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Background: Clinical tests for detecting central and peripheral shoulder fatigue are
limited. The discrimination of these two types of fatigue is necessary to better adapt
recovery intervention. The Kinematic Theory of Rapid Human Movements describes the
neuromotor impulse response using lognormal functions and has many applications
in pathology detection. The ideal motor control is modeled and a change in the
neuromuscular system is reflected in parameters extracted according to this theory.

Objective: The objective of this study was to assess whether a shoulder neuromuscular
fatigue could be detected through parameters describing the theory, if there is the
possibility to discriminate central from peripheral fatigue, and which handwriting test
gives the most relevant information on fatigue.

Methods: Twenty healthy participants performed two sessions of fast stroke
handwriting on a tablet, before and after a shoulder fatigue. The fatigue was in internal
rotation for one session and in external rotation during the other session. The drawings
consisted of simple strokes, triangles, horizontal, and vertical oscillations. Parameters of
these strokes were extracted according to the Sigma–Lognormal model of the Kinematic
Theory. The evolution of each participant was analyzed through a U-Mann–Whitney test
for individual comparisons. A Hotelling’s T2-test and a U-Mann–Whitney test were also
performed on all participants to assess the group evolution after fatigue. Moreover, a
correlation among parameters was calculated through Spearman coefficients to assess
intrinsic parameters properties of each handwriting test.

Results: Central and peripheral parameters were statistically different before and after
fatigue with a possibility to discriminate them. Participants had various responses to
fatigue. However, when considering the group, parameters related to the motor program
execution showed significant increase in the handwriting tests after shoulder fatigue. The
test of simple strokes permits to know more specifically where the fatigue comes from,
whereas the oscillations tests were the most sensitive to fatigue.
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Conclusion: The results of this study suggest that the Sigma–Lognormal model of the
Kinematic Theory is an innovative approach for fatigue detection with discrimination
between the central and peripheral systems. Overall, there is a possibility to implement
the setting for clinics and sports personalized follow-up.

Keywords: Sigma–Lognormal model, Kinematic Theory of rapid human movement, central fatigue, peripheral
fatigue, rotator cuff, handwriting, shoulder

INTRODUCTION

One hundred million workers in the European population suffer
from chronic musculoskeletal disorders and pain (Bevan, 2015).
Direct and indirect costs for treating them are expensive, as they
accounted, respectively, for up to $796.3 billion (which represents
5.2% of the national gross domestic product) and $130.7 billion
in the US population per year between 2009 and 2011 (U.S.
Bone and Joint Initiative, 2014). Shoulder is considered to
be one of the most affected joints, as it represents the third
cause of clinical consultation after the lumbar and cervical
regions. Disorders at the rotator cuff in the shoulder region
represents 50–85% of all shoulder musculoskeletal diseases in
Québec (Roy et al., 2015). Overhead and arm elevation repetition
movement is an important risk factor (Hagberg and Wegman,
1987; Svendsen et al., 2004; Ebaugh et al., 2006). In fact, while
performing these movements, neuromuscular fatigue generates
muscular and kinematic adaptations (Ebaugh et al., 2006; Gaudet
et al., 2018), which can lead to musculoskeletal disorders (Beach
et al., 1992). Sports requiring this kind of motion are then
more affecting its players, like in volleyball, baseball, tennis,
etc. (Wang and Cochrane, 2001; Mullaney et al., 2005; Wilk
et al., 2009; Joshi et al., 2011). Detecting shoulder fatigue
at an early stage could be a meaningful approach to avoid
shoulder injuries.

Neuromuscular fatigue corresponds to “any exercise-induced
loss of ability to produce force with a muscle or muscle
group” (Taylor et al., 2006). It can be decomposed into two
categories: central fatigue (Gandevia, 2001) and peripheral
fatigue (Enoka and Stuart, 1992). Central fatigue implies
the neural system: the voluntary activation and information
conduction for movement execution are dysfunctional (Sesboüé
and Guincestre, 2006; Boyas and Guével, 2011). Central fatigue
can come from the supraspinal and spinal areas. Peripheral
fatigue involves the muscles: in that case, the muscular
excitation is impaired. It can cause for example a deterioration
in the action potentials propagation or in the excitation–
contraction coupling responsible for contraction (Sesboüé and
Guincestre, 2006). A poor metabolite substrates supply can
also be a consequence of peripheral fatigue, implying also an
alteration of the excitation-contraction coupling (Boyas and
Guével, 2011). The output force is reduced and the contractile
mechanisms are dysfunctional (Bigland-Ritchie and Woods,
1984). In all cases, fatigue is different depending on the task
(duration and weight lifted) and on the type of contraction
(Chaffin et al., 2006a).

Several methods for detecting fatigue already exist. Numerous
scales have been developed which are fatigue and task specific

(Dittner et al., 2004). For example, the Visual Analog Scale is
a reliable scale used to analyze a global fatigue and has already
been used for muscular fatigue (Lee et al., 1991). However,
this method is not so accurate for low intensities contractions
(Leung et al., 2004). The Perceived Exertion Force is commonly
used in fatigue studies, with the Borg’s scale (Borg, 1998) and
in comparison to other scales, it seems to be one of the most
accurate (Neely et al., 1992). However, results from this scale
have to be analyzed carefully as it remains subjective (Chen
et al., 2002). Objective approaches for fatigue detection also
exist. One of the most frequently used is the electromyography
(EMG) which was first employed by Piper (1912), according to
Cifrek et al. (2009). Parameters such as the amplitude of the
root mean square of the EMG signal increase with fatigue, as
more motor units are recruited for the same amount of force
produced (Merletti et al., 2004). The mean or median frequency
of the power spectrum density decreases, as the velocity of
action potentials is slowed down (Edwards and Lippold, 1956;
Lindström et al., 1977; Al-Mulla et al., 2012). A complication
with EMG is the quality of the signal to be assessed. It is
essential to have good anatomical knowledge for electrodes
placement, in order to avoid crosstalk problems as much as
possible, which can lead to misinterpretations in the results
analysis (Hermens et al., 2000; Merletti et al., 2001; Farina et al.,
2004). EMG presents some difficulties for clinical evaluation as
the electrode placement and signal treatment is time-consuming.
There is also the possibility of using biomarkers as for example
lactate concentrations (Tesch et al., 1978; Finsterer, 2012). Its
intracellular concentration is supposed to diminish with the
apparition of fatigue. Nevertheless, even if they are accurate
methods, they remain invasive and hard to implement easily.
Other non-invasive methods are employed for peripheral fatigue
detection, such as sonomyography, near-infrared spectroscopy,
mechanomyography, or acoustic myography (Mancini et al.,
1994; Huang et al., 2007; Shi et al., 2007; Al-Mulla et al.,
2011; Ibitoye et al., 2014). However, most of these techniques
have to be synchronized with EMG to detect muscle fatigue
and they cannot assess central fatigue. On the other hand,
central fatigue can be evaluated either with percutaneous nerve
stimulation –with an electrical nerve stimulation- or transcranial
magnetic stimulation –with a nerve cells magnetic stimulation-
(Gandevia, 2001; Taylor and Gandevia, 2001; Rozand et al., 2015)
during maximal contractions. If the stimulation evokes an extra-
force, it suggests that central fatigue is present (Merton, 1954).
One more time, EMG can complement the methods to detect
central and peripheral fatigue. Moreover, transcranial magnetic
stimulation requires a magnetic coil to stimulate the motor
cortex, which can interfere with EMG recordings (Valero-Cabré
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et al., 2011). In complement, percutaneous nerve stimulation is to
our knowledge, so far not applicable to all muscles and requires
an experimental set up lengthy and difficult to implement
(Palmieri et al., 2004). This increases the risk of experimental
misinterpretations, thus the difficulty to transpose it to a clinic.
It is then necessary to find a method for detecting central and
peripheral shoulder fatigue, which would be usable in clinics
on a daily basis.

It has been shown that the Kinematic Theory of rapid
human movements describes accurately the neuromotor control
(Plamondon, 1995a,b). This theory is based on the analysis
of the velocity profiles of the end effector of a movement,
like the finger, the wrist, the arm, the shoulder, the head,
the trunk, the eye movements, etc. These movements can
be modeled using lognormal functions, which depict the
impulse response of the neuromuscular system of a participant
(Plamondon et al., 2008). Thus, both central and peripheral
information can theoretically be extracted from the movement
reconstruction (Plamondon et al., 2003). In comparison, the
Minimum-Jerk model (Hogan, 1984; Flash and Hogan, 1985)
postulates that end effector trajectories are chosen by the
central nervous system (CNS) such that the time integral of
the squared magnitude of hand jerk is minimal, which is
equivalent to maximizing the smoothness of the trajectory.
Both approaches describe the same bell-shaped velocity using
different analytical equations. Working with the Minimum-Jerk
model does not give access to the command profile sent by
the CNS. It is assumed that the alpha motoneuron signals,
at the muscle level, correspond to a movement trajectory.
This representation does not take into account the instant
when the movement command is sent to the end-effector,
neither the time required by the CNS to build and send
the appropriate signals to the motor cortex neurons or the
moment when the muscle starts to contract. The Minimum-
Jerk does not give access to the central and peripheral
information that we are investigating in this paper (Djioua and
Plamondon, 2010). For these reasons, the Kinematic Theory
was preferred to the Minimum-Jerk model for movement
reconstruction. Moreover, the Kinematic Theory has been
used in several pathologies for motor control studies, such
as attention deficit hyperactivity disorder (Laniel et al., 2019),
Parkinson’s disease (Lebel et al., 2017, 2018a,b; Nadeau et al.,
2018), stroke risk factors (O’Reilly and Plamondon, 2011),
concussion (Faci et al., 2020b), and it requires a non-invasive,
low cost and plug-in-play experimental set-up made up of
a digitizing tablet connected to a laptop. Its most recent
implementation is ergonomic and very easy to use (Faci
et al., 2018). Since during a shoulder fatigue the kinematic
parameters and the fine motor control are modified (Qin
et al., 2014), we hypothesized that the Kinematic Theory
of rapid human movements may be relevant to monitor
and assess shoulder fatigue analysis through graphomotricity.
The objective of this work is to report a feasibility study
aiming at the objective detection of muscular fatigue and the
discrimination of central and peripheral fatigue, in an economical
and non-invasive way, with the Kinematic Theory of rapid
human movements.

MATERIALS AND METHODS

Participants
Eleven males and nine females took part in the experiment.
They were all healthy active adults (age: 23.2 ± 3.2 years, height:
173 ± 8.3 cm, mass: 71.7 ± 10.0 kg, 18 right-handed and
2 left-handed). All participants were free of any upper-limb
musculoskeletal disorder and had no history of shoulder surgery
or neurological disease in the past. The study was approved
by the Research Ethics Committee of Polytechnique Montréal
(CER-1819-23 v.3).

Experimental Part
Participants completed two sessions in which they performed
four series of fast strokes on a tablet before and after a task
of shoulder fatigue. The two sessions were similarly performed,
at the exception that the fatigue task targeted the shoulder
external or internal rotators (sessions 1 and 2 randomly). There
were at least 3 days of rest between the two sessions to avoid
the participants to be still fatigued at the beginning of the
second session. The process for each session was the following
(Figure 1C): participants first had to execute the four series of
fast strokes and then to alternate between a task of fatigue and
a series of fast strokes. The series consisted of drawing simple
strokes, triangles, horizontal oscillations and vertical oscillations
in a random sequence.

The trajectory of fast strokes was recorded on a Wacom Cintiq
13HD tablet (Faci et al., 2018, 2020a). The tablet was positioned
such that the participant’s fingertip touched the bottom of the
tablet when the shoulder was 90◦ flexed. Participants had to
position the stylus on the starting point of the tablet (Figure 1A).
They started their movement as fast as possible at an audible
stimulus (“bip” at 1 kHz for 500 ms) which was emitted after a
random and unpredictable delay between 1 and 10 s. Depending
on the task, a different guide-screen was displayed to help
participants get the right movement [see further details regarding
the protocol in O’Reilly et al. (2014)].

• (A) Simple strokes: participants were asked to draw 30
simple strokes from a starting point to a broad finish area.
At the end of each stroke, participants had to maintain the
stylus on the finish area for at least 1 s. A training period of
5–10 strokes was carried out before the recording.
• (B) Triangles: 30 triangles had to be drawn, passing

through 3 points in the same clockwise or anticlockwise
direction -chosen by the participant- and they had to wait
with their stylus on the tablet for at least 1s at the end.
A training period was also carried out before the recording.
• (C) Horizontal and (D) vertical oscillations: 10 s of

oscillations at maximal speed between two parts spaced
50 mm apart were performed between two audible stimuli.
After the second signal, stylus kinematics was still recorded
until the participant completely stopped and maintained
the stylus on the tablet for at least 1 s. Only one
trial was registered in these cases, without any training
period to avoid fatiguing participants with these two
maximal speed tests.

Frontiers in Human Neuroscience | www.frontiersin.org 3 May 2020 | Volume 14 | Article 1716

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-00171 May 16, 2020 Time: 16:41 # 4

Laurent et al. Fatigue Detection Through Kinematic Theory

FIGURE 1 | Experimental set-up. (A) Position of the participant while drawing strokes. (B) Setup of the participant on the dynamometer for the fatigue protocol.
(C) Chronology of a session. T corresponds to a series of fast strokes (simple strokes, triangles, horizontal, and vertical oscillations) and F to a task of fatigue.

The fatigue task consisted in repetitive submaximal dynamic
contractions (concentric – continuous passive mode) at
90◦/s (70◦ of amplitude) in internal or external rotation on
an isokinetic dynamometer (CON-TREX R© MJ; Schnaittach,
Germany). Participants were securely fastened using a belt so
as not to move their back. Their arm was positioned at 30◦
of elevation (Figure 1B). A training period was allocated to
familiarize the participant with the isokinetic effort and to
warmup. To determine a target zone of 50 ± 7.5% of their
maximum voluntary contraction, participants performed first a
maximum voluntary isokinetic contraction in external rotation
(or internal rotation during the other session). At each external
rotation (or internal rotation) the participant was instructed to
reach this target zone and to rest during the internal rotation
(or external rotation). The Borg CR10 Scale (Borg, 1998) which
varies from 0 (no effort at all) to 10 (the hardest exercise ever
made) was asked every minute, to monitor perceived exertion.
Stopping criteria of the fatigue trials were similar to those defined
in Yang et al. (2018): (i) Borg number reached 9/10, (ii) three
consecutive fails in reaching the target zone, (iii) after 30, 20,
15, and 10 min for the first, second, third, and fourth exercise
of fatigue, respectively. The participants were not aware of these
criteria. Verbal encouragements were provided as soon as the
performance was outside the target zone. The number of Borg
has been recorded for 19 participants in external rotation and 18
participants in internal rotation.

Sigma–Lognormal Model
Data captured using the tablet were modeled according to the
Kinematic Theory paradigm (Plamondon, 1995a,b). This theory
describes the velocity profile of an end effector as the synergetic
impulse response of neuromuscular systems. Each of these
systems is made of an infinite of subsystems, which are linked
with a proportionality relationship between their cumulative time

delays. From this postulate it is then predicted, according to
the Central Limit Theorem (Plamondon et al., 2003) that the
impulse response of a neuromuscular system tends toward a
lognormal shape.

Evi(t − t0) = EDi3i(t; t0i, µi, σ
2
i ) (1)

where i represents one lognormal, shifted with a time t0 with a
command amplitude D; µ and σ representing timing properties
of each lognormal such that:

3i
(
t; t0i, µi, σ

2
i
)
=

1
σi
√

2π(t − t0i)
exp

{
−

1
2σ2

i

[
ln (t − t0i)− µi

]2
}
(2)

In the case of a simple pointing task, the movement is seen
as a synergy of two neuromuscular systems: an agonist and an
antagonist. The agonist one is made up of muscles generating
the desired action, whereas the antagonist system is made up
of muscles working in the opposite direction of the desired
movement. To that extent, agonist and antagonist lognormals can
be distinguished based on the starting angle θsi (see Equations
4 and 5). If the starting angle of the lognormal points toward
the movement direction, the lognormal is agonist. If it points
toward the opposite direction, the lognormal is antagonist. In
that case, the resulting velocity can be expressed as the velocity
of the agonist minus the antagonist lognormals. For more
complex planar movements, the velocity can be described using
a vector summation of lognormals. In that case, trajectories to
reconstruct the movement are circle arcs which connect virtual
targets defining an action plan. This means that the number of
lognormals describing a movement corresponds to the number of
virtual targets representing its trajectory (Plamondon and Djioua,
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2006; O’Reilly and Plamondon, 2009).

Ev (t) =
N∑

i=1

Evi(t; t0i, µi, σ2
i ) (3)
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These lognormal profiles have been observed and confirmed
time and again in the last 15 years [see Plamondon (2020)
for an extended survey (O’Reilly et al., 2013; Plamondon
et al., 2013a)], which led to postulating and formalizing the
guiding principle subtending the present research program: the
Lognormality Principle (Plamondon et al., 2013b; Plamondon,
2020). According to this paradigm, the emergent lognormality
of the neuromuscular impulse response of a given human
motor system is a basic global feature reflecting the behavior
of individuals who are in perfect control of their movements.
The production of complex movements is accomplished by time
superimposing and, summing up lognormal vectors, with the
goal of minimizing their number in a given task, to produce
efficient and fluent gestures and optimize the energy required to
generate them. In this context, it is expected that neuromuscular
fatigue will affect the lognormal parameters extracted from
reconstructing a given set of gestures produced by a subject.

The main parameters describing a lognormal were extracted
using an in-house software referred to as Script Studio (O’Reilly
and Plamondon, 2009) and were splitted into four categories,
which are resumed in the Supplementary Table S1 (Plamondon,
1995b; Plamondon et al., 2003). Five parameters are regulated
from the input level and they describe the central system
command: (i) the time that takes the brain to perceive the
stimulus and emit the command to the musculoskeletal system:
t0 (s). It has to be differentiated to the stimulus onset, which is
T = 0 s (O’Reilly et al., 2013) and the reaction time (RT) measured
by the instant of movement onset. In other words, t0 refers
to the moment when a population of neurons sends a motor
command, it occurs after the audible stimulus is perceived and
the motor command is prepared; (ii) 1(t0) (s), which reflects the
rhythmicity of an input command. It represents the time elapsed
between two successive t0 and is used in the oscillations only;
(iii) the amplitude of the lognormal command: D (mm), which
corresponds to the distance covered by the resulting lognormal;
(iv) the starting and (v) ending angles of the lognormal: θs and θe
(rad). They describe the action plan made up of the lognormals.

Two parameters describe the timing properties of the
neuromuscular system, in other terms the peripheral system
of a participant: (vi) the long-time delay or the time taken to
reach half of the distance movement on a logarithmic scale:
µ [ln (s)]. It corresponds to the rapidity of a reaction to a
command by a system; (vii) the log response time or the time
taken from the neuromuscular system to respond to a command

on a logarithmic scale: σ [ln(s)]. It is also linked to the movement
duration and is a measure of the asymmetry of the lognormal.

The last two main parameters describe the global state
of the neuromotor system: (viii) the number of lognormals
required to reconstruct the velocity profile of the movement:
Nblog; and (ix) the measure of the quality of the movement
reconstruction, Signal-to-Noise Ratio: SNR (dB). They are
completed with one derived parameter, (x) the SNR/Nblog (dB),
that is used as a performance criterion and represents the
motor control fluency of a gesture. The lognormality principle
predicts that the ideal movement converges toward a lognormal
profile. When the SNR/Nblog increases, the movement is closer
to the ideal one, as postulated by the lognormal behavior
(Plamondon et al., 2013b).

For our study, five derived parameters were also calculated
for each type of strokes, representing the motor program
execution (see equations in Supplementary Table S1). They give
information about the velocity at which someone will react or
execute a command, and the quality of its response: (xi) the
mode (s), that is the time at which the maximum value of
the lognormal impulse response is reached; (xii) the median
(s), that is the time at which the half value of the integral
under the lognormal curve (50% of the covered distance) is
reached; (xiii) the time delay (s) which represents the rapidity
of a neuromuscular system to respond to a command; (xiv)
the response time (s) which is a measure of the spread of the
impulse response; (xv) the asymmetry which characterizes the
shape of the lognormal.

A last parameter, not from the theory, was also extracted:
(xvi) the reaction time (RT) (s) that is the time needed to start
the movement after a stimulus. In the present study, it was
computed as the time required to reach 10% of the maximal
velocity during the test. From this parameter, we calculated (xvii)
RT-t0 (s) which is the duration of the command propagation
(Woch and Plamondon, 2001).

Data Formatting
The lognormals extracted from each test were split into
components as follows. For the simple strokes, two lognormals
that defined the largest agonist and largest antagonist components
were analyzed (Figure 2A). Strokes composed by only one
lognormal were classified as agonists (Laurent et al., 2019).
For the triangles, strokes were decomposed into the three
largest lognormals explaining stroke 1, stroke 2, and stroke 3
(Figure 2B). It was manually checked that triangles were properly
reconstructed. Those whose lognormals did not describe their
correct trajectory where rejected. It is noticed when the starting
angle of the reconstruction did not point toward the stroke
direction. For oscillations, strokes were split into three phases
(Figure 2C): acceleration (0–2 s), stable (2–10 s), and deceleration
(10 s and more) phases. Lognormals whose amplitude was
lower than 50 mm were considered as artifacts and rejected.
The remaining lognormals were then classified according to
the gesture performed. For the horizontal oscillations (vertical
oscillations in the other case), if the cosine (sine in the other
case) of the starting angle was positive, the lognormals were
considered as an external rotation movement, otherwise they
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FIGURE 2 | Different categories of Lognormals for each test. (A) Original velocity profile (blue) of a simple stroke, with its decomposition into agonist and antagonist
components. (B) Original velocity profile (blue) of a triangle with an extraction of the Lognormal corresponding to the first, second, or third stroke. Dashed gray lines
correspond to other Lognormals used for reconstruction but not analyzed. (C) Original velocity profile (blue) of the oscillations, with the three-phase separation. The
reconstruction of the velocity profile for oscillations is similar to the one of triangles, except that there are only agonist Lognormals, as the movement is fluent and
stops only after the 10 s.

were considered as an internal rotation movement. For each
type of strokes, and each participant, lognormals having at
least one parameter outside the mean ± 3SD were rejected.
The proportion of lognormals retained by tests is reported in
Section “Results.”

Statistical Analyses
To assess the evolution of each participant after fatigue,
individual comparisons using a paired U-Mann–Whitney
test (non-parametric paired t-test) were completed. This
test was performed using all the Lognormals of the 30
strokes and depending on the type of fatigue (ER or IR).
For the simple strokes and the triangles, 16 parameters
were compared, the statistical significance level was
thus set at p < 0.00031 (i.e., 0.05/16) after Bonferroni
correction. For the oscillations, SNR, SNR/Nblog, and Nblog
were not analyzed as there was only one value with the
oscillations, the significance level was set at p < 0.0042
(i.e., 0.05/12).

For group comparisons (n = 20) t0, D, µ, σ, |cos(θs)|,
|cos(θe)|, mode, median, time delay, response time, Nblog,
SNR, and SNR/Nblog were chosen for the simple strokes and
triangles. For the oscillations, 1(t0), D, µ, σ, mode, median,
time delay, response time, Nblog, SNR, and SNR(dB)/Nblog
were selected. Parameters of the oscillations were extracted
from the stable phase. Only the SNR and SNR/Nblog were
calculated from the whole signal. Due to signals recording
problems, the data of four participants were rejected for the
analysis of the Nblog, SNR, and SNR/Nblog for the vertical

oscillations during an internal rotation fatigue and of one
participant, for the horizontal oscillations during an internal
rotation fatigue.

A non-parametric paired Hotelling’s T2-test on each
series of fast strokes was first performed including all the
parameters. This multivariate test assessed whether there are
statistical differences between the two conditions (without
and with fatigue) considering all the parameters. When
the test was statistically significant (p < 0.05), the non-
parametric paired U-Mann–Whitney test was performed on
each parameter separately. The statistical significance was
set at p < 0.00385 (0.05/13) for the simple strokes and the
triangles and at p < 0.0042 (0.05/12) for the oscillations.
Comparisons were performed on all lognormals, considering
separately agonist and antagonist components for the simple
strokes, except for the Nblog, SNR, and SNR/Nblog, as the
whole signal was considered. No such distinctions between
lognormals were made for the triangles and the oscillations
since no supplementary information could be assessed. The
Cohen’s d effect size was also calculated to estimate the
importance of the parameters evolution after fatigue. As
referred in Sawilowsky (2009) the description for magnitude
is the following: d(0.01) = very small, d(0.20) = small,
d(0.50) = medium, d(0.80) = large, d(1.20) = very large,
and d(2.0) = huge.

Correlation matrices were finally calculated to assess the
relationships between parameters. The correlation between
the reaction time and t0 was assessed to determine the
importance of using t0 for central system analyses and the
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correlation of t0 with µ to evaluate the independence of
parameters related to the central and peripheral systems. To
do so, Spearman coefficients were evaluated on the mean
of each parameter by test. Statistical significance was set
at p < 0.05.

RESULTS

The filtering of data led to retain lognormals with properties
verifying the conditions mentioned in Section “Data
Formatting.” The proportion of the lognormals retained
out of the entire set of strokes drawn by test, is illustrated
in Figure 3. The proportions are similar pre- and post-
fatigue. It is observed that horizontal and vertical oscillations
have the highest amount of lognormals retained (between
88.7 ± 0.04% and 91.4 ± 0.04%), whereas triangles count
the lowest numbers of them (73.7 ± 0.08% pre-fatigue versus
73.1 ± 0.11% post-fatigue). Simple strokes have around 84% of
lognormals retained.

Effects of Fatigue by Participant
Torques and Borg Number
As depicted in Figure 4, the participants experienced internal
rotation (IR) or external rotation (ER) fatigue differently. The
ER fatigue trials lasted longer than the IR ones (15 ± 9.4 min
versus 3.9 ± 1.6 min). We observed also that the time necessary
to fatigue after each series of strokes decreased for the ER
fatigue (respectively, 15, 8.9, 6.2, and 5.1 min) whereas it
stayed quite stable for the IR fatigue (3.9, 3.2, 3, and 2.7 min).
However, for both fatigues, the number on the Borg Scale was
similar (7.7 ± 1.4 for the ER fatigue and 7.9 ± 1.1 for the
IR fatigue). Despite the shorter time to fatigue, participants
perceived intense effort in IR.

FIGURE 3 | Proportion of Lognormals retained by test.

Kinematic Parameters
The proportion of participants affected in their parameters by
fatigue is presented in Table 1. Both central and peripheral
systems were affected by fatigue in each stroke of each test,
as preliminary reported in Laurent et al. (2019), for both
ER or IR fatigue. Parameters affected by fatigue were not
necessarily the same among all participants and neither was
their evolution. This inter-subject variability is illustrated in
Figure 5, where four velocity profiles are drawn pre- and
post-fatigue, characterizing different participant’s behavior. For
example, after fatigue, the velocity profile was either displaced
to the right (Figure 5A), to the left (Figure 5C), or not evolving
(Figures 5B,D).

For the simple strokes, 90% of the participants had
almost one parameter describing their central system
significantly different post ER fatigue, either in the agonist
or antagonist component (Table 1). It was changed in 95%
of the population after an IR fatigue. For the parameters
reflecting the peripheral system, more differences were
noticed in the agonist parameters (40%) than in the antagonist
parameters (15%) after an ER fatigue. After an IR fatigue, no
such distinction between agonist and antagonist parameters
was found for the peripheral system (20% of statistical
changes in both cases). The conduction time was affected
in only 5% of the population after an ER fatigue and 10%
after an IR fatigue.

For the triangles, the global state of the neuromotor system
was impacted in 10% of the population after an ER fatigue and
in no participant at all after IR fatigue. The motor program
execution showed numerous differences pre- and post-fatigue for
the triangles, as in average more than 85% of the population
presented statistical differences (85% after an IR fatigue and 95%
after an ER fatigue). The conduction time |t0-RT| was affected in
15% of the population after an ER fatigue, and in no participants
after an IR fatigue.

The oscillations were the tests in which the most significant
differences were observed pre- and post-fatigue. All participants
had statistical changes in the parameters related to the central
system and the motor program execution, both after ER or IR
fatigue. Moreover, after an ER fatigue, peripheral parameters
changed in 75% of the population in horizontal oscillations versus
65% in the vertical oscillations. After an IR fatigue, they changed
in 85% both in horizontal and vertical oscillations.

Group Effect of Fatigue
Parameters Evolution
Hotelling’s T2-tests were all statistically significant (p < 0.05),
except for the triangles after an IR fatigue. As a matter of fact,
they validated in those cases the use of the U-Mann–Whitney test
to assess each parameter evolution. For the agonist component of
simple strokes, σ and the time delay were significantly higher after
fatigue (p = 0.0001), with a medium and large effect size (d = 0.66
and 0.93) (Table 2). In the antagonist components t0 and the
response time were significantly higher after fatigue (p = 0.0001),
with a medium effect size (d = 0.51 and 0.56, respectively). The
SNR/Nblog significantly decreased after fatigue (p = 0.0002). After
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FIGURE 4 | Means and standard deviations of the duration of fatigue (Left) and the perceived exertion on the Borg scale (Right) of the participants during each of
the four fatigue sessions.

TABLE 1 | Percentage of participants (N = 20) with significant differences for each component of their tests.

Test Stroke Central
system

Peripheral
system

Both systems Motor
program

execution

Global state
of the

neuromotor
system

RT |t0-RT| or
|1(t0)-RT|

Fatigue in external rotation (ER)

Simple strokes Agonist 70 40 30 40 50 45 5

Antagonist 60 15 10 15 45

Total 90 40 35 45 55

Triangles Stroke 1 45 25 10 55 10 20 15

Stroke 2 45 20 5 65

Stroke 3 25 5 5 55

Total 75 30 20 95

Horizontal oscillations External rotation 95 80 75 80 x x 70

Internal rotation 100 70 70 85

Total 100 75 85 95

Vertical oscillations External rotation 90 55 55 65 x x 95

Internal rotation 90 35 35 75

Total 95 65 60 80

Fatigue in internal rotation (IR)

Simple strokes Agonist 95 20 20 25 50 30 10

Antagonist 30 20 15 25 45

Total 95 35 30 45 55

Triangles Stroke 1 30 15 5 50 0 10 0

Stroke 2 20 25 10 65

Stroke 3 45 20 20 70

Total 75 40 25 85

Horizontal oscillations External rotation 95 80 80 90 x x 85

Internal rotation 100 75 75 90

Total 100 85 85 95

Vertical oscillations External rotation 90 75 65 80 x x 85

Internal rotation 100 65 65 90

Total 100 85 85 90

We could not perform t-test for the parameters reflecting the global state of the neuromotor system and the reaction time (RT) for the oscillations tests as we have only
one value per subject. For the oscillations |1(t0)-RT| was reported instead of |t0-RT|.

an IR fatigue, t0 was significantly higher after fatigue only for
the agonist components (agonist, p = 0.0002; antagonist, p = 0.7).
The mode, median and time delay increased for both components
(p ≤ 0.0002), with medium effect size, ranging from 0.53 to

0.79. In the triangles, D, the mode, the median and the time
delay were significantly higher after an ER fatigue (p = 0.0001)
(Table 3). For the horizontal oscillations (Table 4), 1(t0) was
significantly higher after an ER fatigue with a large effect size
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FIGURE 5 | Velocity profiles of four participants with the mean ± SD of the simple strokes, before (blue) and after (red) fatigue for the agonist (positive) and
antagonist (negative) components. Panel (A) had a significant increase after fatigue in µ, mode, median, time delay, RT for the agonist parameters; and t0, σ,
response time, asymmetry, and RT for the antagonist parameters. Panel (B) had no statistical changes. Panel (C) had a significant increase in D for the agonist
parameters. It had a significant decrease in |cos(θs)|, µ, mode, median, time delay, Nblog in the agonist parameters and SNR and TR in both components. Panel (D)
had a significant increase after fatigue of t0, σ and |t0-RT| and a significant decrease in µ and RT in the agonist parameters.

(d = 0.80). Regarding the peripheral system, µ increased after
both an ER and IR fatigue (p = 0.0001), with a large effect size
(d = 0.82 and 1.21, respectively). The mode, median, time delay
and response time were significantly higher (p = 0.0001) with a
large effect size after ER and IR fatigues (d = 0.80–1.18). The
SNR/Nblog was significantly higher after an IR fatigue, with a
medium effect size (d = 0.61). In the vertical oscillations, D
was significantly higher (p = 0.0001), after an ER fatigue. After
an IR fatigue the mode, median, time delay, and response time
were significantly higher (p = 0.0001), with a medium effect size
(d = 0.58-0.61).

Correlation Between Parameters
The reaction time (RT) was correlated with t0 of the agonist
and antagonist component of the simple strokes (Table 5). The
correlation with the triangles existed only with the t0 of the first
stroke. These correlations were present pre- and post-fatigue (ρ
from 0.78 to 0.89 for the triangles and from 0.72 to 0.93 for the
simple strokes). Parameters were more correlated for the agonist
component than the antagonist. For example, before ER fatigue,
the correlation was set at ρ = 0.88 for the agonist component and
at ρ = 0.76 for the antagonist component. Regarding t0 and µ,
there is no evidence of high correlation for the simple strokes (ρ
between −0.51 and −0.08 depending on the test) but it appears
for the triangles (ρ from−0.86 to−0.47).

DISCUSSION

This study aimed to settle an innovative, economical
and non-invasive method to detect shoulder muscular
fatigue and discriminate between central and
peripheral fatigue.

Distinction of the Type of Fatigue
In the Kinematic Theory of rapid human movements, the
distinction between central and peripheral fatigue is possible
through the intrinsic properties of the parameters extracted from
each stroke (O’Reilly and Plamondon, 2013). In addition to
these parameters, we proposed a series of derived parameters,
which translate a more global approach of motor control
analysis. For the oscillations, using 1(t0) instead of t0 seems

relevant for the central system analysis. As t0 represents the
timing emission for a command (Plamondon, 1995b), 1(t0)
describes the frequency at which the emission command is sent.
A statistical change means that the brain rapidity for generating
command signals is impaired due to fatigue. On the other hand,
the peripheral system is reflected through µ and σ, which are the
temporal properties of the neuromuscular system. A significant
difference in one of these parameters theoretically means that
the peripheral system of the participant was impaired by fatigue.
As exposed in Table 1, all the tests performed could reflect
those changes. In practice, the correlation between the reaction
time and t0 (Table 5) consolidated our position of using t0 for
the central nervous system analysis. In fact, the reaction time
is a commonly used parameter for cognitive studies (Tanaka
et al., 2009; Sant’Ana et al., 2017). This correlation was higher
for the first stroke of the simple strokes and the triangles. As
the antagonist component appears after the agonist one, there
is a delay, so a lower correlation. The same remark can be
made for the triangles: strokes 2 and 3 appear later implying
an absence of correlation between RT and their t0. In addition,
the calculation of the conduction time |t0-RT| enables to locate
more precisely the origin of the central fatigue. In our study, it
changed for a small population (≤15%), whether simple strokes
or triangles. This means that the time taken from the brain to
propagate the information to the end effector does not change
for most of the participants. Moreover, for clinical purposes,
it would be of interest to differentiate the fatigued muscle,
whether the infraspinatus (ER fatigue) or the subscapularis (IR
fatigue), through the evolution of the Kinematic parameters.
Machine learning algorithms, such as support vector machines,
have already shown interesting results in discriminating the
kinematic parameters in attention deficit hyperactivity disorder
and control group children (Faci et al., 2020c). The use of these
algorithms could be of interest for a differentiation of the type of
neuromuscular fatigue (ER or IR fatigue).

Intra-Participant Follow-Up
Our study showed that an individual monitoring of fatigue is
possible using a tablet. It is clinically relevant as pre- and post-
fatigue variations are different regarding the type of fatigue, the
participant and the test performed. This can be explained by the
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TABLE 2 | Parameters evolution in the simple strokes after a shoulder fatigue in external or internal rotation.

Agonist Antagonist

Pre-fatigue Post-fatigue P-value Effect size Pre-fatigue Post-fatigue P-value Effect size

External rotation fatigue (N = 20)

Central system

t0 0.23 ± 0.08 0.25 ± 0.07 0.0246 0.32 0.40 ± 0.12 0.44 ± 0.12 0.0002* 0.51a

D 214 ± 19.8 217 ± 21.6 0.005 0.20 30.6 ± 6.94 33.0 ± 8.33 0.0001* 0.33

|cos(θs)| 0.81 ± 0.08 0.81 ± 0.10 0.0001* 0.15 0.95 ± 0.03 0.94 ± 0.03 0.0001* 0.31

|cos(θe)| 0.96 ± 0.03 0.96 ± 0.03 0.0342 0.33 0.91 ± 0.11 0.94 ± 0.05 0.0001* 0.36

Peripheral system

µ −1.42 ± 0.18 −1.41 ± 0.15 0.4648 0.02 −1.78 ± 0.18 −1.82 ± 0.20 0.3042 0.23

σ 0.27 ± 0.06 0.30 ± 0.06 0.0001* 0.66a 0.36 ± 0.11 0.39 ± 0.12 0.0004* 0.47

Motor program execution

Mode 0.47 ± 0.08 0.48 ± 0.08 0.0002* 0.28 0.59 ± 0.10 0.62 ± 0.10 0.0001* 0.41

Median 0.49 ± 0.08 0.51 ± 0.08 0.0001* 0.33 0.61 ± 0.11 0.64 ± 0.11 0.0001* 0.45

Time delay 0.50 ± 0.09 0.51 ± 0.09 0.0001* 0.36 0.62 ± 0.11 0.65 ± 0.11 0.0001* 0.47

Response time 0.07 ± 0.02 0.08 ± 0.02 0.0001* 0.93b 0.06 ± 0.03 0.07 ± 0.03 0.0001* 0.56a

Global state of the neuromotor system – whole stroke

Nblog 2.18 ± 0.26 2.29 ± 0.30 0.0002* 0.48

SNR 30.3 ± 1.14 29.7 ± 1.29 0.0001* 0.44

SNR/Nblog 14.7 ± 1.53 13.8 ± 1.90 0.0002* 0.52a

Internal rotation fatigue (N = 20)

Central system

t0 0.21 ± 0.08 0.24 ± 0.08 0.0002* 0.52a 0.40 ± 0.11 0.41 ± 0.11 0.7018 0.20

D 208 ± 25.0 208 ± 23.7 0.713 0.00 29.0 ± 6.66 30.4 ± 7.53 0.2932 0.23

|cos(θs)| 0.81 ± 0.09 0.79 ± 0.09 0.0001* 0.65a 0.93 ± 0.06 0.94 ± 0.04 0.7014 0.25

|cos(θe)| 0.95 ± 0.03 0.96 ± 0.02 0.0001* 0.44 0.91 ± 0.09 0.93 ± 0.03 0.0004* 0.47

Peripheral system

µ −1.43 ± 0.18 −1.46 ± 0.18 0.0154 0.27 −1.86 ± 0.22 −1.80 ± 0.16 0.0454 0.24

σ 0.27 ± 0.05 0.29 ± 0.05 0.0001* 0.40 0.36 ± 0.08 0.36 ± 0.10 0.2972 0.06

Motor program execution

Mode 0.45 ± 0.08 0.47 ± 0.09 0.0002* 0.53a 0.57 ± 0.10 0.59 ± 0.10 0.0002* 0.79a

Median 0.47 ± 0.09 0.49 ± 0.09 0.0001* 0.58a 0.59 ± 0.10 0.61 ± 0.11 0.0001* 0.73a

Time delay 0.48 ± 0.09 0.50 ± 0.10 0.0001* 0.58a 0.60 ± 0.11 0.63 ± 0.12 0.0001* 0.67a

Response time 0.07 ± 0.02 0.07 ± 0.02 0.0001* 0.40 0.06 ± 0.02 0.06 ± 0.03 0.0492 0.17

Global state of the neuromotor system – whole stroke

Nblog 2.20 ± 0.24 2.20 ± 0.25 0.9086 0.02

SNR 30.1 ± 1.12 30.0 ± 1.37 0.7352 0.09

SNR/Nblog 14.5 ± 1.52 14.5 ± 1.77 0.9802 0.00

The simple strokes are separated into their agonist or antagonist components.
Values are expressed as mean ± standard deviation.
*Represents statistical significance (p < 0.05/13 = 0.0038).
a,bRepresent medium and large effect sizes, respectively.

task dependency of fatigue (Enoka and Stuart, 1992) and the
uniqueness of each participant (Chaffin et al., 2006b). In fact,
during submaximal muscle contraction, fatigue development
depends on the type of fibers activated and on the duration
of the contraction (Enoka and Stuart, 1992; Chaffin et al.,
2006a). Large variability in duration may come from the inter-
subject difference, but also from their ability to generate a
maximal force (Edwards, 1981). Different strategies were taken
by the participants to counteract the effects of fatigue, which is
reflected in the kinematic parameters. This can be observed as

well in Figure 5, where behavior differences are illustrated for
four velocity profiles. Some participants have a slower general
response (Figure 5A), faster (Figure 5C), or not evolving due
to fatigue (Figures 5B,D). The participant in Figure 5B was
a former high-level swimming athlete, and therefore could be
accustomed to shoulder fatigue. The participant in Figure 5D
presents many statistical differences in parameters shown by the
U-Mann–Whitney test. As µ− the longtime delay− significantly
decreased and σ− the log response time− significantly increased
for this participant, the resulting velocity profile showed little

Frontiers in Human Neuroscience | www.frontiersin.org 10 May 2020 | Volume 14 | Article 17113

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-14-00171 May 16, 2020 Time: 16:41 # 11

Laurent et al. Fatigue Detection Through Kinematic Theory

TABLE 3 | Parameters evolution in the triangles, after a shoulder fatigue in external rotation.

Triangles – whole stroke (N = 20)

Pre-fatigue Post-fatigue P-value Effect size

Central system

t0 0.23 ± 0.08 0.23 ± 0.06 0.488 0.12

D 154.9 ± 9.29 158.0 ± 10.2 0.0001* 0.53a

Peripheral system

µ −0.80 ± 0.21 −0.77 ± 0.18 0.0028* 0.31

σ 0.19 ± 0.03 0.19 ± 0.03 0.0226 0.25

Motor program execution

Mode 0.74 ± 0.08 0.75 ± 0.08 0.0001* 0.40

Median 0.75 ± 0.09 0.77 ± 0.08 0.0001* 0.38

Time delay 0.76 ± 0.09 0.77 ± 0.08 0.0001* 0.36

Response time 0.08 ± 0.01 0.08 ± 0.01 0.6214 0.01

Global state of the neuromotor system

Nblog 5.18 ± 0.61 5.21 ± 0.38 0.6678 0.06

SNR 27.0 ± 0.30 26.8 ± 0.47 0.0034* 0.46

SNR/Nblog 5.37 ± 0.69 5.37 ± 0.45 0.7124 0.01

Parameters come from combined strokes.
Values are expressed as mean ± standard deviation.
*Represents statistical significance (p < 0.05/11 = 0.0045).
aRepresents medium effect size.

visual differences after fatigue as compared to before. The
counterbalanced parameter changes masked the fatigue effect
on the velocity profile, pointing out the interest of analyzing
the lognormal parameters. Moreover, some participants have
a higher µ (Figures 5A,C), meaning a diminution of the
neuromuscular system to respond rapidly to a command,
whereas some others have a lower value (Figure 5D). To
compensate for a lower µ, participants can use a higher σ

or t0. This, respectively, means that the participant will take
more time to make the entire movement and that the brain
will send the response command later. However, sometimes
t0 significantly decreased after fatigue. The participant reacted
faster to the stimulus, as physical exercise can improve someone’s
cognitive function (Hillman et al., 2008). Different action plans
for drawing strokes were also made: some participants made
for example shorter strokes (smaller D, Figure 5A) because
they had difficulties in executing them, whereas some others
made larger strokes (higher D, Figure 5C) because they had,
for instance, difficulties in stopping them. This is probably due
to motor variability as movement is reorganized to prevent the
apparition of disorders. In that sense, spatiotemporal muscular
recruitment is variable after fatigue, which is assessed here
(Falla and Farina, 2007; Srinivasan and Mathiassen, 2012; Yang
et al., 2018). This method enables to study the evolution of
each parameters and compensations made by participants for a
case-by-case study, which is essential for example in personalized
top-level athletes training.

Group Effect of Fatigue
A group effect was noticed from the analyses, signifying that a
general pattern is highlighted after a neuromuscular fatigue. This
analysis is a first step in the process of using the method in clinics.

More studies would be needed to ensure that the parameters
evolution highlighted in this study are specific to shoulder fatigue.
In the simple strokes, the peripheral system was more impacted
after an ER than an IR fatigue. As the time to fatigue was
longer in ER, additional mechanisms of fatigue may have been
present, such as at the level of the excitation-contraction coupling
(Baker et al., 1993), which is then observed in the Kinematic
parameters related to the peripheral system. On the contrary, the
IR fatigue was perceived harder and may have impacted more the
parameters related to the central system. In fact, the action plan
of the agonist components of simple strokes is changed, with for
example an increase of the time to send the motor command.
Moreover, it was noticed that the motor program execution was
the most impaired system for most of the tests (Tables 2–4).
In fact, the mode, median, time delay were significantly higher
after fatigue, meaning a decline in the command velocity (Laniel
et al., 2019). However, parameters describing the global state
of the neuromotor system, such as the Nblog and SNR/Nblog
have a general trend to increase and decrease, respectively, for
the simple strokes and horizontal oscillations after an external
rotation fatigue. The evolution of these two parameters reflects a
worsening of the motor control quality. In fact, as in Cortes et al.
(2014), fatigue impacts the smoothness and motor control of a
person. On the other hand, the SNR does not seem to change in
many cases, only in the simple strokes and triangles after an ER
fatigue. As explained in Laniel et al. (2019), the reconstruction
of the velocity profiles stops when a 25 dB SNR is reached, and
adds lognormals until that condition is met. Studying the SNR of
simple strokes after a Delta-Lognormal extraction might be more
appropriate (Plamondon, 1995a, 1998; Woch et al., 2011), as it is
expected to reconstruct the kinematics with only two lognormals,
the agonist and antagonist. The evolution of the parameters, and
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TABLE 4 | Parameters evolution in the horizontal and vertical oscillations, after a shoulder fatigue in external or internal rotation.

Horizontal oscillations (N = 20)

External rotation fatigue Internal rotation fatigue

Pre-fatigue Post-fatigue P-value Effect size Pre-fatigue Post-fatigue P-value Effect size

Central system

1(t0) 0.08 ± 0.01 0.09 ± 0.01 0.0012* 0.80b 0.09 ± 0.01 0.09 ± 0.01 0.0150 0.96

D 124.8 ± 23.7 126.2 ± 26.2 0.0008* 0.10 124.2 ± 24.5 125.2 ± 28.8 0.2290 0.04

Peripheral system

µ −0.81 ± 0.07 −0.75 ± 0.10 0.0001* 0.82b
−0.81 ± 0.11 −0.75 ± 0.10 0.0001* 1.21c

σ 0.06 ± 0.00 0.06 ± 0.00 0.8870 0.09 0.06 ± 0.00 0.06 ± 0.00 0.0568 0.32

Motor program execution

Mode 0.53 ± 0.04 0.56 ± 0.06 0.0001* 0.80b 0.53 ± 0.06 0.57 ± 0.06 0.0001* 1.18b

Median 0.53 ± 0.04 0.57 ± 0.06 0.0001* 0.80b 0.53 ± 0.06 0.57 ± 0.06 0.0001* 1.18b

Time delay 0.53 ± 0.04 0.57 ± 0.06 0.0001* 0.80b 0.53 ± 0.06 0.57 ± 0.06 0.0001* 1.18b

Response time 0.03 ± 0.02 0.03 ± 0.00 0.0001* 0.81b 0.03 ± 0.00 0.03 ± 0.00 0.0001* 1.17b

Global state of the neuromotor system

Nblog 94.7 ± 6.78 89.1 ± 8.79 0.0002* 0.76a 94.7 ± 10.4 89.4 ± 9.21 0.0002* 0.66a

SNR 28.4 ± 1.40 27.6 ± 1.26 0.0868 0.38 28.4 ± 1.12 28.2 ± 0.99 0.3824 0.10

SNR/Nblog 0.21 ± 0.02 0.23 ± 0.03 0.0068 0.56a 0.21 ± 0.03 0.23 ± 0.02 0.0002* 0.61a

Vertical oscillations (N = 20)

Central system

1(t0) 0.09 ± 0.01 0.09 ± 0.01 0.7646 0.09 0.09 ± 0.02 0.10 ± 0.01 0.0256 0.56

D 118.4 ± 19.2 123.9 ± 19.4 0.0001* 0.57a 119.4 ± 26.0 119.8 ± 21.6 0.4200 0.03

Peripheral system

µ −0.73 ± 0.11 −0.73 ± 0.14 0.9816 0.05 −0.74 ± 0.17 −0.69 ± 0.16 0.0001* 0.64a

σ 0.06 ± 0.00 0.06 ± 0.00 0.6778 0.04 0.06 ± 0.00 0.06 ± 0.00 0.1486 0.23

Motor program execution

Mode 0.57 ± 0.07 0.58 ± 0.09 0.4820 0.11 0.58 ± 0.10 0.61 ± 0.09 0.0001* 0.61a

Median 0.58 ± 0.07 0.58 ± 0.09 0.4854 0.11 0.59 ± 0.10 0.61 ± 0.09 0.0001* 0.61a

Time delay 0.58 ± 0.07 0.58 ± 0.09 0.4906 0.11 0.59 ± 0.10 0.61 ± 0.09 0.0001* 0.61a

Response time 0.03 ± 0.00 0.028 ± 0.004 0.1838 0.11 0.03 ± 0.01 0.03 ± 0.004 0.0001* 0.58a

Global state of the neuromotor system

Nblog 88.0 ± 9.51 88.1 ± 12.1 0.9334 0.03 88.4 ± 14.9 84.8 ± 12.1 0.0314 0.40

SNR 27.6 ± 1.81 27.9 ± 1.46 0.5268 0.15 28.0 ± 1.64 27.4 ± 1.39 0.3432 0.27

SNR/Nblog 0.22 ± 0.02 0.23 ± 0.04 0.3886 0.20 0.23 ± 0.04 0.24 ± 0.04 0.6482 0.18

Parameters come from combined strokes.
Values are expressed as mean ± standard deviation.
For the global state of the neuromotor system, N = 19 after an ER fatigue and N = 16 after an IR fatigue.
*Represents statistical significance (p < 0.05/11 = 0.0045).
a,b,cRepresent medium, large and very large effect sizes, respectively.

especially the ones reflecting the motor program execution, is
similar between participants, which is interesting for using the
tablet as a clinical tool for fatigue detection.

Performance of the Tests
As a general overview, simple strokes reveal information about
agonist/antagonist systems. According to Turpin et al. (2011),
muscular activity changes after fatigue but the coordination
between muscles does not. The same muscles will create the
agonist/antagonist synergy. For this purpose, analyzing and
discriminating the two categories of muscles is appropriate.
In case of complex tasks (i.e., triangles or oscillations),
the distinction between those two systems is meaningless

since there is no stop at the intermediate points, only
at the end. The use of the speed/accuracy tradeoff tests
could provide more information, as it can express further
relationships between agonist and antagonist components
and their evolution with fatigue (O’Reilly and Plamondon,
2013). Moreover, central and peripheral system parameters
do not show a correlation in simple strokes (t0 and µ,
Table 5), whereas this correlation exits when movements get
longer. Participants anticipate them by targeting virtual points
(Plamondon et al., 2003; Plamondon and Djioua, 2006). With
the independency of parameters in the simple strokes, this
test can be specifically used to differentiate a central from a
peripheral fatigue.
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TABLE 5 | Spearman correlation coefficients between parameters, with rho-values of correlation pre- and post-fatigue.

Parameters Test Type of fatigue Type of stroke Rho pre-fatigue Rho post-fatigue

t0 and RT Simple strokes ER Agonist 0.88* 0.93*

Antagonist 0.76* 0.72*

IR Agonist 0.91* 0.92*

Antagonist 0.86* 0.74*

Triangles ER Stroke 1 0.89* 0.78*

Stroke 2 0.07 0.20

Stroke 3 −0.02 0.15

IR Stroke 1 0.78* 0.81*

Stroke 2 0.23 −0.10

Stroke 3 0.10 0.24

t0 and µ Simple strokes ER Agonist −0.37 −0.19

Antagonist −0.42 −0.51*

IR Agonist −0.08 −0.21

Antagonist −0.14 −0.18

Triangles ER Stroke 1 −0.74* −0.61*

Stroke 2 −0.86* −0.83*

Stroke 3 −0.74* −0.85*

IR Stroke 1 −0.58* −0.47*

Stroke 2 −0.83* −0.82*

Stroke 3 −0.76* −0.52*

*Represents significant correlations (p < 0.05).

On the other hand, triangles seem to be more difficult
to perform than simple strokes and oscillations. The inter-
participant variability may be higher and therefore significant
differences can be harder to notice in group studies. However,
as depicted in Table 1, individual changes are detectable on
triangles, and can therefore be used for extensive studies. A more
specific method for extracting triangles may be more adapted, as
they have the lowest number of lognormals retained compared
to other tests (Figure 3). As a matter of fact, it also depicts the
importance of performing more repetitions.

In addition, studying larger movements, such as the
oscillations seems more efficient to detect fatigue, as they depict
a more biomechanical movement. Nevertheless, a compensatory
effect between participants is noticed for the vertical oscillations.
As participants adopted different postures to execute the
movements, the individual kinematic might have been affected
(Fuller et al., 2009). It would have been interesting to record
the overall kinematic of the upper-body. In fact, a test
performance is often the same pre- and post-fatigue, but
strategies to perform the tests are different (Côté et al., 2002;
Emery and Côté, 2012).

Opening
In a wider context, the Sigma–Lognormal model seems
appropriate to study fatigue at different levels of the body,
whether it is the upper limb or lower limb. In fact, fatigue
results in deficiency in motor control and motion changes due
to a modification at different biological levels of the human
body physiology (Enoka and Stuart, 1992; Gandevia, 2001;

Cortes et al., 2014). That is why, it is expected that any other
impairment in the body, due to fatigue, could be detectable
by a similar method. Also in Cowley and Gates (2017), it has
been noticed that finger or shoulder fatigue affect movement
coordination in different manners. In this way, we think that it
would be possible to discriminate fatigue from different parts
of the body and parameters from the theory could reflect those
changes. By performing wider movements with the use of a
white board (Fischer et al., 2014), or by registering them in
3D (Schindler et al., 2018), it would then probably be easier
to discriminate them. The use of a board seems interesting,
as the system would remain easy to use. As the Kinematic
Theory describes fine motor control and is suitable for many
end effectors [such as fingertips, head (Lebel et al., 2018b),
eye movements (Plamondon, 1995a) etc.], the use of markers
directly on the studied articulation would be interesting to
complete analyses.

CONCLUSION

This study highlights that shoulder neuromuscular fatigue is
detectable in healthy active adults with the use of a digitizing
tablet and the Kinematic Theory. The type of fatigue (central
or peripheral) and the location of central fatigue (preparation
or conduction time) are distinguishable through the parameters
extracted from handwriting. An individual monitoring is
relevant to determine the compensatory reactions made by each
participant to counteract the effects of fatigue. Overall, common
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patterns in the parameters evolution are noticeable and are
significant for clinical studies. Parameters having a more global
approach, such as the mode, median, time delay tend to increase
after fatigue, whereas the SNR/Nblog tends to decrease. We also
observed that all handwriting tests were sensitive to fatigue.
Nevertheless, the simple strokes test could discriminate between
the central and peripheral systems independently and between
the agonist/antagonist systems, and the oscillations test is the
most effective to detect shoulder fatigue.
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How do we come to like the things that we do? Each one of us starts from a relatively
similar state at birth, yet we end up with vastly different sets of aesthetic preferences.
These preferences go on to define us both as individuals and as members of our
cultures. Therefore, it is important to understand how aesthetic preferences form over
our lifetimes. This poses a challenging problem: to understand this process, one must
account for the many factors at play in the formation of aesthetic values and how
these factors influence each other over time. A general framework based on basic
neuroscientific principles that can also account for this process is needed. Here, we
present such a framework and illustrate it through a model that accounts for the
trajectories of aesthetic values over time. Our framework is inspired by meta-analytic
data of neuroimaging studies of aesthetic appraisal. This framework incorporates
effects of sensory inputs, rewards, and motivational states. Crucially, each one of
these effects is probabilistic. We model their interactions under a reinforcement-learning
circuitry. Simulations of this model and mathematical analysis of the framework lead
to three main findings. First, different people may develop distinct weighing of aesthetic
variables because of individual variability in motivation. Second, individuals from different
cultures and environments may develop different aesthetic values because of unique
sensory inputs and social rewards. Third, because learning is stochastic, stemming from
probabilistic sensory inputs, motivations, and rewards, aesthetic values vary in time.
These three theoretical findings account for different lines of empirical research. Through
our study, we hope to provide a general and unifying framework for understanding the
various aspects involved in the formation of aesthetic values over time.

Keywords: aesthetics (as scholarly discipline), reinforcement leaning, art, motivation, preference, computational
modeling

INTRODUCTION

Our aesthetic preferences are an important part of our lives because they shape our decision
making and consequently our personality (Skov, 2010). We define ourselves both as individuals
and as parts of larger groups through our likes and dislikes (Brown and Dissanayake, 2009).
How exactly do these individual preferences come about? Currently, little is known about how
preferences form early on and what happens to them throughout our lives. Understanding
this process of preference formation has important implications not just for aesthetics, but for
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philosophy, psychology, neuroscience, marketing, and many
other fields. Indeed, philosophy was likely the first discipline to
ponder this question (Sartwell, 2012). Philosophers have long
wondered whether beauty is shared (universal) or in the eye of
the beholder (individual)? We discuss this philosophical question
in greater detail elsewhere but touch on it briefly here to frame
our work. In our earlier publication, we argue that one can
think of universal aspects of preference as innate, formed due
to evolutionary pressures (Aleem et al., 2019). Examples include
preferences for round contours, symmetry, and contrast. Such
preferences are likely present at birth across all populations
(Göksun et al., 2014). Here, we are instead more interested in
the learned aspects of aesthetic preferences. Specifically, how do
individualized aesthetic preferences form under constraints from
our environment and experience? How do existing universal
aspects of these preferences undergo individual and context-
specific changes?

Aesthetic preferences form early on in life, such that by
preschool age, children already show idiosyncrasies of their
cultures (Senzaki et al., 2014). Furthermore, these preferences
continue to evolve over our lifetimes (Park and Huang, 2010).
What mechanisms underlie this lifetime evolution? Many of
the existing frameworks of aesthetics do not explicitly consider
the time-course of preferences. However, several frameworks
stress its importance implicitly by focusing on time sensitive
variables such as learning and exposure. For example, Leder et al.
stress the importance of familiarity, which has been shown to
influence preference over time (Leder et al., 2004). However,
the framework proposed by Leder et al. is primarily concerned
with understanding the aesthetic experience as it plays out, not
how preferences form. A closer perspective comes from Vessel
and colleagues, who develop an associative theory of aesthetics
(Biederman and Vessel, 2006; Vessel and Rubin, 2010). In their
view, aesthetic preferences are shaped by associative experiences
over our lifetimes. However, their theory focuses primarily on
reasons for shared versus individual tastes, not the dynamics of
preferences over time per se. Several other theories and empirical
findings have implications for temporal aspects of aesthetics (see
section “Discussion”), but a framework specifically dedicated to
understanding this aspect is so far missing.

What should a framework that aims to understand the
dynamics of preferences over-time look like? We have
constrained our search for such a framework to be within
the general principles of neuroscience. Moreover, we have
avoided frameworks in which aesthetic values are formed by
specialized mechanisms, but rather have focused on known and
existing circuitry. A relevant meta-analysis of neuroimaging
studies supports this viewpoint for our framework (Brown
et al., 2011). These authors analyzed commonalities of aesthetic
appraisal across multiple sensory modalities. The results show
generalized mechanisms for appraisal centered around a reward-
based learning circuit. The central importance of reward is
further bolstered by many other imaging studies of aesthetics and
appraisal (Lacey et al., 2011; Vartanian and Skov, 2014; Wang
et al., 2015). These studies suggest that a reward-based learning
mechanism, likely, reinforcement learning, is fundamental to any
framework for understanding how aesthetic preferences form.

However, these studies and the results from the meta-analysis
by Brown et al. (2011), suggest that many factors influence
this process of reward-based learning. For example, these
factors include interoceptive inputs such as motivations and
exteroceptive inputs such as the statistics of sensory stimuli
(Brown et al., 2011).

How can a reasonable mechanism of reinforcement learning
account for aesthetic individuality? Our individual motivations
can greatly influence how we interact with the environment
and what decisions we make, thereby having a direct effect
on our preferences (Nelson and Morrison, 2005). Motivations
can influence reward, for example, activation in reward related
regions in the brain in response to certain foods is greatly
modulated by food specific satiation (Howard and Kahnt, 2017).
Similarly, Brown et al., consider internal drives, or motivations
as a key factor in aesthetic appraisal. Since such motivations are
individual, they can help account for individuality (Silvia et al.,
2009). Therefore, this suggests that motivation may modulate
learning of aesthetic preferences. Next, we consider an important
factor in aesthetic learning not explicitly addressed by Brown
et al., that is, the statistical nature of inputs. Evidence suggests that
our perception of incoming inputs is statistical in nature (Pouget
et al., 2013). Sensory inputs show many statistical properties
that convey useful information which can influence aesthetic
preferences. For example, preference for facial symmetry has
been shown to be modulated by the presence of pathogen
cues (Little et al., 2011). This statistical nature also accounts
for differences in preferences amongst cultures, as they impose
contingencies on rewards through value systems (Park and
Huang, 2010). Finally, internal states such as motivation are also
statistical, because we act according to states that vary across
time (for example, hunger, tiredness, and sex drive) (Craig,
2009). Sensory inputs, rewards, and motivation do not form a
comprehensive list, since a theoretical framework for the learning
of aesthetic values is not complete without accounting for
semantics, expertise, and much more. However, our framework
may capture some of the essential components of aesthetic
learning and thus, helps us focus on a simpler model that raises
testable predictions. By keeping the model general, we leave
ample room for further modifications and increase in complexity.

Following the guidelines listed above, we developed a
theoretical framework and a related computational model to
investigate the formation and dynamics of aesthetic preferences.
The model focuses on visual aesthetic preferences, but our
interests go beyond vision or art per se. Instead, we are
interested in a theoretical framework that is general to the many
different domains of preferences. A detailed description of our
framework is presented in section “Theoretical Framework.”
In turn, section “Materials and Methods” develops the model
and described methods for computer simulations of this model.
We used these simulations and mathematical analyses to test
the following questions: First, we investigated whether aesthetic
values would show a dynamic time course, possibly with multiple
stages. Moreover, we considered whether these values would
be stochastic due to the probabilistic nature of the inputs.
Second, we explored how the contingent probabilities of the
different variables could lead to a segregation of different
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trajectories, possibly mimicking different cultures. Third, we
investigated whether the individual specific motivation variable
would lead to further partitioning of learning trajectories, leading
to individuality.

THEORETICAL FRAMEWORK

We have split the description of the theoretical framework
into two subsections, general and mathematical. The general
section has a description of the ideas without any equations.
Our goal here is to help the reader understand the elements
of the theoretical framework at an intuitive level. In turn, the
mathematical section lays out the equations used to specify the
framework precisely. The general description section may allow
some readers to skip the equations and go directly to the Results.

General Description of the Theoretical
Framework
A general overview of our theoretical framework can be seen
in Figure 1. The green boxes in this figure illustrate the core
reinforcement-learning system. We discuss it briefly here but see
Sutton and Barto (2018) for an extensive overview. In typical
reinforcement learning, the system first receives inputs from the
external world and from the body (orange boxes). The system

then uses these inputs to form an internal model to estimate
the reward when taking some action (“Reward Estimation”
box), commonly referred to as value. When rewards arrive
(“Reward” box), they are compared with the estimated reward
(“Comparator” box). If there is a mismatch, the system “learns”
by updating the parameters of the internal model. This update
allows the system to achieve its goal of producing better reward
predictions in the future.

While we based our aesthetic-learning theoretical framework
largely on reinforcement learning, our framework has four
notable extensions, which make it noteworthy:

First, we propose that the estimate of reward is equivalent
to aesthetic value. To help understand this proposal, consider
the following example. Imagine a person looking at an apple
and smelling it, trying to decide whether to eat it. From the
information that the sensory systems collect from the apple, the
person makes a prediction about the rewards gained by eating
the apple, for example, how sweet and nutritive it is. Then, if
the person eats it, their brain will compare actual rewards and its
predictions, in updating its model of apples if necessary. Hence,
their brain learns that certain statistical properties of apples,
for example, shape or color can inform the prediction on their
value, which guides the preference for them. Now imagine that
the same individual gazes at a painting of an apple. Since some
of the same statistical signals may be present in the painting,

FIGURE 1 | A Schematic overview of our theoretical framework. The framework uses the core reinforcement-learning circuitry (green boxes) with three kinds of
inputs (orange boxes). These inputs are statistical, and are both external (sensory inputs and rewards) and internal (motivation) to the brain. The statistics are
conditional on each individual and the society of origin of the individual (blue boxes). We postulate the aesthetic value is equivalent to the statistically estimated
reward in the reinforcement-learning process.
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a similar prediction of reward, or value, is still generated. We
propose that the previously learned value will still influence
the experience of viewing the painting. If the statistics were
previously rewarding, the painting will also elicit high value and
generally elicit preference to a similar degree. Therefore, the
previous learned value is converted into an aesthetic value.

Second, we incorporate the concept of motivation within the
reinforcement-learning circuitry. Motivation, by our definition,
is somewhat akin to policy (Averbeck and Costa, 2017). It refers
to the internal drive of an individual, representing their likelihood
to act given an input. For example, if an individual is not hungry,
this person will not have the motivation to try a certain food and
therefore not learn about its value. However, motivation is not
limited to acts of consumption. Experimental interventions can
increase the “need” for abstract concepts such as complexity or
cognitive closure (Tinio and Leder, 2009; Steciuch et al., 2019).
Furthermore, one can choose whether to engage mentally with a
work of art if they are motivated. In our framework, motivation
is probabilistic, varying from one moment to another, a behavior
generally reflecting findings of interoceptive states in humans
(Craig, 2009). How does motivation ultimately affect learning?
In the simplest manner, motivation controls the rate of learning
by slowing it down or accelerating it when the motivation is low
or high, respectively. More generally, motivation may affect the
learning of certain aesthetic values. For example, an individual
who rarely eats fruits may not learn a high aesthetic value for
inputs related to fruit.

Third, both interoceptive and exteroceptive inputs to the
theoretical framework are statistical (orange/blue boxes in
Figure 1). The statistical distributions of these inputs should have
significant effects on the learning of values. In detail, statistical
interoceptive inputs reflect the variation of motivations across
individuals and over time in a single individual (blue boxes).
On the other hand, the exteroceptive inputs correspond to
both rewards and sensory signals (orange boxes). The statistical
nature of these signals reflects the variations of the external
world and how different individuals experience it (blue boxes).
Continuing our example above, an apple’s sensory signals would
be about smell, shape, color, and taste, the reward would be about
calories and vitamins, while the interoceptive signals would be
the appetite to eat it. The statistical nature of our theoretical
framework has three important implications: One, it allows us
to generalize over variations of individuals and objects. Two,
it ensures that the interoceptive and exteroceptive signals vary
stochastically over time, which better approximates real-world
conditions. Three, in real life, the statistics of rewards and sensory
signals are often correlated, for example, the color and shape of
an apple is an indicator of its ripeness. In turn, these attributes
influence internal states, for example, a ripe looking apple will
be more appetizing. We can model these relationships by using
probabilistic distributions for these variables.

Fourth, the inputs to our theoretical framework (orange
boxes) depend not only on individuals but also across societies
(blue boxes). Therefore, we propose the existence of a parameter
space whose values are different across groups (nations, cultures,
societies). This means that the distributions of individual
statistics are largely conditional on these external parameters.

These parameters may specify ecological differences, for example,
differences in climates, genetic predispositions, or exposure
to diseases (Little et al., 2007; Sorokowski et al., 2014). The
social parameters may also specify cultures values, for example,
different rewards for certain colors or styles (Masuda et al., 2008;
Park and Huang, 2010). By setting the model in the context of
social and environmental backgrounds, we can approximate how
different societies and cultures form distinct aesthetic values.

In sum, our model begins from a basic circuitry of reward-
based learning. Inspired by empirical findings, we expand on this
circuitry to include probabilistic inputs, internal drives, and other
external contingencies. The combination of these factors allows
our model to account for a range of phenomena from the societal
all the way to the individual level.

Mathematical Description of the
Theoretical Framework
Let the sensory inputs be N dimensional, with the various
components corresponding to variables that the brain uses to
represent the external world:

Eu (t) = [u1 (t) , u2 (t) , · · · , uN (t)]

where the overhead arrow indicates a vector, and t indicates that
sensory inputs vary (stochastically) over time.

In this paper, we assume that the model used for estimating
reward is linear. Although this assumption is common in
reinforcement-learning models (Dayan and Abbott, 2001), it is
not necessary. We make this assumption here for the sake of
simplicity, but address the consequences in the Discussion. The
assumption means that a parameter vector:

Ew (t) = [w1 (t) , w2 (t) , · · · , wN (t)]

exists such that the estimated reward is:

v (t) = m (t) Ew (t) · Eu (t) (1)

where 0 ≤ m(t) ≤ 1 is the motivation function. This equation
is important, because learning occurs in the presence of actual
rewards by adjusting the w’s. The introduction of the m function
is a modification of standard reinforcement-learning models,
which would use Eq. 1 with m = 1. This modification is necessary,
since people only get rewards if they act. Thus, if we interpret m
as the probability of acting, then the received reward is:

r (t) = m (t) r∗ (t) (2)

where r∗ is the reward that a fully motivated person would get.
The presence of m in the reward estimate (Eq. 1) considers that
reward itself varies with motivation (Eq. 2).

The typical learning in reinforcement-learning
theories follows the precept of temporal difference
(Dayan and Abbott, 2001)

δ (t) = r (t)− v(t) (3)

dEw (t)
dt
= kδ (t) Eu (t) (4)
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where k > 0 is a constant. Equation 4 is a continuous version of
the delta rule and thus, tends to minimize the difference between
v and r. Therefore, this minimization makes the estimated reward
as close as possible to the real one. An important property of
this equation is that because motivation affects both v and r
(Eqs. 1 and 2), it affects learning through the delta (Eq. 3). This
is important, since it shows that with no motivation, learning
freezes. The freezing makes sense, since for example, if a person
is not hungry, then the person will not eat. Thus, the person
cannot learn if the estimated reward is large or small in regards
to that specific food.

To complete the theoretical framework, we need to specify the
statistical properties of Eu, m, and r∗ Let us begin by considering
Eu and r∗. Both these variables are exteroceptive signals but with
different origins. While Eu is sensory (for example, seeing and
smelling an apple) and used for estimating reward, r∗ arises
from the action (for example, eating the apple). As explained
in section “General Description of the Theoretical Framework,”
these variables are dependent, possibly exhibiting correlation. In
a sense, the model acquires this correlation, using it to predict
r∗ from Eu. Thus, we are interested in the probability density
functions:

P
(
EIu|EB

)
, P
((
Eu (t) , r∗ (t)

)
|EIu
)

(5)

where EB indicates the vector of parameters characteristic of the
social and environmental background under consideration and
EIu is the vector of parameters of an individual in this society.
Consequently, the first probability density function in Eq. 5 is the
probability of finding an individual, while the second gives the
rewards and sensory inputs that this individual gets over time.

Finally, we must specify the statistical properties of m. Because
it represents interoceptive signals related to motivation, m
depends on each individual. However, motivation also depends
on the sensory input Eu. If, say, a person is hungry, but the sensory
input is not food, then the individual will not have a motivation
to act, that is, to eat. But if by changing the gaze, the sensory input
is changed to an appetizing food, the person will be motivated to
act. We thus write the probability density function of m as:

P
(
EIm|EB

)
, P
(
(m (t)) |Eu (t) ,EIm

)
(6)

where we insert EB to indicate that individual motivation may
depend on environmental and social backgrounds. For example,
the motivation to smoke is prevalent in some societies but
not others (Dechesne et al., 2013). As for Eq. 5, the first
probability density function in Eq. 6 is the probability of finding
an individual, while the second gives the motivations that this
individual has over time.

MATERIALS AND METHODS

We studied the implications of our theoretical framework
through mathematical analyses and computer simulations. In
section “Methods for Computer Simulations,” we describe the
mathematical details of simulating the model, with steps to
simplify the procedure. Next, in section “Illustrative Model,” we
describe the properties of the illustrative model used in this

paper, listing each component and its technical rationale. We
then describe the algorithm to simulate the model in section
“Summary of the Simulation Procedures.” Finally, we describe
the parameters used in the standard simulation in section
“Standard Simulation Parameters.” For those readers who do
not have a mathematical background, we suggest first reading
section “Summary of the Simulation Procedures.” That section
may help get an overall understanding before reading the other
sections for details.

Methods for Computer Simulations
We must simulate Eqs. 1–4. Combining these equations, we get:

dEw (t)
dt
= km (t)

(
r∗ (t)− Ew (t) · Eu (t)

)
Eu (t) (7)

This is a stochastic differential equation, because the Eu, m,
and r∗ come from samples of the probability distributions
in Eqs. 5 and 6.

We simplify our simulations through a mean field
approximation of Eq. 6:

dEw (t)
dt
= km̄

(
Eu (t) : EIm

) (
r∗ (t)− Ew (t) · Eu (t)

)
Eu (t) (8)

where m̄
(
Eu (t) : EIm

)
is the mean motivation as a function of the

sensory input Eu (t) and parametric on EIm. The advantage of the
approximation in Eq. 8 is that we do not simulate the noise in
the motivation states, but only their deterministic dependence
on the sensory inputs. Nevertheless, the motivation will remain
stochastic, because so are the sensory inputs.

To approximate a solution to Eq. 8, we must discretize time
and sample Eu, m, and r∗ for every t. We do this discretization as
follows:

Ew
(
tk+1

)
= Ew (tk)+ εm̄

(
Eu
(
tk+1

)
: EIm

)(
r∗
(
tk+1

)
− Ew (tk) · Eu

(
tk+1

))
Eu
(
tk+1

)
(9)

where ε = k
(
tk+1 − tk

)
, with tk+1 − tk being constant (for k = 0,

1, 2, . . .).

Illustrative Model
We performed computer simulations using an illustrative model
developed from our theoretical framework. Although this model
is just illustrative, we point out in the Results outcomes
of mathematical analyses showing that the most important
conclusions of the model simulations are general. We also address
the generality of the simulation results in the Discussion. In this
section, we specify the illustrative model used in the simulations.
Because this section is highly technical, we provide a summary
of the model with figures in the next section (section “Summary
of the Simulation Procedures”). Section “Standard Simulation
Parameters” describes the standard parameter set used in the
model simulations.

To specify a model, we need to provide the probability
functions in Eq. 5, the P

(
EIm|EB

)
function in Eq. 6, and the m̄

function in Eq. 8. To begin, we took five steps to simplify the
model to make the simulations fast:
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A. We did not simulate social noise by implementing
explicitly P

(
EIu|EB

)
and P

(
EIm|EB

)
. Instead, we set individual

parameters by hand, changing them for different
individuals to study the parametric dependence of
the model:

B. We split the individual parameters EIu into sensory related
(EIs) and reward related (EIr):

EIu =
[
EIs,EIr

]
(10)

Thus, we divided the EIu parameters into lower-dimensional
ones that separately control the samplings of Eu and r∗.

C. We made Eu two-dimensional. One component was visual
balance (ub) and the other was visual complexity (uc),
making:

Eu = [ub, uc]

where 0 ≤ ub, uc ≤ 1, as per the definitions in
(Aleem et al., 2017).

While our model is amenable to a range of sensory inputs,
we simplified it to two variables in the visual domain
for illustrative purposes. We briefly describe these two
variables here, but refer the reader to existing literature
to gain a deeper understanding. The component of visual
balance but can best be surmised as an equal amount
of visual weight across an image, often measured by
pixel intensities (Wilson and Chatterjee, 2005). Visual
complexity, on the other hand, can be best described as the
amount of information in an image, for example the range
of pixel intensities present (Donderi, 2006). An important
interaction exists between these two variables in that they
are generally negatively correlated. For example, as an
image becomes more balanced (organized), its complexity
generally decreases (Aleem et al., 2017). We explore this
relationship in our experiments to test whether the two
variables compete and influence learning.

D. We split the second term of Eq. 5 into:

P
((
Eu, r∗

)
|EIu
)
= P

(
ub, uc|EIs

)
P
(
r∗|ub, uc,EIr

)
(11)

Thus, instead of sampling directly from a relatively
complex three-dimensional space (two for Eu and one for
r∗), we split the problem. We first sampled from a simpler
two-dimensional space and then used the outcome to
condition the sampling of a one-dimensional space. The
splitting of probabilities in these steps greatly reduces
the computation time required for sampling. However,
having separate sensory and reward parameters in the
two probability distributions increases the degrees of
freedom, potentially leading to a wider range of observable
behaviors. For example, the sensory and reward functions
could be varied independently.

E. To model the various variables in our simulations, we
assumed they had Gaussian distributions. While natural
scene statistics and neural-reward related processes can
have a multitude of probability distributions (Field, 1994),
one can often approximate them with Gaussian processes
(Wainwright and Simoncelli, 2000; Dabney et al., 2020).

Hence, using Gaussian distributions here allowed us to
explore the theory from a parsimonious viewpoint. In
addition, sampling Gaussian distributions is fast, because
of the abundance of code available for this purpose.
However, future iterations could benefit from employing
other distributions.

We modeled the first term of the right-hand side of Eq. 11 with
a truncated bivariate Gaussian distribution (Rosenbaum, 1961),

P
(
ub, uc|EIs

)
= Tr (G2 (ub, uc : µb, µc, 6)) (12)

where G2 is the Gaussian over the variables ub and uc, with means
Eµ = [µb, µc] and covariance matrix:

6 =

[
σ2

ub
ρσubσuc

ρσubσuc σ2
uc

]

where σub and are standard deviations in the ub and uc directions
respectively, and ρ is the correlation between ub and uc. In turn,
the truncation function Tr(G2) is:

Tr
(
G
(
x, y

))
=

1∫ 1
0
∫ 1

0 G2
(
x, y

)
dxdy

{
G2
(
x, y

)
if 0 ≤ x, y ≤ 1

0 otherwise

With these definitions for the first term of the right-hand side of
Eq. 11, the individual sensory-parameter vector is therefore,

EIs =
[
µb, µc, σub , σuc , ρ

]
(13)

To model rewards associated with the sensory variables, we
assumed independent contributions of rewards from balance (r∗b )
and complexity (r∗c ), and then summed these contributions, that
is,

r∗ = r∗b + r∗c (14)

Hence, if we have P
(
r∗b |ub,EIr

)
and P

(
r∗c |uc,EIr

)
, then we can

calculate P
(
r∗|ub, uc,EIr

)
as:

P
(
r∗|ub, uc,EIr

)
=

∫
∞

−∞

P
(
r∗b |ub,EIr

)
P
(
r∗c = r∗ − r∗b |uc,EIr

)
dr∗b

Consequently, all that remains to do to specify the second right-
hand term of Eq. 11 is to define P

(
r∗b |ub,EIr

)
and P

(
r∗c |uc,EIr

)
.

To start with the probability density function P
(
r∗b |ub,EIr

)
,

balance was positively related to reward (Wilson and Chatterjee,
2005). In the simplest mathematical form, balance and reward
would obey a linear relationship. We thus define:

P
(
r∗b |ub,EIr

)
= G1

(
r∗b : −α+ 2αub, σr∗b

)
(15)

where G1 is the univariate Gaussian distribution over the variable
r∗b , and α, σr∗b

> 0 are parameters. The mean of the Gaussian is
−α+ 2αub and the standard deviation is σr∗b

. The mean is such
that the integral of −α+ 2αub over the range of ub(0 ≤ ub ≤ 1)
is zero. Positive and negative rewards occur in equal amounts.

We next define P
(
r∗c |uc,EIr

)
. Several studies have shown that

the preference for complexity displays an inverted U-curve
behavior, that is, people like moderate amounts of complexity
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more than they do little or much complexity (Berlyne, 1971;
Donderi, 2006; Güçlütürk et al., 2016). A simple form for the
relationship between reward and complexity is a Gaussian shape.
We thus define:

P
(
r∗c |uc,EIr

)
= G1

(
r∗c : φ (β, γ, θ)+ βe−

(uc−γ)2

2θ2 , σr∗c

)
(16)

where G1 is now over the variable r∗c . The parameters are β, σr∗c >
0, 0 ≤ γ ≤ 1, and θ, while φ (β, γ, θ) is a function of them. The
integral of φ+ βexp

(
− (uc − γ)2 /

(
2θ2)) over the range of uc

(0 ≤ uc ≤ 1) is zero. Because φ+ βexp
(
− (uc − γ)2 /

(
2θ2)) is

the mean of the Gaussian and σr∗c is the standard deviation, we
have the same amount of positive and negative rewards.

With the definitions in Eqs. 15 and 16, the individual reward
parameter vector is therefore,

EIr =
[
α, σr∗b

, β, γ, θ, σr∗c

]
(17)

Finally, we defined the motivation function in Eq. 8, namely,
m̄
(
Eu (t) : EIm

)
. For the sake of simplicity and illustration, we

modeled m̄ as independent of ub. As for the dependence on uc,
we consider different individuals with different peak preferences
in terms of complexity. We also use the Gaussian shape to model
this peak:

m̄
(
Eu (t) : EIm

)
= mmin + (mmax −mmin) e

−
(uc−µm)2

2σ2
m (18)

where 0 ≤ mmin, mmax, µm ≤ 1 and σm are parameters. The
parameters mmin and mmax are the minimal and maximal
motivations respectively. In turn, µm is the complexity yielding
maximal motivation and σm controls how quickly motivation
falls as uc moves away from µm. With Eq. 18, the individual
motivation parameter vector is:

EIm = [mmin, mmax, µm, σm] (19)

Summary of the Simulation Procedures
The simulations proceed with the following algorithm:

a. Suppose that at time tk the weights are Ew (tk).
b. Sample sensory inputs, Eu

(
tk+1

)
=[

ub
(
tk+1

)
, uc

(
tk+1

)]
from Eq. 12.

c. Sample reward for balance, r∗b
(
tk+1

)
from Eq. 15.

d. Sample reward for complexity, r∗c
(
tk+1

)
from Eq. 16.

e. Compute overall reward, r∗
(
tk+1

)
from Eq. 14.

f. Compute motivation, m̄
(
Eu
(
tk+1

)
: EIm

)
from Eq. 18.

g. Compute updated aesthetic weights, Ew
(
tk+1

)
from Eq. 9.

h. Start the process again at Step a, but at time tk+1.

An example of 30,000 samples of the sensory inputs
from Step b in a typical simulation appears in Figure 2.
Figure 2A illustrates that balance and complexity exhibit
negative correlation. Figures 2B,C show typical examples of the
distributions used for the samples in steps c and d, respectively.
In our model, reward tends to increase linearly with balance,
except for the probabilistic distribution of rewards (Wilson
and Chatterjee, 2005). Probabilistic fluctuations also affect the

dependence of reward on complexity, but the general trend is
that of an inverted U-curve behavior (Figure 2C; Donderi, 2006).
Importantly, the distributions in Figures 2B,C illustrate that
rewards can be both positive and negative. In these figures and
in our simulations, positive and negative rewards are balanced,
summing to zero. Finally, Figure 2D illustrates the typical
shape of the motivation function in Step f. The illustration
superimposes color-coded magnitudes of motivation on samples
of sensory inputs as in Figure 2A. In our illustrative model,
motivation only depends on complexity and has a peak at a
particular magnitude of complexity. The peak complexity is
distinct for different individuals (not shown in Figure 2D). One
may associate individuals with motivations for higher complexity
with risk-taking, because high complexity tends to present
more uncertainties, at the possible benefit of more information
(Furnham and Bunyan, 1988). Similarly, motivations for low
complexity may be associated with risk aversion.

All simulations were performed with code specially written
in MATLAB R2019b (MathWorks, Natick, Ma, United States).
This code is available in an online repository (Supplementary
Materials, Section A).

Standard Simulation Parameters
In this paper, we report on simulations with different parameter
sets to explore the model. We have designated one of these sets as
our standard set (see Table 1), because the corresponding results
capture the data in the literature reasonably well. We also show
simulations with other parameter sets to illustrate individual
differences and analyze the various behaviors of the model. The
table below shows the parameters of the standard simulations.
Parameters for other simulations are indicated as appropriate in
the Results.

RESULTS

The following sections outline the results of our simulations
and the mathematical analyses. In our first experiments (sections
“Learning Dynamics of Aesthetic Weights” and “Understanding
the Fast and Slow Phases of Learning”), we looked at the
time course of how aesthetic values form by looking at the
learned weights. We were particularly interested to see if there
were multiple phases (section “Learning Dynamics of Aesthetic
Weights”). We found this to be the case, thus in section
“Understanding the Fast and Slow Phases of Learning,” we
investigated the reasons behind this and found it has to do
with the shape of the function linking error between actual and
predicted rewards to balance and complexity. The results of our
first two experiments also showed that the weights for balance
and complexity diverged, indicating an apparent competition.
We explored the reasons for this apparent competition by varying
different aspects of our model (section “Understanding Apparent
Competition between Aesthetic Weights”). We found that
motivation was a key component of this apparent competition.
Therefore, in the next experiment, we further explored the role
of motivation (section “The Role of Motivation and Reward on
Aesthetic Individuality”). We found that differing motivation
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FIGURE 2 | Illustrations of the main functions of the model. (A) An illustration of 30,000 samples of the sensory inputs. (B,C) Illustrations of observed reward values
related to balance and complexity respectively. (D) An illustration of the motivation function related to sensory inputs. See Section “Summary of the Simulation
Procedures” after Points a-h for a detailed description of these illustrations.

functions can profoundly change the aesthetic weights learned.
We then compared this finding to that obtained with differing
social reward contingencies and saw a similar effect on aesthetic
weights. Finally, we explored the landscape of the learned
aesthetic values as a function of complexity and balance (section
“Beauty and the Emergence of the Peak-shift Effect”). We
discovered that certain regions of the sensory space had higher
learned values than average. We hypothesized that this landscape
might explain the value-exaggeration effect often observed in art.

Learning Dynamics of Aesthetic Weights
If aesthetic values are learned, then their corresponding aesthetic
weights change over time. Ideally, their dynamics would be so
that the values, i.e., the predicted rewards would approach the
actual rewards as much as possible. However, weights are not
free to change arbitrarily. They may exhibit interdependencies
(e.g., Figure 2A), and have different dependences on rewards and
motivations (Figures 2B–D). We performed multiple computer
simulations to gain an understanding of the dynamics of aesthetic
weights. An example with the model described in section
“Illustrative Model” and the standard parameters (Table 1)
appears in Figure 3.

The simulations in Figure 3A show an example of the
dynamics of the aesthetic weights for balance and complexity.
The weights start at [0,0], i.e., they reflect a hypothetical
individual who knows nothing about the importance of balance
and complexity at the initial point of learning (see section
“Discussion”). These weights then rise quickly in an initial
fast phase and then slow down in a divergent phase. In the
initial phase, both balance and complexity weights rise equally

in relation to each other (Figure 3A inset). However, after
this phase, an inflection point occurs. In the new phase, the
complexity weight continues to rise while the balance weight
drops, as if they are competing. Thus, these weights reach a state
of slow divergence. As time increases, both weights appear to
arrive to a stochastic equilibrium in relation to each other, with
their separation increasing at a slow pace.

A phase-phase plot is especially helpful to visualize the
learning dynamics (Figure 3B). Such a plot graphs the complexity
weight as a function of the balance weight, color-coding for
time. As the inset of Figure 3A shows, the rise of balance and
complexity in the initial phase is tightly correlated, indicated by
the linear slope in the phase plot. However, after the inflection
point, a much slower drift can be seen through the formation
of a cloud region. The dynamic moves slowly toward greater
complexity and lower balance, eventually forming a relatively
stable stochastic cloud.

Why does this stable cloud form in the phase plot? A
simple hypothesis would be that the weights gravitate around a

TABLE 1 | Standard set of parameters.

Parameter(s) Equation Values

Ew(t0) 9 [0,0]

ε 9 0.01

tk+1 − tk 9 1
EIs = [µb, µc, σub , σuc , ρ] 13 [0.5,0.5,0.2,0.2,−0.5]
EIr = [α, σr∗b

, β, γ, θ, σr∗c ] 17 [0.6,0.1,1,0.75,0.1,0.1]
EIm = [mmin, mmax, µm, σm] 19 [0.1,0.6,0.65,0.1]
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FIGURE 3 | The dynamics of aesthetic weights. (A) Balance (blue) and complexity (red) weights as a function of time. The early times of the dynamics appear in the
inset. (B) A phase-plot of the weights in (A) with time color-coded. Initially, the balance and complexity weights grow quickly at similar rates, but later, the complexity
weight grows whereas the balance weight falls, both at increasingly slower rates. These simulations of aesthetic-weight dynamics used standard parameters
(Table 1).

fixed point, not converging to it just because of the stochastic
nature of our model. Our mathematical analyses show a
more complex and interesting picture on the outcome of
learning than this hypothesis suggests. The learning process
leads to a gradient-descent-like optimization of the prediction of
reward (Supplementary Materials, Section B). Specifically, value
approaches reward as much as statistically possible as follows: If
for every τ there is a t > τ such that m (t) > 0, then the learning
process minimizes:

E (Ew) =

〈
(r (t)− v (t))2

m (t)

〉
t

(20)

where 〈 〉t stands for time average. The minimization of E (Ew)
with respect to the components of Ew in Eq. 20 implies that v (t)
tends to become statistically close to r (t). The near optimization
of value in terms of estimating reward as predicted by Eq. 20 is
confirmed by our computer simulations (Figure 4A). However,
v (t) does not converge exactly to r (t) because of two reasons:
First, the theoretical framework is stochastic. If the process were
not stochastic, then the value would converge exactly to the
reward. Second, the optimization of Eq. 20 is modulated by the
statistics of m (t), Eu, and r∗.

However, the mathematical analysis also shows that although
value tends to gravitate around a fixed point, the weights do
not necessarily do so (Supplementary Materials, Section C).
Different sets of weights can produce the same value. To be
more precise, we can define the following hyperplane in terms
of weights:

N∑
i=1

ai (t) wi (t) = v (t) (21)

where they ai (t) are:

ai (t) = m (t) ui (t) (22)

such any point in this hyperplane is compatible with the
value v (t). Because of this redundancy, the exact Ew (t) are
not always meaningful. Is having such a redundancy in weight
representation wasteful? The mathematical analysis shows that
this redundancy in weights is not arbitrary, but allows the
improvement of the learning rate (Supplementary Materials,
Section C). Mathematically, the weights Ew (t) aim to reach
the nearest point of the ideal hyperplane in a way that is
dependent on their initial conditions. Consequently, because of
the stochastic nature of the theoretical framework, the Ew (t) can
drift even if the value stays close to reward (Supplementary
Materials, Section C). With each new sample of Eu (t), m (t),
and r∗ (t), the Ew (t) simply pushes value toward the new
hyperplane defined by this sample. Thus, Ew (t) may not return
to past positions, possibly drifting according to a random-walk-
like trajectory.

Understanding the Fast and Slow Phases
of Learning
What are the underlying reasons for the fast and slow phases
of learning observed in Figure 3? Considering that values
follow a gradient descent (section “Learning Dynamics of
Aesthetic Weights”), we look toward the error between value
and reward for an answer. As Figure 4B shows, the error
function has a hammock-like shape when plotted against balance
and complexity weights. Consequently, the error function varies
rapidly along one direction and slowly along its perpendicular.
This shape leads to differences in gradients across regions of
the function. Thus, if the aesthetic weights start at a point with
an especially large error, they will experience a large gradient,
descending fast toward the minimum of the function (red line
in Figure 4B). If instead they start at a point with an especially
small error, they will descend slowly toward the minimum (green
line). Ultimately, as the weights approach the minimum of
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FIGURE 4 | Minimization of error and its relationship to learning dynamics. (A) Error between value and reward conditional on the statistics of motivation as a
function of time (Eq. 20). (B) Error between value and reward as a function of balance and complexity weights with three aesthetic-weight trajectories from different
initial conditions. In one trajectory, the error for the initial condition is especially large, leading to a fast, straight descent (red line). In another, the error for the initial
condition is especially small, leading to a slow, straight descent (green line). More typically, the descent is initially fast toward the shallow bed, and then curves and
slows down when there. These simulations used the standard parameters except for the initial conditions, which were [−1, −1] (red line), [1, −0.6] (green line), and
[0, 1] (yellow line).

the error function, gradients get smaller and the convergence
becomes more stochastic. Thus, weights become more sensitive
to variations of sensory inputs, rewards, and motivations. When
gradients are steep, weights tend to move to reduce the error
rapidly even in presence of input variations. Such initial fast
approach is consistent with the fast learning-rate explained in
section “Learning Dynamics of Aesthetic Weights.” Hence, the
initial conditions may dictate an initial fast approach to the
shallow bed, and a more slowly stochastic dependence once there.
The direction of gradient descent in the shallow bed is typically
different from in the initial fast phase. These different directions
lead to curved trajectories (yellow line). Such curved trajectories
explain the complex shape of the phase plot (Figure 3B).

Understanding Apparent Competition
Between Aesthetic Weights
What is the reason for the apparent competition between
balance and complexity weights during the slow phase of
learning in Figure 3? A simple hypothesis is that the apparent
competition arises from the negative correlation between
balance and complexity, i.e., between the components of Eu
(Figure 2A). However, inspection of Eq. 7, suggests alternate
hypotheses beyond the negative correlation between balance and
complexity. For example, they have different reward structures
(Figures 2B,C), possibly leading the weight of one becoming
more relevant than the other is. Finally, because motivation
affects balance and complexity in different manners, it too,
could create an apparent competition (Figure 2D). To test
these hypotheses, we ran six new simulations varying input
correlation, reward structures, and motivation functions. These
simulations eliminated the negative correlation between balance
and complexity, made the reward structures identical, or set the
motivation to a constant independent of balance and complexity.
The results of these simulations appear in Figure 5.

When we eliminated the negative correlation between balance
and complexity (standard parameters, except that ρ = 0), the
apparent competition between their weights did not vanish
(Figure 5A). Consequently, this negative correlation is not a
necessary condition for the apparent competition. However, the
negative correlation affects the apparent competition, because
it becomes weaker when we eliminate this correlation, and we
see slightly larger balance than complexity weights. Similarly,
having different reward structures is not a necessary condition
for the apparent competition. If we make the reward structures
for balance and complexity identical (both linear as in Figure 2B),
the apparent competition remains (Figure 5B). This change leads
to an initial rise in both weights followed by an overwhelming
relative increase in the balance weight. Finally, in Figure 5C, we
remove the effect of motivation from the simulation, by setting
m ≡ 1. This change results in an isotropic cloud, showing that
the shape of the motivation function is a major contributor to the
apparent competition. An appropriate motivation function may
even be a necessary condition for the apparent competition.

Can the negative correlation between balance and complexity,
different reward structures, or the shape of the motivation
function be a sufficient condition for the apparent competition
between the aesthetic weights? To answer this question, we
eliminated two of these conditions at a time. We thus left
only one condition in place in each simulation. As seen in
Figure 5D, when m ≡ 1, and the reward structures are similar
for balance and complexity, there is no apparent competition
between the weights. Hence, the apparent competition vanishes
although the negative correlation is still present. Similarly,
when m ≡ 1 and we eliminate the negative correlation between
balance and complexity, the apparent competition vanishes. It
disappears although we still have differences in reward structures
(Figure 5E). Thus, neither the negative correlation nor the
difference in reward structures is a sufficient condition for the
apparent competition. In contrast, the apparent competition
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FIGURE 5 | Contributions of the Properties of Eu, r∗, and m to the Apparent Competition between Aesthetic Weights. (A) Eliminating the negative correlation between
the components of Eu weakens but does not kill the apparent competition. (B) Making the reward function r∗ similar for balance and complexity may even strengthen
apparent competition. (C) Making m a constant leads to the virtual elimination of apparent competition. (D) When both m is a constant, and the reward function r∗ is
similar for balance and complexity, there is no apparent competition. (E) The same happens when both m is a constant and we eliminate the negative correlation
between the components of Eu. (F) In contrast, apparent competition remains and can even become stronger when both we eliminate the negative correlation
between the components of Eu and the reward function r∗ is similar for balance and complexity. Thus, the main factor determining apparent competition in our
illustrative model may be the shape of the motivation function.

continues when we eliminate the correlation and the difference
in reward structure, leaving the shape of the motivation
function intact. This result thus gives further evidence that the
appropriateness of this shape may be a sufficient condition for
the apparent competition.

Overall, the key factor for the apparent competition between
aesthetic values in our illustrative model may be the motivation
function. It generates the apparent competition by modulating
both sensory sampling and reward. Negative correlations

between the components of the sensory inputs do play a role in
the apparent competition but a lesser one.

The Role of Motivation and Reward on
Aesthetic Individuality
An important consequence of our theoretical framework is that
different individuals develop distinct aesthetic weights. If two
individuals were from different societies or cultures, they would
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tend to have differences in their learning parameters. These
differences are illustrated by the blue boxes Society 1 and 2 in
Figure 1. Mathematically, these individuals would have different
B parameters in Eqs. 5 and 6. However, even if individuals came
from the same society, their learning parameters would tend to
be distinct (blue boxes labeled Individual 1 and 2 in Figure 1).
Again, in Eqs. 5 and 6, these individuals would have different EIu
and EIm parameters. In Figure 6, we illustrate through computer
simulations how this individuality emerges.

To illustrate the effect of individualized learning of aesthetic
value in a society, we modeled a scenario for the case of
motivation for complexity. While we could have investigated
motivation for balance as well, existing research shows different
personality traits can account for changes in preference for
complexity (Furnham and Bunyan, 1988). Furthermore, it
has been shown that the motivation for complexity can be
experimentally manipulated (Tinio and Leder, 2009). Thus, we
sought to see what happens when motivation for complexity
changes across individuals. To test this hypothesis, we varied the
peak complexity of the motivation function (Figures 2D, 6A).
The larger the peak complexity is, the more motivation the
individual must act on high complexity. As seen in Figure 6B,
changing this form of motivation has a direct effect on learned
aesthetic weights. Specifically, when the motivation is shifted
toward high complexities, late aesthetic weights weight for
balance becomes weaker. In contrast, those for complexity
become stronger. Hence, the three different individuals in
Figure 6B (in terms of peak complexity) express different learned
aesthetic weights. Moreover, because our theoretical framework
is stochastic, the aesthetic weights form clouds in limited regions
of the so-called neuroaesthetic space (Aleem et al., 2017). The
separation and partial overlap between these clouds is like what
we observe for different artists (inset of Figure 6B).

In turn, to illustrate how social variations may influence
aesthetic learning of individuals, we modulated the reward
structure for balance (Figures 2B, 6C). The larger the slope of
this structure, the more social reward an individual got with
highly balanced sensory inputs. As a result, we can see in the
Figure 6D that the changing of the reward structure has an
appropriate effect on aesthetic weights. Increasing the balance
slope expectedly increases the weights toward balance, reducing
those for complexity. Again, the three different individuals in
Figure 6D (in terms of social reward structure) express different
learned aesthetic weights. Finally, once again, our theoretical
framework is stochastic. Consequently, the aesthetic weights
form clouds in limited regions of the neuroaesthetic space as also
seen in the analysis of aesthetic weights in portraits by master
painters of the Early Renaissance (Aleem et al., 2017).

In conclusion, individuality in aesthetic learning emerges in
the theoretical framework through variations in either cultural
norms or individual motivational states.

Beauty and the Emergence of the
Peak-Shift Effect
Any theory for aesthetic learning must account after convergence
for as many relevant properties in the literature as possible.

So far, we have discussed the dynamics of learning aesthetic
weights. However, we have not yet explored the amount of
value possible in different regions of the neuroaesthetic space.
This exploration naturally leads us to the broader question of
creation of art and beauty. Where does beauty, or in our case,
regions of highest value, exist? We looked to the literature for
existing hypotheses on this question. One of the most prominent
hypotheses in this regard has to do with the “peak-shift” effect
(Ramachandran and Hirstein, 1999). It supposes that the beauty
of an object is partly owed to the exaggeration of some of its
characteristics. According to the hypothesis, if an attribute signals
value normally, exaggerating that attribute would lead to greater
value. This effect is theorized to explain the tendency of artists
to exaggerate variables that contribute to aesthetic emotions.
Accordingly, visual artists should tend to exaggerate certain
statistical properties like symmetry, complexity or even certain
facial features as compared to what one observes typically (Costa
and Corazza, 2006; Graham and Redies, 2010; Aleem et al., 2017).
Thus, because of this exaggeration effect, beauty is not merely
copying reality.

In this section, we study whether and why our theoretical
framework is consistent with such a peak-shift effect. To perform
this study, we calculated aesthetic values of images with different
complexities and balances in our simulations. We used these
calculations to compare the aesthetic values of images with
the most typical statistics with those with less probability of
occurring. The comparison appears in Figure 7.

As seen in Figure 7A, there are many possible regions
of the neuroaesthetic space that a certain scene or painting
could occupy. However, not all these regions are identical
in terms of value. For example, the region indicated by the
black dot represents what is most typical. If we turn to
Figure 7B, we see that this region leads to the learning of
moderate overall value. It is apparent that there are regions
with greater or lesser value. In our example in Figure 7A,
the yellow and green dots represent regions with lower value
in relation to the black dot. In turn, the regions around the
red and blue dots yield greater value than the regions around
the black dot. Consequently, if an artist wants to maximize
value, they would be keen to paint with attributes in the
regions of the upper-right quadrant of this neuroaesthetic
space. In our case, artists would thus tend to exaggerate the
complexity and balance concurrently to increase the aesthetic
appeal of their work.

Mathematical analyses show that this value-exaggeration
result is a general property for our theoretical framework
(Supplementary Materials, Section D). Thus, this result is
applicable beyond the parameters of the simulations in Figure 7.
The analysis also extends the results for broad classes of learning
models that are nonlinear, that is, not following Eq. 1. If
the properties of these learning models and of the probability
distribution of sensory signals obey general conditions, then the
value-exaggeration result will hold. The linear model in Eq. 4 will
almost always obey these conditions.

In conclusion, our analyses support the peak-shift effect.
Our framework does so by predicting that the most typical
inputs are not necessarily the sources of highest predicted value.
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FIGURE 6 | Aesthetic individuality in the theoretical framework. (A) Sampling of the motivation function with peak complexities µm = 0.4 (Red), µm = 0.6 (Green),
and µm = 0.85 (Blue). (B) Sampling of aesthetic weights for simulations with standard parameters except for variations of the peak complexity in the motivation
function as color-coded in (A). The inset is the data from Aleem et al. (2017). (C) Sampling of the reward as a function of balance with slopes α = 0.5 (Red), α = 1.25
(Green), and α = 1.7 (Blue). (D) Same as in (B), except that the slope of the reward as a function of balance varies as color-coded in (C). The sampling started at
tinital = 10, 000, was at every 1t = 200, and ended at tfinal = 30, 000. Variations of either individual parameters such as peak complexity of the motivation function or
social parameters such as the slope of the reward-balance function give rise to individuals with different aesthetic values. The expression of individuality is like the
data from our previous work (Aleem et al., 2017).

FIGURE 7 | Illustration of the Value-exaggeration effect as an emergent property. (A) The distribution of balance and complexity (as in Figure 2A) with overlaid points
from which we calculate value. (B) Aesthetic values as a function of time at the overlaid points in (A) (with the same color-code). The black dot represents the most
typical (most probable) images. The yellow and red images represent stimuli regions with the least value, whereas the blue and green discs represent regions with
the most value. Therefore, to increase the aesthetic liking, artists should strive to paint in the red and blue regions, or more generally, in the upper-right quadrant.

Other possible inputs yield more aesthetic value than reality,
thus appearing more beautiful. As an important extension,
our theoretical framework predicts that the value landscape of
possible inputs is different for each individual. Our explanation
for this effect is thus that what matters for aesthetics is not the
statistics of sensory inputs but their values to perceivers.

DISCUSSION

The field of neuroaesthetics has progressed rapidly lately,
especially with regards to the understanding of the “what” and
“where” of aesthetic preferences. However, one of the biggest
remaining questions has to do with “how” we develop aesthetic
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values in the first place (Göksun et al., 2014). The origin of certain
preferences such as that for contour, symmetry, or contrast can be
explained by evolutionary accounts (Reber et al., 2004; Bar and
Neta, 2006). However, even these seemingly innate preferences
are subject to experience dependent changes (Germine et al.,
2015; Huang et al., 2018). Therefore, it is important to consider
the dynamics of aesthetic preferences over time. Here, we
presented a theoretical contribution to the understanding of these
dynamics. Our theoretical framework proposes that learning
forms a large component of aesthetic values. We operationalized
this proposal through a computational model of reinforcement
learning. We discuss our interpretation of some of the important
findings of this modeling effort in greater detail here. For a quick
summary of the results, please refer to the beginning of the
Results section.

Interpretations of the Simulation Results
Our results suggest that the time course of aesthetic learning has
different phases. Such a multi-phase result is expected from a
reward-based learning model. If complete prior inexperience is
assumed, then a rapid initial phase is bound to happen, followed
by a slower one. These fast-then-slow learning dynamics are
characteristic of reinforcement-learning frameworks, where the
change of weights is proportional to the error (Dayan and Abbott,
2001; Sutton and Barto, 2018). The fast phase corresponds to the
large initial errors, but when they decrease, the learning rate slows
down. Our decision for setting the initial weights at zero allows
us to understand general principles of learning and to see that
it has distinct phases. Such fast aesthetic learning should occur
mostly early on in life. However, whether we are born without
any aesthetic preconceptions is an open question. What is the
likelihood that we come across a completely novel stimuli in our
adult lives? More likely, we see previously learned attributes in
a novel way, as for example, a drummer seeing a table for the
first time. Or take abstract art, which combines familiar visual
primitives in a novel way. In these cases, some type of initial
prediction of value may exist, albeit with low confidence and high
noise. Here too, our theoretical framework would predict that as
soon as learning occurs it would be multi-phasic, rapid initially,
and then coming to a consolidation.

A surprising result of our model was the apparent competition
between aesthetic variables in the second phase of learning.
We investigated the source of this apparent competition in our
illustrative model and found that motivation is the main driving
force. Therefore, motivation appears to be crucial in guiding
different trajectories of learning. While motivation in our model
seems like a simple gating mechanism, the results show that
motivation has complex consequences on learning. This is due
to the probabilistic dependence of motivation on sensory inputs
and social rewards. Hence, motivation allows for state-dependent
learning, accounting for aesthetic diversity and individuality.
This result makes intuitive sense, as while we may all start from
similar points, our motivations to engage with certain objects and
environments will be different. Therefore, different motivations
will lead us to divergent paths. These motivations in turn will
be influenced by many internal and external factors including
the environment and social standards. The interaction and

co-dependence of these factors leads to many unique outcomes
from a shared starting point.

A unique aspect of our theoretical framework and thus, of
our illustrative model is their statistical nature. Coupled with the
nonlinearities in the model, this statistical nature leads to many
important and surprising results. One such result is the apparent
competitive interactions mentioned above. Another important
result is that the learned aesthetic weights are stochastic, that
is, we should not expect them to be constant and stable, but to
fluctuate over time. In our illustrative examples with only two
variables, the aesthetic values eventually converge stochastically
around a fixed point. The situation should be more complex
in the real world, because the number of variables would be
higher, possibly leading to multiple fixed points instead of just
one. Such a multiplicity would give the appearance of multiple
possible aesthetic stable states. Another complexity stems from
the key difference between aesthetic weights and values. Aesthetic
weights are different from the values, as different weights can lead
to same values. Therefore, any apparent fixed-point in aesthetic
weights could drift over time adding more variability to aesthetic
preferences. The associated aesthetic values, as seen in Figure 7
are stochastic as well. Therefore, our theoretical framework
makes a surprising prediction that aesthetic preferences are not
the same from one moment to another. This goes against the
common assumption that our preferences are relatively stable
and thus, that we only need to account for them once. In
support of this, converging evidence is beginning to call the long-
held assumption of preference stability into question (Höfel and
Jacobsen, 2003; Chen and Risen, 2010; Kościński, 2010; McManus
et al., 2010; Pugach et al., 2017). The observed instability is
commonly attributed to noise within the internal sampling of
subjective values. Our theoretical framework makes an additional
prediction that the values themselves may be stochastic.

Limitations and Outlook
At first glance, our theoretical framework for aesthetic learning
may seem too reductionist. Aesthetic experiences are complex
and many factors are at play. We propose that low-level
features and reward-based learning forms just one component of
acquiring and using aesthetic values. Our theoretical framework
does not address other important aspects for aesthetic emotions,
such as semantics, attention, and memory (Leder et al., 2004). We
acknowledge these factors play a role in the formation of aesthetic
values and their omission is not to undermine them. Instead, we
chose to limit the complexity of our theoretical framework at
this first iteration to serve as a basic building block on which to
incorporate the aforementioned factors. However, even a model
based on low-level features can still be highly informative on
aesthetic preferences of individuals, as recently demonstrated by
Iigaya et al. (2020). Additionally, a reinforcement learning circuit
is easily amenable to additional factors, for example Leong et al.
incorporate attention directly into the reinforcement-learning
circuitry computing subjective value, as we did with motivation
(Leong et al., 2017).

A factor that features prominently in studies of aesthetic
preference formation but not considered in our framework
here is familiarity (Zajonc, 1968). Numerous studies show
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that increased familiarity tends to improve appraisal, with
no apparent reward (Leder et al., 2004; Park et al., 2010;
Lindell and Mueller, 2011). However, we argue that familiarity
may either be intrinsically rewarding or a promoter to value.
For instance, every new exposure leading to familiarity improves
our processing of the stimuli. This improvement likely facilitates
object recognition and ability to extract semantic and emotional
content, which is rewarding (Reber et al., 2004). At a conceptual
level, familiarity is intimately tied with novelty, which may also be
intrinsically rewarding (Biederman and Vessel, 2006). However,
the relationship between these two factors is not entirely clear.
For example, roles of familiarity and novelty may be dependent
on context (Tinio and Leder, 2009; Park et al., 2010). To help
understand this, future iterations of our framework would benefit
by incorporating these related factors. For example, one could
incorporate an aspect of reward that is contingent both on
the novelty and the number of exposures to certain stimuli, as
suggested by Biederman and Vessel (2006). As of now, we do not
differentiate between these aspects of reward, but this distinction
is important and a necessary addition for the future.

As far as implementation, our model assumes a linear
relationship between aesthetic weights and values (Eq. 1).
Biologically, this linearity is not reflective of typical reward-
related synapses (Schultz, 2015). Recent assessments of the field
of neuroaesthetics have signaled the need for a new conception
of aesthetics that incorporates distributed processing and non-
linear recurrent networks (Leder and Nadal, 2014; Nadal and
Chatterjee, 2019). While we agree, we suggest that linearity is
a suitable starting point. Recent work comparing a linear rule
versus a deep neural network to predict subjective aesthetic value
found that both fared comparably (Iigaya et al., 2020). We argue
that this also applies for our theoretical framework for aesthetic
learning. We have shown that most nonlinearities can explain
the value-exaggeration effect (section “Beauty and the Emergence
of the Peak-shift Effect” and Section D of Supplementary
Materials). Most of our other results would likely be similar if
we used a monotonic nonlinear relationship between aesthetic
weights and values. For example, Eq. 4 is all that we need to
explain the fast-then-slow dynamics of aesthetic learning. From
that equation, when the error is large or small, so is the rate of
learning, regardless of whether the relationship between aesthetic
weights and values is linear. Likewise, Eq. 4 is all that we need
to explain the near optimality of the learned value, because
this equation predicates the tendency of the minimization of
error. Consequently, near optimality should occur regardless of
whether the relationship between aesthetic weights and values is
linear. We can make similar arguments for the non-necessity of
linearity for almost all the results in this paper. Thus, assuming a
linear relationship between aesthetic weights and values is not a
major problem for the validity of our results.

Other limitations are not with the theoretical framework but
with the illustrative model. For example, we limit the sensory
inputs in our model to two visual statistics. While this simplifies
our simulations of the model, it is not reflective of the external
world, where a deluge of variables is at play. These variables may
all exist in some complicated multi-dimensional space, which we
have previously termed the “neuroaesthetic space” (Aleem et al.,

2017). Future implementations would certainly have to increase
the dimensionality and type of sensory inputs into the model.

Overall, our model, while limited, provide a platform for
further research, such as by increasing the richness of the
model in the many ways mentioned above. Equally as important
are efforts to test empirically the predictions of the model.
More developmental and longitudinal empirical studies of
aesthetic preferences are needed. For example, one could conduct
extensive reinforcement learning studies to determine how
learning modulates subjective values over long periods as shown
by Wimmer et al. (2018). Similarly, one could empirically test the
prediction of temporal variability in aesthetic values.

Compatibility With Existing Frameworks
Where does our contribution fall into place within the
existing theories of aesthetics? Most of the extant theoretical
frameworks for aesthetics aim to explain the phenomena at
hand. That is not to say that some of these frameworks do not
consider the importance of temporal aspects, albeit implicitly.
In particular, learning is a key part of many of the existing
influential theoretical frameworks. For example, in Chatterjee
and Vartanian’s “Aesthetic Triad” model, aspects of learning
and reward make two out of the three nodes (Chatterjee and
Vartanian, 2014). Others have made reward-based learning
central to their theories. For example, in formulating the
“Aesthetic Preference Formation” model, Skov defines nodes
associated with sensory stimuli, reward prediction, learning, and
context amongst others (Skov, 2010). Like us, he stresses the
involvement of a reinforcement learning mechanism that is not
unique to aesthetics.

In regards to the time frames of learning, Nadal and Chatterjee
describe three time-scales influencing aesthetic preferences
(Nadal and Chatterjee, 2019). Our model is most like their
middle-range time scale, which concerns “individual experience
and cultural context.” In a similar vein, Vessel and colleagues
build on the reward circuitry with an explicit emphasis on time
(Biederman and Vessel, 2006; Vessel and Rubin, 2010). Like us,
they implicate associative processes as a central mechanism of
time-dependent preference formation. In their view, aesthetic
preferences are shaped by the temporal summation of their
associative components. In contrast to us, their theory mainly
focuses on mechanisms of shared associations. For example, most
people will have favorable memories of beaches, therefore leading
to a large consensus of preference. However, our model accounts
for this preference effect as well by incorporating social statistics
of rewards. Another important aspect of Vessel and colleagues
work is that “deeper” and more meaningful rewards will lead to
stronger preferences. While we do not consider this aspect in our
framework, it would be a compatible addition.

Unlike the theories mentioned above, our theoretical
framework is specified in a fully computational manner.
However, other theories are computational, too! Perhaps
the earliest computational theory of aesthetics comes from
Martindale. This theory largely focuses on pleasure, formulating
that the enjoyment derived from an aesthetic stimulus is
proportional to the number of cognitive units activated by it,
as envisioned in a neural network (Martindale, 1984). Another
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computational theory comes from Schmidhuber, who contends
that aesthetic preferences are largely driven by intrinsic reward
(Schmidhuber, 2010). According to him, when we learn new
things and improve our predictions of the world, we maximize
this reward. This idea is similar to the theory put forth by Van de
Cruys and Wagemans who propose that aesthetic value results
from the resolution of prediction errors caused by ambiguities in
art (Van de Cruys and Wagemans, 2011). However, all of these
theories are primarily focused on the nature of the aesthetic
experience and its ensuing reward. While these theories use
reinforcement learning circuitry as their basis, unlike us, they
do not explicitly consider the learning of aesthetic values over
time. But both Schmidhuber and Van de Cruys and Wagemans
do argue that experience with different environments over time
will lead to differences in predictions, accounting for individual
and cultural differences. Nevertheless, unlike these theories,
we do not concern ourselves with the nature of reward. In our
view, rewards form aesthetic values, whether the rewards are
external or internal.

In our framework, the predicted reward, often termed “value”
is akin to aesthetic value. This is arguably the most important
assumption of our framework. Thus, we propose that our
prior experiences with an object influence the values assigned
to the many attributes of that object. When we sense these
attributes in a new sensory input, their associated values will
influence our aesthetic preference for that input (Barrett and
Bar, 2009). An illustration of this aesthetic value transfer effect
is shown by Strauss et al. (2013). They found that preferences
for two-dimensional color patches were systematically altered
by looking at positive or negative objects of the same color.
More direct studies using instrumental conditioning show that
preferences for cues proportionally coincide with their ability
to predict reward, even when subliminal (Pessiglione et al.,
2008). Therefore, we contend that as certain stimulus attributes
signal reward, they themselves become secondary reinforcers,
and hence obtain aesthetic value. For example, humans and
other animals may have initially preferred symmetry because of
its health cues, such as in faces (Treder, 2010). However, after
eons of evolution, symmetry may now be a secondary reinforcer
itself, signaling value independently (Pombo and Velasco, 2019).
Neuroimaging studies support this viewpoint, showing that
secondary reinforcers activate similar regions associated with
pleasure as do primary reinforcers (Sescousse et al., 2013).

Whether the pleasure from aesthetic value is
phenomenologically distinct from other pleasures is an
open question (Christensen, 2017; Nadal and Skov, 2018;
Menninghaus et al., 2019; Skov and Nadal, 2020). On the one
hand, neuroimaging studies show that a range of rewarding,
pleasure-giving experiences are processed in the same brain
regions. This common processing of reward allows us to make
value-based decisions across various goods (Levy and Glimcher,
2012). On the other hand, network-based studies of deeply
rewarding phenomena show the concurrent role of other brain
processes (van Elk et al., 2019). For example, the default-mode
network has been shown to be modulated by intense aesthetic
experiences (Vessel et al., 2012). Thus, a subjectively deep
experience is likely to activate different brain networks, yet
simultaneously be under the constrain of the neurobiological

roots of “basic” pleasures. The broader implications of these
differences remain to be discovered.

What Is Beautiful According to Our
Theoretical Framework?
“Beauty is natures brag.” Thus, the poet John Milton wrote
in praise of the beauty that one often experiences in nature
(Milton, 1858). We hear of such experiences commonly, but
not all natural scenes are pleasant or breathtaking. For example,
some scenes may be repulsive to some people by including a
rotting corpse, an approaching snake, or a spider web. What is
it that makes some natural scenes beautiful? Following from the
discussion in section “Compatibility with Existing Frameworks,”
our theoretical framework proposes that when a certain natural
scene appears beautiful, it does so, because its statistics elicit
high positive value. Our results showed that when looking at the
overall value landscape, certain regions that are far away from the
norm will correspond to higher value (Figure 7). These are the
regions that our theoretical framework may consider “beautiful.”
Accordingly, only the minority of scenes might be truly beautiful
by eliciting high values. These are the scenes that exaggerate
high-value attributes. This sentiment is similar to Ramachandran
and Hirstein’s application of the “peak-shift” effect to beauty,
proposing that it often comes from exaggeration (Ramachandran
and Hirstein, 1999). We thus may ask, to what “exaggerated”
natural scenes was Milton referring to? Perhaps, Milton’s scenes
would have some sort of exaggerated statistics related to attributes
that were innate, that is, formed due to evolutionary pressures
(Aleem et al., 2019). Alternatively, according to the theoretical
framework here, Milton’s scenes would have exaggerated sensory
statistics related with positive experiences in his youth.

Why would the brain evolve a mechanism that prefers
exaggeration rather than the most common reality? We argue
that any learning system such as the brain would likely prefer
exaggeration if its goal is to maximize reward. Consequently,
perhaps evolution has allowed our ancestors to choose actions
that maximize value. However, there are limits to exaggeration.
For example, our results show that exaggeration in the wrong
direction will lead to lower than normal aesthetic values, or what
one may consider “ugly.”

In sum, our theoretical framework extends the peak-shift
hypothesis through individualized value exaggeration. According
to the framework, the aesthetic weights that maximize reward
are not universal across all individuals. Each person has an
individual set of near-optimal aesthetic weights according to
personal motivations, and social and environmental contexts.
Neuroaesthetic-space regions of high value, or beauty, to one may
be regions of low value or ugly to another. We conclude that the
different senses of beauty across individuals are not arbitrary, but
stem from a personalized near optimization of values.
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Numerous studies find that creativity is not only associated with low effort and flexible
processes but also associated with high effort and persistent processes especially
when defensive behavior is induced by negative emotions. The important role of self-
esteem is to buffer negative emotions, and individuals with low self-esteem are prone to
instigating various forms of defensive behaviors. Thus, we thought that the relationships
between trait creativity and executive control brain networks might be modulated by self-
esteem. The resting-state electroencephalogram (RS-EEG) microstates can be divided
into four classical types (MS1, MS2, MS3, and MS4), which can reflect the brain
networks as well as their dynamic characteristic. Thus, the Williams Creative Tendency
Scale (WCTS) and Rosenberg Self-esteem Scale (RSES) were used to investigate
the modulating role of self-esteem on the relationships between trait creativity and
the RS-EEG microstates. As our results showed, self-esteem consistently modulated
the relationships between creativity and the duration and contribution of MS2 related
to visual or imagery processing, the occurrence of MS3 related to cingulo-opercular
networks, and transitions between MS2 and MS4, which were related to frontoparietal
control networks. Based on these results, we thought that trait creativity was related
to the executive control of bottom-up processing for individuals with low self-esteem,
while the bottom-up information from vision or visual imagery might be related to trait
creativity for individuals with high self-esteem.

Keywords: creativity, self-esteem, resting-state EEG, microstates, trait creativity

INTRODUCTION

Creativity refers to the tendency to imagine and produce something novel (i.e., original) and
unexpected, yet still appropriate (i.e., effective and useful) (Sternberg, 1999; Kaufman and
Sternberg, 2010). In fact, creativity can be divided into those aspects related to personality and
cognition (Rhodes, 1961; Gough, 1976; Amabile, 1996; Runco, 2007; Piffer, 2012). Williams (1969)
suggested a cognitive–affective model of creativity and developed a corresponding creativity
assessment packet (CAP) (Williams, 1969, 1980). The CAP included a divergent thinking
(creative cognition) test and a divergent feeling (trait creativity) test (including four aptitude
elements: imagination, risk taking, curiosity, and challenge) (Williams, 1993; Hwang et al., 2007;
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Liu et al., 2011). Based on previous findings, trait creativity is a set
of aptitudes or personality variables that influence an individual’s
creativity, while creative cognition refers to cognitive processes
and metacognitive strategies during creative production, such
as divergent thinking (Satzinger et al., 1999; Zeng et al., 2009).
Although it is emphasized that creativity is a function of
flexibility, creativity can be also achieved through persistence,
which means that creative productions can be acquired by hard
work, perseverance, and exploration of a few cognitive categories
or perspectives (Schooler et al., 1993; Finke, 1996; Simonton,
1997; Dietrich, 2004; Nijstad et al., 2010).

Some cognitions of creativity had been confirmed by using
divergent thinking tasks. It had been argued that generation
of creative ideas require associative processes which include
processes of freely and spontaneously forming associations
between elements, as well as controlled processes which include
inhibiting unsuitable ideas and evaluating and selecting creative
ideas (Bendetowicz et al., 2017; Benedek et al., 2017). Beaty
et al. (2017) also suggested that creative cognitions require
the dynamic interactions between default and cognitive control
networks, which reflected that both bottom-up and top-down
processes are necessary to generate creative ideas. These opinions
might fit with the blind variation and selective retention of
creativity (Campbell., 1960; Simonton, 2011; Beaty et al., 2017),
which implies the associative processes for blind variation
and the controlled processes for selective retention. Other
studies also found that the suppression of bottom-up irrelevant
information is necessary when semantic information is retrieved
and integrated to generate creative ideas (Fink et al., 2009,
2010; Wu et al., 2015). Sternberg (1999) suggested that trait
creativity can have an impact on creative problem-solving
ability. Individuals with certain creative traits (e.g., curiosity and
imagination) can be more creative than those without these
characteristics (Oldham and Cummings, 1996; Feist, 1998; Piffer,
2012). Moreover, creative individuals had higher gray matter
volume in the right posterior middle temporal gyrus (related
to representations of semantic concepts) (Li et al., 2015). On
these perspectives, trait creativity might be related to the neural
networks found in the creative cognitions to some extent.

Self-esteem is an attitude based on positive and negative self-
evaluations (Rosenberg, 1965) and reflects the positive aspect of
self-concept (Campbell et al., 1996). Individuals with high self-
esteem tend to believe themselves to be capable and worthy,
so they are more likely to express ideas that differ from others
and are more willing to share creative ideas (Thatcher and
Brown, 2010). The generative and flexible thinking associated
with creativity can aid in successfully crafting self-serving
justifications that allow individuals to maintain positive self-
views (Carson et al., 2003; Gino and Ariely, 2012; Antinori
et al., 2017). However, terror management theory suggests
that the important role of self-esteem is to buffer anxieties
induced by social threat, such as death threats (Greenberg
et al., 1997; Pyszczynski, 2004) and negative feedback (Brown,
2010). Individuals with low self-esteem are prone to instigating
various forms of defensive behavior to bolster their self-worth
(Pyszczynski, 2004). Moreover, creativity can be achieved by
persistence when defensive behavior is induced by negative mood

states (such as fear and anxiety) (Baas et al., 2011; Roskes et al.,
2012). Thus, creativity might be achieved by the function of
flexibility for high-self-esteem individuals, while creativity might
be achieved by the function of persistence for low-self-esteem
individuals. It had been suggested that flexibility is associated
with low effort, low resource demands, high speed, and efficient
processing (Evans, 2003; Winkielman et al., 2003; Dietrich, 2004;
De Dreu et al., 2008; Oppenheimer, 2008), while persistence is
associated with high effort, perseverance, and a slower speed
of operation (Evans, 2003; Winkielman et al., 2003; De Dreu
et al., 2008). Thus, trait creativity might be related to controlled
processes for individuals with low self-esteem, while it is related
to associative processes for individuals with high self-esteem.

Previous studies had confirmed that functional networks can
be depicted by spontaneous brain activities (Raichle and Mintun,
2006; Raichle, 2010), which might imply that the influence of
self-esteem on trait creativity might be investigated by analyzing
brain activity under the resting state. It had been found that
some functional networks were confirmed by using the resting-
state functional magnetic resonance imaging (RS-fMRI), such as
default modal network, attentional network, salient network, and
visual network (Andrews-Hanna et al., 2006; Raichle and Mintun,
2006; Fox et al., 2007). In addition, spontaneous brain activities
are also investigated by the resting-state electroencephalogram
(RS-EEG), where the RS-EEG microstates are used to depict
the brain networks by using the signal from all electrodes
(Dierks et al., 1997; Stevens and Kircher, 1998; Lehmann et al.,
2005, 2010; Kikuchi et al., 2011; Schlegel et al., 2012). RS-EEG
microstates are also seen as the “atoms of thought” and can
be divided into four typical microstates (Lehmann et al., 1998;
Khanna et al., 2014). When the evidences from RS-fMRI and RS-
EEG are combined, the relevant brain networks are confirmed,
which indicates that MS1 was related to the bilateral superior
temporal gyrus and middle temporal gyrus, which were linked
to semantic processes or phonological processing; MS2 was
associated with the extrastriate cortex, which might be related
to visual processing and visual images; MS3 was associated with
positive BOLD activation in cingulo-opercular brain networks,
which were related to salient or attention control; and MS4 was
associated with right-lateralized dorsal and ventral attentional
networks (Lehmann et al., 1987; Britz et al., 2010; Musso et al.,
2010; Yuan et al., 2012).

Considering the high time resolution of EEG, RS-EEG
microstates can also provide more dynamic characteristics of
the brain networks relative to RS-fMRI. Specifically, duration is
the time coverage of each microstate; occurrence is the average
number of occurrences per microstate in a second; contribution
is the total duration of each microstate, accounting for the
total resting EEG duration; the possibility of transition between
any two microstates is related to the information flow between
them (Britz et al., 2010; Khanna et al., 2014; Gao et al., 2017).
Moreover, the characteristics are related to the altered mental
states under experimental conditions. Seitzman et al. (2017)
found that the occurrence and contribution of MS2 and the
duration of MS1 were modulated by the eye-open or eye-
close condition; the occurrence and contribution of MS4 were
increased under attentional tasks; the transition between MS3
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and MS1 was also decreased under attentional tasks. Zappasodi
et al. (2019) also found that the microstates related to visual
(MS2) and default-mode network (MS3) were modulated by
visuospatial tasks, which reflect that the contribution of MS2
was significantly increased under visuospatial tasks, while the
contribution of MS2 was significantly decreased. Moreover,
Santarnecchi et al. (2017) found that the RS-EEG microstates
of MS2 and MS3 were related to fluid intelligence, where they
found that the occurrences of MS2 and MS3 were significantly
negatively related to fluid intelligence, and the contribution
of MS2 was negatively associated with the increase of fluid
intelligence after training it.

According to previous studies (De Dreu et al., 2008;
Bendetowicz et al., 2017; Benedek et al., 2017), we speculated that
trait creativity for individuals with low or high self-esteem might
rely on different cognitive processes. Specifically, trait creativity
might be related to the controlled processes for individuals with
low self-esteem, while it is related to associative processes for
individuals with high self-esteem. Thus, relationships between
trait creativity and RS-EEG microstates might be modulated
by self-esteem. In the present study, the modulated roles of
self-esteem in the relationships between creativity and RS-EEG
microstates were investigated by using the Williams Creative
Tendency Scale (WCTS) and Rosenberg Self-esteem Scale (RSES)
to measure the creativity and self-esteem, respectively, and
combining the RE-EEG microstate analysis. Previous studies
considered that the RS-EEG microstates were calculated based
on the alpha band activities and with the inhibition of
modality-specific processing, increasing the characteristics of
MS2 and MS3 (Milz et al., 2016; Santarnecchi et al., 2017).
Thus, we hypothesize that the temporal characteristics of
sensory input (such as MS1 and MS2) might be positively
related to trait creativity for individuals with low self-esteem,
which make them inhibit bottom-up irrelevant information.
However, these characteristics might be negatively related to
trait creativity for individuals with high self-esteem, which make
them generate more associations. In addition, the possibility
of transitions between top-down control system (MS3 or MS4)
and sensory input (such as MS1 and MS2) might be higher
for those with low self-esteem relative to high self-esteem,
which makes it easier for them to control the bottom-up
irrelevant information.

MATERIALS AND METHODS

Subjects
Three hundred thirty-six right-handed subjects recruited in
Xinxiang Medical University (72% male, 28% female; mean
age = 18.3, SD = 0.84) participated in the study. Subjects
had no history of neurological or psychiatric disease and did
not take any medication that could affect the experiment. All
participants gave written informed consent to participate in the
study which was approved by the ethics committee of Xinxiang
Medical University. One subject’s data were deleted due to
data record error.

Materials
Williams Creative Tendency Scale
The WCTS was used to measure trait creativity (revised by Lin
Xingtai of Taiwan Normal University). The WCTS is composed
of 50 items, and the subjects were asked to respond to a 3-point
Likert-type scale ranging from 1 (totally disagree) to 3 (totally
agree). According to Williams (1994), WCTS can be divided into
four subscales, namely, curiosity (13 items; e.g., “I would like to
know what other people think”), imagination (13 items; e.g., “If
the final page of a storybook is missing, I will make up the story’s
ending myself ”), challenge (12 items; e.g., “I like unusual things”),
and risk taking (12 items; e.g., “Trying a new game or activity is an
interesting thing”). Reliability analysis showed that the reliability
coefficients of the total score of the scale were between 0.569 and
0.678. In this study, the alpha reliability for the WCTS was 0.866
according to our sample.

Rosenberg Self-Esteem Scale
Participants completed a measure of self-esteem: RSES
(Rosenberg, 1965). The scale is a self-assessment measure
of self-esteem commonly used at home and abroad, which
consists of 10 items. All 10 items are rated on a 4-point scale
ranging from 1 (not very true of me) to 4 (very true of me). On
a scale of 10 to 40, higher scores indicate higher levels of self-
esteem and self-acceptance. Previous studies have reported alpha
reliability for the RSES ranging from 0.72 to 0.88 (Gray-Little
and Carels, 1997). In this study, the alpha reliability for the RSES
was 0.816 according to our sample.

RS-EEG Data Acquisition
During RS-EEG recording (6 min in duration), subjects were
asked to open their eyes and focus on the “+” appearing in the
center of the screen quietly without moving their body or head.
The RS-EEG data were recorded by using the Neuro Scan Product
with 64 Ag-AgCl scalp sites according to the international 10–
20 system in an elastic cap. During recording, all electrodes were
referenced to Cz and re-referenced off-line to linked mastoids.
Channels for horizontal and vertical EEG were computed off-
line from electrodes recorded from the outer canthi of the eyes
and from above and below the right eye, respectively. Electrode
impedance was kept below 5 k�. EEG was sampled online with a
frequency of 500 Hz DC amplifiers with a band-pass filter of 0.1–
100 Hz.

RS-EEG Microstate Preprocessing
The EEG data were preprocessed using EEGLAB1 in MATLAB
2018b2. Data were filtered off-line by a band-pass filter of 2–
20 Hz and were run through an independent component analysis
(ICA). Artifacts produced by blinks, eye movements, eye drift,
head movements, power-line interference, or electrocardiograph
were rejected. The artifact-free data were recomputed against
the average, according to previous studies (Lehmann et al.,
1987, 2005; Koenig et al., 1999; Gao et al., 2017). Then the
data were segmented into 180 epochs with an epoch length of

1https://sccn.ucsd.edu/eeglab/index.php
2http://cn.mathworks.com/
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2,000 ms. EEG epochs with amplitude values exceeding± 80 µV,
which might be contaminated by strong muscle artifacts, were
manually rejected.

The RS-EEG microstates were calculated according to
previous studies (Lehmann et al., 1987, 2005; Koenig et al., 1999;
Gao et al., 2017). First, the global field power (GFP), which was
defined as the EEG potential variance across scalp electrodes, was
calculated, and only the topographies at peaks of the GFP were
further analyzed. Then, based on previous studies (Tibshirani
and Walther, 2005), atomize–agglomerate hierarchical clustering
(AAHC) was performed to analyze the microstates with the
polarity of each topographical map being disregarded, which was
a modified k-means to create unique clusters for EGG microstate
analysis. After that, a cross-validation criterion was used to
identify the optimal number of template maps, which was the best
solution to find the minimal number of template maps explaining
the maximal variance in cluster analysis (Pascual-Marqui et al.,
1995; Britz et al., 2010). According to our data, four clusters (MS1,
MS2, MS3, and MS4) were found, and the explained variance
was 0.786 ± 0.033 (see Figure 1), which was the same as that
found in most studies of RS-EEG microstate (e.g., Lehmann et al.,
1987, 2005; Britz et al., 2010; Gao et al., 2017). The global map
dissimilarity (GMD) was used as a criterion to fit all original maps
of each subject into the four prototype maps, where each time
point was fitted and labeled with the one cluster it correlated
best (Van de Ville et al., 2010). Finally, the labeled data were
used to compute the temporal characteristics, namely, duration,
occurrence, and contribution of each microstate, as well as the
probability of transition between them.

Statistical Analysis
The total scores of the WCTS and RSES were imported into SPSS
for correlation analysis, and the correlation between creativity
and self-esteem as well as the correlation between the four
dimensions of creativity (risk taking, challenge, curiosity, and
imagination) and self-esteem was obtained. Then, the total score
of the scales (WCTS and RSES) and the data of the duration,
occurrence, and contribution of four RS-EEG microstates were
imputed into SPSS to analyze the relationship between creativity
and microstates and between self-esteem and microstates. Finally,
the modulating role of RSES in the relationship between the total
score of WCTS and the duration, occurrence, and contribution
of microstates and the transitions between them were analyzed
using Model 1 of PROCESS 3.0 (Hayes, 2018) with a statistical
threshold of p < 0.05 (FDR corrected).

RESULTS

The Relationship Between Self-Esteem
and Creativity
Since some data were more than three standard deviations from
the mean, we chose to exclude them and ended up with data from
334 subjects available. The total score of RSES is significantly
positively correlated with the total score of WCTS (r = 0.262,
p < 0.001) (see Figure 2), as well as the four subscales of WCTS
[risk taking (r = 0.294, p < 0.001), challenge (r = 0.316, p = 0.001),

TABLE 1 | The relationships between self-esteem and creativity (n = 334).

Risk taking Curiosity Imagination Challenge Creativity

SES 0.2949
(<0.001)

0.186 (0.001) 0.112 (0.040) 0.316
(<0.001)

0.262
(<0.001)

The bolded and italic values mean that the relationship was significant at p < 0.05
with Bonferroni correction.

and curiosity (r = 0.186, p < 0.001), imagination (r = 0.112,
p < 0.05)] (see Table 1). In addition, the original score of the AU
task was not significantly correlated to the total score of RSES.

The Relationship Between Self-Esteem,
Creativity, and Microstates
Through the correlation analysis of creativity and its different
dimensions with various types of microstates, we found no
significant correlation between creativity and microstates. On
a regular basis, we also analyzed the relationship between self-
esteem and various types of microstates; however, there was no
significant correlation. Further analysis had shown that age and
gender had no effect on the relationships.

The Modulating Role of RSES in
Creativity of WCTS
After sex and age were controlled for, the interaction of the
total score of RSES × the mean duration of MS2 was significant
[F(1,329) = 17.691, p < 0.001, 1R2 = 0.046] (see Table 2).
Simple slope analysis results showed that when the total RSES was
lower (mean – 1 sd), the total score of WCTS was significantly
positively correlated with the duration of MS2 (β = 0.218,
t = 3.192, p < 0.005) and that when the total RSES score was
higher (mean + 1 sd), the total score of WCTS was significantly
negatively correlated with the duration of MS2 (β = −0.204,
t = −2.650, p < 0.01). Johnson–Neyman results showed that the
total score of WCTS was significantly positively correlated with
the duration of MS2 when the total score of RSES was below 27
(mean –0.486 sd, 31.04% of our sample) and that the total score of
WCTS was significantly negatively correlated with the duration of
MS2 when the total score of RSES was above 30 (mean+ 0.580 sd,
23.88% of our sample) (see Figure 3).

After sex and age were controlled for, the interaction of
the total score of RSES × the mean contribution of MS2 was
significant [F(1,329) = 9.598, p < 0.005, 1R2 = 0.026] (see
Table 2). Simple slope analysis results showed that when the total
RSES was lower (mean – 1 sd), the total score of WCTS was
significantly positively correlated with the contribution of MS2
(β = 0.211, t = 2.835, p = 0.005) and that when the total RSES
score was higher (mean+ 1 sd), the total score of WCTS was not
significantly correlated with the contribution of MS2 (β =−0.095,
t =−1.376, p = 0.170). Johnson–Neyman results showed that the
total score of WCTS was significantly positively correlated with
the contribution of MS2 when the total score of RSES was below
27 (mean – 0.486 sd, 31.04% of our sample) and that the total
score of WCTS was significantly negatively correlated with the
contribution of MS2 when the total score of RSES was above 32
(mean+ 1.414 sd, 14.63% of our sample) (see Figure 3).
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FIGURE 1 | The four microstate topographic maps are RS-EEG microstate Type A (MS1), Type B (MS2), Type C (MS3), and Type D (MS4).

After sex and age were controlled for, the interaction of the
total score of RSES× the mean occurrence of MS3 was significant
[F(1,329) = 8.061, p = 0.005, 1R2 = 0.022] (see Table 2). Simple
slope analysis results showed that when the total RSES was
lower (mean – 1 sd), the total score of WCTS was significantly
negatively correlated with the occurrence of MS3 (β = −0.179,
t =−2.417, p < 0.05); when total RSES was higher (mean+ 1 sd),
the total score of WCTS was not significantly correlated with
the occurrence of MS3 (β = 148, t = −2.417, p = 0.070).
Johnson–Neyman results showed that the total score of WCTS
was significantly negatively correlated with the occurrence of
MS3 when the total score of RSES was below 25 (mean – 0.643 sd,
17.61% of our sample) and that the total score of WCTS was
significantly positively correlated with the occurrence of MS3
when the total score of RSES was above 32 (mean + 1.414 sd,
14.63% of our sample) (see Figure 3).

After sex and age were controlled for, the interaction of the
total score of RSES × the possibility of transition from MS2 to
MS4 [possibility (MS2toMS4)] was significant [F(1,330) = 10.122,

p < 0.005, 1R2 = 0.028] (see Table 2). Simple slope analysis
results showed that when the total RSES was lower (mean – 1 sd),
the total score of WCTS was significantly positively correlated
with possibility (MS2toMS4) (β = 0.239, t = 2.952, p < 0.005) and
that when total RSES was higher (mean+ 1 sd), the total score of
WCTS was not significantly correlated with possibility (MS2toMS4)

(β = −0.087, t = −1.217, p = 0.224). Johnson–Neyman results
showed that the total score of WCTS was significantly positively
correlated with the duration of MS2 when the total score of RSES
was below 27 (mean – 0.486 sd, 31.04% of our sample) and that
the total score of WCTS was significantly negatively correlated
with the duration of MS2 when the total score of RSES was above
32 (mean+ 1.414 sd, 14.63% of our sample) (see Figure 4).

After sex and age were controlled for, the interaction of the
total score of RSES × the possibility of transition from MS4 to
MS2 [possibility (MS4toMS2)] was significant [F(1,329) = 6.766,
p < 0.01, 1R2 = 0.018] (see Table 2). Simple slope analysis results
showed that when the total RSES was lower (mean – 1 sd), the
total score of WCTS was significantly positively correlated with
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FIGURE 2 | The relationships between the total score of WCTS and total score of RSES.

TABLE 2 | The interaction parameters of RS-EEG microstate and total score of
RSES when predicting total score of WCTS after controlling sex and age.

MR2 df1 df2 F-value p (Uncorrected) p (FDR-corrected)

Duration

MS1 0.004 1 329 1.548 0.214 0.278

MS2 0.046 1 329 17.691 < 0.001 0.005

MS3 0.007 1 329 2.440 0.119 0.226

MS4 0.007 1 329 2.411 0.122 0.226

Occurrence

MS1 0.014 1 329 5.090 0.024 0.082

MS2 0.002 1 329 0.060 0.807 0.807

MS3 0.022 1 329 8.061 0.005 0.030

MS4 0.012 1 329 4.372 0.037 0.111

Contribution

MS1 0.007 1 329 2.397 0.123 0.226

MS2 0.026 1 329 9.598 0.002 0.024

MS3 0.003 1 329 1.122 0.290 0.316

MS4 0.001 1 329 0.299 0.585 0.610

Transition

MS1 to MS2 0.005 1 329 1.623 0.204 0.278

MS1 to MS3 0.004 1 329 1.274 0.260 0.297

MS1 to MS4 0.016 1 329 5.887 0.016 0.064

MS2 to MS1 0.004 1 329 1.514 0.220 0.278

MS2 to MS3 0.004 1 329 1.295 0.256 0.297

MS2 to MS4 0.023 1 329 8.652 0.004 0.030

MS3 to MS1 0.009 1 329 3.178 0.076 0.182

MS3 to MS2 0.006 1 329 2.202 0.139 0.226

MS3 to MS4 0.005 1 329 1.633 0.202 0.278

MS4 to MS1 0.010 1 329 3.739 0.054 0.144

MS4 to MS2 0.018 1 329 6.766 0.009 0.047

MS4 to MS3 0.006 1 329 2.179 0.141 0.226

The bold values are significant in p < 0.05 with FDR-corrected.

possibility (MS4toMS2) (β = −0.203, t = 2.527, p < 0.05) and that
when total RSES was higher (mean + 1 sd), the total score of
WCTS was not significantly correlated with possibility (MS4toMS2)

(β = −0.082, t = −1.151, p = 0.251). Johnson–Neyman results
showed that the total score of WCTS was significantly negatively
correlated with the duration of MS2 when the total score of
RSES was below 27 (mean – 0.405 sd, 31.04% of our sample)
and that the total score of WCTS was significantly negatively
correlated with the duration of MS2 when the total score of
RSES was above 36 (mean + 1.956 sd, 2.39% of our sample)
(see Figure 4).

DISCUSSION

In the present study, the modulating role of self-esteem in
the relationship between creativity and RS-EEG microstates
was investigated using WCTS and RSES combined with RS-
EEG microstate analysis. Consistent with the previous studies,
this experiment also proved the positive correlation between
trait creativity and self-esteem (Jaquish and Ripple, 1981;
Goldsmith and Matherly, 1988; Yau, 2011). Importantly, the
RS-EEG microstate results showed that RSES could modulate
the relationship between WCTS creativity and the duration and
contribution of MS2, the occurrence of MS3, and the possibility
(MS4toMS2).

In the previous series of studies, it had been suggested that a
wide breadth of attention could facilitate creative performance
(Mendelsohn and Griswold, 1964, 1966; Mendelsohn and
Lindholm, 1972; Mendelsohn, 1976), which means that the
greater the number and range of stimuli attended to at any
one time, the more chances there are to generate creative ideas
(Kasof, 1997; Memmert and Roth, 2007). Previous studies from
visual attention found that the activation of the visual cortex
(striated and extrastriated cortex) could be influenced by visual
attention, which means that the activation of the visual cortex
can be modulated by operating both through the facilitation of
visual processing at the attended location and through inhibition
of unattended stimulus representations (Slotnick et al., 2003).
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FIGURE 3 | The relationships between parameters RS-EEG microstates (duration and contribution of MS2 and occurrence of MS3) and total score of WCTS were
modulated by total score of RSES.

Moreover, it had been found that the extrastriate cortex was
also activated when creative tasks (such as alternative uses) were
performed (Fink et al., 2009, 2010) and that gray matter density
in the visual cortex was positively correlated with creativity (Fink
et al., 2014; Wu et al., 2015). Previous studies had found that MS2

was negatively associated with the activation of the extrastriate
cortex, which might imply that individuals with a short duration
of MS2 possess a stronger function of visual processing or visual
images (Britz et al., 2010; Khanna et al., 2015; Gao et al., 2017).
Therefore, for individuals with higher self-esteem, the duration
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FIGURE 4 | The relationships between parameters RS-EEG microstates (transition from MS2 to MS4 and transition from MS4 to MS2) and total score of WCTS
were modulated by total score of RSES.

of MS2 was negatively correlated with the total score of WCTS,
which might reflect that a strong function of the visual cortex
could make individuals attend more elements at one time and
make individuals more creative.

According to the model of a dual pathway to creativity,
creative ideas can be generated by the functions of flexibility
and persistence (Nijstad et al., 2010). It had been suggested
that inhibition of irrelevant bottom-up cognitive processes was
required for creativity (e.g., Fink et al., 2009, 2010; Wu et al.,
2015), especially when the function of persistence was induced
under threat conditions (Baas et al., 2011; Roskes et al., 2012).
According to terror management theory (Greenberg et al.,
1997) and sociometer theory (Leary et al., 1995), the important
role of self-esteem is to buffer negative emotions induced by
death threats (death anxiety) or social threats (social rejection).
Thus, bottom-up cognitive processes might be a disadvantage
to creativity for individuals with low elf-esteem. Consistent with
this opinion, our results showed that the duration of MS2
was positively correlated with the total score of WCTS when
individuals have low self-esteem. Therefore, we thought that
irrelevant bottom-up cognitive processes might be more prone
to being inhibited as the duration of MS2 increases, which is
good for individuals with low self-esteem as this enables them to
generate creative ideas.

Now that inhibition of irrelevant bottom-up cognitive
processes is required for creativity (e.g., Fink et al., 2009, 2010;

Wu et al., 2015), the transitions between MS4 (executive control)
and MS2 (visual processes) found in this study might also reflect
that persistence is needed for creativity in individuals with low
self-esteem. Previous studies had found that MS4 was related to
right-lateralized frontoparietal networks, which might be related
to dorsal and ventral attention networks (Britz et al., 2010).
It had been confirmed that the right dorsal frontal–parietal
networks were involved in top-down control, while the ventral
frontal–parietal networks were related to information-capture
attention in the bottom-up manner (Cabeza et al., 2008, Cabeza
et al., 2014). It was further found that the ventral frontal–
parietal networks were related to the phasic and adaptive aspects
of cognitive control (moment-to-moment executive control),
while dorsal frontal–parietal networks were related to top-down
selective attention to specific stimulus features (Sadaghiani et al.,
2010, 2012; Sadaghiani and Kleinschmidt, 2016). According
to our results, the possibility of transitions between MS2 and
MS4 was positively correlated to the total score of WCTS for
individuals with low self-esteem; at the same time, the possibility
of transition from MS2 to MS4 was negatively correlated to the
total score of WCTS for individuals with high self-esteem. Thus,
the trait creativity for individuals with low self-esteem might be
dependent on the moment-to-moment information to attention
in a bottom-up manner, but the trait creativity for individuals
with high self-esteem might be dependent on the top-down
selective attention to specific stimulus features.
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The pursuit of self-esteem is a fundamental human need
(Taylor and Brown, 1988; Solomon et al., 1991), but the
consequences of pursuing self-esteem may produce the risk
of failure in verifying individuals’ abilities, qualities, and self-
worth and make them experience uncertainty (Crocker and Park,
2004). Moreover, individuals who chronically experience real or
imagined rejection are prone to developing lower self-esteem
relative to individuals feeling accepted and included in their social
environment (Dandeneau and Baldwin, 2004). It had been found
that the dorsal anterior cingulate cortex (dACC), the right ventral
lateral prefrontal cortex (rVLPFC), and the anterior insular
(AI) were more active during rejection than during inclusion
(Eisenberger et al., 2003, 2007; Slavich and Epel, 2010; Masten
et al., 2011; Rotge et al., 2014). Moreover, RS-EEG MS3 was
related to the cingulo-opercular networks, which include the
dACC and insula (Katayama et al., 2007; Seeley et al., 2007;
Britz et al., 2010). Therefore, the negative effect of occurrence
of RS-EEG MS3 on the trait creativity for individuals with low
self-esteem might reflect that with the functions of cingulo-
opercular networks increasing, individuals might be prone to
being influenced by social threat and make them develop lower
trait creativity.

This experiment investigated the modulating effect of self-
esteem on creativity and RS-EEG microstates. The findings
suggest that self-esteem modulates the relationship between
creativity and the duration and contribution of MS2, the
occurrence of MS3, and the possibility (MS4toMS2). Based on these
results, we thought trait creativity was related to automatic or
bottom-up cognitive processes for individuals with high self-
esteem, while inhibition of irrelevant information could facilitate
creativity for individuals with low self-esteem. Moreover, social
threat experiences might have a detrimental effect on creativity
for individuals with low self-esteem. Though there were some
important and robust evidences for us to understand the
relationships between creativity and RS-EEG microstates, several
limitations should be considered. Firstly, only sex and age
were controlled, and some other potential factors for creativity
(such as intelligence and personality) were not controlled.
Secondly, complex cognitive processes could be related to

creativity; however, only some of them have been reflected by
our results. Thirdly, due to undergraduates being selected in
this study, it might be cautious to explore other groups with
different ages (such as children and old adults). Therefore,
more detailed experiments and advanced paradigms should be
used in future studies to determine the cognitive meanings of
each microstate to further investigate the relationships between
microstates and creativity.
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1. INTRODUCTION

We introduce a large-scale dataset of mouse cursor movements that can be used to predict
user attention, infer demographics information, and analyze fine-grained movements. Attention
is a finite resource, so people spend their time on things they find valuable, especially when
browsing online. Objective measurements of attentional processes are increasingly sought after by
researchers, advertisers, and other key stakeholders from both academia and industry. With every
click, digital footprints are created and logged, providing a detailed record of a person’s online
activity. However, click data provide an incomplete picture of user interaction, as they inform
mainly about a users’ end choice. A user click is often preceded by several valuable interactions,
such as scrolling, hovers, aimedmovements, etc. and thus having access to this kind of data can lead
to an overall better understanding of the user’s cognitive processes. For example, previous work has
evidenced that when the mouse cursor is motionless, the user is processing information (Hauger
et al., 2011; Huang et al., 2011; Diriye et al., 2012; Boi et al., 2016), i.e., essentially “users first focus
and then execute actions” (Martín-Albo et al., 2016). We have collected mouse cursor tracking logs
from near 3K subjects performing a transactional search task that together account for roughly
2 h worth of interaction data. Our dataset has associated attention labels and five demographics
attributes that may help researchers to conduct several analysis, like the ones we discuss later in
this section.

Research in mouse cursor tracking has a long track record. Chen et al. (2001) were among
the first ones to note a relationship between gaze position and cursor position during web
browsing. Mueller and Lockerd (2001) investigated the use of mouse tracking to create compelling
visualizations and model the users’ interests. It has been argued that mouse movements can reveal
subtle patterns like reading (Hauger et al., 2011) or hesitation (Martín-Albo et al., 2016), and can
help the user regain context after an interruption (Leiva, 2011a). Others have also noted the utility
of mouse cursor analysis as a low-cost and scalable proxy of eye tracking (Huang et al., 2012;
Navalpakkam et al., 2013). Several works have investigated closely the utility of mouse cursor data
in web search (Arapakis et al., 2015; Lagun and Agichtein, 2015; Liu et al., 2015; Arapakis and Leiva,
2016; Chen et al., 2017) and web page usability evaluation (Arroyo et al., 2006; Atterer et al., 2006;
Leiva, 2011b), two of the most prominent use cases of this technology. Mouse biometrics is another
active research area that has shown promise in controlled settings (Lu et al., 2017; Krátky and
Chudá, 2018). Researchers have started to analyze mouse movements on websites for the detection
of neurodegenerative disorders (White et al., 2018; Gajos et al., 2020). In practice, commercial
web search engines often use mouse cursor tracking to improve search results (Huang et al., 2011,
2012), optimize page design (Leiva, 2012; Diaz et al., 2013), and offer better recommendations to
their users (Speicher et al., 2013). In what follows, we provide a brief survey of what others have
accomplished by analyzing mouse cursor movements in web search tasks. These analyses highlight
potential use cases of our dataset, thereby allowing researchers to investigate similar environments
and behaviors.
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1.1. Inferring Interest
For a long time, commercial search engines have been interested
in how users interact with Search Engine Result Pages (SERPs),
to anticipate better placement and allocation of ads in sponsored
search or to optimize the content layout. Early work considered
simple, coarse-grained features derived from mouse cursor data
to be surrogate measurements of user interest (Goecks and
Shavlik, 2000; Claypool et al., 2001; Shapira et al., 2006). Follow-
up research transitioned to more fine-grained mouse cursor
features (Guo and Agichtein, 2008, 2010) that were shown to be
more effective. These approaches have been directed at predicting
open-ended tasks like search success (Guo et al., 2012) or search
satisfaction (Liu et al., 2015). Mouse cursor position is mostly
aligned to eye gaze, especially on SERPs (Guo and Agichtein,
2012; Lagun et al., 2014a), and that can be used as a good proxy
for predicting good and bad abandonment (Diriye et al., 2012;
Brückner et al., 2020).

1.2. Inferring Visual Attention
Mouse cursor tracking has been used to survey the visual focus
of the user, thus revealing valuable information regarding the
distribution of user attention over the various SERP components.
Despite the technical challenges that may arise from this analysis,
previous work has shown the utility of mouse movement
patterns to measure within-content engagement (Arapakis
et al., 2014a; Carlton et al., 2019) and predict reading
experiences (Hauger et al., 2011; Arapakis et al., 2014b). Lagun
et al. (2014a) introduced the concept of motifs, or frequent
cursor subsequences, in the estimation of search result relevance.
Similarly, Liu et al. (2015) applied the motifs concept to SERPs
and predicted search result utility, searcher effort, and satisfaction
at the search task level. Boi et al. (2016) proposed a method for
predicting whether the user is actually looking at the content
pointed by the cursor, exploiting the mouse cursor data and a
segmentation of the web page contents. Lastly, Arapakis and
Leiva (2016) investigated user engagement with direct displays on
SERPs and provided further evidence that supports the utility of
mouse cursor data for measuring user attention at a display-level
granularity (Arapakis and Leiva, 2020; Arapakis et al., 2020).

1.3. Inferring Emotion
The connection between mouse cursor movements and the
underlying psychological states has been a topic of research
since the early 90s (Card et al., 1987; Accot and Zhai, 1997).
Some studies have investigated the utility of mouse cursor
data for predicting the user’s emotional state. For example,
Zimmermann et al. (2003) investigated the effect of induced
affective states on the motor-behavior of online shoppers and
found that the total duration of mouse cursor movements and the
number of velocity changes were associated to the experienced
arousal. Kaklauskas et al. (2009) created a system that extracts
physiological and motor-control parameters from mouse cursor
interactions and then triangulated those with psychological data
taken from self-reports, to correlate the users’ emotional state
and productivity. In a similar line, Azcarraga and Suarez (2012)
combined electroencephalography signals and mouse cursor
interactions to predict self-reported emotions like frustration,

interest, confidence and excitement. Yamauchi (2013) studied the
relationship between mouse cursor trajectories and generalized
anxiety in human subjects. Lastly, Kapoor et al. (2007) predicted
whether a user experiences frustration, using an array of affective-
aware sensors.

1.4. Inferring Demographics
Prior work has linked age with motor control and pointing
performance in tasks that involve the use of a computer
mouse (Walker et al., 1997; Bohan and Chaparro, 1998; Hsu et al.,
1999; Smith et al., 1999; Jastrzembski et al., 2003; Lindberg et al.,
2006). Overall, aging is marked by a decline in motor control
abilities, therefore it is expected to affect the users’ pointing
performance and, by extension, how they move the computer
mouse. For example, Smith et al. (1999) observed that older
people incurred in longer mouse movement times, more sub-
movements, and more pointing errors than the young. These
findings underline potential age effects on the way a mouse
device is used in an online search task. Prior research has also
noted sensory-motor differences due to gender (Landauer, 1981;
Chen and Chen, 2008; Yamauchi et al., 2015), such as significant
variation in the cursor movement distance, pointing time, and
cursor patterns. The cause of these variations has been attributed
to gender-based differences in how users move a mouse cursor
or to different cognitive mechanisms (perceptual and spatial
processes) involved in motor control.

Others have also examined the extent to which mouse cursor
movements can help identify gender and age (Yamauchi and
Bowman, 2014; Kratky and Chuda, 2016; Pentel, 2017), however
the experimental settings have limited generalizability, either
because the tasks are not well-connected to typical activities
that users perform online, such as web search, because the
data include multiple samples per participant, thereby increasing
the risks of information leakage, or because researchers could
not verify their ground-truth data. In our dataset, we limit the
training samples to exactly one mouse cursor trajectory per
participant, who are verified, high-quality crowdworkers.

2. METHOD

We ran an online crowdsourcing study that reproduced the
conditions of a transactional search task. Participants were
presented with a simulated information need that explained that
they were interested in purchasing some product for them or a
friend. Overall, the study consisted of three parts, to be described
later: (1) pre-task guidelines, (2) the web search task, and (3) a
post-task questionnaire.

2.1. Participants
We recruited participants from the FIGURE EIGHT

crowdsourcing platform1. They were of mixed nationality
(e.g., American, Belgian, British, German) and had diverse
educational backgrounds (see Table 1). All participants were
proficient in English andwere experienced (Level 3) contributors,
i.e., they had a proven track record of successfully completed

1https://www.figure-eight.com
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TABLE 1 | Demographics information from our dataset.

Age Count Gender Count Nationality Count Education Count Income Count

18–23 380 Male 1,605 USA 1,755 High school 593 <25K 881

24–29 716 Female 1,118 VEN 251 College 472 25–34K 446

30–35 590 NA 14 GBR 209 Bachelor’s 704 35–49K 367

36–41 417 CAN 66 Graduate 499 50–74K 394

42–47 223 EGY 37 Master’s 399 75–99K 249

48–53 174 UKR 31 Doctorate 30 100–149K 145

54–59 132 IND 29 NA 40 150–249K 42

60–65 63 SRB 27 >250K 23

+66 24 RUS 25 NA 190

NA 18 ...

tasks and of a different variety, thus being considered very
reliable contributors.

2.2. Materials
Starting from Google Trends2, we selected a subset of the
Top Categories and Shopping Categories that were suitable
representatives of transactional tasks. Then, we extracted the
top search queries issued in the US during the last 12
months. Next, we narrowed down our search query collection
to 150 representative popular queries. The final collection
of transactional queries was repeated as many times needed
to produce the desired number of search sessions for the
final dataset.

Using this final selection of search queries, we produced the
static version of the corresponding Google SERPs and injected
custom JavaScript code that allowed us to capture all client-side
user interactions. For this, we used EVTRACK3, an open source
JavaScript event tracking library derived from the smt2ǫ mouse
tracking system (Leiva and Vivó, 2013). EVTRACK can capture
browser events either via event listeners (the event is captured as
soon as it is fired) or via event polling (the event is captured at
fixed-time intervals). We captured mousemove events via event
polling, every 150ms to avoid unnecessary data overhead (Leiva
and Huang, 2015), and all the other browser events (e.g., load,
click, scroll) via event listeners. Whenever an event was
recorded, we logged the following information: mouse cursor
position (x and y coordinates), timestamp, event name, XPath of
the DOM element that relates to the event, and the DOM element
attributes (if any).

All queries triggered some form of advertisements on the
SERPs, according to three different formats: “native” (organic
ads) or “bundled” (direct display ads). All SERPs included one
or more native ads together with one bundled ad. The native
advertisements could appear either at the top or bottom position
of the SERP, whereas the bundled ads could appear either at the
top-left or top-right position. We ensured that only one ad was
visible per condition and participant at a time. This was possible
by instrumenting each downloaded SERP with custom JavaScript

2https://trends.google.com/trends/
3https://github.com/luileito/evtrack

code that removed all ads excepting one that would be selected
for a given participant. In any case, native bottom-most ads were
not shown to the participants.

2.3. Pre-task Guidelines
Participants were instructed to read carefully the terms and
conditions of the study which, among other things, informed
them that they should perform the task from a desktop or laptop
computer using a computer mouse (and refrain from using
a touchpad, tablet, or mobile device) and that their browsing
activity would be logged. Moreover, participants consented to
share their browsing data and their (anonymized) responses for
later analysis.

Participants were asked to act naturally and choose anything
that would best answer a given search query, since all “clickable”
elements (e.g., result links, images, etc.) on the SERP were
considered valid answers. The instructions were followed by a
brief search task description using this template: “You want to
buy <noun> (for you or someone else as a gift) and you have
submitted the search query <noun> to Google Search. Please
browse the search results page and click on the element that you
would normally select under this scenario.” The template was
populated with the corresponding<noun> entities, based on the
assigned query.

Participants were allowed as much time as they needed to
examine the SERP and proceed with the search task, which
would conclude whenever they clicked on any SERP element. The
payment for the participation was $0.20. Participants could also
opt out at anymoment, in which case they were not compensated.
Each participant could take the study only once.

2.4. Task Procedure
Each participant was presented with a search task description,
then provided with a predefined search query (selected at random
from our pool of queries) and the corresponding SERP, and they
were asked to click on any element of the page that best solved the
task. This way, we ensured that participants interacted with the
same pool of web search queries and avoided any unaccounted
systematic bias due to query quality variation. All possible
combinations of query and ad style (i.e., format and position)
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were pre-computed so that whenever a new user accessed the
study, they were assigned one of these combinations at random.

Participants accessed the instrumented SERPs through a
dedicated web server that did not alter the look and feel of
the original SERPs. This allowed us to capture fine-grained
user interactions while ensuring that the content of the SERPs
remained consistent with the original version. Each participant
was allowed to perform the search task only once to avoid
introducing possible carry over effects and, thus, altering their
browsing behavior in subsequent search tasks. In sum, each
participant was exposed only to a single condition; i.e., a unique
combination of query and ad style. Finally, at the end of the study
participants had to copy a unique code and paste it on FIGURE

EIGHT in order to have their job validated.

2.5. Post-task Questionnaire
Upon concluding the search task, participants were asked to
answer a series of questions. The questions were forced-choice
type and allowed multi-point response options.

The first question asked the degree to which the user noticed
the advertisements shown on the SERP: While performing
the search task, to what extent did you pay attention to the
advertisement? We used a 5-point Likert-type scale to collect the
labels: 1 (“Not at all”), 2 (“Not much”), 3 (“I can’t decide”), 4
(“Somewhat”), and 5 (“Very much”). In practice, these scores
should be collapsed to binary labels (true/false), but we felt
it was necessary to use a 5-point Likert-type scale for several
reasons. First, using 2-point scales often results in highly skewed
data (Johnson et al., 1982). Second, it is important to leave room
for neutral responses, because some users may not want to say
one way or another, otherwise this can produce response biases.
But 3-point scales can lead more users to stay neutral, because
the remaining options can be seen as “too extreme.” Therefore,
we opted for a 5-point scale, which leaves more room for “soft
responses” and in addition is easy to understand. With this
scoring scheme, therefore, we are confident that eventual binary
labels would actually reflect positive and negative user votes.

The questionnaire also comprised the following
demographics-related questions:

1. What is your gender? [Male, Female, Prefer not to say]
2. What is your age group? [18–23, 24–29,..., 60–65, +66, Prefer

not to say]
3. What is your native language? [Pull-down list, Prefer not

to say]
4. What is your education level? [High school, College,...,

Doctorate, Prefer not to say]
5. What is your current income? [25K, 35K,..., 250K, Prefer not

to say]

3. VALIDATION AND FILTERING

Crowdsourcing studies offer several advantages over in-situ
methods of experimentation (Mason and Suri, 2012), such as
access at a larger andmore diverse pool of participants with stable
availability, collection of real usage data at a relatively large scale,
and a low-cost alternative to themore expensive laboratory-based

experiments. On the downside, experimenters have to account
for potential threats to ecological validity, distractions in the
physical environment of the participant, and privacy issues, to
name a few. Still, crowdsourcing allows for exploring a wider
range of parameters in a more controlled manner as compared
to in-the-wild large-scale studies.

We collected self-reported ground-truth labels in a similar
vein to previous work (Feild et al., 2010; Lagun et al., 2014b; Liu
et al., 2015; Arapakis and Leiva, 2016) which also administered
post-task questionnaires. To mitigate and discount low-quality
responses, several preventive measures were put into practice,
such as introducing test (gold-standard) questions to our tasks,
selecting experienced contributors with high accuracy rates, and
monitoring their task completion time, thus ensuring the internal
validity of our experiment.

Starting from a set of 3,223 participants who initially accessed
the study, we filtered automatically those who did not finish
it (138 cases) as well as participants who did not move their
mouse at all (176 cases). We concluded to a dataset with 2,909
observations comprising at least one mouse movement, together
with their associated browser’s and user’s metadata. See Table 1
for a summary of the available demographics information.

There are 92 unique combinations of query and ad style, each
of which assessed by 32 users on average (SD = 17 users). There
are 1,942 observations from the attended condition (self-reported
Likert-type score ≥ 4), 776 observations from the non-attended
condition (score ≤ 2), and 191 observations from the neutral
condition (score of 3). The average mouse cursor trajectory has
15.78 coordinates (SD = 16.5, min = 1, max = 222), which
is around the same order of magnitude as reported in similar
studies (Huang et al., 2011; Leiva and Huang, 2015; Arapakis and
Leiva, 2016).

Excepting the automatic filtering procedure explained above,
our data is in raw form and therefore some columns require
further processing. For example, most columns pertaining
demographics information are stored as integers, therefore
researchers should consult Table 1 to retrieve the corresponding
categorical labels. We also recommend researchers to apply other
filtering methods, depending on the nature of their experiments,
such as collapsing the ground-truth attention labels from the
original 1–5 scale to a binary scale (Arapakis and Leiva, 2020;
Arapakis et al., 2020) or ignoring cursor trajectories having <5
coordinates, which in most cases would correspond to 1 s of
interaction data.

3.1. Data Format
The Attentive Cursor dataset includes the following resources:

1. A folder with mouse tracking log files, as recorded by the
EVTRACK software:

a. Browser events: space-delimited files (CSV) with
information about each event type (8 columns).

b. Browser metadata: XML files with information about the
user’s browser (e.g., viewport size).

2. A TSV file with ground-truth labels (4 columns).
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FIGURE 1 | File content samples (top) and SERP snapshots with mouse cursor trajectories (bottom). An ellipsis (...) denotes an intentional omission of some data,

for brevity’s sake. The gray-colored rectangles in the bottommost figures denote the different ad types, from left to right: right-aligned bundled ad, left-aligned bundled

ad, and native ad.

3. A tab-delimited file (TSV) with user’s demographics and
stimulus condition (12 columns).

4. A folder with all SERPs in HTML format.
5. A README file with a detailed explanation of each resource.

Figure 1 provides some examples of the kind of data that
researchers can find in our dataset. We provide the URL
to the repository in the “Data Availability Statement”
section below.

4. CONCLUSION

We have presented a large-scale, in-the-wild dataset of mouse
cursor movements in web search, with associated ground-truth
labels about user’s attention and demographics attributes. The
dataset represents real-world behavior of individuals completing
a transactional web search task. What makes this dataset both
unique and challenging is the fact that there is only one
observation per user. It is not possible to leak information
from any data splits; e.g., training, validation, and testing
splits typically used in machine learning studies. It is our
hope that the dataset will foster research in several scientific
domains, Including, e.g., information retrieval, movement
science, and psychology.
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Evidence suggests divergent thinking is the cognitive basis of creative thoughts.

Neuroimaging literature using resting-state functional connectivity (RSFC) has revealed

network reorganizations during divergent thinking. Recent studies have revealed the

changes of network organizations when performing creativity tasks, but such brain

reconfigurations may be prolonged after task and be modulated by the trait of creativity.

To investigate the dynamic reconfiguration, 40 young participants were recruited to

perform consecutive Alternative Uses Tasks (AUTs) for divergent thinking and two resting-

state scans (before and after AUT) were used for mapping the brain reorganizations

after AUT. We split participants into high- and low-creative groups based on creative

achievement questionnaire (CAQ) and targeted on reconfigurations of the two brain

networks: (1) default-mode network (DMN) and (2) the network seeded at the left inferior

frontal gyrus (IFG) because the between-group difference of AUT-induced brain activation

located at the left IFG. The changes of post-AUT RSFCs (DMN and IFGN) indicated the

prolonged effect of divergent thinking. More specifically, the alterations of RSFCIFG−AG

and RSFCIFG−IPL (AG: angular gyrus, IPG: inferior parietal lobule) in the high-creative

group had positive relationship with their AUT performances (originality and fluency),

but not found in the low-creative group. Furthermore, the RSFC changes of DMN

did not present significant relationships with AUT performances. The findings not only

confirmed the possibility of brain dynamic reconfiguration following divergent thinking,

but also suggested the distinct IFGN reconfiguration between individuals with different

creativity levels.

Keywords: creativity, divergent thinking, functional connectivity, resting-state fMRI, alternative usage task (AUT),

creative achievement questionnaire (CAQ)
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INTRODUCTION

Creativity is the foundation of originality, the generation of novel
ideas when facing a specific problem (Sternberg, 1999; Runco
and Jaeger, 2012), and the cornerstone of productivity in human
civilization and modern society. However, despite the current

surging importance of creativity, its manifestations in the brain
involves a complex architecture, the underlying mechanisms
of which require an extensive investigation to disentangle
(Sternberg and Lubart, 1996). The current psychometric

creativity measures are largely based on Guilford’s theory,
according to which creative people have high ideational fluency
and high degrees of novelty (Guilford, 1967). To date, the

understanding of the internal process of creativity tended to
alternate between the generation of novel ideas (i.e., divergent
thinking) and the evaluation of generated ideas (i.e., convergent
thinking). In the dual-process conception of creativity (Abraham,
2013; Sowden et al., 2015), divergent thinking represents the
acquisition of a certain task and diverts attention away from the
task itself, in a highly spontaneous manner to generate ideas,
whereas the convergent thinking is associated with deliberate
constraints and the verification of illuminated ideas (Christoff
et al., 2016). Therefore, the divergent thinking can be regarded
as an imperative incubation step before the “eureka!” moment
reaches the mind. More importantly, the divergent thinking
ability has moderate potential to predict creative achievements
in the real world (Plucker, 1999). Based on the operational
definitions of creativity, scientific disciplines have endeavored
to unveil the sophisticated and fascinating mental processes of
divergent thinking in the human brain.

In the neuroscience of creativity, questionnaires and cognitive
tasks, such as creative achievement questionnaire (CAQ) for
individual creativity achievements and alternative uses task
(AUT) or the Torrance Tests of Creative Thinking (TTCT)
for divergent thinking, were developed to probe the underlying
mental processes of creativity (Plucker, 1999; Sternberg, 1999;
Carson et al., 2005). With the support of neuroimaging
technologies, the neural substrates of divergent thinking have
been progressively disclosed in the literature, although with
great diversity across brain regions. For example, Jung et al.
discovered that the CAQ was positively correlated with the left
lateral orbitofrontal volume and the cortical thickness of the right
angular gyrus (Jung et al., 2010). Ellamil et al. demonstrated the
involvement of the medial temporal lobe in a creative drawing
generation task (Ellamil et al., 2012). Using the AUT, Fink
et al. demonstrated that originality was positively associated
with the activation of the temporal-parietal junction, medial
prefrontal cortex (mPFC) and posterior cingulate cortex (PCC)
(Fink et al., 2010). Benedek et al. concluded that the left inferior
parietal cortex and left prefrontal regions subserved the flexible
integration of previous knowledge for constructing novel and
creative ideas (Benedek et al., 2014). Abraham et al. demonstrated
that the left inferior frontal gyrus (IFG) and temporal poles
played major roles in AUT engagements (Abraham et al.,
2012). Moreover, a meta-analysis study revealed that the left
IFG was among the most predominantly activated regions
associated with idea generation across task-induced brain regions

(Gonen-Yaacovi et al., 2013), suggesting its functional role in the
semantic processing and conceptual expansion to expand the
acquired concept into novel elements (Ward, 1994; Abraham,
2014; Boccia et al., 2015). In sum, emerging evidence indicates
that brain regions in the left IFG, mPFC, parietal lobe, andmedial
temporal lobe are potentially involved in the mental process of
divergent thinking.

Beyond the perspective of creative-task induction, divergent
thinking can be taken as a spontaneous-thought process for
idea incubation because of its involvement in the dynamic
shifts between memory, emotion and attention (Sowden et al.,
2015; Christoff et al., 2016). Therefore, a growing body of
creativity-related neuroimaging studies, targeting the mental
process of divergent thinking, havemoved toward uncovering the
long-distance brain connections using resting-state functional
magnetic resonance imaging (rs-fMRI) (Takeuchi et al., 2012;
Beaty et al., 2014; Wei et al., 2014). The default-mode network
(DMN) has been determined to play an active role in idea
generation, and the executive network appears to support
idea evaluation instead (Jung et al., 2013; Beaty et al., 2016;
Shi et al., 2018). Interestingly, the involvements of DMN
connectivity in divergent thinking accords with the findings
concerning task engagements, except for the left IFG. By
separating participants into high- and low-creative groups based
on their creativity score, Beaty et al. revealed greater connectivity
strengths between the left IFG and posterior DMN in the high-
creative group in contrast to the low-creative group (Beaty
et al., 2014), which implies that the creative abilities lead to
the variability of brain functionality. Recently, the DMN was
further identified as a member of high-creativity neural circuits
using connectome-based predictive modeling and AUT-based
fMRI datasets (Beaty et al., 2018). The same study also inferred
the plausible dynamicity of the network organization after
divergent thinking by revealing the higher predictive power
of a high-creativity network on the creativity score during
AUT, compared with that under normal resting conditions.
Wei et al. further suggested the possibility of dynamic resting-
state functional connectivity (RSFC) changes by demonstrating
that the low-creative group exhibited stronger RSFC changes
between the mPFC and the middle temporal gyrus (MTG)
after a creativity-related training task (Wei et al., 2014). Given
the dynamic nature of creative thinking, it is speculated that
the integrity of creativity-associated brain networks changes
dynamically following the divergent thinking. However, are the
dynamic network reconfiguration associated with the creativity
performance? Do different creativity levels lead to distinct RSFC
alterations? These unanswered questions are further addressed to
better understand the brain functionality underlying creativity.

Herein, we establish the following hypotheses: (1) AUT-
induced RSFC changes are associated with the creativity
performances, and (2) individuals with different levels of
creativity use distinct strategy of brain reconfigurations to
comply with the challenges of AUT. To test these hypotheses,
we recruited forty young participants to perform AUTs and
compared their RSFC maps between two rs-fMRI sessions
(Pre- and Post-AUT). The levels of creativity were assessed
through splitting the participants into two groups (high- and
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low-creative) based on the CAQ scores and we tested the
influence of AUT on RSFC changes for each creativity group.

MATERIALS AND METHODS

Participants
A total of 42 right-handed healthy young adults were recruited
in this study. The inclusion criteria were as follows: (a) non-
smoking and without drug addiction; (b) not pregnant; (c) no
history of neurological and psychiatric disorder history, and (d)
no metal body implants. The entire protocol was approved by
the Research Ethics Committee of National Taiwan University
(NTU-REC No. 201407EM028). Because two participants could
not complete the entire experimental procedure, their datasets
were excluded in the analysis. Accordingly, the following results
are reported for the remaining 40 participants (19 males, mean
age= 24.4± 2.8 years, range: 21–33 years).

Stimuli of AUT
The stimuli consisted of 56 grayscale images of objects from
daily life with background removed. Prior to the actual fMRI
experiment, we rated the number of alternative usages for each
object stimulus from a separate group of participants (N = 15,
12 males, mean age = 23.4 ± 3 years, range: 20–30 years).
During the rating, the 56 objects were presented consecutively
to the participants with inter-trial intervals (ITIs) of 26 s. The
participants were instructed to think and express alternative
usages for each object within 20 s. The mean number of answer
for each object was 2.4. We categorized the difficulty of AUT into
three levels as follows: normal, 1.99–2.99 answers per picture;
difficult, <1.99 answers per picture; and easy, >2.99 answers per
picture. Subsequently, we used the task materials to design the
AUT in MRI environments. All of the objects were presented
against a white background for both rating and fMRI experiment.

Experimental Procedure
After consenting, the participants were instructed to complete a
CAQ, containing eight aspects of creativity (Carson et al., 2005),
and to undergo the fMRI experiments. The fMRI experiment
included seven sessions in total: two resting-state, two 0-back
and three AUT sessions. The participants underwent the first
rs-fMRI scan (Pre-AUT), performed three consecutive AUTs
with two 0-back tasks in between, and went through the second
rs-fMRI scan (Post-AUT) at the end. The participants only
received the instruction to generate novel ideas after viewing
pictures in the AUT sessions without practices to ensure the
Pre-AUT resting state was irrelevant to divergent thinking. The
multiple AUTs were designed to enhance the divergent thinking
process with undemanding tasks (0-back) in between (Baird et al.,
2012). Herein, we considered all AUTs and 0-backs as instructed
divergent-thinking engagements, and adopted the two sessions
of resting-state scans (Pre-AUT and Post-AUT) to discern the
alterations of RSFC through the divergent thinking process.

fMRI Acquisition and Scanning Parameters
MRI experiments were conducted by a 3T MRI scanner (Prisma,
Siemens, Erlangen, Germany) with 20-channel head coil at

National Taiwan University. During the experiment, a high-
resolution T1-weighted anatomical image was initially scanned
using the 3D-MPRAGE sequence with 256 × 256 × 192
matrix size; 0.93 × 0.93 × 0.93 mm3 resolution; inversion
time (TI) = 900ms; repetition time (TR) = 2,000ms, echo
time (TE) = 2.3ms; flip angle (FA) = 8◦; bandwidth = 200
Hz/pixel; NEX = 1. Total scan time was 6min 14 sec. The
fMRI protocol was using a single-shot gradient-echo echo-planar
imaging (GE-EPI) sequence with following imaging parameters:
TR = 2 s, TE = 34ms, FA = 84◦, bandwidth = 3,005 Hz/pixel,
matrix size = 64 × 64 × 33, and FOV = 210 × 210 mm2.
Stimuli were presented via E-prime 2.0 (Psychology Software
Tools, Pittsburgh, PA, USA) with a back-projection projector in
800 × 600 resolution. Participants viewed the stimuli using a
mirror mounted on the head-coil and the viewing field was 8.4◦

(horizontal) by 6.3◦ (vertical) at a viewing distance of 420 cm.
Participants were instructed to respond with a button press
using the index and middle fingers of their right hand (Lumina
response pad; Cedrus, San Pedro, CA, USA).

During the rs-fMRI scans, the participants were instructed
to stay still with their eyes open, to not fall into sleep and to
not think of anything in particular. The rs-fMRI scan contained
180 measurements (6min) per session. During the AUTs, the
participants were instructed to view gray-scale pictures of various
objects from daily life (through a projector), and to think of
as many alternative usages as possible within a fixed duration
(20 s). Each AUT session contained 12 trials, including one
easy-level picture, one difficult-level picture, and ten normal-
level pictures to balance the difficulty level, with fixation and
cues of 6 s in between; within each trial one single picture was
presented for 20 sec. During the 20 s of the picture presentation,
the participants were instructed to press the button immediately
when they thought of a special usage; and the button-press
numbers and the response time were recorded. Each AUT task
contained 156 scans (5min 12 s) in total. After the cessation
of each AUT, the participants were asked to recall the answers
retrospectively, and the answers were manually recorded by the
experimenter. During the 0-back tasks, one English letter was
displayed on screen for 0.5 s, followed by a cross fixation for 1.5 s.
The participants were instructed to respond using their right
hand to press the right button when the letter appearing on the
screen was “X”; otherwise, they were to press the left button. The
0-back fMRI contained 152 scans (5min 4 s) in each session. The
datasets generated for this study are available on request to the
corresponding author.

AUT Performance
Beyond the creativity assessment obtained through the CAQ,
the two creativity indices of AUT (e.g., originality and fluency)
were also evaluated for each participant according to the scoring
method of previous studies (Hao et al., 2015). Fluency was
estimated on the basis of the total number of ideas given
during the AUT trials. Originality was estimated on the basis
of statistically infrequent responses using the following means.
The generated answers from the AUT were collected into a
comprehensive lexicon for comparison. Three trained raters
independently assessed the originality of the AUT performance
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for every participant. If 10% or less of the participants in the
sample gave the same response then it was given a score of “1,”
and all other responses received scores of “0.” The inter-rater
agreement was with intra-class correlation coefficient of 0.97.
Subsequently, the originality scores of the AUT performance
assigned by the three raters were averaged for every participant.

fMRI Analyses
The data were processed using Analysis of Functional Neuro
Images (AFNI) (Cox, 1996). We processed the task data
according to the following steps: (a) motion correction; (b)
coregistration; (c) smoothing with full width at half maximum
(FWHM) = 6mm, and (d) normalization to the MNI space.
During the AUT sessions, participants’ responses were recorded
and used as the events for divergent thinking, enabling the
event-related fMRI analysis. Using the events convolved with
the canonical hemodynamic function, we subsequently applied
the generalized linear model (GLM) to generate the activation
map for each AUT and calculated the average beta map across
three AUTs for each individual. The consequent AUT results were
equally divided into two groups (n= 20 for each of the high- and
low-creative groups) according to their CAQ scores (the cut-off
score for the CAQ was 8), and a two-sample t-test was conducted
to generate the contrast maps of AUT brain activity.

The rs-fMRI data were processed according to the following
steps: (a) field-map correction; (b) motion correction; (c)
coregistration; (d) detrending and filtering (0∼0.1Hz); (e)
smoothing with FWHM = 5mm, and (f) normalization; and
(g) the physiological noise removal including white matter,
cerebrospinal fluid and six motion parameters. Subsequently,
the functional connectivity maps before and after AUT were
established through the seed-correlation analysis, targeting
on two specific brain networks: (1) the bilateral posterior
cingulate cortex (PCC) [±3, −53, 26] for assessing DMN
(Van Dijk et al., 2010; Yan et al., 2013), and (2) the seeding
at the peak of AUT contrasts between the high- and low-
creative groups. Subsequently, the group-based RSFC maps
underwent the following statistical analyses to estimate the
brain reconfigurations.

Statistical Analyses
All group analyses of the fMRI results were conducted on the
basis of analysis of variance (ANOVA) and t-test using AFNI. The
group difference in brain activity during AUTs were evaluated
through a two-sample t-test between the high- and low-creative
groups. The two brain networks associated with divergent
thinking were compared for RSFC according to the 2 (high-
and low-creative) × 2 (pre- and post-AUT) two-way ANOVA
(3dMVM), inclusive of the mean framewise displacement to
minimize the motion effect on RSFC findings. The multiple
comparisons in the group analysis were corrected through the
3dClustSim approach with the auto-correlation function and the
significance level was p < 0.05 (uncorrected p < 0.001, cluster
size = 80 mm3). To further determine the relationships between
creativity scores and the divergent thinking effect of RSFC, the
Pearson correlation analysis was used to measure the association
between the behavior indices of each individual (originality

and fluency) and the RSFC changes (Post-Pre) from selected
regions of interested (ROIs). The centers of the spherical ROIs
(radius = 5mm) were placed at the peak value of the significant
changes in the contrast maps. The effect of divergent thinking
was assessed by calculating the RSFC differences between Pre-
and Post-AUT after Fisher’s z transformation of the correlation
coefficients. The z-transformed RSFC changes from the selected
ROIs were correlated with the creativity indices (originality and
fluency) with false-discovery rate (FDR) correction across ROI-
wise comparisons. The statistical calculations were performed
using SPSS 20 (IBM Statistical Package for the Social Sciences).

RESULTS

Creativity Performances: CAQ and AUT
The average CAQ score for the 40 participants was 10.8 ± 10.4,
ranging from 1 to 62. Regarding the overall AUT performances,
the evaluated originality and fluency were 0.33 ± 0.11 and
3.1 ± 1.0, respectively. The CAQ scores were adjusted by the
log-transform (Form and Kaernbach, 2018), and the log(CAQ)
scores exhibited a positive trend toward the AUT fluency
(r = 0.30, p = 0.06), without prominent relationships with
originality (r = 0.22, p = 0.16) for all participants. To test
the difference in brain activity between high and low creativity
individuals, the following results were divided into two groups
with equal sample size (n = 20 for each group); where their
CAQ scores were 16.6 ± 12.2 for the high-creative group and
5.0 ± 1.9 for the low-creative group. In addition, the two groups
showed no significant differences in age (p = 0.06), gender
(p = 0.53) and motion during the two rs-fMRI scans (framewise
displacement: p= 0.39).

Brain Activity Associated With AUT
The AUT-associated brain activations were located at the left
superior temporal gyrus, anterior cingulate gyrus, declive of
the cerebellum, caudate and occipital visual cortex (Figure 1,
corrected p< 0.01). Figures 1A,B illustrate the average activation
maps of AUT for the high-creative and low-creative groups,
respectively, where the high-creative group exhibited relatively
broad spatial extents in AUT engagements relatively. Negative
activations were found lateralized to the right hemisphere,
specifically located at the right PCC and right inferior parietal
lobule. Figure 1C depicts the contrast between the two groups
by independent t-test (corrected p < 0.05). A difference
between the groups was observed only in the left IFG (BA47,
[−32, 24, −14]), which was taken as the seed localization for
the subsequent RSFC analyses. Supplementary Figure 1 shows
the overall AUT activation map across all participants and
Supplementary Table 1 lists the detailed description of AUT-
related brain activities.

Functional Connectivity: IFGN and DMN
To further elucidate the alterations of brain integrity over
the divergent thinking process, we applied a seed-correlation
approach to investigate RSFC. Two brain networks were targeted
with the seed locations in bilateral PCC for DMN and left
IFG for IFG-associated network (IFGN) to assess the group
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FIGURE 1 | Brain activation maps of Alternative Uses Task (AUT). We presented the activation maps divided into two groups as follows: high- and low-creative [(A,B),

respectively, segregated by CAQ scores]. (C) The AUT contrast map between the two groups, where the contrast region subsided in the left inferior frontal gyrus (BA

47).

(high- vs. low-creative) and divergent thinking (Pre- vs. Post-
AUT) effects. The upper panel of Figure 2 illustrates the DMN
connectivity maps exhibiting strong connections to the bilateral
medial and middle frontal, PCC, and bilateral angular gyrus
(corrected p < 0.01). The lower panel of Figure 2 illustrates
the IFGN connectivity maps (corrected p < 0.01). The IFGN
was associated with the bilateral superior frontal, medial frontal,
anterior cingulate, insula, superior, and middle temporal gyri.
The detailed information of the group × divergent thinking
comparisons (high-creative, low-creative, Pre-AUT and Post-
AUT) for IFGN and DMN is listed in Table 1. Prior to the
AUT engagements (Pre-AUT), the only significant difference in
IFGN between the groups was in the right angular gyrus (AG)
and right inferior parietal lobule (IPL), but no group difference
was observed in DMN at the baseline level. However, the RSFC
of both networks changed after performing the AUT. Table 1
demonstrates that the group difference of RSFCDMN became
prominent after AUT engagements, and the RSFCIFGN showed
different network reconfigurations between the two groups.

Association Between Functional
Connectivity and Creativity Scores
An ROI analysis was conducted to determine the relationship
between RSFC changes and creativity scores. The spherical
ROIs were placed according to the results in Table 1. Figure 3
presents the RSFC changes between Pre-AUT and Post-AUT
and their relationships with AUT originality and fluency in

both groups. The RSFC changes in IFGN at the right AG and
right IPL were positively correlated with the AUT performances:
originality and fluency (originality-1FCIFG−AG: r = 0.51, p
< 0.02; fluency-1FCIFG−AG: r = 0.49, p < 0.03; originality-
1FCIFG−IPL: r = 0.63, p < 0.001) in the high-creative group, but
the correlations in the low-creative group were non-significant.
The Steiger’s Z-test presented significant group differences in the
correlation coefficients of originality-1FCIFG−AG (p < 0.001),
fluency-1FCIFG−AG (p < 0.004) and originality-1FCIFG−IPL (p
< 0.001). Supplementary Table 2 summarizes all correlations
between RSFC and creativity assessments [log(CAQ), AUT
fluency and originality].

DISCUSSION

We demonstrated that the divergent thinking process (e.g., AUT)
could modulate the RSFC of DMN and IFGN, which were
associated with creativity performance. The results indicated
that the baseline RSFCDMN networks (Pre-AUT) were similar
between the two groups, but the baseline RSFCIFGN could reflect
the group difference. Then, the IFGN presented significant
network reorganization while the DMN did not reorganize after
AUT engagements. Intriguingly, such IFGN reconfiguration was
associated with AUT performances (originality and fluency,
Figure 3). These findings supported that the dynamic changes
of intrinsic network connections could reflect the cognitive
performances of divergent thinking. However, the high- and
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FIGURE 2 | IFGN and DMN RSFC patterns before and after AUT. For each network, the top panel displays the one-sample RSFC map of Pre-AUT and Post-AUT for

the high-creative group, and the lower panel refers to the low-creative group.

low-creative groups demonstrated distinct network—creativity
associations as follows: positive relationships were evident
between originality and RSFC changes in the high-creative
group but the low-creative group showed non-significant
correlations (Supplementary Table 2), further indicating the
dissimilar functional architectures involved in divergent thinking
among individuals with diverse creativity achievements. These
findings suggest that the RSFCIFGN can change dynamically
in accordance with the divergent thinking process, and the
populations with various creativity levels may employ distinct
reconfigurations after divergent thinking.

Network Reconfiguration After Divergent
Thinking
The integrity of brain network can be modulated by the previous
cognitive engagements within minutes, and the functional re-
organization may be important to the cognitive performances.
Previous research investigated the correlation between the IFG
connectivity and the subsequent memory (Stevens et al., 2010),
disclosing the connectivity facilitates the recognition accuracy.
In the current study, we focused on the dynamic RSFC changes
of the two networks, DMN and IFGN, corresponded to the
networks related with high-creative thinking ability reported
in literature (Beaty et al., 2018). Interestingly, the same study
also demonstrated the evidence of dynamic RSFC alterations

following divergent thinking. In their supporting information,
Beaty et al. presented fairly similar correlations between network
strengths and creativity scores based on a resting-state dataset
(r = 0.13 for high-creative networks and r = 0.11 for low-
creative networks). However, the RSFC–creativity correlation
became elevated for high-creative networks when performing
the AUT (r = 0.35 and 0.28 for two separate datasets),
but the correlation turned out non-significant for low-creative
networks during AUT engagements (r = 0.02 to −0.04 for
two separate datasets). The evidence implies that dynamic
network reorganizations in AUT can be associated with the
creativity performances. In this study, assuming that the short-
term network reorganizations induced by AUT could sustain
after the task cessation (the second resting state in Post-
AUT), we demonstrated that dynamic RSFC alterations were
associated with the AUT performance (originality and fluency).
Specifically, we prescribed the ROIs from both the creativity
trait effect (High-creative > Low-creative defined by CAQ in
Table 1) and the creativity state effect (Post-AUT > Pre-AUT),
because the CAQ (trait) and AUT performances (state) were
highly correlated within each group (Supplementary Table 2).
Our results showed that DMN demonstrated the trait difference
between groups; however, no prominent state effect was found
in DMN. Relatively, IFGN contained both trait and state
effect (Table 1), indicating that the IFGN indeed presented
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TABLE 1 | Group comparison of IFGN and DMN RSFC before and after AUT.

Brain area t-value Voxel size Peak x Peak y Peak z

DMN (SEED AT LEFT INFERIOR PARIETAL GYRUS [±3, −53, 26])

Pre-AUT: High-creative > Low-creative

– –

Post-AUT: High-creative > Low-creative

Postcentral gyrus (right) −0.31 41 54 −26 20

Inferior frontal gyrus (right) −0.34 30 46 34 2

Thalamus (right) 0.24 15 4 −36 10

Middle temporal gyrus (left) −0.26 12 −46 0 −24

Superior temporal gyrus (left) −0.31 12 −44 4 −8

High-creative group: Post-AUT > Pre-AUT

– –

Low-creative group: Post-AUT > Pre-AUT

– –

IFGN (SEED AT LEFT INFERIOR PARIETAL GYRUS [-32, 24, −14])

Pre-AUT: High-creative > Low-Creative

Angular gyrus (right) −0.28 71 42 −78 28

Inferior parietal lobule (right) −0.28 56 40 −62 40

Post-AUT: High-creative > Low-creative

Middle frontal gyrus (right) −0.26 76 52 2 44

Anterior cingulate cortex (left) −0.21 25 −10 22 −10

High-creative group: Post-AUT > Pre-AUT

Inferior parietal lobule (left) 0.18 11 −40 −66 38

Low-creative group: Post-AUT > Pre-AUT

Inferior occipital gyrus (right) 0.18 28 36 −80 −8

Parahippocampal gyrus (left) 0.2 9 −6 −36 0

the network reconfiguration after AUT engagements. The
concept of network reconfiguration was supported by Wei
et al. (2014), in which they demonstrated that the RSFC
strengths was modulated in general after the performance of
a cognitive stimulation task. The dynamic alterations of RSFC
following cognitive tasks can be regarded as a short-term
functional reconfiguration of brain circuits to facilitate associated
cognitive tasks, which fits the neurophysiological perspective
of the dynome framework (Kopell et al., 2014). For example,
Wang et al. presented the dynamic reorganizations of DMN
during and after a word-picture matching task, so as the
corresponding whole-brain small-world topology (Wang et al.,
2012). However, previous studies did not specifically present
the relationship between the network reconfiguration and the
cognitive performances. In the current work, Figure 3 illustrates
that dynamic IFGN reconfigurations were in accordance
with the creativity performances, supporting the short-term
reconfiguration and sustenance of network integrity underlying
the mental process of divergent thinking.

Regional Functionality in Divergent
Thinking
Three brain regions in the left hemisphere were reported to be
involved in divergent thinking—the IFG, pre-/post-central gyri,
and the MTG (Boccia et al., 2015), and these are similar to
our results of brain activity in AUT. Generally, the lateralization

of brain function in the left hemisphere in AUT is considered
to be the verbal processing and semantic memory (Thompson-
Schill, 2003). In addition, the left hemisphere executes the
functions of interpreting and reasoning about the sentences and
the causal relationships (Marinsek et al., 2014). By presenting
the CAQ-based group difference of brain activation in AUT
(Figure 1), the left IFG was highlighted in the performance of
creativity, regarded as the functional localizer for the following
RSFC analysis.

Figure 3 illustrates the relationship between originality and
the corresponding RSFC changes after AUTs; the RSFC changes
are prominent between the left IFG, right AG, and right IPL.
Previously, the SPL/IPL was the core for top-down attention or
abstract thinking (Shomstein, 2012), and the IPL was determined
to usually play roles involving the voluntary orienting of attention
to a location (Corbetta et al., 2000). In addition, the left IFG
and right IPL involved the verbal working memory (LaBar et al.,
1999), and the strength of RSFC between the left IFG and right
IPL decreased in high working memory loading (Liu et al., 2017).
Furthermore, a previous study reported that the low working
memory loading task could help the divergent thinking and
(Baird et al., 2012). For the multifunction of AG, the right side
was determined to play the role of spatial cognition for perceptual
learning and shifting attention to relevant information (Seghier,
2013). Therefore, our result demonstrated that the high-creative
group leveraged from the frontoparietal reorganizations for
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FIGURE 3 | Correlation between the functional connectivity and creative behavior: color regions of two connectivity indicate spatial locations. (A) The gray spheres

indicate the seeds for functional connectivity, the red line represents the connectivity between the left inferior frontal gyrus (IFG) and the right angular gyrus (AG), and

the blue line indicates the connectivity between the left IFG and the right inferior parietal lobule (IPL). All scatter plots display the correlation between RSFC changes (in

z-value) and CAQ, originality, and fluency scores in r squares. (B,C) Represent the relation with the connectivity change between the left IFG and the right AG, and (D)

correspond to the relation with the connectivity change between the left IFG and the right IPL.

elevating the abstract thinking, verbal working memory or spatial
cognition involved in AUT. In contrast, the changes of RSFC in
the low-creative group showed no relationship associated with
the creative indexes. Following the finding, our results revealed
the possibility that the low-creative group might adopt distinct
strategies with respect to the semantic or sensory processing
in AUT.

As evident in Supplementary Table 1, the majority of AUT-
induced negative activations were located in the right hemisphere
(the superior temporal gyrus, MTG, medial frontal gyrus,
precuneus, precentral gyrus, and superior frontal gyrus) in both
groups. Previously, the mechanism of the negative activation
may have originated from the neural inhibition hypothesis, the

affected neurotransmitter caused the reduction of local cerebral
blood flow or the elevation of the cerebral metabolic rate of
oxygen consumption in the cerebrovasculature (Sten et al., 2017).
Interestingly, Benedek et al. also presented similar lateralized
negative activation during idea generation (Benedek et al.,
2014). To further verify the role of negative AUT activations
in creativity, the negative brain activations were associated with

the log-transform CAQ, originality, and fluency in both the
high- and low-creative groups. We noted significantly positive
correlations between the log(CAQ) and the right MTG [52,−10,
−16] activity (r = 0.52, p < 0.02) in the high-creative group, as
well as a significantly positive relationship between originality
and the right MTG activity (r = 0.51, p < 0.02). However,
the association between the negative activation and creativity
performances is beyond the scope of the current work. Future
studies are warranted to discern the underlying mechanism of
divergent thinking.

Disparity Between High- and Low-Creative
Groups
About grouping of CAQ scores, we chose the median split
because of a positively-skewed distribution of CAQ in Carson’s
report. Additionally, the average CAQ score of Carson’s report
was as high as 14.4, the cut-off line would be around 8 to
9 when we adopted the median split (Carson et al., 2005).
Therefore, the cut-off threshold of 8 points was in agreement
with Carson’s report. Although we used the CAQ (the creative
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traits) for splitting participants into two groups, we confirmed the
functional brain distinction between the high- and low-creative
groups when performing AUT (Figure 1), revealing the active
role of the left IFG in AUT engagements. By definition, the
participants with high CAQ scores were believed to possess the
capability of openness to experience (Carson et al., 2005), in part
explaining that the high-creative group uses the brain systems of
abstract thinking to achieve superior originality. Moreover, the
between-group comparison disclosed that the DMN connectivity
did not exhibit significant differentiation at the baseline level
before AUT engagements (Table 1). In IFGN, the baseline
connectivity strength between the left IFG and right IPL in the
high-creative group was higher than that in the low-creative
group at the Pre-AUT condition. This finding was contradictory
to the previous report (Beaty et al., 2014). The disparity might
be originated from the cultural difference, because previous
study showed that frontal-parietal attentional control network
involves in the visual and attention task and these functions
exhibits cultural disparity (Han and Northoff, 2008; Hedden
et al., 2008). Then, the connection from IFG to IPL involved the
lexical judgment in Chinese studies (Deng et al., 2012). Future
studies are warranted to prove such conjecture. In addition,
when comparing the RSFCIFGN changes between the two groups
in Table 1, the low-creative group demonstrated more Pre-Post
connectivity differences in the posterior brain, whereas the high-
creative group mostly remained unchanged. Wei et al. observed
similar between-group differences in RSFC between MTG and
MPFC (Wei et al., 2014). They suggested that the group with
higher TTCT scores exhibited fewer RSFC differences after
creativity training, though the RSFC changes were not associated
with the creativity performances. Collectively, it is speculated
that each individual may possess specific brain-network plasticity
to facilitate the performances of divergent thinking, where such
brain reconfigurations are distinct between the high- and low-
creative groups.

Limitation
This study has several limitations. First, the sample size of the
current study was above the request of 36 samples for sufficient
fMRI replicability (Turner et al., 2018); however, the statistical
power might be reduced after splitting the samples into two
equal-size groups. Compared with literature, the AUT-induced
brain activities were in well-agreement with previous findings,
but the RSFC might be inconsistent with other studies. The
sample size higher than 20 in each group is recommended for
future neuroimaging studies with AUT engagements. Second,
we observed only the two most addressed functional networks
in AUT, namely DMN and IFGN, by which we might miss
additional AUT-related brain reconfigurations in other brain
networks, such as the reported global architectures involved
in divergent thinking (Beaty et al., 2018). Future studies are
warranted to test the whole-brain functional changes other
than DMN and IFGN. Third, the group separation (based on
CAQ) and their creative performances (i.e., originality and
fluency) were all defined by the subjective preferences from the
participants or the raters. However, creativity judgment is a
relatively challenging task due to the lack of objective definitions,

as aforementioned. Therefore, we used the AUT activity to
verify the effectiveness of group separation and employed three
raters to minimize the subjectivity involved in the creativity
scoring. Fourth, we did not include any other cognitive tasks
to test whether such network reconfiguration is specific to the
divergent thinking. It was unanswered because the assumption
that the network plasticity is subject to distinct cognitive tasks
has yet been studied systematically. The post-cognition network
plasticity is pending for further investigations in the near future.
At last, the causal relation between the network reorganization
and creativity performance remains limited, because the findings
in this study was built upon the assumption that the AUT-
associated network reconfigurations can sustain in a short period
of time after the cessation of tasks. The short-term sustenance
of functional organizations in brain circuits shall be further
tested before confirming the causal relationship between network
plasticity and creativity.

CONCLUSION

Using multiple AUTs for creativity engagements, we presented
the prolonged changes of RSFCs (DMN and IFGN) correlated
with the performances of divergent thinking. Furthermore,
individuals with different creativity level (high- and low-
creative groups) might present diverse alterations of RSFC
changes. Before divergent thinking, both high- and low-
creative group did not exhibit significant difference of DMN
connectivity, but the group difference was highlighted after
AUT engagements. Meanwhile, the IFGN indeed presented the
network reconfiguration after divergent thinking. Furthermore,
the 1FCIFG−AG and 1FCIFG−IPL positively contributed to the
AUT performances in the high-creative group, but no prominent
brain-behavior relation was found in the low-creative group.
These findings indicated that divergent-thinking performances
could be modulated by distinct creativity traits and diverse brain-
network reconfigurations.
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Characterization of the Stages of
Creative Writing With Mobile EEG
Using Generalized Partial Directed
Coherence
Jesus G. Cruz-Garza 1*, Akshay Sujatha Ravindran 1, Anastasiya E. Kopteva 1,

Cristina Rivera Garza 1,2 and Jose L. Contreras-Vidal 1

1 Laboratory for Non-Invasive Brain-Machine Interface Systems, NSF IUCRC BRAIN, University of Houston, Houston, TX,

United States, 2Department of Hispanic Studies, University of Houston, Houston, TX, United States

Two stages of the creative writing process were characterized through mobile scalp

electroencephalography (EEG) in a 16-week creative writing workshop. Portable dry EEG

systems (four channels: TP09, AF07, AF08, TP10) with synchronized head acceleration,

video recordings, and journal entries, recorded mobile brain-body activity of Spanish

heritage students. Each student’s brain-body activity was recorded as they experienced

spaces in Houston, Texas (“Preparation” stage), and while they worked on their creative

texts (“Generation” stage). We used Generalized Partial Directed Coherence (gPDC) to

compare the functional connectivity among both stages. There was a trend of higher

gPDC in the Preparation stage from right temporo-parietal (TP10) to left anterior-frontal

(AF07) brain scalp areas within 1–50 Hz, not reaching statistical significance. The

opposite directionality was found for the Generation stage, with statistical significant

differences (p < 0.05) restricted to the delta band (1–4 Hz). There was statistically

higher gPDC observed for the inter-hemispheric connections AF07–AF08 in the delta

and theta bands (1–8 Hz), and AF08 to TP09 in the alpha and beta (8–30 Hz) bands.

The left anterior-frontal (AF07) recordings showed higher power localized to the gamma

band (32–50 Hz) for the Generation stage. An ancillary analysis of Sample Entropy

did not show significant difference. The information transfer from anterior-frontal to

temporal-parietal areas of the scalp may reflect multisensory interpretation during the

Preparation stage, while brain signals originating at temporal-parietal toward frontal

locations during the Generation stage may reflect the final decision making process to

translate the multisensory experience into a creative text.

Keywords: creative writing, creativity, EEG, MoBI, generalized partial directed coherence

1. INTRODUCTION

Creative writing involves embodied practices that physically and emotionally connect us with our
surroundings (Rivera Garza, 2013). We investigated creative writing as a bodily experience, in
which the author’s interaction with the world around them (physically, verbally, perceptually, and
emotionally) informs the preparation and elaboration of their written work. In this way, as authors
actively seek and engage in experiences in the world around them through their body and mind,
these experiences affect the aesthetic and semantic components of their creative output.
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Previous studies have used scalp electroencephalography
(EEG) to analyze neural correlates of writing. For example, in
a study using a custom test to evaluate reading and writing
achievement to assess educational grade requirements, Harmony
et al. (1990) found that high correlation in the delta and
theta bands in frontal and temporal electrodes was related to
poor writing performance, while high correlation in the alpha
band in occipital areas is related to high writing performance
in a group of 81 children. The same research group (Marosi
et al., 1995) reported high coherence in delta (1–4 Hz), theta
(4–8 Hz), and beta (12–24 Hz) bands associated with poor
performance in reading and writing in 84 children. Conversely,
high coherence in the alpha (8–12 Hz) band was related to
proficient reading and writing. Coherence metrics between pairs
of EEG electrodes in different scalp areas have been shown to
have a positive correlation with an individual’s creativity level,
in short creative verbal and visual tasks (Petche et al., 1997),
and in the Torrance Test of creative thinking (Jaušovec and
Jaušovec, 2000a). These findings suggest that coherence has a
more intense relationship with creative performance than EEG
frequency-band-power metrics.

Neuroimaging studies with functional magnetic resonance
imaging (fMRI) have been used to measure functional
connectivity (FC) of participants at rest, the resting state
FC (rFC). Lotze et al. (2014) found decreased rFC between
inter-hemispheric areas BA 44, and left area BA 44 with the
left temporal lobe for individuals who scored higher in a verbal
creativity index test. These brain areas are part of Broca’s area,
a region located in the frontal part of the left hemisphere of the
brain that is active in semantic tasks, such as semantic decision
tasks (determination of whether a word represents an abstract
or a concrete entity) and generation tasks (generation of a verb
associated with a noun).

In studies where participants generated original text
compositions, fMRI studies have also analyzed the human
creative process through its distinct stages of preparation,
generation, and revision. Shah et al. (2013) studied the
Preparation and Generation stages, by the implementation of an
actual creative writing paradigm. They found distinct cortical
networks associated with each stage in a fronto-parieto-temporal
network. The Preparation stage, “brainstorming,” was found to
activate the premotor cortex (involved in the cognitive-motor
preparation to write), language processing areas in the bilateral
IFG and left temporal areas, and left lateral orbito-frontal
regions for higher order cognitive processing. Creative writing
activated areas associated with handwriting (primary motor
cortex and somatosensory areas), and cognitive processing
such as episodic memory retrieval and semantic integration in
bilateral hippocampi and temporal poles, with right-lateralized
activation in posterior and anterior lobes. The same research
group found that expert writers had higher activation in medial
prefrontal cortex (mPFC) and basal ganglia areas (Erhard et al.,
2014). Liu et al. (2015) studied the generation and revision
stages and reported that the mPFC was active during both stages
and the responses in dorsolateral prefrontal cortex (DLPFC)
and Intraparietal sulcus (IPS) were deactivated during the
Generation stage.

Differences in brain activity for the distinct stages of the
creative process however, remain mostly unexplored in the
EEG domain; particularly for creative writing tasks. As fMRI
studies represent indirect evidence about cortical dynamics in
cognitive-motor tasks such as creative writing, it is important to
use time-resolved, direct methods that assess brain dynamics in
action and in context in natural settings. In this regard, mobile
EEG allows for the collection of brain activity data in more
natural settings, where the users have freedom of motion and can
freely walk around their surroundings (Cruz-Garza et al., 2019).

To better understand the brain dynamics of writers working
’in action and in context’ in both preparatory and generative
stages of creative writing, we integrated wearable MoBI
technology into a creative writing course in Spanish at the
University of Houston. The course was designed and led by
Prof. Cristina Rivera Garza at the University of Houston. The
experiment was designed together with the aims of the course
to provide an equal consideration in the experimental design
and evaluation process to best assess the creative process in an
authentic creative writing experience.

Specifically, we studied the process of creative writing with
eighteen Spanish heritage speakers, as they engaged in the
Preparation and Generation stages of their writing. The students
were asked to walk through different areas of the City of
Houston to experience a variety of pre-selected contextual
environmental settings (we called them “prompts”) chosen by
the instructor, and use the experience to provide aesthetic and
semantic content in their narratives. This study aimed to use
scalp electroencephalography (EEG) to identify brain features or
neural markers related to the different stages of creative writing
where free behaving participants were able to move, explore their
surroundings to inform their creative texts (Preparation stage),
and write at their own time (Generation stage).

This study investigates the neural features associated with
creative writing using quantitative and mobile EEG, through
the characterization of the Preparation and Generation of
creative texts in students that participated in a creative writing
workshop. The students developed their writing skills throughout
the workshop, and physically interacted with space and their
communities during the Preparation stage. The Generation stage
consisted of creating a first draft for each of their assignments.

2. METHODS

2.1. Human Participants
Eighteen heritage Spanish speaking undergraduate students
participated in a Spanish language creative writing upper-
division undergraduate workshop (SPAN 3308 YOUR BRAIN
ON WRITING: Writing, Body, and Neuroaesthetics) at the
University of Houston. The participants provided Anonymous
Informed Consent, approved by the University of Houston
Institutional Review Board, at the beginning of the workshop.
The students received training to set up their own EEG headsets
and body-mounted video cameras for the experiment. The
students were responsible for the collection of EEG data, video,
and to keep a diary with notes on each recording session.
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FIGURE 1 | Creative writing workshop 1. Pilot study. Timeline for the EEG

recording sessions in the creative writing workshop: Talleres de escrituras.

2.2. Experimental Task
Through readings and writing prompts, participants were
asked to experience and acknowledge the physicality of the
writing process and to relate it to the materiality of language.
Prompts, designed by the instructor, encouraged students to
develop and record a series of specific writing preparation
tasks that emphasized the physicality of the participants’
bodily experience (e.g., walking, running, climbing in different
locations of Houston) as part of the required assignments
for the workshop. The writing prompts are provided in the
Supplementary Materials.

The participants were then asked to utilize these prompted
experiences to generate their creative texts in a 3–5 page
suggested draft length (double space, 11 point font). The students
were instructed to use the EEG and video cameras during both
their prompted physical activities and writing time. There could
be more than one session of walking and writing EEG recording
sessions per prompt.

A timeline schematic of the creative writing workshop is
represented in Figure 1. The workshop was 16 weeks long, with
six creative writing exercises distributed in weeks 2, 4, 6, 8, 11,
and 12. In the weeks in between the creative writing sessions, the
students would discuss their peers’ texts and improve their own
previous drafts. At the end of the workshop, there was a public
reading of the finalized creative texts.

This experimental setup produced data in two stages of the
creative process: the Preparation stage and the Generation stage.
The Preparation stage involved tasks such as walking, active
observation of their environment, taking notes, and ideation.
For the Generation stage, the task involved reviewing their
notes and creating a creative narrative, with iterative revisions
and modifications.

2.3. Equipment
EEG and head acceleration data were captured using Muse
headsets (Interaxon, Toronto, Ontario, Canada). The headset
has seven sensors, two out of these seven sensors are positioned
at the frontal region (AF07 and AF08), two at temporal-
parietal region (TP09 and TP10), and the remaining three
sensors served as electrical reference located at the center
of the forehead (Fpz). The 61 g headset has a built-in
accelerometer that was used to measure the head acceleration.
EEG data for each channel are measured in microvolts
(µV) with a sampling rate of 220 Hz at 10-bit resolution.

The acceleration data was recorded at 50 Hz. Additionally,
the data recordings contain a vector indicating contact
quality (sampled at 10 Hz) for each electrode, rating contact
quality as “indicator = 1: good,” “indicator = 2: acceptable,”
“indicator ≥ 3: bad.” (see http://developer.choosemuse.com/
hardware-firmware/hardware-specifications for full technical
specifications). Previous experiments have shown the capacity of
the Muse headsets for the collection of mobile EEG data outside
a laboratory setting (Ravindran et al., 2019).

The participants set up their own headset with a custom
application given to them in a personal tablet, which recorded
EEG and head acceleration data and labeled the participant
identification number and date/time for the recording session
automatically. The data recording setup is illustrated in Figure 2.
Additionally, the participants set up body-cameras (Conbrov,
ShenZhen, China) to record their exploration (Preparation) and
writing (Generation) sessions. The camera recorded 720 HD
video on a 75◦ wide-angle ens.

2.4. Data Collection
The students were asked to make five writing exercises and
collect their brain activity as they walked and observed
their environment (Preparation stage), and created their
texts (Generation stage). Only writing assignments that were
submitted and accompanied by both video and EEG data were
considered for the analysis. From the 18 participants, data
from eleven students was discarded due to incomplete data
(video or EEG missing) or assignments not submitted on time.
This represents a yield of 39% of the total data collected for
further analysis.

The Preparation and Generation stages for each writing
exercise were done in several distinct recording sessions as each
stage could take several recording sessions to complete during the
semester. We kept each data recording as a separate session to
analyze. Recording sessions were considered for analysis when
all four electrodes had a “good” contact indicator for at least one
continuous minute of data.

2.5. Pre-processing
Data recordings with both video (providing contextual cues)
and EEG were considered for this analysis. An online notch
filter was applied on the EEG data to remove the 60 Hz power
line noise (available as a user preset for the headband). We
applied an offline 4th order, zero-stage Butterworth band-pass
filter from 1 to 100 Hz. Artifact Subspace Reconstruction (ASR)
(Mullen et al., 2013) was used for the removal of short-time high-
amplitude artifacts in the continuous data as in Ravindran et al.
(2019). Calibration data for ASR for each student was computed
from the entire length of the trial using automated methods. A
cut off threshold of ten standard deviations was used for the
identification of corrupted subspaces, and a window length of
500 ms with a step size of 250 ms was used for the ASR. Among
the segments, channels having corrupt PC loading to be >0.75
were removed. The remaining segments were then inspected
automatically to remove data from any electrode disconnections
from the scalp (tracked by the headband status data), any abrupt
change of voltage >100 µV, or EEG data collected while there
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FIGURE 2 | Equipment setup and EEG data pre-processing. (A) Raw (black) and pre-processed (orange) EEG data. Shaded areas indicate rejected intervals. (B) A

student wearing the EEG headset during the Generation stage.

was an absolute acceleration magnitude larger than 1 ms−2

(Ravindran et al., 2019). After removing noisy segments of data
with our pre-processing methods, 77% of the data was kept
for analysis.

2.6. Feature Extraction
2.6.1. Functional Connectivity, FC
Functional Connectivity is defined as the statistical association
among two or more anatomically distinct time-series and can be
assessed with EEG coherence measures or fMRI (Friston et al.,
1993). FC analysis was performed upon the EEG channels by
computing the generalized partial directed coherence (gPDC)
measure (Baccala et al., 2007) over 6 s time segments with 50%
overlap, a short-time based stationary approach (Omidvarnia
et al., 2011). Partial coherence measures have been found to
perform well with low-density EEG (Barzegaran and Knyazeva,
2017), making it a useful tool for our EEG dataset of four
channels. PDC is a frequency-domain metric that provides
information about directionality in the interaction between
two signals among a larger number of signals (Baccalá and
Sameshima, 2001), but it is dependent on the scale of the
individual inputs (Blinowska, 2011). To account for this, Baccala
et al. (2007) introduced a normalization term based on the
variance of the signals and denoted this modified measure
as gPDC, which was used in this study with the FieldTrip
implementation [ft_connecitivityanalysis()] (Oostenveld, 2020);
with the BSMART toolbox (Cui et al., 2008). We chose a 6 s
epoch due to observed stability at epoch lengths of 6 s or more
for FC measures (Fraschini et al., 2016). gPDC was estimated
using a multivariate autoregressive model (MVAR) using all four
electrodes. We used an MVAR model order of 12 (54 ms), which
was obtained by using the ARFIT algorithm (Schneider and
Neumaier, 2001) and evaluating the SBC criterion, which is least
affected by noise (Porcaro et al., 2009). The observed gPDC

estimates were plotted for all pairs of electrodes in the frequency
bands: delta [1–4 Hz], theta [4–8 Hz], alpha [8–12 Hz], beta
[12–30 Hz], gamma [30–50 Hz].

2.6.2. Power Spectral Density, PSD
The power spectral density (PSD) was computed for each data
window using Thomson’s multitaper PSD estimate, with 4,096
frequency bins [1–50 Hz] and half-bandwidth product nw =
4. The mean PSD was obtained for each recorded session.
Those recorded sessions corresponding to the Preparation and
the Generation stage were compared for each of the four
electrodes separately.

2.6.3. Sample Entropy, SampEn
Complexity measures has been used in different studies to
measure levels of creativity before (Jaušovec and Jaušovec, 2000b;
Shourie et al., 2014). Approximate Entropy is a measure of signal
regularity which that explores the time ordering of data points by
calculating the log likelihood that runs of pattern which are close
remain close for incremental comparison (Pincus, 1995). Lower
value of Approximate Entropy indicates that the signal is more
regular or predictable. However, many studies have reported
reliability issues using Approximate Entropy due to the self-
match involved in Approximate Entropy computation leading
to a bias (Richman and Moorman, 2000; Chen et al., 2006).
A new metric called Sample Entropy (SampEn) (Richman and
Moorman, 2000) was proposed aimed at reducing the bias of
Approximate Entropy. The parameters remained the same for
both Approximate Entropy and SampEn: the “filter factor” r,
length of sequences being compared m and the signal length N.
SampEn has shown to be relatively less dependent on the signal
length and shows better stability for wider range of parameters
(Richman and Moorman, 2000; Chen et al., 2006; Boskovic et al.,
2012). Earlier studies showed that SampEn gives better statistical
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FIGURE 3 | gPDC for the Preparation and Generation Stages, displaying the mean and 95% confidence intervals. The scalp map at the center displays the

connections highlighted in the bar graphs; where the color of the arrow corresponds to the condition (creative writing Preparation or Generation) where gPDC

was higher.

validity for m = 2 and the r in the range of 0.1–0.25 standard
deviations (Richman and Moorman, 2000; Bruce et al., 2009;
Zarjam et al., 2012). In this study, we used m = 2 and r = 0.2
standard deviations of the signal window, and N = 1, 320 (6 s of
data sampled at 220 Hz). As with the PSD analysis, the SampEn
means were computed for each recorded data collection session,
and those corresponding to the Preparation and Generation
Stages were compared for the four electrodes separately.

2.6.4. Statistical Analyses
Statistical significance comparing the Preparation and
Generation Stages was obtained using a two-tailed unpaired
T-test with a significance level of p <0.05. All comparisons
show the mean, confidence intervals at the p <0.05 significance
level, and an indication for when the difference was statistically
significant at that statistical level. The Fisher-Snedecor F-test
was performed to assess if the variances were equal. When
the variances were different (Cardillo, 2020), the Satterthwaite
approximate T-test was performed (Satterthwaite, 1946).

3. RESULTS

The main finding of this study is that the Preparation
and Generation stages of creative writing were characterized
differentially in terms of the functional connectivity among
the scalp locations examined. Specifically, the gPDC between
the Preparation and Generation stages showed the opposite
directionality between right temporal and left anterior frontal
areas. Figure 3 shows significant differences in FC between
electrode pairs, using gPDC, during the two stages of the creative
writing process analyzed.

Preparation stage: There was higher gPDC in the Preparation
stage originating from anterior-frontal electrodes toward
temporal-parietal electrodes. The gPDC difference between
the Preparation and the Generation stages showed statistically
broadband significance, at a confidence level of p <0.05,
for three connections. AF07 to TP10 showed significant
differences in the delta (1–4 Hz) frequency range. There was
statistically higher gPDC observed for the connections AF07
to AF08 in the delta and theta (1–8 Hz) frequency bands,
and AF08 to TP09 from alpha (8–12 Hz) to beta (12–30 Hz).
Figure 3 shows the gPDC values, bounded between 0 and 1,
for those connections where statistical differences were found
between conditions.

Generation stage: There was higher Partial Directed
Coherence in the Generation stage originating from TP10
toward AF07. Although there was no significant differences
in the TP10 to AF07 comparison (Figure 3) it was the only
connection that showed higher gPDC for the Generation stage
in a clear trend across frequency bands.

The statistical difference in gPDC and its opposite
directionality when comparing the Preparation and the
Generation Stages indicates that there was a strong functional
relation between the left anterior frontal with the right
temporal-parietal areas when the students engaged in
the tasks.

Frequency band-power analysis showed a statistically
significant difference across writing stages within the gamma
(32–40 Hz) frequency range for the AF07 electrode only
(Figure 4A).

The SampEn was higher during Generation stage compared
to Preparation stage, although this difference did not reach
statistical significance (Figure 4B).
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FIGURE 4 | EEG feature characterization. (A) Power spectrum density for each EEG channel, displaying the mean and 95% confidence intervals. Vertical bars

indicate selected frequency-band limits. Horizontal marks indicate statistical significant differences: AF07, 32–40 Hz. The numbers following the “Preparation” and

“Generation” labels indicate the number of unique students’ data contributed to the PSDs. (B) SampEn for the Preparation and Generation Stages, displaying the

mean and 95% confidence intervals. No significant differences were found (p < 0.05). Electrode TP09 contained data from 30 EEG recordings, AF08 from 21

recordings, AF08 from 22 recordings, and TP10 from 18 recordings.

4. DISCUSSION

The higher functional connectivity from anterior frontal scalp

areas toward temporal-parietal areas during the Preparation stage

suggests a functional relationship between areas involved in the
processing of multisensory inputs (Perrodin et al., 2014; Schapiro

et al., 2014) and episodic emotional memory integration (Dolcos
et al., 2004, 2005; Lech and Suchan, 2013) in the temporal
lobe as participants explore their surroundings actively engaging
the frontal cortex in integrating the experience. The opposite
directionality between the same electrodes (Figure 3) at the
Generation stage reinforces this hypothesis in which sensory
input are reprocessed in the frontal areas to produce a draft of
a creative text based on those experiences.

Our results, although constrained to frontal and temporal
recording locations, relate to previous findings in EEG and fMRI
studies analyzing the different stages of the creative process. It
furthers the suggestions from Petche et al. (1997) and Jaušovec
and Jaušovec (2000a) that EEG correlates of creative performance
are more pronounced in functional connections between brain
areas than localized frequency-band power. In the last decade,
distinct cortical networks have been associated with each stage of
the human creative writing process. Shah et al. (2013) identified
ventrolateral prefrontal cortex activation during the Preparation
stage, and central-parietal areas involved in the Generation
stage. “Brainstorming” engaged cognitive, linguistic, and creative
functions represented in a parieto-frontal-temporal network,
while “Creative writing” activated motor, visual, a cognitive
and linguistic areas mainly over central and parietal networks
(Shah et al., 2013). Liu et al. (2015) found that the mPFC was

active during the generation and revision stages. They observed
deactivation of the dorsolateral prefrontal cortex (DLPFC) and
inferior parietal sulcus (IPS) during the Generation stage.

Our results show a trend of higher gPDC values from
the right temporal toward the left anterior frontal electrode
during the Generation stage of creative writing, for all
frequency bands analyzed (1–50 Hz), albeit without reaching
statistical significance; and the opposite directionality for the
Preparation stage with statistical significance at 1–4 Hz. The
Preparation stage also showed higher connectivity compared
to the Generation stage with connections originating from
anterior-frontal electrodes: AF07 to AF08 (significance at 1–
8 Hz), and AF08 to TP09 (significance at 8–30 Hz). We did
not find statistical differences between the Preparation and the
Generation Stages for Sample Entropy; and frequency band-
power showed differences only in the left anterior frontal
electrode in the gamma band. In future studies, Entropy analysis
could benefit from multi-scale (Gao et al., 2015) and multi-
variate (Ahmed and Mandic, 2011) entropy models to account
for the varying and complex nature of physiological signals
(Costa et al., 2002).

Overall, these findings suggest that ideation, exploration, and
observation during the Preparation stage of a creative writing
task can be characterized by a state of long-range cortico-
cortical communication between multisensory integration brain
areas (temporal regions) and high-order execution and planning
areas of the brain (prefrontal regions), perhaps leading to
selective storage of ideas, concepts or observations candidate for
creating writing during the Generation stage. We hypothesize
this focal activity may be related to working memory, sequence
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production, and processing of filtered information from the
Preparation stage.
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Cervical spinal cord injuries (SCIs) often lead to loss of motor function in
both hands and legs, limiting autonomy and quality of life. While it was
shown that unilateral hand function can be restored after SCI using a hybrid
electroencephalography/electrooculography (EEG/EOG) brain/neural hand exoskeleton
(B/NHE), it remained unclear whether such hybrid paradigm also could be used for
operating two hand exoskeletons, e.g., in the context of bimanual tasks such as eating
with fork and knife. To test whether EEG/EOG signals allow for fluent and reliable as well
as safe and user-friendly bilateral B/NHE control, eight healthy participants (six females,
mean age 24.1 ± 3.2 years) as well as four chronic tetraplegics (four males, mean
age 51.8 ± 15.2 years) performed a complex sequence of EEG-controlled bilateral
grasping and EOG-controlled releasing motions of two exoskeletons visually presented
on a screen. A novel EOG command performed by prolonged horizontal eye movements
(>1 s) to the left or right was introduced as a reliable switch to activate either the left
or right exoskeleton. Fluent EEG control was defined as average “time to initialize” (TTI)
grasping motions below 3 s. Reliable EEG control was assumed when classification
accuracy exceeded 80%. Safety was defined as “time to stop” (TTS) all unintended
grasping motions within 2 s. After the experiment, tetraplegics were asked to rate
the user-friendliness of bilateral B/NHE control using Likert scales. Average TTI and
accuracy of EEG-controlled operations ranged at 2.14 ± 0.66 s and 85.89 ± 15.81%
across healthy participants and at 1.90 ± 0.97 s and 81.25 ± 16.99% across
tetraplegics. Except for one tetraplegic, all participants met the safety requirements.
With 88 ± 11% of the maximum achievable score, tetraplegics rated the control
paradigm as user-friendly and reliable. These results suggest that hybrid EEG/EOG
B/NHE control of two assistive devices is feasible and safe, paving the way to test this
paradigm in larger clinical trials performing bimanual tasks in everyday life environments.

Keywords: bilateral exoskeleton control, bimanual tasks, EEG, EOG, brain-computer interface, BCI, brain-
machine (computer) interface

INTRODUCTION

Cervical spinal cord injuries (SCIs) often result in loss of motor function in all four extremities.
According to the National Spinal Cord Injury Statistical Center (NSCISC), 41.1% of all SCIs lead
to complete or incomplete tetraplegia (National Spinal Cord Injury Statistical Center, 2019). While
the inability to walk is usually sufficiently compensated by use of a wheelchair (Rushton et al., 2010),
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restoration of hand and arm function is still insufficiently solved.
Therefore, restoration of hand and arm function is of highest
priority in this patient population (Anderson, 2004; Snoek et al.,
2004; Lo et al., 2016). Depending on the SCI’s location, the
degree of impairment and related motor inabilities can vary
substantially. In particular, injuries between the spinal motion
sections C5 and C7 are characterized by some remaining motor
function in the shoulder and arm but absence of movements
in the wrist and fingers (Ahuja et al., 2017). For these cases,
restoration of hand function would be an important goal to regain
autonomy and to improve quality of life (Campbell et al., 1999).

To date, the most common methods for restoration of upper
limb motor function are surgical interventions (Bunketorp-Käll
et al., 2017). To a certain degree, upper limb reconstructive
surgeries, such as tendon transfers or tenodesis (Bednar and
Woodside, 2018), can restore arm and hand function in SCI.
However, besides the risks associated with surgery, tendon
transfer strongly depends on the availability and quality of
tendons and muscles suitable for transfer. While tenodesis
enables tetraplegics to passively grasp objects through extension
of the wrist (termed tenodesis grasp), the resulting grasping force
is often insufficient to perform basal activities of daily living
(ADLs), e.g., lifting up a water bottle, zipping a jacket, or reliably
holding cutlery for eating (Dunn et al., 2016).

As an alternative to surgical interventions, recent
advancements in neurotechnology and robotics opened up
new possibilities to restore hand and arm function after cervical
SCI (Soekadar et al., 2016) or stroke (Soekadar et al., 2008,
2015a; Nann et al., 2020). It was shown that exoskeletons or
functional electrical stimulation (FES) of paralyzed muscles
can enhance grasping force and improve hand function in
tetraplegics (Ragnarsson, 2008; Ho et al., 2014; Yun et al., 2017;
Cappello et al., 2018). A very intuitive way to control such
assistive devices can be achieved by using a brain–computer
interface (BCI; Wolpaw et al., 2002; Collinger et al., 2013a).
BCIs translate electric, magnetic, or metabolic brain activity,
e.g., associated with motor imagery (MI) or the attempt to move
the paralyzed fingers, into control signals of digital devices, e.g.,
a robotic arm (Hochberg et al., 2012; Collinger et al., 2013b),
exoskeleton (Soekadar et al., 2016; Tang et al., 2016; Frolov
et al., 2017; Benabid et al., 2019), or FES device (Osuagwu
et al., 2016; Vidaurre et al., 2016). Besides providing assistance,
it was shown that repeated BCI use following SCI can also
trigger neural recovery (Donati et al., 2016). Several studies
showed that BCI-controlled FES can restore hand movement
(Bouton et al., 2016; Vidaurre et al., 2016; Ajiboye et al., 2017).
However, it is noteworthy that persons with SCI can develop
upper extremity spasticity (Holtz et al., 2017; Gohritz and Fridén,
2018). In such cases, effective restoration of hand function
via FES may not be successful due to increased muscle tone
and tendon contractures. In contrast, a BCI-controlled hand
exoskeleton, which actively opens and closes the affected hand,
can overcome such limitations and may, thus, be superior
to BCI-controlled FES. Within the last years, several robotic
devices have entered the commercial market including three
exoskeletons that were specifically designed for SCI patients
(Mekki et al., 2018). Although still rather cost-intensive, new

3D-printed designs may yield low-cost hand exoskeletons in the
near future (Yoo et al., 2019).

The most common approach for non-invasive brain/neural
control of an exoskeleton uses modulation of sensorimotor
rhythms (SMRs, 8–12 Hz) quantified as event-related
desynchronization (ERD; SMR-ERD; Pfurtscheller and da
Silva, 1999; Soekadar et al., 2011). SMR-ERD modulations related
to MI or attempted finger movements are most prominent over
the hand knob area of the contralateral primary motor cortex.
Using electroencephalography (EEG), the optimal position to
record SMR-ERD is typically at electrode positions C3 or C4
(according to the international 10/20 system; Neuper et al., 2006).
Recently, it was demonstrated that a SMR-based brain/neural
hand exoskeleton (B/NHE) can fully restore unilateral hand
function in tetraplegics in an everyday life environment, e.g.,
to eat and drink in an outside restaurant (Soekadar et al.,
2016). To deal with the inherent low signal-to-noise ratio
of EEG recordings in everyday life environments, a hybrid
EEG/electrooculography (EEG/EOG) brain/neural–machine
interaction (B/NMI) system has been successfully introduced
(Soekadar et al., 2015b, 2016; Crea et al., 2018; Nann et al.,
2020). To enhance BCI control in everyday life environments,
maximal horizontal oculoversions (HOVs) assessed by EOG
were integrated as an additional control signal to reduce false
classifications (Witkowski et al., 2014; Soekadar et al., 2015b).
While exoskeleton closing motions were controlled by SMR-ERD
related to intended grasping movements, HOVs were translated
into opening motions or veto commands to interrupt unintended
closing motions.

To date, the majority of studies in clinical settings have mainly
focused on the restoration of unilateral motor function (Alam
et al., 2016; Carvalho et al., 2019; Coscia et al., 2019). Most
ADLs, however, involve bilateral motor function, e.g., eating with
fork and knife, opening a water bottle, or a bag of potato chips.
While, for example, a unilateral B/NHE might be sufficient to
restore bimanual ADLs in hemiplegic stroke patients, patients
suffering from tetraplegia depend on mobilization of both hands
and arms to execute bimanual tasks. Therefore, a reliable and safe
control paradigm allowing intuitive operation of bilateral hand
exoskeletons would be very desirable.

The goal of such a bilateral control paradigm is to reliably
detect the user’s attempt to operate either the left or right
exoskeleton, both exoskeletons simultaneously, or none of them.
This results in a four-class classification problem. The simplest
approach to deal with such a multiclass problem is to implement
a single classifier that differentiates between left and right
hemispheric SMR-ERD (Meng et al., 2016; León, 2017; Lotte et al.,
2018). Although Meng et al. (2016) demonstrated that this kind of
classification method is feasible in principle, it requires sufficient
lateralization of SMR-ERD to C3 and C4. Given that chronic
tetraplegics often do not show such lateralization (Osuagwu et al.,
2016; Dahlberg et al., 2018), such approach may not be suitable
for reliable exoskeleton control in SCI. A possible solution to
overcome the lack of lateralization in SCI patients is to introduce
a reliable switch to activate either the left or right exoskeleton.

Here, we introduce a novel EOG command performed by
prolonged HOV (>1 s; Figure 3) to the left or right and
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tested whether use of such new command allows for reliable
control of two hand exoskeletons. The prolonged HOV is not in
conflict with the already established hybrid EEG/EOG paradigm
according to Soekadar et al. (2016), where a short HOV (<1 s;
Figure 3) is used to veto an ongoing exoskeleton opening or
closing. To test the feasibility and safety of such novel bilateral
EEG/EOG-based B/NMI control, eight healthy participants as
well as four chronic tetraplegics performed a neurofeedback
paradigm consisting of a complex sequence of bilateral grasping
and releasing motions of two exoskeletons visually presented on
a screen. In the following work, feasibility was defined as fluency
and accuracy of bilateral EEG/EOG B/NHE control. While
fluent control was defined as “time to initialize” (TTI) EEG-
controlled operations in average below 3 s (i.e., valid SMR-ERDs
were detected in average within 3 s; Crea et al., 2018), reliable
control was defined as average classification accuracy above 80%,
following the recommendation of Vidaurre and Blankertz (2010)
and Ortner et al. (2015), e.g., when benchmarking common
spatial patterns (CSPs). Safety requirements were met when all
unintended closing motions were interrupted by using short
HOV before the exoskeleton was fully closed. This means the
“time to stop” (TTS) all unintended closing motions ranged
within 2 s, the time of a full exoskeleton closing motion.
Moreover, user-friendliness of bilateral control was assessed
among tetraplegics by using a Likert scale.

MATERIALS AND METHODS

Participants
Eight BCI-naive healthy participants (six females, mean age
24.1 ± 3.2 years) and four BCI-naive chronic tetraplegics (four
males, mean age 51.8 ± 15.2 years, time since injury > 2 years)
with complete [n = 2; American Spinal Injury Association
(ASIA), grade A] and incomplete (n = 2, ASIA grades B and
C) SCI (injury location between C5 and C7) were invited to a
single-session experiment at the University Hospital of Tübingen,
Germany. Before entering the study, all participants provided
written informed consent. The study protocol complied with
the Declaration of Helsinki and was approved by University of
Tübingen’s local ethics committee (registration code of ethical
approval: 201/2018BO1).

Experimental Setup and Biosignal Online
Processing
Electroencephalography was recorded from nine conventional
recording sites (F3, T3, C3, P3, F4, T4, C4, P4, and Cz according
to the international 10/20 system; Figure 1). Two additional EOG
electrodes were placed laterally to the outer canthi of the left
and right eye to assess HOVs (Figures 1, 2; Heide et al., 1999).
A reference electrode was symmetrically placed over the sagittal
midline at FCz to avoid biased electrical potentials toward one
hemisphere (Figure 1). The ground electrode was located at Fpz
(Figure 1). All biosignals were sampled at 1 kHz and amplified
by a wireless active-electrode EEG system (actiCAP R©, LiveAmp R©,
Brain Products GmbH, Gilching, Germany; Figure 1). To ensure
high signal quality, all impedances were kept below 25 k�.

For online processing and classification, the BCI2000 software
platform was used (Schalk et al., 2004). In order to attenuate eye
blinks and other bihemispheric artifacts, bipolar EOG signal was
calculated by subtracting left from right EOG. To remove low-
frequency drifts as well as high-frequency noise, the bipolar EOG
signal was then band-pass filtered with a first-order Butterworth
filter at 0.02–3 Hz. To reduce the relatively long settling time
that the low high-pass corner frequency at 0.02 Hz would have
caused (>50 s), the band-pass filter was initialized with the mean
value of the first processed sample block of the bipolar EOG
signal. Such filter initialization drastically reduced the settling
time to be applicable in online settings. The very low frequency
content in the EOG signal allows to extract the quasi-rectangular
curve shapes resulting from HOVs and thus ensures reliable
detection of prolonged HOVs (i.e., threshold was exceeded for
>1 s; Figure 3). EEG signals were first band-pass filtered with
a first-order Butterworth filter at 1–30 Hz to remove baseline
drifts and high-frequency noise. Afterward, surface Laplacian
filters were applied to increase signal-to-noise ratio of the
target electrodes at C3 and C4, respectively, (McFarland, 2015).
A surface Laplacian filter was shown to be effective in detecting
motor-specific SMR-ERD especially in online settings while
suppressing distant sources (e.g., eye blinks) without the need
for complex models, e.g., accounting for volume conduction.
Subsequently, the power spectra of Laplace-filtered C3 and
C4 EEG signals were estimated online from 500 ms moving

FIGURE 1 | Electroencephalography/electrooculography (EEG/EOG)
electrode setup. EEG setup: Nine conventional EEG recording sites were used
in accordance to the international 10/20 system. Five electrodes on each
hemisphere were applied that were centered around C3 (green color coding)
and C4 (orange color coding). Signals from Cz were used for both
hemispheres. EOG setup: Two EOG electrodes (light blue color coding) were
placed laterally of the outer canthi of the left and right eye to assess horizontal
oculoversions (HOVs) based on the bipolar EOG signal (i.e., difference
between EOG1 and EOG2). Ground and reference electrodes were placed at
Fpz (black color coding) and FCz (dark blue color coding), respectively.
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FIGURE 2 | Experimental setup. Participants were equipped with a wireless
active-electrode electroencephalography/electrooculography (EEG/EOG)
recording system (actiCAP R©, LiveAmp R©, Brain Products GmbH, Gilching,
Germany) and comfortably seated in front of a screen receiving visual
feedback. Feedback included information about the task to be executed (in
the middle of the screen) and the representation of the left (partly opened
yellow circle indicates active exoskeleton) and right exoskeleton (partly
opened gray circle indicates inactive exoskeleton) visualizing opening or
closing motions. The figure shows an EOG electrode laterally placed to left
outer cantus and five EEG electrodes arranged over the left hemisphere to
assess Laplace-filtered brain activity at C3.

windows based on an autoregressive model of order 100 (Burg
algorithm; Soekadar et al., 2011). Dependent on the optimal SMR
frequency showing the largest modulation between 8 and 13 Hz
during motor imagination/attempted finger movements vs. rest,
the accumulated power of a 3-Hz bin around that modulation
frequency [frequency of interest (FOI) ± 1.5 Hz] was extracted.
Lastly, SMR-ERD related to imagined or attempted right- or left-
hand movements was computed according to the power method
described by Pfurtscheller and Aranibar (1979):

RV =
1
|Tref |

∑
t∈Tref

Pt (1)

ERD (t) =
Pt − RV

RV
× 100 % (2)

where Pt is the estimated power of the 3-Hz-wide bin at
every sample block t. RV is the reference value to normalize
power Pt to receive the instantaneous ERD(t) at every sample
block t. Notably, to receive ERD related to Laplace-filtered C3
(C3-ERD) and C4 (C4-ERD) EEG signals, two identical SMR-
ERD processing pipelines were implemented in parallel for
online calculation.

Brain–Computer Interface Calibration
and Familiarization
To calibrate HOV detection thresholds for each side, participants
were instructed to perform 5 short as well as 3 prolonged
HOVs to each side, respectively. HOV detection thresholds
were set at ±70% of median single-trial EOG maxima and
minima (median was selected to receive a more robust

FIGURE 3 | Short horizontal oculoversions (HOVs) vs. prolonged HOVs (figure
shows only curve shape in positive direction resulting from left eye
movements; curve shapes in negative direction from right eye movements are
not visualized). Gray curve shapes show single trials; bold blue lines show
average HOVs. Comparisons reveal distinct time difference between short
HOV (<1 s) and prolonged HOV (>1 s, with its characteristic rectangular
curve shape). The thin blue line indicates the 70% detection threshold.

estimation; Figure 3). To determine the C3- as well as C4-
ERD detection thresholds, two calibration runs were conducted.
During the first run, participants were instructed to either
imagine (healthy participants)/attempt (tetraplegics) left or right
finger movements (active phases) or to relax (rest phases)
according to 20 externally paced randomized visual cues lasting
5 s each. After each active or rest phase, an intertrial interval (ITI)
with a randomized length of 4–6 s followed. After the first run,
FOI was set to the optimal SMR frequency, and RVs for C3 and
C4 were determined as average power of the entire run including
all active and rest phases as well as all ITIs. During the second run,
which consisted the same 20 visual cues, participants received
online visual feedback based on their elicited SMR-ERD at C3 and
C4. Finally, individual SMR-ERD detection thresholds were set
to the average C3- and C4-ERD elicited within all active phases,
respectively. After successful calibration, several familiarization
runs were performed until the participant felt comfortable with
all control commands.

Electroencephalography/
Electrooculography-Based Bilateral
Control Paradigm
The EEG/EOG-based bilateral control paradigm was
implemented as a hierarchical classifier with two sequential
binary classification stages. This is a common approach to
decompose the multiclass classification problem into several
binary classification problems (Lotte et al., 2018). At the first
stage, a linear classifier detected prolonged HOVs either to
the left or to the right to activate the respective exoskeleton.
As soon as the HOV detection threshold was exceeded for
longer than 1 s, the classifier recognized this as a volitional
laterality switch and enabled the specific classifier at the second
stage. Dependent on the selected exoskeleton, either C3-
or C4-ERD was then continuously analyzed and translated
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into closing motions as long as the laterality-specific ERD
detection threshold was exceeded. The principle of this two-
stage EEG/EOG-based hierarchical classifier is illustrated in
Figure 4A. To open the closed exoskeleton or to interrupt
(veto) an unintended closing motion, a short HOV to any
direction reset the exoskeleton again. A short HOV was classified
when HOV detection threshold was exceeded less than 1 s
(see Figure 3 for differences in HOV type). Such hybrid short
EOG/EEG-based paradigm was already successfully applied
in tetraplegics during unilateral hand exoskeleton control

(Soekadar et al., 2016). To ensure safety, short HOV commands
had the highest priority to veto any ongoing action in case two
EEG/EOG-based features were detected at the same time (see
priority order in Table 1).

Study Protocol and Audiovisual Online
Feedback
To test for feasibility and safety of the novel EEG/EOG-
based bilateral control paradigm, healthy participants as well

FIGURE 4 | Hierarchical structure of bilateral electroencephalography/electrooculography (EEG/EOG) brain/neural exoskeleton control (A, gray shaded area) vs.
standard EEG-based hierarchical classifier (B). While the user could select the left vs. right side at the first stage, closing vs. rest was classified at the second stage.
Comparison of first stage classifiers: By using prolonged horizontal oculoversions (HOVs) to the left or right based on bipolar EOG (blue electrodes laterally
placed to outer canthi), the subsequent classifiers at the second stage were activated. The solid blue line shows prolonged HOV signals exceeding the detection
threshold for >1 s (blue shaded area). In contrast, a standard EEG-based hierarchical classifier requires distinct lateralization of event-related desynchronization
(ERD) to C3 and C4. A common approach evaluates Laplace-filtered C3-ERD (green electrodes) and C4-ERD (orange electrodes) to classify the left vs. right side. To
activate the left side (left branch), contralateral sensorimotor rhythm (SMR)-ERD at C4 (solid orange line) exceeding the C4-ERD detection threshold (orange shaded
area) is needed. To select the right side, SMR-ERD at C3 (C3-ERD) needs to be detected accordingly (right branch). Second stage classifiers: At this stage,
left/right vs. relax is distinguished. Depending on the classification at the first stage, electrodes of only one hemisphere are activated (green or orange electrode
sites). Solid orange/green line shows valid C4-/C3-ERD (orange/green shaded areas). In case C4/C3-ERD detection thresholds were not exceeded, a relax state
was detected. This classifier stage is identical for both approaches.
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TABLE 1 | Overview of brain/neural-machine interface (B/NMI) control commands.

B/NMI control command EEG/EOG-based feature Respective task instruction with visual feedback

Interrupt closing motion Short HOV toward any side Example: Short HOV to any
side to interrupt (veto) the left ongoing exoskeleton motion

Open exoskeleton Short HOV toward the direction of activated exoskeleton
Example: Short HOV to the left to open left closed
exoskeleton

Switch active exoskeleton Prolonged HOV (>1 s) toward desired hand exoskeleton
Example: Before execute task instruction “Close left!,”
prolonged HOV to the left is required to activate left
exoskeleton

Close exoskeleton SMR-ERD of contralateral motor cortex (C3- or C4-ERD)
Example: C3-ERD required to close right exoskeleton

Rest No action required.

The first column lists all possible commands for controlling each side. Importantly, the order of control commands listed in the table defines priority in case that two
electroencephalography/electrooculography (EEG/EOG)-based features are detected at the same time starting with the highest priority at the top. The second column
shows EEG/EOG-based features including examples for specific task instructions depicted in the third column. In the last column, visual feedback including exoskeleton
motions for specific task instructions is illustrated. Yellow color coding indicates the active exoskeleton; gray color coding, the inactive exoskeleton. Only one possible
instruction is illustrated for each control command. ERD, event-related desynchronization; HOV, horizontal oculoversion; SMR, sensorimotor rhythm.

as tetraplegics performed a pseudo-randomized sequence of
2 × approximately 40 subtasks consisting of all B/NMI control
commands required for bimanual operation of the two visual
exoskeletons (Table 1). The sequence included subtasks to close
one of the exoskeletons (requiring C4- or C3-ERD), to open
them again, or to stop (veto) an ongoing closing motion as
fast as possible to simulate for unintended hand exoskeleton
motions or unexpected incidents (the latter two required both

short HOVs). In case a subtask required to close an exoskeleton,
which had not been activated yet, participants first had to perform
a prolonged HOV to the respective side before closing of the
exoskeleton could be performed. To test for false positives,
intervals to rest were randomly built in, in which the participants
were instructed to avoid any action. A detailed overview on
the bilateral B/NMI control commands, their corresponding
EEG/EOG-based features, and their respective visual feedback
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are summarized in Table 1. To enhance reliable distinction of
short vs. prolonged HOV, an auditory feedback with two different
sounds was provided to confirm successful HOV execution. The
time between subtasks varied randomly between 5 and 7 s. Each
sequence lasted approximately 5 min. In case no SMR-ERD was
elicited, subtasks were aborted after 10 s. The total number of
HOV-based subtasks being executed slightly varied depending
on the users’ previous SMR-ERD performance. For example,
in case the user was not able to elicit ERD during a closing
task, there was no need to reopen the exoskeleton again and
was thus not requested. At the end of the session, tetraplegics
rated user-friendliness of B/NMI control by using a five-level
Likert-scale questionnaire. To account for the special needs of
the tetraplegics, study protocols slightly differed between healthy
participants and the patients. To reduce the overall session length,
only six instead of eight rest phases were included. Moreover,
the veto instructions were not randomly interspersed within the
main study protocol but evaluated in a preceding pure EOG-
based sequence. This was done to not overstrain the capabilities
of the tetraplegic participants, since it was just a one-session study
without any additional training day.

Outcome Measures and Offline Data
Analysis
Feasibility and safety of the novel EEG/EOG-based control
paradigm were assessed according to the following outcome
measures. Feasibility was defined as fluency and accuracy of
EEG-controlled operations. Fluency of control was evaluated as
time from appearance of task instruction until exceedance of
the SMR-ERD detection threshold. In case a laterality switch
was required, timer count started just after successful activation
of the exoskeleton (by performing a prolonged HOV). Fluent
control was assumed when the average TTI such EEG-controlled
operations ranged below 3 s (Crea et al., 2018). To assess the
accuracy of bilateral control, the two-stage classifier performance
was evaluated. At the first stage, exoskeleton selection was
considered valid when successful prolonged HOV was performed.
At the second stage, a trial was counted as successful when a
full exoskeleton closing motion was conducted requiring the
side-specific SMR-ERD detection threshold to be exceeded by
a minimum of 2 s in total. Accurate bilateral control was
assumed when the accuracy of all classifiers exceeded 80%
in average. Due to the fact that the sequence can contain
different numbers of subtasks, the balanced accuracy was
applied to account for a potential bias toward the more
frequent class (Brodersen et al., 2010). The balanced accuracy
is given by 1

2

(
TP
P +

TN
N

)
weighting the true-positive and true-

negative rate equally. Since classification stages were built up
as binary classifiers, chance level ranged at 50%. To compare
the presented hybrid EEG/EOG-based classifier accuracy with
an implementation, which was built up with EEG-based binary
classifiers only, an offline data analysis was performed. The
different implementation methods at the first stage are illustrated
in Figure 4. Unlike the online implementation, in which
prolonged HOV (first stage) and side-specific ERD (second stage)
were used, offline classification was only based on the recorded

side-specific ERD (second stage of online paradigm) for both
stages, since this was the classification while imagined/attempted
finger movements were performed. This allowed comparison
of the two approaches without the need to conduct two
separate online sessions. Consequently, side-specific C3- and C4-
ERDs were both classified depending on the instructed task.
In case a left side closing was instructed, closing motions
>2 s of the right or both exoskeletons or no movement
were classified as false-negative events, whereas closing motion
>2 s of the left exoskeleton was classified as a true-positive
event. For the instruction to close the right side, the opposite
events were classified: Movement of the right exoskeleton was
classified as a true-negative event, while all other events were
considered as false positives. To test for differences in average
classification accuracy, a mixed-design analysis with “group”
(healthy participants, tetraplegics) as between-group variable and
“classification approach” (hybrid EEG/EOG brain/neural control,
standard EEG-based hierarchical classifier) as repeated-measures
variable was performed. To account for the limited number
of data samples, bootstrapping was applied (Wilcox, 2011).
Significance level was defined at p < 0.05. Safety was assumed
when the TTS an unintended closing motion was interrupted
within 2 s, meaning that closing motions were aborted before the
exoskeleton was fully closed. Moreover, user-friendliness was met
when the majority of tetraplegics rated EEG/EOG-based bilateral
control as comfortable and easy to apply.

RESULTS

Feasibility
Average TTI [mean TTI ± standard deviation (SD)] all EEG-
controlled visual closing motions ranged at 2.14 ± 0.66 s across
healthy participants and at 1.90 ± 0.97 s across tetraplegics,
documenting fluent bilateral B/NMI control. Figures 5A, 6A
show the individual TTI distribution for each participant. Only
one healthy participant exceeded the fluency criterion (P04:
3.25± 2.65 s).

Average accuracy (mean ± SD) for bilateral EEG/EOG
brain/neural exoskeleton control ranged across all classifiers
(i.e., including 1. stage classifier: prolonged HOV, and 2.
stage classifier: C3-/C4-ERD) at 85.89 ± 9.47% across healthy
participants and at 81.25± 5.84% across tetraplegics (Figure 4A).
For the standard EEG-based hierarchical classifier, average
accuracy declined across all classifiers to 71.33 ± 17.21% among
healthy participants and to 58.68 ± 10.62% among tetraplegics
(Figure 4B). There was a significant main effect of “classification
approach” (9 =−17.23, p < 0.001), confirming superiority of the
novel bilateral EEG/EOG brain/neural control for both healthy
participants as well as tetraplegics. There was no main effect
of “group” (9 = 6.04, p = 0.419) and no interaction between
“classification approach” and “group” (9 = 4.88, p = 0.449).
Tables 2, 3 list individual accuracy rates for each healthy
participant and tetraplegic as well as present accuracy results
of all classifiers at every hierarchical classification stage. Chance
level of binary classifiers ranged at 50%. Importantly, due to the
novel implementation (compare Figure 4A), prolonged HOVs to
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FIGURE 5 | Healthy participants: (A) “Time to initialize” (TTI) electroencephalography (EEG)-controlled closing motions of the left- or right-hand exoskeleton for each
participant. Horizontal dashed line indicates the threshold for fluency criterion set at 3 s. Average TTI across all subjects ranged below 3 s, documenting fluent
control. (B) “Time to stop” (TTS) an ongoing closing motion by using short horizontal oculoversions (HOVs). Horizontal dashed line indicates the threshold for safety
criterion set at 2 s. Centerlines of boxplot show the median, while crosses show the mean. Box limits indicate the 25th and 75th percentiles.

FIGURE 6 | Tetraplegics: (A) “Time to initialize” (TTI) electroencephalography (EEG)-controlled closing motions of the left- or right-hand exoskeleton for each
participant. Horizontal dashed line indicates the threshold for the fluency criterion set at 3 s. Average TTI across all subjects ranged below 3 s, documenting fluent
control. (B) “Time to stop” (TTS) an ongoing closing motion by using short horizontal oculoversions (HOVs). Horizontal dashed line indicates the threshold for the
safety criterion set at 2 s. Only tetraplegic T04 exceeded the threshold of safety criterion. Centerlines of boxplot show the median, while crosses show the mean.
Box limits indicate the 25th and 75th percentiles.

activate either the right or left exoskeleton at the first stage were
classified in 100% of the cases.

Safety
Average TTS (mean TTS ± SD) ongoing closing motions using
short HOVs ranged at 0.92 ± 0.26 s across healthy participants
and at 0.78 ± 0.46 s across tetraplegics. Figures 5B, 6B show
the individual TTS distribution for each participant. Only one
tetraplegic did not meet safety requirements while requiring more
than 2 s to stop ongoing closing motions in some of the trials
(T04: average TTS± SD ranged at 1.47± 1.24 s; Figure 6B).

User-Friendliness
With 88 ± 11% (mean ± SD) of the maximum achievable score,
tetraplegics rated the novel bilateral EEG/EOG-based control
paradigm as user-friendly and reliable. More specifically, all
tetraplegics answered that they did not experience any side
effects or discomfort, that the calibration/control instructions

were easy to follow, and that the overall control was reliable and
practical. Notably, all tetraplegics stated that the novel HOV-
based control was easy to learn and that HOV control was
comfortable. Importantly, three out of four tetraplegics would
use the presented control to operate real hand exoskeletons
bilaterally (Figure 7).

DISCUSSION

The presented study demonstrates feasibility and safety of a
novel EEG/EOG-based B/NMI control paradigm for operating
two hand exoskeletons. While feasibility was defined as fluency
and accuracy of operation, safety was assumed when unintended
closing motions could be aborted. We showed that eight
healthy participants as well as four chronic tetraplegics were
able to perform a complex sequence of subtasks mimicking
bimanual tasks in daily life using four EEG/EOG-based control
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TABLE 2 | Accuracy of bilateral electroencephalography/electrooculography (EEG/EOG) brain/neural exoskeleton control.

Healthy participants Tetraplegics

1. stage 2. stage Total 1. stage 2. stage Total

Left/Right Left/Rest Right/Rest Left/Right Left/Rest Right/Rest

No.

1 100.00 65.60 67.90 77.83 100.00 58.30 66.70 75.00

2 100.00 78.40 74.00 84.13 100.00 70.80 75.00 81.93

3 100.00 65.20 80.00 81.73 100.00 83.30 54.20 79.17

4 100.00 42.00 68.30 70.10 100.00 91.70 75.00 88.90

5 100.00 89.70 91.90 93.87

6 100.00 94.40 100.00 98.13

7 100.00 96.90 87.50 94.80

8 100.00 78.40 81.20 86.53

Mean 100.00 76.33 81.35 85.89 100.00 76.03 67.73 81.25

SD 0.00 18.34 11.36 9.47 0.00 14.61 9.83 5.84

Mean values with standard deviation (SD) are provided in bold.

TABLE 3 | Accuracy of standard electroencephalography (EEG)-based hierarchical classifier.

Healthy participants Tetraplegics

1. stage 2. stage Total 1. stage 2. stage Total

Left/Right Left/Rest Right/Rest Left/Right Left/Rest Right/Rest

No.

1 59.80 53.10 55.40 56.10 33.30 50.00 45.80 43.03

2 73.20 69.00 74.00 72.07 54.20 66.70 66.70 62.53

3 75.70 65.20 80.00 73.63 54.20 83.30 50.00 62.50

4 42.20 38.90 68.30 49.80 62.50 75.00 62.50 66.67

5 92.90 89.70 91.90 91.50

6 83.30 94.40 100.00 92.57

7 77.30 96.90 75.00 83.07

8 27.30 59.70 68.80 51.93

Mean 66.46 70.86 76.68 71.33 51.05 68.75 56.25 58.68

SD 22.03 20.99 14.05 17.21 12.46 14.22 9.94 10.62

Mean values with standard deviation (SD) are provided in bold.

commands [i.e., side-specific SMR-ERD at C3 or C4, as well as
prolonged (>1 s) and short HOVs; Table 1]. Fluent control was
documented by an average TTI EEG-controlled operations below
3 s (2.14 ± 0.66 s across healthy participants and 1.90 ± 0.97 s
across tetraplegics). These results are comparable to those of
previous studies, in which a unilateral whole-arm exoskeleton
was controlled by healthy participants (Crea et al., 2018) or
stroke survivors (Nann et al., 2020). Accurate control was
confirmed by an average classification accuracy exceeding 80%
(85.89 ± 15.81% across healthy participants and 81.25 ± 16.99%
across tetraplegics). Except for one tetraplegic, the TTS all
ongoing motions were below 2 s (in average 0.92 ± 0.26 s
across healthy participants and 0.78 ± 0.46 s across tetraplegics)
underlining the system’s safety. Finally, user-friendliness among
tetraplegics was proven by stating no discomfort and ease of
use in controlling the B/NMI system for bilateral operation with
88± 11% of the maximal achievable scores.

These results demonstrate for the first time that the presented
hybrid EEG/EOG-based B/NMI control paradigm can be used
for reliable and safe operation of two hand exoskeletons, e.g., to
perform bimanual tasks.

Control of two exoskeletons requires classification of more
than two classes (multiclass classification). This problem can be
solved either by directly applying multiclass methods, such as
naive Bayesian classifiers (Suk and Lee, 2012; Zhang et al., 2015)
or multilayer perceptrons (Balakrishnan and Puthusserypady,
2005), or, as more commonly used, by decomposing the
problem into several binary classifications (Lotte et al., 2018).
There are different possible decomposition methods, e.g.,
pairwise classification (Vuckovic et al., 2018) or by hierarchical
classification (Dong et al., 2017; Gundelakh et al., 2018).
However, all studies have relatively low binary classification
accuracies in common ranging from 50 to 70%. To achieve a
higher control accuracy, fusion of EOG- and EEG-based features
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FIGURE 7 | Five-level Likert scale questionnaire. After the experiment, all tetraplegics rated the user-friendliness of the overall process and especially the novel
electrooculography (EOG) control commands. Likert scale ranged from 1 to 5 with “1 = strongly agree” and “5 = strongly disagree.”

was suggested and implemented in the presented bilateral control
paradigm. A decisive step was to use a highly reliable EOG-based
feature at safety-critical positions in the hierarchical classifier
structure (Figure 4).

Fusing EEG with other biosignals like EOG is a well-
established approach in the BCI field (Pfurtscheller et al., 2010).
Soekadar et al. (2016) showed that such a hybrid EEG/EOG-
based B/NHE fully restored hand function after SCI. Tetraplegics
could eat and drink in a noisy outside restaurant by opening
up the exoskeleton with short HOVs. This principle was now
extended toward bilateral hand exoskeleton control introducing
prolonged HOV. The advantage of this implementation was
shown in the comparative offline analysis, where classification
accuracy declined by 14.6% in healthy participants and by 22.6%
in tetraplegics. The substantial decline in classification accuracy
in tetraplegics compared to healthy participants underlines the
need to compensate for the lack of lateralization in SCI by a
reliable EOG-based switch between the two actuators.

One healthy participant (P04) did not meet the fluency
criterion by 0.25 s in average, and one tetraplegic (T04) exceeded
the safety criterion in some of the trials. However, in both cases,
the unusually large SDs of 2.65 s for P04 and 1.24 s of T04
indicate that either the calibration threshold was not optimal or
the participant did not attend to the task. Moreover, T04 was the
only participant who stated that he would not want to use this
paradigm in real life underpinning the previous assumptions.

Since EEG-based B/NMI control is generally more effortful
than using other biosignals, e.g., electromyography (EMG) or
HOV, one could argue that all exoskeleton movements could

be controlled by HOV. However, contrary to eye movements,
EEG-based control was shown to be more intuitive since
exoskeleton closing motions are directly linked to imagining or
attempting to move the paralyzed fingers (Soekadar et al., 2016).

Moreover, there is increasing evidence that repeated
brain/neural control of exoskeletons can trigger neural
recovery (Donati et al., 2016; Wagner et al., 2018). Therefore,
a combination of both operational purposes, i.e., assistive and
restorative use, was suggested (Soekadar et al., 2019; Soekadar
and Nann, 2020). Here, the assistive neural exoskeleton is used
as a technical aid for the physiotherapist to train the patient in
performing ADLs. This hybrid approach promises to facilitate
generalization of learned skills to real-life environments and may
increase the impact of the rehabilitation treatment. The proposed
B/NMI control paradigm paves the way toward implementation
of such hybrid approach for restoration of bimanual ADLs.

Besides extending the existing EEG/EOG B/NMI control
paradigm toward bilateral hand exoskeleton control, minimizing
electrode biosignal recording sites constitutes another important
step for everyday life applicability (Cavallo et al., 2020). Moreover,
considering that the high classification accuracy (>80%) was
achieved with a minimalistic setup of only nine EEG recording
sites, this opens up new opportunities for an easy applicable
EEG headset system without the need for time-consuming whole-
head EEG recordings, which is usually needed for advanced CSP
algorithms, achieving comparable classification results.

To reliably detect prolonged HOVs (>1 s), bipolar EOG
signals have to contain low-frequency information. Therefore, a
high-pass filter (lower cutoff frequency at 0.02 Hz) has to be used.
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As low-frequency bands are prone to be susceptible to movement
artifacts, e.g., related to head movements, it needs to be
tested whether the proposed approach for bilateral brain/neural
exoskeleton control can be applied under less controlled and very
noisy conditions (e.g., in an outside restaurant). Here, using other
EOG signal features that are less dependent on information in the
lower frequency bands could overcome this issue.

Larger clinical studies are needed to investigate whether
these results can be generalized toward a broader spectrum
of SCI patients. While all participants rated the brain/neural
control paradigm as fluent, further increasing fluency would be
desirable. In this context, taking advantage of lateralized brain
activity [e.g., in the form of lateralized potential shifts preceding
voluntary movements, the so-called Bereitschaftspotential or BP
(Nann et al., 2019), or movement-related cortical potentials
(MRCPs; Schwarz et al., 2020)] may contribute toward such
aim. Since it was shown that SMR-ERDs are more pronounced
over the contralateral hemisphere (Nikulin et al., 2008), it
might be possible using advanced signal-processing tools to
determine the side of the intended movement by assessing such
lateralized activity only.
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The process of urban landmark-based navigation has proven to be difficult to study in a

rigorous fashion, primarily due to confounding variables and the problem of obtaining

reliable data in real-world contexts. The development of high-resolution, immersive

virtual reality technologies has opened exciting new possibilities for gathering data

on human wayfinding that could not otherwise be readily obtained. We developed a

research platform using a virtual environment and electroencephalography (EEG) to

better understand the neural processes associated with landmark usage and recognition

during urban navigation tasks. By adjusting the architectural parameters of different

buildings in this virtual environment, we isolated and tested specific design features to

determine whether or not they served as a target for landmarking. EEG theta band

(4–7Hz) event-related synchronization/desynchronization over posterior scalp areas

was evaluated at the time when participants observed each target building along a

predetermined self-paced route. A multi-level linear model was used to investigate the

effects of salient architectural features on posterior scalp areas. Our results support

the conclusion that highly salient architectural features—those that contrast sharply

with the surrounding environment—are more likely to attract visual attention, remain in

short-termmemory, and activate brain regions associatedwith wayfinding comparedwith

non-salient buildings. After establishing this main aggregate effect, we evaluated specific

salient architectural features and neural correlates of navigation processing. The buildings

that most strongly associated extended gaze time, location recall accuracy, and changes

in theta-band neural patterns with landmarking in our study were those that incorporated

rotational twist designs and natural elements such as trees and gardens. Other building

features, such as unusual façade patterns or building heights, were to a lesser extent

also associated with landmarking.
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INTRODUCTION AND BACKGROUND

More than 55% of the world’s population currently resides
in urban environments, and that percentage is expected to
increase in upcoming decades (United Nations, 2018). The
architectural design of these built environments can have a
significant impact on those who live there (Kalantari and Shepley,
2020). Numerous cognitive and health-related effects associated
with urban design have been documented in recent years (e.g.,
Nasar, 1994; Heft and Nasar, 2000; Knöll et al., 2018; Kondo
et al., 2018). However, in some topical areas it has been difficult

to obtain rigorous empirical data about the effects of urban
design. Wayfinding is one of these problematic areas. There
has long been speculation and anecdotal evidence that the
design of cities can make wayfinding much easier or harder

for people who live in and visit these environments—Tolman
(1948) introduced the concept of “cognitive maps” to discuss

neural wayfinding processes, a concept that was later used
by Kevin Lynch, in The Image of the City (1960), to explain
human wayfinding in the urban environment. More recently,
researchers have adjusted and refined this analysis to discuss the
specific mental processes that are involved in learning routes and
establishing orientation in cities (Blades et al., 2002; Julian and
Epstein, 2013), as well as the ways in which people make use
of navigation tools such as signs and maps (He et al., 2015).
Gradually, this research is beginning to take on a more rigorous
character, with a growing interest in collecting both behavioral
and neurological data.

One crucial aspect of wayfinding that has been gaining
increasing scholarly attention is the use of landmarks. May et al.
(2003) found that landmarks are the most common type of cue
used for navigation by pedestrians in urban centers. Lee et al.
(2006) demonstrated that the availability of landmarks greatly
reduces the number of mistakes made during wayfinding, and
that landmarks also reduce the stress of wayfinding decisions.
Specific studies have identified landmark-use in a wide array
of navigation contexts, including city exteriors and the internal
navigation of hospitals, airports, train stations, and other large
urban structures (Fewings, 2001; Joseph, 2006; Epstein and Vass,
2014; Chang and Zheng, 2016; Sharma et al., 2017). Several
studies have found that landmarks facilitate the development of
spatial orientation skills in children (Howard and Templeton,
1966; Acredolo, 1977; Sadalla et al., 1980) and that they
are particularly important wayfinding tools for older adults
(Burns, 1997; Bradley and Dunlop, 2005). Other researchers
have noted that landmarks are frequently used when one
person attempts to communicate a route, covey a mental model
of an environment, or give directions to another individual
(Siegel and White, 1975; Egenhofer and Mark, 1995; Maass
and Schmauks, 1998; Lovelace et al., 1999; Michon and Denis,
2001; Tenbrink, 2008).

Saliency, which refers to the contrast between a landmark
and its surrounding terrain, is widely recognized as a central
component of landmark selection (Clark, 1996; Sorrows and
Hirtle, 1999; Raubal and Winter, 2002; Caduff and Timpf,
2008). Landmarks generally need to stand out from their
surroundings in order to be easily recognized and used as

spatial reference points in memory and in communication.
If individuals are required to use landmarks with low
saliency, then the wayfinding process will be more difficult
and time-consuming, with commensurate increases in
cognitive burdens and a greater likelihood of wayfinding
errors (Sorrows and Hirtle, 1999). Various kinds of landmark
saliency have been proposed by researchers, including
distinctive visual patterns or colors, structural/geometric
anomalies, and memorable cultural associations (Sorrows
and Hirtle, 1999; Raubal and Winter, 2002; Caduff and
Timpf, 2008; Grabler et al., 2008). In the design field, there
have been numerous attempts to quantify and categorize
the specific saliency factors that can promote landmark
identification and recognition, with the goal of improving
the design of built environments and making wayfinding
easier (Raubal and Winter, 2002; Nothegger et al., 2004;
Klippel and Winter, 2005; Aziz and Mertsching, 2007;
Claramunt and Winter, 2007; Duckham et al., 2010;
Zhang et al., 2014). Some researchers have even developed
algorithmic and data-mining methods to automatically
identify potential salient landmarks in virtual spaces or in
architectural design plans (Elias, 2003; Peters et al., 2010;
Winter et al., 2008).

Despite all of this research on landmark salience, very little
scholarly consensus has emerged regarding what features in
architectural design are most likely to produce readily identifiable
landmarks for use by diverse human populations. Part of the
reason for the conflicting and inconclusive nature of these studies
may be methodological. Most of the previous studies on urban
landmarking have been based on showing participants pictures of
urban scenes and asking them to find or identify landmarks. This
approach is limited due to the static, two-dimensional impression
given by the pictures, which may not reflect the same saliency
factors that are present when people move through complex,
dynamic, and immersive environments.

Another concern in the existing landmarking design literature
is that these analyses have relied mostly on behavioral and/or
self-reported data (Cornwell et al., 2008; Pu et al., 2017;
Sharma et al., 2017). Less attention has been given to the
possibility of collecting neurological data (such as EEG signals)
as a more robust scientific basis to measure covert processes
and to distinguish cause and effect in human responses
to design features. EEG methods are a promising tool to
characterize the interplay of neural states and information
processing (Banaschewski and Brandeis, 2007). The goal
of the current study was to address these concerns by
developing an assessment method for landmark recognition
using spectral analyses of scalp EEG electrodes over neural
regions that have been implicated in spatial awareness and
spatial memory. The use of an immersive, three-dimensional
virtual environment (as opposed to static pictures) allowed the
researchers to differentiate experimental conditions by making
targeted adjustments to specific landmark design variables. It
also enabled the collection of cleaner real-time neural data
while participants completed active navigational and recall tasks
(compared to real-world navigation that would generate motion
artifacts in the EEG).
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Brain Activity Related to Landmark
Recognition
In an influential study, Epstein and Vass (2014) identified four
cognitive mechanisms related to landmark- based navigation.
These include: (a) the landmark-recognition mechanism, which
clarifies “what am I looking at?”; (b) the localization/orientation
process, which clarifies “where am I and which direction am
I pointing?”; (c) the encoding and retrieval system for spatial
knowledge, which clarifies “where are other specific places in
relation to my position?”; and (d) the route-planning process,
which solves the problem of “how do I get from here to another
specific place?” In the present study, participants were tasked
with passively observing buildings along a simulated urban route,
and then asked to later recall where several “target” buildings
were along the route. Therefore, of these mechanisms we
hypothesized that more salient building features would increase
activation of brain regions and networks associated with “(b)”,
localization/reorientation, and “(c)”, encoding and retrieval of
spatial knowledge.

Recent EEG and fMRI work has demonstrated that the task
demands of integrating allocentric and egocentric information
during spatial navigation are strongly associated with activity
in the retrosplenial cortex (RSC; Auger et al., 2012; Lin et al.,
2015; Fischer et al., 2020), as part of network of spatial awareness
and memory centers including the hippocampus [HC], occipital
place area [OPA], and the parahippocampal cortex [PHC], which
includes the parahippocampal place area [PPA]; (Wolbers and
Büchel, 2005; Hanslmayr et al., 2011; Julian et al., 2018). The
RSC is generally located below the inferior and superior posterior
scalp areas (e.g., EEG sites P3, P1, CP3, CP1 on the left, and
P2, P4, CP2, CP4 on the right), and is highly amenable to EEG
measurement, although its activity can be hard to disentangle
from that of the PHC and posterior parietal cortex in general.
And certainly, EEG data is limited in its spatial resolution, for
several reasons. But carefully designed experiments with rodents
and humans have revealed that the RSC seems uniquely involved
in integrating “egocentric” spatial awareness—the participant’s
sense of their current spatial position and direction in relation
to previous personal positions and actions—with incoming
“allocentric” information about the relative position of external
objects in the environment during movement (Buzsáki, 2005;
Dhindsa et al., 2014; Lin et al., 2015).

Multimodal evidence supports the role of theta band EEG,
and the connectivity between the RSC and other areas, in
this path integration process. In a tractography-based study,
Ramanoël et al. (2019) found correlations between spatial
memory skills and age-associated deficits in resting state
structural connectivity between the left RSC and Hippocampus.
And in a recent study involving patients with mild cognitive
impairment and prodromal Alzheimer’s, virtual navigation skills
were significantly negatively correlated with levels of disease
biomarkers in RSC and HC (Howett et al., 2019). Support for
the mechanistic role of theta activity among these regions comes
from simultaneous EEG-fMRI experiments that show a negative
correlation between Default-Mode Network activation (turning
attention inward) and theta power in the superior posterior

parietal and frontal regions (Scheeringa et al., 2009; however,
see Zumer et al., 2014), and that increased theta power during
encoding (across several regions anti-correlated with the default
mode network) predicts which encoded information is later
remembered (White et al., 2013).

It follows naturally that researchers would look to the
RSC and related areas when measuring the effect of different
navigation strategies, as well as the effect of different environment
features. Auger et al. (2012) found that RSC activity while
viewing landmarks correlated with an individual’s skills as a
navigator, and specifically when viewing buildings deemed more
“permanent,” suggesting this brain area’s role is to help tag
especially meaningful spatial cues during memory formation.
And Lin et al. (2015) found that a participant’s natural navigation
strategy preference (egocentric vs. allocentric) in a virtual
navigation task was associated with several EEG markers, such
as theta and alpha synchronization and desynchronization in
sources localized to the retrosplenial and posterior parietal
cortices during turning and new-scene encoding (among other
findings). Previous research has also shown a scalp-wide increase
in theta power after making a turn decision in a virtual navigation
task (Bischof and Boulanger, 2003), and during decision-making
phases in navigational tasks (Jaiswal et al., 2010). The theta band
signals are thought to act as a mechanism by which different
neuronal groups and regions synchronize with each other in
order to accomplish objectives (Buzsáki, 2005). In both human
and animal studies, theta activation in posterior parietal regions
has been observed to feature prominently in navigational tasks
(White et al., 2011; Belchior et al., 2014) and goal- directed
environmental information processing (Cornwell et al., 2008; Pu
et al., 2017), as well as in memory formation and recall (Paller
and Wagner, 2002; Jaiswal et al., 2010; Vaidya and Johnston,
2013; Koike et al., 2017; Scholz et al., 2017). Based on these prior
findings, in our study we focused on measuring theta activity
in the medial and lateral superior posterior scalp locations
while participants gazed at the target buildings of different
hypothesized saliency levels.

We measured theta activation by calculating event-related
desynchronization/ synchronization (ERD/ERS) averaged across
the 4–7Hz EEG frequency band, during periods (minimum 1.5 s)
when participants gazed at the target buildings. A 1min resting
period was used as a baseline for comparing task-related theta-
power changes, following Pfurtscheller and Lopes da Silva (1999),
and Sharma et al. (2017).

The Use of Virtual Reality in Navigational
Behavior Research
Today’s high-resolution virtual environments are becoming
astonishingly lifelike, opening new opportunities to study various
types of human behavior in a controlled context. The use
of virtual reality (VR) is already widespread in behavioral
(Makransky et al., 2019), cognitive (Wolbers and Büchel, 2005),
medical (Plancher et al., 2012; Clay et al., 2020), and design
research (Kalantari and Neo, 2020). This technology allows
researchers to isolate and adjust environmental variables in a
way that would not be possible in the real world. For example,
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researchers can easily add or remove windows from an otherwise
identical building, or change the color or pattern of a building’s
façade, without incurring any construction expenses. These types
of design studies have the potential to provide an enormous
wealth of empirical data (Jeffery, 2019). We must always remain
aware that there are possible discrepancies between virtual and
real-world results, but research using virtual environments is
in many ways superior to prior studies that relied on static
images and/or were rife with confounding variables. In many
cases virtual platforms can provide an important way to obtain
feedback about design questions that otherwise could not be
rigorously tested at all.

With the groundwork for the VR largely in place, the use
of this technology as a design research tool mostly requires
the technological know-how to make targeted modifications
in the virtual environment— along with any coding that is
necessary to implement other desired research features, such
as presenting real- time interactive questionnaires to study
participants within the environment. Previous researchers have
demonstrated important concordances between human behavior
in real-world navigation and virtual navigation (Werner and
Schindler, 2004; Jansen-Osmann et al., 2007; Jiang and Li, 2009;
Tang et al., 2009; Kuliga et al., 2015; Slone et al., 2015; De
Tommaso et al., 2016). Many of these studies used virtual
contexts to develop hypotheses about behavior that were later
confirmed in real-world environments. Of particular note for
the current research are studies by Gazova et al. (2013) and Nys
et al. (2015), which used VR as a research tool for evaluating
the relative importance of landmark use during wayfinding.
Similarly, Röser et al. (2012) used a virtual environment to
evaluate the ideal position of a landmark at an intersection.

In the current study participants were immersed in a high-
resolution VR urban environment and asked to complete
various navigational tasks. In contrast with physical environment
navigation, this allowed us to use neurophysiological sensors
to better understand the impact of different architectural
landmark designs during navigational memory formation. The
use of the virtual environment made it possible to collect
robust neurological data while reducing motion or sweat-related
artifacts in the EEG signals. In addition, it allowed the researchers
to carefully and precisely create the desired urban design
testing environment and to readily move or substitute individual
buildings and features during preparation, or condition creation,
thus helping to isolate specific design variables. Our primary
focus was to triangulate behavioral and neurological responses
to different architectural designs during navigation and to
determine if certain aspects of these designs may assist or hinder
in the identification of landmarks for navigation and recall.

Hypotheses
Our broadest hypothesis was that buildings useful as landmarks
would have a relatively high “saliency” factor, which is defined
in navigational studies as a striking feature that stands out
from the surrounding information terrain (Sorrows and Hirtle,
1999; Raubal and Winter, 2002; Caduff and Timpf, 2008). The
term “saliency” has several related, yet distinct, meanings. In

perception and cognition studies, for example, a red flower
against a background of green foliage has a high perceptual
saliency, as does a loud noise in a quiet room, or an object in
motion in an otherwise still environment (Koch and Ullman,
1985; Kerzel et al., 2011). It is important to note that the
landmark saliency of architectural design is relative to the
surrounding urban environment. In a city where nearly all of the
buildings were geodesic domes, for example, an ordinary square
apartment building might stand out as a striking landmark.
If an object in a scene were also especially novel, the initial
effect would be similar. For the purposes of this study we
used currently existing Western metropolitan architecture as the
urban background, and categorized buildings as salient or non-
salient based on variations from this environmental norm along
several different design features: relative height, footprint-shape,
twist, and façade design. We aimed to control for the previously
discussed overlapping influences of saliency and novelty during
the creation of the virtual environment by: (a) ensuring that all
the target buildings were similar to each other regarding how
distinct they were from the surrounding background in major
low-level features, e.g. luminance, color, general style; and (b)
making sure that all the target buildings were generally plausible,
and not exceptionally unusual.

Previous studies have noted in an anecdotal fashion that
striking architectural design features in a building can be related
to people’s tendency to regard that building as a landmark
(Lynch, 1960; Darken and Peterson, 2001). We expected that
the concept of environmental/landmark saliency can help to
explain this correlation between specific design features and the
prominence of a building in human visual memory. During
viewing of these more salient buildings, we would therefore
expect to see increased posterior superior scalp EEG theta power,
(i.e., synchronization) as one indicator of increased processing
in response to relevant navigational cues. To support this overall
perspective, we tested the following specific hypotheses:

Hypothesis H: Mean recall accuracy, user interaction (gaze
duration), and neural signatures of spatial awareness (superior
posterior theta power), will be heightened when participants gaze
at salient buildings as compared to non-salient buildings.

• Hypothesis H1: Recall accuracy, user interaction (gaze
duration), and neural signatures of spatial awareness (superior
posterior theta power) will be heightened as a linear function
of how salient a viewed building is, e.g. strongly salient, weakly
salient, weakly non-salient, or strongly non-salient.

Upon testing for this aggregate main effect (Hypothesis H), as
well as dose-response model of increasing salience (H1), we then
drilled down to see if the same outcome measures tested above
will be heightened in response to viewing buildings with specific
salient architectural features compared with buildings that lack
those specific architectural features.

• Hypothesis H2: Recall accuracy, user interaction (gaze
duration), and neural signatures of spatial awareness
(superior posterior theta power) will be heightened
when participants gaze at buildings that are taller than
surrounding buildings.
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• Hypothesis H3: Recall accuracy, user interaction (gaze
duration), and neural signatures of spatial awareness (superior
posterior theta power) will be heightened when participants
gaze at buildings containing biologically inspired and
natural elements.

• Hypothesis H4: Recall accuracy, user interaction (gaze
duration), and neural signatures of spatial awareness (superior
posterior theta power) will be heightened when participants
gaze at buildings containing a twisted architectural façade or
unusual footprints.

MATERIALS AND METHODS

Drawing from the previous theoretical literature on landmark
identification (Raubal and Winter, 2002; Klippel and Winter,
2005; Duckham et al., 2010; Peters et al., 2010), and focusing
on the concept of visual saliency, we designed twelve different
buildings to be tested in the virtual urban environment. These
buildings were created using a parametric modeling algorithm
in the Grasshopper software platform (www.grasshopper3d.com)
so that their design features could be readily adjusted. The
overall building contours were defined by their height, footprint-
shape, and various aspects of their façade design. Color saliency
was used as a way to make all of these buildings stand out to
some extent from their background (Aziz andMertsching, 2007).
The buildings under investigation were presented using white
colors, while all other background buildings were presented in
gray and opaque colors. The background buildings were also
designed to unobtrusively mirror typical Western metropolitan
environments, thereby helping to reduce their structural saliency
(Raubal and Winter, 2002). Designing the target buildings like
this ensured that they shared numerous low-level perceptual
features with each other, regardless of their level of architectural
“salience,” especially in contrast with the background urban
scenery and architecture. This helped ensure that none of the
target buildings would attract attention due to the “novelty”
of low-level features, more so than the others. One important
distinction to make is between saliency and novelty. In one sense,
this canmean that new items in an environment can gain saliency
over familiar items simply as a result of being new, somewhat
regardless of their other features (Stirk and Underwood, 2007).
In another sense, it can mean that an object with a very
unique feature, e.g., a shape or pattern, that a person has never
experienced before may make it highly salient to that person,
even if the object’s other low-level features are not distinctive
or salient in the traditional sense (Underwood et al., 2009). We
attempted to control for novelty while manipulating saliency.

For the height variable, we were primarily interested in testing
relative height compared to the environmental background, so
we also included a contextual height difference variable, which
indicates whether a building is taller or the same height compared
to surrounding structures. For the footprint variable we used
a square, a triangle, a pentagon, and a circle. We included
a “twist” variable in some designs, meaning that the building
outline had a twisted form in the upward direction (z axis).
Some of the buildings included a horizontal overhang. The

study incorporated five different façade patterns, including a
design with dominant horizontal lines, one with strong vertical
lines, one with a grid pattern, one with a biologically inspired
abstract Voronoi pattern, and one that included natural elements
such as integrated gardens. Based on the overall prior evidence
about the effects of building size, shape deviation, and façade
eccentricity on visual saliency (Itti and Koch, 2000, 2001; Raubal
and Winter, 2002; Zhang et al., 2014) we intentionally created
seven buildings with salient features in height, shape, or façade
patterns, and created five non-salient buildings to evaluate
the psychophysiological responses across these two categories
(Table 1).

Virtual Reality Development
The creation of the virtual urban environment was carried
out using Epic Games’ Unreal Engine (www.epicgames.com).
Most of the modeling and UV-mapping took place within
Autodesk Maya. Parametric modeling for building exteriors was
performed in Maya using Python and Mel scripting. Texturing
was done procedurally using the Substance software platform, at
a resolution of 4096 × 4096. The Unreal Engine uses blueprint
scripting, which can allow for a quick learning curve on the part
of researchers and designers whomay want to expand or replicate
our work. All of the front-end interaction and user interactivity
in our environment also leverages the blueprint platform.

The test buildings were integrated into an interactive and user-
friendly VR environment simulating a standard North American
urban exterior. We set the camera position at 1.70m above
the street (corresponding to average human eye-height). The
environment was presented to study participants using anOculus
Rift head-mounted display (HMD) through a gaming laptop with
a resolution of 1,920 × 1,200 pixels. The Oculus HMD provides
a 100-degree horizontal field view with 75Hz refresh rate, and
can be adjusted for participants with different interpupillary
distances. Some examples of two-dimensional screen captures
from the virtual environment are shown in Figures 1A–D.

Participants
Twenty-nine healthy human adults with normal or corrected-to-
normal vision were recruited for the study by word of mouth
and broadly distributed email announcements within various
departments of the academic institution. After exclusion, (see
“Data Exclusion” below,” data from twenty-one participants were
analyzed. The participants’ ages ranged from 18 to 55 years
(M = 27.65, SD = 10.04). The majority of the participants
were university students (n = 19), and the rest were academic
faculty members. All of the participants were associated with
the University of Houston, representing the departments in
Engineering, Biological Sciences, Humanities, Economics, and
Computer Sciences. All participants gave informed written
consent before participating in the experiment and were
compensated with a $25 gift card at the end of the study.
The participants represented various national backgrounds (U.S.,
India, and Mexico were most common), and had a variety of
ethnic backgrounds: nine reported as Asian, seven as Latino
and/or Hispanic, one asMiddle Eastern, and four asWhite (Non-
Hispanic). Eight of the participants reported as women, thirteen
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TABLE 1 | Landmark buildings included in the experiment were coded and described according to a basic set of design variables including height, footprint, and façade

pattern.

SA, Same level with neighbor buildings; LO, Lower than neighbor buildings; HI, Higher than neighbor buildings; RE, Rectangular; TR, Triangle; CI, Circle; PE, Pentagon; HO, Horizontal

lines pattern; GR, Grid lines pattern; VE, Vertical lines pattern; NA, Nature feature included in the façade; TW, Twisted façade type; VO, Voronoi pattern.

FIGURE 1 | Immersive virtual environment of an urban setting; screenshots from a participants’ perspective. (A) Square footprint, twist-façade building to the left, with

the Nature-façade building at the end of the street segment. (B) Voronoi-façade building. (C) Square-footprint Grid-façade building. (D) Square-footprint

Horizontal-façade building. The red sphere indicates the next location to travel.

as men, and none as other. The participants were also asked
to report their sleep patterns and rate their mental fatigue level
(M = 3.95, on scale from 1, low fatigue to 10, high fatigue) at
the beginning of the experiment. Thirty-three percent reported
getting seven or more hours of sleep the previous night, 29%
reported between 6 and 7 h of sleep, and 38% reported 4 to 6 h of
sleep. Participants were free of current neurological conditions,

abstained from any psychoactive substances prior to the study
(except for two who had recently consumed caffeine, within
1 h), and only two participants were actively taking psychological
medication. Participants were asked in a post-experiment survey
to indicate their level of stress or discomfort with the virtual
reality experience and the EEG headset, (1=comfortable with
no stress; 10 = uncomfortable and stressful), and to report how
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realistic the virtual environment seemed (1=not similar; 10=very
similar). Participants indicated having no familiarity with virtual
reality technology, and they reported that the VR system (M =

4.083, SD = 2.465) and EEG headset (M = 3.75; SD = 2.156)
were not uncomfortable or stressful. Participants found the VR
environment realistic (M = 6.33; SD= 1.66).

Procedure and Tasks
The experiments were conducted in a laboratory setting at the
University of Houston. The study protocol was approved by the
University of Houston’s Institutional Review Board to protect
the privacy and safety of the participants. After filling out the
consent form and demographic forms, participants were fitted
with the biometric sensors (described in more detail below). The
initial stages of the experiment took place without the use of a
VR headset. To establish baseline biometric data, the participants
were asked to sit quietly facing a blank computer monitor for
1min. Once this baseline data was collected, the participants
donned the VR headset and entered the virtual environment.
They were given an initial 5-min period in the VR to become
accustomedwith the navigation tools and to explore the platform.

The participants were then asked to travel along two different
routes through the virtual city (with a brief break in between),
and both routes included the twelve “target” buildings but in
different locations. Participants “moved” through the virtual
environment by using a Microsoft Xbox controller button-press
to advance at their own pace along pre-specified locations on the
path. Immediately after completing each route, the participants
were asked to identify the general region/location of five different
target buildings (as a result, there were a total of 10 items in
the memory recall assessment). At the end of the experiment,
the participants filled out an exit survey to provide additional
feedback about their reactions to the study setting, the virtual
environment, and the experimental design.

Signal-Derived Metrics
To obtain measurements of their biometric responses,
the participants were instrumented with a non-invasive
electroencephalography (EEG) cap to record electrical activity
in their brains, and appropriately-placed sensors to record eye
muscle movements (electro-oculography, EOG), heart activity
(electrocardiogram, ECG, not analyzed for this experiment), skin
conductance (galvanic sensor response, GSR, not analyzed for
this experiment), and head motion (tri-axial head accelerometer,
not analyzed for this experiment) (Figure 2A). All of this data
was recorded at 500Hz and synchronized using the 64-channel
ActiCHamp module (Brain Products GmbH, Germany) with
Ag/AgCl active electrodes. A total of 63 electrodes were used
(57 for EEG, 4 for EOG, and 2 for ECG). Only EEG data was
analyzed in this study, although EOG data was included during
ICA to help with IC-based artifact elimination. We focused
our data analysis on the Left Posterior Superior scalp region
(electrodes CP3, CP1, P1, P3, P5, and PO3); the Right Posterior
Superior scalp region (electrodes CP2, CP4, P6, P4, P2, and
PO4); the Left Parietal Inferior region (electrodes P8 and PO8);
and the Right Posterior Inferior scalp region (electrodes P7 and
PO7). These regions are shown in Figure 2B. The two Posterior

Inferior regions are displayed as slightly off the scalp since in
their true position they are not easily viewed from a top-down
viewpoint. Lab-Streaming Layer (LSL), a multi-modal data
collection software, was used to synchronize all modes of data
(Kothe, 2014).

EEG Data Processing
The EEG data were analyzed using the EEGLAB software
package (Delorme and Makeig, 2004). Raw “xdf” data files
were imported at their original sampling rate of 500Hz, low-
pass filtered at 100Hz, high-pass filtered at 0.1Hz, and then
run through the “Cleanline” algorithm, which selectively filters
out the 60Hz power-line noise using an adaptive frequency-
domain (multi-taper) regression technique. The chronological
segment of the EEG data relevant to the experimental procedure
was then extracted and run through the PREP Pipeline
(Bigdely-Shamlo et al., 2015), which is a robust re-referencing
method that minimizes the bias introduced by referencing using
noisy channels. Artifact-laden time-windows and channels were
identified using manual inspection and deleted, by research
team members blind to the order of the trial conditions. These
trimmed datasets were then each run through Independent
Component Analysis (ICA), using the extended Infomax
variation as implemented in the EEGLAB package. ICA is a
form of second- order blind identification, which performs
spatial unmixing to identify underlying sources of signal within
an under-specified space (Onton et al., 2006), such as EEG.
Independent Components indicative of eye- movements and
muscle activity were identified and deleted, as well as time
windows with gross artifact contamination.

Data Exclusion
Several participants’ data were excluded from final analyses.
Final EEG analyses included 21 participants: two were excluded
due to extremely high theta power activity (> 3 St.Dev. of the
overall mean theta Event-Related Desynchronization); three were
excluded due to low EEG recording quality (> 33% of channels
exceeding 100 µV for >50% of time series); and three were
excluded because they did not gaze at a sufficient number of
target buildings for longer than 1.5 s each (1.5 s was the a priori
duration threshold used to include time-points for analysis).

Data Analysis
Gaze Time
We used recorded screen-capture video from the experiment to
identify the periods of time when the participants observed the
buildings that were being tested. The start and end of these time
periods were determined based on the content of the VR display,
which itself was linked to the direction of the participants’ gaze.
One researcher marked all of the screen data using video-editing
software (Camtasia), and then another researcher reviewed the
marked segments for accuracy. These gaze event markers were
exported for analysis, and to be automatically imported into the
EEG files as events. We analyzed the total amount of time that
participants spent looking at each building (gaze time), as well
as the number of instances in which their gaze returned to the
building (gaze count). These measurements of gaze times and
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FIGURE 2 | Experimental setup. (A) Measurement equipment and experimental interface. The experiment participant navigated through the virtual environment using

a hand-held controller. (B) Posterior scalp regions of interest for EEG analysis.

counts were averaged across both of the routes that were tested
(route 1 and route 2) (Supplementary Table 1).

We used linear models in R [using the lm() function] to
determine if participants looked for longer periods of time
at certain types of buildings, with Overall Building Saliency
and various building design features as the predictor variables
in separate tests for each hypothesis, and average Gaze Time
as the outcome variable. Paired t-test comparisons were then
computed, using a tukey method for p-value adjustments. Gaze
times of 0 s were excluded from the statistical analyses (< 1% of
all cases).

Location Recall Accuracy
After completing each route, participants were presented with a
series of images of target buildings, alongside a map of the route
that they had just traversed. The map was divided into four zones
(A, B, C, and D).

Participants were asked to identify the zone in which each
test building appeared. Only ten of the buildings were tested for
visual memory (omitting the B01and the B09 buildings). In the
analysis of the visual memory test data, we used linear models
to determine if participants more accurately remembered the
zone locations of certain types of buildings. Overall Building
Saliency and various building design features were used as the
predictor variables, and accuracy of visual memory was used as
the outcome variable.

EEG Theta Power ERD/ERS as Participants

Observed the Buildings
The mean Event-Related Synchronization/Desynchronization
(ERD/ERS) was calculated across all of the EEG electrodes in
each scalp region, averaged across the theta-band frequencies
(4–7Hz), for the combined duration of the time periods during
which a participant was viewing a particular test building.
Welch’s method of overlapped segment averaging was used as an
estimator of power spectral density, as implemented in EEGLAB’s
“spectopo” function. EEG power spectral density values were
converted to µV2/Hz units, so that all theta power values would

be positive. The ERD/ERS value was then calculated as:

% ERD/ERS =
A− R

R
× 100

where R indicates baseline reference data and A indicates the
theta power value associated with the time in which a participant
viewed a particular test building (Pfurtscheller and Lopes da Silva,
1999). Since the viewing time differed for each participant and
for each building, the amount of data that was fed into each ERD
calculation varied. These ERD values were entered into a separate
mixed multilevel model for each planned comparison, with scalp
region of interest and building design features as fixed effects,
participant ID as a random effect, and mean theta ERD as the
dependent outcome variable. Paired t-test comparisons were then
computed, using a Tukey method for p-value adjustments.

RESULTS

Each hypothesis was tested using a separate linear model, using
the building categories relevant to the variables being evaluated:
Non-salient vs. Salient buildings, relative height, and façade
designs (Nature vs. non-nature, and Twist vs. non-twist).

Gaze Time Looking at Buildings
A high building Saliency as defined by Table 1 was associated
with longer Gaze Time in the two- category (i.e. Salient and
Non-salient) comparison (F(1, 390) = 27.60, p < 0.001). We also
found associations between several architectural features and the
average Gaze Time. The Vertical and Voronoi façade patterns, in
particular, attracted significantly longer Gaze Times compared to
other façade types (all |t|s > |−2.84|, ps < 0.03). We observed
longer Gaze Times for the buildings with the salient feature of
Twist façade design, compared with non-twist façade building
designs (F(1, 54) = 26.74, p < 0.001). Longer Gaze Times were
found for the Nature façade design compared with non-Nature
designs (F(1, 54) = 14.67, p < 0.001); and longer Gaze Times
for contextually the taller building compared to those with the
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FIGURE 3 | Location recall accuracy compared with gaze time distributions, with error bars showing the 25th and 75th percentile.

same height level with the neighbor buildings (F(2, 109) = 6.74, p
< 0.001).

Location Recall Accuracy
Building Saliency was associated with more accurate visual
memory in the two-category comparison (F(1, 283) = 22.26, p
< 0.001) of Non-Salient vs. Salient buildings (Figure 3). Similar
to the gaze-tracking results, more accurate visual memory was
associated with the Vertical and Voronoi façade patterns (both
ts > 5.2, p < 0.001), and with the Nature façade design (F(1, 56)
= 30.19, p < 0.001), compared with their respective matched
non-salient buildings. In contrast to the gaze-time results,
no significant overall association was found between visual
memory accuracy and the Twist façade design feature. While
the building B12 (Pentagon-footprint, Twist-façade design)
obtained high location recall accuracy in the visual memory tests,
building B10 (Square footprint, Twist-façade design) obtained
low location recall accuracy. No contextually tall buildings were
tested for visual memory, so we lack the data to evaluate the
association between visual memory accuracy and contextual
height. Buildings B02 and B09 were not included in the recall
task, simply as part of the effort to keep the experiment duration
as short as possible.

EEG Theta Power ERD/ERS as Participants
Observed the Buildings
The multilevel linear model for building Saliency indicated a
significant association with theta activation (F(1, 140) = 8.343, p=
0.005), i.e., Event-related synchronization (ERS), thus supporting
the main effect hypothesis H (Figure 4). Individual t-tests
comparing these conditions within each of the four scalp regions
of interest revealed that theta power changes over baseline, for
more salient buildings, were significantly greater in Left Posterior
Superior region (t = −2.08, p = 0.04), and were trending
significantly for the Right Posterior Superior region (t = −1.75,
p= 0.08) (Figure 4). As a result of these findings, our hypotheses
were tested specifically over theta power changes (ERD/ERS) in
the Left Posterior Superior region.

Individual t-tests comparing Twist to Non-Twist façade
design buildings within each of the four scalp regions revealed
that theta power changes over baseline for the Twist-façade
condition were significantly greater than for the Non-Twisted
condition in only the Left Posterior Superior region (t= 2.08, p=
0.01) (Figures 5C,D). The findings in regard to Twisted buildings
support Hypothesis H4.

The comparison of the Nature façade design with a
corresponding “Non-Nature” building yielded an activation
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FIGURE 4 | Grand Average Scalp Maps of theta (4–7Hz) ERD/ERS when participants observed the buildings inside the VR environment. Comparison of Salient vs.

non-Salient buildings. (A) Scalp map theta power change compared to baseline. (B) Statistical comparison in the four posterior scalp regions of interest.

FIGURE 5 | Grand Average Scalp Maps of theta (4.0–7.0Hz) ERD/ERS when participants observed the buildings inside the VR environment. Comparison for (A,B)

Non-Nature vs. Nature façade design buildings. (C–F) Relative building height. (A,C,D) Show the scalp map theta power change compared to baseline. (B,E,F)

Numerical comparison of theta power change in the four posterior scalp regions of interest to each building condition [in the same left-right order as the scalp-maps in

(A,C,D)]. Note different y-axis limits.

difference in the Left Posterior Superior region (t = −2.35, p
= 0.02). However, the direction of this effect was the opposite
of the Twist and overall Saliency comparisons—when viewing
the Nature condition (which was recalled more accurately and
gazed at longer than most other buildings), participants’ Left

Posterior Superior regions not only had lower theta power change
than the control condition, the Left Posterior Superior theta
power was actually lower in comparison with the rest/reference
window. Conversely, during the Twist façade design and overall
Saliency comparisons, the participants’ Left Superior Posterior
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regions had a higher theta power over baseline in comparison
with their corresponding buildings (Figures 5A,B). Both findings
about façades with natural elements and a twist-design façade are
salient features that show statistically significant differences in
theta power synchronization / desynchronization, and therefore
support our proposed hypothesis H3.

The pairwise tests for the relative building-height features
did not yield significant associations with the data in regard to
any of the EEG regions, although the buildings with the same
height as their surrounding were nearly statistically significantly
greater in theta power change in the LPI region (t = 1.93,
p >0.06).

Thus, Hypotheses H2 was not supported by the EEG data.

DISCUSSION AND CONCLUSIONS

In this study behavioral data, recall accuracy, and EEG data
were combined to analyze the effect of architectural features
on visual landmark saliency. Our primary Hypothesis H1 was
that recall accuracy, user interaction (gaze duration), and neural
signatures of spatial awareness in the form of posterior lateral
EEG theta power, would be heightened when participants gazed
at salient buildings as compared to non-salient buildings. The
EEG results support this main effect hypothesis, with the
caveat that the progression in posterior theta power change,
from less-salient to more-salient buildings, did not seem to
act in a linear fashion. Highly salient buildings were also
found to attract a greater duration of gazing time on the part
of the study participants, and the spatial location of these
buildings was more accurately recalled in short-term visual
memory tests.

Expanding on our primary hypothesis, we aimed to show that
the same behavioral and neural features mentioned above would
be heightened when viewing buildings with a specific salient
feature, as compared with buildings that lack the corresponding
architectural feature. The support for this hypothesis was
mixed. EEG results indicated significant differences in neural
activation measured at left superior posterior regions of the scalp
(Figures 5A–C) for buildings with a Twist-façade design and for
buildings in which the façade designs contained natural elements.
However, the results for the nature-containing buildings were
opposite of what we expected, correlating with a decrease in
theta activation (i.e., ERD) at the target scalp area, rather
than an increase in theta activation (i.e., ERS). EEG tests
for other types of design features did not show significant
differences, in some cases diverging from the results found in
the gaze duration and recall data. For example, participants gave
seemingly more attentional resources to Vertical and Voronoi
façade patterns than Horizontal or Grid patterns as evidenced
by the gaze and recall results, yet the electrophysiology data did
not correspond.

These results support the hypothesis that when people gaze
at “interesting” buildings that stand out from the surrounding
environment, scalp EEG theta power above posterior parietal
cortex increases. Further experiments and analyses, including

source-localization steps and higher spatial resolution modalities
(e.g., fMRI, MEG), would more conclusively test the retrosplenial
cortex’s causal role in making some landmarks more effective
than others. However, the current experiment provides support
and justification for that work. It also suggests that effective
landmarks serve as a focus of visual attention, and their location
therefore persists more accurately in short-term visual memory.
Consistent with the salience model proposed by Raubal and
Winter (2002) and the predictive model proposed by Zhang
et al. (2014), our findings show that building shape and height
can influence the visual attraction of landmarks. However,
several open questions remain, which should motivate future
work using these and similar methods. For example, what
combination of architectural design features are causing this
saliency response, and what role does short-term memory
play? Do more salient buildings lend themselves to successful
use as landmarks simply by virtue of the increased gaze
duration, i.e., as a result of spending more time “taking
in” that location in the path/environment? Or do these
landmarks that stand out visually recruit more attentional
resources during perception? Do other regions involved in
spatial navigation and memory, such as the hippocampus, show
more effective connectivity with the RSC while during memory
encoding, or do more salient buildings instead function better
as landmarks by boosting simply recall? Or do they lead to
improvements in both encoding and recall? These questions
can be answered with further experiments building on this
research platform.

Due to the fact that in this experiment participants did
not engage in ambulatory locomotion (they were seated), and
within the virtual environment they did not have the option of
truly free navigation (they simply moved among pre-determined
locations along the path, i.e., via “teleporting”), we can only
make limited generalizations about wayfinding based on these
results alone. Nevertheless, this is an important next step in
understanding the psychological role of design decisions and
architectural features of an environment.While theminimization
of movement-related artifacts helps strengthen the quality of
combined VR-EEG research, ongoing advances in mobile EEG
technology will enable researchers to test the validity of virtual
navigation studies. It is also important to note that locomotion
may not be as necessary for visual attention as it is for wayfinding,
and since this was not a wayfinding study, the absence of
locomotion and vestibular input may not a major flaw. Future
work would need to test whether free ambulatory locomotion
would disproportionately affect visual attention and retrosplenial
connectivity with other spatial memory and navigation centers
more for distinctive buildings than non-distinctive buildings,
perhaps by offering more gradations of perspective and
longer, more dynamic periods in which the buildings are
partially visible.

Regarding specific architectural features, our finding that
the twisted façade was associated with significant activation
in the left superior parietal areas of the scalp indicate that
some architectural features inspire wayfinding-related activation
(Figures 5C,D). This is corroborated by the finding that the
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twisted buildings tended to become a strong focus of our
participants’ visual attention (Figure 3), even when the location
recall accuracy differed from both buildings that contained this
salient feature. Based on an evaluation of recall responses, it
seems that participants often confused the two Twist-façade
buildings with each other during the recall step, which is the likely
cause of the discrepancy between the EEG theta results and the
location recall accuracy results.

Our finding that increased recall accuracy and gaze time
generally accompanied increases in Left Posterior Superior
theta power change for a-priori-defined salient buildings,
but an opposite pattern for the building with “green” or
“nature elements” incorporated, suggests that different kinds
of landmark saliency may act on our navigational attention
systems and even our default mode network, differently. Further
neural research in this domain should investigate connectivity
changes in response to different landmarks, as no brain region
acts alone.

The findings of this research have implications for urban
planners and metropolitan authorities in their goal of developing
better wayfinding systems. Previous studies have shown that
landmarks are a crucial element in pedestrian and vehicle
navigation (Lynch, 1960; May et al., 2003; Goodman et al.,
2005; Reagan and Baldwin, 2006; Millonig and Schechtner,
2007; Stark et al., 2007; Hile et al., 2008). However, landmarks
are rarely included in route descriptions and other urban
wayfinding literature due to the problem of determining
what environmental features should be identified and
promoted as landmarks (Elias, 2003; Duckham et al., 2010;
Peters et al., 2010; Winter et al., 2008). A more robust
understanding of what urban features are most useful for
diverse participants in landmarking—based on meaningful
isolation of design variables and scientific data-collection—has
the potential to help solve this dilemma and establish more
reliable guidelines for the selection of urban landmarks in
wayfinding communications.
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Previous work demonstrates that music with more surprising chords tends to be

perceived as more enjoyable than music with more conventional harmonic structures. In

that work, harmonic surprise was computed based upon a static distribution of chords.

This would assume that harmonic surprise is constant over time, and the effect of

harmonic surprise on music preference is similarly static. In this study we assess that

assumption and establish that the relationship between harmonic surprise (as measured

according to a specific time period) and music preference is not constant as time

goes on. Analyses of harmonic surprise and preference from 1958 to 1991 showed

increased harmonic surprise over time, and that this increase was significantly more

pronounced in preferred songs. Separate analyses showed similar increases over the

years from 2000 to 2019. As such, these findings provide evidence that the human

perception of tonality is influenced by exposure. Baseline harmonic expectations that

were developed through listening to the music of “yesterday” are violated in the music

of “today,” leading to preference. Then, once the music of “today” provides the baseline

expectations for the music of “tomorrow,” more pronounced violations—and with them,

higher harmonic surprise values—become associated with preference formation. We

call this phenomenon the “Inflationary-Surprise Hypothesis.” Support for this hypothesis

could impact the understanding of how the perception of tonality, and other statistical

regularities, are developed in the human brain.

Keywords: music, surprise, harmony, preference, predictive coding

1. INTRODUCTION

In Miles et al. (2017), the examination of harmonic surprise and music preference
tested two seemingly contradictory hypotheses about harmonic surprise and music
preference. The Absolute-Surprise Hypothesis states that moderate increases in harmonic
surprise are perceived as “good”: there is a relationship between music preference
and musical popularity that is dependent on how much total harmonic surprise
is contained in a piece of music. The Contrastive-Surprise Hypothesis states that
increases in harmonic surprise are perceived as “bad”: sections of music with elevated
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harmonic surprise lead to a mild pain signal in the brains of
listeners, and when this is relieved during a subsequent section
with lower harmonic surprise, the result is pleasure, leading to
music preference.

Evidence supporting both hypotheses led to the formulation
of the Hybrid-Surprise Hypothesis. Analyses showed that the
per-song average harmonic surprise of the top quartile (Q1) of
Billboard charting songs is significantly higher than that of the
bottom-quartile (Q4) songs, providing support for the Absolute-
Surprise Hypothesis. Furthermore, the results revealed that there
is increased variation in surprise across the sections of Q1 songs
than Q4 songs, providing support for the Contrastive-Surprise
Hypothesis. However, each of these analyses included songs across
all 33 years of the corpus, without taking release date into
account. The findings thus assumed uniform effects of surprise
on preference, based on a distribution of chords that never varies.
This uniformity is the simplest hypothesis.

It is possible, however, that there are significant changes over
the years in either the effects of surprise, the underlying chord
distributions, or both. In fact, the musical properties of popular
music have been shown to evolve over time (Mauch et al., 2015).
The songs examined in Miles et al. (2017) from the McGill
Billboard corpus (Burgoyne et al., 2011) span 33 years in their
release date (1958–1991). Thus, it is likely that the effects of
absolute or contrastive surprise on preference measurably change
over this span of years, and any such change must be accounted
for to further understand the nature of music preference and
harmonic surprise. Through a separate set of analyses, the present
study is designed to address this gap in the understanding of
the relationship between harmonic surprise and preference in
popular music.

In addition to addressing this gap in understanding, we also
set out to address a gap in time. The present study introduces
the possibility of a dynamic relationship between harmonic
surprise and preference as time goes by. This highlights the
lack of recently released songs in the McGill Billboard Corpus,
which ends in 1991. To see if any change in the effects of
harmonic surprise on preference over time extend to the current
era of popular music, we added an analysis of the Secret
Chord Laboratories (SCL) corpus. This corpus features a nearly
exhaustive list of Billboard-charting songs released from January
1, 2000 to December 31, 2019.

2. LITERATURE REVIEW

The process by which the human brain perceives music is being
extensively studied by researchers in the field (McDermott et al.,
2016; Reybrouck et al., 2018; Daly et al., 2020). One recent
development of note is the determination that the content of
music may matter less to a listener’s perception of a musical work
than whether or not the listener enjoys that work (Wilkins et al.,
2015). In other words, a listener is likely to have a more similar
cognitive reaction to hearing two pieces of music that he or she
prefers, even if those two works are very different, than to hearing
two similar pieces of music, one of which he likes and one of
which he or she dislikes. As such, determining how the human

brain determines whether a particular piece of music is enjoyable
or not is of particular interest.

One prevailing theory as to how music evokes pleasurable
responses in the human brain is that the music, by adhering to
or deviating from what a listener would expect, can stimulate
a neural reward (Meyer, 1956; Huron, 2006). This is reinforced
by the evidence that music perception is based at least in
large part on cultural knowledge. It has been shown that the
musical culture that a listener grows up with has an influence
on the understanding and perception of music later in life
(Curtis and Bharucha, 2008), to the point where an individual’s
perception of, and enjoyment of, a new musical piece is heavily
dependent on music already heard (McDermott et al., 2016).
However, it has historically been difficult to evaluate this idea,
in part because the concepts involved (such as the “amount of
surprise” in the music or the expected “reward”) are difficult
to quantify. A system that could precisely estimate the amount
of “surprise” in a piece of music and how much people
might be expected to like it would thus be of utility to the
research community.

In order to estimate surprise, one approach is drawn from
the field of information theory (Rohrmeier and Koelsch, 2012).
This approach has proven useful at describing various aspects
of music. However, until recently, information theory-based
approaches have not been able to take the additional step of
describing how those aspects influence the perception of a given
musical work.

One potentially useful aspect of information theory is the
concept of “surprise,” a measure of how much a given element
deviates from what that element would be expected to be (Atick,
1992). This concept has been applied to music in order to
determine how much a specific musical element deviates from
the norm (Egermann et al., 2013). By taking a musical piece and
calculating the amount of surprise in its components (such as
its harmonies, its melody, its rhythm, its timbre, etc.), it could
thus become possible to quantify the total amount of surprise in
the music.

Furthermore, just as work has been done to quantify surprise,
progress has also been made in quantifying musical perception.
Because the position of a musical work on charts such as the
Billboard Hot 100 is a function of how many people listen to it
and buy it (Parker, 1992), music which delivers more reward to
listeners can be expected to place higher on the charts than music
which does not deliver as much reward. As such, features such as
chart position can be used as an approximation of popularity and
musical reward.

However, while there do exist projects which have sought to
analyze musical response in terms of surprise, particularly the
surprise of themusic’s harmonic content, much of this work relies
on artificial datasets comprised of individual chords (Koelsch
et al., 2001) or old, relatively simple music such as Bach chorales
(Steinbeis et al., 2005), as opposed tomodern songs.We therefore
developed prior work on this topic (Miles et al., 2017) in which
we calculated the harmonic surprise of actual popular music and
assessed how this surprise related to the music’s popularity on the
charts. This was done to ensure that our results were relevant to
the music people actually listen to in the modern age, or at least
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in the time since the Billboard Hot 100 began being published
in 1958.

Our prior work on this subject considered two possible
hypotheses as to how surprise affects musical perception. One
is the Absolute-Surprise Hypothesis, which states that musical
popularity is determined by the overall amount of surprise in a
piece. This is based on the theoretical foundation that dopamine,
a pleasurable brain chemical, is often associated with novelty
(Suhara et al., 2001), and thus that listening to music which is
surprising or novel will likely produce more of this chemical.
In addition to our own work, another prominent paper in this
field used functional magnetic resonance imaging (fMRI) and
positron emission tomography (PET) machines to discover that
harmonically unexpected elements of a work do tend to induce
more dopamine production than more conventional musical
elements (Salimpoor et al., 2011).

The second hypothesis we considered is the Contrastive-
Surprise Hypothesis. In this approach, the response to a piece of
music is not dependent on the total amount of surprise in the
piece but on the contrast between high-surprise and low-surprise
sections within a given musical work. This hypothesis is in line
with previously-advanced theories noting that pleasure can be
derived from first building up tension (such as with a surprising
element) and then relieving it (as with a non-surprising element;
Huron, 2006). Previous electrophysiological work (Koelsch et al.,
2001) has found an association with the perception of unexpected
chords to the neural correlate of mild irritation known as the
early right anterior negativity, associated with prediction error
being processed in the brain. The Contrastive-Surprise Hypothesis
is consistent with a model of reward resulting from the relief of
such irritation.

It is worth noting that our prior work (Miles et al., 2017) used
a single distribution of chords over all time and thus assumed
that the “expected” harmony of music was constant over the
years across Western popular music. This assumption, however,
may not have been valid; it is entirely possible that the common
harmonies which can be reasonably expected to occur in music
may change from year to year. As such, we present this current
work, which seeks to investigate this possibility and determine
if using a more sophisticated model for the expected harmonies
allows for a more accurate model.

We also investigate the hypothesis that preferred music tends
to increase in surprise over time, whether absolute, contrastive,
or both, at a rate higher than any such increase over time
in less preferred music. This hypothesis, which we call the
Inflationary-Surprise Hypothesis, might be due to the ever-
increasing requirement for music being released at any given
time, considered “high-surprise,” to build upon the already
increased surprise within preferredmusic that already exists. This
phenomenon could be largely driven by effects of the listening
habits during critical periods in the formation of harmonic
expectations by listeners. The Billboard Hot 100 is known to
be driven by an adolescent cohort of consumers. At this stage
in their lives, teenagers generally want to be associated with
the most popular new song or artist, since music preference
is important to identity formation. In four studies, North and
Hargreaves (1999) reported that music preference of a particular

style functions as an “identity badge,” whereby adolescents form
their self-concepts and social judgments. It appears that these
personal music definitions and choices for adolescents are likely
to elicit emotional or spiritual experiences (Bosacki and O’Neill,
2015). The heightened social and emotional impact of music
for adolescents creates a strong nostalgia, rekindling images of
past selves, experiences, and friends who shared those musical
preferences. Furthermore, the emotional content and subject
matter of popular music connect with adolescents, because its
sound and lyrics match the extreme emotional experience of their
daily lives (Wells and Hakanen, 1991). It has been reported that
music can function therapeutically to reduce feelings of stress and
loneliness in adolescents (Zillmann and Gan, 1997).

If the effect of absolute and contrastive surprise on
music preference indeed increases over time, this may be
due to cascading cohorts of primarily adolescent listeners
whose baseline expectations have been formed during a
critical period of statistical learning at an earlier age. Each
of these successive cohorts could be driving an apparent
effect whereby overall harmonic surprise of preferred songs,
as measured against a constant distribution of chords from
the past, increases over time. Evidence of the Inflationary-
Surprise Hypothesis would also support broader theories about
musical expectations being learned through exposure early in
life. In his song about advancements as a result of human
progress, “Boy in the Bubble,” Simon (1986) sings: “...every
generation throws a hero up the pop charts.” It is possible that
these “heroes” use increasing harmonic surprise, over time, in
their songs.

3. MATERIALS AND METHODS

The songs included in the McGill Billboard corpus of songs
from 1958 to 1991 were separated into four consecutive time
bins to examine how the effects of harmonic surprise on music
preference change over time. The songs of a more recent corpus,
a set of 6,051 songs on the Billboard Hot 100 chart released from
2000 to 2019 (the SCL Corpus), were also separated into four
consecutive time bins (see Table 1). The SCL Corpus features a
considerable representation of the 7,988 total unique songs that
charted on the Billboard Hot 100 over that 20-year span of time.
The null hypotheses stipulated that for each corpus, each type of
harmonic surprise effect on preference across the four time bins
would not significantly differ from one another. Support for this
null hypothesis would suggest that there is no impact of time on
the effects of harmonic surprise on music preference.

For the McGill corpus, we chose to group the earliest released
songs of 1958–1975 together as a baseline to compare the effects
of the remaining bins. In preliminary analyses when comparing
average absolute surprise measures of each Billboard quartile, we
did not observe any differences across time in these measures
in Q1 relative to Q4 through this period. This allowed for the
resulting first time bin to serve as a substantial baseline chord
distribution from which to compute a uniform measure of
surprise for the remaining time bins. We attribute this lack of
change in the effect of harmonic surprise on preference during
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TABLE 1 | Four time bins and corresponding periods within which songs of each

time bin were released for both the “past” and “present” aspects of this study.

Time bin Period

McGill 1 August 1958–January 1975

McGill 2 February 1975–July 1980

McGill 3 August 1980–January 1986

McGill 4 February 1986–November 1991

SCL 1 January 2000–December 2004

SCL 2 January 2005–December 2009

SCL 3 January 2010–December 2014

SCL 4 January 2015–December 2019

The first time bin establishes baseline harmonic surprise. In the McGill corpus, this bin

includes songs released over 16.5 years, and each remaining time bin includes songs

released within 5.5 years. In the SCL corpus, each bin includes songs released with 5

years.

this initial time-period to the establishment of a new genre:
rock-n-roll.

The process resulted in four time bins for the McGill corpus
(see Table 1), with 1958–1975 representing the first time bin. We
then separated the SCL corpus into four time bins, each spanning
5 years of release dates, as well. We finally compared per-song
average surprise and variation in surprise across sections of songs
from Q1 to those from Q4.

Next, we investigated trends over time within each of the
two corpora to see if absolute surprise effects on preference,
contrastive surprise effects on preference, or both, were changing
over time.

All of the chords of songs from the McGill Billboard corpus
were transcribed by hand (Burgoyne et al., 2011). The resulting
labels describe each chord “up to seventh” level. In other words,
each chord label specified all notes including and up to the
seventh of the chord, if appropriate. The chords for the songs
of the SCL corpus were estimated by using a neural network
trained to predict the root note of the chord and whether the
chord is major or minor (Korzeniowski and Widmer, 2016). The
difference in these two approaches to transcription results in the
possibility of a slight distinction between the results in the two
corpora: surprise as measured in songs of the SCL corpus is more
likely to reflect pure tonality, whereas the “color” from elements
other than the root and third could influence surprise in songs of
the McGill corpus.

For each corpus, the relationship between harmonic surprise
and preference was calculated using a method based on the
approach outlined in Miles et al. (2017) and Miles (2020). Chord
labels from each corpus were normalized to the key of each
song. For the songs of the McGill corpus, this means that the
transcribed key was identified, and then each transcribed chord
was labeled according to its relationship to that key. For the
SCL corpus, this means that the probable key was detected using
Korzeniowski’s and Widmer’s Convolutional Neural Network
key-detection algorithm included in the Madmom software
package (Böck et al., 2016; Korzeniowski and Widmer, 2018),
and then each identified chord was then labeled according to its
relationship to that key.

Next, zeroth-order harmonic surprise was calculated for each
chord, based on the prevalence of chords in the years from 1958
to 1975 in the case of the McGill corpus, or 2000–2004 in the
case of the SCL corpus. As in Miles et al. (2017), the analysis
was limited to zeroth-order harmonic surprise, which does not
take into account the ordering of chords. This limitation is due
to the increased statistical power necessary to determine any
higher-order surprise effects in such a small corpus. Surprise was
calculated by first finding N, the total number of unique chords
in the corpus, and then for each unique chord Cj findingMj, the
number of times that chord appears. This gave a total number of
chords in the corpus (including repetitions) of 6N

i=1Mi. We then
calculated the probability of unique chord Cj as in Equation (1).

P(Cj) =
Mj

6
N
i=1Mi

(1)

Given the probability of a given chord, that chord’s surprise was
calculated using the standard information theory equation, as
shown in Equation (2).

S(Cj) = −log2(P(Cj)) (2)

The total number of unique chords in the McGill corpus in songs
from 1958 to 1975 was 348. This included chords with all twelve
possible roots, and various modes and extensions for each of
those root notes. The range of unique chords in songs from 2000
to 2004 in the SCL corpus, since it was based only on root and
third notes, was 24. This included all twelve possible roots, each
with either major or minor thirds.

Once the surprise for each chord in a piece of music was
obtained, then that piece’s overall absolute and contrastive
surprise were found. Absolute surprise was estimated by taking
the mean surprise of each chord in a song, and contrastive
surprise was estimated by finding the standard deviation (SD)
of mean surprise for each section of a song, with sections being
calculated algorithmically according to Nieto’s and Bello’s Music
Structure Analysis Framework (Nieto and Bello, 2016).

A uniform chord distribution of “all songs” was used in
the previous analyses of Miles et al. (2017). In this analysis,
we calculated surprise based on the uniform chord distribution
statistics either of “1958–1975 (combined),” in the case of the
McGill corpus, or of “2000–2004 (combined),” in the case of the
SCL corpus.

To determine the classification of songs as “top quartile” or
“bottom quartile”— Q1 or Q4—the process was slightly different
for each of the two corpora. For theMcGill Billboard Corpus, the
545 total songs were ordered by peak Billboard chart position,
with number of weeks on the chart breaking any ties in chart
position. The resulting 136 top-ranking songs were then classified
as Q1 songs, and the 136 bottom-ranking songs were classified as
Q4 songs. For the SCL Corpus, the songs were first broken into
groups by year of release, and then further broken into groups
within each year of release into genres. This was done to reduce
any variability in preference for any particular genre within the
charts. Genres were taken frommetadata tagged by Apple Music.
The resulting “year*genre” groups were then ordered by peak
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Billboard chart position and number of weeks on the chart. The
top 25% of songs in each group were then classified asQ1 and the
bottom 25% of songs in each group were classified as Q4.

4. RESULTS

4.1. The Effect of Absolute Surprise Over
Time—Q1 and Q4 Per-Song Harmonic
Surprise Over Time
We looked at per-song average surprise in the four newly defined
time bins of each corpus, across top and bottom quartiles. We
then computed linear regression lines best fitting the Q1 and
Q4 data over time. The results of the analyses are presented in
Figures 1, 2 below.

In the analysis of absolute surprise over time in the McGill
corpus, with per-song average surprise calculated using the chord
distribution of bins 1958–1975 (and excluding newly introduced
chords), there were significant upward trends in Q1 (Jonckheere-
Terpstra, p < 0.001) and in Q4 (Jonckheere-Terpstra, p <

0.05). This suggests an increase in surprise over time for
songs of both quartiles. Tests showed that while there was no
significant difference in per-song average surprise between Q1

and Q4 in time-bin “1958–1975,” per-song average surprise was
significantly higher among the three remaining time bins (t-
test, Q1 mean = 5.46; Q4 mean = 4.78, p <0.01). In the data
of Figure 1, we observed that the average rate of change for
songs in Q1, +0.096 bits/year, was three times the trend in Q4,
+0.032 bits/year. In order to test the significance of the slopes
calculated for trends over time in Q1 and Q4, we also tested the
null hypothesis that slopes are equivalent using the regression
slopes test provided by Zaiontz (2013). Equation (3) below gives
the statistic t that was calculated using the slopes obtained from
linear regression of surprise data for Q1 and Q4. The test was
normalized by using the standard error of the slope for Q1

and Q4, sQ1 , and sQ4 , respectively. In this equation, n1 and n2
represent the number of songs in Q1 and Q4, respectively, and
T represents the student’s t distribution.

t =
slope(Q1)− slope(Q4)

√

s2Q1
+ s2Q4

∼ T(n1 + n2 − 4) (3)

For the data in Figure 1, we obtain a p-value of 1.8× 10−12. This
suggests that the increase in absolute surprise for Q1 songs was
more pronounced than that of Q4 songs in the McGill corpus.

In the analysis of absolute surprise over time of the SCL
corpus, with per-song average surprise calculated using the chord
distribution of 2000–2004, there were upward trends in Q1 and
Q4. The average rate of change for songs in Q1, +0.0146 bits/year,
is also greater than three times the rate in Q4, +0.0046 bits/year.
This suggests an increase in surprise over time for songs of both
quartiles. With the same statistical test comparing the slopes of
the two trend lines for the SCL corpus data, we obtained a p-
value of 3 × 10−11, suggesting that the increase in Q1 songs was
more pronounced than that of Q4 songs in the SCL corpus. Note
that the scale of calculated surprise in songs of the SCL corpus
is distinct from that of the McGill corpus. This is the result of
the different methodology in calculating surprise: in the McGill

corpus, chords were transcribed by humans up to the seventh
tone, while in the SCL corpus, chords were algorithmically
determined only at the root and third tones. This resulted in far
fewer unique chords in the SCL corpus than in the McGill corpus
(24 and 348, respectively), thereby lowering the overall surprise
values for each chord in the SCL corpus.

4.2. Effect of Contrastive Surprise Over
Time: Variation in Surprise Among
Sections Within Songs Over Time
Next, we looked at variation of surprise across sections within Q1

and Q4 songs in the same time bins used in the previous section
with surprise computed using the chord distribution of the
original 1958–1975 distribution and 2000–2004 distribution for
McGill and SCL corpora, respectively. The results are presented
below in Figures 3, 4.

In this analysis, there was an increase in variation across
sections of songs in both Q1 and Q4 (Jonckheere-Terpstra, Q1:
p<0.001; Q4: p<0.05). The rate of change for songs in Q1 at
+0.044 bits/year is more than twice the slope of the trend in
Q4 at +0.0166 bits/year. Tests showed that while there was no
significant difference in variation across sections between Q1 and
Q4 in time bin 1958–1975, variation was significantly higher
among time bins 2–4 (t-test, Q1 mean = 1.45; Q4 mean = 1.21,
p<0.05). Additionally, p < 1× 10−100 for the slope test suggests
that the increase in Q1 songs was more pronounced than that of
Q4 songs in the McGill corpus.

In the analysis of contrastive surprise over time in Figure 4,
with variation of surprise across sections using the chord
distribution of 2000–2004 in the SCL corpus, there were upward
trends inQ1 andQ4. The rate of change inQ1 of +0.0032 bits/year
is approximately 1.5 times the rate of change in Q4 of +0.002
bits/year. This suggests an increase in surprise over time for songs
of both quartiles. As we did in the previous analysis, we test the
null hypothesis that slopes are equivalent and obtain a p-value
of 0.008. This suggests that the increase in contrastive surprise
for Q1 songs was significantly more pronounced than that of Q4

songs in the SCL corpus. Note that the scale of these results from
songs of the SCL corpus is again smaller, due to the much smaller
number of possible unique chords.

4.3. New Chords Introduced in Q1 and Q4

Songs
In the McGill Billboard corpus, “up to seventh” labels of chords
included myriad permutations of each chord based on the
possible 12 roots and 12 thirds. This was not an issue with
the SCL corpus, which only included root and third notes in
its chord labels. By using a chord distribution, in the McGill
corpus analyses, that reflects only songs of 1958–1975, we failed
to account for any surprise effects due to new chords that might
be introduced into the distribution over time. Chords being
introduced for the first time in the corpus are likely to be highly
harmonically unexpected and could significantly contribute to
any effects of harmonic surprise on preference. To examine the
relative contribution to surprise of new chords, we examined
the prevalence of chords in each quartile that appeared in years
1959 to 1991 that had not previously appeared in any year
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FIGURE 1 | Per-song average surprise (in bits), relative to chord distribution of August 1958 to January 1975, of Q1 and Q4 separated into time bins. Error bars

represent standard error. Per-song surprise rises faster in Q1 than in Q4.

FIGURE 2 | Per-song average surprise (in bits), relative to chord distribution of January 2000 to December 2004, of Q1 and Q4 (a) separated into time bins. Error bars

represent standard error. Per-song surprise rises faster in Q1 than in Q4.

(Figure 5). This analysis showed that 28.7% of newly introduced
chords appeared in Q1 songs, and 19.8% of newly introduced
chords appeared in Q4 songs. New chords were found to appear
significantly more frequently in Q1 than in Q4 (χ

2
= 133.5, df =

1, p<0.001).

5. DISCUSSION

5.1. Findings and Their Support for the
Proposed Hypotheses
In the statistical corpus analyses reported in Miles et al. (2017),
we found evidence that the brain uses both absolute- and

contrastive-surprise strategies in determining preference for
popular songs. In the present study, we tested whether absolute
and contrastive harmonic surprise effects on preference varied
over time across the 33 years of the McGill corpus and across the
20 years of the SCL corpus.

Tests of trend showed that in both corpora,Q1 andQ4 average
per-song surprise increased across consecutive time bins when
surprise was calculated using the chord distribution of the first
time bin, and that Q1 average per-song surprise increased at a
significantly greater rate. Also in both corpora, tests of trend
showed that variation in surprise across sections of Q1 and Q4

songs increased over time, and that variation in surprise across
sections of Q1 songs increased at a significantly greater rate.
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FIGURE 3 | Variation of harmonic surprise across sections of songs, with harmonic surprise calculated using chord distribution of August 1958 to January 1975, of

Q1 and Q4, separated into time bins. Error bars represent standard error. Variation of surprise across sections rises faster in Q1 than in Q4.

FIGURE 4 | Variation of harmonic surprise across sections of songs, with harmonic surprise calculated using chord distribution of January 2000 to December 2004,

of Q1 and Q4, separated into time bins. Error bars represent standard error. Variation of surprise across sections rises faster in Q1 than in Q4.

These results rule out the null hypothesis that absolute and
contrastive harmonic surprise effects on music preference do not
vary over time.

Rather, these results support the Inflationary-Surprise
Hypothesis: it appears that the effects of harmonic surprise on
music preference have to be more pronounced over time to get
the same effect. The force driving harmonic surprise upward
in the Hot 100 chart, and more forcefully upward in Q1 songs
specifically, could be due to the statistical learning of harmonic
regularities. Expectations for these regularities could be learned
early in life, during a critical window for developing models
of tonality. The window of consumers driving performance of

songs on the chart features a cycle of successive cohorts of 13-
to 19-year old listeners. These listeners are likely to develop
their baseline expectations from the preferred music released
in the past, and because of the relationship between moderate
increases in harmonic surprise and preference, the cycle results
in preferred music that increases in harmonic surprise relative to
a fixed composition of chords.

Successful musicians from the present use chords that are
surprising not just for the current moment but also relative to
the past. These successful musicians also keep introducing new
chords. Consequently, the probability distribution of chords is
ever changing, such that musicians must create new surprise
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FIGURE 5 | Percentage of chords that appear over the years from 1959 to 1991, that had not appeared in songs of previous years, in Q1 and Q4. Error bars

represent standard error. There were significantly more novel chords featured in Q1 songs.

to accomplish the same level of preference, leading to an
inflationary effect.

Another interesting result is that in the McGill corpus,
per-song average surprise (Figure 1), the rise of Q1 surprise
seems to level off around six bits. There is a corresponding
plateau effect of per-song average surprise in the SCL corpus
around 3.2 bits. This could be evidence of a ceiling effect for
absolute surprise. The data here are not sufficient to test this
hypothesis. It is possible that this is related to an “inverted-
U” effect of the relationship between complexity and pleasure
(Berlyne, 1973). It is also possible that the inflationary effect
of the relationship between harmonic surprise and preference
can only go so far, and the trend is not infinitely sustainable.
Future research might be useful in exploring whether there is
an ideal range of harmonic surprise in popular music, such that
too much or too little harmonic surprise is inversely related
to pleasure.

When calculated relative to the chord distribution statistics
from songs released from August 1958 to February 1975 in
the McGill corpus, and when calculated relative to the chord
distribution statistics from songs released from 2000 to 2004 in
the SCL corpus: per-song average surprise in Q1 and variation
in surprise across sections of Q1 songs were shown to increase
more over time than the corresponding measures of Q4 songs.
Additionally, chords introduced for the first time in a given year
were more likely to appear in a Q1 song than in a Q4 song in the
McGill corpus. Taken together, these findings are consistent with
the Surprise-Inflation Hypothesis.

Evidence for measurable increases of harmonic surprise
over time and for apparent increases over time in the
magnitude of measured surprise advantages in preferred music

is probably linked to how schematic information about musical
systems is acquired. Capacity for perceiving fundamental
pitch features in music, such as octave equivalence, are
thought to be evolutionarily conserved, extending to other
species (Greenwood, 1997). Higher-level aspects of music
processing such as tonality, however, have been shown to be
statistically learned through exposure (Tillmann et al., 2000;
Loui and Wessel, 2008). In addition, structural expectations
have been demonstrated to be learned through regularities
within auditory sequences (Saffran et al., 1999; Tillmann and
Poulin-Charronnat, 2010). While there is empirical evidence
of statistical learning (even within the time frame of a
behavioral experiment) of schematic regularities within artificial
music systems, there is less evidence of shifts in higher-level
expectations based on tonality in ecologically valid music. A
notable exception, however, is presented in Rohrmeier and
Widdess (2012), where exposure to a novel tonal system of
regularities impacted subsequent expectations by participants.
Investigations into tonality in Western music (e.g., Krumhansl
and Keil, 1982; Tillmann et al., 2000), approach its system of
tonality as a relatively fixed hierarchy. The finding of these
differing surprise measures over time, however, is evidence
of non-static harmonic expectations within Western popular
music, as well as shifts in preference for various harmonic
elements within it. Such shifts in preference are consistent
with several components of the framework of how aesthetic
values are learned over time presented in Aleem et al.
(2020). These components include the shaping of reward
value according to probabilistic information from exposure to
stimuli and a “peak-shift” effect marked by the exaggeration of
desirable features.

Frontiers in Human Neuroscience | www.frontiersin.org 8 April 2021 | Volume 15 | Article 578644111

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Miles et al. Harmonic Surprise Effects Over Time

6. CONCLUSION

In an examination of the relationship between harmonic surprise
and preference in popular music over the years, we found that
surprise relative to a fixed distribution of chords seems to increase
over time, and that this increase is significantly more pronounced
in preferred songs. Such dynamic harmonic expectations
highlight the interactions between individual listeners and
musicians with the culture around them. The Surprise-Inflation
Hypothesis raised by the results presented here suggests that
the brain’s craving for surprise causes continuous changes in
harmonic distributions in popular music. A musician exposed
to changes advanced by other musicians must innovate to be
successful. It could be thatmusicians, learning from the success of
high-surprise songs from one year, end up producing more high-
surprise songs the next year. This could be an explicit strategy to
improve on the part of musicians, rather than an implicit change
in expectation on the part of the listeners. However, listeners’
preferences change as a result, forcing musicians to incorporate
further changes. Hence, the inherent craving for surprise in each
of us may push our entire culture in an endless evolution of
musical preferences.
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A theoretical framework for the reinforcement learning of aesthetic biases was recently
proposed based on brain circuitries revealed by neuroimaging. A model grounded on
that framework accounted for interesting features of human aesthetic biases. These
features included individuality, cultural predispositions, stochastic dynamics of learning
and aesthetic biases, and the peak-shift effect. However, despite the success in
explaining these features, a potential weakness was the linearity of the value function
used to predict reward. This linearity meant that the learning process employed a
value function that assumed a linear relationship between reward and sensory stimuli.
Linearity is common in reinforcement learning in neuroscience. However, linearity
can be problematic because neural mechanisms and the dependence of reward on
sensory stimuli were typically nonlinear. Here, we analyze the learning performance
with models including optimal nonlinear value functions. We also compare updating the
free parameters of the value functions with the delta rule, which neuroscience models
use frequently, vs. updating with a new Phi rule that considers the structure of the
nonlinearities. Our computer simulations showed that optimal nonlinear value functions
resulted in improvements of learning errors when the reward models were nonlinear.
Similarly, the new Phi rule led to improvements in these errors. These improvements were
accompanied by the straightening of the trajectories of the vector of free parameters in
its phase space. This straightening meant that the process became more efficient in
learning the prediction of reward. Surprisingly, however, this improved efficiency had a
complex relationship with the rate of learning. Finally, the stochasticity arising from the
probabilistic sampling of sensory stimuli, rewards, and motivations helped the learning
process narrow the range of free parameters to nearly optimal outcomes. Therefore,
we suggest that value functions and update rules optimized for social and ecological
constraints are ideal for learning aesthetic biases.

Keywords: reinforcement learning, aesthetic value, value function, delta rule, regret minimization, stochastic
dynamics
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INTRODUCTION

Values and in particular aesthetic ones are a significant part
of our lives because they contribute to our process of decision
making (Skov, 2010). Because humans are highly social animals,
the set of values of each personmust be in tune with their cultures
and surroundings. Therefore, learning is an essential component
of how our values come to be. In the case of aesthetic values, they
begin to be learned early on in life, such that by preschool age,
cultural idiosyncrasies are observed in children (Senzaki et al.,
2014). In addition, these values continue to progress over our
lifespans (Park and Huang, 2010).

How does the brain learn aesthetic values? An important
meta-analysis of neuroimaging considered commonalities of
aesthetic biases across multiple sensory modalities (Brown et al.,
2011). The results of this and many other imaging studies
indicated general mechanisms for appraisal involving a well-
studied (Schultz, 1998, 2016) reward-based learning circuit
(Lacey et al., 2011; Vartanian and Skov, 2014; Wang et al., 2015).
However, these studies suggest that many independent factors
impact this process of reward-based learning, with Brown et al.
(2011) in particular discussing a novel role for motivation.

Because the development of aesthetic biases involves
a rewards-based learning circuitry, a mechanism akin to
reinforcement learning (O’Doherty et al., 2003; Sutton and
Barto, 2018) likely mediates the process. Several theoretical
frameworks for aesthetic values have elements of reward-
circuitry and reinforcement learning. Some of these theories
are computational (Martindale, 1984; Schmidhuber, 2010; Van
de Cruys and Wagemans, 2011; Aleem et al., 2019, 2020) and
some are not (Biederman and Vessel, 2006; Skov, 2010; Vessel
and Rubin, 2010; Chatterjee and Vartanian, 2014). Of the
computational theories, the only one considering motivation
is that of Aleem et al. This is also the only theory studying the
temporal evolution of learning. Simulations of a model based on
the Aleem et al. theoretical framework andmathematical analysis
lead to three main findings. First, different people may develop
distinct weighing of aesthetic variables because of individual
variability in motivation (Nelson and Morrison, 2005; Brown
and Dissanayake, 2009; Silvia et al., 2009). Demonstration of the
development of individuality is especially important in a theory
in which learning leads to a degree of coordination of aesthetic
values across society. Second, individuals from different cultures
and environments may develop different aesthetic values because
of unique sensory inputs and social rewards. Third, because
learning is stochastic stemming from probabilistic sensory
inputs, motivations, and rewards, aesthetic values vary in time.

A potential problem for reinforcement-learning models for
the brain is the linearity of many of the most important
mechanisms. For example, the model used by Aleem et al.
(2020) assumes a linear value function (Sutton and Barto, 2018),
that is, a linear relationship between sensory inputs and values.
Furthermore, this model makes a linearity assumption for the
update rule of the value function. Thus, although the reward
has a nonlinear dependence on sensory inputs, brain actions
would approximate this dependence linearly. Biologically, these
linear mechanisms are not reflective of typical reward-related

neural signaling (Schultz, 2015). Moreover, recent studies have
signaled the need for a new conception of aesthetics that
incorporates distributed processing and nonlinear recurrent
networks (Leder and Nadal, 2014; Nadal and Chatterjee, 2019).
Assuming such linear mechanisms is common even in Machine
Learning to lighten computations and mathematical analysis
(Chung et al., 2018). In addition, linear methods have also
been well-explored theoretically (Tsitsiklis and Van Roy, 1997;
Maei, 2011; Mahmood and Sutton, 2015; Iigaya et al., 2020)
and empirically (Dann et al., 2014; White and White, 2016)
in the Machine Learning literature. Finally, arguments have
been made that linear rules perform comparably to deep neural
networks when predicting subjective aesthetic values (Iigaya
et al., 2020). However, modeling nonlinear processes with linear
approximations should produce errors, or equivalently, regret in
Machine Learning terminology (Kaelbling et al., 1996; Sutton and
Barto, 2018; formally, regret is the difference between an agent’s
performance with that of an agent that acts optimally). Hence,
increasing effort has begun in Machine Learning to develop
methods for nonlinear value functions (Tesauro, 2005; Xu et al.,
2007; Kober et al., 2013; Gu et al., 2016; Osband et al., 2016;
Chung et al., 2018).

In this article, we present mathematical and computational
analyses of linear and nonlinear reinforcement-learning models
for the acquisition of aesthetic values. We analyze 16 models.
They stem from the combination of four types of value function
(one linear and three nonlinear) and four types of value-
function update rule (two making a linearity assumption for
the updates and two assuming nonlinearities). All these models
incorporate motivation (Brown et al., 2011). The comparisons
between the models use different metrics, the most important
of which is ‘‘regret.’’ We measure regret as the difference
between reward and the prediction of reward. We choose this
metric because humans often experience emotional responses
to regret as a decision error (Gilbert et al., 2004; Filiz-Ozbay
and Ozbay, 2007; Somasundaram and Diecidue, 2016). Another
metric is time of convergence, which is important because a
good learning mechanism should acquire its values as quickly
as possible.

THEORETICAL CONSIDERATIONS

We have split the description of the theoretical considerations
into two subsections, general and mathematical. The ‘‘General
Description of the Theoretical Considerations’’ section has a
description of the ideas without any equations. Our goal in
that section is to help the reader understand the elements of
the theoretical considerations at an intuitive level. That section
may allow some readers to skip the equations (‘‘Mathematical
Description of the ‘‘Theoretical Considerations’’ section) and
the ‘‘Materials and Methods’’ section, and go directly to the
‘‘Results’’ section. The subsections of ‘‘General Description of
the Theoretical Considerations‘‘ and ‘‘Mathematical Description
of the Theoretical Considerations’’ sections have parallel titling.
The parallel subjects of these subsections may help the
reader when connecting the intuitive and mathematical levels
of understanding.
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General Description of the Theoretical
Considerations
Motivation-Gated Reinforcement Learning of
Aesthetic Values
The starting point for the analyses in this article is the theoretical
framework of Aleem et al. (2020). The core of the framework
is reinforcement learning. As it is normal for reinforcement
learning, the system first receives inputs from the external
world, that is, the sensory inputs. Moreover, the system receives
internal inputs on the motivation to act. The system then uses
these external and internal inputs to estimate what will be
the expected reward during the period in which these signals
are arriving. This estimate is commonly referred to as value.
When rewards arrive, they are compared with the values (i.e.,
the estimated rewards). If there is a mismatch (i.e., non-zero
regret), the system learns by updating the parameters of the
internal model (the value function). This update allows the
system to achieve its goal of producing better reward predictions
in the future.

While reinforcement learning is at the heart of the theoretical
framework, it has four notable extensions. First, the estimate
of reward itself is equivalent to aesthetic value. Second,
the reinforcement-learning circuitry includes the concept of
motivation within, which, by our definition, refers to the internal
drive of an individual to act given an input. More specifically,
motivation is a component of the likelihood of a person to act,
which in turn is akin to policy in Machine Learning (Sutton and
Barto, 2018). Third, both motivation and sensory inputs to the
theoretical framework are probabilistic. Fourth, the inputs to our
theoretical framework depend not only on individuals but also
across societies.

Linear and Nonlinear Value Functions
In this article, we investigate the performance of aesthetic
learning with four types of value function. First, we probe
the linear value function, which yields an estimate of reward
that is proportional to the sensory inputs. The constants
of proportionality, which Aleem et al. (2020) call aesthetic
weights, are the free parameters that the process of learning
should estimate. Second, we follow the linear step with
a saturation function characteristic of many neurobiological
processes (Hudspeth et al., 2013; Schultz, 2015). Such saturation
function added to the output of the linear function models a
value-function nonlinearity resulting from diminishing marginal
utility (Kreps, 1990). We call this mechanism the Output-
saturation model because we apply the saturating process
at the output of the linear stage. Third, we apply the
same saturation mechanism to each component of the linear
model. Appropriately, we call this mechanism the Component-
saturation model. Fourth, we use the value function developed
by Aleem et al. (2020) in their theoretical framework for
aesthetic learning.

Update Rules for Value Functions
In the Aleem et al. article, the updates of the value function
are performed with the delta rule (Sutton and Barto, 2018).
This rule implements a gradient descent on the magnitude of

regrets (errors) of the predictions of reward. The delta rule
stipulates that the change of the free parameters of the value
function should be proportionate to the difference between
observed and predicted rewards, typically denoted δ. Thus, the
larger this difference is, the faster this change becomes. In
all the simulations and mathematical analyses in this article,
this component of the delta rule applies. Furthermore, the
delta rule prescribes in what direction the vector of free
parameters of the value function should change (Here, we often
use ‘‘free parameters’’ when referring to the vector of free
parameters of the value function). This change should be in
the direction opposite to the gradient of the value function
with respect to this vector. If the value function is linear,
then this gradient is equal to the vector of sensory stimuli
(Sutton and Barto, 2018).

However, the standard delta rule has some disadvantages,
suggesting an important modification. To understand these
disadvantages, let us start with some of the advantages of
this rule. The first worth mentioning is that it attempts to
minimize regret. This minimization holds for both standard
reinforcement learning (Sutton and Barto, 2018) and the version
here with motivation gating (Aleem et al., 2020). In addition,
for the linear value function, the delta rule tends to optimize
the trajectory of the free parameters (Aleem et al., 2020).
However, as we will illustrate in the ‘‘Hypotheses Tested
in This Article’’ sections, this advantage does not apply in
general to nonlinear value functions. Fortunately, a related
rule that has this advantage does exist. This new rule points
the trajectory of the free parameters directly to the closest
point in the isoline corresponding to the reward received
(the target isoline). Because this rule takes the vector through
the shortest route, we say that the rule implements the
Shortest-path strategy. We sometimes also call this the Phi
rule because the vertical line in Φ bisects its ellipse with the
shortest path.

Hypotheses Tested in This Article
In this article, we probe the performance of learning under
various value functions (‘‘Linear and Nonlinear Value
Functions’’ section) and their various update rules (‘‘Update
Rules for Value Functions’’ section). At the simplest level,
the expectations for these probes are straightforward. For
example, an update rule appropriate for a linear value function
should do poorly with a nonlinear one. However, we wish to
develop expectations that are more granular for the various
value functions and update rules. Figure 1 helps us formulate
hypotheses based on these rules and functions.

From Figure 1, if one disregards the stochastic nature of the
learning process, we can draw the following seven hypotheses
about the interactions between values functions and their
update rules:

I. Assume that the value function is linear and the update
delta rule follows the gradient at the position of the vector
of free parameters. The final regret should be zero and the
update convergence should be fast. After convergence, the
recovery from fluctuation errors should also be fast.
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FIGURE 1 | Contour plots of four examples of value functions and relationships to possible update rules. These value functions are two-dimensional in this research
(“Stochastic Sampling” section) but multi-dimensional in general. In the examples given here, the two dimensions are measures of balance and complexity in visual
images. These measures range from 0 to 1 for the value functions illustrated in this research. The parameters of the value functions are those of Table 2. The red
arrows indicate the optimal trajectory from the current position of the vector of free parameters of the value function to the closest point of the isoline corresponding
to the sampled reward (Here, we call this curve the target isoline, but in general, it is an isosurface.) The black arrows indicate the trajectory based on gradient
computation. (A,B) For the Linear and Output-saturation value functions, the gradient and optimal trajectories coincide. (C,D) For the Component-saturation and
Aleem et al. models, the gradient trajectory is not optimal. (E,F) However, if one computed the gradients from the target isoline instead of the current position
(magenta and white arrows), the gradient at the optimal point on the target isoline would be parallel to the optimal trajectory (“Results” section; white arrows). We call
this computation the Shortest-path or Phi rule (“Update Rules for Value Functions” section).
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II. A similar hypothesis applies to the Output-saturation value
function because of its straight and parallel contour lines.

III. We hypothesize that the regret magnitude should be larger
with the Component-saturation and Aleem et al. value
functions than with the Linear and Output-saturation ones.
The convergence and the recovery from fluctuation errors
should also be slower for the former two. These problems
will be especially acute for the Aleem et al. value function.

IV. Similarly, we hypothesize a straight trajectory for the Linear
and Output-saturation value functions (except for small
stochastic fluctuations). But the trajectory should be curved
for the other two functions.

V. Instead, the Phi Rule should yield no regret and fast
convergence and recovery from fluctuation errors for all
value functions.

VI. Regardless of the rule, although value will reach a unique
fixed point, the free parameters will not. The reason for the
lack of uniqueness is that many parameter combinations
yield the same value (isolines in Figure 1).

VII. Let a parameter of the model of reward have higher
sensitivity coefficient than another parameter. Thus, if we
increase the former parameter, we get more reward than if
we raise the latter by a similar amount (Vidal et al., 1966;
Saltelli et al., 2008). The corresponding free parameters of
the value function should exhibit the same hierarchy of
contributions to the estimation of reward.

However, if one does not disregard the stochastic nature of
the learning process, these hypotheses could be wrong. With
the stochastic sampling, the contour plots in Figure 1 would
change across samples, possibly making the convergence more
complex. The computer simulations in the ‘‘Results’’ section test
this possibility.

Mathematical Description of the
Theoretical Considerations
Motivation-Gated Reinforcement Learning of
Aesthetic Values
Much of the work described in this section appears in Aleem et al.
(2020). We will only sketch the relevant work in that work here,
leaving details to that article but pointing out the new ideas in
this article.

Let the sensory inputs be a N dimensional vector, Eu(t), with
the various components ui corresponding to variables that the
brain uses to represent the external world. Without loss of
generality, Aleem et al. assumed that 0 ≤ ui ≤ 1. Moreover, and
more importantly, Aleem et al. assumed that the value function
was linear. Instead, we assume a general value function

v(t) = m(t)µ
(
Eu(t):Ew(t)

)
, (1)

where 0 ≤ m ≤ 1 is the motivation function, µ is a
general nonlinear differentiable function representing the fully
motivated value, and Ew(t) is the vector of free parameters of the
value function (In this research, we use the colon to indicate
parameters and thus, µ

(
Eu(t):Ew(t)

)
means that the function µ

has Eµ as variables and Ew as parameters. The reason Ew varies with
time is that learning operates by parametric optimization.) Thus,

if we interpret m as the probability of acting around time, then
the expected received reward is

r(t) = m(t)r∗(t), (2)

where r∗ is the reward that a fully motivated person would get.
Aleem et al. (2020) used a delta-rule update of the value

function by first computing

δ(t) = r(t)− v(t). (3)

They then used the gradient update rule assuming a linear value
function.We insteadmust use the value function in Equation (1),
which yields

dEw(t)
dt
= εδ(t)∇wµ

(
Eu(t) : Ew(t)

)
, (4)

where ε > 0 is a constant.
To complete the theoretical framework, we need to specify the

statistical properties of Eµ, m, and r*. Following Aleem et al., we
define the probability density functions

P
(
EIu|EB

)
, P
((
Eu(t), r∗(t)

)
|EIu
)
, (5)

where EB indicates the vector of parameters characteristic of the
social and environmental background under consideration and
EIu is the vector of parameters of an individual in this society. We
also define the probability density function ofm as

P
(
EIm|EB

)
, P
(
m (t) |Eu (t) ,EIm

)
, (6)

where we insert EB to indicate that individual motivation may
depend on environmental and social backgrounds.

Linear and Nonlinear Value Functions
For reinforcement learning to work well, the value function
should be able to capture the structure of the incoming rewards.
From Equations (1–3), (5) and (6), the expected least-square
error (dropping both the dependence on t and the parameters
for the sake of conciseness) is

E = ∫∫∫Eu,r∗ ,mP
(
Eu, r∗

)
P
(
m|Eu

) (
m
(
µ
(
Eu
)
− r∗

))2. (7)

This error is a function of the value function µ
(
Eu
)
(Riesz and

Szökefalvi-Nagy, 1990). As shown in Appendix: Optimal Value
Function, the minimal of this function occurs when

µopt

(
Eu:Ew, Ek

)
= 〈r∗〉

(
Eu:EIu =

[
Ew, Ek

])
, (8)

where 〈r∗〉
(
Eu:EIu =

[
Ew, Ek

])
indicates the mean of r* given the

sampled sensory inputs, and the free (Ew) and constant (Ek)
parameters of the value function.

We are now ready to specify the optimal value functions
obtained after setting the mean rewards in our models.

Linear Value Function〈
r∗lin
〉 (
Eu:EIu = Ew(lin)

)
= Ew(lin) · Eu,

µlin
(
Eu:Ew

)
= Ew · Eu, (9)

where Ew(lin) are constant parameters of the model of reward.
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Output-Saturation Value Function

〈
r∗out

〉 (
Eu:EIu =

[
Ew(out), Ek = [α1,β1]

])
=

eα1
(
Ew(out)·Eu−β1

)
− 1

eα1(Ew(out)·Eu−β1) + 1
,

µout
(
Eu:Ew,α1,β1

)
=

eα1(Ew·Eu−β1) − 1

eα1(Ew·Eu−β1) + 1
, (10)

where Ew(out), α1 > 0, and β1 are constant parameters of themodel
of reward. The right-hand side of Equation (10) is the hyperbolic
tangent, a sigmoidal function centered on β1 and with speed of
rise controlled by α1.

Component-Saturation Value Function〈
r∗com

〉 (
Eu:EIu =

[
Ew(com), Ek = [α2,1,β2,1,α2,2,β2,2]

])
=

N∑
i=1

eα2,i
(
w(com)i ·ui − β2,i

)
− 1

eα2,i
(
w(com)i ·ui − β2,i

)
+ 1

,

µcom
(
Eu:Ew,α2,1,β2,1,α2,2,β2,2

)
=

N∑
i=1

eα2,i(wi·ui − β2,i) − 1

eα2,i(wi·ui − β2,i) + 1
, (11)

where again, Ew(com), α21 > 0, β21, α22 > 0, and β22 are constant
parameters of the model of reward. In turn, Ew(com), wi, and ui are
the ith components of the vectors Ew(com), Ew, and Eu respectively.

Aleem et al. Value Function(
Eu:EIu =

[
Ew(ale), Ek = [α3,β3]

])
= −w(ale)1 + 2w1

(ale)u1 − w2
(ale)θ(α3,β3)

+ w2
(ale)e

−
(u2 − α3)2

2β33 ,
µale

(
Eu:Ew,α3,β3

)
= −w1 + 2w1u1 − w2θ (α3,β3)+ w2e

−
(u2 − α3)2

2β23 . (12)

where again, Ew(ale), α3 > 0, and β3 are constant parameters of
the model of reward. In turn, w(ale)i is the ith components of the
vector Ew(ale). Finally, the function θ is (α3, β3) is

θ (α3,β3) =
∫ 1

0
e
−
(u2 − α3)2

2β23 du2.

The derivation of Equation (12) follows from the equations in
Aleem et al. (2020).

Update Rules for Value Functions
We use two update rules for the free parameters, with the
first being the gradient-based delta rule in Equation (4). To
implement this rule, we must first sample Eu (t), r*(t), and m (t)
from Equations (5) and (6) (details in ‘‘Materials and Methods’’
section). From, these samples, we can compute the value
functions as in the second part of Equations (9)–(12) and thus,
δ (t). Finally, we must compute the gradient, ∇wµ

(
Eu (t) :Ew (t)

)
,

for these value functions.

The second update rule that we use in this article is what we
call the Phi (or Shortest-path) rule (Figures 1E,F). To define this
rule, we begin by considering{

Ewr(t)|µ
(
Eu(t):Ewr(t)

)
= r∗(t)

}
, (13)

which is the set of all free parameters of the value function that
yield the sampled reward. Thus, Ewr(t) are the points of the target
isolines in Figure 1. Now, define the optimal point in the target
isoline, that is, the point closest to Ew:

Ewopt(t) = argminEwr(t) ‖ Ewr(t)− Ew(t) ‖ . (14)

This point may not be unique, but the lack of uniqueness is rare
(and one can break it with tiny random perturbations), and thus,
we neglect it here. We now define the vector E8(t) as

E8
(
Ew(t):Eu(t), r∗(t)

)
=
Ewopt(t)− Ew(t)
‖ Ewopt(t)− Ew(t) ‖

, (15)

that is, the unit vector pointing from Ew(t) to Ewopt(t). With E8(t)
in hand, we propose a new rule instead that in Equation (4):

dEw(t)
dt
= εδ(t) E8

(
Ew(t):Eu(t), r∗(t)

)
. (16)

Hypotheses Tested in This Article
Asmentioned in the ‘‘Update Rules for Value Functions’’ section,
the gradient-based delta rule attempts to minimize regret. This
minimization holds for both standard reinforcement learning
(Sutton and Barto, 2018) and the version here with motivation
gating (Aleem et al., 2020). In the latter study, the demonstration
of the minimization of regret was for the linear value function
(Equation 9). In Appendix: Minimization of Regret Under
Optimal Value Functions and the Delta Rule, we extend the
demonstration for nonlinear value functions in the presence of
motivation. Specifically, we show that the rule in Equation (4)
tends to perform a stochastic gradient descent on the error

E =
〈
m(t)

(
r∗(t)− µ

(
Eu(t):Ew(t)

))2〉
t
, (17)

where 〈 〉t stands for time average. Consequently, the rule in
Equation (4) performs a gradient descend on the error of value
weighed statistically by the motivation.

Another implication of the delta rule is that it tends
to maximize the rate of convergence for the linear value
function (Aleem et al., 2020). The delta rule also maximizes
the rate of recovery from fluctuation errors after convergence.
These maximizations are contingent on the gradient being
perpendicular to the isolines. However as seen in Figures 1C,D,
the gradient is not generally perpendicular to the isolines for
nonlinear value functions.

These conclusions on the gradient-based delta rule underlie
Hypotheses I–IV.

In contrast, the Shortest-path Phi rule overcomes the
deficiencies of the gradient-based delta rule. The Phi
rule does so by going directly to the optimal point, Ewopt ,
on the target isoline (Equations 13 and 16). Appendix:
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Perpendicularity Condition Under the Phi Rule adds to
this conclusion, demonstrating an important property
of Ewopt :

Ewopt − Ew ∝ ∇wµ(Eu:Ewopt). (18)

Consequently, the perpendicular of the target isoline through
Ewopt is parallel to the vector connecting Ew to Ewopt . This
result extends the conclusion for the delta rule that it tends
to maximize the rate of convergence of Ew for the linear
value function. The result also extends the conclusion that
the delta rule tends to maximize the rate of recovery from
fluctuation errors after convergence. These conclusions are
now valid for nonlinear value functions if one uses the Phi
rule.

MATERIALS AND METHODS

We tested the hypotheses of ‘‘Hypotheses Tested in This
Article’’ sections through mathematical analyses and computer
simulations. The ‘‘Simulated Conditions’’ section lists all the
conditions (mixtures of value functions and update rules)
simulated in this article. Then the ‘‘Methods for Computer
Simulations’’ and ‘‘Stochastic Sampling’’ sections describe the
technical details of the simulations. These sections are followed
by a summary of the simulation procedures (‘‘Summary of
the Simulation Procedures’’ section) and the parameters of the
simulations (‘‘Standard Simulation Parameters’’ section). Finally,
the ‘‘Statistics to Test the Hypotheses’’ section describes the
statistics used to test the hypotheses. The detailed mathematical
analyses are left to the appendices, but the results are explained
at appropriate places in this article.

Simulated Conditions
This article compares the performance of various value functions
and their update rules in the learning of aesthetic biases.
Hence, we performed simulations combining conditions of value
functions and update rules. The simulated conditions appear in
Table 1.

The logic of these conditions is as follows: The 16 conditions
are divided in sets of four, with the title indicated in the
first column of this table. Every set includes all four types
of reward model. In the first set, the value function is linear
and the update rules assumes a gradient descent based on the
linear value function. This set makes these assumptions despite
the reward model not always being linear (Conditions 2–4).
Because of the doubly linear assumptions, we call this set the
Purely-linear conditions. In contrast, the second set assumes a
value function matched to the reward models. However, the
update rule continues to be linear and thus, we call this set
the Mixed-linear conditions. Next is the set called the Full-
gradient conditions. This is the only set respecting fully the
reward models in both the value functions and the gradient-
descend update rules. Finally, the Shortest-path conditions also
have values functions respectful of rewards but use the Phi rule
instead of the delta rule.

The main model in Aleem et al. (2020) corresponds to
Condition 4.

Methods for Computer Simulations
We must simulate Equations (1–4) to implement the delta rule
and Equations (1–3), and (16) for the Phi rule. Combining these
two sets of equations, we get respectively

dEw(t)
dt

= εδm(t)
(
r∗(t)− µ

(
Eu(t):Ew(t)

))
∇wµ

(
Eu(t):Ew(t)

)
,

dEw(t)
dt

= ε8m(t)
(
r∗(t)− µ

(
Eu(t):Ew(t)

))
E8
(
Ew(t):Eu(t), r∗(t)

)
. (19)

We use possibly different εδ and ε8 to allow for a fair comparison
between the convergence rates of the two processes, as explained
in the ‘‘Standard Simulation Parameters’’ section. Equations (19)
are stochastic differential equations (Aleem et al., 2020).

We simplify our simulations through a mean-field
approximation of Equation (6):

dEw(t)
dt
= εδm̄

(
Eu(t):EIm

)
(
r∗(t)− µ

(
Eu(t):Ew(t)

))
∇wµ

(
Eu(t):Ew(t)

)
,

dEw(t)
dt
= ε8m̄

(
Eu(t):EIm

)
(
r∗(t)− µ

(
Eu(t):Ew(t)

))
E8
(
Ew(t):Eu(t), r∗(t)

)
,
(20)

where m̄
(
Eu(t):EIm

)
is the mean motivation as a function of the

sensory inputs Eu(t) and parametric on EIm (Aleem et al., 2020).
To approximate a solution to Equations (20), we must

discretize time and sample, Eu, m, and r* for every t. We do this
discretization as follows:

Ew
(
tk+1

)
= Ew (tk)+ ε′δm̄

(
Eu
(
tk+1

)
:EIm
) (
r∗
(
tk+1

)
−µ

(
Eu
(
tk+1

)
:Ew (tk)

) )
∇wµ

(
Eu
(
tk+1

)
:Ew (tk)

)
,

Ew
(
tk+1

)
= Ew

(
tk
)
+ ε′8m̄

(
Eu
(
tk+1

)
:EIm
)(
r∗
(
tk+1

)
−µ

(
Eu
(
tk+1

)
:Ew
(
tk
)))
E8
(
Ew
(
tk
)
:Eu
(
tk+1

)
, r∗
(
tk+1

))
,
(21)

where ε′δ = εδ
(
tk+1 − tk

)
and ε′8 = ε8

(
tk+1 − tk

)
, with tk+1 −

tk being constant (for k = 0, 1, 2, . . .).
In this article, we compute 5wµ analytically. These gradients

are relatively easy to compute, so we omit them here from the
sake of space. As for the computation of E8, we use the method
of Marching Squares Algorithm to obtain the value isolines
(Maple, 2003), and then apply Equations (14) and (15). We
apply this algorithm to a 101 × 101 pixels approximation of the
value function.

Stochastic Sampling
To simulate Equations (21), one must sample Eu and r∗
stochastically from the probability distributions in Equation (5),
and compute m̄

(
Eu(t):EIm

)
for use in Equations (20). We follow

Aleem et al. (2020) and take five steps to simplify the sampling to
make the simulations fast. See Aleem et al. (2020) for more details
and justifications.

A. We did not simulate social ‘‘noise’’ by implementing explicitly
P
(
EIu|EB

)
and P

(
EIm|EB

)
, instead setting individual parameters

by hand.
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TABLE 1 | Conditions simulated.

Set Condition Reward Value function Update rule

Purely linear 1
〈
r∗lin
〉
; Eq. (9) µlin; Eq. (9) 5wµlin; Eqs. (4) and (9)

2
〈
r∗out
〉
; Eq. (10) µlin; Eq. (9) 5wµlin; Eqs. (4) and (9)

3
〈
r∗com

〉
; Eq. (11) µlin; Eq. (9) 5wµlin; Eqs. (4) and (9)

4
〈
r∗ale
〉
; Eq. (12) µlin; Eq. (9) 5wµlin; Eqs. (4) and (9)

Mixed linear 5
〈
r∗lin
〉
; Eq. (9) µlin; Eq. (9) 5wµlin; Eqs. (4) and (9)

6
〈
r∗out
〉
; Eq. (10) µout; Eq. (10) 5wµlin; Eqs. (4) and (9)

7
〈
r∗com

〉
; Eq. (11) µcom; Eq. (11) 5wµlin; Eqs. (4) and (9)

8
〈
r∗ale
〉
; Eq. (12) µale; Eq. (12) 5wµlin; Eqs. (4) and (9)

Full gradient 9
〈
r∗lin
〉
; Eq. (9) µlin; Eq. (9) 5wµlin; Eqs. (4) and (9)

10
〈
r∗out
〉
; Eq. (10) µout; Eq. (10) 5wµout; Eqs. (4) and (10)

11
〈
r∗com

〉
; Eq. (11) µcom; Eq. (11) 5wµcom; Eqs. (4) and (11)

12
〈
r∗ale
〉
; Eq. (12) µale; Eq. (12) 5wµale; Eqs. (4) and (12)

Shortest path 13
〈
r∗lin
〉
; Eq. (9) µlin; Eq. (9) E8; Eq. (16)

14
〈
r∗out
〉
; Eq. (10) µout; Eq. (10) E8; Eq. (16)

15
〈
r∗com

〉
; Eq. (11) µcom; Eq. (11) E8; Eq. (16)

16
〈
r∗ale
〉
; Eq. (12) µale; Eq. (12) E8; Eq. (16)

B. We split the individual parameters EIu into sensory related (EIs)
and reward related (EIr):

EIu =
[
EIs,EIr

]
. (22)

C. We made Eu two-dimensional. One component was visual
balance (ub) and the other was visual complexity (uc), making

Eu = [ub, uc] ,

where 0 ≤ ub, uc ≤ 1, as per the definitions elsewhere (Aleem
et al., 2017). Thus, while our model is amenable to a range
of sensory inputs, we simplified it to the visual domain for
illustrative purposes. Accordingly,N = 2 in Equation (11), and
u1 = ub and u2 = uc in Equation (12) and Figure 1.

D. To be compatible with the two-dimensional Eu and so that all
value functions have the same number of free parameters,
we have set the number of free parameters in each model of
reward to two. The models in Equations (10–12) have other
parameters, namely, α1, β1, α2, β2, α3, and β3. However, we
treat them as constants, with values specified in the ‘‘Standard
Simulation Parameters’’ section.

E. We split the second term of Equation (5) as follows:

P
((
Eu, r∗

)
|EIu
)
= P

(
Eu|EIs

)
P
(
r∗|Eu,EIr

)
. (23)

With these simplifications in hand, we followed Aleem et al.
for the sampling of Eu through the first term of the right-hand
side of Equation (23). We also followed them for the subsequent
computation of m̄

(
Eu(t):EIm

)
. For the sake of space, we refer the

reader to their article (see their Equations 12, 13, 18, and 19).
Finally, we must specify how to sample r* through the

second term of the right-hand side of Equation (23). We model
P
(
r∗|Eu,EIr

)
as a Gaussian distribution with one of the means as in

Equations (9–12):

P
(
r∗x |Eu:EIr =

[
Ew(x), Ek =

[
Ek(x), σx

]])
=

1
√
2πσx

e
−

(
r∗−〈r∗x〉

(
Eu:Ew(x) ,Ek(x)

))
2σ2x , (24)

where x ∈ {lin, out, com, ale}, and Ew(x), Ek(x), and σ x > 0 are
constant parameters.

Summary of the Simulation Procedures
The simulations proceed with the following algorithm:

a. Suppose that at time tk, the vector of free parameters is Ew (tk).
b. Sample Eu

(
tk+1

)
=
[
ub
(
tk+1

)
, uc

(
tk+1

)]
from Equation (12) of

Aleem et al. (2020).
c. Sample

〈
r∗x tk+1

〉
from Equation (24), with the definitions of

〈
r∗x
〉

in Equations (9–12).
d. Compute m̄

(
Eu
(
tk+1

)
:EIm
)
from Equation (18) of Aleem et al.

(2020).
e. Compute Ew

(
tk+1

)
from Equation (21).

f. Start the process again at Step a but at time tk+1.

See Aleem et al. (2020) for more details on this algorithm.
All simulations were performed with code specially written

in MATLAB.

Standard Simulation Parameters
In this article, we report on simulations with different parameter
sets to explore the various models. We have designated one of
these sets as our standard set because the corresponding results
capture the data in the literature reasonably well (Aleem et al.,
2020). Table 2 shows the parameters of the standard simulations.
Parameters for other simulations are indicated as appropriate in
the Results (‘‘Results’’ section).

A parameter in this table merits special discussion, namely, ε8
= 0.007454. We chose this value to make the comparison of the
convergence rates of the gradient delta rule and the Phi rule fair.
Changes of Ew in both rules are proportional to δ times a vector
indicating the direction of change. In the delta rule, the vector
is 5wµ whereas in the Phi rule, the vector is E8, with the latter
being a unit vector, while the former possibly having variable
magnitudes. To make the convergence rate fair, we wanted to
make themagnitudes of εδ ×5wµ comparable to themagnitudes
of ε8 × E8. We did so by obtaining the root mean square of the
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TABLE 2 | Standard set of parameters.

Parameter(s) Equation(s) Values

Ew (t0) (21) [0, 0]
εδ (21) 0.01
ε8 (21) 0.007454
tk+1 − tk (21) 1[
Ew(lin), σlin

]
(9) and (24) [0.6, 0.9, 0.1414][

Ew(out),α1,β1, σout
]

(10) and (24) [1.2, 1.8, 10, 1.5, 0.1414][
Ew(com),α21,β21,α22,β22, σcom

]
(11) and (24) [1.2, 1.8, 10, 0.6, 10, 0.9, 0.1414][

Ew(out),α3,β3, σout
]

(12) and (24) [0.6, 1, 0.75, 0.1, 0.1414]

magnitude of εδ × 5wµlin, which is 0.7454, and thus because
εδ = 0.01, we got ε8 = 0.007454.

Statistics to Test the Hypotheses
All analyses comparing these statistics across the stimulated
conditions (Table 1) used one-way ANOVA followed by post-
hoc two-sided t-tests. For each of the Conditions 1–16, we ran
10 repetitions with 1,000,000 iterations each.

The statistics used to test our hypotheses (‘‘Hypotheses Tested
in This Article’’ sections) are summarized in Table 3.

To start the estimation of these statistics, we began
by obtaining the fully motivated value curve obtained for
the most common stimulus, namely, Eu = [ub, uc] = [0.5, 0.5]
(Aleem et al., 2020). This curve was v∗(t) = µ

(
[0.5, 0.5] : Ew(t)

)
[Equation (1)].

From this curve, we first estimated τ c as the number of
iterations needed for v*(t) to reach 90% of the median of
v*(t) during the last 100,000 iterations. Similarly, we used these
100,000 iterations of v*(t) to estimate τ r. This statistic was
important because it determined how many iterations we had
to consider to avoid correlated measurements of the variable
under consideration. We estimated this statistic through the
autocorrelation coefficient (Park, 2018), by measuring when it
decayed to 0.1 and setting that time to τ r. We also tested whether
τ c and τ r were correlated across all the conditions in Table 1.
For this purpose, we used the robust Kendall’s τ correlation
coefficient (Bonett and Wright, 2000).

With τ r in hand, we could proceed to measure the values of
δf and Ewf . To measure these statistics, we obtained the medians
of δ and Ew respectively over the last 2 × τ r iterations of each
simulation. By considering 2× τ r iterations, we could make sure
to have two sets of temporally independent measurements.

Finally, to measure ρq we first obtained the phase diagram of
the free parameters, that is, w2(t) vs. w1(t). As we will see in the
‘‘Results’’ section, we can model the initial portion of this plot in
our simulations as the straight line w2(t) = kw1(t), where k >
0 is a constant, and w1(t), w2(t) > 0 for t > 0. We estimated
this line by robust linear regression, using M-estimation with
Tukey’s biweight function (Rousseeuw and Leroy, 2003) from
all the iterations such that t ≤ τ c. The plot then sometimes
deviated from this line, meandering from it a certain distance. To
measure the deviation from straightness, we used three points:
Ew (t0) (Table 2), Ewf =

[
wf ,1,wf ,2

]
(Table 3), and the point Ew (tn)

in the line w2(t) = kw1(t) that was nearest to Ewf . From these
points, we defined the deviation from straightness as the signed
ratio of the distance from Ewf to Ew (tn) to the distance from

Ew (tn) to Ew (t0). The sign was positive if Ewf was above the line
and negative otherwise. This definition using a signed ratio was
valid because the denominator was always positive with our
simulations. Straightforward calculus and algebra showed

ρ¬ =
wf ,2 − kwf ,1

kwf ,2 + wf ,1
. (25)

Consequently,−∞ ≤ ρ¬ ≤ ∞, with ρ¬ = 0 if and only if Ewf
was on the initial straight line. Highly positive ρ¬ meant that
final aesthetic preferences had a strong bias towards complexity,
whereas highly negative ρ¬ meant a strong balance bias.

To test Hypothesis VI, we ran a one-way ANOVA on each of
the components of Ewf over the 10 repetitions of each condition.

RESULTS

Limitations of the Purely-Linear Conditions
If the brain acquires aesthetic biases through reinforcement
learning, neural circuitries implementing suitable value functions
and update rules are necessary for good performance. We
propose that good value functions and update rules depend on
the statistics of sensory inputs, motivations, and rewards. Here,
we focus on the latter. We do so because learning to predict
rewards is the goal of the learning process. We thus built several
models of reward, one linear and three nonlinear, and tested the
learning performance of four value functions and three types of
update rules (Table 1).

The simplest and thus, the most used combination of
value function and update rule for reinforcement learning in
the brain is purely linear (Conditions 1–4 in Table 1). Is
learning performance with this combination good even when
facing nonlinear reward models? Figure 2 shows the results
of simulations with this combination of value function and
update rule. The figure includes the temporal progression of free
parameters, their phase diagrams, and errors in the prediction
of reward. The simulations are performed for the four types of
reward model studied in this article.

In all the simulations, the free parameters rose rapidly initially
(Figures 2A–D). This rise occurred because these free parameters
correlated positively with reward (Aleem et al., 2020). However,
for some conditions, the fast rise ended and one of the free
parameters started to fall as the other continued to climb
(Figures 2A,C). This apparent competition of free parameters
eventually stopped and the simulations reached steady state.
We will address the reason for this apparent competition in
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TABLE 3 | Statistics used to test the hypotheses.

Symbol Title Hypotheses

τ c Time of convergence I–III and V
τ r Time of recovery from fluctuation errors I–III and V
δf Final regret I–III and V
Ewf Final free parameters of the value function VI
ρ¬ Deviation from straightness IV

the ‘‘Failing Hypotheses: How Stochasticity Helps and Shapes
Learning’’ section. The apparent competition was especially
evident in the phase diagrams (Figure 2E). With apparent
competition, the phase diagram first seemed to rise linearly and
then meandered away from the straight line (see the Linear and
the Aleem et al.’s reward models in Figure 2E).

The apparent competition between the free parameters was
not reflected in the temporal dependence of values. They rose and
reached a steady state without any inflection points (Figure 7 of
Aleem et al. —the results here were similar; data not shown). The
lack-of-inflection point result is not surprising, because as shown
in the ‘‘Update Rules for Value Functions’’ section, although free
parameters do not statistically reach a unique fixed point, values
do (Aleem et al., 2020). Furthermore, the delta rule used in these
simulations tends to minimize value regret in a gradient-decent
manner (‘‘Update Rules for Value Functions’’ section; Appendix:
Minimization of Regret Under Optimal Value Functions and
the Delta Rule). Hence, values monotonically approach optimal
results, even if the free parameters display strange behaviors.

Going back to the temporal plots, we almost always observed
the free parameter of complexity being larger than that of
balance in these simulations (Figures 2A,B,D). This advantage
of complexity was not surprising. We set up the simulations
such that the fixed parameters of complexity made it contribute
more to reward than those of balance (Table 2). However, when
the reward model used the Component–saturation nonlinearity,
the opposite happened and balance won (Figures 2C,E). The
plots of regret provided further evidence of the inadequacy
of the Purely-linear conditions (Figure 2F). Only when the
reward model was linear did the final regret stay near zero. For
all nonlinear reward models, the final regret was significantly
negative (overestimation of reward).

To quantify the performance of the Purely-linear conditions,
we measured the five statistics indicated in Table 3. The first
statistic, regret (δf), indicated the overall error of the estimation
of reward after the learning process had converged. Next, the
time of convergence (τ c), estimated how long the learning
process took to converge. A related statistic was τ r, which
captured how long the learning process took to recover from a
fluctuation error. In turn, the deviation from straightness (ρ¬
captured how directly the learning trajectory went to the final
goal. Finally, we measured with Ewf where the free parameters
converged at the end of the simulation. These results are
summarized in Figure 3.

As expected, the magnitudes of the final regrets were large
when using the Purely-linear strategy with nonlinear reward
models (Figure 3A). These regrets were negative (overestimation
of reward). However, the regrets were not significantly different

from zero for the linear reward model (δf = −0.0001 ± 0.0001;
mean ± standard error). Although the regrets were statistically
different from each other (one-way ANOVA and post-hoc two-
sided t-test), the times of convergence were roughly similar (τ c
≈ 1,400 iterations—Figure 3B). Likewise, the times of recovery
of fluctuation errors were roughly comparable (τ r ≈ 1,200
iterations—Figure 3B). The times of recovery exhibited a strong
positive correlation with the times of convergence across all
the conditions of Table 1 (Figure 3B; Kendall’s τ = 0.93, p <
4 × 10−10). As for deviations from straightness, all but the
Output-saturation reward yielded results significantly different
from zero (Figure 3C). These deviations were positive (advantage
to complexity) or negative (advantage to balance). Interestingly,
the Purely-linear simulations deviated from zero even for the
linear reward model (ρ¬ = 0.084± 0.004; t = 20.0, 9 d. f.,
p< 1× 10−8).

In conclusion, the simulations with the Purely-linear
conditions rule out Hypothesis I (‘‘Hypotheses Tested in
This Article’’ sections). This hypothesis fails because of the
non-zero final regrets observed despite using a linear value
function. We also rule out Hypothesis IV, since the linear value
function yielded curved trajectories for all but the Output-
saturation reward model. Finally, the inversion of complexity
and balance preferences in Figure 2C rules out Hypothesis VII.
On Table 2, the parameters of complexity are larger than those
of balance, making the sensitivity coefficients for the former
larger than for the latter. Therefore, Hypothesis VII would
predict complexity preferences to be always larger than those
for balance.

Simulations With the Mixed-Linear
Conditions
Using a linear value function tends to lead to a poor
learning performance when the reward model is nonlinear
(Figures 2, 3), but does the outcome improve when one
uses the appropriate nonlinear value function? Would
we observe an improvement even if the update rule
continues to be linear? To answer these questions, we
performed the simulations for the Mixed-linear conditions
(Table 1). Figure 4 shows the results of these simulations.
These results are important because they address the
Hypotheses II and III in the ‘‘Hypotheses Tested in This
Article’’ sections.

A comparison of Figure 4 with Figure 2 revealed that the
Purely and Mixed-linear conditions yielded qualitatively, but
not quantitively, similar learning performances. The ordering
of the free-parameter curves (Figures 4A–D) were largely
similar for the two sets of conditions. So were the shapes
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FIGURE 2 | Dynamics of the free parameters of the value function for the purely-linear conditions (Table 1). (A–D) Linear, Output-saturation, Component-saturation,
and Aleem et al.’s reward models respectively. Red and blue lines correspond respectively to free parameters related to balance and complexity in the sensory
inputs. The inset in (A) provides details of the early dynamics (first 10,000 iterations). (E) Phase diagrams. (F) Time dependence of regrets, smoothed with a
500-iterations moving average. This figure indicates that linear value functions and update rules yield poor learning performance when the reward models are
nonlinear. For example, regrets are significantly negative (overestimation of reward) for all nonlinear reward models (Panel F).

of the phase diagrams (Figure 4E) and the regret behaviors
(Figure 4F). This similarity included the surprising ‘‘error’’ in
ordering for the behavior of the Component-saturation curves
(Figure 4C). However, the final free parameters were smaller

for the Saturation reward models and larger for Aleem et al.
in the Mixed-linear conditions. In addition, the magnitudes of
final regrets were smaller. Figure 3A quantifies the improvement
of the final regret for the Aleem reward model. In contrast,
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FIGURE 3 | Statistics of the tested conditions (Table 1). (A) Final regret. (B) Times of convergence and of recovery from fluctuation errors. (C) Deviation from
straightness. (D) Final free parameters of the value functions. each of these statistics was measured 10 times for each of the reward models, with the means and
standard errors displayed. Color bins indicate the different reward models (colors matched to Figures 2E,F). We group the 16 conditions in sets of four according to
the experimental conditions (Table 1). These sets were the purely linear, mixed linear, full gradient, and shortest path. The sets appear twice in Panel (B), for time of
convergence (transparent red) and time of recovery from fluctuation errors (transparent blue). Similarly, the sets appear twice in Panel (D), for balance (transparent
red) and complexity (transparent blue) free parameters. The dotted horizontal lines indicate the parameters of the linear reward models.

both Saturation reward models did not show statistically
significant changes in terms of regret. Surprisingly, however,
the time of convergence became faster for the Saturation
reward models (τ c ≈ 430 iterations) and slower for Aleem
et al. reward τ c = 7,300 ± 100 iterations (Figure 3B). The
times of recovery from fluctuation errors exhibited similar
results (Figure 3B). Finally, the magnitude of deviations
from straightness fell for the Aleem et al.’s reward model
(Figure 3C).

We conclude that Hypothesis II is also not valid. It
fails because the Mixed-linear conditions include the Output-
saturation value function, which yields no improvement in the
final regret. Moreover, we can reject Hypothesis III because the
magnitude of final regret for the Aleem et al. value function is
smaller than for the Linear one. However, the slowness of both
convergence and recovery from fluctuation errors with the Aleem
et al. value function is predicted by the second part of Hypothesis
III. Similarly, the straightness of the trajectory with the Output-
saturation value function supports the second part of Hypothesis
IV. The curvatures with the Component-saturation and Aleem et
al. value functions also do so.

Simulations With the Full-Gradient
Conditions
Why does the Mixed-linear conditions not improve the
performance with the Output and Component-saturation reward

models despite using the appropriate value functions? Is the
failure due to the use of an inappropriate (linear) update
rule? A simple way to answer these questions is to implement
the gradient update fully in the simulations. This is exactly
what the Full-gradient conditions of Table 1 aim to achieve.
The results of the simulations with these conditions appear in
Figure 5.

The learning performances in Figure 5 were like those in
Figure 4. The only apparent changes in Figure 5 were more noise
in the Saturation conditions, and closer final free parameters of
balance and complexity for Component Saturation (Figure 5C).
However, inspection of the statistics in Figure 3 revealed small
but significant improvements with the Full-gradient conditions.
For example, the final regret improved slightly for the Aleem
et al. function from δf = 0.0017 ± 0.0001 to δf = 0.0013 ±
0.0001 (t = 2.26, 18 d. f., p < 0.04). The statistics also revealed
faster times to convergence for the Saturation value functions
(τ c ≈ 40 iterations; t = 4.64, 18 d. f., p < 3 × 10−4 for Output
Saturation). The times of recovery from fluctuation errors again
exhibited similar results. In terms of deviation from straightness,
the notable result was the change of sign for the Aleem et al.
value function. The deviation from straightness changed from
ρ¬ = 0.066± 0.002 to ρ¬ = −0.057± 0.003.

Consequently, employing the appropriate update rules in a
gradient-based delta-rule model helps the learning performance,
but the effects are minor.

Frontiers in Human Neuroscience | www.frontiersin.org 12 May 2021 | Volume 15 | Article 639081125

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Grzywacz Nonlinear Aesthetic Learning

FIGURE 4 | Dynamics of the free parameters of the value function for the Mixed-linear conditions (Table 1). The conventions for this figure are the same as those for
Figure 2. The results here are qualitatively like those in Figure 2, but some significant quantitative differences are readily apparent. The panels and conventions for
this figure are the same as those for Figure 2.

Improved Performance With the
Shortest-Path (Phi Rule) Conditions
Even with the Full-gradient conditions, the learning performance
is still wanting (Figure 3), especially for nonlinear reward
models. Figure 1 provides a possible explanation for the
deficiency of performance based on gradient-based delta rules.

The gradient is taken at the position of the vector of
free parameters. Therefore, the direction of the gradient is
generally blind to the curvatures of the isolines of the value
function (Figures 1C,D). We have then proposed a new
update rule that bypasses this deficiency of the gradient-
based delta rule. If the value function is known, a calculation
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FIGURE 5 | Dynamics of the free parameters of the value function for the full-gradient conditions (Table 1). The conventions for this figure are the same as those for
Figure 2. The results here are qualitatively like those in Figure 4, with only minor quantitative differences being easily observable. The panels and conventions for this
figure are the same as those for Figure 2.

can be performed of the direction minimizing the path
from the vector of free parameters to the target isoline
(Figures 1E,F). We have called this update rule the Shortest-
path or Phi rule (‘‘Update Rules for Value Functions’’ section).
The results of the simulations with this new rule appear in
Figure 6.

Figure 6 shows that the Shortest-path (Phi) update rule
produces superior performance when compared to the Full-
gradient delta rule (Figure 5). The best evidence for the
improved performance is that the magnitudes of final regrets
are smaller with the Phi rule than with the delta rule
(red curves in Figures 5C, 6C). This is confirmed in
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FIGURE 6 | Dynamics of the free parameters of the value function for the shortest-path (Phi Rule) conditions (Table 1). The conventions for this figure are the same
as those for Figure 2. The free-parameter and phase-diagram results here are qualitatively like those in Figure 5, with minor apparent quantitative differences
(Panels A–E). However, although the changes in the free-parameter curves are subtle, the improvement of the regrets are dramatic (Panel F).

Figure 3A, especially for the Saturation conditions. The
magnitude of the deviation from straightness also fell for
the Component-saturation condition (Figure 3C; t = 7.23,
18 d. f., p < 2 × 10−6). Furthermore, this deviation
fell for the Aleem et al. value functions (t = 3.76, 18

d. f., p < 0.002). Finally, the time of convergence fell
for Aleem et al. value function from τ c = 8,900 ± 100
to τ c = 6,290 ± 70 iterations (Figure 3). The time of
recovery from fluctuation errors also exhibited similar results
(Figure 3B).

Frontiers in Human Neuroscience | www.frontiersin.org 15 May 2021 | Volume 15 | Article 639081128

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Grzywacz Nonlinear Aesthetic Learning

In conclusion, the Shortest-path (Phi) rule leads to superior
learning performance as compared to the delta rule. However,
the performance is not perfect. Imperfections include the small
but non-zero regrets, small but significant deviations from
straightness, and the relatively slow convergence and recovery
for the Aleem et al. value function. Hence, the results reject
Hypothesis V that states that the Phi Rule should yield no regret,
and fast convergence and recovery from fluctuation errors.

Non-uniqueness of the Learned Free
Parameters
Hypothesis VI predicts that regardless of the update rule for the
value function, the value reaches a unique fixed point (albeit
only statistically), but the free parameters do not. The reason
for the lack of uniqueness is that many parameter combinations
yield the same value (isolines in Figure 1). To test this non-
uniqueness hypothesis, we have inspected the statistics of the
final free parameters of the simulations. The statistics appear in
Figures 3D, 7, which shows box plots for each of the 10 individual
simulations in some of the conditions in Table 1.

The statistics in Figure 3D initially suggested that at least
for some conditions, the free parameters converged statistically
to a unique fixed point. For example, the linear value function,
which we repeated over the four sets of conditions, yielded
final estimated parameters indistinguishable from those of the
reward function (dotted horizontal lines in Figure 3D). The
estimated value-function parameters for the delta rule (N = 30)
were wf,1 = 0.5999 ± 0.0007 and wf,2 = 0.9005 ± 0.0008. In
turn, the estimated value-function parameters for the Phi rule
(N = 10) were wf,1 = 0.598 ± 0.001 and wf,2 = 0.900 ± 0.001.
These estimated value-function parameters were statistically the
same as the reward parameters, which were Ew(lin) = [0.6, 0.9]
(Table 2).

However, closer inspection of the data reveals that the
free parameters do not converge statistically to a unique fixed
point. Figure 7 illustrates this conclusion with four examples
of conditions in Table 1. (However, the conclusion applies
to all conditions—data not shown). In these examples, we
focus on the final balance free parameter and break down the
results into the 10 simulations that give rise to each bin of
Figure 3D. The first example to comment here is the one
described in the last paragraph). As the Figure 7A shows,
although the final balance free parameter hovers close to 0.6
(≈2.5% variation), the outcomes of the different simulations
are not statistically homogeneous (one-way ANOVA, F = 5,960,
9 numerator d.f., 26,080 denominator d.f. p < 10−15). This
inhomogeneity is not due to autocorrelations of the value
signal (‘‘Statistics to Test the Hypotheses’’ section). In addition,
the inhomogeneity is applicable if one uses the Phi instead
of the delta rule (Figure 7B, ≈1.5% variation, p < 10−15).
Finally, the inhomogeneity remains if the value function is
nonlinear. Figures 7C,D illustrate this latter conclusion for the
Component-saturation value function, using the delta and Phi
rules respectively. The respective variations are approximately
25% and 15%. And the one-way ANOVA tests yield p < 10−15

for both cases.

In closing, we cannot strictly speaking reject Hypothesis VI,
because the free parameters do not converge statistically to a
unique fixed point. However, the breakdown of uniqueness is
less than expected from Figure 1. For example, the variation of
final balance free parameters is small, being less than 2.5% for the
linear value function. The small variation and non-uniqueness of
convergence, leads us to define the concept of region (instead of
point) of convergence.

Failing Hypotheses: How Stochasticity
Helps and Shapes Learning
The sections ‘‘Limitations of the Purely-linear Conditions’’ to
‘‘Non-uniqueness of the Learned Free Parameters’’ sections ruled
out the hypotheses raised in the ‘‘Hypotheses Tested in This
Article’’ sections, except possibly for Hypothesis VI, whose
test nevertheless yielded a surprising result. Why did those
hypotheses fail? In the ‘‘Hypotheses Tested in This Article’’
sections, we mentioned that we formulated the hypotheses by
disregarding the stochastic nature of the learning process. In this
section, we show that the stochasticity of the process has more
effect on the learning outcome than expected.

To understand why stochasticity led to the rejection of all but
one of the hypotheses raised by Figure 1, we dove deeper into
the surviving hypothesis. Although the final free parameters did
not predictably exhibit uniqueness according to Hypothesis VI,
their variation was much less than expected (Figure 7). Why was
the variation so small? To answer this question, consider initially
the linear value function (Figure 1A). The expectation of large
variation of final free parameters was due to every point on the
target isoline giving the same prediction of reward. However,
because we drew the sensory inputs and rewards randomly across
iterations, the slopes and intercepts of the isolines changed.
Consequently, the target isoline changed across iterations. But
the intersections of the target isolines crossed in a small region
around the fixed parameters of the reward model (Figure 8A).
Therefore, the variations of the final free parameters were smaller
than we would expect by only considering the non-stochastic
process (Figure 1A). The same low-variation result applied to
the nonlinear value functions (data not shown). The stochasticity
of the learning process thus helped improve the acquired final
free parameters.

Similarly, the stochasticity helped explain the failure of the
other hypotheses. Hypothesis I failed because of the non-zero
final regrets observed despite using a linear value function when
the reward model was nonlinear (Figures 2F, 3A). Consider for
example the nonlinear Output-saturation model in Figure 1B.
In this model, the contour plot also consisted of parallel straight
isolines. When the learning converged around the right solution,
the stochastic process sometimes took the free parameters
beyond the target isoline and sometimes before it. As shown
in Figure 1B, the gradient was larger before than beyond that
isoline. The larger gradient caused the recovery to be faster for the
former kind of error. Thus, the value overestimated reward on
average, that is, the free parameters spent more time recovering
beyond the target isoline than before it. The consequence was that
when the regret is positive, it stayed so for fewer iterations than
when it was negative (Figure 8B). The regret was thus negative on
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FIGURE 7 | Box plots of the final balance free parameter in each of the simulations of four conditions in Table 1. (A) Full-gradient delta rule with linear value
function. (B) Shortest-path (Phi) rule with linear value function. (C) Full-gradient delta rule with Component-saturation value function. (D) Shortest-path (Phi) rule with
Component-saturation value function. Each box plot contains the 10 simulations of the indicated condition. On each box, the central mark is the median, and the
edges of the box are the 25th and 75th percentiles. The whiskers are extended to the most extreme data points that are not considered outliers, with those being
plotted individually using red “+” symbols. Box plots include notches for the comparison of the median values. Two medians are significantly different at the 5%
significance level if their intervals, represented by notches, do not overlap. In all these four examples, the median final balance free parameters varied significantly
across the simulations.

average (Figures 2F, 3A). Similar regret reasons helped explain
why Hypotheses II, III, and V failed (details not discussed here
for the sake of brevity).

Stochasticity also explained why we could reject Hypothesis
IV. We ruled it out because the linear value function yielded
curved trajectories for all but the Output-saturation reward
model (Figure 2E). An initial hypothesis for what caused these
curved trajectories was the motivation function Equation (1).
Aleem et al. (2020) showed that making this function a constant
eliminated the curved trajectory in their model. However, their
model corresponded only to Condition four in Table 1, so
we could not be sure that their result would apply to all the
conditions in Figure 2E. When we probed this possibility by
setting the motivation to a constant, we generally did not
eliminate the curvatures of the trajectories in that figure. The only
exception was for the Aleem et al.’s reward model (Figure 8C).

Further investigation revealed that the reason for the
curvatures was due to something more fundamental and again,
related to the stochasticity of the learning process. The argument

explaining the reason was mathematical. Taking the mean-field
approximation of Equation (19) (Chaikin and Lubensky, 2007)
and neglecting the probabilistic variations of m (because it does
not matter for the curvatures) we get

dEw(t)
dt
= εδm

(〈
r∗(t)∇wµ

(
Eu(t):Ew(t)

) 〉
r∗ ,Eu

−
〈
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(
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)
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(
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,
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−
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The term inside the parenthesis in this equation is the
subtraction of two averages over r* and Eu. These averages are like
those in Equation (17), using the sampling of r* and Eu at every
t. Consider the situation in which the value µ

(
Eu(t):Ew(t)

)
is a

poor predictor of the reward r*(t). If the value underestimates the
reward grossly, then the first average dominates the dynamics.
If instead the value overestimates the reward grossly, then the
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FIGURE 8 | Explanations for the failures of the hypotheses in the “Hypotheses Tested in This Article” sections. (A) First 200 target isolines in the simulations of
Figure 7A. The red star indicates the parameters of the model of reward (Table 2). The red star lies in the middle of the small region defined by the intersection of the
target isolines. (B) Distribution of the number of consecutive iterations spent before (blue) and beyond (red) the target isolines in the last 100,000 iterations of the
simulations of Figure 2B. The free parameters take longer to recover when they are beyond the target isoline than after it. (C) Phase diagram similar to Figure 2E
but with the motivation function set to 1. The phase diagrams continue to exhibit curvatures, except possibly for that with the Aleem et al.’s reward model.
(D) Comparison of 100 consecutive iterations (iteration 1,401 to iteration 1,500) with the linear (Figure 2A) and Component-saturation (Figure 2C) rewards models.
The results with the Linear model (red dots) exhibit little correlation between δ and the direction of Eµ. But a strong, complex correlation is evident for the
Component-saturation model (blue).

second average dominates. Either way, the dominance gives rise
to the initial, straight trajectory of the simulations (Figures 2E,
4E, 5E, 6E). When the simulations approach the region of
convergence, both averages begin to contribute simultaneously
to the slower, more random trajectory. Now, the first but not the
second average depend on the statistics of r*. Hence, the initial
and final trajectories are generally in different directions, giving
rise to the curvatures.

Finally, stochasticity was also at the core of why Hypothesis
VII failed. The inversion of complexity and balance free
parameters in Figures 2C, 4C, 5C, 6C ruled out Hypothesis
VII. For this inversion to occur, the right-hand side of Equation
(4) had to push the balance free parameters upward faster
than the complexity ones. The function δ in Equation (4) was
identical for the balance and complexity components of the
vector Ew. Similarly, ∇wµ

(
Eu(t):Ew(t)

)
did not depend on reward

and thus, could not differentiate the importance of balance and

complexity. Consequently, because ∇wµ
(
Eu(t):Ew(t)

)
depended

only on Eu, the explanation for why the balance free parameter
grewmore than the complexity one had to rely on the correlation
between δ and Eu. Did certain directions of Eu coincide with
larger δ? Figure 8D demonstrated the correlation between δ

and Eu with a sector of 100 points in the simulation giving
rise to Figures 2A,C (This sector was from Iteration 1,401 to
Iteration 1,500, but other sectors and other Computer Saturation
simulations yielded similar results). The δ in the simulations
with the Linear reward model was not strongly correlated with
the direction of Eu. However, the Component-saturation model
yielded larger positive δ than the Linear model at low angles of
Eu (closer to the balance axis). Moreover, for the most part, the
Component-saturation model yielded negative δ, specially at the
larger angles, that is, closer to complexity. Therefore, Figure 8D
confirmed the correlation between δ and Eu. This correlation was
such that the Component-saturation model yielded statistically
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larger balance free parameters than complexity ones. Details of
why the Component-saturation model exhibited the correlation
seen in Figure 8D had to do with the specific shape of the
nonlinearity and the statistics of Eu. We left these details out of
this paper for the sake of brevity.

DISCUSSION

An increasingly large number of neuroimaging studies have
allowed us to begin understanding the basic neural circuitries
underlying the computation of aesthetic biases in the brain
(Brown et al., 2011). These circuitries are suggestive of
computational mechanisms for the learning of these biases
as a set of decision values. Their acquisition would take the
form of reinforcement learning gated by internal mechanisms
of motivation. Accordingly, a recent theoretical framework for
the learning of aesthetic biases followed these computational
mechanisms (Aleem et al., 2019, 2020). A model based on that
framework could account for interesting features of human
aesthetic biases. These features included individuality (Nelson
and Morrison, 2005; Brown and Dissanayake, 2009; Silvia et al.,
2009), cultural predispositions (Masuda et al., 2008; Park and
Huang, 2010; Senzaki et al., 2014), stochastic dynamics of
learning and aesthetic biases (Grzywacz and de Juan, 2003;
Pouget et al., 2013; Aleem et al., 2020), and the peak-shift effect
(Ramachandran and Hirstein, 1999; Costa and Corazza, 2006;
Aleem et al., 2020). However, despite the success in explaining
these features, a potential major weakness of the model in Aleem
et al. (2020) was the linearity of the value function used to
predict reward. Such an assumption of linearity is often made
in reinforcement-learning models of brain function (Kaelbling
et al., 1996; Sutton and Barto, 2018). In this research, we probe
what would mean to relax this assumption. In this section, we
discuss the effect of relaxing linearity on regret (‘‘Minimization
of Regret’’ section), learning rate (‘‘Efficiency of Learning’’ and
‘‘Phi Versus Delta Rules’’ sections), and qualitative errors (‘‘Does
the Brain Use Ecological Value Functions?’’ section).

Minimization of Regret
The learning performance exhibited significant regret (error)
when using a linear value function to try to predict rewards
arising from a nonlinear model. Others have proposed nonlinear
value functions (Chung et al., 2018), methods to deal these
functions (Xu et al., 2007; Gu et al., 2016; Osband et al.,
2016), or their approximators (Tesauro, 2005; Kober et al., 2013;
Mahadevan et al., 2013). Here, we attempted to develop optimal
nonlinear value functions. The result was exciting because it told
us that the optimal nonlinear value function related directly to
the statistics of reward in a predictable manner [Equation (8)].
However, incorporating the optimal nonlinear value function
helped with some nonlinear reward models but not others. We
had expected better performance with these value functions when
using the delta rule. Our expectation was due to themathematical
demonstration of theminimization of regret, even with nonlinear
value functions. How did we explain this unmet expectation?
The expectation of optimization came from a process of gradient
descent implemented by the delta rule (Sutton and Barto, 2018).

That the regret did not go to zero could have meant that
a local minimum different from the global one trapped the
gradient descent (Beck, 2017). Such traps might occur for some
nonlinearities but not others.

However, the specific type of stochasticity in our models
made it unlikely that their learning processes normally stopped
at local minima. The stochastic mechanism arising from
the probabilistic sampling of sensory stimuli, rewards, and
motivations caused the target isolines to vary. The variation
likely helped the free parameters to approach their optimal values
(Figures 7A,C). This is not surprising because stochasticity often
helps optimization processes (Metropolis et al., 1953; Kirkpatrick
et al., 1983; Spall, 2003). But for our models, the interaction
between stochasticity and the nonlinearities could also cause
important errors. Even if the simulation succeeded in reaching
exactly a target isoline, the next instant would produce a new
one. At this new instant, the vector of free parameters could be
before or beyond the new target isoline. The rate of recovery
in these two conditions were different because of the model
nonlinearity. Consequently, on average, the solution was not
optimal, because of the interaction between stochasticity and the
nonlinearities of the models. Errors of various forms of stochastic
optimization have been described in other studies (Ingber, 1993;
Shen et al., 2020). For example, errors could arise if the sampling
were not truly stochastic. This could happen to some degree
if predictions based on prior learning or motivational factors
affected the sampling (Janis and Mann, 1977; Frey, 1986; Schulz-
Hardt et al., 2000).

On the other hand, if the learning process occasionally
stopped at local minima because of nonlinearities of value
functions, it might explain a surprising result from the history of
art. An analysis of the statistics of art across the Renaissance and
Baroque revealed phase transitions in some measures (Correa-
Herran et al., 2020). Another such abrupt transition was observed
in a study of the changes in fractal dimension and Shannon
entropy in Western paintings (Mather, 2018). The discussion by
Correa-Herran et al. (2020) pointed out the essential components
of such phase transitions. These components had to be nonlinear
interactions between the basic components of a system, which
was under the influence of changing external conditions. Correa-
Herran et al. (2020) proposed that the basic elements were the
values associated with different aesthetic variables. Hence, our
proposed use of nonlinear value functions is compatible with the
ideas of Correa-Herran et al. (2020). Following their proposal,
our nonlinear value functions would generate nonlinear mutual
influence between artists learning from each other (Aleem et al.,
2019; Correa-Herran et al., 2020). In turn, according to Correa-
Herran et al. (2020), the changing external conditions were
due to the social pressure to innovate (Barnett, 1953). Such a
pressure could come from the desire to increase realism during
the Renaissance (Janson et al., 1997). More pressure came from
the competition among artists to gain the favor of patrons
(Chambers, 1970).

Efficiency of Learning
An implication of the delta rule is that it tends to maximize
the rate of learning convergence for the linear value function
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(Aleem et al., 2020). Under these conditions, the rate of
recovery from fluctuation errors after convergence is also
maximal. Therefore, these conditions should implement a
highly efficient learning process, albeit with some caveats
(Zomaya, 2006; Sutton and Barto, 2018). In contrast, for
nonlinear value functions, the delta rule is not expected to
lead to efficient learning in general (‘‘Hypotheses Tested in
This Article’’ sections). We thus expected the nonlinear value
functions to lead to relatively slow convergence and recovery
with the Full-gradient conditions. This expectation did not
materialize for the Saturation conditions. We also expected
the Shortest-path Phi rule to overcome these deficiencies
of the gradient-based delta rule. The Phi rule does so by
going directly to the optimal point on the target isoline.
But again, this expectation for the Phi rule failed for the
Saturation conditions.

How can we explain the failures of the expectations for
efficiency of the learning rates of convergence and recovery?
Here, we will focus on the time of convergence because
its strong correlation with the time of recovery makes the
answers similar. As discussed after Equation (26), the time
of convergence is dominated by two factors: First, we must
consider how far the free parameters must travel to reach
the slower, more stochastic portion of the learning trajectory.
This phase of the trajectory is reached when the two averages
in Equation (26) become similar. Second, we must consider
the speed of movement of the free parameters during the
early, ‘‘straight’’ portion of the trajectory. This speed depends
on the largest average of Equation (26). Hence, three factors
may influence this speed. They are the gradient of the value
function, the distance from the nearest point on the target
isoline, and the correlation between reward and the direction
of the vector of motion. Because these factors vary across value
functions, the factors modulate the different efficiencies of the
learning rates.

These two factors explain the various apparent efficiencies
of the time of convergence. For example, the short phase-
diagram trajectories of the Saturation conditions explain their
fast convergence. In contrast, the long trajectories for the Linear
and Aleem et al. conditions help explain their slow convergence.
However, for these conditions, the speed of movement of the
vector of free parameters during the early, ‘‘straight’’ portion of
the trajectory alsomatters. The phase-diagram trajectories for the
Linear and Aleem et al. conditions are almost as long. But the
latter converges much more slowly than the former. This slow
convergence for the Phi rule provides further evidence against
Hypothesis V (‘‘Hypotheses Tested in this Article’’ and ‘‘Failing
Hypotheses: How Stochasticity Helps and Shapes Learning’’
sections).

Phi vs. Delta Rules
The importance of the delta rule arguably derives from its
simplicity of implementation, low computational cost, and
differential-equation form (Widrow and Hoff, 1960; Stone,
1986). However, we argue here that the delta rule may do
poorly when applied to some nonlinear value functions. In those
situations, the gradient used in the rule has a non-optimal

direction (Figures 1C,D). Alternatives could include gradient-
free algorithms, but they do not tend to have the simple
and differential forms (Kirkpatrick et al., 1983; Kennedy and
Eberhart, 2001; Conn et al., 2009; Mockus, 2012). We thus
proposed an alternate differential-equation-based rule that
overcomes this deficiency. The new rule (called Phi or Shortest
Path) does not estimate the direction of descent based on
the gradient at the location of the vector of free parameters.
Instead, the new rule uses holistic knowledge of the nonlinear
value function to set the direction toward the optimal point
on the target isoline. This holistic rule leads to better regret
performance. Furthermore, because of its differential form,
the Phi rule allows for a simple implementation as the
delta rule.

However, the Phi rule has an important disadvantage when
compared to the delta rule. The holistic implementation of the
Phi rule is bound to make it computationally expensive and
consequently, slow. In our implementations, the simulations
with the Phi rule conditions were about five times slower
that those with the delta rule. But we did not attempt to
optimize our implementation of the Phi rule. The main step in
such an optimization would be to find efficient algorithms to
obtain the isolines of the value function. We used a standard
implementation of the Marching Squares algorithm (Maple,
2003), but faster versions exist (Ho et al., 2005; Garrido et al.,
2006). We also applied the algorithm to a 101 × 101 pixels
approximation of the value function and perhaps a coarser
approximation would be enough. In addition, we could have used
other algorithms that are faster for isoline calculations (Yanchang
and Junde, 2001). Finally, the holistic isoline computation
is parallelizable (Selikhov, 1997; Belikov and Semenov, 2000;
Huang, 2001; Dong et al., 2011), making it imminently efficient
for brain-network computations.

Does the Brain Implement Nonlinear Value
Functions?
The brain has been often argued to linearize what would
otherwise be nonlinear input dependencies (Yu and Lewis, 1989;
Bernander et al., 1994; Ermentrout, 1998). Such linearization
would allow the brain to map conceptual or perceptual
dimensions using linear functions. For example, Naselaris et al.
(2011) performed successful neuroimaging on many conceptual
and perceptual dimensions often assuming such linearization.
These authors’ results on linearization have been confirmed
by other studies (Qiao et al., 2019). Moreover, linear value
functions account for some forms of reinforcement learning in
the basal ganglia (Schultz et al., 1997; Hollerman and Schultz,
1998; Schultz, 2015; Sutton and Barto, 2018). Hence, such value
functions may sometimes provide a simpler, suitable model for
neurobiological or psychological value updating than the models
considered in this article.

However, two lines of argument suggest that this linearization
argument is only an approximation that is not always valid. The
first line is that some of the results above have been disputed. For
example, the compressive spatial summation in human cortex
(Kay et al., 2013) has challenged the unchecked applicability
of the Naselaris et al.’s (2011) conclusions. This challenge is

Frontiers in Human Neuroscience | www.frontiersin.org 20 May 2021 | Volume 15 | Article 639081133

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Grzywacz Nonlinear Aesthetic Learning

compatible with the neural representation of stimulus features
becoming increasingly nonlinear as one moves along the sensory
pathway (Holdgraf et al., 2017). Further limitation of assuming
linearization is the nonlinear processing at high-in-the-hierarchy
levels of the brain (Andrzejak et al., 2001; Faure and Korn, 2001;
Freeman and Vitiello, 2006; Afraimovich et al., 2011). Finally,
although some linear models for reinforcement learning in the
basal ganglia are good enough, this process is decidedly nonlinear
(Frank and Claus, 2006; Hsu et al., 2009; Niv et al., 2012).

Even more important is the argument that many empirically
determined value functions in the brain are often nonlinear. An
example for this argument in the visual domain comes from
psychophysical studies of preference for complexity. The visual-
complexity value function in humans is highly nonlinear, lying
on an inverted ‘‘U’’ curve, with people liking moderate amounts
of complexity (Berlyne, 1971; Aitken, 1974; Nicki and Moss,
1975; Saklofske, 1975; Imamoglu, 2000). Another nonlinear
value function for the human visual system is indicated by
the saturation relationship between preference and the number
of the axes of symmetry in an image (Wu and Chen, 2020).
Examples of nonlinear value functions in non-visual sensory
modalities also exist. In the auditory system, for instance, the
preference for a piece of music is a saturating function of
the familiarity with the piece (Szpunar et al., 2004). Relatedly,
preference for music has a U-shape dependence on harmonic
surprise (Miles, 2018). And even when one leaves the pure
sensory domain into social value, value functions are nonlinear.
For example, the tendency of humans to adjust values to
social conformity by reinforcement learning has a nonlinear
dependence on mean social value (Klucharev et al., 2009).

The implications of the brain employing nonlinear value
functions in many situations is important. As stated above,
using linear value functions would often be good enough.
The learning process would always converge because even
if the brain erroneously assumes a linear value function,
the process minimizes a positive functional (Aleem et al.,
2020). And the convergence can occasionally be faster for
erroneous linear value functions than for correct nonlinear
ones. However, the price that the brain would be pay is
large systematic regrets with erroneous linear value functions.
Some degree of regret is unavoidable in the learning of
aesthetic value because of the stochasticity of the process.
But our results show that the brain can minimize regret
in a statistical sense by choosing the appropriate value
function. Therefore, by choosing to implement nonlinear
value functions in many situations, the brain seems to
be prioritizing the minimization of regret over the ease
of computation.

Does the Brain Use Ecological Value
Functions?
Because the Phi rule requires holistic knowledge of the value
function, one must ask how would the brain know what the
value function is. An answer to this question is that the brain
has a bank of socially and ecologically important value functions.
Another answer is that the brain uses a single, multidimensional
value function, capturing social and ecological values. The

brain may develop such value functions through evolutionary
pressure. This proposal echoes ecological and evolutionary
ideas for sensory function (Field, 1987; Atick and Redlich,
1992; Grzywacz and de Juan, 2003). Alternatively, the brain
could build ecological value functions through developmental
and learning mechanisms. Again, this would be akin to the
developmental models for optimal receptive fields in the sensory
systems of the brain (MacKay and Miller, 1990; Miller, 1994;
Burgi and Grzywacz, 1998). And this would be akin to
learning new brain representations for familiar objects in adult
life (Tarr, 1995; Weinberger, 1995; Booth and Rolls, 1998).
Thus, if variables like balance, complexity, and symmetry have
evolutionary importance, then the brain would develop dedicated
circuitry, facilitating their computation and assignment of
value. Such a dedicated circuitry would make sense because
the optimal value function depends directly on the external
statistics of reward [Equation (8)]. This link between the ease
of dedicated computation and aesthetic value is the premise
of the Processing Fluency theory (Reber et al., 2004; Aleem
et al., 2017; Correa-Herran et al., 2020). The work here and
elsewhere suggests that humans learn individually to weigh the
various parameters of the ecological value functions (Aleem
et al., 2019, 2020). This conclusion suggests that studying
the statistics of reward may be as important as investigating
the statistics of natural stimuli (Field, 1987; Ruderman and
Bialek, 1994; Balboa et al., 2001; Balboa and Grzywacz,
2003).

However, the hypothetical use of ecological value functions
implies a couple of limitations in the computation of aesthetic
biases. One limitation would be the inability to learn new
values outside the set provided by ecological pressures. The
alternative would be to use general value functions that could
capture both the ecological ones and some that may not
be ecological. Examples of such general value functions were
introduced elsewhere (Konidaris and Osentoski, 2008; Sutton
et al., 2011; Schaul et al., 2015). Another limitation of using
just ecological value functions is the error that they would
make when a sensory stimulus does not fit their expectations.
Using the wrong value function increases the magnitude of
regret in the learning process. However, even when the value
functions are right and optimal, quantitative and qualitative
errors do occur. Errors like these and others are observed after
reinforcement learning in the brain (O’Reilly and McClelland,
1994; Clouse, 1997; Niv, 2009; Gold et al., 2012; Dabney et al.,
2020). Therefore, these kinds of errors may be unavoidable.
The best that one can hope is to make important errors as
small as possible. The important errors are not those of free
parameters but of value, that is, of the estimation of reward.
Value functions and update rules optimized for social and
ecological constraints may thus be ideal for the learning of
aesthetic biases.
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APPENDICES

Optimal Value Function
Claim 1
The expected least-squares error of the prediction of fully
motivated reward by Equations (1–3), (5) and (6) isminimized by

µopt

(
Eu:Ew, Ek

)
=
〈
r∗
〉 (
Eu:EIu =

[
Ew, Ek

])
, (27)

where 〈r∗〉
(
Eu:EIu =

[
Ew, Ek

])
indicates the mean of r* given the

sampled sensory inputs, and the free (Ew) and constant (Ek)
parameters of the value function.

Proof
We start from the expected least-squares error in Equation (8),
namely,

E =
∫∫∫
Eu,r∗ ,m

P(Eu, r∗)P
(
m|Eu

) (
m
(
µ(Eu)− r∗

))2, (28)

where we drop both the dependence on t and the parameters for
the sake of conciseness. This equation indicates that the error is
a functional of µ

(
Eu(t)

)
. To calculate the optimal function, we fix

Eu (t) and calculate

µopt
(
Eu
)
= argminµ∗

∫∫
r∗ ,m

P
(
r∗|Eu

)
P
(
m|Eu

) (
m(µ∗ − r∗)

)2. (29)

To find this minimum, we differentiate the integrals byµ* and
set the result to 0, yielding∫∫

r∗ ,m
P
(
r∗|Eu

)
P
(
m|Eu

)
m2 (µopt − r∗

)
= 0,

µopt〈m2
〉
(
Eu
)
− 〈r∗〉

(
Eu
)
〈m2
〉
(
Eu
)
= 0,

where 〈 〉 (Eu) indicates average given Eu . This last equation proves
our claim.

Comments on Claim 1
• The implication of Equation (27) is to tell us the optimal value

function in the least-squares sense.
• Consequently, to find out what this function is, onemust know

the statistics of reward given the sensory stimuli.
• This conclusion suggests that studying the statistics of reward

may be as important as investigating the statistics of natural
stimuli.

Minimization of Regret Under Optimal
Value Functions and the Delta Rule
Claim 2
If for every τ there is a t > τ such thatm(t)> 0, then the learning
process minimizes

E
(
Ew
)
=

〈
m(t)

(
r∗(t)− µ

(
Eu(t):Ew(t)

))2〉
t
, (30)

where 〈 〉t stands for time average.

Proof
The gradient of E with respect to the components of Ew obeys

∇wE
(
Ew
)
∝ −

〈
m(t)

(
r∗(t)− µ

(
Eu(t):Ew(t)

))
∇wµ

(
Eu(t):Ew(t)

)〉
t ,

∇wE
(
Ew
)
∝ −

〈
r(t)− v(t)∇wµ

(
Eu(t):Ew(t)

)〉
t ,

or
∇wE

(
Ew
)
∝ −〈δ(t)∇wµ(Eu(t):Ew(t))〉t , (31)

Hence, the process governed by Equation (4) minimizes E
(
Ew
)

by performing a gradient descent (Strutz, 2016).

Comments on Claim 2
• The minimization of E

(
Ew
)
with respect to the components

of Ew in Equation (30) implies that µ
(
Eu (t) :Ew (t)

)
becomes statistically close to r*(t). Equivalently,
v (t) = m (t) µ

(
Eu (t) :Ew (t)

)
becomes statistically close to

r(t) = m(t) r*(t). Therefore, the process optimizes value by
making it as close as possible to reward.
• However, ν(t) may not converge exactly to r(t); ‘‘Minimization

of Regret’’ section.
• The requirement that for every τ there is a t > τ such that

m(t)> 0 is necessary to give the process enough time to reach
optimization. If m(t) = 0 for every t > τ , then the learning
process freezes after τ as shown by Equations (1–4).

Perpendicularity Condition Under the Phi
Rule
Claim 3
If one uses the Phi rule [Equations (13–16)] to update
reinforcement learning, then Equation (18) holds.

Proof
The Phi rule calls for finding the point in the target isoline (Ewopt)
that is closest to the vector of free parameters (Ew). We do this
by using the Lagrange-multiplier method (Bertsekas, 1982). We
thus build the Lagrangian function

L
(
Ewopt , λ

)
=
(
Ewopt − Ew

)2
− λ

(
µ
(
Eu:Ew

)
− r∗

)
, (32)

where the first term of the right-hand side is the square of
the distance between Ewopt and Ew, and the second term is
the constraint of the target isoline (µ

(
Eu:Ew

)
− r∗ = 0) times

the multiplier λ. To minimize the distance, we must find the
minimum of the Lagrangian function with respect to both Ewopt
and λ. We find this minimum by calculating the respective partial
derivatives and setting them to zero:

∇EwoptL
(
Ewopt , λ

)
= 2

(
Ewopt − Ew

)
− λ∇Ewoptµ

(
Eu:Ew

)
= 0,

∇λL
(
Ewopt , λ

)
= r∗ − µ

(
Eu:Ew

)
= 0,

which yields

Ewopt − Ew =
λ

2
∇Ewoptµ

(
Eu:Ew

)
, (33)

µ
(
Eu:Ew

)
= r∗. (34)

These equations prove our claim.
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Comments on Claim 3
• The meaning of Equations (33) and (34) is straightforward:

Begin with the target isoline [Equation (34)] and find the
points in it whose gradients are parallel to the line connecting
Ew to Ewopt .

• These gradients are perpendicular to the isoline. Hence, we
must calculate the directions perpendicular to the target isoline
and find those that are parallel to the line connecting Ew to Ewopt .
• Sometimes, we may have multiple such directions, but this

situation is rare.
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Imagining How Lines Were Drawn:
The Appreciation of Calligraphy and
the Facilitative Factor Based on the
Viewer’s Rating and Heart Rate
Kazuki Matsumoto*† and Takeshi Okada†

Department of Educational Psychology, The University of Tokyo, Tokyo, Japan

For this study, we examined how recognizing the writing process of calligraphy
influences the cognitive and affective processes related to appreciating it, with the
aim of contributing to both graphonomics and the psychology of aesthetics. To this
end, we conducted two Web-based experiments in which some participants were
instructed to view calligraphy by tracing it with their eyes (the tracing method), while
others were told to feel free to think and imagine whatever they wanted. Study 1
(N = 103) revealed that the tracing method elicits stronger admiration, inspiration, and
empathy in viewers. Study 2 (N = 87) showed that the tracing method decreases the
average heart rate of those who do not frequently engage in calligraphy appreciation as
they gaze at calligraphy for a minute-and-a-half (during the second half of the stimulus
duration); this suggests that the tracing method could keep viewers from becoming
bored while looking at calligraphy. In sum, the tracing method has positive effects on
viewing calligraphy. From a broader perspective, the results imply that how in detail
viewers recognize the process of creating an artwork will be a key determinant of
art appreciation. In addition, our findings demonstrate how we can measure cardiac
activities using the emerging technology of the photoplethysmogram (PPG).

Keywords: graphonomics, art viewing, empirical aesthetics, heart rate, smartphone-based PPG, recognition of
the process of creation, paralanguage, human communication

INTRODUCTION

The way people communicate with each other is one of the most important research topics in
human science, and is tied to many disciplines including psychology, neuroscience, anthropology,
sociology, linguistics, information science, and evolutionary biology (cf. Shannon, 1948; Wiley,
1983; Craig, 1999; Littlejohn and Foss, 2010). Although calligraphy is not the most frequently
used form of human communication, as we will see below, studying calligraphy is valuable. It
contributes to clarifying written, non-verbal, or artistic communication, areas of communication
that remain largely unexplored. In this introduction, we must first see how calligraphy can be
positioned within these communication subfields and how it shares certain characteristics with
other types of communication.

It is common to distinguish between verbal and non-verbal communication. Needless to say,
verbal communication is crucial in social activities, and people have valued it since ancient times;
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this is reflected in the fact that many kinds of verbal activities
have been refined and made more sophisticated from generation
to generation, eventually becoming so-called “art” forms like
literature or rhetoric.

How about non-verbal communication? Verbal
communication is inseparable from non-verbal communication
(cf. Jones and LeBaron, 2002; Hall et al., 2019); if we think
about paralinguistic phenomena, we can readily grasp the
connection. Paralanguage is normally defined as vocal behavior
accompanied by aspects of words (such as pitch and volume), or,
more broadly, the aggregation of “vocal, kinesics (gestural), and
proxemics (spatial) channels” (Loveday, 1982; cf. Pennycook,
1985; Hall et al., 2019). These definitions connote that any
linguistic communication inevitably contains paralinguistic
features. Further, paralanguage plays a substantial role in
relaying information such as a speaker’s affective state (e.g.,
Scherer et al., 1973; Johnstone and Scherer, 2000; Scherer,
2003) or intention (e.g., Hellbernd and Sammler, 2016);
it is far from a mere peripheral occurrence. Paralinguistic
information can be an important part of some artistic activities
in the same way that verbal information is. Singing is a
good example. When we listen to someone singing, the
lyrics convey verbal messages, but we usually pay more
attention to how (or in what tone) they are sung, which
is the counterpart of paralanguage in everyday face-to-face
conversations (for the similarity between everyday vocal
expression and musical performance (see Juslin, 2013;
Juslin and Laukka, 2003).

Whereas “paralinguistic” research only centers on phenomena
in vocal communication or textual simulations, such as emoticon
(Luangrath et al., 2017), written linguistic elements are
seldom studied as a kind of paralanguage (for exceptions,
see Kilyeni, 2009 and Oshiki et al., 2010). However, many
examples show that people receive, as well as frequently
and actively gather, information from “paralinguistic”
components of written communication, in the sense that
linguistic content (what is written) always accompanies
visible characteristics (how something is written). This
influences how readers form impressions. For instance,
many organizations in countries such as France and the
United States use techniques from graphology for personnel
selection (King and Koehler, 2000). Among the aristocracy
of pre-modern Japan, the quality of handwriting was
seen as fundamental to spousal selection, in addition to
literature skills (Gatten, 1986). As for the art of calligraphy,
it can be found in virtually any culture with letters. In
terms of handwriting, “paralanguage” is too crucial to
numerous human behaviors to be left unexamined. If we
can psychologically clarify how we receive “paralinguistic”
information in written communication, we can make a
significant contribution to the entire field of communication
research. Based on the above points, we experimentally
examined how handwritten objects mediate social interactions
from the perspective of the perceiver or viewer, with a
focus on Japanese calligraphy. In the remaining part of this
introduction, we review the literature on graphonomics and
the psychology of aesthetics, argue how our study theoretically

contributes to both fields, and illustrate the purpose of
the experiments.

Graphology and Graphonomics
Historically, people in literate societies have been interested
in the individuality of handwriting. Yang Xiong, an ancient
Chinese philosopher, stated, “The spoken is voice of spirit. The
written is picture of spirit” ( ). This idea
is also familiar in the contemporary West, with many methods
of assessing personality through handwriting systematized as
graphology. However, although graphology has a long history and
is widely popular, most scientific research to date has failed to
support its validity (Simner and Goffin, 2003). In the first half
of the 20th century, some psychologists perceived graphology
as a pseudoscience, similar to phrenology or palmistry (Allport
and Vernon, 1933); this critical stance has become more broadly
accepted – but not dismissed – in the field of psychology.

Unlike graphology, graphonomics is a more recent and
empirical discipline; it refers to the “scientific and technological
effort involved in identifying relationships between the planning
and generation of handwriting and drawing movements, the
resulting spatial traces of writing and drawing instruments
(either conventional or electronic), and the dynamic features
of these traces” (van Gemmert and Teulings, 2004). As implied
in the above definition, existing graphonomic research focuses
on written or drawn traces, or the within-individual processes
in which they are produced. Notwithstanding, words are
written for communication in the first place; thus, we cannot
understand entire systems of writing behavior if we ignore
what handwriting (including “paralinguistic” features) expresses
to readers. Given that a writer might (perhaps unconsciously)
modify her/his handwriting so that it looks good to readers
(based on her/his own reading experience) during the stage of
movement planning or right in the middle of writing, even in
a situation where the intrapersonal handwriting process is the
object of research interest, it will only be partially revealed,
without discussing how readers perceive handwriting. Hence, it is
vital for graphonomic research to explore the cognitive processes
that underlie perceiving someone’s handwriting.

For this study, we considered an aesthetically valued style of
handwriting; that is, calligraphy. There are two advantages to
this approach. First, calligraphy is written with the pursuit of an
ideal visual appearance of characters (both for the calligrapher
and the viewer), and has rich implications for studying people’s
handwriting preferences. The process of forming a preference
for another person’s characters is likely rooted in the same
basis as the process of developing a goal when writing.
This signifies that clarifying the mental processes of aesthetic
impression formation in viewing calligraphy is meaningful for
graphonomics, in the sense that we can investigate the higher-
order cognitive processes underlying general writing behavior
(such as planning how to make letters look better). Second, in
exploring calligraphy as art, we can be informed by theories in
the psychology of aesthetics for a deep discussion. Grounded
in the theories in question, we expect that calligraphy works
convey some information to the viewer other than semantic
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content, which is not limited to speculative calligraphers’
personalities graphologists have suggested so far, but may include
recognition of calligraphers’ skills, or of the process of writing
calligraphy (Matsumoto and Okada, 2019), as described in
the next section.

As we review related studies in the psychology of aesthetics
in the following section, we should keep in mind that many
of them focus on visual arts, not verbal arts. In the context of
the psychology of aesthetics, while diverse investigations deal
with visual and literal arts, virtually no research has covered
calligraphic works. Since we want to shed light on non-verbal or
“paralinguistic” functions in visual features of calligraphy (rather
than purely verbal ones), we expect theories of visual art to have
useful implications, to which we primarily refer.

Art-Viewing and Viewers’ Recognition of
the Process of Creating Artworks
When viewing calligraphy, what determines our evaluation, and
what kinds of cognitive and affective processes are involved?
Findings from the psychology of aesthetics provide a framework
for addressing this question. Recently, numerous studies in this
area have shown that the mental process by which viewers
integrate an artwork’s physical features with their own memories
or knowledge (whether consciously or not) is essential in
establishing their impressions. Leder et al. (2004) information
processing model contains five sequential stages in individual
art appreciation: (1) perceptual analysis, (2) implicit memory
integration, (3) explicit classification, (4) cognitive mastering,
and (5) evaluation. This model continues to be updated. Today,
a lot of researchers agree that the “evaluation” stage – after
“cognitive mastering” in the original model – is not necessarily
located at the end of the actual art-viewing process. That is,
during relatively long-term viewing, reconsideration and re-
evaluation of artwork can be observed; hence, we can expect
impressions of art to change as time goes on (Pelowski and Akiba,
2011; Pelowski et al., 2017, 2020).

While the information processing model is concerned with
classifying and segmenting components of art appreciation in
terms of cognitive psychology, another approach gaining interest
centers on viewers’ internal representations, generated through a
series of processing stages. Following the influential work of Tinio
(2013), art creation and viewing are in a symmetrical relationship
in which viewers mentally trace artists’ process of creation
in reverse order. Bullot and Reber’s (2013) psycho-historical
framework also suggests that art can convey causal-historical
information, although without emphasis on the processing order
underscored by Tinio’s (2013) mirror model. These frameworks
are similar in that a communicative aspect of art creation and
viewing is elucidated. From the standpoint of communication
theory, various empirical studies have shown that how a viewer
(i.e., the “receiver” in the communication model) evaluates an
artwork (receiving the “message” from the “signal”) depends
on her/his knowledge of its creator (the “transmitter”) or the
process of creation, as in the typical communication model,
where reception of a message depends on the encoding/decoding
rules. For example, Jucker et al. (2014) demonstrated that how

lay people define an object as art (or not) and how they like it is
affected by artist-related instructions given prior to viewing, such
as regarding whether the artist intentionally created the work.

Whereas many studies have revealed the effect of directly
presented information about the creator upon the viewer’s
evaluation, viewers can adopt a new way of viewing art following
a change in their own cognitive structure, even without such
a direct presentation of information as the one used by Jucker
et al. (2014; Matsumoto and Okada, 2019). By comparing viewers
with and without prior experience of creating origami works in
a laboratory, Matsumoto and Okada (2019) found that viewers’
own creative experiences enabled them to discern and imagine
the process of creating artworks (creative origami works) by
others in more detail, followed by the promotion of the aesthetic
experience in a positive direction, including admiration elicited
by upward social comparison. Matsumoto and Okada (2019)
discovered that individual differences in cognitive processes of
art-viewing – which are especially salient in the comparison
between experts and novices (cf. Leder et al., 2004; Leder
et al., 2012; Bullot and Reber, 2013) – are reproducible to
some degree with novices’ acquired experiences of creation. On
the other hand, whether the key determinant of the aesthetic
experience is the creative experience, or the way in which the
process of creating a work is perceived, remains unresolved;
Matsumoto and Okada (2019) imply the latter based on post-hoc
correlational analysis.

Considering the above, for the current study, we utilized
another approach to establish whether how we perceive the
process of creating artworks can influence the cognitive
process of appreciation, including the overall evaluation. More
specifically, we investigated whether the simple cognitive
orientation of “how to look at artwork” – without requiring any
special equipment or training – can change one’s impression
of art in diverse ways. Not only did we examine causal
relationships that prior research did not fully test; we also
indicated the generalizability of the finding in Matsumoto and
Okada (2019) due to adopting different types of works (compared
to our previous study), which is considered a contribution
to the psychology of aesthetics. We had to choose materials
suitable for our purpose, and Chinese/Japanese calligraphic
works sufficed (mentioned next), as well as graphonomic interest
(described previously).

Chinese/Japanese Calligraphy and the
“Tracing Method”
Chinese calligraphy dates back to the beginning of the use of
Chinese characters (more than 3,000 years ago at least). Since
Japanese calligraphy is a branch of Chinese calligraphy and
has the same historical origins, they are quite similar. While
the most striking difference is in the characters used (kana
are sometimes used along with Chinese characters in Japanese
calligraphy), as for aspects relevant to the current study (such as
the process of creation or standards of the value of works), they
are very similar, since Chinese traditions (including calligraphy)
have been regarded as role models by Japanese intellectuals, for
whom writing calligraphy has been possible throughout almost
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all of Japanese history (considering this similarity, hereafter,
we will not distinguish between them and will refer to both
styles as “calligraphy” unless otherwise noted). Unlike modern
Western art, traditional calligraphy is not necessarily intended
to be exhibited in public. In addition, conventionally speaking,
calligraphy is not a fully independent genre, but is inextricably
related to diverse forms of written communication. Thus, people
today perceive copies of poems or sutras, and personal writings
such as letters or diaries, as valuable forms of calligraphy.

In virtue of using calligraphy as experimental material,
we were able to effectively investigate what role the viewer’s
recognition of the process of creating artworks plays in art-
viewing, which is an important research topic in the psychology
of aesthetics (as mentioned earlier). The reason for this is that
the cognitive orientation regarding the recognition of the writing
process is attainable by giving a relatively simple instruction on
perceptual performance, even when a non-expert contemplates
calligraphy. This is because although calligraphy has a static
form (like painting), it more directly and vividly presents traces
of creation on paper to viewers compared to other forms of
visual art, who can refer to the rules of character stroke order
and can imagine how (and in which order) lines were drawn if
they scrutinized the visual features of lines (such as a blur or
gradation). Moreover, our experiments benefitted from the fact
that Japanese elementary and junior high schools offer a class on
penmanship; almost all Japanese people have had the experience
of writing imitatively in a way similar to traditional calligraphy.
Due to these circumstances, the Japanese participants likely had
a cognitive foundation for recognizing the calligrapher’s writing
process, without any additional creative experiences. As such, by
guiding viewers’ perceptual process with the textual instructions,
such as “Please pay attention to how lines were drawn,” we
were able to experimentally manipulate their recognition of
the process of creating artworks in a different way from
that of Matsumoto and Okada (2019), thereby providing new
evidence for the importance of that kind of recognition in art-
viewing.

In addition to stressing that viewers should pay attention
to the process of writing while appreciating calligraphy, much
of the literature recommends specific methods for viewing. In
particular, imitative writing of the same characters in a work
of calligraphy (whether with an ink brush or by tracing them
with one’s finger) is considered effective (e.g., Ishikawa, 2011; Shi,
2020). Below, we will discuss how this technique can facilitate
the beginner’s detailed recognition of the calligrapher’s writing
process. Under normal reading conditions, letters or characters
are processed quickly enough on average for 4 to 5 letters
to be covered by a single eye fixation when reading English
sentences (Samuels et al., 2010), where it is neither necessary
nor common to pay close attention to the fine features of letters
or characters. This is considered true for Japanese to some
extent, which transmits a comparable amount of information
per fixation versus English and German (Fukuda and Fukuda,
2009). This is also the case in situations where novices are
exposed to calligraphy. Even if they are told to be “aware”
of the process of writing, they might still construct limited
mental representations based on the relatively small amount of

information available from their accustomed habit of reading. In
contrast, by spending longer time for imitative writing or tracing
characters with one’s finger, the viewer can pay close attention
to the physical features that convey rich information about how
the brush was used – which may also be related to the mental
aspect of the calligrapher’s writing process (cf. Matsumoto and
Okada, 2019) – and thereby think about them at a deeper level
(see Okada and Ishibashi, 2017 for a similar discussion in the
context of art creation).

Although using a brush or finger is usually recommended
for appreciating calligraphy, the previous paragraph implies that
we can derive similar benefits by moving only our eyes, as
if tracing each stroke, without any other body movement. If
employing this method while contemplating calligraphy, viewers
are expected to construct a detailed recognition of the writing
process based on the work’s paralinguistic features. Otherwise –
especially without any cognitive orientation for recognition of the
writing process through an instruction – novice viewers are likely
to compress visual information into a rather simple impression,
such as “strong” or “delicate.” For the present study, based
on the discussion in this section, we used Japanese calligraphy
as experimental material and manipulated an instruction (the
independent variable) between participants in terms of how to
view calligraphy. We expected this to determine the direct factor
in changing their impressions; that is, the cognitive processes
involved in recognizing the writing process. In order to influence
recognition of the writing process so as to promote their
impressions of calligraphy, we instructed the participants to move
their eyes as if tracing the characters (hereafter called the “tracing
method”) under one condition.

The Current Study
Through experiments using Japanese calligraphy, we explored
how recognizing the process of creating artworks may affect
the cognitive and affective processes of viewing them. Unlike
Matsumoto and Okada (2019), we directly manipulated the
viewer’s perception through an instruction instead of a creative
experience. More specifically, we compared two conditions
within this paradigm: one scenario involved a group of
participants whom we instructed to use the tracing method; the
participants whom we subjected to the second condition were
not given any cognitive orientation. Further, to more accurately
identify pertinent factors, we added a third condition in the
first experiment: We instructed this group of participants to pay
attention to the writing process of calligraphy without using
the tracing method. By doing so, we were able to establish
whether novice participants could construct detailed mental
representations of the writing process, so as to update their
impressions via a single instruction, without any specific method
or procedure (such as the tracing method).

Although we primarily employed the same measurements
as Matsumoto and Okada (2019) for the sake of theoretical
continuity (namely liking and admiration as aesthetic
impressions), we also introduced two new measurements.
First, we gauged the degree to which the participants felt inspired
by calligraphy using a slightly modified version of a questionnaire
developed by Ishiguro and Okada (2015), which was originally
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based on Thrash and Elliot’s (2003) Inspiration Scale (see
Supplementary Table 1 for details). According to Ishiguro and
Okada (2020), inspiration – which mediates between art-viewing
and creative behavior – is related to the social comparative
processes, and can be encouraged by the viewer’s “dual focus”;
that is, attention paid to both others (e.g., “His approach was to
take numerous photos”) and self (e.g., “I only took a few shots to
obtain the best photo”). Based on Smith’s (2000) discussion of
inspiration and other social comparative emotions – as a crucial
element of the theoretical foundation of both Ishiguro and
Okada (2020) and Matsumoto and Okada (2019) – inspiration is
fairly likely to be promoted when the recognition of the process
of creating artworks changes enough to elicit admiration. This
is because inspiration is akin to admiration in Smith’s (2000)
classification. Both emotions are “upward” and “assimilative”;
the only essential difference is whether they are “dual” focused or
“other” focused. Thus, when admiration is elicited, a large part
of the basis for inspiration is already satisfied. If the duration of
viewing is not too brief, viewers’ attention may shift to themselves
or others from time to time, and inspiration and admiration
may co-occur when contemplating a single work. Therefore,
we measured how viewers were inspired by calligraphy and
expected that when admiration was encouraged, inspiration
would be also fostered.

Second, we used a physiological indicator: heart rate value
estimation by photoplethysmogram (PPG). PPG is a non-
invasive optical method for gauging the relative changes in blood
volume in an area of tissue with blood capillaries on the skin
surface (such as a finger or earlobe); it can be used to detect
heartbeat or pulse and has been increasingly adopted in recent
years (Gil et al., 2010; Kamshilin et al., 2015; Lohani et al., 2019).
Cardiovascular activity is a commonly employed physiological
parameter in the psychology of aesthetics due to its ease of
use (e.g., Libby et al., 1973; Nell, 1988; Tschacher et al., 2012).
Many studies have explored the link between autonomic nervous
system activity (e.g., heartbeats) and affective feelings (mediated
by brain regions such as the anterior cingulate cortex, Critchley
et al., 2013; see Kreibig, 2010 for a review). Among affective
states, boredom is tied to art-viewing and is associated with
heart rate; that is, people tend to exhibit higher heart rates
when bored (London et al., 1972; Merrifield and Danckert, 2014;
Raffaelli et al., 2018).

Recent research suggests that PPG can be obtained via
commercial smartphones without any specialized equipment
(Kurylyak et al., 2012; Garcia-Agundez et al., 2017; Guede-
Fernández et al., 2020). Smartphone-based PPG allows us to
conduct experiments remotely, which is especially valuable in
the recent situation of COVID-19 pandemic. This technique has
not yet been perfected and is rarely introduced, particularly in
psychology. Thus, our findings offer useful insights for practical
application. One thing to note here is that smartphone-based
PPG in a remote experiment is likely to increase the cognitive
load on participants and to make experiments complicated. To
address this issue, we conducted two experiments. We designed
the first one to be simple; we only included psychological rating
scales as dependent variables. The second experiment contained
all measurements.

We posited that the tracing method would have a positive
impact on participants’ admiration and inspiration based on the
discussion so far. Related to that, it was possible for the average
heart rate to differ between conditions, influenced by changes
in affective states elicited by the instructions. In addition, we
examined effects on other psychological variables: “the degree of
empathy for the calligrapher” (empathy) and “the degree to which
imagination is triggered” without any specific hypothesis.

STUDY 1

Method
Participants
A total of 103 participants took part via their own Web-connected
computers instead of in a laboratory. We recruited them through
a crowdsourcing service and paid them each 1,000 JPY for
completing the tasks, which took less than an hour. Only native
adult speakers of Japanese with no visual impairments were
allowed to participate.

Stimuli
We chose four works of Japanese calligraphy (Figure 1) based on
the following criteria: (a) they are regarded as classic, established
works; (b) the phrases are brief, and contain characters that are
easy to read; and (c) they do not differ too much from modern
styles, and are considered readable for beginners in calligraphy. In
the end, each image only had Chinese characters, the number of
which ranged from 1 to 4 (see Supplementary Table 2 for detailed
information about each work).

Experimental Conditions
We randomly assigned the participants to one of three
conditions: the orientation with the tracing method (the “Tracing
Group”; n = 34); the orientation without the tracing method
(the “No-Tracing group”; n = 34); and the non-orientation (the
“Control Group”; n = 35). For the Tracing Group, we asked
the participants to view the calligraphy by tracing each line
in the order in which it was supposed to have been drawn,
and by imagining both the mental and physical processes of
writing. As for the meaning of “tracing,” we only told them to
move their eyes; there was no mention about hands or fingers.
We instructed the participants in the No-Tracing Group in
the same way as the Tracing Group, except for the part about
the “tracing method.” We told them to imagine the process of
creating artworks while viewing it without describing any specific
method. For the Control Group, we did not give the participants
any orientation and told them to feel free to think about and
imagine whatever they wanted. Also, for all participants, there
were explicit statements that any kind of thought or imagination
that is not suggested in our instruction is not prohibited at all (see
Supplementary Table 3 for detail).

Procedure
After reading a broad description of the tasks (see Figure 2
for a schematic representation) in an online document, each
participant provided informed consent and began the tasks using
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FIGURE 1 | The four calligraphy works used as stimuli (with printed font).

FIGURE 2 | The procedure of experiment in Study 1.

their favored browser, accessing our web server. We required
them to complete the tasks using a computer with a stable
connection to a network in a quiet, non-distracting environment.
In order to let them behave as naturally as possible, we did not
strictly control their physical or software-related conditions.

After the participants adjusted their settings, they read a
text that suggested how they should view the calligraphy (the
manipulation on this was described in the previous section and

Supplementary Table 3). The experimental stimuli were then
presented sequentially for 3 min each. With the aim of enabling
participants to read older calligraphy stress-free, each stimulus
consisted of a set of three images for a single artwork: (1)
calligraphy only; (2) calligraphy with the same characters using
printed font; and (3) only a short description of the meaning
of the written word and information about the author’s name,
as well as the author’s year of birth and death. These images
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were displayed one by one; the participants were allowed to
switch between the three images at any time by pressing certain
keys. Following each stimulus presentation, they were asked to
answer two 7-point Likert items measuring the degree to which
they liked each presented work, and the degree to which they
liked meaning of the written word in each work. After all the
stimuli were shown once, they were asked to answer the other
Likert items: admiration; empathy; imagination; recognition of
the process of creation (awareness of each mental and physical
aspect); inspiration; filler items which were not included in any
analysis but contributed to avoiding participants being overly
aware of what indicators we theoretically focused on (such as “I
couldn’t see what it said”); and measurement of their personal
characteristics (including the frequency they view calligraphy and
length of time spent learning calligraphy). Because of the assumed
high correlation between the two personal variables, only the
frequency of viewing (with its interaction with the condition)
was used as an individual difference factor in every analysis in
Study 1. Except for some cases such as inspiration, these items
consisted of simple statements such as “I felt admiration” and
scales of agreement ranging from 0 (do not agree at all) to 6
(very strongly agree) and they were asked for each stimulus and
thus repeated as many times as the number of stimuli, namely
four times (see Figure 2 and Supplementary Table 1). There was
no time limit for any item. We implemented the main program
with jsPsych (de Leeuw, 2015), a JavaScript library for creating
behavioral experiments in a Web browser.

Results and Discussion
For each variable measured more than once, we calculated each
participant’s score by averaging the stimuli in each session,
which, in turn, we used for statistical analysis as a data point.
Unless otherwise stated, we compared each dependent variable
between groups in analysis of covariance (ANCOVA) models
with Tukey’s correction (the “glht” function of the package
“multcomp” of R; Hothorn et al., 2008). We included a dummy
variable for the condition of instruction, the score of the
frequency of viewing calligraphy, and the interaction term of both
variables as predictor variables. Following a recommendation
from the existing literature on multiple comparison (Hsu, 1996;
Wilkinson, 1999), we did not consider rejecting the global null-
hypothesis as a prerequisite for pairwise comparisons; nor did we
test the global null-hypothesis beforehand in those models, since
we were interested in identifying the differences between each of
the two groups in those cases.

Validation of Assignments and Experimental
Manipulation
To check whether the participants were appropriately assigned
in terms of their attitudes toward calligraphy, we calculated
the mean and standard deviations (SD) of their scores for the
frequency of viewing calligraphy for each condition (see Table 1).
As one-way analysis of variance (ANOVA) revealed no significant
differences among them, F(2, 100) = 0.03, p = 0.966, there is no
evidence to suggest that the assignments were biased regarding
the frequency of viewing calligraphy.

Further, to verify whether the manipulation of the instructions
influenced the participants’ cognitive processes as expected, we
calculated the mean and SD of their scores for (a) the degree
to which they were aware of the physical process of writing
calligraphy (awareness of physical creation) and (b) the extent
to which they were aware of the mental process of writing
calligraphy (awareness of mental creation; see Table 1). We
expected that participants in the Tracing Group and No-Tracing
Group would have higher scores than the Control Group for both
(a) and (b). As for (a) awareness of physical creation, there was a
significant difference between the Tracing Group and the Control
Group, b = 1.48, t(97) = 5.20, p < 0.001, and also between the
No-Tracing Group and the Control Group, b = 0.89, t(97) = 3.14,
p = 0.006. We did not detect any significant differences between
the Tracing Group and the No-Tracing Group, b = 0.59,
t(97) = 2.07, p = 0.101. Multiple regression analysis indicated
no other significant effect for the frequency of viewing and the
interactions (Table 2). As for (b) awareness of mental creation,
like the former results, there was a significant difference between
the Tracing Group and the Control Group, b = 1.00, t(97) = 3.15,
p = 0.006, and also between the No-Tracing Group and the
Control Group, b = 1.18, t(97) = 3.75, p < 0.001. We did not
witness any significant differences between the Tracing Group
and the No-Tracing Group, b = −0.18, t(97) = −0.57, p = 0.835.
In addition, multiple regression analysis only showed a significant
effect for the frequency of viewing (p = 0.031, Table 2) other than
the above. These findings were consistent with our prediction.
Hence, we considered the participants’ cognitive processes to be
appropriately orientated.

Aesthetic Impression
We calculated the mean and SD of participants’ scores for
admiration of works of calligraphy (Table 1 and Figure 3).
Tukey pairwise comparisons indicated a significant difference
only between the Tracing Group and the Control Group, b = 0.79,
t(97) = 2.42, p = 0.045, and no significant differences between
the other pairs; b = 0.66, t(97) = 2.02, p = 0.114 (tracing–no-
tracing), b = 0.13, t(97) = 0.40, p = 0.917 (no-tracing–control).
Multiple regression analysis demonstrated no other significant
effect for the frequency of viewing and the interactions (Table 2).
Likewise, we computed the mean and SD of the participants’

TABLE 1 | Descriptive statistics for all rating values in Study 1.

Variable Tracing
group

No-tracing
group

Control
group

Frequency of viewing 0.41 (0.74) 0.41 (0.78) 0.37 (0.69)

Awareness of physical creation 4.66 (0.87) 4.07 (1.02) 3.33 (1.16)

Awareness of mental creation 4.16 (1.16) 4.42 (0.94) 3.36 (1.36)

Admiration 3.58 (1.05) 3.15 (1.18) 2.94 (1.40)

Liking of a work 3.35 (1.12) 3.12 (1.01) 3.04 (1.16)

Liking of meaning of word 4.15 (0.84) 4.04 (0.78) 4.01 (0.82)

Inspiration 3.51 (1.38) 3.38 (1.24) 2.87 (1.67)

Empathy 3.43 (0.98) 3.30 (1.03) 2.90 (1.23)

Imagination 3.85 (1.23) 4.05 (0.97) 3.42 (1.27)

Standard deviations appear in parentheses.
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TABLE 2 | Multiple regression analyses in Study 1.

Dependent variable Predictor b t p

Awareness of physical creation

Intercept 3.17*** 15.99 <0.001

Condition (with the baseline of control group)

Tracing group 1.48*** 5.20 (<0.001)

No-tracing group 0.89** 3.14 (0.006)

Frequency of viewing 0.42 1.62 0.108

Interaction (condition × frequency)

Tracing condition −0.39 −1.11 0.271

No-tracing condition −0.40 −1.16 0.247

Awareness of mental creation

Intercept 2.13*** 14.11 <0.001

Condition (with the baseline of control group)

Tracing group 1.00** 3.15 (0.006)

No-tracing group 1.18*** 3.75 (<0.001)

Frequency of viewing 0.63* 2.19 0.031

Interaction (condition × frequency)

Tracing condition −0.53 −1.35 0.181

No-tracing condition −0.35 −0.90 0.368

Admiration

Intercept 2.75*** 12.06 <0.001

Condition (with the baseline of control group)

Tracing group 0.79* 2.42 (0.045)

No-tracing group 0.13 0.40 (0.917)

Frequency of viewing 0.50 1.70 0.093

Interaction (condition × frequency)

Tracing condition −0.40 −0.98 0.328

No-tracing condition 0.15 0.38 0.701

Liking of a work

Intercept 2.91*** 13.82 <0.001

Condition (with the baseline of control group)

Tracing group 0.51 0.30 (0.212)

No-tracing group 0.06 0.30 (0.980)

Frequency of viewing 0.37 1.35 0.179

Interaction (condition × frequency)

Tracing condition −0.55 −1.43 0.155

No-tracing condition 0.01 0.02 0.982

Inspiration

Intercept 2.53*** 9.54 <0.001

Condition (with the baseline of control group)

Tracing group 0.93* 2.46 (0.041)

No-tracing group 0.55 1.47 (0.309)

Frequency of viewing 0.92** 2.68 0.009

Interaction (condition × frequency)

Tracing condition −0.82 −1.75 0.084

No-tracing condition −0.20 −0.44 0.659

Empathy

Intercept 2.72*** 13.32 <0.001

Condition (with the baseline of control group)

Tracing group 0.70* 2.40 (0.048)

No-tracing group 0.38 1.32 (0.388)

(Continued)
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TABLE 2 | Continued

Dependent variable Predictor b t p

Frequency of viewing 0.50 1.89 0.062

Interaction (condition × frequency)

Tracing condition −0.47 −1.30 0.198

No-tracing condition −0.00 −0.01 0.995

Imagination

Intercept 3.20*** 14.40 <0.001

Condition (with the baseline of control group)

Tracing group 0.67 2.11 (0.093)

No-tracing group 0.74 2.33 (0.056)

Frequency of viewing 0.59* 2.05 0.043

Interaction (condition × frequency)

Tracing condition −0.64 −1.62 0.108

No-tracing condition −0.32 −0.82 0.415

Parenthesized values were corrected for multiple comparisons.
*p < 0.05; **p < 0.01; ***p < 0.001.

FIGURE 3 | Boxplots of rating scores in Study 1 and 2. This does not include dependent variables in which significant effects were not found.
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scores for liking works of calligraphy (Table 1). For this analysis,
we omitted one participant due to missing data. As opposed to
the results of admiration, Tukey pairwise comparisons signaled
no significant differences between any two groups; b = 0.45,
t(96) = 1.50, p = 0.295 (tracing–no-tracing), b = 0.51, t(96) = 1.70,
p = 0.212 (tracing–control), b = 0.06, t(96) = 0.19, p = 0.980
(no-tracing–control). Multiple regression analysis revealed no
other significant effect for the frequency of viewing and the
interactions (Table 2).

The former outcome is in line with our hypothesis based
on Matsumoto and Okada (2019), and supports the notion that
the degree of admiration we have for artworks depends on
how we recognize the process of creating them. On the other
hand, the latter result does not support the idea that liking art
depends highly on one’s recognition of the process of creation.
Since Matsumoto and Okada (2019) showed that whether viewers
have had creative experiences significantly affects both their
admiration and liking, it may seem contradictory at first glance
that our results are different for admiration and liking. However,
given the differences between the characteristics of admiration
and liking, they can be interpreted in a way consistent with
our previous study. Admiration is a type of social comparative
emotion, and that is seen as the reason why our recognition of
the process of creation affects it. According to Matsumoto and
Okada (2019), when viewers compare themselves to outstanding
others in terms of recognizing others’ processes of creation in a
detailed way, they should feel intense admiration, as they become
confident of the difficulty or “unachievability” of creation by
others. In contrast, liking, a typical measurement of aesthetic
judgment by viewers, is formed through more varied mental
processes (cf. Leder et al., 2004). For example, people may
become attached to a painting because it depicts a scene they
like, or because it was drawn by a beloved child, rather than
due to its outstanding achievement. Therefore, although liking
and admiration are likely to correlate, since liking is determined
by factors other than how we recognize the writing process, the
impact of the instruction seems to be diluted.

For additional analysis, for each condition, we calculated the
correlation coefficient between liking of the work itself and liking
of meaning of the word in it. The Pearson’s r was 0.68, 0.64,
and 0.70 for the Tracing Group, the No-Tracing Group, and the
Control Group, respectively (all p < 0.001). Since the degree of
liking the meanings of words are formed quite independently
of the recognition of the writing process, our results align with
the perspective that other factors determine the overall extent to
which one likes a work of calligraphy.

Regarding the effect of instruction in the No-Tracing Group,
there were no obvious results, with no significant differences
compared to either the Tracing Group or the Control Group.
Although our findings do not directly support the existence of a
clear difference between the Tracing Group and the No-Tracing
Group, the fact that the difference of the Control Group only
occurred in the Tracing Group suggests the importance of the
perceptual intervention of the tracing method, which should lead
to a detailed recognition of the writing process (as described in
the Introduction). Because this discussion can be applied to any
other dependent variable, hereafter, we will omit the same kind

of discussion related to the No-Tracing Group, unless there is a
noteworthy outcome.

Inspiration
We calculated the mean and SD of the participants’ scores for
inspiration by viewing calligraphy (Cronbach’s alpha coefficient
was 0.93; Table 1 and Figure 3). Tukey pairwise comparisons only
revealed a significant difference between the Tracing Group and
the Control Group, b = 0.93, t(97) = 2.46, p = 0.041. We did not
find any significant differences between the other pairs; b = 0.38,
t(97) = 0.99, p = 0.583 (tracing–no-tracing), b = 0.55, t(97) = 1.47,
p = 0.309 (no-tracing–control). In addition, multiple regression
analysis only showed a significant effect for the frequency of
viewing (p = 0.008, Table 2), other than the above.

These results are in line with our hypothesis based on the dual
focus model of inspiration (Ishiguro and Okada, 2020), which
suggests that a comparative process with attention paid to both
others and oneself leads to inspirational experiences. Further, we
found that the frequency of viewing calligraphy correlates with
the intensity of inspiration, which is consistent with Ishiguro and
Okada (2019), who showed that art experience (including the
frequency of art appreciation) correlates with inspiration.

Other Measurements
We calculated the mean and SD of participants’ scores for
empathy toward calligraphers (Table 1 and Figure 3). Tukey
pairwise comparisons only indicated a significant difference
between the Tracing Group and the Control Group, b = 0.70,
t(97) = 2.40, p = 0.048, but no significant differences between
the other pairs; b = 0.32, t(97) = 1.08, p = 0.527 (tracing–no-
tracing), b = 0.38, t(97) = 1.32, p = 0.388 (no-tracing–control).
Multiple regression analysis revealed no other significant effect
for the frequency of viewing and the interactions (Table 2).

These outcomes imply that the tracing method encourages
viewers to empathize with calligraphers more than when no
orientation is given. This seems to be mediated by reinforcement
of the viewer’s “dual focus” on self and others’ writing process
in the Tracing Group, which is also considered as a cause of
inspiration. Given that the dual focus process (particularly the
mental aspect of creation) inevitably involves assuming the artist’s
perspective, it is natural that the dual focus would foster empathy,
which is closely associated with perspective-taking (Healey and
Grossman, 2018).

We also calculated the mean and SD of the participants’ scores
for imagination (Table 1). Tukey pairwise comparisons showed
no significant difference between any pair; b = 0.67, t(97) = 2.11,
p = 0.093 (tracing–control), b = −0.06, t(97) = −0.20, p = 0.978
(tracing–no-tracing), b = 0.74, t(97) = 2.33, p = 0.056 (no-tracing–
control). Multiple regression analysis only indicated a significant
effect for the frequency of viewing (p = 0.043, Table 2).

Although these outcomes do not support the idea that
differences in instruction and cognitive orientations influence
the degree to which a viewer’s imagination is triggered, since
the differences in both pairs of tracing–control and no-tracing–
control approach significance, it would be difficult to conclude
their independence solely from those outcomes. In addition, we
found that people who appreciate calligraphy frequently are more
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likely to have richer imaginations. As imagination is one of the
typical ways to enjoy art, this correlation is very natural.

STUDY 2

In Study 2, retaining the same hypotheses as Study 1, we added
the heart rate analysis using smartphone-based PPG.

Method
Participants
A total of 81 participants took part through their own Web-
connected computers instead of in a laboratory. We recruited
them through a crowdsourcing service or via recruitment
statements on social networking sites (SNS) and paid them
1,000 JPY (for participants from the crowdsourcing service)
or a 1,500 JPY electronic gift certificate (for participants from
the SNS) for completing the tasks, which took about an hour.
Since physiological measures are sensitive to gender and age, we
limited the participants to males between the ages of 18 and 39
(M = 25.00, SD = 2.50). In addition, all participants were native
speakers of Japanese and had no visual or cardiac impairments.
We only excluded one participant in advance from all analyses
because of overly extreme responses for the psychological Likert
items (only reporting either end of the range of the Likert
scale for all items).

Stimuli
We chose the same four works of Japanese calligraphy as in Study
1 (Figure 1).

Experimental Conditions
While there were three conditions in Study 1, we excluded
the No-Tracing Group from Study 2 because we did not find
any major differences between the No-Tracing and the Control
Group. Hence, we had the remaining two conditions: the
Tracing Group and the Control Group. The instructions for each
condition were the same as those used in Study 1; that is, we told
participants in the Tracing Group to view calligraphy by tracing
each line and imagining the writing process, and we told those in
the Control Group to think and imagine whatever they wanted,
without any orientation.

There was some difference in the sample size of each
condition, despite random assignment (n = 37 in the Tracing
Group; n = 43 in the Control Group). Further, this was
intertwined with the place from where they were recruited
(crowdsourcing service: nt = 8, nc = 18; SNS: nt = 29, nc = 25;
the “t” or “c” suffix indicates the “Tracing Group” or the
“Control Group”). This difference was caused by the discrepancy
between conditions for number of participants who had agreed
to participate in the experiment, but did not actually finish (not
counted in the values above). Since we did not detect such cases
in Study 1, the procedures for measuring the PPG in Study 2
may have been complicated beyond their expectations so as to
lead to this situation. In order to partial out these effects, in
the regression analyses, we included a dummy variable for the
place of recruitment as a covariate (see the Results and discussion
section for details).

Procedure
The procedure as a whole was very similar to that of Study1.
The participants read a broad description of the tasks, provided
informed consent, and started the Web-based experiment, which
included instructions for calligraphy, the stimulus presentation,
and completing the Likert items. The only important difference
from Study 1 was that for Study 2, the participants were required
to use their own smartphones with cameras to record a video of
the skin of the tip of their left index finger. Specifically, for the
first task of the experiment, we asked them to first free up space
on their device’s memory to record a video, and then asked them
to record their skin for 30 s as a trial using a diagram (Figure 4
depicts some examples). Upon finishing the trial recording, they
uploaded the video file to a server specified by the experimenter
without pause. The experimenter checked the uploaded file for
any flaws in the video as soon as possible. If there was no problem,
he sent a message to continue the experiment; otherwise, he
requested that the participant re-take the video until there were
no more issues with it (the first recording needed to have been
completed correctly, because it was also used as a baseline in
the following analysis). Subsequently, the participants read a text
suggesting how they should view calligraphy (depending on the
conditions), in the same way as Study 1. From this point, the
sequence of the experiment returned to the same form as in Study
1. When the experimental stimuli were presented sequentially for
3 min after that, the participants recorded their fingers over the
entire period of stimulus presentation, stopping and re-taking the
recording each time. Since the participants had to keep their left
hand on the camera lens of their smartphones, they used their
right hand to operate the keyboard to switch between images.
We synchronized the timing of data acquisition between stimuli
presentation and PPG recordings using electronic sounds from
each participant’s computer (which ran the program for the
experiment); the sounds were heard at the beginning and end of
each stimulus presentation and recorded in the video of the skin.

Because there is a circadian rhythm of heart rate (e.g., Massin
et al., 2000) – which should be controlled for the sake of data
quality – we limited the time that participants could start the

FIGURE 4 | Examples of images for the instruction of measuring PPG with
smartphone used in the experiment in Study 2. The left part represents left
hand on smartphone with the index finger covering the camera lens, seen
from above. The right part represents good and bad example of measuring
seen from the side, as the left one is favorable because the entire finger is in
close contact with the smartphone while otherwise in the right one the index
finger may get tired and shake, causing noise in the video.
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FIGURE 5 | The main processing blocks of the heart rate estimation.

FIGURE 6 | An example of PPG waveforms. The horizontal axis represents time (the sequence of frames in a video file), and the vertical axis represents image
brightness reflecting blood flow. The length of the black horizontal bar at the bottom left of the figure corresponds to 30 frames (=1 s). The blue line shows the raw
signal in the second block of Figure 5 (each value of brightness on the vertical axis is a deviation from the mean value, that is, the value from which we subtracted its
mean value). The red line shows the bandpass-filtered signal in the third block. The yellow line shows the second derivative signal in the fourth block. The black
circles show every detected peaks in the fifth block.

experiment to between 13:00 and 18:00. All other parts of the
procedure were the same as in Study 1.

Analysis of PPG
Figure 5 portrays the processing for estimating the average
heart rate. In each block, the process was as follows: (1) We
first preprocessed all video files submitted by the participants
to convert them (the videos were originally shot on different
smartphone models and using different frame rate settings) to
30 frames per second. At the same time, we identified the frame
numbers in each video where the electronic sounds, emanating
from the experimental program, were recorded. We then used
the frame numbers to trim the videos. (2) For every frame, we
calculated the mean value of all pixels of red intensity in RGB,
regarding it as an index of “brightness” at each time point. The
change in brightness over time is thought to reflect the change
in blood flow. (3) We band-pass filtered the obtained signal
over 0.67-3.83Hz (≈ 40-230 beats per minute) using a second-
order Butterworth filter to reduce noise. (4) We differentiated
the waveform of brightness twice to make the peak derived

from the heartbeat more prominent (Figure 6 displays this
contrast; see Guede-Fernández et al., 2020 for an example of using
differentiation). (5) We detected the peaks using the “findpeaks”
function in MATLAB. (6) Based on the detected peaks, we
calculated the pulse-to-pulse intervals (PPI). Because there were
often problems with skipping or double counting peaks (that is,
our algorithm often failed to find a peak, or counted two peaks at
one cycle of heartbeat in the previous process due to noisy data),
we had to calculate an average value that took these variations
into account, instead of the mean value. To address this, we
defined M′ for each period such that f(M′) below reached the
minimum, with M′ ranging from 15 to 40 frames in increments
of 0.01.

f
(
M′
)
=

∑
k

min
a∈{2, 1, 0.5}

(aPPIk −M′)2

Subsequently, we computed the average heart rate h (beats per
minute; identified with the pulse rate in this study) as the inverse
of M′.
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We determined the average heart rate for (a) the baseline
period; (b) the first time period; and (c) the second time period.
(a) The baseline period corresponds to the first 30 s of trial
measurement, during which the participants were not presented
with stimuli of calligraphy works. The (b) first time period and (c)
second time period correspond to the first and second halves of
each 3-min presentation of the calligraphy work, respectively. We
cut off the first 5 s of (b) and the last 5 s of (c) to remove artifacts
resulting from bandpass filtering.

After calculating the average heart rate for each period, we
excluded any clearly inaccurate or doubtful data from the analysis
of heart rate (for the criteria, see Supplementary Table 4). As a
result, we did not include 40.00% of participants in that analysis
(see Supplementary Text 1 and Supplementary Table 5 for the
reliability of the analytical procedures).

Results and Discussion
For each variable measured more than once, we calculated each
participant’s score by averaging the stimuli in each session, which,
in turn, we used for statistical analysis as a data point. Unless
otherwise stated, we examined each dependent variable using
multiple regression analysis. We included a dummy variable
for the condition of instruction, the score for the frequency of
viewing calligraphy, the interaction term of both variables, and
(additionally in Study 2) the place of recruitment as predictor
variables. Different from Study 1, we did not include scores of
liking in the analysis, while this time the length of time spent
learning calligraphy was included as a predictor variable in some
post-hoc analyses.

Validation of Assignments and Experimental
Manipulation
To check whether we appropriately assigned the participants
in terms of their attitudes toward calligraphy, we calculated
the mean and SD of their scores for the frequency of
viewing calligraphy for each condition (see Table 3). As the
independent t-test showed no significant differences among
them, t(77) = 0.813 p = 0.419, there is no evidence to suggest that
the assignments were biased.

Further, to confirm whether the manipulation of the
instructions influenced the participants’ cognitive processes as
expected, we calculated the mean and SD of their scores for (a)
the degree to which they were aware of the physical process
of writing calligraphy (awareness of physical creation) and (b)
the degree to which they were aware of the mental process of
writing calligraphy (awareness of mental creation; see Table 3).
As for (a) awareness of physical creation, the outcomes showed
that the effects were significant for the condition, b = 0.76,
t(74) = 2.46, p = 0.016, and the frequency of viewing calligraphy,
b = 0.76, t(74) = 2.55, p = 0.013, but the other effects were
insignificant (Table 4). As for (b) awareness of mental creation,
the results indicated that the effects were insignificant for all
predictors (Table 4). These findings imply that the manipulation
in the current study had a similar function to that of Study 1,
and changed the viewer’s recognition of the writing process of
calligraphy to some extent, but did not change as radically as that
of Study 1, since there was no significant difference between the

conditions in terms of mental creation (at least consciously). The
reason why the effect was weakened (despite using the same texts
regarding calligraphy) may be that the relatively complicated
procedures of using a smartphone to measure PPG distracted
the participants from contemplating the calligraphy. Therefore,
we considered the manipulation to be validated enough to create
some differences between conditions, but less effective than Study
1, perhaps making some effects unobservable.

Aesthetic Impression
We calculated the mean and SD of the participants’ scores
for the admiration of calligraphy (Table 3 and Figure 3).
Multiple regression analysis only revealed significant effects for
the condition, t(74) = 2.01, p = 0.048 and the frequency of
viewing, t(74) = 2.10, p = 0.039 (Table 4).

This outcome is largely consistent with our hypothesis and the
result in Study 1 in terms of supporting the idea that admiration
is elicited by the change in recognition of the writing process
of calligraphy. Although there is another significant effect of the
frequency of viewing, since that effect in Study 1 was also near
the significant level (p = 0.093), there seems to be no essential
difference between Study 1 and 2. In addition, because expertise
often has a positive impact on the viewer’s aesthetic impression
(cf. Leder et al., 2012; van Paasschen et al., 2015; Matsumoto and
Okada, 2019), the fact that the frequency of viewing positively
correlates with admiration is not surprising.

Inspiration and Other Rating Items
We calculated the mean and SD of participants’ scores on
inspiration by viewing calligraphy (Cronbach’s alpha coefficient
was 0.84; Table 3). Multiple regression analysis only revealed
a significant effect for the frequency of viewing, t(74) = 3.44,
p < 0.001 (Table 4). Likewise, we calculated the mean and SD of
participants’ scores for empathy and imagination (Table 3). For
both variables, multiple regression analysis showed no significant
effect for all predictors (Table 4).

Based on these results, we can conclude that the manipulation
of instructions and orientation of cognitive processes for
viewing calligraphy had no observable effects other than
admiration, the construct most closely related to the recognition
of the writing process of calligraphy among all items in
Study 2. The other effects of the tracing method suggested
by Study 1 were not shown in Study 2; this seems to be
because they were diluted by the complicated procedures of

TABLE 3 | Descriptive statistics for all rating values in Study 2.

Variable Tracing group Control group

Frequency of viewing 0.42 (0.65) 0.30 (0.60)

Awareness of physical creation 4.36 (1.11) 3.74 (1.27)

Awareness of mental creation 3.37 (1.56) 3.09 (1.78)

Admiration 2.89 (1.07) 2.50 (1.27)

Inspiration 2.64 (1.22) 2.74 (1.45)

Empathy 2.57 (1.14) 2.33 (1.34)

Imagination 3.22 (1.10) 2.95 (1.15)

Standard deviations appear in parentheses.
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TABLE 4 | Multiple regression analyses in Study 2.

Dependent variable Predictor b t p

Awareness of physical creation

Intercept 3.61*** 14.08 <0.001

Condition (Tracing: 1, Control: 0) 0.76* 2.46 0.016

Frequency of viewing 0.76* 2.55 0.013

Interaction (condition × frequency) −0.56 −1.31 0.194

Place of recruitment −0.18 −0.65 0.521

Awareness of mental creation

Intercept 3.04*** 8.33 <0.001

Condition (Tracing: 1, Control: 0) 0.11 0.24 0.812

Frequency of viewing 0.63 1.48 0.143

Interaction (condition × frequency) 0.31 0.52 0.607

Place of recruitment −0.24 −0.59 0.555

Admiration

Intercept 2.61*** 10.44 <0.001

Condition (Tracing: 1, Control: 0) 0.60* 2.01 0.048

Frequency of viewing 0.61* 2.10 0.039

Interaction (condition × frequency) −0.33 −0.81 0.422

Place of recruitment −0.50 −1.81 0.074

Inspiration

Intercept 2.70*** 10.12 <0.001

Condition (Tracing: 1, Control: 0) 0.10 0.30 0.761

Frequency of viewing 1.07*** 3.44 <0.001

Interaction (condition × frequency) −0.39 −0.89 0.375

Place of recruitment −0.48 −1.63 0.106

Empathy

Intercept 2.50*** 9.44 <0.001

Condition (Tracing: 1, Control: 0) 0.19 0.60 0.551

Frequency of viewing 0.50 1.64 0.106

Interaction (condition × frequency) 0.22 0.49 0.623

Place of recruitment −0.54 −1.86 0.067

Imagination

Intercept 2.92*** 11.86 <0.001

Condition (Tracing: 1, Control: 0) 0.33 1.11 0.271

Frequency of viewing 0.53 1.86 0.067

Interaction (condition × frequency) −0.15 −0.37 0.713

Place of recruitment −0.24 −0.87 0.386

Heart rate change ratio for first time period: log (hp1 / hb)

Intercept 0.00 0.18 0.859

Condition (Tracing: 1, Control: 0) −0.01 −0.54 0.592

Frequency of viewing −0.03 −1.06 0.297

Interaction (condition × frequency) 0.05 1.33 0.191

Place of recruitment 0.01 0.51 0.610

Heart rate change ratio for second time period: log (hp2 / hb)

Intercept 0.00 0.20 0.844

Condition (Tracing: 1, Control: 0) −0.02 −0.67 0.505

Frequency of viewing −0.05* −2.13 0.039

Interaction (condition × frequency) 0.08* 2.28 0.028

Place of recruitment 0.01 0.59 0.559

(Post hoc analysis for low-frequency group)

Intercept 0.02 0.92 0.366

Condition (Tracing: 1, Control: 0) −0.05* −2.08 0.047

Time spent learning calligraphy −0.05* −2.91 0.007

(Continued)
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TABLE 4 | Continued

Dependent variable Predictor b t p

Interaction (condition × time) 0.08 1.93 0.064

Place of recruitment 0.02 1.04 0.310

(Post hoc analysis for high-frequency group)

Intercept 0.03 0.58 0.573

Condition (Tracing: 1, Control: 0) 0.07 1.05 0.320

Time spent learning calligraphy −0.05 −2.15 0.057

Interaction (condition × time) 0.00 0.00 0.998

Place of recruitment −0.00 −0.07 0.949

*p < 09.05; **p < 0.01; ***p < 0.001.

measuring PPG, as well as the index of mental creation
described in “Validation of assignments and experimental
manipulation.” In addition, any psychological variables used
in this study except inspiration are measured by single-item
scales, and their reliability cannot be assessed by Cronbach’s
alpha coefficient but may possibly be low. This lack of reliability
may potentially account for the difference between the two
studies. Therefore, although the effects on inspiration and
empathy observed in Study 1 are not so robust (at least as
much as admiration), and the effects on imagination suggested
in Study 1 are not supported either, whether or not these
variables are influenced by the way one recognizes the writing
process of calligraphy should not be determined based on the
current findings alone.

Heart Rate
We calculated the mean and SD of the participants’ average
heart rate from PPG signals for the baseline (hb), the first
time period (hp1), and the second time period (hp2). In the
Tracing Group, the mean (SD) of hb, hp1, and hp2 was 81.52
(10.50), 82.37 (13.10), and 82.44 (12.41) beats per minute,
respectively. In the Control Group, this was 79.27 (8.47),
79.40 (8.24), and 78.73 (7.31) beats per minute, respectively.
Subsequently, we calculated the ratio of hp1 and hp2 to hb
for each participant. We used the natural logarithmic value of
this ratio as the response variable in the multiple regression
analysis, with the same predictor variables as other psychological
measurements. While there was no significant effect for all
predictors for the first period, for the second time period, the
effect were significant for the frequency of viewing, b = −0.05,
t(42) = −2.13, p = 0.039 and the interaction, b = 0.08,
t(42) = 2.28, p = 0.028, but the other effects were insignificant
(Table 4). To examine the nature of the interaction effect via
post-hoc analysis, we further divided the participants into two
groups based on their scores for the frequency of viewing
(the low-frequency group of participants scoring 0: those who
“almost never” have the opportunity to appreciate works of
calligraphy, nt = 13, nc = 19; and the high-frequency group of
participants scoring 1 or greater: those who have the opportunity
to appreciate works of calligraphy “once every few years” or
more, nt = 7, nc = 8; see also Supplementary Table 1).
We carried out multiple regression analysis for each group
with four predictor variables (length of time spent learning

calligraphy and its interaction term with condition were added
to condition and place of recruitment) and the same dependent
variable. While the condition had a significant effect in the
low-frequency group, b = −0.05, t(27) = −2.08, p = 0.047, it
had no significant effect in the high-frequency group, b = 0.07,
t(10) = 1.05, p = 0.320 (Figure 7). In addition, there was
significant effect of length of time spent learning calligraphy
only in the low-frequency group, b = −0.05, t(27) = −2.91,
p = 0.007. The effect of place of recruitment was insignificant
for both groups (Table 4). This indicates that the influence
of the condition in all samples was especially derived from
differences among participants who did not have the habit of
appreciating calligraphy.

If we focus on the simple main effect for the low-
frequency group, the current result can be interpreted in a
way that is straightforwardly consistent with previous studies.
The extant literature suggests that heart rate during task
execution is positively correlated with boredom (London
et al., 1972; Merrifield and Danckert, 2014; Raffaelli et al.,
2018). This trend also applies to the presentation of aesthetic
objects; that is, attention to (and interest in) stimuli that
are associated with lower heart rate responses (Libby et al.,
1973). Therefore, the currently observed effect of the changing
ratio of heart rate between conditions may mean that the
participants in the Tracing Group remained interested in
the art without becoming bored, which resulted from the
tracing method. Additionally, there was also the effect of time
spent learning calligraphy, which affected the low-frequency
group in the same way that the tracing method did. That
is, the longer a participant spent learning calligraphy, the
lower the participant’s heart rate, which resulted from the
participant’s maintaining interest in the stimuli. To put it in
another way, the current results of the PPG suggest that,
in terms of how calligraphy is viewed, the tracing method
may, to some extent, substitute for the effects obtained by
the long-term study of calligraphy. We should also note
that condition had no effect during the first time period.
One possibility is that participants in both the Tracing
Group and Control Group viewed works without boredom
in the beginning, but those in the Control Group gradually
became bored because they lacked of an appropriate strategy
for viewing the art, whereas those in the Tracing Group
remained interested.
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FIGURE 7 | Plot showing distributions of heart rate change ratio for the second time period in both groups of low frequency (left) and high frequency (right) of
viewing calligraphy. Each dot represents individual values (color-coded by the length of time spent learning calligraphy). Violin plots to the right of the colored dot
plots depict distributions of corresponding data, using the “geom_flat_violin” function (Robinson, 2015). Black dots and bars in violin plots represent each mean and
standard deviation.

There are likely a few reasons why the results concerning
the difference in change in heart rate ratio between conditions
differed between the low-frequency and high-frequency groups.
First, there were not enough participants in the high-
frequency group (because the majority of participants had
seldom engaged in calligraphy appreciation), which may be
the main reason why the post-hoc analysis in the high-
frequency group did not yield any significant effect. Second,
there is the possibility that, especially for people who are
accustomed to regular calligraphy appreciation, introducing a
new technique such as the tracing method has a neutral or
even obstructive effect. The tracing method might interfere
with the viewer’s usual behavior patterns, which may have
been established by frequent exposure to calligraphy. Even
though the lack of significance for the high-frequency group
in the post-hoc analysis may owe to the small sample size,
based on the above view concerning the interaction between
frequency of appreciation and experimental intervention, it is
also possible that even with more participants in the high-
frequency group, the heart rate of the Tracing Group might
be nearly the same or even higher (rather than lower) than
that of the Control Group because of the decreased interest of
experienced participants.

By reflecting on the current analysis of PPG, we can see that
the smartphone-based PPG can be used effectively in a Web
experiment. At the same time, however, there are limitations
regarding the accuracy of this measurement. The fact that we

could not use about 40% of the data of all participants for the
analysis of heart rate, due to various noises, clearly shows the
magnitude of this problem. Hence, future research should refine
the smartphone-based PPG method and involve follow-up testing
of the results using more reliable equipment.

GENERAL DISCUSSION

We will summarize the findings of Studies 1 and 2 as follows
(see Table 5 for a comparison of results). By orientating
viewers’ cognition about the recognition of the process of
creating artworks through manipulated instructions about how
to perceive the art (i.e., suggesting the “tracing method,” the
procedure of viewing calligraphy in the order in which lines
were drawn as if by “tracing” with one’s eyes), viewers will
have deeper admiration. This outcome is not only consistent
with both of the experiments, but also supports the findings
of Matsumoto and Okada (2019), whereby detailed recognition
of the process of creating artworks leads to admiration. As
for inspiration and empathy, Study 1 showed significant effects
of the tracing method, while Study 2 did not. Since it is
likely that the complicated procedures of Study 2 distracted the
participants from appreciating the calligraphy, the relationship
between those variables and recognition of the process of
creating artworks requires further investigation. Study 2 further
probed viewers’ physiological responses related to the autonomic
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TABLE 5 | Comparison of results of Likert scales in Studies 1 and 2.

Variable Study 1 Study 2

Frequency of viewing n.s. n.s.

Awareness of physical
creation

Condition Condition frequency of
viewing

Awareness of mental
creation

Condition frequency of
viewing

n.s.

Admiration Condition Condition frequency of
viewing

Liking of a work n.s. (Not included in
analysis)

Inspiration Condition frequency of
viewing

Frequency of viewing

Empathy Condition n.s.

Imagination Frequency of viewing n.s.

n.s. = not significant for all predictor variables. In cases where there is any significant
effect in each result of regression analysis, only significant predictor variables are
listed. See Tables 1–4 and Figures 3, 7 for details of each result.

nervous system by smartphone-based PPG. As a result –
especially for participants who view calligraphy relatively less
frequently – we found a significant difference between conditions
in the ratio of the average heart rate in the second half of the
duration of viewing stimuli compared to the baseline, with lower
ratio for those who were given tracing method. This suggests that
the tracing method may allow viewers to continue contemplating
calligraphy without growing bored, even during the latter half of
a fairly long viewing time (although this is only one possibility).

This study contributes to the literature on the psychology
of aesthetics in the following ways. First, like previous research
(Matsumoto and Okada, 2019), this study demonstrates that
the role played in the art-viewing process by recognition of the
process of creating artworks – which has not been highlighted
in the dominant models of art-viewing (e.g., Leder et al., 2004;
Pelowski et al., 2017) – is large and robust in both studies.
Our investigation into recognition of the process of creating
artworks was made possible in large part by the characteristics
of Chinese/Japanese calligraphy, as they enable the method of
viewing by tracing, which is hard to apply directly to other kinds
of art (such as painting). This does not mean that application
of our findings must be limited to the field of calligraphy,
because the mental mechanism of feeling admiration – imagining
the process of another person creating an artwork, making
a social comparison between oneself and others, and then
feeling admiration – can be assumed in any kind of art-
viewing (Matsumoto and Okada, 2019). Rather, this study is an
example of how psychological research on the arts in relatively
atypical artistic domains can provide deeper insight into vital
aspects of the cognitive process of art-viewing, which have yet
to be adequately addressed. Second, this study revealed the
inspirational process caused by viewing art. The way in which
art appreciation leads to inspiration has rarely been dealt with
in experimentally controlled situations; our study is also valuable
in that regard (see Ishiguro and Okada, 2019, for an example
of a questionnaire survey). Up until now, in virtually all models
of art appreciation, interest has been exclusively focused on the

range of time between viewers’ initial perceptions of art and
their impression formation. In the current study, we made a first
step to empirically explore the mental process, starting from art
appreciation and expanding to other activities of viewers. Third,
from a practical perspective, this study has implications for how
to display art to allow viewers to contemplate it in such a way
that even novices can deeply appreciate it. Although recognition
of the process of creating artworks has an important role in art-
viewing, the results of Study 1 imply that simply thinking about
that process while looking at them will not make any notable
difference. On the other hand, at least for calligraphy, we can
expect that an instruction as simple as the “tracing method” will
satisfy viewers to some degree, even in a practical situation. Since
this is not only effective but also simple and short, our findings are
practically significant for art education or museum management.
Moreover, it is quite possible that as with the tracing method
in calligraphy, guidance orientating viewers toward a detailed
recognition of the process of creation is generally effective for
viewing other types of art. Specific methods can be addressed in
future research.

Further, this study has significance in that it introduces a
new perspective to graphonomics. By applying the theory of
the psychology of aesthetics and conducting experiments, we
clarified a part of the process of forming aesthetic impressions
(especially admiration) of other people’s handwriting, which
remains almost unexamined in graphonomics. Since admiration
and inspiration are classified as assimilative emotions rather than
contrastive ones (Smith, 2000), when people aim to write well,
they might tend to model themselves after the handwriting of
others whom they admire, whether consciously or not. Therefore,
starting from this study and performing more detailed analysis
to find out how the physical characteristics of handwriting are
associated with the formation of mental representations about the
creative process, it may become clearer what kinds of handwriting
we admire, and what we internally represent as a goal when
writing. This will have important implications for graphonomic
research, which addresses the process of human writing. The
possibility that written language can have “paralinguistic” cues
and communicate information about the writer has not received
much attention in recent graphonomic research. This may be
due to the longstanding criticism of graphology that the image
of the writer that the reader constructs, using the letters as
clues, does not reflect reality (King and Koehler, 2000; Simner
and Goffin, 2003). However, this study suggests that – especially
in the art of calligraphy – the information about the author
conveyed by the characters is closely linked to aesthetic feelings.
Hence, by introducing a communicative perspective, future
graphonomic studies are likely to reveal new aspects of human
activities linked to written language. At the same time, this
study shows the communicative aspect of art-related activities,
which has been drawing increasing attention (e.g., Dolese,
2015). Our findings span the two subfields of communication
research – written language and art – and should contribute to
the holistic understanding of human communication.

This study is also very valuable as a practical example of
measuring a physiological parameter, without any specialized
equipment, in a remote environment. The outcome of average
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heart rate in this study is consistent with existing findings. In
this respect, our study supports the usefulness of smartphone-
based PPG in empirical aesthetics or other kinds of psycho-
physiological research. This will be especially effective when
a researcher cannot conduct face-to-face experiments with
participants or examine their daily activities in vivo. On the
other hand, smartphone-based PPGs tend to be noisy and require
caution in their use in situations without face-to-face supervision
by an experimenter. Future research should consider elements
such as the type of device suitable for measurement and the
wording of instructions to ensure that participants can perform
the measurement accurately.

Finally, future research could go in several directions: (1)
examining different forms of characters and letters from the
ones dealt with in this study, namely, handwriting in ordinary
situations or printed fonts; (2) confirming whether presenting
the actual process of creating artworks through media (such as
video) will have a similar effect to that observed in this study;
(3) adding a rating scale of boredom and examining correlations
between it and heart rate to verify the current discussion on heart
rate; (4) measuring other indices (such as skin conductance or
eye movements) for a more multifaceted understanding of art
appreciation and impression formation for letters.
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