ) function by using the 10-fold

cross-validation method. The y-axis represents binomial deviation, the lower

(Continued)

FIGURE 3 | x-axis represents log (λ), and the numbers above the x-axis

represent the average number of predictive variables. The red dot represents

the average deviation value of each model with a given λ, while the vertical bar

of the red dot represents the upper and lower limit values of the deviation. The

vertical dotted line represents the log (λ) value corresponding to the best λ

value; the selection standard is the minimum standard. By adjusting different

parameters (λ), the binomial deviation of the model is minimized, and the

feature datasets with the best performance are selected. (B) Plots the

coefficients of the log (λ) function. The λ value is the smallest at the dotted

line. Select the coefficient that is not 0 here as the coefficient of the last

reserved feature. (C) The y-axis shows the 14 feature names with non-zero

coefficients retained at the minimum value of λ, and the x-axis shows their

total coefficients in the lasso Cox analysis. The larger the coefficients are, the

greater the predictive significance.

sets. In this study, central small cell lung cancer accounted
for 67.3% of all small cell lung cancer cases, and in the non-
small cell lung cancer group, the proportion of central NSCLCs
was 60.5%. There was no significant difference between the
two groups (p = 0.13). The previous reports (37) showed that
central small-cell lung cancer accounted for ∼90–95% of all
small-cell lung cancer cases. In this study, central small-cell lung
cancer accounted for a relatively low proportion. The possible
reason is that some of the cases included in this study were
surgical cases, while most small-cell lung cancers cannot be
surgically removed, so the location results of lung cancer in
this study may not be representative of the general population.
Thus, this study did not introduce location as a feature
of the study.

In 2002, Kido et al. (38) analyzed 70 cases of bronchial
carcinoma (61 cases of adenocarcinoma and 9 cases of squamous
cell carcinoma) by the fractal method. The results showed
that the three-dimensional classification obtained from grayscale
images was helpful in distinguishing adenocarcinoma from
squamous cell carcinoma.Wu et al. (23) analyzed the relationship
between radiomics features and the subtypes (adenocarcinoma
and squamous cell carcinoma) of lung cancer. A total of 440
features were extracted in the study. After multivariate analysis
and feature selection, the fivemost relevant features were applied,
and the diagnostic efficiency (AUC) of the model was 0.72.
Junior et al. (25) found that the AUCs of the training group
and the validation group were 0.71 and 0.81, respectively, when
the radiomics features of lung cancer CT images were used
to distinguish adenocarcinoma, squamous cell carcinoma and
large cell carcinoma, which indicated that the radiomics method
had great potential in the diagnosis of the histopathological
subtypes of lung cancer. One study in 2018 (26) showed that the
radiomics signature established by lasso logistic regression model
can distinguish adenocarcinoma and squamous carcinoma well.
The AUCs of the training set and validation set were 0.905 and
0.893, respectively. Linning et al. (27, 28) found that the use of
a radiomics approach for classifying the histological subtypes of
lung cancer demonstrated potential for differentiating AD and
SCC, as well as AD and SCLC; however, the approach showed
relatively low performance in classifying SCC and SCLC. For
classifying AD and SCC, AD and SCLC, and SCC and SCLC,
the AUCs were 0.801, 0.857, and 0.657 (non-enhanced); 0.834,
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FIGURE 4 | The Rad-score of each patient in the training set (A) and validation set (B). The Rad-score is classified according to the threshold value. The Wilcoxon

test was used to assess the difference between the two sets.

FIGURE 5 | Radiomics signature ROC curves used to assess predictive performance. (A) The AUC of the training set is 0.86. (B) The AUC of the validation set is 0.82.
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0.855, and 0.619 (arterial phase); and 0.864, 0.864, and 0.664
(venous phase), respectively. According to their studies (27, 28),
the prediction efficiency of the model based on enhanced CT was
better than or equal to that based on non-contrast CT imaging,
and non-contrast CT was not available in many cases due to
the lack of thin-layer recombination images in our study. As a
result, non-contrast CT was not used to extract CT radiomics
features, and only dual-phase enhanced CT was independently
analyzed to establish predictive models in our study. The AUCs

TABLE 3 | Positive results of univariate analysis for the classification of SCLC and

NSCLC.

Variables OR (95% CI) P-value

Smoking 2.35 (1.42–3.97) <0.01

Serum 1.00 (1.00–1.00) <0.01

NSE 1.03 (1.02–1.04) <0.01

cYFRA21 0.93 (0.88–0.98) 0.01

TABLE 4 | Positive results of multivariate logistic regression analysis for the

classification of SCLC and NSCLC.

Variables OR (95% CI) P-value

(Intercept) 0.42 (0.21–0.82) 0.01

Smoking 1.14 (0.57–2.28) 0.71

Serum 1.00 (1.00–1.00) <0.01

NSE 1.01 (1.00–1.02) 0.07

cYFRA21 0.97 (0.91–1.02) 0.35

Rad-score 4.00 (2.55–6.70) <0.01

of our model in the training and validation sets were 0.93 and
0.94, respectively, which were higher than the previous results.
One of the possible reasons may be that our study included a
larger sample size, and the other may be that we added clinically
relevant prediction parameters, which may make our results
more comprehensive and accurate. In our study, we included
samples of all major lung cancer subtypes, including SCLC,
adenocarcinoma, squamous cell carcinoma, and large cell lung
cancer. Our findings suggest that some robust radiomics features
have great potential for the classification of SCLC and NSCLC.
The established radiomics nomogram has a better prediction
ability for the classification of SCLC and NSCLC, which require
different treatment options. We believe that our work may
serve as a promising diagnostic tool for the classification
of SCLC and NSCLC in a non-invasive manner, allowing
clinicians to select the appropriate treatment plan for lung
cancer patients.

This study has certain limitations. First, this study used
only contrast-enhanced CT image features and did not
compare the classification performance with models established
by positron emission tomography (PET) imaging or other
imaging modalities such as non-contrast CT. These all need
further study. Second, this study is a retrospective study,
and there may be bias in case selection. Extracting texture
features from artificially segmented data makes it difficult
to remove small blood vessels and bronchi in nodules or
masses, which may affect the accuracy of certain features.
Third, this study is a single-center retrospective study.
Although this study used a cross-validation method and
the amount of data was repeatedly calculated and verified,
the number of cases in this study was relatively small and
could not meet the requirements of a large number of
samples, which may lead to instability. In the future, we

FIGURE 6 | Radiomics nomogram for predicting SCLC and NSCLC.

Frontiers in Oncology | www.frontiersin.org 8 September 2020 | Volume 10 | Article 1268157

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Liu et al. Classification of Lung Cancer Histology by Radiomics

FIGURE 7 | Calibration curves of the radiomics nomogram in the training set (A) and validation set (B). The calibration curves show the calibration of the nomogram in

terms of agreement between the predicted probability of SCLC and pathological findings. The 45◦ blue line indicates perfect prediction, and the dotted lines indicate

the predictive performance of the nomogram. The closer the dotted line fit to the ideal line, the better the predictive accuracy of the nomogram.

TABLE 5 | Predictive ability of the radiomics nomogram, radiomics signature, and clinical model for the classification of SCLC and NSCLC.

Variables AUC (95% CI) Accuracy Sensitivity Specificity

Clinical model Train 0.88 (0.85–0.92) 0.84 0.84 0.84

Test 0.86 (0.80–0.93) 0.84 0.83 0.85

Radiomics signature Train 0.86 (0.82–0.90) 0.75 0.65 0.87

Test 0.82 (0.75–0.89) 0.76 0.67 0.88

Radiomics nomogram Train 0.93 (0.90–0.96) 0.85 0.80 0.88

Test 0.94 (0.90–0.98) 0.86 0.85 0.87

FIGURE 8 | The AUC was used to estimate the predictive power of different models (A: training set; B: validation set). The radiomics signature and clinical model can

be used for the classification of SCLC and NSCLC. In the validation set, the predictive ability of the nomogram (red, AUC = 0.94) was better than that of the clinical

model (green, AUC = 0.86). The addition of clinical features improves the prediction efficiency of the radiomics signature.
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FIGURE 9 | DCA for the radiomics nomogram. The y-axis shows the net benefit. The red line represents the radiomics nomogram. The blue line indicates the

hypothesis that all patients had small cell lung cancer. The black line represents the hypothesis that no patients had small cell lung cancer. The x-axis shows the

threshold probability, which is where the expected benefit of treatment is equal to the expected benefit of not undergoing treatment. The decision curves indicate that

when the threshold probability is between 0.1 and 1, using the radiomics nomogram to predict small cell lung cancer adds more benefit than treating either all or no

patients.

will try to increase the sample size and carry out multicenter
joint research.

In conclusion, the radiomics signature we established has
good performance for the classification of SCLC and NSCLC,
and we also developed and validated the first nomogram
with better diagnostic performance for the classification of
SCLC and NSCLC based on the radiomics signature and
clinical factors.
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Objective: Accurate staging is of great importance in treatment selection for patients

with nasopharyngeal carcinoma (NPC). The aims of this study were to construct radiomic

models of NPC staging based on positron emission tomography (PET) and magnetic

resonance (MR) images and to investigate the correlation between metabolic parameters

and radiomic features.

Methods: A total of 100 consecutive cases of NPC (70 in training and 30 in the

testing cohort) with undifferentiated carcinoma confirmed pathologically were recruited.

Metabolic parameters of the local lesions of NPC were measured. A total of 396 radiomic

features based on PET and MRI images were calculated [including histogram, Haralick,

shape factor, gray level co-occurrence matrix (GLCM), and run length matrix (RLM)]

and selected [using maximum relevance and minimum redundancy (mRMR) and least

shrinkage and selection operator (LASSO)], respectively. The logistic regression models

were established according to these features. Finally, the relationship between the

metabolic parameters and radiomic features was analyzed.

Results: We selected the nine most relevant radiomic features (six from MR images

and three from PET images) from local NPC lesions. In the PET model, the area under

the receiver operating characteristic (ROC) curve (AUC), accuracy, sensitivity, and the

specificity of the training group were 0.84, 0.75, 0.90, and 0.69, respectively. In the MR

model, those metrics were 0.85, 0.83, 0.75, and 0.86, respectively. Pearson’s correlation

analysis showed that the metabolic parameters had different degrees of correlation with

the selected radiomic features.

Conclusion: The PET and MR radiomic models were helpful in the diagnosis of

NPC staging. There were correlations between the metabolic parameters and radiomic

features of primary NPC based on PET/MR. In the future, PET/MR-based radiomic
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models, with further improvement and validation, can be a more useful and economical

tool for predicting local invasion and distant metastasis of NPC.

Keywords: nasopharyngeal carcinoma, positron emission tomography, magnetic resonance imaging, radiomics,

staging

INTRODUCTION

Nasopharyngeal carcinoma (NPC) is a special tumor of the head
and neck which is the main characteristic disease in South Asia
(1). It is of great importance to appropriately predict the disease
stage because proper therapy strategies are based on the current
stage. The preferred treatment for early NPC is radiotherapy.
However, locally advanced or advanced NPC patients should
be treated with a combination of radiation and chemotherapy.
Radiomics models based on 18F-fluorodeoxyglucose positron
emission tomography (FDG-PET) and magnetic resonance
imaging (MRI) could provide additional useful information for
NPC staging (2).

The integrated synchronization of 18F-FDG PET/MR can
simultaneously provide the morphological information of MRI
and the molecular metabolic information of PET imaging
through a single scan and realize the accurate fusion of
MRI anatomical imaging and PET functional imaging. Chan
et al. (3) conducted both whole-body PET/MR and PET/CT
examinations on 113 patients with pathologically confirmed
NPC. The study showed that, for tumor staging of NPC,
PET/MR improved the accuracy of head and neck tumor
detection and could better show the mapping tumor extension,
especially the intracranial invasion, than PET/CT. Cheng
et al. (4) performed PET/CT-MRI scans on 35 patients with
NPC. The study indicated that PET/MR was more efficient
in characterization and visualization and showed high lesion
detection and good image quality of NPC compared with
PET/CT. Some studies have shown that the combination of PET
andMRI images and the comprehensive analysis of themolecular
metabolism and microstructure characteristics of the tumors
are of great value in the differential diagnosis and prognosis
analysis of tumors (5, 6). However, there are relatively few
PET/MR studies on the staging of NPC. In this study, 18F-
FDG PET/MR was used to determine the early and late stages
of NPC.

In theory, the metabolic imaging of PET can quantitatively
and early reflect the heterogeneity of tumor. The preferred semi-
quantitative parameter for primary and metastatic NPC in PET
is standardized uptake value (SUV). Since SUVmax only reflects
the highest tumor volume of the 18F-FDG perturbation value, the
intake and overall metabolic of area of interest (ROI) were not
assessed. Larson et al. (7) introduced themetabolic tumor volume
(MTV) and total lesion glycolysis (TLG) for the assessment of
important parameters.

Radiomics is a rapidly developing new technique for disease
diagnosis and auxiliary detection (8). Tumor heterogeneity
is a recognized cancer feature in biology, and visualization
of tumor heterogeneity plays a key role in evaluating tumor
invasiveness. The study of the heterogeneity of cancer foci

by radiomic analysis has become a hot topic in the field of
medical imaging of cancer. Radiomics provides a promising
method in the diagnosis and prediction of many cancers, such
as glioblastoma (9), lung cancer (10), prostate cancer (11),
breast cancer (12), and colorectal cancer (13, 14). Moreover,
Zhang et al. (15) conducted a multi-parameter MRI radiomic
study on 118 advanced NPC patients and found that the
selected radiomic features had different degrees of correlation
with the T stage, N stage, and clinical stage. Du et al.
(16) performed PET/CT examination on 76 patients with
NPC. The study showed that machine learning methods in
radiomics can distinguish local recurrence vs. inflammation.
However, there is still a lack of PET/MR-based radiomic studies
on NPC.

In this study, we will construct radiomic models based on 18F-
FDG PET/MR for NPC staging and investigate the correlations
between the metabolic parameters and radiomic features.

MATERIALS AND METHODS

Patients
In this study, patients with pretreatment NPC (all pathologically
non-keratinized undifferentiated carcinoma) who were
examined at the Hangzhou Universal Medical Imaging
Diagnostic Center from June 2017 to October 2019 were
collected; all patients underwent PET/MR examination
before treatment. Before the examination, all patients
signed an informed consent. This study was approved
by the local ethics committee (no. KT2018024), and all
methods were implemented in accordance with the Declaration
of Helsinki.

All patients were staged according to the 8th edition of
the American Joint Committee on Cancer (AJCC)/Union for
International Cancer Control (UICC) TNM staging system
(17). The inclusion criteria are as follows: NPC patients
with pathologically confirmed non-keratinized undifferentiated
carcinoma; nasopharyngeal lesions were found for the first time
without any treatment such as chemotherapy or radiotherapy;
clear pretreatment PET/MR images of the whole body and
head and neck can be obtained; and PET/MR examination
was performed between 40 and 60min after injection of the
imaging agent. The exclusion criteria are as follows: patients
who had received any form of treatment (such as radiotherapy,
chemotherapy, etc.) before PET/MR examination; patients with
a history of other head and neck malignancies or other
systemic malignancies; PET or MRI images do not meet
the diagnostic criteria (such as metal or motion artifacts);
patients with MRI contraindication or intolerance; and SUV
value suspected to have deviation (such as high blood sugar
or low radiation purity of the FDG drug). A total of 100
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consecutive NPCs who met the criteria were included. NPC
patients were divided into early group (stages I and II) and
advanced group (stages III and IV) according to the TNM
staging system.

PET/MR Imaging Protocol
18F-FDG PET/MR scans were performed using GE integrated
TOF PET/MR (GE SIGNA,Wisconsin, USA). The patients fasted
for more than 6 h and drank clear water. Strenuous exercise was
prohibited before the injection of 18F-FDG. Blood glucose was
controlled below 7.8 mmol/L. The patients were injected with
18F-FDG at a dose of 3.7 MBq/kg and underwent whole-body
PET/MR examination after urination. PET images were collected
and reconstructed using 3D mode, time-lapse technique, and
point spread function during whole-body MRI examination. A
local PET/MR scan of the head and neck, from the base of the
skull to the supraclavicular bones, was then performed. Finally,
whole-body and local PET, MRI, and PET/MR fusion images
were obtained.

Radiomics Analysis
Image preprocessing was conducted using the Artificial
Intelligence Kit (A.K) software which was developed by
GE Healthcare. The A.K software has been registered and
approved. It realizes several key steps of radiomics and has
already been applied to some radiomics studies, including
ourselves (18, 19). The image resolution was adjusted to
1mm × 1mm × 1mm for resampling. The image was
transformed into the same layer thickness through the linear
difference value, i.e., 1mm layer thickness. Then, image gray
unified adjustment to 0–255 was done for standardization.
The maximum value of grayscale is 255 and the minimum
value is 0; the rest were converted linearly. An example
before and after the preprocessing of images is shown in
Figure 1.

For ROI segmentation, the T2-weighted images (T2WI) from
the local head and neck scan and the corresponding PET
images were imported into ITK-SNAP software (version 2.2.0;
www.itksnap.org). On the T2WI, the edges of the primary
NPC were manually delineated layer by layer, excluding the
normal tissues and posterior pharyngeal lymph nodes that were
not invaded. The segmentation boundaries of the PET images
and T2WI coincide. All segmentations were conducted by a
neuroradiologist with 12 years of work experience. Finally,
the segmentation results of the T2WI and the PET images
were derived.

For feature extraction, firstly, all the unsegmented raw
data of the T2WI and PET images were imported into the
A.K software, and then the corresponding ROI data were
imported in batches. The selection parameters include histogram,
Haralick, shape factor, gray level co-occurrence matrix (GLCM),
and run length matrix (RLM) with steps 1, 4, and 7.
Finally, radiomic features were extracted in batches from all
the data.

For feature selection, the extracted radiomic feature tables of
the T2WI and PET images were imported into the A.K software
for feature selection. Then, we divided the data in a ratio of

FIGURE 1 | Workflow of radiomics analysis for NPC staging.

7:3, i.e., 70% of the training set and 30% of the testing set. The
outliers in the table were replaced with the average values and
the data was standardized. Feature selection was conducted on
the two groups of data, respectively (the total feature number
for both PET and MR was 396). We used two feature selection
methods: maximum relevance and minimum redundancy
(mRMR) and least shrinkage and selection operator (LASSO).
Firstly, mRMR was used to eliminate redundant and irrelevant
features. Next, we chose the LASSO regression model, which
is suitable for the dimension reduction of high-dimensional
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data to select the predictive radiomic features of the training
data. In order to avoid overfitting, 10-fold cross-validation
with minimum criteria was used. These two-dimensional

TABLE 1 | Clinical data comparison of NPC patients in the training and the testing

groups.

Training

group

Testing

group

Statistic p-value

Sample size 70 30 NA NA

Age (years, mean ±

SD)

52.23 ± 12.33 50.40 ± 13.68 −0.658 0.512

Gender

(male/female)

56/14 22/8 0.544* 0.461*

SUVmax 10.91 ± 4.76 10.03 ± 3.78 −0.899 0.371

MTV 9.87 ± 7.38 11.31 ± 9.29 0.824 0.412

TLG 51.06 ± 46.95 57.61 ± 41.46 0.661 0.510

Clinical staging

(I/II/III/IV)

5/14/38/13 2/6/19/3 1.250* 0.767*

Statistics were analyzed with t-test, unless otherwise indicated. SD, standard deviation;

SUVmax , maximum standard unit value; MTV, metabolic tumor volume; TLG, total lesion

glycolysis; NA, not applicable. P-value, 0.05. *χ2 test was performed.

reduction methods have been well-used in some radiomics
studies (16, 20).

In machine learning modeling, according to the selected
features, the logistic regression models of T2WI and PET
were constructed using machine learning methods. The
model’s performance in the training and testing groups was
assessed using receiver operating characteristic (ROC) curves
and accuracy.

Figure 1 shows the workflow of the radiomics analysis for
NPC staging.

Measurement of PET Metabolic
Parameters
Various metabolic parameters were measured using the PET
VCAR software in a GE Healthcare AW 4.6 post-processing
workstation by a neuroradiologist with 12 years of work
experience. The PET/MR image sequences of the local head
and neck scans were opened. The adaptive threshold method
was used to determine the uptake boundary of the primary
lesion (21), which determined 40% of the SUVmax in ROI
as the tumor boundary. The ROI recognition box size was
adjusted, and the high uptake areas such as normal tissues and

FIGURE 2 | (A) The error rate curve. (B) LASSO coefficient λ graph. Coefficient λ was selected in the LASSO using a 10-fold cross-validation. We chose the

coefficient λ with the lowest error rate. (C) The remaining features of the positron emission tomography (PET) images after feature selection.
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FIGURE 3 | (A) The error rate curve. (B) LASSO coefficient λ graph. We chose the coefficient λ with the lowest error rate. (C) The remaining features of the magnetic

resonance (MR) images after feature selection.

metastatic lymph nodes were excluded from the ROI range
in combination with the MRI structure image. Finally, three
metabolic parameters of ROI, namely, MTV, SUVmax, and TLG,
were recorded.

Statistical Analysis
Statistical analyses for clinical data comparison were performed
using SPSS (version 22.0, IBM). Data of continuous variables
conforming to normal distribution were expressed as the
mean ± standard deviation. Chi-square (χ2) test was
used for the comparison of counting data, t-test for the
comparison of measurement data, and Pearson’s analysis was
used for the correlation between the metabolic parameters
and radiomic features, which were normally distributed.
All statistical methods of the radiomics analysis process
were conducted with the A.K software and R software
(version 3.5.2; http://www.Rproject.org).

RESULTS

Comparison of Clinical Data
Table 1 shows the results of statistical analysis of the
demographics and clinical data. There were no statistically
significant differences in age, gender, the metabolic parameters

(SUVmax, MTV, and TLG) and clinical stage between the training
group and the testing group (P > 0.05).

Radiomics Analysis Results
There were 396 features calculated for the PET and MR data. For
the PET data, after mRMR, the remaining feature number was
20. After LASSO, three features were retained (Figures 2A–C).
For the MR data, after mRMR and LASSO, the remaining feature
numbers were 20 and 6, respectively (Figures 3A–C). The type
and formula of the selected features are shown in Table 2.

For the PET data, according to the three selected features,
the logistic regression algorithm was used to construct the
classification model of the training group and the testing group.
The area under the ROC curve (AUC), accuracy, sensitivity, and
the specificity of the training group were 0.84, 0.75, 0.90, and
0.69, respectively. The corresponding indexes of the testing group
were 0.82, 0.86, 0.88, and 0.86, respectively (Figure 4). The AUC
values were very close in the two groups, and the fitting degree
of the model was considered to be good. The cutoff values of
radscore for training group and testing group were 1.01 and
0.74, respectively.

For the MR data, logistic regression algorithm was used to
construct the classification model of the training group and
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the testing group according to the six selected features. The
AUC, accuracy, sensitivity, and specificity of the training group
were 0.85, 0.83, 0.75, and 0.86, respectively. The corresponding
indexes of the testing group were 0.83, 0.83, 0.88, and 0.81,
respectively (Figure 5). The fitting degree of the model was also
considered to be good. The cutoff values of the radscore for
the training and testing groups were 0.64 and 0.89, respectively.
The radscore formula is shown in Supplementary Data.
Calibration curves of the PET and MR data are shown in
Figures 6, 7.

Correlation Between the Radiomic
Features and PET Metabolic Parameters
In the PET model, Pearson’s correlation analysis showed
that the feature (GLCMEntropy_angle0_offset4) was
significantly positively correlated with the MTV and
TLG (R = 0.70 and 0.73, P < 0.01). The feature
(HighGreyLevelRunEmphasis_AllDirection_offset1_SD) were
negatively correlated with TLG (R = −0.33, P < 0.01). More
correlation coefficients are shown in Table 3.

In the T2WImodel, Pearson’s correlation analysis showed that
the three features (MinIntensity, GLCMEntropy_angle0_offset4,
and HighGreyLevelRunEmphasis_AllDirection_offset4_SD)
were negatively correlated with MTV (R = −0.45, −0.45, and
−0.30, respectively, P < 0.01) and TLG (R = −0.47, −0.50, and
−0.37, respectively, P < 0.01). More correlation coefficients are
shown in Table 4.

DISCUSSION

We selected the nine most relevant radiomic features (six
from MR images and three from PET images) from local
NPC lesions. The correlations between the radiomic features
and the SUVmax, MTV, and TLG metabolic parameters were
discussed. The clinical value of the radiomic model in evaluating
the NPC stage was also analyzed. The results showed that
the constructed PET and MR radiomic models had high

diagnostic performance for NPC staging, and there was a
certain correlation between the metabolic parameters and some
radiomic features.

Burri et al. (21) found that 40% of the SUVmax based on
PET as the boundary of the lesion had the best correlation
with the pathological and physiological characteristics of

TABLE 2 | Type and formula of the selected features in positron emission

tomography (PET) and magnetic resonance (MR) data.

Feature Type Formula

PET_GLCMEnergy_All

Direction_offset1_SD

GLCM
∑

i,j g(i, j)
2

PET_GLCMEntropy_

angle0_offset4

GLCM −
∑

i,j g(i, j) log2(i, j)

PET_HighGreyLevelRun

Emphasis_AllDirection_

offset1_SD

RLM HGRE(θ ) = 1
nr

∑N
j=i

∑M
i=1 p(i, j, θ )i

2

MR_LowGreyLevelRun

Emphasis_AllDirection_

offset1_SD

RLM LGRE(θ ) = 1
nr

∑N
j=i

∑M
i=1

p(i,j,θ )
i2

MR_ShortRunHighGrey

LevelEmphasis_

AllDirection_offset4_SD

RLM SRHGE (θ) = 1
nr

∑N
j=i

∑M
i=1

p(i,j,θ )i2

j2

MR_GLCMEntropy_

AllDirection_

offset1_SD

GLCM −
∑

i,j g(i, j) log2(i, j)

MR_MinIntensity Histogram Minimum intensity value

MR_HighGreyLevelRun

Emphasis_AllDirection_

offset4_SD

RLM HGRE(θ ) = 1
nr

∑N
j=i

∑M
i=1 p(i, j, θ )i

2

MR_GLCMEntropy_angle

0_offset4

GLCM −
∑

i,j g(i, j) log2(i, j)

In the formulas, g is a gray level co-occurrence matrix (GLCM), where i, j are the spatial

coordinates of g(i,j). For the GLCM parameters, i is a gray level, j is a gray value, and N

is the number of classes of gray levels. For the run length matrix (RLM) parameters, nr is

the number of runs, N is the number of classes of gray levels, and M is the size in voxels

of the largest region found.

FIGURE 4 | Receiver operating characteristic (ROC) curves of the training set (A) and testing set (B) in the positron emission tomography (PET) data.
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FIGURE 5 | Receiver operating characteristic (ROC) curves of the training set (A) and testing set (B) in the magnetic resonance (MR) data.

FIGURE 6 | Calibration curves of the training set (A) and testing set (B) in the positron emission tomography (PET) data. The red line is the fitting line and represents

the actual value corresponding to the predicted value.

FIGURE 7 | Calibration curves of the training set (A) and testing set (B) in the magnetic resonance (MR) data. The red line is the fitting line and represents the actual

value corresponding to the predicted value.

the tumor, so this study used this method to measure the
metabolic parameters. In addition, we also combined the

anatomical information provided by the MRI structure to
exclude some interfering factors. There are several metabolic
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TABLE 3 | Correlations between the radiomic features and PET metabolic

parameters in the PET model.

Feature SUVmax MTV TLG

GLCMEnergy_AllDirection_offset1_SD −0.12 −0.18 −0.20*

GLCMEntropy_angle0_offset4 0.20 0.70** 0.73**

HighGreyLevelRunEmphasis_AllDirection_offset1_SD −0.21* −0.29** −0.33**

The values in the table are the correlation coefficients. SUVmax , maximum standard unit

value; MTV, metabolic tumor volume; TLG, total lesion glycolysis. *P < 0.05; **P < 0.01.

TABLE 4 | Correlations between the radiomic features and PET metabolic

parameters in the MR model.

Feature SUVmax MTV TLG

LowGreyLevelRunEmphasis_AllDirection_offset1_SD −0.13 −0.05 −0.09

ShortRunHighGreyLevelEmphasis_AllDirection_offset4_SD 0.01 −0.16 −0.15

GLCMEntropy_AllDirection_offset1_SD 0.11 −0.09 −0.06

MinIntensity −0.15 −0.45**−0.47**

HighGreyLevelRunEmphasis_AllDirection_offset4_SD −0.26**−0.30**−0.37**

GLCMEntropy_angle0_offset4 −0.14 −0.45**−0.50**

The values in the table are the correlation coefficients. SUVmax , maximum standard unit

value; MTV, metabolic tumor volume; TLG, total lesion glycolysis. **P < 0.01.

parameters representing tumor functional information,
but the most representative, the SUVmax, MTV, and
TLG, parameters were included in this study (22). The
metabolic parameters of primary NPC represent the clinical
parameters of tumor function, but the uptake of 18F-FDG
cannot always accurately reflect the physiological state of the
tumor (23).

In recent years, more and more evidences show that the
analysis of radiomics of medical images can better reflect
the potential spatial variation and heterogeneity of the tumor
endosomal intensity, which will generate more prediction
and prognostic information (13, 24). Du et al. (16) used
machine learning methods to analyze post-therapy NPC PET/CT
images and found that, compared with conventional indicators,
radiomics signatures showed higher AUC values (0.867–0.892
vs. 0.817) in the differentiation between local recurrence and
inflammation. Zhuo et al. (25) studied the multi-modality
MR images of 658 patients with non-metastatic NPC. It was
found that the radiomic features based on MRI could divide
NPCs into subtypes with different survival modes, which
showed better performance than the TNM staging system.
Zhang et al. (15) performed radiomics nomogram combined
with multi-parametric MRI-based radiomic features with the
TNM staging system. It showed improved prognostic ability
in advanced NPC over the TNM staging system. But these
studies have not included PET images. We used the T2WI and
PET imaging features based on the local lesions of NPC to
evaluate its application value in NPC staging. In this study,
the AUC values of the T2WI and PET models were 0.85
and 0.84 in the training group and 0.83 and 0.82 in the
testing group, respectively, showing good diagnostic efficacy for
NPC staging.

Among the nine radiomic features extracted from the
PET/MR images that were highly correlated with NPC stage,
four were GLCM features, four were RLM features, and one
was a histogram feature. The feature “MinIntensity” was the
histogram parameter, which represents the minimum intensity
of the 3D image matrix. GLCM describes texture by studying
the spatial correlation characteristics of the grayscale. The
advantage is that the spatial relationship of the distance and
angle between two pixels can be considered simultaneously.
The “GLCM_Energy” value ranges from zero to one. Constant
image energy is one. The value is higher when the image has
good homogeneity or the pixel is very similar. The value of
“GLCM_Entropy” represents the complexity of the symbiotic
matrix, and the larger the value, the more complex is the
symbiotic matrix. RLM is used to obtain the length matrix
by calculating the probability of the continuous occurrence
of pixels in different directions and steps to describe the
complexity of the lesion, the degree of change, and the
texture thickness.

Theoretically, the uptake capacity of the tumor to 18F-FDG
can quantitatively quantify tumor heterogeneity at an early
stage, while the radiomic features based on PET images can
provide more comprehensive details, which are attributed to
pathological factors such as tumor proliferation, angiogenesis,
tumor necrosis, and hypoxia (26). Therefore, it is suggested
that there should be some intrinsic relationship between the
metabolic parameters representing tumor uptake capacity and
the radiomic features representing tumor heterogeneity. Our
study showed that the metabolic parameters had different
degrees of correlation with the selected radiomic features.
The feature “GLCMEntropy_angle0_offset4” of the PET
images had the strongest positive correlation with the
metabolic parameters MTV and TLG, indicating that the
more complex the symbiotic matrix of tumor is, the larger the
uptake volume and the amount of glycolysis are. However,
the correlations between the other radiomic features and
metabolic parameters were relatively low. Some studies
also found that there was a certain correlation between the
radiomic features and PET metabolic parameters. A study
on non-small-cell lung cancer based on PET/CT found that
some texture features like volume of the lesion were highly
positively correlated with MTV, the CT average density
was moderately positively correlated with SUV, and CT
kurtosis was moderately positively correlated with MTV
(27). However, another PET/CT study on non-small-cell
lung cancer showed that texture and shape features had
stronger correlations with MTV and GTV compared to SUV
measurements (28). The results of our study are consistent
with the second study, in this respect. The uptake process of
18F-FDG is the potential expression of biological processes,
and the measured MTV and TLG can indirectly reflect tumor
proliferation, angiogenesis, tumor necrosis, etc. (29), which has
a certain correlation with the radiomic features representing
tumor heterogeneity.

However, there were several limitations in our study.
Firstly, the distribution of FDG in the body is also
different in different physiological periods, which may
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affect the quality of the PET data to a certain extent.
In the future, we will carry out stricter standardization
on the data preprocessing. Secondly, the sample size of
this study is relatively small and the source of cases is
single. A large sample size and a multicenter test are
needed for verification. In our future NPC studies, we plan
to build models based on the combination of radiomic
features and PET parameters as well as supplement
external validation.

CONCLUSION

The radiomic models based on 18F-FDG PET and MR
images were valuable for the evaluation of the clinical
stage of NPC. In the future, radiomics could become
a more useful and economical tool for predicting the
aggressiveness and distant metastasis of NPC. There
was a correlation between the metabolic parameters
and radiomic features, which reflects the correlation
between the metabolic function and microstructure
of tumor to some extent. In summary, the radiomic
model based on 18F-FDG PET/MR has a high diagnostic
performance in the evaluation of NPC staging, which is
conducive to the accurate clinical staging of NPC after
further verification.
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Purpose: To develop a diagnostic model for histological subtypes in lung cancer
combined CT and FDG PET.

Methods: Machine learning binary and four class classification of a cohort of 445 lung
cancer patients who have CT and PET simultaneously. The outcomes to be predicted
were primary, metastases (Mts), adenocarcinoma (Adc), and squamous cell carcinoma
(Sqc). The classification method is a combination of machine learning and feature
selection that is a Partition-Membership . The performance metrics include accuracy
(Acc), precision (Pre), area under curve (AUC) and kappa statistics.

Results: The combination of CT and PET radiomics (CPR) binary model showed more
than 98% Acc and AUC on predicting Adc, Sqc, primary, and metastases, CPR four-
class classification model showed 91% Acc and 0.89 Kappa.

Conclusion: The proposed CPR models can be used to obtain valid predictions of
histological subtypes in lung cancer patients, assisting in diagnosis and shortening the
time to diagnostic.

Keywords: radiomics, lung cancer, histological subtypes, CT, PET

INTRODUCTION

Differentiation of histological types of lung cancer is the base for its treatment. Biopsy is the most
important part of diagnostic pathology. It can make clear histopathological diagnosis for the vast
majority of cases, which is regarded as the final clinical diagnosis (1), but it is traumatic and costly.
Radiomics is a cost-effective method to predict histological subtypes in lung cancer by using images
features as the markers (2–5).

The workflow of radiomics includes image acquisition, image preprocessing, volume of interest
segmentation, feature extraction, feature selection, model building and validation. Sollini et al. has
comprehensively and clearly reported the methodological aspects of the radiomics workflow and
possible pitfalls (2, 3). In particular, for image types, different types of medical images have different
advantages. For example, CT image has higher density resolution, PET has high sensitivity and
specificity, it can show the lesion when it is in the early stage of molecular level changes.
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This paper tests the hypothesis that the combination of CT
and PET radiomics (CPR) features has a better classification
ability than CT-based radiomics (CTR) or PET-based radiomics
(PETR). To invest the evidence of that, we built 24 classifiers
to compare the performance of CTR, PETR, and CPR. This
study is the first radiomics study combining CT and PET, it
is also the first radiomics study to predict adenocarcinoma
(Adc), squamous cell carcinoma (Sqc), and metastases (Mts)
simultaneously (four-class classification).

MATERIALS AND METHODS

This study was approved by the institutional Ethics Committee.
The tool used for statistical analysis was WEKA (Frank E. et al.,
presented at the 2009 Data mining and knowledge discovery
handbook) (Weka v3.8.3, Hamilton, New Zealand).

Patients
We used a public data set of radiomics features, consists of 534
patients with lung cancer (5). We selected 445 patients who
have both CT and PET images, including 168 Adc, 129 Sqc, 81
Mts, and 67 other primary lung cancer types (Oth). For this
data set, the patient characteristics and radiomics features are
available. The inclusion criteria were: (a) age >18 years and
(b) histological diagnosis of either primary or metastatic tumor
obtained from CT-guided biopsy, endobronchial ultrasound-
guided biopsy, videothoracoscopy or surgical removal of a
lung lesion (5). The exclusion criteria were: (a) inconclusive
histology from an inadequate biopsy sample, (b) diagnosis of
non-malignancy, and (c) FDG uptake below or comparable
to background activity within the parenchyma of the healthy
lung (5).

Image Acquisition, Segmentation, and
Texture Computation
Imaging protocol and image processing approaches have
been described in detail, according to the Image Biomarker
Standardisation Initiative (IBSI) reporting guidelines (5). FDG
PET/CT images were collected by PET/CT scanner 60 ± 5 min
after injection of FDG, the fixed dose ranged from 350
to 550 MBq. PET image reconstruction methods included
iterative and time of flight. The PET resolutions were
5.3 mm × 5.3 mm × 2.0 mm and 2.7 × 2.7 × 3.27,
CT resolutions were 0.98 mm × 0.98 mm × 4.0 mm and
1.37 mm × 1.37 mm × 3.27 mm. PET images were corrected for
attenuation using the acquired CT data, The volume of interest
(VOI) of lung lesion was automatically defined on PET images,
and the threshold value is 40% of the maximum standard uptake
value (SUVmax) (5).

The texture features of CT and PET images under the same
VOI are calculated by lifex software package[], 43 features were
extracted from PET image and 41 from CT image, LIFEx package
calculates texture features for VOIs of at least 64 voxels, the CT-
based radiomics features were studied within 534 patients (CT
datasets), the PET data set consisted of 482 patients. The average
size of the lesions was 1.64 ± 0.78 cm (range 0.49–5.23 cm)
(5). There are 37 features in CTR features, which are the same

TABLE 1 | Training set and test set of CT, or PET for binary and four-class
classification.

Training set Test set

*Binary classification

Adc vs. NAdc 131 vs. 221 37 vs. 56

Sqc vs. NSqc 103 vs. 249 26 vs. 67

Primary vs. Mts 287 vs. 65 77 vs. 16

Four-class classification

Adc vs. Sqc vs. Mts vs. Oth 131 vs. 103 vs. 65 vs. 53 37 vs. 26 vs. 16 vs. 14

*Adc, Adenocarcinoma,Sqc, squamous cell carcinoma,Mts, metastases, NAdc,
not adenocarcinoma, NSqc, not squamous cell carcinoma.

TABLE 2 | Binary classification results on test set*.

Performance 1CTR (RF) 2PETR (RF) 3CPR (SMO)

(a) Adc vs. NAdc

Accuracy 81.6 85.0 100.0

True positive rate 0.81 0.89 1.00

True negative rate 0.82 0.80 1.00

Mean of precision 0.88 0.85 1.00

AUC 0.90 0.95 1.00

Performance CTR PETR CPR

(b) Sqc vs. NSqc

Accuracy 76.3 83.4 98.5

True positive rate 0.94 0.90 0.97

True negative rate 0.57 0.77 1.00

Mean of precision 0.80 0.84 0.99

AUC 0.89 0.94 0.99

(c) Primary vs. Mts

Accuracy 86.6 80.9 98.0

True positive rate 0.96 0.92 0.96

True negative rate 0.75 0.69 1.00

Mean of precision 0.88 0.82 0.98

AUC 0.98 0.94 0.98

*Adc, Adenocarcinoma, Sqc, squamous cell carcinoma, Mts, metastases, NAdc,
not adenocarcinoma, NSqc, not squamous cell carcinoma. 1CT-based radiomics
(with Random Forest classification). 2PET-based radiomics (with Random Forest
classification). 3The combination of CT- and PET-based radiomics (with Sequential
minimal optimization classification). The best performance metrics for each
classification are highlighted in bold.

as PETR features. The same features include volume, geometry-
based and histogram-based features, gray level co-occurrence
matrix, neighborhood gray level difference matrix, gray level run
length matrix, and gray level zone length matrix. CTR and PETR
have different basic features.

Analysis
Feature Selection and Normalization
In order to select features with good repeatability and
reproducibility, and to avoid over fitting. We studied the related
researches about the stability of radiomics features. According to
the study results of stability and reproducibility of the radiomics
features (6, 7), we selected 2 CTR features, Skewness and Kurtosis
based on histogram, 2 PETR features, SUVmean and SUVmax.
The 2 CTR features were assessed by compatibility ratios (>80%)
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FIGURE 1 | ROC curves obtained by binary classification models. The black
diagonal line in the diagram is the random line which is the worst possible
performance a model can achieve. CTR is CT-based radiomics, PETR is
PET-based radiomics, CPR is the combination CTR and PETR. (A) Predicting
lung adenocarcinoma from lung cancer patients. (B) Predicting squamous cell
carcinoma from lung cancer patients. (C) The distinction between metastatic
lung cancer and primary lung cancer.

TABLE 3 | Four-class classification on test set.

Performance 1CTR (RF) 2PETR (RF) 3CPR (SMO)

Accuracy (%) 62.9 79.1 91.2

True rate for:

Adc 0.73 0.89 0.89

Sqc 0.46 0.62 0.85

Mts 0.75 0.81 1.00
4Oth 0.57 0.71 0.93

Precision for:

Adc 0.57 0.79 0.90

Sqc 0.50 0.67 0.94

Mts 0.73 0.79 1.00

Oth 0.76 0.91 0.94

Kappa 0.50 0.71 0.89

1CT-based radiomics (with Random Forest classification). 2PET-based radiomics
(with Random Forest classification). 3The combination of CT- and PET-based
radiomics (with Sequential minimal optimization classification). 4Other primary lung
cancer types. The best performance metrics for each classification are highlighted
in bold.

based on t-test, which have a good reproducibility against slice
thickness. And the 2 PETR features were assessed by meta-
analysis of 21 studies, which also have a good reproducibility
against slice thickness.

The selected radiomics features were normalized to a Z-score.

Model Building and Performance Evaluation
Firstly, the study is divided into binary classification and four-
class classification experiments. Binary classification experiments
include the prediction of lung adenocarcinoma from lung
cancer patients (T1), the prediction of squamous cell carcinoma
from lung cancer patients (T2), and the distinction between
metastatic lung cancer and primary lung cancer (T3). Four-
class classification experiment is used to predict the lung cancer
histological type (T4), including lung adenocarcinoma, lung
squamous cell carcinoma, metastatic lung cancer, and other
histological types of lung cancer. Each experiment randomly
divided the data set into training set and test set by 8:2, repeatedly
dividing the whole data set until the distribution of the data sets
is the same. Finally, set the two data sets as training set and
test set. Table 1 shows the size of training set and test set for
each experiment.

Secondly, in order to maximize the use of existing data, the
data set classes should be balanced before model building. We
reweighed the instances in the data so that each class has the same
total weight (Classbalancer in Weka). This method can keep data
balance without deleting cases.

Then the partition-Membership filter (PMF,
PartitionMembershipFilter with option Random Committee in
Weka) used to transform the normalized 2 PETR and 2 CTR
features into sparse instances to improve the model performance
(34, 35).

Finally, the transformed features were input into two machine
learning classifiers, ensemble learning classifier Random Forest
(RandomForest with options -K 0 -M 1.0 -V 0.001 -S 1 in Weka)
and Sequential Minimal Optimization (SMO with options -C 1.0
-L 0.001 -P 1.0E-12 -N 1 -V-1 -W 1 -K in Weka) with 10-folds

Frontiers in Oncology | www.frontiersin.org 3 September 2020 | Volume 10 | Article 555514173

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


fonc-10-555514 September 12, 2020 Time: 19:23 # 4

Yan and Wang Diagnose Lung Cancer Types Noninvasively

cross validation. The performance metrics of the classification
model include accuracy (Acc), precision (Pre), area under curve
(AUC) and kappa statistics.

RESULTS

Data Size
Table 1 shows the data size for each model. Each classification
experiment consists of 445 patients and no one deleted. NAdc
(not Adc), consists of Sqc, Mts and others primary lung cancer
types. NSqc (not Sqc), consists of Adc, Mts and others primary
lung cancer types.

Binary Classification Models
Table 2 and Figure 1 show the results of binary Classification
models on the test set. CPR has the performance on Adc/NAdc,
Sqc/NSqc, and Primary/Mts. It is because the combination of CT
and PET have more information than using CT or PET only.
Tables 2(a) and (b) show the performance of PETR is better
than CPR on Adc/NAdc and Sqc/NSqc. it can be inferred that
PETR features can differentiate Adc and Sqc well (AUC >the
0.94). Table 2(c) shows CTR is better than PETR on Adc/Sqc,
it can be inferred that CTR features have better performance on
differentiating Pre from Mts (AUC = 0.98).

However, it is important to diagnose primary from Mts, Adc
from NAdc, and Sqc from NSqc so that the patients will get
treatment earlier. Table 2 shows our CPR models achieved an
Acc ratio of 100% on Adc/NAdc, 97% on Sqc/NSqc, 96% on
primary/Mts, which are acceptable to apply to clinical diagnosis.

Four-Class Classification Models
Table 3 shows the model performance of predicting Adc, Sqc,
and Mts simultaneously. CPR has the best performance, followed
by PETR. Kappa coefficient is used to evaluate the model
classification ability comprehensively, CPR performs almost
perfect with the 0.89 kappa. The four-class CPR model performs
well in identifying Adc, Sqc, and Mts since its true rate and
precision are both high (more than 85%). Especially the Acc and
primary for Mts are 100% which means all of our predictions as
Mts are true Mts, and among all true Mts, our four-class model
successfully predicted 100% of them. The Acc and primary of
CPR are higher than that of CTR and PETR, it is reasonable since
CPR combines the Identification ability CTR and PETR. Table 3
also shows PETR can show more information on expressing lung
cancer Histological types.

DISCUSSION

The CPR models, both binary and four-class classifiers, are
reliable to diagnose Pre, Mts, Adc, and Sqc according to the model
performance on the test set. In practical application, in order
to improve accuracy and reduce run time, we suggest using the
four-class CPR model for initial identification and then using the
binary models for confirmation. This model can not only help
non-invasive diagnosis and support individualized treatment but
also can be used as household equipment as long as there are
CT and PET images.

Standardized uptake values (SUV) can quantify the differences
between repeated measurements, between different scanners, as
well as between centers in multicenter trials of PET images
(7). It also has good repeatability and reproducibility for
radiomics analysis. Kurtosis reflects the shape of the gray-level
distribution (peaked or flat) relative to a normal distribution, and
Skewness is the asymmetry of the gray-level distribution in the
histogram. The four features not only have good repeatability and
reproducibility but also have a great classification ability for lung
cancer histological subtypes.

Many studies have shown that radiomics features have great
potential to be the maker for tumor phenotype (8–17), and
found Adc can be differentiated from Sqc by radiomics (17–23).
However, The data sets of those studies only included Adc and
Sqc, that is to say, the accuracy of those models will be affected by
other histological subtypes of lung cancer.

In this study, lung cancer patients with various histological
subtypes were included in the patient cohorts. We used stratified
random sampling to balance the covariates. In feature selection,
we selected 2 CTR features, Skewness and Kurtosis (6) based on
histogram, and 2 PETR features, SUVmean and SUVmax (7),
with high reproducibility for slice thickness condition changes.
The study of stability and reproducibility of the radiomics
features (6, 7, 24–31) shows multiple parameter changes (e.g.,
slice thickness) in general produces greater measurement errors.
In this case, the selected 4 features only have good reproducibility
against slice thickness. This is also consistent with the studies of
Meyer et al. (32) and Sosna (33), who found fewer reproducible
radiomic features mean better reproducibility within the same
patient. In model selection, both RF and SMO have good
robustness and generalization ability.

There are some limitations. First, applying the proposed CPR
models should follow the same imaging parameters. Second, CPR
models need external validation. Last, the data set we used was
from public data sets, so we can not accurately estimate the size
and direction of systematic bias.

In conclusion, the proposed CPR models can be used to obtain
valid predictions of histological subtypes in lung cancer patients,
assisting in diagnosis and shortening the time to diagnostic.
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Model and Nomogram
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Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China

Purpose: To explore the application value of multiparametric computed tomography

(CT) radiomics in non-invasive differentiation between aldosterone-producing and

cortisol-producing functional adrenocortical adenomas.

Methods: This retrospective review analyzed 83 patients including 41 patients with

aldosterone-producing adenoma and 42 patients with cortisol-producing adenoma.

The quantitative radiomics features were extracted from the complete unenhanced,

arterial, and venous phase CT images. A comparative study of several frequently

used machine learning models (linear discriminant analysis, logistic regression, random

forest, and support vector machine) combined with different feature selection methods

was implemented in order to determine which was most advantageous for differential

diagnosis using radiomics features. Then, the integrated model using the combination

of radiomic signature and clinic–radiological features was built, and the associated

calibration curve was also presented. The diagnostic performance of these models was

estimated and compared using the area under the receiver operating characteristic (ROC)

curve (AUC).

Result: In the radiomics-based machine learning model, logistic regression model with

LASSO (least absolute shrinkage and selection operator) outperformed the other models,

which yielded a sensitivity of 0.935, a specificity of 0.823, and an accuracy of 0.887

[AUC = 0.882, 95% confidence interval (CI) = 0.819–0.945]. Moreover, the nomogram

representing the integrated model achieved good discrimination performances, which

yielded a sensitivity of 0.915, a specificity of 0.928, and an accuracy of 0.922 (AUC =

0.902, 95% CI= 0.822–0.982), and it was better than that of the radiomics model alone.

Conclusion: This study found that the combination of multiparametric radiomics

signature and clinic–radiological features can non-invasively differentiate the subtypes of

hormone-secreting functional adrenocortical adenomas, which may have good potential

for facilitating the diagnosis and treatment in clinical practice.

Keywords: radiomics, machine learning, multidetector computed tomography, computer-assisted diagnosis,

adrenocortical adenoma
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INTRODUCTION

Adrenocortical adenomas (ACAs) are the most common benign
adrenal cortical tumors representing 50–80% of all adrenal
tumors (1) that may be functional (hormone-secreting) or non-
functional depend on whether producing hormones. Among
functioning adenomas, two major subtypes are aldosterone-
producing adenoma (APA) and cortisol-producing adenoma
(CPA), leading to respective complications including primary
aldosteronism (Conn syndrome) and hypercortisolism (Cushing
syndrome), and each requires different treatment strategies
including surgery or medications. The diagnosis of the functional
ACAs is dependent on the clinical manifestations, laboratory
tests, imaging, and pathologic examinations forming the basis
to conclude. However, the differential diagnosis between APA
and CPA still remains challenging because many patients are
asymptomatic or there were only non-specific symptoms with
no clinical evidence of steroid overproduction (2, 3). The gold
standard for the diagnosis of APA is through a technically
difficult and invasive procedure that samples from a vein located
near the adrenal glands, called adrenal vein sampling (AVS),
to determine aldosterone and cortisol levels (4, 5) The success
rate of right AVS is as low as 10% because of the particular
and complex anatomical structure (6). Moreover, about 10–20%
of ACAs are bilateral or multiple (7, 8). In such condition, it
is very important, but also quite difficult, to distinguish the
responsible foci to avoid unnecessary excision or overresection
for performing precision treatment.

In general, current conventional imaging methods are
insufficient to distinguish between functioning and non-
functioning adenomas or subtypes of functioning ACAs. As
an emerging medical image processing technology, radiomics
provides the potential for more refined representation of tumor
characteristics with isotropic homogeneity and leads to the
advantage over human observers, which have demonstrated
promising performance in terms of differential diagnosis. It
has been proven that radiomics procedure can process a large
number of image characteristics and implement automatic
diagnostic process (9, 10), combining with machine learning
algorithms and nomogram method (11). To our knowledge,
little work has been done on such a computed tomography
(CT)–based radiomics to distinguish CPA from APA, and
whether radiomics features of CT images can serve as the
informative biomarkers for the differential diagnosis between
those is unknown.

With this in mind, we conducted two hypotheses. One
was that the radiomics-based machine learning model could
provide a computer-aided differential diagnosis for hormone-
secreting subtypes of functional ACAs; the other was that
the nomogram that integrated radiomics signature and clinic–
radiological indicators would improve the differential diagnostic

Abbreviations: ACA, Adrenocortical adenomas; APA, Aldosterone-producing

adenoma; CPA, Cortisol-producing adenoma; PA, Primary hyperaldosteronism;

ROI, Region of interest; VOI, Volume of interest; ROC, Receiver operating

characteristic; AUC, The area under the ROC curve; LR, Logistic regression;

SVM, Support vector machine; PCA, Principal component analysis; LASSO, Least

absolute shrinkage and selection operator; ICC, Intraclass correlation coefficient.

performance. Therefore, the primary purpose of our study was
to determine whether multiparametric CT radiomics by using
machine learning algorithms and visual nomogram effectively
perform differential diagnosis between CPA and APA.

MATERIALS AND METHODS

The research sequence of this study was presented in Figure 1.
The details could be checked in the following sections.

Profile of Subjects
This retrospective study was approved by the institutional
review board of our institution, and the written informed
consent was waived. The enrolment process of patients for
this study is shown in Figure 2. In total, 106 patients who
underwent contrast-enhanced CT scannings for clinically and
pathologically diagnosed CPA (n = 50) or APA (n = 56)
from January 2014 to November 2018 were retrospectively
reviewed. The diagnosis of APA and CPA was established by
these criteria: (i) common clinical characteristics and laboratory
findings including an elevated aldosterone/renin ratio together
with positive confirmatory tests in APA and an elevated serum
cortisol, failure to suppress cortisol with dexamethasone, and
normal aldosterone levels in CPA, respectively; (ii) presence
of an adrenal mass confirmed via CT before surgery; (iii) a
confirmed pathological diagnosis of the adrenal mass as an
adrenal adenoma after surgery; and (iv) a postoperative cure
or considerable improvement. The exclusion criteria were as
follows: (i) insufficient clinical data; (ii) receiving treatment
before surgery; (iii) calcified lesions in tumors; and (iv) motion
artifacts disturbed the lesion characterization severely. Finally,
9 patients with CPA and 14 patients with APA were excluded.
The dataset was divided into two portions called training set
and testing set, 70% of which were used as training set, and the
remaining 30% were used as test set.

Imaging Protocol
All CT imaging was acquired using the same multidetector CT
system (Somatom Sensation 64; Siemens Healthcare, Erlangen,
Germany) following a standardized protocol. A three-phase
scanning was performed on each patient (plain scan, arterial
phase, and venous phase). The CT scanning parameters were as
follows: tube voltage of 100 kV; tube current of 75 mAs, and slice
thickness of 5mm. Images were reconstructed using a B60f filter
with a slice thickness of 1mm and a slice increment of 1mm as
axial images. Contrast-enhanced CT images were obtained after
intravenous administration of iohexol (300mg/mL at a rate of 3.0
mL/s, followed by a 30-mL saline flush). Arterial phase imaging
and portal phase imaging were initiated at 30 and 70 s after the
injection of iohexol. The total contrast volume was 1.5 mL/kg.

Imaging Segmentation and Volume of
Interest Labeling
All CT images (DICOM format) were loaded into a computer
workstation for region of interest (ROI) segmentation, which
were displayed with the appropriate window level and window
width. Two radiologists with 5-year experience in interpreting
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FIGURE 1 | Workflow of multiparametric CT radiomics-based machine learning model and nomogram.

FIGURE 2 | The illustration of inclusion and exclusion criteria.

CT imaging (Dr. Liu and Zhong) were recruited to manually
delineate the two-dimensional (2D) ROI around the tumor
outline slice by slice to form 3D volume of interest (VOI) on
the CT plain scan, arterial phase, and venous phase images
using an open-source image processing platform ITK-SNAP
(version 3.7) (12), where horizontal, coronal, and sagittal
views were represented simultaneously for visualization. Image

magnification and 3D view techniques have been used to facilitate
precise segmentation (Figure 3).

Imaging Analysis
Conventional imaging analysis was included the following
information: (a) tumor size; (b) mean CT attenuation of tumor
in precontrast, arterial, and portal venous phase; and (c) the
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FIGURE 3 | The illustration of ROI selection. (a) The Unenhanced and contrast-enhanced CT images at (b) the arterial phase and (c) portal phase of CT imaging

findings in a 46-year-old woman with aldosterone-producing adenoma (APA, black arrow); (d) the unenhanced and contrast-enhanced CT images at (e) the arterial

phase and (f) portal phase of CT imaging findings in a 39-year-old man with cortisol-producing adenoma (CPA, white arrow).

presence of ipsilateral or contralateral adrenocortical atrophy.
The mean CT attenuation was used to describe average value
of tumor density over the CT pixels and automatically obtained
by drawing ROI around tumor contour on workstation. The
presence of adrenocortical atrophy was defined as the maximum
thickness of a unilateral adrenal glandmore than a 50% reduction
compared to the other side.

Radiomics Feature Extraction
The radiomics features were extracted from each VOI
segmentation derived from multiparameter CT images,
which are divided into four feature groups: (I) intensity,
(II) shape, (III) texture, and (IV) wavelet features (11, 13).
Supplementary Tables 1–3 summarize these features in this
study. Mathematical definitions of all radiomics features, as
well as the extraction methods, have been described (14). The
texture features were computed by averaging their values over
all 13 directions. Wavelet features are the transformed domain
representations of the intensity and textural features, which were
computed on different wavelet decompositions of the original
image using a Daubechies wavelet transformation. Finally,
the combination of four categories of features derived from
multiphase CT images was incorporated into the radiomics
feature set.

Reproducibility Evaluation and Feature
Selection
Radiomics feature reproducibility was evaluated prior to feature
selection by computing the intraclass correlation coefficient
(ICC). Each radiomics feature with ICC more than 0.8 was
set to consider robust to acquisition variation (15) (see
Supplementary), which were retained based on the hypothesis

that non-robust features would be too sensitive to noise to be
predictive of clinical outcomes. Feature selection as an important
problem for pattern classification has become an apparent need
in the radiomics application. To find optimal characterization
condition and achieve minimal classification error in machine
learning, feature relevancy needs to be eliminated. The extracted
radiomics features were selected using principal component
analysis (PCA), ReliefF algorithm, least absolute shrinkage and
selection operator (LASSO), recursive feature elimination, and
mutual information. We chose these methods mainly because
of their popularity, simplicity, and computational efficiency. All
features have been normalized to zero mean and unit variance
so as to avoid being affected by the differences in respective
feature scales for classification model building. Furthermore,
publicly available implementations were readily available for
these methods, which increases their reusability.

Construction of the Radiomics-Based
Machine Learning Model
For the model development, four different algorithms such as
linear discriminant analysis, logistic regression (LR), random
forest, and support vector machine (SVM) have been adopted.
Each classifier has been tested and verified using the feature sets
obtained by the different feature selection methods to construct
the stable and optimal machine learning model. In the training
set, efficient data partitioning such as 5-fold cross-validation
was employed to tune and optimize the model parameter to
achieve good assessment of the model performance (16). The
area under the receiver operating characteristic (ROC) curve
(AUC), sensitivity, specificity, and accuracy were used as metrics
to assess the performance of the machine learning models. All
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classifier algorithms were implemented by our in-house scripts
in MATLAB (version 2017b, MathWorks, Natick, MA, USA).

Establishment and Validation of the
Nomogram
The nomogram was used to represent the integrated model for
distinguishing APA from CPA. The radiomics signature was
constructed by the selected features sorted by their coefficient
values in LASSO. Then, the nomogram based on the multivariate
logistic analysis was developed by using the combination
of radiomics signature and clinic–radiological features as a
quantitative diagnostic tool to provide physicians with an
individual prediction probability of APA. Calibration curves
accompanied by the Hosmer–Lemeshow test were used to assess
the model performance. AUC, accuracy, PPV, and NPV were
calculated to quantify the diagnostic performance of nomogram.
The 1,000-bootstrap repetitions were carried out for internal
validation to achieve a relatively corrected performance where
the training cohort was randomly chosen with a replacement
from the original dataset.

Statistics
Continuous variables, expressed as mean value ± standard
deviation or median with interquartile range as appropriate,
were analyzed using Student t-test or Mann-Whitney U-test,
respectively. Categorical/dichotomous variables, expressed as
counts (percentage), were analyzed using a χ2-test or Fisher
exact test as appropriate. Multiple and pairwise comparisons
of AUCs were accomplished using the DeLong non-parametric
approach. Univariate and multivariate logistic regression models
were employed to select the independent clinical features
and construct clinic–radiological model. Statistical analysis
was performed with R version 3.6.1 (http://www.r-project.
org). A two-sided p < 0.05 was considered to represent
statistically significant.

RESULTS

CT Findings and Clinic–Radiological Model
The demographic data and radiological characteristics between
APA and CPA are presented in Table 1. Sex ratio and age
distribution did not differ significantly between these two groups
(p > 0.05). In conventional CT findings analysis, there were
significant differences between CPA and APA groups in tumor
size, mean CT attenuation value of precontrast phase and portal
venous phase, and the presence of adrenocortical atrophy (p <

0.05). In the APA group, the tumor showed smaller size and
lower mean CT attenuation compared to CPA group, while
the ipsilateral or contralateral adrenocortical atrophy was more
commonly seen in CPA group (Table 2).

In total, 58 patients including 29 patients with CPA and
29 patients with APA comprised the training cohort, and 25
patients including 12 patients with CPA and 13 patients with APA
comprised the test cohort. The proportions of training cohort and
the test cohort were 70 and 30%, respectively, and no significant
differences of clinical characteristics or CT findings were found
between the training and test cohorts (p > 0.05). Table 2 showed

TABLE 1 | Demographic data of this study.

Type APA CPA P

Number of patients 41 42

Age (years) 46.8 ± 7.95 47.9 ± 8.17 0.469

Sex Female (24) Female (30) 0.316

Male (17) Male (12)

the significant differences between CAP and APA in the training
and test cohorts.

Radiomics Features Calculation and
Robustness Assessment
The longest diameters and the ratio of longest diameter to
shortest diameter of raw ROIs between two groups were
distributed without statistical significance (p > 0.05), each of
which was selected from the slice demonstrating the largest
cross-sectional area on CT images. ICCs on the basis of
radiologist I’s first-extracted features and those of radiologist
II were employed to evaluate the consistency between different
physicians. The ICCs on the basis of radiologist I’s first and
second feature extraction were calculated to evaluate the stability
and reproducibility of each feature. According to the criterion
of excluding the radiomics features with ICC below 0.8, a total
of 39 radiomics features were considered as robust shown in
Supplementary Table 4.

Radiomics Feature Selection and Machine
Learning Model Performance Comparison
Feature selection determines the minimum set of relevant
indicators needed by a machine learning model. The above
robust radiomics features are further screened by retaining
those that differed significantly between the two groups. Twenty
classification strategies using combinations of four machine
learning and five feature selection methods, respectively, have
been tested, and the AUCs for differential diagnosis between
CPA and APA in the test dataset are shown in Figure 4. For
the combination of multiple sequences, it is shown that the LR
combined with LASSO performs better and more stable than the
other models, which yielded a sensitivity of 0.935, a specificity of
0.823, and an accuracy of 0.887 [AUC = 0.882, 95% confidence
interval (CI) = 0.819, 0.945], followed by SVM classifier with
ReliefF, yielding an accuracy of 0.842 (AUC = 0.854, 95% CI =
0.811–0.897) in the test cohort.

Performance of Sequences
The discriminative performance of the LR-LASSO models using
the radiomics features from multiple sequences and single
sequence was investigated. The ROC curves for all single
sequences such as CT plain, arterial phase, and venous phase
scanning are shown in Figure 5A, and the ROC curves for the
combination of multiple sequences are shown in Figure 5B. For
single sequence, the performance of plain and venous phase
scanning is similar, and the highest AUC was 0.834 (95% CI
= 0.779–0.889). For two sequences, the performance of the
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TABLE 2 | Clinical characteristics and CT findings of patients with CPA and APA.

Characteristics Training cohort (n = 58) p Test cohort (n = 25) p

APA (n = 29) CPA (n = 29) APA (n = 12) CPA (n = 13)

Age (years)# 45.9 (8.9) 51 (11.6) 0.008 49.0 (9.3) 41.1 (10.9) 0.018

Sex*

Female 17 (58.6) 21 (72.4) 0.407 7 (58.3) 9 (69.2) 0.057

Male 12 (41.4) 8 (27.6) 5 (41.7) 4 (30.8)

Size# 1.6 (0.54) 2.64 (1.57) 0.001 1.5 (0.61) 2.62 (0.40) 0.025

Unenhanced# 5.9 (10.3) 9.31 (16.3) <0.01 6.3 (9.2) 13.9 (16.4) <0.001

Art# 47.4 (17.6) 50.6 (24.9) 0.002 48.9 (19.7) 45.8 (24.9) 0.061

Ven# 56.7 (17.8) 64.5 (23.5) <0.01 57.5 (17.2) 79.5 (35.9) <0.001

Atrophy*

Yes 4 (13.8) 11 (37.9) 0.071 1 (8.3) 7 (53.8) <0.001

No 25 (86.2) 18 (62.1) 11 (91.7) 6 (46.2)

#Data are mean (standard deviation) or median (quartile). p-value was calculated with Student t-test or non-parametric test.

*Data are number of patients, with the percentage in parentheses. p-value was calculated with the χ2 or Fisher exact test.

FIGURE 4 | The performance comparison of machine learning models with

different feature selection methods.

combination of plain and venous phase scanning was highest
with an AUC of 0.876 (95% CI = 0.808–0.944). For three
sequences, the model performed best and yielded the highest
AUC of 0.882 (95% CI = 0.819–0.945). The AUCs among the
three single sequences were not statistically significant, while the
DeLong test showed that the AUCs for the different combinations
of the multiple sequences were significantly better than those of
single sequences, and the AUC for the combinations of the three
sequences was the highest.

The Combined Model Incorporating
Radiomics Signature and
Clinic–Radiological Characteristics
The above results revealed that the multiparametric CT
radiomics-based LR-LASSO model would be most suitable to
effectively differentiate CPA from APA. The clinic–radiological
characteristics such as age, gender, tumor size, and CT
value were determined to establish the clinical model. The
combined model that incorporated radiomics signature and
clinic–radiological characteristics was developed and presented

as a radiomics nomogram (Figure 6A). The clinical model
yielded an AUC of 0.829 (95% CI, 0.796–0.863) in the training
cohort and 0.732 (95% CI, 0.671–0.793) in the test cohort. When
clinic–radiological characteristics were combined, the radiomics
nomogram yielded an AUC of 0.931 (95% CI = 0.869–0.993) in
the training cohort and 0.902 (95% CI, 0.822–0.982) in the test
cohort. Table 3, Figure 7 presented the detailed discrimination
indicators of the three models. The calibration curves of the
radiomics nomogram for differential diagnosis between CPA
and APA showed good agreement between the model outcome
and gold standard test in the training (Figure 6B) and test
(Figure 6C) cohorts (p = 0.849 and 0.814, respectively; Hosmer-
Lemeshow test). The net reclassification improvement (NRI)
test showed the integrated model achieved considerably better
discrimination ability than the clinic–radiological model (p =

0.012) and radiomics model (p = 0.012) in the training cohort.
The performance of the integrated model was comparable to that
of the radiomics model (p = 0.989; NRI test), but was superior
to that of clinic–radiological model (p = 0.001; NRI test). The
illustration in the supplementary material presented two cases
pathologically diagnosed as CPA and APA, respectively, and the
probability values predicted by the nomogram.

DISCUSSION

The prevalence of adrenal adenoma is reported to be related
to age, and the frequency of unsuspected adenoma is 0.14%
in patients aged 20–29 years and 7% in those older than
70 years (17). Most previous studies were concentrated
on the imaging features of adenoma differentiated from
other non-adenomas in patients such as hyperplasia, cyst,
myelolipoma, pheochromocytoma, cortical carcinoma, and
metastases (18). Recent investigations have revealed that multiple
imaging modalities such as dual-energy CT, magnetic resonance
(MR) chemical-shift imaging, diffusion-weighted imaging, MR
spectroscopy, and dynamic contrast-enhanced imaging showed
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FIGURE 5 | Performance of LR-LASSO model based on different sequences with 5-fold cross-validation. (A) Based on single sequence. (B) Based on

multiparametric CT.

various sensitivity and specificity for differential diagnosis of
adenoma (19–21). However, few articles focused on the subtypes
identification of functional ACAs using imaging modalities. The
routine CT images are not only similar in different types of
functional ACAs but also do not allow functioning adenomas
to be differentiated from non-functioning adenomas, therefore
providing merely limited diagnostic value (22).

Obviously, it is of great significance for non-invasive
differential diagnosis of ACAs, while discriminating between
CPA andAPA is still a clinical challenge. In this study, we adopted
advanced radiomics to multiphase adrenal CT and constructed
machine learning model for classification diagnosis of adrenal
adenoma, aiming to investigate whether certain multiparametric
CT radiomics can facilitate distinguishing CPA from APA. We
also investigated and compared the discrimination performance
of different combinations of feature selection and machine
learning algorithms in this task.

The differences of functional adrenal adenomas between CPA
and APA on conventional CT images were compared. First,
there was a certain difference in tumor size between the two
groups, and in general, CPA was larger than APA. This may
be related to the origination of the tumor tissue. The cells of
the zona fasciculata and the zona glomerulosa of the adrenal
cortex are responsible for producing cortisol and aldosterone,
respectively. Histology shows that the zona fasciculata in the
adrenal cortex occupies a larger area than zona glomerulosa;
the former is the thickest zonas making up 50% of the cortex,
and the latter accounts for around 15% of the thickness of
the cortex (23). Next, the mean CT attenuation of CPA on
precontrast CT image is higher than that of APA. The adrenal
adenomas were composed of different proportions of clear
cells and compact cells. APA is mainly composed of a large
number of clear cells (lipid-rich) with increased mounts of
lipofuscin in the cytoplasm arranged in irregular patches or
strips, leading to CT attenuation similar to fat. While CPA
mainly presents with granule cell tumors, and the cells are
densely arranged in small mesh or fasciculate patterns, with cell
cords exhibiting sinus gap shapes and blood sinus, leading to
CT attenuation close to soft tissue (24). Lastly, CPA was more

likely to develop the ipsilateral or contralateral adrenocortical
atrophy than APA. This is associated with atrophy of the
non-tumorous cortex due to the negative feedback–suppression
effects of the hypothalamic–pituitary axis in CPA. In contrast,
the non-tumorous adrenal cortex is not atrophic in glands
harboring an APA (24). These findings were basically consistent
with previous radiological and pathological reports (7, 24, 25).
Although it is still insufficient to distinguish the two tumors on
conventional CT image, it may give radiomics the possibility
to extract more correlated quantitative features for improving
decision support.

CT-based radiomics providing a non-invasive and low-cost
analysis technique for tumor property evaluation based on image
data has been widely applied (26). The radiomics-based machine
learning model can analyze and process CT images in the gray
level as well as individual level (27). In the training stage, it
is capable of learning from experiential data and hence could
discover the general trend of those (priori knowledge). In the test
stage, based on the discovered priori knowledge, the model could
automate and improve prediction and classification of unknown
data effectively, as well as provide the diagnostic information
for the individual (28). Until now, the study on the application
of radiomics-based computer-aided framework to differential
diagnosis between CPA and APA has not been reported. To our
knowledge, this is the first study that provides a comprehensive
difference quantification of adenomas using radiomics features
and gives us new insights for differentiating CPA and APA using
machine learning.

In our study, the appropriate feature selection strategies such
as ICC analysis, LASSO, and PCA were addressed to enhance the
repeatability of radiomics features and improve the classification
process by reducing overfitting of models (29). This study
evaluated diagnostic capabilities of radiomics features and put
much emphasis on the comparison of different machine learning
models, because the computational models with high accuracy,
reliability, and efficiency of prediction and prognosis are vital
factors driving the success of radiomics (18). Radiomics features
as imaging biomarkers are emerging and need to be studied and
validated prospectively when served in the differential diagnosis
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FIGURE 6 | The visual presentation of nomogram combining the radiomics signature and clinic–radiological indicators (A) and its calibration curves in training cohort

(B) and test cohort (C).

TABLE 3 | Diagnosis performance of the three models.

Model Clinics Radiomics Nomogram

Training Test Training Test Training Test

AUC 0.829 (0.796, 0.863) 0.732 (0.671, 0.793) 0.897 (0.841, 0.953) 0.882 (0.819, 0.945) 0.931 (0.69, 0.993) 0.902 (0.822, 0.982)

Accuracy 0.745 0.714 0.881 0.887 0.933 0.922

Sensitivity 0.719 0.691 0.909 0.935 0.909 0.915

Specificity 0.798 0.735 0.876 0.823 0.968 0.928

PPV 0.801 0.746 0.869 0.836 0.951 0.931

NPV 0.723 0.687 0.914 0.933 0.914 0.907

Data are percentages with 95% CIs in square parentheses. Nomogram indicates the integrated model combining of clinics and radiomics features; PPV, positive predictive value; NPV,

negative predictive value.
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FIGURE 7 | The ROC curve analysis for differential diagnostic efficiency of three models in training cohort (A) and test cohort (B).

of various diseases (30). Our study proposed a radiomics-based
machine learning framework to characterize the differences of
CT images from the patients with CPA and APA, which could
achieve a satisfying clinical outcome. This contributes to simplify
the complex diagnostic procedures by voiding the multifarious
clinical examinations.

We studied a total of 627 radiomic features extracted from
plain scan, arterial phase, and venous phase CT images, including
4 geometric features, 9 first-order statistical features, 40 texture
features, and 156 wavelet features in each phase. The 24 radiomic
features that differed significantly between the two groups were
selected for a radiomics signature. A nomogram that combined
radiomic signature with the clinic–radiological features (age,
gender, and tumor size, mean CT attenuation, and adrenocortical
atrophy) improved the differentiation accuracy in the training
and test cohorts. The concept underlying the radiomics process
is that both morphological and functional clinical images contain
qualitative and quantitative information, which may reflect
the underlying tissue-level features, in line with pathological
findings (31). Previous studies have reported there were subtle
structural and pathological differences between APA and CPA,
which had different proportions composed of clear cells (lipid
rich), compact cells (lipid poor), cell arrangement, and blood
sinus, the same as previously discussed (23, 24). APA cells
contained mitochondria with lamellar-type or plate-like cristae,
whereas CPA cells contained mitochondria with tubulovesicular
cristae (24). Previous studies have indicated that texture analysis
and radiomics features were linked with microenvironment
heterogeneity within tumors. Quantitative histologic analysis
revealed that intratumoral immune cell infiltration was more
pronounced in CPAs than in APAs, and the vascular density was
also significantly higher in CPAs (32).

The limitation of our work also exists. First, radiomics
features are partly associated with VOI segmentations. This
study was based on the radiologist-annotated features. Although
a high interobserver agreement as well as an excellent
feature repeatability has been achieved, it can be subjected

to interobserver or intraobserver variability. Automatic or
semiautomatic lesion segmentation methods that capture lesions
more accurately can be explored in the future. Second, although
a prospective study for collecting new cases is still ongoing by
our group to increase the sample volume, the low incidence
of ACAs determines that a small sample size was used in
current research. Third, all the patients were from a single
center. Although cross-validation is used for model evaluation,
the model may perform differently if multicenter datasets with
different parameters are used. Next, a multicenter large-scale data
from different institutions should be involved and deep learning
could be employed to enhance stability and discrimination
performance of model. Future work should extend radiomics to
other adrenal tumors such as distinguishing between functional
and non-functional adenomas and detecting the nature of
adrenal incidentaloma.

CONCLUSIONS

In summary, we have preliminarily investigated the performance
of multiparametric CT radiomics-based machine learning
model for differentiating CPA from APA. The proposed
radiomics analytic framework presents an encouraging result in
differential diagnosis between those than conventional imaging
techniques. This method may provide a non-invasive and
economic approach to facilitate the clinical decision-making in
some special conditions such as atypical clinical symptom or
hormone secretion and localize responsible lesion in bilateral or
multiple tumors.
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and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China

Objectives: To develop and validate a deep learning-based overall survival (OS)
prediction model in patients with hepatocellular carcinoma (HCC) treated with
transarterial chemoembolization (TACE) plus sorafenib.

Methods: This retrospective multicenter study consisted of 201 patients with treatment-
naïve, unresectable HCC who were treated with TACE plus sorafenib. Data from 120
patients were used as the training set for model development. A deep learning signature
was constructed using the deep image features from preoperative contrast-enhanced
computed tomography images. An integrated nomogram was built using Cox regression
by combining the deep learning signature and clinical features. The deep learning
signature and nomograms were also externally validated in an independent validation
set of 81 patients. C-index was used to evaluate the performance of OS prediction.

Results: The median OS of the entire set was 19.2 months and no significant
difference was found between the training and validation cohort (18.6 months vs.
19.5 months, P = 0.45). The deep learning signature achieved good prediction
performance with a C-index of 0.717 in the training set and 0.714 in the validation
set. The integrated nomogram showed significantly better prediction performance than
the clinical nomogram in the training set (0.739 vs. 0.664, P = 0.002) and validation set
(0.730 vs. 0.679, P = 0.023).

Conclusion: The deep learning signature provided significant added value to clinical
features in the development of an integrated nomogram which may act as a potential
tool for individual prognosis prediction and identifying HCC patients who may benefit
from the combination therapy of TACE plus sorafenib.

Keywords: hepatocellular carcinoma, transarterial chemoembolization, sorafenib, deep learning, biomarker
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INTRODUCTION

Almost 80% of patients with hepatocellular carcinoma (HCC) are
initially diagnosed at the intermediate or advanced stage, hence
being unqualified for curative treatments such as resection and
ablation (1, 2). As demonstrated by two controlled randomized
trials and the BRIDGE study, transarterial chemoembolization
(TACE) is the most common therapeutic option for unresectable
hepatocellular carcinoma (HCC), and is recommended for
intermediate stage HCC (Barcelona Clinic Liver Cancer (BCLC)
stage B) by most guidelines (3–7). However, the release of
angiogenic factors such as vascular endothelial growth factor
(VEGF) induced by TACE may increase the recurrence and
progression rate of HCC (8, 9).

Sorafenib, a multikinase inhibitor, was the first oral molecular
targeting agent to significantly improve overall survival (OS)
and time-to-tumor progression (TTP) in patients with advanced
HCC (10, 11). Theoretically, owing to acute hypoxia triggered by
TACE which leads to the upregulation of VEGF, the combination
of TACE and sorafenib may inhibit both revascularization
and tumor proliferation (12, 13). Recently, the TACTIS trial
clearly showed that TACE plus sorafenib significantly improved
clinical outcomes in patients with unresectable HCC, which
indicated that this combination therapy was effective and
feasible in routine practice (14). However, several clinical trials
failed to contribute compelling evidence for the combination
of sorafenib and TACE, apart from the trial design which
described the duration of sorafenib administration and TACE
treatment regimen, the failure could be mainly due to the
vast heterogeneity of unresectable HCCs, leading to differences
in individual response (15–18). Therefore, a personalized
prediction biomarker or model which can identify patients
who may benefit from the combination therapy is crucial for
treatment decision. Previous studies indicated that there was
a potential link between adverse events (AEs) and favorable
outcomes, which concluded that the earlier the AEs such as
dermatological AEs and hypertension occurred, the longer the
overall survival (OS) of patients on the combination therapy (19,
20). Nevertheless, biomarkers or models which provide accurate
prognosis predictions are still lacking.

As a non-invasive examination tool used routinely in
clinical practice, medical imaging can provide comprehensive
evaluations of tumor heterogeneity, and previous studies found
that image-based deep learning technologies showed promising

Abbreviations: 95% CI, 95% confidence interval; AASLD, American Association
for the Study of Liver Diseases; AEs, adverse events; AFP, α-fetoprotein; AIC,
Akaike information criterion; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; BCLC, Barcelona Clinic Liver Cancer; CAM, class activation
map; CECT, contrast-enhanced computed tomography; C-index, concordance
index; CT, computed tomography; CTCAE, Common Terminology Criteria of
Adverse Events; EASL, European Association for the Study of the Liver; ECOG,
Eastern Cooperative Oncology Group; GAP, global average pooling; HBsAg,
Hepatitis B virus surface antigen; HBV, Hepatitis B virus; HCC, hepatocellular
carcinoma; IRBs, Institutional Review Boards; mRECIST, modified Response
Evaluation Criteria in Solid Tumors; MRI, magnetic resonance imaging; OS,
overall survival; PFS, progression-free survival; RMSE, root mean square error;
ROI, region of interest; SAEs, Severe Adverse Events; SD, standard deviation;
TACE, transarterial chemoembolization; TTP, time-to-tumor progression; VEGF,
vascular endothelial growth factor.

capabilities in the development of accurate prediction models
(21, 22). Specifically, the transfer learning strategy makes it
possible to implement deep learning on relatively small datasets
(22, 23). In this study, we conducted a multicenter study to
establish and validate a deep learning-based prognosis prediction
model for HCC patients treated with the combination of
TACE and sorafenib.

MATERIALS AND METHODS

Study Design
This retrospective multicenter study enrolled consecutive
treatment-naïve HCC patients who were treated with the
combination of TACE and sorafenib between 2011 and 2016.
Data of patients from center A and B were used as the training
set for the development of the prognosis prediction model,
and data of patients from center C were used as the validation
set for independent model test. The study was approved by
the Institution Ethics Review Boards of the three mentioned
centers. The need for informed consent was waived due to the
retrospective nature of the study.

Patients
The diagnosis of HCC was confirmed according to the European
Association for the Study of the Liver (EASL) or the American
Association for the Study of Liver Disease (AASLD) criteria
(6, 7). The inclusion criteria were as follows: 1) patients were
18 years or older; 2) the Eastern Cooperative Oncology Group
(ECOG) scores were 0 or 1; 3) patients with unresectable HCC
which is clinically a heterogeneous group including those with
inter-mediate and advanced stage (6); 4) Child-Pugh class A
to B7; 5) adequate hematological, clotting, and renal function.
Patients were excluded from the study if the following criteria
were present: (1) absence of baseline imaging and clinical
data; (2) comorbidity with other primary malignancies; (3)
infiltrative HCCs with obscure borders; (4) contraindications
to TACE or sorafenib treatment; (5) having received previous
HCC-related treatment, including resection, ablation, TACE,
and radiotherapy.

Relevant information was retrieved from the clinical database,
including ECOG scores, Child Pugh class, number of tumors,
tumor size, BCLC stage, hepatitis B virus (HBV) status,
liver cirrhosis status, tumor distribution status, serum α-
fetoprotein (AFP), alanine aminotransferase (ALT), aspartate
aminotransferase (AST), and hepatitis B surface antigen (HBsAg)
level. Continuous variables were transformed into categorical
variables based on recognized cutoff values (24).

Preoperative contrast-enhanced computed tomography
(CECT) scans were performed before treatment and both arterial
and portal phases of CECT were obtained.

The details of CECT protocol was showed in the supplements.

Treatment
Sorafenib (Bayer Healthcare, Leverkusen, Germany) was
administrated orally to patients within 1 week after every
session of TACE. To preserve liver function, sorafenib
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administration was stopped before the day of each TACE
session. In principle, the dose of sorafenib was 400 mg twice daily
(800 mg/day). Nevertheless, treatment interruptions and dose
reductions (400 mg once-daily, 400 mg alternated days) were
permitted for drug-related adverse events (AEs), which were
graded per Common Terminology Criteria of Adverse Events
(CTCAE) version 5.0. Patients were excluded if they did not
adhere to the regimen.

TACE was performed based on “on demand” mode. No
patients underwent TACE using drug-eluting beads. Before
chemoembolization, a diagnostic angiograph was performed to
ensure the main portal vein was unobstructed and to determine
the anatomy of the tumor vessels and hepatic artery. With a
super-selection of segment or subsegment, a 2.7 F microcatheter
(Progreat, Terumo, United States) was advanced into the
feeding vessels. As selected according to the practice of each
center, chemoembolization was performed with intra-arterial
doxorubicin (10–50 mg) and oxaliplatin (100–200 mg) mixed
with lipiodol (2–20 ml, lipiodol ultra-fluid; Guerbet, France)
followed by injection of gelfoam particles. The injection volume
of the emulsion was determined based on the tumor volume.
Before performing additional TACE sessions, good performance
status was essential. Patients would receive the best supportive
care if they were not candidates for further TACE sessions.
All TACE procedures were performed by several interventional
radiologists with more than 8 years of experience.

Clinical Endpoints and Follow-Up
The primary endpoint of the study was OS and the prediction
models, which were built based on it. OS was defined as the
time from the initial TACE treatment of HCC until any cause of
death. In surviving patients, the censoring date was defined as
the last follow-up (September 30, 2019). The secondary endpoint
was progression-free survival (PFS). PFS was defined as the
time from the date of TACE until the time of radiological
progression by the modified Response Evaluation Criteria in
Solid Tumors (mRECIST). Radiological progression was assessed
by two independent radiologists who were blinded to the clinical
information. In patients without death or progression, the
censoring date was defined as the last radiological assessment
date. Patients received follow-up of CECT every 4 weeks after
each TACE session and every 8–12 weeks after disease stability
has been attained. Follow-up duration was measured from the
day of diagnosis to last visit or death.

Deep Learning Signature Building
The modeling workflow of this study is shown in Figure 1.
The CECT images of the arterial and portal phases were aligned
using open-source Insight Segmentation and Registration Toolkit
(ITK, version 4.7.21)(25). The tumor region of interest (ROI)
was manually delineated in 2D slices of both AP and PVP
using MITK software (version 2016.11.32) by a radiologist with
10 years of experience, and then confirmed by a radiologist
with 23 years of experience. The representative slices with the

1https://itk.org/
2http://www.mitk.org/

largest tumor ROI were selected, and square images with the size
of 224 × 224 pixels whose center was located at the centroid
of tumor ROI were generated. All images were processed by a
z-score standardization, which consisted of subtracting the mean
intensity and division by the standard deviation of intensity.

The deep learning model was adapted to decode the
prognostic signal of tumors on CECT images. The training of
deep learning models is computationally expensive and requires
large number of images because of its millions of learnable
parameters to estimate. To address the lack of data, a highly
effective technique known as transfer learning was employed
by leveraging large data set from computer vision domain
(23). In this way, a deep learning model with DenseNet-121
architecture (26) was trained using ImageNet dataset3. DenseNet
is a state-of-the-art convolutional neural network (CNN) which
demonstrates significant improvements over traditional CNNs
on highly competitive object recognition benchmark tasks, and
it requires less computational cost and has fewer parameters
which confers the model a smaller size and easier accessibility
for application. ImageNet is a dataset for image classification
which contains more than 14 million labeled natural images. The
ImageNet dataset was used to train the DenseNet-121 model
to derive model parameters, which conferred the general ability
of image interpretation to the model, thus, the deep learning
model can recognize the unique features of a specific category of
images. In the DenseNet-121 model, the fully connected layer and
softmax layer were removed, and the feature extraction module
was used as deep image feature extractors. The DenseNet-121
model was used to extract 1024 deep image features from
CECT images at each phase, respectively. The deep learning was
implemented using Keras4 in Python with TensorFlow5 as the
backend. The trained DenseNet-121 model is available online6.
The technical details were described in the supplements.

An efficient two-stage modeling procedure was conducted to
build the deep learning signature. In the first stage, the deep
image features were ranked by mRMR, a multivariate ranking
method (27). In the second stage, the top-ranked features were
input into ElasticNet for the determination of feature weights
and the building of the deep learning signature (28). 5-fold cross-
validation was performed in modeling procedures to determine
the optimal parameter configuration. The technical details were
described in the supplements.

As the tumor ROI was manually delineated, the inter-observer
and intra-observer correlation coefficient (ICC) were introduced
to examine the reproducibility of deep image features in the deep
learning signature. Two radiologists with 10 years of experience
performed the same delineation of the tumor ROI for all patients:
radiologist 1 delineated the ROI twice at different times and
radiologist 2 carried out the delineation once. The deep image
features were extracted after each delineation. The inter-observer
and intra-observer ICC of deep image features were computed to
determine the reproducibility of features, and the features with

3https://www.image-net.org
4https://github.com/keras-team/keras/
5https://www.tensorflow.org/
6https://github.com/flyyufelix/DenseNet-Keras
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FIGURE 1 | Workflow of modeling in this study. The CECT images were preprocessed by image registration, tumor delineation and image standardization, then the
images were input into a deep learning model to build the deep learning signature. The deep learning signature and the clinical features were combined to develop
an integrated nomogram. For comparison, a clinical nomogram was also built using only the clinical features. The nomograms were externally validated in an
independent validation set.

intra or inter-observer ICC above 0.75 were considered to have
high reproducibility.

For an intuitive understanding of mechanisms of the deep
learning signature, the strategy of class activation map (CAM)

was used to generate heat maps which could give a coarse location
of the image area relevant to unfavorable prognosis (29). The
technical details of heat map generation were documented in
the supplements.
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OS Prediction Nomogram Development
The Cox regression method was used to build the OS prediction
nomogram. The clinical features and the deep learning signature
were utilized as the candidate prognostic factors and tested by
univariate Cox regression analysis to select the factors which
were significantly correlated to OS. Then, the selected prognostic
factors were used in multivariate Cox regression analysis to
obtain an integrated nomogram by a stepwise feature selection
algorithm based on the Akaike information criterion (AIC) (30).
For comparison, a clinical nomogram was also built using only
the clinical features.

Validation and Statistical Analysis
The performance of models in predicting OS was evaluated
by calculating the C-index (31). The deep learning signature
and nomograms built on the training set were independently
tested on the validation set. The calibration of nomograms was
assessed by comparing observed and predicted survival using
root mean square error (RMSE), where a lower RMSE reflects
better agreement between observations and predictions (32).

In statistical tests, the Mann–Whitney U test was used
for numerical variables, and Fisher’s exact test was used for
categorical variables. All statistical tests were two-sided and
P < 0.05 was used to indicate statistical significance.

RESULTS

Baseline Characteristics
After enrollment, a total of 201 patients were included in this
study (center A and B as the training set: n = 120, center
C as the validation set: n = 81) (Supplementary Figure S1).
The median OS and PFS of the entire set was 19.2 months
(95% CI: 17.7–20.7) and 8.3 months (95% CI: 7.7–9.0) and
no significant difference was found between the training and
validation cohort (median OS: 18.6 (95% CI: 16.2–21.2) vs.
19.5 (95% CI: 17.8–21.9) months, P = 0.45; median PFS: 8.4
(95% CI: 7.5–9.0) vs. 8.1 (95% CI: 6.8–9.9) months, P = 0.23).
The Kaplan–Meier curves of the training and validation sets
for OS and PFS were plotted in Figures 2A,B. The detailed
demographic characteristics of the enrolled patients in both sets
were shown in Table 1.

The duration of sorafenib administration was 12.8 months
(range: 1.2–45.4 months). The dose reductions and interruptions
in 152 (75.6%) patients were mainly due to disease progression
and AEs. No combination therapy-related deaths occurred
during the follow-up. The AEs of patients were listed in
Supplementary Table S1 of the supplements.

Deep Learning Signature Building and
Validation
There were 10 deep image features in the deep learning
signature including 5 features extracted from arterial phase CECT
and 5 features extracted from portal phase CECT, the names
of the features and corresponding weights were detailed in
Supplementary Table S2 of the supplements. All deep image

features in the deep learning signature had ICC above 0.75. The
deep learning signature achieved a C-index of 0.717 (95% CI:
0.709–0.726) in the training set, and it was validated to have
good prediction performance with a C-index of 0.714 (95% CI:
0.702–0.727) in the validation set.

Heat maps were generated to provide a coarse location of
the tumor region relevant to unfavorable prognosis. Figure 3
illustrates an example of CECT images with superimposed
heat maps, where the areas in deeper red indicated a stronger
correlation with unfavorable prognosis. The core area colored
deepest red was located in the hypodense mass, and the general
red area covered almost the entire tumor.

OS Prediction Nomogram Development
and Validation
The BCLC stage, largest tumor size, AFP, ALT and deep learning
signature were identified as prognostic factors correlated to OS
in the univariate analysis (Supplementary Table S3). When only
the prognostic clinical features were used in multivariate Cox
regression analysis, BCLC stage, largest tumor size and ALT
were identified as independent prognostic factors (Table 2) and
a clinical nomogram was built (Figure 4A). By including all
prognostic factors in the multivariate Cox regression analysis,
the largest tumor size failed to remain as an independent
prognostic ability, while BCLC stage, ALT and deep learning
signature were identified as independent prognostic factors
(Table 2), and an integrated nomogram was built using these
factors (Figure 4B).

In the training set, the C-index for the integrated nomogram
(0.739, 95% CI: 0.731–0.748) for the prediction of OS was
significantly higher than that of the clinical nomogram (0.664,
95% CI: 0.654–0.673, P = 0.002). Consistent results were found
in the validation set, where the C-index remained significantly
greater for the integrated nomogram (0.730, 95% CI: 0.717–
0.742) compared with the clinical nomogram (0.679, 95% CI:
0.667–0.691, P = 0.023). The calibration plots of nomograms
were plotted in Figure 4C. In the training set, the RMSE
was 0.068 for the clinical nomogram and 0.062 for the
integrated nomogram. In the validation set, the RMSE of the
clinical nomogram was 0.192 and the RMSE of the integrated
nomogram was 0.105.

Performance of Integrated Nomogram in
Stratifying Risk of Patients
The median value of the scores predicted by the integrated
nomogram was determined as the cutoff in stratifying the patients
in the training cohort into two subgroups, where the subgroup
with scores higher than median score were classified as the high-
risk group, and the other subgroup was classified as the low-risk
group, and the patients in the low-risk group achieved better
OS than the high-risk group (P < 0.001). After applying the
same cutoff value in stratifying patients in the validation set,
stratification into high and low-risk subgroups also achieved
significantly distinct OS (P < 0.001). The Kaplan–Meier curves
of low-risk and high-risk groups in the training and validation
sets were illustrated in Figures 2C,D.
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FIGURE 2 | Kaplan–Meier curves between training and validation cohorts. (A) OS of training set and validation set; (B) PFS of training set and validation set; (C) OS
of low-risk and high-risk groups in the training set; (D) OS of low-risk and high-risk groups in the validation set.

DISCUSSION

A multicenter study was conducted to develop and validate an OS
prediction model for HCC patients treated with a combination
of TACE and sorafenib, where an integrated nomogram which
was built by incorporating a deep learning signature and
clinical features showed significant improvement compared to
the clinical nomogram. When comparing OS of this study to
that of other trials, OS of the SPACE trial did not reach the
median value, the TACTIS trial did not analyze OS, and the target
population of the STAH and post-TACE trial was advanced stage
HCCs and unresectable HCCs with a response after TACE (14,
15, 33, 34). The median OS of this study was consistent with the
TACE-2 trial (median OS, 18.8 months), which suggested that the
cohort in the present study is representative of real-world patients
receiving TACE plus sorafenib for unresectable HCC (16).

Several clinical trials which attempted to address the
improvement in OS of the combination treatment of TACE plus
sorafenib in HCC patients have ended in failure (16, 33, 34).

The failure of the negative trials could mainly be due to the
deficiency of effective biomarkers (18). For HCC patients, it
is known that baseline α-fetoprotein concentration and other
biomarkers such as miR-26 miRNA precursor, epithelial cell
adhesion molecule are suggested to be correlated with the
outcomes (35, 36). In addition, more than 40 gene signatures
have been described in terms of molecular-guided prognosis
prediction (37). Nevertheless, none of them have yet to become a
tangible tool in clinical practice mainly due to the impact of intra-
and inter-tumor heterogeneity (38, 39). Another reason may be
that the molecular biomarkers were identified by the specimens
resected from patients at earlier stages but have not proven to be
predictors of a response to systematic therapies such as sorafenib
(37). A few studies showed that early-onset sorafenib-related AEs
may be potential biomarkers for patients undergoing treatment
with sorafenib (20, 40). Recently, the onset of hypertension
and sorafenib-related dermatological AEs were demonstrated to
be early biomarkers in patients with HCC who were treated
with TACE plus sorafenib (19). Nevertheless, on the basis of
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TABLE 1 | Baseline characteristics in the training and validation set.

Characteristic Overall Training set Validation set P

Gender 0.292

Male 175 107 68

Female 26 13 13

Age 0.475

≤55 years 108 67 41

>55 years 93 53 40

Etiology

HBV 165 98 67 0.923

HCV 22 14 8

Others 14 8 6

Cirrhosis 0.384

Yes 115 72 43

No 86 48 38

Tumor distribution 0.359

Unilobar 136 78 58

Bilobar 65 42 23

Number of nodules 0.079

<3 83 56 27

≥3 118 64 54

Largest tumor size, median 0.374

≤5cm 76 42 34

>5cm 125 78 47

Portal vein invasion 0.146

Main portal vein 28 13 15

First branch 57 30 27

Second branch 7 5 2

No 109 72 37

Hepatic vein invasion 0.834

Yes 27 17 10

No 174 103 71

ECOG 0.157

0 180 104 76

1 21 16 5

Child-Pugh Class 0.442

A 184 108 76

B 17 12 5

BCLC stage 0.565

B 89 51 38

C 112 69 43

AST 0.313

≤40 U/L 90 50 40

>40 U/L 111 70 41

ALT 0.742

≤50 U/L 151 89 62

>50 U/L 50 31 19

AFP 0.229

≤400 ng/ml 71 38 33

>400 ng/ml 130 82 48

TACE sessions, median 2 2 2 0.579

ECOG, Eastern Cooperative Oncology Group; BCLC, Barcelona Clinic Liver
Cancer; HBV, hepatitis B virus; HCV, hepatitis C virus; AFP, α-fetoprotein; ALT,
alanine aminotransferase; AST, aspartate aminotransferase; TACE, transarterial
chemoembolization.

FIGURE 3 | Images of a patient with an OS of 13.6 months. (A,B) were
arterial phase and portal phase CECT images, respectively; (C,D) shows the
heat map superimposed on the arterial phase and portal phase CECT images.

TABLE 2 | Nomograms built using multivariate Cox regression analysis.

Characteristic Clinical nomogram Integrated nomogram

HR (95% CI) P HR (95% CI) P

BCLC stage
(C vs. B)

1.968 (1.307–2.964) 0.001 1.540 (1.016–2.334) 0.041

Largest tumor size
(>5 vs. ≤5)

1.896 (1.222–2.949) 0.004 – –

ALT
(>50 vs. ≤50)

1.931 (1.245–2.993) 0.003 1.703 (1.099–2.639) 0.017

Deep learning
signature
(0.6 vs. 0.4)

– – 2.688 (1.970–3.668) <0.001

HR, Hazard Ratio; CI, Confidence Interval.

complexity of the histopathological and biological heterogeneity
of HCC, the multi-target treatment mechanisms of sorafenib in
addition to the factors mentioned above, these biomarkers are
unable to strongly predict the outcomes of patients with HCC
who were treated with TACE plus sorafenib (41).

The image-based deep learning technology enabled the
development of powerful prognosis biomarkers to predict
outcomes in malignant tumors such as lung cancer (42),
nasopharyngeal carcinoma (43) and gliomas (44). With the
transfer learning strategy, the deep learning model was employed
to build the deep learning signature in this relatively small data
set. The entire modeling procedure was efficient and easy to
implement with open-source programs. As shown in the results,
the deep learning signature was highly correlated to OS. In the
heat map, it was indicated that the deep learning signature could
capture local features, where the deepest red areas identified were
associated with the hypodense mass which may refer to necrosis
(Figure 3). The arterial flow may decrease due to larger tumor
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FIGURE 4 | Nomograms and calibration curves. (A) Clinical nomogram; (B) Integrated nomogram; (C) Calibration curves of nomograms in the training set and
validation set.

growth, further dedifferentiation and progression to poorly
differentiated HCC (45). Moreover, in very advanced HCCs,
compression closure of tumor capillaries and the diminishing of
newly developed blood vessels occurred due to the increasing

interstitial pressure caused by rapid cell proliferation in the tumor
center (46). Given these factors, necrosis may emerge in HCCs,
which might make it a predictor of prognosis. In the heat map, the
general red area almost covered the entire tumor, which suggested
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that the deep learning signature could capture global features
including the tumor size, which is a predictor of poor prognosis
in HCC (47, 48).

As presented in the study, a clinical nomogram was built,
which included the BCLC stage, largest tumor size and ALT
to predict individual outcomes. The BCLC stage relies on a
composite of tumor burden, degree of liver damage, and cancer-
related symptoms, providing a useful framework for clinical
practice (6). Numerous studies have shown that larger tumor
sizes are predictors of poor prognosis in HCC (47, 48). Moreover,
ALT which was often utilized in the evaluation of liver function
in clinical practice, was demonstrated to be linked with survival
in patients with HCC (49). These were also true in our cohort
where larger tumor sizes, higher ALT levels and BCLC C stage
were associated with poor OS. An integrated nomogram was
built by incorporating clinical features and a deep learning
signature, where the integrated nomogram achieved a higher
C-index and lower RMSE than that of the clinical nomogram,
which indicated that the deep learning signature provided
significant added value to clinical features. The reason may be
because the deep learning signature could make predictions by
capturing both the global and local features of tumors, and it
comprehensively reflected on the tumor size and heterogeneity
which were established prognostic factors (39, 50). This may
also explain the exclusion of largest tumor size as a prognostic
factor, as the deep learning signature has already contained
the information of tumor size which belongs to the tumor
global feature, which was consistent with the demonstration
in the heat map.

Some limitations of this study should be acknowledged.
First, because of its retrospective nature, selection bias may
have existed and the cohort may not represent the entire
population of patients with unresectable HCC. Nevertheless,
there were no significant differences in the baseline characteristics
between the three centers. Second, in this study, sequential
administration rather than concurrent administration of the
combination treatment may limit the efficacy of treatment.
However, physicians preferred the sequential approach to avoid
possible AEs in clinical practice. Third, because of the limited
data, the study population included BCLC C stage HCC, where
TACE is not routinely recommended. Hence, further study
of BCLC B stage population is warranted. Last but not least,
the entire modeling procedure was not fully automatic, and
tumor delineation was required to reduce the image size and
to eliminate background noise which ensured that the deep
learning model could focus on the signal of the tumor. In the
future, it is hoped that an end-to-end deep learning model can
be trained on a large scale of dataset without the need for
pre-processing procedures.

CONCLUSION

In conclusion, the current study demonstrated that the CECT-
based deep learning signature could be used as a novel
biomarker for OS prediction in patients with HCC undergoing
TACE plus sorafenib treatment. Additionally, we built an

integrated nomogram combining the clinical features and the
deep learning signature to further improve the prediction
of OS which could thereby act as a potential tool for the
development of individual treatment strategies and identifying
potential patients with HCC who may benefit from such a
combination therapy.
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Background: We conduct a study in developing and validating two radiomics-based

models to preoperatively distinguish hepatic epithelioid angiomyolipoma (HEAML) from

hepatic carcinoma (HCC) as well as focal nodular hyperplasia (FNH).

Methods: Totally, preoperative contrast-enhanced computed tomography (CT) data of

170 patients and preoperative contrast-enhanced magnetic resonance imaging (MRI)

data of 137 patients were enrolled in this study. Quantitative texture features and

wavelet features were extracted from the regions of interest (ROIs) of each patient

imaging data. Then two radiomics signatures were constructed based on CT and MRI

radiomics features, respectively, using the random forest (RF) algorithm. By integrating

radiomics signatures with clinical characteristics, two radiomics-based fusion models

were established through multivariate linear regression and 10-fold cross-validation.

Finally, two diagnostic nomograms were built to facilitate the clinical application of the

fusion models.

Results: The radiomics signatures based on the RF algorithm achieved the optimal

predictive performance in both CT and MRI data. The area under the receiver operating

characteristic curves (AUCs) reached 0.996, 0.879, 0.999, and 0.925 for the training

as well as test cohort from CT and MRI data, respectively. Then, two fusion models

simultaneously integrated clinical characteristics achieved average AUCs of 0.966 (CT

data) and 0.971 (MRI data) with 10-fold cross-validation. Through decision curve analysis,

the fusion models were proved to be excellent models to distinguish HEAML from HCC

and FNH in comparison between the clinical models and radiomics signatures.

Conclusions: Two radiomics-based models derived from CT and MRI images,

respectively, performed well in distinguishing HEAML from HCC and FNH and might be

potential diagnostic tools to formulate individualized treatment strategies.

Keywords: hepatic epithelioid angiomyolipoma, hepatocellular carcinoma, focal nodular hyperplasia, radiomics,

machine learning
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INTRODUCTION

Preoperative evaluation of liver tumors sometimes remains
a challenge for clinicians. On the one hand, there are still
a large number of new hepatocellular carcinoma (HCC)
cases each year due to the large population of hepatitis-B-
related cirrhosis in China (1). On the other hand, with the
increasing popularity of health screening, various types of
hepatic masses have been asymptomatically detected. Clinicians
need to evaluate plenty of hepatic lesions to implement
individualized diagnosis, treatments and follow-up strategies
for the patients. Hepatic epithelioid angiomyolipoma (HEAML)
is an uncommon potential malignant tumor that belongs to
the PEComas family, and it is pathologically characterized by
perivascular epithelioid cell differentiation (2). As a special
subtype of angiomyolipoma, HEAML without visible fat is easily
confused with other blood-rich hepatic masses, including HCC
and focal nodular hyperplasia (FNH) (3). Therefore, it is vital to
precisely distinguish HEAML from non-HEAML hepatic lesions
because diagnostic evaluation is an important prerequisite for
implementing individualized treatment strategies. For HEAML,
local surgical resection is ideal, despite there is a low proportion
of tumor recurrence (3). According to the diagnosis and
treatment guidelines, patients with HCC can individually
undergo radiation therapy, surgical resection or transarterial
chemoembolization after overall clinical evaluation. FNH usually
only requires regular observation due to its completely benign
biological behavior.

Previous imaging studies have observed that HEAML has
specific radiological characteristics that may help with diagnostic
evaluation on computed tomography (CT) and magnetic
resonance imaging (MRI) (4–12). Definite existence of a small
amount of fat in hepatic mass is greatly valuable in radiological
diagnosis of HEAML, for which MRI scan is recommended
(8, 10). Also, HEAML as a blood-rich tumor would be included
in the differential diagnosis when draining vein of the hepatic
mass was observed in the arterial phase (6, 8). In contrast to
the wash-in and wash-out pattern of HCC, HEAML may have
persistently high enhancement of the intertumoral focal area
on contrast-enhanced CT or MRI (4–12). Although previous
studies have explored the differential radiological characteristics
of HEAML and HCC, no research has focused on the diagnostic
evaluation to distinguish HEAML from FNH. Additionally, these
radiological characteristics are usually morphological and non-
quantitative, which rely on the observer’s professional experience.
Until now, the radiological diagnosis of HEAML has remained a
clinical challenge.

In recent years, radiomics has become an active topic of

medical artificial intelligence research. Previous studies have
shown that high-throughput radiomics features extracted from

medical imaging data can well predict tumor phenotypes (13). In

the evaluation of liver tumors, especially HCC, radiomics can be

used for tumor detection, evaluation of stage, treatment strategy
selection, and prognosis prediction. Also, a small number of
studies have shown that radiomics has potential predictive
value for tumor classification (14). At first, Raman et al. (15)
found the differentially expressed texture features in HCC,

focal nodular hyperplasia and hepatic adenomas could be used
differential diagnosis of these blood-rich lesions. Subsequently,
deep learning method was used to classify liver masses using
contrast-enhanced CT data (16). The CNN-based model showed
excellently predictive efficiency in distinguishing malignant liver
tumors from the non-malignant with an accuracy of 0.84 (16). A
recent study also showed that deep learning model based onMRI
data was a potential diagnostic tool for liver tumors (17).

Therefore, in this study, we tried to construct quantitative
radiomics signature models for diagnosis of HEAML using CT
and MRI images. Several classical machine learning algorithms
have been tried to find the ideal model to classify HEAML and
non-HEAML lesions. As far as we known, it was the first study
based on a radiomics method to distinguish HEAML from other
hepatic masses.

MATERIALS AND METHODS

Patients
The review boards of First Affiliated Hospital, College of
Medicine, Zhejiang University, approved the study protocol,
and waived the requirement of informed consent from patients.
Our datasets including contrast-enhanced CT and MRI data
were retrospectively obtained during June 2009 to June 2017
for this study. In detail, 170 patients with contrast-enhanced
CT images (78 HCC, 59 FNH, 33 HEAML) and 137 patients
with contrast-enhanced MRI images (77 HCC, 30 FNH, 30
HEAML) were enrolled. For both CT and MRI datasets, the
patients diagnosed with HEAML were included in an HEAML
group, and the patients with HCC or FNH constituted a
non-HEAML group.

The inclusion criteria for the patients were as follows:
(1) HEAML, HCC, and FNH diagnosed pathologically by
surgical resection or biopsy; (2) contrast-enhanced CT or
MRI scans performed within 1 month before operation;
(3) complete imaging data for further analysis. Patients
would be excluded due to the following criteria: (1)
diagnosis of recurrent tumor or multiple organ malignant
tumor; (2) antitumor treatment received before contrast-
enhanced CT or MRI scan; (3) poor imaging quality of
liver mass. The flow chart for our radiomics study is shown
in Figure 1.

Imaging Data Parameters
All patients underwent contrast-enhanced CT or MRI scans
before surgery or biopsy. CT scans included multislice spiral
CT (Aquilion 16, Toshiba Medical Systems, Otawara, Japan) and
256-slice CT (Brilliance iCT, Philips Medical Systems, Cleveland,
USA). The scanning parameters were as follows: tube voltage 125
kVp; tube current 320 mAs; pitch 0.95mm; layer thickness 2–
5mm; reconstruction interval 2mm. The contrast agent used for
enhanced CT was iohexol (Jiangsu Hengrui Pharmaceutical Co.,
Ltd., Lianyungang, China). The high-pressure syringe speed was
3.0 ml/s, the injection volume was 1.5 ml/kg, and the forelimb
was injected intravenously. Dynamic enhanced scanning was
performed at 25–30, 60–65, and 120–140 s after the contrast agent
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FIGURE 1 | The flowchart for this radiomics study.

was injected during the arterial phase, portal vein phase as well as
delayed phase.

MRI scans were performed using a high-field-strength MRI

instrument (3.0 T Signa HDx, GE Medical Systems, WI, USA).

The contrast-enhancedMRI scan sequence was the simultaneous
liver acceleration volume acquisition sequence using breath

gating. The image acquisition parameters were as follows:

repeat time (TR) 3.3ms; echo time (TE) 1.5ms; flip angle

10◦; matrix 320 ∗ 256; layer thickness 5mm. The contrast

agent was gadolinium-diethylenetriamine penta-acetic acid (Gd-
DTPA, Magnevist, Bayer HealthCare, Berlin, Germany). The
injection rate was 2.0–3.0 ml/s, and the injection dose was 0.1
mmol/kg. Dynamic enhancement scanning was performed 15–
20, 40–55, and 140–180 s after contrast agent injection.

Region of Interest (ROI) Segmentation and
Data Division
Contrast-enhanced CT/MRI arterial phase data were used for
the radiomics analysis. ROIs were manually segmented using
ITK-SNAP on a cross-sectional layer with a maximum diameter
of mass with CT/MRI imaging data (simultaneously avoiding a
large necrotic layer, Supplementary Figure 1). The segmentation
was completed by an experienced radiologist and proofread by a
senior radiologist.

Radiomics Feature Extraction
Since the different voxel sizes always influence imaging features,
we had to resample the images first to extract reproducible
radiomics features (18, 19). Therefore, spline interpolation was
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used and the voxel intensities of each ROI image were discretized
to a value of 64 bins (20).

After image resampling to the identical spatial voxel size and
voxel intensities, we extracted quantitative texture features from
original CT and MRI data. Additionally, the original image was
decomposed by the Haar wavelet transform to obtain high-order
wavelet features. Through changing the ratio of high-frequency
to low-frequency signals and reconstructing images in different
forms, every image was decomposed and reconstructed into
8 additional images. The size of the decomposed images was
equal to that of the original image. From each reconstructed
image, wavelet features were extracted. The radiomics features
extracted in our study are stable and can be reproduced through
the methods we introduced (20–22). Also, a filtering feature
screening (mutual information) method was implemented to
reduce the feature dimension.

Construction and Evaluation of the
Radiomics Signatures
For both CT and MRI datasets, significant imbalance on patient
population existed between the HEAML group and the non-
HEAML group. Therefore, synthetic minority over-sampling
technique (SMOTE) was applied to balance population as well
as avoid overfitting. The original datasets (HEAML group and
non-HEAML group) were proportionally divided into a training
cohort and a test cohort at the ratio of 2:1. The populations
of HEAML patients and non-HEAML patients were set to be
consistent in the training cohort and the test cohort. After the
cohorts had been divided, SMOTE was alone implemented on
the training cohort. In this way, we not only solved the problem
of unbalanced samples, but also ensure the independence of test
cohort for model evaluation.

To construct high-performance radiomics signatures, random
forest (RF), artificial neural network (ANN) as well as ridge
regression (RR), were separately applied to the training cohort
and the test cohort. As a result, three radiomics signatures based
on three different algorithms were constructed. The optimal
parameters of each algorithm were obtained with a grid-search
method. The receiver operating characteristic (ROC) curves were
plotted, then the AUCs were calculated to estimate the efficiency
of every radiomics signature. Finally, the selected radiomics
signature model was used to construct a fusion model in the
following steps. The operations above were conducted two times,
and two high-performance radiomics signatures were eventually
acquired based on CT and MRI datasets, respectively.

Construction and Evaluation of the Fusion
Models
It is assumed that information on clinical characteristics
is of additional value to the differential diagnosis (23–25).
Therefore, radiomics signatures and clinical characteristics were
applied to construct fusion models based on the multivariate
logistic regression (MLR) algorithm. In our study, clinical
characteristics included sex, age, maximum diameter, tumor
location, alcoholism, and smoking. Two steps should be followed
to construct the fusion models. Firstly, according to the Akaike

information criterion (AIC), the combined clinical characteristics
as well as radiomics signature of the lowest AIC value were
selected, acting as the components of the fusion model. Secondly,
the 10-fold cross-validation was applied to establish fusion
models, verifying the confidence of the results. In the process,
SMOTE was not used in the building of the fusion models.
The average AUCs of the fusion models based on CT and
MRI datasets, respectively, were selected to show the diagnostic
efficiency of the models. Meanwhile, we applied decision curve
analysis (DCA) to confirm the improvement in the models
after the clinical factors had been taken into consideration.
Finally, to realize the application of the fusion models in clinical
practice, diagnostic nomograms were built, which would help
preoperatively distinguish HEAML from FNH and HCC.

Statistical Analysis
The feature extraction program was conducted in MATLAB
(2016a) (MathWorks, Natick, MA, USA). RF, RR, and ANN
algorithms were conducted with python 3.7.0 (https://www.
python.org/). The AUC was calculated and depicted by the
“pROC” package. Diagnostic nomograms were built with the
“rms” package in R software 3.6.2 (https://www.r-project.org/).
The statistical results of continuous variables (including age and
maximum diameter) were obtained based on a two-sided Mann–
Whitney U-test. The statistical results of categorical variables
(including sex, tumor location, alcoholism, and smoking) were
acquired through a two-sided chi-squared test. The Mann-
Whitney U-test and chi-square test were implemented by SPSS
20 (IBM Corp, Chicago, USA).

RESULTS

Clinical Factors of Patients
According to the clinical records of the patients, five clinical
characteristics, including sex, age, the maximum diameter, tumor
location, alcoholism, and smoking, were selected as potential
biomarkers for differential diagnosis. The statistical results of
clinical characteristics between HEAML group and non-HEAML
group are shown in Table 1.

Radiomics Feature Extraction
Totally, we extracted 423 quantitative radiomics features from
the ROIs of CT or MRI data from each patient with HEAML,
FNH, and HCC. There were three types of radiomics features
in this study: 7 first-order histogram statistical features, 40
texture features, as well as 376 features using wavelet transform.
The texture features included 5 features extracted from the
neighborhood gray-tone difference matrix (NGTDM), 13 from
the gray-level size zone matrix (GLSZM), 13 from the gray-
level run-length matrix (GLRLM), and 9 from the gray-level
cooccurrence matrix (GLCM). More details about the radiomics
features extracted are available in Supplementary Table 1. After
the pre-screening based on mutual information method, 80 CT
radiomics features and 95 MRI radiomics features were selected
for the construction of radiomics signatures.
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TABLE 1 | The statistical results of clinical characteristics between HEAML group and non-HEAML group.

CT MRI

Clinical Characteristics HEAML

(n = 28)

Non-HEAML

(n = 128)

p HEAML

(n = 26)

Non-HEAML

(n = 98)

p

Sex < 0.001 < 0.001

Male 6 (21%) 93 (73%) 7 (27%) 78 (80%)

Female 22(79%) 35 (27%) 19 (73%) 20 (20%)

Age 47.7 ±

10.4

45.6 ± 16.3 0.701 49.0 ± 9.8 50.4 ± 12.7 0.583

The Maximum Diameter 4.4 ± 1.8 5.3 ± 2.8 0.265 4.3 ± 2.2 5.1 ± 2.8 0.298

Tumor Location < 0.001 1.000

Left 25 (89%) 55 (43%) 10 (38%) 38 (39%)

Right 3 (11%) 73 (57%) 16 (62%) 60 (61%)

Alcoholism or Smoking < 0.001 0.014

No 25 (89%) 51 (40%) 21 (81%) 53 (54%)

Yes 3 (11%) 77 (60%) 5 (19%) 45 (46%)

HEAML represents hepatic epithelioid angiomyolipoma. The values of age and the maximum diameter are shown as mean ± standard deviation. The clinical records of fourteen patients

in CT dataset and thirteen patients in MRI dataset are partly incomplete.

TABLE 2 | The performance of radiomics signatures constructed by three

machine learning algorithms and two datasets.

Type of

dataset

Algorithm Training cohort Test cohort

AUC 95% CI AUC 95% CI

CT RR 0.907 0.867–0.947 0.731 0.572–0.891

RF 0.996 0.991–1.000 0.879 0.752–1.000

ANN 0.861 0.802–0.919 0.763 0.629–0.896

MRI RR 0.997 0.994–1.000 0.736 0.523–0.949

RF 0.999 0.997–1.000 0.925 0.851–0.999

ANN 0.987 0.968–1.000 0.769 0.592–0.946

RF, RR, and ANN represent random forest, ridge regression, artificial neural network,

respectively. CT and MRI represent computed tomography and magnetic resonance

imaging, respectively. AUC refers to the area under the curve. CI refers to

confidence interval.

The Construction and Evaluation of the
Radiomics Signatures
As is shown in Table 2, the results of AUCs were listed based on
three different machine learning algorithms. Results showed that
the radiomics signatures based on the RF algorithm performed
the best with both CT and MRI datasets. The AUCs reached
0.996, 0.879 for the training group as well as the test group from
CT dataset, respectively, and were 0.999, 0.925 for the training
group, test group from MRI dataset, respectively. The ROCs of
the RF-based radiomics signatures are plotted in Figures 2A,B.
Furthermore, the calibration curves showed that the predicted
outcomes of RF-based radiomics signatures coordinated with
the real diagnostic results (Figure 2C). It showed that the
radiomics signatures constructed by RF were the optimal models.
In addition, the radiomics features weights obtained during
the construction of RF-based radiomics signatures are listed in
Supplementary Table 2.

The Construction and Evaluation of the
Fusion Models
The optimal combination of clinical characteristics and
radiomics signature was determined according to the AIC
values (Supplementary Table 3). The ROCs of two fusion
models are plotted in Figure 2D. The fusion models achieved
an average AUC of 0.966 with CT dataset and 0.971 with
MRI dataset. The ROCs of clinical models are plotted
(Supplementary Figure 2). According to the net benefit, the
fusion models were superior over the radiomics signatures and
clinical models at the overall level (Supplementary Figure 3).
Finally, two diagnostic nomograms were built (Figures 2E,F)
based on the fusion models.

DISCUSSION

CT/MRI radiomics signatures and the fusion models were
developed separately and validated the prediction efficiency
for HEAML diagnostic evaluation. The RF-based radiomics
signature performed well with AUCs of 0.996, 0.879 for the
training cohort, test cohort from CT dataset, respectively, and of
0.999, 0.925 for the training cohort, test cohort fromMRI dataset.
Furthermore, several clinical characteristics were included, and
two high-performance fusion models were put forward. The
fusion models outperformed the clinical models and radiomics
signatures in the diagnostic prediction. The fusion models
achieved an average AUC of 0.966 with CT dataset and 0.971 with
MRI dataset. Our results showed that the radiomics features can
potentially be used for the preoperative diagnosis of HEAML vs.
HCC and FNH.

High-order radiomics features often play an important role
as predictors in radiomics model studies (26–28). In a previous
study, high-order radiomics features with deep learning methods
were applied to the differential diagnosis of fatty liver diseases
and liver tumors (14). Moreover, another study proposed a
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FIGURE 2 | The performance of the RF-based radiomics signatures and fusion models integrating the radiomics signatures and clinical characteristics. (A,B) The

ROCs of the two RF-based radiomics signatures with CT and MRI datasets, respectively. (C) The calibration curves revealing the performance of the proposed

radiomics signatures. (D) The overall ROCs of the fusion models. (E,F) The diagnostic nomograms based on the fusion models.

high-order feature-based radiomics model to differentiate liver
masses from HCCs (16). The effective classification of HEAML
and non-HEAML liver tumors demonstrated the quantitative

radiomics features played an irreplaceable role in our study.
Interestingly, part of these selected high-order features were
related to coarseness, correlation, busyness, sum average and
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variance of the medical images. Because it was just a preliminary
radiomics study, the biological information behind the selected
features still needs to be further explored.

Age and sex were important clinical factors in our fusion
models for diagnostic evaluation of HEAML vs. FNH and HCC.
In a previous study, the average onset age of HEAML was ∼51
years (7), while the average age was 56 years in another study (12).
We believed this difference was due to the divergence of cases and
the small sample size. Our study enrolled 28 cases of HEAML
with an average age of 47.7 ± 10.4 years. Unlike HEAML, the
onset age of the HCC group is usually older. However, the
onset age of the FNH group was relatively younger. In addition,
our results showed that HEAML and FNH usually occurred in
females, and HCC tended to occur in males. Our results also
showed that the clinical factors could improve the predictive
performance of radiomics signature models. Therefore, age
and sex were integrated in our fusion models to evaluate the
possibility of HEAML.

Several studies have proven that CT-based and MRI-based
radiomics features both have the ability to discriminate different
tumor phenotypes (29–31). A study found that both CT-
based and MRI-based radiomics models can detect lymph node
metastases in cervical cancer (30). In addition, CT and MRI data
can be applied to the preoperative evaluation of pancreatic cancer
with excellent diagnostic efficiency (29). Our study found that the
radiomics signatures and fusion models based on two different
types of images were both highly efficient on the post-operative
evaluation of HEAML. Moreover, the efficiency of radiomics
signature and fusion model based on MRI images was slightly
higher than the models based on CT images. We believe that the
prediction models based multimodal imaging data will facilitate
clinical use of individual diagnosis and treatment.

The advantages of this study are listed below. Previous
research explored the morphological features of HEAML (4–12).
However, the use of quantitative features to differentiate HEAML
from other liver masses has not been reported using radiomics
method. In this study, we used two radiomics-based models
to distinguish HEAML from HCC and FNH with contrast-
enhanced CT and MRI data. Higher-order features reflecting
intratumor heterogeneity were used to build the radiomics
signature models. Additionally, the prediction models of two
types of imaging data were available for clinicians to use.
Evidently, our results showed that the models constructed based
on radiomics features were diagnostic tools for the classification
of blood-rich hepatic lesions.

Our retrospective study also has some limitations. First,
although we increased the number of patients over a long-time

span, the number of patients with HEAML was still relatively
small because HEAML is uncommon. Second, conventional
imaging features were not included because this research focused
on the efficiency of quantifying imaging features in the diagnostic
evaluation of HEAML. In our follow-up work, conventional
imaging features will be incorporated into the models to improve
the efficiency of diagnosis. Third, 2D ROI data were used for
model construction, which might be a disadvantage because 3D
ROI data include more information about tumor heterogeneity.
Later, different types of data (2D/3D) and different separation
methods (manual/semiautomatic/fully automatic segmentation)
will be considered in the next stage of our radiomics research.

In conclusion, this study proposed two CT/MRI-based
radiomics models for the differential diagnosis of HEAML. The
developed nomograms can be used for non-invasive preoperative
evaluation of liver tumors, which will be helpful for the individual
diagnosis and treatment of HEAML.
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Purpose: To assess the performance of deep neural network (DNN) and machine
learning based radiomics on 3D computed tomography (CT) and clinical characteristics
to predict benign or malignant sacral tumors.

Materials and methods: This single-center retrospective analysis included 459 patients
with pathologically proven sacral tumors. After semi-automatic segmentation, 1,316
hand-crafted radiomics features of each patient were extracted. All models were built
on training set (321 patients) and tested on validation set (138 patients). A DNNmodel and
four machine learning classifiers (logistic regression [LR], random forest [RF], support
vector machine [SVM] and k-nearest neighbor [KNN]) based on CT features and clinical
characteristics were built, respectively. The area under the receiver operating
characteristic curve (AUC) and accuracy (ACC) were used to evaluate different models.

Results: In total, 459 patients (255 males, 204 females; mean age of 42.1 ± 17.8 years,
range 4–82 years) were enrolled in this study, including 206 cases of benign tumor and
253 cases of malignant tumor. The sex, age and tumor size had significant differences
between the benign tumors and malignant tumors (c2sex = 10.854, Zage = −6.616, Zsize =
2.843, P < 0.05). The radscore, sex, and age were important indicators for differentiating
benign and malignant sacral tumors (odds ratio [OR]1 = 2.492, OR2 = 2.236, OR3 =
1.037, P < 0.01). Among the four clinical-radiomics models (RMs), clinical-LR had the best
performance in the validation set (AUC = 0.84, ACC = 0.81). The clinical-DNN model also
achieved a high performance (an AUC of 0.83 and an ACC of 0.76 in the validation set) in
identifying benign and malignant sacral tumors.

Conclusions: Both the clinical-LR and clinical-DNN models would have a high impact on
assisting radiologists in their clinical diagnosis of sacral tumors.
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INTRODUCTION

Although sacral tumors are rare, all components of sacrum can
give rise to benign or malignant tumors (1, 2). Given the
prominent hematopoietic function of the sacrum, it is one of
the most common sites for bone metastatic tumors (3). Primary
malignant bone tumors of the sacrum include chordoma,
myeloma, lymphoma, chondrosarcoma, osteosarcoma, and
Ewing’s sarcoma, teratoma, etc. Chordoma is the most
common primary malignant tumors of the sacrum, accounting
for about 40% of all primary tumors (4, 5). Benign tumors mainly
include giant cell tumors (GCTs), schwannoma, neurofibroma,
aneurysmal bone cysts, bone cyst, cavernous hemangioma,
solitary fibroma, osteoid osteoma, and osteoblastoma, etc.
Among them, GCTs are the most common, accounting for
about 13% (4).

Sacral tumors are often difficult to diagnose due to
overlapping clinical symptoms, diverse pathologic findings, and
complex imaging features (6). Besides, the treatment of sacral
tumors is often a challenging process and varies in approach. For
all primary malignant sacral tumors and benign lesions involving
lower segments when preservation of both S3 roots is possible,
wide resection should be selected. Serial embolization may be
worthwhile for benign sacral tumors that extend above S3 (7).
Accurate preoperative identification of benign or malignant
sacral tumors is essential for individualized treatment. Since
sacral tumors are rare and similar on conventional imaging, a
noninvasive and highly accurate preoperative diagnostic tool is
needed for radiologists.

Machine learning-based tools have developed rapidly in
medical imaging in recent years, especially in oncology.
Various machine learning algorithms have been applied to
create decision models that aid in clinical diagnosis and
treatment (8, 9). Few recent studies have used radiomics
analysis to identify sacral tumors with a relatively small sample
size (1, 5, 10). Yin et al. (1) compared three different feature
selection methods and three machine learning classifiers to
identify primary sacral chordoma and GCT based on computed
tomography (CT) features. Their study demonstrated that the
least absolute shrinkage and selection operator (LASSO) +
generalized linear models perform best. Deep neural network
(DNN), as a deep architecture, has shown excellent performance
in classification tasks and is increasingly being used in various
areas of cancer research (11, 12). Early studies on the application
of deep learning to the detection or classification of lesions have
shown that it performs better than traditional techniques and
even better than radiologists on some tasks (13–18). Ren et al.
(19) proposed a novel manifold regularized classification DNN to
enhance CT image-based lung nodule classification. Feng et al.
(20) developed an end-to-end DNN model that can achieve
promising performance in breast cancer cell nuclei classification.
Abbreviations: GCT, Giant cell tumors; CT, Computed tomography; DNN, Deep
neural network; LASSO, Least absolute shrinkage and selection operator; LR,
Logistic regression; RF, Random forest; SVM, Support vector machine; KNN, k-
nearest neighbor; ICC, intra- and interclass correlation coefficients; Radscore,
Radiomics score; mRMR, minimum redundancy maximum relevance; AUC, Area
under the receiver operating characteristic curve; ACC, Accuracy.

Frontiers in Oncology | www.frontiersin.org 2208
Considering the fact that deep learning requires a larger sample
size than radiomics, we were interested to find out how these
machine and deep learning algorithms performed to identify
benign and malignant sacral tumors based on our relatively
large sample size.

Therefore, the aim of our study was to determine the
performance of DNN and four machine learning classifiers
(logistic regression [LR], random forest [RF], support vector
machine [SVM] and k-nearest neighbor [KNN]) based on CT
features and clinical characteristics to predict benign or
malignant sacral tumors.
MATERIALS AND METHODS

Patients and Data Acquisition
This single center retrospective study was approved by our local
ethics committee and waived written informed consent. A total
of 505 patients with pathologically confirmed sacral tumors in
our institution from January 2007 to December 2019 were
retrospectively analyzed. All patients had a single sacral tumor
that was detected on CT within 1 month before the initial
surgery. Patients had sacral tumors without preoperative CT
images (n = 41), or with obvious artifacts (n = 5) were excluded.
Finally, a total of 459 patients with sacral tumor were included in
the study. Sex, age and maximal tumor size of patients were
also analyzed.

All CT images were acquired on each patient using multi-
detector row CT systems (Philips iCT 256, Philips Medical System;
GE Lightspeed VCT 64, GE Medical System). The acquisition
parameters were as follows: 120 kV, 685 mAs, slice thickness =
5 mm, matrix = 512 × 512 mm, field of view = 350 × 350 mm. The
CT images were reconstructed with a standard kernel.

Tumor Segmentation
MITK software version 2018.04.2 (www.mitk.org) was used for
the semi-automatic segmentation of all tumors (21). First, we
manually delineated the edge of the lesion at the axial, sagittal,
and coronal sites, respectively. Then, a three-dimensional lesion
was automatically formed and manually corrected by a
musculoskeletal radiologist with 5 years of experience and a
senior musculoskeletal radiologist with 20 years of experience.

Feature Extraction and Selection
In total, 1,316 radiomics features of each patient were extracted
from the CT images using the Artificial Intelligence Kit software
version 3.3.0 (GE Healthcare, China) based on the open-source
Pyradiomics python package, which including 18 first-order
histogram features, 24 gray-level co-occurrence matrix features,
14 shape features, 14 gray-level dependence matrix features, 16
gray-level size-zone matrix features, 16 gray-level run-length
matrix features, 744 wavelet features, 5 neighboring gray-tone
difference matrix features, 186 Laplacian of Gaussian
(LoGsigma=2.0/3.0) features, and 279 local binary pattern features.

We preprocessed the data and normalized the extracted
features. When the data value exceeded the range of mean
October 2020 | Volume 10 | Article 564725
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value and standard deviation, the median of specific variance
vector was used to replace the outliers. In addition, we
standardized the data in a specific interval. The consistency of
features from different machines was evaluated by using intra-
and interclass correlation coefficients (ICC). An ICC greater than
0.75 was considered as good agreement.

To reduce overfitting or selection bias in our radiomics
model, we used minimum redundancy maximum relevance
(mRMR) and LASSO to select the features. At first, mRMR
was performed to eliminate redundant and irrelevant features,
and 20 features were retained. Then, LASSO was conducted to
choose the optimized subset of features. After the number of
features was determined, the most predictive radiomics features
were chosen to construct the final model.

Model Building and Validation
First, we randomly divided the patients into the training (n =
321) and validation (n = 138) sets by a ratio of 7:3. Then, we built
four different radiomics models (RMs) by using LR, RF, SVM,
and KNN. Finally, we also built a DNN model based on selected
features with a hidden layer number of 3. The number of hidden
layer nodes in each layer is 4, 3, and 2, respectively.

Clinical features were compared via univariate analysis, and
variables with P value < 0.05 were included in the clinical model.
When combined RMs and DNN with clinical data, we also
constructed the clinical-RMs and clinical-DNN model. Models
were trained with the training set by using the repeated 10-fold
cross-validation method, and estimation performance was
evaluated with the validation set.

The performance of different models was assessed using the
area under the receiver operating characteristic curve (AUC).
The accuracy (ACC), sensitivity, and specificity values were also
reported for both the RMs and DNN model. Comparisons
between AUCs were made by using DeLong test. The
calibration curves and Hosmer–Lemeshow test were used to
investigate the performance of the nomogram. The clinical
usefulness of the nomogram was evaluated using decision
curves analysis. Figure 1 showed the workflow of this study.

Statistical Analysis
Statistical analysis was performed on R software (R Core Team,
Vienna, Austria) version 3.4.3. Mann-Whitney U test was
performed to compare continuous variables, while chi-squared
test was used for classify variables between groups. All statistical
tests were two-sided, and a P value less than 0.05 was considered
statistically significant.
RESULTS

Patient Characteristics
A total of 459 patients (255 males, 204 females; mean age of
42.1 ± 17.8 years, range 4–82 years) were included in this study
(Table 1). We found significant statistical differences in terms of
sex, age and tumor size of patients with benign and malignant
Frontiers in Oncology | www.frontiersin.org 3209
tumors (P < 0.01). There was a significant difference in the sex
ratio between the two groups (c2 = 10.854, P = 0.001), in which
the proportion of male patients with malignant tumors was
significantly higher than that of female patients. The median
age of benign tumor patients (38.0, in the range of 29.0–49.1) was
significantly lower than that of the malignant tumor patients
(53.0, 37.0–63.0) (Z = −6.616, P < 0.01). In addition, the size of
the benign tumor was significantly larger than that of the
malignant tumor (Z = 2.843, P < 0.01). Multivariable LR
analyses showed that radscore, sex, and age (odds ratio [OR]
1 = 2.492, OR2 = 2.236, OR3 = 1.037, P < 0.01) were important
predictors of benign or malignant sacral tumors (Table 2).

No significant statistical difference was observed between the
training and validation sets in terms of age, sex, and tumor
location (P > 0.05). The 206 benign tumors were composed of 95
GCTs, 47 schwannomas, 44 neurofibromas, 6 solitary fibromas, 3
ependymomas, 3 hemangiomas, 3 chondroblastomas, 3
aneurysmal bone cysts, 1 bone cyst, and 1 paraganglioma. The
253 malignant tumors included 71 metastatic tumors, 84
chordomas, 16 osteosarcomas, 20 chondrosarcomas, 28
Ewing’s sarcomas, 15 multiple myelomas, 4 malignant
teratomas, 5 lymphomas, 5 liposarcomas, 2 undifferentiated
sarcomas, 1 synovial sarcoma, 1 epithelioid sarcoma, and 1
malignant granulosa cell tumor, respectively.

Performance of Different Models
The reproducibility of radiomics features of different machines
was satisfactory (ICC, ranged from 0.76 to 0.91).

Among the four RMs, RF had the best performance
(AUC = 1, ACC = 0.98), followed by KNN (AUC = 0.90,
ACC = 0.83), SVM (AUC = 0.85, ACC = 0.80) and LR (AUC =
0.80, ACC = 0.75) in the training set (Figure 2, Table 3).
When combined with clinical features, a similar result was
found; clinical-RF performed best, with an AUC value of 1 and
an ACC value of 0.99.

In validating set, the performance of SVM (AUC = 0.83,
ACC = 0.75) was the best among the four RMs, followed by LR
(AUC = 0.80, ACC = 0.69), RF (AUC = 0.78, ACC = 0.72), and
KNN (AUC = 0.70, ACC = 0.64). When combined with clinical
features, however, clinical-LR had the best performance, with
an AUC of 0.84 and an ACC of 0.81. Clinical-KNN performed
the worst (AUC = 0.78, ACC = 0.72). Furthermore, clinical-
RMs (AUC, ranged from 0.78 to 0.84; ACC, ranged from 0.72 to
0.81) performed better than individual RMs (AUC, ranged
from 0.70 to 0.83; ACC, ranged from 0.64 to 0.75) and
clinical model (AUC = 0.64, ACC = 0.62) in the validation
set. Figure 3 showed LR-based clinical-radiomics nomogram
and decision curves.

The DNN model achieved an AUC of 0.75 and an ACC of
0.72 in the validation set. When combined with clinical data, the
clinical-DNN model based on CT features exhibited an AUC of
0.84 and an ACC of 0.87 in the training set, and an AUC of 0.83
and an ACC of 0.76 in the validation set. In addition, no
significant difference was found in terms of AUCs between the
clinical-LR model and clinical-DNN model in the training (P =
0.889) and validation sets (P = 0.762).
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DISCUSSION

In this study, we found that radscore, sex, and age were
important indicators for differentiating benign and malignant
sacral tumors. Among the four clinical-RMs, clinical-LR had the
best performance in the validation set. The best-performing
clinical-LR model exhibited an AUC of 0.84 and an ACC of
0.81 in the validation set. In addition, the clinical-DNN model
also had a high performance in identifying benign and malignant
sacral tumors. Our clinical-DNN and clinical-RMs would have a
high impact on assisting radiologists in their clinical diagnosis of
sacral tumors.

Patients with sacral tumor share many similar clinical
symptoms and disease course, which increases the difficulty of
preoperative diagnosis. In this study, we found that sex, age and
tumor size were important indicators for differentiating benign
and malignant sacral tumors. The size of the benign tumor was
Frontiers in Oncology | www.frontiersin.org 4210
significantly larger than that of the malignant tumor. What’s
more, the mean age of patients with sacral malignant tumors was
higher than that of patients with benign tumors. The possible
reason is that the largest proportion of patients with sacral
malignant tumors are metastatic tumors and chordomas,
which are most common in patients over 40 years old (2, 22).
Furthermore, the proportion of males in patients with malignant
tumors was higher than that in patients with benign tumors, with
a significant statistical difference. The incidence of chordoma is
higher in men than in women, which is consistent with previous
study (10).

Previous studies have compared the performance of deep
learning and radiomics in differentiating benign and malignant
breast lesions (13, 15), predicting lymph node metastases of
breast cancer (14), identifying of spinal metastases originated
from the lung and other cancers (16), predicting of survival of
patients with high-grade gliomas (17), and predicting the
FIGURE 1 | The workflow of this study.
October 2020 | Volume 10 | Article 564725
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A B

D E F

C

FIGURE 2 | The ROC curve of different models. (A, B), the ROC of LR-based clinical-RM in the training set (A) and validation set (B). The blue line indicates
radiomics model, the green line represents clinical model, and the red line is the LR-based clinical-RM; (C–F), the ROC of RF-based clinical-RM (C), SVM-based
clinical-RM (D), KNN-based clinical-RM (E), and clinical DNN model (F). The dotted blue line represents the RM (C–E) or DNN (F) model in the training set, and the
solid blue line represents the RM (C–E) or DNN (F) model in the validation set. The dotted red line represents the clinical-RM (C–E) or clinical-DNN (F) model in the
training set, and the solid blue line represents the clinical-RM (C–E) or clinical-DNN (F) model in the validation set.
TABLE 1 | Clinical characteristic of patients.

Variable Benign tumor Malignant tumor c2/Z value P value

Sex
Female 109(52.91%) 95(37.55%) 10.854 0.001
Male 97(47.09%) 158(62.45%)

Age (years) 38.00(29.00, 49.05) 53.00(37.00, 63.00) −6.616 <0.001
Tumor size (cm) 8.60(6.70, 11.01) 7.90(5.90, 10.00) 2.843 0.004
Tumor type – –

Metastatic tumor – 71(28.06%)
Chordoma – 84(33.20%)
GCT 95(46.12%) –

Osteosarcoma – 16(6.32%)
Chondrosarcoma – 20(7.91%)
Schwannoma 47(22.82%) –

Neurofibroma 44(21.36%) –

Ewing’s sarcoma – 28(11.07%)
Multiple myeloma – 15(5.93%)
Other types 20(9.70%) a 19(7.51%) b
Frontiers in Oncology | www.frontiersin.o
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GCT, giant cell tumor. a, the other types included 6 solitary fibromas, 3 ependymomas, 3 hemangiomas, 3 chondroblastomas, 3 aneurysmal bone cysts, 1 bone cyst, and 1
paraganglioma. b, the other types included 4 malignant teratomas, 5 lymphomas, 5 liposarcomas, 2 undifferentiated sarcomas, 1 synovial sarcoma, 1 epithelioid sarcoma, and 1 malignant
granulosa cell tumor.
TABLE 2 | Multivariable logistic regression analyses.

Intercept and variable CT

Coefficient OR (95% CI) P

Intercept −2.1372 – 0.0001
Radscore 0.9130 2.492 (1.937,3.206) <0.0001
sex 0.8048 2.236 (1.3,3.848) 0.0036
age 0.0366 1.037 (1.02,1.054) <0.0001
size 0.0122 1.012 (0.935,1.096) 0.7639
OR, odds ratio; CI, confidence interval.
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invasiveness risk of Stage-I lung adenocarcinomas (18). Dong et al.
(23) recently compared the DNN model, LR and SVM to predict
lymph node status in operable cervical cancer, and they also found
that DNN performed best. Bibault et al. (24) found that their DNN
model was 80% accurate in predicting complete response after neo-
adjuvant chemoradiotherapy in locally advanced rectal cancer,
which was better than LR and SVM models. Due to the rarity of
primary sacral tumors, only a few previous studies have identified
sacral tumor types using machine learning methods (1, 5, 10). In
this study, we proposed a DNN model to identify benign and
malignant sacral tumors. DNN has multiple hidden layers, which
can extract features step by step, simplify problems and improve
efficiency (12, 25). Song et al. (26) compared three types of DNN for
classification of lung nodules on CT images. In this study, we
trained four clinical-RMs and one clinical-DNN model based on a
relatively large sample of data and found that clinical-LR performed
best in the validation set. Similarly, Lang et al. (16) found that the
accuracy of radiomics analysis and convolutional neural network
(CNN) was similar in the identification of spinal metastases
originated from the lung and other tumors. LR is one of the most
commonly used algorithms in radiomics analysis and has been
proved to be effective (27–30). Despite nomogram’s visualization, it
has limited power for future big data era. On the contrary, deep
learning is like a “black box”, its development trend is inevitable and
Frontiers in Oncology | www.frontiersin.org 6212
more conducive to the analysis of big data (23). In this study, we
found no significant difference in terms of AUCs between the
clinical-LR and clinical-DNN models. Therefore, we still have no
reason not to recommend the deep learning model. Our clinical-
DNN model can also provide a convenient and accurate tool for
radiologists to identify benign and malignant sacral tumors.

Our study has certain limitations. First, all images were collected
from one center over the past decade or so. And we excluded some
patients who did not have preoperative CT, which may lead to
selection bias. A larger sample data from multicenter is needed in
the further study to improve our models. Second, all images were
obtained on the same type of plain CT scan. In the future, we will
evaluate our models on more heterogeneous image data. Third, we
only compared several common machine learning algorithms with
DNN, andmore algorithms (e.g., CNN)may be added in the future.

In conclusion, both the clinical-LR and clinical-DNN models
could be used for assisting radiologists in their clinical diagnosis
of sacral tumors.
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FIGURE 3 | LR-based clinical-radiomics nomogram (A) and decision curves (B). (A) The final total points were calculated by summing the score of each point
represented for each feature. The nomogram showed that radscore was the most important factor. (B) The green line represents the clinical model. The red line
represents the clinical-radiomics model. Decision curves showed that clinical-radiomics model achieved more clinical utility than clinical model.
TABLE 3 | Performance of different models in training set and validation set.

AUC ACC Sensitivity Specificity PPV NPV

LR 0.80(0.80) 0.75(0.69) 0.81(0.76) 0.67(0.61) 0.76(0.68) 0.73(0.71)
RF 1(0.78) 0.98(0.72) 0.99(0.76) 0.95(0.66) 0.96(0.73) 0.99(0.70)
SVM 0.85(0.83) 0.80(0.75) 0.85(0.75) 0.74(0.76) 0.80(0.79) 0.80(0.71)
KNN 0.90(0.70) 0.83(0.64) 0.88(0.62) 0.76(0.66) 0.82(0.69) 0.83(0.59)
DNN 0.89(0.75) 0.88(0.72) 0.90(0.70) 0.84(0.74) 0.87(0.79) 0.88(0.64)
Clinics 0.71(0.64) 0.67(0.62) 0.76(0.66) 0.59(0.59) 0.61(0.54) 0.74 (0.70)
Clinical-LR 0.84(0.84) 0.75(0.81) 0.88(0.85) 0.65(0.78) 0.64(0.77) 0.88(0.85)
Clinical-RF 1(0.83) 0.99(0.77) 0.99(0.82) 0.99(0.71) 0.99(0.78) 0.99(0.76)
Clinical-SVM 0.85(0.84) 0.79(0.76) 0.83(0.76) 0.74(0.76) 0.80(0.80) 0.78(0.72)
Clinical-KNN 0.87(0.78) 0.78(0.72) 0.74(0.68) 0.83(0.76) 0.85(0.78) 0.72(0.66)
Clinical-DNN 0.84(0.83) 0.87(0.76) 0.91(0.80) 0.82(0.73) 0.85(0.72) 0.89(0.81)
October
 2020 | Volume 10 | Arti
AUC, area under curve; ACC, accuracy; PPV, positive predictive value; NPV, negative predictive value. Training set, in front of the brackets. Validation set, in brackets.
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Purpose: This study aimed to establish and validate a radiomics nomogram based on
dynamic contrast-enhanced (DCE)-MRI for predicting axillary lymph node (ALN)
metastasis in breast cancer.

Method: This retrospective study included 296 patients with breast cancer who
underwent DCE-MRI examinations between July 2017 and June 2018. A total of 396
radiomics features were extracted from primary tumor. In addition, the least absolute
shrinkage and selection operator (LASSO) algorithm was used to select the features.
Radiomics signature and independent risk factors were incorporated to build a radiomics
nomogram model. Calibration and receiver operator characteristic (ROC) curves were
used to confirm the performance of the nomogram in the training and validation sets. The
clinical usefulness of the nomogram was evaluated by decision curve analysis (DCA).

Results: The radiomics signature consisted of three ALN-status-related features, and the
nomogrammodel included the radiomics signature and the MR-reported lymph node (LN)
status. The model showed good calibration and discrimination with areas under the ROC
curve (AUC) of 0.92 [95% confidence interval (CI), 0.87–0.97] in the training set and 0.90
(95% CI, 0.85–0.95) in the validation set. In the MR-reported LN-negative (cN0) subgroup,
the nomogram model also exhibited favorable discriminatory ability (AUC, 0.79; 95% CI,
0.70–0.87). DCA findings indicated that the nomogram model was clinically useful.

Conclusions: The MRI-based radiomics nomogram model could be used to
preoperatively predict the ALN metastasis of breast cancer.

Keywords: breast cancer, lymphatic metastasis, radiomics, nomogram, magnetic resonance imaging
INTRODUCTION

Breast cancer is a malignant tumor that endangers women’s health and quality of life. Axillary
lymph node (ALN) is the first station of breast lymphatic drainage, which collects approximately
75% of breast lymph. Thus, ALN is the most easily metastasized site of breast cancer. ALN status is
an important factor affecting the treatment of patients with breast cancer and is assess by the gold
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standards ALN dissection and sentinel lymph node (LN) biopsy.
However, ALN dissection is invasive and has many
complications, such as lymphedema, and sentinel LN biopsy is
also invasive (1). Therefore, a non-invasive prediction tool for
preoperative LN status is needed.

MRI has been widely used in breast examination because of
its good soft tissue contrast, high sensitivity, and high negative
predictive rate (2). Although this technique is superior to digital
mammography and ultrasonography, its efficacy in identifying
malignant nodes is unsatisfactory (2–4).

Radiomics can extract massive image features; transform
medical images into high-dimensional and exploitable data;
and use artificial intelligence to combine medical images,
genes, and huge clinical data to establish a model that supports
clinical decision-making and quantify tumor heterogeneity
(5–9). This method has good clinical prospects (9–11). The
combined analysis of multiple features including clinical ones
is the most promising approach, especially for the clinical
management of tumors (12–16). Furthermore, nomograms,
which allow the investigation of multiple features in parallel,
transform complex regression equation into visual graphs
(17–19).

This study aimed to develop and validate a radiomics
nomogram model based on dynamic contrast-enhanced
(DCE)-MRI and clinical risk factors to determine its potential
in predicting ALN metastasis in patients with breast cancer.
MATERIALS AND METHODS

Patients
This retrospective study was approved by the Institutional
Review Board. Inclusion criteria were as follows: (a) patients
with breast cancer confirmed by histopathological examination,
(b) available clinical information, and (c) surgery conducted after
MR scanning. Exclusion criteria were as follows: (a) patients who
underwent preoperative neoadjuvant chemotherapy or
radiotherapy, (b) patients who underwent biopsy prior to MR
scanning, and (c) patients with other tumors and (d) non-mass
lesions without delineate boundaries. The patients were divided
into two independent sets, namely, training (200 patients) and
validation sets (96 patients).

Clinical data were obtained through the medical record
systems. All images were reviewed by two radiologists with at
least 10 years of experience in imaging diagnosis, and the largest
diameter of the tumors, apparent diffusion coefficient (ADC)
value, enhanced features and the short diameter of the largest LN
were recorded. MRI-reported LN status refers to the imaging-
based diagnosed LN status according to the radiologist. T2WI
and DCE-MRI series were used for ALN diagnosis. A patient’s
LN status was classified as positive (cN+) if one or more ALNs
found on MR images met any one of the following MRI features:
1) visible ALN >10 mm in a short diameter, 2) ratio of the longest
to shortest axes < 1.6, 3) eccentric cortical thickening, and 4) loss
of fatty hilum. Those who did not met the above mentioned
criteria and met the above criteria but showed no difference in
Frontiers in Oncology | www.frontiersin.org 2216
terms of number, size, or shape compared with the contralateral
ALN, the LN status was assumed to be negative (cN0) (20–22).
LN was classified as positive when at least one of the four criteria
was satisfied. Agreement from MRI-reported LN-status analyzed
from two observers was compared using k statistic, in which 0 <
k ≤ 0.4 indicates poor agreement, 0.4 < k < 0.75 indicates good
agreement, and 0.75 ≤ k < 1 indicates excellent agreement. All
disagreements were resolved through consultation.

Pathological Evaluation
Pathology is the gold standard for LN metastasis. Radionuclide
and methylene blue were used as tracers to ensure that all
sentinel LNs were removed. The patients were injected with
radionuclide 2−3 h prior to surgery. After anesthetization,
methylene blue was injected into the patient’s breast, which
was then gently rubbed to allow the dye to further spread along
the lymph vessels. Radionuclide detector was used to identify
LNs labeled with nuclide during surgery. Stained LNs were also
searched along the blue-stained lymph-vessels from top to
bottom, inside to outside, and toward the axilla. All LN
specimens were fixed by 4% neutral formaldehyde, embedded
in paraffin, sectioned in 4-um thickness, sequentially sectioned,
and stained by hematoxylin and eosin stain. Finally, the
morphology of LN tissues was observed by two pathologists
under BX53 electron microscope, and the tumor cells were
confirmed as LN metastasis. If the pathological result of LN
biopsy was inconsistent with that of surgery, then the latter was
used as the standard.

Histopathological information, such as histological grade,
estrogen receptor, progesterone receptor, human epidermal
growth factor receptor type 2, and Ki-67, was obtained from
the medical record system. Threshold values were ≤ 1% for the
estrogen receptor and progesterone receptor levels and ≤ 20% for
Ki-67 (23).

MR Image Acquisition
Figure 1A presents the study flowchart. All images were
obtained on a 3.0T MRI system (GE Discovery 750W) using
an eight-channel breast-dedicated coil in prone position. The
MRI sequences included axial T1-weighted imaging, axial T2-
weighted imaging, DCE-MRI, and sagittal contrast-
enhanced imaging.

The scanning parameters were as follows:① axial T1WI (TR =
460 ms, TE = 6.3 ms, slice thickness = 5 mm, slice spacing =
1 mm); ② axial fat suppression T2WI (TR = 5210 ms, TE = 84.7
ms, slice thickness = 5 mm, slice spacing = 1 mm); ③ axial DWI
(SE-EPI sequence, TR = 2496 ms, TE = 71.9 ms, slice thickness =
5 mm, slice spacing = 1 mm, B = 0/800 s/mm2); ④DCE scanning
was performed on T1 fat suppression. The contrast medium was
GD-DTPA, dose = 0.2 mmol/kg, TR = 5.7 ms, TE = 1.7 ms, slice
thickness = 2 mm, slice spacing = 0 mm, FOV = 36 cm × 36cm,
matrix = 288 × 320, phases = 8, and total time=6 min; ⑤ and
sagittal contrast-enhanced imaging was performed after DCE
(TR = 6.7 ms, TE = 1.7 ms, slice thickness = 2 mm, slice spacing =
0 mm, FOV = 28 cm × 28 cm, matrix = 200 × 256. Scan ranges
for breast MRI were as follows: in the prone position, the bilateral
October 2020 | Volume 10 | Article 541849
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breasts naturally hung over the center of the breast coil; in the
horizontal axis position, the bilateral breasts were located in the
center of the FOV, and the range included the entire bilateral
breasts and bilateral axillary regions; and in the sagittal position,
the positioning line was parallel to the long axis of the breast. All
DICOM data were exported from Picture Archiving and
Communication Systems.

Image Preprocessing
Image preprocessing was necessary prior to feature extraction.
This process consisted of three steps, namely, standardization of
the gray value of the region of interest (ROI), discretization of the
gray level, and image resampling (24–26).

Image Segmentation and Radiomics
Feature Extraction
Figure 1B presents the radiomics workflow. DCE-MRI (the peak
enhanced phase of the multiphase contrast-enhanced MRI
selected in accordance with time intensity curve) was selected
for radiomics analysis, and the primary tumor was manually
segmented using 3D-ROI by two trained radiologists with at least
10 years of experience in breast imaging and who were also
blinded to the LN status and pathologic results. Twenty-four
breast lesions were randomly selected to calculate the intra- and
inter-observer agreement of the feature extraction. First, the two
radiologists extracted the radiomics features. After 2 weeks,
reader 1 used the same method to extract the radiomics
features. Inter- and intra-correlation coefficients (ICCs) were
calculated to assess the reproducibility of the radiomics features,
and ICCs > 0.80 were considered as good agreement. The
remaining image segmentation was performed by reader 1.
Image segmentation and radiomics feature extraction were
performed on Artificial Intelligence Kit software (version 3.2.0;
GE Healthcare, Shanghai, China).

Feature Selection and Radiomics
Signature Building
The features with high repeatability (ICC > 0.80) were selected.
Feature selection was then performed using the LASSO logistic
Frontiers in Oncology | www.frontiersin.org 3217
regression method in the training set. This method is suitable for
high-dimensional data (27). Radiomics score reflecting the risk
of ALN metastasis was calculated for each patient by using a
linear combination of selected features weighted by their
respective coefficients. Receiver operator characteristic (ROC)
curves were used to assess the performance of the radiomics
signature in the two sets.

Construction of Radiomics Nomogram
Clinical factors included age, tumor size, tumor margin, and
MRI-reported LN status. Risk factors were determined by
univariate and multivariate logistic regressions. Collinearity
was assessed by variance inflation factor (VIF). Likelihood
ratio test with backward step-down selection was applied for
logistic regression. A nomogram was established in the training
set on the basis of multivariable logistic regression.

Assessment of Nomogram Performance
ROC curves were used to assess the predictive performance
of the radiomics nomogram in the training set, and calibration
curves were employed to evaluate the agreement between
the observed and predicted results. Good agreement
between the true state of ALN and the predicted probability
based on radiomics nomogram was achieved when the
calibration curves were close to the diagonal line. Hosmer–
Lemeshow test was used to determine the goodness of fit of the
radiomics nomogram.

Validation of Radiomics Nomogram
The radiomics nomogram was validated using the validation set
with the same formula in the training set. ROC and calibration
curves were used to assess the predictive performance of the
radiomics nomogram.

Clinical Use
The clinical usefulness of the nomogram was assessed using
decision curve analysis (DCA) in the validation set. The ROC
curve was used to calculate the area under the ROC curve
(AUC). However, ROC only considers the specificity and
A
B

FIGURE 1 | Study flowchart (A) and radiomics workflow (B).
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sensitivity of the method, and DCA determines the clinical
practicability of radiomics nomograms by quantifying the net
benefits under different threshold probabilities in the validation
set. The calculation formula is as follows:

net   benefit   treated =
TP
n

−
FP
n

Pt
1 − Pt

� �
,

where TP and FP are the true positive count and the false positive
count, respectively; and n is the number of subjects; and Pt is the
threshold probability.

Statistical Analysis
All statistical tests were conducted in R3.5.1. Chi-square or
Fisher’s exact test was used to compare the differences in
categorical variables, and a two-sample t test was applied to
compare the differences in age and tumor size. LASSO logistic
regression was used to select the most discriminating features
and build the radiomics signature via 10-fold cross validation
based on the minimum criteria. The radiomics signature was
calculated by combining the features weighted by their
coefficients. Clinical factors were used to construct the clinical
model by using multivariable stepwise-backward logistic
regression, and the clinical nomogram was provided. VIFs were
accessed to exclude multi-collinearity, and the combined
nomogram was built similarly to clinics, except for the
combination of clinical factors and radiomics signature. ROC
analysis, calibration curve, and DCA analysis were employed to
evaluate the performance of the nomograms. DeLong’s test was
Frontiers in Oncology | www.frontiersin.org 4218
used to compare the differences of ROC curves. In addition,
“glmnet,” “glm,” “rms,” “pROC,” “Calibration Curves,” and
“Decision Curve” packages were used. P < 0.05 indicates
statistically significant difference.
RESULTS

Patient Characteristics
Table 1 exhibits the patients’ characteristics in the training and
validation sets. The kappa value obtained in agreement of
observation is 0.85, indicating a good agreement between two
observers in MRI-reported LN status classification. Molecular
subtype was detected in both groups, which showed no
significant differences between the metastatic and non-
metastatic groups in terms of age, tumor size, ADC value,
enhanced features and histological grade (p > 0.05). The
proportions of ALN metastasis in the training and validation
sets were 47.1% and 47.3%, respectively. These results justified
their use as training and validation sets.

Feature Selection, Radiomics Signature
Building, and Validation
A total of 396 radiomics features were extracted from each MR
image and divided into six groups, namely, histogram, form
factor matrix, gray-level co-occurrence matrix (GLCM), gray-
level size zone matrix (GLSZM), Haralick matrix, and run length
matrix (RLM). The ICCs ranged from 0.863 to 0.982 and from
TABLE 1 | Patient characteristics in the training and validation sets.

Training set (N = 200) p value Validation set (N = 96) p value

pN+ pN0 pN+ pN0

Age, years (SD) 49.10 ± 10.1 48.10 ± 11.0 0.642 49.50 ± 9.10 49.51 ± 11.5 0.752
Tumor size, cm (SD) 2.58 ± 0.9 2.48 ± 1.3 0.576 2.51 ± 1.3 2.51 ± 1.2 0.677
ADC value (SD) 0.87 ± 0.2 0.84 ± 0.2 0.196 0.88 ± 0.2 0.85 ± 0.2 0.296
Enhancement
Even 7 6 0.101 4 3 0.123
Uneven 67 69 37 28
Ringlike 26 25 13 11
TIC 0.501 0.396
Type I 6 5 4 3
Type II 41 39 20 18
Type III 53 57 30 21
Histological grade
I 10 8 0.152 6 4 0.153
II 40 46 20 22
III 50 46 28 16
Molecular subtype 0.156 0.149
Luminal A 70 76 42 34
Luminal B 8 10 6 2
HER2 over-expression 16 10 5 4
Basal like 6 4 1 2
Ki-67 status 0.316 0.322
Positive 82 79 44 34
Negative 18 21 10 8
October 2020 | Volume 10 | Article
pN+, pathologically confirmed lymph node positive; pN0, pathologically confirmed lymph node negative; ADC, apparent diffusion coefficient; TIC, time signal intensity curve.
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0.832 to 0.935 in the intra- and inter-observers, respectively. Three
LN state-related features with non-zero coefficients, namely,
GLCMEnergy_AllDirection_offset7, LargeAreaEmphasis, and
Correlation_AllDirection_offset7_SD were selected from the
LASSO model in the training set (Figures 2A, B). The
calculation formula is as follows:

Rad − score   =  � 0:292

+ −0:501� Correlation _AllDirection _ offset7 _ SDð Þ
+   −0:0551�  GLCMEnergy _AllDirection _ offset7ð Þ

+ −0:0821�   LargeAreaEmphasisð Þ
Significant difference was observed in the radiomics scores

between LN-negative and LN-positive patients in the two sets
(P < 0.01). The radiomics signature yielded AUCs of 0.78 (95%
CI, 0.73–0.83) in the training set and 0.79 (95% CI, 0.73–0.85) in
the validation set (Figures 2C, D).
Frontiers in Oncology | www.frontiersin.org 5219
Development and Validation of the
Radiomics Nomogram Model
The radiomics signature and the MRI-reported LN status were
identified as risk factors of LN metastasis in breast cancer (Table
2). The MRI-reported LN status was a qualitative feature that
could be easily obtained. No collinearity was observed because
the VIF of the predictor ranged from 1.10 to 1.25. The
nomogram model included the radiomics signature and the
MRI-reported LN status (Figure 3A). In the calibration curve
in Figures 3B, C, the gray line represents perfect prediction, and
the dotted line represents the calibration curve of the radiomics
nomogram. The calibration curve and the nonsignificant
Hosmer–Lemeshow test showed good agreement between the
true state of ALN and the predicted probability based on
radiomics (P = 0.663). The radiomics nomogram yielded
AUCs of 0.92 (95% CI, 0.87–0.97) in the training set and 0.90
(95% CI, 0.85–0.95) in the validation set (Figures 2C, D).
Significant difference was observed between the differences of
A B

C D

FIGURE 2 | LASSO algorithm for radiomics feature selection and the predictive performance of the radiomics. (A) Mean square error path using 10-fold cross validation;
(B) LASSO coefficient profiles of the radiomics features; and (C, D) ROC curves of the radiomics signature and nomogram in the training and validation sets.
October 2020 | Volume 10 | Article 541849
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ROC curves in the two sets (P < 0.001). The nomogram model
yielded an AUC of 0.79 (95% CI, 0.70–0.87) in the cN0 subgroup
(Figure 4). The results of DCA are shown in Figure 5. When the
threshold probability ranged from 0.1 to 1.0 in the validation set,
the radiomics nomogram to predict LNmetastasis provides more
net benefit than the “treat all” or “treat none” scheme. Therefore,
our nomogram excellently performed in discrimination,
calibration, and clinical use.
DISCUSSION

LN metastasis is a negative prognostic factor of breast cancer (28,
29). Thus, non-invasive LN assessment tools are promising. In this
study, a radiomics nomogrammodel based onMRI was developed
to predict the pretreatment of ALNmetastasis in breast cancer and
was validated using an independent dataset. This nomogram
Frontiers in Oncology | www.frontiersin.org 6220
model was composed of radiomics signature and MR-reported
LN status with AUCs of 0.92 in the training set and 0.90 in the
validation set. LN metastasis has been predicted on the basis of
clinical information or radiomics features only (2, 17, 30, 31). This
research combined clinical information with radiomics features
and used visualization nomogram to predict LN metastasis.

LN status has a certain diagnostic performance in
differentiating ALN metastases (22). In this study, the MRI-
reported LN status remarkably differs between the metastatic and
non-metastatic groups. Moreover, univariate and multivariate
logistic regression models have identified the MRI-reported LN
status as an independent predictor of ALN metastasis. Therefore,
this status was used as a predictor of the model. Previous study
(32) used dynamic gadopentetate dimeglumine (Gd) enhanced
MRI to evaluate axilla status in patients with breast cancer, and
used ROC curves to compare enhancement indices and nodal
area with histopathology of excised nodes, with AUCs from 0.77
A

B C

FIGURE 3 | Radiomics nomogram with radiomics signature and LN status (A) and calibration curves of the radiomics nomogram in the training (B) and validation
(C) sets. Calibration curves indicate that the predicted probability has a good agreement with the actual state of axillary lymph node.
TABLE 2 | Risk factors for ALN metastasis in breast cancer.

Variable Univariate logistic regression Multivariate logistic regression

OR (95% CI) p OR (95% CI) p

Radiomics score 2.711 (1.778–4.480) <0.001* 2.757 (1.856–4.389) <0.001*
Age, years 0.987 (0.953–1.021) 0.545 NA NA
Tumor size, cm 1.113 (0.688–1.424) 0.927 NA NA
Tumor margin 0.848 (0.357–1.788) 0.699 NA NA
LN status 2.286 (1.262–4.265) 0.015* 2.110 (1.135–3.897) 0.016*
October 2020 | Volume 10 | Artic
OR, odds ratio; NA, not available. These variables were eliminated in the multivariate logistic regression model in the training set; thus, the OR and p values were not available. *p < 0.05.
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to 0.88. Our results showed that compared with conventional
MRI, radiomics nomogram had higher AUC of 0.90.

The application of radiomics nomogram provides a new
approach for establishing a LN metastasis prediction model by
using multiple characteristics. We previously used CESM-based
radiomics signature and CESM-reported LN status to construct a
radiomics nomogram to predict axillary LN metastasis, yielding an
Frontiers in Oncology | www.frontiersin.org 7221
AUC of 0.79 in external validation cohort (33). Qiu et al. used 21
texture features derived from ultrasound imaging and ultrasound-
reported LN status to predict LNmetastasis in breast cancers, with an
AUC of 0.759 in validation set (34). In our present study, the
proposed MRI-based radiomics nomogram showed better
performance than CESM-based and ultrasound-based radiomics
nomogram, which may be used as an individualized model to
visualize the risk of ALN metastasis by doctors and patients, and
may meet the requirements for the development of precision
medicine (35).

Tan et al. (36) not only used radiomics signature to predict LN
status but also incorporated molecular subtype and PR status in
nomogram. Other previous studies also used clinic-pathological
characteristics to establish models in predicting LN metastasis of
breast cancer patients, such as lymphovascular invasion and serum
miRNA expression (37, 38), which might have a limited clinical
implication, because characteristics such as molecular subtype, PR
status, lymphvascular invasion, and miRNA was usually obtained
by biopsy or other examinations, which to some extent limited the
clinical application of these prediction models. However, the
proposed radiomics nomogram only incorporated the MR-
reported LN status and radiomics signature, which could be
obtained by a non-invasive way before surgery, with an
acceptable performance in LN metastasis predicting.

The discrimination and calibration performance of radiomics
nomograms does not represent their clinical usefulness. Thus,
whether this technique could improve patient outcome was
assessed using DCA. Within the threshold probability range of
0.1–1.0, the radiomics nomogram provided more net benefits
than the “treat all” or “treat none” scheme.

The proposed nomogram model showed good discriminating
performance in cN0 patients who are difficult to diagnose by
using traditional methods.

This study offered other notable advantages. Prior to feature
extraction, some preprocessing techniques were applied to
improve feature discrimination, and ICCs were used to
evaluate the reproducibility of the radiomics feature extraction.
These methods improved the reliability of this study.

This study has several limitations. First, the patients were enrolled
from a single institution with a limited number. Despite the
promising prospect, a large sample size and a multicenter study are
warranted to prove the robustness of the proposed nomogram.
Second, image segmentation was conducted manually. Although
ICCs exhibited good reproducibility in feature extraction, the
automated method for image segmentation provides stability (39,
40). Third, the methodology was limited by its statistical robustness,
which could be overcome only through the true-blinded testing of the
hypothesis. Future studies should adopt a double-blinded prospective
design. Fourth, this study was performed retrospectively. In the
future, the authors aim to collaborate with surgical colleagues and
develop a prospective study to validate the proposed nomogram.
Finally, the radiomics features were not extracted from the LNs.

In summary, the radiomics nomogram combined with MRI-
based radiomics and clinical risk factors exhibited good predictive
performance, calibration, and clinical utility in identifying ALN
metastasis in patients with breast cancer. MRI-based radiomics
FIGURE 4 | ROC curves of the nomogram in the cN0 subgroup in the
validation set.
FIGURE 5 | DCA of the radiomics nomogram. The y axis represents the net
benefits, while the x axis represents the threshold probability. The red line
represents the radiomics nomogram. The blue line represents the assumption
that all patients were included in the lymph node metastasis group. The black
line represents the assumption that all patients were included in the non-
lymph node metastasis group.
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could serve as a potential tool to help clinicians generate optimal
clinical decisions and avoid overtreatment for patients with
breast cancer.
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Objective: This study aimed to explore the potential of magnetic resonance imaging (MRI)
radiomics-based machine learning to improve assessment and diagnosis of contralateral
Breast Imaging Reporting and Data System (BI-RADS) category 4 lesions in women with
primary breast cancer.

Materials and Methods: A total of 178 contralateral BI-RADS 4 lesions (97 malignant and
81 benign) collected from 178 breast cancer patients were involved in our retrospective
dataset. T1 + C and T2 weighted images were used for radiomics analysis. These lesions
were randomly assigned to the training (n = 124) dataset and an independent testing
dataset (n = 54). A three-dimensional semi-automatic segmentation method was performed
to segment lesions depicted on T2 and T1 + C images, 1,046 radiomic features were
extracted from each segmented region, and a least absolute shrinkage and operator feature
selection method reduced feature dimensionality. Three support vector machine (SVM)
classifiers were trained to build classification models based on the T2, T1 + C, and fusion
image features, respectively. The diagnostic performance of each model was evaluated and
tested using the independent testing dataset. The area under the receiver operating
characteristic curve (AUC) was used as a performance metric.

Results: The T1+C image feature-based model and T2 image feature-based model
yielded AUCs of 0.71 ± 0.07 and 0.69 ± 0.07 respectively, and the difference between
them was not significant (P > 0.05). After fusing T1 + C and T2 imaging features, the
proposed model’s AUC significantly improved to 0.77 ± 0.06 (P < 0.001). The fusion
model yielded an accuracy of 74.1%, which was higher than that of the T1 + C (66.7%)
and T2 (59.3%) image feature-based models.

Conclusion: The MRI radiomics-based machine learning model is a feasible method to
assess contralateral BI-RADS 4 lesions. T2 and T1 + C image features provide
complementary information in discriminating benign and malignant contralateral BI-
RADS 4 lesions.

Keywords: MRI, contralateral breast cancer, radiomics, machine learning, Breast Imaging Reporting and Data
System category 4
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INTRODUCTION

Breast magnetic resonance imagery (MRI) demonstrates a high
sensitivity for contralateral occult malignancies on mammography
or ultrasonography. It is widely used for pre-treatment evaluation,
especially for patients preparing for breast-conserving surgery.
This may be the reason for the higher incidence of contralateral
detection in recent decades. Primary breast cancer patients have
intermediate risk for contralateral malignancies (1, 2). The risk is
2–6 times that of the risk for a woman first developing a breast
cancer (3). Therefore, the likelihood of malignancy for a suspicious
contralateral lesion may be different from that of an ipsilateral
lesion. Moreover, the knowledge of an extra finding changes the
treatment plan and causes more patient anxiety. A precise and
personalized diagnostic strategy should be established for this
unusual situation.

According to the American College of Radiology (ACR)
guidelines, Breast Imaging Reporting and Data System (BI-
RADS) category 5 refers to a malignancy likelihood of 95% or
greater (4) and the positive predictive value of this category is as
high as 97.5% (5); therefore, it is not a major source of
misdiagnosis. However, a lesion classified as BI-RADS category
4 corresponds to a wide likelihood of malignancy, ranging from
2% to 95% (4). Breast MRI is known to be highly sensitive, but
there is significant overlap between the imaging characteristics of
some atypical malignant lesions and other benign lesions (6).
These lesions, whether benign or malignant, could easily be
categorized as BI-RADS 4 and recommended for invasive
biopsy. As the range of positive predictive values for MRI-
guided biopsies (19.5 to 42.7%) shows (6–9), many patients
received unnecessary invasive procedures. By improving
assessment for BI-RADS 4 lesions, benign lesion may be
correctly recognized, and unnecessary biopsy avoided.

Unlike the traditional practice of using medical images solely
for visual interpretation, radiomics transmits digital medical
images into mineable data by extracting abundant quantitative
features from regions of interest. These features contain
comprehensive tumor characterization information, such as
tumor size, shape, intensity, and texture. Radiomics data can
be applied to build descriptive or predictive models that correlate
quantitative image features with phenotypes or gene-protein
markers, potentially assisting in cancer detection/diagnosis,
treatment response prediction, and prognosis assessment.
Previous studies have shown that a radiomics method could
aid in the diagnosis, molecular subtyping, prognosis, and
treatment response prediction for breast cancer patients (10–13).

To improve the assessment of BI-RADS 4 lesions, some
researchers developed prediction models using specific imaging
features or multi-parameter MRI data (14–16). However, these
studies only investigated the traditional imaging features, which
were defined by radiologists subjectively. Whether or how the
radiomics method can be used to predict malignancy for
contralateral BI-RADS 4 lesions has not been explored. The
purpose of this study was to investigate and explore the
possibility of using an MRI radiomics-based machine learning
model to improve the assessment and diagnosis for contralateral
BI-RADS 4 lesions in primary breast cancer patients.
Frontiers in Oncology | www.frontiersin.org 2225
MATERIAL AND METHODS

Patient Selection
Institutional review board approval was obtained for this study
and the need for informed patient consent was waived due to the
study’s retrospective nature.

A total of 24,588 consecutive pre-treatment breast dynamic
MRI examinations performed between January 2016 and
December 2018 were retrospectively reviewed by our imaging
data system The inclusion criteria were as follows: (a) primary
breast cancer was detected by self-examination, clinical
palpation, or imaging examination; (b) pre-treatment breast
MRI revealed a contralateral BI-RADS 4 lesion, for which the
histopathological subtype was confirmed by surgery or biopsy;
(c) no history of breast cancer.

MRI Acquisition
All breast MRI examinations were performed using a 3.0T (Skyra,
Siemens, Munich, Germany) scanner using a dedicated breast coil
with the patient in a prone position. For each case, there was a fat-
saturated T2-weighted sequence (TR 3,570 ms, TE 69 ms, slice
thickness 5 mm, FOV 360 mm, matrix 384*384), and fat-saturated
T1-weighted dynamic sequences (TR 4.5 ms, TE 1.6 ms, slice
thickness 2.2 mm, FOV 360 mm, matrix 384*384), including one
pre-contrast and five dynamic post-contrast series obtained
following intravenous administration of gadopentetate
dimeglumine (Magnevist, Bayer Health Care, Berlin, Germany),
which was power injected (Spectris Solaris EP, Medrad, Pittsburgh,
PA, USA) at a dose of 0.1 mmol/Kg at a rate of 2 mL/s. A total
volume of 20 mL saline was used to flush the contrast medium.

Pathology
Pathology diagnosis was retrieved from the electronic records at
our institute. The available reports were divided into malignant
and benign categories. Lesions considered to be high risk in
nature (atypical findings, lobular neoplasia, complex sclerosis, or
papillary lesions) were categorized as benign. In cases with mixed
histological features, the most aggressive pattern was used as the
grouping indicator.

Patients’ Grouping
To train and test the classification model, 178 patients were
randomly assigned to a training dataset (n = 124, 70%) and an
independent testing dataset (n = 54, 30%). The basic information
of patients, including age, menopause status, family history of
breast cancer and breast density was compared between the
training and testing datasets. A chi-square test and an
independent sample t test were used for appropriate data type.
All above statistical analyses were performed with IBM SPSS 21.

Diagnostic Scheme Build-Up
The diagnostic schemes based on the T1+C and T2 images were
developed to respectively predict and assess the malignancy
likelihood of suspicious contralateral lesions. Since T1 and T2
images represent different tumor phenotypes, an imaging feature
fusion method was used to combine the T1+C and T2 radiomic
features (Figure 1).
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Three-dimensional (3D) semi-automatic segmentation was
performed on the T1+C and T2 images (17). All center positions
of lesions were first delineated by a radiologist on T1+C and T2
scans. Using the marked lesion center point as the initial seed
point, a 6-connected neighborhood 3D region growing method
was used to roughly segment the lesion boundary. In the region
growing algorithm, a threshold value of 90 was used to compare
voxel value with seed point. Then, a level set algorithm used
geodesic active contouring to refine the lesion boundary. In this
process, a gradient magnitude recursive Gaussian image filter
configured with d of 0.5 was first used to filter the initial ROI
image. The propagation scaling value of 1.0, curvature scaling
value of 0.5, advection scaling value of 1.0, maximum RMS error
value of 0.005, and iteration number of 1,000 were configured to
build the geodesic active contour level set image filter. Finally, a
3D morphological closing operator and a flood-fill algorithm
were applied to fill the small holes in the lesion masks (18).
Figure 2 shows an example of the segmentation result.

Due to the ununified spacing of T1 + C and T2 images
collected from different MRI scanners, a cubic B-spline
interpolation was applied to resample the images. After image
resampling, all the T1 + C and T2 images were standardized to a
spacing of (1 mm, 1 mm, 1 mm). To decode the breast tumor
imaging phenotypes, a radiomic feature analysis method was
applied to characterize the lesion’s imaging features. A total of
Frontiers in Oncology | www.frontiersin.org 3226
1,046 radiomic features were extracted from segmented lesions.
Among these features, 258 LoG features were computed using the
Laplacian of Gaussian filter with sigma values of 1, 2, and 3; 688
wavelet features were obtained by filtering the original image with
a wavelet filter; and 14 shape features, 18 histogram features, and
68 texture features were involved. These texture features consisted
of 22 gray-level co-occurrence matrix texture features, 14 gray-
level dependence matrix texture features, 16 gray-level run length
matrix texture features, 16 gray-level size zone matrix texture
features, and 5 neighboring gray-tone difference matrix
texture features.

Before scheme building, each radiomic feature was normalized
by scaling to [0, 1]. A relief feature selection method was used to
remove the low-performance features and reduce the
dimensionality of feature space. To avoid the overfitting
problem in the classifier training/testing process, 10% of the
sample size was empirically selected as the maximum value of
the selected feature number. Then, a least absolute shrinkage and
selection operator (Lasso) feature selection method was used to
choose the optimal imaging features by evaluating the
classification accuracies of our scheme. The penalty term value
of the Lasso feature selector a was set as 0.001. With Lasso, the
higher the alpha parameter, the fewer features selected. For a good
choice of alpha, the Lasso can fully recover the exact set of non-
zero variables using only few observations, provided certain
FIGURE 1 | Flowchart of the proposed radiomics analysis method.
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specific conditions are met. To obtain an optimal alpha, we used a
series of values range from 0.0001 to 1.0 with a step of 0.1 to build
feature selectors. By evaluating the model performance with
different feature selectors, we selected alpha = 0.001 with the
highest model performance as the optimal one. To build a
classification model, a support vector machine (SVM) classifier
configured with a radial basis function (RBF) kernel was trained
and tested using the selected features. To build a fusionmodel, the
T1 + C and T2 image features were merged to build a whole
imaging feature pool. In this process, the initial T1 + C and T2
image features (involving original image feature, LoG image
feature, and wavelet image feature) were squeezed into a feature
sequence to build a fusion feature pool. Figure 3 shows the
workflow of the image feature fusion process. Next, the same
feature selection method and machine-learning classifier were
applied to build a classification model.
Frontiers in Oncology | www.frontiersin.org 4227
Performance Evaluation
The AUC values of T1 + C, T2, and fusion schemes were
computed by applying a maximum likelihood-based receiver
operating characteristic (ROC) fitting program (ROCKIT, http://
metz-roc.uchicago.edu/MetzROC/software/, University of
Chicago). The comparison of AUC values was performed
between T1 + C, T2, and the fusion scheme, and p-value was
corrected with the Bonferroni method. All above computation
processes and data analyses were processed in Python 3.6 using a
computer with Intel Core i7-8700 CPU 3.2GHz × 2, 16 GB RAM.
Several open source libraries, including pyradiomics, SimpleITK,
scikit-image, matplotlib, and scikit-learn, were applied in this
study. In the model development and validation process, the
functions in python libraries were configured with the default
parameters. Thus, our proposed model was straightforward and
could be easily applied and/or validated in future studies.
A B C D

FIGURE 2 | An example of the segmentation result. (A) Shows the original T1 + C/T2 image, (B) shows the masks generated by our semi-automatic segmentation
method, (C) shows the final segmentation result, and (D) shows the 3D tumor volume.
FIGURE 3 | The workflow of the image feature fusion process.
TABLE 1 | Basic information for the patient cohort.

Characteristic Training dataset
(N = 124)

Testing dataset
(N = 54)

Total P
valuea

Age (y)
Mean ± SD 49.6 ± 11.44 53.2 ± 11.48 50.7 ± 11.54 0.057b

Range 25–78 28–78 25–78
Menopausal status
Premenopausal 89 32 121 0.117
Postmenopausal 35 22 57
Family history of
breast cancer
Yes 21 8 29 0.827
No 103 46 149
MRI breast density
1 3 2 5 0.150
2 21 16 37
3 86 28 114
4 14 8 22
Oct
ober 2020 | Volum
e 10 | Article 5
aP values were calculated by chi-square test.
bP value was calculated by independent sample t test.
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RESULTS

Patients’ Basic Information
A total of 178 women were recruited for this study. The mean age
was 51 years (range, 25–78 years). Table 1 provides demographic
details for the patient cohort.

Patients underwent breast MRI examination for pretreatment
evaluation (n = 92), problem solving for an equivocal mammogram
or ultrasound finding (n = 73), high-risk screening (n = 5), clinical
symptoms with negative conventional imaging (n = 5), and axillary
metastasis looking for a primary breast cancer (n=3).

Of 97 contralateral malignant lesions, simple mastectomy was
performed on 59 lesions, breast conserving surgery on 16 lesions,
and modified radical mastectomy on eight lesions. The
remaining nine lesions were confirmed by mammography,
ultrasound, or MRI-guided core biopsy because these patients
were undergoing neoadjuvant chemotherapy (NAC). A total of
19 patients received secondary surgery due to underestimation of
biopsy or pathological results during operation.

Of 81 contralateral benign lesions, quadrant resection was
performed on 69 lesions, while simple mastectomy was
performed on five lesions. The remaining seven lesions were
confirmed by biopsy.

Pathological Findings
The pathological distribution of primary lesions was invasive
ductal carcinoma (IDC) in 130 patients, ductal carcinoma in situ
Frontiers in Oncology | www.frontiersin.org 5228
(DCIS) in 35 patients, introductal papillary carcinoma in four
patients, mucinous carcinoma in three patients, invasive
micropapillary carcinoma in two patients, encapsulated
papillary carcinoma in two patients, neuroendocrine carcinoma
in one patient, and invasive apocrine carcinoma in one patient.
The average size of primary cancers was 3.4 cm (ranging from
0.3 cm to 9.5 cm). Among the 178 contralateral lesions, 97 were
shown to be malignant, including 40 IDCs, 34 DCISs, nine invasive
lobular carcinomas, six introductal papillary carcinomas, two
mucinous carcinoma, two lobular carcinomas in situ, two
encapsulated papillary carcinomas, one neuroendocrine
carcinoma, and one invasive apocrine carcinoma, for a
malignancy rate of 54.5%. The average size was 3.7 cm (ranging
from 0.6–10 cm). The remaining 81 were classified as
benign, including 45 pure adenoses, 19 intraductal papillomas, 10
sclerosing adenoses, five fibroadenomas, one lobular neoplasia,
and one phyllodes tumor. The average size was 2.05 cm (range,
0.7–7.8 cm).

Radiomics Analysis and Diagnostic
Performance
A total of seven radiomics features, including three wavelet features,
one texture feature, and three LoG features, were selected from the
initial T1 + C imaging feature pool. Five features, including three
wavelet features, and two shape features, were frequently selected
from the initial T2 imaging feature pool. Figure 4 shows the heat
map of the 12 selected imaging features.
FIGURE 4 | Heat map of the selected radiomic features for T1 + C and T2 schemes. Each row of the heat map represents a radiomic feature and each column
represents a patient. Different shades of blue represent different values of radiomic features. The difference in T1 + C feature values between benign and malignant
lesions was slightly more distinct than that of T2 features.
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Table 2 compares the performances of the three machine
learning models. The accuracy and sensitivity scores under two
specificity values, 71.4% and 78.6%, were listed and compared.
The fusion image feature model yielded an accuracy of 74.1%,
which was higher than that of the T1 + C (66.7%) and T2 (59.3%)
image feature models. Meanwhile, the fusion model obtained
sensitivity scores of 76.9% and 65.4% under the specificity values
of 71.4% and 78.6%, respectively, which were higher than the
sensitivity scores of the T1 + C model (65.4% and 30.8%) and T2
model (69.2% and 57.7%).

Figure 5 illustrates the ROC, AUC, and 95% confidence
interval (CI) values of the T1 + C, T2, and fusion schemes,
respectively. Compared with the T2 scheme, the T1 + C scheme
yielded a slightly higher AUC value when tested on the same
dataset (0.71 ± 0.07 vs. 0.69 ± 0.07, P > 0.05). The fusion scheme
generated the best AUC value, 0.77 ± 0.06, which was
significantly higher than the AUCs of the T1 + C and T2
schemes (P < 0.001, <0.05/3).
DISCUSSION

It is important to determine the contralateral situation for a
patient with primary breast cancer. For simultaneous bilateral
Frontiers in Oncology | www.frontiersin.org 6229
breast cancer (SBBC) patients, the actuarial survival rates at five
years were lower, and the distant metastasis and unfavorable
disease-specific survival were higher than those of patients with
unilateral cancer (18, 19). In essence, contralateral cancer
detection is a form of high-risk screening. At present, breast
MRI has become the main tool for pre-treatment contralateral
evaluation for recently diagnosed breast cancer patients (20).
Breast MRI depicts occult contralateral disease in 5.5–9.3% of
women with known unilateral breast cancer; 37–48% of these
findings (2–4%) are malignant (20, 21).

Because there are two lesions present in one patient, the
clinical considerations for SBBC are more complicated than
those for unilateral breast cancer. However, detection of
suspicious contralateral lesions is more complicated than
detecting their unilateral counterparts. Previous studies reported
that, compared with primary tumors, contralateral malignant
tumors consist of more DCISs and uncommon pathological
subtypes (22, 23). In this study, we observed a large proportion of
DCIS and many uncommon malignant lesions, such as
encapsulated papillary carcinoma, neuroendocrine carcinoma, and
invasive apocrine carcinoma. These malignant conditions usually
demonstrate atypical MRI features, which partially overlap with
those of some benign lesions (24–27). However, over 55% (45/81) of
benign lesions in this study were proven to be adenoses, which are
benign lesions sometimes demonstrating suspicious features on
breast MRI, but requiring no specific treatment because they pose
a small risk for future cancer development (28). These unusual
conditions, benign or malignant, are easily assigned into the BI-
RADS 4 category and recommended for biopsy in accordance with
ACR BI-RADS guidelines. However, for a patient who has a highly
suspicious lesion in one breast, biopsy for a less-suspicious lesion in
the contralateral breast may be considered time-consuming and
expensive. In this study, 91% (162/178) of our collected patients
skipped biopsy and chose resection directly, and 19 patients received
secondary surgery due to biopsy underestimation or pathological
results during the operation. To help patients and clinicians
choose the most precise treatment plan for an initially detected
suspicious contralateral lesion, a more accurate assessment method
is needed.

Radiomics has proven to be a promising tool for many clinical
purposes. In this study, we first used radiomics to improve the
assessment of contralateral BI-RADS 4 lesions. A total of 1,064
radiomics features were initially extracted from T2 and T1 + C
images. After removing redundant features, only seven features
were ultimately used to build the T1 + C scheme, and five were
used to build the T2 scheme. The selected features of the two
schemes were different, and indicated that T1 + C and T2 images
may represent different phenotypes of breast lesions. T2 images
reflect not only the presence of the tumor tissue, but also peri-
tumor edema (29). A previous study proved that features
extracted from T2 images were associated with the Ki-67 status
(30) and the pathological response to neoadjuvant chemotherapy
in breast cancer (31). The signal hyperintensity of T1 + C images
contains anatomic and vascular information that is crucial for
discriminating benign and malignant lesions. As that the
resolution and slice thickness of T1 + C images are generally
TABLE 2 | Comparisons of classification accuracy and sensitivity scores under
two specificity values generated by three classification models.

Classification
model

Accuracy
(%)

Sensitivity (%)
(Specificity=71.4%)

Sensitivity (%)
(Specificity=78.6%)

T1 + C features 66.7 65.4 30.8
T2 features 59.3 69.2 57.7
Fusion features 74.1 76.9 65.4
T1 + C: T1 weighted image with contrast medium.
FIGURE 5 | Comparison of ROC, AUC, and 95% confidence interval (CI)
values generated using T1 + C, T2, and fusion diagnostic scheme, respectively.
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superior to routine T2 images, features extracted from T1 + C
images were commonly used in most previous studies (10, 12,
13). In the current study, T2 and T1 + C features were used to
build diagnostic schemes, and ROC analysis revealed that the
two schemes generated similar AUC values. After fusing these
two types of imaging features, the prediction performance
significantly improved. These results indicated that T2 and
T1 + C features provide complementary information useful in
discriminating benign and malignant contralateral BI-RADS 4
lesions. In the further studies, both T2 and T1 + C images should
be used for model building.

Radiomics classifiers predict the likelihood of malignancy for
BI-RADS 4 lesions. Ideally, a competent classifier provides a low
probability for a benign lesion, enabling suspension of invasive
procedures in favor of a cautious follow-up, and provides a high
probability for a malignant lesion, ensuring that it will be
recommended for biopsy or surgery and avoiding the need for
a second surgery. In the current study, the fusion scheme
combining T1 + C and T2 features attained a strong AUC
value of 0.77 and an accuracy of 74.1%. Although the fusion
model still requires improvement before it can be used to support
clinical decision-making, the model has demonstrated its
promise. Moreover, this method is objective because it is not
affected by the existence of a primary lesion.

This study had several limitations. First, the number of
patients was relatively small for radiomics analysis. Whether
these samples can sufficiently represent the diverse contralateral
BI-RADS 4 lesion population is unknown. The reproducibility
and robustness of the reported results need to be further
validated with large datasets. This was the main limitation of
this study. The incidence of bilateral breast cancers was relatively
low. However, for the sake of data consistency, we restricted our
collection to patients who were examined using the same
scanner. Second, only T2 and one phase of T1 + C images
were used for radiomic feature extraction. Considering more
inconsistency may be introduced by varying acquisition
parameters and times of DWI and dynamic sequences, ADC
maps and multi-phase contrasted images were not included in
this study. Since the combined radiomics features from DCE-
MRI and ADC data may serve as potential predictor markers
(32), the discriminating efficiency will hopefully be further
improved by adding other types of images for radiomic feature
Frontiers in Oncology | www.frontiersin.org 7230
extraction. Third, the boundaries of breast lesions may be
imprecise when only using a 3D semi-automatic segmentation
method. Thus, developing a more accurate and robust
segmentation method is one of our goals for future studies.

In conclusion, the MRI radiomics-based machine learning
model is a feasible tool for contralateral BI-RADS 4 lesion
assessment. T2 and T1 + C features provide complementary
information useful in discriminating benign and malignant
contralateral BI-RADS 4 lesions.
DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Institutional review board of Fudan university
Shanghai cancer center. Written informed consent for
participation was not required for this study in accordance
with the national legislation and the institutional requirements.
AUTHOR CONTRIBUTIONS

WH and JG conceived and designed the study, collected, analyzed,
and interpreted the data, prepared the draft. Authors WH and JG
had the equal contribution to this study and they shared the
first authorship of this manuscript. SW and HZ interpreted data
analysis and carried out clinical revision of the data. BZ and WP
reviewed and revised the manuscript. All authors contributed to the
article and approved the submitted version.
FUNDING

This study has received funding by the National Natural Science
Foundation of China (61731008).
REFERENCES

1. Padmanabhan N, Subramanyan A, Radhakrishna S. Synchronous bilateral
breast cancers. J Clin Diagn Res (2015) 9:XC05–8. doi: 10.7860/JCDR/2015/
14880.6511

2. Schmid SM, Pfefferkorn C, Myrick ME, Viehl CT, Obermann E, Schötzau A,
et al. Prognosis of early-stage synchronous bilateral invasive breast cancer.
Eur J Surg Oncol (2011) 37:623–8. doi: 10.1016/j.ejso.2011.05.006

3. Hankey BF, Curtis RE, Naughton MD, Boice JDJr, Flannery JT. A
retrospective cohort analysis of second breast cancer risk for primary breast
cancer patients with an assessment of the effect of radiation therapy. J Natl
Cancer Inst (1983) 70:797–804. doi: 10.1093/jnci/70.5.797

4. Morris EA, Comstock CE, Lee CH. ACR BI-RADS magnetic resonance
imaging. In: American College of Radiology, BI-RADS Committee, editor.
ACR BI-RADS Atlas: Breast Imaging Reporting and Data System, 5th ed.
Reston: American College of Radiology (2013).

5. Yao MM, Joe BN, Sickles EA, Lee CS. BI-RADS Category 5 Assessments at
Diagnostic Breast Imaging: Outcomes Analysis Based on Lesion Descriptors.
Acad Radiol (2019) 26:1048–52. doi: 10.1016/j.acra.2018.07.018

6. Mahoney MC, Gatsonis C, Hanna L, DeMartini WB, Lehman C. Positive
predictive value of BI-RADS MR imaging. Radiology (2012) 264:51–8. doi:
10.1148/radiol.12110619

7. Strigel RM, Burnside ES, Elezaby M, Fowler AM, Kelcz F, Salkowski LR, et al.
Utility of BI-RADS Assessment Category 4 Subdivisions for Screening Breast
MRI. AJR Am J Roentgenol (2017) 208:1392–9. doi: 10.2214/AJR.16.16730

8. Maltez de Almeida JR, Gomes AB, Barros TP, Fahel PE, de Seixas Rocha M,
et al. Subcategorization of suspicious breast lesions (BI-RADS Category 4)
according to MRI criteria: role of dynamic contrast-enhanced and diffusion-
October 2020 | Volume 10 | Article 531476

https://doi.org/10.7860/JCDR/2015/14880.6511
https://doi.org/10.7860/JCDR/2015/14880.6511
https://doi.org/10.1016/j.ejso.2011.05.006
https://doi.org/10.1093/jnci/70.5.797
https://doi.org/10.1016/j.acra.2018.07.018
https://doi.org/10.1148/radiol.12110619
https://doi.org/10.2214/AJR.16.16730
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Hao et al. Radiomics for Contralateral Breast Lesions
weighted imaging. AJR Am J Roentgenol (2015) 205:222–31. doi: 10.2214/
AJR.14.13834

9. Houssami N, Ciatto S, Ellis IO, Ambrogetti D. Underestimation of
malignancy of breast core-needle biopsy: concepts and precise overall and
category-specific estimates. Cancer (2007) 109:487–95. doi: 10.1002/
cncr.22435

10. Crivelli P, Ledda RE, Parascandolo N, Fara A, Soro D, Conti M. A New
Challenge for Radiologists: Radiomics in Breast Cancer. BioMed Res Int
(2018) 2018:6120703. doi: 10.1155/2018/6120703

11. Valdora F, Houssami N, Rossi F, Calabrese M, Tagliafico AS. Rapid review:
radiomics and breast cancer. Breast Cancer Res Treat (2018) 169:217–29. doi:
10.1007/s10549-018-4675-4

12. Zhou J, Lu J, Gao C, Zeng J, Zhou C, Lai X, et al. Predicting the response to
neoadjuvant chemotherapy for breast cancer: wavelet transforming
radiomics in MRI. BMC Cancer (2020) 20(1):100. doi: 10.1186/s12885-
020-6523-2

13. Sutton EJ, Onishi N, Fehr DA, Dashevsky BZ, Sadinski M, Pinker K, et al.
A machine learning model that classifies breast cancer pathologic complete
response on MRI post-neoadjuvant chemotherapy. Breast Cancer Res (2020)
22(1):57. doi: 10.1186/s13058-020-01291-w

14. Leithner D, Wengert G, Helbich T, Morris E, Pinker K. MRI in the
Assessment of BI-RADS® 4 lesions. Top Magn Reson Imag (2017) 26:191–9.
doi: 10.1097/RMR.0000000000000138

15. Dijkstra H, Dorrius MD, Wielema M, Pijnappel RM, Oudkerk M, Sijens PE.
Quantitative DWI implemented after DCE-MRI yields increased specificity
for BI-RADS 3 and 4 breast lesions. J Magn Reson Imag (2016) 44:1642–9. doi:
10.1002/jmri.25331

16. Woitek R, Spick C, Schernthaner M, Rudas M, Kapetas P, Bernathova M, et al.
A simple classification system (the Tree flowchart) for breast MRI can reduce
the number of unnecessary biopsies in MRI-only lesions. Eur Radiol (2017)
27:3799–809. doi: 10.1007/s00330-017-4755-6

17. Shi J, Sahiner B, Chan HP, Paramagul C, Hadjiiski LM, Helvie M, et al.
Treatment response assessment of breast masses on dynamic contrast-
enhanced magnetic resonance scans using fuzzy c-means clustering and
level set segmentation. Med Physics (2009) 36:5052–63. doi: 10.1118/
1.3238101

18. Jobsen JJ, Van der Palen J, Ong F, Meerwaldt JH. Synchronous, bilateral breast
cancer: prognostic value and incidence. Breast (2003) 12:83–8. doi: 10.1016/
S0960-9776(02)00278-3

19. Heron DE, Komarnicky LT, Hyslop T, Schwartz GF, Mansfield CM. Bilateral
breast carcinoma: risk factors and outcomes for patients with synchronous
and metachronous disease. Cancer (2000) 88:2739–50. doi: 10.1002/1097-
0142(20000615)88:12<2739::AID-CNCR12>3.0.CO;2-J

20. Brennan ME, Houssami N, Lord S, Macaskill P, Irwig L, Dixon JM, et al.
Magnetic resonance imaging screening of the contralateral breast in women
with newly diagnosed breast cancer: systematic review and meta-analysis of
incremental cancer detection and impact on surgical management. J Clin
Oncol (2009) 27:5640–9. doi: 10.1200/JCO.2008.21.5756

21. Plana MN, Carreira C, Muriel A, Chiva M, Abraira V, Emparanza JI, et al.
Magnetic resonance imaging in the preoperative assessment of patients
with primary breast cancer: systematic review of diagnostic accuracy and
meta-analysis. Eur Radiol (2012) 22:26–38. doi: 10.1007/s00330-011-
2238-8
Frontiers in Oncology | www.frontiersin.org 8231
22. Baker B, Morcos B, Daoud F, Sughayer M, Shabani H, Salameh H, et al. Histo-
biological comparative analysis of bilateral breast cancer. Med Oncol (2013)
30:711. doi: 10.1007/s12032-013-0758-6
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Objectives: To develop and validate a radiomics nomogram to improve prediction of
recurrence and metastasis risk in T1 stage clear cell renal cell carcinoma (ccRCC).

Methods: This retrospective study recruited 168 consecutive patients (mean age, 53.9
years; range, 28–76 years; 43 women) with T1 ccRCC between January 2012 and June
2019, including 50 aggressive ccRCC based on synchronous metastasis or recurrence
after surgery. The patients were divided into two cohorts (training and validation) at a 7:3
ratio. Radiomics features were extracted from contrast enhanced CT images. A radiomics
signature was developed based on reproducible features by means of the least absolute
shrinkage and selection operator method. Demographics, laboratory variables (including
sex, age, Fuhrman grade, hemoglobin, platelet, neutrophils, albumin, and calcium) and CT
findings were combined to develop clinical factors model. Integrating radiomics signature
and independent clinical factors, a radiomics nomogram was developed. Nomogram
performance was determined by calibration, discrimination, and clinical usefulness.

Results: Ten features were used to build radiomics signature, which yielded an area
under the curve (AUC) of 0.86 in the training cohort and 0.85 in the validation cohort. By
incorporating the sex, maximum diameter, neutrophil count, albumin count, and radiomics
score, a radiomics nomogram was developed. Radiomics nomogram (AUC: training,
0.91; validation, 0.92) had higher performance than clinical factors model (AUC: training,
0.86; validation, 0.90) or radiomics signature as a means of identifying patients at high risk
for recurrence and metastasis. The radiomics nomogram had higher sensitivity than
clinical factors mode (McNemar’s chi-squared = 4.1667, p = 0.04) and a little lower
specificity than clinical factors model (McNemar’s chi-squared = 3.2, p = 0.07). The
nomogram showed good calibration. Decision curve analysis demonstrated the
superiority of the nomogram compared with the clinical factors model in terms of
clinical usefulness.
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Conclusion: The CT-based radiomics nomogram could help in predicting recurrence and
metastasis risk in T1 ccRCC, which might provide assistance for clinicians in tailoring
precise therapy.
Keywords: clear cell renal cell carcinoma, recurrence, neoplasm metastasis, computed tomography, prediction model
INTRODUCTION

Clear cell renal cell carcinoma (ccRCC) is the most common
subtype of kidney cancer, whose incidence has been continuously
increasing over the last few decades (1, 2). This trend is largely
attributed to the widespread use of advantage radiologic
diagnostic techniques (CT and ultrasound), as well as the
popularization in regular checkups, allowing that most ccRCCs
could be detected at T1 stage. ccRCC patients are at high risk of
metastasis and recurrence (3). The incidence of RCC recurrence
following nephrectomy has been reported to be 7% with a
median time of 38 months for T1 tumors, 26% with a median
time of 32 months for T2 disease, and 39% with a median time to
recurrence at 17 months for T3 tumors (4). Tumor-node-
metastasis stage and pathological grade are generally adopted
to estimate the risk of tumor recurrence in patients with ccRCC
after surgical operation. Nevertheless, distinct outcomes are
demonstrated in patients with equivalent tumor-node-
metastasis stage and pathological grade (5–8).

According to the European Association of Urology guidelines
(1), localized T1 stage tumors are best managed by partial
nephrectomy. At the same time, active surveillance can be
offered to those patients of older age with co-morbidities,
harboring a single kidney and/or those who are unwilling to
undergo a major surgical operation. However, the tumor biology
of T1 stage ccRCC keeps poorly understood. It is reported that a
subset of patients with more aggressive ccRCC may benefit from
adjuvant targeted therapy according to a recent study (9).
Therefore, the development of an accurate system to ascertain
which patients are at truly higher risk of metastasis or recurrence
is needed to allow for better patient selection of those who are
most likely to benefit from adjuvant therapy. Several studies have
noted that nomograms comprising merely clinical factors were
applied to assess the prognosis of ccRCC after surgery (10, 11).
However, some of the parameters used in the nomogram such as
tumor necrosis and clinical presentation are subject to inter-
observer variability. Hence, further research and validation
are needed.

Radiomics is a promising technique using computerized
quantitative imaging analysis to extract an enormous quantity
of image-related features, such as intensity, geometry, and
texture, from medical images (12, 13). It has been increasingly
reported that radiomics can be used for differentiating benign
and malignant renal tumors, as well as discriminating high and
low Fuhrman nuclear ccRCC (14–18). However, to the best of
our knowledge, no study has evaluated radiomics for its ability to
predict the aggressive potential of ccRCC.

The purpose of this study is to develop and validate a
radiomics nomogram that incorporates the radiomics signature
2233
and the clinical factors to improve preoperative prediction of
recurrence and metastasis risk in T1 stage ccRCC.

MATERIALS AND METHODS

Institutional Board Approval
The institutional review board of our hospital approved this
single-center retrospective study. The requirement for obtaining
informed consent was waived.

Patients
Data for surgically and pathologically confirmed ccRCC cases in
our hospital were acquired from 1 January 2012 to 30 June 2019
by searching through our institutional database and medical
record system. During the 7-year recruiting period, 508
consecutive patients with T1 stage ccRCC underwent surgical
operation in our institution. A total of 145 patients were
excluded due to absence of preoperative contrast enhanced CT
images, and 25 patients were excluded due to history of von
Hippel-Lindau disease or bilateral RCC. Aggressive tumors were
defined as tumors exhibiting synchronous metastasis (n = 34), or
recurrence after surgery (n = 16). The patient recruitment
pathway is presented in Figure 1 and Supplementary
Information 1.1. The end points of our study were time until
detection of metastasis or recurrence and time to last follow-up if
the patient was alive. A total of 50 patients were defined as
aggressive ccRCC (including nine T1a tumors and 41 T1b
tumors), and 118 patients were non-aggressive ccRCC
(including 65 T1a tumors and 53 T1b tumors). The metastatic
locations were the lung (n = 12), bone (n = 21), liver (n = 2),
retroperitoneum (n = 2), adrenal gland (n = 1), both the bone
and lung (n = 6), both the lung and brain (n = 2), both the lung
and adrenal gland (n = 2), both the bone and liver (n = 1), and
simultaneously the bone, lung, and adrenal gland (n = 1). A total
of eight cases were confirmed by biopsy and histopathology, and
the other cases were diagnosed by radiologic features, that is,
there was an increase in volume or number of suspected
metastases during follow-up. The patients were divided into
two cohorts (training and validation) according to the
proportion of 7:3 using computer-generated random numbers.

CT Image Acquisition and Radiologic
Evaluation
The details of image acquisition parameters are shown in
Supplementary Information 1.2 and Supplementary Table 1.
Among the aggressive tumors, 33 (66.0%) patients underwent
CT scans using a 320-detector CT scanner (Aquilion ONE,
TOSHIBA) and 17 (34.0%) underwent a 64-detector CT
scanner (Discovery, GE Healthcare). Among the non-
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aggressive tumors, 90 (76.3%) patients underwent CT scans
using Aquilion ONE, and 28 (23.7%) patients underwent
Discovery. Each CT study was analyzed by a radiology resident
(Reader 1, BK) and a radiologist (Reader 2, XW) with 5 and 20
years of experience in abdominal imaging, respectively. Aware of
the diagnosis of ccRCC but blinded to the radiological reports
and pathologic details, the two researchers construed the
following CT features by consensus: the maximum diameter of
tumor on the axial CT image; tumor location (exophytic or not,
exophytic meaning >50% outside renal parenchyma); tumor
polarity (superior or inferior or middle); and tumor side (left
or right). The maximum diameter of the tumor was measured by
the two radiologists, and the average value was applied to the
evaluation. For those qualitative parameters (including tumor
location, polarity and side), in the event of disagreement, the two
readers jointly reviewed the findings to reach a consensus for
further analysis.

Development of Clinical Factor Model
Univariate logistic regression analysis was applied to the clinical
factors, including clinical data (sex, age, and Fuhrman grade),
laboratory variables (hemoglobin, platelet, neutrophils, albumin,
and calcium), and CT features to find the factor that significantly
affected the event occurrence probability (p < 0.05). Then a
multiple logistic regression analysis with a step-wise backwards
elimination was subsequently applied to build the clinical factors
model. Odds ratios (ORs) as estimates of relative risk with 95%
confidence intervals (CIs) were calculated for each risk factor.

Segmentation of Tumor Images
and Radiomics Feature Extraction
ITK-SNAP software (Version 3.6.0, www.itksnap.org) was used
for segmentation of tumors. A defined polygonal region-of-
Frontiers in Oncology | www.frontiersin.org 3234
interest was delineated on the center slice of the ccRCC on
corticomedullary phase (CMP) and nephrographic phase (NP)
images, avoiding covering the paratumoral renal parenchyma
and perinephric fat (Figure 2).

AK software (AnalysisKit 3.2.0; GE Healthcare, China) was
used to extract a total of 396 radiomics features from the region-
of-interest for one phase. The radiomics features are detailed in
Supplementary Information 1.3.

Inter- and intra-class correlation coefficients (ICCs) were
calculated to estimate the inter-observer reliability and intra-
observer reproducibility of features extraction. 20 cases of CT
images containing six aggressive ccRCCs and 14 non-aggressive
ccRCCs were randomly chosen; region-of-interest segmentation
was drawn by one radiology resident (Reader 1, BK) and one
radiologist (Reader 2, XW) independently; both were aware of
the diagnosis of ccRCC but were blinded to the pathologic
details. Reader 1 then repeated the contouring procedure 8
weeks after the initial analysis to assess the agreement of
feature extraction. The remaining image segmentation was
performed by Reader 1.

Development of Radiomics Signature
and Radiomics Nomogram
The prevention of the overfitting of the signature can be realized
through the conduction of dimension reduction of the features
before signature construction. Only were the radiomics chosen to
be kept when meeting a criterion of inter- and intra-observer
ICCs greater than 0.75, then the minimum-Redundancy
Maximum-Relevancy method was performed to eliminate the
redundant and irrelated features and kept 30 features. The
remaining features were enrolled into the least absolute
shrinkage and selection operator (LASSO) regression model to
select the most valuable features in the training cohort. Then the
FIGURE 1 | Recruitment pathway for patients in this study. CcRCC, clear cell renal cell carcinoma.
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radiomics signature (Radiomics score) was calculated by
summing the selected feature values weighted by their
corresponding features.

To provide a more individualized predictive model, a
nomogram combining the final radiomics signature and
significant clinical variables were built in the training cohort.
The calibration of the nomogram was evaluated with a
calibration curve. The Hosmer–Lemeshow test was conducted
to assess the goodness-of-fit of the nomogram. A radiomics
nomogram score for each patient was obtained in the training
and validation cohorts.

Assessment of the Performance
of Different Models
The predictive accuracy of the clinical factors model, radiomics
signature, and radiomics nomogram for differentiating
aggressive ccRCC from non-aggressive ccRCC was quantified
by the area under the receiver operating characteristics (ROC)
curve (AUC) in both the training and validation sets. Decision
curve analysis was used to calculate the net benefits for a range of
threshold probabilities in the whole cohort to assess the clinical
usefulness of the nomogram.

Statistical Analysis
Statistical tests were performed using R statistical software
(version 3.5.1, https://www.r-project.org). Univariate logistic
regression analysis was applied to find the factor that
significantly affected the event occurrence probability (p<0.05).
Group differences are figured out by means of univariate
analysis, which consists of chi-square test or Fisher exact test
for categorical variables and Mann–Whitney U test for
continuous variables, where appropriate. The LASSO-logistic
Frontiers in Oncology | www.frontiersin.org 4235
regression model was used to select the features and construct
the radiomics signature. A linear combination of the selected
features and the product of the corresponding weighting
coefficients was utilized to calculate the radiomics score of each
patient. A multiple logistic regression analysis was applied to
develop the radiomics nomogram by using the statistically
significant clinical characteristics and the radiomics signature
as input variables. ROC analysis was conducted to evaluate the
performance of each model, and the differences in the AUC
values between different models were estimated using the
Delong’s test. Besides, McNemar test was used to compare the
sensitivity and specificity between the clinical factors model and
radiomics nomogram. The Hosmer–Lemeshow test and a
decision curve were used to evaluate and validate the
radiomics nomogram results. A two-tailed P < 0.05 was
indicative of statistical significance.
RESULTS

Clinical Factors of the Patients and
Construction of the Clinical Factor Model
The patients’ demographic baseline characteristics (mean age, 53.9
years; age range, 28–76 years; 43 women) are summarized in
Table 1. No differences were detected in clinical characteristics
between the training and validation cohorts (p = 0.124–0.948). The
rates of aggressive ccRCC were 29.7% (35 of 118) and 30% (15 of
50) in the training cohort and validation cohort, respectively,
whereas no statistically significant difference was found between
the two cohorts. The results of multiple logistic regression analysis
are listed in Table 2, which suggested that only maximum diameter
and albumin remained as independent predictors of aggressive
November 2020 | Volume 10 | Article 57961
FIGURE 2 | Manual segmentation of the tumor on the center axial slice of the clear cell renal cell carcinoma (ccRCC).
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ccRCC (p < 0.05). Tumors with larger maximum diameter (OR,
1.61; 95% CI, 1.14–2.28) or lower albumin (OR, 0.79; 95% CI, 0.69–
0.92) were likely to be aggressive ccRCC. The clinical factors model
was constructed using the backward step-wise multivariate logistic
regression with Akaike information criterion (AIC) as criterion.
This method only considered the AIC rather than the p value of
each clinical factor so that the method determined the optimized
feature subset. Finally, the sex, maximum diameter, neutrophils, and
albumin were incorporated into the institution of the clinical
factors model.

Feature Extraction, Selection, and
Radiomics Signature Establishment
Consistent inter- and intra-observer agreement was found in 654
features (ICCs, 0.8279–0.9595) among the total of 792 radiomics
features extracted from CMP and NP CT images. Thirty
radiomics features exhibiting significant differences between
aggressive ccRCC and non-aggressive ccRCC by minimum-
Redundancy Maximum-Relevancy were enrolled into the
LASSO logistic regression model to select the most valuable
features (Figures 3A, B). Finally, the selected 10 radiomics
Frontiers in Oncology | www.frontiersin.org 5236
features were displayed in Figure 3C. The radiomics score was
attained with the following formula:

“Radiomics score = 0:527

�NP_GLCMentropy_AllDirection_offset1_SD + 0:23

�NP_Correlation_angle90_offset7 − 0:174

�CMP_ShortRunEmphasis_angle0_offset4 − 0:197

�NP_Inertia_angle90_offset4  +  0:483 

� CMP_GLCMEnergy_angle45_offset7  +  0:527 

�CMP_SphericalDisproportion� 0:119 

�CMP_LongRunEmphasis_angle0_offset4  +  0:08 

�NP_LongRunEmphasis_angle90_offset1� 0:192

�NP_ShortRunEmphasis_angle45_offset4  +  0:04 

� CMP_Correlation_angle135_offset7  − 1:066 ”

The distributions of the radiomics score for each patient in
training and validation cohorts are displayed in Figure 4.
TABLE 1 | Characteristics of patients in the training and validation cohorts.

Clinical factors Training cohort (n = 118) Validation cohort (n = 50)

Aggressive ccRCC Non-aggressive ccRCC p Aggressive ccRCC Non-aggressive ccRCC p

Sex 0.092 0.843
Men 31 (88.6) 60 (72.3) 11 (73.3) 23 (65.7)
Women 4 (11.4) 23 (27.7) 4 (26.7) 12 (34.3)

Age (years)* 56.8 ± 9.6 (30–72) 53.0 ± 11.5 (28–76) 0.088 53.6 ± 11.1 (31–68) 53.4 ± 11.5 (30–76) 0.948
Nephrectomy type
Partial
Radical

10 (28.6)
25 (71.4)

37 (44.6)
46 (55.4)

0.105
5 (33.3)
10 (66.7)

19 (54.3)
16 (45.7)

0.174

Polarity 0.233 0.857
Superior 10 (28.6) 22 (26.5) 5 (33.3) 9 (25.7)
Middle 11 (31.4) 39 (47.0) 6 (40.0) 16 (45.7)
Inferior 14 (40.0) 22 (26.5) 4 (26.7) 10 (28.6)

Location 0.076 0.090
Exophytic 23 (65.7) 38 (45.8) 13 (86.7) 20 (57.1)
Not exophytic 12 (34.3) 45 (54.2) 2 (13.3) 15 (42.9)

Side 1.000 1.000
Left 16 (45.7) 37 (44.6) 7 (46.7) 18 (51.4)
Right 19 (54.3) 46 (55.4) 8 (53.3) 17 (48.6)

Maximum diameter (cm)* 5.2 ± 1.5 (1.5–7.0) 4.0 ± 1.4 (1.2–7.0) <0.001 5.3 ± 1.4 (2.9–7.0) 3.8 ± 1.3 (1.9–6.9) <0.001
Fuhrman grade 0.059 NA
1 0 (0.0) 11 (13.3) 1 (6.7) 5 (14.3)
2 31 (88.6) 64 (77.1) 11 (73.3) 26 (74.3)
3 3 (8.6) 8 (9.6) 3 (20.0) 4 (11.4)
4 1 (2.9) 0 (0.0) 0 (0.0) 0 (0.0)

Hemoglobin (g/L)* 139.5 ± 21.5 (81–175) 143.1 ± 16.9 (71–169) 0.328 141.0 ± 19.5 (109–167) 149.1 ± 15.6 (117–178) 0.117
Platelet (109/L)* 275.6 ± 80.2 (190–589) 236.0 ± 56.2 (115–423) 0.002 305.8 ± 140.9 (172–747) 234.4 ± 45.7 (154–399) 0.007
Neutrophils (109/L)* 5.1 ± 2.5 (2.11–13.19) 3.7 ± 1.2 (0.68–9.01) <0.001 5.1 ± 2.2 (1.73–10.07) 3.7 ± 1.0 (1.87–6.15) 0.002
Albumin (g/L)* 38.7 ± 5.3 (26.7–49.1) 42.9 ± 2.9 (34.8–49.5) <0.001 39.9 ± 4.0 (33.8–46.4) 43.3 ± 3.2 (36.1–48.4) 0.001
Calcium (mmol/L)* 2.3 ± 0.3 (1.9–3.28) 2.3 ± 0.1 (1.98–2.78) 0.433 2.3 ± 0.1 (2.13–2.66) 2.3 ± 0.1 (2.1–2.54) 0.937
Median Rad-score† −0.3 (−0.7, 0.5) −1.7 (−2.2, −0.9) <0.001 −0.5 (−0.8, 0.1) −1.7 (−2.3, −1.1) <0.001
Novembe
r 2020 | Volume 10 | Article
Unless otherwise indicated, data are number of patients and data in parentheses are percentages. The sum of percentages may not be 100% because of rounding. ccRCC, clear cell renal
cell carcinoma; NA, not available.
*Data are mean ± standard deviation; data in parentheses are range.
†Data in parentheses are interquartile range.
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Radiomics score [median (interquartile range)] differed
significantly between the aggressive and non-aggressive ccRCC
groups in the training cohort [−0.3 (−0.7, 0.5) vs. −1.7 (−2.2,
−0.9), respectively, p < 0.001]; this finding was verified in the
validation cohort [−0.5 (−0.8, 0.1) vs. −1.7 (−2.3, −1.1),
respectively, p < 0.001]. ROC curves of radiomics signature are
displayed in Figure 5. The radiomics signature yielded an AUC
of 0.86 (95% CI: 0.79, 0.92) in the training cohort and 0.85 (95%
CI: 0.73, 0.97) in the validation cohort, showing favorable
predictive efficacy. Furthermore, we applied leave group out
cross validation (LGOCV) to validate the model’s robustness.
Frontiers in Oncology | www.frontiersin.org 6237
The mean AUC, accuracy, sensitivity, specificity of LGOCV were
0.74, 0.72, 0.79, 0.69, respectively.

The Radiomics Nomogram Establishment
and Assessment of the Performance of
Different Models
By incorporating the sex, maximum diameter, neutrophil count,
albumin count, and radiomics score, a radiomics nomogram was
developed in the training cohort (Figure 6A). The calibration
curve of the radiomics nomogram demonstrated good agreement
between the predicted and expected probabilities for aggressive
ccRCC in training cohort (Figure 6B). The p values of Hosmer–
Lemeshow test were 0.45 and 0.11 in training and validation
cohorts respectively.

The diagnostic performance of every model is demonstrated in
Table 3. The ROC curves of radiomics nomogram and clinical
factors model are exhibited in Figure 7. In the training cohort, the
radiomics nomogram showed the highest discrimination, with an
AUC of 0.91 (95% CI: 0.86, 0.97); the observed AUC value was
slightly higher than that of the clinical factors model [AUC, 0.86
(95% CI: 0.78, 0.94); p = 0.051]. In the validation cohort, the
radiomics nomogram [AUC, 0.92 (95% CI: 0.85, 0.99)] also
achieved more satisfactory predictive efficacy than the clinical
A B

C

FIGURE 3 | Radiomics feature selection by using the least absolute shrinkage and selection operator (LASSO) logistic regression. (A) Selection of the tuning
parameter (l) in the LASSO model. An optimal l value of 0.022 (vertical dash line) with log(l) = −3.836 was selected. (B) The feature coefficients varied according to
log(l). (C) The selected features with nonzero coefficients and their coefficients.
TABLE 2 | Risk factors for aggressive ccRCC.

Variable Clinical model Radiomics nomogram

Odds ratio
(95% CI)

P value Odds ratio
(95% CI)

P value

Sex 0.27 (0.05–1.36) 0.112 0.34 (0.05–2.25) 0.265
Maximum diameter 1.61 (1.14–2.28) 0.007 0.96 (0.62–1.49) 0.849
Neutrophils 1.41 (0.99–2.02) 0.058 1.44 (0.94–2.22) 0.093
Albumin 0.79 (0.69–0.92) 0.002 0.81 (0.69–0.95) 0.008
Rad-score NA NA 3.76 (1.77–7.99) <0.001
Data are results of the multiple logistic regression analysis. ccRCC, clear cell renal cell
carcinoma; NA, not available; CI, confidence interval.
November 2020 | Volume 10 | Article 579619
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factors model [AUC, 0.90 (95% CI: 0.80, 0.99)], although the
difference was not statistically significant (p = 0.401). We then
usedMcNemar test for comparison of the sensitivity and specificity
between the clinical factors model and radiomics nomogram and
found that the radiomics nomogram had higher sensitivity than the
clinical factors model (100.0 vs. 60.0%, McNemar’s chi-squared =
4.1667, p = 0.04). However, the radiomics nomogram had a little
lower specificity than the clinical factors model, whereas the
Frontiers in Oncology | www.frontiersin.org 7238
difference was not statistically significant (77.1 vs. 91.4%,
McNemar’s chi-squared = 3.2, p = 0.07). The nomogram score
was acquired using the following formula:

“Nomogram score = 8:6938 − 1:0699 �  Sex − 0:0430  

�Maximum diameter + 0:3671� Neutrophils − 0:2096

� Albumin  + 1:3243 �  Radiomics score ”
A B

FIGURE 4 | The distributions of the Rad-score for each patient in the (A) training and (B) validation cohorts. Blue and yellow represent non-aggressive clear cell
renal cell carcinoma (ccRCC) and aggressive ccRCC, respectively.
A B

FIGURE 5 | Receiver operating characteristic (ROC) curves of the radiomics signature in the (A) training and (B) validation cohorts, respectively. AUC, area under
the receiver operating characteristic curve.
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The decision curve analyses for the clinical factor model and
radiomics nomogram are presented in Figure 8. It showed that
the radiomics nomogram had a higher overall net benefit in
differentiating aggressive ccRCC from non-aggressive ccRCC
than the clinical factor model across the full range of
reasonable threshold probabilities.
DISCUSSION

In this retrospective analysis, we developed a radiomics
nomogram that incorporates four clinical factors and
radiomics signature for noninvasive, individualized prediction
Frontiers in Oncology | www.frontiersin.org 8239
of recurrence and metastasis risk in patients with clinical T1
stage ccRCC, which can enable physicians to select reasonable
treatment tactics and individualized monitoring protocols to
improve clinical outcomes. To the best of our knowledge, this
is the first prediction model developed to predict recurrence and
metastasis risk in T1 stage ccRCC using CT-based radiomics.
The proposed radiomics nomogram demonstrated favorable
discrimination in both the training cohort (AUC, 0.91) and the
validation cohort (AUC, 0.92), indicating that it has better
predictive performance than the clinical factor model (AUC:
training, 0.86; validation, 0.90) or the radiomics signature (AUC:
training, 0.86; validation, 0.85). The radiomics nomogram had
higher sensitivity than the clinical factors model (100.0 vs. 60.0%,
A

B C

FIGURE 6 | Radiomics nomogram developed with receiver operating characteristic (ROC) curves and calibration curves. (A) The radiomics nomogram, combining
sex, tumor maximum diameter, neutrophils, albumin, and Rad-score, developed in the training set. The nomogram calibration curves in the training (B) and validation
(C) sets. Calibration curves indicate the goodness-of-fit of the model. The closer the pink line approaches the gray line, the better agreement between the predictive
probabilities and the observed probabilities.
TABLE 3 | Results of radiomics nomogram, radiomics signature, and the clinical model predictive ability for distinguishing between aggressive ccRCC and non-
aggressive ccRCC.

Variables AUC(95% CI) Sensitivity* Specificity* Accuracy*

Clinical model Training cohort 0.86(0.78–0.94) 74.3(26/35) 86.7(72/83) 83.1(98/118)
Validation cohort 0.90(0.80–0.99) 60.0(9/15) 91.4(32/35) 82.0(41/50)

Radiomics signature Training cohort 0.86(0.79–0.92) 88.6(31/35) 77.1(64/83) 80.5(95/118)
Validation cohort 0.85(0.73–0.97) 73.3(11/15) 82.9(29/35) 80.0(40/50)

Radiomics nomogram Training cohort 0.91(0.86–0.97) 88.6(31/35) 81.9(68/83) 83.9(99/118)
Validation cohort 0.92(0.85–0.99) 100.0(15/15) 77.1(27/35) 84.0(42/50)
Novem
ber 2020 | Volume 10 | A
CI, confidence interval.
*Numbers in parentheses were used to calculate percentages.
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McNemar’s chi-squared = 4.1667, p = 0.04) and a little lower
specificity than the clinical factors model (77.1 vs. 91.4%,
McNemar’s chi-squared = 3.2, p = 0.07).

Most patients with T1 stage ccRCC will have excellent
outcomes following resection or active surveillance, with a
97% 5-year survival imaging. Nevertheless, evaluating the
recurrence and metastasis risk of ccRCC only by tumor stage
is insufficient because some T1 ccRCC can be lethal once the
tumor exhibits synchronous metastasis or recurrence (19, 20).
Actually, the incidence of T1 RCC recurrence after nephrectomy
Frontiers in Oncology | www.frontiersin.org 9240
has been reported to be 7% with a median time of 38 months (4).
Wei et al. (21) developed a classifier based on single-nucleotide
polymorphisms to predict recurrence risk in RCC and showed
that “recurrence risk of the subgroup of the classifier-defined
high risk in stage I or II was higher than the classifier-defined
low risk in stage III”. Currently, management of T1 ccRCC
depends on the surgeon’s discretion based on clinical and
pathological parameters related to aggressive potential of the
tumor (11, 22, 23). Prognostic factors and predictive models for
RCC patients’ outcomes have been reported previously by
multiple investigators (24–26). Park et al. (27) reviewed
preoperative laboratory data in 747 RCC patients and revealed
that clinical information supporting aggressive ccRCC included
an older age, larger size, lower hemoglobin, albumin, and
calcium, as well as higher platelet and neutrophil. However,
few radiologic parameters have been reported as prognostic
factors of ccRCC in contrast to pathological markers. We
enrolled these variables in this study, and found maximum
diameter, neutrophil, and albumin were significantly different
between the two groups, which was consistent with previous
studies. However, affected by the radiomics score, the maximum
diameter in our nomogram was less important. Besides, we
extracted the radiomics features also containing the geometry
features which features also reflected the maximum diameter
but after filtering the features, we found the maximum tumor
diameter correlated features were abandoned, which meant the
remaining features had more value in our paper. Compared with
the clinical factors model that only relied on clinical data and CT
features, the final radiomics nomogram model achieved higher
prediction performance for aggressive ccRCC. The decision
curve analysis revealed that using the radiomics nomogram to
differentiate aggressive ccRCC from non-aggressive ccRCC
presents more notable benefits than solely relying on clinical
factor model.

A prognostic multigene signature (28) has been developed to
predict recurrence risk in ccRCC, identifying that aggressive
A B

FIGURE 7 | Comparison of receiver operating characteristic (ROC) curves between the radiomics nomogram and clinical model for the prediction of aggressive clear
cell renal cell carcinoma (ccRCC) in the (A) training and (B) validation cohorts. AUC, area under the receiver operating characteristic curve.
FIGURE 8 | Decision curve analysis for the radiomics nomogram. The y-axis
shows the net benefit; x-axis shows the threshold probability. The red line
and blue line represent the net benefit of the radiomics nomogram and the
clinical factor model, respectively. The green line indicates the hypothesis that
all patients had aggressive clear cell renal cell carcinoma (ccRCC). The black
line represents the hypothesis that no patients had aggressive ccRCC. The
decision curves indicate that the application of radiomics nomogram to
predict aggressive ccRCC adds more benefit than treating all or none of the
patients, and clinical factor model, across the full range of reasonable
threshold probabilities.
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ccRCC are characterized by reduced angiogenic dependence. The
present paradigm of ccRCC imaging interpretation relies on a
visual process, which comprises evaluation of the shape, margin,
as well as degree and heterogeneity of enhancement. Junki et al.
(29) enrolled 88 patients with T1 stage ccRCC, including seven
patients that had recurrence after nephrectomy, and revealed
that tumor enhancement in the NP of CT was a predictive factor
for recurrence. However, these subjective approaches do not
adequately reflect discrepancies in the angiogenesis (30). To the
best of our knowledge, the medical images are the product of
procedures appearing at the level of the gene and molecule. As
such, imaging parameters acquired from advanced image
procedure and analysis, such as radiomics, can address the
underlying molecular and genotypic basis of the tissue (31–33).
Recently, radiomics have been reported for distinguishing benign
and malignant renal tumors, predicting ccRCC Fuhrman grade
and therapeutic response (32–38); radiomics related to the
recurrence and metastasis risk in ccRCC have rarely been
reported. A radiomics signature in our study was constructed
using ten selected features including gray-level co-occurrence
matrix (GLCM), run length matrix (RLM), and form factor
matrix. Among the selected radiomics features, Spherical
Disproportion, GLCMEntropy, and GLCMEnergy were the
most significant and robust features associated with aggressive
ccRCC. The Spherical Disproportion feature quantified the
degree of irregularity in the tumor boundary. An irregular
tumor boundary could be a sign of poor survival (39). Entropy
is a parameter describing the complexity of an image, which
means the larger entropy value is indictive of a more complex
tumor (40). Compared with the subjective CT findings, our
radiomics nomogram based on the quantitative analysis of
image features shows greater predictive power.

Our study has filled a gap in the literature on recurrence and
metastasis risk of T1 ccRCC in the setting of radiomics. Unlike
previous work, our radiomics nomogram could provide
beneficial information for preoperative prediction of T1 stage
aggressive ccRCC to estimate the necessity of adjuvant therapy.
Our study may have important clinical significance because the
risk of recurrence and metastasis is one of the most meaningful
prognostic ingredients, which is associated with cancer-related
overall survival after surgical operation (22). Three large clinical
trials (9, 41, 42) evaluated the use of adjuvant tyrosine kinase
inhibitors in ccRCC, concluding that patient selection is one of
important factors to maximize the benefit of adjuvant therapy,
which means it is critical to choose a population at high risk of
cancer recurrence. The patients with non-aggressive ccRCC
could be cured by surgery alone, and adjuvant therapy is of no
necessity and is not additionally beneficial; while those patients
with aggressive RCC, who were at high risk for tumor recurrence,
would have a longer duration of disease-free survival if they were
receiving adjuvant treatment. Therefore, accurate evaluation of
the recurrence risk cannot only assist in patient consultation and
manage treatment but also help guide follow-up and diminish
overtreatment in low-risk patients. Our radiomics nomogram
would allow for stratifying patients diagnosed with T1 stage
ccRCC for their follow-up schedule. For patients with aggressive
Frontiers in Oncology | www.frontiersin.org 10241
ccRCC, more frequent monitoring in postoperative follow-up is
of significant necessity.

There are several limitations to our study. First, owing to the
limitation of the retrospective study and small number of cases,
the follow-up time we used was at least 3 years. Although
recurrence of ccRCC after surgery occurs within 3 years in
most patients, there still some patients developed recurrence
>3 years after surgery. It would be more interesting to enroll
patients without recurrence evidence for more than 5 or 10 years
and further prospective research would focus on these cases.
Second, as a single-center study, the patient population was
relatively homogeneous and small. During the 7-year recruiting
period, 168 T1 stage ccRCC were eligible for our study, including
74 T1a tumors and 94 T1b tumors. There is not enough data to
differentiate T1a and T1b tumors to perform a stratified analysis,
which is paramount. A large-scale independent prospective
multicenter study is needed to evaluate the generalizability of
the results, as well as take into account the differentiation
between the T1a tumors and T1b tumors. Third, only the
largest two-dimensional region-of-interest was applied for our
study. Although it is reported that three-dimensional radiomics
analysis appeared more indicative of tumor heterogeneity, we
think that it would not be clinically practical owing to extra
segmentation duration. Fourth, all of the images in this
retrospective study underwent a fixed procedure instead of
individualized optimal scan protocol, which may influence the
image quality. The next step is to conduct prospective and
standardized research. Optimal scanning time by using bolus
tracking and individualized amount of contrast medium will be
considered in our future study. Last, we defined aggressive
ccRCC as tumor exhibiting synchronous metastasis or
recurrence after surgery. However, there may be significant
radiomical differences between patients with synchronous
metastasis and recurrence. Furthermore, our prospective
research on the radiomics nomogram for predicting recurrence
risk after surgical operation is ongoing.

In conclusion, our study presented a CT-based radiomics
nomogram that showed satisfactory performance in predicting
recurrence and metastasis risk among patients diagnosed with
T1 stage ccRCC, which can enable physicians to make more
informed treatment decisions about adjuvant therapy. Radiomics
nomogram, as a non-invasive and quantitative method, may
serve as an efficient tool to complement the conventional
procedures for clinical decision-making process.
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Background: We evaluated the ability of radiomics based on intratumoral and
peritumoral regions on preoperative gastric cancer (GC) contrast-enhanced CT imaging
to predict disease-free survival (DFS) and chemotherapy response in stage II/III GC.

Methods: This study enrolled of 739 consecutive stage II/III GC patients. Within the
intratumoral and peritumoral regions of CT images, 584 total radiomic features were
computed at the portal venous-phase. A radiomics signature (RS) was generated by using
support vector machine (SVM) based methods. Univariate and multivariate Cox
proportional hazards models and Kaplan-Meier analysis were used to determine the
association of the RS and clinicopathological variables with DFS. A radiomics nomogram
combining the radiomics signature and clinicopathological findings was constructed for
individualized DFS estimation.

Results: The radiomics signature consisted of 26 features and was significantly
associated with DFS in both the training and validation sets (both P<0.0001).
Multivariate analysis showed that the RS was an independent predictor of DFS. The
signature had a higher predictive accuracy than TNM stage and single radiomics features
and clinicopathological factors. Further analysis showed that stage II/III patients with high
scores were more likely to benefit from adjuvant chemotherapy.
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Conclusion: The newly developed radiomics signature was a powerful predictor of DFS in
GC, and it may predict which patients with stage II and III GC benefit from chemotherapy.
Keywords: gastric cancer, radiomics signature, computed tomography, prognosis, support vector machine
BACKGROUND

Gastric cancer (GC) is the fifth most commonly diagnosed
malignancy and ranks third in cancer-related deaths worldwide
(1).Most patients in China are diagnosed at an advanced stage, and
surgical resection is the main curative method for GC (2, 3). For
patients with advanced GC, prognosis remains dismal even after
radical resection, with approximately 20% experiencing relapse
within 1 year of the initial surgery (4, 5). Thus, the high rate of
tumor recurrence in patients with advanced GC highlights the
importance of considering adjuvant treatments (5, 6).However, the
survival rates formany stage II and III patientswere still low though
initial high response rates (4, 5). Thus, it is highly necessary to
develop a precise classification ofGC that could be applied to better
predict survivals and chemotherapy responses for GC patients.

Computed tomography (CT) imaging could give more
comprehensive information of tumor heterogeneity than focal
tissue samples, and the emerging field of radiomics has great
potential for facilitating better clinical decision-making (7, 8). In
recent years, radiomics has been increasingly utilized to extract
and analyze quantitative imaging features, such as textural
heterogeneity, intensity distributions, shape descriptors, and
spatial relationships (8). Radiomic methods have been applied
to predict the diagnosis, prognosis, therapeutic response, and
underlying genomic patterns in several types of tumors (7, 9–12).
Several explorative studies have investigated the potential of
radiomics in predicting outcomes in GC (10, 13, 14). However,
whether radiomic features have value in the prediction of
disease-free survival (DFS) and chemotherapy response in
patients with stage II and III GC is still unclear and controversial.

State-of-the-art classification algorithms such as support vector
machines (SVMs) could be applied to select a small subgroup of
discriminating features and patients attributes to construct reliable
disease classifiers (15, 16). SVMwas introduced by Vapnik (17) for
data classification and function approximation. In recent years,
SVM has been introduced to solve various biomedical problems
(18–20).Hence, the aim of this studywas to develop an SVM-based
RS to estimate DFS and to assess its predictive value to
chemotherapy benefits in patients with stage II/III GC.
METHODS

Study Design and Patient Cohorts
In this study, we collected data from a total of 739 patients with
GC (Figure S1). For the training set, data were obtained from
curve; DFS, disease-free survival; GC,
communication system; ROC, receiver
rest; RS, radiomics signature; RS-SVM,
ine; SVM, support vector machine.

2245
286 patients treated with radical gastrectomy between January
2007 and December 2010 in Henan Provincial People’s Hospital
at Zhengzhou University (Zhengzhou, China). Patients were
included on the basis of the following criteria: histologically
confirmed GC; no other concurrent malignant neoplasms;
standard unenhanced and contrast-enhanced abdominal CT
performed <7 days before surgical resection; harvested lymph
nodes >15; and perioperative, pathological and follow-up data
was available; and on other concurrent malignant tumor. These
patients were excluded if the primary tumor could not be
identified on CT, or if patients had received anticancer
treatment preoperitive. We also included 453 patients, with the
same selection criteria as above, who were treated between
January 2011 and December 2012 in Henan Provincical
People’s Hospital at Zhengzhou University (Zhengzhou,
China) as the validation cohort. The patients were followed up
with abdominal CT scans every 6–12 months for the first 2 years
after surgery and then annually thereafter. According to the 8th
edition of the American Joint Committee on Cancer (AJCC)
Cancer Staging Manual of the AJCC/International Union
Against Cancer, the TNM staging was restaged (21). The
informed consent requirement was signed. The studies
involving human participants were reviewed and approved by
ethics committee of Henan Provincial People’s Hospital.

CT Image Acquisition and Processing
All patients underwent contrast-enhanced abdominal CT scans
prior to surgery. Portal venous-phase CT images were extracted
from the picture archiving and communication system (PACS)
(Carestream,Canada).Details of theCTacquisitionparameters and
image retrieval procedure are described in the Supplementary
Materials. The primary tumor was manually delineated on the
CT images using ITK-SNAP software (www.itksnap.org) by two
radiologists inconsensus (with5 and6yearsof clinical experience in
abdominal CT interpretation). Any discrepancies were resolved by
a third radiologist (11 years of experience in abdominal CT
interpretation). Both radiologists were blinded to the clinical and
histopathological data but knew the patients had GC. To capture
information in the invasive margin, a peripheral ring surrounding
the primary tumor was created with automated dilation of the
tumor boundaries by 2 mm on the outside and shrinkage of the
tumor boundaries by 1 mm on the inside, resulting in a ring with a
thickness of 3 mm (22). Large vessels, air cavities, and adjacent
organs were excluded.

Image Feature Extraction
We calculated a total of 584 features from each region of interest
(ROI) of each patient’s CT image to characterize peritumoral and
intratumor heterogeneity and complexity. For each ROI, i.e.,
peritumoral and intratumoral areas, we extracted a total of 292
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quantitative features. The image features included 14 first-order
intensity features, 8 shape features, and 270 second- and higher-
order textural features, which are summarized in the
Supplementary Materials. In this study, we extracted four
types of texture features, namely, gray-level co-occurrence
matrix (GLCM), gray-level run length matrix (GLRLM), gray-
level size zone matrix (GLSZM), and neighborhood gray-tone
difference matrix (NGTDM) features, as well as wavelet
decomposition features. A Laplacian Gaussian spatial bandpass
filter (∇2G) was used to derive image features at different spatial
scales by turning the filter parameter between 1.0 and 2.5 (1.0,
1.5, 2.0, 2.5). All features were calculated in MATLAB R2012a
(The MathWorks Inc.) using an open-source radiomic analysis
package (https://github.com/mvallieres/radiomics/). The
detailed mathematical definitions of all features are presented
in the Supplementary Materials.

Development of the SVM-Based RS
SVM is a binary classifier trained on a group of labeled patterns
called training samples (23). The aim of training an SVM is to get
a hyperplane that separates the samples into two sides so that all
the points with the same label could be on the same side of the
hyperplane (15, 17, 19, 24, 25). In this study, we used a two-class
classification problem (i.e., whether a patient recurred within 5
years). The SVM-recursive feature elimination (RFE) method
was adopted for feature selection and ranking using the training
dataset (15). To examine the possibility of identifying different
risk subgroups of patients based on these radiomic features using
SVM, we performed a set of experiments in the training cohort of
286 patients; then, the SVM-based radiomic classifier was further
validated in 453 patients in the validation cohort. In the training
cohort, patients on the side of the hyperplane who had more
relapses were classified as having low RS score. The SVM data
processing methods were conducted as previously described (15,
18, 19, 25). The programs were coded using R software (version
3.4.2). The performance of SVM was evaluated by the sensitivity,
specificity, and area under the receiver operating characteristic
(ROC) curve (AUC).

Integrated Nomogram Construction
We constructed an integrated nomogram for the individualized
assessment of DFS by combining the imaging signature and
clinicopathological factors. Harrell’s concordance index (C-
index) was applied to evaluate the accuracy of the model for
prognostic prediction (26). We also assessed the overall
performance with prediction error curves (PECs) over time
and the integrated Brier score (IBS) (27). To quantify the
relative improvement in prediction accuracy, the net
reclassification improvement (NRI) was calculated. Decision
curve analysis (DCA) was performed to quantify the net
benefit at various threshold probabilities (28).

Statistical Analysis
We compared two groups using t-test for continuous variables
and c2 test or Fisher’s exact test for categorical variables, as
appropriate. Survival curves for different variable values were
generated using the Kaplan-Meier method and were compared
Frontiers in Oncology | www.frontiersin.org 3246
using the log-rank test. Variables that reached significance with
P < 0.05 were entered into the multivariable analyses using the
Cox regression model. Interactions between the classifier and
chemotherapy were evaluated by means of the Cox model as well.
Calibration plots were generated to explore the performance
characteristics of the nomogram. DCA was used to evaluate the
clinical usefulness of the nomograms. The nomograms and
calibration plots were generated with the rms package of R
software. All statistical analyses were performed using R
software (version 3.4.2) and SPSS software (version 22.0). All
statistical tests were two-sided, and P < 0.05 was considered to be
statistically significant.
RESULTS

Patient Characteristics
The detailed clinicopathological characteristics of the patients in
the training cohort (n=286) and validation cohort (n=453) are
listed in Table 1. Of the 739 patients, 515 (68.6%) were men, and
the median (interquartile range [IQR]) age of all patients was
58.0 (50.0–65.0) years. The patients in the training cohort and
validation cohort were balanced for DFS, with a median (IQR)
DFS of 43.0 (29.0–65.0) months for the training cohort and 40.0
(26.0–67.0) months for the validation cohort (log-rank P =
0.246), and for the baseline clinicopathologic factors (Table 1).
Table S1 shows the association between the RS and
clinicopathological variables in the training cohort and
validation cohort.

RS-SVM and Survival
Based on the SVM analysis of the training data, the RS-SVM
signature integrated 26 predictors, including 18 intratumoral
features and 8 margin features. The features were shown in the
Supplementary Materials. In the training cohort, there was a
significant difference in DFS between patients with low and high-
RS scores (hazard ratio (HR) 0.190 (95% confidence interval (CI)
0.112–0.324); P<0.0001; Table S2). The 5-year DFS rates for the
low-RS score patients was 25.3%, and that for the high RS score
patients was 82.6% (Figure 1A). To confirm the association
between the RS and prognosis, we tested it in the validation
cohort and found similar results for DFS [HR 0.252 (95% CI
0.177–0.360); P<0.0001; Table S2]. The 5-year DFS rate for the
low RS patients was 19.5%, and that for the high RS score
patients was 75.6% (Figure 1B). In univariate analysis, low RS
score patients were associated with significantly poorer DFS
(Table S2). Multivariate Cox regression analysis after
adjustment for clinicopathological risk factors and TNM stage
showed that the RS remained an independent predictor of DFS in
the training cohort [HR 0.190 (95% CI 0.112–0.323); P<0.0001],
as well as in the validation cohort [HR 0.240 (0.168–0.343);
P<0.0001; Table 2].

To further explore whether RS can stratify patients in
different stage, we evaluated the prognostic value of RS in
patients with stage II and stage III GC (Figure S1). Stage II or
stage III GC patients with high RS scores had a significantly
longer DFS than patients with low RS scores. Moreover, when
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stratified by other clinicopathological variables such as location,
size, differentiation, and histology, the RS was still a statistically
significant prognostic classifier in the subgroups, suggesting its
independent prognostic value (Figure S2).

The ROC curves for the RS and traditional clinicopathological
prognostic factors, including age, sex, CEA, CA19-9,
differentiation, tumor size, Lauren type, and TNM stage,
illustrated the point with the maximum AUC for each factor.
In the subset of evaluated patient cases in each cohort, the AUCs
of the RS for 5-year DFS (training cohort: 0.746; validation
cohort: 0.754; Figure 2) were significantly higher than the AUCs
Frontiers in Oncology | www.frontiersin.org 4247
for all other clinicopathological factors considered (next largest
was AUC for TNM stage, training cohort: 0.552; validation
cohort: 0.622). In addition, the AUC values of the RS were
higher than any single radiomic feature included in the RS in the
training and validation cohorts (Figure S3).

Nomogram Integrating RS-SVM Signature
and Clinicopathologic Factors
To assess patient prognosis, we generated a nomogram (Figure
3A) for DFS in the training cohort by integrating RS and 3
clinicopathological risk factors, including depth of invasion,
lymph node metastasis, and CA-199 level, which were
significantly associated with DFS. The calibration curves of the
nomogram at 1, 3, and 5 years showed good agreement between
the actual and the estimated DFS in the training and validation
cohorts (Figures 3B, C). The C-index of the nomogram was
significantly higher than that of TNM stage (0.768 (0.740–0.795)
vs. 0.639 (0.612–0.665), P<0.001 in the validation cohort). We
computed the NRI for the integrated nomogram vs. stage, which
showed significantly improved prediction performance for the
nomogram, with an NRI of 0.520 (95% CI 0.417–0.652; P <
0.001) in the training cohort, and 0.416 (0.301–0.505; P < 0.001)
in the validation cohort. The PEC of the nomogram, stage and RS
are shown in Figures 3D, E. The IBS for the nomogram and
stage were 0.124 and 0.160, respectively, in the training cohort
and 0.115 and 0.149 in the validation cohort. DCA graphically
demonstrated that the nomogram provided larger net benefit
across the range of reasonable threshold probabilities than the
TNM staging system (Figure S4).

RS-SVM and Benefit From Adjuvant
Chemotherapy
To investigate whether high or low RS score patients might
benefit from adjuvant chemotherapy, we evaluated the
association between RS score and DFS among stage II and III
patients who either received or did not receive adjuvant
chemotherapy. The characteristics of patients who received
chemotherapy were similar to those of patients who did not
receive adjuvant chemotherapy (Table S3). The corresponding
Kaplan–Meier survival curves for patients with stage II or stage
III disease, which comprehensively compared low with high RS
by adjuvant chemotherapy, are shown in Figure 4. In High RS
score group, there was no significant difference between patients
who received chemotherapy and who did not receive
chemotherapy for DFS (Figure 4). For patients who did or did
not receive chemotherapy, RS was associated with DFS in the
training and validation cohorts (Figure S5). High RS scores
seemingly had a greater association with the DFS of patients who
received chemotherapy than patients who did not receive
chemotherapy (Figure S5). Hence, we did a subgroup analysis
according to RS score.

We found that chemotherapy was associated with improved
prognosis in the low RS score group for both stage II and III GC,
[stage II: HR 0.537 (0.333–0.865), P=0.011; stage III: HR 0.469
(0.360–0.612), P<0.001;Table 3]. However, for patients in the high
RS score group, adjuvant chemotherapy did not affectDFS in either
TABLE 1 | Clinical characteristics of the patients in the training and validation
cohorts.

Variables Training cohort
(N=286)

Validation cohort
(N=453)

P-value

No. % No. %

Sex 0.650
Female 87 37.50% 145 62.50%
Male 199 39.25% 308 60.75%

Age(years), median(IQR) 57(50–65) 58(50–65)
Age(years) 0.805
<60 163 39.09% 254 60.91%
≧60 123 38.20% 199 61.80%

Tumor size(cm) 0.051
<4 107 43.67% 138 56.33%
≧4 179 36.23% 315 63.77%

Tumor location 0.436
Cardia 119 40.61% 174 59.39%
Body 61 41.78% 85 58.22%
Antrum 95 35.85% 170 64.15%
Whole 11 31.43% 24 68.57%

Differentiation status 0.195
Well+Moderate 54 43.90% 69 56.10%
Poor and undifferentiated 232 37.66% 384 62.34%

Lauren type 0.019
Intestinal type 111 44.58% 138 55.42%
Diffuse or mixed type 175 35.71% 315 64.29%

CEA 0.221
Normal 215 37.52% 358 62.48%
Elevated 71 42.77% 95 57.23%

CA199 0.001
Normal 240 41.88% 333 58.12%
Elevated 46 27.71% 120 72.29%

Depth of invasion 0.035
T1 7 43.75% 9 56.25%
T2 30 52.63% 27 47.37%
T3 84 42.00% 116 58.00%
T4a 141 34.14% 272 65.86%
T4b 24 45.28% 29 54.72%

Lymph node metastasis 0.928
N0 59 36.65% 102 63.35%
N1 58 40.00% 87 60.00%
N2 58 36.94% 99 63.06%
N3a 76 40.00% 114 60.00%
N3b 35 40.70% 51 59.30%

Stage 0.741
II 102 37.92% 167 62.08%
III 184 39.15% 286 60.85%

Chemotherapy 0.456
No 152 40.00% 228 60.00%
Yes 134 37.33% 225 62.67% 　
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stage IIor IIIGC[stage II:HR2.194 (0.695–6.920), P=0.18; stage III:
HR 1.145 (0.823–2.568), P=0.198]. We performed a formal
interaction test between the RS and adjuvant chemotherapy,
which confirmed a significant interaction regarding the impact on
DFS in stage II GC (P=0.030 for interaction, Table 3) and stage III
GC (P=0.001 for interaction).
DISCUSSION

Accurate assessment of prognosis is vital for risk stratification and
the formation of appropriate treat strategies. GC is a clinically
heterogeneous disease, with large variations in outcomes even
A B

FIGURE 2 | Receiver operating characteristic (ROC) curves for radiomic signature (RS), clinical stage, clinicopathological characteristics as predictors of 5-year
disease-free survival (DFS) in the training and validation cohorts. (A) Training cohort; (B) validation cohort.
A B

FIGURE 1 | Kaplan-Meier analyses of disease-free survival (DFS) according to the radiomic signature in patients with gastric cancer (A). Training cohort (n=286) (B),
Validation cohort (n=453). RS, radiomic signature.
TABLE 2 | Multivariable cox regression analysis of radiomics signature (RS),
TNM stage, and survival in the training and validation cohorts.

Variable Disease-free Survival

HR (95% CI) P-value

Training cohort (N=286)
RS (high vs. low) 0.190(0.112–0.323) <0.0001
Stage (III vs. II) 2.073(1.389–3.096) <0.0001

Validation cohort (N=453)
RS (high vs. low) 0.240(0.168–0.343) <0.0001
Stage (III vs. II) 3.249(2.366–4.461) <0.0001
CA199 (high vs. low) 1.421(1.078–1.872) 0.013
DFS, Disease-free survival.
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among GC patients with the same stage (29, 30). Therefore, we
wanted to improve the prediction of DFS by building a new RS-
SVMmodel to classify patients into different subgroups with large
differences in DFS. Multivariable Cox regression analysis
demonstrated that the RS was an independent predictor of DFS,
even after adjustment for TNM stage and clinicopathological
variables. Moreover, the RS reinforced the prognostic ability of
Frontiers in Oncology | www.frontiersin.org 6249
TNM stage, thereby adding prognostic value to TNM staging. By
combining clinicopathological and imaging predictors, we showed
that the integrated nomogram had a much improved prognostic
accuracy compared with TNM staging. These results demonstrate
that the imaging signature provided useful complementary
information about patient prognosis beyond currently known
clinicopathological predictors. Considering the wide availability
A

B

D E

C

FIGURE 3 | Use of the constructed radiomics nomogram to estimate disease-free survival (DFS) for gastric cancer (GC), along with the calibration and prediction
error curves (A). Radiomics nomogram to estimate DFS. Calibration curves for the radiomics nomogram of DFS in the training cohort (B) and validation cohort
(C) show the calibration of each model in terms of the agreement between the estimated and the observed 1-, 3-, and 5-year survival outcomes. The nomogram-
estimated DFS is plotted on the x-axis, and the observed DFS is plotted on the y-axis. The diagonal dotted line is a perfect estimation by an ideal model, in which
the estimated outcome perfectly corresponds to the actual DFS. The solid line is the performance of the nomogram: a closer alignment with the diagonal dotted line
represents a better estimation (D, E). Prediction error curves for each model. Lower prediction errors indicate higher model accuracy.
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A

B

C

FIGURE 4 | Chemotherapy benefits in gastric cancer compared using disease-free survival (DFS). Kaplan-Meier survival curves for patients with gastric cancer
in different radiomics score subgroups, which were stratified by the receipt of chemotherapy (A). Training cohort (n=286) (B), validation cohort (n=453), and
(C) combined cohort (n=739). CT, chemotherapy; RS, radiomics score.
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and routine use of CT scans in clinical practice, this approach will
have positive implications for themanagement of patientswithGC.

Extensive studies have suggested the importance of radiomics in
cancers and its correlation with prognosis (8, 12, 14, 31, 32). In this
study, we attempted to apply a novel combined intratumoral and
peritumoral radiomics approach for predicting DFS. Therefore, we
created a peripheral ring with automated dilatation of the tumor
boundaries by 2 mm on the outside and shrinkage of the tumor
boundaries by 1mmon the inside, resulting in a ringwith a thickness
of 3 mm. Peritumoral radiomics might provide unique and valuable
features, thatmay reflect peritumoral immune cell infiltration (31, 33,
34). Chen et al. found that the combined intratumoral and
peritumoral radiomics model had a better predictive performance
of the immunoscore than the intratumoral radiomics model (33).
Ferté suggested that combined intratumoral and peritumoral
radiomics was a promising way to predict CD8 cell infiltration and
to infer clinical outcomes for cancer patients who had been treated
with anti-PD-1 and PD-L1 (32). Jiang et al. built an ImmunoScore of
gastric cancer (ISGC) based on 5 immune features in the invasive
margin and center of the tumor, and the ISGC could effectively predict
survival and identify patients whomight benefit from chemotherapy
(3, 35). Khorrami et al. showed that the shape and texture features
extracted from the intratumoral and peritumoral regions of lung
tumors on CT images could identify patients with pathological
response to neoadjuvant chemoradiation (36). In addiction,
peritumoral radiomic features were also associated with pathologic
immune response (31).

At present, the standard treatment for advanced GC includes
adjuvant chemotherapy after surgery to prevent disease recurrence
and improve survival; however, many studies have reported that a
subgroupofpatients couldnotbenefit fromadjuvantchemotherapy (5,
12,18,37,38).Moreover, thecriteria for theselectionof candidateswho
are more likely to benefit from adjuvant chemotherapy remain
controversial. Thus, the accurate identification of subgroups of
patients will improve the prognostic system and lead to more
personalized therapy. Recently, several studies reported that
radiomics signatures based on CT/MRI/PET images were associated
with chemotherapy response in several types of cancers (14, 39–41).
Jiang et al. developed a 19-feature RS from the intratumoral region of
Frontiers in Oncology | www.frontiersin.org 8251
CT images using the lasso-Coxmodel that, could identify patientswith
different prognoses and may select chemosensitive patients (13). In
addition,Bramanet al (39). evaluated radiomic features extracted from
peritumoral and intratumoral tissues in the context of neoadjuvant
chemotherapy for breast cancer and found that intratumoral and
peritumoral radiomics features could strongly predict pathologic
complete response (PCR) independent of the choice of classifier. In
this study, our RS combined intratumoral and peritumoral radiomics
features, and could identify patients more likely chemotherapy. We
found that adjuvant chemotherapyprovided amore survival benefit to
patients classified as having low RS score, whereas those classified as
having a high RS score did not obtain benefits from adjuvant
chemotherapy; further use of the RS may allow for better
identification of patients who are most likely to benefit from
adjuvant therapy. Thus, we think that patients with low RS scores
maybe treatedwithnewcombinationsofmore tolerablemedicationas
an adjunct to potentiate the efficacy of systemic approaches. Therefore,
our CT image-based RS for patients with stage II and III GC is both a
prognosticandpredictive tool, in thesepatientswith lowRSscoreshave
a clear benefit from adjuvant chemotherapy. It is worth noting that in
western countries, patients with locally advanced gastric cancer
typically receive neoadjuvant or perioperative chemotherapy instead
of adjuvant chemotherapy after surgery (42, 43). Because the proposed
radiomic signaturemay reflect the biological characteristics, we expect
it to be applicable in neoadjuvant or perioperative settings. The
mechanism of the association between the CT image-based RS and
chemotherapy response has not been shown thoroughly, and further
investigation into this relationship may provide additional targets and
strategies for treatment.

Our study has several limitations. First, it was a retrospective
analysis that suffers from inherent biases. Second, the decision of
whether to treatpatientswithadjuvant chemotherapyafter surgerywas
made by the clinicians. This may limit our predictive analysis using
randomized treatment despite the use of a propensity score matching
strategy. Third, all CT images were obtained from single-vendor CT
scanners (GE); thus, our results need further validation with other CT
vendors to check for generalizability. In the current study, the primary
tumorwasmanually delineated on theCT scans by radiologists, which
is a challenging and time-consuming task. Development of advanced
machine learning methods for semi or fully automated tumor
segmentation may facilitate its wide implementation in the future.
For enhanced practical acceptability, several aspects including auto-
segmentation, feature implementation, and streamlined calculation of
RSwill be essential. Finally, themodel was developed and validated by
data from East Asian patients, and its generalizability in Western
populations remains to be determined. Ideally, a prospective,
randomized clinical trial including both Asian and non-Asian
populations will be needed to validate our results findings.

In conclusion, we developed and validated an SVM-based RS
that can effectively predict DFS, which provided additional
prognostic value to the traditional staging system. In addition,
the RS may be a useful tool to predict which patients could
benefit from adjuvant chemotherapy. These results warrant
further validation in future randomized trials to test the
clinical utility of the imaging signature in combination with
clinicopathologic criteria to guide individual treatment.
TABLE 3 | Treatment interaction with radiomics signature (RS) for DFS in
patients with gastric cancer.

RS CT No CT Disease-free Survival

CT vs No CT, P P value for
HR (95% CI) interaction

Stage II (n = 269)
RS high 38 53 0.537(0.333–0.865) 0.011 0.030
RS-SVM low 95 83 2.194(0.695–6.920) 0.18
Stage III (n = 470)
RS high 59 77 0.469(0.360–0.612) <0.001 0.001
RS-SVM low 167 167 1.145(0.823–2.568) 0.198
Stage II+III (n = 739)
RS high 97 130 0.411(0.247–0.686) 0.001 <0.0001
RS low 262 250 1.562(0.941–2.594) 0.085
CT, chemotherapy; DFS, disease-free survival.
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Nürnberg, Erlangen, Germany

Background: There is insufficient understanding of the natural course of volumetric
regression in brain metastases after stereotactic radiotherapy (SRT) and optimal
volumetric criteria for the assessment of response and progression in radiotherapy
clinical trials for brain metastases are currently unknown.

Methods: Volumetric analysis via whole-tumor segmentation in contrast-enhanced 1
mm³-isotropic T1-Mprage sequences before SRT and during follow-up. A total of 3,145
MRI studies of 419 brain metastases from 189 patients were segmented. Progression
was defined using a volumetric extension of the RANO-BM criteria. A subset of 205
metastases without progression/radionecrosis during their entire follow-up of at least 3
months was used to study the natural course of volumetric regression after SRT.
Predictors for volumetric regression were investigated. A second subset of 179
metastases was used to investigate the prognostic significance of volumetric response
at 3 months (defined as ≥20% and ≥65% volume reduction, respectively) for subsequent
local control.

Results:Median relative metastasis volume post-SRT was 66.9% at 6 weeks, 38.6% at 3
months, 17.7% at 6 months, 2.7% at 12 months and 0.0% at 24 months. Radioresistant
histology and FSRT vs. SRS were associated with reduced tumor regression for all time
points. In multivariate linear regression, radiosensitive histology (p=0.006) was the only
significant predictor for metastasis regression at 3 months. Volumetric regression ≥20% at
3 months post-SRT was the only significant prognostic factor for subsequent control in
multivariate analysis (HR 0.63, p=0.023), whereas regression ≥65% was no significant
predictor.

Conclusions: Volumetric regression post-SRT does not occur at a constant rate but is
most pronounced in the first 6 weeks to 3 months. Despite decreasing over time,
volumetric regression continues beyond 6 months post-radiotherapy and may lead to
complete resolution of controlled lesions by 24 months. Radioresistant histology is
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associated with slower regression. We found that a cutoff of ≥20% regression for the
volumetric definition of response at 3 months post-SRT was predictive for subsequent
control whereas the currently proposed definition of ≥65% was not. These results have
implications for standardized volumetric criteria in future radiotherapy trials for brain
metastases.
Keywords: brain metastases, stereotactic radiotherapy, stereotactic radiosurgery, volumetric analysis, MRI,
longitudinal analysis, volumetric regression
INTRODUCTION

Brain metastases are diagnosed in 170,000 patients annually in the
United States and in 20% to 40% of patients with cancer (1). Despite
their high prevalence, brain metastases are still underrepresented in
clinical trials and basic scientific questions remain unanswered (2).
Among others, there is currently insufficient knowledge on the
natural course of volumetric regression in brain metastases
following stereotactic radiotherapy (SRT) and diverse conceptions
exist ranging from wax and wane type volume changes post-SRT to
a continuous albeit slowed growth (3).

SRT is one of the most important treatment modalities for brain
metastases today. Due to the continuous advancements in systemic
treatments and consecutive improvements in extracranial control,
more andmore patients are treated with SRT during their illness (4).
In the context of systemic treatments with extracranial long-term
efficacy, sustained intracranial control becomes a necessary
prerequisite for long-term survival. The significance of SRT is
therefore expected to rise further and SRT needs to be optimized
in terms of efficacy and tolerability due to continued research and
clinical trials.

To enable further systematic progress, standardized criteria
for the assessment of progression and response are of vital
importance with volumetric analysis potentially being superior
to traditional unidimensional measurements (5–8). The RANO-
BM guideline is an important step in this direction. However,
while the RANO-BM guideline stresses the importance of further
research on volumetric assessment, it can only provide very
incomplete guidance on volumetric criteria for the definition of
response and progression due to a profound lack of scientific
studies to base any recommendations upon (8). This is especially
true for radiotherapy, where different criteria might be required
than for systemic therapy trials. The basic understanding of the
natural course of volumetric regression in brain metastases after
stereotactic radiotherapy is currently incomplete and optimal
criteria for the volumetric definition of response post-SRT are
unknown (8).

In the present study we therefore sought to describe the
natural course of volumetric regression of brain metastases after
stereotactic radiotherapy in a large dataset of 419 brain
metastases using 3145 whole-tumor segmentations. Predictors
for volumetric regression in brain metastases were investigated.
Wherever possible we adapted the RANO-BM recommendations
or derived volumetric criteria from the established
unidimensional RANO-BM criteria to support a standardized
assessment of brain metastases. Furthermore, we evaluated the
2255
prognostic significance of volumetric response in brain
metastases post-SRT for subsequent control by comparing the
current RANO-BM recommendation to a commonly used lower
volumetric threshold.
METHODS

Ethics
Ethical review and approval was not required for this study in
accordance with the local legislation and institutional
requirements (BayKrG Art. 27). Written informed consent that
data may be used for retrospective scientific studies was provided
by the patients.

Patient Population
We identified all patients who received stereotactic radiotherapy
(SRT) for intracranial metastases at our institution between
January of 2003 and April of 2015. From this group of 566
patients, patients were selected based on the following inclusion
criteria: 1) stereotactic radiotherapy for intraparenchymal brain
metastases from a solid cancer, 2) no prior SRT and no prior
resection of the metastasis to be analyzed, 3) availability of
contrast-enhanced T1-Mprage sequences with ≤ 1 mm slice
thickness at baseline and at least once during follow-up. 419
brain metastases in 189 patients fulfilled these criteria and were
selected for further analysis. Of these 189 patients, 97 were male
(51.3%) and 92 were female (48.7%). Median age at start of
radiotherapy was 62 years (range, 25–84 years).

In this cohort, the most common primary was malignant
melanoma (42.5%, 178/419). 22.2% (93/419) of all metastases
originated from lung cancer, 12.4% (52/419) from breast cancer
and 10.5% (44/419) from renal cancer. Of the 93 metastases from
lung cancer, 25.8% (24/93) were derived from small-cell lung
cancer and the remaining 74.2% (69/93) from non-small-cell
lung cancer. As common in brain metastases, melanoma, renal
cell cancer and sarcoma were considered radioresistant
histologies (9). Median pretreatment metastasis volume was
0.29 cm³, and median maximum diameter was 1.1 cm (Table 1).

Radiation Therapy
Patients received single-session radiosurgery (SRS) or
fractionated stereotactic radiotherapy (FSRT) with a linear-
accelerator based Novalis® or Novalis-Tx® system (BrainLAB,
Feldkirchen, Germany). Patients were immobilized in an
individually manufactured thermoplastic head mask attached
January 2021 | Volume 10 | Article 590980
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to a stereotactic base frame (BrainLAB, Feldkirchen, Germany).
Treatment planning was performed using Iplan (BrainLAB,
Feldkirchen, Germany) (10, 11). Patients received a dedicated
planning CT, which was rigidly coregistered with the baseline
MRI using the Iplan software. The gross target volume (GTV)
was delineated in the contrast-enhanced T1-Mprage sequence of
the baseline MRI study. Planning target volume (PTV) was
defined as GTV with an additional margin of 1–2 mm. During
treatment, daily stereoscopic X-ray imaging (ExacTrac®) was
used for setup verification and repositioning. For SRS,
stereoscopic X-ray imaging was repeated after every couch
rotation. 41.3% (173/419) of all metastases had been treated
with upfront whole-brain radiotherapy (WBRT) before
stereotactic radiotherapy (SRT) while 58.7% (246/419) received
Frontiers in Oncology | www.frontiersin.org 3256
SRT alone. Median WBRT fraction dose was 3 Gy (interquartile
range [IQR], 2–3 Gy) and median total WBRT dose was 40 Gy
(IQR, 30–40 Gy). In case of upfront WBRT, WBRT was
considered integral part of the treatment and the start date of
WBRT was determined to be the start of radiotherapy for the
respective brain metastases. In addition, WBRT dose was
included in the calculation of the biologically effective dose
(see below).

51.3% (215/419) of all metastases were treated with SRS while
48.7% (204/419) were treated with FSRT. Median single dose for
SRS was 18 Gy. Different fractionation schemes were employed
with FSRT. Median single dose for FSRT was 4 Gy and median
total dose was 30 Gy (Table 1). As institutional policy smaller
metastases were treated with SRS and larger metastases with
TABLE 1 | Characteristics of treated brain metastases (N = 419).

Metastasis characteristic Total cohort
(N = 419)

Subsets for analysis of

Regression in controlled metastases
(N = 205)

Prognostic significance of volumetric
regression (N = 179)

Primary cancer histology,
n (%)
MelanomaR 178 (42.5%) 78 (38.0%) 77 (43.0%)
Lung 93 (22.2%) 53 (25.9%) 39 (21.8%)
Breast 52 (12.4%) 28 (13.7%) 29 (16.2%)
RenalR 44 (10.5%) 23 (11.2%) 21 (11.7%)
Gastrointestinal 23 (5.5%) 14 (6.8%) 4 (2.2%)
Bladder/Urinary tract 6 (1.4%) 5 (2.4%) 6 (3.4%)
SarcomaR 7 (1.7%) 2 (1.0%) 1 (0.6%)
Gynecologic 4 (1.0%) 1 (0.5%) 0 (0.0%)
Other 12 (2.9%) 1 (0.5%) 2 (1.1%)
Pretreatment metastasis
volume, cm³
Median (IQR) 0.29 (0.08–1.25) 0.33 (0.08–1.81) 0.26 (0.06–1.30)

Pretreatment metastasis
diameter, cm
Median (IQR) 1.1 (0.7–1.7) 1.1 (0.7–2.0) 1.1 (0.7–1.7)

Pretreatment metastasis
diameter, n (%)
< 1 cm 187 (44.6%) 89 (43.4%) 83 (46.4%)
1–2 cm 150 (35.8%) 66 (32.2%) 61 (34.1%)
2–3 cm 46 (11.0%) 27 (13.2%) 19 (10.6%)
> 3 cm 36 (8.6%) 23 (11.2%) 16 (8.9%)

Upfront WBRT before SRT,
n (%)
No 246 (58.7%) 109 (53.2%) 93 (52.0%)
Yes 173 (41.3%) 96 (46.8%) 86 (48.0%)
Type of stereotactic
radiotherapy, n (%)
Single session radiosurgery 215 (51.3%) 93 (45.4%) 85 (47.5%)
Fractionated stereotactic
radiotherapy

204 (48.7%) 112 (54.6%) 94 (52.5%)

SRS Single Dose, Gy
Median (IQR) 18.0 (18.0–20.0) 18.0 (18.0–20.0) 18.0 (16.0–20.0)

FSRT: Single Dose, Gy
Median (IQR) 4.0 (3.0–4.0) 4.0 (3.0–4.0) 4.0 (3.0–4.0)

FSRT: Total Dose, Gy
Median (IQR) 30.0 (20.0–40.0) 35.0 (28.0–40.0) 32.0 (20.0–40.0)

Total BED12-LQC, Gy
Median (IQR) 52.4 (41.0–72.6) 55.6 (43.3–73.1) 55.6 (41.0–73.1)
Ja
IQR, interquartile range; WBRT, Whole-brain radiotherapy; BED12-LQC, Biologically effective dose for an alpha/beta ratio of 12, linear-quadratic-cubic model. Total BED12-LQC was
calculated including WBRT dose, if upfront WBRT was delivered prior to stereotactic radiotherapy.
Rclassified as radioresistant histology.
nuary 2021 | Volume 10 | Article 590980
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FSRT. Median metastasis volume for SRS was 0.11 cm³ (IQR,
0.04–0.30 cm³) and median diameter was 0.8 cm (IQR, 0.6–1.1
cm) and median metastasis volume for FSRT was 1.19 cm³ (IQR,
0.31–4.28 cm³), with a median diameter of 1.7 cm (IQR, 1.1–
2.4 cm).

As established by Wiggenraad et al., biologically effective dose
(BED) was calculated based on an a/b ratio of 12 according to
the LQC model (BED12-LQC) (12, 13):

BED12 – LQC = nd   1 +  
d
a
b

� � −
d2

a
g

� �
2
4

3
5

With n being the number of fractions and d being the dose per
fraction, a/b was assumed to be 12 Gy and a/g 648 Gy² (12, 13).
In case of upfront WBRT, BED12-LQC were separately calculated for
WBRT and SRT and added together to form the total BED12-LQC

used for further calculations.

Follow-Up and Imaging
Images were collected on different Siemens 1.5 Tesla MRI
scanners (Magnetom Aera or Magnetom Avanto) at our
institution. All analyzed images consisted of 160 or 192
contiguous, sagittal, or transversal planes of 3-dimensional T1-
weighted magnetization-prepared rapid gradient-echo images
with 1 × 1 × 1 mm isotropic resolution (repetition time [TR] =
1,900 ms, echo time [TE] = 3.02 ms, inversion time [TI] = 1,100
ms, matrix = 256 × 265, field of view [FoV] = 250, flip angle = 15
degrees or TR = 2200 ms, TE = 2.67 ms, TI = 900 ms, matrix =
256 × 246, FoV = 250, flip angle = 8 degrees) after intravenous
application of 0.2 ml/kg Dotarem (Guerbet) or 0.1 ml/kg
Gadovist (Bayer), respectively.

Patients received MRI at baseline (median of 8 days before
radiotherapy) and routinely at 6 weeks after stereotactic
radiotherapy (SRT) and every 3 months thereafter. However,
due to the retrospective nature of the study patients received MRI
at slightly different points in time after SRT. To allow for analysis
five time intervals were defined for volumetric measurements: 6
weeks after SRT = 6 ± 2 weeks after SRT, 3 months = 3 months ±
4 weeks after SRT, 6 months = 6 months ± 4 weeks after SRT, 12
months = 12 months ± 8 weeks after SRT and 24 months = 24
months ± 8 weeks after SRT.

Volumetric Analysis
In total, 3,145 MRI studies were used for volumetric analysis
(median of 6, IQR 4–9 per patient). Segmentation was performed
using the open-source software 3D Slicer (version 4.5.0) (14). 3D
Slicer is supported by the National Institutes of Health (NIH)
and has a large worldwide developer community and adoption
(15). The software offers different modules for segmentation,
volume statistics and image coregistration. A custom-developed
module was used that utilizes the built-in modules but
accelerates the segmentation process by automating steps that
do not require user interaction (16). Segmentation was
performed semi-automatically using the VTK Fast Growcut
method (17) as semiautomatic segmentation methods have
been shown to decrease inter- and intra-observer variabilities
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(18, 19) and are much more time-efficient than manual
delineation (20). Following a first semi-automatic segmentation
step all segmentations were reviewed and corrected manually on
a slice-by-slice basis using the editor module in 3D Slicer.

Volumetric Extension of the RANO-BM
Criteria for the Assessment of Progression
Following SRT
We support the efforts for standardization in the assessment of
response in brain metastases put forth by the RANO-BM
working group (8). While the RANO-BM guideline stresses the
importance of further research on volumetric analysis in brain
metastases, the proposed criteria for volumetric analysis
provided in the RANO-BM guideline are incomplete due to
the lack of research supporting specific recommendations for
volumetric assessment (8). We therefore adopted the basic
concept from the RANO-BM guideline to derive volumetric
criteria from the established unidimensional recommendations
using spherical geometry. In this regard, the RANO-BM
guideline recommends defining volumetric partial response as
≥ 65% reduction in volume (8). Following this principle,
progression was defined as ≥ 72.8% increase in volume in the
present study relative to nadir/baseline, which corresponds to a ≥
20% increase in diameter of a perfect sphere (i.e., the
unidimensional RANO-BM criteria for progression). In
addition, as the RANO-BM guideline recommends to consider
small brain metastases between 5 and 10 mm in diameter as
unchanged unless the longest diameter changes by at least 3 mm,
an additional absolute increase in volume of at least 0.2 cm³ was
required for the definition of progression in the present study.
This corresponds to the absolute volume increase of a 5 mm
sphere growing by additional 3 mm in diameter. Due to this
additional requirement and because the main aim of this study
was to give an adequate representation of volumetric change in
brain metastases following SRT, which are frequently < 5 mm
in diameter, no lower size limit for brain metastases was defined
in the present study. In addition, as SRT is a localized therapy,
change in distant lesions, corticosteroid use or clinical status
were not considered in the definition of progression in the
present study. Lesions experiencing volumetric progression as
per the criteria above but that subsequently showed spontaneous
regression during imaging follow-up back to baseline/nadir
volume or showed volumetric partial response as per the
RANO-BM recommendation (i.e., ≥ 65% reduction in volume)
were classified as pseudoprogression/radionecrosis instead of
progression. Similarly, in the case of resection, metastases were
classified as progression, radionecrosis or both based on
histology (21).

Statistical Analysis
For the analysis of the natural course of volumetric regression
after SRT, only brain metastases were selected that did not show
volumetric increase of ≥ 72.8% during their entire follow-up, did
not receive resection for radionecrosis or progression and had a
minimum imaging follow-up of at least 3 months. 205 metastases
fulfilled these criteria and were used for this analysis. Of these,
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volumetric data was available for n=50 metastases at 6 weeks,
n=166 metastases at 3 months, n=100 at 6 months, n=69 at 12
months and n=31 at 24 months.

Volumetric regression of brain metastases was compared
between different groups using the Wilcoxon rank-sum test.
Multiplicity adjustments were not performed, so p-values are
descriptive and reflect a Type I error for the individual
comparison. Univariate and multivariate linear regression were
performed to evaluate potential predictors of residual relative
metastasis volume at 3 months post-SRT.

For the evaluation of the prognostic significance of volumetric
response at 3 months for subsequent local control, metastases
were selected that had not progressed until then, had volumetric
data available at 3 months post-SRT and had additional imaging
follow-up. 179 brain metastases fulfilled these criteria and were
used for this analysis. Time to local progression was calculated
from the date of imaging 3 months post-SRT until progression as
per the criteria defined above or cases were censored at the date
of last imaging follow-up. Local control was compared between
brain metastases with and without volumetric response (defined
as ≥ 20% and ≥ 65% volume reduction, respectively) by means of
the Kaplan-Meier method and the logrank test. Furthermore, the
prognostic significance of volumetric response and other
prognostic factors at 3 months post-SRT for subsequent local
control was evaluated in univariate and multivariate Cox’s
regression analysis.

Covariates were included in multivariate models based on
biologic considerations. P-values < 0.05 were considered
statistically significant. All statistical analyses were performed
using IBM SPSS 21.
RESULTS

Volumetric Regression in the Entire
Cohort of Brain Metastases
First, we investigated the course of volumetric regression in the
entire cohort of 419 brain metastases. In the entire cohort,
median relative metastasis volume following stereotactic
radiotherapy was 78.7% at 6 weeks, 55.8% at 3 months, 30.4%
at 6 months, 24.7% at 12 months, and 11.2% at 24 months
(Figure 1A). We also assessed volumetric regression stratified by
metastasis diameter. Interestingly, even though the number of
metastasis > 2 cm was limited (n = 82, Table 1), the observed
time course of volumetric regression was quite similar for
metastases < 1 cm, between 1 and 2 cm, between 2 and 3 cm
and for lesions > 3 cm (Figure 1B). Seventy-eight metastases
experienced progression during follow-up. These progressive
lesions showed an almost continuous increase in median
relative metastasis volume (132.3% at 6 weeks, 154.5% at 3
months, 192.3% at 6 months, 184.6% at 12 months, and
252.3% at 24 months post-SRT). Interestingly, metastases
experiencing pseudoprogression (n = 16) during follow-up, i.e.,
volumetric progression followed by spontaneous regression in
size, had two peaks in median relative metastasis volume at 6
weeks and at 12 months post-SRT (261.4% at 6 weeks, 116.0% at
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3 months, 96.9% at 6 months, 293.2% at 12 months, and 217.4%
at 24 months post-SRT, Figure 1A).

Natural Course of Volumetric Regression
in Controlled Brain Metastases
The natural course of volumetric regression was investigated in
205 lesions that did not develop progression or radionecrosis
during their entire imaging follow-up of at least 3 months (see
methods section) to avoid superposition by progressive or
pseudoprogressive lesions in different phases of growth and to
obtain a reference for physiologic volume changes post-SRT.
Median relative metastasis volume following stereotactic
radiotherapy was 66.9% at 6 weeks (IQR, 23.0%–87.2%, n =
50), 38.6% at 3 months (IQR, 8.1%–71.1%, n = 166), 17.7% at 6
months (IQR, 0.0%–43.9%, n = 100), 2.7% at 12 months (IQR,
0.0%–30.9%, n = 69) and 0.0% at 24 months (IQR, 0.0%–18.9%,
n = 31) (Figure 2). Similar results were obtained in a sensitivity
analysis when excluding the minority of lesions from small-cell
lung cancer (median relative tumor volume, 6 weeks: 67.3%,
A

B

FIGURE 1 | Median metastasis volume over time following stereotactic
radiotherapy in the entire cohort of metastases (N = 419). Tumor volumes are
expressed relative to baseline volume. (A) Median metastasis volume over
time for the total cohort (N = 419, blue), for lesions experiencing progression
(N = 78, red) or pseudoprogression during follow-up (N = 16, orange) and for
the subset of controlled metastases used for further analyses (N = 205, see
methods section for definition, green). Dotted lines represent the 95%
confidence interval. (B) Median metastasis volume over time in the entire
cohort stratified by baseline metastasis diameter.
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3 months: 40.0%, 6 months: 21.7%, 12 months: 4.5%, 24
months: 0.0%).

Next, we assessed the impact of tumor size on volumetric
regression stratifying by metastasis diameter (Figure 3). For
metastases < 1 cm, median tumor volume was 58.4% at 6
weeks, 29.2% at 3 months, 19.6% at 6 months and 0.0% at 12
months. For tumors 1–2 cm, median volume was 69.1% at 6
weeks, 28.8% at 3 months, 16.2% at 6 months and 6.9% at 12
months. In the subgroup of metastases with 2–3 cm, median
tumor volume was 72.8% at 6 weeks, 43.6% at 3 months, 11.1% at
6 months and 1.9% at 12 months. Finally, for brain metastases >
3 cm, median tumor volume was 63.1% at 6 weeks, 63.3% at 3
months, 48.2% at 6 months but 2.2% at 12 months. Interestingly,
across all tumor size categories metastasis regression was not
significantly different for any of the time points studied, despite
differences in volumetric regression tended towards being
significant at 3 months post-SRT (Kruskal-Wallis p = 0.052).
In addition, when dichotomizing metastases according to tumor
diameter, there was no significant difference in volumetric
regression between lesions < 1 cm and ≥ 1 cm for any of the
time points studied (Wilcoxon rank-sum p ≥ 0.070). Similarly,
no significant difference in volumetric regression was observed
for metastases with 2–3 cm diameter compared to lesions < 2 cm
(Wilcoxon rank-sum p ≥ 0.226). Only for brain metastases ≥
3 cm, median volumetric regression was diminished at 3 and 6
months and volumetric regression at 3 months was significantly
lower than for metastases < 3 cm (p = 0.015). Despite the number
of larger metastases was limited (Table 1), we thus found no
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indication that the course of volumetric regression post-SRT
differed fundamentally in relation to tumor size for brain
metastases up to 3 cm in diameter.

Brain metastasis regression over time was compared for
primary tumor histology, SRS vs. FSRT, upfront Whole-brain
radiotherapy (WBRT) vs. no upfront WBRT and for melanoma
vs. nonmelanoma histology (Figure 4). Radioresistant histology
(i.e., melanoma, sarcoma, and renal cell carcinoma) was
associated with reduced median tumor regression for all time
points (median relative tumor volume, 6 weeks: 67.4% vs. 54.7%,
3 months: 50.1% vs. 23.9%, 6 months: 28.6% vs. 10.3% and 12
months: 18.5% vs. 1.1%). Difference in tumor regression for
radioresistant and radiosensitive histology was significant at 3
months (p = 0.015, Wilcoxon rank-sum test, Figure 4A). As
melanoma was the most common histology in this series, we
additionally compared volumetric regression for metastases with
melanoma and nonmelanoma histology. Melanoma brain
metastases showed reduced median tumor regression at 3, 6,
and 12 months post-SRT (median relative tumor volume, 6
weeks: 66.5% vs. 69.1%, 3 months: 47.0% vs. 28.4%, 6 months:
28.6% vs. 10.3% and 12 months: 23.8% vs. 1.1%) with the
difference at 12 months being significant (p = 0.019, Figure
4B). SRS was associated with more profound median tumor
regression for all time points in comparison to FSRT (median
relative tumor volume, 6 weeks: 50.9% vs. 72.8%, 3 months:
28.9% vs. 45.4%, 6 months: 7.0% vs. 24.8% and 12 months: 0.0%
vs. 3.3%). Differences were significant for 6 weeks and 3 months
(p = 0.030 and p = 0.020, respectively, Wilcoxon rank-sum test,
Figure 4C). For brain metastases treated with upfront WBRT
before SRT, we observed reduced median volumetric regression
at 6 weeks but increased volumetric regression at all other time
points. None of these differences was significant however
(median relative tumor volume, 6 weeks: 75.4% vs. 66.5%, 3
months: 26.3% vs. 50.1%, 6 months: 7.0% vs. 24.8%, 12 months:
1.1% vs. 7.3%, Figure 4D).

To better understand which treatment and tumor-related
factors determine volumetric regression of brain metastases, we
investigated which parameters influence relative metastasis
FIGURE 2 | Median metastasis volume over time following stereotactic
radiotherapy in controlled brain metastases (N = 205). Tumor volumes are
expressed relative to baseline volume. Error bars show the 95% confidence
interval. Note: Volumetric regression is most pronounced in the first 3 months
but continues thereafter. Upper right inset: Example of longitudinal volumetry
in a larger brain metastasis treated with fractionated stereotactic radiotherapy
(FSRT). Left ordinate shows relative tumor volume and right ordinate shows
absolute metastasis volume (cm³). Segmentation is shown for different
measurement time points.
FIGURE 3 | Median metastasis volume over time following stereotactic
radiotherapy in controlled brain metastases stratified by baseline metastasis
diameter.
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volume at 3 months post-SRT in linear regression analysis. In
univariate analysis, radioresistant tumor histology (p = 0.011),
FSRT vs. SRS (p = 0.048) and increasing pretreatment metastasis
volume (p = 0.032) were significant factors for worse tumor
regression. In multivariate analysis, radioresistant histology (p =
0.006) remained the only significant predictor for reduced
metastasis regression at 3 months post-SRT (Table 2).

Prognostic Significance of Volumetric
Response at 3 Months Post-SRT for
Subsequent Local Control
Next, we evaluated the prognostic significance of volumetric
response at 3 months following stereotactic radiotherapy for
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subsequent local control of irradiated brain metastases. A second
subset of 179 brain metastases was used to evaluate the
prognostic significance of volumetric response for subsequent
local control, in which imaging was performed at 3 months post-
SRT and that had not progressed until then. The RANO-BM
criteria currently recommend defining partial response
volumetrically as a reduction in tumor volume of at least 65%
(8). The minimum volume reduction that can be reliably
detected, however, is commonly considered to be as low as
20% (22, 23). As it is currently unclear, which volume cut-off
is superior for the volumetric definition of partial response (8),
we evaluated both thresholds in their ability to differentiate low-
from high-risk metastases during subsequent follow-up. At 3
January 2021 | Volume 10 | Article 590980
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FIGURE 4 | Median metastasis volume over time for (A) radiosensitive vs. radioresistant histology (i.e., melanoma, renal cell carcinoma or sarcoma),
(B) Nonmelanoma vs. melanoma histology, (C) single-session radiosurgery (SRS) vs. fractionated stereotactic radiotherapy (FSRT), and (D) Upfront whole-brain
radiotherapy (WBRT) vs. no upfront WBRT. Asterisks indicate significant intergroup differences for the respective timepoint.
TABLE 2 | Predictive factors for residual relative metastasis volume at 3 months in linear regression analysis (N = 166).

Parameter Univariate Multivariate

b coefficient (95% CI) p-value b coefficient (95% CI) p-value

Primary tumor histology,
radioresistant vs. radiosensitive

0.153 (0.036–0.271) 0.011 0.171 (0.050–0.292) 0.006

SRS vs. FSRT -0.120 (-0.239–0.001) 0.048 -0.122 (-0.251–0.007) 0.064
Pretreatment metastasis volume, cm³ 0.008 (0.001–0.016) 0.032 0.006 (-0.002–0.014) 0.143
Total BED12-LQC, Gy -0.002 (-0.006–0.001) 0.217 -0.001 (-0.008–0.006) 0.764
Upfront WBRT -0.103 (-0.222–0.015) 0.088 -0.019 (-0.231–0.192) 0.856
Univariate and multivariate linear regression for relative metastasis volume at 3 months normalized to baseline tumor volume. SRS, Stereotactic radiosurgery; FSRT, Fractionated
stereotactic radiotherapy; BED12-LQC, Biologically effective dose for an alpha/beta ratio of 12, linear-quadratic-cubic model; WBRT, Whole-brain radiotherapy.
Significant covariates are highlighted in bold.
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months post-SRT, volumetric response as defined by a
volumetric reduction of ≥ 65% relative to baseline did not
significantly differentiate metastases that subsequently
developed progression and those that remained subsequently
controlled (median not reached, 1-year local control [15 months
post-SRT]: 81.5% vs. 85.5%, logrank p = 0.273) (Figure 5A).
Moreover, in multivariate analysis, when including type of
stereotactic radiotherapy, pretreatment metastasis volume,
primary tumor histology, upfront WBRT and BED12-LQC,
volumetric reduction ≥ 65% did not significantly discriminate
between metastases with subsequent control and those
developing progression (HR 0.79, p = 0.290). In contrast,
volumetric regression ≥ 20% compared to baseline did
significantly differentiate high-risk metastases from those with
subsequent local control (median not reached, 1-year local
control [15 months post-SRT] 72.7% vs. 88.3%, logrank p =
0.036) (Figure 5B). This was equally observed in a sensitivity
analysis when excluding the minority of metastases from small-
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cell lung cancer (median not reached, 1-year local control [15
months post-SRT] 72.7% vs. 87.4%, logrank p = 0.038). When
examining the most common histology, melanoma brain
metastases alone, volumetric regression ≥ 20% also separated
high- from low-risk metastases (1-year local control [15 months
post-SRT]: 78.6% vs. 92.9%) but significance was lost (p = 0.204)
in the context of reduced statistical power (n = 77 vs. 179
metastases). In multivariate analysis across all histologies,
when including type of stereotactic radiotherapy, pretreatment
metastasis volume, primary tumor histology (i.e., radiosensitive
vs radioresistant histology), BED12-LQC and the use of upfront
WBRT, volumetric regression ≥ 20% at 3 months was the only
significant predictor for local control during the subsequent
follow-up period (HR 0.40, p = 0.023) (Table 3). Interestingly,
volumetric regression at 3 months was also predictive for
subsequent local control when assessed as continuous
parameter in univariate (HR 0.9996 per percent decrease in
volume, p = 0.003) and in multivariate analysis (HR 0.9996 per
percent decrease in volume, p = 0.010).
DISCUSSION

Several attempts have been undertaken in the past to describe
volume changes in brain metastases after stereotactic radiotherapy
(SRT) (3, 24–29). However, although these studies provided
important evidence, they were limited by a low number of
analyzed metastases (25, 29, 30), few time points studied (24), or
the fact that volumetric measurements were only carried out
heurist ical ly (3 , 26) and not by means of whole-
tumor segmentation.

In every case, analyses were not restricted to controlled brain
metastases, so that progressing metastases in different stages of
growth impeded the accurate assessment of volumetric
regression over time.

In the present study, we attempted to overcome these
limitations by only including metastases that had no evidence
of progression or radionecrosis during follow-up. Volumetric
criteria for progression and radionecrosis were objective and
derived from the RANO-BM guideline by following the
overarching concepts of the guideline (8).

Furthermore, we used volumetric data from 3145 whole-
tumor segmentations defined in high resolution 1-mm³
isotropic T1-MPrage sequences for the present study but
limited the analysis to five time-points post-SRT where enough
volumetric data was available. In addition, in the present
analysis, we studied median relative metastasis volume that is
less sensitive to outliers than the mean, that has been used in past
studies (27). Overall, the present study might provide the most
comprehensive picture of volumetric regression in brain
metastases following SRT to date. Important findings are that
volumetric regression in brain metastases post-SRT does not
occur at a constant rate but is most pronounced in the first 6
weeks to 3 months. Despite decreasing over time, volumetric
regression continues beyond 6 months post-SRT.
A

B

FIGURE 5 | Prognostic significance of volumetric response at 3 months
post-stereotactic radiotherapy (SRT) for subsequent local control in a second
subset without prior progression and subsequent imaging follow-up. Kaplan-
Meier plots for two different thresholds for the definition of volumetric
response are shown: (A) ≥ 65% as per the current RANO-BM
recommendation and (B) ≥ 20%, which is commonly considered the lowest
volumetric threshold that can be reliably detected. Vertical bars represent
censored cases.
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Multiple clinical studies in the past have assumed a linear
reduction in relative tumor volume over time, which may lead to
wrong conclusions. For example, a recent retrospective study on
the prognostic significance of volumetric regression in
melanoma brain metastases counterintuitively found a worse
overall survival and a higher rate of distant brain metastases in
cases with faster volumetric regression post-SRT. The authors
had assumed a continuous rate of volumetric reduction and
calculated a “tumor dynamic index” as average percentage
decrease in metastasis volume per day (31). As follow-up
imaging was done 1–3 months post-SRS, a higher average
percentage decrease in volume could have simply reflected an
earlier follow-up MRI due to new neurologic symptoms or
overall worsening patient condition (31).

Importantly, we also discovered that controlledbrainmetastases
showed complete resolution during long-term follow-up, while the
main clinical aim of stereotactic radiotherapy is of course to enable
long-term control and to support prolonged survival. This finding
emphasizes that stereotactic radiotherapy is a highly effective
treatment modality and that complete resolution of imaging
findings during follow-up is expected and does not à posteriori
invalidate the imaging diagnosis of brain metastasis. Finally, a
description of the natural course of volumetric regression in brain
metastasesmay constitute an important referencewhendeveloping
criteria for the volumetric assessment of brainmetastases in clinical
trials. We investigated different predictors for volumetric
regression. In the final multivariate analysis radioresistant
histology was the only significant predictor for reduced
volumetric regression at 3 months post-SRT. While this finding
has been described before (24, 27), we were able to confirm it in a
large dataset accounting for possible confounders in
multivariate analysis.

This finding might reflect fundamental radiobiologic
differences in brain metastases according to primary histology.
Individualizing dose prescription and fractionation schemes in
brain metastases according to histology could represent an
important approach to further improve the efficacy and
tolerability of stereotactic radiotherapy.
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In addition, the finding of differential response to stereotactic
radiotherapy according to histology also highlights that brain
metastases constitute a heterogenous disease - a fact that has
contributed to the underrepresentation of brain metastases in
clinical trials and lack of research. In the present study, we
deliberately did not attempt to limit the analysis to a
homogeneous subgroup instead we attempted to describe
volumetric regression in a continuous cohort of brain
metastases that is more representative of the heterogeneity
found in daily clinical practice.

Standardized criteria for the assessment of response and
progression are however of vital importance and the RANO-
BM guideline represents a major advancement in this regard (8).
Beside stressing the importance of more research on the
volumetric assessment of brain metastases, the RANO-BM
guideline discusses two thresholds for the volumetric definition
of partial response, notably ≥ 20% and ≥ 65% volume reduction
(8). A threshold of ≥ 65% volume reduction is derived from the
established unidimensional criterion of ≥ 30% decrease in
diameter (i.e., a sphere decreasing by 30% in diameter
decreases by ca. 65% in volume) and therefore represents a
continuation of the current unidimensional criteria. However, a
threshold of ≥ 20% volume reduction, which is commonly
considered to be the lowest threshold that can be reliably
detected (22, 23), may have a higher sensitivity in detecting
metastases with a favorable prognosis. In the present study we
compared both thresholds in their ability to discriminate
between metastases with subsequent control and those
developing progression at 3 months post-SRT. Volumetric
regression ≥ 20% at 3 months post-SRT significantly predicted
subsequent control and was the only significant prognostic factor
for subsequent local control in multivariate analysis, whereas
volumetric regression ≥ 65% did not significantly differentiate
metastases that subsequently developed progression and those
that remained subsequently controlled.

These findings suggest that – in the context of stereotactic
radiotherapy – ≥ 20% volume reduction could be a better
threshold for the volumetric definition of response. Further
TABLE 3 | Predictive value of volumetric response at 3 months post-radiotherapy for local control during subsequent follow-up: Univariate and multivariate Cox’s
regression analysis (N = 179).

Parameter Univariate Multivariate

HR (95% CI) p-value HR (95% CI) p-value

Volumetric regression ≥ 20% 0.45 (0.21–0.97) 0.041 0.40 (0.18–0.88) 0.023
Volumetric regression ≥ 65% 0.63 (0.28–1.44) 0.277 Not included Not included
SRS vs. FSRT 0.55 (0.25–1.23) 0.148 0.50 (0.19–1.30) 0.153
Pretreatment metastasis volume, cm³ 1.03 (0.99–1.07) 0.101 1.02 (0.98–1.06) 0.311
Primary tumor histology,
radioresistant vs. radiosensitive

0.81 (0.38–1.73) 0.581 0.68 (0.29–1.59) 0.374

Upfront Whole-brain radiotherapy 0.49 (0.22–1.10) 0.082 0.64 (0.18–2.33) 0.503
BED12-LQC, Gy 0.98 (0.95–1.01) 0.123 0.99 (0.94–1.03) 0.584
January 2021 | Volume 10 | A
Volumetric response was defined as ≥ 20% and ≥ 65% volume reduction relative to baseline, respectively. Volumetric regression ≥ 65%was not a significant predictor when included in the
multivariate model in place of volumetric regression ≥ 20% (HR 0.79, p = 0.290).
HR, Hazard ratio; WBRT, Whole-brain radiotherapy; FSRT, Fractionated stereotactic radiotherapy; SRS, Stereotactic radiosurgery; BED12-LQC, Biologically effective dose for an alpha/beta
ratio of 12, linear-quadratic-cubic model.
Significant covariates are highlighted in bold.
rticle 590980

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Oft et al. Volumetric Regression in Brain Metastases
studies will need to confirm this finding, however. Moreover,
different criteria for the definition of response may be needed in
the context of stereotactic radiotherapy in comparison to
systemic therapy trials.

Volumetric analysis has many methodologic advantages,
including the more reliable measurement of complex lesions (5,
6), the invariance to different scan planes and patient positioning
and generally that it allows to reliably detect smaller changes in
tumor size than unidimensional assessment (7, 8).

Already in 2001, Sorenson et al. showed in a JCO publication
that volumetry using whole-tumor segmentation in 219
glioblastoma cases lead to reduced inter- and intrareader
variability compared to measuring three orthogonal diameters.
Furthermore, they observed differences in response classification
in more than every fourth patient (6).

The fact that, nearly two decades later, volumetric analysis is still
not standard in clinical trials today, cannot be explained by a lack of
supporting research alone. Instead, for the most time, volumetric
assessment has been very costly and time-consuming (8).Whereas
Sorenson et al. still needed to scan physical films for subsequent
slice-by-slice segmentation (6), semiautomatic techniques have
emerged that are much more time-efficient and reduce inter- and
intra-observer variability (18–20). Recently, the advent of artificial
neural networks has even enabled accurate fully automatic
segmentation of brain tumors (32, 33). Moreover, radiomic
analyses also necessarily require tumor segmentations and are
increasingly incorporated into clinical trials (34). It is therefore
very likely that volumetric assessment will ultimately become the
new standard for the assessment of response and progression in
clinical trials. As stereotactic radiotherapy will have an increasingly
important role to play in enabling intracranial long-term control,
further research on volumetric changes and on optimized criteria
for the volumetric assessment of progression and response is
much-needed.

Limitations
As this was a retrospective study, the timing of imaging studies was
not strictly standardized and we were limited to study time points,
where enough volumetric data was available. Also, fewer imaging
studies were available for later time points. Standardization in
treatment benefited from the fact that all imaging and treatment
was done at a single institution. However, due to the retrospective
nature it cannot be excluded that treatment-related factors could
have been influenced by hidden confounders. Similarly, as selection
of metastases for single-session radiosurgery vs. fractionated
stereotactic radiotherapy was dependent on tumor size, no
definitive conclusions in regard to differences in volumetric
regression between these two modalities should be drawn. As
most metastases in this series were ≤ 2 cm in diameter,
generalizability of the results to large metastases may be limited.
CONCLUSION

Volumetric regression of brain metastases after SRT does not
occur at a constant rate. Instead, volumetric regression is most
Frontiers in Oncology | www.frontiersin.org 10263
pronounced in the first 3 months. Despite decreasing over time,
volumetric regression continues beyond 6 months post-SRT and
may lead to complete resolution of controlled lesions by 24
months. Radioresistant histology is associated with slower
regression, which might reflect fundamental radiobiologic
differences. Volumetric analysis may have a role in identifying
metastases at risk for subsequent progression. A lower threshold
of ≥ 20% for the definition of volumetric response post-SRT was
superior to the current RANO-BM recommendation of ≥ 65%
in this study. Further volumetric studies in brain metastases
after stereotactic radiotherapy are of high importance to
establish volumetric criteria for standardized assessment in
clinical trials.
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Hospital, Central South University, Changsha, China, 3 Department of Pathology, Xiangya Hospital, Central South University,
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Background: Clear cell renal cell carcinoma (ccRCC) is the most common renal cancer
and it has the worst prognosis among all renal cancers. However, traditional radiological
characteristics on computed tomography (CT) scans of ccRCC have been insufficient to
predict the pathological grade of ccRCC before surgery.

Methods: Patients with ccRCC were retrospectively enrolled into this study and were
separated into two groups according to the World Health Organization (WHO)/International
Society of Urological Pathology (ISUP) grading system, i.e., low-grade (Grade I and II) group
and high-grade (Grade III and IV) group. Traditional CT radiological characteristics such as
tumor size, pre- and post-enhancing CT densities were assessed. In addition, radiomic
texture analysis based on the CT imaging of the ccRCC were also performed. A CT-based
machine learning method combining the traditional radiological characteristics and radiomic
features was used in the predictive modeling for differentiating the low-grade from the high-
grade ccRCC. Model performance was evaluated with the receiver operating characteristic
curve (ROC) analysis.

Results: A total of 264 patients with pathologically confirmed ccRCCwere included in this
study. In this cohort, 206 patients had the low-grade tumors and 58 had the high-grade
tumors. The model built with traditional radiological characteristics achieved an area under
the curve (AUC) of 0.9175 (95% CI: 0.8765–0.9585) and 0.8088 (95% CI: 0.7064–
0.9113) in differentiating the low-grade from the high-grade ccRCC for the training cohort
and the validation cohort respectively. The model built with the radiomic textural features
yielded an AUC value of 0.8170 (95% CI: 0.7353–0.8987) and 0.8017 (95% CI: 0.6878–
0.9157) for the training cohort and the validation cohort, respectively. The combined
model integrating both the traditional radiological characteristics and the radiomic textural
features achieved the highest efficacy, with an AUC of 0.9235 (95% CI: 0.8646–0.9824)
January 2021 | Volume 10 | Article 5703961265

https://www.frontiersin.org/articles/10.3389/fonc.2020.570396/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.570396/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.570396/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:doctorllf@163.com
mailto:798477952@qq.com
https://doi.org/10.3389/fonc.2020.570396
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.570396
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.570396&domain=pdf&date_stamp=2021-01-27


Abbreviations: ccRCC, clear cell renal cell c
IHC, immunohistochemistry; ISUP, Interna
LASSO, least absolute shrinkage and selecti
carcinoma; RCC, renal cell carcinoma; RF
machine; WHO, World Health Organizati

Yi et al. Radiomics Predicting Renal Cancer Grade

Frontiers in Oncology | www.frontiersin.org
and an AUC of 0.9099 (95% CI: 0.8324–0.9873) for the training cohort and validation
cohort, respectively.

Conclusion: We developed a machine learning radiomic model achieving a satisfying
performance in differentiating the low-grade from the high-grade ccRCC. Our study
presented a potentially useful non-invasive imaging-focused method to predict the
pathological grade of renal cancers prior to surgery.
Keywords: radiomics, clear cell renal cell carcinoma, computed tomography (CT), machine learning,
predictive modeling
INTRODUCTION

Clear cell renal cell carcinoma (ccRCC) constitutes 70%–80%
of all renal cancers (1–3) and it has a poor prognosis with a
cure rate under 70% even for a localized ccRCC treated by
radical nephrectomy (4–6). A novel four-tiered World Health
Organization (WHO)/International Society of Urological
Pathology (ISUP) grading (7) has been reported to have the
potential to predict prognosis in patients with ccRCC (8–10) who
may have the poorest prognosis among all patients with renal
cancer (11–13). The ccRCC tumors are usually subclassified into
two groups including the low-grade (Grade I and II) and the
high-grade (Grade III and IV) groups, reflecting the significant
difference in treatment strategy and prognosis between the two
groups (7, 10, 14). It has been shown that the higher ISUP grade
of ccRCC has greater biologic aggressiveness, and is associated
with worse survival (8, 9) and higher risk for recurrence after
partial (nephron-sparing) nephrectomy (15). Knowledge of ISUP
grade prior to surgery could guide clinical decision making (5,
16, 17). In addition, reliable ISUP grade obtained from a non-
invasive method such as imaging may alleviate the need for renal
biopsy (18), thus avoiding the risk of complications from
invasive biopsies such as bleeding, infection, tumor seeding the
biopsy needle path, and the relatively low accuracy in assessing
tumor grade based on the biopsy specimen (19). Therefore, there
is an unmet need to develop non-invasive methods for assessing
the pathological grade of ccRCC before surgery.

Non-invasive imaging-based method has been used in
assessing pathological grade of ccRCC before surgery (20–22).
Several traditional radiological characteristics such as tumor
size and CT enhancement patterns have been shown to be
correlated with the tumor grade (23). However, it has been
challenging to predict the pathological grade of ccRCC with the
existing limited information obtained from the traditional
radiological characteristics (21, 24). By contrast, radiomic
analysis involving the computerized extraction of data not
discernable to the human eyes could generate highly detailed
imaging features regarding tumor texture, shape, and image
intensity (25, 26). Such methods have been successfully used in
arcinoma; HE, hematoxylin and eosin;
tional Society of Urological Pathology;
on operator; pRCC, papillary renal cell
, random forest; SVM, support vector
on.
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cancer research (25, 26), presenting the potential for identifying
tumor phenotype, pathological grade (27), and biological
behavior (28). Therefore, radiomic analysis is a potentially
useful method that could be used not only to evaluate tumor
heterogeneity but also to assess pathological grade for guiding
personalized cancer treatment. However, there has been limited
progress in developing non-invasive radiomic machine-learning
models to accurately differentiate the low-grade from the high-
grade ccRCC.

In this study, we analyzed the traditional radiological
characteristics of ccRCC on pre-surgical CT images including
the tumor size and CT density values. In addition, we performed
predictive modeling combining the features obtained from both
the traditional radiological assessment and the radiomic textural
analysis. We aimed to develop a radiomic machine learning
model to predict the ISUP grade of ccRCC tumors pre-surgically.
We hypothesized that integration of radiomic features into the
traditional radiological characteristics should improve the model
performance in differentiating the low-grade from the high-
grade ccRCC than using either the radiomic features or the
traditional radiological characteristics alone in building
the model.
METHODS

Patients
Patients were consecutively identified and retrospectively
included into this study through a careful assessment of our
medical records from June 1, 2010 to June 1, 2017. All patients
in this cohort underwent radical or partial nephrectomy with
curative intent in our hospital with a final pathological diagnosis
of ccRCC. Those patients with complete medical records
including pathological confirmation and pre-surgical CT
images were included, and their medical data including CT
images was collected by research personnel (QX, FZ, ZL, and
CW) for subsequent assessment. To avoid possible observer
bias, the researchers were tasked specifically for different aspects
of the study. For example, researcher 1 (ZL) with exposure to
the original data completed the data anonymization procedure
and did not participate in the subsequent analysis. The reminder
three researchers including FZ only dealt with anonymized data
and they were blinded to all radiological and clinicopathological
information of the patients. All enrolled patients were divided
January 2021 | Volume 10 | Article 570396
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into two cohorts, i.e., the training cohort and the validation
cohort, at a ratio of 3:1 randomly. Details of the exclusion
criteria and the patient recruiting process were shown in
Figure 1.

This study was approved by Ethic Committee and Institutional
Review Board in Xiangya Hospital of Central South University, P.
R. China (IRB#2017121011). Written informed consents were
waived due to the retrospective nature of this study.

Re-Analysis of Pathological Slides
For each patient, all pathological slides (including hematoxylin
and eosin [HE] and immunohistochemical [IHC] staining) were
re-analyzed by two pathologists specialized in urology (GG and
HY, with 6 and 25 years of experience in uropathology,
respectively). Each ccRCC grading was undertaken according
to the criteria of the ISUP grading system (7) (Supplementary
Table 1), and the ccRCC tumors were separated into two groups:
the low-grade group (Group 1: Grade I and II) and the high-
grade group (Group 2: Grade III and IV) (14). Consensus was
reached by discussion if differences in opinions existed.

Computed Tomography Imaging
All patients had a routine abdominal CT scan obtained on one of
our three CT scanners, i.e., a 16-MDCT (Brilliance 16, Philipps),
a 64-MDCT (SOMATOMDefinition, Siemens), or a 320-MDCT
(Aquilion ONE, Toshiba Medical Systems) scanner. CT imaging
included an acquisition of a pre-contrast phase and a contrast-
enhanced phase with a power injector (Ulrich CT plus 150,
Ulrich Medical, Ulm, Germany). Briefly, 90–100 ml of iodinated
contrast material (Ultravist 370, Bayer Schering Pharma, Berlin,
Germany) was administered intravenously at a rate of 3.0–3.5 ml
per second. Contrast-enhanced images at the nephrographic
Frontiers in Oncology | www.frontiersin.org 3267
phase (scan with fixed delay time of 65 s) were obtained for all
patients. Since all patients had CT images for both the non-
enhanced phase and the nephrographic/portal venous phase, the
CT images from these two phases were included in this analysis.
All CT images were retrieved from our Picture Archiving
and Communication Systems (PACS, Carestrem, Canada), and
were downloaded to an external workstation (Leonardo;
Siemens Medical Solutions, Forchheim, Germany). All CT
images were reconstructed into the voxel size of 1×1×1mm3

for subsequent analysis.

Traditional Radiological Analysis
Two radiologists specialized in abdominal imaging (Reader 1: FZ
with 10 years of experience and Reader 2: GL with 25 years of
experience) reviewed the CT images independently. They were
blinded to all radiological and clinicopathological information of
the patients. They recorded the traditional CT imaging findings
including the tumor size measurements such as transverse
dimension in millimeter (mm), anteroposterior dimension
(mm), cranio-caudal dimension (mm), pre-enhanced CT
density value (CTpre) in Hounsfield units (HU), enhanced CT
density value (CTpost) in HU, and enhancement range in HU.

Radiomic Textural Feature Extraction
We used the pre-contrast non-enhanced CT images for radiomic
textural feature extraction due to the following reasons. In this
retrospective study with the images already acquired, we were
concerned about the potential confounding variables affecting the
contrast-enhanced images such as the inconsistent injection speed
of contrast medium and varying hemodynamics of each patient
after contrast administration. These variables may contribute to
varying contrast enhancement of the tumors that did not reflect the
FIGURE 1 | Study recruitment diagram with respect to inclusion and exclusion criteria.
January 2021 | Volume 10 | Article 570396

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yi et al. Radiomics Predicting Renal Cancer Grade
true tumor heterogeneity. On the contrary, pre-contrast non-
enhanced CT images were easy to acquire and were relatively
stable from one patient to another, which may show the inherent
tumor heterogeneity. In our study, the radiomic textural feature
extraction was performed only on the non-enhanced images.

For each patient’s CT scan, a representative axial image with
the largest cross-sectional measurement of the renal tumor was
selected. In order to eliminate the potential variance of CT
images obtained on the three different scanners, all original
CT images underwent normalization using the gray-scale
discretization method before textural feature extraction, with a
final 256 bins (Analysis Kit software, version V3.0.0.R, GE
Healthcare) (29, 30). Subsequently, we used the textural
analysis software (MaZda Version 4.6, Institute of Electronics,
Technical University of Lodz, Poland) (31) to perform the image
analysis. A region of interest (ROI) to outline the tumor
boundaries was drawn manually. The corresponding contrast-
enhanced CT images were used as references in delineating the
precise boundaries of the tumor on pre-enhanced images. All
contouring was reviewed and validated by two senior abdominal
radiologists (XY and GL) with 15 and 16 years of experience,
respectively, in interpreting genitourinary CT images.

For each patient, a total of 340 textural features were extracted
with the MaZda software based on corresponding ROI file,
including a gray-level histogram, a gradient, a run-length
matrix, a co-occurrence matrix, an autoregressive model and a
wavelet transform analysis.

Reproducibility of Textural
Feature Extraction
To evaluate the reproducibility of the radiomic textural feature
extraction, the inter-observer (Reader 1 versus Reader 2) and intra-
observer (Reader 1 twice) correlation coefficient (ICC) values were
accessed. The reader consistency and reproducibility were
determined according to the following criteria based on the ICC
value: poor (<0.20), fair (0.21–0.40), moderate (0.40–0.60), good
(0.61–0.80), and excellent (0.81–1.00). In general, an ICC exceeding
0.75 indicated good agreement.

The differences of the values for each feature between the two
groups, and the differences between the textural features
generated by Reader 1 (first time) and those by Reader 2, as
well as between the features twice-generated by Reader 1, were
analyzed using Mann-Whitney U test, independent samples t-
test or Kruskal-Wallis H test, where appropriate.

Inter-observer and intra-observer reproducibility was initially
analyzed with 50 randomly chosen patients’ CT images evaluated
by two radiologists (Reader 1 and Reader 2). To assess the inter-
observer reproducibility, Reader 1 and Reader 2 completed the
workflow as described previously (32).

A 0.2–1 cm2 circular ROI was used to measure CT attenuation
values of the tumors in HU. ROIs were placed on the solid parts of
the tumor for three times, then the average CT attenuation value
was recorded. Tumor size measurements including transverse
dimension (mm), anteroposterior dimension (mm), and cranio-
caudal dimension (mm), were all measured three times, and then
the average values were recorded.
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Statistical Analysis, Feature Selection,
and Prediction Model Building
IBM SPSS version 22.0.0 (IBM Corporation, Armonk, NY, USA)
was used to for statistical analyses. The differences about
quantitative radiomic features and the qualitative features
between the two groups, i.e., the low-grade group and the
high-grade group, were tested using the Wilcoxon rank-sum
test and the chi-square test respectively.

We used MATLAB 2017a (The Mathworks, Inc., Natick, MA,
USA) to perform the data processing, data reduction for feature
selection, and model building. The least absolute shrinkage and
selection operator (LASSO) method was performed to select the
features from the training cohort that possessed the most useful
predictive value. Based on these selected features, machine
learning methods including the Random Forest (RF) method
and the support vector machine (SVM) method were used to
generate the differentiation models according to the classification
algorithm developed in our previous report (32).

The differentiation models were developed in the training
cohort, and were validated in the validation cohort. The
classification efficiencies of the models were calculated using
the receiver operating characteristic (ROC) curves analysis. A P
value < 0.05 was considered statistically significant. The work
flow for radiomic feature extraction, feature selection and
classification model building was presented in Figure 2. Details
of the flow chart depicting the process of predictive modeling
was shown in Supplementary Figure 1.

Correlation Test Among Selected Features
A correlation matrix analysis was performed to evaluate
associations between the radiomic textural features and the
traditional radiological characteristics, including correlations of
features within each of these two groups, i.e., the low-grade
group and the high-grade group as well as between the
two groups.
RESULTS

Patient Characteristics Between
the Training and Validation Cohorts
Table 1 summarized the clinicopathological and traditional
radiological characteristics of this study cohort. There were no
significant differences in the clinical characteristics such as
gender and age between the training and the validation
cohorts. There were no significant differences in the
distribution of the low-grade and the high-grade ccRCC
between the two cohorts. No significant differences were noted
between the two cohorts regarding the tumor size measurements
or CT density values.

Patient Characteristics Between
the Low-Grade and the High-Grade Groups
The tumors size measurements in the low-grade group (Group 1)
were significantly smaller than those in Group 2. The CTpre
values of the Group 1 tumors were significantly lower than those
January 2021 | Volume 10 | Article 570396

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Yi et al. Radiomics Predicting Renal Cancer Grade

Frontiers in Oncology | www.frontiersin.org 5269
of the Group 2 tumors. In contrast, tumors in Group 1 showed a
higher CTpost value than the tumors in Group 2, although the
difference did not reach statistical significance (P=0.052).
However, when considering the CTpre values, the degree of
enhancement for Group 1 tumors was significantly higher than
that of the Group 2 tumors (P=0.001). Details of the
corresponding statistical results were presented in Table 2.

Reproducibility of Radiomic Feature
Extraction and Traditional Radiological
Assessment
Our results demonstrated satisfactory inter- and intra-observer
reproducibility of the radiomic feature extraction and the
traditional radiological assessment. The inter-observer ICCs of
for radiomic features between Reader 1 (first time) and Reader 2
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TABLE 1 | Comparison of patient characteristics between the training cohort
and the validation cohort.

Training cohort Validation cohort P value

Gender 0.923
Male 141(70.85%) 42(64.62%)
Female 58(29.15%) 23(35.38%)
Age (years) 53.22 ± 11.05 54.09 ± 10.78) 0.789
Group 0.344
Low ISUP grade 155 (77.89%) 51 (78.46%)
High ISUP grade 44 (22.11%) 14 (21.54%)
T-stage 0.817
T1 110 (55.28%) 37 (56.92%)
T2 89 (44.72) 28 (43.08%)
Tumor size (mm)
transverse 4.46 (1.36–11.55) 4.49 (1.78–8.88) 0.752
anterior-posterior 4.65 (0.88–12.36) 4.56 (2.09–10.53) 0.864
cranio-caudal 4.55 (1.13–18.74) 4.76 (1.94–13.14) 0.914
CT-pre (HU) 32.18 ± 8.32 33.05 ± 6.60 0.439
CT-V(HU) 79.46 (31.69–249.91) 77.79 (31.84–152.79) 0.949
Enhancement (HU) 47.83 (9.39–221.28) 44.99 (11.40–117.40) 0.841
January 20
21 | Volume 10 | Article
ISUP, International Society of Urological Pathology; CT-pre, CT value on pre-enhanced CT
image; CT-V, CT value on enhanced CT image during nephrographic/portal venous
phase; Enhanced, the HU values during the CT-V phase. HU, Hounsfield Units.
TABLE 2 | Comparison of patient characteristics between the low-grade and the
high-grade tumors.

Low ISUP grade High ISUP grade P value

Gender 0.368
Male 140(67.96%) 43(74.14%)
Female 66(32.04%) 15(25.86%)
Age (years) 53.19 ± 11.30 54.28 ± 9.77 0.508
T-stage <0.001
T1 127 (61.65%) 20 (34.48%)
T2 79 (38.35%) 38 (65.52%)
Tumor size (mm)
transverse 4.12 (1.36–11.55) 5.98 (1.87–10.44) <0.001
anterior-posterior 4.32 (0.88–11.05) 6.02 (1.54–12.36) <0.001
cranio-caudal 4.23 (1.13–12.23) 6.30 (1.91–18.74) <0.001
CT-pre (HU) 31.26 ± 7.93 36.41 ± 6.51 <0.001
CT-V (HU) 82.17 (31.69–249.91) 73.52 (38.58–152.79) 0.052
Enhancement (HU) 49.66 (9.39–221.28) 38.76 (10.58–117.40) 0.001
ISUP, International Society of Urological Pathology; The interval values in parentheses
refer minimum- maximum; CT-pre, CT value on pre-enhanced CT image; CT-V, CT value
on enhanced CT image during nephrographic/portal venous phase; Enhanced, the HU
values during the CT-V phase. HU, Hounsfield Units.
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ranged from 0.761 to 0.893. The intra-observer ICC of Reader 1
with two extraction performances ranged from 0.781 to 0.909. As
a result, the radiomic features extracted by Reader 1 were used in
all subsequent analysis. The inter-reader analysis achieved good
to excellent agreement in traditional radiological evaluation
(ICC = 0.687–0.936). The ICC values for the traditional
radiological features were not high, which could be explained by
the following reasons. First, the traditional radiological features
such as CT density may vary from one scan to another due to
inherent tumor heterogeneity. In addition, the solid components
of tumors might not be homogenously enhancing and therefore
may result in variations in local delineation of ROIs for CT density
measurements. Second, there may be subtle differences in CT
density among the three different CT scanners. Third, the renal
tumors were generally small and the solid enhancing parts of the
renal tumor were even smaller in size. Any minor variations in
local delineation of ROI between the readers may result in a large
difference in ICC. However, caution was taken in delineation of
ROIs and all measurements were performed three times with the
average values being recorded.

Model Built With Radiomic Textural
Features
A total of 340 features were extracted from pre-enhanced CT
images for each patient. Of all the textural features, 19 features
Frontiers in Oncology | www.frontiersin.org 6270
were finally selected to build a textural signature (Rad-score)
after performing LASSO for feature selection. This process was
included in the Supplementary Files (Supplementary Files:
Equation 1). The same set of features was also used to build a
RF classifier (score 2). A SVM classifier (SMV 1) was built based
on the two models. The SVM 1 classifier achieved a classification
performance with an AUC value of 0.8170 (95% CI: 0.7353–
0.8987) and 0.8017 (95% CI: 0.6878–0.9157) in the training and
validation cohorts, respectively (Figure 3).

Model Built With Traditional Radiological
Characteristics
The traditional radiological characteristics including the
transverse dimension, cranio-caudal dimension, CTpre, and
enhancement range were selected using the LASSO method
(Supplementary Files: Equation 2) (score 4), and a RF model
(Score 5) was built through the same modeling process as
performed for the radiomic textural features. Based on scores 4
and 5, a new SVM classifier (SVM 2; Score 6) was created. The
AUC of SVM2 was 0.9175 (95% CI: 0.8765–0.9585) and 0.8088
(95% CI: 0.7064–0.9113) in the training and validation
cohorts, respectively.

Based on SVM1 (Score 3) and SVM2 (Score 6), the final
classification model built by the SVM method (SVM3; Score 7)
was constructed. This model provided an AUC of 0.9235 (95%
A B

D E

C

FIGURE 3 | Classification efficiencies of the three support vector machine (SVM) models. (A) Model built with radiomic textural features. (B) Model built with
traditional radiological characteristics. (C) Model built with both radiomic textural features and traditional radiological features. (D) Receiver operating characteristic
(ROC) curve analysis for the training cohort. (E) Receiver operating characteristic (ROC) curve analysis for the validation cohort. LASSO, least absolute shrinkage and
selection operator; SVM, Support vector machine.
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CI: 0.8646–0.9824) with a sensitivity of 0.8780 (95% CI: 0.7561–
0.9756) and a specificity of 0.9167 (95% CI: 0.8611–0.9722) in the
training cohort, and a AUC of 0.9099 (95% CI: 0.8324–0.9873)
with a sensitivity of 0.9412 (95% CI: 0.7647–1.0000) and a
specificity of 0.8871 (95% CI: 0.7742–0.9839) in the validation
cohort (Table 3 and Figure 4).

Correlation Among All Features Used
in Modeling
We obtained a correlation matrix to evaluate the correlations
among all the features included in the final model. As shown in
Figure 5, the correlations were relatively high among the four
selected traditional radiological characteristics (0.036–0.883),
and were varied among the 19 selected radiomic textural
features (0.000–1.000). Interestingly, although a few radiomic
textural features (including Mean, Variance, Perc_01, and
Perc_99) presented high correlation indices (0.923–0.929), the
remaining 15 radiomic textural features had relatively low
correlation indices (0.004–0.375), which justified using the
features from both the radiomic texture and the traditional
radiological assessment to build a more reliable predictive model.
DISCUSSION

In this study, we utilized pre-surgical CT images to develop a
radiomic machine learning model for differentiating the low-
grade from the high-grade ccRCC. Our machine learning models
incorporating optimal radiomic textural features achieved an
AUC up to 0. 92 in the training cohort and 0.91 in the validation
cohort. Our study provided promising data for potentially using
noninvasive imaging-based method to predict pathological grade
of ccRCC.

We included several traditional radiological characteristics in
the modeling process, including tumor size measurements, T
staging information, and CT density values (21). These
commonly used radiological characteristics have been used to
predict tumor progression and pathological grade with some
success (17, 21, 23, 24). However, to the best of our knowledge,
our results showed for the first time that the model built with
these traditional radiological characteristics was not stable
enough to make a reliable prediction of pathological grade for
ccRCC. Nevertheless, these radiological characteristics were
visible to the human eye and could be conveniently assessed by
radiologists and trained imaging personnel. These radiological
characteristics have been valuable in clinical practice and we
therefore should include them in predictive modeling. On the
other hand, our study also showed low correlation index between
the traditional radiological characteristics and the radiomic
textural features, indicating these two different kinds of
features may contribute different rather than redundant tumor
information. Our study showed the potential of combining the
observed radiological characteristics and the radiomic
computational approach to improve model performance.

The mechanism underlying our satisfying radiomic model
performance is not clear. Imaging features of tumor heterogeneity
may represent the phenotypes of tumor (26, 33, 34).
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Tumor heterogeneity may potentially be expressed phenotypically
in images as intratumoral heterogeneity and could be
comprehensively assessed by imaging analysis (17, 33).
Therefore, it is reasonable to speculate that radiomic textural
features in our study may represent tumor heterogeneity, thus
being relevant in predicting pathological grade as indicated in
prior literature (26, 33–37). For texture features, we found that the
features prompting the model to classify renal tumors as high-
grade ccRCC mainly belonged to histogram (such as: variance),
run-length matrix (such as: run length nonuniformity, and gray
level nonuniformity. with the higher values of these textural
features, there were corresponding higher LASSO scores,
indicating the higher risk of the tumor being classified as a
higher-grade ccRCC. Regarding the traditional radiological
Frontiers in Oncology | www.frontiersin.org 8272
features, the LASSO regressors included the tumor size
measurements, CTpre density value and the enhanced degree of
the tumor. It is understandable that the larger the tumor poses the
greater risk of being high-grade because of greater tumor
heterogeneity. In addition, higher-grade tumors may have worse
pathological differentiation and tumor necrosis, which may lead
to a lower degree of enhancement.

Our study was generally in line with prior reports of renal
cancer assessed with machine learning radiomics (29, 38–41).
Our model performance was comparable to the prior studies
which had AUC values reaching 0.86~0.98 for predicting
pathological grade of renal cancers. However, our method for
radiomic analysis was different from others in that we extracted
radiomic features from one representative pre-enhanced axial
FIGURE 4 | Classification efficiency for the training cohort and the validation cohort for the support vector machine (SVM) models.
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CT image containing the maximal cross-sectional tumor
dimensions while others obtained radiomics from contrast-
enhanced images on both CT and magnetic resonance
imaging. There were several advantages in our novel approach.
First, our method was feasible and could be readily adopted as
non-enhanced images were routinely included in CT imaging of
renal cancer. It is easier to acquire the non-enhanced images than
the contrast-enhanced images, and the image quality for the non-
enhanced images could be better controlled than the contrast-
enhanced images. In addition, our method could be used in
patients who could not have contrast-enhanced imaging due to
either contrast allergy or abnormal renal function which is
especially relevant in patients with renal cancers. Secondly, the
contrast-enhanced images may vary depending on the
distribution and amount of contrast agents in the tumor tissue,
which could be affected by multiple variables such as the type of
contrast agent used, the injection speed, the hemodynamic
conditions of the patients, etc (32). Therefore, our approach of
using non- enhanced images could alleviate the concerns
stemming from the potential image variations due to contrast
enhancement. Lastly, our single image strategy could be useful
for our planned multicenter clinical trials because of its
simplicity to use and its readiness to be standardized among all
participating centers. Furthermore, the acceptable efficiency of
Frontiers in Oncology | www.frontiersin.org 9273
our method using the single image at the maximal cross-
sectional tumor level has been reported in our own
publication (32).

It should be noted that our satisfying model performance in
predicting the pathological grade of ccRCC could be partly
related to the classification algorithm used in the present
study. This algorithm was developed by our team, and has
been successfully applied in our current and previous studies
(32). The basic logic of this classification algorithm was to treat
LASSO and RF as weak regressors in the whole algorithm, which
respectively reflected the classification attributes of the research
object. We then used the SVM algorithm to combine these two
to finally achieve the purpose of enhancing the classification
effect. In addition, the final regressed scores from this algorithm
could be binarized for further prediction. Nevertheless, our
modeling algorithm was far from being comprehensive. More
work is needed to further improve the classification performance
by continually optimizing and improving the structure of the
data mining algorithms.

We recognized that there was an apparent contradiction in
our feature selection for the final model building. The
contradiction was that we used the non-enhanced CT images
for radiomic feature extraction but included the degree of
CT enhancement as part of the traditional radiological
FIGURE 5 | Correlation matrix test among all 19 radiomic textural features and four traditional radiological features (bold font) used in predictive modeling. S-S,
indicating the craniocaudal dimension of the tumor; L-R, indicating the transverse dimension of the tumor.
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characteristics in the final model. We believe we could
resolve this apparent contradiction with the following
explanation. First, the degree of CT enhancement was one of
the most important radiological characteristics assessed by
radiologists. Due to limitations of human visual inspection, the
traditional radiological characteristics are usually limited in
number including only the tumor size measurement and CT
densities on both pre- and post-contrast images as in our study.
Therefore, it was important to include it in the model building in
our attempt to keep the few commonly reported characteristics
which reflects the current clinical radiological practice. Second,
while the traditional radiological assessment could only provide
descriptive information on tumor characteristics, radiomics
could extract a multitude of computational quantitative
imaging features about tumor heterogeneity not visible
to human eyes. Therefore, these two approaches in our
study with one using non-enhanced images and another using
enhanced images were complimentary rather than contradictory
to each other and the combination of both strengthened the
model performance as shown in our study.

This study had several limitations. First, this was a
retrospective study conducted at a single institution, and case
selection bias seemed inevitably. In addition, although there were
264 patients with ccRCC included in our study, our sample
size was still modest for a machine learning study given
heterogeneous disease distribution. Second, our validation
cohort used to test the model efficiency was from the same
institution as the training cohort, therefore making it challenging
to generalize our results to other institutions and other disease
settings. Future large-scale independent prospective multicenter
studies are needed to validate our results. Third, our study was
focused on ccRCC which constituted most of the renal cancer.
However, it was not sufficient for a complete survey of renal
cancer since other renal cancer subtypes could have similar
imaging features and therefore should be evaluated in future
studies. Moreover, our study was limited in that an accurate
imaging-pathological correlation for each patient could not be
performed in this retrospective study, which could have been
helpful to assess the underlying pathological basis of our model
performance. Lastly, the CT images in this study were obtained
in three different CT scanners, which may be variable in terms of
imaging quality due to inherent differences among the scanners.
This may in turn potentially affect the textural features and
model performance.

In summary, we developed a radiomic machine learning
model with the pre-surgical CT images, achieving a satisfying
performance in differentiating the low-grade from the high-
grade ccRCC. Our approach integrating the traditional
radiological characteristics and the radiomic textural features
improved the performance of our prediction models. Our
study presented a potentially useful non-invasive imaging-
focused method to predict the pathological grade of renal
cancers prior to surgery, which should assist in clinical
decision making for selecting cancer treatment strategies and
for informing prognosis.
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Purpose: The most common disadvantage of 11C-choline positron emission tomography
and computed tomography (PET/CT) in diagnosing early-stage prostate cancer (PCa) is
its poor sensitivity. In spite of many efforts, this imaging modality lacks the ideal parameter
of choline metabolism for the diagnosis of PCa, and the single metabolic parameter, that
is, maximal standardized uptake value (SUVmax), based on this imaging modality is
insufficient. 11C-choline PET/CT-based multi-metabolic parameter combination can help
break this limitation.

Materials andMethods: Before surgery, SUVmax of choline, which is the most common
metabolic parameter of 11C-choline PET/CT, mean standardized uptake value
(SUVmean), prostate-to-muscle (P/M) ratio, metabolic tumor volume (MTV) and total
lesion glycolysis (TLG) from 74 patients with histologically proven PCa were quantified. A
total of 13 patients with focal chronic prostatitis without severe features and 30 patients
with benign prostate hyperplasia were used for comparison. Univariable and multivariable
analyses were performed to compare the patient characteristics and metabolic
parameters of 11C-choline PET/CT. The performance of single parameters and the
combination of parameters were assessed by using logistic regression models.

Results: The comparable c-statistics, which mean the area under the ROC curve in the
logistic regression model, of SUVmax, SUVmean, and P/M ratio are 0.657, 0.667, and
0.672, respectively. The c-statistic significantly rose to 0.793 when SUVmax and
SUVmean were combined with the P/M ratio. This parameter combination performed
the best for PCa cases with all biochemical recurrence risks and for PCa patients grouped
by different risk. The greatest improvement over a single parameter, such as P/M ratio,
was noted in the group of low-risk PCa, with values of 0.535 to 0.772 for the three-
parameter combination. And in the histopathological level, the Ki-67 index is positively
correlated with the P/M ratio (r=0.491, p=0.002).
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Conclusion: P/M ratio is a more ideal parameter than SUVmax as a single parameter in
early-stage PCa diagnosis. According to our data, the combination of SUVmax,
SUVmean, and P/M ratio as a composite parameter for diagnosis of early stage PCa
improves the diagnostic accuracy of 11C-choline PET/CT.
Keywords: prostate cancer, benign prostate diseases, 11C-choline, positron emission tomography and computed
tomography, parameter
INTRODUCTION

Prostate cancer (PCa) is a common male malignant tumor
worldwide with poor diagnostic accuracy of primary PCa. The
treatment of PCa requires the combination of accurate diagnosis
and staging with effective therapeutic methods. Generally, digital
rectal examination (DRE), serum levels of prostate-specific antigen
(PSA), and transrectal ultrasound (TRUS) are applied for the
diagnosis of PCa. Both the tumor extension and distant metastasis
were evaluated by local staging using imaging procedures, such as
TRUS, Magnetic Resonance Imaging (MRI), computerized
tomography (CT), and bone scintigraphy. However, there exist
limitations for conventional imaging techniques like CT and MRI.
For example, in a recently meta-analysis of the use of CT andMRI,
a poor sensitivity of 39%–42% and specificity of 82% were shown
when staging lymph nodes with even worse results in diagnosis of
cancer metastasis (1). This has aroused great interest in the
application of positron emission tomography (PET) which uses
choline tracers for staging advanced disease.

However, the effect of PET/CT on detection of localized or
locally advanced PCa within the prostate gland has been debated
over the last decade (2). Previous studies have shown that the
uptake values of 11C-choline existed a significant overlap
between PCa and benign prostate hyperplasia (BPH) (3). It has
also been demonstrated a high sensitivity of 11C-choline
derivatives for locating primary PCa in the correct prostate
lobe or sextant (4, 5). These studies showed that 11C choline
PET/CT could distinguish cancer tissues from normal prostate,
BPH, and localized chronic prostatitis (CP), with a low sensitivity
of distinguishing benign and malignant diseases through single
metabolic parameters, such as maximal standardized uptake
value (SUVmax) (5), prostate-to-muscle (P/M) ratio (6), or
mean standardized uptake value (SUVmean) (7).

We conducted this research to confirm the capability of 11C-
choline PET/CT to differentiate PCa from benign prostate diseases.
We also examined whether integrating the abovementioned single
metabolic indexes will facilitate and further improve the diagnosis
of localized or locally advanced PCa within the prostate gland, as
confirmed by TRUS-guided biopsy and careful histological
evaluation after surgical prostate resection.
MATERIALS AND METHODS

Patients Enrollment
From August 2014 to January 2019, 117 unselected patients with
prostate lesions and complete clinical data underwent 11C-choline
2278
PET/CT imaging in the Department of Nuclear Medicine, Xinhua
Hospital Affiliated to Shanghai Jiao Tong University School of
Medicine were enrolled in this study. All the patients understood
and agreed to participate in this study and the informed consent of
all involved patients could be obtained. The patients were divided
into PCa (n = 74) and benign prostate disease groups (n = 43),
with the latter comprising 30 cases of BPH and 13 cases of focal
CP. According to the 2019 EAU/EANM/ESTRO/ESUR/SIOG
Guidelines, patients newly diagnosed with PCa assessed by the
risk of biochemical recurrence are divided into low-, intermediate-
and high-risk groups (8). The diagnostic examination for prostate
diseases included digital rectal examination, PSA and combined
with TRUS. PCa diagnostic criterion was prostate biopsy or
histopathology confirmed. And the histopathology of PCa group
was confirmed to be adenocarcinoma. 11C-choline PET/CT
examination, needle biopsy, and prostatectomy were all
completed within one month after diagnosis. Exclusion criteria
were patients who: (1) were dignosed in clinical stage M1 before
operation; (2) were with status of taking anti-androgen drugs; and
(3) had clinical signs of acute prostatitis.

PET/CT Scanning
11CO2 was produced by medical cyclotron GE MINItrace II and
then introduced into TraceLab FXc automatic chemical synthesis
system. 11C-choline was synthesized by one-step method (half-
life, 20 min). Blood sugar of patients were tested and the value of
them were all within 7.0 mmol/L of the normal range. After
fasting about 5–8 h, 11C-Choline PET/CT was performed. Then,
the patients were intravenously injected with 7.62 ± 1.84 MBq/kg
11C-choline for 5 min, and PET images were obtained.

CT scanning: Contrast-enhanced CT (120 kV, 225–240 mA;
1.35:1 pitch) was acquired with 3.75 mm thickness per slice
immediately before the PET acquisition, and the scanning range
was from middle thigh to the top of the skull. The automatic
milliampere technique was used to reduce the absorbed dose.

PET scanning:We acquired PET images from the distal margin
of the pelvic floor and the acquisition time of each bed position is
3 min. Then, we used ordered-subset expectation-maximization
software to reconstruct the images with CT-derived attenuation
correction (matrix: 512*512). After we obtained the attenuation-
corrected PET images in axial plane, CT images in coronal plane,
and fused images in sagittal plane, respectively, the reconstructed
PET/CT images were finally fused by Xeleris station.

Image Interpretation
The PET images of the patients involved in this study were read
independently by two experienced physicians in nuclear
February 2021 | Volume 10 | Article 600380
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medicine who were unfamiliar with clinical data of the patients
and imaging results before. The diagnostic criterion of primary
PCa is that the prostate monofocal or multifocal 11C-choline
uptake is significantly higher than that of periprostatic soft tissue,
perirectal adipose tissue, or pelvic muscle and excludes the
physiological absorption of the prostate itself (6). Given that
SUV is the parameter which measures the choline metabolism of
tumor foci, it cannot be used to evaluate the overall metabolism
of whole tumor tissue. Thus, semi-quantitative indicators like
metabolic tumor volume (MTV) and total lesion glycolysis
(TLG) were introduced. Compared with the surrounding
normal tissue, the choline uptake of tumor has a significantly
higher MTV. The PET Volume Computed Assisted Reading
(PET VCAR, GE Healthcare) software of the post-processing
workstation was used to determine the threshold of drawing the
edge of tumor by iterative adaptive algorithm to extract the MTV
of the focus (9). The equation TLG=SUVmean×MTV(cm3) was
used. The workstation automatically calculated the focus
SUVmax, SUVmean, and prostate-to-muscle (P/M) ratio
according to the region of interest (ROI), and dividing the
SUV of the prostate lesion by the SUV of the psoas major
muscle at the same cross-sectional level to eliminate individual
differences in the physiological choline absorption in the patient,
the P/M ratio was calculated.

Histopathology
The resected prostate surface was marked with ink and then fixed
with standard formalin for 24 h. Then, the prostate was
continuously incised at 3–4 mm interval, from the apex of the
gland to the base, perpendicular to the long axis until the incision
reached the seminal vesicle junction. The sections were further
fixed in formalin, embedded in paraffin, and then placed on glass
slides, after which hematoxylin–eosin (H&E) was applied for
staning. Other than H&E, the polyclonal rabbit anti-human Ki-
67, and then goat anti-rabbit IgG (all the antibodies involved are
from Abcam, Cambridge, UK) and biotinylated streptavidin–
biotin immunoperoxidase conjugate were also used for staining
the sections. The percentage of positive nuclei cells in more than
1,000 tumor cells in over three fields was calculated as the Ki-
67 index.

Experienced pathologists (>10 years of experience) performed
the histopathological examination. In line with the guidelines of
the International Union against Cancer, tumor staging was
carried out (10).

Statistical Analysis
Descriptive statistics (classified variables are represented by
frequency and percentage, non-normal distributed variables by
median and interquartile range, and continuous random variables
and the normal distribution by mean ± standard deviation) were
used to describe the data. The capability of PET and non-PET
imaging (pelvic CT) for diagnosing early PCa (localized and locally
advanced) was compared by paired chi-square test. The difference
of non-normal distributed variables was evaluated by Mann–
Whitney U test. We also use the Student’s t-test to compare the
differences of the mean of normally distributed continuous
variables between the two groups. Metabolic parameters like
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MTV, TLG, SUVmax, SUVmean, and P/M ratio are continuous
variables, and their correlation with PCa was studied by Spearman
correlation analysis. The performance of single metabolic
parameters and the combination of metabolic parameters in
distinguishing PCa from control samples (BPH or CP) were
tested using univariate and multivariate logistic regression
models. The samples were randomly divided into the training
and verification sets by stratified random sampling. The basis for
layering is the risk of biochemical recurrence based on the 2019
EAU/EANM/ESTRO/ESUR/SIOG Guidelines. Finally, there were
37 patients with prostate cancer in the training set and verification
set, respectively. The training set was used to fit the logistic
regression model, and then we used the independent blinded
verification set to test the performance of the model (11). After
calculating the area under the curve (AUC) of each model, and
statistically significant difference between the AUC of the parameter
combination was observed by MedCalc 15.0 software (SUVmax +
SUVmean + P/M ratio) and that of each single metabolic
parameter. P < 0.05 showed a statistically significant difference,
and the double-tail test was used. Kurtosis and skewness tests were
used to evaluate the normality of the data. We used SPSS 24.0
statistical software to analyze all the research data.
RESULTS

Metabolic Parameters of 11C-Choline PET/
CT and Patient Characteristics
The final stage of analysis enrolled 117 patients undergoing 11C-
choline PET/CT examination in our institution. Among them, 74
patients had early-stage PCa without distant metastasis, and 43
patients with benign prostate disease were initially diagnosed
with suspicious lesions and finally confirmed by TRUS-guided
biopsy in the control group. Table 1 shows the demographics,
clinical, and 11C-choline PET/CT characteristics of the patients.
There was no significant differences between the PCa patients
TABLE 1 | Clinical characteristics and 11C-choline positron emission tomography
and computed tomography (PET/CT) metabolic parameters of patients.

PCa (n=74) Benign prostate
disease (n=43)

P
value

Age, median (IQR) 73(63-81) 71(64-79) 0.160
BMI, mean ± SD 23.82 ± 2.99 24.19 ± 3.29 0.600
History of diabetes, n
(%)

18(24) 11(26) 0.891

History of
hypertension, n (%)

26(35) 16(37) 0.915

GS
PSA, (ng/ml)
MTV, mean ± SD

7.51 ± 0.81
14.82 ± 5.87
9.80 ± 11.15

NA
7.85 ± 3.44
9.78 ± 5.40

NA
0.005
0.995

TLG, mean ± SD 24.86 ± 10.36 17.21 ± 9.99 0.174
SUVmax, mean ± SD 3.80 ± 0.67 2.70 ± 0.72 0.016
SUVmean, mean ± SD 3.14 ± 0.74 1.86 ± 0.87 0.010
P/M ratio, mean ± SD 4.59 ± 0.82 3.17 ± 0.76 0.008
February 2
021 | Volume 10 | Article 6
BMI, Body Mass Index; GS, Gleason Score; NA, Not Acquired; PSA, Prostate-
Specific Antigen.
The bold values provided means the significant meaning in statistics because their P
values are less than 0.05.
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and those with benign prostate diseases in the age, body mass
index (BMI), history of diabetes, and hypertension (p > 0.05),
suggesting that the baseline data of the two groups were
consistent and comparable. The PCa patients showed a
significantly higher 11 C-choline uptakes (SUVmax, SUVmean,
and P/M ratio) (p < 0.05) than those with benign prostate
disease. The two groups showed the most significnat difference
in P/M ratio (p = 0.008). There was no statistical differences
between the two groups in terms of MTV and TLG (Table 1).
Figure 1 shows the SUVmax, SUVmean, and P/M ratio of
patients with PCa; the values are significantly higher than
those of patients with BPH or CP. In terms of the mean
SUVmax level, PCa patients was 1.40 times higher than BPH
patients (p < 0.05) and 1.42 times higher than CP patients
(p < 0.05). The same difference can be observed in the
SUVmean and P/M ratio (Figure 2). No statistical differences
were observed between BPH and CP in terms of SUVmax,
SUVmean, and P/M ratio.

Test Characteristics of Single Parameters
and Parameter Combinations
Cut-off for SUVmax, SUVmean, and P/M ratio was established
through the training set to differentiate PCa from BPH or CP. A
3.277 threshold for SUVmax can detect 56.5% of PCa cases with
79.1% specificity in the verification set. At the same time, we used
cut-off for SUVmean (>2.15) to discriminate between PCa and
BPH or CP with 59.5% sensitivity and 74.4% specificity. In
addition, when P/M ratio was used to diagnose PCa alone, the
cut-off value of 3.632 was the most ideal. By combining SUVmax,
SUVmean, and P/M ratio, we reached a sensitivity of 80.4% with
a specificity of 86.1% in the verification data set (Table 2).

The c-statistic of SUVmax alone was 0.657 in all PCa cases in
the validation set, which was close to that of SUVmean (0.667) and
P/M ratio alone (0.672). Every two of the above three indicators
were combined and showed no evident improvement (Figure 3).
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However, the c-statistic was significantly improved (0.793) when
the SUVmax, SUVmean, and P/M ratio were combined. This
parameter combination performed well for all stages and in the
separation of PCa patients by biochemical recurrence risk (8). The
c-statistics of low-, intermediate-, and high-risk patients with PCa
were 0.772, 0.692, and 0.852, respectively. In the low-risk patients,
the diagnostic effectiveness of the combined parameters is
significantly higher than that of any single parameter (Table 3).
Figure 4 depicted the receiver operating characteristic (ROC)
curves for single parameters and parameter combinations.

SUVmax, SUVmean, and P/M Ratio
Complement Each Other
A total of 19% (12) of 74 samples were positive for SUVmax, 12%
(9/74) were positive for SUVmean, and 20% (15/74) were positive
for P/M ratio. A total of 6% (5/74) of the samples were positive for
SUVmax and P/M ratio, another 9% (7/74) for SUVmax and P/M
ratio, and 5% (5/74) for SUVmean and P/M ratio. Meanwhile, 14%
(10/74) of the samples were positive for all three parameters. For all
parameters analyzed, 14% (10/74) of the samples were negative.
Three of these negatives were low-risk, four were intermediate-risk,
and another three were high-risk PCa. Figure 5, shows the specific
number of PCa patients whose test results are positive for single
parameter and combined parameters.

Correlation Between P/M Ratio
and Ki-67 Index
The Ki-67 index of 37 PCa patients in the verification set was 5.43%
± 0.92% (1%–30%). As shown in Table 1, the P/M ratio showed a
more significant difference between the two groups than SUVmax
and SUVmean (P/M ratio: p = 0.008; SUVmax: p = 0.016;
SUVmean: p = 0.010). Thus, we analyzed the correlation between
Ki-67 index and P/M ratio among the PCa patients. Pearson’s
correlation analysis revealed that the Ki-67 index was positively
correlated with the P/M ratio (r = 0.491, p = 0.002) (Figure 6).
A B C

FIGURE 1 | 11C-choline positron emission tomography (PET) image of patients with different prostate diseases. (A) SUVmax is 5.28, SUVmean is 3.24 and P/M
ratio is 8.07 in patients with PCa. (B) SUVmax is 3.04, SUVmean is 2.64 and P/M ratio is 3.50 in patients with benign prostate hyperplasia (BPH). (C) SUVmax is
2.36, SUVmean is 1.67 and P/M ratio is 2.49 in patients with chronic protatitis (CP).
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A

B

C

FIGURE 2 | Comparison of PCa and benign prostate hyperplasia (BPH) or
chronis prostatitis (CP). Three metabolic parameters of positron emission
tomography and computed tomography (PET/CT): (A) SUVmax (B) SUVmean
(C) P/M ratio were respectively compared between Pca patients and patients
of benign prostate diseases. Each parameter is presented as mean ± SD.
NS means no significance; *means p < 0.05; **means p < 0.01.
TABLE 2 | Diagnostic ability of single parameters and parameter combination.

Parameter Cut-off Training set Verification set

Sensitivity
(%)

Specificity
(%)

Sensitivity
(%)

Specificity
(%)

SUVmax >3.277 57.1 77.4 56.5 79.1
SUVmean >2.15 58.6 76.5 59.5 74.4
P/M ratio >3.632 52.4 92 51.6 90.7

SUVmax (> 3.277) + SUVmean (> 2.15) + P/M ratio (> 3.632)
79.7 87.3 80.4 86.1
Frontiers in O
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FIGURE 3 | Predictive value of single parameters and two-parameter
combination in the diagnosis of early-stage PCa. ROC curves for
(A) SUVmax, SUVmean and SUVmax + SUVmean, (B) SUVmax, P/M ratio
and SUVmax + P/M ratio, (C) SUVmean, P/M ratio and SUVmean + P/M
ratio in controls versus patients with early-stage PCa are showed.
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DISCUSSION

Despite the treatment of resectable PCa has made some progress
in recent years, the staging of PCa still determines the survival of
PCa patients. Therefore, new strategies for diagnosing early-stage
PCa are always expected, which can improve the cure rate (13).
Although 11C-choline PET/CT guidelines were published in the
past few years, the application in PCa imaging is still debated
mainly because of its low sensitivity (56%–66%) in the diagnosis
of primary diagnosed patients (14).
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Previously, 11C-choline PET/CT was widely applied for
screening PCa patients with the biochemical recurrence after
local treatment, clinically restaging PCa, and systemically
evaluating newly diagnosed high-risk patients (12, 15). Few
researchers focused on the methods of improving the
diagnostic accuracy of PET in low-risk PCa patients. Here, we
enrolled newly dignosed patients without treatment and distant
metastasis to confirm the diagnostic capability of 11C-choline
PET/CT in the differentiation of early-stage PCa from benign
prostate diseases. This study showed the meaningful role of 11C-
TABLE 3 | Predictive value of different parameters in verification set.

N PCa patients Low-risk Intermediate-risk High-risk

37/37 9/37 12/37 16/37

SUVmax(>3.277) AUC 0.657 0.674 0.539 0.726
P value 0.0359 0.0345 0.2971 0.0626
SUVmean(>2.15) AUC 0.667 0.581 0.593 0.722
P value 0.0323 0.0008 0.4946 0.0075
P/M ratio(>3.632) AUC 0.672 0.535 0.603 0.738
P value 0.0452 0.02523 0.3576 0.1355
Combined parameter AUC 0.793 0.772 0.692 0.852
February 2021 | Volume 10 | Artic
AUC, Area Under Curve; Combined parameter = SUVmax(>3.277)+SUVmean(>2.15)+P/M ratio(>3.632), P values are calculated for combined parameter model versus each
single parameter.
The bold values provided means the significant meaning in statistics because their P values are less than 0.05.
A B

C D

FIGURE 4 | Predictive value of single parameters and three-parameter combination in the diagnosis of early-stage PCa. ROC curves for (A) SUVmax and SUVmax +
SUVmean + P/M ratio, (B) SUVmean and SUVmax + SVmean + P/M ratio, (C) P/M ratio and SUVmax + SUVmean + P/M ratio and (D) SUVmax, SUVmean, P/M ratio
and SUVmax + SUVmean + P/M ratio in controls versus patients with early-stage PCa are showed.
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choline PET/CT for diagnosing of patients with primary PCa.
Sixty-four of seventy-four patients who were histologically
diagnosed as PCa were successfully detected by 11C-choline
PET/CT, while the remaining 10 patients were not.

SUVmax is thus far the most common metabolic parameter
in PCa for 11C-choline PET/CT. SUVmax was elevated in up to
66% of patients with PCa (14) and showed a similar sensitivity of
56.5% for all PCa stages in our verification set with cut-off of
3.277. The low sensitivity of our study may be due to the
inclusion of patients with BPH and CP rather than normal
individuals. As the PET/CT is a powerful diagnostic tool,
accompanied by the strong radiation and high examination
fees, we do not recommend the PET/CT testing for the normal
individuals treated as control group. And the guidelines of ethics
will not permit it. Considering the relatively small sample size of
this study, we used the cut-off of 3.277 for SUVmax, instead of
the previously reported cut-off of 2.5 (16, 17), to minimize the
influence of ethnic, geographical and other biased factors (11).
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PCa has a high degree of heterogeneity, which is reflected not
only in the differences in solid tumors among different patients
but also in the varied metabolic states of PCa cells in the same
individual (18). The heterogeneity of PCa was shown by the wide
range of SUVmax measured for cancer, and some assumed 11C-
choline PET/CT could not detect all cancers due to different
metabolic states. Thus, as a single metabolic parameter based on
11C-choline PET/CT for non-invasive diagnosis of early-stage
PCa, SUVmax alone will not suffice.

In this study,we included thefive commonly used parameters of
cholinemetabolism,namely,MTV,TLG, SUVmax, SUVmean, and
P/M ratio. Univariate and multivariate analyses revealed that P/M
ratio is the most ideal index, and it showed the greatest difference
between the PCa and BPH or CP groups (p = 0.008). Cancer is
mainly characterized by uncontrolled cell proliferation, and the
prognosis of malignant tumors is influenced by the rate of cell
division. The expression level of Ki-67 can be used to assess the
proliferative activity of tumors (19, 20). And some studies have
shown that Ki-67 can also reflect the function of cell metabolism,
such as glucose metabolism (21). This means that the Ki-67 scores
maypredict the activity of cholinemetabolism incells. Some reports
have indicated the relationship between SUV and Ki-67 in cancers
(22), but few studies have been carried out in prostate cancer.
Herein, exploring the relationship between Ki-67 staining, which
reflects the proliferative activity of tumor cells, and proliferation
images by using 11C-choline PET/CT could further clarify the
mechanism of 11C-choline uptake in prostate cancer. In this
study, our data indicate that P/M ratio, an important parameter
of choline metabolism, is a reliable parameter that can be used to
discriminate between patients with PCa and BPH or CP. The
potential value of P/M ratio as an alternative parameter for
distinguishing diseases is further supported by the positive
correlation of P/M ratio with Ki-67 index in the PCa patients. P/
Mratio is a better promisingparameter for earlyPCadiagnosis than
SUVmax according to our research. In this condition, considering
all PCa stages versus controls, the c-statistic of P/M ratio alone is
0.672, and the c-statistics are 0.535 and 0.603 when it comes to the
prognostically favorable low- and intermediate-risk cases,
A B

FIGURE 6 | (A) Prostate cancer (x400 HP field), Ki-67 index is 10%. (B) Correlation between the Ki-67 and P/M ratio.
FIGURE 5 | Venn diagram showing the number of PCa patients (n=74)
tested positive for single parameters or parameter combination. A total of 14
samples were positive for SUVmax, nine were positive for SUVmean, 15 were
positive for P/M ratio, and 10 were positive for all three parameters.
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respectively. Thus, as in SUVmax, P/M ratio alone is also
inappropriate for detecting early-stage PCa. The most promising
approach for the accurate diagnosis of PCa is to combine several
parameters tomaximize its sensitivity and specificity. According to
data, the combination of SUVmax, SUVmean and P/M ratio
substnatially improved the test performance. The sensitivity of
this combination was increased to 80.4% and the specificity 86.1%
in discriminating PCa from BPH or CP. This combination of
parameters performed the best in all PCa groups with different
biochemical recurrence risks and themost significant improvement
was observed in low-risk PCa group. The three-parameter
combination was evidently better than each single parameter
(Table 3). PCa is characterized by multiple lesions, which are
usually extremely small, and in early low-risk patients, several
lesions are less than 5 mm in size (23). Given TLG=SUVmean ×
MTV (cm3), the diagnostic capabilities of TLG and MTV are
reduced because they are affected by the volume of lesions. This
hypothesis was supported by the fact that TLG and MTV between
cancer and benign lesions under the detection of PET/CT were
completely overlapped, and no cut-off value of TLG nor MTV is
helpful to distinguish cancer from benign lesions.

The PCa imaging modality used worldwide is focused on the
prostate-specific membrane antigen (PSMA) PET/CT (24), which
plays a role in the diagnosis of PCa. However, given the difficulty of
68Ga/18F-PSMA synthesis technology and the production of the
corresponding imaging equipment, 11C-choline PET/CT had higher
popularity than PSMA PET/CT at this stage. Our research improves
the diagnostic efficiency of 11C-choline PET/CT, which has practical
significance for clinical diagnosis and treatment. These data revealed
that this approach may also be of great use for the screening of
patients with distant metastases. However, the selected patient cases
are limited to a hospital-based population. Therefore, the feasibility
of this approach requires prospective longitudinal cohort studies
with more larger sample sizes of patients. In general, to our
knowledge, no study has combined these three parameters to
detect and localize the foci of tumors within early-stage PCa.
Large sample sizes and well-designed studies are warranted to
validate our findings in the future.
CONCLUSION

P/M ratio is a more ideal parameter than SUVmax as a single
parameter in early-stage PCa diagnosis, and its level is positively
Frontiers in Oncology | www.frontiersin.org 8284
correlated with the Ki-67 index. According to our data, the
accuracy of diagnosis of 11C-choline PET/CT was significantly
improved by combining SUVmax, SUVmean, and P/M ratio as a
composite parameter for diagnosing early-stage PCa, especially
in the low-risk group with biochemical recurrence.
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To recognize the epidermal growth factor receptor (EGFR) gene mutation status in lung
adenocarcinoma (LADC) has become a prerequisite of deciding whether EGFR-tyrosine
kinase inhibitor (EGFR-TKI) medicine can be used. Polymerase chain reaction assay or
gene sequencing is for measuring EGFR status, however, the tissue samples by surgery
or biopsy are required. We propose to develop deep learning models to recognize EGFR
status by using radiomics features extracted from non-invasive CT images. Preoperative
CT images, EGFR mutation status and clinical data have been collected in a cohort of 709
patients (the primary cohort) and an independent cohort of 205 patients. After 1,037 CT-
based radiomics features are extracted from each lesion region, 784 discriminative
features are selected for analysis and construct a feature mapping. One Squeeze-and-
Excitation (SE) Convolutional Neural Network (SE-CNN) has been designed and trained to
recognize EGFR status from the radiomics feature mapping. SE-CNNmodel is trained and
validated by using 638 patients from the primary cohort, tested by using the rest 71
patients (the internal test cohort), and further tested by using the independent 205 patients
(the external test cohort). Furthermore, SE-CNNmodel is compared with machine learning
(ML) models using radiomics features, clinical features, and both features. EGFR(-)
patients show the smaller age, higher odds of female, larger lesion volumes, and lower
odds of subtype of acinar predominant adenocarcinoma (APA), compared with EGFR(+).
The most discriminative features are for texture (614, 78.3%) and the features of first order
of intensity (158, 20.1%) and the shape features (12, 1.5%) follow. SE-CNN model can
recognize EGFR mutation status with an AUC of 0.910 and 0.841 for the internal and
external test cohorts, respectively. It outperforms the CNN model without SE, the fine-
tuned VGG16 and VGG19, three ML models, and the state-of-art models. Utilizing
radiomics feature mapping extracted from non-invasive CT images, SE-CNN can
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precisely recognize EGFR mutation status of LADC patients. The proposed method
combining radiomics features and deep leaning is superior to ML methods and can be
expanded to other medical applications. The proposed SE-CNN model may help make
decision on usage of EGFR-TKI medicine.
Keywords: lung cancer, epidermal growth factor receptor mutation, deep learning, convolutional neural network,
feature mapping
INTRODUCTION

Lung adenocarcinoma (LADC) is a type of common lung cancer
(1). Epidermal growth factor receptor tyrosine kinase inhibitor
(EGFR-TKI) has become one significant target chemotherapy
medicine for the treatment of the advanced LADC (2). To know
the mutation status of EGFR gene in LADC patients is a
prerequisite of deciding whether EGFR-TKI can be used (3).
Polymerase chain reaction (PCR) assay or gene sequencing is the
clinical method of measuring EGFR status, however, the tissue
samples obtained by surgery or biopsy are required. The
extensive intratumor heterogeneity may reduce the accuracy of
EGFR gene measurement using the biopsy (4, 5). In addition,
some patients may have inoperable LADC or the biopsy is not
possible for the reason of patients’ endurance or willing or high
economic cost. Therefore, it is necessary to find a non-invasive
method to predict EGFR mutation status.

Computed tomography (CT) has been one non-invasive
imaging technology and routinely used in cancer diagnosis and
treatment (6, 7). Some studies have investigated the relationship
between CT imaging features and EGFR mutation and provided
the potential of using CT images to predict EGFR mutation
status (8–10).

Radiomics aims to apply advanced computational approaches
and artificial intelligence to convert medical images into
quantitative features (11, 12). It has been utilized to help do
the diagnosis and prediction of gene mutation, treatment
response, and prognosis of lung cancer (13–15).

Recently, CT-based radiomics features and the resulted
machine learning models have showed predictive value to
EGFR mutation status. Dai et al. have trained one Random
Forest (RF) model with 94 radiomics features, achieving an Area
Under Curve (AUC) of 0.802 in a set of 345 patients (16). Zhang
et al. have investigated 180 non-small cell lung cancer patients,
extracted 485 features, and reached an AUC of 0.862 and 0.873
for the train and validation cohorts, respectively (17). Yang et al.
have collected a total of 467 patients and created a predictive
model which can recognize mutation status of EGFR gene with
an AUC of 0.831 (18). More advanced methods of using
radiomics features are required to improve the performance of
EGFR mutation status prediction.

Deep Convolutional Neural Network (CNN) utilizes hierarchical
network to learn abstract features and build up the mapping
between input data and output labels. Deep learning has
demonstrated excellent performance in many medical
applications such as diagnosis of diabetic retinopathy (19),
diagnosis of prostate cancer (20), differentiation of benign and
2287
malignant pulmonary nodules (21–23), classification of skin cancer
(24), pediatric pneumonia diagnosis (25), and prediction of liver
fibrosis (26). Moreover, deep learning models have been applied in
lung cancer analysis (27–30). In EGFR mutation status, Wang et al.
have constructed one deep learning model using 844 lung
adenocarcinoma patients, which can achieve an AUC of 0.85 and
0.81 for the train and validation cohorts, respectively (31). Although
some techniques such as deep dream and Grad-CAM (Gradient-
weighted Class Activation Mapping) have been developed, the
interpretation of the “black-box” of deep learning model still face
challenges (32, 33).

In this work, we have proposed one new way of constructing a
deep leaning model using CT radiomics feature mapping to
precisely recognize EGFR mutation of lung adenocarcinoma.
Specifically, for each LADC patient, after 1,037 CT-based
radiomics features are extracted, 784 discriminative features
are selected to be analyzed and construct a feature mapping.
One Squeeze-and-Excitation (SE) Convolutional Neural
Network (SE-CNN) is further designed and trained to
recognize EGFR status from the radiomics feature mapping.

In summary, the contributions can be three aspects. First, the
proposed method has utilized both the good interpretability of
radiomics features obtained by feature engineering and the
powerful capability of pattern recognition of deep learning.
Second, the resulted SE-CNN model can precisely recognize
EGFR mutation status from non-invasive CT images and the
AUC can reach 0.910 and 0.841 in the internal and external test
cohorts, respectively. It outperforms the CNNmodel without SE,
the machine learning models, and the state-of-art models. Third,
many discriminative features of imaging texture, intensity and
the shape of lesion have been identified, which may help
understanding the biological mechanism of EGFR mutation in
lung LADC from the viewpoint of computer vision.
MATERIALS AND METHODS

Study Design and Participants
This is one retrospective study and it has been approved by the
ethics committee of The First Affiliated Hospital of Guangzhou
Medical University and Shengjing Hospital of China Medical
University. Patients who meet the following inclusion criteria are
collected into this study: (a) the EGFR mutation status is
examined by a PCR-based assay and confirmed by direct
sequencing. The results of the EGFR test are clear; (b) All CT
examinations are performed by the same CT scanner and with
the same slice thickness and reconstruction algorithm; (c) Before
February 2021 | Volume 10 | Article 598721
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receiving the CT examination, the patient has no extrathoracic
metastasis and not received any radiotherapy or chemotherapy.

The exclusion criteria are given as follows: (a) The patient has
received preoperative treatment or not been examined by the
EGFR mutation test; (d) The clinical data of gender, age, and
histopathological subtype is missing; (e) The radiomics features
cannot be extracted accurately.

Totally a cohort of 709 patients (320 male and 389 female; the
mean age of 59 years; the age range of 17–91 years) with LADC is
included from The First Affiliated Hospital of Guangzhou Medical
University. This cohort is named as the primary cohort in the
following manuscript. These patients have been enrolled from
January 2016 to July 2018. CT images and clinical data of all cases
are collected. Clinical data collected from medical records for
analysis includes EGFR mutation status, age, gender and
histopathological subtype. LADC patients are divided into 8
different subtypes: acinar predominant adenocarcinoma (APA),
micropapillary predominant adenocarcinoma (MPA), lepidic
predominant adenocarcinoma (LPA), papillary predominant
adenocarcinoma (PPA), solid predominant adenocarcinoma
(SPA), invasive mucinous adenocarcinoma (IMA), minimally
invasive adenocarcinoma (MIA), and adenocarcinoma in
situ (AIS).

A cohort of 205 patients (101 male and 105 female; the mean
age of 60.7 years; the age range of 32–88 years) with LADC is
included from Shengjing Hospital of China Medical University.
It is named as the external test cohort. It is noted that the data of
histopathological subtype is lack in this cohort.
Frontiers in Oncology | www.frontiersin.org 3288
Measurement of EGFR Mutation Status
After being fixed with formalin, the excised specimen is stained
with H&E. Experienced pathologists evaluate the paraffin
specimens of the LADC tissue and confirm that they contain
at least 50% tumor cells. According to strict protocol from
manufacturers, EGFR status is examined by a PCR-based assay
and confirmed by direct sequencing. The status of EGFR exons
18, 19, 20, and 21 is also examined by molecular analysis.

Acquisition of CT Images
For the primary cohort, a multi-detector CT system with 128
slices (Definition AS+, Siemens Healthcare, Germany) has been
applied for the chest scans. All images are stored and exported in
the format of DICOM. The parameters used in the CT
examination are given as follows: The tube current modulation
is 35–90 mAs; the tube voltage is 120 kVp; the spacing is 0.625
mm×0.625 mm; the reconstruction thickness is 2.00 mm; the
matrix is 512×512; the field of view is 180 mm×180 mm; the
reconstructed algorithm is B30 or I30; and the pitch is 0.9.

For the external test cohort, four CT scanner from different
manufacturers (GE Medical Systems, Philips, Siemens and
Toshiba) have been used for the chest scans. The pixel spacing
ranges from 0.625 to 0.976 mm, the slice thickness ranges from
2.50 to 5.0 0 mm, and the matrix is 512×512.

Overview of the Study Procedure
As given in Figure 1, for each LADC patient, after extracting
1,037 radiomics features from the segmented lesion region, 784
FIGURE 1 | Flow chart of our study.
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highly informative features are selected to be analyzed and
construct a feature mapping. Convolutional Neural Network
with Squeeze-and-Excitation (SE-CNN) is designed and
trained to recognize EGFR status from the radiomics feature
mapping. For comparison, CNN model without Squeeze-and-
Excitation (SE), 1D-CNN, and the machine learning (ML)
models using radiomics features, clinical features, and both
features have also been implemented. Meanwhile, the highly
informative features are analyzed. All models are trained and
validated by using 638 patients from the primary cohort and
tested by using the rest 71 patients (the internal test cohort).
Furthermore, the models are evaluated by using the external test
cohort of 205 patients.

Extraction and Selection of Radiomics
Features
We have used a 3D U-Net model for the nodule segmentation,
which has been presented and used in our previous study (34,
35). After automatic segmentation, one radiologist with more
than 10 years of experience in interpretation of lung CT images
has checked the quality of each case and manually revised a few
cases with poor tumor contours. And then PyRadiomics software
(https://pyradiomics.readthedocs.io/) is utilized to extract
features (36). A total of 1,037 radiomics features are extracted
for each patient. The radiomics features can be divided into
six different groups: Shape Features, First Order Features, Gray
Level Co-occurrence Matrix (GLCM) Features, Gray Level
Dependence Matrix (GLDM) Features, Gray Level Run Length
Matrix (GLRLM) Features and Gray Level Size Zone Matrix
(GLSZM) Features. Those radiomics features are extracted from
three types of images: Original Image, Wavelet Image and
Laplacian of Gaussian (LoG) Image. Wavelet Image is obtained
from eight decompositions after wavelet filtering. Applying High
Frontiers in Oncology | www.frontiersin.org 4289
(H) or Low (L) pass filter in three dimensions gives eight kinds
of combinations: LHL, HHL, HLL, HHH, HLH, LHH, LLH,
and LLL. LoG Image is generated through applying a LoG filter
with a specified sigma value to the input image. It emphasizes
the area where the gray scale changes. In LoG images, a low
sigma emphasizes fine textures and a high sigma emphasizes
coarse textures. Sigma of 1, 2, and 3 has been used in our
study, respectively.

We have used the mean decrease impurity importance to
reduce redundant radiomics features, which derived from the
random forest (RF) method (37). Each radiomics feature is given
an importance score in mean decrease impurity importance
method. The purpose of feature selection is to identify highly
discriminative features and remove unimportant or irrelevant
radiomics features. It is noted that the feature selection is based
on the training and validation cohort (638 of 709 patients), not
the whole primary cohort.

SE-CNN Model Using Radiomics Feature
Mapping
We have built a SE-CNN classifier with radiomics feature
mapping as inputs. The structure of proposed SE-CNN model
is presented in Figure 2A. It consists of the convolution layer,
pooling layer, Squeeze-and-Excitation (SE) layer, dropout layer,
and full connection layer.

Squeeze-and-Excitation (SE) layer can be tread as a channel’s
self-attention function intrinsically. SE layer recalibrates channel-
wise feature responses and learns the global information through
suppressing less useful features and emphasizing informative
features. Meanwhile, the benefit of the feature recalibration can be
accumulated through SE layers. It has been proved that SE layer can
improve CNN’s performance (38). The structure of the SE layer is
shown in Figure 2B.
A

B

FIGURE 2 | The structure of the deep learning model. (A) The structure of SE-CNN. (B) The structure of Squeeze-and-Excitation (SE) layer.
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Squeeze-and-Excitation layer is special calculation unit. Input
X has been transformed into feature U at first. Here * denotes
convolution. Every Squeeze-and-Excitation layer is special
calculation unit. Input X has been transformed into feature U
at first. Here * denotes convolution. Every vsc is a single channel of
vc = ½v1c , v2c ,…vC0c �. These spatial kernels are applied to the
relevant channel of X.

uc = vc*X = SC0
a=1v

s
c*X

s (1)

Fsq generates statistics z by shrinking the spatial size of the
global spatial information U = [u1,u2,...,uc] through its spatial
dimensions H × W and squeezing it into the channel descriptor.

zc = Fsq ucð Þ = 1
H �W

SH
i=1S

W
j=1uc i, jð Þ (2)

The function of Fex is to capture the channel dependencies. Its
purpose is to fully utilize the information summarized in the
squeeze operation. s indicates the ReLU function.

s = Fex z,Wð Þ = s g z,Wð Þð Þ = sðW2dðW1zÞÞ (3)

By activating the rescaling U, the output can be gotten as a
block ~X.

~xc = Fscale uc, scð Þ = scuc (4)

where ~X = ½~x1, ~x2,…, ~xc� and Fscale indicates that the feature map
uc is multiplied by the scalar sc at the channel-wise.

Since our study is a binary classification, the loss function of
binary cross-entropy is employed in deep learning models.

loss = −Sn
i=1ŷilogyi + 1 − ŷið Þlog 1 − yið Þ (5)

∂loss
∂x

= −Sn
i=1

ŷi
yi
−
1 − ŷi
1 − yi

(6)

In the formula, yî is the true label and yi is the label predicted
by the model.

The Training and Evaluation of the Deep
CNN Models
First, we rank the 784 radiomics features with high scores in
feature selection into a two-dimensional matrix. The arrangement
rule is that the feature with higher score is near the center and that
with lower score is near the edge. The arranged matrix of 28×28
pixels is treated as a feature mapping. After batch normalization,
each two-dimensional feature mapping is input into the SE-CNN
model as an image for training. By activating different SE,
convolution and pooling layers, the SE-CNN classifier gives an
EGFR-mutant probability for each patient.

In order to verify the function of SE layer, we have also
established a deep learning model (CNN) without a SE layer. The
CNN model has the architecture as same as that of SE-CNN model
removing two SE layers. Due to the limited number of cases, this
CNN model only has two convolutional layers. In our previous
study, we have found that this kind of agile CNN is very suitable for
a small dataset and images with a small size (39). Moreover, one 1D-
CNN model with 2 convolutional layer, 1 max pooling layer and 1
Frontiers in Oncology | www.frontiersin.org 5290
average pooling layer (Please refer to Supplementary Figure 1 to
know the detailed architecture and parameter settings) is
constructed and trained by the 1D vector of features.

To further confirm this point, we have done another three
comparative experiments. The first one is AlexNet with five
convolutional layers and it is trained from the scratch. The
second and third are the pre-trained VGG-16 and VGG-19
with fine tuning, respectively (40). Specifically, all parameters
in convolution layers except the final fully-connected layer are
initialized using VGG-16 and VGG-19 trained by ImageNet
dataset of 1.28 million natural images and fine-tuned by our
own images. The final fully-connected layer is trained only using
our own images. This kind of scheme has been proved to be one
powerful way of using deep CNNs in medical imaging
applications (31, 41).

For the training of SE-CNN, CNN, 1D-CNN, AlexNet, VGG16,
and VGG19, the batch size and learning rate are set as 50 and 0.001,
respectively. Binary cross-entropy loss function and adaptive
moment estimation optimizer are used in SE-CNN, CNN, 1D-
CNN, and AlexNet. Categorical cross-entropy loss function and
RMSprop optimizer are adopted in VGG16 and VGG19. In our
training, due to the small number of samples, to avoid over-fitting,
we have used an early stopping method. When the validation loss
does not drop for 5 consecutive epochs, the training stops. After
continuous debugging, the model performance is verified by the
ROC curve, AUC, accuracy, recall, and precision.

Machine Learning Models for Comparison
For comparison, we have trained five machine learning models with
different features and classifiers for EGFR mutation prediction.
Using radiomics features, we train three machine learning
classifiers, i.e., Random Forest (RF), Support Vector Machine
(SVM), and Multilayer Perceptron (MLP). These classifiers have
been shown to performwell in lung imaging analysis (21). Using the
clinical information of gender, histopathological subtype and age as
features, we have trained one machine learning model (SVM).
Finally we have built a combined model (SVM) which using
radiomics features and clinical information.

In SVM, C and gamma is set as 3 and 1, respectively. In RF
model, four estimators are included. In MLP, two hidden layers
with size of 10 and 5 are included and ReLu activation function
and ADAM optimizer have been used.

Software Tools and Experimental
Environments
All statistical analyses have been done by using Python 3.6. The
scikit-learn package is used to construct all machine learning
models using radiomics features, clinical features, and both
features. The implementation of the deep learning models (SE-
CNN and CNN) is done by the Keras toolkit. Meanwhile,
“matplotlib” package is employed to plot the ROC curves and
data distribution. The independent two-sample t-test is adopted
to evaluate the difference of age and classifier score between
EGFR-positive [EGFR(+)] and EGFR-negative [EGFR (<x></
x>–<x></x>)] groups. When a two-sided p-value is <0.05, it is
considered to be significant. All experiments have been
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performed using a HPZ840 workstation, where the CPU and
GPU are Intel Xenon E5-2640 v4 @ 2.40 GHz and Quadro
M4000, respectively.
RESULTS

Demographic and Clinical Characteristics
As shown in Table 1, for the primary cohort, EGFR(+) and
EGFR(-) groups have shown no significant difference in age (p =
0.034), but shown significant difference in tumor size, gender,
and subtype (p < 0.01). The mean age of EGFR(+) is 60.24 and
the mean of EGFR(-) is 58.57. EGFR(+) has significantly higher
proportion in men (64.7%) than in women (37.9%) (p < 0.01). In
different subtypes, the number of APA is the largest in both
EGFR(+) and EGFR(-), reaching 208 cases and 96 cases,
respectively. The smallest subtypes in EGFR(+) are AIS and
IMA, with only five cases. The least number among the EGFR(-)
is the 15 cases of LPA. There is significant difference of EGFR(+)
percentage between different subtypes of LADC.

For the external test cohort, EGFR(+) and EGFR(-) groups
have shown no significant difference in gender or CT scanner
(p = 0.18; p = 0.17), but shown significant difference in age and
tumor size (p < 0.01).

Analysis of Predictive Radiomics Features
Fifty highly informative features have been selected to build the
machine learning models (RF, SVM, MLP). The number of
Frontiers in Oncology | www.frontiersin.org 6291
features is determined by the rule of thumb, i.e., each feature
corresponds to 10 samples (patients) in a binary classifier (7).
The 50 selected highly informative radiomics features are shown
in Figure 3A, and clinical features are listed in Table 1. Among
these 50 features, the features of First Order Features have the
largest number, reaching 17. Meanwhile, 15 radiomics features
are from Wavelet_LHH images, and 8 radiomics features are
from Wavelet_HLL images.

Using an independent two-sample t-test on the datasets, we
have compared the intensity of features between EGFR(+) and
EGFR(-) groups. Among 1,037 feature, all 12 features of Short
Run Emphasis in EGFR and 9 of 12 features of Sum Entropy are
higher (overrepresented) in EGFR(+), indicating higher
intratumor heterogeneity. For inverse variance quantifying
homogeneity, 7 of 12 features are lower in EGFR(+) group.
The mean value of the top 50 high-scoring features on EGFR(+)
and EGFR(-) groups is shown in Figure 3A. Among these 50
features, there are 32 features with significant difference between
EGFR(+) and EGFR(-) groups. For EGFR(+) group, the
Minimum and DifferenceAverage features are higher than
EGFR(-) group, but the radiomics features of Uniformity are
lower in the EGFR(+) group. The largest difference between
the mean values of EGFR (+) and EGFR (-) is wavelet-
HLL_glcm_MaximumProbability feature (0.366 vs 0.458).
There are 34 radiomics features that EGFR(-) is greater than
EGFR(+), and only 16 EGFR(+) are numerically greater than
EGFR(-).

Since the input of a deep learning network is a feature
mapping of 28×28, we select 784 features with high score and
rearrange them. We use counterclockwise to arrange the features
into squares. The process is shown in Figure 3B. Meanwhile, the
example of an arranged matrix on EGFR(+) and EGFR(-) is
shown in Figure 3C. Figure 3D shows the distribution of the
selected 784 radiomics features.

In Figure 3D, we have found that the number of GLCM
features is the largest. Analyzed by proportion, 77.4% of the
shape features and 81.7% of the GLSZM features are selected
from 1,037 features and added to 784 features used by the deep
learning models. The most features are for texture (614, 78.3%)
and the features of the first order of intensity (158, 20.1%) and
the shape features (12, 1.5%) follow. It is noted that the analysis
in this section is based on the primary cohort.

Performance of Deep Learning Models
Using Radiomics Feature Mapping
Figure 4 shows the training process of deep learning models (SE-
CNN and CNN). In the loss curve on Figures 4A and C, we can
see that the curve of loss tends to be flat in SE-CNN and CNN
models as the epochs number increases, indicating that the
training model converges. In the accuracy curve on Figures 4B
and D, the value fluctuates greatly, which may be because the
number of training epoch is relatively small. SE-CNN model
stops training early when the epoch is 61, while the epochs in the
CNN model are 63. SE-CNN model reaches the convergence
faster than CNN model and the final accuracy is also
significantly higher.
TABLE 1 | Demographic and clinical characteristics of LADC patients.

Characteristics EGFR(-) EGFR(+) p value

The primary cohort
Number of patients 352 357
Age, mean 58.57 60.24 0.034
Gender Male 114 206 < 0.01

Female 238 151
Tumor size
(mean, mm3)

19,116 12,143 < 0.01

LADC subtype AIS 17 5 < 0.01
MIA 45 27
LPA 15 63
APA 96 208
PPA 66 51
MPA 21 15
SPA 49 8
IMA 18 5

The external test cohort
Number of patients 121 84
Age, mean 61.07 59.26 < 0.01
Gender Male 72 29 0.18

Female 49 55
Tumor size
(mean, mm3)

26,598 17,926 < 0.01
LADC, Lung Adenocarcinoma; EGFR, Epidermal Growth Factor Receptor; AIS,
Adenocarcinoma In Situ; MIA, Minimally Invasive Adenocarcinoma; LPA, Lepidic
Predominant Adenocarcinoma; APA, Acinar Predominant Adenocarcinoma; PPA,
Papil lary Predominant Adenocarcinoma; MPA, Micropapil lary Predominant
Adenocarcinoma; SPA, Solid Predominant Adenocarcinoma; IMA, Invasive Mucinous
Adenocarcinoma.
February 2021 | Volume 10 | Article 598721

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Deep CNN Model Recognizes EGFR-Mutation
For the internal test cohort of 71 patients, the performance of
deep learning models (SE-CNN and CNN) has been given in Table
2 and Figure 5. The AUC of proposed SE-CNN is higher than that
of CNN model (0.910 versus 0.894). 1D-CNN can achieve an AUC
of 0.875 lower than that of SE-CNN. Moreover, though the AlexNet
trained from the scratch has deeper architecture than our
specifically designed SE-CNN and CNN, its performance is
comparable to our models. Using fine tuning, the deeper VGG16
and VGG19 obtain the better prediction performance than AlexNet.
Especially, the fine-tuned VGG19 achieve an AUC of 0.929.

As shown in Table 3 and Figure 6, all six deep learning
models have lower AUC in the external test cohort than in the
internal test cohort. The possible reason might be that the
radiomics features and the resulted machine learning models
have been influenced by the differences between different CT
scanners, protocols, and hospitals (6). SE-CNN has the highest
AUC of 0.841 among the six deep learning models. The AUC of
Fine-tuned VGG16 decreases dramatically from 0.929 (the
internal test cohort) to 0.642 and the AUC of Fine-tuned
VGG19 decreases from 0.909 (the internal test cohort) to 0.618.
Frontiers in Oncology | www.frontiersin.org 7292
Comparison with Machine Learning
Models
For the internal test cohort of 71 patients, the five machine
learning models’ performance is listed in Table 2. The ROC
curves and AUC are depicted in Figure 5. The clinical model
using SVM does not have good prediction and its AUC is only
0.751. In the three machine learning models using radiomics
features, the SVM model has obtained the best performance and
the AUC reaches 0.836. Therefore, we use SVM to build the
combined model and it has an AUC of 0.823. F-score in SVM
models using radiomics features and combined features is 0.794
and 0.727, respectively.

As shown in Figure 5A, SE-CNN has better predictive
performance than the clinical model (AUC: 0.910 versus
0.751). For the three models using radiomics features, SVM
model is the best and RF and MLP models follow (AUC: 0.836,
0.794, and 0.793, respectively). Comparing Figures 5A and B,
one can find that deep learning models of SE-CNN, fine-tuned
VGG16 and VGG19, and CNN outperform the machine learning
models. Even the CNN with two layer convolutional layers
A

B D

C

FIGURE 3 | The selected radiomics features. (A) The mean value of 50 highly informative features in EGFR(+) and EGFR(-). *represents p <0.05 between EGFR(+)
and EGFR(-), **represents p <0.001 between EGFR(+) and EGFR(-). (B) Clockwise sorting method for input matrix of deep learning model. (C) The example of the
input matrix. (D) Distribution of selected 784 features used in deep learning models.
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trained from the scratch has the higher AUC of 0.894 than that of
the best machine learning model of SVM (0.836).

The confusion matrices of SE-CNN model and the three
machine learning models (Clinical, Combined, and Radiomics)
are shown in Figure 5C. We find that compared with three
machine learning models, SE-CNN model has an improvement
in the ability of predicting EGFR(+). Compared with the
machine learning model (Radiomics + SVM), SE-CNN model
has increased four correctly predicted cases in EGFR(+).

For the external test cohort, the comparison between SE-
CNN and machine learning models are given in Table 3 and
Figure 6. SE-CNN achives an AUC of 0.841, higher than that of
SVM, RF, and MLP models (AUC: 0.778, 0.671, 0.789). As
Frontiers in Oncology | www.frontiersin.org 8293
shown in Figure 6C, SE-CNN model has an improvement in
the ability of predicting both EGFR(+) and EGFR(-). Compared
with the machine learning model (Radiomics + SVM), SE-CNN
model has increased nine and five correctly predicted cases in
EGFR(+) and EGFR(-), respectively. Meanwhile, compared with
the deep learning model (1D-CNN), SE-CNN model has
increased 13 and 9 correctly predicted cases in EGFR(+) and
EGFR(-), respectively.

Comparison with Available State-of-Art
Models
Table 4 summarizes some recently conducted works on EGFR
mutation status. By using manually extracted image features and
A B

DC

FIGURE 4 | The training process of the deep learning model. (A) Loss curve of SE-CNN with epoch. (B) Accuracy curve of SE-CNN with epoch. (C) Loss curve of
CNN with epoch. (D) Accuracy curve of CNN with epoch.
TABLE 2 | Predictive performance of machine learning models using radiomics features (SVM, RF, MLP), clinical features, and combined features, and the deep
learning models (SE-CNN CNN, AlexNet, Fine-tuned VGG16, and Fine-tuned VGG19) for the internal test cohort of 71 patients.

Model Feature Classifier Accuracy AUC Recall Precision F-score

Machine learning Radiomics SVM 0.788 0.836 0.805 0.784 0.794
RF 0.732 0.794 0.611 0.814 0.698
MLP 0.746 0.793 0.888 0.695 0.780

Clinical SVM 0.690 0.751 0.666 0.705 0.685
Combined SVM 0.746 0.823 0.666 0.8 0.727

Deep learning Radiomics SE-CNN 0.803 0.910 0.916 0.75 0.825
CNN 0.816 0.894 0.833 0.812 0.821

1D-CNN 0.760 0.875 0.833 0.731 0.779
AlexNet 0.676 0.824 0.972 0.614 0.752

Fine-tuned VGG16 0.828 0.930 0.714 0.925 0.806
Fine-tuned VGG19 0.728 0.910 1 0.648 0.786
February 2021
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radiomics method, Velazquez et al. have obtained an AUC of
0.69 for a dataset of 353 patients (10). Gevaert et al. have
achieved an AUC of 0.89, but their dataset only includes 186
patients (42). In the study done by Liu et al. using a logistic
regression model, the AUC can reach 0.766 and 0.748 for the
train and validation cohorts, respectively (13). Yang et al. have
also achieved a good performance by RF model (18). By using
deep learning method, Wang et al. have gotten encouraging
predictive performance (AUC = 0.85) in a large dataset which
has 800 patients (31). Compared with these results, our SE-CNN
model has presented comparable prediction in EGFR
mutations status.
Frontiers in Oncology | www.frontiersin.org 9294
CT Images of Typical Examples of
Recognition Results
To demonstrate our results in one visible way, Figure 7 gives
some randomly chosen examples. The randomly selected images
are divided into four parts, the predicted label is the same as the
real label in EGFR(+) and EGFR(-), and the predicted label is
different from the real label in EGFR(+) and EGFR(-). For each
tumor lesion, one representative 2D patch with marked contour
and 3D visualization are shown in Figure 7. From the 3D
visualization, we have found that the nodule shape of EGFR(+)
is relatively irregular, the lesion margin has microlobulated,
angular and speculated. Meanwhile, the shape of the nodule
A B

C

FIGURE 5 | The EGFR status recognition performance of different models for the internal test cohort (71 of 709 patients). (A) ROC curves of different deep learning
models. (B) ROC curves of machine learning models using clinical features, radiomics features (SVM, RF, MLP), and combined features. (C) Confusion matrix of
machine learning model using clinical features, machine model using combined features, machine learning models (SVM) using radiomics features, and deep learning
model (SE-CNN).
TABLE 3 | Predictive performance of machine learning models using radiomics features (SVM, RF, MLP), and the deep learning models (SE-CNN CNN, AlexNet, Fine-
tuned VGG16, and Fine-tuned VGG19) for the external test cohort of 205 patients.

Model Classifier Accuracy AUC Recall Precision F-score

Machine learning SVM 0.707 0.778 0.500 0.700 0.583
RF 0.619 0.671 0.261 0.579 0.361
MLP 0.702 0.789 0.571 0.657 0.611

Deep learning SE-CNN 0.775 0.841 0.607 0.796 0.689
CNN 0.726 0.815 0.595 0.694 0.641

1D-CNN 0.668 0.720 0.452 0.633 0.528
AlexNet 0.688 0.797 0.904 0.575 0.704

Fine-tuned VGG16 0.644 0.642 0.345 0.617 0.442
Fine-tuned VGG19 0.549 0.618 0.607 0.463 0.525
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EGFR(-) is relatively regular and the surface is relatively smooth.
The shape of the lesion is closer to a sphere or ellipsoid in EGFR
(-) cases. In 2D CT patch, if the contour of the lesion is relatively
smooth and the internal texture is uniform, it is likely to be
predicted as EGFR(-). Conversely, if the lesion contour is sharp
and angular and the texture is turbid and complex, it is easy to be
predicted as EGFR(+).
DISCUSSIONS

In this study, we have studied the relationship between the
radiomics phenotype and the genotype of EGFR mutation in
LADC. The clinical, imaging, and EGFR mutational profiling
data of 709 LADC has been analyzed. One new method of using
the deep CNNs and CT-based radiomics feature mapping has
been proposed to predict EGFR mutation status. It is found that
EGFR(-) patients show the smaller age, higher odds of female,
Frontiers in Oncology | www.frontiersin.org 10295
larger lesion volumes, and lower odds of subtype of APA. The
most discriminative features are intratumor heterogeneity in the
form of texture. The resulted SE-CNN model can recognize
EGFR mutation status with an AUC of 0.910 and 0.841 for the
internal and external test cohorts, outperforming the CNN
model without SE, three ML models and the state-of-art models.

Predictive Radiomics Features of EGFR
Mutation Status
In this study, the mean decrease impurity importance method
has been to select predictive features. This method has been
utilized in our previous study (18). Among the selected features,
the most features are for texture (614) and the features of the first
order of intensity (158) and the shape features (12) follow.
Texture features belong to the second order statistics and
quantify intratumor heterogeneity by measures like correlation,
dissimilarity, energy, entropy, homogeneity, and second-order.
We have found that texture features are discriminative for the
A B

C

FIGURE 6 | The EGFR status recognition performance of different models for the external test cohort (205 patients). (A) ROC curves of different deep learning models.
(B) ROC curves of machine learning models (SVM, RF, MLP). (C) Confusion matrix of machine learning model (SVM) using radiomics features, 1D-CNN, and SE-CNN.
TABLE 4 | Performance comparison between our EGFR predictive model and the state-of-art.

Experiments Years Method Number of Patient AUC

Gevaert et al. 2017 Decision tree 186 0.89
Liu et al. 2017 Logistic regression 170 0.766
Velazquez et al. 2018 Deep belief network (DBNs) 353 0.69
Wang et al. 2019 Deep Learning(CNN) 800 0.85
Yang et al. 2019 RF model 467 0.831
Our method 2020 SE-CNN + Radiomics mapping 71/709; 205 0.910; 0.841
February 2021 | Volume 10 | A
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EGFR mutation status. This finding is in line with previous study
demonstrating that EGFR(+) tumors are more heterogeneous
than EGFR(-) (10).

Among the 50 highly informative features, the features of
First Order Feature have the largest number, reaching 17.
Meanwhile, 201 of the GLCM features are selected from
1,037 features and added to the 784 features used by the
deep learning model. It is known that GLCM can calculated
measures of higher order statistics including contrast and
coarseness (43).

To know the reproducibility of segmentation and resulted
features, we have conducted two experiments: 1) the test-retest
reproducibility of 3D U-Net segmentation; 2) the reproducibility
of segmentation using 3D U-Net and 3D V-Net. The intra-class
correlation coefficient (ICC) has been calculated between the
features obtained from two segmentations. The mean value of
ICCs for 205 patients is 0.947 for the test-retest reproducibility
and 0.811 for segmentations using 3D U-Net and 3D V-Net.

Machine Learning Models Using
Radiomics and Clinical Features
Machine learning models using radiomics features are the
mainstream of radiomics study including EGFR mutation
prediction from CT images. Our SVM model with 50
radiomics feature has presented good performance (AUC =
0.778). Velazquez et al. have achieved an AUC of 0.69 using
manually extracted CT features and radiomics method (10).
Gevaert et al. have also gotten good results through the
decision tree model in the cohort of 186 patients (42). Lu et al.
have even obtained one AUC of 0.90 for 104 patients (44). It
should be noted that our cohort includes 709 LADC patients and
is much higher than previous study, suggesting the higher
generalizability and lower over-fitting problem.
Frontiers in Oncology | www.frontiersin.org 11296
The advantage of machine learning models using radiomics
features are two aspects. First, the radiomics features are usually
well-defined according to expert domain knowledge, can be
understandable for observers and usually semantic. For
example, the features of CT image intensity reflects the
attenuation coefficient of tissues to X ray; the shape and size
features characterize the tumors’ elongation, sphericity, and
compactness; the texture features quantify the intratumor
heterogeneity and possible necrosis (10). Moreover, many
agnostic features of higher order and filtered metrics can also
be captured. Second, the cohort can be small if the rule of thumb
can be satisfied, i.e., each feature requires 10 patients in a binary
classifier (7).

Clinical features can be predictive for EGFR mutation status
by the aid of machine learning. We have used the clinical features
and SVM to build one model with an AUC of 0.751 for the
internal test cohort. About whether the relationship between
clinical and radiomics features are complementary, our results
are different with previous study. In our study, the combination
of clinical and radiomics features do not increase the prediction
performance. On the contrary, Velazquez et al. have presented
that the fusion of clinical and radiomics features can improve
prediction result (10). Li et al. have reported that the AUC
increases from 0.76 to 0.79 by inclusion of the clinical features
(45). The possible reason might lie on the fact that our radiomics
model and clinical model have reach the high AUC separately
and there is no margin for further improvement, even for
the combination.

Deep Learning Models Directly Using CT
Images
Regarding the prediction of EGFR mutation status through CT
images, deep learning can get better performance than machine
FIGURE 7 | Region of interest (lesion) and 3D visualization for different EGFR status prediction in examples.
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learning of predefined engineered features. Using transfer
learning of DenseNet pre-trained with 1.2 million natural
images, Wang et al. have realized encouraging performance
(AUC 0.81) for an independent validation cohort of 241
patients (26). Recently a deep learning model fusing CNN and
long short-term memory (LSTM) has presented good prediction
performance (46). Deep learning model can automatically learn
multi-level features by using a neural network that are difficult to
be formulized but directly related to EGFR information.
However, there are some limitations for deep learning models
directly trained with CT images. Most deep learning models are
opaque or “black box”. Although some visualization methods
such as Grad-CAM have developed, the specific meaning of the
features is still difficult to be explained clearly (32). Moreover,
deep learning models directly using CT images are intensively
data-hungry and require a lot of calculation power and a long
calculation time in training.

Deep Learning Models Using Radiomics
Features
Deep learning models using radiomics features proposed in our
study have created a new strategy of building hybrid system. This
strategy can utilize both the powerful capability of pattern
recognition of deep learning and the good interpretability of
radiomics features obtained by feature engineering. Our resulted
model has exerted conformity advantage of “1+1 > 2” and
achieved the higher AUC than machine learning models (0.841
versus 0.778 for the external test cohort). This advantage relies on
two pillars. The first pillar is the specially designed SE-CNN. By
learning the global information captured, SE layer can suppress
less useful features and emphasize the informative feature. Hence,
SE layer can improve the prediction performance (38). SE layer
can also make the CNN model converge faster during training.
Moreover, our SE-CNN is rather “shallow” compared with other
traditional CNNs such as VGG, ResNet and Xception. For medical
imaging applications, this kind of “shallow” CNNs usually shows
better performance due to the limited training data (39).

The second pillar is the radiomics feature mapping. For machine
learning models, the feature number cannot be so many for the
limited patients or samples, or the over-fitting will be serious (47).
SE-CNN may overcome this limit since our SE-CNN model does
present serious over-fitting though the mappings with 784
discriminative features are used for the training dataset of less
than 700 patients. More important is that these radiomics features
are interpretable and their contributions can be ranked by classical
feature selection algorithm.

In parallel, another way of build hybrid system is to apply the
deep CNN as feature extractor and the machine leaning as the
classifier. For example, Tang et al. have used a CNN model and
SVM as feature extractor and classifier, respectively (48). Even
mixed features from deep learning and feature engineering and
multiple instance learning (MIL) have been used in this hybrid way
(49, 50). This strategy can naturally be applied to the prediction
EGFR mutation status from CT images in future research.

The CNN can learn the spatial pattern of pixels in a deeply
abstract way. Actually, the features are ranked according to
Frontiers in Oncology | www.frontiersin.org 12297
the importance for classification by RF method and then
arranged in a determined sequence for generate a mapping
in our study. We think the spatial pattern of features (or
pixels) should be different between EGFR(+) and EGFR(-)
and the SE-CNN can learn the pattern differences. Moreover,
we have tried the mapping with different arrangements,
but no significant difference is found for the predictive
performance. We have tried 1D-CNN and CNN without SE
and found that their performance is not as good as that of SE-
CNN model.

For our method of constructing the feature mapping, the
augmentation cannot be used during training the deep
learning models. To alleviate the overfitting, our SE-CNN only
has two convolutional layers. For VGG16 and VGG19 for
comparison, we have used the pre-trained CNN with fine
tuning (transfer learning). We have found that SE-CNN
model can recognize EGFR mutation status with an AUC of
0.910 and 0.841 for the internal and external test cohorts,
respectively. An AUC of 0.841 indicates that our SE-CNN has
a reasonable generalization capability and the overfitting is not
so serious.

Besides the feature mapping of 28×28 that we have selected
currently, we have also tried the feature mappings of 24×24 and
32×32. While using the 24×24 mapping, AUC is 0.905 and 0.815
for the internal and external test cohorts, respectively. While
using the 32×32 mapping, it is 0.901 and 0.814, respectively. It
indicates that to select the feature mapping with a size of 28×28
might be reasonable.

Limitations and Future Directions
Despite the good performance of SE-CNN model in recognition
of EGFR mutation status, there are still a number of limitations
in our research. First, EGFR mutations may have different
results between different races, but all patients are recruited in
the two large tertiary referral centers in China in our research.
Therefore, the results may lack universality. Second, all patients
we analyzed are with lung adenocarcinoma but no patients
with other histological subtypes are involved. Third, feature
engineering-based radiomics methods require precise tumor
boundary annotation from image data; it takes a lot of time to
process the raw data.

In future research, the data can be collected from patients
with multiple races. An end-to-end pipeline including automatic
tumor identification, localization, and EGFR status prediction
can be developed. Integration of radiomics features, clinical
features and multi-level features in deep learning models may
improve the predictive performance.
CONCLUSION

Utilizing radiomics feature mapping extracted from non-
invasive CT images, the deep learning model of SE-CNN
can precisely recognize EGFR mutation status of LADC
patients. The proposed method integrates both the powerful
capability of pattern recognition of deep learning and the good
February 2021 | Volume 10 | Article 598721
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interpretability of radiomics features. This new strategy of
building hybrid system has demonstrated superior prediction
performance than both the pure deep learning and machine
learning, hence can be expanded to other medical applications.
The radiographic phenotype of LADC is capable of reflecting
the genotype of EGFR mutation, via deep learning and
radiomics method. The resulted SE-CNN model may help
make decision on usage of EGFR-TKI for LADC patient in an
invasive, repeatable, and low-cost way.
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Multiregional-Based Magnetic
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Improves Efficacy in Predicting
Lymph Node Metastasis of
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Yiying Zhang1, Yu Fu1* and Huimao Zhang1*

1 Department of Radiology, The First Hospital of Jilin University, Changchun, China, 2 Clinical Science Team, Philips
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Objective: To develop and validate a multiregional-based magnetic resonance imaging
(MRI) radiomics model and combine it with clinical data for individual preoperative
prediction of lymph node (LN) metastasis in rectal cancer patients.

Methods: 186 rectal adenocarcinoma patients from our retrospective study cohort were
randomly selected as the training (n = 123) and testing cohorts (n = 63). Spearman’s rank
correlation coefficient and the least absolute shrinkage and selection operator were used
for feature selection and dimensionality reduction. Five support vector machine (SVM)
classification models were built using selected clinical and semantic variables, single-
regional radiomics features, multiregional radiomics features, and combinations, for
predicting LN metastasis in rectal cancer. The performance of the five SVM models
was evaluated via the area under the receiver operator characteristic curve (AUC),
accuracy, sensitivity, and specificity in the testing cohort. Differences in the AUCs
among the five models were compared using DeLong’s test.

Results: The clinical, single-regional radiomics and multiregional radiomics models
showed moderate predictive performance and diagnostic accuracy in predicting LN
metastasis with an AUC of 0.725, 0.702, and 0.736, respectively. A model with improved
performance was created by combining clinical data with single-regional radiomics
features (AUC = 0.827, (95% CI, 0.711–0.911), P = 0.016). Incorporating clinical data
with multiregional radiomics features also improved the performance (AUC = 0.832 (95%
CI, 0.717–0.915), P = 0.015).

Conclusion:Multiregional-based MRI radiomics combined with clinical data can improve
efficacy in predicting LN metastasis and could be a useful tool to guide surgical decision-
making in patients with rectal cancer.

Keywords: rectal cancer, magnetic resonance imaging (MRI), machine learning, radiomics, lymph nodes
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INTRODUCTION

Colorectal cancer was the third most common type of malignant
tumor and the second leading cause of cancer death in the world
in 2018 (1). Nearly one-third of colorectal tumors are located in
the rectum (2). Lymph node (LN) status plays a vital role in
determining whether to perform adjuvant therapy or additional
surgical resection (2–6). Therefore, accurate preoperative
assessment of LN status or assessment of the N stages of
regional LNs in rectal cancer patients via medical imaging is
essential for precise individualized decision making and patient
prognosis (2, 6, 7). However, preoperative LN staging in rectal
cancer patients remains a challenge for radiologists (4).

Magnetic resonance imaging (MRI) is considered the most
accurate method to assess the primary staging of rectal cancer
(2). However, MRI, computed tomography (CT) and endorectal
ultrasound cannot reliably evaluate LN metastasis (2, 4, 8). All
diagnostic clues rely heavily on the size, shape, and margins of
LNs, but these semantic characteristics alone are insufficient to
reliably distinguish malignant from benign LNs in rectal cancer
patients (2, 4, 5, 9).

Unlike traditional image evaluation methods, radiomics is an
emerging and effective method for quantitatively analyzing the
classification and prognosis of diseases using medical imaging
(10). From standard-of-care medical images, data can be
extracted via high-throughput mining of quantitative image
features, which are undetectable by the naked eye, and applied
within clinical-decision support systems (9–13); radiomics plays
an important role in early diagnosis, treatment evaluation, and
tumor prognosis prediction, ultimately aiding in the achievement
of precision medicine (11, 14, 15).

In previous studies, a CT radiomics signature-based nomogram
(16) and T2-weighted histogram of the primary tumor (17) have
been applied and shown to successfully discriminate LN metastasis
in colorectal- and rectal cancer patients. MRI can provide
multiparameter images different from those obtained by CT, so it
is of interest whether there exists an association between LN status
andmultiregional radiomics features of multiparametricMR images
in rectal cancer patients. To the best of our knowledge, the topic has
not been previously studied.

This study aimed to develop and validate a multiregional
radiomics prediction model based on MRI and combine it with
clinical-semantic data for the individualized preoperative
prediction of LN metastasis in rectal cancer patients. This
would allow clinicians to make personalized treatment plans.
MATERIALS AND METHODS

This retrospective study was approved by the ethics committee of
the First Hospital of Jilin University, and the requirement for
informed consent was waived.

Patients
The data of 238 consecutive patients with rectal cancer from
January 2016 to December 2018 were initially retrieved from the
institutional database. The inclusion criteria were as follows: (i)
Frontiers in Oncology | www.frontiersin.org 2301
rectal MRI examination was performed within the 2 weeks before
surgery; (ii) the distal border of the tumor was ≤15 cm above the
anal verge based on colonoscopy; (iii) subsequent radical surgical
resection was performed; (iv) postoperative histopathological
examination confirmed rectal adenocarcinoma; and (v) all LNs
were assessed. The exclusion criteria were as follows: (i) distant
metastases; (ii) not undergoing surgery at our hospital or lack of
diffusion-weighted imaging (DWI) or high-resolution T2-
weighted imaging (T2WI) data; (iii) insufficient MRI quality to
obtain measurements (e.g., owing to motion artifacts); and (iv)
lack of presurgical carcinoembryonic antigen (CEA) and
carbohydrate antigen 19-9 (CA19-9) data. A total of 186
patients met the criteria and were included in this study; they
were divided randomly into a training cohort (n = 123) and a
testing cohort (n = 63) at a ratio of 2:1. The process of patient
selection is summarized in Figure 1.

Baseline clinicopathologic data, including age, gender, and
levels of CA19-9 and CEA, were derived from medical records.
Laboratory analyses of CEA and CA19-9 were conducted within
1 week before surgery. The threshold value for CEA was 5 ng/ml
and that for CA19-9 was 39 U/ml, according to the clinically
normal range.

Radiomics Workflow
The radiomics workflow is illustrated in Figure 2 and includes
(1) medical image acquisition, (2) tumor segmentation, (3)
radiomics feature extraction, and (4) feature selection and
predictive model construction (described in detail in the
Statistical Analysis section).

Medical Image Acquisition
All rectal MRIs were performed using a 3.0T MR scanner
(Philips Ingenia, the Netherlands) with the patient in the
supine position. To reduce colonic motility, 20 mg of
anisodamine was injected intramuscularly 30 min before the
MRI scan. All patients underwent the standard rectal MRI
protocol including sagittal, axial, oblique axial, and coronal
T2WI and DWI. DWI images were obtained with two b-
factors (0 and 1,000 s/mm2), a repetition time (TR) of 2,800
ms, an echo time (TE) of 70 ms, a field of view (FOV) of 340
mm× 340 mm, a matrix of 256 × 256, a thickness of 4.0 mm, and
a gap of 1.0 mm. Apparent diffusion coefficient maps were
generated automatically and included both b-values. High-
resolution T2WI images were obtained using turbo spin-echo
with a TR of 3,500 ms, a TE of 100 ms, a FOV of 180 mm×
180 mm, an echo train length of 24, a matrix of 288 × 256, a
thickness of 3.0 mm, and a gap of 0.3 mm.

Semantic and Pathological Evaluation
Two radiologists with 3 years and 8 years of experience in rectal
cancer MRI interpretation who were blinded to the
histopathology results evaluated the MR images.

Conventional semantic evaluation indicators included MRI-
reported LN status, which were performed using the qualitative
criteria of the LNs according to the updated recommendations
from the 2016 European Society of Gastrointestinal and
Abdominal Radiology (ESGAR) consensus meeting (18). AN LN
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with a short-diameter of ≥9 mm is considered metastatic. An LN
with a short diameter of 5–8 mm and at the same time satisfying
any two of the following three items is considered metastatic: the
edge of the LN is not smooth, the signal inside the LN is not
uniform, and the LN is round. An LN with a short-diameter of
<5 mm LN meeting all three of the above items is considered
metastatic. The location of the primary tumor was measured on
the approximate luminal center of the rectum on the sagittal T2WI
sequence and categorized as lower (0–5 cm from the anal verge to
the lowest edge of the tumor), middle (5.1–10 cm from the anal
verge to the lowest edge of the tumor), or higher (10.1–15 cm from
Frontiers in Oncology | www.frontiersin.org 3302
the anal verge to the lowest edge of the tumor) (5, 19). The tumor
length (measured on the sagittal T2WI), tumor thickness
(measured on the oblique axis T2WI), extramural depth of
invasion (measured on the oblique axis T2WI), invasion of
mesorectal fascia (MRF; >1 mm was diagnosed as negative and
≤1 mm diagnosed as positive), maximum LN short diameter
(measured on the axis T2WI) were also evaluated. Cases of
disagreement on the evaluation of semantic features were
resolved through discussion between the two radiologists.

The pathological LN status of each patient was recorded
following the histopathological reports.
FIGURE 2 | The workflow of radiomics in this study. T2WI, T2-weighted imaging; DWI, diffusion-weighted imaging; GLCM, Gray Level Cooccurence Matrix; GLSZM,
Gray Level Size Zone Matrix; GLRLM, Gray Level Run Length Matrix; NGTDM, Neighboring Gray Tone Difference Matrix; GLDM, Gray Level Dependence Matrix;
LASSO, least absolute shrinkage and selection operator; AUC, area under the curve; SVM, support vector machine.
FIGURE 1 | The process of patient selection. MRI, magnetic resonance imaging; pLN+, pathological lymph node positive; pLN−, pathological lymph node negative.
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Tumor Segmentation
All MRI scans were retrieved from the picture archiving and
communication system (Agfa) for tumor masking and image
feature extraction.

One radiologist who was blinded to the histopathology results
segmented the volumes of interest (VOIs) on high-spatial
resolution T2WI and DWI images using IntelliSpace Discovery
(Philips, Best, the Netherlands). For each patient, three VOIs
were defined as follows: (i) the volume of the whole primary
tumor on T2WI, which was manually drawn along the contour
of the tumor on each slice; (ii) the volume of the whole primary
tumor on DWI (b-value of 1,000 s/mm2), manually drawn on
each slice on the high signal intensity region; and (iii) the volume
of the peritumoral mesorectum on un-fat-suppressed T2WI,
drawn along the MRF and the outer edge of the tumor and
rectal wall, respectively, retaining the area between the
two circles.

To assess intra-reader and inter-reader reproducibility,
randomly selected T2WI images of 20 cases was segmented
again by the same radiologist a month following the same
procedure, as well as by another radiologist with 8 years’
experience in interpreting pelvic MRI.

Radiomics Feature Extraction
For each patient, we used three different VOIs for radiomics feature
calculation. Radiomics feature extraction was implemented using a
Philips Radiomics Tool (Philips Healthcare, China); the core
feature calculation was based on pyRadiomics (20).

For each VOI, a total of 1,653 three-dimensional (3D)
radiomic features, including direct features, indirect features,
Wavelet transform features, and Laplacian of Gaussian filtered
features, were extracted. The types, introduction of extracted
features, and the number of each type are shown in
Supplementary Table 1. For each patient, we integrated all
4,959 radiomics features from three VOIs.

Statistical Analysis
The statistical analysis of clinicopathological features and
semantic indicators were performed with SPSS software
(version 22.0, Chicago, IL, USA). The lasso algorithm and
SVM model construction were implemented with the scikit-
learn package in Python(3.7). P <0.05 was considered statistically
significant using two-tailed testing.

Demographic Comparison of the Training and
Testing Cohorts
The differences in continuous variables, including age, tumor
length, tumor thickness, extramural depth of invasion, and
maximum LN short diameter, between the training and testing
cohorts were compared using a two-sample t-test or Mann–
Whitney U test, according to the normality of data distribution
tested using the Kolmogorov–Smirnov method. Chi-square or
Fisher’s exact tests were used, as appropriate, to compare
differences (including LN prevalence) in categorical variables
(gender, location of the primary tumor, levels of CEA and CA19-
9, invasion of MRF and MRI-reported LN status). The same
statistical analysis was applied to assess differences in the
Frontiers in Oncology | www.frontiersin.org 4303
characteristics between patients with pLN− (pathological N0
stage) and pLN+ (pathological N1–N2 stage) in the two cohorts.

Inter- and Intra-Observer Reproducibility of Tumor
Segmentation
Dice similarity coefficient (DSC) was calculated to evaluate the
inter-and intra-observer agreements of tumor segmentation.
DSC greater than 0.75 indicates good agreement.

Feature Selection
First, all features (including baseline clinicopathological data,
semantic indicators, and radiomics features) were normalized
using the Min–Max scaling algorithm, as shown below:

Xnormal =
X − Xmin

Xmax − Xmin

Next, Spearman’s rank correlation coefficient analysis
between each feature and label was performed. Features with a
coefficient lower than an absolute value of 0.2 or P values greater
than 0.05 were removed due to the low correlation between these
features and the pathological labels. We then used the least
absolute shrinkage and selection operator (LASSO) algorithm for
dimensionality reduction (21).

Model Training and Validation
Five support vector machine (SVM) classification models were
built using selected clinical and semantic features, single-regional
radiomics features, multiregional radiomics features, and
combinations thereof. The clinical model was developed based
on selected clinical and semantic factors. The radiomics model of
the tumor (TR) was developed based on selected radiomics
features of two VOIs of the primary tumors. The radiomics
model of tumor and mesorectum (TMR) was developed based on
selected radiomics features of three VOIs of the primary tumors
and peritumoral mesorectum. Selected clinical and semantic
factors and radiomics features of two VOIs of the primary
tumors were used to develop a clinical-tumor radiomics model
(CTR). Selected clinical and semantic factors and radiomics
features of all three VOIs were used to develop a clinical-
tumor and mesorectum radiomics model (CTMR).

The performance of the models in predicting LN status
was first evaluated in the training cohort, then in the testing
cohort by plotting a receiver operating characteristic (ROC)
curve and calculating the area under the curve (AUC).
The corresponding accuracy, sensitivity, specificity, negative
predictive values (NPV), and positive predictive values (PPV)
were then calculated. The differences in the AUCs of the five
models were compared using DeLong’ test.
RESULTS

Patient Characteristics
The demographic characteristics of patients in the training and
testing cohorts are shown in Table 1. There were no significant
differences between the two cohorts in LN prevalence (P =
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. MRI Radiomics of Lymph Node
0.892). LN metastasis positivity was 43.9 and 42.9% in the
training and testing cohorts, respectively. The characteristics of
the two cohorts did not differ significantly, which justifies their
use as training and testing cohorts (P values ranged from 0.121 to
0.906). The maximum LN short diameter differed significantly
between the pLN+ and pLN− groups in both cohorts (P = 0.001
and P = 0.004, respectively). The location of the primary tumor
differed significantly between the pLN+ and pLN− groups in the
training cohorts (P = 0.008). Good inter- and intra-observer
reproducibility of tumor segmentation was achieved. The DSC
for intra-observer agreement ranged from 0.793 to 0.865; for
inter-observer agreement, it ranged from 0.773 to 0.847, which
demonstrates good consistency.

Feature Selection and Model Construction
Selected features after Spearman’s rank correlation coefficient and
LASSO regression and corresponding coefficients and the intercept
of the constructed five SVM prediction models in the training
cohort are shown in Supplementary Tables 2 to 6. The possibility
of LN metastasis was calculated for each patient via a linear
combination of selected features that were weighted by their
respective coefficients in the SVM model and adding the intercept.

Performance of the Models
The ROC curves and corresponding AUC values that distinguish
between pLN+ and pLN− in the five models are shown in Table
2 and Figure 3. The clinical model performed moderate when
Frontiers in Oncology | www.frontiersin.org 5304
classifying between pLN+ and pLN−, with an AUC of 0.717 (95%
confidence interval (CI), 0.629–0.795) and 0.725 (95% CI, 0.598–
0.830) in the training and testing cohorts, respectively. There was
no significant difference between the AUC of the clinical and
single-regional TR models in the two cohorts (training: AUC =
0.786 (95% CI, 0.702–0.854), P = 0.222; testing: AUC = 0.702
(95% CI, 0.573–0.810), P = 0.801). Compared with the single-
regional TR model, the multiregional-based CTMR model
showed improved AUCs in the two cohorts (training: AUC =
0.837 (95% CI, 0.801–0.926), P = 0.009; testing: AUC = 0.832
(95% CI, 0.717–0.915), P = 0.030). The single-regional CTR
model outperformed the TR model only in the testing cohort
(AUC = 0.827 (95% CI, 0.711–0.911), P = 0.016). Compared with
the multiregional TMR model, the CTMR model showed
improved AUCs in the testing cohort (P = 0.015). The TMR,
CTR, and CTMR models outperformed the clinical model only
in the training cohort (P values ranged from <0.001 to 0.014),
while no significant differences were seen in the testing cohort.

Table 3 summarizes the accuracy, sensitivity, specificity, PPV,
and NPV of the five models in detail. The clinical model was able
to discriminate between pLN+ and pLN− in the training and
testing cohorts with an accuracy of 0.650 and 0.635 respectively.
All the performance indexes of the TR model were better than
those of the clinical model in the training cohort; in the testing
cohort, only specificity was higher in the clinical model. When
tumor features were combined with mesorectum features, the
resulting TMR model showed an improved accuracy with values
TABLE 1 | Characteristics of patients in training and testing cohorts.

Characteristic Training cohort Testing cohort P※

pLN+
n = 54

pLN−
n = 69

P pLN+
n = 27

pLN−
n = 36

P 0.892

Gender 0.090a 0.184a 0.906a

Male 33(61.1) 52(75.4) 16(59.3) 27(75.0)
Female 21(38.9) 17(24.6) 11(40.7) 9(25.0)

Age, years 60(53−67) 60(51.5−70.5) 0.520c 57.6 ± 12.7 59.3 ± 10.2 0.571b 0.388b

CEA level 0.508a 0.052a 0.324a

Normal 39(72.2) 46(66.7) 13(48.1) 26(72.2)
Abnormal 15(27.8) 23(33.3) 14(51.9) 10(27.8)

CA19-9 level 0.289a 0.643a 0.684a

Normal 47(87.0) 64(92.8) 24(88.9) 34(94.4)
Abnormal 7(13.0) 5(7.2) 3(11.1) 2(5.6)

Location of primary tumor 0.008a* 0.128a 0.397a

Upper 7(13.0) 1(1.4) 0(0) 1(2.8)
Middle 29(53.7) 31(44.9) 17(63.0) 15(41.7)
Lower 18(33.3) 37(53.6) 10(37.0) 20(55.6)

Tumor length(cm) 5.2 ± 2.2 5.3 ± .3 0.858b 5.4 ± 2.0 4.8 ± 1.9 0.199b 0.594b

Tumor thickness(cm) 1.3(1.1−1.5) 1.3(1.1−1.6) 0.910c 1.1(0.9−1.6) 1.3(1.0−1.6) 0.512c 0.194c

Extramural depth of invasion(mm) 5.0(2.0−7.3) 4(0-6) 0.126c 5.0(3.0−8.0) 4.0(0.3−8.0) 0.212c 0.268c

Maximum LN short diameter(mm) 6.0(4.0−8.0) 6.0(3.0−6.0) 0.001c* 7.0(5.0-9.0) 5.0(3.3−6.8) 0.004c* 0.121c

Invasion of MRF 0.708a 0.504a 0.598a

Negative 43(79.6) 53(76.8) 19(70.4) 28(77.8)
Positive 11(20.4) 16(23.2) 8(29.6) 8(22.2)

MRI-reported lymph status 0.063a 0.059a 0.271a

Negative 14(25.9) 29(42) 4(14.8) 13(36.1)
Positive 40(74.1) 40(58) 23(85.2) 23(63.9)
February 2021 | Volu
me 10 | Article 5
pLN-, pathological N0 stage; pLN +, pathological N1-N2 stage; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9; MRF, mesorectal fascia; a, Chi-square test or
Fisher’s exact test, data are number of patients, with percentages in parentheses; b, Independent sample t test, data are mean ± SD; c, Mann-Whitney U test, data are median, with
Interquartile range in parentheses.* p value <0.05; ※The comparison between the training cohort and testing cohort. The threshold value for CEA level was 5ng/mL and >5 ng/mL, and the
threshold value of CA 19-9 level was 39 U/mL and >39 U/ml, according to the normal range used in clinics.
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of 0.722 and 0.635 in the two cohorts, outperforming the clinical
model in the training cohort and having the same accuracy as in
the testing cohort. When the single-regional and multiregional
radiomics models were combined with clinical factors, the
resulting CTR and CTMR models had higher accuracies and
Frontiers in Oncology | www.frontiersin.org 6305
better performance indexes than the uncombined models in the
two cohorts. With the exception of the CTR and CTMR models,
which had the same sensitivity in the testing cohort (0.815), the
CTMR model had the highest performance indicators in the
two cohorts.
TABLE 2 | The detailed AUC vaues and p values among models on the training cohort and testing cohorts.

Cohorts Model AUC (95％CI) P P1 P2 P3 P4

Training Clinical 0.717(0.629–0.795) <0.001*
TR 0.786(0.702–0.854) <0.001* 0.222
TMR 0.834(0.756–0.895) <0.001* 0.014* 0.106
CTR 0.825(0.746–0.888) <0.001* 0.003* 0.198 0.749
CTMR 0.873(0.801–0.926) <0.001* <0.001* 0.009* 0.132 0.043*

Testing Clinical 0.725(0.598–0.830) <0.001*
TR 0.702(0.573–0.810) 0.003* 0.801
TMR 0.736(0.609–0.839) <0.001* 0.903 0.486
CTR 0.827(0.711–0.911) <0.001* 0.061 0.016* 0.116
CTMR 0.832(0.717–0.915) <0.001* 0.068 0.030* 0.015* 0.885
February 2021 | V
olume 10 | Article 5
TR, radiomics model of tumor; TMR, the radiomics model of tumor and mesorectum; CTR, clinical-tumor radiomics model; CTMR, clinical-tumor and mesorectum radiomics model; AUC,
the area under the curve; CI, confidence interval. *P < 0.05; P1, p values between clinical model and other models; P2, p values between TRmodel and other models; P3, p values between
TMR model and other models; P4, p values between CTR model and CTMR models. p values of P1 to P4 calculated using ROC test by Delong test.
A B

FIGURE 3 | The receiver operator characteristic (ROC) curves to discriminate pLN+ from pLN− for the five models on the training cohort (A) and testing cohorts (B).
AUC, area under the curve; TR, radiomics model of tumor; TMR, radiomics model of tumor and mesorectum; CTR, clinical-tumor radiomics model; CTMR, clinical-
tumor and mesorectum radiomics model.
TABLE 3 | Predictive performances among models on the training cohort and testing cohorts.

Model Cohorts Accuracy (95％CI) Sensitivity Specificity PPV NPV

Clinical Training 0.650(0.566–0.734) 0.704 0.609 0.585 0.724
Testing 0.635(0.516–0.754) 0.704 0.583 0.559 0.724

TR Training 0.707(0.627–0.787) 0.741 0.681 0.645 0.770
Testing 0.619(0.499–0.739) 0.593 0.639 0.552 0.676

TMR Training 0.772(0.698–0.846) 0.778 0.768 0.724 0.815
Testing 0.635(0.616–0.754) 0.667 0.611 0.563 0.710

CTR Training 0.764(0.689–0.839) 0.778 0.754 0.712 0.813
Testing 0.746(0.639–0.853) 0.815 0.694 0.667 0.833

CTMR Training 0.789(0.717–0.861) 0.796 0.783 0.741 0.831
Testing 0.778(0.675–0.881) 0.815 0.750 0.710 0.844
The cutoff was 0 for all the models. TR, radiomics model of tumor; TMR, The radiomics model of tumor and mesorectum; CTR, clinical-tumor radiomics model; CTMR, clinical-tumor and
mesorectum radiomics model; CI, confidence interval. PPV, positive predictive value; NPV, negative predictive value.
85767

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. MRI Radiomics of Lymph Node
DISCUSSION

In this study, we explored the diagnostic value of multiple models
which included clinical factors, single-regional radiomics,
multiregional radiomics, and combinations of clinical and
radiomics models based on MRI to preoperatively predict LN
metastasis in patients with rectal cancer. Our results showed that
the established models had good predictive performance, and a
multifactorial model based on multiregional radiomics combined
with clinical factors had better classification performance and
diagnostic accuracy, suggesting that it can act as a relatively non-
invasive auxiliary evaluation tool for clinical decision-making.

Preoperative LN staging in patients with rectal cancer remains a
challenge for radiologists. Previous studies have reported the use of
clinical and semantic factors such as CEA and serum angiopoietin-
like protein 2 levels, histopathological features, the diameter of LN,
and morphological features (22–25) to predict LN status in patients
with rectal cancer. However, these features are not enough to
reliably diagnose LN metastasis in patients with rectal cancer (2,
5, 25). In this study, we found that the maximum LN short diameter
was significantly different between the pLN− and pLN+ patients in
both the training and testing cohorts, with a bigger LN diameter
indicating an increased probability of metastasis. Several previous
studies have shown that some clinical characteristics were related to
LNmetastasis (3, 24). However, in our study, clinical characteristics
such as CEA and CA19-9 had no additional value for predicting LN
status. These results may be related to characteristics of the study
population itself, such as the sample size. After feature selection, two
semantic indicators, namely the maximum LN short diameter and
tumor location, were included in the final clinical model. Our
results also showed that a model based purely on semantic variables
had relatively low sensitivity and specificity for the prediction of LN
status, which may lead to moderate accuracy for diagnosis.
However, this result should be interpreted with caution, as
clinical variables vary from population to population.

At present, several studies have reported the role of radiomics in
predicting LN metastasis in rectal cancer. In comparison, none of
the rectal MRI studies had ever focused on peritumoral tissue and
the microenvironment. Huang et al. (16) used an enhanced CT-
based radiomics model to discriminate LN metastasis in colorectal
cancer patients with a concordance index of 0.736–0.778. However,
previous studies focused on both colonic and rectal lesions using
CT data in regions of interest (ROIs) of the primary tumor region
alone. In our study, the segmentation of images was performed
layer by layer, and 3D VOIs were constructed. Previous studies
have shown that 3D VOIs are more representative of the
heterogeneity of the whole lesion than 2D ROIs (26). Moreover,
the LN status of rectal cancer is important for clinical decision
making. MRI is considered to be the optimal imaging modality for
the primary staging of rectal cancer (2). Yang et al. used T2WI
histogram features of the primary rectal tumor to predict the
existence of LN metastasis with moderate-to-good diagnostic
power and an AUC of 0.648 to 0.750 (17). Yang et al. segmented
the single-regional ROIs of rectal cancer images to extract
histogram features. Previous studies have indicated that
multiregional MRI radiomics allows for a comprehensive
Frontiers in Oncology | www.frontiersin.org 7306
characterization of the tumor heterogeneity (27, 28). In addition
to the region of the tumor, the surrounding mesorectal tissues may
also exhibit abnormal microscopic changes in the microvascular
and lymphatic networks, the extracellular matrix, and the
interstitial pressure, which should not be ignored (3, 29). A
central hypothesis driving radiomics research is that radiomics
has the potential to quantitatively measure intra- and intertumoral
heterogeneity (11). When the current multiregional radiomics
signature was introduced into the prediction model of rectal
cancer, the performance improved when compared to that of the
single-regional model (3). Hence, the radiomics model constructed
in our study included the VOIs of the primary tumor and the
mesorectum at the lesion level on the morphological T2WI
sequence and the VOIs of the primary tumor on the functional
DWI sequence. Our study found that the multiregional radiomics
model showed minor non-significant improvements in AUC
compared with a single-regional radiomics model (P = 0.486),
but the former had better accuracy.

Considering the global nature of the model, clinical,
treatment, and biological or genetic information should be
included in the radiomics analysis process (12). Our results
showed no significant difference in AUCs between the clinical,
single-regional radiomics, and multiregional radiomics models,
which showed that clinical models and radiomics models have
similar predictive performance. The combination of clinical
factors with single-regional and multiregional radiomics
features improved the performance of the model, and the
model with the combination of clinical factors and
multiregional radiomics features had the highest AUC and
accuracy values. This indicated that the clinical information in
the combined models may contribute relatively more to the
prediction performance than the radiomics features. So, clinical
and semantic factors also play an important role in the prediction
of LN metastasis of rectal cancer. The sensitivity and NPV of the
combined models were high, indicating that the models can
accurately identify true pLN+ and true pLN− patients. The need
for a model to determine LN metastasis—one that can accurately
identify patients who need neoadjuvant chemoradiotherapy—is
high. For patients with tumors confined to T0 and T1 staging,
accurate identification of pLN− patients may actually change
clinical decision-making; that is, only local excision would be
performed to avoid the pain caused by surgery, and it is possible
for patients with lower-stage tumors to maintain anal sphincter
function. Therefore, from a clinical perspective, the significance
of accurately identifying pLN− patients is great, and we conclude
that the addition of clinical factors to radiomics analysis
potentially creates a substantial biomarker for assessing the
risk of LN metastasis and could be applied in clinical practice.

Our study had several limitations. Firstly, the sample size was
relatively small, and the retrospective study lacked independent
external validation. In the future, our results should be
prospectively validated in multicenter clinical trials. Secondly,
genomic characteristics were not considered. Radiogenomics,
which focuses on the relationship between imaging phenotypes
and genomics, has emerged in the field of cancer research and
has attracted increasing interest (29). Thirdly, manual
February 2021 | Volume 10 | Article 585767
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segmentation was used in this study, which is time-consuming
and error-prone. Therefore, a reliable and robust automatic
segmentation tool is necessary to solve this problem.
CONCLUSIONS

In conclusion, our findings demonstrated that multiregional-
based radiomics features from multiparametric MRIs of patients
with rectal cancer combined with clinical data can improve
efficacy in non-invasively predicting LN metastasis and could
serve as a useful tool to preoperatively guide individualized
surgical decision-making of patients with rectal cancer.
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After neoadjuvant chemoradiotherapy (NCRT) in locally advanced esophageal squamous cell
cancer (ESCC), roughly 40% of the patients may achieve pathologic complete response
(pCR). Those patients may benefit from organ-saving strategy if the probability of pCR could
be correctly identified before esophagectomy. A reliable approach to predict pathological
response allows future studies to investigate individualized treatment plans.

Method: All eligible patients treated in our center from June 2012 to June 2019 were
retrospectively collected. Radiomics features extracted from pre-/post-NCRT CT images
were selected by univariate logistic and LASSO regression. A radiomics signature (RS)
developed with selected features was combined with clinical variables to construct RS+
clinical model with multivariate logistic regression, which was internally validated by
bootstrapping. Performance and clinical usefulness of RS+clinical model were assessed by
receiver operating characteristic (ROC) curves and decision curve analysis, respectively.

Results: Among the 121 eligible patients, 51 achieved pCR (42.1%) after NCRT. Eighteen
radiomics features were selected and incorporated into RS. The RS+clinical model has
improved prediction performance for pCR compared with the clinical model (corrected
area under the ROC curve, 0.84 vs. 0.70). At the 60% probability threshold cutoff (i.e., the
patient would opt for observation if his probability of pCR was >60%), net 13% surgeries
could be avoided by RS+clinical model, equivalent to implementing organ-saving strategy
in 31.37% of the 51 true-pCR cases.
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Conclusion: The model built with CT radiomics features and clinical variables shows the
potential of predicting pCR after NCRT; it provides significant clinical benefit in identifying
qualified patients to receive individualized organ-saving treatment plans.
Keywords: neoadjuvant chemoradiation, esophageal cancer, response prediction, organ-saving treatment, radiomics
INTRODUCTION

Neoadjuvant chemoradiotherapy (NCRT) followed by
esophagectomy has significantly improved the survival of
resectable locally advanced esophageal cancer compared with
surgery alone and has been established as the standard treatment
(1, 2). Although the response to NCRT varies among patients,
the pathologic complete response (pCR) rate can be as high as
43.2% in esophageal squamous cell carcinoma (ESCC) and 27%
in esophageal adenocarcinoma (1–4). For patients who achieve
pCR after NCRT, individualized organ-saving strategies such as
active surveillance or definitive chemoradiation are recently
being explored as an alternative treatment option to surgery,
considering the relatively high postoperative complication rate
(~65%) and mortality rate (~4–10%) depending on different
centers (5, 6), as well as the decline in health related quality of life
after esophagectomy (7–10). However, pCR could only be
confirmed by histologic assessment of surgical specimens. A
reliable means independent from surgical specimen evaluation is
required to identify the complete responders that could
potentially spare surgery. Current recommended approaches
for NCRT response assessment include pathologic evaluation
of endoscopic biopsy and 18FDG-PET that usually involves
setting a cutoff value of SUV reduction to discriminate
between pCR and non-pCR patients. However, those
approaches are not accurate enough to identify pCR patients;
thus, some non-pCR patients might be falsely diagnosed as
complete responders and inappropriately arranged for surgery
omission (11). So far, no biological or radiological marker has
been used for guiding the comprehensive esophagus-preserving
treatment modality in locally advanced esophageal cancer.

Radiomics is the high-throughput extraction of a large
amount of image features (density, grey level heterogeneity,
shape, etc.) from radiographic images that are promising in
revealing the underlying proteo-genomic and phenotypic
information of solid tumors (12). While the histopathologic
analysis of biopsy specimens might fail to represent the whole
tumor due to the spatial heterogeneities, radiomics is able to
profile these heterogeneities and serves as a bridge between
tumor genomics and phenotypes. Some radiomics features
have been proved to correspond to the gene expression profile
and are useful in predicting cancer prognosis and therapeutic
response (13). Radiomics features extracted from 18FDG-PET
images combined with clinical information was reported to have
decent discriminatory accuracy in predicting pCR in post-NCRT
esophageal tumors with AUC (area under the receiver operating
characteristic curve) of 0.81 (14). However, the investigation was
performed mainly for tumors of gastroesophageal junction or
esophageal adenocarcinoma, and the conclusion could not be
in.org 2310
extended to ESCC, the type that predominates in Asian
countries. Therefore, we aim to develop a CT radiomics based
model to predict tumor response to NCRT in ESCC and assess its
value in organ-saving decision making.
MATERIALS AND METHODS

Patients
This retrospective study was approved by the institutional review
board of Shanghai Chest Hospital; the requirement for informed
consent was waived. Consecutive patients with stage T2-4aN+/-
M0 esophageal cancer who received NCRT followed by
esophagectomy in Shanghai Chest Hospital from June 2012 to
June 2019 were extracted from the hospital database. Patients are
only eligible for inclusion if they (i) had histopathologically
confirmed ESCC; (ii) had contrast-enhanced CT scans within 3
weeks before NCRT and within 3–8 weeks after NCRT. Patients
were excluded if (i) the chemoradiation was done outside
Shanghai Chest Hospital, and the treatment details were
missing; (ii) delivered radiation dose was less than 40 Gy or
more than 50.4Gy; (iii) surgery was done within less than 4 weeks
or more than 10 weeks after NCRT—indicating urgent and
salvage resections, respectively (2, 3).

Histopathological Assessment
Surgically resected specimens were sent for histopathological
assessment by an experienced pathologist and reviewed by
another specialized thoracic cancer pathologist. Pathologic
complete response (pCR) was defined as the absence of
microscopically viable cancer cells in the primary tumor, as
opposed to any grade of residual carcinoma (Non-pCR).
Evaluation of lymph node metastasis was excluded because
radiomics analysis is unreliable when performed on small
lesions, and thus only the primary tumor would be involved in
the image analysis (3).

Clinical Variable Collection
Demographic information and radiologic test results from CT,
EUS (endoscopic ultrasound), and esophagogram were collected
as clinical variables. Clinical T stage and lymph node status (N+/
N-) were evaluated by EUS and CT complementarily.
dThickness% was calculated as the maximum tumor thickness
reduction after NCRT divided by baseline maximum tumor
thickness on pre-NCRT CT. Tumor adventitia type was
evaluated by CT and classified as smooth or not smooth
(tumor outer membrane is coarse or nodular) (15).
Esophagogram esophageal cancer gross type was classified as 4
types according to Japan Esophageal Society described as
February 2021 | Volume 10 | Article 615167
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following: type 1: protruding type; type 2: ulcerative and localized
type; type 3: ulcerative and infiltrative type; type 4: diffusely
infiltrative type (16, 17). Pre-Dmin and post-Dmin refer to the
esophageal minimum diameter on esophagogram before and
after NCRT, respectively. dDmin% was defined as the increase of
esophageal minimum diameter on esophagogram after NCRT
divided by pre-Dmin. The difference of clinical variables between
pCR and non-pCR cohorts was analyzed using Chi-squared test
or Student t-test, and only the significant clinical variables were
selected for further analysis.

Delineation of Regions of Interest
Contrast-enhanced chest CT images were acquired with a variety
of CT scanners according to standard clinical scanning protocols
(120kV/140kV, 140~300mA, and slice thickness of 5 mm). All
images were reconstructed with the standard reconstruction
kernel. The regions of interest (ROIs) were manually
delineated on Pinnacle 9.1 system (Philips, Fitchburg, WI) by
two expert radiation oncologists, referring to complementary
materials such as 18FDG-PET/CT, barium esophagogram, and
esophagoscopy reports. The pre-NCRT ROI was contoured on
the pre-NCRT CT images to cover the primary esophageal tumor
only. The post-NCRT CT images of each patient were then
registered with the corresponding pre-NCRT images, and the
contour of the pre-NCRT ROI was projected onto the post-
NCRT images. The post-NCRT ROI was manually adjusted from
the pre-NCRT ROI to compensate for the circumferential tumor
shrinkage after treatment, keeping the craniocaudal
length unchanged.

Radiomics Feature Extraction
Radiomics features were extracted using the open infrastructure
quantitative image software IBEX (18). A total of 135 radiomics
features were extracted from both pre-NCRT and post-NCRT
CT images, respectively, including 18 shape and size based
features, 52 first order statistic features, and 65 second order
features (Supplementary Material 1).

For each of these radiomics features, d-NCRT feature was
calculated as the post-NCRT radiomics feature value subtracting
the corresponding pre-NCRT one, producing 135 d-NCRT
features. Therefore, a total of 405 features would be extracted
for each patient.

Feature Reproducibility Evaluation
To assess the inter-observer reproducibility of radiomics
features, the pre-NCRT CT images of the first 10 consecutive
patients were used, each contoured by another two experienced
thoracic cancer radiation oncologist in a blinded fashion. The
intraclass correlation coefficient (ICC) was calculated for the
feature robustness ranking. The coefficients were interpreted as
follows: 0.81 to 1.00: almost perfect agreement; 0.61 to 0.80:
substantial agreement; 0.41 to 0.60: moderate agreement; 0.21 to
0.40: fair agreement; 0 to 0.20: poor or no agreement. The feature
stability was also validated in test-retest setting using RIDER
dataset from The Cancer Imaging Archive (TCIA), which
contains two sets of CT scans taken 15 min apart for each of
the 31 NSCLC patients. The repeatability in test-retest was
Frontiers in Oncology | www.frontiersin.org 3311
evaluated by concordance correlation coefficient (CCC). The
radiomics features with both ICCs above 0.4 in inter-observer
test and CCCs above 0.75 in test-retest were selected for further
analysis (19, 20).

Radiomics Feature Selection
Radiomics feature selection was performed in two steps. Robust
features selected from reproducibility analysis were first tested by
univariate logistic regression with a cutoff p-value of 0.157
according to Wilks’ theorem and Akaike Information Criterion
requiring c 2 >2 df, where df is degrees of freedom (14). The
significant features were then introduced into a regularized
multivariate logistic regression with the least absolute
shrinkage and selection operator (LASSO) penalty, which
shrinks the estimates of regression coefficients and excludes
variables by forcing certain coefficients to become 0. The
purpose of this shrinkage is to prevent overfitting due to either
collinearity of the covariates or high-dimensionality (21). A
radiomics signature (RS) was constructed through linear
combination of the selected radiomics features weighted by
their coefficients in LASSO regression. Student t-test was
performed to evaluate the mean difference of RS between pCR
and non-pCR cohorts.

Model Development and Statistical
Analysis
Two multivariate logistic regression models were constructed to
study the value of clinical variables alone (clinical model) and the
added value of radiomics signature (RS+clinical model), for the
prediction of pCR. The flowchart of the model development
process is attached in the Supplementary Materials.

The goodness-of-fit of each model was assessed by
Nagelkerke R2, Akaike Information Criterion (AIC), and Brier
score. The lower the AIC value and Brier score are, the better the
model fits: for a binary outcome, the Brier score ranges from 0 for
a perfect model to 0.25 for an unsatisfying model (22). On the
contrary, higher Nagelkerke R2 indicates better calibration.
Model calibration was visualized by the calibration plot.
Discriminative ability of the models was evaluated by area
under the receiver operating characteristic (ROC) curve (AUC).

Considering the traditional accuracy metrics, such as AUC, have
limited value for telling if an intervention could be performed on the
individual patient, decision curve analysis was carried out to
investigate the clinical usefulness of the prediction models by
quantifying the net benefit, which is calculated as (23, 24):

net benefIt =
TP
n

−
FP
n

Pt
1 − Pt

� �

where TP and FP refer to true positive count (i.e., true pCR) and
false positive count (i.e., false pCR); n is the number of total
patients; and Pt is the threshold probability. Threshold
probability is defined as the minimum probability of pCR
above which a patient would opt for observation rather than
surgery (higher probability indicates a greater chance of pCR).
Finally, a nomogram incorporating the selected clinical variables
and RS was generated for clinical reference.
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To prevent the overestimation of the final model
performance, internal validation by bootstrap resampling with
2,000 replicates was performed to correct the optimism of the
model performance.

Statistical analysis was done with R (version 3.6.1) and p-
value less than 0.05 was considered significant unless
stated otherwise.
RESULTS

Patient Characteristics and Clinical
Variable Selection
A total of 121 patients with ESCC were finally included in the
study with an average age of 60.9 ( ± 6.8) years and more males
(88.4%) than females (11.6%).The clinical characteristics are
shown in Table 1.

All patients received full prescribed radiation dose, including
40Gy in 20 fractions, 41.4Gy in 23 fractions, or 50.4Gy in 28
fractions, which was delivered 5 times a week over a duration of
4–6 weeks. Concurrent chemotherapy regimens administered to
patients included PF regimen (5-fluorouracil plus cisplatin), TC/
TP (paclitaxel administered with cisplatin or carboplatin), SP
(oral tegafur-gimeracil-oteracil potassium capsule [s-1]
administered with intravenous cisplatin), NP (vinorelbine plus
cisplatin), and DP (docetaxel plus cisplatin). All patients
completed full cycles of concurrent chemotherapy except 4
(3.3%) due to myelosuppression or unfavorable nutritional
status. After NCRT, 51 patients (42.1%) achieved pCR.

As shown in Table 1, older patients and those with a smooth
tumor adventitia type on CT was prone to respond better to
NCRT. Both post-thickness and dthickness% had significant
association with pCR, which was confirmed by p-values of
0.004 from t-test, indicating that a better post-NCRT tumor
regression was correlated with a higher chance of pCR. Apparent
multicollinearity was found between these two features (Pearson
correlation coefficient, 0.92), and dThickness% was selected over
post-thickness due to its superior significance in univariate
logistic test (p-value, 0.005 vs. 0.059). Furthermore, a larger
post-Dmin by esophagogram, indicating a better restoration of
esophageal dilatation after NCRT, was significantly associated
with pCR. As a result, four significant clinical variables, including
age, tumor adventitia type, dthickness%, and post-Dmin by
esophagogram, were selected to enter the prediction model.

Radiomics Feature Selection
Of the 135 radiomics features, 93 showed at least moderate inter-
observer reproducibility (intraclass correlation coefficient, ICC>0.4);
116 features showed good test-retest repeatiblity (concordance
correlation coefficient, CCC>0.75), and a total of 89 features were
on the intersection of the above two groups (Supplementary
Material 2). Hence, 267 radiomics features (89 pre-NCRT, 89
post-NCRT, and 89 d-NCRT features) were introduced into the
following feature selection process. Of these robust radiomics
features, 49 were significant in univariate logistic regression
analysis (p-value<0.157) (Supplementary Material 3), among
Frontiers in Oncology | www.frontiersin.org 4312
TABLE 1 | Clinical characteristics of patients in pCR and non-pCR cohorts.

Characteristic pCR (n=51) non-pCR
(n=70)

p-value

Sex 0.390
Female 4(7.8%) 10(14.3%)
Male 47(92.2%) 60(85.7%)

Age (years)# 62.6( ± 6.9) 59.6( ± 6.5) 0.018*
Smoking history 0.580
Yes 26(51.0%) 31(44.3%)
No 25(49.0%) 39(55.7%)

Alcohol history 0.190
Yes 24(47.1%) 24(34.3%)
No 27(52.9%) 46(65.7%)

Radiation dose 0.590
40Gy 9(17.6%) 16(22.8%)
41.4Gy 39(76.5%) 52(74.3%)
50.4Gy 3(5.9%) 2(2.9%)

Chemotherapy regimen 0.338
PF 17(33.3%) 16(22.9%)
TC/TP 22(43.1%) 39(55.7%)
Others 12(19.6%) 15(21.4%)

Tumor location 0.943
Upper thoracic 7(13.7%) 9(12.9%)
Middle thoracic 21(41.2%) 31(44.3%)
Lower thoracic 23(45.1%) 30(42.8%)

Clinical T stage 0.144
2 4(7.8%) 9(12.8%)
3 36(70.6%) 37(52.9%)
4a 11(21.6%) 24(34.3%)

Clinical N status 0.351
N+ 27(52.9%) 43(61.4%)
N- 24(47.1%) 27(38.6%)

Tumor length#

By EUS (mm) 63.0( ± 28.0) 42.3( ± 77.1) 0.085
By esophagogram (mm) 62.3( ± 21.9) 61.6( ± 20.8) 0.855
By CT (mm) 64.1( ± 22.7) 62.9( ± 20.0) 0.750

Pre-thickness by CT (mm)# 20.7( ± 5.3) 21.1( ± 5.8) 0.710
Post-thickness by CT (mm)# 11.7( ± 3.4) 14.0( ± 4.6) 0.004*
dThickness by CT (mm)# 9.0( ± 5.0) 7.1( ± 5.5) 0.056
dThickness% by CT (%)# 41.4( ± 17.3) 31.4( ± 19.6) 0.004*
CT Advantitia type 0.044*
Smooth 37(72.5%) 39(55.7%)
Not smooth 14(31.1%) 31(68.9%)

Gross type by esophagogram 0.760
Type 1 12(24.5%) 15(23.4%)
Type 2 8(16.3%) 11(17.2%)
Type 3 22(44.9%) 24(37.5%)
Type 4 7(14.3%) 14(21.9%)
Not available 8 –

Pre-Dmin by esophagogram
(mm)#

8.8( ± 3.3) 8.5( ± 3.6) 0.670

Post-Dmin by esophagogram
(mm)#

10.8( ± 3.0) 9.4( ± 3.1) 0.012*

dDmin by esophagogram
(mm)#

3.8( ± 3.2) 3.1( ± 2.2) 0.270

dDmin% by esophagogram
(%)#

49.9( ± 40.7) 64.3( ± 101.7) 0.430
February 2021 | V
olume 10 | Article
*p<0.05
#Expressed as mean±SD.
Data are numbers, with percentages in parentheses.
pCR: pathologic complete remission.
NP(vinorelbine plus cisplatin), DP(docetaxel plus cisplatin), or SP(oral tegafur-gimeracil-
oteracil potassium capsule (s-1) administered with intravenous cisplatin) regimen.
Tumor thickness was defined as the maximum thickness on CT;
Tumor gross type by esophagogram was classified according to Japan Esophageal
Society standard;
Dmin refers to the esophageal minimum diameter on esophagogram.
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which 18 features were further selected by the regularized
multivariate logistic regression model with LASSO penalty
(Figures 1A, B), including 5 pre-NCRT, 7 post-NCRT, and 6
dNCRT radiomic features (see SupplementaryMaterial 4, 5). None
of the selected radiomics feature is correlated with dthickness% or
post-Dmin. Radiomics signature (RS) of the pCR cohort was
significantly higher than that of the non-pCR cohort by t-test
(0.25 0.95 vs. -0.82 0.84, p= 3.77E-09).

Model Development and Model
Performance
Table 2 shows parameters of the two prediction models for pCR
fitted with multivariate logistic regression (probability formulas are
presented in Supplementary Material 7). Four clinical variables
significantly associated with pCR (age, tumor adventitia type,
Frontiers in Oncology | www.frontiersin.org 5313
dthickness%, and post-Dmin) were incorporated in the clinical
model. RS was added to the clinical model to develop the RS+
clinical model.

The performance measures of two models are displayed in
Table 3. RS+clinical model exhibited a better goodness-of-fit
than the clinical model (Nagelkerke R2: 0.50 vs. 0.21; AIC: 120.88
vs. 153.79; Brier score: 0.15 vs. 0.20) and was better calibrated
than the clinical model (Figure 2).

RS+clinical model also demonstrated a superior
discriminative performance than the clinical model (AUC: 0.87
vs. 0.73), and this advantage persisted after internal validation
(corrected AUC, 0.84 and 0.70; Figure 3).

Clinical Benefit and Nomogram
Net benefits of the two models were presented in Figure 4. Net
benefit in our case is interpreted as the benefit of saving
esophagus for pCR patients (true positive) who are correctly
identified by the prediction model to spare surgery subtracting
the harm of tumor residual in non-pCR patients (false positive)
who are falsely judged by the model to omit operation. The
horizontal solid line represents the clinical decision of
preforming esophagectomy on all patients regardless of their
response to NCRT, and it serves as a reference to visualize the
benefit of treatment decisions by different models. When
applying the RS+clinical model, a net benefit higher than that
of the clinical model could be achieved at a threshold probability
above 25%.

For example, at the 60% threshold cutoff (i.e., the patient
would opt for observation if his probability of pCR was >60%),
the net benefit was 0% in the all-surgery scheme, 2.23% in the
clinical model, and 13% in the RS+clinical model, respectively. In
other words, if we make treatment decision based on the RS+
clinical model, the net benefit of 13% was equivalent to avoiding
surgeries (taking organ-saving strategy) in 13 per 100 patients
without an increase in the number of false-pCR predictions,
which is a considerable gain compared with assuming that all
patients have residual cancer and performing surgery for all
patients. Overall, a total of 37 out of 121 patients (30.58%) could
have been spared surgeries by RS+clinical model, while only
7 out of 70 patients (10%) with non-pCR would have
been misdiagnosed.
A

B

FIGURE 1 | Radiomics feature selection using the penalized logistic
regression model with LASSO penalty. (A) The tuning parameter lambda(l)
selection with 10 folds cross-validation and binomial deviance curve was
plotted against log(l). The selected model was built with lmin(0.020),
equivalent to log(l) = -3.92. (B) Lasso regression coefficients profile.
Coefficients are plottted against log(l) depicting the trend of approaching zero
as l increase.
TABLE 2 | Two prediction models for pCR using multivariate logistic regression.

Features Clinical model RS+clinical model

OR(95% CI) p-Value OR(95% CI) p-Value

Age 1.08(1.02,1.16) 0.018 1.12(1.03,1.21) 0.007
dThickness% 1.02(1.00,1.05) 0.036 1.01(0.98,1.03) 0.588
Post-Dmin 1.12(0.97,1.30) 0.129 1.08(0.91,1.28) 0.408
Adventitia type 2.78(1.16,7.12) 0.026 4.74(1.68,15.10) 0.005
RS – – 5.06(2.72,10.60) 0.000
February 2021
 | Volume 10 | Article
95% CI: 95% confidence interval.
Age is counted in years.
OR, odds ratio. The estimated pCR odds increase corresponds to the increment of the
continuous variables by the following units: 1 year for age, 1% for dThickness%, 1 mm for
post-Dmin, and 1 unit for RS.
RS, Radiomics signature.
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To provide the clinician with a quantitative tool to predict
individual probability of pCR, we built a nomogram based on the
RS+clinical model (Figure 5).
Frontiers in Oncology | www.frontiersin.org 6314
DISCUSSION

We developed a prediction model for pCR to NCRT in ESCC using
a CT-based radiomics signature and clinical variables. The model
was internally validated and presented as a nomogram, showing
satisfying performance in guiding clinical decision making.

Establishing a non-surgical approach to evaluate the tumor
response to NCRT is crucial for making individualized treatment
plans for locally advanced esophageal cancer. Esophagectomy is
an effective intervention but comes with a high postoperative
complication rate of roughly 65%, high postoperative mortality
rate of 4%–10%, and decreased health-related quality of life,
especially physical function that would never restore to pre-
esophagectomy levels (6, 9, 10, 25). Patients who have an
adequate response to NCRT, especially ESCC patients, of
whom up to 43.2% could achieve pCR, might have a chance to
spare surgery and preserve the esophagus (4).

In recent years, non-invasive radiomics analysis has been
proven effective in prediction of tumor treatment response and
patient survival. The underlying rationale is that tumor genetic
heterogeneity will be converted to histopathological
TABLE 3 | Performance of prediction models.

Model Goodness-of-fit Discrimination Corrected performance

Nagelkerke R2 AIC Brier score AUC Internal Validated Nagelkerke R2 Internal Validated AUC

Clinical model 0.21 153.79 0.20 0.73 0.25 0.70
RS+clinical model 0.50 120.88 0.15 0.87 0.43 0.84
February 2021 | Vo
AUC, Area under the receiver operating characteristic (ROC) curve.
AIC, Akaike Information Criterion.
Internal validation was performed with 2,000-replicate bootstrapping on the primary cohort.
A

B

FIGURE 2 | Calibration plot of the clinical model (A) and RS+clinical model (B).
The calibration curves of clinical model and RS+clinical model showing the
difference between the predicted probability of pCR and the observed (actual)
probability. The “Ideal” line represents the perfect prediction as the predicted
probabilities equal to the observed probabilities. The “Apparent” curve is the
calibration of the primary cohort. The “Bias-corrected” curve was the calibration
created by internal validation of 2000-replicate bootstrap on the primary cohort.
FIGURE 3 | ROC curve analysis. Receiver-operating-characteristic cuve
analysis of the two models indicating their ability to discriminate between pCR
and non-pCR patients. The blue line represents the ROC curve of the clinical
model and the corrected AUC is 0.70; the red line represents the ROC curve
of the RS+clinical model and the corrected AUC is 0.84.
lume 10 | Article 615167
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characteristics that can be reflected in medical images (13).
Efforts have been made to predict tumor response to NCRT in
esophageal cancer. Beukinga et al. (14) built a prediction model
based on clinical T stage and joint maximum (a PET/CT
radiomics parameter quantifying image orderliness) and
achieved a corrected AUC of 0.81. van Rossum et al. (3) built a
model consisting of total lesion glycolysis and four
Frontiers in Oncology | www.frontiersin.org 7315
comprehensive 18F-FDG PET texture features with a corrected
c-index of 0.77 but failed to find an incremental value in decision
curve analysis. However, these studies focused primarily on
esophageal adenocarcinoma, of which the tumor biologic
characteristics as well as the response to NCRT are quite
different from ESCC (pCR rate, 27% vs. 43.2%) (3, 4). The
existing CT-based radiomics study aiming to predict NCRT
response for ESCC contained only a small sample size ranging
from 49 to 94 and were mostly unbalanced inregards to the pCR
to non-pCR ratio, moreover, the previous studies produced
relatively low model effectiveness (AUC of 0.54 ~ 0.79) (26–
28). The research by Hu et al. (29) proves the feasibility of using
CT radiomics to predict the treatment response of esophageal
squamous cell cancer after chemoradiotherapy, but they fail to
include traditional clinical and imaging data in the model. In the
present study, a prediction model for pCR has been developed
exclusively for ESCC, with a larger sample size (n=121) and a
promising discriminative performance when uniting radiomics
signature with clinical variables (AUC=0.843).

Comparing to PET-based radiomics model (3, 14, 30, 31),
CT-based radiomics models have increasingly demonstrated
non-inferior performance in NCRT response prediction, not
only in ESCC as reported in the present study but also in other
tumor types, such as rectal cancer (AUC=0.70) (32) and stage III
non-small cell lung cancer (AUC=0.86) (33). Considering that
CT is usually more accessible and affordable than PET for most
cancer patients, it is reasonable to believe that a CT-based
radiomics model is going to play an important role in NCRT
response prediction and help to further personalize treatment
strategies in multiple cancers. We also anticipate a robuster
prediction potential if the model combines the CT and PET
radiomics that we would further investigate in the future.

In our study, four clinical variables have exhibited significant
association with pCR, including tumor adventitia type, dthickness%
by CT, post-Dmin by esophagogram, and age. The value of tumor
FIGURE 4 | Decision curve analysis. Decision curves depicting the net
benefit (y-axis) of the two models at a range of probability thresholds (i.e.,
minimum probability of pCR above which a patient would opt for observation
rather than surgery; x-axis). The yellow and blue solid lines represent making
the same decision in all patients (i.e., Sparing surgery for all patients or
performing surgery for all patients, respectively). The net benefit was
corrected by internal validation of 2,000-replicate bootstrap.
FIGURE 5 | Nomogram of RS+clinical model. The nomogram built based on radiomics signature and clinical variables provide an easy-to-use tool in clinical
practice.
February 2021 | Volume 10 | Article 615167
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thickness derived parameters (percentage decrease, pre- or post-
NCRT maximum tumor thickness, etc.) and the tumor outer
membrane type in prediction of response to preoperative
treatments has been investigated in previous studies (15, 34), but
inconsistent conclusions were drawn. According to the study by
Chee et al., the minimum luminal width on esophagogram has only
moderate effectiveness in evaluating the tumor neoadjuvant
treatment response when applied as a single predictive parameter
(35). The limited usefulness of tumor thickness on CT and luminal
width on esophagogram could be possibly explained by the bulking
effect of necrotic and fibrotic tissues after neoadjuvant treatment,
which results in the persistent abnormality on imaging tests.
Radiomics is complementary to the traditional imaging
parameters with its advantage to detect the heterogeneity within
tissues, which makes it possible to improve the model performance
in tumor response prediction. Interestingly, age was turned out to be
related to the pCR status in our study with an OR of 1.08 (1.02,
1.16), indicating 1.08 times increase in the odds of pCR with per
year increment in age. A similar finding was reported by
Vandendorpe et al. (32) stating that age achieved an OR of 1.05
(1.00–1.10) in a model to evaluate the clinical downstaging of post-
NCRT colorectal cancer. The potential biological or socio-
economical causes behind this finding need to be
further investigated.

The RS+clinical model exhibits the potential to categorize
patients with different response to NCRT, according to which the
treatment plan could be tailored to the individual situation.
Patients who were predicted to have residual cancer will
continue to receive esophagectomy. For those who are
“radiomicly-determined” as potential pCR, surgery could be
withheld and the organ-saving strategy could be taken, such as
boosting the dose of radiotherapy to the definitive level or close
surveillance (salvage surgery if necessary) after chemoradiation.
Decision curve analysis proves that at a given threshold
probability, using RS+clinical model to evaluate treatment
response provides more clinical benefit than both clinical
model-based strategy and all-surgery scheme. At the 60%
threshold cutoff, net 13% surgeries could be avoided without
an increase in the number of missed residual cancer by RS+
clinical model. In other words, the correct pCR prediction of RS+
clinical model would lead to a net reduction of 16 avoidable
surgeries in the 121 patients of our research cohort, equivalent to
performing organ-saving strategy in 31.37% of the 51 true-pCR
cases. The threshold probability is not necessarily fixed at 0.6 in
clinical practice and can be adjusted according to the patient’s
individualized willingness to omit surgery. When it’s set to a
stricter number higher than 0.6, the misdiagnosis rate will
accordingly decline so the patient can take on less risk of
tumor residue, though fewer patients can benefit from organ-
saving treatment at the same time. Therefore, a balance needs to
be struck between gaining net benefit and reducing misdiagnosis
rate when determining the threshold probability.

When implementing organ-saving strategies, boosting the
radiation dose might be a solution to reduce the potential risk
of cancer recurrence in false-pCR patients, as supported by
the results of several studies indicating that definitive
Frontiers in Oncology | www.frontiersin.org 8316
chemoradiotherapy and trimodality treatment (NCRT followed
by surgery) lead to similar survival outcome but the former
accompanies with significantly lower treatment-related mortality
rate (0.8%–3.5% vs. 9.3%–12.8%) (7, 36, 37). Close surveillance
with necessary salvage esophagectomy has also been indicated
feasible by previous studies. For example, Markar et al. (38)
retrospectively analyzed 848 patients undergoing planned
surgery after NCRT or salvage surgery after definitive
chemoradiotherapy and found no significant difference in long-
term survival as well as comparable short-term outcomes in
selected patients at experienced centers. The ongoing
prospective SANO trial and ESOSTRATE trial are investigating
if active surveillance and surgery as needed after NCRT leads to
non-inferior survival than standard esophagectomy (8, 39). If so,
patients with an adequate response to NCRT identified by
prediction models like the one presented in our study will be
able to receive organ-saving treatments as a standard of care.

Several limitations apply to our study. First of all, this was a
retrospective study with a relatively small study cohort, where
division of training and testing set might cause bias, so the
performance was corrected by internal validation of bootstrap.
However, our study can be regarded as an exploratory effort that
offers a theory foundation for future external validation on a
larger scale. Second, previous studies included histopathologic
grading of endoscopic biopsy in clinical variable analysis (3), but
pre-NCRT biopsy specimens were only available in less than 1/3
patients of our cohort (most of which was taken outside our
institution), so histopathologic grading was not included in our
study. Third, PET parameters were not included in this
retrospective study because only a small proportion of the
patients received pre-NCRT or post-NCRT PETCT scan;
however, we believe the additive value of PET will lead to the
better performance of the predictive model, which we will
explore in the future.
CONCLUSION

We proposed a handy CT radiomics based model with satisfying
performance to discriminate post-NCRT pCR patients from
non-pCR ones. Clinical benefits introduced by the model may
potentially facilitate individualized organ-preservation strategies
on ESCC patients who have an adequate response to NCRT.
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Purpose: To examine the ability of computed tomography radiomic features in
multivariate analysis and construct radiomic model for identification of the the WHO/
ISUP pathological grade of clear cell renal cell carcinoma (ccRCC).

Methods: This was a retrospective study using data of four hospitals from January 2018
to August 2019. There were 197 patients with a definitive diagnosis of ccRCC by post-
surgery pathology or biopsy. These subjects were divided into the training set (n = 122)
and the independent external validation set (n = 75). Two phases of Enhanced CT images
(corticomedullary phase, nephrographic phase) of ccRCC were used for whole tumor
Volume of interest (VOI) plots. The IBEX radiomic software package in Matlab was used to
extract the radiomic features of whole tumor VOI images. Next, the Mann–Whitney U test
and minimum redundancy-maximum relevance algorithm(mRMR) was used for feature
dimensionality reduction. Next, logistic regression combined with Akaike information
criterion was used to select the best prediction model. The performance of the
prediction model was assessed in the independent external validation cohorts. Receiver
Operating Characteristic curve (ROC) was used to evaluate the discrimination of ccRCC in
the training and independent external validation sets.

Results: The logistic regression prediction model constructed with seven radiomic
features showed the best performance in identification for WHO/ISUP pathological
grades. The Area Under Curve (AUC) of the training set was 0.89, the sensitivity comes
to 0.85 and specificity was 0.84. In the independent external validation set, the AUC of the
prediction model was 0.81, the sensitivity comes to 0.58, and specificity was 0.95.

Conclusion: A radiological model constructed from CT radiomic features can effectively
predict the WHO/ISUP pathological grade of CCRCC tumors and has a certain clinical
February 2021 | Volume 11 | Article 5438541319

https://www.frontiersin.org/articles/10.3389/fonc.2021.543854/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.543854/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.543854/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.543854/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.543854/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:Gerxyuan@zju.edu.cn
mailto:chenfenghz@zju.edu.cn
https://doi.org/10.3389/fonc.2021.543854
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.543854
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.543854&domain=pdf&date_stamp=2021-02-25


Wang et al. Radiological Model Predict Pathological Grade

Frontiers in Oncology | www.frontiersin.org
generalization ability, which provides an effective value for patient prognosis and
treatment.
Keywords: computed tomography, multicenter study, WHO pathological grade, radiomic features, radiological
model, clear cell renal cell carcinoma (ccRCC)
INTRODUCTION

Renal cell carcinoma (RCC) is one of the most common primary
malignancies, and clear cell renal cell carcinoma(ccRCC)is the
most common subtypes accounting for 60–85% of renal
malignancies (1, 2). ccRCC exhibits have high invasive
potential. The pathologic nuclear grade of ccRCC is strongly
correlated with the 5-year survival rate (3). A higher pathologic
nuclear grade implies a worse prognosis. Nuclear grades are an
independent prognostic factor for renal tumors (4, 5).

The Fuhrman grading system was the widely used pathology
grading system previously, which individual the Fuhrman grade
by the cell nucleus size of tumor cells, cell nuclear morphology,
and nucleolar prominence. These three parameters are used to
classify RCC into four grades (6, 7). However, there has always
been a controversy over the Fuhrman grading system. First, this
grading system uses three parallel parameters but these
parameters may contradict each other in clinical practice.
Second, there exists subjective bias on nuclear morphology and
nuclear diameter resulting in low repeatability for nuclear
grading between pathologists (8, 9).

In order to solve the problems associated with the Furhman
grading system, the World Health Organization and
International Society of Urological Pathology proposed the
WHO/ISUP grading system. This grading system only
evaluates nucleolar prominence and classifies tumors into
grades I-IV. The determination criteria are simplified and
clear, which increases the accuracy of grading kidney cancer
(10, 11). Dagher et al. compared the new and old grading system
and found that the WHO/ISUP grade is a better independent
prognostic factor (12).

Previous ccRCC studies found a correlation between image
characterization and Furhman grading (13), but the current
clinicopathological nuclear grading criteria have changed, and
thus there is a need to reevaluate Radiological studies related to
the new grading system. We collected ccRCC image data from
many hospitals aimed to create a prediction model based on CT
radiomic features with predicting the WHO/ISUP pathological
grade of ccRCC. The generalization of the external data build the
independent external validation and evaluation model offered
preoperative prediction of WHO/ISUP grade and improves
patient prognosis.
MATERIALS AND METHODS

Patients
This retrospective study was approved by the Hospital Review
Board. The requirement for informed consent was waived. This
2320
study included the CT examination of 197 patients with ccRCC
confirmed by two pathologists biopsy or surgical resection above
four hospitals from January 2018 to August 2019. Of these, 122
patients’ data in the First Hospital of Zhejiang Province were
used as the training set, and 75 cases from other three hospitals
(Ningbo First Hospital/Zhejiang Cancer Hospital/Yijishan
Hospital of Wannan Medical College) were used for external
independent external validation (Table 1).

The inclusion criteria were: (1) All patients received enhanced
kidneys CT examination before surgical resection including plain
scans, corticomedullary phase, and nephrographic phase; (2)
There are at least 7 layers in the CT lesion axial image; (3) All
tumors underwent surgical resection or percutaneous biopsy and
were pathologically confirmed ccRCC; (4) No patients received
any treatment before the CT examination. Patients whose image
data influenced significantly by artifacts presenced in CT
examination were exclusion criteria. In previous studies,
WHO/ISUP grades I–II were classified as low-grade and grades
III–IV were high-grade.

CT Technique
CT examtions were obtained from four hospital’s different CT
scanners. Patients were given the peripheral intravenous
injection of iohexol (300mg/ml non-ionic contrast agent) via a
high-pressure injector at a flow rate of 2.5–3.0 ml/s and a total
dose of 80–100mL (1.0 ml/kg). The scanning range is from the
adrenal region to the kidney’s inferior pole. after The
corticomedullary phase (CMP) of relative enhanced scan was
TABLE 1 | Patient characteristics and image features in the training and
validation cohorts.

Characteristic
and feature

Training
(N = 122)

Validation
(N = 75)

p-
value

Tumor Size (cm) 5.2 ± 1.5 5.3 ± 1.7 0.820
Age
Range(year) 16–78 18–75 0.364

Sex (number) 0.420
Male 64 48
Female 58 27

WHO/ISUP Grade 0.943
Low Grade (I, II) 80 50
High Grade (III, IV) 42 25

Location (number) 0.203
Left kindey 74 51
Right kindey 48 24

Calcification (number) 1.000
Without 60 37
With 62 38

Number of Tumors 0.451
Single 100 65
Multiple 22 10
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started 25–28 s after the contrast agent injected from,
The enhanced scan for the nephrographic phase (NP) of the
kidneys was started 65–70s after intravenous infusion. The CMP
and the NP began 25–28 s and 65–70 s after contrast injection,
respectively. The scanning and reconstruction parameters of
the four CT scanners are shown in Table 2.

Demographic and Clinical
Characteristic Analysis
The Chi-square test was used to compare the qualitative variables
while the t-test was used for comparison of continuous variables.
R software version 3.3.2 (http://www.R-project.org) was used for
statistical analysis of the data.

Process of Radiomics Analysis
The IBEX software package in Matlab was used for tumor
separation and extraction of radiomic features (14). We
manually outlined the tumor boundaries layer-by-layer in CT
images of the CMP and the NP. The first and last layers were
discarded, and the remaining layers were combined to obtain the
volume of interest (VOI). The lesion boundaries cannot be
accurately identified in the tumor boundary and were not used
in this study. At the early stage of the study, we randomly
selected images from 20 patients and two radiologists with 10 or
more years of work experience; independently outlined the VOI.
The intra-class correlation coefficient (ICC) was used to evaluate
consistency. The VOI extraction of the remaining images was
carried out by one radiologist. The features with low repeatability
were discarded and features with ICC>0.85 were retained.

The radiomic feature include six major types: intensity
histogram, intensity direct, gray level co-occurrence matrix,
neighbor intensity difference, gray level run length matrix,
morphology and size. The 760 radiomic features were
extracted from every VOI. Different computer tomography and
scanning parameter will affect the texture parameters. Orlhac
et al. proved that the COMBAT compensation algorithm was
used to calibrate radiomic data from multiple centers which is
entirely data-driven and does not require resampling of CT
images in advance (15).

To reduce the number of unrelated and redundant radiomic
features, the Mann-Whitney U test was first used on the training
set to evaluate the statistical ability of high/low grade for every
feature region; features with p<0.05 were retained. Next, the
minimum redundancy–maximum relevance score (mRMR) was
Frontiers in Oncology | www.frontiersin.org 3321
used to sort potential features and obtain the feature subset.
Finally, the Akaike information criterion (AIC) was used as a
stop criterion and stepwise logistic regression was used to select
final features and construct the best radiomic prediction
model (16).

Performance Evaluation
Discrimination, clinical translational value, and calibration were
used for detailed evaluation of the prediction model for the
training set. Receiver operating characteristic curves (ROC) were
used to evaluate the discrimination of the prediction model for
low/high ccRCC grade. The decision curve was used to observe
whether the model has clinical effectiveness. Next, the model was
further valuated by external validation data.
RESULTS

The baseline characteristics of the patients are shown in Table 1.
There were no significant statistical differences between the
demographic or clinical characteristics between the training set
and the independent external validation set (p > 0.05). Of the
1520 radiomic features in the CMP and NP phases, 1338 had
good repeatability (intraclass correlation coefficient of ≥0.85),
and the dimensionality reduction section was based on these
features. First, with the minimum redundancy–maximum
relevance score (mRMR) algorithm applied, 20 features was
used to select the best subset. Second, AIC-based stepwise
logistic regression was exploited in further filtering of features.
Finally, six features were retained: Three were CMP features, and
three were NP features. The feature selection results are
summarized in Table 3. Table 3 lists the contribution of every
prediction variable in the 2 models and the performance of the
model in the training/validation set.

The AUC of the prediction model in the training set was 0.89,
sensitivity was 0.85, and specificity was 0.84. In the independent
external validation set, the AUC of the prediction model was
0.81, sensitivity was 0.58, and specificity was 0.95, discrimination
was a bit decreased versus the training set (Figure 1). As shown
in Figure 2, the decision curves of the predictive model in the
training and independent external validation sets. The Figure 3
shows that the predictive model has good clinical net benefit
threshold probabilities of 10–100% in the training set. In the
independent external validation set, the clinical net benefit range
TABLE 2 | The protocols of the CT scan for the patients with a renal mass.

CT scanner CT256 CT64 CT64 CT320

Scanner model Brillance-Ict Revolution EVO Definition Flash Aquilion ONE
Manufacturer Philips General Electric SIEMENS Toshiba
Tube voltage (Kv) 120 120 120 120
Tube current(mAs) 300-350 Automas,300-350 CAREDose4D 350 AIDR 3D 350
Collimation (mm) 128*0.625 64*0.625 64*0.6 160*0.625
Kernel Stardand(B) Standard B30f Fc10
Slice thickness (mm) 5 5 5 5
Field of view (mm2) 350 × 350 350 × 350 350 × 350 350 × 350
Matrix 512 × 512 512 × 512 512 × 512 512 × 512
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has threshold probabilities of 10–85%. In addition, the net
benefit of the training set model was higher than the
independent external validation set.

The calibration curve of the training set shows very good
consistency between the prediction probability and observed
Frontiers in Oncology | www.frontiersin.org 4322
frequency. The goodness of fit between the prediction
probability and observed frequency in the calibration curve of
the validation set is not as good as the training set. The prediction
model shows good prediction performance in the training and
validation sets. However, in comparison, the prediction
FIGURE 1 | ROC graph. Receiver operating characteristic curves (ROC) were used to evaluate the discrimination of the prediction model for low/high grade CCRCC.
FIGURE 2 | DCA graph. See attached clinical decision curve: training set validation set, the decision curve was used to observe whether the model has clinical effectiveness.
TABLE 3 | Risk factors for the differentiation of high from low grade ccRCC.

Variable Feature Class Coeffcient OR (95% CI) p value

Intercept 1.35 0.44
Sum Average (CMP) Gray Level Cooccurence Matrix (n = 594) -0.018 0.982(0.953, 1.016) 0.08
Contrast (CMP) Neighbor Intensity Difference(n = 10) -0.015 0.984(0.972, 0.998) 0.02
50 Percentile Area(CMP) Intensity Histogram(n = 48) -0.15 0.864(0.731, 0.985) 0.04
Local StdMedian (NP) Intensity Direct(n = 56) -0.56 0.575(0.513, 0.626) <0.001
Busyness (NP) Neighbor Intensity Difference -1.56 0.213(0.182, 0.245) 0.04
Coarseness (NP) Neighbor Intensity Difference 1.5 4.486(2.712, 7.347) 0.04
F
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performance of the training set was better and performance
decreased in the independent external validation set.
DISCUSSION

We constructed new CT radiomic prediction models for new
ccRCC pathologic nuclear grades. The model not only
demonstrates outstanding ability to discriminate low/high
WHO/ISUP grades in the training set but also offered good
performance in the external independent test data at the same
time. Many past studies demonstrate that imaging characteristics
have potential value in distinguishing Fuhrman grades. Zhu et al.
found that low enhancement at the CMP is an independent
predictor for high-grade tumors. Huhdanpaa et al. (17) found
that the interquartile range of histogram parameters at the NP
can distinguish low/high Fuhrman grades. Radiomic studies
employ and screen image feature parameters, and use machine
Frontiers in Oncology | www.frontiersin.org 5323
learning algorithms to construct nuclear grade classification
models. The results of these studies are better than early
researchs. Shu et al. (18) employed radiomics for Fuhrman
grade prediction to set a CMP radiomic model, a NP phase
radiomic model, and a combination of the two phases, the result
of AUC was 0.77, 0.81, and 0.82, respectively. Ding et al. (19) find
when only texture parameters were used in Fuhrman grade
prediction, the original of AUC comes to 0.84, and that
increased to 0.87 after some non-texture parameters were
added. Good results were shown in these prior studies.
However, due to the the classification confusion stardand, we
cannot avoid the reality that the Fuhrman grading system has
been abandoned in clinical practice.

Studies based on the new WHO/ISUP grading system will
undoubtedly have important practical and clinical significance.
Currently there are relatively few radiological studies based on
the WHO/ISUP grading system: Sun et al. (20) similarly used a
combined the CMP and the NP phase model to predict the
FIGURE 3 | Calibration curve. Calibration data show the relationship between predicted risk and actual risk.
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WHO/ISUP pathological grade. The highest AUC was 0.88 while
sensitivity and specificity were 0.83 and 0.89, respectively. Shu
et al. also simultaneously compared the performance of multiple
machine learning algorithms in predicting the WHO/ISUP
grade; the AUC basically remained above 0.90. Our results are
similar to other studies while the performance of radiomic
models for WHO/ISUP grading is slightly better than the
previous Fuhrman grading results. This may be related to the
more accurate WHO/ISUP grading Indeed, in our case review of
ccRCC patients, we often encounter inaccurate Fuhrman grades
such as pathological reports of Fuhrman II or Fuhrman III
grades. These ambiguous results will inevitably lead to
problems in studies on Fuhrman grades.

We note that many past nuclear grade radiomic studies only
offered internal independent external validation in which data
were simply divided into a 7:3 ratio, into a training set and
validation set; all data were obtained from a single instrument in
a single center. The good results were only based on a single
center’s data for ignoring the acquisition parameters in varying
degrees always affect radiomic features. Therefore, these models
will inevitably have different degrees of overfitting. Thus, a
single-center study has limitations, and an independent
external validation data is required for predictive models that
accurately evaluate generalization.

The strength of this study is data from three other hospitals
were collected to construct the independent validation dataset.
The AUC of the predictive model in independent external
validation decreased, but the decrease is small; the AUC was
still 0.80 with a good model performance. The independent
external validation decreased to 0.58, We speculated that there
are differences in the data from the three hospitals, and the ratios
of low/high grades in the data are not identical. This can decrease
the independent external validation performance. However, this
fits closer to actual clinical practice data and shows that the
predictive model in this study can be generalized.

The early diagnosis rate of ccRCC has been significantly
improved, but a kidney cancer patient with tumor diameter
<4 cm may have potential metastasis at initial diagnosis. Even if
radical nephrectomy or partial nephrectomy was carried out in
early stage kidney cancer, 20–30% of patients still develop local
or distal metastasis. The pathologic nuclear grade of ccRCC is
correlated with metastatic potential and affects patient prognosis.
Therefore, the early prediction of the nuclear grade is extremely
important which is of great significance for clinical decisions and
improving the long-term survival and quality-of-life.

This study has several limitations: (1) Although independent
external validation was carried out, the sample size was still
relatively small and the sensitivity of the prediction model was
relatively low. The reason may be mainly attributed to the fact
that our external validation set is actually a combination of
different data from three different hospitals acquired with
different equipment. Therefore, it is understandable that the
radiomics parameters may vary to some extent. Although the
COMBAT algorithm was used to correct the data, the ability of
this algorithm may still not strong enough to overcome the data
variation. (2) The predictive model in this study was limited to
Frontiers in Oncology | www.frontiersin.org 6324
only distinguish high/low-grade ccRCC. However, in clinical
practice, it is more important to identify the malignancy of
RCC. (3) We did not include subjective image features as they
are affected by the experience of radiologists. We also did not
include the clinical characteristics in our model. The main
reason may due to that several studies have indicated the
relatively low specificity of clinical features in predicting the
grade of CCRCC. (4) Our study did not include plain CT scans
because, it is difficult to identify the boundaries of certain
ccRCC tumors based on experience. However, some reports
claimed that plain CT texture analysis can still be used to
predict the nuclear grade of CCRCC. We believe in the future,
there will be new semi-automated software identify
RCC boundaries.
CONCLUSION

In the era of precision medicine, nuclear grade prediction will aid in
clinical decision-making and prognosis. Multicenter internal/external
validation proved that CT radiomics can accurately predict the
WHO/ISUP grade which means the CT radiomic prediction
model can be used as an auxiliary tool for prediction of the WHO/
ISUP grade in ccRCC and aid in personalized treatment.
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Objective: We aimed to identify imaging biomarkers to assess predictive capacity of
radiomics nomogram regarding treatment response status (responder/non-responder) in
patients with advanced NSCLC undergoing anti-PD1 immunotherapy.

Methods: 197 eligible patients with histologically confirmed NSCLC were retrospectively
enrolled from nine hospitals. We carried out a radiomics characterization from target
lesions (TL) approach and largest target lesion (LL) approach on baseline and first follow-
up (TP1) CT imaging data. Delta-radiomics feature was calculated as the relative net
change in radiomics feature between baseline and TP1. Minimum Redundancy Maximum
Relevance (mRMR) and Least Absolute Shrinkage and Selection Operator (LASSO)
logistic regression were applied for feature selection and radiomics signature
construction.

Results: Radiomics signature at baseline did not show significant predictive value regarding
response status for LL approach (P = 0.10), nor in terms of TL approach (P = 0.27). A
combined Delta-radiomics nomogram incorporating Delta-radiomics signature with clinical
factor of distant metastasis for target lesions had satisfactory performance in distinguishing
responders from non-responders with AUCs of 0.83 (95% CI: 0.75–0.91) and 0.81 (95% CI:
0.68–0.95) in the training and test sets respectively, which was comparable with that from LL
approach (P = 0.92, P = 0.97). Among a subset of those patients with available pretreatment
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PD-L1 expression status (n = 66), models that incorporating Delta-radiomics features showed
superior predictive accuracy than that of PD-L1 expression status alone (P <0.001).

Conclusion: Early response assessment using combined Delta-radiomics nomograms
have potential advantages to identify patients that were more likely to benefit from
immunotherapy, and help oncologists modify treatments tailored individually to each
patient under therapy.
Keywords: immunotherapy, non-small-cell lung cancer, imaging biomarkers, response prediction, radiomics,
Delta-radiomics
INTRODUCTION

In recent years, immunotherapies have provided durable clinical
responses and demonstrated a survival benefit across a variety of
cancer types, including non-small cell lung cancer (NSCLC) (1–
5). Immune-checkpoint inhibitors (ICIs) targeting programmed
death 1 (PD-1) or its ligand programmed death ligand 1 (PD-L1)
are recommended by the National Comprehensive Cancer
Network (NCCN) (6) and the European Society of Medical
Oncology (ESMO) (7) for locally advanced and metastatic
NSCLC without targetable genetic alterations. Despite their
remarkable success, increased progression-free survival (PFS)
and/or overall survival (OS) remains limited to only a small
proportion (15–30%) of patients according to published evidence
(8–10). There is therefore a need for the development of methods
to identify patients who are most likely to respond
to immunotherapy.

Several biomarkers which are currently used for the selection
of patients eligible for cancer immunotherapy, such as PD-L1
expression and tumor mutation burden (TMB), have achieved
clinical relevance to some extent (11, 12). However, there are
many challenges concerning the effective use of them as
predictive biomarkers, including inadequate sample tissue for
reliable PD-L1 quantification and whole-exome sequencing
(WES), heterogeneous expression due to intra-tumoral
heterogeneity (13), absence of standardization between
different tests (14), and increasement of diagnostic complexity
and cost. Another issue is that several studies revealed that
patients with PD-L1 negative tumors could still derive clinical
benefit from ICIs (15–17). Thus, the insufficiency of current
biomarkers highlights the urgent need to identify novel
predictive biomarkers for a better stratification of patients
receiving ICIs.

Radiomics, an emerging field within medical imaging, is
capable of generating imaging biomarkers as decision support
tools for clinical practice (18). Under the motivation that
biomedical images contain information that reflects underlying
pathophysiology, recent studies have proposed radiomics
approach to predict response to ICIs (19–24). Nevertheless,
further evaluation needs to be carried out in translating such
research into clinical practice because most literature in the field
had a multi-localization/multi-type tumor cohort design. Delta-
radiomics features (Delta-RFs) which capture therapy-induced
changes in radiomics features are now being evaluated as a
2327
complement to Response Evaluation Criteria in Solid Tumor
(RECIST) criteria for monitoring therapeutic response in several
tumor types (25–31). Khorrami et al. showed preliminary
evidence for clinical use of Delta-radiomics calculated from
contrast-enhanced CT images as predictive biomarkers of
response to ICIs therapy in NSCLC (31). However, contrast
can obscure radiomics textural features (32), and the
heterogeneity of contrast-enhanced protocols across institutes
magnifies the concern about reproducibility of radiomics. In the
current study, we aim to develop and validate radiomics/Delta-
radiomics nomograms incorporating clinical factors and plain
CT imaging data to predict response to ICIs in patients with
advanced NSCLC. Also, we compared the predictive efficacy of
Delta-radiomics models against pretreatment PD-L1
expression status.
MATERIALS AND METHODS

Study Design
This retrospective multicenter study was conducted in
accordance with the Declaration of Helsinki and was approved
by ethics committee of each participating hospital, with the
requirement for informed consent waived. Between August 1,
2016 and February 28, 2019, radiologic image archives of nine
participating institutions were searched consecutively to identify
patients. The inclusion criteria were as follows: (a) histologically
confirmed NSCLC; (b) immunotherapy with PD-1 ICIs at first or
later line; (c) available baseline demographics and CT images
prior to therapy; (d) follow-up time from initiation of
immunotherapy was at least 6 months with regular clinical
evaluations and CT scans after each two or three cycles of
ICIs. The exclusion criteria were (a) CT images were of poor
quality; (b) the boundary of target lesion was ill defined on plain
CT scan and contrast-enhanced CT images were not available as
reference ; (c) t ime between base l ine imaging and
immunotherapy treatment exceeded four weeks. Finally, 197
patients were enrolled for baseline analysis, then the entire
cohort was randomly divided into a training set (n = 137) and
an independent test set (n = 60) at a ratio of 7:3. The same
procedure was applied to a sub-group of patients (n = 161) who
had available CT scans at baseline (time point 0, TP0) and the
end of the second cycle of immunotherapy (time point 1, TP1),
and this sub-group was used to perform a time-dependent
March 2021 | Volume 11 | Article 657615
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analysis (Figure 1). Clinical characteristics (age at diagnosis,
gender, smoking history, pathological type, and TNM stage) of
all patients were obtained from the medical records.

Imaging Data Acquisition and Harmonizing
The pretreatment and follow-up CT scans were acquired on a
varied set of CT scanners (Supplementary Data). The median
time interval between baseline CT examination and initiation of
immunotherapy was 12 days. For preprocessing, all CT images
were resampled to 1.5 mm resolution on all three directions to
standardize the voxel size across patients. In addition, z-score
normalization was applied to unify CT-value scales
across scanners.

Tumor Delineation and Treatment
Response Assessment
Two radiologists (YL, with 13 years of experience in thoracic
radiology and MW, with 3 years of experience in thoracic
radiology) who were blinded to the outcome label reviewed
baseline CT images and defined the target lesions according to
RECIST 1.1 (33) (maximum of five lesions, two per organ) in
consensus, and then the largest target lesion was chosen for each
case. Totally, 322 target lesions were identified for all patients.
Then the volume of interest (VOI) of all target lesions on plain
CT images (both baseline and follow-up scans) were delineated
manually via ITK-SNAP (www.itksnap.org) by one radiologist
(MW) and then reviewed and modified by another
radiologist (YL).

We classified response patterns on a patient basis. Clinically,
immunotherapy response is frequently measured at 6 months
Frontiers in Oncology | www.frontiersin.org 3328
(19, 34). Therefore, the endpoint of our study was a dichotomous
response status (responder/non-responder), as defined by
iRECIST (35) at 6 months of immunotherapy initiated, which
was convinced that had better representative of benefits. Patients
presenting complete response (CR/iCR), partial response (PR/
iPR) or stable disease (SD/iSD) were considered as “responders”,
patients who had confirmed progressive disease (iCPD) after
treatment were classified as “non-responders”. For those patients
who were thought to be unconfirmed progression (iUPD) at 6-
month follow-up, their response status was determined by
additional follow-ups to ensure unconfirmed progression
would not be used as labels in model training.

Detection of PD-L1 Expression Status
PD-L1 expression was measured through IHC testing with
biopsy or resection specimens, and a minimum of 100 tumor
cells (TCs) were required for the assessment. PD-L1 expression
was quantified by the tumor proportion score (TPS), which is
defined as percentage of PD-L1-positive TCs over total TCs, and
it was classified into two levels: negative expression (TPS <1%),
and positive expression (TPS ≥1%) owing to the diversity of
pathological reports in our dataset.

Feature Engineering and
Signature Building
About 402 handcraft radiomics features (RFs)were extracted using
in-house software (Analysis Kit, version 3.2.5, GE Healthcare)
(Table S1). For patients who received baseline and follow-up CT
scan at TP1 (median: 52 days), RFs were extracted from both time
points respectively. The Delta-RFs, which were transmitted into
A

B

FIGURE 1 | (A) Study workflow. The workflow presented a summary of target lesions annotation and response assessment, preprocessing and modeling schemes
of radiomics. (B) Patient flow diagram. For baseline-radiomic dataset, training and test set were randomly divided in a proportion of 7:3 respectively as well.
March 2021 | Volume 11 | Article 657615

http://www.itksnap.org
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. ICI Response Prediction by Imaging in NSCLC
the same analysis workflow as baseline RFs, were defined as the
relative net change of RFs between TP0 and TP1 (Equation (1)):

Relative Net Change = Feature TP1 − Feature TP0ð Þ=Feature TP0
To choose the optimal subset of features, Minimum

Redundancy Maximum Relevance (mRMR) was performed to
eliminate redundant and irrelevant features in advance. Then the
Least Absolute Shrinkage and Selection Operator (LASSO)
logistic regression was conducted to construct the final model.
A radiomics signature (Radscore) was calculated for each patient
via a linear combination of selected features and coefficient
vector. Besides, two approaches of organizing Radscore or
Delta-Radscore were proposed to promote lesion-wise analysis
toward individual-wise on the assumption that lesion-wise
response might not act as a global representative of patient
benefit from immunotherapy due to those complicated
individual response patterns.

Largest target lesion (LL) approach: select RFs or Delta-RFs of
the largest target lesion as individual-wise signature to predict
therapy response.

Target lesions (TL) approach: in single-time-point analysis,
average RF of all target lesions is regarded as a global image
biomarker passed to further analysis, whereas in Delta-radiomics
analysis, relative net change of average RF is used instead.

Statistical Analysis
All statistical analyses were performed using R (version 3.5.1)
and Python (version 3.5.6). Chi square test was used for
categorical variables. Independent t-test or Mann–Whitney test
was used for continuous variables. A multivariate logistic
regression analysis with backward elimination method was
performed to construct the best model combining clinical
factors and RFs. Performance of the models were evaluated
with area under the ROC curve (AUC). Differences between
various AUCs were compared with the DeLong test (36).
Calibration curves were applied to evaluate the predictive
accuracy of the nomogram model generated. To evaluate
clinical utility of the radiomics nomogram, decision curve
analysis (DCA) was performed by quantifying the net benefits
at different threshold probabilities. A two-tailed P-value <0.05
indicated statistical significance.
RESULTS

Clinical Characteristics
A total of 197 eligible patients who met the criteria were
identified from nine participating hospitals. 105 patients
received monotherapy with PD-1 ICIs (Nivolumab,
Pembrolizumab, Tislelizumab, Sintilimab, or Camrelizumab),
and 92 patients were treated with immunotherapy-based
combinations (PD-1 ICIs with chemotherapy and/or
antiangiogenic agents). We observed that 41.62% patients (n =
82) showed PD, and the reaming of them present PR (n = 94) or
SD (n = 21) at the sixth month, with an overall disease control
rate (DCR) of 58.37% (Figures 2A, B). There were no significant
Frontiers in Oncology | www.frontiersin.org 4329
differences in DCR and clinical characteristics between the two
cohorts, which justified their use as training and test sets (Table
S2). The differences in clinical characteristics at baseline between
responders and non-responders were not significant, except for
distant metastasis in training set (P = 0.01) (Table 1).

For the sub-cohort analysis of patients who have both
baseline and follow up CT scans at TP1 (n = 161), the two sets
had identical distributions of DCR and clinical characteristics
(Table S2). Among these patients, responders had lower
percentage of distant metastasis compared to non-responders,
with significant difference in training set (P = 0.02). There was no
significant difference in other factors, including age, sex, smoking
history, pathological type, and treatment strategy (Table 2).

Feature Selection and Radiomics
Nomogram Building Using
Baseline Information
From the LL approach, three optimal features with respective
nonzero coefficients in the training set were chosen to construct
the radiomics signature prediction model (Supplementary
Equation 1). The median Radscore of non-responders was
slightly higher than responders in both training and test sets, but
did not reach significant difference (P = 0.10, AUC = 0.59; P = 0.89,
AUC = 0.51). From TL approach, seven features were chosen in the
Radscore calculation formula (Supplementary Equation 2).
Comparison of Radscore demonstrated no significance difference
between the two response groups (P = 0.27, AUC = 0.56; P = 0.54,
AUC = 0.53).

Combined nomograms that incorporated radiomics signature
and clinical factor of distant metastasis were established. The ROC
analysis exhibited fair prediction value of the developedmodel with
an AUC of 0.65 (95%CI, 0.56 to 0.74) for LL approach andAUC of
0.64 (95% CI, 0.54 to 0.73) for TL approach in training set. The
models carried out poorly in test sets (AUC = 0.52, 95% CI, 0.37 to
0.67; AUC = 0.61, 95% CI, 0.47 to 0.75).

Delta-Radiomics Nomogram Building
and Evaluation
Through the LASSO logistic regression analysis, three Delta-RFs
were selected for LL approach (Figure 3A, Supplementary
Equation 3). The Delta-Radscore was significantly higher in non-
responders than in responders in both training (P <0.01) and test
sets (P = 0.03) (Figure S1A). Responders presented lower level of
Radscore at TP1 (P <0.01), and the difference was borderline
significant in test set (P = 0.05) (Figure S2A). The developed
Delta-radiomics signature showed a favorable result in predicting
response status that produced an AUC of 0.81 in training set (95%
CI, 0.73–0.89) and 0.80 in test set (95% CI, 0.68–0.93), respectively
(Figure 3B). Specifically, this Delta-radiomics signature performed
better prediction performance than radiomics signature constructed
with radiomics features at TP1 (Supplementary Equation 4)
(Figure S2B); however, the improvement did not showed
significance in the Delong Test (P = 0.09, P = 0.16, respectively).

The Delta-radiomics signature for TL approach was developed
using nine Delta-RFs (Figure 3D, Supplementary Equation 5).
There was a significant difference in Delta-Radscore between
March 2021 | Volume 11 | Article 657615
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A B

D

C

FIGURE 2 | (A) Individual response map of patients in Delta-radiomics sub-cohort. Bars indicate the changes of total tumor burden between baseline and TP1 CT
scans. Patients are grouped on the basis of therapy response at TP1 following iRECIST criteria (Complete response [CR] in green, partial response [PR] in blue,
stable disease [SD] in gray, and unconfirmed progression [iUPD] in purple). In addition, hyper-progression (n = 1, in red) and pseudo-progression (n = 8, in orange)
are noted as well. (B) Sankey diagram depicts therapy response alternation flow within follow-up interval. For those patients who met the progression threshold (20%
increasement of tumor burden) at any time point within follow-up interval, updated response labels are attached according to their subsequent assessment
(Confirmed progression [iCPD], stable disease [iSD], and partial response [iPR]). It’s noteworthy that for those patients who were thought to be iUPD at 6-month,
their labels were determined by additional follow-ups so that any unconfirmed progression would not be used as labels in model training. (C, D) Nomograms of
largest target lesion model (in blue) and target lesions model (in red) which were developed in training set respectively.
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responders and non-responders in training set (P <0.01), which
was then confirmed in test set (P <0.01) (Figure S1B). In the ROC
analysis, the Delta-radiomics signature prediction model yielded
an AUC of 0.82 (95% CI, 0.74–0.90) in training set and 0.81 (95%
CI, 0.67–0.94) in test set (Figure 3E).
Frontiers in Oncology | www.frontiersin.org 6331
A combined Delta-radiomics nomogram incorporating the
developed delta-radiomics signature with clinical factor of
distant metastasis was chosen as the best response status
classifier (Figures 2C, D). The usefulness of combined Delta-
radiomics nomogram for LL approach was confirmed in the
TABLE 2 | Characteristics of patients in Delta-radiomics analysis.

Characteristics Training set P value Test set P value

Responders Non-responders Responders Non-responders

Age, median (P25–P75) 63 (35–84) 63 (44–78) 0.61 61 (29–75) 62 (36–77) 0.99
Male 64 (35–84) 64 (44–78) 61 (29–75) 62 (36–70)
Female 55 (43–79) 63 (59–74) 54 (48–64) 59 (37–77)

Sex, No. (%)
Male 60 (86.96%) 38 (88.37%) 0.83 24 (80.00%) 12 (63.16%) 0.19
Female 9 (13.04%) 5 (11.63%) 6 (20.00%) 7 (36.84%)

Smoking history, No. (%)
Non-smokers 18 (26.09%) 13 (30.23%) 0.58 8 (26.67%) 6 (66.67%) 0.78
Smokers 51 (73.91%) 30 (69.77%) 22 (73.33%) 13 (44.83%)

Pathological type, No. (%)
Adenocarcinoma 35 (50.72%) 26 (60.47%) 0.31 14 (46.67%) 9 (47.37%) 0.96
Others 34 (49.28%) 17 (39.53%) 16 (53.33%) 10 (52.63%)

Distant metastasis, No. (%)
Absence 17 (24.64%) 3 (6.98%) 0.02* 8 (26.67%) 3 (15.79%) 0.06
Presence 52 (75.36%) 40 (93.02%) 22 (73.33%) 16 (84.21%)

Treatment strategy, No. (%)
Monotherapy 32 (46.38%) 27 (62.79%) 0.09 17 (56.67%) 11 (57.89%) 0.93
Combination therapy 37 (53.62%) 16 (37.21%) 13 (43.33%) 8 (42.11%)

Rad-score of TP1 (P25–P75) −0.47 (−0.75, −0.34) −0.30 (−0.45, −0.18) <0.01* −0.44 (−0.76, −0.32) −0.34 (−0.48, −0.19) 0.05
Rad-score of Delta-RFs (P25–P75)
Target lesions −1.02 (−1.42, −0.57) 0.04 (−0.53, 0.54) <0.01* −0.97 (−1.63, −0.65) −0.13 (−0.65, 0.12) <0.01*
Largest target lesion −0.87 (−1.08, −0.51) −0.20 (−0.62, 0.30) <0.01* −0.86 (−1.17, −0.63) −0.46 (−0.59, −0.22) 0.03*
March 2021 | Volume 11 |
 Article 65761
*P value < 0.05.
TABLE 1 | Characteristics of patients in baseline analysis.

Characteristics Training set P value Test set P value

Responders Non-responders Responders Non-responders

Age, median (range) 63 (35–84) 64 (36–78) 0.52 63 (29–75) 62 (41–77) 0.86
Male 64 (36–84) 64 (36–78) 63 (29–75) 58 (41–74)
Female 55 (43–79) 61 (37–72) 64 (43–72) 74 (62–77)

Sex, No. (%)
Male 68 (83.95%) 44 (78.57%) 0.42 31 (91.18%) 22 (84.62%) 0.71
Female 13 (16.05%) 12 (21.43%) 3 (8.82%) 4 (15.38%)

Smoking history, No. (%)
Non-smokers 22 (27.16%) 17 (30.36%) 0.68 8 (23.53%) 8 (30.77%) 0.53
Smokers 59 (72.84%) 39 (69.64%) 26 (76.47%) 18 (69.23%)

Pathological type, No. (%)
Adenocarcinoma 37 (45.68%) 29 (51.79%) 0.75 18 (52.94%) 13 (50.0%) 0.87
Others 44 (54.32%) 27 (48.21%) 16 (47.06%) 13 (50.0%)

Distant metastasis, No. (%)
Absence 21 (25.93%) 5 (8.93%) 0.01* 8 (23.53%) 2 (7.69%) 0.20
Presence 60 (74.07%) 51 (91.07%) 26 (76.47%) 24 (92.31%)

Treatment strategy, No. (%)
Monotherapy 37 (45.68%) 31 (55.36%) 0.27 18 (52.94%) 19 (73.08%) 0.11
Combination therapy 44 (54.32%) 25 (44.64%) 16 (47.06%) 7 (26.92%)

Rad-score (P25–P75)
Target lesions −0.46 (−0.60, −0.30) −0.41(−0.55, −0.21) 0.27 −0.42 (−0.57, −0.21) −0.39 (−0.57, −0.22) 0.54
Largest target lesion −0.20 (−0.21, −0.18) −0.19 (−0.20, −0.17) 0.10 −0.20 (−0.21, −0.16) −0.19 (−0.20, −0.17) 0.89
*P value < 0.05.
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ROC analysis with an AUC of 0.83 (95% CI, 0.75–0.91) for
training set and an AUC of 0.81 (95% CI, 0.69–0.93) for test set
(Table 3, Figure 3B). Meanwhile, combined Delta-radiomics
nomogram for TL approach yielded an AUC of 0.83 (95% CI,
0.75–0.91) in training set and 0.81 (95% CI, 0.68–0.95) in test set
(Table 3, Figure 3E), which was comparable with that from the
LL approach (P = 0.92, P = 0.97). The prediction accuracy was
0.77 for the former model and 0.78 for the latter one (Table S3)
without any significance (P = 1.00). The calibration curves of the
Frontiers in Oncology | www.frontiersin.org 7332
combined Delta-radiomics nomograms showed good
agreements between the nomogram prediction and actual
observation (Figures S1C, D). The DCA (Figures 3C, F)
indicated that when the threshold probability for a patient is
within a range from 0 to 0.84, the combined Delta-radiomics
nomograms add more net benefit than the “treat all” or “treat
none” strategies from either the LL or TL approach.

To control confounding factors, stratified analysis for
treatment strategy was made (Table S4). There was no
A B

D E F

C

FIGURE 3 | Radiomics feature selection using the least absolute shrinkage and selection operator (LASSO) binary logistic regression model, the developed
nomograms with corresponding decision curves. (A, D) Tuning penalty factor (l) in the LASSO model used 10-fold cross-validation via minimum criteria. The
binomial deviance metrics (the y-axis) were plotted against log (l) (the upper x-axis) and the number of selected features (the bottom x-axis). Blue dots indicate the
average AUC for each model at the given l, and vertical bars through the red dots show the upper and lower values of the binomial deviance in the cross-validation
process. Dotted vertical black lines define the optimal l, where the model provides its best fit to the data with optimal subset of variables. Receiver operating
characteristic (ROC) curves comparison among combined radiomics model (red), radiomics model (blue), and clinical model (gray) for training set (solid line) and test
set (dashed line) from the LL approach (B) and TL approach (E). The combined radiomics model incorporating radiomics signature and clinical factor of distant
metastasis showed the highest AUC. Decision curve analysis for the combined radiomics nomogram (red), radiomics signature (blue), and clinical model (gray) from
the LL (C) approach and TL approach (F). The y-axis indicates the net benefit; x-axis indicates threshold probability. The green line represents the assumption that
all patients were responders. The black dotted line represents the hypothesis that no patients were responders.
TABLE 3 | Multivariable logistic regression analyses.

Intercept and variable Model 1 (target lesions) Model 2 (largest target lesion)

Coefficient Odds ratio (95% CI) P value Coefficient Odds ratio (95% CI) P value

Intercept −0.48 0.36 −0.32 0.57
Delta Radiomics signature 1.50 4.47 (2.33, 9.59) <0.01* 2.41 11.11 (4.03, 30.63) <0.01*
Distant metastasis 0.94 2.56 (0.83, 7.89) 0.10* 1.27 3.55 (1.07, 11.75) 0.04*
C-index
Training set 0.83 (0.75, 0.91) 0.83 (0.75, 0.91)
Test set 0.81 (0.68, 0.95) 0.81 (0.69, 0.93)
Ma
rch 2021 | Volume 11 | Article
*P value < 0.05.
657615

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. ICI Response Prediction by Imaging in NSCLC
significant difference regarding DCR, pathological type, or
distant metastasis between patients received monotherapy and
those with combination therapy (P = 0.14, P = 0.90, P = 0.13).
The Radscore and combined Delta-radiomics nomogram of
monotherapy group demonstrated comparable performance to
combination therapy group either from LL approach or from TL
approach (all P >0.05 for AUCs comparison).

Stratified Pretreatment PD-L1 Expression
as a Predictor of Response Status
In the sub-cohort of 161 patients with available Delta-RFs, PD-
L1 expression status was known for 66 patients. It was negative in
10 of 66 patients (15.15%), with an accuracy of 39.39% (26 of 66)
in predicting 6-month response status. Significant superiority on
accuracy (P <0.01) of radiomics-based models (up to 94.95%,
Table S5) over pretreatment PD-L1 expression status
was observed.
DISCUSSION

At present, radiological evaluation forms the objective basis of
treatment response assessment criteria for lung cancer patients.
The approach involves manually measuring changes in size of
target lesions between baseline and follow-up CT scans in
conjunction with RECIST guidelines (33, 37). Unfortunately,
pure morphological criteria, even with modifications and
refinements (i.e., iRECIST), are not sufficient because they only
provide a consistent standard for management of data collected
in clinical trials rather than clinical practice or therapy decisions
(35, 38–41). Owing to its distinctive biologic mechanisms of
action, immunotherapy can generate a tumor response pattern
different from those found with cytotoxic chemotherapy or
radiation therapy (42). Unconventional response patterns such
as pseudoprogression and hyperprogression pose a major
challenge to treating physicians, who aim to avoid either
premature discontinuing the therapy too early in the treatment
course or prolonging ineffective treatment that could put patients
at higher risk of immune-related toxicity (43, 44). In this
multicenter study, we did analysis on standard medical images
that routinely used for monitoring therapeutic response to ICIs in
advanced NSCLC patients from a radiomics-based approach. As
demonstrated in this work, delta-radiomics based nomograms
were developed as predictive biomarkers to identify patients who
could derive the greatest therapeutic benefit from ICIs, which were
successfully validated in an independent test set.

Considering of developing a cost-effective decision-support
tool, we first construct a single-time-point radiomics signature
from baseline CT scans to help stratifying patients to receive the
most appropriate therapy strategy. In the context of lung cancer,
radiomics studies typically extract features from the primary
lung tumor, largest lung lesion, or one of the target lesions (19,
22, 23). By contrast, in this work, target lesions (up to five lesions
per patient and up to two lesions per organ) were all included in
the analysis. To the best of our knowledge, no previous studies
have explored the capability of RFs of CT images for all target
Frontiers in Oncology | www.frontiersin.org 8333
lesions in immunotherapy response evaluation. We suspect that
this novel approach, which was more consistent with what we
did in clinical practice regarding response evaluation of immune-
based therapeutics, could reflect total tumor burden to some
extent. In addition, we noticed that a few patients present both
responding and progressive lesions (i.e. mix-response) at follow
up examination. Under this circumstance, potential selection
bias could be avoided in use of purposed TL approach comparing
to LL approach.

The results demonstrated that nomograms incorporating
baseline radiomics signature and clinical factor of distant
metastasis did not exhibit high predictive value, which were
inconsistent with prior studies (19, 21). We believe that such a
discrepancy can be explained in part by the fact that RFs were
extracted from plain CT imaging data rather than contrast
enhanced CT images. Another possible cause is that patients
receiving anti-PD 1 monotherapy and immunotherapy-based
combinations were all included in the dataset, leading to the
heterogeneous composition of our cohort. As combination of
immunotherapy and chemotherapy regimen is now
recommended as first-line therapy options for certain NSCLC
patients according to NCCN recommendations (6), this study
design is more in line with actual clinical situation. Moreover, the
result of stratified analysis for treatment strategy confirmed that
there was no significant difference in model efficacy between
different treatment groups.

Although single time medical images especially those
obtained at baseline are conventionally used for prediction,
they do not contain information regarding treatment response.
Delta-radiomics could offer abundant temporal-dependent
information regarding therapy induced changes during the
course of treatment (31, 45), and is relatively free of
interference by factors that affect the reproducibility of
quantitative image analysis. We proposed Delta-radiomics
signature and compared it with single-time-point radiomics
signature at TP1. Interestingly, Delta-radiomics signature of LL
approach showed higher AUC, which agrees with a recent paper
(26). Although we did not find significant difference of AUC
between them, the lower 95% confidence interval of AUC at TP1
is 0.51 in the test set, indicating an insufficient diagnosis
efficiency. Furthermore, Radscore between the two response
groups had borderline significance with P value of 0.05 in the
test set at TP1, suggesting that the radiomics signature might be
slightly over-fitted to training set. Therefore, we can reasonably
infer that Delta-radiomics could provide better predictive
decision support. Meanwhile, we noticed that a decrease in
sum of measures of target lesions did not guarantee benefit
from immunotherapy. In this study, a transient tumor increase
in size was encountered at TP1 in 15 patients, which was
followed by a delayed response or stability and categorized as
responders at 6 months of immunotherapy initiated. Hence,
conventional CT interpretation, which relies on primarily sum of
the target lesions, could not be a sensitive index for response
assessment.Notably, the combined radiomics nomogram of LL
approach achieved favorable predicting capacity. A combination
of non-specific morphological information (i.e. major and least
March 2021 | Volume 11 | Article 657615
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axis length) and contextual metrices of voxel intensity which
depicted the diversity of convergent CT-value clusters probably
reflecting agglomerate tissue areas (cancer cell nests or
inflammation-induced necrosis) were included from both LL
and TL approaches, so that a comprehensive representation of
tumor evolutionary dynamics in the course of immunotherapy
was promised.

This study is unique in that we conducted radiomics analysis
in both lesion and patient level with a comparable performance.
This observation highlights the feasibility and effectiveness of the
utility of Delta-radiomics analysis on all target lesions, which
could provide a consistent framework to iRECIST and overcome
those confusions caused by mixed response pattern of immune-
based therapeutics in NSCLC patients. More interestingly, our
results showed that Delta-radiomics models outperformed
pretreatment PD-L1 expression status in predicting response to
ICIs in a subset of patients, and the combined model of TL
approach had the highest accuracy. So far, the effectiveness of
imaging-driven biomarkers with pretreatment CT images for
prediction of PD-L1 expression in advanced NSCLC has been
tentatively confirmed in several retrospective populations (46,
47), which enables investigators to validate the combination of
PD-L1 expression signature with Delta-radiomics model for a
better patient stratification and management in further
prospective trials.

Our study has some limitations, the first of which is the
heterogeneity of the cohorts, which could affect feature
extraction and the procedure of analysis, even if several efforts
has been made to weaken multicenter effect. Second, the sample
size of the cohort was relatively small. Third, brain metastatic
lesions were not chosen as target lesions in our analysis because
multimodality approach is beyond the scope of this study. Given
that the presence of distant metastasis is incorporated into the
nomogram model as a clinical factor, the exclusion of brain
metastatic lesion would not affect final prediction. Fourth, the
potential biological underpinnings of radiomic features were not
discussed in the current study, since relevant data that capturing
tumor micro-environment was not available for this
retrospective cohort. Finally, we had a limited follow-up period
for some patients, and PFS and OS analyses were not done on
this dataset. However, because of advanced tumor stage, our
follow-up interval was deemed sufficient to provide clinically
relevant information.

The results from our pilot study have shown that CT based
Delta-radiomics biomarkers may facilitate treatment response
Frontiers in Oncology | www.frontiersin.org 9334
prediction for NSCLC patients receiving immunotherapy with
PD-1 ICIs. This procedure could be integrated into the normal
clinical workflow without any additional cost.
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Objective: To investigate the utility of the pre-immunotherapy contrast-enhanced

CT-based texture classification in predicting response to non-small cell lung cancer

(NSCLC) immunotherapy treatment.

Methods: Sixty-three patients with 72 lesions who received immunotherapy were

enrolled in this study. We extracted textures including histogram, absolute gradient,

run-length matrix, gray-level co-occurrence matrix, autoregressive model, and wavelet

transform from pre-immunotherapy contrast-enhanced CT by using Mazda software.

Three different methods, namely, Fisher coefficient, mutual information measure (MI), and

minimization of classification error probability combined average correlation coefficients

(POE+ ACC), were performed to select 10 optimal texture feature sets, respectively. The

patients were divided into non-progressive disease (non-PD) and progressive disease

(PD) groups. t-test or Mann–Whitney U-test was performed to test the differences in

each texture feature set between the above two groups. Each texture feature set was

analyzed by principal component analysis (PCA), linear discriminant analysis (LDA), and

non-linear discriminant analysis (NDA). The area under the curve (AUC) was used to

quantify the predictive accuracy of the above three analysis models for each texture

feature set, and the sensitivity, specificity, accuracy, positive predictive value (PPV), and

negative predictive value (NPV) were also calculated, respectively.

Results: Among the three texture feature sets, the texture parameter differences of

kurtosis (2.12 ± 3.92 vs. 0.78 ± 1.10, p = 0.047), “S(2,2)SumEntrp” (1.14 ± 0.31 vs.

1.24 ± 0.12, p = 0.036), and “S(1,0)SumEntrp” (1.18 ± 0.27 vs. 1.28 ± 0.11, p =

0.046) between the non-PD and PD group were statistically significant (all p < 0.05). The

classification result of texture feature set selected by POE + ACC and analyzed by NDA

was identified as the best model (AUC = 0.812, 95% CI: 0.706–0.919) with a sensitivity,

specificity, accuracy, PPV, and NPV of 88.2, 76.3, 81.9, 76.9, and 87.9%, respectively.
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Conclusion: Pre-immunotherapy contrast-enhanced CT-based texture

provides a new method for clinical evaluation of the NSCLC immunotherapy

efficacy prediction.

Keywords: texture, immunotherapy, radiomics, response prediction, non-small cell lung cancer

INTRODUCTION

In recent years, with the development of tumor immunology
research, many breakthroughs have been made in tumor
immunotherapy. Some immunotherapy has significantly
prolonged the survival of tumor patients and improved the
quality of life (1, 2). In the second-line treatment of non-small
cell lung cancer (NSCLC), immune checkpoint inhibitors have
made progress. From Checkmate-017 and Checkmate-057
studies to KEYNOTE-010 and OAK studies, they have gradually
established the programmed death-1/programmed death ligand-
1 (PD-1/PD-L1) inhibitors as standard treatment for advanced
NSCLC after chemotherapy failure (3, 4). Although solid tumor
immunotherapy is currently being widely carried out clinically
and has achieved some exciting results, there are still many
unresolved problems, such as the lack of effective methods for
immunotherapy to find individual tumor-specific targets (5).
Among these problems, how to accurately evaluate the efficacy
of immunotherapy at an early stage is still a difficult problem for
clinicians when making clinical treatment decisions. Recently,
with the development of medical image informatics, extraction of
image features and analyzing clinical information have gradually
attracted the attention of medical experts. In particular, the
research results of radiomics for the evaluation of efficacy (6)
and prognosis (7) have a potentially great value for guiding and
optimizing clinical decisions and achieving individualized and
precise treatment of lung cancer.

In our study, we extracted and analyzed the texture features
of enhanced CT images of NSCLC before immunotherapy to
evaluate its feasibility and clinical application value for predicting
the efficacy of tumor immunotherapy.

MATERIALS AND METHODS

Subjects
Our Institutional Review Board approved this retrospective study
and waived the need for informed consent from the patients.
From January 2018 to February 2019, patients of our hospital
with advanced-stage NSCLC receiving PD-1/PD-L1 inhibitor
nivolumab immunotherapy were selected in this study. Inclusion
criteria are as follows: (1) patients underwent contrast-enhanced
CT in our hospital within 1 week before receiving tumor
immunotherapy; (2) withmeasurable lesions for the evaluation of
efficacy; and (3) at least one follow-up data were used to evaluate
the efficacy.

CT Screening
CT scans were obtained with a 128-detector row scanner
(Brilliance, Philips, Cleveland, OH, USA) using the helical
technique at the end of inspiration during one breath hold. The

scanning parameters of routine CT were as follows: pitch, 1.0;
matrix, 1,024× 1,024; FOV, 300mm; 120 kVp and 200mA. After
non-enhanced CT scanning, a double-cylinder high-pressure
syringe pump was used to inject 2 ml/kg BW of iodine contrast
agent (Iophorol 320mg I/ml) into the elbow vein, with an 18-
gauge needle, followed by 20ml of normal saline at a flow
rate of 3 ml/s. Enhanced CT scans were acquired 25 and 75 s
after drug infusion, respectively. The scanning range covered
the entire area from the apex to the base of the lung with the
patient lying supine, which included adrenal glands on both
sides. When a lesion was found, an HRCT target scan between
arterial phase and delay-enhanced scan followed with the
following parameters: pitch, 1.0; section thickness and interval,
1.0 and 1.0mm; matrix, 1,024 × 1,024; FOV, 150mm; 120 kVp
and 200mA. The images of the contrast-enhanced CT lesions
(HRCT target scans) were stored as Dicom for image texture
feature extraction.

Image Segmentation and Feature Extraction
All raw thin-slice DICOM format images of the contrast-
enhanced CT lesions (HRCT target scans) were transferred to
Mazda software (The Technical University of Lodz, Institute
of Electronics, http: //www.eletel. P.lodz.pl/mazda/). Tumors
were segmented by two radiologists with different experience
in thoracic oncological imaging (5 and 15 years). The primary
radiologist selected the largest section of the lesion, manually
drawing the ROI diagram, and then the experienced senior
radiologist confirmed the ROI setting, taking the lead when the
two radiologists disagreed. The specific methods and steps are
as follows:

1) ROI is drawn on the enhanced CT image of the median
window (width, 360 HU; level, 60 HU) at the central level of
the cross-section of each target lesion. The two radiologists
were mainly responsible for delineating the boundary of each
primary tumor manually layer by layer, which required to
include all lesions as much as possible.

2) After ROI, the texture parameters of the images of the lesions
within the range shown by the ROI are calculated by the
Mazda software;

3) Feature extraction

Since there are many texture feature parameters extracted by the
Mazda software, we chose three methods for screening feature
texture parameter with clinical interpretation, namely: Fisher
coefficient, mutual information (MI), and classification error
probability combined average correlation coefficients (POE +

ACC). We selected all screen 10 characteristic texture parameters
from the above three methods.
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Tumor Immunotherapy and Evaluation Methods
All patients received a treatment of nivolumab (OPDIVO,
Bristol-Myers Squibb Company), 240mg, once every 2 weeks.
Tumor assessments were performed every 6–8 weeks by contrast-
enhanced computed tomography (CT) scan after the start of
treatment. We only evaluate target lesions in the mediastinal
window, including primary lesions or metastases, while we do
not calculate changes in lesions outside the lung parenchyma
such as lymph nodes. According to RECIST 1.1 standard (8),
the longest diameters of target lesions were recorded by two
chest radiologists, centrally reviewed all consecutive CT scans
independently. When the results are different, another oncologist
joined to discuss the decision. Complete response (CR) was
defined as the disappearance of all lesions. Partial response (PR)
was more than 30% decrease in the sum of the longest diameters
of the target lesions. Suspicion of progression was recorded
as immune unconfirmed progressive disease (iUPD) according
to the iRECIST guideline (9). Oncologists judged whether to

continue treatment integrately based on the patient’s tumor
type, disease stage, and clinical situation. Another evaluation of
contrast-enhanced CT was preformed 4–6 weeks later to confirm
the true progressive disease (iCPD). Progressive disease (PD)
was defined as a more than 20% increase in the sum of the
longest diameters of the target lesions. A patient who could
not be classified as having either PR or PD was diagnosed
as having stable disease (SD). Patients were divided into the
non-progressive group (including CR, PR, and SD) and the
progressive group (PD) on the basis of the follow-up CT scan date
after the first cycle immunotherapy.

Statistical Analysis
t-test (categorical data) or Chi-square test (enumeration
data) was performed to compare the differences of the
clinical characteristics between non-PD and PD patients.
t-test (normal distribution data) or Mann–Whitney U (non-
normal distribution data) was performed to compare the

TABLE 1 | Clinical characteristics of patients.

Non-PD group PD group p-value

(n = 39) (n = 33)

Patients 34 29

Age 62.0 60.7 0.387*

Sex 0.342

Male 29 22

Female 5 7

Smoking status 0.176

Current smoker 26 16

Never smoker 6 11

Former smoker 2 2

Histology 0.758

Adenocarinoma 21 19

Squamous cell carcinoma 13 10

Stage 0.066

III 13 5

IV 21 24

Previous therapy 0.805

Treatment naïve 0 1

Exclusively chemotherapy/TKI 21 16 (1 TKI)

Chemotherapy + Radiochemotherapy 8 8

Chemotherapy + Radiochemotherapy + Surgery 2 1 (surgery of brain metastasis)

Chemotherapy + Surgery 3 3

Target lesion Total 39 33 0.126

Right upper lobe 12 14

Right middle lobe 0 0

Right lower lobe 9 4

Left upper lobe 10 4

Left lower lobe 8 8

Two lobes or more 0 3

*p-value is obtained by the t-test; otherwise, p-value is obtained by Chi-square test.

Non-PD group, non-progressive group; PD group, progressive group.
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TABLE 2 | Comparison of the selected radiomic features.

Feature extraction methods Radiomic features Non-PD group (n = 39) PD group (n = 33) p-value

Fisher Kurtosis 2.12 ± 3.92 0.78 ± 1.10 0.047

“S(4,4)SumEntrp” 1.15 ± 0.17 1.21 ± 0.13 0.102*

“S(5,0)AngScMom” 0.03 ± 0.02 0.02 ± 0.01 0.107*

“S(5,5)SumEntrp” 1.14 ± 0.17 1.20 ± 0.13 0.108*

“S(4,0)AngScMom” 0.03 ± 0.02 0.02 ± 0.01 0.110*

“S(3,3)SumEntrp” 1.17 ± 0.16 1.22 ± 0.13 0.114*

WavEnHH_s-5 97.44 ± 60.08 125.76 ± 92.12 0.122*

“S(3,0)AngScMom” 0.03 ± 0.02 0.03 ± 0.01 0.123*

“S(5,0)AngScMom” 0.03 ± 0.02 0.02 ± 0.01 0.165*

“S(2,0)AngScMom” 0.04 ± 0.02 0.03 ± 0.01 0.180*

MI “S(1,0)AngScMom” 0.04 ± 0.02 0.04 ± 0.01 0.140*

“S(2,0)AngScMom” 0.03 ± 0.02 0.03 ± 0.01 0.236*

“S(1,1)AngScMom” 0.04 ± 0.03 0.04 ± 0.02 0.398*

“S(0,1)AngScMom” 0.05 ± 0.03 0.05 ± 0.02 0.175*

“S(2,2)SumEntrp” 1.14 ± 0.31 1.24 ± 0.12 0.036*

“S(1,0)SumEntrp” 1.18 ± 0.27 1.28 ± 0.11 0.046*

“S(5,0)SumEntrp” 1.14 ± 0.17 1.19 ± 0.13 0.158*

“S(2,0)AngScMom” 0.04 ± 0.02 0.03 ± 0.01 0.130*

“S(5,5)Entropy” 1.81 ± 0.28 1.88 ± 0.21 0.235*

“S(1,1)Entropy” 1.57 ± 0.25 1.63 ± 0.19 0.291*

POE + ACC WavEnHH_s-4 63.58 ± 53.91 96.69 ± 145.33 0.191*

Teta3 0.73 ± 0.15 0.76 ± 0.15 0.361*

Kurtosis 2.12 ± 3.92 0.78 ± 1.10 0.047

“S(5,0)SumAverg” 66.74 ± 4.91 68.13 ± 5.62 0.267*

Teta1 0.90 ± 0.05 0.89 ± 0.04 0.512*

WavEnLH_s-5 447.40 ± 354.50 371.19 ± 363.24 0.372*

“S(4,4)SumVarnc” 18.34 ± 18.02 28.36 ± 53.11 0.272*

“S(5,5)AngScMom” 0.03 ± 0.02 0.02 ± 0.01 0.177

WavEnHH_s-2 2.99 ± 3.53 2.45 ± 1.64 0.424*

“S(0,2)AngScMom” 0.04 ± 0.02 0.03 ± 0.01 0.172*

*p-value is obtained by the t-test (normally distributed data); otherwise, p-value is obtained by the non-parametric test method Mann–Whitney U-test (non-normally distributed data).

MI, mutual information; POE + ACC, classification error probability combined average correlation coefficients; Non-PD group, non-progressive group; PD group, progressive group.

radiomics texture features extracted by Fisher coefficient,
mutual information measure (MI), and minimization of
classification error probability combined average correlation
coefficients (POE + ACC) between the non-progressive
disease (non-PD) group and the progressive disease (PD)
group. According to the selected texture features, the B11
statistical software module included in the Mazda software
package is used to classify the predictive effect of tumor
immunotherapy target lesions. Classification methods include
linear discriminant analysis (LDA), non-linear discriminant
analysis (NDA), and principal component analysis (PCA).
Based on the texture features of the pre-immunotherapy
contrast-enhanced CT, we calculated the sensitivity, specificity,
accuracy, positive predictive value, and negative predictive
value of each classification method by SPSS 22.0 software,
to predict the efficacy of NSCLC immunotherapy and
calculate the area under the curve (AUC) to compare the
effectiveness of various classification methods to predict
the efficacy.

RESULT

A total of 63 NSCLC patients (51 males and 12 females, with
an average age of 61.2 years and a range of 40–79 years) were
analyzed. The clinical characteristics of the patients are shown in
Table 1. There were 72 lesions, in which 39 were non-progressive
lesions (including 12 PR and 27 SD) and 33 were progressive
lesions, divided into two groups based on the evaluation of
immune efficacy. When there were multiple target lesions in the
same patient, the efficacy was consistent.

Difference of the Feature Textures
Extracted by the Three Methods Between
the Non-progressive Group and the
Progressive Group
The characteristic texture parameters extracted by Fisher
coefficient, MI, and the POE + ACC method are shown
in Table 2. Three radiomics features that were statistically
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FIGURE 1 | Radiomic features of baseline contrast-enhanced CT: box plot of Kurtosis (A), “S(2,2)SumEntrp” (B), and “S(1,0)SumEntrp” (C). o stands for outlier.

FIGURE 2 | Right lower lobe nodule, NSCLC. (A) Pre-treatment

contrast-enhanced; (B) contrast-enhanced CT 6 weeks later after treatment,

the efficacy evaluation was partial response (PR); (C) kurtosis; (D) S(1,0)

SumEntrp map; (E) S(2,2) SumEntrp map.

significant between the non-progressive group and the
progressive group (Figure 1) were as follows: kurtosis (2.12 ±

3.92 vs. 0.78 ± 1.10, p = 0.047), “S(2,2)SumEntrp” (1.14 ± 0.31
vs. 1.24± 0.12, p= 0.036), and “S(1,0)SumEntrp” (1.18± 0.27 vs.
1.28 ± 0.11, p = 0.046), among which kurtosis is the parameter
of grayscale histogram. The values of “S(2,2)SumEntrp” and
“S(1,0)SumEntrp” were larger in the progress group than in the
non-progress group. “S(2,2)SumEntrp” and “S(1,0)SumEntrp”
are the parameters and entropy of the gray-level co-occurrence
matrix. The larger the value, the greater the amount of
image information and the more complex the image. The

FIGURE 3 | Right upper lobe mass, NSCLC. (A) Pre-treatment

contrast-enhanced CT; (B) contrast-enhanced CT 8 weeks later after

treatment, the efficacy evaluation was progression (PD); (C) kurtosis map; (D)

S(1,0) SumEntrp map; (E) S(2,2) SumEntrp map.

parameter value of the progress group is greater than that of the
non-progress group (Figures 2, 3).

Evaluation of the Value of Immunotherapy
Through Three Classification Methods
The three sets of texture features extracted by Fisher coefficient,
MI, and POE + ACC methods are classified by PCA, LDA, and
NDA methods, respectively (Table 3). The diagnostic efficacy
of each method was further evaluated by receiver operating
characteristic (ROC) analyses and calculated AUCs (Figure 4).
The accuracy of various methods for predicting the therapeutic
effect varies from 47.2 to 81.9%. The texture features extracted
by the POE + ACC method have the best diagnostic efficacy by
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TABLE 3 | Comparison of the performance metrics of the three classifiers.

Feature extraction methods Classifiers AUC 95% CI p Sensitivity Specificity Accuracy PPV NPV

Fisher PCA 0.471 0.336,0.605 0.672 50% 40.6% 47.2% 51.3% 39.4%

LDA 0.669 0.542,0.796 0.014 67.4% 65.5% 66.7% 74.4% 57.6%

NDA 0.709 0.585,0.833 0.002 82.8% 65.1% 72.2% 61.5% 84.8%

MI PCA 0.649 0.520,0.778 0.030 68.4% 61.7% 65.3% 66.7% 63.6%

LDA 0.512 0.377,0.646 0.865 55% 46.9% 51.4% 56.4% 45.5%

NDA 0.744 0.626,0.862 <0.001 80% 70.3% 75% 71.8% 78.8%

POE + ACC PCA 0.520 0.385,0.655 0.773 57.1% 48.6% 52.8% 51.3% 54.5%

LDA 0.645 0.515,0.774 0.036 70.6% 61.5% 65.3% 61.5% 69.7%

NDA 0.812 0.706,0.919 <0.001 88.2% 76.3% 81.9% 76.9% 87.9%

MI, mutual information; POE + ACC, classification error probability combined average correlation coefficients; PCA, principal component analysis; LDA, linear discriminant analysis;

NDA, non-linear discriminant analysis; AUC, area under curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.

FIGURE 4 | ROC curve of the three classification subtypes under each

classifier model.

using the NDA classification method to predict the therapeutic
effect (AUC = 0.812, 95% CI: 0.706–0.919). To predict the first
effect after treatment, the sensitivity was 88.2%, the specificity was
76.3%, the accuracy was 81.9%, the positive predictive value was
76.9%, and the negative predictive value was 87.9%.

DISCUSSION

Modern immunotherapies play an important role in personalized
cancer treatment. In oncological image monitoring, high-
resolution CT is the standard for staging of the chest. However,
special clinical manifestations such as pseudoprogression (PsPD),
delayed response, and hyper-progressive disease (HPD) caused
by infiltration of inflammatory cells and necrosis/edema of tumor

tissue present a challenge (10). When clinicians confronted
with atypical response patterns, it is difficult to evaluate the
response and survival benefits. Therefore, they might be in a
dilemma whether to continue immunotherapy or not. Thus, it is
important to find robust non-invasive biomarkers on the basis
of imaging that could allow prediction of patient response to
immunotherapy and prognosis. The main research directions
are functional and molecular imaging techniques, radiomics, and
radiogenomics and the development of imaging biomarkers for
immunotherapy (11). Our study used image texture analysis
to analyze the texture features based on the contrast-enhanced
CT images of tumor lesions before treatment. We extracted
and classified features and predicted the efficacy of NSCLC
immunotherapy according to the radiomics features. The 10
image texture features extracted by the POE + ACC method
predicted the sensitivity of the tumor progression after treatment
to be 88.2%, the specificity was 76.3%, and the accuracy rate
was 81.9%. This result indicated that the radiomic signature can
perceive the differences in the tumor microenvironment before
treatment and provides valuable information for predicting the
efficacy of immunotherapy.

Although solid tumor immunotherapy is currently widely
practiced and has achieved some exciting results, there are
still many unresolved problems. For example, immunotherapy
lacks effective methods to find individualized tumor-specific
targets (5); T lymphocytes, the main force of immunotherapy,
generally have the disadvantages of decreased vitality, immune
tolerance, and exhaustion of functions (12); immune cells cannot
effectively penetrate infiltrating tumor tissues due to defects in
their vascular structure and due to being rich in stroma (13);
the tumor immunosuppressive microenvironment is intricate
and monotherapy is not effective (14). Because the anti-tumor
immune response is a complex process involving many immune
cells and molecules, it is very complex and regulated by the body
finely and dynamically. Therefore, compared with chemotherapy
and targeted therapy, it is more challenging to find markers
for predicting the efficacy of immunotherapy. At present, the
commonly used efficacy prediction markers in clinical research
of tumor immunotherapy include DNAmismatch repair defects,
tumor cell PD-L1 overexpression, tumor mutation burden
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(TMB), etc. (15). In addition, different types of immune cells in
the tumor microenvironment can also be used as markers for
predicting the efficacy of immunotherapy. For example, CD8+ T
cell infiltration often indicates a good response and prognosis for
immunotherapy (16); a combination of different immune cells,
such as CD3/CD8/CD45RO combined immune score (17), etc.

In recent years, with the development of medical image
informatics, extraction of image features from medical images
and analysis of clinical information have gradually attracted
the attention of medical experts. In the field of oncology
radiomics, breakthroughs have been made in the areas of
differential diagnosis, pathological typing, metastasis assessment,
and gene mutation prediction, especially for predicting the
efficacy and prognosis (18). It has potentially great value
for guiding and optimizing clinical decision-making as well
as achieving individualized and precise treatment of lung
cancer. A recent multi-cohort retrospective study published
in the journal Lancet Oncol. also showed that the tumor
infiltration CD8+ T cell imaging histology label can be
used as an effective imaging biomarker for identifying tumor
immunophenotypes and predicting PD-1/PD-L1 monoclonal
antibody treatment efficacy (19). Vaidya et al. (20) and Tunali
et al. (21) focused on hyper-progression of NSCLC, which not
only segmented intratumor area but also delineated peritumoral
region. Trebeschi et al. (22) used enhanced CT images before
treatment to analyze the efficacy of anti-PD1 treatment in
patients with melanoma and NSCLC by artificial intelligence
(AI) technology. Moreover, genomics set analysis revealed some
biological basis of the proposed biomarkers, which might be
evident based on oncological decision-making. In our study,
by comparing the texture features of contrast-enhanced CT
images before treatment, the progressive group had larger
S(2,2)SumEntrp and S(1,0)SumEntrp than the non-progressive
group. Kurtosis values are smaller in the progressive group than
in the non-progressive group. These texture features reflect that
the lesions have large CT values and complex internal structure.
The possible pathological mechanism that these characteristics
affect the efficacy of immunotherapy is that defect of the tumor
tissue vascular structure and rich stroma make it difficult for
immune cells to penetrate effectively and infiltrate; the tumor
immunosuppressive microenvironment is complicated, and the
monotherapy is not effective (23, 24). This result coincides with
the reason why we chose the enhanced image for analysis, that
the immune status of the tumor is substantially influenced by its
degree of vascularization (25).

Our study has some limitations. First, the sample size is small
and comes from a single center. We will continue to expand
the sample size, including multi-center data to further verify the

reliability of the conclusion. Second, the image texture analysis in
this study is based on 2D images (central cross-sectional images
of target lesions) to represent the entire lesion, and results may
be biased. In the next study, we will use 3D images to extract the
entire tumor to minimize the bias caused by this factor.

CONCLUSIONS

In short, through texture analysis of the baseline contrast-
enhanced chest CT imaging before treatment and texture feature
extraction, the efficacy prediction of NSCLC immunotherapy
can be achieved. The highest prediction efficiency is sensitivity,
specificity, and accuracy rate were 88.2%, 76.3%, and 81.9%,
respectively. Radiomics texture provides a new method for
early clinical evaluation of the NSCLC immunotherapy
efficacy prediction.
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Background and Purpose: Locally advanced rectal cancer (LARC) is a heterogeneous
disease with little information about KRAS status and image features. The purpose of this
study was to analyze the association between T2 magnetic resonance imaging (MRI)
radiomics features and KRAS status in LARC patients.

Material and Methods: Eighty-three patients with KRAS status information and T2 MRI
images between 2012.05 and 2019.09 were included. Least absolute shrinkage and
selection operator (LASSO) regression was performed to assess the associations
between features and gene status. The patients were divided 7:3 into training and
validation sets. The C-index and the average area under the receiver operator
characteristic curve (AUC) were used for performance evaluation.

Results: The clinical characteristics of 83 patients in the KRAS mutant and wild-type
cohorts were balanced. Forty-two (50.6%) patients had KRASmutations, and 41 (49.4%)
patients had wild-type KRAS. A total of 253 radiomics features were extracted from the
T2-MRI images of LARC patients. One radiomic feature named X.LL_scaled_std, a
standard deviation value of scaled wavelet-transformed low-pass channel filter, was
selected from 253 features (P=0.019). The radiomics-based C-index values were 0.801
(95% CI: 0.772-0.830) and 0.703 (95% CI: 0.620-0.786) in the training and validation
sets, respectively.

Conclusion: Radiomics features could differentiate KRAS status in LARC patients based
on T2-MRI images. Further validation in a larger dataset is necessary in the future.
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INTRODUCTION

Colorectal cancer (CRC) is one of the most prevalent cancers
worldwide, and locally advanced rectal cancer (LARC) shows
strong heterogeneity in real-world medical practice. The best
treatment strategy for LARC patients still depends on the
findings of further clinical trials.

KRAS mutation status has a strong relationship with the
prognosis of CRC patients. In rectal cancer patients, KRAS
mutant (KRAS-mut) patients have a worse prognosis (1),
which emphasizes the importance of detecting KRAS status for
prognostic evaluation and treatment strategy selection. Among
metastatic CRC patients, RAS mutation is a negative predictive
biomarker for treatment with epidermal growth factor receptor
(EGFR) antibody therapies such as cetuximab and panitumumab
(2). The role of KRAS status in stage III CRC patients is still
being investigated. Years ago, researchers held the position that
KRAS status was not associated with worse overall survival
(OS) or disease-free survival (DFS) (3). With follow-up data
maturing and treatments evolving, more studies are challenging
this opinion based on the findings that KRAS-mut patients
have worse OS and DFS (4, 5). Notably, most of these
studies were conducted in CRC patients, and the number of
patients with KRAS mutations was limited because their
main research objective was immune-related biomarkers. As
a result, the effect of targeted therapy in LARC patients
remains unclear. From limited clinical trials, KRAS status was
shown to be a significant predictor in multivariate analysis, and
KRAS-mut patients had a worse response to neoadjuvant
radiochemotherapy with worse OS than KRAS wild-type
(KRAS-wild) patients (1, 6–8). Hence, information on KRAS
mutation status has great meaning for physicians in predicting
patient response to neoadjuvant chemotherapy and prognosis in
practical medical treatment.

Because physicians will choose a targeted treatment strategy
for metastatic CRC patients depending on KRAS status, efforts to
obtain KRAS status from radiological images have been ongoing
for years. To avoid invasive operations, an increasing number of
studies on KRAS status and radiological image characteristics
have been reported. For decades, several kinds of studies have
been conducted on computed tomography (CT) (9)-based,
positron emission tomography-CT (PET-CT) (10–17)-based
and magnetic resonance imaging (MRI) (18)-based texture
features to assess the relationships between genetic mutations
and CRC metastatic rectal cancer patients (19). However, the
results remain unstable and conflicting, and it is still unfortunate
that the effects various radiological technologies remain
unknown. Moreover, LARC patients are quite different from
metastatic CRC patients in terms of treatment strategies and
Abbreviations: LARC, locally advanced rectal cancer; MRI, magnetic resonance
imaging; CT, computed tomography; PET-CT, positron emission tomography-
CT; LASSO, least absolute shrinkage and selection operator; AUC, area under the
receiver operator characteristic curve; ROC, receiver operator characteristic; DCA,
decision curve analysis; CRC, colorectal cancer; KRAS-mut, KRASmutant; KRAS-
wild, KRAS wild-type; OS, overall survival; DFS, disease-free survival; ROI, Region
of interest.
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biological characteristics, especially the KRAS status. Therefore,
specific studies on LARC patients deserve more attention.

Radiomics is a rapidly developing image acquisition and
analysis technology that is used in various kinds of medical
evaluations, especially in the diagnosis and prognosis of patients
as well as the classification of different genotypes (20–22). As the
first study focused on LARC patients, this study aimed to
investigate whether MRI radiomics can predict KRAS status in
LARC patients.
MATERIAL AND METHODS

Patient Profiles
A retrospective study of 83 LARC patients was performed. All
patients had undergone an MRI examination of the primary
tumor and RASmutation analysis from our center. The inclusion
criteria were as follows: (1) the primary tumor was proven to be
rectal adenocarcinoma by biopsy; (2) MRI images could be
acquired from our image database; and (3) clinical and
treatment information could be acquired from our database.
This study was approved by the Institutional Review Board of
Fudan University Shanghai Cancer Center.

MRI Image Acquisition
The primary tumor was imaged in a 3.0 Tesla (T) MRI (Signa
Horizon, GE Medical Systems, Milwaukee, WI) using a phased-
array body coil. The standard imaging protocol consisted of a
sagittal T2-weighted (T2W) fast spin-echo image and an oblique
axial thin-section T2W image, which was used for contouring the
primary tumor.

RAS Mutation Information
In RAS mutation analysis, tumor tissue was extracted from
patients’ primary tumor sites by rectal biopsy or surgical
resection, with formalin-fixed paraffin-embedded (FFPE)
primary tumor sections produced using the QIAamp DNA
FFPE Tissue Kit (Qiagen, Dusseldorf, Germany.). Mutations in
KRAS (exons 2, 3, and 4), NRAS (exons 2, 3, and 4), and BRAF
(V600E) were analyzed by the amplification refractory mutation
system (AmoyDx Co., Xiamen, China) of samples from
pathologic examination.

Radiomic Feature Extraction
Regions of interest (ROIs) were distinguished from axial thin-
section T2WI images and segmented by two experienced
radiation oncologists (4 and 7 years of experience) in MIM
software. The gross tumor was included in image delineation,
and the air inside the rectum was carefully excluded.

The DICOM images and structure were sent to MATLAB
(MathWorks Inc.) for radiomics feature calculation and analysis.
A total of 253 features were extracted from the ROI images. The
features included grey features, texture features, shape features,
fractal dimension features, and wavelet features. The detailed
algorithm of these features was described by an updated
quantitative radiomics standard from Alex (23).
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Feature Selection and
Model Building
Clinical and radiomics features were extracted from the clinical
database and DICOM images of the patients. For clinical
features, the chi-square test was performed to compare the
differences between two cohorts based on KRAS status. For
features from T2WI images, the least absolute shrinkage and
selection operator (LASSO) regression algorithm was performed
for predictive feature selection and model establishment. The
LASSO algorithm is a widely used method for the dimensionality
reduction of high-dimensional data in artificial intelligence
research and radiomics studies. Selected radiomics features
were calculated for the radiomics score (rad-score) based on
linear regression in the training cohort, and the formula was used
in the validation cohort for rad-score calculation.

Statistical Analysis
The distribution of continuous numeric data was affirmed by the
Shapiro-Wilk test. The comparison of continuous numeric data
was ascertained by the Kolmogorov-Smirnov test, and
categorical data were compared by the chi-square test. The
area under the curve (AUC) was used to depict the predictive
accuracy of the model. The training set and validation set were
divided according to a 7:3 ratio, and the concordance index (C-
index) was presented for the result. The C-index can calculate the
concordance of the model prediction and actual condition,
whose value equals the AUC of the receiver operator
characteristic (ROC) curve. And the decision curve analysis
(DCA) was also applied. The best cut-off value was based on
Youden’s index. A p-value <0.05 (z-value of 1.96) was considered
statistically significant.

The packages involved in our research were listed as
follow: tableone, MASS for table on creation, caret, lattice,
dplyr, glmnet for data analysis and model building, ggplot2,
pROC and rmda were used for result visualization and
DCA analysis.
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RESULT

Patient Characteristics
The summary profile of this research was shown in Figure 1. A
total of 83 LARC patients were included in this study. Fifty-one
(61.4%) of these patients were male, and the median age was 55
years, with a range of 29 to 87 years. Among all the patients, 74
(89.2%) were in stage III, and 7 (8.4%) patients were managed
with a watch and wait (W&W) strategy. Seventy-six (91.6%)
patients received neoadjuvant chemoradiation therapy, and 71
(87.7%) patients underwent surgery. For mutation status, 41
(49.4%) patients had mutations in the KRAS gene, and 2 (97.6%)
patients had mutations in the NRAS and BRAF genes. The
detailed characteristics are displayed in Table 1.

The patients were divided into two categories based on KRAS
status. For the overall clinical features, no obvious baseline
differences were observed between the two cohorts (the details
are displayed in Tables 1 and 2).

MR Radiomic Analysis
After regression, one radiomic predictor was selected from 253
texture features. This feature is listed in Table 3. Figure 2
presents the tuning parameter (l) and the coefficient of LASSO
regression. Figure 2 presents the distribution of the selected
parameter, X.LL_scaled_std, which is the standard deviation
value of the scaled wavelet-transformed low-pass channel filter.

Characteristics of the Patients in the
Training and Validation Sets
Based on the random selection of KRAS-mut and KRAS-wild
patients, 59 (70%) patients were distributed to the training set,
and 24 (30%) patients were distributed to the validation set. In
the training set, there was no significant difference in the baseline
information obtained based on the KRAS status cohort, but some
differences appeared after neoadjuvant chemoradiation therapy
according to the curative effect, as the ypTNM stage. In the
FIGURE 1 | Flow chart of the study.
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validation set, no obvious differences were observed between
the two cohorts. Detailed information is shown in Tables 1,
2 and 4.

Model Efficacy in the Training Set and
Validation Set
In the training set, the predictive model achieved a C-index of
0.801 (95% confidence interval (CI) 0.772-0.830) based on 59
patients’ radiomic image data. The sensitivity and specificity for
differentiating tumors with mutant KRAS status from those with
wild-type status were 64% and 85.3%, respectively, based on the
cut-off value of 0.452. In the validation set, this model achieved a
C-index of 0.703 (95% CI 0.620-0.786), which was shown in
Figure 3. The sensitivity and specificity for differentiation were
43.8% and 100%, respectively, based on the cut-off value of 0.365.
The detailed information was listed in Table 5. The predictive
effect of the radiomics model showed a stable performance in
both the training set and validation set of LARC patients.

The specific values from the predictive model are listed in
Supplementary 1. The distributions of patient KRAS status and
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predictive values are shown in Figure 4, which shows that
patients with high prediction values had KRAS-mut status
based on our prediction.
DISCUSSION

With years of development of targeted therapy, the targeted
therapy strategy based on KRAS status has changed substantially.
According to the treatment recommendation of the European
TABLE 2 | Patient treatments and pathological characteristics.

Overall KRAS-wild KRAS-mut P-value

Watch and wait (W&W) (%) 0.019
non-W&W 76 (91.6) 35 (83.3) 41 (100.0)
W&W 7 (8.4) 7 (16.7) 0 (0.0)
Neoadjuvant chemoradiation therapy (NCRT) (%) 0.41
non-NCRT 7 (8.4) 2 (4.8) 5 (12.2)
NCRT 76 (91.6) 40 (95.2) 36 (87.8)
Surgery type (%) 0.024
APR 27 (32.5) 10 (23.8) 17 (41.5)
palliative colon stoma 1 (1.2) 0 (0.0) 1 (2.4)
Hartmann 7 (8.4) 5 (11.9) 2 (4.9)
LAR 35 (42.2) 15 (35.7) 20 (48.8)
trans-anal surgery 1 (1.2) 1 (2.4) 0 (0.0)
W&W 7 (8.4) 7 (16.7) 0 (0.0)
no surgery 5 (6.0) 4 (9.5) 1 (2.4)
Tumor type (%) 0.485
adenocarcinoma 81 (97.6) 40 (95.2) 41 (100.0)
mucinous adenocarcinoma 2 (2.4) 2 (4.8) 0 (0.0)
Differentiation (%) 0.015
moderate 40 (48.2) 21 (50.0) 19 (46.3)
poor 15 (18.1) 4 (9.5) 11 (26.8)
unknown 21 (25.3) 10 (23.8) 11 (26.8)
W&W 7 (8.4) 7 (16.7) 0 (0.0)
ypT stage (%) 0.03
ypT0 7 (8.4) 1 (2.4) 6 (14.6)
ypT1 1 (1.2) 0 (0.0) 1 (2.4)
ypT2 12 (14.5) 7 (16.7) 5 (12.2)
ypT3 47 (56.6) 21 (50.0) 26 (63.4)
ypT4 1 (1.2) 1 (2.4) 0 (0.0)
unknown 8 (9.6) 5 (11.9) 3 (7.3)
W&W 7 (8.4) 7 (16.7) 0 (0.0)
ypN stage (%) 0.025
ypN0 33 (39.8) 12 (28.6) 21 (51.2)
ypN1 26 (31.3) 12 (28.6) 14 (34.1)
ypN2 8 (9.6) 5 (11.9) 3 (7.3)
unknown 9 (10.8) 6 (14.3) 3 (7.3)
W&W 7 (8.4) 7 (16.7) 0 (0.0)
ypTNM stage (%) 0.018
yp0 7 (8.4) 1 (2.4) 6 (14.6)
ypI 4 (4.8) 1 (2.4) 3 (7.3)
ypII 21 (25.3) 9 (21.4) 12 (29.3)
ypIII 34 (41.0) 17 (40.5) 17 (41.5)
unknown 10 (12.0) 7 (16.7) 3 (7.3)
W&W 7 (8.4) 7 (16.7) 0 (0.0)
M
ay 2021 | Volu
me 11 | Article
TABLE 3 | Radiomics feature.

Feature Coefficient

Intercept -1.81132414
X.LL_scaled_std 0.04361241
TABLE 1 | Demographic and clinical characteristics of the KRAS-mut and
KRAS-wild populations.

Overall KRAS-wild KRAS-mut P-value

Number 83 42 41
Sex (%) 0.445
female 32 (38.6) 14 (33.3) 18 (43.9)
male 51 (61.4) 28 (66.7) 23 (56.1)
Age (mean (SD)) 1

55.95 (10.90) 55.95 (10.06) 55.95 (11.83)
Distance to anus 0.477

4.57 (1.96) 4.41 (2.04) 4.00[3.00-5.00]
cT stage (%) 0.517
cT1 1 (1.2) 0 (0.0) 1 (2.4)
cT2 4 (4.8) 3 (7.1) 1 (2.4)
cT3 60 (72.3) 31 (73.8) 29 (70.7)
cT4 18 (21.7) 8 (19.0) 10 (24.4)
cN stage (%) 0.31
cN0 9 (10.8) 3 (7.1) 6 (14.6)
cN1 23 (27.7) 10 (23.8) 13 (31.7)
cN2 51 (61.4) 29 (69.0) 22 (53.7)
C stage (%) 0.111
I 5 (6.0) 3 (7.1) 2 (4.9)
II 4 (4.8) 0 (0.0) 4 (9.8)
III 74 (89.2) 39 (92.9) 35 (85.4)
MRF (%) 0.723
negative 34 (41.0) 18 (42.9) 16 (39.0)
positive 35 (42.2) 16 (38.1) 19 (46.3)
unknown 14 (16.9) 8 (19.0) 6 (14.6)
EMVI (%) 0.611
negative 32 (38.6) 18 (42.9) 14 (34.1)
positive 38 (45.8) 17 (40.5) 21 (51.2)
unknown 13 (15.7) 7 (16.7) 6 (14.6)
KRAS (%) <0.001
wild type 42 (50.6) 42 (100.0) 0 (0.0)
mutant 41 (49.4) 0 (0.0) 41 (100.0)
NRAS (%) 0.485
wild type 81 (97.6) 40 (95.2) 41 (100.0)
mutant 2 (2.4) 2 (4.8) 0 (0.0)
BRAF (%) 0.485
wild type 81 (97.6) 40 (95.2) 41 (100.0)
mutant 2 (2.4) 2 (4.8) 0 (0.0)
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Society for Medical Oncology (24), KRAS status is a negative
predictive marker for anti-EGFR treatment selection. For LARC
patients, even the anti-EGFR strategy did not have improved
effects on KRAS wild-type patients in some clinical trials (6, 25);
KRAS status still plays a role as a treatment effect biomarker, and
LARC patients with the mutation have worse progression-free
survival (PFS) (26). Based on the accumulation of evidence on
LARC treatments in patients with different KRAS statuses, some
clinical trials still present a promising curative effect. A
pathological complete response (pCR) rate of 60% was
achieved from neoadjuvant radiotherapy combined with
capecitabine and sorafenib in KRAS-mut patients in phase II
clinical trial (27). This finding hints that the determination of
KRAS status is still important in LARC patients.

Nevertheless, the crucial role of KRAS has been reported for
years, and the result of gene status can be revealed by only biopsy
Frontiers in Oncology | www.frontiersin.org 5349
samples from colonoscopy or surgery in medical practice. Our
research aims to detect KRAS status by radiomic to provide
earlier information on gene expression as a noninvasive medical
practice for patients.

To explore the value of radiomic features, we choose the T2-
MRI images for radiomic features selection. As the treatments
involving, MRI images have become the necessary tool for cancer
staging. Because MRI images have the excellent ability for lymph
node recognition, for neoadjuvant treatment selection, LARC
patients are recommended to receive MRI examination at first
diagnosis (28). Except for the great accessibility of MRI images,
compared to other radiological tools, MRI images can also
provide distinct tissue contrast for biological information and
tumor border delineation.

We have found the value of X.LL_scaled_std, which can
differentiate KRAS status with the best performance. This value
A

B

FIGURE 2 | (A) Text features were selected by the LASSO regression model. The performance of the radiomics signature was assessed by the ROC curve and C-
index. Tuning parameter (l) selection used ten-fold cross-validation via the minimum criteria. The optimal value was calculated by the minimum criteria and the 1-
standard error of the minimum criteria (the 1-SE criteria). A l of 0.1782 with log(l) - 1.75562 was chosen. (B) A LASSO coefficient profile plot was produced against
the log(l) sequence. In addition, one radiomics feature was selected.
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was calculated to describe the standard deviation of the scaled
wavelet-transformed low-pass channel filter. From the result, the
higher value was observed in the KRAS mutant cohort. This
deviation, as a value that can not detect visually, performed the
heterogeneity of the ROI images. Previous research also revealed
that higher heterogeneity can be observed in KRAS mutant
tumor images, and they also found some value implied the
shape characteristic of the tumor, not in our research (29). We
believe that the morphological heterogeneity correlated to image
reader strongly and tumor stage closely, which needs more
researches to determine the delineation standard of ROI, and
the role of shape will be clear.

Based on the value we found, the effect of our model is also
comparable to other studies based on T2-images in rectal cancer.
The prediction based on our research yielded a C-index of 0.703
Frontiers in Oncology | www.frontiersin.org 6350
(95% CI 0.620-0.786), Cui and his colleague got the AUC of
0.682 (95% CI 0.569–0.794) with 0.714 (95% CI 0.602–0.827) in
their validation sets (29), and 0.886 from one dataset of oh and
his colleagues (30). The researches based on T2-MRI images got
a similar ability in the prediction of KRAS status, and some other
studies have also focused on the same topic.

From the view of PET-CT, Pierre et al. assessed PET-CT for
standardized uptake value (SUV), maximum SUV (SUVmax),
mean SUV, skewness, SUV standard deviation, and SUV
coefficient of variation (SUVcov). Both SUVcov and SUVmax
showed an AUC of 0.65 (17). PET-CT is a great instrument for
metabolic demonstration, and some studies presented a
relationship between glucose metabolism and RAS status (31).
In Pierre’s research, SUVmax was the most distinct parameter
for KRAS status; in patients with KRAS mutations, SUVmax
TABLE 4 | Characteristics of patients in the training set and validation set.

training set (n=59) validation set (n=24)
KRAS-wild KRAS-mut P-value KRAS-wild KRAS-mut P-value

Number 26 33 16 8
Sex (%) 0.784 0.874
female 10 (38.5) 15 (45.5) 4 (25.0) 3 (37.5)
male 16 (61.5) 18 (54.5) 12 (75.0) 5 (62.5)
Age (mean (SD)) 56.08 (10.19) 56.24 (11.61) 0.954 55.75 (10.16) 54.75 (13.47) 0.84
Distance to anus 4.40 (2.25) 4.60 (1.96) 0.726 4.43 (1.65) 4.50 [4.00,6.25] 0.313
cT stage (%) 0.801 0.105
cT 1 0 (0.0) 1 (3.0) 0 (0.0) 0 (0.0)
cT 2 1 (3.8) 1 (3.0) 2 (12.5) 0 (0.0)
cT 3 19 (73.1) 25 (75.8) 12 (75.0) 4 (50.0)
cT 4 6 (23.1) 6 (18.2) 2 (12.5) 4 (50.0)
cN stage (%) 0.104 0.57
cN0 1 (3.8) 6 (18.2) 2 (12.5) 0 (0.0)
cN1 6 (23.1) 11 (33.3) 4 (25.0) 2 (25.0)
cN2 19 (73.1) 16 (48.5) 10 (62.5) 6 (75.0)
c stage (%) 0.163 0.794
I 1 (3.8) 2 (6.1) 2 (12.5) 0 (0.0)
II 0 (0.0) 4 (12.1) 0 (0.0) 0 (0.0)
III 25 (96.2) 27 (81.8) 14 (87.5) 8 (100.0)
cMRF (%) 0.803 0.655
negative 14 (53.8) 15 (45.5) 4 (25.0) 1 (12.5)
positive 9 (34.6) 14 (42.4) 7 (43.8) 5 (62.5)
unknown 3 (11.5) 4 (12.1) 5 (31.2) 2 (25.0)
cEMVI (%) 0.515 0.758
negative 14 (53.8) 13 (39.4) 4 (25.0) 1 (12.5)
positive 9 (34.6) 16 (48.5) 8 (50.0) 5 (62.5)
unknown 3 (11.5) 4 (12.1) 4 (25.0) 2 (25.0)
ypTNM (%) 0.021 0.69
yp0 0 (0.0) 6 (18.2) 1 (6.2) 0 (0.0)
ypI 1 (3.8) 3 (9.1) 0 (0.0) 0 (0.0)
ypII 6 (23.1) 9 (27.3) 3 (18.8) 3 (37.5)
ypIII 11 (42.3) 14 (42.4) 6 (37.5) 3 (37.5)
unknown 3 (11.5) 1 (3.0) 4 (25.0) 2 (25.0)
W&W 5 (19.2) 0 (0.0) 2 (12.5) 0 (0.0)
KRAS (%) <0.001 <0.001
wild type 26 (100.0) 0 (0.0) 16 (100.0) 0 (0.0)
mutant 0 (0.0) 33 (100.0) 0 (0.0) 8 (100.0)
NRAS (%) 0.904 1
wild type 25 (96.2) 33 (100.0) 15 (93.8) 8 (100.0)
mutant 1 (3.8) 0 (0.0) 1 (6.2) 0 (0.0)
BRAF (%) 0.904 1
wild type 25 (96.2) 33 (100.0) 15 (93.8) 8 (100.0)
mutant 1 (3.8) 0 (0.0) 1 (6.2) 0 (0.0)
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presented a higher latitude of elevation. However, these data did
not reveal the same correlation between SUVmax and KRAS
status (12, 13). SUVcov was also a latent parameter for KRAS
recognition in the PET-CT results. Even though the predictive
efficacy of treatment based on SUVcov baseline has been shown
for neoadjuvant rectal cancer treatment (32), the whole PET-CT
parameters show a low sensitivity and specificity of 0.66 (95% CI
0.60–0.73) and 0.67 (95% CI 0.62–0.72) (14), respectively. In
A B

FIGURE 3 | The receiver operating characteristic (ROC) curve of the prediction of KRAS status by the radiomics model in the training set (A) and validation set (B).
TABLE 5 | Information of prediction performance.

Training set (%) Validation set (%)

Sensitivity 64.0 56.3
Specificity 85.3 100.0
Accuracy 76.3 62.5
Positive Predictive Value 76.2 52.9
Negative Predictive Value 76.3 100.0
C-index 80.1 70.3
A B

DC

FIGURE 4 | Distribution of prediction values in KRAS-mut and KRAS-wild patients in the training set (A) and validation set (B). The y-axis measures the calculation
value of the radiomic model. The blue columns represent actual KRAS-mut patients, and the red columns represent actual KRAS-wild patients. A higher column
represents a higher value calculated by the model. According to the image, KRAS-mut patients more frequently obtained higher values than KRAS-wild patients.
(C, D) represented the DCA analysis for the training set and validation set.
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summary, PET-CT is a direct demonstration of tumor metabolism
but still cannot uncover the strong relationship between the
parameters of SUV andKRAS status based on the current evidence.

In addition to studies on PET-CT, some researchers have also
focused on CT images and gene characteristics. Lei Yang (9) tried
to use CT-based radiomics signatures to predict gene mutations.
In their study, five feature sets were extracted from the primary
set that was established for model building. The five feature sets
included the shape set, grey-level histogram feature set, grey-level
co-occurrence matrix feature set, grey-level run-length matrix
feature set, and overall feature set. For the validation of the CT-
based model, the accuracy of the validation cohort was 0.750
(95% CI, 0.623-0.845), with a sensitivity of 0.686 and a specificity
of 0.857. The value of radiomics was highly related to genetic
mutations, with P<0.001 and odds ratio (OR) 11.18 (95% CI,
2.88-43.46) in the validation cohort.

Most of these studies focused on CRC patients, and some
studies focused on rectal cancer for further research. Yang tried
to differentiate KRAS status by CT-based radiomics signatures,
and the AUC was 0.829 in the validation set (9). Xu summarized
the KRAS-related features in rectal cancer. The mean values of
six texture parameters were significantly higher in the KRAS-mut
group than in the KRAS-wild group. The AUC values of the
texture features ranged from 0.703 to 0.813 and used T2-MRI
radiomics to predict KRAS status, and they had an accuracy of
81.7% for the decision tree (18). However, the sample size of their
research was 60, and 12% of patients were stage IV (M1), so it is
limited in sample size and cohort consistency.

LARC patients have specific clinical characteristics, and T2-
MRI radiomics features deserve more exploration based on the
limited study focus on such technology.

Our study also has some limitations. First, external validation
needs to be performed in the future to consolidate the results.
Second, in addition to radiomics, deep learning and other
artificial intelligence technologies could be used in image data
analysis and model establishment, which may further improve
the results. Third, more MRI images with latent bio-information,
for example, enhanced sequence and DWI can be achieved for
further exploration with KRAS status, which may increase the
predictive precision.

To summarize, our study focused on the exploration of the
relationship between T2-MRI and KRAS status in LARC
Frontiers in Oncology | www.frontiersin.org 8352
patients. We present the strong value of radiomics in the
prediction of KRAS status before neoadjuvant chemoradiation
therapy and provide a non-invasive method for further targeted
therapy strategy selection.
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Purpose: To develop and validate a radiomics nomogram based on T2-weighted imaging
(T2WI) and apparent diffusion coefficient (ADC) features for the preoperative prediction of
lymph node (LN) metastasis in rectal cancer patients.

Materials and Methods: One hundred and sixty-two patients with rectal cancer
confirmed by pathology were retrospectively analyzed, who underwent T2WI and DWI
sequences. The data sets were divided into training (n = 97) and validation (n = 65)
cohorts. For each case, a total of 2,752 radiomic features were extracted from T2WI, and
ADC images derived from diffusion-weighted imaging. A two-sample t-test was used for
prefiltering. The least absolute shrinkage selection operator method was used for feature
selection. Three radiomics scores (rad-scores) (rad-score 1 for T2WI, rad-score 2 for
ADC, and rad-score 3 for the combination of both) were calculated using the support
vector machine classifier. Multivariable logistic regression analysis was then used to
construct a radiomics nomogram combining rad-score 3 and independent risk factors.
The performances of three rad-scores and the nomogram were evaluated using the area
under the receiver operating characteristic curve (AUC). Decision curve analysis (DCA)
was used to assess the clinical usefulness of the radiomics nomogram.

Results: The AUCs of the rad-score 1 and rad-score 2 were 0.805, 0.749 and 0.828,
0.770 in the training and validation cohorts, respectively. The rad-score 3 achieved an
AUC of 0.879 in the training cohort and an AUC of 0.822 in the validation cohort. The
radiomics nomogram, incorporating the rad-score 3, age, and LN size, showed good
discrimination with the AUC of 0.937 for the training cohort and 0.884 for the validation
cohort. DCA confirmed that the radiomics nomogram had clinical utility.

Conclusions: The radiomics nomogram, incorporating rad-score based on features from
the T2WI and ADC images, and clinical factors, has favorable predictive performance for
preoperative prediction of LN metastasis in patients with rectal cancer.
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INTRODUCTION

More than 700,000 people worldwide were newly diagnosed with
rectal cancer in 2018 (1). Among the metastatic pathways of
rectal cancer, lymph node (LN) metastasis is the most important
and closely correlated with the poor prognosis due to a high rate
of local recurrence (2–4). According to the Union for
International Cancer Control (UICC) TNM staging
classification (8th edition) and the European Society for
Medical Oncology (ESMO) Clinical Practice Guidelines, LN
status in rectal cancer is an important clinical marker in
deciding TNM staging and choosing treatment options within
TNM risk category of primary rectal cancer without distant
metastases (5, 6). Thus, preoperative assessment of LNmetastasis
can provide important information to determine the need for
adjuvant therapy and the adequacy of surgical resection (5, 7, 8).
High-resolution magnetic resonance imaging (MRI) has been
widely used for clinical staging and guiding the treatment of
rectal cancer patients (9). However, MRI has limited ability to
predict LN status with morphological criteria (10, 11). This
limitation is aggravated by the lack of consensus on
appropriate criteria to assess LN positivity (12). Therefore,
improvements in techniques for preoperatively identifying LN
metastasis status are key imperatives.

Radiomics based on advanced pattern recognition tools has
been considered useful to extract a large number of quantitative
features from medical images (13–16). It can provide more
metabolic and biological information than conventional
imaging methods (17). Previous studies have shown that
radiomic features derived from MRI or computed tomography
(CT) data have the potential to predict LN metastasis in such
malignancies as breast cancer, cervical cancer, and bladder
cancer (18–20). For the rectal cancer, some previous studies
demonstrated that the histogram features from T2-weighted
imaging (T2WI) and the texture features from apparent
diffusion coefficient (ADC) maps can help predict lymph node
metastasis (21, 22). However, those studies were conducted
with comparable or smaller patient sample sizes, focusing
mostly on a single-slice image with lower-order histogram or
texture features. A recent study in 2021 reported that radiomics
analysis based on the single-slice high-resolution T2WI images
presented potential in predicting lymph node metastasis of
rectal cancer (23). In addition, a study by Liu et al. showed
that a radiomics model derived from volume features of T2WI
and ADC images achieved excellent performance for the
prediction of pathologic complete response in locally advanced
rectal cancer (LARC) (24). To the best of our knowledge, there
are few studies of radiomics analyses based on multiparametric
sequences to identify preoperative LN status in patients with
rectal cancer, especially using the features derived from volume
lesion of T2WI and ADC images as well as clinical information
(25, 26).

Thus, in the current study, we first sought to construct a
radiomics score (rad-score) based on features from volume
lesion of T2WI and ADC images to distinguish between LN-
positive and -negative rectal cancer patients and analyze the
Frontiers in Oncology | www.frontiersin.org 2355
discriminative abilities of each imaging model. Then we sought
to develop and validate a radiomics nomogram that would
incorporate a rad-score based on the combination of T2WI
and ADC features, and clinical risk factors to facilitate
noninvasive estimation of LN status.
MATERIALS AND METHODS

Patients
The study was approved by the Ethics Review Board of Shengjing
Hospital of China Medical University (2020PS011K), and
written informed consent was obtained from each patient. In
the present study, 236 patients with pathological confirmation of
LN status were preliminarily enrolled between September 2018
and August 2020. Seventy-four patients were excluded for the
following reasons: (1) patients underwent any treatment before
MRI scanning, such as neoadjuvant chemoradiotherapy,
endoscopic biopsy, surgery, and so on; (2) image quality was
poor due to apparent motion artifacts on the DWI and T2WI
sequences. Finally, 162 eligible patients were selected for
subsequent analyses. The patients were randomly divided into
the training (n = 97) and validation (n = 65) cohorts.

Histopathologic Assessment
The histopathological evaluation of regional LN malignancy was
regarded as the gold-standard for LN metastasis. Pathological
reports of surgically resected specimens were retrospectively
collected from our PACS. The LN was defined as positive
when the number of regional LN metastasis was greater than
or equal to one, while the absence of regional LN metastasis was
recognized as negative.

MRI Data Acquisition
All MRI examinations were performed in the supine position on
a 3.0-Tesla (T) scanner (Ingenia 3.0, Philips Medical System,
Best, The Netherlands) with an eight-channel phased-array
surface coil. There was no bowel preparation or intravenous
antispasmodic agents administered. High-resolution rectal MRI
protocols included transverse DWI and T2WI, and sagittal fat-
suppression T2WI. The acquisition parameters for transverse
T2WI included: repetition time (TR)/echo time (TE), 2200/65
ms; flip angle, 90°; matrix size, 288 × 288; field of view (FOV),
250 × 250 mm2; slices, 20; slice thickness, 5 mm; spacing between
slices, 0.5 mm; and NSA, 2. The parameters for DWI included:
TR/TE, 6000/76 ms; flip angle, 90°; matrix size, 288 × 288; FOV,
450 × 450 mm2; slices, 48; slice thickness, 5 mm; spacing between
slices, 1 mm; and b values, 0 and 1,000 s/mm2.

DWI and T2WI images were exported from the Picture
Archiving and Communication System at our institution. ADC
maps were generated using MATLAB 2018a (Mathworks,
Natick, MA, United States) according to loaded DWI images
using the following formula: ADC = (lnSI0-lnSI)/(b-b0),
where SI0 and SI represent signal intensity at b values of 0 and
1,000 s/mm2, respectively.
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Tumor Segmentation and Feature
Extraction
Three-dimensional volume of interest (VOI), including the
whole tumor and excluding obvious necrosis, hemorrhage, gas,
and lumen content areas, was independently segmented on
T2WI and DWI data by a radiologist (Reader 1 with 10 years
of experience in rectal cancer imaging), who was blinded to the
clinical and pathological outcomes. All VOIs were delineated
with an open-source software, ITK-SNAP version 3.8.0 from
UPenn (http://www.itksnap.org) (27). For T2WI data, the
contour of the tumor was manually drawn on each transverse
slice. Then, the corresponding VOI was automatically generated
by the ITK-SNAP software. For ADC maps, the contour of the
tumor was manually delineated along the border of the high
signal region on each transverse DWI slice (b-value of 1,000
s/mm2) first with reference to T2WI, and then automatically
turned into the VOI which was copied to the corresponding
ADC maps finally (24). An overview of the radiomics analysis
workflow is shown in Figure 1.

PyRadiomics, an open-source python package for enabling
the standardization of image processes and extracting a large
panel of radiomic features from medical images, was used to
extract radiomic features from T2WI and ADC data within
manually segmented VOIs (28). To avoid data heterogeneity
bias of the images, all MRI data were subjected to imaging
normalization (the intensity of the image was scaled to 0–100)
and resampled to the same resolution (3 mm × 3 mm × 3 mm)
before feature extraction (29). In addition, the segmented images
were also resampled (3 mm × 3 mm × 3 mm) to maintain VOI
accuracy. For each sequence, first-order statistics, texture, and
seven built-in filter features (square, square root, logarithm,
exponential, gradient, Laplacian of Gaussian [LOG], wavelet)
were calculated, which resulted in a total of 1,376 radiomic
features, as shown in Supplementary Table S1.

We randomly chose 30 cases of MRI images (T2WI and
ADC); VOI segmentation was performed by two radiologists
Frontiers in Oncology | www.frontiersin.org 3356
(Reader 1, and Reader 2 with 8 years of experience in rectal
cancer imaging). Feature extraction was performed on the two
sets of VOIs generated by the two radiologists to obtain two
groups of the radiomic features. Intraclass correlation coefficients
(ICCs) were determined using the two sets of radiomic features
to evaluate the reproducibility and stability of each feature. We
interpreted a coefficient of 0.81 to 1.00 as an almost perfect
agreement, 0.61 to 0.80 as a substantial agreement, 0.41 to 0.60 as
a moderate agreement, 0.21 to 0.40 as a fair agreement, and 0 to
0.20 as a poor or no agreement (30). Features with ICC value >
0.8 were collected for subsequent analysis, which were
individually subtracted by the mean value of each feature and
divided by the respective standard deviation values (Z-score
normalization), thus, removing the limitations imposed by the
units of each feature (31).

Feature Selection and Rad-Score
Calculation
To reduce the feature dimension and remove irrelevant features,
two steps were applied for feature selection. First, some features
based on univariate statistical tests (two-sample t-test) between
LN-positive and -negative groups in the training cohort were
selected (24). Second, the least absolute shrinkage and selection
operator (LASSO) method (31, 32), which is suitable for the
regression of high-dimensional data, was performed within each
set of ADC and T2WI data, respectively. The support vector
machine (SVM) classifier was used to identify LN metastasis
where the kernel parameter was set to the linear kernel, and other
parameters were set to default (24). Rad-score 1 and rad-score 2
were calculated for each patient using the SVMmodel with linear
kernel training based on the selected T2WI and ADC features,
respectively. For the combination of two sequences, the selected
T2WI and ADC features were combined and once more fed into
the LASSO method. Accordingly, rad-score 3 was calculated
using the SVM model with linear kernel training based on
selected fusion features. Feature selection and rad-score
FIGURE 1 | The framework for the radiomics workflow.
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calculation were conducted with R software (version 3.6.2,
https://www.R-project.org).

Radiomics Nomogram Development
Univariate logistic regression analysis was first conducted with
the following clinical information: age, sex, LN size (maximum
LN short diameter), tumor size, tumor location, T stage, and rad-
score 3 to identify potential predictors (21). Then multivariate
logistic regression analysis was used to select the independent
predictors of LN metastasis (21). Based on the multivariable
logistic analysis, the clinical model and radiomics nomogram for
LN metastasis prediction were constructed with the selected
predictors. Calibration curves were used to evaluate the
calibration of the radiomics nomogram. The Hosmer–
Lemeshow test was conducted to assess the goodness-of-fit of
the nomogram. The discrimination performances of the clinical
model, three rad-scores, and the radiomics nomogram for
predicting LN metastasis were evaluated according to the area
under the receiver operator characteristic (ROC) curve (AUC) in
both the training and validation cohorts. Decision curve analysis
(DCA) was performed to determine the clinical usefulness of the
nomogram by quantifying the net benefits at different threshold
probabilities in the validation cohort (33). ROC curves were
drawn using the professional medical statistics software,
MedCalc (version 14.10.20, https://www.medcalc.org/).
Calibration and DCA curves were generated using R software.

Statistical Analysis
Univariate analysis was used to compare the differences in clinical
and pathological characteristics between LN-positive and -negative
groups using the chi-square test for categorical variables, and two-
sample t-tests for continuous variables, as appropriate. All statistical
tests were two-tailed and were conducted with a statistical
significance level of 0.05. Statistical analyses were performed and
figure plots were generated with R software and SPSS software
(SPSS Inc., Chicago, IL). The DeLong test was used to statistically
compare the AUCs between the models.
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RESULTS

Clinical and Pathological Characteristics
Patient characteristics were summarized in Table 1. Age, LN size
(maximum LN short diameter), and T stage were significantly
different between the LN-positive and -negative groups. There
were no significant differences in other clinical characteristics
(sex, tumor size, and tumor location) between the LN-positive
and -negative groups. No difference in the LN positive rate was
observed between the two cohorts (44.3% (43/97) vs. 46.2%
(30/65), respectively; P = 0.819).

Of the 2,752 radiomic features extracted from T2WI and
ADC images, 2,076 were demonstrated to have high stability,
with ICCs from 0.8003 to 0.9973.

Feature Extraction, Selection, and Rad-
Score Calculation
To reduce the number of weak features, we first performed
univariate analysis (two-sample t-tests) as a feature filter in the
training cohort. We included more features than those that
showed significant differences between LN-positive and
-negative groups as compensation to avoid eliminating highly
discriminative features in multivariate analyses, rather than
univariate analysis (17). Two-sample t-tests (P < 0.1) allowed
for the selection of 530 features, including 313 T2WI and 217
ADC features. Next, 313 T2WI and 217 ADC features were
respectively reduced to seven and 11 potential predictors by
applying LASSO logistic regression using 10-fold cross-
validation via the minimum criteria. Finally, the combination
of the seven T2WI and 11 ADC features was reduced to 13
potential predictors by applying LASSO logistic regression using
10-fold cross-validation via the minimum criteria. Three rad-
scores were calculated. The resultant coefficients of features in
each group used in calculating the corresponding rad-score were
shown in Supplementary Table S2. The distributions of the
three rad-scores and LN status in the training and validation
cohorts were shown in Figure 2.
TABLE 1 | Clinical and pathological features of patients.

Characteristic Training cohort, n = 97 P Validation cohort, n = 65 P

LN (+), n = 43 LN (–), n = 54 LN (+), n = 30 LN (-), n = 35

Age, year 55.6 ± 13.3 65.2 ± 7.4 <0.01a 56.8 ± 11.9 63.8 ± 10.7 0.016
Sex (%) 0.146 0.347
Male 25 (58.1%) 39 (72.2%) 20 (66.7%) 27 (77.1%)
Female 18 (41.9%) 15 (27.8%) 10 (33.3%) 8 (22.9%)

LN size (mm) 6.6 ± 2.8 5.0 ± 2.1 <0.01a 6.9 ± 2.5 4.9 ± 1.8 <0.01a

Tumor size (cm) 4.5 ± 1.2 4.7 ±1.2 0.434 4.6 ± 1.3 4.9 ± 1.4 0.385
Tumor location (cm) 6.1 ± 1.2 6.3 ± 2.5 0.567 6.6 ± 2.0 7.0 ± 2.9 0.454
T stage (%) 0.023 <0.01a

T1-2 7 (16.3%) 20 (37.0%) 4 (13.3%) 16 (45.7%)
T3-4 36 (83.7%) 34 (63.0%) 26 (86.7%) 19 (54.3%)

Rad-score 1 0.60 ± 1.24 −0.82 ± 1.21 <0.01a 0.23 ± 0.87 −0.64 ± 1.07 <0.01a

Rad-score 2 0.64 ± 1.36 −1.07 ± 1.21 <0.01a 0.29 ± 1.34 −0.85 ± 1.22 <0.01a

Rad-score 3 0.98 ± 1.20 −1.07 ± 1.39 <0.01a 0.34 ± 0.99 −0.97 ± 1.02 <0.01a
May 2021 | Volume 11 | Article 6
P was derived from the univariable association analyses between each of the clinicopathological variables and LN status. Chi-Square was used to compare the differences in categorical
variables (sex, T stage), while the two-sample t-test was used to compare differences in age, LN size (maximum LN short diameter), tumor size, tumor location, and rad-scores. aP < 0.05 is
considered statistically significant.
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Rad-Score Evaluation
There were significant differences in rad-score 1, rad-score 2, and
rad-score 3 between LN-positive and -negative patients in the
training cohort (P < 0.01); the same result was achieved in the
validation cohort (P < 0.01), as shown in Table 1. The dot
diagram showed that the three rad-scores for LN-positive
Frontiers in Oncology | www.frontiersin.org 5358
patients were generally higher than those for LN-negative
patients in the training and validation cohorts (Figure 2).

To compare the classification performance, the ROC curves
were plotted for the clinical model, rad-score 1, rad-score 2, and
rad-score 3 in the training and validation cohorts (Figure 3). The
clinical model achieved an AUC of 0.811 in the training cohort
A B

FIGURE 3 | Comparisons of the ROC curves for the clinical model and three rad-scores in each cohort. (A) The ROC curves for the clinical model and three rad-
scores in the training cohort. (B) The ROC curves for the clinical model and three rad-scores in the validation cohort.
A B

D E F

C

FIGURE 2 | Dot diagram of the three rad-scores in each cohort. Dot diagram of rad-score 1 in the training (A) and validation (D) cohorts. Dot diagram of rad-score
2 in the training (B) and validation (E) cohorts. Dot diagram of rad-score 3 in the training (C) and validation (F) cohorts.
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and an AUC of 0.781 in the validation cohort. The AUCs of the
rad-score 1 and rad-score 2 were 0.805, 0.749 and 0.828, 0.770 in
the training and validation cohorts, respectively. The rad-score 3
yielded the highest AUC scores among four models in both
training (0.875) and validation (0.822) cohorts. There was
significant difference in AUC between rad-score 1 and rad-
score 3 in the training cohort, but not among the other
models. No significant difference was found in AUC among
four models in the validation cohort. The detailed results were
shown in Table 2.

Radiomics Nomogram Construction and
Evaluation
The results of univariate and multivariate logistic regression
analysis were provided in Table 3. Univariate analysis showed
that age, LN size, T stage, and rad-score 3 had significant
differences between LN-positive and -negative groups in the
training cohort. In multivariate logistic analysis, the rad-score
3, age, and LN size were identified as independent parameters of
LN metastasis. A radiomics nomogram, incorporating the age,
LN size, and rad-score 3, was developed, as shown in Figure 4.

The ROC curves were plotted for radiomics nomogram from
the training and validation cohorts (Figure 5). The AUC,
classification accuracy, sensitivity, and specificity of radiomics
nomogram were 0.937, 0.876, 0.907, 0.852 and 0.884, 0.831,
0.833, 0.829 in the training and validation cohorts, respectively.
The calibration curves of the nomogram were shown in Figure 6.
The calibration curves and the Hosmer–Lemeshow test showed
good calibration in the training cohort (P = 0.697) and validation
cohort (P = 0.244). The DCA result for the nomogram was
shown in Figure 7. We found that using the multiparametric
MRI model to predict LN metastases had a greater advantage
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when directing treatment decisions if the threshold probability
was set between 0 and 0.8, compared with the treat-all-patients
scheme and the treat-none scheme.
DISCUSSION

LN status is the key factor in determining whether to conduct
adjuvant therapy or additional surgical resection (5, 7, 8). The
accurate evaluation of LNmetastasis using observable MRI features,
such as size and morphology, remains challenging (34, 35). In this
study, rad-score 3 was constructed that incorporated T2WI and
ADC image features for preoperative prediction of LN metastasis in
patients with rectal cancer and compared with the predictive
performance of rad-score 1 based on T2WI features and rad-
score 2 based on ADC features. The results indicated that rad-
score 3 could yield the highest AUC score. We then developed and
validated a radiomics nomogram incorporating rad-score 3 and
some clinical information (age and LN size). The results showed
that the model presented favorable predictive value for preoperative
individualized prediction of LN metastasis in rectal cancer patients.

There have been some studies reporting the diagnostic value of
radiomics in identifying the LN status of rectal cancer. Huang et al.
(36) developed a radiomics model based on enhanced CT to predict
LN status in colorectal cancer patients, and yielded an AUC score of
0.778 in the validation cohort. However, high-resolution MRI is
regarded as the most common and effective method for the
identification of clinical staging of rectal cancer (9). Several
researches have shown that radiomics based on MRI had better
diagnostic performance in discriminating LN status (21–23, 25, 26).
An investigation by Yang et al. indicated that the histogram features
from T2WI could be used to identify LN metastasis of primary rectal
TABLE 2 | AUC comparison based on DeLong test among four models.

Cohort Model Clinical model Rad-score 1 Rad-score 2 Rad-score 3

Training Clinical model / 0.939 0.805 0.302
Rad-score 1 0.939 / 0.691 0.011
Rad-score 2 0.805 0.691 / 0.250
Rad-score 3 0.302 0.011 0.250 /

Validation Clinical model / 0.728 0.886 0.601
Rad-score 1 0.728 / 0.783 0.105
Rad-score 2 0.886 0.783 / 0.342
Rad-score 3 0.601 0.105 0.342 /
May 2021 | Volume 11 |
TABLE 3 | Univariate and multivariate logistic regression analysis of the clinical parameters and rad-score 3.

Parameters Univariate analysis P-value Multivariate analysis P-value

OR 95% CI OR 95% CI

Age 0.910 0.865–0.957 < 0.01* 0.873 0.803–0.950 < 0.01*
Sex 1.872 0.801–4.378 0.148
LN size 1.314 1.094–1.580 0.004 1.545 1.138–2.099 < 0.01*
Tumor size 0.870 0.615–1.230 0.430
Tumor location 0.946 0.783–1.142 0.563
T stage 3.025 1.135–8.061 0.027 3.915 0.809–18.941 0.090
Rad-score 3 3.582 2.190–5.859 < 0.01* 4.503 2.321–8.735 < 0.01*
OR, odds ratio; CI, confidence interval. *P-value < 0.05 is considered statistically significant.
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FIGURE 4 | Radiomics nomogram incorporating the rad-score 3, age, and the LN size.
A B

FIGURE 5 | The ROC curves for radiomics nomogram in each cohort. (A) The ROC curve for radiomics nomogram in the training cohort. (B) The ROC curve for
radiomics nomogram in the validation cohort.
A B

FIGURE 6 | Calibration curves of radiomics nomogram in each cohort. (A) The calibration curve of radiomics nomogram in the training cohort. (B) The calibration
curve of radiomics nomogram in the validation cohort. The x-axis represented the predicted LN metastasis risk. The y-axis represented the actual LN metastasis
rate. The diagonal blue line represented a perfect prediction by an ideal model. The red line represented the performance of the radiomics nomogram, of which a
closer fit to the diagonal blue line represented a better prediction.
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tumor and obtain the moderate-to-good diagnostic performance
(AUC: 0.648 to 0.750) (21). A recent study demonstrated that
radiomics model based on high-resolution MRI could be helpful in
predicting LN status, which obtained an AUC of 0.8 in the validation
cohort (23). In addition, DWI with ADC is a functional MRI
sequence that can reflect the varying cellularity within a tumor
(22). A study by Liu et al. showed that texture analysis on ADC
maps could provide valuable information to predict LN status in
patients with LARC (22). Recently, Zhou et al. established a radiomics
model based onmultiparametricMRI, including T1WI, T2WI, ADC,
and CE-T1WI data, which yielded good diagnostic performance in
predicting LN status for patients with LARC following neoadjuvant
therapy (25). However, most previous radiomics analyses were
generally performed with a single-slice image at the level of the
largest section of the tumor. To improve the performance of
radiomics models, three-dimensional VOI segmentation was
conducted in our study. A prior study demonstrated that three-
dimensional VOIs could contain more important information than
two-dimensional regions of interest (37). Compared with those
studies above, our research included more high-order features for
radiomics analysis, such as square, square root, logarithm,
exponential, gradient, and wavelet features. In addition, a recent
study constructed a radiomics model based on VOIs of T2WI and
DWI (b-value of 1,000 s/mm2), which achieved good diagnostic
performance in the validation cohort (26). However, it was proved
that texture analysis based on ADC maps achieved better
discrimination performance to predict LN status than that based
on DWI (b-value of 1,000 s/mm2) (38). Therefore, in our study,
radiomic features were extracted from VOIs of T2WI and ADC
images and used to establish a multiparametric model. Moreover,
compared with these multiparametric MRI studies above, we also
analyzed the discriminative ability of each imaging modality.

Rad-score 1, on the basis of T2WI, was mainly constructed by
wavelet features (6/7); this demonstrated that wavelet features better
reflected tumor biology and heterogeneity. All wavelet features were
derived from the decompositions and the approximation by wavelet
Frontiers in Oncology | www.frontiersin.org 8361
filter to the original image. Image transformation using a filter can
eliminate noise or sharpen the image and does not change the
semantics of the features (29). Therefore, these wavelet features
represent the intensity distribution or gray level distribution of
tumors in the corresponding wavelet filter image. For example,
wavelet.LHL_firstorder_Maximum and wavelet.HHL_
firstorder_Mean respectively describe the maximum and average
gray level intensity of tumor region, wavelet.LHL_glcm_IDN is a
measure of the local homogeneity of the tumor region and
normalizes the difference between the neighboring intensity values
by dividing over the total number of discrete intensity values,
wavelet.LHH_glrlm_RE and wavelet.HHH_glrlm_RE represent
the uncertainty/randomness in the distribution of run lengths and
gray levels and a higher value indicates more heterogeneity in the
texture patterns, and wavelet.HLL_gldm_LDLGLE measures the
joint distribution of large dependence with lower gray-level values.
The AUC of rad-score 1 for predicting LN metastasis was 0.749 in
the validation cohort. One previous study also reported the
effectiveness of wavelet features on T2WI in predicting LN status
and obtained a similar result (39). Moreover, He et al. showed that
wavelet features of T2WI had good performance in tumor grading
for rectal cancer, which further demonstrated that wavelet features
can reflect tumor biology and heterogeneity (40).

Rad-score 2, based on ADC images, was established by LOG,
wavelet, logarithm, and exponential features. All higher-order
statistics features derived from the image transformation using the
corresponding filter could reflect underlying pathology information
of the tumor. For example, log.sigma.5.0.mm.3D_glcm_IMC2
assesses the correlation between the probability distributions of
two voxel spots in the log.sigma.5.0.mm filter image to quantify
the complexity of the tumor texture, log.sigma.5.0.
mm.3D_glrlm_LRLGLE measures the joint distribution of long-
run lengths with lower gray-level values in the log.sigma.5.0.mm
filter images, wavelet.LHL_glcm_Correlation quantifies the linear
patterns in the wavelet.LHL filter image based on the distance
parameter, wavelet.HLH_glszm_LALGLE represents the
proportion in the wavelet.HLH filter image of the joint
distribution of larger size zones with lower gray-level values,
logarithm_firstorder_Median describes the average gray level
intensity within the tumor region in the logarithm filter images,
exponential_glszm_GLNU describes the variability of gray-level
intensity values in the exponential filter image, with a lower value
indicating more homogeneity in intensity values, and so on. A recent
study showed a significant difference between texture features from
ADCmaps and LNmetastasis status through statistical analyses (22).
In our study, 11 higher-order statistics features from ADC maps
exhibited highly discriminative performance, but six features were
not significantly different between the LN-positive and -negative
groups (using two-sample t-tests). We found that associating a single
radiomic feature with complex tumor biological processes remained
a challenge. Therefore, it was more common to combine the panels
of selected features into a rad-score. Our results showed that the
developed rad-score 2 could achieve good performance and yielded
an AUC of 0.770 in the validation cohort. A recent study on breast
cancer reported the potential values of higher-order statistics features
in predicting sentinel LN metastasis (41).
FIGURE 7 | DCA for radiomics nomogram in the validation cohort. The y-axis
indicated the net benefit. The red line, blue line, and horizontal black line
represented the net benefit of the radiomics nomogram, treat-all strategy, and
treat-none strategy, respectively.
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Rad-score 3 was calculated by seven T2WI (six wavelet and one
LOG features) and six ADC (two LOG, two wavelet, one logarithm,
and one exponential features) features, and indicated that radiomic
features on T2WI and ADC maps had good performance in
predicting LN status. According to the AUCs, the rad-score 3
obtained the highest score among three rad-scores in predicting the
LN status. Recently, several studies also reported that radiomics
models based on multiparametric MRI data could improve the
predictive performance for tumor characteristics (24, 31, 42, 43).

In multivariate logistic analysis, the rad-score 3, age, and LN size
were identified as independent parameters of LN metastasis. We
found that the LN positive group had a significantly younger age
compared with the LN negative group which was consistent with
that of the study conducted by Li et al. (44). This result showed that
young patients with rectal cancer weremore likely to have the risk of
lymph node metastasis, which might be related to the high
metabolism, dietetic irrationality, and lifestyle of young patients.
In addition, as most young people lack the awareness of regular
physical examination, the detection rate of rectal cancer in this
population is low, which leads to the majority of patients in
advanced stage and with a poor prognosis. However, our findings
were in conflict with the study by Yang et al. (23), which concluded
that no difference was observed in age between LN-positive and
-negative rectal patients. This might be due to the different inclusion
criteria of the study population between our studies. LN size
represents the maximum short-axis diameter of regional LN.
Several studies showed that LN size is an important clinical
marker for the identification of LN status (25, 26). A radiomics
nomogram incorporating rad-score 3, the age, and the LN size were
developed. The results indicated that radiomics nomogram had
good discrimination and calibration performance in both training
and validation cohorts. Finally, the DCA showed that the model was
clinically useful in the validation cohort.

A recent study showed that MRI radiomics based on multi-
regions (peritumoral and intratumoral areas) could improve efficacy
in the identification of LN metastasis in patients with rectal cancer
(26). However, peritumoral tissue was not included in our analysis.
That was due to the absence of uniform criteria for the peritumoral
boundary. Another research demonstrated that the deep learning
technology of faster region-based convolutional neural network
could achieve excellent performance in discrimination, calibration,
and clinical utility for preoperative identification of LN status (45).
The performance of deep learning features was not investigated in
our research, as this study focused on the feasibility of the radiomic
features from the VOIs of T2WI and ADC features for LN status
prediction. Therefore, to improve the performance of the prediction
model, further work is expected to develop the model by combining
radiomic and deep learning features based onmultiregionalMRI for
preoperative prediction of LN status in patients with rectal cancer.

There were several limitations to this study. First, a bias of
selection might exist because the study used a retrospective design.
Second, the patient sample size was small and all cases were derived
from a single institute. Multi-center studies with a larger sample set
are required to further validate our model. Third, the segmentation
of 3-D lesions was performedmanually, which was time-consuming
and complicated for the larger sample sizes. Thus, a fully automatic
Frontiers in Oncology | www.frontiersin.org 9362
analysis method for rectal lesions with favorable reliability and
reproducibility should be developed in further studies.

In conclusion, our study demonstrated that the radiomics
nomogram, incorporating rad-score based on features from the
T2WI and ADC images, and clinical factors, has potential for the
preoperative identification of LN status. Although the results were
satisfactory, the model should be validated by further studies with
larger sample sizes frommultiple centers to evaluate the performance.
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Objectives: To develop a radiomics model based on contrast-enhanced CT (CECT) to
predict the lymphovascular invasion (LVI) in esophageal squamous cell carcinoma (ESCC)
and provide decision-making support for clinicians.

Patients and Methods: This retrospective study enrolled 334 patients with surgically
resected and pathologically confirmed ESCC, including 96 patients with LVI and 238
patients without LVI. All enrolled patients were randomly divided into a training cohort and
a testing cohort at a ratio of 7:3, with the training cohort containing 234 patients (68
patients with LVI and 166 without LVI) and the testing cohort containing 100 patients (28
patients with LVI and 72 without LVI). All patients underwent preoperative CECT scans
within 2 weeks before operation. Quantitative radiomics features were extracted from
CECT images, and the least absolute shrinkage and selection operator (LASSO) method
was applied to select radiomics features. Logistic regression (Logistic), support vector
machine (SVM), and decision tree (Tree) methods were separately used to establish
radiomics models to predict the LVI status in ESCC, and the best model was selected to
calculate Radscore, which combined with two clinical CT predictors to build a combined
model. The clinical model was also developed by using logistic regression. The receiver
characteristic curve (ROC) and decision curve (DCA) analysis were used to evaluate the
model performance in predicting the LVI status in ESCC.

Results: In the radiomics model, Sphericity and gray-level non-uniformity (GLNU) were
the most significant radiomics features for predicting LVI. In the clinical model, the
maximum tumor thickness based on CECT (cThick) in patients with LVI was
significantly greater than that in patients without LVI (P<0.001). Patients with LVI had
higher clinical N stage based on CECT (cN stage) than patients without LVI (P<0.001). The
ROC analysis showed that both the radiomics model (AUC values were 0.847 and 0.826
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in the training and testing cohort, respectively) and the combined model (0.876 and 0.867,
respectively) performed better than the clinical model (0.775 and 0.798, respectively), with
the combined model exhibiting the best performance.

Conclusions: The combined model incorporating radiomics features and clinical CT
predictors may potentially predict the LVI status in ESCC and provide support for clinical
treatment decisions.
Keywords: lymphovascular invasion, radiomics, contrast-enhanced CT, nomogram, esophageal squamous
cell carcinoma
INTRODUCTION

Esophageal cancer (EC) is the seventh most common cancer and
the sixth most leading cause of cancer death worldwide, with an
estimated 572,000 new cases and 509,000 deaths in 2018 (1).
Esophageal squamous cell carcinoma (ESCC) is the primary
histologic subtype of esophageal cancer, especially in high-
incidence areas, such as China (2). Surgical resection of the
tumor is the primary approach to treat esophageal cancer (3).

In recent years, despite improvements in staging,
comprehensive treatment, and perioperative care, esophageal
cancer remains a devastating disease, with a 5-year overall
survival rate approximately ranging from 10–25% (4, 5). The
main reasons for treatment failure are esophageal cancer
recurrence and distant metastasis (5). Lymphovascular
invasion (LVI) is a histopathological feature, usually defined as
the presence of tumor cells within an endothelium-lined space,
which is often referred to as lymph-vessel and blood-vessel (6, 7).
The presence of LVI can only be identified if cancer cell clusters
are found in the vascular-like endothelial lining structures (8, 9).
LVI plays an important role in cancer cells spreading and lymph
node metastasis, and it is associated with an increased risk of
micrometastasis (10). Previous studies have reported that LVI is
an indicator of poor prognosis in patients with esophageal cancer
and is associated with early recurrence (6, 11).

In various situations for ESCC, LVI can serve as an indicator
of highly aggressive behavior (12). Patients with LVI have a high
risk of recurrence, so they must be treated with effective systemic
therapy and intensive care (13). Therefore, identifying
esophageal cancer with a high risk of recurrence, especially in
patients with early recurrence, is crucial for an individualized
treatment approach (3).

Currently, LVI can be diagnosed only by postoperative
histopathology, and preoperative prediction is extremely
difficult (14, 15). Compared with conventional CT, CECT can
better distinguish normal tissues from tumors, and perform
better in detecting tumors, showing tumor extent and staging
(16, 17). Yin et al. (18) explored the correlation of triple-phase
multi-slice CT scan with intratumor LVI of progressive gastric
cancer. Ma et al. (14) found that multiphase dynamic CT could
provide a non-invasive method for predicting LVI in gastric
cancer through quantitative enhancement measurements.
Conventional CT images are primarily used to extract
morphological information from tumor tissues, but recent
2366
researches have shown that quantitative CT texture features
can provide additional information (19, 20). Different from
conventional CT image features, radiomics features can
objectively reflect the heterogeneity of the tumor and allow
more invisible information to be obtained (21, 22). Increasing
studies have demonstrated the incremental value of texture
analysis and radiomics approaches in predicting tumor
grading, staging, response to treatment, and survival for
gastrointestinal carcinoma (23–26). Through an in-depth
analysis of image feature data, radiomics can quantitatively
reveal predictive and prognostic associations between images
and medical outcomes (27).

Recently, radiomics has been proven to be potential clinical
value in predicting intra-tumoral LVI. Nie et al. (28) developed a
radiomics nomogram incorporating Rad-score, clinical and PET/
CT parameters to predict LVI in lung adenocarcinoma, which
showed good predictive performance. Chen et al. (15) found that
radiomics features based on CECT could serve as potential
markers for predicting LVI and PFS in gastric cancer. The
model established by radiomics features combined with clinical
features has high diagnostic efficiency. Zhang et al. (29) revealed
that multimodal radionics models based on MRI and CECT
could be a useful tool for predicting LVI in rectal cancer.

Therefore, the aim of this retrospective study was to assess the
feasibility of radiomics based on CECT to predict LVI in ESCC.
PATIENTS AND METHODS

Patients
This retrospective study was performed following the Helsinki
Declaration and approved by the Ethics Committee of our
hospital to exempt patients from signing a written informed
consent form. This study analyzed 726 patients with esophageal
squamous cell carcinoma who underwent radical esophagectomy
and confirmed by pathology in our hospital from August 2016 to
October 2019. The inclusion criteria were as follows:
1) postoperative histopathology confirmed squamous cell
carcinoma and the LVI status of the tumor tissue was explicit; 2)
cases with completed clinicopathological data; 3) CECT performed
before surgery within two weeks, with thin-section CECT images
(1–2 mm) satisfying the diagnosis; 4) the region of interest could be
measured on CECT images (tumor lesions larger than 5 mm); 5) no
May 2021 | Volume 11 | Article 644165
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history of treatment for ESCC before operation. The exclusion
criteria were as follows: 1) no precise pathological data or LVI status
(n = 33); 2) other pathological types of esophageal cancer (n = 41);
3) no thin-section CECT images (n = 34); 4) any preoperative local
or systemic treatment (n = 152); 5) no perceptible lesion on CECT
images (n = 47); 6) poor image quality or noticeable artifacts
affecting the assessment(n = 27); 7) with dual-source mode or
gemstone spectral imaging mode (n = 58).

Finally, 334 patients were enrolled in the study. All enrolled
patients were randomly divided into a training cohort and a
testing cohort at a ratio of 7:3. Figure 1 depicts the patient
selection process.

Clinical and Pathological Data
All enrolled patients were treated with surgical resection within two
weeks after undergoing a CECT scan. Baseline clinicopathological
data includes age, gender, carcinoembryonic antigen (CEA),
squamous cell carcinoma antigen (SCCA), tumor differentiation,
tumor infiltration depth, pathological T stage (pT stage),
Frontiers in Oncology | www.frontiersin.org 3367
pathological N stage (pN stage), pathological AJCC stage (pAJCC
stage), perineural invasion (PNI), and LVI status of the tumor.

The demographic information was retrieved from the HIS
system. CEA and SCCA results were obtained by routine blood
tests within two weeks before surgery. All histopathological
parameters were obtained by analysis of all resected specimens
by two pathologists. The pathological TNM stage was reclassified
according to the American Joint Committee on Cancer (AJCC)/
International Union Against Cancer International (UICC) 8th
edition of the Cancer Staging Manual.

CT Image Acquisition
All enrolled patients were requested to sign an informed consent
form before undergoing a CECT examination. All patients
underwent breathing training and were required to fast for 4
to 6 h prior to the CECT scan. To clean and dilate the esophageal
and gastric lumen, patients were required to drink 500 to 1000 ml
of purified water 1 to 5 min prior to the examination. No
anticholinergic drugs were used in this study.
FIGURE 1 | Flow chart illustrating the patient selection and exclusion criteria.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. Radiomics to Predict LVI in ESCC
All CECT images were acquired on two commercial CT
scanners. Scanner 1: a second-generation dual-source CT
(SOMATOM Definit ion Flash, Siemens Healthcare,
Forchheim, Germany) in the standard single-tube CT mode.
The scanning parameters were as follows: tube voltage 120 kVp,
automatic mA, slice thickness 5.0 mm, increment 5.0 mm,
rotation time 0.5 s, pitch 1.2, reconstruction algorithm b20–
40f, and reconstruction section thickness 1–2 mm. Scanner 2: a
256-slice CT (Revolution CT, GE Healthcare, Milwaukee, USA)
in the standard single-energy CT mode. The scanning
parameters were as follows: tube voltage 120 kVp, automatic
mA, slice thickness 5.0 mm, increment 5.0 mm, rotation time
0.5 s, pitch 0.992:1, reconstruction algorithm standard, and
reconstruction section thickness 1.25 mm.

All patients were in the supine position, and the scan covered
the chest or chest plus abdomen. After intravenous injection of
contrast agent (3.0–4.0 ml/s, 1.5 ml/kg, Iohexol,300 mg I/ml) via
a syringe pump, an arterial phase scan was performed after a 30s
delay, followed by a 20 ml saline flush.

The thin-section CECT images were exported from the PACS
workstation in the DICOM format. The thin-section CECT
images of each patient were imported into the Radiant
software (V 4.6.9 https://www.radiantviewer.com/) for analysis
separately. The tumor tissue appeared on CECT images as a
thickened esophageal wall or a mass-like lesion with marked
enhancement. The focal thickening of the esophageal wall of at
least 5 mm or greater than the adjacent esophageal wall was
identified as an abnormal thickening or tumor tissue (30). The
thin-section CECT images were used for clinical TNM stage (31).

The maximum tumor thickness, as a potential predictive
feature, was obtained by measuring on the maximum axial
images. The measurement was performed using mediastinal
window images (width, 400 HU; level, 40 HU), which can be
adjusted appropriately for optimal display of the tumor tissue.
The measuring and restaging procedure was performed by two
radiologists with 10 years of experience in the diagnosis of
esophageal cancer. When opinions differed in the measuring
and restaging procedure, divergences were resolved by
mutual consultation.

Image Processing and
Tumor Segmentation
The thin-section CECT images of each patient were uploaded to
the open-source software 3D Slicer (version 4.10.2, https://
www.slicer.org/). In order to eliminate the influence of
different scanners, layer thicknesses and algorithms on the
radiomic features, the following steps were carried out.

First, linear interpolation was adopted to 1 mm × 1 mm ×
1 mm. Second, the images were discretized in grayscale with
bandwidth set to 25, and the image filtering was processed
applying Laplace of Gaussian (LoG, s:3, 5, 7) and Wavelet
(wavelet conversion, LLL, LLH, LHL, LHL, LHH, HLH, HHL,
HHH) filter. The region of interest (ROI) was obtained by
manually sketching layer by layer along the tumor edge to
achieve segmentation. Considering the importance of tumor
heterogeneity, the three-dimensional (3D) ROI encompassed
Frontiers in Oncology | www.frontiersin.org 4368
the entire lesion, including internal areas of necrosis, but
avoided including fatty tissues surrounding the lesion, lymph
nodes, cardiac and lung tissues, blood vessels, bone tissues,
intraluminal gas and fluid. After the sketching was finished,
the ROI was modified with reference to the MPR images.

Radiologist 1 performed tumor segmentation on all 334 patients
and radiologist 2 randomly selected 30 patients from the entire
cohort for independent segmentation to assess inter-class
agreement. Two weeks later, radiologist 1 repeated the
independent segmentation of the previous 30 patients and
evaluated the intra-class agreement with his own previous
segmentation. Intra-and inter-class correlation coefficients (ICCs)
was used to assess the intra-observer (radiologist 1 vs. radiologist 1)
and inter-observer (radiologist 1 vs. radiologist 2) reproducibility of
feature extraction.

Radiomics Feature Extraction
and Model Development
The radiomics feature extraction was performed using
PyRadiomics software (32). A total of 1130 radiomics features
were extracted including 18 classes of histogram features, 14
classes of shape factor feature, 24 classes of grayscale
co-occurrence matrices (GLCM), 16 classes of grayscale
travel matrices (GLRLM), 16 classes of grayscale region matrices
(GLSZM), 14 classes of grayscale dependency matrices (GLDM),
and five classes of adjacency domain matrices (NGTDM).

We performed three sequential steps for feature selection.
First, we evaluated the inter-observer and intra-observer
agreement of radiomic features and selected features with
ICC values greater than 0.75 (15, 33–35). Second, Wilcoxon
rank sum test (36, 37) was used to select features with
P value less than 0.05. Third, the least absolute shrinkage
and selection operator (LASSO) method was utilized to
select the most useful predictive features in the training
cohort. The lasso procedure is presented in Figure S1 in the
Supplementary Material.

Radiomics prediction models were developed based on three
machine learning methods, namely logistic regression (Logistic),
support vector machine (SVM) and decision tree (Tree),
respectively. The best performing model was retained for
adoption and radiomics score (Radscore) was then computed.

Clinical Model Development
The clinical features analysis included gender, age, tumor
location, CEA, SCCA, maximum tumor thickness based on
CECT (cThick), clinical T stage base on CECT (cT stage),
clinical N stage based on CECT (cN stage), and clinical AJCC
stage based on CECT (cAJCC stage). The cT stage was performed
according to the classification of CT staging standard suggested
by Botet et al. (38) and Griffin Y et al. (30). The judgment of
metastatic lymph nodes was based on the shortest diameter of
enlarged lymph nodes in different regions (39), combined with
lymph node axial ratio (40). The cN stage and cAJCC stage were
restaged by the American Joint Committee on Cancer (AJCC)/
Union Against Cancer International (UICC) eighth edition
cancer staging manual.
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First, univariate analysis of clinical features was performed to
identify potential predictors associated with LVI. Second,
multivariate analysis was performed with logistic regression, using
statistically significant factors (P < 0.05) identified by univariate
analysis, to screen out the independent predictive factors of LVI.

Combined Model Development
The independent predictive radiomics features generated from
best performance machine learning model and the independent
predictive clinical features were combined to develop a combined
prediction model by logistic regression. Furthermore, a
nomogram was also created in the training cohort and
validated in the testing cohort. Figure 2 illustrates the
flowchart of the proposed analysis pipeline described above.

Statistical Analysis
All statistical analysis was performed on R software (Version:
3.6.3, https://www.rproject.org/) in this study. The continuous
variables were expressed as M±SD, and the categorical variables
were reported as counts. For the analysis of clinical and
pathological data, the Pearson’s Chi-squared test was used for
categorical variables, and the Mann-Whitney U test was used for
continuous variables with non-normal distribution. Trend test
was used for ordinal variables. The reported statistical
significance level was all two-sided, and the statistical
significance level was set to 0.05.
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The receiving operation characteristics (ROC) curves of each
model were analyzed, and the area under the curve (AUC),
accuracy, sensitivity, specificity, positive predictive value (PPV),
and the negative predictive value (NPV) were calculated. The
non-parametric Delong method was adopted to compare the
statistical difference between AUC values. Calibration curves
were plotted to determine the goodness-of-fit of the three
models. The Hosmer-Lemeshow test was performed to test the
reliability of calibration curves (41). Decision curve analysis
(DCA) was used to calculate the clinical impact of the
three models by quantifying the net benefit at different
threshold probabilities.
RESULTS

Patient Characteristics
Clinical and pathological data analysis of the 334 enrolled
patients is summarized in Table 1. There were 96 patients
(28.74%) with LVI and 238 patients (71.26%) without LVI.
Patients with LVI had higher tumor differentiation, pT stage,
pN stage, pAJCC stage, SCCA level, cN stage, cAJCC stage, and
cThick than patients without LVI (P < 0.05). The differences in
gender, age, tumor location, CEA level and cT stage between the
two groups were not statistically significant (P > 0.05).
FIGURE 2 | Radiomics prediction pipeline for LVI.
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Radiomics Model Construction
and Validation
To eliminate redundant features, highly correlated features with
ICC values less than 0.75 would be excluded, with 233 features
eliminated and 897 features retained. After screening out the
Frontiers in Oncology | www.frontiersin.org 6370
redundant features by Wilcoxon analysis and LASSO, two most
robust radiomics features (Sphericity and GLNU) were retained.

Logistic regression, SVM and Tree methods were separately
used to establish the radiomics model. The model established by
Logistic method yield the best performance, and the AUC values in
TABLE 1 | Clinical and pathological characteristics of the patients.

Variables LVI－ (n=238) LVI+ (n=96) Total (n=334) P

Gender 0.6521

female 83 (34.87) 31 (32.29) 114 (34.13) 　

male 155 (65.13) 65 (67.71) 220 (65.87) 　

Age 63.18±7.10 62.64±7.55 63.02 ±7.23 0.4572

pT stage 0.0383

T1 19 (7.98) 6 (6.25) 25 (7.48) 　

T2 56 (23.53) 11 (11.46) 67 (20.06) 　

T3 161 (67.65) 78 (81.25) 239 (71.56) 　

T4 2 (0.84) 1 (1.04) 3 (0.90) 　

pN stage <0.0013

N0 142 (59.66) 20 (20.83) 162 (48.50) 　

N1 64 (26.89) 36 (37.50) 100 (29.94) 　

N2 25 (10.51) 24 (25.00) 49 (14.67) 　

N3 7 (2.94) 16 (16.67) 23 (6.89) 　

pAJCC stage 　 　 　 <0.0013

I 10 (4.21) 2 (2.08) 12 (3.59) 　

II 136 (57.14) 20 (20.83) 156 (46.71) 　

III 84 (35.29) 56 (58.34) 140 (41.92) 　

IV 8 (3.36) 18 (18.75) 26 (7.78) 　

Tumor differentiation 0.0093

well 2 (0.84) 0 2 (0.60) 　

moderate 174 (73.11) 55 (57.29) 229 (68.56) 　

poor 62 (26.05) 41 (42.71) 103 (30.84) 　

Tumor location 0.0711

up 20 (8.40) 2 (2.08) 22 (6.59) 　

medium 166 (69.75) 67 (69.79) 233 (69.76) 　

low 52 (21.85) 27 (28.13) 79 (23.65) 　

PNI 0.0271

positive 171 (71.85) 57 (59.37) 228 (68.26) 　

negative 67 (28.15) 39 (40.63) 106 (31.74) 　

CEA (ng/ml) 2.95±1.41 2.99 ±1.24 2.96±1.36 0.9592

SCCA (ng/ml) 1.25±0.74 1.60 (1.62) 1.35±1.08 0.0072

cT stage 0.1943

T1 0 2(2.08) 2(0.60) 　

T2 50(21.01) 10(10.42) 60(17.96) 　

T3 188(78.99) 84(87.50) 272(81.44) 　

T4 0 0 0 　

cN stage <0.0013

N0 130 (54.62) 27 (28.13) 157 (47.01) 　

N1 90 (37.82) 33 (34.37) 123 (36.83) 　

N2 15 (6.30) 30 (31.25) 45 (13.47) 　

N3 3 (1.26) 6 (6.25) 9 (2.69) 　

cAJCC stage <0.0013

I 0 0 0 　

II 140(58.82) 32(33.33) 172(51.50) 　

III 95(39.92) 62(64.59) 157(47.00) 　

IV 3(1.26) 2(2.08) 5(1.50) 　

cThick (cm) 1.37 ±0.43 1.63 ±0.52 1.44±0.47 <0.0012

Sphericity 0.68±0.08 0.57±0.09 0.65±0.10 <0.0012

GLNU 58.81±42.91 99.54±95.20 70.52±65.10 <0.0012

Radscore 0.20±0.19 0.52±0.27 0.29±0.26 <0.0012

Maximum3DDiameter(cm) 4.21±1.54 5.78±1.97 4.66±18.19 <0.0012

Mesh Volume (cm3) 10.19±7.84 17.55±17.41 12.30±11.90 <0.0012
M
ay 2021 | Volume 11 | Article
Unless otherwise indicated, data in parentheses are percentages. 1Pearson’s Chi-squared test; 2Mann-Whitney U test; 3Trend test for ordinal variables. LVI, lymphovascular invasion; pT
stage, pathological T stage; pN stage, pathological N stage; pAJCC, pathological AJCC; cT stage, clinical T stage based on CECT; cN stage, clinical N stage based on CECT; cAJCC,
clinical AJCC stage based on CECT; PNI, perineural invasion; CEA, Carcinoembryonic antigen; SCCA, Squamous Cell Carcinoma Antigen; cThick, maximum tumor thickness based on
CECT; GLNU, Gray-Level Non-Uniformity.
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the training and testing cohort were 0.847 and 0.826, respectively
(Table 3 and Figure 3). The Radscore for each patient was then
calculated by a linear combination of the selected features weighted
by their respective coefficients in the predictive model, which can
be expressed as follows: Radscore = −1.2811–1.4584*Sphericity
+0.4868* GLNU. Radscore for each patient in the training cohort
and testing cohort is shown in Figure 4.

Clinical Model Construction and Validation
Univariate analysis of clinical features revealed that cThick, cN
stage, and SCCA level were significant association with LVI
(Table 2). Multivariate analysis of significant variables revealed
that cThick and cN stage were independent predictors of LVI
Frontiers in Oncology | www.frontiersin.org 7371
(Table 2). The clinical prediction model, including the two
clinical CT features, was established by logistic regression, with
AUC values were 0.775 and 0.798 in the training and testing
cohort, respectively (Table 3 and Figure 3). Delong test shows
that the AUC values of the clinical model were significantly lower
than the AUC values of the radiomics model established by
Logistic method in the training and testing cohort (P = 0.013,
0.030, Table S1).

Combined Model Construction
and Validation
Logistic regression was performed to establish a combined model
incorporating the two radiomics independent predictors
A B

FIGURE 3 | ROC curves of the radiomics, clinical and combined models for predicting LVI in the training cohort (A) and testing cohort (B).
A B

FIGURE 4 | Bar charts of Radscore for each patient in the training cohort (A) and testing cohort (B). The X-axis represents each patient, each bar represents one
patient. Pink bars indicate the Radscore for patients without LVI, while light blue bars indicate the Radscore for patients with LVI. Pink bars above zero-line or light
blue bars below the zero-line mean misclassification.
May 2021 | Volume 11 | Article 644165
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(Sphericity and GLNU) and two clinical independent predictors
(cThick, cN stage), yielding AUC values of 0.876 and 0.867 in the
training and testing cohort, respectively (Table 3 and Figure 3).
Based on this model in training cohort, a nomogram incorporated
the four predictive factors was constructed to predict the
individual probability of LVI (Figure 5). The Delong test
revealed that the combined model and radiomics model were
superior to the clinical model. In the training and testing cohort,
calibration curves graphically showed good agreement between
prediction and actual observation for the three models (Figure 6).
The Hosmer-Lemeshow test yielded a nonsignificant statistic both
in the training and testing cohort, which implied that there was no
departure from perfect fit (training cohort: Radiomics 0.244,
Clinical 0.535, Comb 0.356; testing cohort: Radiomics 0.285,
Clinical 0.055, Comb 0.097).

The decision curve analysis (DCA) showed that the combined
model yielded a higher net benefit of LVI than the clinical model
Frontiers in Oncology | www.frontiersin.org 8372
and the radiomics model within a probability range from 0 to
0.720 in the training cohort and range from 0 to 0.728 in the
testing cohort (Figure 7). The decision curve analysis indicated
that the combined model had better performance with higher
overall benefits.
DISCUSSION

As a routine examination, CECT is a useful tool for differential
diagnosis, preoperative evaluation, treatment, and prognosis of
patients with esophageal cancer (30, 31, 42–45). The significance
of the present study is that it proposes a novel method for
predicting LVI in ESCC for the first time. It can be concluded
that Radscore, a quantitative parameter based on CECT
radiomics feature, could serve as an independent predictor of
LVI in ESCC, and that the radiomics model combined with
clinical features based on CECT can improve the predictive
ability. This novel approach is expected to provide risk
stratification and support decision-making in clinical treatment
for patients with ESCC.

Currently, the AJCC/UICC guidelines have not incorporated
LVI as an independent prognostic indicator for esophageal
cancer in the TNM staging system. Pathological studies have
now incorporated LVI into the TNM staging system for multiple
cancers (46, 47). Many studies have revealed that LVI is an
independent risk factor for survival in patients with ESCC (44,
48). Preoperative prediction of LVI status is necessary for
patients to implement an aggressive treatment plan (49).
Patients with suspected tumor microvascular invasion require
more advanced treatment, such as more extensive surgery or
preoperative adjuvant therapy (50).

In the clinical model we established, the univariable analysis
identified that cThick, cN stage, and SCCA level were associated
with LVI. According to multivariate analysis, cThick and cN
stage were independent predictors of LVI. The maximum tumor
thickness reflects the tumor infiltration depth, which correlates
with the development of LVI (51). The incidence of LVI
increases with the tumor infiltration depth (8, 52). On CECT
images, identification tumor region usually depended on the
TABLE 3 | Diagnostic performance of individualized prediction models.

AUC (95% CI) ACC SEN SPE PPV NPV Cutoff

Training cohort (n=234)
Radiomics Logistic 0.847(0.796-0.898) 0.791 0.809 0.783 0.604 0.909 0.287

Tree 0.798(0.737-0.858) 0.786 0.765 0.795 0.605 0.892 0.210
SVM 0.847(0.796-0.898) 0.791 0.809 0.783 0.604 0.909 0.282

Clinical 0.775(0.709-0.841) 0.752 0.691 0.777 0.560 0.860 0.309
Comb 0.876(0.828-0.924) 0.816 0.779 0.831 0.654 0.902 0.275

Testing cohort (n=100)
Radiomics Logistic 0.826(0.733-0.919) 0.760 0.679 0.792 0.559 0.864 0.284

Tree 0.696(0.591-0.801) 0.730 0.643 0.764 0.514 0.846 0.200
SVM 0.826(0.733-0.919) 0.760 0.679 0.792 0.559 0.864 0.281

Clinical 0.798(0.707-0.890) 0.650 0.607 0.667 0.415 0.814 0.300
Comb 0.867(0.792-0.941) 0.810 0.714 0.847 0.645 0.884 0.277
Ma
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e 11 | Article 6
Logistic, logistic regression; Tree, decision tree; SVM, support vector machine; AUC, area under the curve; CI, confidence interval; ACC, Accuracy; SEN, Sensitivity; SPE, specificity; PPV,
positive predictive value; NPV, negative predictive value. Radiomics, radiomics model; Clinical, clinical model; Comb, combined model.
TABLE 2 | Univariate and Multivariate analysis to identify significant factors for LVI.

Univariate Multivariate

OR (95% CI) P OR (95% Cl) P

Gender 0.747* – –

female Reference – –

male 1.12(0.68-1.87) 0.658 – –

Age 0.99(0.96-1.02) 0.548 – –

Location 0.071* – –

up Reference – –

middle 3.77(1.05-26.10) 0.040 – –

low 4.83(1.26-34.60) 0.019 – –

CEA 1.02(0.86-1.21) 0.811 – –

SCCA 1.39(1.05-1.81) 0.043 – –

cT stage NA NA – –

cN stage <0.001* <0.001*
N0 Reference Reference
N1 1.76(0.99-3.16) 0.054 2.58(1.27-5.37) <0.001
N2 9.43(4.54-20.50) <0.001 10.49(4.39-26.55) <0.001
N3 9.22(2.21-48.70) 0.002 12.44(1.71-114.79) 0.014

cAJCC NA NA – –

cThick 3.30 (1.92-5.68) <0.001 4.00(1.92-8.81) <0.001
*Overall P value; OR, odds ratio; CI, confidence interval; cT stage, clinical T stage based on
CECT; cN stage, clinical N stage based on CECT; cAJCC, clinical AJCC stage based on
CECT; NA, not available. cThick, maximum tumor thickness based on CECT.
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extent of invasion by the thickness of esophageal wall, and it was
generally considered that thickness > 5 mm was abnormal. The
CECT has exhibited significant advantages in measuring tumor
thickness (43), which allows for initial preoperative T staging.
The multivariate analysis showed that cThick was an
independent predictor of LVI. This indicated that the cThick
could reflect the degree of tumor invasion more robustly and
thus better predict the status of LVI than the cT stage. In the
Frontiers in Oncology | www.frontiersin.org 9373
clinical model, cN stage was another independent predictor of
LVI. In general, CT has low sensitivity in detecting metastases
according to conventional criteria (53). New diagnostic criterion
for MDCT improves the sensitivity of detection of
lymphatic metastasis (40), so that the utilization of CECT for
cN stage is more consistent with the clinical practice. The
clinicopathological data revealed that patients with LVI had
higher pN stage than patients without LVI, which was
FIGURE 5 | Nomogram for predicting LVI in ESCC. The nomogram was built in the training cohort with the independent predictors from radiomics model and
clinical model.
A B

FIGURE 6 | Calibration curves of the 3 models in the training cohort (A) and testing cohort (B). The 45° gray line indicates perfect prediction and the colored lines
the predictive performance of the different models. The closer the line fit to the ideal line, the better the predictive accuracy of the model.
May 2021 | Volume 11 | Article 644165
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consistent with the cN stage results. Clinically, LVI may be an
upgrade factor for all N stages (54), particularly in patients with
negative lymph node metastases, for it is the only factor that
affects the prognosis (55). In our study, the radiomics model
achieved AUCs of 0.847 and 0.826 in the training and testing
cohort, which were better than the AUCs of the clinical model
(0.775 and 0.798, respectively).

In a prior study, Chen et al. (15) used arterial-venous phase
CECT images to build radiomics models to predict the LVI status
in gastric cancer. The results showed that the combined model
based on arterial-venous phase radiomics combining with
clinical risk factors had the best performance with AUC values
of 0.856 and 0.792 in the training and test groups. The
performance of this combined model was similar to ours. But
the difference lied in that our radiomics model was based on the
single arterial phase CECT images and did not include
postoperative pathological factors. However, for esophageal
cancer, plain and venous phase CECT scans were not the
routine sequences, while a single arterial phase is more in line
with clinical practice. Zhang et al. (29) established multimodal
imaging radiomics model using MRI (T2WI, DWI) and venous
phase CECT images to predict LVI status in rectal cancer,
yielding the best performance compared with every single
model. This implies that incorporating MRI or PET/CT images
into our model to develop a multimodal radiomics model may
improve the predictive performance. Nie et al. (28) found that
the prediction model developed using CT morphology, 2D-RS
and SUV values (AUCs,0.851 and 0.838, in training and testing
cohort) performed better than the model without SUV values
(0.796,0.822), reflecting the incremental value of metabolic
parameters in the prediction of LVI in LAC patients. The
difference from our study was that the authors adopted 2D-
ROI (CT) for radiomics feature extraction and model building.
As for esophageal cancer, the tumor tissue has a variable length.
Frontiers in Oncology | www.frontiersin.org 10374
The selection of largest cross-sectional area is elusive and is hard
to achieve agreements among different performers. Theoretically,
3D-ROI(CT) which we adopted can better reflect the
heterogeneity of the whole tumor than 2D-ROI. However, our
study did not compare the performance of the two prediction
models built on 2D-ROI and 3D-ROI.

However, incorporating radiomics into predictive studies
requires a multi-step process that includes reliable statistical
analyses such as feature selection and classification to reduce
over-fitting and to build robust predictive or prognostic models
(56). Although several machine learning methods (alone or in
combination) have been used in radiomics analysis for feature
selection and classification, there is no “one-size-fits-all”
approach since the performance of the workflow of various
machine learning methods is application and/or data type
dependent (57). Isaac et al. (57) provided a cross-sectional
combination of 6 feature choices and 12 classifiers for
multimodal imaging radiomics-based prediction of EGFR and
KRAS mutation status in NSCLC patients, and the results
showed that different combinations of features, classifiers and
image settings had different diagnostic performance (AUCs
ranged from 0.5 to 0.82). Similarly, Rastegar et al. (58)
compared 4 feature selection methods and 4 classification
methods, founding that different combinations of screening
methods with different classifiers had different and variable
performance in predicting bone mineral loss at different sites.
In another previous study, Ghasem et al. (59) compared seven
different feature selection methods and 12 classifiers, in which
heatmaps were adopted to show their cross-combinations.
However, our study did not analyze so many different feature
extraction methods and classification methods, as well as their
combinations. In the model building process, we selected only
three machine learning algorithms, namely Logistic, SVM and
Tree, to select the best radiomics model. Our results showed that
A B

FIGURE 7 | Decision curve analysis of the 3 models in the training cohort (A) and testing cohort (B). The decision curve analysis (DCA) showed that the combined
model yielded higher net benefit than the clinical model and the radiomics model, when the score is within a probability range from 0 to 0.720 in the training cohort
and range from 0 to 0.728 in the testing cohort.
May 2021 | Volume 11 | Article 644165
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the radiomics model built by Logistic method was the best, and
the difference between Logistic method and SVM method was
not statistically significant, but the difference between Logistic
method and Tree method was statistically significant (Table S1
in Supplementary Material). Furthermore, whether filter
models or classifiers have a greater impact on model
performance has been inconsistently reported in various
studies. Parmar et al. (60) evaluated the performance and
stability of 13 feature selection methods and 11 machine
learning classification methods in predicting overall survival of
patients with head and neck cancer. They concluded that the
classification method had the greatest impact on performance
and should be chosen with careful consideration. Stefan Leger
et al. (61) assessed the performance of 11 machine learning
algorithms combined with 12 feature selection methods by the
concordance index (C-Index), to predict loco-regional tumor
control (LRC) and overall survival for patients with head and
neck squamous cell carcinoma. They reported that the
performance differences between the learning algorithms were
smaller than the differences between the feature selection
methods. In summary, determining the appropriate feature
selection method and learning algorithm is a key step in
building an accurate radiomics model, which needs to be
compared and selected according to the specific type of study.

In our radiomics model, among 1130 radiomics features,
Sphericity and GLNU were the most significant components
for predicting histological LVI status. The detailed descriptions
and equations of all relevant radiomics features are presented in
Table S2 in the Supplementary Material. Sphericity is a
radiomics shape feature that describes how close a given
volume is to a perfect sphere (62). The value range is 0 <
Sphericity ≤ 1, where a value of 1 indicates a perfect sphere
(63). As a dimensionless measure, Sphericity is independent of
scale and orientation. Compared with other radiomics features,
Sphericity is characterized by high reproducibility (64). The
Sphericity is independent of the segmentation method but
related to the corresponding tumor volume, while larger
volumes exhibit lower Sphericity (65). The Sphericity should
be prioritized as these have minimal variations with volume
changes, slice thickness and resampling (63). Perhaps due to our
adoption of two types of CT scanners with different thickness
and reconstruction algorithms, Sphericity was retained as a
robust radiomics feature. Clinically, Sphericity can predict
tumor grade, local failure, and OS in patients with
meningioma, and low Sphericity is a predictor of poor
preoperative imaging outcome (66). As for breast cancer,
Sphericity can predict the expression of Ki-67, which correlates
with the malignancy of the tumor (67). Sphericity also can serve
as an noninvasive imaging biomarker to identify cancer subtype
(68–70) and predict the pathological response (71). Our study
showed that tumors with LVI had lower Sphericity values than
tumors without LVI, indicating that tumors with low Sphericity
were more likely to develop LVI. This also explored the high
invasiveness of tumors with LVI from another aspect.

In our study, GLNU was another independent predictor for
LVI. Gray-level non-uniformity (GLNU) is a measure of the
Frontiers in Oncology | www.frontiersin.org 11375
similarity of gray-level values throughout the image (72). Many
radiomics features are unstable in different reconstruction
algorithms, while GLNU is one of the most repetitive radiomics
features showing good stability (73). The GLNU is less sensitive to
reconstructed convolutional kernels and thus has higher stability
under different image reconstruction algorithms (74). However,
GLNU is sensitive to both voxel size and number of gray levels,
therefore, it requires normalization by voxel size and number of
gray levels (75). The GLNU increases with the tumor heterogeneity,
which is related to tumor invasion, treatment response and
prognosis (76). As an independent risk factor for poor prognosis,
high GLNU is associated with worse survival in patients with
pancreatic cancer who have undergone surgery (72). Our study
showed that tumors with LVI had higher GLNU values than those
without LVI, while the presence of LVI implies an increase in
tumor heterogeneity. The GLNU can be used precisely as a
predictor of LVI, reflecting the heterogeneity and aggressiveness.
This finding was consistent with the results of previous studies of
renal cell carcinoma, which indicated that higher GLNU values had
greater heterogeneity and invasiveness (76).

In addition, two additional radiomics features were specifically
extracted, namely the maximum 3D diameter and the Mesh
Volume (Table 1), even though the two radiomics features were
not independent predictors. The result showed that patients with
LVI-positive had greater maximum 3D diameter andMesh Volume
than patients without LVI (p < 0.001), which was consistent with
previous studies on the prediction of LVI in gastric and
hepatocellular carcinoma (15, 25). Since there was no reliable
individual factor to predict LVI, a predictive model combining
radiomics and clinical features would be viable. By incorporating
cThick and cN stage into the radiomics model, the AUCs of the
combined model in the training and testing cohort were improved
to 0.876 and 0.867, respectively.

However, our study had several limitations. Firstly, this was a
single-center retrospective study, and the enrolled patients
included only those who had undergone surgery, which may
introduce a selection bias. Secondly, the sample size was
relatively small, and the resulting sample error causes the
performance of the prediction model in the testing cohort to
be slightly lower than that in the training cohort. Thirdly, as this
study was a retrospective study without plain and venous phase
scanning, more meaningful qualitative and quantitative
parameters were not included. Fourthly, we did not evaluate
the robustness of the radiomics features between the two CT
scanners. Finally, this study did not evaluate the value of
radiomics based on CECT in predicting the prognosis of ESCC
patients with LVI, which may be the next step in our research.
CONCLUSION

The radiomics features based on CECT can serve as potential
indicators to predict LVI in ESCC. The combined model
incorporating both radiomics and clinical features yielded
better predictive performance for LVI in ESCC. Considering
that it is a single-center study based on arterial phase CECT
May 2021 | Volume 11 | Article 644165
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images, future validation studies with multiple phases and
multiple centers are needed to verify its clinical feasibility.
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Objectives: This study assessed the preoperative prediction of TP53 status based on
multiparametric magnetic resonance imaging (mpMRI) radiomics extracted from two-
dimensional (2D) and 3D images.

Methods: 57 patients with pancreatic cancer who underwent preoperative MRI were
included. The diagnosis and TP53 gene test were based on resections. Of the 57 patients
included 37 mutated TP53 genes and the remaining 20 had wild-type TP53 genes. Two
radiologists performed manual tumour segmentation on seven different MRI image
acquisition sequences per patient, including multi-phase [pre-contrast, late arterial
phase (ap), portal venous phase, and delayed phase] dynamic contrast enhanced
(DCE) T1-weighted imaging, T2-weighted imaging (T2WI), Diffusion-weighted imaging
(DWI), and apparent diffusion coefficient (ADC). PyRadiomics-package was used to
generate 558 two-dimensional (2D) and 994 three-dimensional (3D) image features.
Models were constructed by support vector machine (SVM) for differentiating TP53
status and DX score method were used for feature selection. The evaluation of the
model performance included area under the curve (AUC), accuracy, calibration curves,
and decision curve analysis.

Results: The 3D ADC-ap-DWI-T2WI model with 11 selected features yielded the best
performance for differentiating TP53 status, with accuracy = 0.91 and AUC = 0.96. The
model showed the good calibration. The decision curve analysis indicated that the
radiomics model had clinical utility.

Conclusions: A non-invasive and quantitative mpMRI-based radiomics model can
accurately predict TP53 mutation status in pancreatic cancer patients and contribute to
the precision treatment.

Keywords: pancreatic ductal adenocarcinoma, TP53, radiomics, support vector machine, multiparametric MRI
May 2021 | Volume 11 | Article 6321301379

https://www.frontiersin.org/articles/10.3389/fonc.2021.632130/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.632130/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.632130/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.632130/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.632130/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:xiaohua.qian@sjtu.edu.cn
mailto:lxz11357@rjh.com.cn
https://doi.org/10.3389/fonc.2021.632130
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.632130
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.632130&domain=pdf&date_stamp=2021-05-17


Gao et al. Radiomics for Differentiating TP53 Status
INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is characterized
by late diagnosis, high mortality rate, and low overall survival
(1). The poor prognosis and inefficiency of current treatments
are primarily caused by chemoresistance for PDAC. The
absence of key genetic alterations is the main driver of
chemoresistance, which can disorder the apoptotic (2). As one
of the major genetic mutations,TP53 mutations were seen in
70% of pancreatic cancer (3). TP53 encodes the p53 protein,
as a tumour suppressor gene, which restricts cell proliferation
in many cellular processes, involved in DNA repair, cell-
cycle arrest, and apoptosis (4). These mutations are linked to
poor patient prognosis (5), although literature regarding its
influence is controversial. In addition, resistance to some
therapeutic modalities, such as gemcitabine and 5-fluorouracil-
based therapies (6, 7). However, novel regimens that
target pancreatic cancer cells are emerging. TP53 may be an
attractive target for gene augmentation therapy in pancreatic
cancer (8).

Unlike surgery resection or biopsy, radiomics as a non-
invasive tool was used to detect TP53 mutations (9), which can
assess tumour heterogeneity by evaluating the grey-level
intensity of pixels and their position in a medical image (10).
Currently, CT-based radiomics have been widely used for
predicting gene expression and survival prediction (11, 12) in
PDAC patients. Some studies use MRI texture recognizing the
status of TP53 in many cancers (13, 14). Standard methods of
texture analysis methods are 2D or 3D approaches. 3D imaging
features may capture tissue properties of the entire tissue more
accurately, which improves the predictive power of imaging
biomarkers in pancreatic cancer. However, 3D whole-tumour
analysis is complicated and time-consuming. Although 2D or 3D
texture analysis (TA) has been previously used to extract CT/
MRI image features to predict gene status (15), to our best
knowledge, neither 2D or 3D TA of mpMRI has been aimed at
predicting TP53 status before.

In this study, support vector machine (SVM) radiomics
models were constructed using 2D and 3D texture features
extracted from mpMRI for the assessment of pre-operative
TP53 mutation in PDAC patients.
MATERIALS AND METHODS

Study Population and Tissue Samples
Following local Institutional Review Board approval, this
retrospective study was approved with a waiver to obtain written
informed consent. Patients with pancreatic ductal adenocarcinoma
(PDAC) treated with surgery-based strategy at Ruijin Hospital
from January 2016 to December 2016 were included in this study.
The inclusion criteria were as follows: 1) pathologic confirmation
of PDAC; 2) available the next-generation sequencing(NGS)-
based TP53 sequence analysis; 3) MR images contained all of
the following sequences: multi-phase [pre-contrast, late arterial
phase (ap), portal venous phase (pp), and delayed phase (dp)]
Frontiers in Oncology | www.frontiersin.org 2380
dynamic contrast enhanced (DCE) T1-weighted imaging (T1WI,
T1), T2-weighted imaging (T2WI, T2), DWI and ADC.

Tissue samples from surgical resections of all 57 PDAC
patients were analyzed. Genomic DNA was extracted from
formalin-fixed paraffin-embedded (FFPE) tissue, and TP53
mutations were examined using NGS approach.

Image Acquisition
MR images were acquired on 1.5 T MRI scanners (N=9) or 3.0
T MRI scanners (N=48). The MRI examination included different
acquisition sequences, including axial turbo spin-echo T2 sequence
with fat saturation, DWI using a single-shot echo-planar imaging
pulse sequence with b-values (0, 600 or 800 s/mm2), pre- and
post-contrast fat-suppressed T1-weighted gradient sequences with
intravenous administration of gadopentetate dimeglumine-
diethylenetriaminepentaacetic acid (Gd-DTPA) contrast.
The apparent diffusion coefficient was calculated by using a
monoexponential function with b-values of 0 s/mm2 and 600 or
800 s/mm2. Gd-DPTA dose of 0.1 mmol per kg and a flow rate of
2 mL per sec were achieved. Late arterial phase, portal vein phase
and delayed phase were acquired approximately 35-, 60-, and
90- seconds after contrast injection. Scan parameters for the
MRI sequences are summarized in the Supplementary Table 1.

Segmentation of Region of Interest (ROI)
ROIs of the tumour were manually segmented by a junior
radiologist in ITK‐SNAP software [Version 3.6 (16)] and were
validated by an experienced senior radiologist. ROIs were
manually drawn along the margin of the tumor covering the
largest possible region. ROIs were delineated on multi-phase
(pre-contrast, ap, pp, dp) dynamic contrast enhanced T1WI,
T2WI, DWI and ADC images.

MRI Image Feature Extraction
A total number of 558 2D image features from the largest cross-
sectional area of a tumor and 994 3D image features were
extracted from the entire tumor area for each image. In order
to improve multiparametric MRI radiomic feature robustness,
the image intensity of each sequence was normalized to the range
of 0–1. MRI voxel was resampled to 1 mm× 1 mm× 1 mm to
reduce the variability of different scanners. The features included
first-order features, shape features, gray level co-occurrence
matrix (GLCM) features, gray level dependence matrix
(GLDM) features, gray level run length matrix (GLRLM)
features, gray level size zone matrix (GLSZM) features and
neighbouring gray-tone difference matrix (NGTDM) features
of original images, wavelet transformed images and gradient
images. The specific number of features are listed in
Supplementary Table 2. The feature extraction procedure was
implemented in the Pyradiomics package (python 3.6) (17).

Feature Selection and SVM Model
Construction
In total, 378 radiomics models (i.e. 126×3 = 378) were formed
based on 2D,3D, and 2D/3D combination from the seven
different mpMRI datasets. For each model, feature selection
and TP53 gene prediction were performed separately.
May 2021 | Volume 11 | Article 632130
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For 2D features, the number of models can be calculated by :

number = C1
7 + C2

7 + C3
7 + C4

7 + C5
7 + C6

7 + C7
7 = 126

Where

Cm
n =

n !
m ! n −mð Þ !

Among the extracted features, some were highly correlated and
some had poor ability to assess TP53 gene mutation. Besides, it’s
unknown which model features play the main role. Therefore, in
order to remove the most redundant and irrelevant features and
choose the most important and typical features, we performed
feature selection base on DX score method (18) before gene
prediction. DX score is an effective method to measure the
difference between positive and negative samples (19). The
higher the score is, the stronger the discriminating ability to
distinguish between two types of samples. It can be
mathematically defined as:

D Xð Þ = mpositive −mnegative

� �2
d2positive + d2negative

(1)

where mpositive and mnegative are the mean value respectively,
dpositive and dnegative are the standard deviation of the feature X.

m =
1
No

N

i=1
xi (2)

d =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N − 1o
N
i=1 xi−mð Þ2

r
(3)

where x is the value of the feature X with respect to positive (or
negative) samples, N is the total number of positive (or
negative) samples.

Then, features were ranked from the most important to the
least important. The top n(1≤n≤N) features were input to the
SVM classifier model of the initial parameter in turn. We
assessed its classification performance using the accuracy rate,
so the number of features in the feature set is the abscissa (X-
axis), and the classification accuracy of each feature set is plotted
on the ordinate (Y-axis). The feature set with the highest
accuracy was selected.

Next, the SVM model was constructed using the features
selected above. A grid search was conducted on the trade-off
coefficient (C) and the kernel function parameter (gamma).
Then, features were selected again using the optimal SVM
model. The SVM package LIBSVM (20) was used for SVM
model construction due to its well-known performance. Five-
fold cross-validation was applied to evaluate model performance
during the experiment to avoid over-fitting.

Statistical Analysis
Independent sample t tests and chi-squared test were used to
compare continuous variables and categorical variables,
Frontiers in Oncology | www.frontiersin.org 3381
respectively. Receiver operating characteristic (ROC) curve,
calibration curve, and decision curve analysis (DCA) were used
to evaluate and choose between the generated models. The
corresponding values of the area under the ROC curve (AUC)
and the Brier score (BS) were also calculated. The higher the
AUC value, the better the model performance. On the other
hand, the Brier score is the measure of the calibration curve. For
a set of prediction values, the lower the Brier score, the better the
prediction calibration. BS score is mathematically calculated as:

BS =
1
4o

N

t=1
pt − otð Þ2 (4)

where pt is the probability of prediction, ot is the real probability
of sample t and N is the number of samples. The calibration
curve and Brier score were obtained with Sklearn (python 3.6). A
t-test was conducted to evaluate significant differences between
the two models. Decision curve analysis was used to quantify the
net benefit of models to guide subsequent actions (21). The ROC
and AUC were used to evaluate the diagnostic performance of
radiomics models. The ROCs of radiomics models were
compared using the DeLong test (22) implemented in
MATLAB R2018a(Mathworks, Natick, MA, USA). A p value <
0.05 was considered statistically different.
RESULTS

Patients
Out of 57 patients, 37 had mutated TP53 genes, and 20 had wild-
type TP53 genes. The characteristics of patients are summarized
in Table 1. There were no statistical differences in age (p =
0.770), gender (p = 0.397), histologic stage (p = 0.402) between
the TP53 mutation and TP53 wild-type groups.

Radiomics Model Performance and
Feature Selection
In total, 378 radiomics models were formed based on the
combination of 7 sequences in the 2D, 3D, and 2D/3D
combination. The model including ADC, ap (DCE T1WI late
arterial phase), dp (DCE T1WI delayed phase), DWI, pp (DCE
T1WI portal venous phase), T2 (T2 weighted imaging) sequence
(ADC_ap_dp_DWI_pp_T2) generated the best performance
with an AUC of 98.02%, including 41 features. Models with
TABLE 1 | Clinical and pathological analysis of patients with or without TP53
mutation.

Characteristic Wild-type TP53 (N=20) Mutated TP53 (N=37) P-value

Mean age(y) 60 62 0.770
Gender 0.397
Female 9 12
Male 11 25

Grade 0.402
1 4 3
2 11 25
3 5 9
May 2
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fewer predictors and similar predictive performance from
all combinations of modalities were also selected, to avoid
over-fitting and redundancy. Comparing the AUCs from the
above-mentioned model presenting the highest value of AUC
revealed that there were seven models with no statistically
significant difference (P>0.05) in their abilities to differentiate
(Table 2). The models with the top two AUC values and the least
number of features were selected and named as the model I, II,
and III. Details of extracted radiomic features in the three model
was listed in the Table 3. The overall ability of model I, model II,
and model III for identifying TP53 status are represented by their
Frontiers in Oncology | www.frontiersin.org 4382
AUC values (96.15,94.81,87.85%, respectively; Figure 1A).
Furthermore, Figure 1B shows the Brier score, measuring
overall model performance via mean squared error between
predicted probabilities and expected values.

In our study, the 3D-ADC-ap-DWI-T2 model had the highest
AUC and the lowest Brier score, indicating superior model
performance. The optimal feature subset selected by DX score
based on SVM classifier accuracy (using 5-fold CV accuracy),
included the top-11 feature set for predicting TP53. Figure 2
illustrates the feature selection process for the best model (3D-
ADC-ap-DWI-T2).
TABLE 2 | Comparison of Performance of the models between the highest one versus the other models with fewer predictors.

Dimension Model Selection ACC AUC Feature Numbers P-value

3D ADC_ap_dp_DWI_pp_T2 0.919 0.980 41
3D ADC_ap_pp_T2 0.836 0.879 5 0.0501
3D ADC_dp_pp_T1_T2 0.860 0.807 5 0.0195
2D_3D ADC_dp_pp_T1_T2 0.860 0.808 5 0.0174
3D ap_dp_DWI_pp_T1 0.781 0.773 6 0.0085
3D dp_DWI_pp_T1_T2 0.855 0.803 7 0.0124
3D ap_dp_DWI_pp_T1_T2 0.855 0.817 7 0.0150
3D ADC_ap_pp_T1_T2 0.851 0.866 11 0.0673
3D ADC_ap_dp_pp_T2 0.877 0.915 11 0.1148
2D_3D ap_dp_DWI_pp_T1 0.800 0.795 11 0.0152
2D_3D ap_dp_pp_T1_T2 0.894 0.888 11 0.1066
3D ADC_ap_DWI_pp_T2 0.877 0.931 12 0.1648
3D ADC_ap_DWI_T2 0.915 0.962 11 0.9410
3D ADC_dp_T1_T2 0.855 0.817 11 0.0145
3D ADC_DWI_pp_T2 0.891 0.948 11 0.5946
May 2021 | Volume 11 | Article
Models similar to the optimal model (P value> 0.05) are highlighted by bold text; ACC, Accuracy; AUC, area under receiver operating characteristic (ROC) curve.
TABLE 3 | Details of extracted radiomics features in the three models.

Models Feature Names Number of features

3D_ADC_ap_DWI_T2
(Model I)

ADC-wavelet-LLL_firstorder_Maximum
ADC-original_firstorder_Maximum
ADC-gradient_glcm_MCC
ADC-original_shape_Sphericity
ap-wavelet-HHL_ngtdm_Busyness
ap-gradient_glcm_Correlation
DWI-wavelet-LHH_glszm_SmallAreaEmphasis
T2-wavelet-HLH_glcm_Correlation
T2-wavelet-HHL_firstorder_Mean
T2-wavelet-HLH_glcm_MCC
T2-wavelet-HHL_firstorder_Median

11

3D_ADC_DWI_pp_T2
(Model II)

ADC-wavelet-LLL_firstorder_Maximum
ADC-gradient_glcm_MCC
ADC-original_firstorder_Maximum
ADC-gradient_ngtdm_Busyness
DWI-wavelet-LHH_glszm_SmallAreaEmphasis
pp-wavelet-HHL_glrlm_ShortRunEmphasis
pp-wavelet-HLL_glcm_Idn
T2-wavelet-HLH_glcm_Correlation
T2-wavelet-HHL_firstorder_Median
T2-wavelet-HLH_glcm_MCC
T2-wavelet-HHL_firstorder_Mean

11

3D_ADC_ap_pp_T2
(Model III)

ADC-wavelet-LLL_firstorder_Maximum
ap-gradient_glcm_Correlation
ap-wavelet-LLL_glcm_MCC
T2-wavelet-HHL_firstorder_Median
T2-wavelet-HLH_glcm_Correlation

5
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Clinical Usefulness
Decision curve analysis was used to assess the clinical usefulness of
the radiomics models to guide identifying TP53 status (Figure 3).
Three radiomics models had clinical utility due to the net benefit
of models were greater than treating all and none patients
(Figure 4). Figure 4 showed two cases of multiparametric MRI
images from pancreatic ductal adenocarcinoma patients with
wild-TP53(A-D) and TP53 mutation(E-H). MRI findings were
similar, and gene mutation could not be distinguished. However,
gene mutations can be accurately classified by the model. Net
benefit was maximized with threshold probabilities of 0%-19% by
Frontiers in Oncology | www.frontiersin.org 5383
the “3D-ADC-DWI-pp-T2” model. If the threshold probability
was more than 19%, the “3D-ADC-ap-DWI-T2” model would
add more net benefit compared with the other radiomics models
across the majority of the range of threshold probabilities.
DISCUSSION

The results of our study suggested that radiomics models using
different MRI-based multisequence TA has the potential for
identifying the TP53 mutation status in PDAC.
A B

FIGURE 1 | The ROC curves and calibration curves of three classification models. (A) the 3D-ADC-ap-DWI-T2 model (best one, AUC=0.9615), 3D-ADC-DWI-pp-T2
model (AUC=0.9481) and 3D-ADC-ap-pp-T2 model including the fewest features model (AUC=0.8786). (B) Observed (y-axis) versus the predicted probability
frequency (x-axis). The closer the points appear along the main diagonal, the better calibrated. 3D-ADC-ap-DWI-T2 is the closet to the diagonal dotted line, which
represents perfect calibration.
FIGURE 2 | The accuracy of 5-fold CV by adding features sequentially. The best performance was achieved using the Top-11 feature set in the 3D-ADC-ap-DWI-T2
multiparametric model.
May 2021 | Volume 11 | Article 632130
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We extracted several quantitative 2D and 3D radiomics
features from seven different MRI sequences and constructed
378 SVM classifiers, including 2D,3D and the combined 2D and
3D modalities. Subsequently, three models with better predictive
performance were selected to predict TP53 status in pancreatic
cancer. The candidate features were reduced to 11 potential
variables using the DX score, based on the accuracy of the SVM
classifiers. SVM and DX scores were used at the same time,
achieving a good classification accuracy of the TP53 mutation
status in PDAC patients. All features extracted from 3D in
consist with the previous study,3D analysis may provide a
more representative evaluation of tumor heterogeneity (23).
Frontiers in Oncology | www.frontiersin.org 6384
Although no independent validation cohort was available, the
model was validated using five-fold cross-validation, which is a
common procedure for model validation with a limited number
of samples. Here, the combined model proved valid in the cross-
validation yielding high diagnostic accuracies above 91.0%.

Radiomics have been previously correlated with a specific
genotype or molecular phenotype in different cancer types such
as lung (24), brain (25), and rectal cancer (26). However,
radiomics had previously seen limited use in PDAC
characterization. Marc A. Attiyeh et al. (27) found an
association between resectable PDAC imaging features and
SMAD4 status using CT texture analysis, but the model did
FIGURE 3 | Decision curve analysis for 3 radiomics models. The y-axis measures the net benefit. The x-axis represented the threshold probability. The dashed line
represents the assumption that all patients underwent model I, model II and model III test; the horizontal black line represents the assumption that no patients
underwent MRI test; The blue line represents the 3D-ADC-ap-DWI-T2 model; the orange line represents the 3D-ADC-DWI-pp-T2 model; the green line represents
the 3D-ADC-ap-pp-T2 model.
FIGURE 4 | Two cases of multiparametric MRI images from pancreatic ductal adenocarcinoma patients with wild-TP53 (A–D) from a 78 year-old women and TP53
mutation (E–H) from a 53 year-old men. ADC map showed hypointense lesion (A, E). Slightly hypovascular lesion on late arterial phase (B, F). DWI sequence
showing hyperintense lesion (C, G). T2WI showed slight hyperintensity of the pancreatic head mass (D, H).
May 2021 | Volume 11 | Article 632130
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not predict TP53 status. Si Shi et al. (28) found a correlation of
PET-imaging features with TP53 status in terms of metabolic
tumour burden. Yosuke et al. had reported a model for
predicting TP53 mutations in pancreatic cancer from CT
images using machine learning (29), and its AUC value was
0.795. But CT had no high contrast resolution that can reflect
indistinguishable lesions in PDAC. Our results found that 3D
texture features from T2WI, ADC, DWI and DCE T1WI in ap
were influential in the analysis to find a classifier for TP53
status characterization.

SGT-53 is a gene therapy anti-cancer therapeutic agent
comprised of a cationic liposome encapsulating a plasmid
encoding wild-type p53. A phase I trial showed that SGT-53 is
well tolerated, exhibits anticancer activity and reaches metastatic
lesions in patients with different solid tumors (30). And a Phase
II clinical trial of SGT-53 plus gemcitabine and nab-paclitaxel
(NCT02340117) was used for metastatic pancreatic cancer. In
the future, TP53 status in PDAC may play a greater role in
treatment selection.

There are several limitations in our study. First, this was a
retrospective study from a single center and population was
small. More data from multiple institutions were needed to
validate our results and acquired the optimized model.
Moreover, the effect of field strength (1.5 T and 3 T) on
radiomics had been unclear due to the limitation of the
retrospective data. Thus, we used normalization of the values
extracted from images to improve the repeatability of features.
Second, the method of including patients who underwent
surgery would also lead to selection bias. Finally, we used only
one software for the texture analysis and one method. Therefore,
the applicability of our model to other software and algorithms
is uncertain.
CONCLUSION

In conclusion, the radiomics model derived from mp-MRI
provided a non-invasive, quantitative method to predict TP53
mutation status in PDAC. Therefore, this radiomics model may
help clinicians to select optimal therapies in patients with PDAC.
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Aims: To develop and validate a model for predicting major pathological response to
neoadjuvant chemotherapy (NAC) in advanced gastric cancer (AGC) based on a machine
learning algorithm.

Method: A total of 221 patients who underwent NAC and radical gastrectomy between
February 2013 and September 2020 were enrolled in this study. A total of 144 patients
were assigned to the training cohort for model building, and 77 patients were assigned to
the validation cohort. A major pathological response was defined as primary tumor
regressing to ypT0 or T1. Radiomic features extracted from venous-phase computed
tomography (CT) images were selected by machine learning algorithms to calculate a
radscore. Together with other clinical variables selected by univariate analysis, the
radscores were included in a binary logistic regression analysis to construct an
integrated prediction model. The data obtained for the validation cohort were used to
test the predictive accuracy of the model.

Result: A total of 27.6% (61/221) patients achieved a major pathological response. Five
features of 572 radiomic features were selected to calculate the radscores. The final
established model incorporates adenocarcinoma differentiation and radscores. Themodel
showed satisfactory predictive accuracy with a C-index of 0.763 and good fitting between
the validation data and the model in the calibration curve.

Conclusion: A prediction model incorporating adenocarcinoma differentiation and
radscores was developed and validated. The model helps stratify patients according to
their potential sensitivity to NAC and could serve as an individualized treatment strategy-
making tool for AGC patients.

Keywords: advanced gastric cancer, neoadjuvant chemotherapy, radiomics, pathological response,
machine learning
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INTRODUCTION

Gastric cancer is the fifth most common malignancy in the world
and the third leading cause of cancer-relateddeath (1).Themajority
ofpatients arediagnosedat an advanced stagewith apoor prognosis
(2). In recent years, neoadjuvant chemotherapy (NAC) plus
subsequent radical gastrectomy has become a popular treatment
modality for advanced gastric cancer (AGC). Some scholars stated
that NAC could result in tumor downstaging and a higher curative
resectionrate andmayeventuallyprolong survival forAGCpatients
(3, 4). Some other trials stated that NAC failed to offer any survival
benefit (5, 6). Moreover, well-designed prospective RCTs are still
lacking. Thus, the benefit and necessity of NAC remain
controversial. Previous studies have found that the survival
benefit of NAC vastly depends on the pathological response of
the tumor.Thosewithamajorpathological response andsignificant
downstaging gained more survival benefit than others (7, 8).
However, for those with a minor response, NAC offers no
survival benefit but only toxicity and the risk of tumor
progression during chemotherapy that may hinder surgical
resection. Thus, to achieve personalized precision medicine, a
pre-intervention prediction model to identify major responders
and minor responders is needed.

Radiomics, a newly developed textural analysis method based
on high-throughput extraction of quantitative imaging features
within the tumor region (9), has shown potential as a
noninvasive predictor for histological grade (10, 11), tumor
stage (12), and prognosis (13) in gastric cancer. In certain
cancers, radiomic features have been demonstrated to be an
effective predictor for responses to anticancer therapy (14, 15).
However, similar work for AGC patients is lacking.

Thus, we conducted this study to evaluate the predictive value
of radiomic features for a major response to NAC in AGC
patients, aiming to build a predictive model integrated with
clinical and radiomic parameters and to provide a practical
tool for developing individualized treatment strategies.
METHODS

Study Population and Data Collection
This study was approved by the ethical committee of the Sixth
Affiliated Hospital, Sun Yat-sen University. We reviewed the
gastric cancer database of our institution and included patients
according to the following criteria:

Inclusion criteria: (i) patients with histologically confirmed
adenocarcinoma of the stomach or esophagogastric junction who
received NAC and radical gastrectomy; (ii) patients who
underwent abdominal multidetector computed tomography
(CT) inspection before any intervention started; and
(iii) tumor lesions that are assessable according to The
Response Evaluation Criteria in Solid Tumors Version 1.1 (16).

The exclusion criteria were as follows: (i) patients who
received preoperative radiotherapy, trastuzumab therapy, or
immunotherapy as a part of neoadjuvant therapy; (ii) patients
with indistinguishable tumor lesions on the CT images due to
Frontiers in Oncology | www.frontiersin.org 2388
insufficient filling of the stomach during the CT inspection; and
(iii) patients with insufficient data.

All available pre-intervention clinical information was
retrieved from the database, including sex, age, body mass
index (BMI), adenocarcinoma differentiation, and tumor
staging information according to the staging system of the
AJCC 8th edition (17), as listed in Table 1.

CT Image Acquisition, Retrieval
Procedure, Radiomics Feature Extraction
Methodology, and Determination of
Pathological Response
The workflow of this study is depicted in Supplementary
Material S1. Venous-phase contrast-enhanced abdominal CT
images were retrieved from the picture archiving and
communication system (details described in Supplementary
Material S2). The region of interest (ROI) was delineated at
each cross section of the primary tumor lesions by two senior
licensed radiologists. Delineations were strictly confined within
the tumor border using the segmentation tool ITK SNAP (18)
ver. 3.6.0 (University of Pennsylvania, PA, USA). An example of
CT image delineation was shown in Figure 1. Radiomic features
of the ROI were extracted using the ‘pyradiomics’ package (19) in
the Python programming language ver. 3.7.0 (Python Software
Foundation, Virginia, USA; www.python.org). The list of extracted
features is depicted in Supplementary Materials S3 and S4.

For pathological response assessment, all resection specimens
were examined by two senior pathologists. A major response was
defined as primary tumor regressing to ypT0 (absence of residual
cancer cells in the primary tumor) or yp T1 (scattered cancer
cells in the mucosa layer). The other cases were defined as a
minor response.

Statistical Analysis
All statistical analyses were performed by R software version 3.6.1
(TheRFoundation for Statistical Computing, Vienna, Austria; www.
r-project.org). Details of the machine learning algorithm and
packages utilized are described in Supplementary Material S5.
P-values<0.05 were identified as statistically significant.

Features Selection and Radscore
Calculation
Clinical feature selection: Pre-intervention clinical characteristics
that were significantly correlated with pathological response
were selected.

Radiomic features were selected in 4 steps: In step 1, all
radiomic features values were standardized according to the
distance to mean value. In step 2, the correlations between the
radiomic features and pathological response were tested by
univariate analysis, and features with a P-value<0.05 were
selected. In step 3, the machine learning algorithm of the least
absolute shrinkage and selection operator (LASSO) method was
used to reduce data dimensionalities, and features with a nonzero
coefficient were further selected. In step 4, the radscore was
calculated by linearly combining the coefficients of features from
the third step.
June 2021 | Volume 11 | Article 675458
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Development of an Individualized
Prediction Model Integrating Clinical
and Radiomic Features
After an individualized radscorewas calculated for each patient, the
total samplewas randomized into a training cohort and a validation
cohort. In the training cohort, the correlation between radscores
and pathological responses was tested by univariate analysis. The
selected clinical features and radscore are added to a multivariate
binary logistic regression model. An individualized model
integrating clinical features and radscore is established based on
Frontiers in Oncology | www.frontiersin.org 3389
data obtained from the training cohort, visualizing the weights of
each parameter in the model.

Validation of the Integrated Model
and Decision Curve Analysis
The data obtained from the validation cohort were used to test
the prediction precision of the model. A calibration curve was
plotted to assess the calibration between the model and the
validation data set. The receiver’s operative curve (ROC) and
the respective area under the curve (AUC) were used to test the
TABLE 1 | Patients characteristic in the training and validation cohort.

Characteristic Training cohort p-value Validation cohort p-value

All
(n = 144)

Minor response
(n = 107)

Major response
(n = 37)

All
(n = 77)

Minor response
(n = 53)

Major response
(n = 24)

Sex (%)
Male 106 (73.6) 77 (72.0) 29 (78.4) 0.584 54 (70.1) 36 (67.9) 18 (75.0) 0.719
Female 38 (26.4) 30 (28.0) 8 (21.6) 23 (29.9) 17 (32.1) 6 (25.0)
Age 57.94 ± 9.35 57.59 ± 9.51 58.97 ± 8.91 0.439 56.04 ± 11.35 54.75 ± 11.97 58.88 ± 9.44 0.141
Location (%)
Upper 52 (36.1) 36 (33.6) 16 (43.2) 0.273 28 (36.4) 21 (39.6) 7 (29.2) 0.654
Middle 27 (18.8) 24 (22.4) 3 (8.1) 12 (15.6) 9 (17.0) 3 (12.5)
Lower 62 (43.1) 45 (42.1) 17 (45.9) 35 (45.5) 22 (41.5) 13 (54.2)
Whole 3 (2.1) 2 (1.9) 1 (2.7) 2 (2.6) 1 (1.9) 1 (4.2)
Differentiation of adenocarcinoma (%)
Well 6 (4.2) 2 (1.9) 4 (10.8) 0.001 2 (2.6) 1 (1.9) 1 (4.2) 0.178
Moderately 63 (43.8) 40 (37.4) 23 (62.2) 25 (32.5) 14 (26.4) 11 (45.8)
Poorly 75 (52.1) 65 (60.7) 10 (27.0) 50 (64.9) 38 (71.7) 12 (50.0)
Clinical T stage (%)
T2 3 (2.1) 2 (1.9) 1 (2.7) 0.609 2 (2.6) 2 (3.8) 0 (0.0) 0.593
T3 73 (50.7) 51 (47.7) 22 (59.5) 33 (42.9) 21 (39.6) 12 (50.0)
T4a 55 (38.2) 44 (41.1) 11 (29.7) 32 (41.6) 22 (41.5) 10 (41.7)
T4b 13 (9.0) 10 (9.3) 3 (8.1) 10 (13.0) 8 (15.1) 2 (8.3)
Clinical N stage (%)
N0 6 (4.2) 5 (4.7) 1 (2.7) 0.968 2 (2.6) 2 (3.8) 0 (0.0) 1
N+ 138 (95.8) 102 (95.3) 36 (97.3) 75 (97.4) 51 (96.2) 24 (100.0)
Regimen (%)
Doublet 58 (40.3) 46 (43.0) 12 (32.4) 0.35 31 (40.3) 21 (39.6) 10 (41.7) 1
Triplet 86 (59.7) 61 (57.0) 25 (67.6) 46 (59.7) 32 (60.4) 14 (58.3)
Cycles 4.00 [4.00, 4.00] 4.00 [3.00, 4.00] 4.00 [4.00, 5.00] 0.045 4.00 [4.00, 5.00] 4.00 [4.00, 5.00] 4.00 [4.00, 4.00] 0.748
Resection (%)
Distal gastrectomy 63 (43.8) 45 (42.1) 18 (48.6) 0.614 33 (42.9) 20 (37.7) 13 (54.2) 0.271
Total gastrectomy 81 (56.2) 62 (57.9) 19 (51.4) 44 (57.1) 33 (62.3) 11 (45.8)
Laparoscopy surgery(%)
No 28 (19.4) 20 (18.7) 8 (21.6) 0.883 10 (13.0) 8 (15.1) 2 (8.3) 0.652
Yes 116 (80.6) 87 (81.3) 29 (78.4) 67 (87.0) 45 (84.9) 22 (91.7)
Multivisceral resection(%)
No 132 (91.7) 96 (89.7) 36 (97.3) 0.275 70 (90.9) 48 (90.6) 22 (91.7) 1
Yes 12 (8.3) 11 (10.3) 1 (2.7) 7 (9.1) 5 (9.4) 2 (8.3)
Pathological T stage (%)
T0 23 (16.0) 0 (0.0) 23 (62.2) <0.001 12 (15.6) 0 (0.0) 12 (50.0) <0.001
T1 14 (9.7) 0 (0.0) 14 (37.8) 12 (15.6) 0 (0.0) 12 (50.0)
T2 15 (10.4) 15 (14.0) 0 (0.0) 9 (11.7) 9 (17.0) 0 (0.0)
T3 86 (59.7) 86 (80.4) 0 (0.0) 39 (50.6) 39 (73.6) 0 (0.0)
T4 6 (4.2) 6 (5.6) 0 (0.0) 5 (6.5) 5 (9.4) 0 (0.0)
Pathological N stage (%)
N0 67 (46.5) 41 (38.3) 26 (70.3) 0.01 45 (58.4) 25 (47.2) 20 (83.3) 0.02
N1 31 (21.5) 24 (22.4) 7 (18.9) 9 (11.7) 6 (11.3) 3 (12.5)
N2 24 (16.7) 22 (20.6) 2 (5.4) 12 (15.6) 11 (20.8) 1 (4.2)
N3a 19 (13.2) 17 (15.9) 2 (5.4) 10 (13.0) 10 (18.9) 0 (0.0)
N3b 3 (2.1) 3 (2.8) 0 (0.0) 1 (1.3) 1 (1.9) 0 (0.0)
Harvested Lymph Node 29 ± 12 29 ± 12 27 ± 13 0.286 27 ± 12 27 ± 12 28 ± 12 0.842
Radscore 0.11 [-0.76, 0.86] -0.04 [-0.92, 0.64] 1.05 [-0.29, 1.66] <0.001 0.40 [-0.99, 1.01] 0.04 [-1.18, 0.58] 1.04 [0.33, 1.33] 0.001
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discriminative power. Decision curve analysis was conducted to
determine the predictive value of the integrated model compared
to the prediction model based on the clinical characteristics or
radiomic features alone.
RESULTS

Patients Characteristic
From February 2013 to September 2020, 221 patients who received
NAC and D2 radical gastrectomy were enrolled in the study. Patient
characteristics in the training and validation cohorts are depicted in
Table 1. The majority of patients were male (72.4%, 160/221), and
the lesions were mostly poorly differentiated adenocarcinoma
(56.6%, 125/221) with a clinical stage of T3-T4 (97.7%, 216/221)
and radiologically suspicious lymph node metastasis (96.4%, 213/
221). Cases were randomly assigned to a training cohort (n=144)
Frontiers in Oncology | www.frontiersin.org 4390
for predictionmodel construction and a validation cohort (n=77) for
model validation according to a preset 2:1 ratio. The demographic
characteristics were similar in both cohorts, as shown in Table 1.

Neoadjuvant Chemotherapy and
Pathological Findings
Enrolled patients received a median of 4 cycles of NAC. Triplet
agent regimens were the mainstream regimen (59.7%, 132/221).
Most lesions were resected through laparoscopy (82.8%, 183/
221). In the final pathological analysis, a total of 61 patients
(27.6%) achieved a major response, of whom 35 regressed to
ypT0 (15.8%) and 26 regressed to ypT1 (11.8%).

Feature Selection and
Radscore Calculation
In the univariate analysis, 92 of 572 features were selected
according to the P-value (<0.05). In the binary LASSO
FIGURE 1 | Pre-intervention venous-phase computed tomography images of a patient with major response (A) and a patient with minor response (B) to
neoadjuvant chemotherapy. The lesions were delineated slice by slice and merged into a 3-dimensional region for features extraction.
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regression, which is depicted in Figure 2, 5 features with nonzero
coefficients were included in the radscore calculation formula
(Supplementary Material S6). The distribution of radscore and
responses to NAC is depicted in Figure 3.

Development of a Prediction Model
Integrating Clinical and
Radiomic Parameters
Among all the pre-intervention characteristics of the training
cohort listed in Table 1, only adenocarcinoma differentiation
and radscores were significantly correlated with major
pathological response. Thus, these two factors were included in
the binary logistic regression analysis. Based on their weight in
the model, a model integrating clinical and radiomic parameters
for predicting major response after NAC was constructed
(Figure 4) with the radscore yielding the heaviest weight in the
prediction model.

Validation of the Integrated Model
The AUC of the ROC curve of the model based on the data of the
validation cohort was 0.744, showing satisfactory predictive
discriminative power (Figure 5A). The calibration curve of the
integrated model for the probability of a major response
demonstrated satisfactory agreement between the training and
validation cohorts (Figure 5B). The C-index based on the
validation cohort for the training model was 0.763 (95% CI:
Frontiers in Oncology | www.frontiersin.org 5391
0.648-0.878), suggesting a good model fit. The result of the
decision curve analysis is presented in Figure 6. We compared
the predictive power of models including only the clinical
parameter (adenocarcinoma differentiation) or radiomic
parameters (radscore) to the model integrating both factors.
The results confirmed the superiority of the integrated model,
indicating that adenocarcinoma differentiation and radiomic
features have an intercrossing incremental effect on each other,
adding up to a more satisfactory prediction model for major
responses to NAC.
DISCUSSION

In this study, we managed to develop and validate a model for
predicting major response to NAC in AGC patients based on a
machine learning approach. This model incorporates only pre-
intervention clinical and CT radiomic features and effectively
stratifies patients according to their sensitivity to NAC, making it
a simple and practical tool for assisting individualized treatment
strategy development.

In the model, the radscore represents the pre-intervention CT
characteristics of each patient. The radscore was calculated in 3
steps. In the first step of univariate analysis, features without
significant correction to major response were eliminated, and
92 features of 572 features were selected. In the second step,
FIGURE 2 | Radiomic feature selection using the least absolute shrinkage and selection operator (LASSO) model. The area under the receiver operating
characteristic (ROC) curve was plotted versus the logarithm of tuning parameter l. Dotted vertical lines were drawn at the optimal values using the minimum criteria
and the 1 standard error of the minimum criteria (the 1-SE criteria).
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a machine learning algorithm, LASSO regression, was utilized,
and features with collinearity and weak predictive strength were
further eliminated, leaving only 5 features. In the third step, the
remaining 5 features with the strongest independent predictive
value were fit into a single radscore via linear combination weighted
by coefficients. This approach was proven to be stable and effective
and has been embraced by similar previous studies (20–23).
Additionally, in the ROI delineation procedure, we adopted the 3-
dimensional delineation method, which means that each cross
section of the tumor was included and rebuilt into a 3-
Frontiers in Oncology | www.frontiersin.org 6392
dimensional model. Previous research has indicated that this
approach provides extracted features that are more stable, precise
and reflect more detailed information on the tumor nature
compared with the 2-dimensional delineation method (24). The
radscore also retains a heavier weight in the final established
prediction model, indicating satisfactory prediction power.

In the final established model, not only radiomic features but
also clinical features were integrated. Among all the clinical features
analyzed, only adenocarcinoma differentiation and cycles of NAC
achieved statistical significance. Given that cycles of NACwere not a
FIGURE 4 | A visualized model for predicting major pathological response after neoadjuvant chemotherapy incorporating only pre-intervention characteristics, such
as adenocarcinoma differentiation and CT radscores.
FIGURE 3 | Waterfall chart showing radscores for each patient in the training and validation cohorts. The red columns represent patients with minor pathological
responses, and the green columns represent those with major pathological responses.
June 2021 | Volume 11 | Article 675458

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Chen et al. Predicting Response to Neoadjuvant Chemotherapy
pre-intervention parameter, only differentiation was included. A
higher differentiation grade was associated with a poorer response to
chemotherapy, which is consistent with previous reports (25, 26).

For the choice of the outcome variable, we defined primary
tumor regressing to ypT0 or T1 as a major response to NAC, as it is
the definition used in early gastric cancer (27). Other previous
reports also stated that the regression of the T stage is an important
survival predictor, and patients with lower ypT stage are associated
Frontiers in Oncology | www.frontiersin.org 7393
with more survival benefit gain from NAC (28–30). Thus, this
variable can be used as an effective surrogate endpoint for
survival (31).

Validation of the model showed a good fit between the
validation cohort and the model. A c-index of 0.763 indicates
robust predictive power. Decision curve analysis showed that by
integrating radiomics and differentiation into the model, the
prediction accuracy was higher than the prediction based on
FIGURE 6 | Decision curve analysis comparing the predictive value of different models. The Y-axis measures the net benefits. The X-axis represents the threshold
probability for “positive” (indicating the patient is likely to achieve a major response after NAC and should be recommended for NAC). The green line represents
predictions based on only radscores. The red line represents predictions based on only adenocarcinoma differentiation. The purple line represents predictions based
on the model incorporating both radscores and differentiation. As shown in the figure, in most thresholds, the integrated model demonstrates superiority and more
net benefit gains.
A B

FIGURE 5 | (A) Receiver’s operating curve for validating the discriminative power of the model using data in the validation cohort, showing a satisfactory
discriminative power of the model with an area under the curve of 0.744. (B) The calibration curve shows a good fit between the data of the validation cohort and
the model with a C-index of 0.763.
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radscore or differentiation alone, indicating an intercrossing
incremental value and further demonstrating the superiority of
the integrated model. The model could serve as a useful reference
tool for developing treatment strategies for AGC patients,
especially since NAC has yet to become the standard approach
for AGC. First, stratifying patients according to the probability of
achieving a major response could not only help us identify
patients with good sensitivity to NAC but also help patients
with poor sensitivity to NAC avoid unnecessary toxicity and the
risk of tumor progression. Second, the features included in our
model were all easily achievable by pre-intervention routine
inspection, with easily accessible tools and no excessive trauma
to the patients.

A few limitations to our study should be noted. First, there
was a lack of genomic data, such as microsatellite stability
status, which are potential chemosensitivity predictors
according to previous literature (32). Second, there was a lack
of a prospective validation cohort from an independent
institution to prove the model’s universality. Nevertheless, the
image sets analyzed in our study were retrieved from CT
scanners of various manufacturers, and the total sample was
randomly divided into a training and a validation cohort based
on a reasonable ratio. The final established model should be
reliable and robust.
CONCLUSION

In conclusion, a model integrating pre-intervention clinical and
CT features for predicting major response to NAC was
successfully developed and validated. The model helps stratify
AGC patients according to their potential chemosensitivity and
can serve as a practical tool for the development of
individualized treatment strategies for advanced gastric
cancer patients.
Frontiers in Oncology | www.frontiersin.org 8394
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L, Fernández-Aceñero MJ. Histopathological Factors Predicting Response to
Neoadjuvant Therapy in Gastric Carcinoma. Clin Trans Oncol Off Publ Fed
Spanish Oncol Societies Natl Cancer Institute Mexico (2018) 20(2):253–7.
doi: 10.1007/s12094-017-1707-1

26. Wang LB, Teng RY, Jiang ZN, Hu WX, Dong MJ, Yuan XM, et al.
Clinicopathologic Variables Predicting Tumor Response to Neoadjuvant
Chemotherapy in Patients With Locally Advanced Gastric Cancer. J Surg
Oncol (2012) 105(3):293–6. doi: 10.1002/jso.22085

27. Everett SM, Axon AT. Early Gastric Cancer in Europe. Gut (1997) 41(2):142–
50. doi: 10.1136/gut.41.2.142

28. Coimbra FJF, de Jesus VHF, Ribeiro HSC, Diniz AL, de Godoy AL, de Farias IC,
et al. Impact of ypT, ypN, and Adjuvant Therapy on Survival in Gastric Cancer
Patients TreatedWith Perioperative Chemotherapy and Radical Surgery.Ann Surg
Oncol (2019) 26(11):3618–26. doi: 10.1245/s10434-019-07454-0

29. BrimoF,DownesMR, Jamaspishvili T,BermanD,BarkanGA,AthanazioD, et al.
Prognostic Pathological Factors in Radical Cystectomy After Neoadjuvant
Chemotherapy. Histopathology (2018) 73(5):732–40. doi: 10.1111/his.13654

30. Sun J, Wang D, Mei Y, Jin H, Zhu K, Liu X, et al. Value of the Prognostic
Nutritional Index in Advanced Gastric Cancer Treated With Preoperative
Chemotherapy. J Surg Res (2017) 209:37–44. doi: 10.1016/j.jss.2016.09.050

31. Hellmann MD, Chaft JE, William WNJr., Rusch V, Pisters KM, Kalhor N,
et al. Pathological Response After Neoadjuvant Chemotherapy in Resectable
Non-Small-Cell Lung Cancers: Proposal for the Use of Major Pathological
Response as a Surrogate Endpoint. Lancet Oncol (2014) 15(1):e42–50.
doi: 10.1016/s1470-2045(13)70334-6

32. Smyth EC, Wotherspoon A, Peckitt C, Gonzalez D, Hulkki-Wilson S, Eltahir
Z, et al. Mismatch Repair Deficiency, Microsatellite Instability, and Survival:
An Exploratory Analysis of the Medical Research Council Adjuvant Gastric
Infusional Chemotherapy (Magic) Trial. JAMA Oncol (2017) 3(9):1197–203.
doi: 10.1001/jamaoncol.2016.6762

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Chen, Wei, Liu, Xiang, Wang, Meng and Peng. This is an open-
access article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the 'copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
June 2021 | Volume 11 | Article 675458

https://doi.org/10.1002/jmri.25360
https://doi.org/10.1016/j.jacr.2018.12.017
https://doi.org/10.1007/s00330-016-4540-y
https://doi.org/10.1093/annonc/mdz108
https://doi.org/10.1016/s1470-2045(18)30413-3
https://doi.org/10.1016/s1470-2045(18)30413-3
https://doi.org/10.1016/j.ejca.2008.10.026
https://doi.org/10.3322/caac.21388
https://doi.org/10.3322/caac.21388
https://doi.org/10.1016/j.neuroimage.2006.01.015
https://doi.org/10.1158/0008-5472.Can-17-0339
https://doi.org/10.1158/0008-5472.Can-17-0339
https://doi.org/10.1016/j.ejrad.2017.04.007
https://doi.org/10.1016/j.ejrad.2017.04.007
https://doi.org/10.1093/annonc/mdz001
https://doi.org/10.7150/thno.28018
https://doi.org/10.1111/rssb.12108
https://doi.org/10.1016/j.ejrad.2018.07.025
https://doi.org/10.1007/s12094-017-1707-1
https://doi.org/10.1002/jso.22085
https://doi.org/10.1136/gut.41.2.142
https://doi.org/10.1245/s10434-019-07454-0
https://doi.org/10.1111/his.13654
https://doi.org/10.1016/j.jss.2016.09.050
https://doi.org/10.1016/s1470-2045(13)70334-6
https://doi.org/10.1001/jamaoncol.2016.6762
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Frontiers in Oncology | www.frontiersin.org

Edited by:
Huimao Zhang,

First Affiliated Hospital of Jilin
University, China

Reviewed by:
Subathra Adithan,

Jawaharlal Institute of Postgraduate
Medical Education and Research

(JIPMER), India
Amrita Guha,

Tata Memorial Hospital, India

*Correspondence:
Ming Zhang

zhangming01@xjtu.edu.cn

Specialty section:
This article was submitted to

Cancer Imaging and
Image-directed Interventions,

a section of the journal
Frontiers in Oncology

Received: 29 January 2021
Accepted: 11 May 2021
Published: 04 June 2021

Citation:
Chen W, Zhang T, Xu L, Zhao L, Liu H,

Gu LR, Wang DZ and Zhang M
(2021) Radiomics Analysis of

Contrast-Enhanced CT for
Hepatocellular Carcinoma Grading.

Front. Oncol. 11:660509.
doi: 10.3389/fonc.2021.660509

ORIGINAL RESEARCH
published: 04 June 2021

doi: 10.3389/fonc.2021.660509
Radiomics Analysis of Contrast-
Enhanced CT for Hepatocellular
Carcinoma Grading
Wen Chen1,2, Tao Zhang2, Lin Xu2, Liang Zhao3, Huan Liu4, Liang Rui Gu5,
Dai Zhong Wang6 and Ming Zhang1*

1 Department of Medical Imaging, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China, 2 Department of
Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China, 3 Precision Medicine Research Center, Taihe
Hospital, Hubei University of Medicine, Shiyan, China, 4 GE Healthcare, Shanghai, China, 5 Department of Radiology,
Shanghai Sixth People’s Hospital, Shanghai, China, 6 Department of Pathology, Taihe Hospital, Hubei University of Medicine,
Shiyan, China

Objectives: To investigate the value of contrast-enhanced computer tomography (CT)-
based on radiomics in discriminating high-grade and low-grade hepatocellular carcinoma
(HCC) before surgery.

Methods: The retrospective study including 161 consecutive subjects with HCC which
was approved by the institutional review board, and the patients were divided into a
training group (n = 112) and test group (n = 49) from January 2013 to January 2018. The
least absolute shrinkage and selection operator (LASSO) was used to select the most
valuable features to build a support vector machine (SVM) model. The performance of the
predictive model was evaluated using the area under the curve (AUC), accuracy,
sensitivity, and specificity.

Results: The SVM model showed an acceptable ability to differentiate high-grade from
low-grade HCC, with an AUC of 0.904 in the training dataset and 0.937 in the test dataset,
accuracy (92.2% versus 95.7%), sensitivity(82.5% versus 88.0%), and specificity (92.7%
versus 95.8%), respectively.

Conclusion: The machine learning-based radiomics reflects a better evaluating
performance in differentiating HCC between low-grade and high-grade, which may
contribute to personalized treatment.

Keywords: radiomics, machine learning, support vector machine, hepatocellular carcinoma, grading
INTRODUCTION

Hepatocellular carcinoma (HCC) is the most common malignant tumor and predicted to the fourth
leading cause of cancer death worldwide in 2018 (1–3). More than 300,000 people died in China because
of liver cancer every year, accounting for 51% of liver cancer deaths worldwide (3). Surgical resection is
the most effective treatment for patients with HCC. Patients who meet Milan criteria or undergo down-
staging of their tumors to be within the Milan criteria are preferred for live transplantation (4, 5). The
survival rates exceed 70% during 5 years, with recurrence in less than 15% of patients, who met Milan
June 2021 | Volume 11 | Article 6605091396
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criteria and received a liver transplant (6). HCC is prone to
metastasis and recurrence. However, the long-term prognosis of
HCC patients is still unsatisfactory, although favorable results in
terms of survival and recurrence have been reported based on highly
selected patients (7, 8). The pathological grading of HCC plays an
essential role in determining the patient’s prognosis. The current
study reflected that pathological grading is a risk factor of overall
early recurrence in HCC (9, 10). Intrahepatic recurrence and
extrahepatic metastasis are more likely to occur in high-grade HCC
tumors than low-grade tumors (11).Therefore, accurate preoperative
prediction for HCC grading is crucial for treatment planning.

Medical imaging patterns of non-invasive contrast-enhanced
CT in HCC patients are essential for accurate estimates of the
clinical-stage, prognosis clinical decision-making, and
determination of follow-up in primary hospitals. Contrast-
enhanced CT provides information about tumor vascularization.
Studies have shown that there was a significant correlation between
pathological grade and radiological enhancement on contrast-
enhanced CT (12), Only 46 patients were included in the study.
Texture analysis based on CT images was reported to evaluate the
differentiation and grade both of pancreatic carcinoma esophageal
and renal cell carcinoma (13, 14).

Radiomics converts imaging data into a high-dimensional
mineable feature space using many automatically extracted data-
characterization algorithms (15, 16). Quantitative features based on
intensity, shape, and texture could be reflected in much information
on tumor phenotype (17). Radiomics signatures have been proven
to reflect tissue heterogeneity (18, 19). CT-based radiomics has been
proven to discriminate tumor stage and grade in colorectal cancer
(20, 21). Recent studies have shown that there is a correlation
between medical imaging based on texture features and radiomics
signatures and pathological grading (22–24).

However, there are few studies based on thin-portal phase CT
radiomics to predict hepatocellular carcinoma grade. Therefore, we
aimed to investigate the value of contrast-enhanced CT-based on
portal venous radiomics signatures to distinguish HCC
grade preoperatively.
MATERIALS AND METHODS

Patients
The retrospective study was approved by the institutional review
board, and the informed consent requirement was waived. The
inclusion criteria were as follows: (1) patients who underwent
surgical resection and were pathologically confirmed as HCC with
a usable histological report according to Edmondson–Steiner grades;
(2) patients who underwent liver contrast-enhanced CT within
two weeks before operation; (3) Without previous treatment with
patients such as radiofrequency ablation, transcatheter arterial
chemoembolization (TACE), liver resection or percutaneous
ethanol injection; and (4) the quality of the images satisfied the
needs of analysis and have completed the portal venous phase CT
images and clinical and pathological data. The patients with HCC
with a contrast-enhanced CT examination in our institute were
recruited from January 2013 to January 2018. The enrolled 161
Frontiers in Oncology | www.frontiersin.org 2397
patients with HCC, were classified into the training dataset [112
patients; 86males (76.8%)and26women(23.2%)],withamedianage
of 53 years (range 25 to 71 years)] and the test dataset [49 patients; 40
males (81.7%) andnine females (8.3%),with amedian age of 57 years
(range 28 to 74 years)]. Baseline clinicopathologic data, including
gender, age, preoperativeAFP level, were derived from the institution
archives. Finally, a total of 161 subjects were selected from the total
456 patients in our research, and the details are shown in Figure 1.

Assessment of Histologic Grade
Histological grading data of HCC tumors were obtained from
pathology reports reviewed by the pathologist. Histological grade
was postoperatively determined as low- and high-grade.
Edmondson grades I, I–II, and II correspond to Low-grade
tumors, and Edmondson grades II–III, III, III–IV, and IV
correspond to high-grade tumors (25). There was inconsistent
differentiation in the tumor. Tumor cells of different pathological
grades could be contained in the same mass. The larger one is
determined as the pathological grade of the tumor (26).

Image Acquisition
All patients underwent 64 slices multidetector CT scanner of the
liver (Optima CT660 or LightSpeed VCT, GE Healthcare),
parameters were as follows: for non-enhanced studies and the
hepatic arteriovenous phase, the gantry rotation time is 0.6 s, and
the equilibrium phase is 0.8 s; the cross-sectional thickness is 5 mm;
the table speed is 27.5 mm/s; 120 kVp; and 160–440 mA. Patients
imaged with a CT scanner in a craniocaudal direction. The scan
range is from the dome to the lower liver. Non-ionic contrast
medium (Iohexol Injection) administered at a total dose of 70–80
ml based on body weight (0.9 ml/kg), 2.5–3.0 ml/s through a 20
gauge venous cannula placed in the antecubital vein. For triphasic
acquisitions, scanning started with a 30 s scan delay (about 30–35 s
after injection of the contrast agent) for the hepatic arterial phase.
Thirty-five seconds after the endpoint of the hepatic arterial phase
(about 65–70 s after injection of the contrast agent), the scans for the
portal venous phase were obtained. Delayed phase images reached
120 s (about 150–180 s after injection of the contrast agent) (27).

Tumor Segmentation
Tumor segmentation was performed on the portal venous phase CT
images, retrieved from the picture archiving and communication
system (PACS). The images were loaded into the ITK-SNAP
software (open-source software http://www.itksnap.org) for manual
segmentation, and a three-dimensional volume of interest (VOI) that
covered the whole tumor was delineated in the images respectively
segmented by a radiologist with over five years of experience in
abdominal imaging. The procedure is shown in Figure 2.

Radiomics Feature Extraction
and Selection
After integrating the VOI that covered the whole tumor images, a
three-dimensional radiomics feature was extracted from the CT
images with the Artificial Intelligence Kit software (AK, version 3.2.2,
GE Healthcare). A total of 396 radiomics features from each patient
were generated based on the following five categories: Histogram,
shape, Gray-level co-occurrence matrix (GLCM), Gray-level size
June 2021 | Volume 11 | Article 660509
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zone matrix (GLSZM), and Run-length matrix (GLRLM). Most
features defined comply with feature definitions as described by the
Imaging Biomarker Standardization Initiative (IBSI).

Thirty CT images were randomly chosen for the second
segmentation by two experienced radiologists (twice by reader one
and once by reader 2, with eight and thirteen years of clinical
experience in the abdominal study). Intra- and interclass
correlation coefficients (ICC) were applied to assess the stability
and reproducibility to find out robust features. Based on the twice
feature extraction by reader 1, the intra-observer ICCs were
calculated. Meanwhile, the interobserver ICCs were obtained based
on the first-extracted features by reader one and those by reader 2.
Generally, ICC >0.75 was considered to be excellent in reproducibility
(28). The remaining tumor segmentation for feature extraction was
performed by reader 1.

All patients were randomly divided into two independent
datasets with a ratio of 7:3 using stratified sampling. The feature
Frontiers in Oncology | www.frontiersin.org 3398
scaling method was employed before dimensionality reduction to
decrease the difference in radiomics features. First, The general
univariate analysis was used to select features. The least absolute
shrinkage and selection operator (LASSO) was applied to select the
most useful features from the primary data in the training dataset.
The Heatmap of the model in the training and test samples is shown
in Figure 3. Detailed radiomics parameters and remained features
are shown in the Supplementary Material.

Establishment of the Model Based on
Machine Learning
The most predictive features were applied to establish an optimal
SVM model using a grid search method with 5-fold cross-
validation. The AUC, sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV), and accuracy were
further calculated in the dataset. And independently validated in the
test dataset to evaluate prediction accuracy.
FIGURE 1 | Flowchart of the inclusion and exclusion processes.
FIGURE 2 | An example of the manual segmentation in hepatocellular carcinoma. The portal venous phase computed tomography (CT) image (A). Manual
segmentation on the same axial slice (B). Generation of a 3D ROI (C).
June 2021 | Volume 11 | Article 660509
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Statistical Analysis
Continuous variables were analyzed with the Shapiro–Wilk test to
determine their distributions. The Student’s t-test and the Mann–
Whitney U test were used to determine whether the characteristic
features were significantly different between the low- and high-grade
HCC groups in the training dataset and test dataset. The statistical
significance levels reported in this study were all two-sided, and a P-
value <.05 was considered statistical significance. All statistical
analyses were performed using IPMs 2.0 (IPM statistics,
GE healthcare).
RESULTS

Clinical Characteristics and Pathologic
Findings
The training dataset consisted of 86 males and 26 females. The
mean age in the low grade of HCC in the training dataset is 56.45 ±
10.44; range from 20–69 years. The mean age of high grade is 49.74 ±
8.58 years; content from 25–78years, which has a significant
difference (p <0.01). The test dataset included 40 males and nine
females (mean age, 51.38 ± 8.22; range, 24–83 years in low grade;
mean age, 51.88 ± 10.74; range, 25–72 years in high grade). No
statistically significant differences existed in gender between the
Frontiers in Oncology | www.frontiersin.org 4399
training and the test datasets (p = 0.317; p = 0.662). Clinical
characteristics were detailedly shown in Table 1. No significant
difference was found in the AFP level between patients with low-
grade and high-grade HCC either in the training dataset or test
dataset (p= 0.186; p= 0.150). Among 161 patients underwent surgical
resection, including laparoscopy or laparotomy. Of these, 79 were
low-grade hepatocellular carcinoma, and 82 were high-grade
hepatocellular carcinoma.

Reproducibility of Radiomics
Feature Extraction
A total of 396 radiomics features were extracted for each patient.
Among these radiomics features, 312 features were considered
excellent reproducibility with ICC >0.75 in intra-and interobserver.
Therefore, the 312 robust features of each patient were used for
further selection. Finally, seven features with non-zero coefficients
were eventually remained from the 312 radiomics features using
LASSO logistic regression (Figure 4).

Performance of SVM
The model based on SVM on the portal venous phase CT images
performedwell onhigh-gradepatients fromlow-gradepatients.With
anAUCof 0.904 in the training dataset, the test dataset with anAUC
of 0.937 (Figure 5). The other predictive parameters (sensitivity,
specificity, PPV, NPV, and accuracy) of SVM are shown in Table 2.
A B

FIGURE 3 | Heatmap of the model in the training (A) and test samples (B) for L1 model.
TABLE 1 | Baseline characteristics of patients in training dataset and test dataset.

Characteristics Training dataset Test dataset

Low Grade High Grade P value Low Grade High Grade P value

Age, mean ± SD, y 56.45 ± 10.44 49.74 ± 8.58 <0.01 51.38 ± 8.22 51.88 ± 10.74 0.855
Gender<N
Male 40 46 0.317 19 21 0.662
Female 15 11 5 4
AFP (ug/L) Median 20.5 32.4 0.186 20.55 27.3 0.15
(IQR) (8.21, 42.3) (7.82,45.95) (6.95,35.54) (10.54,61.82)
June
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DISCUSSION

Hepatocellular carcinoma (HCC) is the most common tumor of
liver cancers accounting for more than 90% (6). Most of the world’s
HCC cases are found in the Asia-Pacific region, where annual HCC-
related mortality rates have risen significantly over the last 20 years
(29). HCC has become a major emerging public health problem in
the Asia-Pacific region. Radiomics has been proven useful in tumor
grade in clear cell renal cell carcinoma, soft tissue sarcomas and
Colorectal Adenocarcinoma (21, 30, 31). The SVM classifier, a
Frontiers in Oncology | www.frontiersin.org 5400
specific type of supervised machine-learning method, has been used
to predict the grade of the glioma (32–34) and clear cell renal cell
(35). As the results showed, The SVM model was finally developed
after the LASSO regression analysis to discriminate the grade of
HCC in both the training dataset (p <0.05) and the test dataset (p
<0.05). It indicates that radiomics features on the portal venous
phase CT images can be used to detect tiny differences in the density
of tumors.

The AUC on the portal phase CT-based SVM for preoperative
prediction of the grade of hepatocellular carcinoma is 0.904 and
A B

FIGURE 4 | Radiomics features selection with LASSO binary logistic regression method. The mean square error was plotted versus the In (alpha) sequence (A); The
coefficient profile plot was plotted versus the In (alpha) sequence (B).
TABLE 2 | The predictive performance of the SVM model for preoperative the grade of hepatocellular carcinoma based on contrast-enhanced CT.

Predictive Performance AUC SEN SPE ACC PPV VPV

Training dataset 0.904 0.825 0.927 0.922 0.922 0.836
Test dataset 0.937 0.880 0.958 0.957 0.957 0.885
June 2021
 | Volume 11 | Article 6
A B

FIGURE 5 | Receiver operating characteristic curves (ROC) of the portal phase CT-based SVM for preoperative prediction of the grade of hepatocellular carcinoma
in the training and testing datasets. (A) the ROC curve of the radiomics signature based on the portal phase CT based on the training dataset. (B) the ROC curve of
radiomics signature based on the portal phase CT for the test dataset.
60509
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0.937 in the training and test datasets. A published study showed
that the radiomics signature based on T1WI or T2WI images
showed performance in predicting the HCC grade (with AUC of
0.712 and 0.722 in the test dataset) (22). Mao et al. showed that the
radiomics signatures based on arterial phase Contrast-enhanced
computed tomography images could successfully distinguish
pathological grades of HCC, with the AUC of 0.731 and 0.718 in
the training and test datasets (24), which are lower than the AUC of
the SVMmodel developed in our study either in training dataset or
test dataset. This result may be related to section thickness and
selection of the various phases of contrast enhancement. The section
thickness chose is 0.625 or 1.25 mm and we chose the portal venous
phase in our study. Approximately 80–90% of HCCs are
hypervascular lesions, arterial phase of imaging could increase
enhancement in the tumor parenchyma. Due to differences in
tumor biology, measurements of HCC will vary at the various
phases of contrast enhancement (36). Mapping the size of
hepatocellular carcinoma (HCC) on images plays an important
role in accurately capturing a three-dimensional region of interest.
Research has suggested that the portal venous phase may be optimal
for measuring HCC on MRI (37), which is similar to CT. They
hypothesized that benign reactivity or perfusion-related changes
may occur in the liver parenchyma around the tumor during the
arterial phase and may present as transient congestion during this
phase, leading to measurement bias. The tumor will be with wash
out on the portal venous phase, making it easier to show the
boundary of the tumor.

Studies have shown that the texture features based on arterial
phase CT images are associated with pathological grades of HCC
(23). Texture feature based on Gd-DTPA-enhanced MR images
showed better diagnostic efficacy (with AUCs of 0.827–0.918) (38)
because MR images providing more information about tumor
heterogeneity. However, the case number was limited, It may lead
to a possible risk of data overfitting.

Some studies indicate that the model which combined clinical
factors with the radiomicmodel outperformed comparedwith other
models (22, 24).Research showsAFP levelwas an independent factor
that could discriminate between high-grade and low-grade HCC
(22). However, there is no significant difference between high-grade
and low-grade HCC in both the training and test datasets (p = 0.186
and p= 0.15). Itmay be due to the highAFP level in some patients in
this study, resulting in the imbalance of the AFP level.

There are several limitations to our research. First, the number
of HCC was limited and it was a single-center retrospective study.
Therefore, more cases are needed for future studies and further
multicenter cohorts should be conducted. Second, the portal
venous phase image was merely considered, which might
somehow miss some useful information for the hepatic arterial
Frontiers in Oncology | www.frontiersin.org 6401
and hepatic venous phases. Thus, the phase images should also be
incorporated in future studies. Third, the etiology of liver cancer
hasn’t been classified. thus, further research is needed to determine
whetherourfindingswouldbe influencedbydifferent etiology such
as hepatitis B, hepatitis C-related liver diseases, and alcohol-
related cirrhosis.
CONCLUSIONS

An SVM model by radiomics signature based on contrast-
enhanced CT images may be useful as a new approach to
predicting the histological grade of HCC before the operation.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding author.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Letter of Medical Ethics Committee of Shiyan Taihe
Hospital. The patients/participants provided their written
informed consent to participate in this study.
AUTHOR CONTRIBUTIONS

WC, TZ, and MZ reviewed and drafted the manuscript. TZ, RG,
and DW did the literature search. LX and LZmodified the figures.
HL and WC have revised and edited the manuscript. All authors
contributed to the article and approved the submitted version.
FUNDING

This studywas funded by the research grant from theHealthCommission
of Hubei Province scientific research project (WJ2021M047).
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fonc.2021.
660509/full#supplementary-material
REFERENCES
1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al.

Cancer Incidence and Mortality Worldwide: Sources, Methods and Major
Patterns in GLOBOCAN 2012. Int J Cancer (2015) 136(5):E359–86. doi:
10.1002/ijc.29210

2. Njei B, Rotman Y, Ditah I, Lim JK. Emerging Trends in Hepatocellular Carcinoma
Incidence and Mortality. Hepatology (2015) 61(1):191–9. doi: 10.1002/hep.27388
3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global
Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality
Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin (2018) 68
(6):394–424. doi: 10.3322/caac.21492

4. Nitta H, AllardMA, SebaghM, KaramV, Ciacio O, Pittau G, et al. Predictive Model
for Microvascular Invasion of Hepatocellular Carcinoma Among Candidates for
Either Hepatic Resection or Liver Transplantation. Surgery (2019) 165(6):1168–75.
doi: 10.1016/j.surg.2019.01.012
June 2021 | Volume 11 | Article 660509

https://www.frontiersin.org/articles/10.3389/fonc.2021.660509/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2021.660509/full#supplementary-material
https://doi.org/10.1002/ijc.29210
https://doi.org/10.1002/hep.27388
https://doi.org/10.3322/caac.21492
https://doi.org/10.1016/j.surg.2019.01.012
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Chen et al. Radiomics Analysis for HCC Grade
5. Pinna AD, Yang T, Mazzaferro V, De Carlis L, Zhou J, Roayaie S, et al. Liver
Transplantation and Hepatic Resection can Achieve Cure for Hepatocellular
Carcinoma: Erratum. Ann Surg (2019) 268:868–75. doi: 10.1097/
SLA.0000000000002889

6. Kulik L, El-Serag HB. Epidemiology and Management of Hepatocellular
Carcinoma. Gastroenterology (2019) 156(2):477–491.e1. doi: 10.1053/j.gastro.
2018.08.065

7. Tabrizian P, Jibara G, Shrager B, Schwartz M, Roayaie S. Recurrence of
Hepatocellular Cancer After Resection: Patterns, Treatments, and Prognosis.
Ann Surg (2015) 261(5):947–55. doi: 10.1097/SLA.0000000000000710

8. Huang PY,Wang CC, Lin CC, Lu SN,Wang JH, Hung CH, et al. Predictive Effects
of Inflammatory Scores in Patients With BCLC 0-a Hepatocellular Carcinoma
After Hepatectomy. J Clin Med (2019) 8(10). doi: 10.3390/jcm8101676

9. Zhou L, Rui JA, Wang SB, Chen SG, Qu Q. Clinicopathological Predictors of
Poor Survival and Recurrence After Curative Resection in Hepatocellular
CarcinomaWithout Portal Vein Tumor Thrombosis. Pathol Oncol Res (2015)
21(1):131–8. doi: 10.1007/s12253-014-9798-2

10. Zhou L, Rui JA, Zhou WX, Wang SB, Chen SG, Qu Q. Edmondson-Steiner
Grade: A Crucial Predictor of Recurrence and Survival in Hepatocellular
Carcinoma Without Microvascular Invasio. Pathol Res Pract (2017) 213
(7):824–30. doi: 10.1016/j.prp.2017.03.002
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Purpose: The present study aims to comprehensively investigate the prognostic value
of a radiomic nomogram that integrates contrast-enhanced computed tomography
(CECT) radiomic signature and clinicopathological parameters in kidney renal clear cell
carcinoma (KIRC).

Methods: A total of 136 and 78 KIRC patients from the training and validation cohorts
were included in the retrospective study. The intraclass correlation coefficient (ICC) was
used to assess reproducibility of radiomic feature extraction. Univariate Cox analysis and
least absolute shrinkage and selection operator (LASSO) as well as multivariate Cox
analysis were utilized to construct radiomic signature and clinical signature in the training
cohort. A prognostic nomogram was established containing a radiomic signature and
clinicopathological parameters by using a multivariate Cox analysis. The predictive ability
of the nomogram [relative operating characteristic curve (ROC), concordance index (C-
index), Hosmer–Lemeshow test, and calibration curve] was evaluated in the training
cohort and validated in the validation cohort. Patients were split into high- and low-risk
groups, and the Kaplan–Meier (KM) method was conducted to identify the forecasting
ability of the established models. In addition, genes related with the radiomic risk score
were determined by weighted correlation network analysis (WGCNA) and were used to
conduct functional analysis.

Results: A total of 2,944 radiomic features were acquired from the tumor volumes of
interest (VOIs) of CECT images. The radiomic signature, including ten selected features,
and the clinical signature, including three selected clinical variables, showed good
performance in the training and validation cohorts [area under the curve (AUC), 0.897
and 0.712 for the radiomic signature; 0.827 and 0.822 for the clinical signature,
respectively]. The radiomic prognostic nomogram showed favorable performance and
calibration in the training cohort (AUC, 0.896, C-index, 0.846), which was verified in the
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validation cohort (AUC, 0.768). KM curves indicated that the progression-free interval (PFI)
time was dramatically shorter in the high-risk group than in the low-risk group. The
functional analysis indicated that radiomic signature was significantly associated with T
cell activation.

Conclusions: The nomogram combined with CECT radiomic and clinicopathological
signatures exhibits excellent power in predicting the PFI of KIRC patients, which may aid in
clinical management and prognostic evaluation of cancer patients.
Keywords: contrast-enhanced computed tomography, artificial intelligence, kidney renal clear cell carcinoma,
prognosis, weighted correlation network analysis
INTRODUCTION

Regarded as one of the most prevalent tumors of the urogenital
system, renal cell cancer (RCC) is a highly malignant cancer
derived from the renal epithelium of the parenchyma. In 2020,
45,520 new cases were diagnosed in males and 28,230 in females.
RCC accounted for 5% of all male malignancies and 3% of all
female malignancies in 2020 (1). KIRC, the most epidemic
histological subtype of primary RCC, accounts for almost 90% of
all kidney malignancies with five-year survival rates of
approximately 44–69% (2, 3). Progress has been achieved through
multiple optional methods in surgical resection and systemic
therapies for KIRC; however, overall survival and prognosis,
especially if the cancer is detected at an advanced stage, are still
unsatisfactory if the cancer is not treated optimally, due to high
invasiveness, high mortality, and resistance to chemoradiotherapy
(2, 4).Worse still, the incidence of RCChas been steadily increasing
over the past several years (1, 2). The ability to predict prognosis
preoperatively and non-invasively is vital. However, specific
biomarkers are still lacking because of the complexity of disease
progression and high heterogeneity of KIRC. It is urgent that we
explore biomarkers that are capable of predicting and monitoring
prognosis with good accuracy and then provide a personalized
strategy for judgment of clinical treatment.

Radiomics, as a rapidly developing field of transforming
medical images into available data in radiology, has the
capability to investigate efficacy monitoring, prognosis
surveillance, micro-environment evaluation, and biological
behavior assessment via quantitatively extracting features and
excavating in-depth characterization of tumor phenotypes
beyond imaging interpretation (5, 6). Radiomics not only can
show relationships between radiomic signatures and genomics,
metabolomics, and proteomics but also offer a non-invasive way
to create objectively quantitative biomarkers of tumor biology
that might be of value in predicting prognosis and therapy
response (7). Recently, increasing attention has been focused
on the application of computed tomography (CT) radiomic in
RCC, which has satisfactory potential in lesion characterization
(8–10), histological grade (11–13) and assessment of response to
treatment (14, 15). Nevertheless, the correlation between
radiomic features and the prognosis of KIRC patients is still
undefined, and thorough research should be conducted to
provide references for clinical work.
2404
To address the need for a non-invasive, preoperative method
of assessing the prognosis of KIRC patients, we have developed a
contrast-enhanced computed tomography (CECT) radiomic
prognostic signature based on three-dimensional (3D) medical
images, and we have identified clinical signature based on clinical
parameters in this study. With the combination of radiomic
features and clinical parameters, a comprehensive nomogram
was established to evaluate the progression-free interval (PFI) of
patients suffering from KIRC. In order to further investigate the
relationship between radiomic characteristics and gene
regulation, weighted correlation network analysis (WGCNA)
and function enrichment as well as signaling pathway analysis
were performed. Fortunately, the results of this research
indicated that our radiomic nomogram could not only predict
prognosis and guide clinical therapy of KIRC but also elucidate
the underlying molecular mechanism of KIRC.
MATERIALS AND METHODS

Sample Collection
A total of 136 patients with KIRC were collected from our
hospital from 2012 to 2016 as the training cohort of the study.
This study was approved by the hospital ethics committee, and
informed consent was waived due to its retrospective nature.
The inclusion criteria were as follows: (1) KIRC was
histologically confirmed postoperatively; (2) patients
preoperatively received CECT examination; and (3) CECT
images and corresponding prognostic data could be obtained.
The exclusion criteria were as follows (1): the patients received
preoperative chemotherapy or chemoradiotherapy; (2) the renal
lesion was poorly displayed on the images; and (3) preoperative
CECT image, relevant clinicopathological parameters of
patients were lacking. Data of clinicopathological parameters
[age, gender, clinical staging (cTNM), and pathology grade, PFI
time] and CECT images were obtained from electronic patient
record system.

The validation cohort comprised CECT images of patients
with KIRC from The Cancer Imaging Archive (TCIA; http://
www.cancerimagingarchive.net/) datasets and their relevant
clinicopathological data gathered from websites from The
Cancer Genome Atlas (TCGA; https://cancergenome.nih.gov/).
The inclusion and exclusion criteria and collection of
July 2021 | Volume 11 | Article 613668
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clinicopathological parameters were consistent with those
mentioned above.

Image Acquisition and Delineation of the
Area of Interest
An abdominal CECT examination containing phase scanning of
the corticomedullary phases (CMP) (30–40 s), nephrographic
phases (NP) (70–90 s), and excretory phases (EP) (3–4 min) was
preoperatively adopted in enrolled patients. Three CT scanning
instruments were applied in this study, and the specific models
and scanning parameter configurations were shown in Table 1.
In our study, only the corticomedullary phase (CMP) of CECT
was used for radiomic analysis, and the identification of CMP
was determined by the method of previous studies (16, 17). The
3D volumes of interest (VOI), including the target lesion on the
CMP of the CECT images, was segmented by two experienced
radiologists with 10 years of radiology experience using ITK-
SNAP (http://www.itksnap.org/) (18).

Radiomic Features Extraction
Feature extraction was conducted by Ultrasomics (Version 2.1),
which is software capable of high-throughput extraction of
massive image features (19–21). A total of 2,944 high-
throughput radiomic characteristics were acquired automatically
from VOI based on each target lesion of the tumor. The radiomic
features consisted of six different feature types (1): 122 original
(such as first-order statistics, shape descriptors, texture classes,
gray-level co-occurrence matrix, gray-level run length matrix, and
gray-level size zone matrix) (2); 1,170 co-occurrence of local
anisotropic gradient orientations (CoLIAGe) (3); 432 wavelets +
local binary pattern (LBP) (4); 1,080 Gabors (5); 80 phased
congruency-based local binary pattern (PLBP); and (6) 60
wavelet-based improved local binary pattern (WILBP) features.

Intraclass Correlation Coefficient Analysis
In order to assess the reproducibility of radiomic features
exaction, 30 cases were randomly chosen from all patients, and
their CECT images were segmented by the two radiologists
mentioned above in a double-blind condition to test the
consistency of the delineation of the tumor VOI. The intraclass
correlation coefficient (ICC) was adopted to measure the inter-
observer consistency of the feature extraction. Radiomic features
with ICC values ≥0.75 indicate a strong consistency.

Sample Grouping and Feature
Preprocessing
In the design of this study, the cases from our hospital were used
as the training cohort, and the cases from TCIA were used as the
validation cohort. Similarly, according to the grouping
Frontiers in Oncology | www.frontiersin.org 3405
information, the corresponding radiomic features and clinical
parameters were divided into two groups. A calculative model
was applied to the training cohort to learn underlying patterns
hidden in the datasets, and a validation cohort was used to
evaluate the predictability of the model. For these radiomic
features, z-score standardization was conducted to normalize
the radiomic profiles in the training cohort and validation
cohort, respectively.

Survival Analysis and Establishment of
Prognostic Signatures
To search for radiomic features and clinical parameters
significantly associated with survival, survival analysis of the
training cohort was performed using the “survival” package. We
defined PFI as an end point event, and PFI is commonly used in
cancer therapy monitoring. The definition of the endpoint was
consistent with previous studies (22, 23). Univariate Cox
regression analysis was conducted to investigate the relevance
of each radiomic feature, clinical variable, and PFI. Significant
(P < 0.1) variables were contained in the subsequent regressive
analysis. Aimed at selecting predictors with the highest predictive
power, using the R “glmnet” package the LASSO-penalized Cox
regression algorithm was adopted to reduce the dimension of
high-dimensional data in the training cohort and to select the
radiomic features with the strongest prognostic value and the lowest
relationship among each other (24, 25). In LASSO regression, the
optimal Lambda value was chosen according to the minimum
mean square error. With the help of the “survival” package,
multivariable Cox analysis was applied to further determine the
most useful prognostic radiomic features and clinical variables with
independent prognostic values using stepwise regression analysis
and the best subset regression method. Subsequently, a radiomic
signature and a clinical signature were established by linear
combination method. The weight coefficients of the radiomic
features and clinical variables were derived from the regression
coefficients in multivariate survival analysis by setting the PFI as the
attributive variable. The KIRC patients were split into low- and
high-risk groups according to the median risk score of each risk
signature. The KM curve, time-dependent ROC curve, and
Concordance index (C-index) were used to assess the efficiency of
each risk signature by using the “survivalROC” package and the
“survcomp” package (26, 27).

Development and Validation of
the Nomogram
To explore the prognostic value of the combinative signature
with clinical factors, we took the radiomic signature and
meaningful clinical parameters into the Cox regression model
to generate a combined clinical–radiomic model. In order to
TABLE 1 | Summary of parameters of CT models and scanning protocols.

CT Instruments Tube Voltage Tube Current Slice Thickness Matrix

Training cohort GE, SIEMENS 100–120 KV 76–659 mA 1–5 mm 512 × 512 matrix
Validation cohort GE, SIEMENS, Philips 120–140 KV 72–620 mA 1.25–5 mm 512 × 512 matrix
July 2021 | Volume 11
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visualize model efficiency, the trained cohort was applied to
develop the easy-to-use nomogram of the clinical prognostic
prediction model using the “rms” package, and the validated
cohort was used for external verification. Similarly, high- and
low-risk groups were determined based on the median risk score
from the clinical–radiomic prediction model, and KM curves
were drawn to assess differences in PFI between the two groups
of patients. C-index and ROC curve analysis were used to
measure nomogram performance. A calibration curve was
utilized to assess the predictive accuracy of the nomogram, and
model fitness was assessed by the Hosmer and Lemeshow
goodness-of-fit test.

WGCNA and Functional Analysis
In order to investigate the molecular microcosmic meaning of
radiomic features and reveal the underlying association of
radiomic features and transcriptome molecular function,
unsigned WGCNA was performed to determine genes that
were correlated to prognostic radiomic features using the
“WGCNA” package (28). WGCNA is a systematic biology
approach illustrating patterns of gene relevance of different
phenotypes and seeking clusters (modules) of highly relevant
genes and correlative modules with external sample traits.
Transcriptomics data of KIRC were acquired from TCGA. In
this study, only the protein-encoding messenger RNAs (mRNAs)
were selected to investigate the molecular functional
characteristics of KIRC; low-abundance protein-coding genes
with average log2 (count + 1) values <0.5 were discarded. The
gene modules that correlated with radiomic features most
significantly were selected as the key modules, which were used
for subsequent function enrichment and signaling pathways
analysis. The “clusterProfiler” package was used for performing
Frontiers in Oncology | www.frontiersin.org 4406
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis. As a conventional method, GO
enrichment analysis was applied to assess biological process
(BP), molecular functions (MF), and cellular components (CC)
involved in the genes of interest. KEGG pathway analysis was
aimed at identifying the underlying functional and signaling
pathways connected to modules genes.
RESULTS

Patient Clinical Parameters
The flowchart of our research was displayed in Figure 1, and the
flowchart of patients selected and included from TCIA was shown
in Supplementary Figure 1. There were 78 KIRC patients from
TCGA who satisfied the entry criteria for enrolling in the study.
The schematic diagram of the complete 3D geometric image
obtained by manually drawing and segmenting the VOI was
shown in Figure 2. Detailed clinical baseline characteristics of
patients were presented in Supplementary Table 2. In the training
cohort, there were 97 cases in males and 39 cases in females, with a
median age of 53 years and an age range of 20–81 years. The
median follow-up time for PFI was 1,470 days. In the validation
cohort, there were 44 cases in males and 34 cases in females, with a
median age of 59 years and an age range of 26–85 years. The
median follow-up time for PFI was 1,227 days.

Intraclass Correlation Coefficient Analysis
and Feature Preprocessing
A total of 2,944 features were extracted from the CT images. The
average and median values of the inter-observer ICC of radiomic
features were 0.814 and 0.974. The ICC result showed good
FIGURE 1 | Technology roadmap of this study.
July 2021 | Volume 11 | Article 613668
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consistency between groups. After the ICC analysis, there were
2,244 (76.22%) radiomic features with ICC≥0.75, which indicated
that these radiomic features had good reproducibility. Z-score
standardization of radiomic features was done as described in the
Materials and Methods section. A total of 1,901 radiomic features
were used for subsequent prognostic analysis.

Radiomic Features and Clinical
Variable Selection
In the univariate Cox regression analyses, 43 radiomic features,
age, cTNM, and grade were significantly correlated with the PFI
of KIRC patients (P < 0.1) and were used for subsequent
investigation. In multivariate analysis, double feature-
dimension reduction methods (LASSO and stepwise regression
analysis) were used to identify the 10 radiomic features and
clinical variable (cTNM) (P < 0.05) that were independent
prognostic markers for PFI (Figure 3). Although age (P =
0.051) and pathological grade (P = 0.059) did not show
significant significance in multivariate Cox regression analysis,
both of them are clinically important factors affecting the
prognosis of KIRC, so we also included them in our clinical
prediction signature (Table 2).

Development and Validation of the
Prognostic Signatures
The radiomic prognostic signature, consisting of ten features,
and the clinical prognostic signature, consisting of three clinical
variables, were constructed by multivariate Cox analysis (Table 3
and Supplementary Table 2). The correlation analysis heat maps
of the modeling radiomic features in the training cohort and the
validation cohort were shown in Figure 4. In terms of prediction
accuracy, we found that our prediction signatures performed
well. For radiomic signature, the AUC for the training cohort was
Frontiers in Oncology | www.frontiersin.org 5407
0.897, and the AUC for the validation cohort was 0.712
(Figures 5A, B). The AUC of the training cohort in the
clinical signature was 0.827, and the AUC of the validation
cohort was 0.822 (Figures 5C, D). The C-index values of the
radiomic signature and the clinical signature were 0.861 (95% CI
0.789–0.927) and 0.784 (95% CI 0.696–0.872), respectively. The
KM survival curve analysis of both the radiomic signature and
the clinical signature revealed that the PFI of the high-risk group
was dramatically shorter than that of the low-risk group (P <
0.05) (Supplementary Figures 2 and 3). These results mean that
the above-risk signatures performed well in predicting the
clinical outcome of KIRC patients.

Nomogram Construction and Evaluation
Because clinical characteristics are also important factors in cancer
outcome, they were added to the comprehensive multivariate Cox
regression model. A comprehensive nomogram including
radiomic score and clinical pathological parameters was
developed and visualized for intuitively predicting the PFI of
KIRC patients (Figure 6A). The comprehensive risk model in
the training cohort had an AUC of 0.896 in predicting PFI of
KIRC, and the AUC was 0.768 in the validation cohort
(Figures 6B, C). The C-index was 0.846. The calibration curves
exhibited good agreement between the forecast by the nomogram
and actual 1-, 3- and 5-year PFI in both the training cohort and the
validation cohort (Figures 7A, B). Determination coefficient (R2)
was used to test the goodness fit of the model. In the present
design, the value of the determination coefficient was R2 = 0.381.
The survival analysis showed that the PFI time of the high-risk
group was significantly shorter than that of the low-risk group
(Figure 8). Collectively, these consequences indicated that the
clinical–radiomic signature was a valuable prognostic index for
KIRC patients’ stratification and a good indicator for outcome.
FIGURE 2 | Schematic diagram of the complete 3D geometric image obtained by manually drawing and segmenting the VOI from the CECT examination. 3D, three
dimensions; VOI, volumes of interest; CECT, contrast-enhanced computed tomography.
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Molecular Characteristics of the
Radiomic Features
WGCNA was applied to seek highly co-expressed gene modules
and to investigate the correlation between modules and biological
traits. WGCNA networks are superior to correlation networks
because genes could be zoned into various modules, probably
with similar biological function within each individual module
(29). To investigate the underlying molecular function of radiomic
features, WGCNA was used to find gene modules of highly
correlated radiomic signature risk scores (Figures 9A, B). Eight
modules of covariant gene sets were identified to be correlated with
radiomic risk score (Figure 10A). Correlation analysis between
each module was performed and visualized as a correlation heat
map (Figure 10B). Among these eight modules, the most relevant
Frontiers in Oncology | www.frontiersin.org 6408
module is the turquoise module (R = 0.46, P = 8.3e-23, Figure 11),
which was selected for functional enrichment analysis. The
functional analysis showed that genes in the turquoise module
were most enriched in T cell activation in BP. For CC, genes were
most strongly related to immunological synapse. For MF, genes of
modules were mainly enriched in chemokine activity. KEGG
analysis of those genes showed their enrichment in T cell receptor
signaling pathway. The tenmostmeaningful pathways of these four
enrichment analyses were shown in Figure 12 and Table 4.

DISCUSSION

As we expected, it has been a focus that a combination of
radiomic and clinical markers would help predict survival
BA

FIGURE 3 | LASSO was utilized to identify the radiomic features that highly correlated with the PFI of KIRC patients. (A) LASSO path map, radiomic features
corresponding to different alpha features. (B) Optimal lambda resulted in 16 non-zero coefficients for the radiomic signature. PFI, progression-free interval; LASSO,
least absolute shrinkage and selection operator; KIRC, Kidney Renal Clear Cell Carcinoma.
TABLE 2 | Univariate and multivariate Cox regression analyses of clinicopathological parameters.

Univariate Cox Regression Multivariate Cox Regression

Variable B P HR (95% CI) B P HR (95% CI)

Gender −0.267 0.517 0.766 (0.341–1.718)
Age 0.030 0.060 1.030 (0.999–1.063) 0.033 0.051 1.033 (1.000–1.068)
cTNM 1.883 <0.001* 6.576 (3.014–14.347) 1.593 <0.001* 4.916 (2.151–11.237)
Grade 1.062 0.009* 2.891(1.310–6.378) 0.810 0.059 2.249 -(0.969–5.218)
July 2021 | Volum
HR, hazard ratio; *p < 0.05.
TABLE 3 | Univariate and multivariate Cox regression analysis of radiomic normogram.

Univariate logistic regression analysis Multivariate logistic regression analysis

Variable B P HR (95% CI) B P HR (95% CI)

Gender -0.267 0.517 0.766 (0.341-1.718)
Age 0.030 0.060 1.030 (0.999-1.063) 0.036 0.055 1.036 (0.999-1.075)
cTNM 1.883 <0.001* 6.576 (3.014-14.347) 1.131 0.019* 3.099 (1.203-7.984)
Grade 1.062 0.009* 2.891 (1.310-6.378) 0.869 0.047* 2.384 (1.013-5.610)
Radiomic signature 0.014 <0.001* 1.014 (1.009-1.020) 0.012 <0.001* 1.012 (1.006-1.017)
HR, hazard ratio; *p < 0.05.
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A B

FIGURE 4 | Co-expression heat maps of radiomic features used to build the radiomic signature. (A, B) co-expression heat maps of the radiomic modeling features
in the training cohort and validation cohort. Positive correlation represents co-expression relationships between radiomic features; and negative correlation represents
negative co-expression relationships between features. Red indicates a positive correlation; blue indicates a negative correlation.
A B

C D

FIGURE 5 | The ROC curve of the radiomic and clinical signature. (A, B) The ROC of the radiomic signature in the training cohort and the validation cohort.
(C, D) The ROC of the clinical signature in the training cohort and the validation cohort. ROC, relative operating characteristic curve.
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outcome non-invasively and guide clinical decisions for
clinicians. Our study is innovative because this is the first time
3D radiomic signature and clinicopathological characteristics of
KIRC patients have been comprehensively integrated with CECT
to confirm radiomic indicators for predicting the PFI of patients,
and it is the first time a nomogram that can visually display
numerical quantization of each factor to predict survival of KIRC
patients has been developed. We investigated the correlation
between radiomic features andmolecular biological characteristics,
which might be conducive to a deeper understanding of biological
processes and molecular mechanisms in KIRC. The excellent
performance of our radiomic signature, clinical signature, and
predictive nomogram was observed based on our results, and it
suggests that ourmodels can be used to efficiently predict prognosis
Frontiers in Oncology | www.frontiersin.org 8410
of KIRC patients and create a robust clinical decision framework
for clinicians.

As the most common subtype, which comprised almost 90% of
RCC patients in clinic, KIRC has strong potential to metastasize,
resulting in theworst prognosis (30). Patients diagnosedwithKIRC
with lymph node involvement or distant metastasis have low five-
year survival rates (31). Additionally, KIRC patients with the same
type of tumor might have different prognoses due to the complex
internal structure and high heterogeneity within tumors. Complete
resection or percutaneous core histopathology biopsy is still a
traditional invasive method to assess prognostic indicators (i.e.
histological classification, grades, and stages) of KIRC for guiding
further treatment (30, 32). An objective andnon-invasive approach
is needed to evaluate and predict clinical outcome of patients with
A

B C

FIGURE 6 | Development and validation of the nomogram. (A) The nomogram for predicting 1, 3, and 5 years PFI of KIRC patients. An example of how to use the
nomogram was presented below: a patient that has a radiomic score of 150 and is 60 years old; the pathological grade is high and the cTNM stage is IV. According
to the point scale on the nomogram, the points for the four indicators are 25, 10, 12.5 and 0, then the points of these four factors are added up to a total score of
47.5. The next step is to find 47.5 points on the total points scale below, and draw a line perpendicular to the following three axes. Then the probability of one-year
PFI of this patient is between 0.8 and 0.9, which is about 0.82, indicating that the probability of one-year PFI of this patient is 82%, and the remaining probability
values can be obtained in the same way. (B, C) ROC curve of the nomogram for predicting PFI in the training and the validation cohorts. PFI, progression-free
interval; KIRC, Kidney Renal Clear Cell Carcinoma; ROC, relative operating characteristic curve.
July 2021 | Volume 11 | Article 613668

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Gao et al. Prognostic Value of Radiomics
A B

FIGURE 7 | Calibration curves of the predictive nomogram. (A, B) Calibration curves of the nomogram to predict the probability of PFI at 1, 3, and 5 years in the
training cohort and the validation cohort. PFI, progression-free interval.
A

B

FIGURE 8 | KM survival analyses of the predictive nomogram. (A, B) KM analysis of the predictive nomogram indicated that the high-risk group had a shorter PFI
compared with that of the low-risk group. KM, Kaplan-Meier; PFI, progression-free interval.
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KIRC. CECT performs a vital part in the diagnosis and prognosis
monitoring of renal disease because it is non-invasive and
convenient, especially when compared to biopsy, surgery, and
immunohistochemistry. Biopsy is not always necessary, because
imaging is a highly accurate way of characterizing renalmalignancy
(33). Radiomics, which has been a popular way to extract
characteristics in mass data from each medical image, could
provide the characteristics and functions of tumors at the
macroscopic even at micromolecular level (7). Recently, several
studies of immense value in exploring the biological progress of
KIRC via the construction of radiomic models by CT images have
been published. Zhan Feng and Burak Kocak B et al., respectively
proved that CT radiomic has the potential to predict BRCA1-
associated protein 1 (BAP1) mutation status in KIRC patients (34,
35). Payel Ghosh et al. provided a radiomic–genetics pipeline that
can extract 3D intra-tumor heterogeneity features from CECT
images and explore associations between features and gene
mutation status (36). A proposed integrative radiogenomics
method could evaluate risk of postoperative metastasis in KIRC
with pathological stage T1, which would be beneficial for
postsurgical metastasis treatment of KIRC patients (37). Burak
Kocak et al. provided a radiomic model to predict histopathologic
nuclear grade by using the radiomic features extracted from
unenhanced CT texture analysis of KIRC tumors (13). Other
researches constructed classification models that preoperatively
Frontiers in Oncology | www.frontiersin.org 10412
identified pathological grades of KIRC patients by using machine-
learning-based CT radiomic with non-invasion (38–43). Certain
studies also showed the significance of CT radiomic in
distinguishing KIRC from other renal mass diseases. Ruimeng
Yang et al. developed various machine-learning-based
classification models to differentiate renal angiomyolipoma and
KIRC with favorable performance (44). Heidi Coy et al. illustrated
the utility of machine learning in differentiating KIRC from
oncocytoma on routine CT images by using their models, which
had the ability to accurately predict renal lesion histology on
imaging (45). Xiaoli Meng et al. proposed a CT-based radiomic
method to distinguish sarcoma and KIRC with good diagnostic
performance (46). However, no published studies explore and
predict the PFI of KIRC patients via construction of CT radiomic.
3D analysis has shown that 3D structures of targeted lesion ismore
representative of tumor heterogeneity than two-dimension analysis
(47). Our study is the first to predict the PFI of KIRC patients by
developing CT radiomic models based on 3D CECT images, and
ourmodel achieves good predictive efficacy. In the area of radiomic
signature, the radiomic features thatwere selected as relative factors
of prognosis in our study might reflect the degree of tumor
progression and assist in the evaluation of postoperative disease
progression, treatment effect, and prognosis prediction of KIRC
patients. In the area of genomic analysis, identification of specific
molecular biological characteristics and regulatory mechanism
A

B

FIGURE 9 | Gene modules associated with radiomic risk scores were determined by WGCNA. (A) The association between diversified samples. (B) Cluster
dendrogram and module assignment for modules from network analysis. WGCNA, weighted correlation network analysis.
July 2021 | Volume 11 | Article 613668

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Gao et al. Prognostic Value of Radiomics
could not only assist in management and surveillance for KIRC
patients but also improve the diagnosis, prognosis, and therapeutic
strategy choices for KIRCpatients (48–51). In this study, we are the
first to provide a predictive nomogram that integrates radiomic and
clinicopathological characteristics for predicting the PFI of KIRC
patients. The results indicate that ourmodels could be a pivotal tool
for prognostic surveillance of KIRC.

The highlight of this study was to explore the relationship
between biological information analysis and radiomic features in
KIRC, which would provide further information to help us
understand the underlying mechanisms and lay the foundation
for accurate diagnosis, prognostic judgment, and optimal
strategy choice of KIRC for clinicians. Interestingly, the
radiomic risk score we performed was closely bound up with
various cells of the immune system, especially T cell activation in
biological processes. For all we know, at the molecular level, the
tumor often involves various cells of the immune-system
participation, and it is a complex interplay that has many
stages and steps related to the tumor microenvironment. The
role of regulatory T cells in cancer has gained concern, and
regulatory T cells play a vital role in the progression of KIRC in
internal and peripheral tissues (52–54). The high percentages of
regulatory T cell activation in peripheral blood or tumorous
Frontiers in Oncology | www.frontiersin.org 11413
tissues were correlated to low survival rates in kidney cancer
(55–57). Hence, timely and appropriate anticancer treatment,
especially immunotherapy, should take the dynamics of the
immune response in KIRC patients into account. Several
recent studies had investigated the relationship between the
cellular immunity-activating system and radiomic signatures in
cancer management. For instance, Roger Sun et al. used radiomic
to evaluate tumor-infiltrating CD8 cells and response to anti-PD-
1 or anti-PD-L1 immunotherapy, which offered a novel method
for predicting the immune phenotype and inferring clinical
results for cancer patients (6). Xujie Gao et al. proposed a CT
radiomic feature to assess tumor-infiltrating T cells and predict
prognosis of gastric carcinoma (58). These findings possibly
reflected the close relationship among radiomic features and
cells of the immunity-activating system. The radiomic features
could serve as non-invasive predictors of immuno-oncological
characteristics, and they may aid in treatment and outcome
management of cancer patients. However, assessment of the
crucial relationship between the radiomic score we developed
and immune-system cell response, especially T cell activation,
needs further exploration and verification in future studies.

There were some inevitable limitations to our study. First of all,
the sample size was insufficient. Our study contained only 214
A

B

FIGURE 10 | Gene co-expression module identification and correlation analysis. (A) Distribution of average gene significance in the modules related with radiomic
risk scores. The y-axis represents the significance values. (B) The heat map of the correlation between gene modules.
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FIGURE 11 | The relationships between the radiomic signature and genes in eight modules. The turquoise modules was highly associated with radiomic risk score
and the genes that were selected for further analysis.
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KIRC patients, and the performance and efficiency of the predictive
signatures were limited. A prospective cohort study with larger
sample sets is recommended. Moreover, our conclusion depended
on two center institutions, which might limit the scope of its
generalizability. A multi-center prospective study is required to
validate this predictive model in a larger population in the future.
Additionally, our model only explored the tumor regions with
imaging and clinicopathological characteristics. To the best of our
knowledge, the peripheral tumor also provided the biological
information related to prognosis monitoring. We recommend
further exploration of this aspect in the future.

Summarily, our results show satisfactory performance of
CECT radiomic and clinical signatures in predicting clinical
prognosis. Risk stratification with specific risk scores by
radiomic signature has been accurately performed, and the
Frontiers in Oncology | www.frontiersin.org 13415
predictive nomogram, which comprehensively integrates
radiomic and clinical signature, has the capability to effectively
predict outcomes for KIRC patients and to facilitate clinical
decision-making for clinicians. Multi-center studies with larger
samples are needed to validate our models for clinical practice.
CONTRIBUTION

Kidney renal clear cell carcinoma (KIRC) has a poor overall
survival and prognosis especially in advanced stage due to high
invasiveness, high mortality, and insensitivity to chemoradiotherapy.
Radiomics, as a rapidly developing field of transforming medical
images into available data in radiology, has the capability to
investigate efficacy monitoring, prognosis surveillance, and
A B

C D

FIGURE 12 | Functional enrichment analysis and signaling pathway analyses of genes associated with radiomic signature. (A) Biological process. (B) Cellular
components. (C) Molecular functions. (D) KEGG pathway. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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biological behavior assessment via quantitatively extracting features
and excavating in-depth characterization of tumor phenotypes
beyond imaging interpretation. Radiomics is expected to become
an intelligent tool for clinical diagnosis, efficacy evaluation, and
prognosis prediction of cancer. Contrast-enhanced computed
tomography (CECT), as an imaging exam way, was commonly
used in clinic to perform a vital part in the diagnosis and prognosis
monitoring of renal disease. The present study aims to explore the
relationship between radiomic features, clinical parameters, and
progression-free interval (PFI) of KIRC. We further developed and
validated a radiomic nomogram that integrates CECT radiomic
signature and clinical–pathological parameters for predicting the
clinical outcome of KIRC. Meanwhile, we also conducted the
molecular functional enrichment analysis to reveal the potential
molecular mechanism. In our results, our radiomic signature,
clinical signature, and radiomic nomogram were proved robust for
prognostic prediction in KIRC patients. To some extent, this study
may reveal the underlying molecular mechanism in the development
Frontiers in Oncology | www.frontiersin.org 14416
and progression of KIRC andmay contribute to clinical management
and prognostic evaluation of patients with KIRC.
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TABLE 4 | GO and KEGG pathway enrichment analysis of radiomic-related genes.

Categories ID Description P. adjust

BP GO:0042110 T cell activation 2.75E-53
GO:0051249 regulation of lymphocyte activation 2.71E-41
GO:0050863 regulation of T cell activation 2.71E-41
GO:1903037 regulation of leukocyte cell–cell adhesion 8.27E-38
GO:0050870 positive regulation of T cell activation 5.66E-30
GO:0050867 positive regulation of cell activation 1.54E-29
GO:0032943 mononuclear cell proliferation 1.56E-29
GO:0030217 T cell differentiation 4.41E-28
GO:0042098 T cell proliferation 3.43E-25
GO:0001819 positive regulation of cytokine production 3.48E-25

CC GO:0009897 external side of plasma membrane 1.50E-19
GO:0070821 tertiary granule membrane 1.60E-08
GO:0042611 MHC protein complex 1.16E-06
GO:0001772 immunological synapse 1.42E-06
GO:0098802 plasma membrane receptor complex 5.60E-06
GO:0030666 endocytic vesicle membrane 9.12E-06
GO:0042613 MHC class II protein complex 1.23E-05
GO:0045335 phagocytic vesicle 1.23E-05
GO:0098636 protein complex involved in cell adhesion 7.35E-05
GO:0042101 T cell receptor complex 0.00291

MF GO:0008009 chemokine activity 2.17E-06
GO:0004896 cytokine receptor activity 3.23E-06
GO:0005126 cytokine receptor binding 5.49E-06
GO:0005125 cytokine activity 5.49E-06
GO:0042287 MHC protein binding 9.69E-06
GO:0042379 chemokine receptor binding 9.69E-06
GO:0015026 coreceptor activity 1.92E-05
GO:0032395 MHC class II receptor activity 5.76E-05
GO:0019864 IgG binding 9.22E-05
GO:0042288 MHC class I protein binding 0.000125

KEGG hsa04060 Cytokine-cytokine receptor interaction 3.24E-12
hsa04061 Viral protein interaction with cytokine and cytokine receptor 1.81E-10
hsa04658 Th1 and Th2 cell differentiation 2.44E-10
hsa04514 Cell adhesion molecules 5.32E-10
hsa04062 Chemokine signaling pathway 1.79E-09
hsa04650 Natural killer cell mediated cytotoxicity 5.78E-09
hsa04660 T cell receptor signaling pathway 1.52E-06
hsa04612 Antigen processing and presentation 1.17E-05
hsa04662 B cell receptor signaling pathway 1.85E-05
hsa04064 Cytokine-cytokine receptor interaction 3.21E-09
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GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological process; CC, cellular components; MF, molecular functions.
le 613668

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
http://www.cancerimagingarchive.net/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Gao et al. Prognostic Value of Radiomics
The ethics committee waived the requirement of written
informed consent for participation.
AUTHOR CONTRIBUTIONS

RG and HQ took part in the conception and design of the study.
PL, RW, JingH, YL, JiangH, CM, CL, and DyW collected and
sorted the data. RG, HQ, DyW, XL, and XW participated in data
analysis and interpretation. GC, HY, and YH supervised and
revised the manuscript. All authors contributed to the article and
approved the submitted version.
Frontiers in Oncology | www.frontiersin.org 15417
ACKNOWLEDGMENTS

No funding or financial support was received for this study. The
authors would like to thank the TCGA and TCIA databases for
the availability of the data.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fonc.2021.613668/
full#supplementary-material
REFERENCES

1. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2020. CA Cancer J Clin
(2020) 70(1):7–30. doi: 10.3322/caac.21590

2. Padala SA, Kallam A. Cancer, Clear Cell Renal Carcinoma. Treasure Island
FL: StatPearls (2020).

3. Motzer RJ, Tannir NM, McDermott DF, Aren Frontera O, Melichar B,
Choueiri TK, et al. Nivolumab Plus Ipilimumab Versus Sunitinib in
Advanced Renal-Cell Carcinoma. N Engl J Med (2018) 378(14):1277–90.
doi: 10.1056/NEJMoa1712126

4. Rini BI, Campbell SC, Escudier B. Renal Cell Carcinoma. Lancet (2009) 373
(9669):1119–32. doi: 10.1016/S0140-6736(09)60229-4

5. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG,
Granton P, et al. Radiomics: Extracting More Information From Medical
Images Using Advanced Feature Analysis. Eur J Cancer (2012) 48(4):441–6.
doi: 10.1016/j.ejca.2011.11.036

6. Sun R, Limkin EJ, Vakalopoulou M, Dercle L, Champiat S, Han SR, et al. A
Radiomics Approach to Assess Tumour-Infiltrating CD8 Cells and Response
to Anti-PD-1 or Anti-PD-L1 Immunotherapy: An Imaging Biomarker,
Retrospective Multicohort Study. Lancet Oncol (2018) 19(9):1180–91.
doi: 10.1016/S1470-2045(18)30413-3

7. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are More Than Pictures,
They Are Data. Radiology (2016) 278(2):563–77. doi: 10.1148/radiol.2015151169

8. Lubner MG. Radiomics and Artificial Intelligence for Renal Mass
Characterization. Radiol Clin North Am (2020) 58(5):995–1008.
doi: 10.1016/j.rcl.2020.06.001

9. Hodgdon T, McInnes MD, Schieda N, Flood TA, Lamb L, Thornhill RE. Can
Quantitative Ct Texture Analysis be Used to Differentiate Fat-Poor Renal
Angiomyolipoma From Renal Cell Carcinoma on Unenhanced Ct Images?
Radiology (2015) 276(3):787–96. doi: 10.1148/radiol.2015142215

10. Varghese BA, Chen F, Hwang DH, Cen SY, Desai B, Gill IS, et al.
Differentiation of Predominantly Solid Enhancing Lipid-Poor Renal Cell
Masses by Use of Contrast-Enhanced Ct: Evaluating the Role of Texture in
Tumor Subtyping. AJR Am J Roentgenol (2018) 211(6):W288–96.
doi: 10.2214/AJR.18.19551

11. Bektas CT, Kocak B, Yardimci AH, Turkcanoglu MH, Yucetas U, Koca SB,
et al. Clear Cell Renal Cell Carcinoma: Machine Learning-Based Quantitative
Computed Tomography Texture Analysis for Prediction of Fuhrman Nuclear
Grade. Eur Radiol (2019) 29(3):1153–63. doi: 10.1007/s00330-018-5698-2

12. Han D, Yu Y, Yu N, Dang S, Wu H, Jialiang R, et al. Prediction Models for
Clear Cell Renal Cell Carcinoma ISUP/WHO Grade: Comparison Between
CT Radiomics and Conventional Contrast-Enhanced CT. Br J Radiol (2020)
93(1114):20200131. doi: 10.1259/bjr.20200131

13. Kocak B, Durmaz ES, Ates E, Kaya OK, Kilickesmez O. Unenhanced CT
Texture Analysis of Clear Cell Renal Cell Carcinomas: A Machine Learning-
Based Study for Predicting Histopathologic Nuclear Grade. AJR Am J
Roentgenol (2019), W1–8. doi: 10.2214/AJR.18.20742

14. Haider MA, Vosough A, Khalvati F, Kiss A, Ganeshan B, Bjarnason GA. CT
Texture Analysis: A Potential Tool for Prediction of Survival in Patients With
Metastatic Clear Cell Carcinoma Treated With Sunitinib. Cancer Imaging
(2017) 17(1):4. doi: 10.1186/s40644-017-0106-8
15. Goh V, Ganeshan B, Nathan P, Juttla JK, Vinayan A, Miles KA. Assessment of
Response to Tyrosine Kinase Inhibitors in Metastatic Renal Cell Cancer: CT
Texture as a Predictive Biomarker. Radiology (2011) 261(1):165–71.
doi: 10.1148/radiol.11110264

16. Cohan RH, Sherman LS, Korobkin M, Bass JC, Francis IR. Renal Masses:
Assessment of Corticomedullary-Phase and Nephrographic-Phase CT Scans.
Radiology (1995) 196(2):445–51. doi: 10.1148/radiology.196.2.7617859

17. Kocak B, Ates E, Durmaz ES, Ulusan MB, Kilickesmez O. Influence of
Segmentation Margin on Machine Learning-Based High-Dimensional
Quantitative CT Texture Analysis: A Reproducibility Study on Renal Clear Cell
Carcinomas. Eur Radiol (2019) 29(9):4765–75. doi: 10.1007/s00330-019-6003-8

18. Yushkevich PA, Yang G, Gerig G. Itk-Snap: An Interactive Tool for Semi-
Automatic Segmentation of Multi-Modality Biomedical Images. Annu Int
Conf IEEE Eng Med Biol Soc (2016) 2016:3342–5. doi: 10.1109/
EMBC.2016.7591443

19. Wang W, Wu SS, Zhang JC, Xian MF, Huang H, Li W, et al. Preoperative
Pathological Grading of Hepatocellular Carcinoma Using Ultrasomics of
Contrast-Enhanced Ultrasound. Acad Radiol (2020). doi: 10.1016/
j.acra.2020.05.033

20. Li W, Huang Y, Zhuang BW, Liu GJ, Hu HT, Li X, et al. Multiparametric
Ultrasomics of Significant Liver Fibrosis: AMachine Learning-Based Analysis.
Eur Radiol (2019) 29(3):1496–506. doi: 10.1007/s00330-018-5680-z

21. Li W, Lv XZ, Zheng X, Ruan SM, Hu HT, Chen LD, et al. Machine Learning-
Based Ultrasomics Improves the Diagnostic Performance in Differentiating
Focal Nodular Hyperplasia and Atypical Hepatocellular Carcinoma. Front
Oncol (2021) 11:544979. doi: 10.3389/fonc.2021.544979

22. Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, et al.
An Integrated Tcga Pan-Cancer Clinical Data Resource to Drive High-Quality
Survival Outcome Analytics. Cell (2018) 173(2):400–16.e11. doi: 10.1016/
j.cell.2018.02.052

23. Lin P, Wen DY, Chen L, Li X, Li SH, Yan HB, et al. A Radiogenomics Signature
for Predicting the Clinical Outcome of Bladder Urothelial Carcinoma. Eur
Radiol (2020) 30(1):547–57. doi: 10.1007/s00330-019-06371-w

24. Tibshirani R. The Lasso Method for Variable Selection in the Cox Model. Stat
Med (1997) 16(4):385–95. doi: 10.1002/(sici)1097-0258(19970228)16:4<385::
aid-sim380>3.0.co;2-3

25. Sauerbrei W, Royston P, Binder H. Selection of Important Variables and
Determination of Functional Form for Continuous Predictors in Multivariable
Model Building. Stat Med (2007) 26(30):5512–28. doi: 10.1002/sim.3148

26. Heagerty PJ, Zheng Y. Survival Model Predictive Accuracy and ROC Curves.
Biometrics (2005) 61(1):92–105. doi: 10.1111/j.0006-341X.2005.030814.x

27. Schroder MS, Culhane AC, Quackenbush J, Haibe-Kains B. Survcomp: An R/
Bioconductor Package for Performance Assessment and Comparison of
Survival Models. Bioinformatics (2011) 27(22):3206–8. doi: 10.1093/
bioinformatics/btr511

28. Langfelder P, Horvath S. WGCNA: An R Package for Weighted Correlation
Network Analysis. BMC Bioinf (2008) 9:559. doi: 10.1186/1471-2105-9-559

29. Bryan JM, Fufa TD, Bharti K, Brooks BP, Hufnagel RB, McGaughey DM.
Identifying Core Biological Processes Distinguishing Human Eye Tissues With
Precise Systems-Level Gene Expression Analyses and Weighted Correlation
Networks. Hum Mol Genet (2018) 27(19):3325–39. doi: 10.1093/hmg/ddy239
July 2021 | Volume 11 | Article 613668

https://www.frontiersin.org/articles/10.3389/fonc.2021.613668/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2021.613668/full#supplementary-material
https://doi.org/10.3322/caac.21590
https://doi.org/10.1056/NEJMoa1712126
https://doi.org/10.1016/S0140-6736(09)60229-4
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1016/S1470-2045(18)30413-3
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1016/j.rcl.2020.06.001
https://doi.org/10.1148/radiol.2015142215
https://doi.org/10.2214/AJR.18.19551
https://doi.org/10.1007/s00330-018-5698-2
https://doi.org/10.1259/bjr.20200131
https://doi.org/10.2214/AJR.18.20742
https://doi.org/10.1186/s40644-017-0106-8
https://doi.org/10.1148/radiol.11110264
https://doi.org/10.1148/radiology.196.2.7617859
https://doi.org/10.1007/s00330-019-6003-8
https://doi.org/10.1109/EMBC.2016.7591443
https://doi.org/10.1109/EMBC.2016.7591443
https://doi.org/10.1016/j.acra.2020.05.033
https://doi.org/10.1016/j.acra.2020.05.033
https://doi.org/10.1007/s00330-018-5680-z
https://doi.org/10.3389/fonc.2021.544979
https://doi.org/10.1016/j.cell.2018.02.052
https://doi.org/10.1016/j.cell.2018.02.052
https://doi.org/10.1007/s00330-019-06371-w
https://doi.org/10.1002/(sici)1097-0258(19970228)16:4%3C385::aid-sim380%3E3.0.co;2-3
https://doi.org/10.1002/(sici)1097-0258(19970228)16:4%3C385::aid-sim380%3E3.0.co;2-3
https://doi.org/10.1002/sim.3148
https://doi.org/10.1111/j.0006-341X.2005.030814.x
https://doi.org/10.1093/bioinformatics/btr511
https://doi.org/10.1093/bioinformatics/btr511
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1093/hmg/ddy239
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Gao et al. Prognostic Value of Radiomics
30. Sun M, Shariat SF, Cheng C, Ficarra V, Murai M, Oudard S, et al. Prognostic
Factors and Predictive Models in Renal Cell Carcinoma: A Contemporary
Review. Eur Urol (2011) 60(4):644–61. doi: 10.1016/j.eururo.2011.06.041

31. Matsuda T, Hori M. Five-Year Relative Survival Rate of Kidney and Renal
Pelvis Cancer in the USA, Europe and Japan. Jpn J Clin Oncol (2015) 45
(1):136. doi: 10.1093/jjco/hyu216

32. Silverman SG, Israel GM, Trinh QD. Incompletely Characterized Incidental
Renal Masses: Emerging Data Support Conservative Management. Radiology
(2015) 275(1):28–42. doi: 10.1148/radiol.14141144

33. Zhang H, Li Q, Li S, Ma J, Huang J. A Radiomic Approach to Differential
Diagnosis of Renal Cell Carcinoma in Patients With Hydronephrosis and
Renal Calculi. Nan Fang Yi Ke Da Xue Xue Bao (2019) 39(5):547–53.
doi: 10.12122/j.issn.1673-4254.2019.05.08

34. Feng Z, Zhang L, Qi Z, Shen Q, Hu Z, Chen F. Identifying BAP1 Mutations in
Clear-Cell Renal Cell Carcinoma by CT Radiomics: Preliminary Findings.
Front Oncol (2020) 10:279. doi: 10.3389/fonc.2020.00279

35. Kocak B, Durmaz ES, Kaya OK, Kilickesmez O. Machine Learning-Based
Unenhanced CT Texture Analysis for Predicting BAP1 Mutation Status of
Clear Cell Renal Cell Carcinomas. Acta Radiol (2020) 61(6):856–64.
doi: 10.1177/0284185119881742

36. Ghosh P, Tamboli P, Vikram R, Rao A. Imaging-Genomic Pipeline for
Identifying Gene Mutations Using Three-Dimensional Intra-Tumor
Heterogeneity Features. J Med Imaging (Bellingham) (2015) 2(4):41009.
doi: 10.1117/1.JMI.2.4.041009

37. Lee HW, Cho HH, Joung JG, Jeon HG, Jeong BC, Jeon SS, et al. Integrative
Radiogenomics Approach for Risk Assessment of Post-Operative Metastasis
in Pathological T1 Renal Cell Carcinoma: A Pilot Retrospective Cohort Study.
Cancers (Basel) (2020) 12(4):866. doi: 10.3390/cancers12040866

38. Sun X, Liu L, Xu K, Li W, Huo Z, Liu H, et al. Prediction of ISUP Grading of
Clear Cell Renal Cell Carcinoma Using Support Vector Machine Model
Based on CT Images. Med (Baltimore) (2019) 98(14):e15022. doi: 10.1097/
MD.0000000000015022

39. Shu J, Tang Y, Cui J, Yang R, Meng X, Cai Z, et al. Clear Cell Renal Cell
Carcinoma: CT-based Radiomics Features for the Prediction of Fuhrman
Grade. Eur J Radiol (2018) 109:8–12. doi: 10.1016/j.ejrad.2018.10.005

40. Shu J, Wen D, Xi Y, Xia Y, Cai Z, XuW, et al. Clear Cell Renal Cell Carcinoma:
Machine Learning-Based Computed Tomography Radiomics Analysis for the
Prediction of WHO/ISUP Grade. Eur J Radiol (2019) 121:108738.
doi: 10.1016/j.ejrad.2019.108738

41. Cui E, Li Z, Ma C, Li Q, Lei Y, Lan Y, et al. Predicting the ISUP Grade of Clear
Cell Renal Cell Carcinoma With Multiparametric MR and Multiphase CT
Radiomics. Eur Radiol (2020) 30(5):2912–21. doi: 10.1007/s00330-019-06601-1

42. Nazari M, Shiri I, Hajianfar G, Oveisi N, Abdollahi H, Deevband MR, et al.
Noninvasive Fuhrman Grading of Clear Cell Renal Cell Carcinoma Using
Computed Tomography Radiomic Features and Machine Learning. Radiol
Med (2020) 125(8):754–62. doi: 10.1007/s11547-020-01169-z

43. Ding J, Xing Z, Jiang Z, Chen J, Pan L, Qiu J, et al. CT-Based Radiomic Model
Predicts High Grade of Clear Cell Renal Cell Carcinoma. Eur J Radiol (2018)
103:51–6. doi: 10.1016/j.ejrad.2018.04.013

44. Yang R, Wu J, Sun L, Lai S, Xu Y, Liu X, et al. Radiomics of Small Renal
Masses on Multiphasic CT: Accuracy of Machine Learning-Based
Classification Models for the Differentiation of Renal Cell Carcinoma and
Angiomyolipoma Without Visible Fat. Eur Radiol (2020) 30(2):1254–63.
doi: 10.1007/s00330-019-06384-5

45. Coy H, Hsieh K, Wu W, Nagarajan MB, Young JR, Douek ML, et al. Deep
Learning and Radiomics: The Utility of Google Tensorflow Inception in
Classifying Clear Cell Renal Cell Carcinoma and Oncocytoma on
Multiphasic CT. Abdom Radiol (NY) (2019) 44(6):2009–20. doi: 10.1007/
s00261-019-01929-0

46. Meng X, Shu J, Xia Y, Yang R. A CT-Based Radiomics Approach for the
Differential Diagnosis of Sarcomatoid and Clear Cell Renal Cell Carcinoma.
BioMed Res Int (2020) 2020:7103647. doi: 10.1155/2020/7103647
Frontiers in Oncology | www.frontiersin.org 16418
47. Ng F, Kozarski R, Ganeshan B, Goh V. Assessment of Tumor Heterogeneity
by CT Texture Analysis: can the Largest Cross-Sectional Area be Used as an
Alternative to Whole Tumor Analysis? Eur J Radiol (2013) 82(2):342–8.
doi: 10.1016/j.ejrad.2012.10.023

48. Marigliano C, Badia S, Bellini D, Rengo M, Caruso D, Tito C, et al.
Radiogenomics in Clear Cell Renal Cell Carcinoma: Correlations Between
Advanced CT Imaging (Texture Analysis) and MicroRNAs Expression.
Technol Cancer Res Treat (2019) 18:1533033819878458. doi: 10.1177/
1533033819878458

49. Senbabaoglu Y, Gejman RS, Winer AG, Liu M, Van Allen EM, de Velasco G,
et al. Tumor Immune Microenvironment Characterization in Clear Cell Renal
Cell Carcinoma Identifies Prognostic and Immunotherapeutically Relevant
Messenger RNA Signatures. Genome Biol (2016) 17(1):231. doi: 10.1186/
s13059-016-1092-z

50. Wang Y, Chen L, Wang G, Cheng S, Qian K, Liu X, et al. Fifteen Hub Genes
Associated With Progression and Prognosis of Clear Cell Renal Cell
Carcinoma Identified by Coexpression Analysis. J Cell Physiol (2019) 234
(7):10225–37. doi: 10.1002/jcp.27692

51. Cheng G, Li M, Ma X, Nan F, Zhang L, Yan Z, et al. Systematic Analysis of
Microrna Biomarkers for Diagnosis, Prognosis, and Therapy in Patients With
Clear Cell Renal Cell Carcinoma. Front Oncol (2020) 10:543817. doi: 10.3389/
fonc.2020.543817

52. Minarik I, Lastovicka J, Budinsky V, Kayserova J, Spisek R, Jarolim L, et al.
Regulatory T Cells, Dendritic Cells and Neutrophils in Patients With Renal Cell
Carcinoma. Immunol Lett (2013) 152(2):144–50. doi: 10.1016/j.imlet.2013.05.010

53. Lionello I, Mangia P, Gattinoni L, Pende D, Cippone A, Sensi M, et al. Cd8(+)
T Lymphocytes Isolated From Renal Cancer Patients Recognize Tumour Cells
Through An HLA- and TCR/CD3-Independent Pathway. Cancer Immunol
Immunother (2007) 56(7):1065–76. doi: 10.1007/s00262-006-0268-x

54. Strizova Z, Taborska P, Stakheev D, Partlova S, Havlova K, Vesely S, et al. NK
and T Cells With a Cytotoxic/Migratory Phenotype Accumulate in
Peritumoral Tissue of Patients With Clear Cell Renal Carcinoma. Urol
Oncol (2019) 37(7):503–9. doi: 10.1016/j.urolonc.2019.03.014

55. Liotta F, Gacci M, Frosali F, Querci V, Vittori G, Lapini A, et al. Frequency of
Regulatory T Cells in Peripheral Blood and in Tumour-Infiltrating
Lymphocytes Correlates With Poor Prognosis in Renal Cell Carcinoma.
BJU Int (2011) 107(9):1500–6. doi: 10.1111/j.1464-410X.2010.09555.x

56. Jeron A, Pfoertner S, Bruder D, Geffers R, Hammerer P, Hofmann R, et al.
Frequency and Gene Expression Profile of Regulatory T Cells in Renal Cell
Carcinoma. Tumour Biol (2009) 30(3):160–70. doi: 10.1159/000228909

57. Griffiths RW, Elkord E, Gilham DE, Ramani V, Clarke N, Stern PL, et al.
Frequency of Regulatory T Cells in Renal Cell Carcinoma Patients and
Investigation of Correlation With Survival. Cancer Immunol Immunother
(2007) 56(11):1743–53. doi: 10.1007/s00262-007-0318-z

58. Gao X, Ma T, Bai S, Liu Y, Zhang Y, Wu Y, et al. A CT-based Radiomics
Signature for Evaluating Tumor Infiltrating Treg Cells and Outcome
Prediction of Gastric Cancer. Ann Transl Med (2020) 8(7):469.
doi: 10.21037/atm.2020.03.114

Conflict of Interest: Authors XL and XW were employed by GE, Shanghai.

The remaining author declares that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2021 Gao, Qin, Lin, Ma, Li, Wen, Huang, Wan, Wen, Liang, Huang, Li,
Wang, Chen, He and Yang. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
July 2021 | Volume 11 | Article 613668

https://doi.org/10.1016/j.eururo.2011.06.041
https://doi.org/10.1093/jjco/hyu216
https://doi.org/10.1148/radiol.14141144
https://doi.org/10.12122/j.issn.1673-4254.2019.05.08
https://doi.org/10.3389/fonc.2020.00279
https://doi.org/10.1177/0284185119881742
https://doi.org/10.1117/1.JMI.2.4.041009
https://doi.org/10.3390/cancers12040866
https://doi.org/10.1097/MD.0000000000015022
https://doi.org/10.1097/MD.0000000000015022
https://doi.org/10.1016/j.ejrad.2018.10.005
https://doi.org/10.1016/j.ejrad.2019.108738
https://doi.org/10.1007/s00330-019-06601-1
https://doi.org/10.1007/s11547-020-01169-z
https://doi.org/10.1016/j.ejrad.2018.04.013
https://doi.org/10.1007/s00330-019-06384-5
https://doi.org/10.1007/s00261-019-01929-0
https://doi.org/10.1007/s00261-019-01929-0
https://doi.org/10.1155/2020/7103647
https://doi.org/10.1016/j.ejrad.2012.10.023
https://doi.org/10.1177/1533033819878458
https://doi.org/10.1177/1533033819878458
https://doi.org/10.1186/s13059-016-1092-z
https://doi.org/10.1186/s13059-016-1092-z
https://doi.org/10.1002/jcp.27692
https://doi.org/10.3389/fonc.2020.543817
https://doi.org/10.3389/fonc.2020.543817
https://doi.org/10.1016/j.imlet.2013.05.010
https://doi.org/10.1007/s00262-006-0268-x
https://doi.org/10.1016/j.urolonc.2019.03.014
https://doi.org/10.1111/j.1464-410X.2010.09555.x
https://doi.org/10.1159/000228909
https://doi.org/10.1007/s00262-007-0318-z
https://doi.org/10.21037/atm.2020.03.114
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Frontiers in Oncology | www.frontiersin.org

Edited by:
Bo Gao,

Affiliated Hospital of Guizhou Medical
University, China

Reviewed by:
Lin Lu,

Columbia University Irving Medical
Center, United States

Wei Mu,
Moffitt Cancer Center, United States

*Correspondence:
Shouliang Qi

qisl@bmie.neu.edu.cn
orcid.org/0000-0003-0977-1939

Specialty section:
This article was submitted to
Cancer Imaging and Image-

directed Interventions,
a section of the journal
Frontiers in Oncology

Received: 25 December 2020
Accepted: 16 June 2021
Published: 07 July 2021

Citation:
Chang R, Qi S, Yue Y, Zhang X,

Song J and Qian W (2021)
Predictive Radiomic Models for the
Chemotherapy Response in Non-
Small-Cell Lung Cancer based on

Computerized-Tomography Images.
Front. Oncol. 11:646190.

doi: 10.3389/fonc.2021.646190

ORIGINAL RESEARCH
published: 07 July 2021

doi: 10.3389/fonc.2021.646190
Predictive Radiomic Models for the
Chemotherapy Response in Non-
Small-Cell Lung Cancer based on
Computerized-Tomography Images
Runsheng Chang1, Shouliang Qi1,2*, Yong Yue3, Xiaoye Zhang4, Jiangdian Song1

and Wei Qian5

1 College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China, 2 Key Laboratory of
Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, China, 3 Department of
Radiology, Shengjing Hospital of China Medical University, Shenyang, China, 4 Department of Oncology, Shengjing Hospital
of China Medical University, Shenyang, China, 5 Department of Electrical and Computer Engineering, University of Texas at El
Paso, El Paso, TX, United States

The heterogeneity and complexity of non-small cell lung cancer (NSCLC) tumors mean
that NSCLC patients at the same stage can have different chemotherapy prognoses.
Accurate predictive models could recognize NSCLC patients likely to respond to
chemotherapy so that they can be given personalized and effective treatment. We
propose to identify predictive imaging biomarkers from pre-treatment CT images and
construct a radiomic model that can predict the chemotherapy response in NSCLC. This
single-center cohort study included 280 NSCLC patients who received first-line
chemotherapy treatment. Non-contrast CT images were taken before and after the
chemotherapy, and clinical information were collected. Based on the Response
Evaluation Criteria in Solid Tumors and clinical criteria, the responses were classified
into two categories: response (n = 145) and progression (n = 135), then all data were
divided into two cohorts: training cohort (224 patients) and independent test cohort (56
patients). In total, 1629 features characterizing the tumor phenotype were extracted from
a cube containing the tumor lesion cropped from the pre-chemotherapy CT images. After
dimensionality reduction, predictive models of the chemotherapy response of NSCLC
with different feature selection methods and different machine-learning classifiers (support
vector machine, random forest, and logistic regression) were constructed. For the
independent test cohort, the predictive model based on a random-forest classifier with
20 radiomic features achieved the best performance, with an accuracy of 85.7% and an
area under the receiver operating characteristic curve of 0.941 (95% confidence interval,
0.898–0.982). Of the 20 selected features, four were first-order statistics of image intensity
and the others were texture features. For nine features, there were significant differences
between the response and progression groups (p < 0.001). In the response group, three
features, indicating heterogeneity, were overrepresented and one feature indicating
homogeneity was underrepresented. The proposed radiomic model with pre-
chemotherapy CT features can predict the chemotherapy response of patients with
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non-small cell lung cancer. This radiomic model can help to stratify patients with NSCLC,
thereby offering the prospect of better treatment.
Keywords: lung cancer, radiomics, CT images, chemotherapy response, machine learning
INTRODUCTION

According to the Global Cancer Incidence and Mortality Report
in 2018, lung cancer was the most commonly diagnosed cancer
(11.6% of all cases) and the leading cause of cancer deaths (18.4%
of all cancer deaths) (1, 2), with non-small cell lung cancer
(NSCLC) accounting for 80% to 85% of all lung cancers.
However, despite considerable advances in diagnosis and
treatment over the years, the 5-year survival rate of lung-
cancer patients is currently less than 18% (54% for localized-
stage disease, 26% for regional stage, and 4% for distant stage)
(3–5). As reported, 74% of cases are diagnosed at the regional or
distant stage (3), and any patient diagnosed as being at stage IIIA
or IV is virtually unresectable and has no choice but to receive
radiotherapy or chemotherapy with severe side effects.

The heterogeneity and complexity of NSCLC tumors mean
that NSCLC patients at the same stage can have different
chemotherapy prognoses (6). According to the Response
Evaluation Criteria in Solid Tumors (RECIST), treatment
responses can be divided into four types: (i) complete response
(CR), (ii) partial response (PR), (iii) progressive disease (PD),
and (iv) stable disease (SD) (7). However, there are currently few
quantitative criteria or models that can predict the NSCLC
chemotherapy response from pre-treatment information (8).
Accurate predictive models could recognize NSCLC patients
likely to respond to chemotherapy so that they can be given
personalized and effective treatment.

Radiomics is a potential bridge between medical imaging and
personalized medicine (9, 10). In this approach, artificial
intelligence is used to convert image data from a lesion region
into a high-dimensional feature space and to construct predictive
models for various clinical outcomes (11, 12). Radiomics has
been used successfully in biological oncology for detection,
differential diagnosis, phenotype or subtype stratification,
prognosis prediction, and even the prediction of invasiveness
and gene mutation status (13–17).

Radiomics has achieved exceptional results in predicting the
prognosis of NSCLC treatment with survival as the endpoint. For
example, based on a dataset of 1194 NSCLC patients treated with
either radiotherapy or surgery, Hosny et al. constructed
convolutional neural network models that could predict 2-year
overall survival from pre-treatment computerized-tomography
(CT) images with an accuracy of 70% (18). For 179 stage-III
NSCLC patients treated with definitive radiotherapy and
chemotherapy, Xu et al. designed a deep-learning model using
time-series CT scans and found that it was significantly
predictive of survival and cancer-specific outcomes (4). Wang
et al. collected CT images and clinical information for 173
NSCLC patients and trained a radiomic model that could
predict the range of a patient’s prognosis survival time (6).
2420
Song et al. established a Cox regression model with a least
absolute shrinkage and selection operator for CT images to
predict the progression-free survival of stage-IV epidermal
growth factor receptor (EGFR)-mutated NSCLC patients being
treated with EGFR tyrosine kinase inhibitors (19). Paul et al. used
a transfer-learning model to extract deep features to predict
short-and long-term survivors with lung adenocarcinoma with
an accuracy of 90% (20). Lou et al. used deep-learning methods
of pre-treatment CT scans to analyze survival and found an
individualized radiation dose that gave an estimated probability
of treatment failure of below 5% (21).

Moreover, predicting the chemotherapy response in NSCLC
earlier in the course treatment is very useful and promising. It
can help clinicians make decisions on whether to adapt, intensify,
or alter treatment plans early and improve patient outcomes
(22). Compared with the long-term endpoint of survival,
treatment response is a short-term prognosis endpoint that
may help to identify precisely those NSCLC patients who are
likely to benefit from chemotherapy.

However, to the best of our knowledge, few predictive models
use chemotherapy response in NSCLC as the endpoint. Chen et
al. proposed a radiomic model to predict NSCLC lesions
shrinkage during treatment with either pembrolizumab or
combinations of chemotherapy and pembrolizumab (23). The
model used features extracted from lesions, margins, and blood
vessels and reached an area under the curve (AUC) of 0.73 in a
test cohort with 176 patients. Seki et al. had demonstrated the
usefulness of CT and Positron Emission Tomography (PET)/CT
in the early prediction of chemoradiotherapy in NSCLC (24). In
the present study, we constructed a radiomic model that
used pre-chemotherapy CT images to predict the NSCLC
chemotherapy response.
MATERIALS AND METHODS

Data Acquisition
We enrolled 622 patients with lung cancer being treated at
Shengjing Hospital of China Medical University between 2014
and 2019. The parameters for CT images acquisition are listed in
Table 1. As shown in Figure 1, after two steps of exclusion
criteria, 280 patients were included in our study. Their clinical
characteristics are given in Table 2. This study was approved by
the ethics committee of Shengjing Hospital of China Medical
University and the waived informed consent forms were waived
because it is a retrospective study.

Label of Treatment Response
NSCLC tumors were categorized according to RECIST jointly by
an experienced radiologist and an experienced oncologist: (i) CR:
July 2021 | Volume 11 | Article 646190
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disappearance of all target lesions, (ii) PR: at least 30% decrease
in the sum of the diameters of the target lesions, (iii) PD: at least
20% increase in the sum of the diameters of the target lesions,
and (iv) SD: neither sufficient shrinkage to qualify for PR nor
sufficient increase to qualify for PD.

According to the requirement of clinical applications and
radiologist’s advice, we had excluded the patients of SD in our
study. The CR and PR patients were combined into a category
named “response” and the PD patients were included into a
category named “progression.” Finally, 145 NSCLC patients were
labeled as response and 135 were labeled as progression.

Overview of Study Procedure
We split the total 280 patients into the training cohort (n = 224)
and the independent test cohort (n=56). As shown in Figure 2,
the study procedure had six steps. First, by comparing CT images
taken before and after chemotherapy, responses were determined
as being either response or progression. Second, in the
preprocessing step, the tumor lesion in the pre-chemotherapy
CT images was cropped to a cube. Third, radiomic features were
extracted from the cropped cube. Fourth, discriminative features
were selected with different methods and analyzed. Fifth, the
selected radiomic features, labels, and clinical information were
used to train the different models using the training cohort.
Finally, the performance of the radiomic models was evaluated
using the independent test cohort. The evaluation measures
included the AUC of receiver operating characteristic (ROC)
curve, confusion matrix, recall, precision, and F-score. The best
cutoff value of ROC curve to calculate the confusion matrix and
related measures was determined, whereas Youden index reach
the maximum value.

Feature Extraction
First, all the pre-treatment CT images for the patients were
interpolated into voxels of 0.750 × 0.750 × 3.000 mm. To include
the characteristic information [both the tumor lesion and its
habitat (8, 12)], we cropped a 64 × 64 × 32 cube from the lesion
center[determined by software 3D Slicer (25)]. In our study, this
cube can include the largest lesion and no cube includes more
than one lesion. Because all the patients are in the advanced stage
FIGURE 1 | Criteria for data acquisition.
TABLE 2 | Clinical characteristics of NSCLC patients.

Characteristics Response group Progression group p value

Number of patients 145 135 –

Gender Male 79 77 0.605
Female 66 58

Age(years) 63.864 ± 10.042 64.402 ± 9.713 0.437
Histological type Adenocarcinoma 119 109 0.201

Squamous cell carcinoma 26 26
Smoking status Ever 49 74 0.002

Never 96 61
Number of treatment courses 4.492 ± 1.603 3.681 ± 1.396 <0.001
Chemotherapy drug AP 53 36 –

GP 29 34
TP 31 28
DP 32 37
July 2021 | Volume 11 | Article
TABLE 1 | Parameters for CT image acquisition.

Parameter Value

kVp (kV) 120
X-ray tube current (mean ±S.D.) (mA) 215.274 ± 70.816
Slice thickness (mm) 2.5 (n = 14); 3.0 (n = 244);

5.0 (n = 22)
Pixel size (mm) 0.783 ± 0.074
CT scanner manufacturer GE Medical (n = 10), Siemens (n = 11),

Toshiba (n = 13), Philips (n = 246)
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and have taken chemotherapy, the lesion cannot be very small
compared with the cube of 64× 64 × 32.

Then, we used the open-source Python package PyRadiomics
to extract radiomic features from each cube (26). In total, 1,927
features were extracted from the original CT images, of which
1,629 meaningful features were used. Because the shapes and
sizes were same for all cubes, the related features had no
discriminative capability and were excluded (n=298).

It is should be noted that according to a previous study, besides
the intra-tumor region, the extra-tumor marginal region may also
provide predictive information for the treatment response and
overall survival (8, 27, 28). Therefore, the features extracted from
the cube in our study represent the characteristics not only of
intra-tumor region but also of extra-tumor region.

Feature Selection
Next, we used three algorithms to select discriminative features
and passed them into the model for training and testing: random
forest (RF) (29), mRMR (max-relevance and min-redundancy)
(30), and relief (31). RF can be easily applied to select the critical
features by ranking the importance score of features. It belongs to
the embedded feature selection using SelectFromModel.
Actually, the package of sci-kit learn has provided two ways of
feature selection by using RF: (1) mean decrease impurity; (2)
mean decrease accuracy. In our study, we directly used the
Frontiers in Oncology | www.frontiersin.org 4422
way of “mean decrease accuracy.” Both mRMR and relief are
the feature selection methods based on filter and publicly
available (13).

Using the rule of thumb given by Gillies et al., with each
feature corresponding to 10 samples in a binary classifier (12), we
selected 20 features to represent each patient to do the next
classification, and the performance of RF, mRMR, and relief for
the feature selection was compared.

Construction of Predictive Models
We selected three representative machine-learning classifiers:
support vector machine (SVM), RF, and logistic regression
(LR). We constructed a model to clarify the role of clinical
information (gender, smoking status, age, pathology, course of
treatment, and medicine), and we constructed another model
with both clinical and radiomic features to assess whether that
combination increased the predictive performance. Moreover,
we also constructed a model with two clinical features of
smoking status and course of treatment because there was a
significant difference between the response and progression
groups for these two features (Table 2). Correspondingly, a
model with the combination of two significant clinical features
and the selected radiomic features was constructed.

The optimal parameters of the model were determined by
grid search technique and 10-fold cross-validation. Specifically,
FIGURE 2 | Flowchart of present study.
July 2021 | Volume 11 | Article 646190
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for each grid of parameters, the performance of the model was
evaluated by the average of 10-fold cross-validation. The optimal
parameters were determined after traversing all grids. During the
10-fold cross-validation, the training data were divided into 10
folds. For each of the 10 “folds,” a model was trained by using
nine folds as the training data and validated by the remaining
fold. With the determined optimal parameters, the model was
retrained by all training data (n=224). Finally, the independent
test cohort (n=56) was used to evaluate the retrained model and
gave the performance measures. All these procedures were
performed by strictly following the document given by the Sci-
kit learn website (https://scikit-learn.org/stable/modules/cross_
validation.html).

To find the optimal parameters in classification models, we
used the grid search with cross-validation (GridSearchCV) to
traverse the parameters within a certain range and with a specific
interval. In SVM, the kernel parameter was set as “linear” or “rbf”
(radial basis function); the parameter C ranged from 1 to 5 with
the interval of 1; the gamma parameter was set as 0.125, 0.25, 0.5,
1, 2, or 4. Through the ten-fold cross-validation of the training
cohort in each grid, the optimal value (or setting) of the kernel,
C, and gamma were determined as “linear,” 3, and 1, respectively.
In RF, n_estimators parameter ranged from 20 to 2000 with the
interval of 10; max_features parameter was set as 2 or 3;
min_sample_leaf ranged from 1 to 50 with the interval of 1.
The optimal value of n_estimators, max_features, and
min_sample_leaf was determined as 100, 3, and 2, respectively.
In LR, C parameter ranged from 1 to 5 with the interval of 1; the
penalty item was set as l1 or l2. By the same way, the optimal
value of C and penalty item was determined as 3 and
l1, respectively.
RESULTS

Clinical Characteristics
As shown in Figure 3A and Table 2, there was no significant
difference in gender between the response and progression
groups. Similarly, there was no significant difference for age or
histological type. For both groups, there were more patients with
Frontiers in Oncology | www.frontiersin.org 5423
adenocarcinoma than with squamous cell carcinoma (119 vs. 26;
109 vs. 26). The progression group had a higher percentage of
smokers than the response group [54.8% (74/135) vs. 33.8% (49/
145)]. The response group had more treatment courses than the
progression group (4.492 ± 1.603 vs. 3.681 ±1.396).

A platinum-based dual-drug regimen is the gold standard for
the first-line treatment of advanced NSCLC. In our study, we
included four common chemotherapy regimens: (i) AP: cisplatin
or carboplatin combined with pemetrexed (n = 53 for response
and n = 36 for progression), (ii) GP: cisplatin or carboplatin
combined with gemcitabine (n = 29 for response and n = 34 for
progression), (iii) TP: cisplatin or carboplatin combined with
paclitaxel (n = 31 for response and n = 28 for progression), and
(iv) DP: cisplatin or carboplatin combined with docetaxel (n = 32
for response and n = 37 for progression).

As shown in Figure 3B, for adenocarcinoma treated by AP,
the response group had more patients than the progression
group (47 vs. 27), but the opposite was the case for
adenocarcinoma treated by GP (16 vs. 28). The situation for
squamous cell carcinoma was the opposite of that for
adenocarcinoma. For squamous cell carcinoma treated by AP,
the response group had fewer patients than the progression
group (6 vs. 9); for adenocarcinoma treated by GP, the
response group had more patients than the progression group
(13 vs. 6).

Radiomic Characteristics
Figure 4A shows the distribution of the 1,629 selected radiomic
features. Of the six feature classes (columns), GLCM (gray-level
co-occurrence matrix) had the most features (430/1629, 26.4%).
Of the 18 filter classes (rows), local binary pattern (LBP) (3D)
had the most features (279/1629, 17.1%).

Through three dimensionality reduction algorithms, the 20
most-informative features were selected from the 1629 radiomic
features and input into the machine-learning classifiers. The
distribution of these 20 features is shown in Figure 4B: gray-level
dependence matrix (GLDM) had seven features, and first order,
GLCM, and GLRLM (gray-level run-length matrix) each had
four features. For the filter classes (rows), LBP (3D) had the most
features (7/20, 35.0%). Figure 4C shows the mean values of these
20 highly informative features. In summary, 11 radiomic features
A B

FIGURE 3 | Analysis of clinical characteristics: (A) Statistics of ages, genders and smoking status; (B) Statistics of treatment courses and chemotherapy drugs.
July 2021 | Volume 11 | Article 646190
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differed significantly between the response and progression
groups [nine features with p < 0.001 (**) and two features with
p < 0.05(*)]. Figure 4D shows the importance of the 20 features
selected via dimensionality reduction.

In the response group, the features small dependence
emphasis (SDE), run length non-uniformity (RLNU),
dependence non-uniformity (DNU), high gray level run
emphasis (HGLRE), and uniformity are overrepresented,
whereas dependence variance (DV) is underrepresented. SDE
measures the distribution of small dependencies, with a larger
value indicating less dependence and less-homogeneous textures.
Similarly, larger values for RLNU and DNU indicate that there is
Frontiers in Oncology | www.frontiersin.org 6424
less homogeneity among run lengths and dependencies in the
image, respectively. DV measures the variance independence size
in the image. Overall, the representation of these features
indicates that NSCLC tumors in the response group are more
likely to be heterogeneous in CT images than are those in the
progression group.

Dependence of Performance on the
Feature Selection Method
We tried three different feature selection methods, RF, relief, and
mRMR, to clarify their impact on the classification results. In
Figure 5, in the training cohort, for the feature selection method
A B

DC

FIGURE 4 | Analysis and selection of radiomic features: (A) Distribution of 1629 extracted features; (B) Distribution of 20 selected features; (C) Mean values of 20
highly informative features and significance analysis between two groups (* p < 0.05, ** p < 0.001); (D) Importance of 20 selected features.
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of RF, the AUC of RF, SVM, and LR classification models was
0.891 ± 0.05 (95% confidence interval (CI), 0.854–0.926), 0.882 ±
0.06 (95% CI, 0.844–0.916), and 0.883 ± 0.06 (95% CI, 0.842–
0.918), respectively. For mRMR, the AUC was 0.886 ± 0.07 (95%
CI, 0.832–0.928), 0.798 ± 0.09 (95% CI, 0.725–0.855), and 0.889 ±
0.07 (95% CI, 0.835–0.925), respectively. For relief method, the
AUC was 0.890 ± 0.06 (95% CI, 0.841–0.939), 0.886 ± 0.06 (95%
CI, 0.839–0.921), and 0.888 ± 0.06 (95% CI, 0.840–0.920),
respectively. In the independent test cohort, for the feature
selection method of RF, the AUC of RF, SVM, and LR
classification models were 0.941 (95% CI, 0.898–0.942), 0.932
(95% CI, 0.865–0.995), and 0.935 (95% CI, 0.886–0.974),
respectively. For mRMR, the AUC was 0.901 (95% CI, 0.826–
0.974), 0.804 (95% CI, 0.731–0.869), and 0.923 (95% CI, 0.878–
0.962), respectively. For relief method, the AUC was 0.902 (95%
CI, 0.817–0.983), 0.921 (95% CI, 0.843–0.997), and 0.926 (95%
CI, 0.856–0.984), respectively. The combination of the feature
selection by RF and the classification model of RF generated the
Frontiers in Oncology | www.frontiersin.org 7425
best predictive performance in both the training cohort and the
independent test cohort.

Performance of Machine-Learning Models
Table 3 lists the performance of the three machine-learning
models, and Figure 6 shows the receiver operating characteristic
(ROC) curves and the areas under the curve (AUC). In the
training cohort, the RF model with radiomic features had the
best performance, its AUC was 0.891 ± 0.05 (95% CI, 0.854–
0.924). In the independent test cohort, the RF model with
A B

FIGURE 5 | Comparison of predictive models with different classifiers and different methods of feature selection: (A) ROC curve of three models using features
selected by RF, mRMR, and relief in the training cohort; (B) ROC curve of three models using features selected by RF, mRMR, and relief in the independent test cohort.
TABLE 3 | Predictive performance of machine-learning models with radiomic
features, clinical features, and combined features in the independent test cohort.

Classifier Accuracy AUC Recall Precision F-score

RF_Radiomics 85.7% 0.941 0.875 0.808 0.840
RF_Clinic 42.9% 0.503 0.625 0.395 0.484
RF_Combination 82.1% 0.936 0.875 0.750 0.808
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radiomic features had the best performance. Its AUC was 0.941
(95% CI, 0.898–0.982), and its accuracy, recall, precision, and F-
score were 85.7%, 0.875, 0.808, and 0.840, respectively. The cutoff
of ROC curve was 0.438.

The RF model with five clinical features had an AUC of only
0.523 ± 0.11 (95% CI: 0.444–0.596) in the training and 0.503
(95% CI: 0.438–0.562) in the independent test cohort, which
indicates that clinical features played hardly any role in
predicting chemotherapy response in our study. The cutoff of
ROC curve in the independent test cohort was 0.459.

The RF model with combined clinical and radiomic features
did not perform better than the RF model with only radiomic
features. The AUC of training cohort was 0.890 ± 0.05 (95% CI:
0.850–0.930). In the independent test cohort, the accuracy, recall,
precision, and F-score of the former were 82.1%, 0.875, 0.750,
and 0.808, respectively, which are lower than those of the RF
model with only radiomic features. The AUC was 0.930 (95% CI:
0.865–0.995) with a cutoff of 0.543.
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The RF models with two significant clinical features are
compared with those with five clinical features in Figure 7. The
RF model with two significant clinical features had an AUC of
0.498 ± 0.15 (95% CI: 0.378–0.602) and 0.456 (95% CI: 0.398–
0.502) in the training and independent test cohort, respectively.
The RF model with the combination of two significant clinical
features and the selected radiomic features had an AUC of 0.882 ±
0.06 (95% CI: 0.846–0.914) and 0.936 (95% CI: 0.868–0.992) in the
training and independent test cohort, respectively. The
performance of models with two significant clinical features was
not as good as that of models with five clinical features.
Performance for Different Chemotherapy
Drugs and Histological Subtypes
Table 4 presents the prediction accuracy of the RF model with 20
radiomic features for different chemotherapy drugs and histological
subtypes. The prediction accuracy was higher for adenocarcinoma
A B

DC

FIGURE 6 | Comparison of machine-learning models: (A) ROC curves for different machine-learning models in the training cohort; (B) Confusion matrix of different
machine-learning models in the training cohort; (C) ROC curves for different machine-learning models in the independent test cohort; (D) Confusion matrix of different
machine-learning models in the independent test cohort.
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than squamous cell carcinoma (84.2% vs. 75.0%). A possible reason
was the smaller number of patients with squamous cell carcinoma
(n = 52). For chemotherapy drugs AP, GP, TP, and DP, the
accuracy was 84.6% (77/91), 88.6% (62/70), 67.2% (41/61), and
87.9% (51/58), respectively. Of all eight combinations, the accuracy
was highest at 93.8% (45/48) for adenocarcinoma treated by DP.
The lowest accuracy was 54.5% for squamous cell carcinoma treated
with TP; similarly, there were only 11 instances of this combination,
which might have influenced the prediction.
A

B

FIGURE 7 | Comparison of predictive models with different clinical features: (A) ROC curves for different models in the training cohort; (B) ROC curves for different
models in the independent test cohort.
TABLE 4 | Prediction accuracy for different chemotherapy drugs and histological
subtypes.

Chemotherapy
drugs

Adenocarcinoma Squamous cell
carcinoma

Total

AP 85.2% (69/81) 80.0% (8/10) 84.6% (77/91)
GP 87.8% (43/49) 90.5% (19/21) 88.6% (62/70)
TP 70.0% (35/50) 54.5% (6/11) 67.2% (41/61)
DP 93.8% (45/48) 60.0% (6/10) 87.9% (51/58)
Total 84.2% (192/228) 75.0% (39/52) –
July 2021 | Volume 11 | Article 646190
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DISCUSSIONS

Clinical Characters
In this study, the progression group had a higher percentage of
smokers than the response group, possibly indicating that
NSCLC patients who smoke have a higher risk of progression
during chemotherapy. Smoking is a high-risk factor for lung
cancer (32, 33), and patients with lung cancer who continue to
smoke after diagnosis can experience increased treatment-related
toxicity and may have a decreased survival rate.

Another finding is that for the response group, a high
percentage of those with adenocarcinoma were treated with
AP and a high percentage of those with squamous cell
carcinoma were treated with GP. This result agrees with the
recommendation of AP for adenocarcinoma and GP for
squamous cell carcinoma (34–37).
Heterogeneity of Tumors
One of our main findings is that NSCLC tumors in CT images
are more heterogeneous in the response group than in the
progression group. In the response group, the measures of
heterogeneity (SDE, RLNU, and DNU) are overrepresented
whereas the measure of homogeneity (DV) is underrepresented
(Figure 8). This CT-driven textural heterogeneity may correlate
with the tumor micro-environment heterogeneity, so the tumor
growth rate, invasion ability, drug sensitivity, and prognosis will
show differences in CT images (38). Imaging heterogeneity and
micro-environment heterogeneity are important for therapeutic
response, resistance, and clinical outcomes (39–41). NSCLC
patients whose tumors have higher CT-driven textural
heterogeneity have a longer overall mean survival (34.5 vs. 22.1
months) (42). Moreover, EGFR-mutated (EGFR+) lung
adenocarcinoma is more heterogeneous than EGFR− in CT
images (43).

For the cropped CT image cube used as the input in our
study, the heterogeneity includes intra- and extra-tumor
Frontiers in Oncology | www.frontiersin.org 10428
components. The information in the extra-tumor region has
been considered to be useful for predicting the treatment
response and overall survival (8, 27, 28). Extra-tumor
heterogeneity emphasizes the contour between the tumor
lesion and its habitat. Therefore, here, the higher heterogeneity
in the NSCLC response group indicates the higher combination
of intra-tumor texture heterogeneity and extra-tumor
heterogeneity (the complexity of the tumor contour or shape).

Advantage and Significance of Radiomic
Model and Feature Selection
The RF model had an AUC of 0.941, and this test is simple, non-
invasive, and quick. A predictive radiomic model could be used in
the clinic before treatment to estimate the probability that a patient
will respond to chemotherapy and high possibilities would give the
oncologists more confidence in the chemotherapy, whereas
otherwise other optional treatment plans should be considered.

We tried three different methods of feature selection to know
which was suitable for our data and the RF method achieved the
better performance than mRMR and relief. The possible reasons
are given as follows: a) the mRMR algorithm does not provide a
clear determination of the optimal amount of features and can
thus still retain redundant features. b) relief is a filter-based
feature selection method, but it is easy to ignore small samples
and cannot reduce redundant features. We used RF feature
selection method based on mean decrease accuracy strategy, it
sorts the importance of features to find the most suitable feature
subset (13, 44–46).

Clinical Features Do Not Help Prediction
Of the five clinical features, smoking status and number of
treatment courses differed significantly between the response
and progression groups. Histological type and chemotherapy
drug may influence the response (36, 47), but these clinical
features do not help to predict the chemotherapy response. Using
only clinical features gives a prediction with an AUC of only
0.523 ± 0.09 and combining clinical features with radiomic
FIGURE 8 | Typical CT images for response and progression groups.
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features does not improve the prediction as well. There are two
possible reasons. First, the significance comparison is for groups,
whereas response prediction involves individuals; features or
parameters with significant differences are not necessarily
discriminative nor do they always work for individual
prediction (12). Second, the relation between clinical and
radiomic features is more likely to be correlated than
complementary; the radiomic features may represent the
information underlying the clinical features and thus, make the
latter redundant.

Whether combining clinical features with radiomic features
improves the prediction is uncertain and specific to the task. For
example, Velazquez et al. found that doing so substantially
improved the predictive performance (AUC = 0.86) of EGFR
mutation status, whereas using only clinical features gave a
predictive model with an AUC of 0.81 (43). Moreover, Lou et
al. found that models with both radiomic and clinical features
were significantly better at predicting treatment failures than
those with only radiomic features (21).

Limitations and Future Work
The present study has limitations. First, our data set comprises
CT images and treatment records of only 280 patients. Although
overfitting was controlled, the sample size was relatively small.
Second, the numbers of patients were unbalanced between
adenocarcinoma and squamous cell carcinoma (228 vs. 52).
Third, the type and dose of chemotherapy drug were not
accounted. Finally, none of the predictive models were
constructed using either deep learning or the hybrid method of
deep learning and machine learning.

As future work, we will use a predictive model with overall
survival as the prognostic endpoint. A deep convolutional neural
network will be used to improve the predictive performance and
the radiomic nomogram will help facilitate clinical applications
(48–50). For a given NSCLC histological type and choice of
chemotherapy drug (AP, GP, TP, or DP), a predictive response
model may help oncologists choose the correct chemotherapy
drug according to the patient’s histological type and pre-
treatment CT images.
CONCLUSION

The chemotherapy response of NSCLC patients can be predicted
by a radiomic model based on machine leaning of pre-
chemotherapy CT images. Several radiomic features differed
Frontiers in Oncology | www.frontiersin.org 11429
significantly between the response and progression groups and
could be used as imaging biomarkers to predict the chemotherapy
response. The NSCLC tumors were more heterogeneous in CT
images in the response group than in the progression group. This
radiomic model with these imaging biomarkers could help to
stratify NSCLC patients and make better treatment decisions,
simply, non-invasively, and inexpensively.
DATA AVAILABILITY STATEMENT

The datasets presented in this article are not readily
available because they must be approved by the Ethics
Committee of Shengjing Hospital of Chinese Medical
University. Requests to access the datasets should be directed
to SQ, (qisl@bmie.neu.edu.cn).
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the ethics committee of Shengjing Hospital of China
Medical University. Written informed consent for participation
was not required for this study in accordance with the national
legislation and the institutional requirements.
AUTHOR CONTRIBUTIONS

RC performed experiments and analyzed the data. SQ, XZ, and
WQ proposed the idea, made discussions, composed the
manuscript together with RC. YY collected and analyzed
the data. JS directed the algorithm development and analyzed
the data. All authors contributed to the article and approved the
submitted version.
FUNDING

This study was supported by the National Natural Science
Foundation of China (Grant number: 82072008, 81671773,
61672146) and the Fundamental Research Funds for the
Central Universities (Grant number: N2124006-3).
REFERENCES
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global

Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality
Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin (2018) 68
(6):394–424. doi: 10.3322/caac.21492

2. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2016. CA Cancer J Clin
(2016) 66(1):7–30. doi: 10.3322/caac.21332
3. Torre LA, Siegel RL, Jemal A. Lung Cancer Statistics. Adv Exp Med Biol (2016)
893:1–19. doi: 10.1007/978-3-319-24223-1_1

4. Xu Y, Hosny A, Zeleznik R, Parmar C, Coroller T, Franco I, et al. Deep Learning
Predicts Lung Cancer Treatment Response From Serial Medical Imaging. Clin
Cancer Res (2019) 25(11):3266–75. doi: 10.1158/1078-0432.CCR-18-2495

5. Ettinger DS, Akerley W, Borghaei H, Chang AC, Cheney RT, Chirieac LR,
et al. Non-Small Cell Lung Cancer, Version 2.2013. J Natl Compr Canc Netw
(2013) 11(6):645–53. doi: 10.6004/jnccn.2013.0084
July 2021 | Volume 11 | Article 646190

mailto:qisl@bmie.neu.edu.cn
https://doi.org/10.3322/caac.21492
https://doi.org/10.3322/caac.21332
https://doi.org/10.1007/978-3-319-24223-1_1
https://doi.org/10.1158/1078-0432.CCR-18-2495
https://doi.org/10.6004/jnccn.2013.0084
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Chang et al. Radiomics Models Predict Chemotherapy Response
6. Wang X, Duan H, Li X, Ye X, Huang G, Nie S. A Prognostic Analysis Method
for Non-Small Cell Lung Cancer Based on the Computed Tomography
Radiomics. Phys Med Biol (2020) 65(4):045006. doi: 10.1088/1361-6560/
ab6e51

7. Schwartz LH, Litière S, de Vries E, Ford R, Seymour L. RECIST 1.1-Update
and Clarification: From the RECIST Committee. Eur J Cancer (2016) 62:132–
7. doi: 10.1016/j.ejca.2016.03.081

8. Khorrami M, Khunger M, Zagouras A, Patil P, Thawani R, Bera K, et al.
Combination of Peri- and Intratumoral Radiomic Features on Baseline CT
Scans Predicts Response to Chemotherapy in Lung Adenocarcinoma. Radiol
Artif Intell (2019) 1(2):e180012. doi: 10.1148/ryai.2019180012

9. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren
J, et al. Radiomics: The Bridge Between Medical Imaging and Personalized
Medicine. Nat Rev Clin Oncol (2017) 14(12):749–62. doi: 10.1038/
nrclinonc.2017.141

10. Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins T,
Veeriah S, et al. Tracking the Evolution of Non-Small-Cell Lung Cancer.
N Engl J Med (2017) 376(22):2109–21. doi: 10.1056/NEJMoa1616288

11. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG,
Granton P, et al. Radiomics: Extracting More Information From Medical
Images Using Advanced Feature Analysis. Eur J Cancer (2012) 48(4):441–6.
doi: 10.1016/j.ejca.2011.11.036

12. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More Than Pictures,
They Are Data. Radiology (2016) 278(2):563–77. doi: 10.1148/radiol.
2015151169

13. Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJWL. Machine
Learning Methods for Quantitative Radiomic Biomarkers. Sci Rep (2015)
5:13087. doi: 10.1038/srep13087

14. Avanzo M, Stancanello J, El Naqa I. Beyond Imaging: The Promise of
Radiomics. Phys Med (2017) 38:122–39. doi: 10.1016/j.ejmp.2017.05.071

15. Lee G, Lee HY, Park H, Schiebler ML, van Beek E, Ohno Y, et al. Radiomics
and Its Emerging Role in Lung Cancer Research, Imaging Biomarkers and
Clinical Management: State of the Art. Eur J Radiol (2017) 86:297–307.
doi: 10.1016/j.ejrad.2016.09.005

16. Grossmann P, Stringfield O, El-Hachem N, Bui MM, Rios Velazquez E,
Parmar C, et al. Defining the Biological Basis of Radiomic Phenotypes in Lung
Cancer. Elife (2017) 6:e23421. doi: 10.7554/eLife.23421

17. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial
Intelligence in Radiology. Nat Rev Cancer (2018) 18(8):500–10. doi: 10.1038/
s41568-018-0016-5

18. Hosny A, Parmar C, Coroller TP, Grossmann P, Zeleznik R, Kumar A, et al.
Deep Learning for Lung Cancer Prognostication: A Retrospective Multi-
Cohort Radiomics Study. PloS Med (2018) 15(11):e1002711. doi: 10.1371/
journal.pmed.1002711

19. Song J, Shi J, Dong D, Fang M, Zhong W, Wang K, et al. A New Approach to
Predict Progression-Free Survival in Stage IV EGFR-Mutant NSCLC Patients
With EGFR-TKI Therapy. Clin Cancer Res (2018) 24(15):3583–92.
doi: 10.1158/1078-0432.CCR-17-2507

20. Paul R, Hawkins SH, Balagurunathan Y, Schabath MB, Gillies RJ, Hall LO,
et al. Deep Feature Transfer Learning in Combination With Traditional
Features Predicts Survival Among Patients With Lung Adenocarcinoma.
Tomography (2016) 2(4):388–95. doi: 10.18383/j.tom.2016.00211

21. Lou B, Doken S, Zhuang T, Wingerter D, Gidwani M,Mistry N, et al. An Image-
Based Deep Learning Framework for Individualizing Radiotherapy Dose. Lancet
Digit Health (2019) 1(3):e136–47. doi: 10.1016/S2589-7500(19)30058-5

22. ChetanMR, Gleeson FV. Radiomics in Predicting Treatment Response in Non-
Small-Cell Lung Cancer: Current Status, Challenges and Future Perspectives.
Eur. Radiol (2021) 31(2):1049–58. doi: 10.1007/s00330-020-07141-9

23. Chen A, Saouaf J, Zhou B, Crawford R, Goldmacher G, Yuan J, et al. A Deep
Learning-Facilitated Radiomics Solution for the Prediction of Lung Lesion
Shrinkage in Non-Small Cell Lung Cancer Trials. In: IEEE 17th International
Symposium on Biomedical Imaging (ISBI) (2020). p. 678–82. doi: 10.1109/
ISBI45749.2020.9098561

24. Seki S, Fujisawa Y, Yui M, Kishida Y, Koyama H, Ohyu S, et al. Dynamic
Contrast-Enhanced Area-Detector CT vs Dynamic Contrast-Enhanced
Perfusion MRI vs FDG-PET/CT: Comparison of Utility for Quantitative
Therapeutic Outcome Prediction for NSCLC Patients Undergoing
Frontiers in Oncology | www.frontiersin.org 12430
Chemoradiotherapy. Magn Reson Med Sci (2020) 19:29–39. doi: 10.2463/
mrms.mp.2018-0158

25. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S,
et al. 3D Slicer as an Image Computing Platform for the Quantitative Imaging
Network. Magn Reson Imaging (2012) 30(9):1323–41. doi: 10.1016/
j.mri.2012.05.001

26. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V,
et al. Computational Radiomics System to Decode the Radiographic Phenotype.
Cancer Res (2017) 77(21):e104–7. doi: 10.1158/0008-5472.CAN-17-0339

27. Algohary A, Shiradkar R, Pahwa S, Purysko A, Verma S, Moses D, et al.
Combination of Peri-Tumoral and Intra-Tumoral Radiomic Features on Bi-
Parametric MRI Accurately Stratifies Prostate Cancer Risk: A Multi-Site
Study. Cancers (Basel) (2020) 12(8):2200. doi: 10.3390/cancers12082200

28. Braman NM, Etesami M, Prasanna P, Dubchuk C, Gilmore H, Tiwari P, et al.
Intratumoral and Peritumoral Radiomics for the Pretreatment Prediction of
Pathological Complete Response to Neoadjuvant Chemotherapy Based on
Breast DCE-MRI. Breast Cancer Res (2017) 19(1):57. doi: 10.1186/s13058-
017-0846-1

29. Rigatti SJ. Random Forest. J Insur Med (2017) 47(1):31–9. doi: 10.17849/insm-
47-01-31-39.1

30. Peng H, Long F, Ding C. Feature Selection Based onMutual Information: Criteria of
Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE Trans Pattern Anal
Mach Intell (2005) 27(8):1226–38. doi: 10.1109/TPAMI.2005.159

31. Zhao Z, Morstatter F, Sharma S, Alelyani S, Anand A, Liu H, et al. Advancing
Feature Selection Research. In: ASU Feature Selection Repository. Arizona
State University (2010) 1–28. Available at: http://www.public.asu.edu/
~huanliu/papers/tr-10-007.pdf.

32. Aberle DR, Berg CD, Black WC, Church TR, Fagerstrom RM, Galen B, et al. The
National Lung Screening Trial: Overview and Study Design. Radiology (2011) 258
(1):243–53. doi: 10.1148/radiol.10091808

33. Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, et al.
Reduced Lung-Cancer Mortality With Low-Dose Computed Tomographic
Screening. N Engl J Med (2011) 365(5):395–409. doi: 10.1056/NEJMoa1102873

34. Senan S, Brade A, Wang LH, Vansteenkiste J, Dakhil S, Biesma B, et al.
PROCLAIM: Randomized Phase III Trial of Pemetrexed-Cisplatin or
Etoposide-Cisplatin Plus Thoracic Radiation Therapy Followed by
Consolidation Chemotherapy in Locally Advanced Nonsquamous Non-
Small-Cell Lung Cancer. J Clin Oncol (2016) 34(9):953–62. doi: 10.1200/
JCO.2015.64.8824

35. Choy H, Gerber DE, Bradley JD, Iyengar P, Monberg M, Treat J, et al.
Concurrent Pemetrexed and Radiation Therapy in the Treatment of Patients
With Inoperable Stage III Non-Small Cell Lung Cancer: A Systematic Review
of Completed and Ongoing Studies. Lung Cancer (2015) 87(3):232–40.
doi: 10.1016/j.lungcan.2014.12.003

36. Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, et al.
Comparison of Four Chemotherapy Regimens for Advanced Non-Small-Cell
Lung Cancer. N Engl J Med (2002) 346(2):92–8. doi: 10.1056/NEJMoa011954

37. Scagliotti GV, Parikh P, von Pawel J, Biesma B, Vansteenkiste J, Manegold C,
et al. Phase III Study Comparing Cisplatin Plus Gemcitabine With Cisplatin
Plus Pemetrexed in Chemotherapy-Naive Patients With Advanced-Stage
Non-Small-Cell Lung Cancer. J Clin Oncol (2008) 26(21):3543–51.
doi: 10.1200/JCO.2007.15.0375

38. Junttila MR, de Sauvage FJ. Influence of Tumour Micro-Environment
Heterogeneity on Therapeutic Response. Nature (2013) 501(7467):346–54.
doi: 10.1038/nature12626

39. O’Connor JP, Rose CJ, Waterton JC, Carano RA, Parker GJ, Jackson A. Imaging
Intratumor Heterogeneity: Role in Therapy Response, Resistance, and Clinical
Outcome. Clin Cancer Res (2015) 21(2):249–57. doi: 10.1158/1078-0432.CCR-14-0990

40. O’Connor JPB. Cancer Heterogeneity and Imaging. Semin Cell Dev Biol
(2017) 64:48–57. doi: 10.1016/j.semcdb.2016.10.001

41. Bashir U, Siddique MM, Mclean E, Goh V, Cook GJ. Imaging Heterogeneity
in Lung Cancer: Techniques, Applications, and Challenges. AJR Am J
Roentgenol. (2016) 207(3):534–43. doi: 10.2214/AJR.15.15864

42. Win T, Miles KA, Janes SM, Ganeshan B, Shastry M, Endozo R, et al. Tumor
Heterogeneity and Permeability as Measured on the CT Component of PET/
CT Predict Survival in Patients With Non-Small Cell Lung Cancer. Clin
Cancer Res (2013) 19(13):3591–9. doi: 10.1158/1078-0432.CCR-12-1307
July 2021 | Volume 11 | Article 646190

https://doi.org/10.1088/1361-6560/ab6e51
https://doi.org/10.1088/1361-6560/ab6e51
https://doi.org/10.1016/j.ejca.2016.03.081
https://doi.org/10.1148/ryai.2019180012
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1056/NEJMoa1616288
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1038/srep13087
https://doi.org/10.1016/j.ejmp.2017.05.071
https://doi.org/10.1016/j.ejrad.2016.09.005
https://doi.org/10.7554/eLife.23421
https://doi.org/10.1038/s41568-018-0016-5
https://doi.org/10.1038/s41568-018-0016-5
https://doi.org/10.1371/journal.pmed.1002711
https://doi.org/10.1371/journal.pmed.1002711
https://doi.org/10.1158/1078-0432.CCR-17-2507
https://doi.org/10.18383/j.tom.2016.00211
https://doi.org/10.1016/S2589-7500(19)30058-5
https://doi.org/10.1007/s00330-020-07141-9
https://doi.org/10.1109/ISBI45749.2020.9098561
https://doi.org/10.1109/ISBI45749.2020.9098561
https://doi.org/10.2463/mrms.mp.2018-0158
https://doi.org/10.2463/mrms.mp.2018-0158
https://doi.org/10.1016/j.mri.2012.05.001
https://doi.org/10.1016/j.mri.2012.05.001
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.3390/cancers12082200
https://doi.org/10.1186/s13058-017-0846-1
https://doi.org/10.1186/s13058-017-0846-1
https://doi.org/10.17849/insm-47-01-31-39.1
https://doi.org/10.17849/insm-47-01-31-39.1
https://doi.org/10.1109/TPAMI.2005.159
http://www.public.asu.edu/~huanliu/papers/tr-10-007.pdf
http://www.public.asu.edu/~huanliu/papers/tr-10-007.pdf
https://doi.org/10.1148/radiol.10091808
https://doi.org/10.1056/NEJMoa1102873
https://doi.org/10.1200/JCO.2015.64.8824
https://doi.org/10.1200/JCO.2015.64.8824
https://doi.org/10.1016/j.lungcan.2014.12.003
https://doi.org/10.1056/NEJMoa011954
https://doi.org/10.1200/JCO.2007.15.0375
https://doi.org/10.1038/nature12626
https://doi.org/10.1158/1078-0432.CCR-14-0990
https://doi.org/10.1016/j.semcdb.2016.10.001
https://doi.org/10.2214/AJR.15.15864
https://doi.org/10.1158/1078-0432.CCR-12-1307
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Chang et al. Radiomics Models Predict Chemotherapy Response
43. Rios Velazquez E, Parmar C, Liu Y, Coroller TP, Cruz G, Stringfield O, et al.
Somatic Mutations Drive Distinct Imaging Phenotypes in Lung Cancer.
Cancer Res (2017) 77(14):3922–30. doi: 10.1158/0008-5472.CAN-17-0122

44. Zhou Q, Zhou H, Li T. Cost-Sensitive Feature Selection Using Random Forest:
Selecting Low-Cost Subsets of Informative Features. Knowledge-Based Systems
(2016) 95:1–11. doi: 10.1016/j.knosys.2015.11.010

45. DeviaeneM, TestelmansD, Borzee P, Buyse B, Huffel SV, Varon C. (2019). Feature
Selection Algorithm Based on Random Forest Applied to Sleep Apnea Detection.
In: 41st Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC). IEEE (2019) p. 2580–3. doi: 10.1109/EMBC.2019.8856582

46. Zhou Q, Hao Z, Zhou Q, Fan Y, Luo L. Structure Damage Detection Based on
Random Forest Recursive Feature Elimination. Mech Syst Signal Proc (2014)
46(1):82–90. doi: 10.1016/j.ymssp.2013.12.013

47. Paz-Ares LG, de Marinis F, Dediu M, Thomas M, Pujol JL, Bidoli P, et al.
PARAMOUNT: Final Overall Survival Results of the Phase III Study of
Maintenance Pemetrexed Versus Placebo Immediately After Induction Treatment
With Pemetrexed Plus Cisplatin for AdvancedNonsquamous Non-Small-Cell Lung
Cancer. J Clin Oncol (2013) 31(23):2895–902. doi: 10.1200/JCO.2012.47.1102

48. Zhao X, Liu L, Qi S, Teng Y, Li J, QianW. Agile Convolutional Neural Network for
Pulmonary Nodule Classification Using CT Images. Int. J Comput Assist Radiol
Surg (2018) 13(4):585–95. doi: 10.1007/s11548-017-1696-0
Frontiers in Oncology | www.frontiersin.org 13431
49. Dong D, Fang MJ, Tang L, Shan XH, Gao JB, Giganti F, et al. Deep Learning
Radiomic Nomogram Can Predict the Number of Lymph Node Metastasis in
Locally Advanced Gastric Cancer: An International Multicenter Study. Ann.
Oncol (2020) 31(7):912–20. doi: 10.1016/j.annonc.2020.04.003

50. Dong D, Tang L, Li ZY, Fang MJ, Gao JB, Shan XH, et al. Development and
Validation of an Individualized Nomogram to Identify Occult Peritoneal
Metastasis in Patients With Advanced Gastric Cancer. Ann. Oncol (2019) 30
(3):431–8. doi: 10.1093/annonc/mdz001
Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Chang, Qi, Yue, Zhang, Song and Qian. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.
July 2021 | Volume 11 | Article 646190

https://doi.org/10.1158/0008-5472.CAN-17-0122
https://doi.org/10.1016/j.knosys.2015.11.010
https://doi.org/10.1109/EMBC.2019.8856582
https://doi.org/10.1016/j.ymssp.2013.12.013
https://doi.org/10.1200/JCO.2012.47.1102
https://doi.org/10.1007/s11548-017-1696-0
https://doi.org/10.1016/j.annonc.2020.04.003
https://doi.org/10.1093/annonc/mdz001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Frontiers in Oncology | www.frontiersin.org

Edited by:
Bo Gao,

Affiliated Hospital of Guizhou Medical
University, China

Reviewed by:
Kumar Prabhash,

Tata Memorial Hospital, India
Subathra Adithan,

Jawaharlal Institute of Postgraduate
Medical Education and Research

(JIPMER), India

*Correspondence:
Jiansong Ji

lschrjjs@163.com
Yuan Huang

zjlshuangyuan@126.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cancer Imaging and
Image-directed Interventions,

a section of the journal
Frontiers in Oncology

Received: 03 August 2020
Accepted: 15 July 2021

Published: 06 August 2021

Citation:
Weng Q, Hui J, Wang H, Lan C,

Huang J, Zhao C, Zheng L, Fang S,
Chen M, Lu C, Bao Y, Pang P, Xu M,
Mao W, Wang Z, Tu J, Huang Y and
Ji J (2021) Radiomic Feature-Based

Nomogram: A Novel Technique
to Predict EGFR-Activating
Mutations for EGFR Tyrosin

Kinase Inhibitor Therapy.
Front. Oncol. 11:590937.

doi: 10.3389/fonc.2021.590937

ORIGINAL RESEARCH
published: 06 August 2021

doi: 10.3389/fonc.2021.590937
Radiomic Feature-Based Nomogram:
A Novel Technique to Predict EGFR-
Activating Mutations for EGFR
Tyrosin Kinase Inhibitor Therapy
Qiaoyou Weng1†, Junguo Hui1†, Hailin Wang1, Chuanqiang Lan1, Jiansheng Huang1,
Chun Zhao2, Liyun Zheng1, Shiji Fang1, Minjiang Chen1, Chenying Lu1, Yuyan Bao3,
Peipei Pang4, Min Xu1, Weibo Mao5, Zufei Wang1, Jianfei Tu1, Yuan Huang5*
and Jiansong Ji1*

1 Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University,
Lishui, China, 2 Department of Thoracic Surgery, Lishui Hospital of Zhejiang University, Lishui, China, 3 Department of
Pharmacy, Sanmen People’s Hospital of Zhejiang, Sanmen, China, 4 Department of Pharmaceuticals Diagnosis, General
Electric (GE) Healthcare, Hangzhou, China, 5 Department of Pathology, Lishui Hospital of Zhejiang University, Lishui, China

Objectives: To develop and validate a radiomic feature-based nomogram for
preoperative discriminating the epidermal growth factor receptor (EGFR) activating
mutation from wild-type EGFR in non-small cell lung cancer (NSCLC) patients.

Material: A group of 301 NSCLC patients were retrospectively reviewed. The EGFR
mutation status was determined by ARMS PCR analysis. All patients underwent
nonenhanced CT before surgery. Radiomic features were extracted (GE healthcare).
The maximum relevance minimum redundancy (mRMR) and LASSO, were used to select
features. We incorporated the independent clinical features into the radiomic feature
model and formed a joint model (i.e., the radiomic feature-based nomogram). The
performance of the joint model was compared with that of the other two models.

Results: In total, 396 radiomic features were extracted. A radiomic signature model
comprising 9 selected features was established for discriminating patients with EGFR-
activating mutations from wild-type EGFR. The radiomic score (Radscore) in the two
groups was significantly different between patients with wild-type EGFR and EGFR-
activating mutations (training cohort: P<0.0001; validation cohort: P=0.0061). Five clinical
features were retained and contributed as the clinical feature model. Compared to the
radiomic feature model alone, the nomogram incorporating the clinical features and
Radscore exhibited improved sensitivity and discrimination for predicting EGFR-activating
mutations (sensitivity: training cohort: 0.84, validation cohort: 0.76; AUC: training cohort:
0.81, validation cohort: 0.75). Decision curve analysis demonstrated that the nomogram
was clinically useful and surpassed traditional clinical and radiomic features.

Conclusions: The joint model showed favorable performance in the individualized,
noninvasive prediction of EGFR-activating mutations in NSCLC patients.
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INTRODUCTION

With the development of molecular biology in cancer therapy,
the treatment of NSCLC patients has become increasingly based
not only on the patient’s clinical characteristics and tumor
morphology but also on individual mutational profiles (1).
EGFR-activating mutations, including exon 19 deletion
(DEL19) and exon 21 substitution (L858R), account for
approximately 90% of all EGFR mutations in advanced NSCLC
patients (2). For advanced NSCLC patients with EGFR-
activating mutations, treatment with EGFR tyrosine kinase
inhibitors (EGFR TKIs), such as gefitinib and afatinib, has
become the standard of care (3, 4). Accumulating evidence
suggests that EGFR TKIs can significantly prolong
progression-free survival (PFS) compared to standard
chemotherapy in this genetically distinct subset of patients (5,
6). Thus, the detection of EGFR-activating mutations at the time
of initial diagnosis, before treatment, is critical.

Gene mutation testing can uncover pivotal information
connected to underlying molecular biology. The most
commonly used approach for obtaining specimens for a
specific diagnosis and molecular testing is biopsy. However, the
tissue acquired by invasive techniques may fail to represent the
anatomic, functional, and physiological properties of cancer.
Clinical studies have suggested that 10% to 20% of all NSCLC
biopsies are inadequate for molecular analysis because of a lack
of either sufficient tumor cells or amplifiable DNA (7). Moreover,
intratumoral heterogeneity due to the diverse collection of cells
harboring distinct molecular signatures will result in differential
levels of sensitivity to treatment (8). Thus, an alternative
approach for genetic testing is needed.

Computed tomography (CT) imaging presents a perspective
of the entire tumor and its microenvironment, allowing
prediction of the EGFR mutation status globally (9, 10).
Radiomics refers to the computerized extraction of a large
number of quantitative radiomic features from radiologic
images, and this method has unique potential to reveal tumor-
related information, such as pathological features, biomarker
expression and genomic features, using machine learning
algorithms (11, 12). Radiomics provides quantitative and
objective data collected from medical images to be utilized
within clinical-decision support systems to improve diagnostic,
prognostic, and predictive accuracy, especially in lung cancer
(13–15). Developing such a quantitative imaging technique and
testing its validity may offer a new non-invasive and convenient
Abbreviations: ADC, Adenocarcinoma; AUC, Area under the curve; CEA,
Carcinoembryonic antigen; CT, Computed tomography; CYFRA21-1,
Cytokeratin 19-fragment; DCA, Decision curve analysis; EGFR, Epidermal
growth factor receptor; EGFR DEL19, EGFR exon 19 deletions; EGFR L858R,
EGFR exon 21 substitutions; GLCM, Gray-Level Co-occurrence Matrix;
GLZSM=Gray level zone size matrices; LASSO, The least absolute shrinkage
and selection operator; mRMR, The maximum relevance minimum redundancy;
NSCLC, Non-small cell lung cancer; NSE, Neuron specific enolase; PCR,
Polymerase chain reaction; PFS, Progression free survival; ProGRP, Progastrin-
releasing peptide; Radscore, Radiomic scores; RLM, Run-length matrix; ROC,
Receiver operating characteristic; ROI, Region of interest; SCC, Squamous cell
carcinoma; SCCA, Squamous cell carcinoma antigen; TKIs, Tyrosine kinase
inhibitors; 95%CI, 95% Confidence interval.
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approach for the better management of therapeutic strategies,
resulting in optimized clinical and economic benefits to
the patient.

Herein, we examined the correlation between 396 radiomic
features and EGFR-activating mutation subtypes in two
independent cohorts comprising 301 NSCLC patients.
Furthermore, we created a user-friendly nomogram by
incorporating the radiomic signature with the clinical
characteristics to predict the probability of an event based on
the individual profile of each patient. Our results reveal that the
combination of the repeatable, reproducible and low-cost CT-
derived radiomic signature and the clinical parameters can be
used for evaluating the EGFR-activating mutation status. This
may have important clinical influence, notably by allowing the
better personalization of target therapy for NSCLC patients with
EGFR-activating mutations.
MATERIALS AND METHODS

Dataset
Our study was approved by the institutional review board of
Lishui Hospital of Zhejiang University. Because of its
retrospective nature, requirement for informed consent was
waived. Patients who were diagnosed with pathologically
confirmed NSCLC from June 30, 2015, to January 18, 2018,
were enrolled. A total of 590 were included according to the
following inclusion criteria (1): CT imaging performed within
one month before surgery (2); histological diagnosis of NSCLC
(3); EGFR mutations (EGFR EXON18 G719X、EGFR EXON19
19-Del、EGFR EXON20 T790M、EGFR EXON20 20-Ins、
EGFR EXON20 S768I、EGFR EXON21 L858R、EGFR
EXON21 L861Q) detected by amplification refractory mutation
system-Scorpion real-time PCR (ARMS-PCR); and (4) clinical
data were available. Thereafter, 289 patients were excluded
according to the following exclusion criteria (1): preoperative
treatment at the time of the initial diagnosis (n=96) (2); tissue
sample obtained by biopsy rather than surgery (n=138); and (3)
histological diagnosis of SCLC (n=55). Eventually, a total of 301
patients were enrolled in our study; 210 patients and 91 patients
were allocated to the training and validation cohorts, respectively
with a ratio of 7:3 (16).
CT Image Acquisition and Interpretation
Patients underwent preoperative unenhanced CT scanning using
a 64-channel Philips Brilliance CT system (Philips Medical
Systems). Details regarding the acquisition parameters were set
as follows: tube current, 200 mA; tube voltage, 120 kV; slice
thickness, 0.9 mm; collimation width, 40 mm (64 × 0.625 mm);
reconstruction interval with iDose3 hybrid iterative
reconstruction algorithm, 0.45 mm; scan field of view (SFOV),
15-20 cm; pitch, 1.2; rotation time, 350 ms; and pixel matrix size,
1024×1024. The images were processed in the Extended
Bril l iance Workspace (EBW, Phil ips). Multi-planar
reconstruction was used for image reconstruction with a
thickness of 5 mm.
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Two thoracic radiologists with 9 and 13 years of experience
(H.W. and C.L.) performed retrospective reviews independently.
Disagreements were settled by the third radiologist who had 20
years of experience (J.J.). The image features included the
following (1): size and (2) volume, measured using the
Extended Brilliance Workspace and Lung Nodule Assessment
software (Philips) (3); lobe (4); cancer type(primary cancer or
metastasis cancer) (5); tumor location (6); shape: regular (round
or oval) or irregular (17) (6); lobulation (present/absent) (7);
speculation (present/absent) (8); air bronchogram (present/
absent) (9); necrosis (present/absent) (10); pleural retraction
(present/absent) (11); calcification (present/absent); and (12)
pleural effusion (present/absent).

Tumor Segmentation and Radiomic
Feature Extraction
CT images of selected patients were exported from the picture
archiving and communication system (PACS) according to the
inclusion and exclusion criteria. ITK-SNAP software (version
3.4.0, www.itk-snap.org) was used for three-dimensional semi-
automatic segmentation (18). All images were automatically
segmented and adjusted by a radiologist with 18 years of
experience (Z.W., reader 1), who repeated the same procedure
within 2 weeks. The interobserver reproducibility of each
segmentation was evaluated by another radiologist with 20
years of clinical experience (J.J., reader 2).

Radiomic features were extracted from the ROI by
commercial software Artificial Intelligence Kit (A.K) which
developed by GE Healthcare (19). A total of 396 high-
dimensional features were extracted from each individual, and
these features were divided into 5 categories (Supplementary
Figure 1): histogram (n=42), form factor (n=9), grey level co-
occurrence matrix (GLCM) (n=154), run-length matrix (RLM)
(n=180), and grey level zone size matrix (GLZSM) (n=11).

Inter- and Intraobserver Reproducibility
The inter- and intraobserver reproducibility of semantic image
features, tumor segmentation and feature extraction were
evaluated by intraclass correlation coefficients (ICCs). Two
radiologists specialized in chest CT interpretation initially
analyzed the images obtained from 30 randomly selected
patients within 2 weeks in a blinded fashion. ICCs greater than
0.75 were considered as good consistency, and the remaining
image segmentation was performed by reader 1.

Radiomic Feature-Based Prediction
Model Construction
We built the radiomic signature model based on selected features
from the training cohort. Z‐score was applied to feature
normalization before feature selection. Two feature selection
methods, maximum relevance minimum redundancy (mRMR)
and least absolute shrinkage and selection operator (LASSO),
were used to select the features. First, mRMR was performed to
eliminate redundant and irrelevant features. LASSO was used to
select the most useful features by penalty parameter tuning and
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10-fold cross-validation based on the minimum criteria. LASSO
includes choosing the regular parameter l to determine the
number of features. After the number of features was
determined, the most predictive subset of features was chosen,
and the corresponding coefficients were evaluated. The
coefficients for most radiomic features were reduced to zero,
and any remaining radiomic features with non-zero coefficients
were selected. Next, we built a model with selected radiomic
features. A radiomic score (Radscore) was computed for each
patient through a linear combination of selected features
weighted by their respective coefficients. The final formula for
the Radscore was as follows: “Radscore = -0.152*Small Area
Emphasis + -0.097*Long Run High Grey Level Emphasis_
angle0_offset4 + 0.035*Cluster Prominence _All Direction_
offset7_SD + 0.082*Inverse Difference Moment_All Direction
_offset4_SD + 0*Low Grey Level Run Emphasis_All
Direction_offset4_SD + -0.064*Long Run Low Grey Level
Emphasis_All Direction_offset7_SD + 0.275*Correlation_
angle0_offset7 + 0.211*std Deviation + -0.068*GLCM
Energy_All Direction_offset4_SD + -0.018”. Furthermore,
the Radscore was compared between the wild-type EGFR and
EGFR-activating mutations in both the training and
validation cohorts.

Logistic regression with L1 regularization was performed to
select the independent clinical predictors in the training cohort.
Prediction models combining radiomic features and clinical
variables were established. We built a radiomic nomogram
based on the multivariate logistic regression model in the
training cohort, and receiver operating characteristic (ROC)
curves were developed to evaluate the discriminatory ability of
the nomogram. The calibration curve of the nomogram was used
to assess how closely the nomogram predicted EGFR-activating
mutations relative to the actual probability (20, 21). The
Hosmer-Lemeshow test was used to evaluate the goodness-of-
fit of the calibration curve (22). In addition, decision curve
analysis (DCA) was used to determine the clinical usefulness of
the prediction model by quantifying the net benefits at different
threshold probabilities. DCA estimates the net benefit of a model
through the difference between the true-positive and false-
positive rates, weighted by the odds of the selected threshold
probability of risk (23).

Statistical Analysis
Statistical analysis was performed using R software (version 3.3)
for quantitative feature analysis. The characteristic features of
patients with EGFR-activating mutations and wild-type EGFR
were compared by Student’s t-test for normally distributed data;
otherwise, the Mann-Whitney U test was used. Multivariate
binary logistic regression was performed with the “rms”
package. A nomogram was established by incorporating
significant characteristic features and radiomic features. ROC
curves were plotted to evaluate the diagnostic efficiency of the
model. The area under the ROC curve (AUC) was then
calculated. The nomogram was constructed and the calibration
plots were created using the “rms” package. A p-value <0.05 was
considered significant.
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TABLE 1 | Characteristics of 301 NSCLC patients, according to the presence of the EGFR activating mutation.

Univariate Cox regression Multivariate Cox regression

Total EGFR Activating Mutation EGFR Wild Type P P

Gender <0.001 NA
Male 156 103 53
Female 145 49 96

Age 64.95 ± 10.52 64.68 ± 10.70 65.23 ± 10.36 0.647
Smoking Status <0.001 <0.0001
Active 110 79 31
Inactive 191 73 118

Size(cm) 1.9 (2.9, 4.6) 3.15 (1.98, 5.03) 2.6 (1.8, 4.2) 0.062
Volume(cm3) 9.08 (2.23, 30.39) 12.64 (2.78, 45.59) 6.86 (1.73, 25.50) 0.032 NA
Lobe 0.094
Left Upper 89 39 50
Left Middle 0 0 0
Left Lower 54 26 28
Right Upper 78 36 42
Right Middle 16 10 6
Right Lower 64 41 23

Cancer Type >0.999
Primary Cancer 296 149 147
Metastasis Cancer 5 3 2

Tumor Location 0.393
Peripheral 140 67 73
Central 161 85 76

Concomitant other malignancy 0.636
Present 16 9 7
Absent 285 143 142

Shape 0.259
Regular 36 15 21
Irregular 265 137 128

Lobulated 0.51
Present 274 140 134
Absent 27 12 15

Spiculated 0.021 0.076
Present 199 91 108
Absent 102 61 41

Air-bronchogram 0.014 0.039
Present 80 31 49
Absent 221 121 100

Necrosis 0.009 NA
Present 113 68 45
Absent 188 84 104

Pleural Retraction 0.136
Present 240 116 124
Absent 61 36 25

Calcification 0.547
Present 35 16 19
Absent 266 136 130

Pleural Effusion 0.189
Present 83 47 36
Absent 218 105 113

CEA <0.001 0.004
Normal 96 1 95
Abnormal 205 148 57

SCCA 0.006 0.026
Normal 258 136 122
Abnormal 43 13 30

CYFRA21-1 <0.001 NA
Normal 68 1 67
Abnormal 233 148 85

NSE <0.001 NA
Normal 98 3 95
Abnormal 203 146 57

(Continued)
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RESULTS

Clinical Characteristics
A total of 301 patients were enrolled in this study, 152 patients
(50.5%)were determined to have the EGFR exon 21 L858Rmutation
or the EGFR exon 19DEL19mutation,which are both considered as
EGFR-activating mutations, 149 patients (49.5%) presented with
wild-type EGFR. There were 103 males and 49 females with EGFR-
activating mutations and 53 males and 96 females with wild-type
EGFR, respectively; the mean age was 64.95 (Table 1).

Univariate analysis revealed that sex, smoking status, tumor
volume, spiculation, air bronchogram, necrosis, CEA, SCC,
CYFRA21-1 and NSE were significantly associated with EGFR-
activating mutations. Further multivariate analysis suggested that
smoking status (OR: 5.79, 95%CI: 2.93-11.45, P<0.0001), spiculation
(OR: 1.82, 95% CI: 0.94-3.51, P=0.076), air bronchogram (OR: 2.18,
95% CI 1.04-4.57, P=0.039), CEA (OR: 2.57, 95% CI: 1.35-4.87,
P=0.004) and SCCA (OR: 0.37, 95% CI 0.15-0.89, P=0.026) were
independent predictors of EGFR-activating mutations (Table 1).
Satisfactory interobserver and intraobserver reproducibility of the
clinical features was achieved (ICC=0.83, 0.79).
Radiomic Signature Construction,
Validation, and Evaluation
A total of 396 radiomic features were extracted from unenhanced
CT images. The intraobserver ICCs ranged from 0.80 to 0.89,
and the interobserver ICCs ranged from 0.76 to 0.90,
indicating satisfactory intra- and interobserver feature
extraction reproducibility. In all, 20 features were retained after
the mRMR algorithm was applied. Then, LASSO was performed,
including selection of the regular parameter l (log l=0.03), to
determine the number of features (Figures 1A, B). After the
number of features was determined, the most predictive subset of
9 features was chosen (Supplementary Table 1), and the
corresponding coefficients were evaluated (Figure 1C) and
used to build a prediction model. The Radscore showed a
significant difference between NSCLC patients with wild-type
EGFR and EGFR-activating mutations in the training (P<0.0001)
and validation cohorts (P=0.0061). Patients with EGFR-activating
mutations generally showed a higher Radscore (Figure 2).

As shown in Figure 3, the radiomic feature only model
achieved an AUC of 0.70 in the training cohort and 0.67 in the
validation cohort. We incorporated the clinical indicators with P
values less than 0.01 and the radiomic features into the logistic
TABLE 1 | Continued

Univariate Cox regression Multivariate Cox regression

Total EGFR Activating Mutation EGFR Wild Type P P

ProGRP 0.952
Normal 269 133 136
Abnormal 32 16 16
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Age is expressed as Mean ± SD. Size, and volume are expressed as Quantiles (Q1, Q3)/Median (interquartile range). Otherwise, data are number of patients.
CEA, Carcinoembryonic antigen, SCCA, Squamous cell carcinoma antigen, CYFRA21-1, Cytokeratin 19-fragments, NSE, Neuron specific enolase, ProGRP, Progastrin-releasing
peptide. The P value marked bold indicated statistical significance.
A

B

C

FIGURE 1 | Selection of radiomic features associated with EGFR-activating
mutations using the LASSO regression model. (A) Cross-validation curve. An
optimal log lambda (0.03) was selected, and 9 non-zero coefficients were
chosen. (B) LASSO coefficient profiles of the 396 radiomic features against the
deviance explained. (C) Histogram showing the contribution of the selected
parameters with their regression coefficients in the signature construction.
| Volume 11 | Article 590937

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Weng et al. Radiomic to Predict EGFR-Activating Mutations
regression analysis (Supplementary Table 2). The joint model
yielded an AUC of 0.81 (95% CI, 0.75-0.87) with a sensitivity of
84% in the training cohort (Figure 3A) and an AUC of 0.75 (95%
CI, 0.65-0.86) with a sensitivity of 76% in the validation cohort
(Figure 3B), which showed an improved performance over the
radiomic signature in both the training and validation cohorts.
Table 2 lists the predictive performance of the joint model, using
the AUC, accuracy, sensitivity and specificity as the main
measurements. The joint model outperformed the radiomic
feature model and the clinical characteristics-based model in
terms of sensitivity in the training and validation cohorts.
Frontiers in Oncology | www.frontiersin.org 6437
Subsequently, a nomogram integrating smoking status,
spiculation, air bronchogram, CEA, SCCA and Radscore was
constructed, as presented in Figure 4A. The calibration curve of
the nomogram for the prediction of EGFR-activating mutations
demonstrated favorable agreement between estimation with the
radiomic nomogram and actual observations. The p value
obtained via the Hosmer-Lemeshow test for the predictive
ability of the nomogram was 0.57 in the training cohort
(Figure 4B) and 0.24 in the validation cohort (Figure 4C).

DCA for the prediction model showed that the joint nomogram
had the highest net benefit compared with the clinical and radiomic
A B

FIGURE 2 | Difference in the Radscore between NSCLC patients with wild-type EGFR and EGFR-activating mutations in training cohort (A) and validation cohort (B).
A B

FIGURE 3 | Comparison of performance among the three developed models for the prediction of EGFR-activating mutations in NSCLC patients. ROC curves of
clinical features alone, radiomic features alone and combined features in the training (A) and validation (B) cohorts.
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feature models across the majority of the range of reasonable
threshold probabilities (Figure 4D). The decision curve showed
that if the threshold probability of a patient was within the range
from 10% to 65%, using the joint nomogram developed in our study
to predict EGFR-activating mutations added more benefit than the
treat-all-patients scheme or the treat-no-patients scheme.
DISCUSSION

We undertook this study to develop and validate a joint model-
based nomogram for the preoperative individualized prediction of
EGFR-activating mutations in NSCLC patients. The nomogram
integrated 5 clinical features, i.e., smoking status, spiculation, air
bronchogram, CEA, and SCCA, and 9 radiomic features. Our
findings suggest that NSCLC patients could be classified as having
EGFR-activating mutations or wild-type EGFR according to our
nomogram, indicating that the nomogram could be used as a novel
and user-friendly instrument for the bettermanagement ofNSCLC
patients. Moreover, this study provides a visualized explanation to
help clinicians understand the prediction outcomes in terms of
CT data.

Diagnosis of the EGFRmutational status on an individual basis
is vital for defining personalized treatment strategies. EGFR
mutation including the sensitivity (EGFR Del19 and L858R) and
resistance mutation (EGFR T790M) to TKIs. Recently, researchers
have been seeking novel approaches to replace or complement
conventionalmolecular analysis in routineCTexaminations.Wang
et al. proposed an end-to-end deep learning model to predict the
EGFR mutation status by preoperational CT scanning, with an
AUC of 0.85 in a primary cohort (24). However, the developed
model can only beused todistinguishpatientswithwild-typeEGFR
and EGFR mutations and cannot identify whether mutations are
EGFR activating or drug resistant mutations. In addition, although
the deep learning method is labor-saving since it does not require
precise nodule segmentation (25), the accuracy of segmentation is
controversial. Liu et al. collected 289 patients with surgically
resected peripheral lung adenocarcinomas and extracted 219
radiomic features to predict the EGFR mutation status, with an
AUCof0.709 (26).Thepredictionmodel inour study,withanAUC
of 0.81 in the training cohort, is more reliable and can be used for
discriminating wild-type EGFR and EGFR-activating mutations to
guide targeted therapy.

Although smoking has been well established as the major cause
of lung cancer, EGFR mutations have proved to be the most
Frontiers in Oncology | www.frontiersin.org 7438
common genetic alteration in never-smoking NSCLC patients. A
meta-analysis performed by Ren et al. revealed that non-smoking
was associated with a significantly higher EGFR mutation rate. The
frequency of EGFR mutations ranged from 22.7% to as high as
72.1% in never-smokers (27). Our results are in line with those of a
previous study in that the presence of EGFR mutations was closely
associated with the never-smoking status in NSCLC patients (28).

The relevance of CT features to the EGFR mutation status has
also been reported recently. Spiculated margins, subsolid density,
and non-smoking were confirmed to be significantly associated
with EGFR-activating mutations (29). Zhou et al. found that
spiculated margins, pleural retraction, and air bronchogram were
more frequent in the EGFR mutation group than in the wild-type
group, but there was no significant difference between these
groups (30). On the other hand, air bronchogram was reported
as an indicator of EGFR mutations in NSCLC (31). This result is
consistent with Liu’s findings, which revealed a significant
correlation between a small lesion size and air bronchogram
with EGFR mutations in lung adenocarcinoma (32).

Serum tumor markers, such as CEA, SCCA, CYFRA 21-1,
NSE, and ProGRP, are considered to be predictive or prognostic in
NSCLC, and some of these markers have been shown to be
correlated with EGFR mutations (33). CEA is widely known as a
serum tumor marker of NSCLC (34, 35). It has also been
uncovered that the serum CEA level in Chinese patients is not
only positively associated with EGFR mutation but also negatively
associated with the efficacy of TKI therapy (36). These findings
raise the question of whether there is any correlation between the
serum CEA level and EGFRmutations. In our study, the CEA level
(below or above 5 ng/mL) served as an independent marker for
predicting EGFR-activating mutations in NSCLC patients.
Consistent with a previous report, an elevated serum CEA level
predicted the presence of EGFR mutations in pulmonary
adenocarcinoma (37). The low frequency of an elevated SCCA
level has been reported in EGFR-mutated NSCLC, but no further
evidence has been presented regarding the relation between SCCA
and EGFR-activating mutations (38, 39). In our study, patients
with a normal SCCA level showed higher scores, suggesting that
this factor may contribute to the increased possibility of EGFR-
activating mutations.

With the radiomic approach, we identified that 9 radiomic
features from 4 different feature categories (GLCM, histogram,
RLM, GLZSM) were significantly associated with EGFR-
activating mutations and could serve as indicators for the
prediction of EGFR-activating mutations. The AUC of the
TABLE 2 | Predictive performance of the three models in the training and validation cohorts.

Model Accuracy [95%CI] AUC [95%CI] Sensitivity Specificity P value

Training cohort
Radiomic features 0.76 [0.70-0.82] 0.70 [0.63-0.77] 0.74 0.79 P < 0.0001
Clinical features 0.71 [0.64-0.77] 0.77 [0.71-0.84] 0.69 0.72 P < 0.0001
Joint features 0.68 [0.61-0.74] 0.81 [0.75-0.87] 0.84 0.51 P < 0.0001
Validation cohort
Radiomic features 0.72 [0.60-0.80] 0.67 [0.55-0.78] 0.67 0.79 P = 0.0038
Clinical features 0.63 [0.52-0.73] 0.67 [0.55-0.78] 0.62 0.64 P = 0.0043
Joint features 0.66 [0.55-0.76] 0.75 [0.65-0.86] 0.76 0.57 P < 0.0001
Augu
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A

B

D

C

FIGURE 4 | Nomogram for the prediction of EGFR-activating mutations based on the training cohort and the calibration curve for model evaluation. (A) Radiomic
nomogram constructed with the clinical characteristics and Radscore. Calibration curves were used to assess the consistency between the nomogram-predicted
EGFR-activating mutation probability and the actual fraction of EGFR-activating mutations in both the training (B) and validation (C) cohorts (D). DCA for the prediction
of EGFR-activating mutations in NSCLC patients for each model. The X-axis represents the threshold probability, and the Y-axis represents the net benefit. The net
benefit is calculated by adding the benefits (true-positive results) and subtracting the risks (false-positive results), with the latter weighted by a factor related to the harm
of an undetected cancer relative to the harm of unnecessary treatment. The red curve indicates the nomogram, which represents the joint prediction model composed
of radiomic features and clinical indicators. The green curve represents the clinical feature model, while the blue curve represents the radiomic feature model. Our joint
prediction model outperformed both the other models and simple strategies, such as the follow-up of all patients (grey line) or no patients (horizontal black line), across
the majority of the range of threshold probabilities at which a patient would choose to undergo a follow-up imaging examination.
Frontiers in Oncology | www.frontiersin.org August 2021 | Volume 11 | Article 5909378439

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Weng et al. Radiomic to Predict EGFR-Activating Mutations
radiomic feature model was lower than that of the joint model
(P=0.0005), suggesting that the radiomic features helped
improve the performance of the joint model, as indicated by
the higher AUC. These findings suggest that models integrating
radiomic features with clinical features are more effective.

DCA demonstrated that the joint nomogram was superior to
both the clinical feature model and the radiomic model across the
majority of the range of reasonable threshold probabilities, which
also indicates that the radiomic signature added value to the
traditional clinical features used for individualized EGFR-
activating mutation estimation. Therefore, a non-smoking
patient presenting with an abnormal serum CEA level, a normal
SCCA level, spiculation, air bronchogram and a high Radscore
might be more likely to have EGFR-activating mutations.

This study has several limitations. First, this was a
retrospective study and thus may have selection bias. Second,
tumor segmentation was performed by a semi-automatic
process, which was time consuming for the radiologists.
However, the results are more robust, especially for tumors
with unclear margins. Third, different CT scanning devices
with different acquisition protocols were used. Thus,
multicenter validation need to be performed to prove
nomogram reliability.

In conclusion, we established a CT image-based model
combining radiomic features and clinical variables for the
prediction of EGFR-activating mutations before initial
treatment in patients with NSCLC. The radiomic feature-based
nomogram can serve as an alternative approach to determine
better candidates for first-generation EGFR TKI therapy.
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