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Editorial on the Research Topic

Molecular Dynamics and Machine Learning in Drug Discovery

The drug discovery process is very long and expensive, and many factors hamper its final success.
In the attempt to accelerate a drug candidate’s progress along the discovery pipeline, computational
modeling represents a key tool to address the design and optimization of lead compounds. While
physics-based white-box modeling (e.g., docking and molecular dynamics), has represented the
standard de facto for many years in the computational chemistry community, nowadays machine
learning methodologies represent a powerful modeling alternative. The deep learning paradigm in
particular can be considered a black box methodology as it can be difficult to extract rules or laws
from the trained model.

This Research Topic collects selected contributions that deal with both types of modeling
approaches, some of which lie at the interface between the two. This “gray box” hybrid approach
should not surprise as machine learning and statistical mechanics share several theoretical
principles (Ferrarotti et al., 2019; Noé et al., 2019; Agliari et al., 2020; Decherchi and Cavalli, 2020;
Ferraro et al., 2020; Tsai et al., 2020) as they both deal with distributions, manifolds, and hence
free energies.

Molecular dynamics (MD) is based on statistical mechanics. Setting up a MD run for complex
systems can be still a not trivial task, requiring continuous automation tools to allow for a wider
exploitation in academic and industrial settings. In this regard, the contribution from Schneider
et al. discusses the implementation of a webserver for the setup of hybrid molecular mechanics
and coarse-grained simulations for Human G-Protein Coupled Receptors (GPCRs) and ligands
complexes. GPCRs represent the most important class of druggable targets, hence the importance
of having handy tools to setup their systematic simulations. Analyzing and understanding MD
outcomes can then be rather complicated, mainly because of the large amount of raw data. Bunker
and Rog present a review on themechanistic understanding ofMD generated data for drug delivery
in pharmaceutical research. Mechanistic interpretations can be supported by proper machine
learning tools: it is often convenient to devise/use clustering, projections or feature extraction
algorithms to extract actionable knowledge. This greatly facilitates the interpretation of results and
can also allow to define order parameters in some cases, often dubbed collective variables in the
MD realm. In the contribution from Arthur et al. Authors devise a combination of MD simulations
of proteins and hierarchical pharmacophore features extraction. This strategy represents a smart
and widely applicable paradigm (Spyrakis et al., 2015) which combines MD sampling (to recover
some of the target flexibility) with a non-dynamical tool (e.g., virtual screening, static docking etc.).
While this paper derives features directly for drug discovery, Spiwok and Kriz propose a more
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general approach. The Authors present a new machine learning
algorithm, named time lagged t-SNE, which is able to explicitly
take into consideration different time scales in the simulation.
Such detection (and acceleration) of slow and fast time scales is
very important in drug discovery; in protein ligand binding, for
instance, several phenomena of interest (e.g., unbinding) happen
at very large time scales as they are rare events.

At variance of qualitative analysis for devising mechanistic
hypothesis, quantitatively converged estimations are the only
possible path to try predicting physical observables. Statistical
mechanics research has developed powerful theories for
quantifying observables of interest and, in the drug discovery
realm, binding free energy is a key physicochemical quantity.
Despite the great improvements in the last 20 years both in
theoretical and technological terms, predictive free energy
computations still remain partially elusive for many reasons,
such as the massive computing power needed for convergence,
the force field accuracy, possible numerical instabilities in some
cases, and the partial disconnection between experimental
observables and what is effectively estimated by computations.
Hall et al. discuss this important aspect, namely the relationship
between kinetics estimated via the weighted ensemble method
and the experimental affinity. While the general relationship
between experimental kinetics and affinity is known, when it
comes to simulations the situation becomes subtler. Authors
show that some correction terms (for instance finite-size
effects) whose energetic contribution is not negligible arise.
These corrections allow to get much more accurate free energy
estimations derived from kinetics rates estimated via the
weighted ensemble. Free energy (or kinetics) simulations can
be quite expensive, hence approximate methods can be devised.

Fully data driven or approximate physics-based models have
proved more or less effective in granting a compromise between
accuracy and efficiency. The Linear Interaction Energy method
is one of such approximate physics-based strategy and Rifai et al.
discuss recent advances of this methodology. Interestingly, from
a machine learning perspective, this kind of methodologies could
be ascribed to the previously mentioned “gray box” approaches.
They start from a physically sound ansatz and then switch to
a data-driven style to tune the remaining parameters to save
computing time. End-to-end data-driven attempts are also
possible, often based on ad-hoc engineered features to describe
the ligand and the protein, on which machine learning can be
applied. This is what happens in the contributions of Holderbach
et al. and in Parks et al. where physicochemical features are first
devised and then used to predict affinity.

This collection of articles has dealt with many, and
often interconnected, algorithmic approaches to speed-up the
discovery of new drugs and the estimation of key observables
such as free energy. We believe this collection will be useful to
computational and medicinal chemists willing to apply recent in-
silicomethodologies, ranging from pure MD to fully data-driven
approaches. We thank all Authors, co-Authors, and Reviewers
for their contribution to this Research Topic and acknowledge
Frontiers Team members’support.
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The free energy of a process is the fundamental quantity that determines its spontaneity

or propensity at a given temperature. In particular, the binding free energy of a drug

candidate to its biomolecular target is used as an objective quantity in drug design.

Recently, binding kinetics—rates of association (kon) and dissociation (koff)—have also

demonstrated utility for their ability to predict efficacy and in some cases have been

shown to be more predictive than the binding free energy alone. Some methods exist to

calculate binding kinetics from molecular simulations, although these are typically more

difficult to calculate than the binding affinity as they depend on details of the transition

path ensemble. Assessing these rate constants can be difficult, due to uncertainty in the

definition of the bound and unbound states, large error bars and the lack of experimental

data. As an additional consistency check, rate constants from simulation can be used

to calculate free energies (using the log of their ratio) which can then be compared

to free energies obtained experimentally or using alchemical free energy perturbation.

However, in this calculation it is not straightforward to account for common, practical

details such as the finite simulation volume or the particular definition of the “bound”

and “unbound” states. Here we derive a set of correction terms that can be applied

to calculations of binding free energies using full reactive trajectories. We apply these

correction terms to revisit the calculation of binding free energies from rate constants

for a host-guest system that was part of a blind prediction challenge, where significant

deviations were observed between free energies calculated with rate ratios and those

calculated from alchemical perturbation. The correction terms combine to significantly

decrease the error with respect to computational benchmarks, from 3.4 to 0.76 kcal/mol.

Although these terms were derived with weighted ensemble simulations in mind, some

of the correction terms are generally applicable to free energies calculated using physical

pathways via methods such as Markov state modeling, metadynamics, milestoning, or

umbrella sampling.

Keywords: free energy, molecular dynamics, enhanced sampling, binding kinetics, statistical mechanics,

nonequilibrium
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1. INTRODUCTION

In recent years there is a growing appreciation for the utility of
binding kinetics in the prediction of drug efficacy (Lu and Tonge,
2010; Carroll et al., 2012; Vauquelin et al., 2012; Pei et al., 2014;
Ayaz et al., 2016; Copeland, 2016; Costa et al., 2016; Guo et al.,
2016; Tonge, 2017; Bruce et al., 2018; Lee et al., 2019; Nunes-
Alves et al., 2020). Pharmacokinetic and pharmacodynamic
models of drug activity in the body are inherently out of
equilibrium: a drug is administered, it is absorbed, distributed to

different tissues, metabolized and eliminated from the body. As
such, kinetic constants of binding and release—beyond just the

equilibrium constants of binding—are required to model drug
action when the timescales of binding and release cannot be

separated from the other competing processes (Bernetti et al.,
2017). The relationship between molecular structure and the
kinetics of binding (also called “structure-kinetic relationships”
or SKR) is complicated, as small changes to structure can
change kinetic constants by orders of magnitude (Ayaz et al.,
2016). It is important to note that changes in kinetics are not
always tied to changes in affinity (Guo et al., 2014), and that
to accurately predict changes in kinetics, models of the ligand-
binding transition state are needed to estimate transition-state
stabilization or destabilization (Spagnuolo et al., 2017).

Computational methods that reveal structures of transition
states and calculate binding (kon) and unbinding (koff) rate
constants for real compounds are in their infancy, but are
quickly developing (Dickson et al., 2017). It is a tremendous
challenge to obtain reliable values for these quantities, as (1)
they depend on the entire (un)binding pathway, not just its
endpoints, and (2) the timescales of ligand binding and release
often exceed the capabilities of molecular dynamics simulations
by orders of magnitude. Specialized computing platforms have
been applied to generate continuous binding pathways (Dror
et al., 2011), although the unbinding process is typically beyond
the reach of molecular dynamics simulation for compounds
beyond millimolar drug fragments (Guo et al., 2016; Pan et al.,
2017). Recent studies have used enhanced sampling methods in
molecular dynamics to simulate ligand (un)binding pathways
and determine mechanisms and rate constants kon and koff
(Casasnovas et al., 2017; Tiwary et al., 2017; Dickson, 2018;
Kokh et al., 2018; Lotz and Dickson, 2018; Bruno et al., 2019;
Deb and Frank, 2019; Kirberger et al., 2019; Dixon et al.,
2020). Some of these rate constants have shown surprisingly
good agreement with experiment—given the extraordinarily
long timescales involved—however these have the confounding
uncertainty of force field accuracy (Yin et al., 2017; Camilloni and
Pietrucci, 2018), there is a possibility for fortuitous cancelation of
error. Unfortunately, the computational cost required to predict
these quantities is typically massive (Camilloni and Pietrucci,
2018), especially for large protein systems and ligands with
extremely long residence times, precluding the study of these
events under a series of different simulation conditions (e.g.,
forcefields, water models, polarizability).

In the field of biomolecular modeling, blind challenges—
where a series of objectives are released by the organizers, and
participants entries are directly judged by their agreement with

experiment—have been useful catalysts for the development
of predictive algorithms (Lensink et al., 2017; Synapse, 2018;
Croll et al., 2019; Parks et al., 2020). Although no blind
challenge currently exists for the prediction of kon and koff, we
recently participated in the SAMPL6 SAMPLing challenge, which
required participants to compute free energies as a function
of simulation time and to compare the computational cost of
different free energy calculation methods (Dixon et al., 2018;
Rizzi et al., 2018, 2020). This challenge allows sampling methods
to be assessed independently of force field accuracy, as all
entries used the same initial coordinates, force field parameters
and partial charges. Importantly, the challenge makes use of
very small model systems (host-guest) that require considerably
less computational resources to simulate, which allowed us to
efficiently simulate binding and release for a number of systems,
determine kon and koff, and predict values for the binding free
energy (1G) that would then be compared to experimental
observables, as well as results from alchemical free energy
perturbation methods (Gilson et al., 1997; Shirts and Chodera,
2008).

The standard free energy of binding was determined as a
function of rate constants:

1G = −kBT ln
C0kon

koff
(1)

where C0 is a reference concentration of 1 mol/L. In this paper,
we revisit this equation in detail and explicitly examine the
assumptions made when the rate constants used in Equation
(1) are computed through typical simulations with finite box-
size and periodic boundary conditions. In section 3.1, we derive
three correction terms that can be easily computed and facilitate
a better connection with both experiment and alchemical
computational free energy calculations. One term accounts for
the particular definitions of the bound and unbound states. The
second term accounts for residual electrostatic interactions that
might still be present between the molecules, which is especially
useful if one or both of the molecules carry an explicit charge.
The third term accounts for the volume of the unbound state
in the simulation box, which is useful to keep the simulated
volume as small as possible during rate calculations. These terms
were derived particularly with weighted ensemble simulations in
mind, where rates are computed using the trajectory flux between
two non-equilibrium ensembles. However, the second and third
term can be directly applied to other simulation methods which
employ physical simulation of the transition path ensemble, such
as Markov state modeling (Singhal et al., 2004; Gu et al., 2014),
metadynamics (Laio and Parrinello, 2002; Tiwary et al., 2017),
milestoning (Faradjian and Elber, 2004; Votapka et al., 2017), and
umbrella sampling (Torrie and Valleau, 1977; Nishikawa et al.,
2018).

To examine questions of convergence, we reproduce our
binding and unbinding simulations for a host-guest system with
larger numbers of replicas and longer simulation times. We also
explore the effects of the Langevin integrator on the prediction
of unbinding and binding rates; in particular, how altering
the friction coefficient (γ ), defined in the Langevin integrator,
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impacts the binding and release processes. Although γ does not
appear in the internal energy function, and hence cannot affect
thermodynamic properties such as the binding free energy, we
examine whether lower friction coefficients can accelerate the
convergence of unbinding simulations.

2. METHODS

2.1. Host-Guest Systems
The host-guest system utilized in this study is referred to as “OA-
G6” (Figure 1), where the host is a Gibb deep cavity cavitand,
referred to as an “octa acid” or “OA” (Gan et al., 2011). OA forms
a basket-like structure with 4-fold symmetry, functionalized with
four benzoic-acid substituents on the top rim of the basket and
four more on the bottom. The guest ligand we study here is 4-
methyl pentanoic acid (referred to as “G6”). This ligand harbors
a negative charge at the carboxyl end of the alkyl chain.

2.2. Molecular Dynamics
The OA-G6 configuration was obtained from the organizers of
the SAMPLing challenge (Rizzi et al., 2020). The system was
solvated in a (roughly) cubic box with box length 4.28, 4.33, and
4.33 nm in the x, y and z dimensions, respectively. The system
provided had a total of 7,976 atoms: 2,586 water molecules to
solvate the system, 12 sodium and 3 chloride ions to neutralize
the system, and the remaining atoms belonging to either the
host or the guest. Forcefield parameters for the system are as
provided by the original organizers of the SAMPLing challenge
(Rizzi et al., 2018). The system was parameterized using GAFF
(Wang et al., 2004) and then converted into Gromacs format.
The conversion was done using ParmEd version 2.7.3. OpenMM
v7.2.1 (Eastman et al., 2017) was used to run dynamics with the
CUDA v9.0.176 platform. A Monte Carlo barostat is used to
maintain a constant pressure of 1 atm. A timestep of 2 fs was used
across all simulations.

We utilize the Langevin integrator, which uses a drag term
and a noise term to account for the friction of solvent molecules
and high velocity collisions that perturb the system. Langevin
dynamics allows for the temperature to be controlled and can
be used as a thermostat; we run all dynamics here at 300 K.
Our host-guest system is propagated with the Langevin equation,
shown below:

F = ma = −∇U(r)−mγ v +

√

2mγ kBT

τ
R(t) (2)

where U(r) is the particle interaction potential, R(t) is a
random Gaussian noise term evaluated every timestep, T is the
temperature, kB is the Boltzmann constant, τ is the timestep and
γ is the friction coefficient in units of inverse time. The friction
term plays two different roles here, both modulating the second
“drag” term, and the Gaussian noise. As γ approaches zero, the
noise gets weaker and the dynamics becomes more deterministic.
Here we run binding and unbinding simulations with γ values of
1.0, 0.1, and 0.01 ps−1.

2.3. Reweighting of Ensembles by Variance
Optimization
To generate an ensemble of ligand unbinding events, we
need to employ enhanced sampling as the timescale of ligand
unbinding events in this system is prohibitively long: we found
in previous studies a mean first passage time of 2.1 s (Dixon
et al., 2018), which is six orders of magnitude longer than
the reach of conventional MD sampling. In this work, we
implement the REVO resampling method, based on weighted
ensemble (WE) framework, to encourage the sampling of rare
unbinding/rebinding events. WE accelerates the sampling of rare
events using an ensemble of trajectories that are each assigned
a statistical weight (Huber and Kim, 1996). The ensemble is
integrated forward in time in a parallel fashion, and periodically
“resampled” by cloning certain trajectories and merging others.
When a trajectory is cloned, its weight is divided amongst the
clones, but the multiple copies of the trajectory go on to evolve
independently. By repeatedly cloning trajectories that are in
undersampled regions of space we can obtain statistics on very
long-timescale events using only short-timescale simulations.

The REVO resampling method (Resampling Ensembles by
Variation Optimization) was designed to efficiently perform
cloning and merging operations on small ensembles of
trajectories that are evolving in high-dimensional spaces
(Donyapour et al., 2019). This is valuable in situations where it
is difficult to define one or two progress variables that capture
the long-timescale events of interest. In REVO, coupled cloning
and merging operations are proposed (e.g., clone trajectory i, and
merge trajectories j and k) and are accepted or rejected based on
an objective function called the “trajectory variation”:

V =
∑

i

Vi =
∑

i

∑

j

(dij/d0)
αφiφj (3)

where dij is the distance between trajectories i and j, α and d0 are
parameters, and φx is a function that measures the importance,
or “novelty” of a trajectory x, which in our work here is strictly a
function of the weight of the trajectory: φi = logwi − C, where
wi is the weight of trajectory i and C is a constant. Trajectories
with the highest Vi values in Equation (3) are chosen for cloning,
and those with the lowest Vi are chosen for merging. More
information about the algorithm can be found in previous work
(Donyapour et al., 2019).

We run separate simulations for the binding and unbinding
processes. In our unbinding simulations, the ligands start in
the bound state and are terminated as they unbind. In the
rebinding simulations, the ligands start in the unbound state
and are terminated as they bind. The distance function (dij) we
use in Equation (3) is different for these two simulation types.
For the unbinding simulations, we superimpose the hosts from
trajectories i and j, and then compute the root mean squared
distance (RMSD) between the guest molecules, without any
further alignment (Dickson and Lotz, 2016, 2017),. As there is
4-fold symmetry in this system, we perform the alignment four
times (once for each symmetrically-equivalent mapping) and use
the smallest such distance as dij. For the rebinding simulations,
we calculate the distance to the native state for each trajectory
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FIGURE 1 | (A) The initial pose for the OA-G6 system (side view: left, top view: right). Note that some atoms from the host are removed in the side view for clarity. The

carboxyl oxygens are shown in sphere representation. (B) The chemical structure of the G6 ligand in the deprotonated form.

(dnative(Xi)), which again takes into account the four symmetry
mappings, using the lowest such distance. The distance between
trajectories i and j is then calculated as dij = |1/dnative(Xi) −
1/dnative(Xj)|, where the inverse is used to prioritize differences
between small values of dnative.

2.4. Calculating Rates by Ensemble
Splitting
A major advantage of the REVO method, much like other
weighted ensemble methods, is that it can calculate kinetic
parameters in real time as the simulation progresses. This is
achieved by running separate simulations for the binding and
unbinding processes, and in each case, measuring the trajectory
flux into the opposite basin (Dickson et al., 2009, 2011; Vanden-
Eijnden and Venturoli, 2009; Costaouec et al., 2013; Suárez et al.,
2014). The unbound basin is defined as the set of structures where
the closest host-guest interatomic distance is > 1 nm, following
previous work (Dickson and Lotz, 2016, 2017; Lotz and Dickson,
2018). The bound basin is defined as the set of structures where
the guest RMSD (compared to the native structure) is < 0.1 nm
after aligning to the host. Again, this RMSD measurement takes
into account the four symmetry-equivalent mappings of OA.

In our studies, the binding and rebinding REVO simulations
are conducted separately. However, the methodology of
obtaining on and off rates is essentially the same. After each
dynamics step, if a walker has entered the opposite basin, as
described above, its weight is recorded and its structure is
“warped” back to the starting structure at the beginning of
the simulation. The atomic coordinates are set to the starting
structure and the velocities are reinitialized; however, the
weight of the trajectory remains the same. Before the warping
event to the starting structure, the structure of the walker is
recorded and is referred to as an “exit point.” In our unbinding
simulations, the initial starting structure is the initial bound
pose provided. In our rebinding simulations, the initial starting
structure is chosen from a set of exit points generated from the
unbinding simulations. Therefore, the unbinding analyses were
performed prior to initialization and the subsequent running of
our rebinding simulations.

The off and on rates are calculated by using the flux of
trajectories into either the unbound or bound state, respectively.

koff(t) =

∑

i wi

t
(4)

kon(t) =

∑

i wi

Ct
(5)

where the sum is over the set of “warped” trajectories, t is the
elapsed simulation time, and C is the concentration of ligand,
computed as 1/V where V is the box volume. The box volume
was approximately 80.2 nm3, corresponding to a concentration
of ligand of 0.0207 M.

There are a few key differences between the REVO simulations
discussed here and our previous studies (Dixon et al., 2018).
For both the unbinding and rebinding simulations in this study,
the total simulation time is 2.25 times longer compared to
our previous study, as our current unbinding and rebinding
simulations were run for 4,500 and 450 cycles, respectively.
Additionally, ten independent unbinding simulations were run
for each of the four friction coefficients, whereas our previous
study only ran five independent simulations for each starting
pose. However, only five independent rebinding simulations were
run for each of the coefficients, as we observe much less variation
in the kon estimates. Finally, 48 walkers were used in both
studies and the time per cycle is consistent, where the unbinding
simulations are 20 ps/cycle and the rebinding simulations are
200 ps/cycle.

2.5. Calculating Electrostatic Interaction
Energies
The electrostatic energy between the host and guest molecules
for use in the second correction term was calculated as: Eint =

1
4πǫw

QiQj

rij
where Qa is the partial charge of atom a used in

the force field during simulation. rij is the interatomic distance
between atoms i and j calculated by using the minimum image
convention. ǫw = 6.88 × 10−10 F/m is the permittivity of water
at 300 K calculated by linear interpolation of the water dielectric
constant at 298.15 and 303.15 K (Archer and Wang, 1990).

3. RESULTS

3.1. Derivation of Correction Terms
The binding free energy can be calculated using the rate constants
kon and koff as 1G = Gbound − Gunbound = −kT lnKeqC0 =

−kT ln C0kon
koff

, whereKeq is the binding equilibrium constant,C0 is

the reference concentration of 1 mol/L, k is Boltzmann’s constant
and T is the temperature in Kelvin. While this relationship is
correct in the macroscopic limit, it fails to account for the box
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FIGURE 2 | Splitting an equilibrium ensemble (A) into two history-dependent ensembles using basins. The bound and unbound basins are shown in gray and light

orange, respectively. The unbinding ensemble (B, top) contains all trajectories that last visited the bound basin, which are shown in black. The binding ensemble (B,

bottom, also referred to as the “rebinding” ensemble) contains all trajectories that last visited the unbound basin, shown in red. Simulations in a given ensemble are

terminated once they reach the destination basin and thus switch ensembles. The trajectory flux between ensembles is denoted by φu→b and φb→u. The quantity πb

refers to the probability of the entire top ensemble, and the quantity fb denotes the probability of the bound basin within the unbinding ensemble.

size and the volume of the unbound state in finite simulation
environments with periodic boundary conditions. Here we derive
a more accurate expression for the binding free energy that
accounts for the finite box size in a typical MD simulation.

Our starting point is an expression for Keq, which is valid
for a dilute solution in thermodynamic equilibrium. We use the
notation of Woo and Roux (see Equation 4 fromWoo and Roux,
2005):

Keq =

∫

bound d1
∫

dXe−βU

∫

bulk d1δ(r1 − r∗1)
∫

dXe−βU
(6)

where U is the internal energy of the system, β = 1/kT is
the inverse temperature, r1 is the center of mass of the ligand
(referred to as a “guest” molecule) and r∗1 is an arbitrary position
of the guest in the bulk. Note that d1 integrates over the guest
positions, and dX integrates over everything else: the host and
the solvent degrees of freedom. Note also that Keq has units of
volume, as the delta function constraining the center of mass in
the denominator removes three spatial degrees of freedom.

Here we examine the calculation of free energies using
rates determined from split ensemble calculations (Figure 2, see
section 2.4 for more details). We denote the probability of these
two ensembles as πb and πu, where πb + πu = 1, and:

πb

πu
=

φu→b

φb→u
(7)

where φa→b is the time-averaged flux from the a ensemble to
the b ensemble (i.e., across the dotted lines in Figure 2). The
equilibrium probability of a position X can be obtained by
combining estimates from both ensembles:

p(X) = pu(X)πu + pb(X)πb (8)

where pa(X) is the probability of conformation X in ensemble a,
which is normalized such that

∫

pa(X)dX = 1.

Let us define the bound state as the domain of the integral in
the numerator of Equation (6), and the unbound state as a set
of structures considered unbound in simulation (not the same as
the bulk state in Equation 6). These states are shown as shaded
regions in Figure 2. The ratio of the probabilities of these two
states, at equilibrium, is given by:

pbound

punbound
=

∫

bound d1
∫

dXe−βU

∫

unbound d1
∫

dXe−βU
(9)

which can also be calculated in our ensemble
splitting simulations:

pbound

punbound
=

πb

∫

bound pb(X)dX

πu

∫

unbound pu(X)dX
=

πbfb

πufu
(10)

where fa is the probability of the basin state within ensemble a.
Expanding Equation (6) we have:

Keq =

∫

bound d1
∫

dXe−βU

∫

unbound d1
∫

dXe−βU

∫

unbound d1
∫

dXe−βU

∫

bulk d1δ(r1 − r∗1)
∫

dXe−βU

=
πbfb

πufu

∫

unbound d1
∫

dXe−βU

∫

bulk d1δ(r1 − r∗1)
∫

dXe−βU
. (11)

The unbound state in simulation is far enough that the host and
guest do not interact directly through van derWaals interactions,
although if both molecules carry an explicit charge—as in
the example considered here—there could still be significant
host-guest electrostatic interactions. To account for these, we
introduce another intermediate state with an altered energy
function (U∗) which is the same as U except that it does not
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include electrostatic interactions between the host and the guest:

Keq =
πbfb

πufu

∫

unbound d1
∫

dXe−βU

∫

unbound d1
∫

dXe−βU∗

∫

unbound d1
∫

dXe−βU∗

∫

bulk d1δ(r1 − r∗1)
∫

dXe−βU

(12)

=
πbfb

πufu

〈

eβEint
〉−1

unb

∫

unbound d1
∫

dXe−βU∗

∫

bulk d1δ(r1 − r∗1)
∫

dXe−βU
(13)

where Eint = U − U∗ and the subscript “unb” indicates an
ensemble average over structures in the unbound state obtained
with the normal energy function U. Note the final step used
the relation:

∫

unbound d1
∫

dXe−βU∗

∫

unbound d1
∫

dXe−βU
=

∫

unbound d1
∫

dXeβEinte−βU

∫

unbound d1
∫

dXe−βU
=

〈

eβEint
〉

unb
.

(14)

We can now reasonably assume that the guest in the unbound
state is non-interacting with the host. This allows us to write
e−βU as e−βUGe−βUHS , where UG are the terms in the energy
function that depend only on the coordinates of the guest, and
UHS are terms that only depend on the host and the solvent. We
can then pull the integral

∫

dXe−βUHS out of the numerator and
denominator of the last term of Equation (11):

∫

unbound d1
∫

dXe−βU∗

∫

bulk d1δ(r1 − r∗1)
∫

dXe−βU
=

∫

unbound d1e
−βUG

∫

bulk d1δ(r1 − r∗1)e
−βUG

. (15)

The bottom integral has the center of mass of the ligand fixed
and is only over internal and rotational degrees of freedom of
the ligand. This can also be separated and removed from the
numerator, which simplifies the ratio to be the volume of the
unbound state, defined as:

Vunbound =

∫

unbound d1e
−βUG

∫

guest dG1e−βUG
=

∫

box
dRφu(R) (16)

where we use G1 to denote the internal and rotational degrees
of freedom of the guest that remain after specification of r1. The
quantity φu(R) is the fraction of conformers with center of mass
R that satisfy the unbound boundary conditions: here, that the
guest atoms are all farther than a cutoff distance of 1 nm away
from the host. This integral can be calculated by Monte Carlo,
where a center of mass position and orientation of the ligand
is randomly generated, and the number of successful unbound
conformers is recorded:

Vunbound = Vbox
Nunbound

Ntrials
. (17)

Note that for large boxes Vunbound ≈ Vbox.
Putting this all together we have:

Keq =
πbfb

πufu

〈

eβEint
〉−1

unb
Vunbound, (18)

which differs from the straightforward interpretation used in our
previous work (Dixon et al., 2018):

K0
eq =

πb

πu[L]
=

πb

πu
Vbox (19)

Using 1G = −kT ln(KeqC0), we have:

1G = 1G0−kT ln

(

fb

fu

)

+kT ln
〈

eβEint
〉

unb
−kT ln

(

Vunbound

Vbox

)

(20)

which explicitly shows 1G as the sum of 1G0 = −kT ln(K0
eqC0)

and the three newly derived correction terms. The first term
will go to zero in the limit that the basin states are chosen to
represent the vast majority of the probability in both the binding
and unbinding ensembles. In other words, this term goes to zero
when both fb and fu approach one. The second term is likely to
only be non-negligible in the case of explicitly charged host and
guest molecules and regardless would go to zero as the definition
of the unbound state is moved to farther and farther distances.
The third term would also go to zero for large simulation boxes,
but in practice this is often not feasible due to computational
constraints. Consequently, Vunbound/Vbox could be much less
than one, introducing a correction in the positive direction.
Below we calculate these three correction terms and apply them
to free energy calculations.

3.2. Extended Trajectory Ensembles With
Lower Friction Coefficients
In previous work, we used a Langevin integrator with a value of
γ = 1 ps−1 for the friction coefficient. As the simulations already
have explicit solvent, this adds extra friction into the system that
is not physical. Here we investigate whether reducing γ to values
less than one will significantly affect our rate calculations. We
thus run a set of trajectory ensembles at multiple values of γ

and extend each ensemble to be larger and longer than those
published in our prior study (Dixon et al., 2018) to more fully
examine questions of convergence.

As γ governs the coupling to the Langevin thermostat, we
determine the minimum value of γ where our target temperature
(300 K) is maintained. We first ran a series of short simulations
(one 10 ns trajectory for each γ ) and find that temperature
control is completely lost for friction coefficients less than γ =

0.001 (Figure 3A). We then ran longer simulations for γ = 1,
0.1, 0.01, and 0.001, examining not only the mean temperature,
but the probability of significant temperature fluctuations,
which could spur anomalous results in our ligand dissociation
simulations. Figure 3B shows the probability distribution of
observed temperatures over an ensemble of 240 trajectories run
for 90 ns each. For γ = 0.01, 0.1 and 1 ps−1, the temperature
distribution is normally distributed around the mean (300 K) as
seen by the parabolic curves on a log scale. Temperature control is
not fully maintained for γ = 0.001 ps−1, as shown by a rightward
shift and slight widening of the parabolic distribution. We thus

Frontiers in Molecular Biosciences | www.frontiersin.org 6 June 2020 | Volume 7 | Article 10611

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Hall et al. Free Energy Correction Terms

FIGURE 3 | (A) Average temperatures observed in short simulations for different friction coefficients (γ ). (B) Probability distributions of observed temperatures from

ensembles of longer simulations with different γ .

restrict our analysis to three values of the friction coefficient:
γ = 0.01, 0.1, and 1 ps−1.

We run both unbinding and rebinding REVO simulations
for the OAG6 system. For unbinding, we ran 10 simulations
for each of the three friction coefficients; for rebinding, we
ran five simulations for each coefficient, yielding a total of 30
simulations for unbinding and 15 simulations for rebinding.
A set of binding and unbinding simulations were also run for
γ = 0.001—despite the impaired temperature control—which
are reported in the Supplemental Information. The estimates
for the unbinding and binding fluxes are depicted in Figure 4,
where each curve represents an individual REVO simulation.
The averages, illustrated with a bolded line, are calculated by
averaging the trajectory flux over the entire set of simulations
for that value of γ . The upward jumps on these plots indicate
that an exit point was recorded that has a higher weight than was
previously observed.

By reducing γ to values <1, we observed no change in the
binding rates, and small changes to the unbinding rates which
are on the border of significance. With regard to unbinding rates,
the two largest friction coefficients yielded the smallest error
and similar koff values, where γ = 1 yielded an average off
rate of 16.4 s−1 and γ = 0.1 yielded an off rate of 11.5 s−1.
The off-rate increased by 10-fold for γ = 0.01, although this
is mostly driven by exit points observed in a single simulation.
In our previous OA-G6 results using γ = 1, we calculated
an unbinding rate of 0.48 s−1 which slightly differs from the
value calculated in this study using γ = 1 (Table 1). Unbinding
rates for γ = 0.001 ps−1 were approximately 1000-fold higher,
although these are known to be affected by a higher average
temperature (Supplemental Information). Taking a closer look
at the binding rates, we saw no discernible difference across
the friction coefficients. The binding rate was approximately 109

s−1 M−1, for all friction coefficients, which was about 5-fold
larger when compared to our previous study using γ = 1. For
both binding and unbinding rates we have more confidence in
the results obtained here, as they are based on more extensive
simulation data.

TABLE 1 | Binding and unbinding rates as a function of friction coefficient (γ ).

kon (108 M−1 s−1) koff (s
−1)

γ = 0.01 17 ± 1 122 ± 94

γ = 0.1 16 ± 2 22 ± 12

γ = 1 13 ± 1 16.4 ± 9.4

Dixon et al. (2018) (γ = 1) 2.8 ± 1.0 0.48 ± 0.11

The uncertainties shown use the standard error of the mean calculated from 5 and 10

independent REVO runs for binding and unbinding, respectively. The quantities from Dixon

et al. (2018) were obtained with 5 REVO runs that used different initial conformations, each

of which were 2,000 cycles in length.

For both the unbinding and rebinding simulations, across all
friction coefficients, we observed at least 1,000 warping events
(Figure S4). As expected, we observe that rebinding occurs with
a much higher probability when compared to unbinding, by
several orders of magnitude. The unbinding walker weights are
limited at the low end by the minimum walker probability
(pmin), which is set to 10−12. The rebinding walker weights are
limited at the high end by the maximum walker probability
(pmax), which is set to 10−1. respectively. Figure S4 shows that
the 10-fold larger unbinding rate fro γ = 0.01 was largely
due to a single unbinding point in a single simulation, which
underscores the sensitivity and uncertainty of rate calculations
using trajectory fluxes. Figure S2 shows unbinding fluxes for
γ = 0.001, which is known to have elevated temperatures. There
we see a large number of high-weight unbinding events in two
different simulations, leading to the 1,000-fold increase in koff.

3.3. Free Energy Estimates, Correction
Terms, and Comparison With Previous
Benchmarks
As the friction coefficient unevenly affected the rates of binding
and unbinding, there was a net effect on the binding free energies.
As shown in Figure 5 and Table 2, the binding free energy
increases as the friction coefficient is lowered, independent of the
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FIGURE 4 | Predicted on- (top) and off-rates (bottom) as a function of simulation time. Each panel is labeled according to the friction coefficient used for that set of

simulations. The independent simulations are shown in shades of orange (kon) and blue (koff ), and the averages are depicted by bold black lines.

free energy correction terms derived in section 3.1. Table 2 shows
the free energies computed using the averaged fluxes across all
simulations at each γ value. For all friction coefficients, the
calculated free energy was always higher than that from our
previous study (−12.1 kcal/mol; red line), even for γ = 1,
signifying that extending the simulation time aided in predicting
experimentally determined binding free energies.

The correction terms are calculated using data obtained from
the simulations, but they are mostly functions of geometric
properties of the simulation box and boundary conditions, and
are not expected to change as a function of γ . The first term,
−kT ln fb/fu, was calculated to be 0.74 ± 0.10 kcal/mol, with
fb and fu taking on values of 0.157 and 0.54, respectively. As
described in section 3.1, fb is the probability of the being in
the bound basin given that you are in the unbinding ensemble,
which is calculated using the sum of the weights of trajectories
in the bound basin, divided by the total sum of the weights of
the trajectories considered. The fb value in particular was lower
than expected, indicating that our definition of the bound state
might be too restrictive, even though we did account for all
symmetry-equivalent conformations in our calculation of fb.

The second term, +kT ln
〈

eβEint
〉

unb
, was calculated to be

1.64 ± 0.002 kcal/mol. This was calculated by determining the
electrostatic interaction energies (see section 2.5) for the set
of unbound states observed in the rebinding simulations. The
expectation value in the correction term again accounted for
trajectory weights and was computed using 71,428 interaction

energy measurements that were selected from the unbound
ensemble. The uncertainty was computed as the standard error of
the mean of this set of energies. To calculate the third correction

term, −kT ln
(

Vunbound
Vbox

)

, we directly estimated Vunbound/Vbox

using the Monte Carlo procedure described in section 3.1. The
ratio was computed as 0.56± 0.0037 using five batches of 10,000
trials each, where the uncertainty is the standard error of the
mean across the sets of trials.

Together these three terms sum to 2.72 kcal/mol, which is
a significant correction to the binding free energies computed
here. Over half of this comes from the residual electrostatic
interaction energy between the host and the guest. Note that both
the host and the guest have negative charges, and the residual
interaction between the two molecules is repulsive. Turning this
interaction off releases 1.64 kcal/mol of energy, which lowers the
free energy gap between the bound and unbound states. The
corrected and uncorrected free energies are shown as a function
of γ in Figure 5. For γ ≥ 0.01 the calculated free energies are
almost equal to within standard error and the correction terms
significantly reduce the error with respect to the computational
reference value (Rizzi et al., 2018, 2020).

4. DISCUSSION AND CONCLUSION

In this study, we sought to better connect the calculation of
binding and unbinding rates with the calculation of binding
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FIGURE 5 | Free energies as a function of friction coefficient. The dark blue

line shows the uncorrected free energies calculated at three different γ values.

The light blue line shows the corrected values, which are shifted upwards by

2.72 kcal/mol. The thin red line shows the value reported in Dixon et al. (2018),

which employed a friction coefficient of 1.0 ps−1 and used a smaller dataset

than is reported here. The black horizontal line shows the value of a

computational reference computed using alchemical perturbation, reported in

Rizzi et al. (2020). The dashed gray line shows the experimental measurement,

reported in Sullivan et al. (2019). The shaded area for each line shows its

associated uncertainty, which is less than the line thickness for the

computational reference and the experimental measurement.

free energies. The rate calculations measured the microscopic
fluxes of trajectories from one basin to another. These fluxes can
be visualized in an extended history-dependent conformation
space, where trajectories change their “color" based on which
basin (“bound” or “unbound”) they have most recently visited
(Dickson et al., 2009, 2011; Vanden-Eijnden and Venturoli, 2009;
Costaouec et al., 2013; Suárez et al., 2014). The ratio of these rates
gives a ratio of two populations: the trajectories that have most
recently visited the “bound” basin and the trajectories that have
most recently visited the “unbound” basin. The first correction
term adjusts this ratio to instead only account for the probability
contained within the basins themselves and is particular to rates
that are calculated using this history-dependent formalism. The
third term can be seen as a volume correction term, which is
used to accurately account for the volume in the unbound state.
This is done in other approaches where restraints are used, such
as methods based on calculation of the potential of mean force
(Deng and Roux, 2009). In our case the unbound state cannot be
easily approximated by a geometric object, such as the volume of
a spherical shell.

The second term accounts for residual interactions in the
unbound ensemble. This could be used by other approaches
that directly determine free energy differences between bound
and unbound conformations, such as Markov state modeling,
metadynamics, milestoning, and umbrella sampling. The
conventional approach is to define a simulation box that is
large enough such that the interactions between the host and
guest are negligible in the unbound state. However, this can
significantly increase the cost of the simulation. It is worth

TABLE 2 | Raw (1G0) and corrected (1Gcorr) free energy values using simulation

data from three different friction coefficients.

1G0 (kcal/mol) 1Gcorr (kcal/mol)

γ = 0.01 −9.83 ± 0.46 −7.11 ± 0.47

γ = 0.1 −10.78 ± 0.32 −8.06 ± 0.33

γ = 1 −10.85 ± 0.34 −8.13 ± 0.36

Dixon et al. (2018) (γ = 1) −12.1 ± 1.0 −9.38 ± 1.0

Comp. (Rizzi et al., 2020) – −7.0 ± 0.1

Exp. (Sullivan et al., 2019) – −4.97 ± 0.02

Values are in kcal/mol and uncertainties are calculated using propagation of the standard

error of the mean.

noting that umbrella sampling results for this system (OA-G6)
obtained by Song et al. (2018), −8.50 kcal/mol, were also below
both the computational benchmark and the experimental value.
Their unbound state was defined as a 20 Å distance between an
atom in the guest and a dummy atom in the center of the host,
which is roughly comparable to our unbound basin of 10 Å of
clearance between the host and the guest. Assuming a similar
value for the electrostatic correction term, it would have brought
their prediction to −6.86 kcal/mol, which is in line with the
computational benchmarks (Rizzi et al., 2020).

The electrostatic term can also be viewed as a sort of
“decoupling” between the host and the guest, and it is warranted
to discuss similarities and differences with similar procedures
in alchemical free energy methods. They are similar in that we
are computing a free energy between two Hamiltonians, one in
which an interaction is turned off. We could thus use similar
techniques for computing these free energy differences, such
as thermodynamic integration (Kirkwood, 1935; Bhati et al.,
2019), BAR (Gutiérrez et al., 2019), MBAR (Shirts and Chodera,
2008; Bhati et al., 2019), or MM/PBSA (Rifai et al., 2019),
although here we effectively use a simple free energy perturbation
(FEP) expression (Zwanzig, 1954; Jorgensen and Thomas, 2008).
The approaches are different in that we are only considering
ensembles of structures where the interactions being turned off
are relatively weak. We are assuming here—as is always the
case with FEP—that the conformational ensembles of both the
host and the guest are highly overlapping between the two
Hamiltonians, which considerably simplifies the problem. We
also note that although we employ electrostatic decoupling to
compute free energies, our simulations still reveal important
information about the (un)binding kinetics and mechanism.

Given these correction terms for the binding affinity, it
is reasonable to ask if and how the rate constants should
be modified. The correction terms each have the effect of
“loosening” the interaction, indicating that either the corrected
off-rate should increase, or the corrected on-rate should decrease.
It is reasonable to assume that lowering the on-rate should
account for the vast majority of this correction, as the on-rate
measured starts from an unbound conformation that is much
closer (a clearance of 1 nm between the host and guest) than
is likely in experimental conditions. More accurate calculations
of the binding rate can be achieved with better sampling of
the unbound state, for instance using the Northrup-Allison-
McCammon method (Northrup et al., 1984). It would be

Frontiers in Molecular Biosciences | www.frontiersin.org 9 June 2020 | Volume 7 | Article 10614

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Hall et al. Free Energy Correction Terms

interesting to see whether such calculations can recapitulate part
of the free energy differences observed here.

We also examined the role that the Langevin integrator
plays in the prediction of kinetic and thermodynamic quantities.
In particular, we adjusted the friction coefficient (γ ), defined
in the Langevin integrator, while maintaining the stability of
temperature at 300 K. We did not expect that altering the
friction coefficient would have an impact on the calculation of
equilibrium quantities. As γ does not appear in the Hamiltonian
of the system, it should not affect the probability of a given
microstate P(X), which is given by the Canonical probability
density exp(−βU(X)). While we did expect it to affect rates, we
expected that these effects would offset: that if unbinding was
accelerated 10-fold, we would observe the binding process to be
sped up by the same factor. However, we observe that the on-
rate was very stable as a function of γ , while the off-rate changed
slightly. One explanation is that unbinding is a much more rare
event when compared to rebinding, and estimates of koff were
not converged. Lower friction coefficients could be accelerating
sampling of these events and making it easier to observe higher
probability walkers unbind in our simulations.

Convergence is of utmost priority in weighted ensemble
simulations that calculate kinetic quantities. In our previous
study, we hypothesized that it was possible that extending
the time of the unbinding simulations could capture more
high weight walkers exiting from the bound state. Indeed,
we observe a higher unbinding flux in this study across all
friction coefficients. In Figure 4, we observe large upward
jumps, for all γ values, even after 40 ns of simulation time
per walker, which was sampling limit in our previous study.
These upward jumps, as previously described, signify that
an exit point was recorded that has a higher weight than
previously observed. This highlights the challenges involved
in accurate determination of rate fluxes for rare events. It is
worth noting that by using our correction terms to account for
small unbound volumes and persistent but small electrostatic
interactions in the unbound state, we can keep box sizes
small, allowing for better convergence of rate fluxes at fixed
computational cost.

Of course the binding free energy alone is still an important
quantity for drug design (Homeyer et al., 2014). If one is only
interested in the absolute binding free energy, calculating it
through the ratio of rates is needlessly complicated; free energy
is a state function and thus only depends on the endpoints of
the binding pathway. The prediction of koff and kon themselves
is challenging, since they are not state functions: they depend on
the transition path ensemble between the bound and unbound
state. Sampling of these physical pathways is a large challenge
for molecular dynamics, largely due to the long timescales of the
binding and release processes. Ensuring that the ratio of rates is
consistent with binding free energy calculations—as done here—
provides an additional, powerful consistency check. In particular,
comparing to well-converged computational benchmarks ismore
useful than experimental quantities, as we avoid an additional
layer of uncertainty associated with the force field used to
describe the system.
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The linear interaction energy (LIE) approach is an end–point method to compute binding

affinities. As such it combines explicit conformational sampling (of the protein-bound

and unbound-ligand states) with efficiency in calculating values for the protein-ligand

binding free energy 1Gbind. This perspective summarizes our recent efforts to use

molecular simulation and empirically calibrated LIE models for accurate and efficient

calculation of 1Gbind for diverse sets of compounds binding to flexible proteins (e.g.,

Cytochrome P450s and other proteins of direct pharmaceutical or biochemical interest).

Such proteins pose challenges on 1Gbind computation, which we tackle using a

previously introduced statistically weighted LIE scheme. Because calibrated LIE models

require empirical fitting of scaling parameters, they need to be accompanied with an

applicability domain (AD) definition to provide a measure of confidence for predictions for

arbitrary query compounds within a reference frame defined by a collective chemical and

interaction space. To enable AD assessment of LIE predictions (or other protein-structure

and -dynamic based 1Gbind calculations) we recently introduced strategies for AD

assignment of LIE models, based on simulation and training data only. These strategies

are reviewed here as well, together with available tools to facilitate and/or automate LIE

computation (including software for combined statistically-weighted LIE calculations and

AD assessment).

Keywords: binding affinity computation, free energy calculation, molecular simulation, linear interaction energy,

protein flexibility, binding promiscuity, applicability domain, reliability estimation

1. END-POINT METHODS AND LINEAR INTERACTION ENERGY

Mutual molecular recognition is the starting point for a wide variety of biological processes (Gohlke
and Klebe, 2002). Binding affinity governs ligand binding to target proteins, and being able to
quantitatively understand and predict affinity in terms of binding free energy (1Gbind) can greatly
support lead finding and/or optimization in the drug discovery process (Pohorille et al., 2010).
Hence, improved efficiency and accuracy of computer–aided protein–ligand affinity methods play
a pivotal role in accelerating and increasing success rates of drug discovery and design. 1Gbind

computation is still challenging, considering that virtual screening based on docking and scoring
typically lacks sufficient accuracy, whereas use of rigorous alchemical methods can be too compute
intensive for high–throughput scenarios, especially in case of flexible proteins that may bind
ligands in multiple different orientations. As an alternative, end–point methods aim to provide a
balance between accuracy and efficiency in 1Gbind computation, and position themselves between
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fast docking/scoring approaches and rigorous alchemical
strategies for 1Gbind calculation. They combine explicit
conformational sampling (typically in molecular dynamics (MD)
simulation) with a relatively fast scoring approach. By definition,
end–point methods only require initial and final states to be
simulated, i.e., the ligand free in solution and bound to the target
protein, respectively, and/or interactions being either turned off
and on (Wang et al., 2019).

Linear interaction energy (LIE) is an end–point method that
was introduced in 1994 by Åqvist and coworkers (Åqvist et al.,
1994). It is derived from the Linear Response Approximation
(LRA) (Lee et al., 1992) to compute the electrostatic contributions
to the binding affinity. As such, LIE is directly derived from
the Zwanzig expression for free–energy perturbation (Leach,
2001). The non-polar contribution to 1Gbind is in LIE also
represented by calculating differences in average non-bonded
(i.e., van der Waals) interaction energies between the ligand and
its environment in either the protein-bound or unbound state
(Åqvist et al., 1994). To compute 1Gbind from the simulations
of the ligand either bound to the protein or free in solvent,
the obtained average van der Waals (vdw) and electrostatic (ele)
interaction energies of the ligand with its environment are scaled
by LIE parameters α and β :

1Gbind = α
(〈

Vvdw
lig−surr

〉

bound
−

〈

Vvdw
lig−surr

〉

unbound

)

+β
(〈

Vele
lig−surr

〉

bound
−

〈

Vele
lig−surr

〉

unbound

)

(1)

Originally LRA was followed and β was set to 0.5 (Åqvist
et al., 1994). In subsequent studies (Åqvist and Hansson, 1996;
Hansson et al., 1998) Åqvist and co-workers assigned values to
β based on electrostatic properties and chemical composition of
the compounds of interest. From free energy perturbation studies
on the electrostatic contribution to solvation free energies 1Gsolv

(Åqvist and Hansson, 1996) and binding affinity prediction
for 18 protein-ligand complexes (Hansson et al., 1998) it was
concluded that for charged compounds β = 0.5 can be used,
while lower values for different types of neutral ligands were
found to best describe the electrostatic contribution to 1Gbind

and 1Gsolv (β = 0.43, 0.37, and 0.33 for neutral molecules
with 0, 1, or (more than) 2 hydroxyl groups, respectively). The
deviation from linear response for neutral compounds and the
decrease in assigned β values with the number of hydroxyl
groups were explained to originate from variations in solvent
reordering around and interactions with the ligands (Åqvist and
Hansson, 1996). Accordingly pre-assigned values for β have been
used since then in various LIE binding affinity studies; see e.g.,
Shamsudin Khan et al., 2014 for a recent example in which
these values were successfully used, in efforts to automate LIE
binding free energy prediction within a drug-design context.
Assignment of β based on the chemical nature of the compound
of interest has also been extended toward other (hydrogen-
bonding) functional groups in a large-scale (solvation) free
energy perturbation study by Almlöf et al. (2007). They used a
set of hundreds of small organic molecules to derive a model
in which β values are assigned based on the number and types
of functional groups of the compounds of interest, where each

functional group adds a pre-defined perturbation to the base
value for β (of 0.43).

We and others (see e.g., Carlson and Jorgensen, 1995; Wall
et al., 1999) have chosen to incorporate β as an effective
parameter in LIE binding free energy models and (together
with α) train it based on experimentally available affinity data.
In such cases, separate local models (with different values for
α and β) may well be needed to accurately describe binding
affinities for complete sets of binders for a given protein of
interest, as shown e.g., in van Dijk et al., 2017 for 132 inhibitors
of Cytochrome P450 19A1 (CYP19A1). Note that the meaning
of empirically calibrated values of the parameters in trained
LIE models is not always obvious and/or discussed. One of the
exceptions is work of Kollman and co-workers (Wang et al.,
1999) who found a correlation between α and the hydrophobicity
of the binding site of the system of interest (with a larger
number of hydrophobic groups buried after binding resulting
in higher affinity and α values). After α and β are pre-assigned
and/or calibrated based on experimental data, Equation (1) can
be used to predict binding affinities of ligands with unknown
experimental data. An optional offset parameter (often denoted
as γ ) can be added to Equation (1) as a fitting parameter. Fitted
values of γ are typically system dependent and have been related
to the hydrophobicity of the binding site (Almlöf et al., 2004).
Optimal values for an offset parameter in calibrated models may
also depend on the compounds of interest, as we illustrated
by deriving local LIE models to predict binding affinities for a
(diverse) set of 132 CYP19A1 binders, for which inclusion of an
offset parameter would have led to different calibrated γ values in
the three obtained local models (van Dijk et al., 2017). The use of
additional LIE terms and associated scaling parameters has also
been proposed such as the introduction of a γ parameter for the
scaling and explicit inclusion of a surface-area term (Carlson and
Jorgensen, 1995).

From the above, LIE assumes that intramolecular energies,
entropic terms, desolvation effects, or other factors contributing
to 1Gbind can be handled and canceled out by fitting and scaling
of the model parameters, as it is assumed to correlate linearly
with the intermolecular interactions (Åqvist andMarelius, 2001).
This scaling and fitting allows for the calculation of “absolute”
(direct) values for 1Gbind. For that purpose it can be critical
to include and derive an offset γ parameter for the system
under consideration (Almlöf et al., 2004). Having direct 1Gbind

values available makes it straightforward to use a Boltzmann–
like statistical weighting scheme to include multiple binding
poses of ligands combined into a single prediction of 1Gbind

(Stjernschantz and Oostenbrink, 2010). This is relevant for
flexible proteins such as Cytochrome P450s that may bind their
ligands in different orientations or that may adopt multiple
(partial) conformations upon complexation (Stjernschantz et al.,
2008). LIE can also handle diverse ligands in the dataset that
may involve too large perturbations to be simulated (which
may become impractical for alchemical free energy calculations),
while simultaneously accounting for the unbound state of the
ligand that is not considered by most empirical scoring functions
(Brooijmans and Kuntz, 2003). Section 2 summarizes our recent
progress in calibrating (statistically–weighted) LIE models for
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diverse sets of binders of Cytochrome P450s or other flexible and
promiscuous proteins.

When fitting parameters in Equation (1) based on
experimental data, it should be realized that use of the resulting
LIE model(s) asks for the definition of its (their) domain of
applicability in order to be able to assess the reliability of
predictions for arbitrary query compounds (Carrió et al., 2014).
This is especially relevant when using LIE models in industrial
or other applied settings, considering e.g., that some years ago
the Organisation for Economic Cooperation and Development
(OECD) formalized applicability domain (AD) assessment as
principle to evaluate model validity (Jaworska et al., 2005).
To enable reliability estimation of LIE predictions based on
simulation and training data only, we recently introduced
strategies to assign the AD of LIE or other protein-structure and
-dynamic based models (as reviewed in section 3). Section 4
lists several software tools that have come available to facilitate
(semi-)automated LIE modeling. These include our software
for automated (statistically–weighted) LIE computation and
associated AD assessment, and the availability of these and other
tools may well be an important next step for applied use of LIE.

2. STATISTICAL WEIGHTING OF MULTIPLE
PROTEIN-LIGAND BINDING
CONFORMATIONS

Some years ago, Stjernschantz and Oostenbrink (2010)
introduced an extended version of the LIE method in
which results from multiple MD simulations starting from
different protein conformations and/or binding orientations are
combined into a single 1Gbind calculation. With this method,
protein–conformational sampling and the description of
ligand–binding promiscuity can be improved when computing
1Gbind for e.g., Cytochrome P450s or other flexible proteins
that may bind their ligand in different binding orientations. The
contribution of an individual simulation i that starts from a given
protein conformation and ligand–docking pose is scaled via a
Boltzmann–like statistical weighting scheme as follows (Hritz
and Oostenbrink, 2009):

Wi =
e−1Gbind,i/kBT

∑

i
e−1Gbind,i/kBT

(2)

with 1Gbind,i the binding free energy calculated from simulation
i according to Equation (1). The individual weights are then
used to calculate 1Gbind for a compound from N different
simulations via:

1Gbind =α

N
∑

i

Wi

(〈

Vvdw
lig−surr

〉

bound,i
−

〈

Vvdw
lig−surr

〉

unbound

)

+ β

N
∑

i

Wi

(〈

Vele
lig−surr

〉

bound,i
−

〈

Vele
lig−surr

〉

unbound

)

(3)

Because the weights Wi are directly dependent on the values of
α and β , model calibration based on experimental data has now

to be performed using an iterative fitting scheme (Stjernschantz
and Oostenbrink, 2010). Hence, this extended version of LIE is
also referred to as iterative LIE.

This approach was first tested for thiourea binding to
Cytochrome P450 2C9 and provided a model with high
accuracy when including simulations starting from multiple
ligand–binding poses, whereas experimental accuracy could
not be obtained when using a single MD simulation per
compound (Stjernschantz andOostenbrink, 2010). Subsequently,
model improvement was also shown for thiourea binding to
Cytochrome P450 2D6 by using not only different ligand poses
but also multiple protein starting structures for MD (Perić–
Hassler et al., 2013). The method was further extended by using
multiple replicates per docking poses to further increase accuracy
(Perić–Hassler et al., 2013). Later, our group has successfully
used this Boltzmann–weighting LIE scheme for binding affinity
prediction to e.g., CYP1A2 (Capoferri et al., 2015), CYP19A1
(van Dijk et al., 2017), JAK2 kinase (Capoferri et al., 2017),
and FXR (Rifai et al., 2018), and it has been implemented
in an automatic way in the eTOX ALLIES (Capoferri et al.,
2017) and MDStudio platforms (van Dijk, 2017) (section 4).
As part of these efforts, Vosmeer et al. proposed a Fourier–
transform filtering strategy to detect stable parts of MD time
series of the interaction energy terms (Vosmeer et al., 2016).
Only segments with fluctuations smaller than a pre–defined
cut–off were subsequently used to average ligand–surrounding
interaction energies over. Using previously calculated 1Gbind

data of Cytochrome P450 2D6 (Vosmeer et al., 2014), this
filtering strategy was able to make LIE calculation slightly more
accurate while potentially greatly improving compute efficiency
(Vosmeer et al., 2016). The reason that such filtering does
not only improve efficiency but can also enhance accuracy is
that the weighting scheme of Equations (2) and (3) is only
valid when using results from individual simulations that cover
well-separated parts of the potential energy surface of the
system of interest (Hritz and Oostenbrink, 2009). Note that
Nunes–Alves and Arantes (Nunes–Alves and Arantes, 2014)
used a similar Boltzmann–weighting approach to incorporate
multiple binding modes into their binding affinity prediction
using an implicit solvent model and they tested it on four
different receptors.

Besides calculating 1Gbind with the inclusion of several
binding poses in LIE, it was also shown that the probability
of a binding pose to occur can be predicted by inspecting
the weighting values obtained from Equation (2) (Rifai et al.,
2019). We verified this recently for a system of SIRT1–
ligands and found for the considered compounds a correlation
between the simulations of the protein–bound state with highest
weight Wi and information from a co–crystallization study,
in terms of the observed protein–ligand interactions and/or
the starting poses used in simulation (as compared to the co-
crystallized binding poses) (Rifai et al., 2019). Thus, when being
able to generate and select appropriate binding poses from
docking and/or experimental information on protein–ligand
interactions for (a vast majority of the) training compounds,
iterative LIE training may well be subsequently performed in an
unsupervised manner.
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3. APPLICABILITY DOMAIN ANALYSIS FOR
LIE

Provided that we use the LIE framework as a purely empirical
method, i.e., not considering categories of the β parameter based
on the chemical nature of the ligand (Hansson et al., 1998;
Almlöf et al., 2007), the need for training and the use of fitted
parameters (α and β) may raise the question of how reliable the
predicted value will be for an arbitrary query compound. Hence
there is a need to provide a measure to estimate the reliability
of a prediction for a new compound with unknown binding
affinity, and to evaluate if the query compound of interest is
sufficiently represented by the employed set of model training
compounds. This can be expressed in terms of the applicability
domain (AD) of a given LIE model. The AD is a set of knowledge
or information on the training set of the model and can give a
measure for the confidence in a given prediction, in a similar
vein as commonly applied in ligand–based empirical approaches
(Carrió et al., 2014). A few years ago our group introduced
an approach to allow AD assignment of LIE models, based on
simulation and training data only (Capoferri et al., 2015, 2017;
van Dijk et al., 2017). To our knowledge, this is the first method
to analyze the AD of protein–structure (and –dynamic) based
models such as LIE.

Inspired by a previous applicability domain analysis (ADAN)
approach of Pastor and co–workers to define the domain of
applicability of ligand–based QSAR models (Carrió et al., 2014),
we have proposed an AD analysis strategy in a LIE study
on Cytochrome P450 1A2 binding (Capoferri et al., 2015).
In this study a relatively large set of (57) structurally–diverse
training and test compounds were employed to explore the
possibility to define the AD of calibrated LIE models in terms
of five metrics. To estimate the reliability of a given prediction,
these metrics or confidence indices are used to evaluate the
similarity of an arbitrary query ligand (for which 1Gbind is
to be predicted) with the model’s training set. This is not
only evaluated in terms of structural similarity (according to
Tanimoto scores) and computed 1Gbind (as compared to the
spread in experimental data used for calibration), but also in
terms of the characteristics of the protein–ligand interactions. For
the latter purpose, Mahalanobis–distance and (two) principal–
component analyses are performed to enable a quantitative
comparison between the averaged and the most relevant per–
residue van der Waals and electrostatic interactions during
simulation of either the protein–bound query or training
compounds (Vosmeer et al., 2014; Capoferri et al., 2015). With
these metrics in hand and after splitting the set of ligands
with known binding affinity into a training and test set (of
35 and 22 compounds, respectively), a distinction could be
successfully made between accurate and inaccurate 1Gbind

predictions for the test set compounds by looking at how many
of the confidence metrics were violated per prediction (Capoferri
et al., 2015).

An important conclusion from Capoferri’s AD analysis
was that the nature of the protein–ligand interactions (in
terms of averaged non-bonded energies and the involved
interacting protein residues) were more relevant descriptors

for the AD of the LIE model than the molecular structure
of the ligands alone. In the LIE study of van Dijk et al.
mentioned in section 1 (van Dijk et al., 2017), this finding
was confirmed for local models that were inferred for a set
of 132 structurally–diverse CYP19A1 binders. By profiling
and comparing per–residue interactions as observed for the
protein–ligand simulations used for training, van Dijk showed
differences in protein–ligand interactions among the three local
models inferred, while structurally related compounds were
not necessarily part of the same local model, indicating that
protein–ligand interactions are a better measure to quantify if
a given compound falls within the AD of a LIE model when
compared to the molecular structure or other properties of the
ligand alone.

The performances of LIE and the above mentioned AD
analysis approach were evaluated in a real–life scenario of
a community blind affinity prediction challenge organized by
Drug Design Data Resource (D3R) during phase 2 of Grand
Challenge 2 (GC2) (Gaieb et al., 2018). In D3R GC2, the
challenge was to predict binding affinities of (102) agonists
with different scaffolds for nuclear receptor FXR. For a subset
of benzimidazole compounds (n = 9), a predictive accuracy
(with a deviation from experiment of less than 5 kJ mol−1)
was obtained. Importantly, we showed that our AD analysis
can yield representative metrics (in terms of an index for the
level of confidence) to quantify the reliability of the binding
affinity predictions based on simulation data only. It should
also be noted that LIE might fail to predict the binding affinity
of compounds with different structural properties and protein–
ligand interaction profiles and/or domain of applicability from
the ligands used for model training, or when the number of
compounds constituting the training set cannot cover the range
of experimental data of the test set. However, this can be
estimated by the confidence level retrieved from AD analysis,
to indicate possible limitations of the obtained LIE model.
To enrich the interpretation of the applicability domain, we
incorporated protein–ligand interaction profiling to evaluate the
interaction of FXR with its ligands per obtained confidence
level. We found that the confidence levels of the AD analysis
were in line with the frequencies of ligand interactions with
hotspot residues in the protein and with the model deviation and
correlation metrics obtained from the predictions (Rifai et al.,
2018).

4. (SEMI-)AUTOMATED LIE MODELING
AND ANALYSIS TOOLS

Several software modules or packages (Table 1) are available
that can be used to facilitate LIE modeling, such as the built–
in package gmx lie within GROMACS (van der Spoel et al.,
2005; Abraham et al., 2015) which can be used to directly
obtain free energies of binding from interaction energy term
analyses. Q (Marelius et al., 1998; Bauer et al., 2018) can
semi–automatically perform LIE and FEP calculations, and is
assisted with a Graphical User Interface (GUI) (Isaksen et al.,
2015). The Free Energy Workflow (FEW) tool (Homeyer and
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TABLE 1 | Selection of available tools to perform, facilitate and/or automate LIE calculations.

Software Operating system Free/Commercial Requirement Type

gmx lie Windows, Linux, MacOS Free GROMACS Program in simulation software

Q Windows, Linux, MacOS Free – Simulation software

FEW Windows, Linux, MacOS Free* Amber, AmberTools Perl script

CaFE Windows, Linux, MacOS Free VMD Tcl scripts

eTOX ALLIES Windows, Linux, MacOS Free – (all required softwares are in the virtual machine) Python scripts in virtual-machine

environment

MDStudio Windows, Linux, MacOS Free* Open Babel, PLANTS, AmberTools and GROMACS Python scripts in docker and microservice

environment

FESetup Windows, Linux, MacOS Free* GROMACS, Amber, Sire, NAMD Shell script

Desmond Windows, Linux, MacOS Commercial Schrödinger suite Software

*These tools (may) require Amber or PLANTS, which are commercial softwares.

Gohlke, 2013, 2015) also enables LIE (as well as other free
energy) calculations by facilitating setup and execution within
the Amber suite (Case et al., 2005; Salomon–Ferrer et al.,
2013). CaFE (Liu and Hou, 2016) specializes in calculating
1Gbind by using end–point methods including LIE. FESetup
(Loeffler et al., 2015) can facilitate alchemical free energy
simulations and provides the ability to perform end-point
calculations as well. Desmond (Bowers et al., 2006; Gao
et al., 2012) from Schrödinger can also be used to extract
ligand–surrounding interaction energies from MD simulations.
Our eTOX ALLIES pipeline (Capoferri et al., 2017) enables
automated molecular docking, MD simulation, iterative LIE
and associated AD analysis, which can be based on inclusion
of multiple binding modes and/or protein conformations as
input for the MD simulations (Capoferri et al., 2017). Recently,
we have made such LIE workflow also available within our
modular and flexible MDStudio workflow management system
(van Dijk, 2017).

5. CONCLUSIONS

The current perspective summarizes how we have explored
the use of (statistically-weighted) LIE to predict binding
affinity for challenging flexible (off-)target proteins such as
Cytochrome P450s and nuclear receptor FXR. In addition
we reviewed possibilities to evaluate the confidence in LIE
predictions with an AD assessment approach for LIE or other
protein-structure and -dynamic based free energy methods.

Especially when the AD of a LIE model can be defined, LIE can
treat sets of ligands that may involve too large perturbations
to be simulated and become impractical for alchemical free
energy perturbation or thermodynamic integration, while
simultaneously accounting for the unbound state of the ligand
that is not considered by most combined docking/scoring

approaches. Thus, calibrated LIE models can be viewed as
a combination of (4D–)QSAR and sampling approaches
to estimate protein–binding affinities. Combined with the
possibility to employ tools that facilitate and automate LIE
calculations and (AD) analysis, the potential of addressing
protein flexibility and promiscuity in statistically-weighted
models and the availability of metrics for applicability
domain analysis show direct promises for use of LIE in
applied settings.
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Protein-ligand binding affinity is a key pharmacodynamic endpoint in drug discovery. Sole

reliance on experimental design, make, and test cycles is costly and time consuming,

providing an opportunity for computational methods to assist. Herein, we present results

comparing random forest and feed-forward neural network proteochemometric models

for their ability to predict pIC50 measurements for held out generic Bemis-Murcko

scaffolds. In addition, we assess the ability of conformal prediction to provide calibrated

prediction intervals in both a retrospective and semi-prospective test using the recently

released Grand Challenge 4 data set as an external test set. In total, random forest and

deep neural network proteochemometric models show quality retrospective performance

but suffer in the semi-prospective setting. However, the conformal predictor prediction

intervals prove to be well-calibrated both retrospectively and semi-prospectively showing

that they can be used to guide hit discovery and lead optimization campaigns.

Keywords: conformal prediction, proteochemometric, protein-ligand binding affinity, bemis-murcko scaffolding,

random forest, deep neural net (DNN)

INTRODUCTION

One of the most important phases of a drug discovery campaign is the discovery of a potent
inhibitor to a target driving the disease phenotype. Experimental design, make, test cycles seek to
optimize initial hits to lead compounds by optimizing the protein-ligand binding affinity. However,
this process is frequently slow and costly, adding to the large cost of drug discovery. As such,
computational methods that can accelerate this optimization phase by predicting protein-ligand
binding affinity values are readily sought. Fully atomistic simulation approaches model protein-
ligand binding physics through time integrating Newton’s equations of motion in molecular
dynamics simulations (Jorgensen and Thomas, 2008; Chodera et al., 2011; Mobley and Klimovich,
2012; Christ and Fox, 2014; Abel et al., 2017; Cournia et al., 2017; Mobley and Gilson, 2017).
However, molecular dynamics approaches can suffer from large computational costs, insufficient
sampling, and variably accurate force fields. As an alternative, quantitative structure activity
modeling (QSAR) uses machine learning (ML) as a stand in for physically rigorous simulations
by seeking to model statistical correlations between ligand information and protein-ligand binding
affinity (Cherkasov et al., 2014). Traditional QSAR models do not model the protein directly, and
hence do not allow learning from related protein family members during training. In contrast
proteochemometric (PCM) models combine both protein and ligand information to create a
composite feature vector that allows the model to learn mappings between all protein-ligand
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pairs in a training set (Cortés-Ciriano et al., 2015a). PCM
models have been applied to a diverse number of protein
families including G-protein coupled receptors (Gao et al.,
2013), HDACs (Tresadern et al., 2017), kinases (Subramanian
et al., 2013), Cytochrome P450s, HIV proteases (Lapins et al.,
2008), Poly(ADP-ribose) polymerases (Cortés-Ciriano et al.,
2015b), and bromodomains (Giblin et al., 2018). Recently, PCM
and multi-task neural networks have also been benchmarked
using ChEMBL data where the utility of PCM modeling for
binder/non-binder classification was demonstrated (Lenselink
et al., 2017).

We first compare the performance of random forest (RF)
and feed-forward neural network (FFN) PCM models trained
using the recently released ChEMBL25 data set (Gaulton et al.,
2017) with full length protein sequence features on a generic
Bemis-Murcko scaffold split. It is shown that the RF and FFN
models achieve comparable overall performance suggesting that
both models approach the upper levels of performance possible
given the heterogeneous IC50 measurements in ChEMBL25
(Kalliokoski et al., 2013). Feature analysis shows that both
models leverage the protein sequence features extensively, albeit
in different ways. We demonstrate that the optimization of
entity embeddings for ECFP6 categorical variables allows FFN
models to perform feature engineering in a data driven manner
(Guo and Berkhahn, 2016). In addition, we compare the validity
and efficiency of regression conformal predictors first in a
retrospective test using ChEMBL25 data and subsequently in
semi-prospective test using the recent Drug Design Data (D3R)
Grand Challenge 4 (GC4) data set (Parks et al., 2019a). The D3R
issues blinded prediction challenges to the computer aided drug
design (CADD) community to assess method performance in
truly blinded scenarios. Although the data has been since released
to the community, we use the data in the most recent GC4
(Parks et al., 2019a) data set as a test set external to the data in
ChEMBL25 for what we refer to as a semi-prospective test. These
results show that the performance of both models suffer on the
GC4 dataset relative to the ChEMBL25 validation set. However,
the performance is in line with the top performing ML models in
prior D3R Grand Challenges (Gathiaka et al., 2016; Gaieb et al.,
2018, 2019; Parks et al., 2019a). Finally, the prediction intervals
from the conformal predictors are shown to be valid on the
GC4 data set, demonstrating the validity of conformal prediction
confidence intervals on a high-quality external test set.

MATERIALS AND METHODS

Data Set Source and Preparation
The recently released ChEMBL25 (Gaulton et al., 2017) database
was used for ML model training. Only molecules with specified
canonical SMILES strings, standard units of nM, no potential
duplicates, confidence score of 9, activity comment not equal
to inconclusive, and against protein targets with specified gene
ids, and protein sequences from Swiss-Prot were kept. Ligands
with PAINS patterns identified via RDKit1 were removed. Only
ligands with a molecular weight in the range of 75 to 800

1RDKit Avaliable Online at: https://www.rdkit.org/ (accessed August 13, 2019).

Da were retained. We replaced multiple IC50 values for the
same protein-ligand pair by the median IC50 value. SMILES
strings were standardized and canonicalized using the charge
parent function inMolVS2. SMILES strings were either featurized
using 4,096 bit length ECFP6 fingerprints, molecular weight,
topological surface area, number of hydrogen donors, number of
hydrogen acceptors, LogP, heavy atom count, number of rotatable
bonds, and ring count with RDKit or CDDD descriptors (Winter
et al., 2019). Protein sequences were featurized using amino acid,
dipeptide, composition, transition, and distribution descriptors.
Ligand and protein descriptors were then concatenated to create
the full feature vector. Non ECFP6 bit values were scaled using
the standard scaler function in Scikit-learn (Pedregosa et al.,
2011). All IC50 values were converted to pIC50 values and scaled
using the standard scaler function. The final data set contained
302,325 data points consisting of 213,502 unique SMILES strings
across 940 unique UniProt IDs.

Machine Learning Model Training and
Conformal Prediction
RF models were trained using the Scikit-learn (Pedregosa et al.,
2011) library via a grid search hyperparameter optimization
strategy. The following hyperparameter values were explored:
100, 500, and 1,000 for the number of estimators; sqrt, log2, 0.3,
and 0.5 for max features; and 1,3,5,10,25 for min samples leaf.
FFN models were trained using Fast.ai (Howard and Gugger,
2020). We investigated treating ECFP6 bit vectors as categorical
variables whose embeddings were optimized via backpropagation
during model training (Guo and Berkhahn, 2016). A 3-layer
model was employed with 2,000 nodes in the first layer, 1,000
in the second, and 500 in the third. Linear layer outputs were
then passed through an activation and then a batch norm and
dropout layer. A ReLU function were used for activations, with
the exception of the last layer, where a Sigmoid function was
used. This was done to facilitate training by scaling outputs from
the last linear layer to a range of values between the max and
minimum scaled pIC50 values in the training set multiplied by
a scaling factor of 1.2. Weight decay was set to 0.01. Dropout
of 0.25 was used in each layer, except for the embedding layers,
where a dropout of 0.01 was used. All other Fast.ai tabular
model defaults were used. The FFN model was trained with
the fit_one_cycle (Smith, 2018) method. All models were then
analyzed using mean squared error (MSE), Pearson correlation
coefficient, and Kendall’s Tau metrics.

Rigorous quantification of model confidence is essential in
fields such as drug discovery where chemical space is essentially
infinitely vast and models are trained on only a small fraction
of possible compounds. Conformal prediction is a state of the
art method to provide confidence intervals, i.e., a region where
the true value is predicted to be, and whose size is determined
in part by a user defined confidence level (Shafer and Vovk,
2008; Norinder et al., 2014; Cortés-Ciriano et al., 2015a; Sun
et al., 2017; Svensson et al., 2017). Here, we define validity as

2MolVS: Molecule Validation and Standardization —MolVS 0.1.1 documentation

Avaliable Online at: https://molvs.readthedocs.io/en/latest/ (accessed August 13,

2019).
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the frequency at which the confidence interval contains the true
value. For example, the 95% confidence prediction intervals for a
well-calibrated conformal predictor would contain the true value
95% of the time. The efficiency of a conformal predictor is a
reflection of the size of the confidence internals produced. Here,
a model that produces smaller confidence intervals than another
model would be considered to have higher efficiency. These two
variables, validity and efficiency, quantify the performance of
conformal prediction models. Conformal prediction requires a
way to gauge the similarity of a new piece of data to training data.
Recent literature has shown that the standard deviation across
the trees of a RF model (Svensson et al., 2018), and the use of
test-time dropout in the case of FFNmodels (Cortés-Ciriano and
Bender, 2019a), provide valid and efficient conformal predictors.
However, these methods have not been analyzed in prospective
settings extensively. We use these methods to assess non-
conformity herein. For an overview of conformal prediction in
the field of drug discovery, we direct the reader to a recent review
(Cortés-Ciriano and Bender, 2019b).

It has been shown that overly simplistic (i.e., random)
training/validation/test splits lead to overestimates in the
accuracy of machine learning models (Wallach and Heifets,
2018). This is one explanation for the discrepancy between
performance metrics seen in retrospective settings and those seen
in true prospective tests (Gathiaka et al., 2016; Gaieb et al., 2018,
2019; Parks et al., 2019a). In an attempt to mitigate this, we
elected to perform hyperparameter optimization using an 80/20
generic Bemis-Murcko scaffold split. This leads to amore difficult
split, as the validation set does not contain any compounds with
a generic Bemis-Murcko scaffold already present in the training
set. Optimal hyperparameters and performance metrics on the
ChEMBL25 data set for all models were first determined with
this split. In all subsequent models, these sets of hyperparameters
were using for training. The training set was then further divided
using a random 80/20 split into a new training and calibration
set. Models were then retrained and the calibration set was used
to calibrate the confidence intervals of the conformal predictors.
These models were used to assess the validity and efficiency
of the conformal predictors on the ChEMBL25 validation data
set. Finally, the entire ChEMBL25 dataset was randomly split
into another 80/20 training and calibration set. All models were
again trained and calibrated. These final models were used to
assess performance on the external GC4 dataset in a semi-
prospective test.

RESULTS

Retrospective Analysis
In Table 1 we provide the performance metrics and model
architectures for the best performing models across the full
validation set.

Table 1 demonstrates that both model types (RF/FFN)
perform equally well on the applied generic Bemis-Murcko
scaffold split. We found the RF model with ECFP6 fingerprints,
and the FFN model with entity embeddings to be the best
performing models. The following sets of hyperparameters were
found to be optimal for the RF models: {n_estimators=1000,

TABLE 1 | ChEMBL25 validation set performance metrics for both the RF and

FFN models as well as the SMILES featurization method used.

Model type MSE (scaled

pIC50)

Pearson

correlation

Kendall’s

Tau

RF (ECFP6) 0.38 0.80 0.61

RF (CDDD) 0.47 0.75 0.55

FFN (entity embeddings) 0.39 0.79 0.60

FFN (ECFP6) 0.41 0.78 0.58

FFN (CDDD) 0.42 0.78 0.58

TABLE 2 | Performance metrics averaged across individual UniProt IDs.

Model type MSE (scaled pIC50) Pearson correlation Kendall’s Tau

RF 0.37 +/– 0.17 0.65 +/– 0.18 0.46 +/– 0.15

FFN 0.38 +/– 0.15 0.61 +/– 0.22 0.43 +/– 0.17

max_features=sqrt, min_samples_leaf=1} using ECFP6
fingerprints, and {n_estimators=1000, max_features=log2,
min_samples_leaf=1} using CDDD features. The scaled pIC50
MSE values in Table 1 translate to a root mean squared error
of approximately 0.8 pIC50 units. These values are in the range
of expected errors for ML models trained on heterogeneous
ChEMBL25 data (Kalliokoski et al., 2013), and are in agreement
with prior literature that also demonstrated that RF and FFN
models approached the upper limit of overall accuracy across
the dataset, given the heterogeneous IC50 measurements in
ChEMBL25 (Cortés-Ciriano and Bender, 2019a).

Ensemble averaging is a strategy to improve prediction
performance by averaging the individual predictions of multiple
models. This wisdom of crowd approach works best when
individual models are uncorrelated, allowing errors to be
averaged out. The residuals of the RF and FFN model
are correlated with an R2 metric of 0.88. As such, only a
modest improvement at best is noted when the FFN and
RF model predictions are averaged to yield the following
performance metrics: 0.36 MSE, 0.81 Pearson correlation, and
0.61 Kendall’s Tau.

The number of data points per gene is heterogeneous
in ChEMBL25, allowing a few genes to contribute more to
performance metrics than others. To remove this bias, we
calculated performance metrics across each individual gene with
more than 100 data points in the validation set (Table 2). Analysis
of Table 2 shows that model performances vary moderately
across the various genes with metric fluctuations (standard
deviation/value) on the order of 30–50%. We found the amount
of training data for a given UniProt ID to be a poor predictor
for future successful predictions. We calculated the Kendall’s Tau
correlation between amount of data in the training set and the
MSEs for each gene and found no correlation (tau = 0.05 both
the RF and FFN model). Performance is spread across protein
families as well, with the top 30 performing UniProt IDs for
the RF model containing proteins from the kinase, protease, and
RNA polymerase families. This suggests that chemical similarity
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FIGURE 1 | (A) ChEMBL25 pIC50 probability distribution, (B) validation set scaled pIC50 vs. RF predictions, (C) validation set scaled pIC50 vs. RF prediction squared

error, and (D) validation set scaled pIC50 vs. FFN prediction squared error.

and bias between the training and validation set are the most
import variables determining performance.

Analysis of the training distribution of the pIC50 values
shows that a strong amount of publication bias exists in the
ChEMBL25 dataset (Figure 1A). Active compounds are over
represented as shown by the average pIC50 value of the whole
distribution being 6.57. In true prospective unbiased chemical
library screens, it is common for 95% of the compounds to have
pIC50 < 5 (i.e., non-binders). This demonstrates that the pIC50
predictions from the ML models herein should be used with
caution for prospective virtual screening of chemical libraries,
as large test-time distribution shift is certain. In addition, the
distribution of training pIC50s is non-uniform (Figure 1A). This
can lead to heterogeneous model performance across differing
ranges of pIC50 values. For example, the RF model predictions
correlate well with the measured values for the given split overall
(Figure 1B). However, Figures 1C,D demonstrates the accuracy
of both the RF and FFN models suffer in the tail of the pIC50
distribution, with quality performance obtained in a range of+/–
1 standard deviation from the mean.

Feature importance analysis allows us to determine whether
the protein sequence component of the feature vector is pertinent
to the model performance. This analysis indicates that the feature
importance for the RF model plateaus at approximately the
1500th ranked feature out of the total 4,104 features (Figure 2A).

All 567 protein sequence features, and all 8 physiochemical
property features, fall in the top 1500 features. For the FFN
model, the feature importance plateaus at approximately the
2000th ranked feature out of the total 4,104 features for the
FFN model (Figure 2B). The top 2,000 features consist of
268 of 567 protein sequence features, 1,725 of 4,096 Morgan
fingerprint bits, and 7 of 8 physiochemical properties. This
demonstrates that both model types rank protein sequence
features among the most important features. Both models find
the physiochemical properties features to be the most import
features overall, including MW. The Kendall’s Tau ranking of the
validation set scaled pIC50 values using solely MW alone is 0.15
demonstrating the trend of lead optimization campaigns to result
in increasingly larger MW molecules. To further interrogate
the protein sequence features, new training and validation sets
were generated via a random UniProt ID split and models were
retrained. This resulted in a much tougher split with the FFNs
being the clearly best performing model by MSE (Table 3). This
suggests that the FFN models are able to leverage the protein
sequence features more effectively.

Molecular fingerprints are themost commonly used technique
to encode molecules for ML model training. This technique
hashes atomic neighborhoods for each atom to bits to represent
molecules with 1D dimensional vectors. This approach can
suffer from bit collision. In addition, there is no meaning of

Frontiers in Molecular Biosciences | www.frontiersin.org 4 June 2020 | Volume 7 | Article 9328

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Parks et al. Conformal Prediction for Affinity Prediction

FIGURE 2 | (A) feature rank vs. feature importance for the (A) RF model and (B) FFN model. In (B), the y-axis was capped at 0.001 to maintain resolution.

TABLE 3 | ChEMBL25 validation set performance metrics for both the RF and

FFN models as well as the SMILES featurization method used.

Model type MSE (scaled

pIC50)

Pearson

correlation

Kendall’s

Tau

RF (ECFP6) 0.96 0.41 0.27

RF (CDDD) 0.89 0.46 0.31

FFN (entity embeddings) 0.80 0.51 0.35

FFN (ECFP6) 0.79 0.49 0.34

FFN (CDDD) 0.78 0.48 0.33

proximity of bits (Feinberg et al., 2019). As an alternative,
prior literature has sought to extract features directly from
images (Ragoza et al., 2017; Ciriano and Bender, 2018; Jiménez
et al., 2018; Parks et al., 2019b) or graphs (Kearnes et al.,
2016; Kipf and Welling, 2017; Feinberg et al., 2019; Torng and
Altman, 2019) using convolution neural networks. Here, we
pursue a complementary approach where we map categorical
variables into Euclidean space using entity embeddings (Guo and
Berkhahn, 2016). Entity embeddings are sets of weights in the
neural network that represent possible categories of a feature.
These weights are then optimized by the neural network during
training. Hence, each category (0/1) of each bit in the Morgan
fingerprint is now represented by a unique set of weights in the
neural network. This allows the network to learn relationships
between chemical fragments in a data driven manner. Our results
demonstrate that the FFN learns to group Morgan fingerprint
bits intomultiple clusters through the optimization of embedding
weights (Figure 3) providing a novel compound fingerprint.
For the generic Murcko scaffold split used herein, the use of
entity embeddings led to a 5% reduction in MSE for the FFN
model. However, no performance variation was seen between
the CDDD/ECFP6/and entity embedding features for the FFN
models on the random protein split. Future work will be needed
to interrogate the utility of the entity embeddings as a supplement
to the tradition ECFP fingerprint.

The ChEMBL25 validation set was also used to assess the
retrospective performance of conformal prediction. Analysis of
the RF prediction interval sizes shows that they span a larger
range of values than those from the FFN (Figure 4A), and hence

FIGURE 3 | TSNE plot of the FFN entity embeddings for the category 1

variables of the morgan fingerprint vector. Category 1 was selected for plotting

as this denotes the presence of a chemical fragment. The category 1 weights

of the 0, 100, 1,000, 2,000, 2,500, and 4,050 bits are plotted in black to

illustrate how the FFN model groups bits into distinct clusters.

are less efficient. However, the RF model has better validities
than the FFN model (Figure 4B), but both models still achieve
quality validities overall. Interestingly, there is very little variation
in the size of the FFN confidence intervals across all predictions
on the validation set (Figure 4A) but this is still sufficient for
the FFN to generate valid prediction intervals (Figure 4B). In
total, conformal prediction is able to accurately gauge both RF
and FFNmodel confidence for predictions on held-out validation
data, in agreement with prior literature (Svensson et al., 2018;
Cortés-Ciriano and Bender, 2019a).

Semi-prospective Test
The true test of model performance is a prospective one as this
is how ML models are used in practice. Here, we use the recently
released GC4 dataset (Parks et al., 2019a) as an external, semi-
prospective test for the best performing models [RF (ECFP6) and
FFN (entity embeddings)] from the generic Murcko split. GC4
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FIGURE 4 | (A) Box-whisker plot of the 95% confidence interval (CI) sizes for both the RF and FFN model computed on the validation set, and (B) theoretical vs.

computed error rates (1-validities) on the validation set for varying error thresholds (1-confidence threshold).

TABLE 4 | GC4 BACE-1 and CatS performance metrics.

Model BACE-1

Pearson

correlation

BACE-1

Kendall’s

Tau

CatS

Pearson

correlation

CatS

Kendall’s

Tau

RF 0.25 (0.71) 0.19 (0.51) 0.25 (0.68) 0.38 (0.49)

FFN 0.5 (0.77) 0.29 (0.59) 0.19 (0.8) 0.26 (0.61)

The corresponding performance metrics on the ChEMBL25 validation sets for BACE-1

and CatS are contained in parenthesis for comparison.

provided IC50 data to two targets: Cathepsin S (CatS), and Beta-
amyloid secretase 1 (BACE-1). Analysis of Table 4 shows that
the ranking of model performances is target dependent, with the
FFN performing best for BACE-1 and the RF model performing
best for CatS. By comparing the metrics for both models on
the same targets in the retrospective validation set, we see that
both models suffer heavily in the prospective setting (Table 4).
This is in agreement with prior literature showing data set split
bias inflates model performance metrics (Wallach and Heifets,
2018), despite our attempts to mitigate this via a generic Bemis-
Murcko scaffold split. However, these metrics are in line with
the performance seen during GC4 with ML models (Parks et al.,
2019a). Based on the Kendall’s Tau value of the RF model for
the CatS dataset, the RF model would have ranked in the top 10
performing methods for the CatS affinity prediction challenge.
Similarly, the FFN would have placed in the top 10 for the
BACE-1 affinity prediction challenge.

In addition to the model predictions, this semi-prospective
test allows us to analyze the validity and efficiency of the
conformal prediction intervals for both the RF and FFN. Both
models achieve excellent validities on the CatS data set. Here,
the prediction intervals contained the true measured value 95
and 97% of the time for the RF/FFN models, respectively. The
validities of both models suffer slightly on the BACE-1 data set
relative to CatS, but overall still achieve excellent performance
with 81 and 80% validities. As a possible explanation for the
validity performance degradation between CatS and BACE1,
we note that the distribution of nearest neighbor Tanimoto

coefficients demonstrates that the CatS GC4 compounds are
more similar to the ChEMBL25 training data, and hence
providing an easier test for the conformal predictor, than
the BACE1 GC4 compounds (Supplementary Figure 1). For
both CatS and BACE-1, we find the FFN provides more
efficient prediction intervals (Figures 5A,B). In total, these
results demonstrate the ability of the conformal predictors to
generate valid prediction intervals in a semi-prospective setting.

We next sought to compare the performance of the PCM
models against a standard QSAR target model trained using
only CatS or BACE-1 ChEMBL25 data, respectively. Here, a
RF QSAR model achieved approximately the same performance
metrics on both targets as the RF PCM model with a 0.26
Pearson Correlation and 0.37 Kendall’s Tau for CatS and 0.26
Pearson Correlation and 0.18 Kendall’s Tau for BACE-1. This
indicates that the RF model may benefit from additional protein
sequence descriptors such as those from unsupervised training
(Kim et al., 2019). The conformal prediction validities remained
approximately equivalent at 93% on the CatS data set and
83% on the BACE-1 dataset. However, the data augmentation
from PCM training improved the efficiencies of the confidence
intervals relative to those from the QSAR RF model for BACE-
1 (Figures 5A,C). The FFN QSAR model performance degraded
relative to the PCM model with a 0.23 Pearson Correlation and
0.25 Kendall’s Tau for CatS and a 0.46 Pearson Correlation and
0.22 Kendall’s Tau for BACE-1. This suggests that the FFN is
able to leverage the information of other protein sequences in
the data set more effectively than the RF model during training.
The validities of the FFN QSAR conformal predictor for BACE-1
degraded to 74%, but remained roughly the same at 98% for CatS.
We find the PCM FFN model confidence interval to be more
efficient than those of the QSAR FFNmodel (Figures 5B,D). This
is most vividly captured in the case of CatS.

Finally, we sought to test the impact of deleting all CatS
and BACE1 data and retraining the models using the same
procedure. As shown in Supplementary Table 1, this had the
expected negative impact on performancemetrics for bothmodel
types with the FFN performance suffering the least. The only
exception was the Pearson’s correlation between FFN model
predictions and target values for CatS where the metric remained

Frontiers in Molecular Biosciences | www.frontiersin.org 6 June 2020 | Volume 7 | Article 9330

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Parks et al. Conformal Prediction for Affinity Prediction

FIGURE 5 | Box-whisker plots of the 95% confidence interval (CI) sizes (scaled pIC50) for CatS/BACE-1 predictions for (A) RF PCM model, (B) PCM FFN model, (C)

QSAR RF model, and (D) QSAR FFN model.

statistically equivalent. Notably, the Kendall’s Tau ranking of
model predictions is now only as good as a LogP ranking of the
data for both model types. However, the conformal predictor
remains well-calibrated with a 99 and 80% validity for the RF
model, and 80 and 72% validity for the FFN model for CatS and
BACE1, respectively. Supplementary Figure 2 demonstrates that
there is a marked reduction in the efficiency of the prediction
intervals from the RF model. However, the FFN prediction
interval efficiencies only degrade slightly. Despite the reduction
in the performance of the point prediction values, we conclude
conformal prediction remains an impactful method to gauge
model confidence even on never before seen protein targets.

CONCLUSION

Protein-ligand binding affinity is a key variable during hit
discovery and lead optimization in drug discovery. Experimental
design, make, test cycles that seek to optimize this property
are costly and time consuming, and hence limit the rate of
entry of novel therapies to the clinic. Computational methods
seek to accelerate these cycles by producing reliable protein-
ligand binding affinity predictions. Traditional QSAR models
train using only chemical compound data for a specific target.
Alternatively, PCM models featurize both protein sequence and
ligand to create the final feature vector. This allows MLmodels to
be trained on protein-ligand binding affinity data from multiple

proteins at once, hence augmenting the size of the training set,
and potentially allowing the model to learn from related proteins
(Lapins et al., 2008; Gao et al., 2013; Subramanian et al., 2013;
Cortés-Ciriano et al., 2015a,b; Tresadern et al., 2017; Giblin et al.,
2018).

Here we first analyze the performance of PCM models
trained using the most recent ChEMBL25 database (Gaulton
et al., 2017). The results above show that a RF and FFN
model achieve comparable performance on the generic Bemis-
Murcko scaffold split of ChEMBL25 data. The root mean
squared error of the models were approximately 0.8 pIC50 units
suggesting both models are approaching the limit of accuracy
given the heterogenous IC50 measurements in ChEMBL25
(Kalliokoski et al., 2013). Feature importance analysis of both
models demonstrated that protein sequence features were among
the most important features overall. We show that entity
embeddings for the categorical ECFP6 Morgan fingerprints
can be optimized during FFN training and provide quality
performance for drug discovery applications (Guo and Berkhahn,
2016). This allows for feature engineering in a data driven
manner and provides an alternative to other methods that seek
to derive novel chemical features using convolutional (Ragoza
et al., 2017; Ciriano and Bender, 2018; Jiménez et al., 2018;
Parks et al., 2019b) and graph-convolutional neural networks
(Kearnes et al., 2016; Kipf andWelling, 2017; Torng and Altman,
2019).
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Finally, we analyze the utility of conformal prediction
to provide prediction intervals to assess model confidence.
Conformal prediction was implemented using the standard
deviation across the trees of the RF model and Bayesian
dropout (Cortés-Ciriano and Bender, 2019a) for the FFN model.
Both models generated well-calibrated and efficient confidence
intervals on the ChEMBL25 validation set. In addition, we
assessed the performance of the RF model in a semi-prospective
setting using the recently released GC4 CatS and BACE-1
datasets. Here, we find that performance of the models is in
line with the top performing machine learning methods from
previous Grand Challenges (Gathiaka et al., 2016; Gaieb et al.,
2018, 2019; Parks et al., 2019a), but significantly below the
performance on the original validation set. This occurred despite
the use of a generic Bemis-Murcko scaffold split to assess model
performance retrospectively. However, the prediction intervals
from the conformal predictor on the GC4 dataset are well-
calibrated both retrospectively and semi-prospectively and thus
can serve as a reliable tool to mitigate false positives in hit
discovery campaigns and aid compound selection for synthesis
during lead optimization.
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Vojtěch Spiwok 1* and Pavel Kříž 2
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Molecular simulation trajectories represent high-dimensional data. Such data can be

visualized by methods of dimensionality reduction. Non-linear dimensionality reduction

methods are likely to be more efficient than linear ones due to the fact that motions

of atoms are non-linear. Here we test a popular non-linear t-distributed Stochastic

Neighbor Embedding (t-SNE) method on analysis of trajectories of 200 ns alanine

dipeptide dynamics and 208 µs Trp-cage folding and unfolding. Furthermore, we

introduce a time-lagged variant of t-SNE in order to focus on rarely occurring transitions

in the molecular system. This time-lagged t-SNE efficiently separates states according

to distance in time. Using this method it is possible to visualize key states of

studied systems (e.g., unfolded and folded protein) as well as possible kinetic traps

using a two-dimensional plot. Time-lagged t-SNE is a visualization method and other

applications, such as clustering and free energy modeling, must be done with caution.

Keywords: molecular dynamics, dimensionality reduction, trajectory analysis, tSNE, Time-lagged Independent

Component Analysis

1. INTRODUCTION

The main goal of molecular simulations is identification of key states of studied systems and
building thermodynamic and kinetic models of transitions between these states. Identification of
key states is often based on some numerical descriptors known as collective variables. Distance
between two atoms can be seen as one of the simplest collective variables. It can be used,
for example, to distinguish between the bound and unbound state in a simulation of protein-
ligand interaction. For some more complex processes it is necessary to use more complex
collective variables.

Collective variables are in fact dimensionality reduction methods because they represent high
dimensional structure of a molecular system using few numerical descriptors. It is therefore no
surprise that general linear and non-linear dimensionality reduction methods have been applied
on molecular simulation trajectories. Namely, principal component analysis (Amadei et al., 1993;
Spiwok et al., 2007; Sutto et al., 2010) and its dihedral version (Mu et al., 2005), diffusion maps
(Ferguson et al., 2010, 2011), sketch map (Ceriotti et al., 2011; Tribello et al., 2012), Isomap (Das
et al., 2006; Brown et al., 2008; Spiwok and Králová, 2011), autoencoders (Chen and Ferguson,
2018), t-SNE (van der Maaten and Hinton, 2008; Duan et al., 2013; Tribello and Gasparotto, 2019)
and others (Plaku et al., 2007; Stamati et al., 2010; Noé and Clementi, 2015) have been tested in
analysis of trajectories, data compression or sampling enhancement.
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Advantage of non-linear dimensionality reduction methods is
their ability to describe more variance in data compared to linear
methods with the same number of dimensions. This is especially
true for t-distributed Stochastic Neighbor Embedding (t-SNE)
(van der Maaten and Hinton, 2008). This method became highly
popular in many fields, including data science, bioinformatics,
and computational linguistics.

There are two features of t-SNE that contributed to its
success. First, t-SNE converts high-dimensional points into low-
dimensional points in a way to reproduce their proximity
rather than distance. For example, for a bioinformatician
analyzing genomic data to develop genomics-based diagnosis
it is important that samples with the same diagnosis are close
to each other after dimensionality reduction. It is unimportant
how distant are samples with different diagnosis, provided that
they are distant enough. In t-SNE the distances in the high-
dimensional spaceDij = ‖Xi−Xj‖ are converted into proximities
pij as:

pij =
exp(−D2

ij/2σ
2
i )

∑

k6=i exp(−D2
ik
/2σ 2

i )
, (1)

where σ 2
i is the variance of a Gaussian centered on a datapoint Xi

(discussed later). The matrix of proximities is then symmetrized.
Next, proximities in the low-dimensional space qij are calculated
from distances in the low-dimensional space dij as:

qij =
(1+ d2ij)

−1

∑

k6=i(1+ d2
ik
)−1

. (2)

Finally, positions of points in the low-dimensional space are
optimized to minimize Kullback-Leibler divergences of pij and
qij (a sort of a distance between proximities p and q).

The second advantage of t-SNE lies in the fact that it unifies
density of low-dimensional points in the output space. This
feature, which can be controlled by a parameter called perplexity,
makes visual representation of points more effective. Perplexity
is related to variances σ 2

i of Gaussians centered on datapoints
Xi. Unification of densities is done by different variances σ 2

i .
The user can specify the value of perplexity. t-SNE searches for

optimal values of σ 2
i in order to produce values of 2

−
∑

j pji log2 pji

to match the predefined perplexity. Low perplexity (e.g., 5)
forces focus on local structure of the input data whereas larger
perplexity (e.g., 50) takes more global structure into the account.
As discussed later, this feature improves visualization by t-SNE
but at the same time it complicates application in situations when
preservation of densities is required.

Disadvantage of application of general dimensionality
reduction methods on molecular simulation trajectories is that
these methods pick the most intensive (in terms of changes
of atomic coordinates) motions in the system. However, such
motions are often not interesting. For example, such intensive
motions may represent motions of disordered loops or terminal
chains in proteins.

Instead, for building of thermodynamic and kinetic models
or to enhance sampling it is useful to extract motions that

occur most rarely, i.e., those with the highest barriers. This
can be done by Time-lagged Independent Component Analysis
(TICA) (Molgedey and Schuster, 1994; Perez-Hernandez et al.,
2013; Schwantes and Pande, 2013). TICA extracts the most
rarely occurring transitions in the molecular system because it
correlates the state of the systemwith the state of the same system
after a short delay (lag). This lag can be controlled.

Here we attempt to join the advantages of t-SNE and TICA
into a single method of time-lagged t-SNE. The method was
tested on two molecular trajectories—on 200 ns simulation of
alanine dipeptide and 208.8 µs simulation of Trp-cage mini-
protein folding and unfolding (trajectory kindly provided by DE
Shaw Research) (Lindorff-Larsen et al., 2011).

2. METHODS

Time-lagged t-SNE is inspired by implementation of TICA
using the AMUSE algorithm (Hyvarinen et al., 2001). We
start with atomic coordinates X(t) recorded over time t. First,
coordinates are superimposed to reference coordinates of the
system to eliminate translational and rotational motions. After
that, time-averaged coordinates are subtracted, leading to atomic
displacements X′(t). Next, its covariance matrix is calculated as:

CX′

ij = 〈X′
i(t)X

′
j(t)〉, (3)

where i and j are indexes of atomic coordinates and 〈〉 denotes
time-averaging. Next, covariance matrix is decomposed to a

diagonal matrix with eigenvalues λX
′

(the square matrix with
eigenvalues on diagonal and zeros elsewhere) and eigenvectors

WX′

(the matrix with eigenvectors as columns):

CX′

WX′

= WX′

λX
′

. (4)

Coordinates X′(t) are transformed onto principal components
and normalized by roots of eigenvalues (space-whitening the
signal) to get flattened normalized projections:

Y(t) = (λX
′

)
−1/2

((WX′

)TX′(t)). (5)

A time-lagged covariance matrix is calculated as:

CY
ij = 〈Yi(t)Yj(t + τ )〉, (6)

where τ is an adjustable time lag. Because the matrix C is
non-symmetric it must be symmetrized as:

CY
sym = 1/2(CY + (CY)

T
). (7)

Next, this symmetricmatrix is decomposed to eigenvalues λY and
eigenvectorsWY:

CY
symW

Y = WYλY. (8)

Finally, Y(t) are transformed onto principal components and
expanded by eigenvalues:

Z = (λY)1/2((WY)TY). (9)
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FIGURE 1 | Time-lagged t-SNE (t-t-SNE) applied on 200 ns simulation of alanine dipeptide in water. Conformations sampled in the simulations were projected into the

space of Ramachandran torsions φ and ψ (A,E), TICA coordinates (B,F), t-SNE (C,G) and time-lagged t-SNE (D,H). Points are colored by Ramachandran torsion φ

(A–D) and ψ (E–H).

This step expands distances in directions with highest
autocorrelations, which represent directions of rarely
occurring transitions.

It is possible to use certain number of eigenvectors with
highest eigenvalues instead of all eigenvectors. This selectionmay
be driven by relaxation time decays (see Wehmeyer et al., 2019)
but this is out of scope of this article.

t-SNE can be applied on distances between simulation
snapshots calculated in the space of Z as:

Dt,t′ = ‖Z(t)− Z(t′)‖. (10)

Low-dimensional embeddings obtained in this step are further
referred to as time-lagged t-SNE coordinates (t-t-SNE). For
the sake of comparison, low-dimensional embedding obtained
by standard TICA (without t-SNE step) and standard t-SNE
(without TICA step) were also calculated and are further referred
to as TICA coordinates and t-SNE coordinates, respectively. t-
SNE and t-t-SNE coordinates are unit-free because they are set
in order to fit the corresponding unit-free proximities (both D
and σ in Equation 1 are measured in the same units). It must be
kept in mind that t-SNE and t-t-SNE use random initiation of
low-dimensional points, so recalculation leads to a different plot.

All analyses were done by programs written in Python
with MDtraj (McGibbon et al., 2015) (for reading trajectories),
PyEMMA (Wehmeyer et al., 2019) (for testing of algorithms),
numpy (Oliphant, 2006) (to implement AMUSE algorithm) and
scikit-learn (Pedregosa et al., 2011) (to run t-SNE) libraries. It
is available at GitHub (https://github.com/spiwokv/tltsne) and
using PyPI.

The trajectory of alanine dipeptide was obtained by unbiased
200 ns molecular dynamics simulation of a system containing
alanine dipeptide and 874 TIP3P (Jorgensen et al., 1983) water
molecules in Gromacs (Abraham et al., 2015). It was modeled

by Amber99SB-ILDN force field (Lindorff-Larsen et al., 2010).
Simulation step was set to 2 fs and all bonds were constrained
by LINCS algorithm (Hess et al., 1997). Electrostatic interactions
were treated by particle-mesh Ewald method (Darden et al.,
1998). Temperature was kept constant (NVT ensemble) at 300
K by V-rescale thermostat (Bussi et al., 2007).

The trajectory of Trp-cage folding and unfolding was kindly
provided by DE Shaw Research.

3. RESULTS

The method was tested on two molecular systems—on alanine
dipeptide and Trp-cage. In order to test time-lagged t-SNE we
compare time-lagged t-SNE with standard t-SNE and TICA.

3.1. Alanine Dipeptide
Time-lagged t-SNE was first applied on a trajectory of alanine
dipeptide without water and hydrogen atoms. It is important
to remove hydrogen atoms because rotamers of methyl groups
by approx. 120 deg are mathematically distinguishable but
chemically identical. The trajectory was sampled every 20 ps
(10,001 snapshots). Time lag τ was set to 3 frames (60 ps). The
value of perplexity was set to 3.0 and Euclidean space was used to
calculate the distance matrix D.

The value of lag time was chosen based on TICA results.
Similar calculations with lag time set to 1 to 12 steps show that
lag time set to 1–7 works well on a simple system such as alanine
dipeptide (see Supplementary Material). All eigenvectors WY

were used in Equation (9).
The results are depicted in Figure 1. Plots in the space of

Ramachandran torsions show that all relevant conformations
of alanine dipeptide were sampled. Plots in the space of TICA
coordinates show that rotation around φ is the slowest and
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Spiwok and Kříž Time-Lagged t-SNE

FIGURE 2 | Time-lagged t-SNE (t-t-SNE) applied on 208.8 µs of Trp-cage folding and unfolding. The trajectory was analyzed by t-SNE (A) and time-lagged t-SNE

(B–G). Points are colored by RMSD from the native structure (A,B) and by the first (C), second (D), third (E), fourth (F), and fifth (G) TICA coordinate.

rotation around ψ is the second slowest motion in the studied
system (slowest in terms of number of occurrences).

Plots in the space of t-SNE coordinates have a circular
shape cut into multiple pieces by borders between different
conformers. These plots show a limitation of conventional t-
SNE, which is an improper resolution of conformations. Namely,
there is a green island in the blue area of the plot colored by
φ values (G).

Time-lagged t-SNE (t-t-SNE) does not suffer this problem.
The blue area in the plot generated by time-lagged tSNE is
continuous and does not contain any islands of conformations
with positive φ values (H). This can be explained by the fact that
introduction of a time lag into t-SNE causes higher separation of
key conformations of alanine dipeptide.

One feature is common to the original t-SNE as well as
our time-lagged variant. This is the fact that t-SNE flattens the
distribution of points in the output space. This results in an
almost uniform distribution of points in each minimum.

It is possible to calculate a histogram of some molecular
collective variable or collective variables and convert it into
a free energy surface. Most common interpretation of such
free energy surfaces is that deep minima correspond to stable
states, whereas shallow minima correspond to unstable states.
This approach can be applied for conventional descriptors,
such as Ramachandran angles of alanine dipeptide. However,
due to flattening of distribution of points by t-SNE or by
time-lagged t-SNE such free energy surface is relatively flat.
Populations of different states can be estimated from areas of
free energy minima rather than from their depths. In general,
time-lagged t-SNE (as well as t-SNE) must be used with caution
when applied to identify metastable states and to calculate free
energy surfaces.

3.2. Trp-Cage
t-SNE and time-lagged t-SNE analysis was performed on the
trajectory of Trp-cage folding and unfolding sampled every 20
ns (10,440 snapshots). Lag time was set to three frames (60 ns).
Similarly to alanine dipeptide, lag time was chosen based on
TICA analysis. Comparison of embeddings calculated for lag
time set to 1, 2, 3, 4, 5, 10, 15, and 20 (in number of frames) shows
that lag time 1–5 works well (see Supplementary Material).

Perplexity was set to 10.0. Several values were tested and
perplexity set to 10 performs well in terms of the focus on local vs.
global structure of data. Supplementary Material contains the
results obtained for perplexity 5, 10, 20, 50, and 100. These results
indicate that time-lagged t-SNE is relatively robust in terms of
choice of perplexity and perplexity 10 and higher perform well.

Initial analysis by time-lagged t-SNE resulted in a circular
plot with multiple points located outside clusters on the edges
of the circle. This indicates that there are many points with high
distances Dt,t′ . In order to eliminate these points we reduced
the number of eigenvectors WY to top 50 eigenvectors (option
-maxpcs in the code).

The results are depicted in Figure 2. Figure 2A shows the
trajectory analyzed by conventional t-SNE colored by RMSD
from the native structure (PDB ID: 1l2y, Neidigh et al., 2002).
There is a clear relationship between t-SNE coordinates, in
particular t-SNE1, and RMSD. The native structure (in red)
forms a cluster in the top left corner of the plot. Structures
with high RMSD (in blue) are characterized by highest values
of t-SNE1.

The trajectory analyzed by time-lagged t-SNE colored by
RMSD is depicted in Figure 2B. Similarly to Figure 2A the native
structure forms a distinct cluster. In contrast to the conventional
t-SNE, structures with high values of RMSD are scattered in the
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FIGURE 3 | Representative structures projected onto time-lagged t-SNE embeddings. Plot is colored by RMSD from the native structure (as in Figure 2B).

large cluster in the center. This indicates that transitions between
high-RMSD structures are fast.

Figures 2C–G show the same plots colored by TICA
coordinates. The first TICA coordinate (Figure 2C) distinguishes
folded and unfolded structures. Plots colored by other TICA
coordinates (Figures 2D–G) in most cases show a red or blue
clusters on edges of the plot. This shows that time-lagged t-SNE
captures rarely occurring transitions characterized by TICA, but

more efficiently than TICA itself, because these motions can be
depicted in a single plot.

Figure 3 shows representative structures of Trp-cage from
the simulation trajectory projected onto time-lagged t-SNE
embeddings. Structure 1 is the native structure. Structure 7 is a
known near-native structure. Structures 2–6 were sampled from
clusters on peripheral areas of time-lagged t-SNE embeddings.
Finally, structure 8 was taken from the origin of the plot. Visual
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FIGURE 4 | Visualization of folding events (A) and kinetic traps (B). Four

selected folding events (at approx. 20, 40, 104 and 206 µs in red, yellow,

green, and blue, respectively) are depicted as last 10 frames (200 ns) before

reaching t-t-SNE2 < −75. Four selected kinetic traps on edges of the plot are

depicted as connected series of snapshots. These regions were sampled for

800 (red), 140 (yellow), 400 (green), and 460 (blue) ns.

inspection indicates that structures 2–6 may be kinetic traps of
Trp-cage folding, because these structures are characterized by
formation of numerous non-native hydrogen bonds and other
interactions. Also the near-native structure 7 is likely to be a
kinetic trap of Trp-cage folding.

In order to further interpret the plot we visualized four
selected folding events. They are depicted in Figure 4A. These

plots show snapshots sampled last 200 ns (10 snapshots) before
folding. Unfortunately, we were not able to provide higher
resolution of time, because this would require either analysis of
a higher number of snapshots or recalculation of time-lagged t-
SNE. The former was not possible due to computational costs,
the latter due to impossibility of calculation of time-lagged t-SNE
on out-of-sample structures (discussed later). Despite limited
resolution of time, the plot shows that unfolded and folded
structures are clearly separated. The fact that some folding
processes passed clusters on edges of the plot close to the
native structure may indicate that these clusters are near-native
metastable states.

In previous paragraphs we interpreted clusters on edges of
the plot (structures 2–6 in Figure 3). We investigated how long
the system stayed in these regions. The results are shown in
Figure 4B. The system stayed in these regions for 140–800 ns.
This supports our interpretation of these regions as kinetic traps.
Interestingly, all four regions depicted in Figure 4Bwere sampled
multiple times in the simulation.

4. DISCUSSION

Dimensionality reductionmethods are frequently used to analyze
data from biomolecular simulations. Linear methods such as
PCA have been used for decades, whereas application of non-
linear methods is relatively new. Various linear and non-linear
dimensionality reduction methods have various advantages
and disadvantages.

PCA and other linear methods are easy to use (no additional
parameters have to be set), they realistically map densities of
states from the high-dimensional to low-dimensional space and
it is straightforward to calculate low-dimensional embedding
for a new out-of-sample structure. On the other hand, their
performance in visualization is low because they usually require
three or more dimensions to separate key states of the
studied system.

Non-linear methods perform much better in dimensionality
reduction but mapping of densities may be distorted (this is
the case of t-SNE and its time-lagged variant, which tend to
flatten the output densities) and calculation of low-dimensional
embeddings for a new out-of-sample structure is complicated.
t-SNE is useful specially for visualization purposes.

Comparison of t-SNE and time-lagged t-SNE shows a
great advantage of our variant. Figure 2A shows that t-SNE
coordinates correlate with RMSD from the native structure. The
yellow-green-blue cloud of non-native structures in this plot
represents a pool of non-native conformations in which short-
living and long-living states overlap. On the other hand, in the
time-lagged t-SNE there are short-living states in the center and
long-living states, including the native state, are located on the
edges of the plot. In a single plot it is possible to distinguish
multiple key long-living states.

There is a disadvantage of time-lagged methods in their
dependence on the choice of lag time. Choice of lag time for time-
lagged t-SNE was driven by TICA analysis. Values of 3 frames
(60 ps, 0.03% of the whole trajectory) for alanine dipeptide and
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3 frames (60 ns, 0.029% of the whole trajectory) for Trp-cage led
to visually plausible low dimensional embeddings. This indicates
that 0.03% of trajectory size is a good initial choice of lag time.

Another disadvantage of time-lagged t-SNE is in distortion of
densities and impossibility to easily calculate low-dimensional
embeddings for a new out-of-sample structure. As an
alternative to time-lagged t-SNE it is possible to use time-
lagged autoencoders recently reported by Wehmeyer and Noé
(2018). Autoencoders are feed-forward neural networks with an
hourglass-like architecture. The input signal (atomic coordinates
or other features) from the input layer are transformed via
hidden layers into the central bottleneck layer. Next, the signal
from the bottleneck layer is transformed via hidden layers into
the output layers. Parameters of the network are trained to obtain
agreement between the input and output signal. The signal in
the bottleneck layer represents a non-linear low-dimensional
representation of the input signal. Unlike classical autoencoders,
time-lagged autoencoders focus on the most rarely occurring
transitions, not on the most intensive motions (Wehmeyer and
Noé, 2018).

The clear advantage of autoencoders and their time-
lagged variant is the possibility to calculate low-dimensional
embeddings for a new out-of-sample structure. Extensive testing
of time-lagged autoencoders in the original article (Wehmeyer
and Noé, 2018) was possible owing to this fact. Time-lagged
autoencoders can be trained on a training set and tested on
a validation set, i.e., they can be evaluated by cross-validation.
Furthermore, they can be trained on a small training set and then
applied on a large set of input data. This is efficient since the
training part is in general significantly more expensive than the
calculation of embeddings on out-of-sample structures. Time-
lagged autoencoders are useful for pre-processing of structural
data for building of Markov state models.

There are limited options for calculation of t-SNE low-
dimensional embeddings for out-of-sample structures.
Therefore, t-SNE and time-lagged t-SNE are not suitable
for pre-processing of the structural data. We see the advantage of
time-lagged t-SNE (similarly to t-SNE) in visualization.

Time-lagged t-SNE in the current implementation also cannot
be used as collective variables in simulations using bias force
or bias potential because these methods require on-the-fly
calculation of low-dimensional embeddings and their derivatives
with respect to atomic coordinates. However, there are tools
to approximate such low-dimensional embeddings (Spiwok and
Králová, 2011; Sultan and Pande, 2018; Trapl et al., 2019).

One of key features of t-SNE is that it can reconstruct
proximities and not distances in the low-dimensional output
space. In time-lagged t-SNE this means that states separated by
low energy barriers are close to each other. States separated by
large energy barriers are far from each other, but time-lagged t-
SNE does not attempt to preserve their distances accurately. This
means that two close points in the time-lagged t-SNE plot can be
connected by an energetically favorable path.

Another key feature of t-SNE is perplexity and the fact that t-
SNE flattens the distribution of points in the output space. This
is useful for visualization. For this reason t-SNE (as well as time-
lagged t-SNE) must be used with caution as a pre-processing for
calculation of free energy surfaces and for clustering. t-SNE can
also create artificial clusters when perplexity is not set properly.
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Hybrid Molecular Mechanics/Coarse-Grained (MM/CG) simulations help predict ligand
poses in human G protein-coupled receptors (hGPCRs), the most important protein
superfamily for pharmacological applications. This approach allows the description
of the ligand, the binding cavity, and the surrounding water molecules at atomistic
resolution, while coarse-graining the rest of the receptor. Here, we present the Hybrid
MM/CG Webserver (mmcg.grs.kfa-juelich.de) that automatizes and speeds up the
MM/CG simulation setup of hGPCR/ligand complexes. Initial structures for such
complexes can be easily and efficiently generated with other webservers. The Hybrid
MM/CG server also allows for equilibration of the systems, either fully automatically or
interactively. The results are visualized online (using both interactive 3D visualizations and
analysis plots), helping the user identify possible issues and modify the setup parameters
accordingly. Furthermore, the prepared system can be downloaded and the simulation
continued locally.

Keywords: MM/CG, molecular mechanics, coarse-grained, hybrid methods, webserver, G protein-coupled
receptor, ligand, molecular dynamics simulation

INTRODUCTION

Human G protein-coupled receptors (hGPCRs) are the largest drug target superfamily (Hauser
et al., 2017). One third of FDA-approved drugs target ∼14% hGPCRs (Hauser et al., 2018)
and this protein class has a further, untapped pharmacological potential. Unfortunately,
rational drug design is hampered by the lack of experimental structures for more than 90%

Abbreviations: AA, all-atom; CFF, caffeine; CG, coarse-grained; FDA, United States Food and Drug Administration; hA2AR,
human adenosine 2A receptor; hGPCRs, human G protein-coupled receptors; MD, molecular dynamics; MM, molecular
mechanics; MM/CG, molecular mechanics/coarse-grained.

Frontiers in Molecular Biosciences | www.frontiersin.org 1 September 2020 | Volume 7 | Article 57668942

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2020.576689
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmolb.2020.576689
http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2020.576689&domain=pdf&date_stamp=2020-09-04
https://www.frontiersin.org/articles/10.3389/fmolb.2020.576689/full
https://mmcg.grs.kfa-juelich.de/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-576689 September 4, 2020 Time: 20:15 # 2

Schneider et al. Hybrid MM/CG Webserver

hGPCRs1 (Munk et al., 2019; Qu et al., 2020). Structural
insights into ligand poses for these cases can be obtained by
computational modeling. Reliable predictions can be made by
docking approaches on homology models, based on templates
sharing overall sequence identity >35–40% and/or high
conservation of binding site residues (Beuming and Sherman,
2012; Kufareva et al., 2014). For lower resolution models,
however, the uncertainty in the structure (and particularly in
the orientation of side chains) decreases the accuracy of the
docking predictions and, thus, follow-up molecular dynamics
(MD) simulations are recommended (Kufareva et al., 2014;
Cavasotto and Palomba, 2015; Esguerra et al., 2016; Heifetz
et al., 2016; Fierro et al., 2017; Lupala et al., 2018; Rodríguez-
Espigares et al., 2020). In an effort at addressing this issue, we
have developed a Hybrid Molecular Mechanics/Coarse-Grained
(MM/CG) simulation approach (Neri et al., 2005, 2008; Leguèbe
et al., 2012; Marchiori et al., 2013; Sandal et al., 2015; Capaldi
et al., 2018; Alfonso-Prieto et al., 2019; Fierro et al., 2019).
The receptor/ligand interactions are described in atomistic
detail, including explicit water molecules in the binding site
(MM region), while the rest of the receptor is coarse-grained
(CG region) (Schneider et al., 2018). The all-atom force fields
used (Schneider et al., 2020) for the MM part of the protein
and water are the Amber14SB (Maier et al., 2015) and TIP3P
(Jorgensen et al., 1983), respectively, whereas the ligand can
be described using either GAFF or GAFF2 (Wang et al., 2004;
Case et al., 2020). The CG region is described by a Gō-like (Gō
and Abe, 1981) potential. A region at the interface between
the MM and CG parts couples the two levels of resolution
(Figure 1). The membrane is described implicitly by introducing
five potential walls (Leguèbe et al., 2012; Schneider et al.,
2018). Two planar walls coincide with the height of the head
groups of the membrane lipids, two hemispheric walls cap the
extracellular and intracellular ends of the protein and prevent
water evaporation, and the last wall follows the initial shape
of the interface between protein and membrane, mimicking
the effect of the lipid acyl tails (Figure 1). The scheme can
be used also for GPCRs other than those from Homo sapiens.
This approach turned out to be able to reproduce the ligand
poses for four different hGPCRs (Schneider et al., 2020). These
include the adenosine 2A receptor in complex with caffeine
(i.e., the example case of the webserver), the human bitter
receptor 16 in complex with phenyl-β-D-glucopyranoside, the
β2-adrenergic receptor with adrenaline, and the dopamine D3
receptor with eticlopride. The structures of these hGPCR/ligand
complexes were either experimentally determined, taken from
all-atom MD trajectories or predicted based on templates with
decreasing resolution, up to extremely low sequence identity
(<15%) (Schneider et al., 2020). Retrospective validation against
available X-ray structures and mutagenesis data confirmed that
the MM/CG approach can predict correct ligand poses and
identify experimentally determined binding residues2 (Schneider
et al., 2020), regardless of the model resolution. In addition, the
MM/CG simulations can provide insights into the flexibility

1https://gpcrdb.org/structure/statistics as of June 2020.
2the residues whose mutation is known experimentally to affect binding

of receptor–ligand interactions and hydration of the binding
cavity, at a lower computational cost than all-atom molecular
dynamics simulations.

The increasing number of applications and requests to
use the MM/CG approach has prompted us to develop the
Hybrid MM/CG webserver, a publicly accessible web interface
aimed at preparing and running short MM/CG simulations
of hGPCR/ligand complexes (available since December 2019).
To the best of our knowledge, this is the only webserver
dedicated to this task. It complements other excellent online
resources (Table 1) aimed at preparing all-atom or coarse-
grained molecular dynamics (MD) simulations of GPCRs and
GPCR/ligand complexes (or in general membrane proteins).

The Hybrid MM/CG webserver requires only the coordinates
of the receptor/ligand complex (as PDB file). These may
come from experimental structures, simulation snapshots, or
computational models generated with other webservers, such as
the ones listed in the “Input” section. Furthermore, we have
linked our GOMoDo webserver3 for modeling and docking of
GPCRs to the Hybrid MM/CG webserver, so that the complexes
generated with GOMoDo can be directly transferred. The user
is first guided through a set of user-friendly forms for preparing
the setup files. The procedure requires only a few minutes. Then,
the user runs the initial MM/CG simulation steps (up to 10 ns)
directly on the server. The resulting files can be downloaded and
the MM/CG simulation can be continued using local resources.

MATERIALS AND METHODS

Input
The input PDB file can be obtained from experimental databases,
such as the Protein Data Bank (Berman et al., 2000; Rose
et al., 2016), GPCRdb (Pándy-Szekeres et al., 2018) or GPCRmd
(Rodríguez-Espigares et al., 2020), as well as computational
services like GOMoDo (Sandal et al., 2013), GPCR-ModSim
(Esguerra et al., 2016), GPCR-SSFE (Worth et al., 2017),
GPCRM (Miszta et al., 2018), Galaxy7TM (Lee and Seok, 2016),
GPCRautomodel (Launay et al., 2012), @TOME (Pons and
Labesse, 2009) and others (reviewed in Busato and Giorgetti,
2016). The GOMoDo webserver (Sandal et al., 2013), which can
be used for homology modeling of hGPCRs and subsequent
docking of ligands, is linked directly with the Hybrid MM/CG
webserver. Several structures of the same hGPCR/ligand complex
obtained under different membrane compositions and/or in
different activation states can be funneled into the webserver to
indirectly (and very approximately) account for the influence
of explicit lipids and of large conformational changes of the
receptor, respectively.

Setup Modes
The Hybrid MM/CG webserver offers two system setup modes:

Automatic Preparation
Here, the user just needs to upload a PDB file of the hGPCR in
complex with its ligand or transfer it directly from the GOMoDo

3gomodo.grs.kfa-juelich.de
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FIGURE 1 | Hybrid MM/CG scheme. The three regions (MM, I, and CG) are framed with different background colors and the five potential walls (upper and lower
hemispheres, upper and lower membrane planes, and membrane surface) are indicated with black lines.

webserver3 (Sandal et al., 2013). All simulation parameters
are set according to default values that are defined in the
documentation4.

Interactive Preparation
Using the interactive preparation method, the same steps
as in the automatic preparation are carried out to set up
the system. The advantage is that several parameters, such
as the position of the interface between MM and CG
regions and the size of the hemispheric potential walls
(see Figure 1), can be adjusted. Furthermore, intermediate
results can be visualized, such as the input structure,
aligned orientation in membrane, solvation (water drop),
level of coarse-graining, and position of the wall potentials.
More details about the individual preparation steps and
parameters are explained in the Documentation section of the
webserver4.

4mmcg.grs.kfa-juelich.de/documentation

Workflow
The steps carried out by the webserver for MM/CG system
preparation and short simulation (Figure 2) are the following:

• File upload. The preparation starts with a PDB file of the
hGPCR/ligand complex. This file can be obtained from one
of the databases and webservers mentioned in the “Input”
section and uploaded by the user into the Hybrid MM/CG
webserver. Alternatively, it can be transferred directly from
GOMoDo (Sandal et al., 2013).
• Check Input. The input PDB file is checked for missing

residues and the numbering is corrected if possible (i.e., no
residues are missing). The ligand name is determined by
comparing the list of residue names in the input PDB file
and in the Amber14SB force field. Known amino acids and
capping groups are discarded and the remaining residue
name is considered to be the ligand.
• Alignment. The orientation and position of the receptor

with respect to the hydrophobic core of the lipid bilayer
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TABLE 1 | Available online resources for MD simulations of GPCRs.

Name Functionality System Setup MD simulations

Structural
modeling

Membrane
inclusion

Ligand
inclusion

Force field
used

GPCR-ModSim
(Esguerra et al., 2016)

Web-interactive system setup/simulation Xa X ∼b MM X (AA, 5ns)

CHARMM-GUI
(Jo et al., 2008;
Lee et al., 2016)

Web-interactive system setup × X ∼
c MM, CG ×

MERMAID
(Damre et al., 2019)

Web-interactive system setup/simulation × X × CG X (CG, 100ns)

Hybrid MM/CG
(This work)

Web-interactive system setup/simulation ∼
d X (implicit) X MM/CG X (MM/CG, 10ns)

PACKMOL-Memgen
(Schott-Verdugo and
Gohlke, 2019)

Local command line system setup × X ∼
e MM ×

GPCRmd
(Rodríguez-Espigares
et al., 2020)

Database of precomputed MD simulations × X X MM X (AA)f

MemProtMD
(Newport et al., 2019)

Database of precomputed MD simulations × X X MM, CG ∼ (CG; AA)g

AA, all-atom; CG, coarse-grained; MM, molecular mechanics. aHomology modeling of GPCRs only; docking must be performed externally. bLigands should already be
included in the OPLS-AA force field or parameterized externally. cAlthough the Membrane Builder tool does not offer the option to include ligands, ligand parameterization
can be accomplished using the Ligand Reader and Modeler tool also available in the CHARMM-GUI webserver. dHomology modeling and ligand docking can be performed
with other available webservers, including the linked GOMoDo webserver. ePackmol-Memgen allows to keep ligands of interest but they have to be parameterized externally
using other AmberTools. f All set up and trajectory files can be downloaded. Simulations of the GPCRmd dataset typically include three replicas, 0.5 µs each, whereas
simulations of the so-called “Individual contributions” section can vary in the number of replicas and simulation length. gTrajectory files of the 1 µs CG assembly simulations
cannot be downloaded. However, an equilibrated CG snapshot and the corresponding backmapped AA structure, together with the files needed to run subsequent CG
or AA simulations, respectively, are available for download.

are determined using the PPM tool (Lomize et al., 2012).
The initial PDB file of the hGPCR/ligand complex is then
superimposed to the PPM-aligned structure of the receptor
using lovoalign (Martínez et al., 2007).
• Build topology: Protein. The program pdb2gmx (Berendsen

et al., 1995; Hess et al., 2008) is used to build the
receptor topology using the Amber14SB force field (Maier
et al., 2015). Protonation states of receptor titratable
residues are determined automatically by pdb2gmx. In
case the user wants to bypass the automatic assignment,
different protonation states can be enforced with minimal
manual editing of the input PDB file by changing the
corresponding residue name (e.g., from “HIS” to “HIP” for
a doubly protonated histidine).
• Build topology: Ligand. Protonation of the ligand at pH = 7

is determined using OpenBabel (O’Boyle et al., 2011). The
ligand topology is built with ACPYPE (Sousa da Silva and
Vranken, 2012) and Antechamber (Wang et al., 2001),
using AM1-BCC charges (Jakalian et al., 2004) and the
general Amber force field. GAFF (Wang et al., 2004) is
used in the automatic preparation, but the user can choose
between GAFF and GAFF2 (Case et al., 2020) in the
interactive preparation mode.
• Solvation. The simulation box is created and the system

is solvated using the TIP3P (Jorgensen et al., 1983) force
field. Water molecules below the upper membrane plane
are deleted. Hemisphere sizes are defined (default radii:

50 Å) and water outside the upper hemisphere is deleted,
so that only a water “drop” solvating the extracellular part
of the receptor is kept (see Figure 1).
• Coarse-graining. The regions of different resolutions are

defined by two cutoff values, one defining the boundary
between the MM and interface regions (default is centered
between the two membrane planes) and the other between
the interface and CG regions (6 Å below the first cutoff).
Coarse-graining is performed on residues below the second
cutoff level using a Gō-like (Gō and Abe, 1981) model.
• Minimization. A simple minimization of the system is done

using the steepest descent method until a maximum force
of 1,000 kJ mol−1 nm−1 is reached.
• Add wall potentials. Wall potentials are added to the

system according to the aforementioned heights
and radii. Wall grid points that are too close to
the ligand are deleted according to the chosen
cutoff (default 7 Å).
• Visualization. The user is redirected to the “Results”

section where preparation results can be inspected using
interactive 3D visualizations and graphs.
• Equilibration. An optional short equilibration (2 ns) and

short MD simulation (2 ns) can be started from the
“Results” section as well.
• MD. The simulation can be extended up to 10 ns, in 2 ns

increments, in order to offer the possibility to check the
intermediate results.
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FIGURE 2 | Webserver workflow. Interactive mode with manual intervention is presented on the left and fast automatic mode on the right.

• Visualization. The minimization, equilibration, and MD
are analyzed automatically in terms of potential energy
and temperature after completion of the individual
step (see Supporting Information). Interactive 3D
visualizations are available for the results of the
preparation, equilibration, and MD (see Figure 3).

Output
Results can be viewed and downloaded for 2 weeks (renewal
possible) by bookmarking the link or alternatively by using
the corresponding ID5. The full output of the preparation
can be downloaded as a compressed archive file including
the input, output, and log files of all preparation and
simulation steps. The downloaded files can be used to
continue the MM/CG simulations locally. Experienced
users have the possibility to download the prepared
system and tune the partial charges, as well as other
parameters, before running the simulation on their local
computer. The Download Code section of the server
provides an installation script, which contains the links
to the source code for both GROMACS 4.5.1 (from the
GROMACS website) and the Hybrid MM/CG patch (from our
server website).

5mmcg.grs.kfa-juelich.de/results/+ID

Server Architecture
Front-End
The web interface was developed with the DJANGO 3.0
Web framework6 and designed with the Bootstrap 4 front-
end open-source toolkit7. Interactive 3D visualizations were
implemented with the NGL library for molecular visualization
(Rose and Hildebrand, 2015) and the interactive graphs
were created using the Highcharts SVG-based JavaScript
charting library8.

Back-End
For historical reasons, different programming and scripting
languages are used for the workflow such as Bash, Python,
Perl, Tcl, AWK, and JavaScript. Furthermore, different software
packages are used in the preparation: a patched GROMACS
4.5.1 version (Berendsen et al., 1995; Hess et al., 2008), VMD
1.9.3 (Humphrey et al., 1996), PPM (Lomize et al., 2012),
lovoalign (Martínez et al., 2007), ACPYPE Rev: 10101 (Sousa
da Silva and Vranken, 2012), Antechamber (Wang et al.,
2001) from AmberTools16 and OpenBabel 2.3.2 (O’Boyle et al.,
2011). All parts were combined using the DJANGO 3.0 Web
framework6.

6djangoproject.com
7getbootstrap.com
8highcharts.com
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FIGURE 3 | Sample 3D visualizations created by the webserver using as example the hA2AR/CFF complex. (A–C) Full view of the hGPCR/ligand complex and (D–F)
close-up view of the ligand and its interactions with protein and water molecules. Images were generated with the screenshot tool in the NGL viewer (Jakalian et al.,
2004) used in the “Results” section of the webserver. Atoms are colored using the default NGL color code and ligand interactions are determined using the default
NGL definition.

RESULTS

As an application case, we considered the human adenosine
2A receptor (hA2AR) in complex with its antagonist
caffeine (CFF). CFF was proposed to have a protective and
therapeutic effect against Parkinson’s disease (Chen et al.,
2001; Sonsalla et al., 2012; Petzer and Petzer, 2015; Nazario
et al., 2017). The input PDB file of the hA2AR/CFF complex
used for the Example can be downloaded from the same
page. The demonstration can be run by simply starting
the preparation workflow9 without uploading any PDB file.
Precomputed results for this example case can be found on
the server10 and selected parts of these results can be seen
in Figure 3. Figures 3A–C show the whole hA2A receptor
in complex with CFF, with and without water solvating the
binding site and the extracellular loops, as well as the walls
mimicking the membrane and preventing water evaporation.

9https://mmcg.grs.kfa-juelich.de/
10mmcg.grs.kfa-juelich.de/example_results/

Figures 3D–F show the ligand and its direct and water-
mediated interactions with residues in the binding cavity,
as determined by the NGL viewer (Jakalian et al., 2004).
The system can be inspected in 3D after the preparation,
short equilibration, and production runs. In addition, plots
showing the time evolution of the potential energy and
temperature during the different simulation steps are generated
(see Supplementary Figures 1–3).

CONCLUSION

The hybrid MM/CG protocol has been successfully
used to predict ligand poses in a variety of hGPCRs
(Leguèbe et al., 2012; Marchiori et al., 2013; Sandal et al.,
2015; Fierro et al., 2017; Capaldi et al., 2018; Fierro
et al., 2019). Moreover, the Amber-based MM/CG poses
improved significantly relative to those obtained by simple
docking, especially for low resolution starting models
(Schneider et al., 2020). However, the setup of such
simulations has been time-consuming and system-dependent.
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The webserver presented here automatically prepares all files
needed to start the equilibration, in a short time: the hA2AR/CFF
example requires only 6 min. An additional advantage of
the Hybrid MM/CG webserver over most of the online
services for simulation of GPCRs (Table 1) is the automatic
ligand parameterization. Although other webservers can also
include ligands (see Table 1), their parameterization usually
has to be done externally. The results of the preparation
steps can be checked on-the-fly (e.g., ligand structure and
full solvation of extracellular loops). No additional software
(except the patch for the GROMACS code, which is available
for download11) is needed to extend the simulations locally.
This makes the method useful for people acquainted with
MD simulations and not necessarily familiar with every single
MM/CG preparation step.

The server could prospectively be used for setting up
MM/CG simulations of different ligands in complex with
the same hGPCR. Capitalizing on the limited computational
cost of the MM/CG approach, this could pave the way
for low-throughput virtual screening efforts. Furthermore,
comparative studies of hGPCRs in multiple states, e.g.,
active/inactive, can be accomplished by setting up several
simulations starting from different initial structures. Modeling
of allosteric effects is currently not possible, because of the
use of the Gō-like model for the part of the receptor pointing
toward the intracellular side. We also plan to integrate the
Amber-based MM/CG approach used by the webserver with
the recently developed open boundary MM/CG for grand
canonical simulations (Tarenzi et al., 2017, 2019), aiming
at calculating ligand binding free energies. Further planned
developments include the extension to other MD codes, the
implementation of the CHARMM36m force field (Huang
et al., 2017) for the MM/I regions, as well as the adaptation
of the scheme to other membrane protein families, such
as ion channels.

11 mmcg.grs.kfa-juelich.de/download/install
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In this review, we outline the growing role that molecular dynamics simulation is able
to play as a design tool in drug delivery. We cover both the pharmaceutical and
computational backgrounds, in a pedagogical fashion, as this review is designed
to be equally accessible to pharmaceutical researchers interested in what this new
computational tool is capable of and experts in molecular modeling who wish to pursue
pharmaceutical applications as a context for their research. The field has become
too broad for us to concisely describe all work that has been carried out; many
comprehensive reviews on subtopics of this area are cited. We discuss the insight
molecular dynamics modeling has provided in dissolution and solubility, however, the
majority of the discussion is focused on nanomedicine: the development of nanoscale
drug delivery vehicles. Here we focus on three areas where molecular dynamics
modeling has had a particularly strong impact: (1) behavior in the bloodstream and
protective polymer corona, (2) Drug loading and controlled release, and (3) Nanoparticle
interaction with both model and biological membranes. We conclude with some
thoughts on the role that molecular dynamics simulation can grow to play in the
development of new drug delivery systems.

Keywords: pharmaceutics, nanomedicine, molecular dynamics, drug delivery, nanoparticle

INTRODUCTION

The exponential advance of the computational power available to us has led to related approaches
attaining a prominent, one can argue now dominant, position within pharmaceutical research.
The majority of this toolkit, as we will elaborate below, are methodologies that fit experimental
data to a mathematical model that provides a numerical answer, for example a specific drug
molecule structure or delivery system formulation. A subset of computational methodologies
provide something further: mechanistic understanding; in place of just an answer, i.e., an optimum
value or set of values, mechanistic understanding means an elucidation of what is actually occurring
in the system that produces the results: in simple terms, a model of the system, expressed as a
cartoon in three dimensions, of what is happening. Such an output, often referred to as a simulation,
has power far beyond that provided by a mere result of what is optimal for the specific application
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sought; it can lead to an informed design process that is
more efficient, allows for broader intuitive leaps from its
interpretation and provides insight that transcends the specific
application studied.

An extremely successful computational scheme for attaining
mechanistic understanding is molecular dynamics simulation
(MD), a methodology that models the system as a set of particles
that interact through classical mechanics. An intuitive choice
for these particles, particularly for those with a background in
chemistry, is for them to represent atoms, with interactions
between the atoms producing the intramolecular forces that
govern the structure of molecules and the intermolecular forces
that govern interactions between molecules. This is, however,
not the only choice that can be made, as particles can be
chosen to represent larger structures than single atoms; they can
represent groups of atoms, whole molecules, or even groups of
molecules. Such models can obtain insight into the system on
a larger length and time scale than can be achieved through a
model with atomistic resolution and are known as coarse grained
(Ingólfsson et al., 2014).

In this review we will highlight the growing role that MD has
played and will continue to play in drug delivery, what has been
referred to as computational pharmaceutics by Ouyang and Smith
(2015), using computational methods to address issues related
to drug delivery including dissolution, solubility, protection
from the bodies defense mechanisms, controlled release and
targeted delivery. The development of advanced mechanisms
for drug delivery based on nanoscale drug delivery vehicles, a
field known as nanomedicine (Riehemann et al., 2009; Lammers
and Ferrari, 2020; Moghimi et al., 2020), is a particular area
where MD methods have borne fruit. This review paper has two
target audiences: (1) pharmaceutical researchers, intrigued by the
rapid rise of computational methods applicable to their research,
who are interested in learning what kind of insight MD can
provide and (2) computational physicists and chemists, with a
background in MD methods, atomistic and coarse grained, who,
for reasons I most probably do not need to inform the reader of,
realize that at this point in history pharmaceutical applications
are an extremely desirable context for their research. Both of the
target audiences will find certain elements of this review to be
trivially basic and may even bristle at some oversimplifications;
one should keep in mind the dual audience focused nature
of this review. As the subject matter is extremely broad, with
several areas covered by comprehensive reviews themselves, this
publication can, to some extent, be seen as a meta-review, to
be used as an initial jumping off point leading to many further
review papers, in addition to original work.

At its core, pharmaceutical science is roughly (1) the search
for small molecules that, over the scale of the entire organism,
do more good than harm under certain conditions: drug design
and (2) development of the means by which these molecules can
enter the body and reach their target tissue intact: drug delivery
or pharmaceutics. Pharmaceutical science begins with Paracelsus,
the man who is to pharmacy what Isaac Newton is to physics
and his maxim “the dose makes the poison" (Rozman and Doull,
2001); substances exist that, at too high a dose are a poison
that will kill you, but when taken at a certain dose can actually

help you. The substance enters the body, dissolution occurs and
the drug molecules within the substance are freed and diffuse
through the body and enough reaches, intact, the desired location
in sufficient quantity to induce the desired effect. Any drug
molecule will reach other parts of the body and have different
effects which are undesirable: the toxicity, i.e., side effects, of the
drug. The conventional drug design paradigm is thus a balancing
act between efficacy, toxicity and solubility. A very efficacious
drug can be found that either has intolerable toxicity or too poor
solubility to be carried through the bloodstream or, due to the
nature of the target tissue, insufficient quantities of the drug reach
it to have the desired effect.

Initially drugs were found through trial and error, however,
the search space is gigantic: the number of different small
organic molecules that are theoretically possible to synthesize
is ∼1063 (Bohacek et al., 1996; Hoffmann and Gastreich,
2019) a number that dwarfs such quantities as Avogadro’s
number and the number of stars in the universe; drug design
can be seen as searching this discrete "drug structure space."
The latter half of the twentieth century saw the onset of a
systematic approach to searching this space based on the "lock
and key" paradigm: drug molecules were designed to fit a
certain active site on a certain protein to either inhibit or
activate them. This was propelled by advances in three areas
(1) robotics to enable massive simultaneous parallel screening
experiments, (2) increasing numbers of high resolution protein
structures, determined first through X-ray crystallography, but
now increasingly through cryo-EM, and (3) the computational
power and advanced algorithms to analyze the massive data sets
produced. The computational component of this, computational
drug design, can be divided into two methodologies: (1) ligand-
based (Acharya et al., 2011) where the target protein structure is
not known and (2) structure based (Alonso et al., 2006; Sousa
et al., 2006; Sliwakosky et al., 2014; Ferreira et al., 2015), where
the binding free energy of potential drug molecules is calculated,
using the experimentally determined high resolution protein
structure, a calculation known as "ligand docking and scoring."
Ligand based methods use pattern recognition, now trendily
referred to as "machine learning," algorithms where elements
of the structural properties are mapped to either (1) high
throughput screening results for activity, i.e., efficacy and other
desirable properties, e.g., solubility parameters: Quantitative
Structure Activity Relationship/Quantitative Structure Property
Relationship (QSAR/QSPR) (Liu and Long, 2009; Nantasenamat
et al., 2009; Ghasemi et al., 2018; Toporov and Toporova, 2020)
or (2) elements of three dimensional structure of the molecule:
pharmacophore modeling (Acharya et al., 2011).

Apart from the pharmacological research to determine
appropriate target protein active sites, the above mentioned
methodologies for drug discovery together are a fixed, simplified,
purely empirical, paradigm: fitting data without insight. As is
the case with research carried out using a fixed paradigm,
metaphorically speaking continuing to turn the crank on the
same machine, one reaches a point of diminishing returns; this is
exactly what has occurred for the case of pharmaceutical research:
as the resources spent globally on pharmaceutical research
increase exponentially, the number of new drugs approved each
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year remains constant, a phenomenon referred to as "Eroom’s
law" (Scanell et al., 2012) the reverse of the famous Moore’s law
regarding the exponential increase in computational technology
we have witnessed over the past half century: pharmaceutical
research is slowing down exponentially; moving forward requires
moving beyond this oversimplified model.

The situation for drug delivery, i.e., pharmaceutics, is
similar. When a given molecule is designed, using the above
methodology, a set of rules of thumb are applied regarding
its properties, known as "Lipinski’s rule of 5” (Lipinski et al.,
2001; Lipinski, 2004). This determines whether the molecule
is "drug-like," i.e., a molecular structure likely to have a
sufficiently optimal solubility profile, or not. Behavior of the
drug in the body apart from its drug action, known as its
Absorption, Distribution, Metabolism, and Excretion (ADME)
properties, is a critical aspect that partially determines both
efficacy and toxicity. This is modeled using numerical solutions
to complex sets of coupled differential equations that represent
the interactions of drugs and drug metabolites, as their
distribution varies in time in the different tissues of the organism;
this form of numerical computational modeling is known
as pharmacokinetic/pharmacodynamics modeling (Craig, 1998;
Ruiz-Garcia et al., 2008; Belfo and Lemos, 2021). While this
form of modeling is not entirely empirical, as it is dependent on
known metabolic relations, it still remains a method to calculate
a quantitative result from experimentally measured parameters.

Given that the global pharmaceutical industry is estimated to
have a turnover in excess of 1 trillion USD, there is obviously
a substantial continuing effort to break out of the rut of
diminishing returns it finds itself in. Regarding pharmaceutics,
the last 30 years has seen the development of increasingly
sophisticated mechanisms for enhancing the solubility profile,
carrying/protecting drugs in the bloodstream and targeting them
to the desired tissue (Zhang W. et al., 2017): the aforementioned
nanomedicine (Moghimi et al., 2020). These involve either
covalently bonding the drug to a molecule or packaging the drug
into a nanoscale (diameter 100nm or less) vehicle that performs
this function. As this field has developed, these means have
become increasingly complex and intricate and, as a result, this
avenue has also become stuck (Park, 2016): while increasingly
complex devices make for engaging narratives leading to well
cited publications, the greater the complexity the more that
can go wrong, resulting in a field of research that is far
better at producing publications than real approved therapies;
as Venditto and Szoka have put it "so many papers and so few
drugs!" (Venditto and Szoka, 2013); the resulting system, coupled
to the human physiological environment, is far too complex
to be developed through the above described limited, mostly
empirical, paradigm.

It can be argued that what is missing is mechanistic
understanding: insight into what is actually physically happening,
i.e., what are the molecules actually doing? The above described
computational methods do not provide this; what they provide
is a numerical answer. Mechanistic understanding is obtained
by a computational method that can, given knowledge of the
structure of molecules, provide insight into how the molecules
interact, i.e., what structures they form and how they move

with respect to each other with time: a three dimensional
movie of what is happening on the molecular length scale.
A molecule, or system of molecules, is a set of nuclei and
electrons interacting in a specific way. How this interaction
affects the motion of the atoms, i.e., the physics of the system,
is quantum mechanics. Exact calculation is impossible, however,
the discipline of theoretical quantum chemistry has developed
many methods for approximating the behavior of molecules
governed by quantum mechanics (Cramer, 2002). While these
calculations can be simplified through the use of semi-empirical
methods (Thiel, 2014), we are still left with a calculation that is too
computationally intensive to simulate the length and time scales
that are of interest to us. Making a set of approximations and
accepting certain limitations of the variety of phenomena that
can be observed, we arrive at the molecular mechanics paradigm:
the molecule modeled as a set of particles with their interactions
governed by classical mechanics.

THE MOLECULAR MECHANICS
PARADIGM AND MOLECULAR
DYNAMICS SIMULATION

The molecular mechanics paradigm is based on a combination
of insight from the quantum mechanical interactions of atoms
and empirical physical chemistry. The resulting model, illustrated
in Figure 1, can be intuitively pictured as a set of sticky rubber
balls (the short range attractive van der Waals (Israelachvili,
1985) and repulsive Pauli exclusion forces modeled through
what is known as the Lennard-Jones potential term) that are
charged (electronegativity of atoms and H-bonding behavior
modeled through partial charges) connected by springs (the
bond forces) with hinges (angular interactions), axels (proper
dihedral potentials) and other 4-body interactions to produce
correct structure (improper dihedral potentials); the atoms and
molecules follow Newton’s equations of motions, knocking into
each other and rattling about in response to these forces; the
result is a three dimensional movie of the system with atomistic
resolution: molecular dynamics simulation (Allen and Tildesley,
1989; Frenkel and Smit, 2001). This has been referred to as a
“computational microscope" by Lee E. H. et al. (2009), however,
we feel this analogy is misleading as this is not a visualization
of a piece of a real system but rather the isolation and study
of a specific aspect of the system that we have assembled the
appropriate set of models of molecules to study. Discussion of
the methods used to determine the parameters of this model can
be found elsewhere (Plimpton, 1995; Karplus and McCammon,
2002; Case et al., 2005; Phillips et al., 2005; Hess et al., 2008; van
Gunsteren et al., 2008; Brooks et al., 2009; Abraham et al., 2015).

Several competing potential sets exist and for simulating any
system with new molecules that have never been simulated
before, often the case in pharmaceutical as opposed to biological
research since we deal with unique man-made molecules,
quantum chemistry calculations must be performed; choosing
and building potential sets for the model to obtain the correct
result requires significant expertise. While molecular dynamics
simulation with an all atom model has seen significant success
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FIGURE 1 | The set of interactions that are the molecular mechanics paradigm that defines the forces that drive the motion of atoms in a molecular dynamics
simulation with all atom resolution. The bond, angle and dihedral potentials are the intramolecular interactions that define molecule structure and the interactions
between covalently bound atoms. Each atom has a partial charge that interacts with all other atoms through electrostatic forces to model electronegativity and
H-bonding behavior; short range attractive and repulsive forces due to the Van-der-Waals and Pauli Exclusion Principle, respectively, are modeled through the
Lennard-Jones interaction.

in the study of a wide range of biophysical systems, it is still
limited to a length scales of ∼15 nm and time scales of ∼1–2
µs: too small to obtain insight into several phenomena we wish
to study. Here we return to the aforementioned coarse grained
models (Figure 2). While several phenomena cannot be observed
as they are dependent on specific interatomic interactions, e.g.,
salt bridges and H-bonds, with good judgment such models allow
for the metaphorical camera to zoom out and study behavior on
larger length and timescales, however, with reduced resolution.

While several schemes for the development of coarse grained
models have been proposed (Miyazaki et al., 2020) the two that
have been most frequently used are the MARTINI potential set
(Marrink et al., 2007), where the coarse grained particles are
groups of ∼3 atoms with the potential sets developed based
on the solubility parameters of these groups and Dissipative
Particle Dynamics (DPD) (Groot and Warren, 1997; Español
and Warren, 2017) where the degree of coarse graining is
greater still, where the particles are soft "momentum carriers"
and temperature is controlled through a thermostat designed

to conserve local momentum as the effects of hydrodynamics
become important at this larger length and time scale. Another
scheme is incorporating the effect of the solvent through
adjustment to the interactions between particles in the molecules
of interest, i.e., simulating with adjusted potentials in a vacuum;
this is known as the “implicit solvent” model (Murtola et al.,
2009). An ideal that is often sought and discussed is "multiscale
simulation"—combining the insight from simulations carried
out with different methodologies on different length and time
scales (Haddish-Berhane et al., 2007; Murtola et al., 2009;
Meier et al., 2013); in 2013 The Nobel Prize in Chemistry was
awarded to Arieh Warshel, Martin Karplus and Michael Levitt
for "development of multiscale models for complex chemical
systems" (The Nobel Prize in Chemistry 2013, 2013). From the
literature search for this review, it can, however, be surmised
that this ideal, for the most part, remains an ideal: for the recent
original research found, in our literature search for this review,
that applied MD simulation in the field of drug delivery, the
number of publications that use more than one methodology
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FIGURE 2 | Illustration of coarse graining: the same system, a PEGylated
membrane, modeled with an all atom and a MARTINI model is shown along
with the decrease in number of particles and acceleration in the simulation
time. Figure taken from Bunker: (Bunker et al., 2016) with permission.

remain a small minority. Several reviews cover the use of coarse
grained methods for the simulation of systems composed of
lipids, polymers and proteins (Bennun et al., 2009; Loverde, 2014;
Cascella and Vanni, 2016; Brancolini and Tozzini, 2019).

Now that we have this three-dimensional movie of our system,
known as a trajectory, beyond just visualization there are several
techniques to analyze this result and obtain useful insight into the
system. Here we provide a few examples of frequently calculated
properties from the trajectory. Considering pharmaceutical
applications of MD simulations, a description of a binding
mode (hydrogen bonds, salt bridges, stacking interaction, and
hydrophobic interactions) of a drug in the protein binding
cavity is the first key information to examine. Unlike binding
modes obtained from experimental structural studies or docking
predictions, MD simulations provide a dynamic description of
the interaction between drug and protein (e.g., Kaszuba et al.,
2012; Chen J. et al., 2019); this allows additional insight regarding
the importance of individual interactions. Moreover, simulations
provide explicit information concerning water participation in
the binding mode (e.g., Kaszuba et al., 2010; Postila et al., 2013;
Aguayo-Ortiz and Dominguez, 2019; Figure 3A), typically not
resolved in structural studies and not considered in docking
calculations. Analysis of intermolecular interactions is not
limited to drug-protein interactions but can also be performed
for any type of molecule/macromolecule studied, e.g., drug-
lipid interactions are frequently studied (Cramariuc et al.,
2012; Mayne et al., 2016; Pasenkiewicz-Gierula et al., 2016;
Postila and Róg, 2020).

Additional observable properties used to evaluate
intermolecular interactions are the radial distribution function
(RDF) (Figure 3C) and the number of contacts. The RDF for
the pairs of particles P1 and P2 gives us the normalized density
of particle P2 at a given distance from particle P1. For the
shortest distances the RDF value is 0 due to steric repulsion and
converges to a constant value in the limit of infinite distance;
for homogenous systems this value will always be 1. For an

interacting pair of two particles, the RDF value initially rises with
increasing distance to a maximum followed by a subsequent
minimum (Figure 3C). E.g., for a pair of heavy atoms that form
an H-bond, the maximum position is at ∼0.25 nm, and the
minimum at ∼0.325 nm (Pasenkiewicz-Gierula et al., 1997). The
number of contacts is the number of pairs of heavy atoms of two
molecules located at a distance shorter than the selected cutoff.
The most frequent choice for a cutoff length is the position of
maximum or minimum at the RDF for carbon atoms in the liquid
hydrocarbons. Calculations of numbers of contact are useful to
evaluate equilibration in the simulations where self-assembly is
studied. When a stable number of contacts is reached one can
assume the end of the self-assembly process.

For interactions of larger molecules, MD simulations provide
an area of contact (Acont). To obtain this, the solvent accessible
surface area (SASA) (Connolly, 1983) for the considered
molecule is first calculated separately (Amol1 and Amol2), and
next, the same calculations are performed for the dimer (Adimer);
this results in an area of contact:

Acont = (Amol1 + Amol2)− Adimer)/2 (1)

Extensive MD simulation, either performed over a long time
(Hurst et al., 2010; Dror et al., 2011) or as many multiple parallel
simulations (Lolicato et al., 2020), are capable of elucidating the
process of ligand entry into the binding pocket, however, the most
frequent steered MD simulation methods (Izrailev et al., 1997)
or randomly accelerated MD (RAMD) simulations (Lüdemann
et al., 2000; Kokh et al., 2018) are used to reveal the entry/exit
patch as they are more computationally efficient. For the case
of functionalized proteins, their stability can be evaluated via
calculations of secondary protein structure (Figure 3B). Other
standard measurable properties provided by MD simulations
include root mean square deviation (RMSD) and root mean
square fluctuations (RMSF). The RMSD describes the similarity
between the structures at the given time with the initial structure;
thus, a large increase of this parameter can indicate a lack
of protein stability. In studies of the interaction of drugs and
nanoparticles with lipid bilayers, one can obtain insight into the
xenobiotic degree of membrane perturbation.

The most frequently used tools to study lipid bilayer properties
are surface area per lipid molecule, bilayer thickness and the order
parameter. The most frequently calculated order parameters
are the deuterium order parameter, SCD and molecular order
parameter Smol (Vermeer et al., 2007; Figure 3D). The position in
the membrane of any given xenobiotic molecule is quantitatively
described by so-called density plots, which show the density of
selected atoms, atom groups or whole molecules, along the bilayer
normal. As a reference point, selected atoms of lipid molecules
can be used, e.g., headgroups, glycerol moiety, or the last carbon
of the acyl tails (Figure 3E). The next parameter describing drug
behavior in the lipid bilayer is the drug molecule orientation with
respect to the bilayer normal. Location and orientation of the
drug in the lipid bilayer can be important for the entry of the
drug into a protein binding cavity (e.g., Magarkar et al., 2018).
Next, simulations describe the physicochemical properties of
nanoparticles, including their size (quantitatively measured as the
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FIGURE 3 | Results of MD simulations. (A) Snapshot showing involvement of water in binding mode of nebivolol to β2-adrenergic receptor, reproduced with
permission from Kaszuba et al. (2010), Copyright (2010) American Chemical Society. (B) Time evolution of secondary structure of PEGylated insulin molecules,
reproduced with permission from Yang et al. (2011), Copyright (2011) American Chemical Society. (C) An example of radial distribution functions (RDF) for interacting
particles (black line) and non-interacting particles, data taken from Roìg and Pasenkiewicz-Gierula (2004). (D) Example of order parameter profile along the lipids acyl
chain, reproduced from Mobarak et al. (2018) (CC BY 4.0). (E) An example of density profile showing position of atoms of lipid headgroups (phosphorus and
nitrogen) and PEGylated tetra-phenyl-porphyrin (PEG and porphyrin densities are shown separately), at the presence (dashed line) and absence (solid line) of salt in
solution, reproduced with permission from Rissanen et al. (2014), Copyright (2014) American Chemical Society. (F) Distribution of counter ions around gold
nanoparticle functionalized with hydrocarbons capped with amine group, reproduced with permission from Heikkilä et al. (2014a), Copyright (2014) American
Chemical Society, (G) electrostatic potential profile around PEGylated Biochanin (BIOH) and tetra-phenyl-porphyrin (p-THPP) in the presence and absence of salt in
solution, reproduced with permission from Rissanen et al. (2014), Copyright (2014) American Chemical Society; (H) free energy landscape for the process of
insertion of dendrimer into lipid bilayer, reproduced from Van Lehn and Alexander-Katz (2019), Copyright: 2019 Van Lehn, Alexander-Katz.
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radius of gyration), nanoparticle hydration, interaction with ions
(see Figure 3F) and electrostatic potential at the given distance
from the nanoparticle center (Figure 3G). Finally, one should
consider the statistical significance of results to avoid over-
interpretation (Gapsys and Groot, 2020), carefully validate results
against experimental data (Botan et al., 2015; Ollila and Pabst,
2016), and be critical as simulations are prone to methodological
artifacts (Wong-ekkabut and Karttunen, 2016).

Sometimes the unbiased trajectory is not sufficient to obtain
the insight we seek. The phenomenon we wish to study may
occur in a region that is not sampled so frequently or we wish
to calculate the free energy difference between two separate
conformations of the system. For this we need the ability to
apply a bias to the simulation to push it artificially toward a
certain region of conformation space that we wish to examine.
From calculating the bias needed along a path between two
conformations one can obtain the free energy difference between
then, an important measure of such quantities as the binding
affinity of a drug for a specific active site of a protein (Michel
and Essex, 2010). Two methods to calculate this free energy
are umbrella sampling (Roux, 1995; Frenkel and Smit, 2001;
Neale and Pomès, 2016; Figure 3H), where the path taken is
through conformation space and what is known as a potential of
mean force (PMF) (Roux, 1995) is calculated along this path and
thermodynamic integration (Matos et al., 2017), an analogous
calculation but where the path is through parameter space.
The free energy calculations are computationally demanding
and sensitive to force field details. Also one should consider
possible artifacts due to a bias force, e.g., deformation of the lipid
bilayers was observed in a few studies during umbrella sampling
calculation of the profile of PMF of the studied compound along
the bilayer normal (Neale et al., 2011; Filipe et al., 2014; Neale
and Pomès, 2016). Metadynamics (Bussi and Laio, 2020) is an
adaptive means to explore conformation space in an enhanced
fashion by constantly biasing the system away from the regions
of conformation space that have already been explored.

The remainder of this review paper will cover examples of
how this tool, molecular dynamics simulation, has been and can
continue to be, used in the context of drug delivery research
(pharmaceutics). We will discuss applications across the breadth
of the field, including obtaining insight relevant to dissolution
and solubility, however, the majority of the discussion will
cover the recent explosion in publications that use molecular
dynamics simulation to study the more advanced drug delivery
mechanisms, collectively known as nanomedicine.

MECHANISTIC INSIGHT INTO DRUG
DISSOLUTION AND SOLUBILITY FROM
MD SIMULATION

The simplest application of MD simulation in drug delivery
is gaining mechanistic insight into the universal processes of
dissolution and solvation (Figure 4). Drugs often enter the body
in crystalline form and dissolution of these crystals is the first
step. Larsen et al. (2017a,b, 2019) have used MD simulation to
study alteration to the crystal structure with varying levels of

hydration. For systems with long range order such as this, a more
accurate and computationally intensive COMPASS force field
(Sun, 1998) is required, instead of the potential sets normally used
for simulations of systems in the liquid state. The Ouyang group
has studied the dissolution of drug molecules complexed with
solid dispersions as a remedy for poor solubility using MD (Chen
and Ouyang, 2017; Chan and Ouyang, 2018; Han et al., 2019a)
in addition to machine learning techniques (Han et al., 2019b).
Coarse grained simulations using the DPD protocol have been
used by Otto et al. to study the release of the drug quercetin from
poly(ethylene-glycol) (PEG) solid dispersions (Otto et al., 2013).

As stated above, simplified QSAR/QSPR (Mathieu, 2020) or
related machine learning models (Hutchinson and Kobayashi,
2019) are generally used to correlate drug structure to solubility
using pattern recognition to relate structure to experimental
solubility data; MD simulation can, however, be used to
obtain both a more accurate result and, additionally, provide
mechanistic understanding. The partition coefficient between
water and octanol can be calculated for the specific molecule
through MD simulation (Bannan et al., 2016) using the
aforementioned techniques for free energy calculation, either by
(1) using umbrella sampling to physically pull the candidate
drug molecule structure through the boundary between a
water and an octanol phase and calculate the free energy
change along this path, the aforementioned PMF (example of
a PMF calculation shown in Figure 3H) or (2) performing
thermodynamic integration between the drug solvated in water
and the drug solvated in octanol. Such a calculation is not the
mechanistic insight advertised in the introduction; here we are
using MD simulation as a tool to obtain a numerical estimate of
a quantitative result. It is possible, however, to examine the MD
simulation output further to obtain mechanistic insight regarding
the relation between the structure of the molecule and the solvent;
for example, Zhang et al. have investigated the H-bond network
of the drug ibuprofen in water and ethanol (Zhang M. et al.,
2020). Erlebach et al. (2020) have used a different technique
combining simulations with atomistic resolution with solubility
calculations based on Flory-Huggins theory. Other examples of
MD used for solubility prediction also exist (Lüder et al., 2007,
2009; Westergren et al., 2007; Patel et al., 2010a; Gupta et al.,
2011; Paluch et al., 2015; Matos et al., 2017; Matos and Mobley,
2019; Dasari and Mallik, 2020). To aid in the delivery of drugs
that are otherwise too lipophilic, they are administered not alone
but in a formulation with other molecules, known as excipients.
Optimizing this drug formulation can be performed through
combining screening experiments with pattern recognition and
optimization algorithms, however, here too, MD simulation can
play a powerful role in complementing other computational
methods (Mehta et al., 2019), for example MD simulations
of cyclodextrin-drug complexes (Zhao et al., 2018; Huang
et al., 2019); cyclodextrin is a common agent for assisting
the delivery of poorly soluble drugs. Persson et al. (2013)
have used MD simulation to study drug solubility in excipient
formulations and MD has been used to study polymeric
excipients. Benson and Pleiss (2014) have used MD to study
self-emulsifying drug delivery systems and Hathout et al. have
modeled drug loading in the gelatin matrix (Ahmad et al., 2010;
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FIGURE 4 | Dissolution and solubility. (A) Formation of clusters of fullerene with organic solvents, for the final structures clusters full view (left side) and its cross
section (right side) are shown, organic solvent covers fullerene from outside and are present in small quantities inside the cluster, reproduced from Lehto et al. (2014),
Copyright: 2014; (B) formation of lutein and cyclodextrin complexes (Zhao et al., 2018), Copyright (2018) American Chemical Society; (C) Aggregates of piroxicam
formed in water and lipid bilayer, and piroxicam molecules dispersed in PEG corona of PEGylated lipid bilayer, reproduced with permission from Wilkosz et al. (2017).

Warren et al., 2013; Jha and Larson, 2014; Hathout et al., 2020).
Several comprehensive review papers have been written on the
synergistic use of MD with other computational techniques to
determine the solubility and dissolution characteristics of drugs
and drug formulations (Johnson and Zheng, 2006; Bergström and
Larsson, 2018; Li et al., 2018; Hossain et al., 2019; Das et al., 2020).

Describing the ease with which a drug travels through the body
to reach its target through this one parameter, solubility, alone, is
of course an extreme oversimplification: in addition to dissolving
in the blood, drugs must traverse a variety of biological barriers,
in particular cell membranes and perfect solubility will not insure
this (Smith et al., 2018). Building systems to deliver drugs through
these barriers requires an extra level of complexity; we now cross
from simple formulation with the goal to optimize solubility
into nanomedicine: nanoscale vectors designed to transport the
drug through the bloodstream while protecting it from the body’s
defense mechanisms and targeting the desired tissue.

NANOMEDICINE

Nanomedicine is officially defined as pharmaceutical applications
of nanotechnology. Since "nanotechnology" is a meaningless

buzzword quickly fading from fashion (Park, 2019) this is not a
concise definition; in practical terms this encompasses all drug
delivery systems that involve packaging the drug in structures
with diameters =100 nm but larger than a single drug molecule:
one or more drug molecules combined with one or more carrier
molecules. For example, even merely grinding a crystal of the
drug into pieces smaller than this size officially fits this definition,
the result known as "nanocrystals" (Song et al., 2011) and
recognized as the simplest form of nanomedicine. A very broad
range of mechanisms have been developed that fit this definition
and the nomenclature is cluttered, i.e., the language used to
define different varieties, and how components are described
is inconsistent; we will now describe the nomenclature and
definitions we intend to use, but be warned: when you read the
cited publications, the nomenclature may not be consistent.

When the drug and carrier are combined, the result is referred
to as a nanoparticle. Nanoparticles are formed in one of two
ways: (1) directly functionalizing a molecule to the drug, i.e.,
chemically bonding a molecule to the drug to alter its behavior
in the bloodstream (Ekladious et al., 2019) or (2) combining
one or more drug molecules with one or more carrier molecules
that self-assemble to form the nanoparticle; I will refer to this
as the functionalization and self-assembly routes of nanoparticle
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FIGURE 5 | Nanoparticles. (A) Liposome simulated with dry MARTINI model, reproduced with permission from Arnarez et al. (2015), Copyright (2015) American
Chemical Society; (B) carbon nanotube used for delivery of vinblastine (Li et al., 2016a), Copyright (2016) American Chemical Society; (C) nanodiscs formed of
POPC and membrane scaffold protein MSP1D1 (Left), MSP1E3D1 (middle), and lipid bilayer (right), protein is shown as blue ribbon, phosphate groups of lipids
shown as red sphere, and acyl tail as gray sticks, reproduced with permission from Stepien et al. (2020); (D) PAMAM dendrimer in water phase (top), at the lipid
bilayer in gel phase (middle), and at the lipid bilayer in fluid phase (down), reproduced with permission from Kelly et al. (2008), Copyright (2008) American Chemical
Society.

formation. The functionalization route to nanoparticle creation
can also lead to the formation of a nanoparticle composed of
more than one drug molecule, for example functionalizing a
hydrophobic drug with a polymer could result in the formation
of micelles with the drugs at the core. In most cases the direct
functionalization is to a polymer, a long unstructured molecule,
that, as a result, forms a protective sheath around the drug
molecule in the bloodstream, however functionalization to a
smaller molecule is also possible, for example, folic acid (Wolski
et al., 2018; Alinejad et al., 2020) or glycine (Ghadri et al., 2020).
A particularly ingenious idea is functionalization to amphiphilic
"molecular umbrellas" that aid the transfection of hydrophilic
drugs through the hydrophobic core of cell membranes (Janout
et al., 2001, 2002, 2005, 2014; Jing et al., 2003; Janout and
Regen, 2005, 2009; Ge et al., 2009). Drugs functionalized to
polymers where the drug is activated by enzyme cleavage of the
polymer are also referred to as "prodrugs" (Luo et al., 2019).
Functionalization to peptides or small proteins can result in very
specific fine tuning of the behavior of the drug as it interacts
with its environment (Lu et al., 2015). Functionalization of lipids

for a variety of applications is reviewed by Kepczynski and
Róg (2016) and specifically for drug delivery by Kohli et al.
(2014). Regarding nanoparticles formed via the self-assembly
route, a rigorous literature search leads to a subdivision of the
majority according to topology and choice of carrier molecule
into roughly the following 9 categories: (1) solid inorganic,
(2) micelles, (3) vesicles (Figure 5A), (4) lipoprotein based
structures (Figure 5C), (5) other lipid-polymer structures, (6)
carbon architectures (Figure 5B), (7) dendrimers (Figure 5D),
(8) protein/peptide, and (9) the aforementioned nanocrystals.
Bobo et al. (2016) have compiled the list of FDA-approved forms
of nanomedicine, as of 2016.

Solid inorganic nanoparticles are rigid structures formed
from inorganic substances. These include gold (Ghosh et al.,
2008; Charchar et al., 2016; Rossi and Monticelli, 2016), silver
(Eckhardt et al., 2013; BurduŞel et al., 2018), titanium dioxide
(Aranha et al., 2020), silica (Santos et al., 2014) nanoparticles,
and boron nitride oxide nanoflakes (Duverger and Picaud, 2020).
Gold and silver nanoparticles are solid structures that can be
associated with drugs, or can be functionalized themselves to
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perform a specific function: the nanoparticle itself is a drug. For
the case of silica nanoparticles they can be porous and contain
drugs and can even have complex multi-compartment structure,
carrying many different drug molecules (Torchilin, 2007; Pattni
et al., 2015; Bulbake et al., 2017; El-Hammadi and Arias, 2019;
Bhardwaj et al., 2020; Crommelin et al., 2020), for example for
applications like theragnostics (Janib et al., 2010). In the same
fashion as solid inorganic nanoparticles, carbon architectures are
contiguous solid structures, however, due to its unique chemistry,
composition from carbon allows for a wide variety of forms,
including carbon dots (Peng et al., 2017; Ghosal and Ghosh,
2019), nanotubes (Sun et al., 2014), nanodiamonds (Barnard,
2016; Ge and Wang, 2017), nanographene (Zhang L. et al., 2013;
Sun et al., 2014; Sgarlata et al., 2016; Ghadari and Kashefi, 2017;
Hasanzade and Raissi, 2017; Moradi et al., 2018; Alinejad et al.,
2020; Mahdavi et al., 2020), and graphene oxide (Duverger and
Picaud, 2020; Shahabi and Raissi, 2020).

Micelles and vesicles are both formed from amphiphilic
organic molecules but differ in topology: micelles have a
hydrophobic core surrounded by a hydrophilic shell while in
vesicles the amphiphilic molecules form a bilayer that itself forms
into an enclosed pocket. In both cases they can be formed from
a wide range of molecules, usually surfactants, lipids or diblock
copolymers, however, other amphiphilic molecules are possible,
for example, janus dendrimers (Nummelin et al., 2017; Yang Y.-
L. et al., 2019). The most common micellar nanoparticle is the
polymeric micelle (Cagel et al., 2017), composed of diblock co-
polymers with hydrophobic drugs carried in the micelle core.
The most common form of vesicular nanoparticle is the liposome
(Bunker et al., 2016), a vesicle formed from naturally occurring
phospholipids. Other amphiphilic molecules formed into vesicles
are, however, also used in drug delivery, including ethosomes
(Touitou et al., 2000), niosomes (Marianecci et al., 2014; Khan
and Irchhaiya, 2016; Chen S. et al., 2019; Kapoor et al., 2019;
Khalkhali et al., 2019; Inglut et al., 2020), polymersomes (Aibani
et al., 2020; Khan et al., 2020), exosomes (Antimisiaris et al.,
2018; Villa et al., 2019; Chung et al., 2020; Rahmati et al.,
2020), ufasomes (Han, 2013), and drimersomes (Nummelin
et al., 2017), comprehensive reviews have been written about
vesicle formation (Šegota and Durdica, 2006) and application
in drug delivery (Kapoor et al., 2019) in a general context.
Polymers and lipids can be formed into other structures than
micelles or vesicles, for example two different polymers can be
used to form core-shell structures (Ramli et al., 2013; Abbott
et al., 2017; Chen G. et al., 2018), for example a solid outer
shell with a liquid polymer with drug encapsulated inside;
solid lipid nanoparticles (Beloqui et al., 2016; Gordillo-Galeano
and Mora-Huertas, 2018; Subramaniam et al., 2020), chitosan
(Bernkop-Schnürch and Dünnhaupt, 2012), lipoplex (Scheideler
et al., 2020) and other lipid-polymer nanoparticles (Date et al.,
2018) have also been proposed. Another form of polymer based
nanoparticle is dendrimers (Tomalia et al., 1990; Fatemi et al.,
2020) and pseudodendrimers (Ghadari and Sabri, 2019), hyper-
branched polymers with a fractal structure that results in a
molecule that is, qualitatively, in the form of a fuzzy ball and can
store molecules in their interior or bind nucleic acids to form
a dendrimerplex. A particularly common form of dendrimer

that has been proposed for drug delivery is poly(amidoamine)
(PAMAM) dendrimers (Xiao et al., 2020).

Lipoproteins are used as the body’s mechanism for lipid
transport. These are structures of several different lipids with
proteins that control the form of the structure and the
composition of the lipid types within the structure. As they
transport lipids they undergo structural change upon deposition
of their cargo from a spherical structure to a disk-like structure.
Taking these structures as a starting point and modifying them
to work as drug carriers, or building structures inspired by
lipoproteins, is a novel avenue of nanomedicine that is currently
being explored (Bricarello et al., 2011; Huang et al., 2015;
Kuai et al., 2016a; Simonsen, 2016; Aranda-Lara et al., 2020;
Chuang et al., 2020). The disk-like form of lipoprotein, known
as nanodiscs have proven to be an extremely useful structure
for a variety of applications, including nanomedicine (Denisov
and Sligar, 2017). Nanodiscs were successfully used as a drug
delivery vehicles to treat viral lung infections (Numata et al.,
2013) and were used as a platform accommodating antigens and
adjuvants in personalized cancer vaccines (Kuai et al., 2016b). Use
of nanodiscs for simultaneous delivery of antigen and adjuvant
has been found to increase the response of the immunological
system by orders of magnitude in comparison to traditional
vaccines. Due to the variety of possible applications of nanodiscs,
their properties are the subject of intensive study (Debnath
and Schäfer, 2015; Siuda and Tieleman, 2015; Stepien et al.,
2015, 2020; Martinez et al., 2017; Pourmousa and Pastor, 2018;
Bengtsen et al., 2020; Schachter et al., 2020); they are tuned via
modification of their lipid composition (Augustyn et al., 2019) or
alterations to the sequence, thus structure, of the scaffold proteins
(Denisov et al., 2004; Nasr et al., 2016).

All of these structures can have their properties fine-tuned
by being functionalized to polymers or smaller molecules
themselves, in the same fashion as described above for the drug
molecule itself. For example functionalizing poly(ethylene glycol)
(PEG) (Israelachvili, 1997), a process known as "PEGylation"
(Bunker, 2012, 2015; Pasut and Veronese, 2012; Bunker et al.,
2016; Zhang Z. et al., 2020) has been proposed and studied for
virtually all of these nanoparticle forms and, as we will discuss
in further detail in the next section, alternate polymers to PEG
are under investigation. The extent to which these systems can
be fine-tuned is limitless, for example formulation alteration of
liposomes offer an extremely broad pallet (Bunker et al., 2016;
Li et al., 2019). We are thus left with several variables for their
formulation in addition to the extremely complex environment
of human physiology with which they interact, the topic that we
will now discuss.

NANOPARTICLE DESIGN AND
FUNCTION

Nanoparticles have been developed to assist in drug delivery in a
very broad range of pharmaceutical contexts, for example treating
atherosclerosis (Lobatto et al., 2011; Chen J. et al., 2020; Ramalho
et al., 2020) and other neurodegenerative diseases (Goldsmith
et al., 2014), cardiovascular disease (Godin et al., 2010), diabetes
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(Veiseh et al., 2015), infections disease (Zhu et al., 2014; Zazo
et al., 2016), protein drugs (Qin et al., 2019), and vaccine
delivery (Pison et al., 2006; Zhao et al., 2014) in fact vaccine
adjuvant development involves many of the same mechanisms as
nanomedicine (Copland et al., 2005; Wang et al., 2019); it can be
argued that it is only for historical reasons that it is not referred
to as nanomedicine. The main application of nanomedicine is,
however, cancer therapy (Tong and Kohane, 2016; Youn and Bae,
2018), particularly chemotherapy agent delivery, as this involves
drugs with extremely high toxicity; targeted delivery, where the
drug is kept from the rest of the body and the greatest possible
fraction is delivered to the target tissue, in this case the tumor,
is extremely desirable. The nanoparticle is designed to have
features that protect the drug, in the context of nanomedicine
commonly referred to as the "payload" of the nanoparticle.
Targeting is achieved through either active or passive means.
Active targeting (Nag and Delehanty, 2019) involves a specific
ligand functionalized to the nanoparticle exterior that binds to
receptors that are overexpressed in the outer cell membrane of
cells of the target tissue and passive targeting involves global
properties (Ogawara et al., 2013) of the nanoparticle that lead
to a greater percentage becoming lodged in the target tissue in
comparison to other tissues. An example of passive targeting is
what is referred to as the enhanced permeability and retention
(EPR) effect (Maeda et al., 2013); liposomes can be designed
to take advantage of the leaky vasculature of tumor tissue to
become preferentially lodged there; PEGylation is a common
means to achieve this. It must, however, be stated that whether
or not the EPR effect is an effective passive targeting strategy in
practical nanomedicine applications, has recently been brought
into question (Danhier, 2016).

The nanoparticle thus carries and protects its drug payload
through the bloodstream and preferentially delivers it to its target
tissue. In the bloodstream, foreign particles in the size range
of nanoparticles are removed (uptaken) by the mononuclear
phagocyte system (MPS) (Chow et al., 2011); this involves an
extremely complex and specific cascade of proteins: complement
activation (Ricklin et al., 2010; Sarma and Ward, 2011).
The efficiency with which a nanoparticle is removed through
complement activation is determined by its surface properties.
The nanoparticle can be designed to have a surface that inhibits
uptake, thus prolonging circulation in the bloodstream and, as a
result, the amount of the drug that reaches the target tissue per
administered dose; such a nanoparticle surface is referred to as a
"stealth sheath" and the aforementioned PEGylation is the gold
standard to achieve a this (Pasut and Veronese, 2012; Bunker,
2015; Parray et al., 2020). While PEGylation is an extremely
successful strategy, it is not perfect and the investigation of
alternate polymers to PEG is an active field of research (Knop
et al., 2010). Alternatives that have been proposed and studied
include polyoxazolines (Sedlacek et al., 2012; Lorson et al., 2018),
PASylation R© (Viegas et al., 2011; Schlapschy et al., 2013; García
et al., 2014; Binder and Skerra, 2017; Gebauer and Skerra, 2018),
zwitterionic polymers (García et al., 2014), hydroxyethyl starch
(Liebner et al., 2014), and polypeptides (Hou and Lu, 2019).

PEGylation, or the creation of an alternate polymer
stealth sheath, is achieved though functionalizing the

polymer to a component of the nanoparticle. For the case
of the functionalization route to nanoparticle creation,
functionalization to the protective polymer itself can be the
nanoparticle. It is also possible to functionalize the drug to
a copolymer where one of the copolymer constituents is the
hydrophilic stealth sheath and the other performs another
function, e.g., a hydrophobic polymer that encapsulates the drug.
Examples of this include PEGylated boron nitride (Farzad and
Hashemzadeh, 2020), folic acid (Wolski et al., 2017b; Alinejad
et al., 2020), interferon (Xu et al., 2018), insulin (Yang et al.,
2011; Figure 6E), other PEGylated peptides (Xue et al., 2011;
Hamed et al., 2015; Ma et al., 2016; Figure 6F) and protein drugs
(Katre, 1993; Jevševar et al., 2010; Yang et al., 2011; Zhang et al.,
2012; Mu et al., 2013; Wu et al., 2014; Lawrence et al., 2014;
Nischan and Hackenberger, 2014; Lawrence and Price, 2016;
Xu et al., 2018; Wilding et al., 2018; Gupta et al., 2019; Zaghmi
et al., 2019; Munasinghe et al., 2019; Kaupbayeva and Russell,
2020; Figure 6B); the broader context of polymer-protein drug
molecules is covered in several reviews (Pelegri-Oday et al., 2014;
Wang et al., 2019). As far back as 1977, long before "nano" was
a word, functionalizing PEG to proteins was proposed to alter
their immunological properties (Abuchowski et al., 1977). For
the self-assembly route to nanoparticle creation the polymers
are functionalized to constituent molecules of the nanoparticle.
PEGylation has been proposed for virtually every one of the
nanoparticle types described in the previous section. This
includes PEGylated carbon nanotubes (Pennetta et al., 2020),
gold nanoparticles (Oroskar et al., 2016; Lin et al., 2017; Sun et al.,
2019), silver nanoparticle (Pinzaru et al., 2018), silver-graphene
nanoparticles (Habiba et al., 2015), nano-graphene (Zhang et al.,
2014; Zhang Z. et al., 2020; Mahdavi et al., 2020), lipid micelles
(Arleth et al., 2005; Viitala et al., 2019; Figure 6D), nanodiscs
(Zhang et al., 2014), dendrimers (Kojima et al., 2000; Lee and
Larson, 2009, 2011; Zhang et al., 2014), and a topic covered
comprehensively in our previous review, liposomes (Bunker
et al., 2016; Figures 6A,C).

For the case of inorganic nanoparticles, in particular gold
nanoparticles, various alternatives to PEG coatings have been
considered. Gold nanoparticles can be functionalized via a
thiol group with hydrocarbons capped with a methyl group
(Bolintineanu et al., 2014; Potdar and Sammalkorpi, 2015; Giri
and Spohr, 2018), hydroxyl group (Potdar and Sammalkorpi,
2015; Villarreal et al., 2016; Yamanaka et al., 2019), carboxylic
group (Heikkilä et al., 2014b; Giri and Spohr, 2018; Figure 7A),
amine group (Heikkilä et al., 2014a,b; Giri and Spohr, 2018; Das
et al., 2019; Lolicato et al., 2019), choline sulfate (Yamanaka et al.,
2019), or a para-mercaptobenzoic acid (Figure 7B; Salorinne
et al., 2016). Also, bulky branched coatings have been used
to functionalize gold nanoparticles (Giri and Spohr, 2018;
Yamanaka et al., 2019). The alternative coating can also be
used to direct the nanoparticle to a selected environment, e.g.,
Potdar and Sammalkorpi proposed using a hydrophobic coating
to cause the particle to locate to the hydrophobic core of the
bilayer and a coating ended with a hydroxyl group to anchor
the particle to the lipid headgroups (Potdar and Sammalkorpi,
2015). A coating composed of two types of moieties one a
hydrophobic 1-octanethiol and the other a negatively charged
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FIGURE 6 | PEGylation. (A) Snapshot showing PEGylated lipid bilayer, reproduced with permission from Dzieciuch et al. (2015), Copyright (2015) American
Chemical Society; (B) PEGylated biochanin (upper) and tetra-phenyl-porphyrin (lower), with salt (left) and without salt (right), reproduced with permission from
Rissanen et al. (2014), Copyright (2014) American Chemical Society; (C) Snapshots showing DSPC, cholesterol and DSPE-PEG molecules, reproduced with
permission from Magarkar et al. (2014), Copyright (2014) American Chemical Society; (D) PEGylated bicelle containing 10.5 mol % DSPE-PEG, reproduced from
Viitala et al. (2019), Copyright: 2019; (E) PEGylated insulin, left panel shows position of PEG atoms during simulations, right panel shows snapshots of insulin
PEGylated with PEG of various length, reproduced with permission from Yang et al. (2011), Copyright (2011) American Chemical Society.

11-mercapto-1-undecanesulfonate causes the nanoparticle to
locate to the center of the bilayer with its polar sulfonate
groups exposed to the water at both membrane interfaces;
this induces a local thinning of the bilayer (Van Lehn et al.,
2013; Van Lehn and Alexander-Katz, 2014a, 2019; Simonelli
et al., 2015) (Fi), or possibly even large scale deformation

(Salassi et al., 2017). With the same coating moieties with
polar coating placed on one-half of the particle and non-polar
on the other, one can form an amphiphilic gold nanoparticle
that will locate to the boundary between the water phase
and the hydrophobic membrane core, i.e., the position of
the lipid headgroups (Ou et al., 2020; Figure 7D). Such
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FIGURE 7 | Gold nanoparticles. (A) Gold nanoparticle coated with dodecanoic acid, hydrating water and ions are shown, reproduced with permission from Heikkilä
et al. (2012), Copyright (2012) American Chemical Society; (B) gold nanoparticle coated with para-mercaptobenzoic acid, gold is shown in yellow and sulfur in
orange, reproduced from Salorinne et al. (2016), Copyright: 2016; (C) snapshots of (upper panel) internalizations of a neutral gold nanoparticle and (lower panel)
uptake of a positively charged gold nanoparticle, reproduced with permission from Lunnoo et al. (2019), Copyright (2019) American Chemical Society; (D) snapshots
of the MD trajectory of the insertion of amphipathic janus nanoparticle into lipid bilayers, reproduced with permission from Ou et al. (2020), Copyright (2020)
American Chemical Society.

coating of other solid inorganic nanoparticles has also been
considered, e.g., silver nanoparticles were coated with hydrophilic
polymer poly(N-vinyl-2-pyrrolidone) (Kyrychenko et al., 2015),
graphene nanoflakes with ssDNA (Moore et al., 2019), and silica
nanoparticle with hydrocarbons (Peters et al., 2012).

Proteins will agglomerate to any foreign particle in the
bloodstream in the approximate size range of a nanoparticle
resulting in a shell of proteins surrounding them, known as the
"protein corona" (Walkey and Chan, 2012; Xiao et al., 2013;
del Pino et al., 2014; Kharazian et al., 2016; Mahmoudi, 2016;
Hadjidemetriou and Kostarelos, 2017; Pederzoli et al., 2017;
Brancolini and Tozzini, 2019; Casalini et al., 2019; Nienhaus and
Nienhaus, 2019; Zhadanov, 2019; Berrecoso et al., 2020; Gupta
and Roy, 2020). The stealth sheath modulates the formation
of this corona in a fashion that is not completely understood
and has been a point of contention in the field for several
decades. Regarding PEGylation, it was originally thought that it
inhibits protein adhesion (Du et al., 1997; Bradley et al., 1998)
then others found evidence that it actually accelerates protein
corona formation (Szebeni et al., 2002) and yet others argued
that they found evidence it had no effect (Price et al., 2001). It

has been argued that the PEG sheath preferentially binds the
common bloodstream protein albumin (Vert and Domurado,
2000) creating an albumin protein corona that, itself, acts as the
stealth sheath that inhibits complement activation (Caracciolo,
2015). Alternate protective mechanisms unrelated to the protein
corona have also been proposed, including direct inhibition of
absorption by macrophages (Price et al., 2001). Most recently,
evidence has been found that the formation of the protein corona
is essential for the stealth properties of PEG (Schöttler et al.,
2016). The most recent reviews of this much discussed topic are
found here (Nienhaus and Nienhaus, 2019; Zhadanov, 2019; Li Z.
et al., 2020).

Complement activation and the formation of a protein corona
is only one aspect of the environment that the nanoparticle must
traverse; in addition to the body’s defenses the nanoparticle must
navigate the hydrodynamic environment of the bloodstream
and, in most cases, deliver the payload drug through the cell
membrane. While the surface properties of the nanoparticle play
a role, both of these are heavily influenced by its size, shape
(Truong et al., 2015) and rigidity/elasticity (Geng et al., 2007;
Lee S.-Y. et al., 2009; Toy et al., 2011). Once the nanoparticle
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reaches the bloodstream its environment can be approximated
as laminar flow in a cylinder. In this environment, in addition
being pushed in the direction of the flow, a particle is subject
to a force perpendicular to the flow that causes the particle
to move toward the cylinder wall, a phenomenon known as
margination (Gentile et al., 2008). Evolution has taken advantage
of this: red blood cells are relatively rigid and have a disk-
like form in order to minimize margination, as disk-like and
more rigid particles experience a lesser extent of this force in
comparison to spherical and more elastic particles; leukocytes
have evolved to have the opposite structure, spherical and elastic,
as margination to the blood vessel wall plays an essential role
in their function (Lee S.-Y. et al., 2009). This is one of the
reasons why the previously mentioned nanodiscs are a very
promising form of nanoparticle, however, it is not the only
reason: size, shape and elasticity of the particle also affect the
interaction between nanoparticle and cell membranes (Lin X.
et al., 2010; Zhang et al., 2012; Banerjee et al., 2016). Several
design features of the nanoparticle are involved in tuning its
properties to deliver the payload through biological barriers
(Blanco et al., 2015) like the cell membrane, into the target
cell and in some cases to a specific organelle within the cell;
both surface properties and the size (Lin X. et al., 2010; Lunnoo
et al., 2019), shape (Lin X. et al., 2010; Zhang et al., 2012;
Lunnoo et al., 2019), and elasticity of the nanoparticles play a
role in this. Also presence of negatively charged lipids affects
intake of functionalized, cationic gold nanoparticles (Lolicato
et al., 2019). There are several mechanisms through which this
is possible; nanoparticles can directly permeate the membrane
(Song et al., 2011), in many cases disrupting its structure
(Figure 7C). For the case of liposomes and micelles (De Nicola
et al., 2014), the payload can be delivered through membrane
fusion and the nanoparticle can also be designed to induce
endocytosis (Vácha et al., 2011). As mentioned previously,
nanoparticles can be functionalized with targeting ligands that
trigger preferential uptake by target cells (Bazak et al., 2015).
It, however, must be said that active targeting, while a popular
topic for research, has so far seen limited success; as far as the
authors are aware there is only one approved therapy that features
active targeting: Denileukin Diftox (Turturro, 2014). Finally,
nanoparticles can be designed to release their drug payload
when there is a certain external trigger, a scheme known as
controlled release. This trigger can be pH change that occurs
during endocytosis or an externally applied trigger used to
cause the drug to release in the tissue to which this trigger is
applied, for example a locally applied optical magnetic or thermal
trigger (Table 1).

Altogether, we see that the landscape of nanomedicine is
extremely complex, both with a wide range of directions
that nanoparticle design can take and the extremely complex
environment of human physiology and the body’s natural
defenses. While in vitro experimental insight and clinical studies
can make some progress, one quickly reaches a dead end in a
sea of complexity without the rational design approach made
possible by a mechanistic understanding. The next section shows
how molecular dynamics simulation, alongside complementary
experimental analysis techniques, to some extent provide this.

MOLECULAR DYNAMICS SIMULATION
APPLIED TO NANOMEDICINE

Now that we have outlined the different forms of nanomedicine
and the issues encountered by nanoparticles in their context
as drug delivery agents, we can proceed to showcase many
examples where molecular dynamics simulation, using different
degrees of coarse graining, have provided mechanistic insight that
complements the research program to develop new nanoparticle
based drug delivery mechanisms. The amount of work carried
out in this area has exploded in the past decade, with molecular
dynamics studies being applied to virtually every variety of
nanoparticle discussed above in their context as drug delivery
vehicles, including dendrimers, gel nanoparticles, polymeric
micelles, other polymeric forms of nanoparticles, solid lipid
nanoparticles, other micelles, nanocrystals, carbon dots, carbon
nanotubes, nanographene, DNA nanotubes, nanodiamonds,
peptide nanoparticles, gold nanoparticles, silver nanoparticles,
silica nanoparticles, latex nanoparticle and vesicles, of which
the application of molecular modeling to liposome based drug
delivery systems is covered comprehensively in our previous
review (Bunker et al., 2016); there has, however, been a significant
amount of work performed since its publication, and molecular
modeling has now been applied to the study of other vesicle based
drug delivery systems including niosomes, ufasomes, polymeric
vesicles (polymersomes), and glyceryl monostearate vesicles.
A list of publications that feature the use of molecular dynamics
modeling to study each of these systems if found in Table 2. One
intriguing omission by the scientific community is lipoprotein
based nanoparticles, including nanodiscs. Nanodiscs have been
studied in the context of their possible use as a drug delivery
mechanism and have been studied, in a general context, using
molecular dynamics simulation, however, molecular dynamics
simulation has never been applied in the context of their possible
use in drug delivery.

Regarding the functionalization route to nanoparticle
development, there has also been a considerable amount of
computational study carried out using molecular dynamics
modeling. Protein structures can be downloaded and their
potentials have already been parameterized; attach a polymer
to the protein, solvate in water and you can study its behavior.
Both PASylated (Hedayati et al., 2017) and PEGylated (Cohan
et al., 2011) human recombinant erythropoietin have been
simulated; Munasinghe et al. (2019) used molecular dynamics

TABLE 1 | Triggers used to release drug payload.

Trigger type and references

pH change (Guo et al., 2010; Zheng et al., 2011; Nie et al., 2013, 2014; Wang
et al., 2015a, 2016, Luo Z. et al., 2016; Rungrotmongkol and Poo-arporn,
2016; Min et al., 2017; Wang Y. et al., 2017, Wang Z. et al., 2017; Wolski et al.,
2017b, 2018; Quan et al., 2017; Gao et al., 2019; Wu W. et al., 2019; Wu Z.
et al., 2019; Maleki et al., 2020)

Optical (Lajunen et al., 2016, 2018; Massiot et al., 2017)

Magnetic (Panczyk et al., 2013; Yang C. et al., 2020; Zhang X. et al., 2020)

Thermal (Dhawan et al., 2004; Pérez-Sánchez et al., 2020)
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TABLE 2 | Drug delivery vehicles studied using molecular modeling methods.

Carbon Dots - (Erimban and Daschakraborty, 2020)

Carbon Nanotubes - (Panczyk et al., 2013, 2020; Izadyar et al., 2016; Li et al., 2016a; Rungrotmongkol and Poo-arporn, 2016; Hashemzadeh and Raissi, 2017;
Kamel et al., 2017; Wolski et al., 2017a, 2018, 2020, 2019; Zaboli and Raissi, 2017; Karnati and Wang, 2018; Kavyani et al., 2018a,b; Zhang et al., 2018; Contreras
et al., 2019; Dehneshin et al., 2019; Mortazavifar et al., 2019; Kordzadeh et al., 2019; Ghadri et al., 2020; Maleki et al., 2020; Pakdel et al., 2020; Pennetta et al., 2020)

Dendrimers - (Kojima et al., 2000; Lee et al., 2002, 2011; Maiti and Bagchi, 2006; Lee and Larson, 2008, 2009, 2011; Vasumathi and Maiti, 2010; Nandy and Maiti,
2011; Huynh et al., 2012; Nandy et al., 2012, 2013; Jain et al., 2013, 2016; Kłos and Sommer, 2013; Tian and Ma, 2013; Tu et al., 2013; Martinho et al., 2014; Wen
et al., 2014; Jiang et al., 2015; Kavyani et al., 2016, 2018b,a; Smeijers et al., 2016a,b; Badalkhani-Khamseh et al., 2017, 2019; Yang et al., 2017; Farmanzadeh and
Ghaderi, 2018; Ghadari and Mohammedzadeh, 2018; Gupta and Biswas, 2018; Su et al., 2018; Ghadari and Sabri, 2019; Ramos et al., 2019; He et al., 2020; Kłos
and Paturej, 2020)

DNA Nanotubes - (Liang et al., 2017)

Gel Nanoparticles - (Kasomova et al., 2012; Smith et al., 2020)

Glyceryl Monostearate Vesicles - (Marwah et al., 2018)

Gold Nanoparticles - (Sun and Xia, 2003; Lin J. et al., 2010; Lin et al., 2011; Kyrychenko et al., 2011; Mhashal and Roy, 2014; Gupta and Rai, 2016, 2017; Mhasal
and Roy, 2016; Oroskar et al., 2016; Gupta et al., 2017, 2018; Quan et al., 2017; Yang et al., 2017; Sridhar et al., 2018; Xie et al., 2018; Lunnoo et al., 2019, 2020;
Tavanti et al., 2019; Yamanaka et al., 2019; Exner and Ivanova, 2020)

Latex Nanoparticle - (Li et al., 2016b)

Liposomes - (Dhawan et al., 2016; Lajunen et al., 2016; Pathak et al., 2016; Dzieciuch-Rojek et al., 2017; Laudadido et al., 2017; Magarkar et al., 2017; Wilkosz et al.,
2017; Belubbi et al., 2018; Monpara et al., 2018; Poojari et al., 2020)

Nanocrystals - (Song et al., 2011)

Nanodiamonds - (Chen et al., 2009; Adnan et al., 2011)

Nanodiscs - (Ghosh et al., 2011, 2014; Koivuniemi and Vattulainen, 2012; Zhang et al., 2012, 2014; Pan and Segrest, 2016; Denisov and Sligar, 2017; Pourmousa
and Pastor, 2018; Augustyn et al., 2019; Damiati et al., 2019; Chen Q. et al., 2020; Lundsten et al., 2020; Stepien et al., 2020)

Nanographene - (Zhang L. et al., 2013; Sgarlata et al., 2016; Ghadari and Kashefi, 2017; Hasanzade and Raissi, 2017; Moradi et al., 2018; Alinejad et al., 2020)

Niosomes - (Myung et al., 2016; Ritwiset et al., 2016; Somjid et al., 2018)

Oher Micelles - (De Nicola et al., 2014; Chun et al., 2015; Johnston et al., 2016)

Other Polymeric Forms of Nanoparticles - (Guo et al., 2009a,b; Durbin and Buxton, 2010; Rodríguez-Hidalgo et al., 2011; Macháèková et al., 2013; Buxton, 2014;
Loverde, 2014; Razmimanesh et al., 2015; Esalmi et al., 2016; Ghitman et al., 2019; Mazloom-Jalali and Shariatinia, 2019; Shadrack and Swai, 2019; Golda-Cepa
et al., 2020)

Peptide Nanoparticles - (Lu et al., 2015; Miller et al., 2019; Nikfar and Shariatinia, 2019)

Polymeric Micelles - (Ghosh et al., 2008; Kuramochi et al., 2009; Guo et al., 2010, 2012a; Loverde et al., 2011; Vukoviæ et al., 2011; Zheng et al., 2011; Kasomova
et al., 2012; Luo and Jiang, 2012; Yang et al., 2012, Yang C. et al., 2019, Yang C. et al., 2020; Nie et al., 2013, 2014; Srinivas et al., 2013; Lin et al., 2014, 2019; Wang
et al., 2015b; Luo S. et al., 2016; Luo et al., 2019; Myint et al., 2016; Prhashanna et al., 2016; Ramezani and Shamsara, 2016; Shi et al., 2016; Aziz et al., 2017; Min
et al., 2017; Chang et al., 2017; Hu et al., 2017; Mousavi et al., 2018; Raman et al., 2018; Albano et al., 2019; Alves et al., 2019; Wu W. et al., 2019; Wu Z. et al., 2019;
Gao et al., 2019; Hao et al., 2019; Kacar, 2020; Koochaki et al., 2020)

Polymeric Vesicles (Polymersomes) - (Luo Z. et al., 2016; Wang Z. et al., 2017; Grillo et al., 2018)

Silica Nanoparticles - (Soltani et al., 2010; Mousavi et al., 2019)

Silver Nanoparticles - (Sun and Xia, 2003; Kyrychenko et al., 2015; Blazhynska et al., 2018)

Solid Lipid Nanoparticles - (Hathout and Metwally, 2016)

Ufasomes - (Han, 2013; Csongradi et al., 2017; Bolla et al., 2019)

simulation to study conjugation of PEG to a hydrophobic
pocket of bovine serum albumin using a model with atomistic
resolution and Wilding et al. (2018) used a coarse grained
model to study site specific PEGylation of the protein lysozyme.
Atomistic MD has been used to study the effect of PEGylation
on the stability and potency of interferon (Xu et al., 2018) and
insulin (Yang et al., 2011) and the steric shielding effect that
results from the PEGylation of Staphlokinase (Mu et al., 2013).
A recent comprehensive overview of the application of molecular
simulation to the study of protein-polymer conjugation has been
written by Lin and Colina (2019).

In terms of the delivery of specific drugs using nanomedicine,
a very large number have been simulated incorporated into
a wide variety of nanoparticle types. These drugs include
Alzheimer’s medication, anti-worm drugs, antibiotics, anti-
cancer drugs, including chemotherapy agents, anti-viral agents,
antifungal drugs, anti-inflammatory drugs, antimicrobial

peptides, drug used for diabetes treatment, immunomodulators
and immunosuppressants, local anesthetics, and others; a list is
found, with citations, in Table 3. Altogether, it becomes clear
that there is simply too much work that has been carried out to
concisely summarize in its entirety in this review. We will instead
focus on a few key areas where MD modeling has provided
important insight and discuss review papers that focus on certain
aspects of the use of molecular dynamics in the context of
nanomedicine and some key examples of original research that
demonstrate the power of the technique. The discussion will
include key examples where we show concrete insight gained my
molecular dynamics simulation. We will focus on three areas:
(1) behavior of the nanoparticle in the bloodstream and the
protective polymer corona, (2) drug loading and release and (3)
nanoparticle interaction with lipid membranes and entry into
the cell. We would like to here alert the reader to the fact that
there are other reviews of aspects of the use of computational
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TABLE 3 | List of drugs studied with MD simulations in context of drug delivery.

Drugs, theirs applications, and references

5-flouracil - anti-cancer drug (Barraza et al., 2015; Kacar, 2019)

Albendazole - anti-worm drug (Rodríguez-Hidalgo et al., 2011)

Amphotercin B - antifungal drugs (Mobasheri et al., 2016)

Anakinra - used in arthritis therapy (Liebner et al., 2014)

Camptothecin - chemotherapy agent (Ansari et al., 2018; Alinejad et al., 2020)

Carmustine - chemotherapy agent (Wolski et al., 2017a; Mortazavifar et al., 2019)

Chlortetracycline - antibiotic (Dowlatabadi et al., 2019)

Cisplatin - chemotherapy agent (Panczyk et al., 2013)

Curcurbitacin drug families (Patel et al., 2010a)

Cyclosporine - immunosuppressant (Tokarský et al., 2011)

Dicolofenac - anti-inflammatory agents (Karjiban et al., 2012)

Doxorubicin - chemotherapy agent (Guo et al., 2010, 2012b; Yang et al., 2012; Yang C. et al., 2019; Yang Y.-L. et al., 2019; Zhang et al., 2012, 2014, 2018; Nie et al.,
2013; Shan et al., 2014; Lin et al., 2014, 2019; Izadyar et al., 2016; Rungrotmongkol and Poo-arporn, 2016; Wolski et al., 2017b, 2018, 2019; Hu et al., 2017; Mousavi
et al., 2018; Kordzadeh et al., 2019; Alinejad et al., 2020; Exner and Ivanova, 2020; Maleki et al., 2020; Pakdel et al., 2020; Koochaki et al., 2020; Li J. et al., 2020

Erlotinib - anti-cancer drugs (Hlaváč et al., 2018)

Exemestane - breast cancer drug (Ghadri et al., 2020)

Flavonoid (Myung et al., 2016; Laudadido et al., 2017)

Flutamide - prostate cancer drug (Kamel et al., 2017)

Fluvestrant - breast cancer drug (Ghadri et al., 2020)

Gemcitabine - chemotherapy agent (Razmimanesh et al., 2015; Sgarlata et al., 2016; Ansari et al., 2018; Farzad and Hashemzadeh, 2020)

GF-17 - antimicrobial peptide (Asadzadeh et al., 2020)

Ibuprofen - pain medication and anti-inflammatory (Thota et al., 2016; Kacar, 2020)

Ifofamide - chemotherapy agent (Mazloom-Jalali and Shariatinia, 2019; Shariatinia and Mazloom-Jalali, 2019)

Insulin - diabetes treatment (Yang et al., 2011)

Interferon - immunomodulator (Xu et al., 2018)

Interferon Alpha - anti-cancer and anti-viral agent (Gupta et al., 2018)

Itraconazole - antifungal drugs (Dzieciuch-Rojek et al., 2017; Poojari et al., 2019, 2020)

Letrozole - breast cancer drug (Ghadri et al., 2020),

Metronidazole antibiotic (Kumar et al., 2019)

Nicotine (Zaboli and Raissi, 2017; Li Z. et al., 2020)

Nystatin - antifungal drugs (Mobasheri et al., 2016)

Paclitaxel (taxol) - chemotherapy agent (Guo et al., 2009a, 2012b; Loverde et al., 2011; Wang et al., 2013; Ghadari and Kashefi, 2017; Hasanzade and Raissi, 2017;
Hashemzadeh and Raissi, 2017; Monpara et al., 2018)

Piaglitazone (Zaboli and Raissi, 2017)

Picoplatin - colorectal cancer drug (Farmanzadeh and Ghaderi, 2018)

Piroxicam (Wilkosz et al., 2017)

Prilocane - local anesthetic (Grillo et al., 2018)

Sorafenib - kidney cancer drug (Dehneshin et al., 2019)

Streptozotocin - neuendocrine tumors drug (Dehneshin et al., 2019)

Sunitinib - renal carcinoma medication (Dehneshin et al., 2019)

Tacrine - Alzheimer’s medication (Esalmi et al., 2016)

Vinblastine - chemotherapy agent (Li et al., 2016a)

modeling for nanoparticle design (Angioletti-Uberti, 2017b;
Bouzo et al., 2020).

MD INSIGHT EXAMPLES

Behavior in the Bloodstream and
Protective Polymer Corona
As we discussed previously, when the nanoparticle enters the
bloodstream it encounters hydrodynamic forces and a corona
of bloodstream proteins forms on its surface; a subset of these

proteins form the highly specific complement activation reaction
that leads to removal by macrophages. Regarding behavior in
the bloodstream and the effect of size and shape (Shah et al.,
2011), the most suitable method is not MD, but rather a
combination of theoretical calculation (Decuzzi et al., 2005)
and a discretized continuum model known as computational
fluid dynamics (CFD), described and used to model this by Li
et al. (2014b), Gupta (2016), and Gao et al. (2020) to model
nanoparticle transport in the faulty tumor vasculature (Gao
et al.). As we have mentioned, the formation of the protein
corona is an extremely complex process that still remains poorly
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understood. What is clear, however, is that the surface properties
of the nanoparticle affect this and the mechanism through which
the protective polymer corona increases the bloodstream lifetime
is modulation of the interaction with bloodstream proteins.
Schafer et al. (2017) and Settanni et al. (2017a,b, 2018) combined
experimental analysis with MD to study the interaction between
two protective polymers, PEG and poly-sarcosine, with a set of
proteins found in the bloodstream. They found evidence that
the interactions are not amino acid specific but rather a general
tendency dependent on the charge and polarity of the amino
acid and the nature of the interaction between the polymer
and water, in addition to the direct polymer-protein interaction.
Their methodology, synergistically combined with experimental
work, could provide a route to a rational design approach to
the development of new polymer materials being developed that
may have superior performance as a protective polymer corona.
Lee et al. used the coarse grained MARTINI model to directly
simulate the effect of PEGylation and PEGylation density on the
interaction between the liposome and blood stream proteins; Lee
also used MD simulation with atomistic resolution to study the
effect of nanoparticle electrostatics in protein corona formation
(Lee, 2020a). There are other examples of the use of MD modeling
to study the protein corona of nanoparticles (Dell’Orco et al.,
2010; Vilaseca et al., 2013; Lopez and Lobaskin, 2015; Shao and
Hall, 2016).

In our previous review publication, focused on liposome based
delivery systems (Bunker et al., 2016), we surveyed the work
that had been carried out using molecular dynamics modeling,
particularly with a model with all atom resolution, on the
interaction between the protective PEG corona and the lipid
bilayer (Stepniewski et al., 2011; Magarkar et al., 2012, 2014).
Since this time the methodology has been used to study the effect
of exchanging PEG with two different poly-oxazolines, poly-
ethoxazoline (PEOZ) and poly-methoxazoline (PMOZ), with
the result indicating that several properties of PEG are highly
specific and related to its amphiphilic nature and the ease
with which it acts as a polymer electrolyte (Magarkar et al.,
2017). We also simulated the effect of change in PEG length,
branched structures, and functionalizing PEG to the cholesterol
or cholane in the membrane rather than phospholipids and our
results complemented both in vivo and in vitro experiments
carried out on these novel liposome based delivery systems
(Mastrotto et al., 2020).

PEGylation, in the context of other nanoparticle forms
than liposomes, has also been studied extensively using MD
simulation. Ambrosio et al. (2018) complemented experimental
study by demonstrating, using MD simulation with all atom
resolution, that a 2:1 ratio or greater of PEG-cholane molecules
to the VIP-palm peptide being delivered, is required to form
supramolecular assemblies; these assemblies were shown to
effectively cover the VIP- peptide with a protective corona
of PEG. In previous work we have used MD simulation
to study the PEGylation of small drug molecules (Li Y.-
C. et al., 2012). Two recent reviews, written by Lee, very
comprehensively cover MD simulation work, using coarse
grained in addition to all atom models, to study the structure and
behavior of PEGylated nanoparticles, one covering PEGylated

biomolecules, liposomes and solid nanoparticles (Lee, 2020b)
and the other covering PEGylated peptides dendrimers and
carbon nanotubes (Lee, 2014). Li et al. carried out a coarse
grained MARTINI model simulation to investigate the effect
of PEG chain length on the shielding effect of PEGylated
nanoparticles (Li and Hu, 2014). A comprehensive review
of computational modeling of PEGylation has been written
by Souza et al. (2018).

Drug Loading and Controlled Release
The ability of nanoparticles to hold drugs and release them with
an external trigger has been studied for several nanoparticle
forms by several groups. In most cases the drugs being
considered are hydrophobic and sit within a non-polar region.
Nanoparticles that have been simulated carrying their drug
payload include carbon nanotubes, nanographene, peptide
carriers, PAMAM dendrimers, polymeric nanoparticles,
polymeric micelles, hydrophobic drugs within the membrane
of liposomes, other issues related to drug loading of liposomes
(Cern et al., 2014) and polymersomes (Grillo et al., 2018)
(further citations found in Table 4). Drug cargoes studied
include cucurbitacin, carmustine, 5-flouracil (Barraza et al.,
2015), chacone, picoplatin, porphyrins, ibuprofen, paclitaxel,
and albendazole, however, the most popular drug for these
model systems is doxorubicin (see Table 4 for citations). In
many cases these nanoparticles are designed to release their
drug payload in response to a pH change trigger (see Table 1);
MD simulation is able to model the effect of pH change. In an
MD simulation pH is modeled through the partial charges on
the atoms, so the system can be equilibrated with the partial
charges corresponding to neutral pH and then the partial
charges can be changed to model pH change and the behavior
of the system in response to this, i.e., the drug release, can be
modeled. One interesting aspect of the work carried out using
MD simulation in this area is that use of all three levels of
coarse graining is represented: atomistic MD, MARTINI model
and DPD (Table 4). Reading this literature with this in mind
provides a very good case study of the strengths and weaknesses
of each model and the aspects of the system each are most ideally
suited to investigate.

Studies of itraconazole in a liposome, combining MD
simulation with experiment, provides an example of where MD
simulation was able to provide concrete insight not obtainable
experimentally. Itraconazole is an antifungal drug characterized
by low solubility, which limits its bioavailability. One possible
solution to overcome low solubility is incorporating drugs into
liposomes, which was achieved in a few independent studies.
To optimize the liposome properties, cholesterol is frequently
used as a molecule known to increase the stability of lipid
bilayers (Róg and Vattulainen, 2014). In fact, cholesterol is
used in 9 out of 15 liposome-based formulations approved for
clinical use (Bulbake et al., 2017). Thus, the incorporation of
cholesterol into the liposome-itraconazole formulation was the
next step. MD simulations showed that this is not the right
choice because cholesterol and itraconazole do not mix well
and separate into small domains (Poojari et al., 2020). This
observation was next validated in experimental studies, which
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showed decreased affinity of itraconazole toward liposomes
containing cholesterol (Poojari et al., 2020). The observed
behavior of the itraconazole may be explained by its structure:
it is a long rigid molecule with a few weakly polar groups
distributed along the molecule backbone. Due to this structure,
itraconazole molecules locate to the water membrane interface
oriented parallel to the membrane surface and, in turn, orient
other molecules in the same fashion (Poojari et al., 2019).
On the other hand, cholesterol has strong preferences to
adopt an orientation perpendicular to the membrane surface

and affect the orientation of neighboring molecules; these
opposite preferences lead to the observed demixing of drugs
and cholesterol.

Nanoparticle Interaction With the Lipid
Membrane
Once the nanoparticle has reached the cell, surviving the journey
through the bloodstream with its payload still contained and
intact, there is one final barrier that must be crossed for
the drug delivery system to be efficacious: the cell membrane

TABLE 4 | Nanoparticles, cargo molecules, and methods used to study drug loading and release.

Nanoparticles

Carbon Nanotubes (Wolski et al., 2017a; Kordzadeh et al., 2019; Ghadri et al., 2020)

Liposomes (Cern et al., 2014; Dzieciuch et al., 2015)

Nanographene (Moradi et al., 2018; Mahdavi et al., 2020; Maleki et al., 2020)

PAMAM dendrimers (Kelly et al., 2009; Wen et al., 2014; Barraza et al., 2015; Badalkhani-Khamseh et al., 2017, 2019; Farmanzadeh and Ghaderi, 2018; Fox
et al., 2018)

Peptide Carriers (Thota et al., 2016)

Polymeric Micelles (Patel et al., 2010a,b; Guo et al., 2012a; Kasomova et al., 2012; Nie et al., 2014; Myint et al., 2016; Shi et al., 2016; Gao et al., 2019;
Kacar, 2019; Wu W. et al., 2019)

Polymeric Nanoparticles (Shen et al., 2017; Yahyaei et al., 2017; Ghitman et al., 2019; Styliari et al., 2020)

Polymersomes (Grillo et al., 2018)

Cargo Molecules:

5-flouracil (Barraza et al., 2015)

Albendazole (da Silva Costa et al., 2020)

Carmustine (Wolski et al., 2017a)

Chacone (Badalkhani-Khamseh et al., 2019)

Cucurbitacin (Patel et al., 2010a)

Doxorubicin (Yang et al., 2012; Nie et al., 2013; Kordzadeh et al., 2019; Koochaki et al., 2020; Mahdavi et al., 2020; Maleki et al., 2020)

Ibuprofen (Thota et al., 2016)

Paclitaxel (Wang et al., 2013)

Picoplatin (Farmanzadeh and Ghaderi, 2018)

Porphyrins (Stepniewski et al., 2012; Rissanen et al., 2014; Dzieciuch et al., 2015)

Methods:

Atomistic MD (Patel et al., 2010a; Wang et al., 2013; Barraza et al., 2015; Dzieciuch et al., 2015; Shi et al., 2016; Thota et al., 2016; Badalkhani-Khamseh
et al., 2017, 2019; Dzieciuch-Rojek et al., 2017; Wolski et al., 2017a; Grillo et al., 2018; Moradi et al., 2018; Kordzadeh et al., 2019; Ghadri et al., 2020; Maleki
et al., 2020)

MARTINI model (Grillo et al., 2018; Koochaki et al., 2020)

DPD (Guo et al., 2009a,b, 2010, 2012a; Yang et al., 2012; Nie et al., 2013, 2014; Wen et al., 2014; Myint et al., 2016; Wang et al., 2016, 2015b; Gao et al.,
2019; Wu W. et al., 2019; Kacar, 2019)

TABLE 5 | Nanoparticles and methods used to study theirs interactions with membranes.

Nanoparticles:

Carbon Dots (Erimban and Daschakraborty, 2020)

Graphene (Raczyński et al., 2020), dendrimers (Lee and Larson, 2008; Kanchi et al., 2018; He et al., 2020)

Gold Nanoparticles (Lin et al., 2011; Gkeka et al., 2014; Mhashal and Roy, 2014; Mhasal and Roy, 2016; Oroskar et al., 2016; Quan et al., 2017; Das et al., 2019)

Nanocrystals (Song et al., 2011)

Methods:

Atomistic MD (Mhashal and Roy, 2014; Van Lehn and Alexander-Katz, 2014b; Mhasal and Roy, 2016; Erimban and Daschakraborty, 2020)

MARTINI model (Lin X. et al., 2010; Lin X. et al., 2020; Song et al., 2011, 2012; Lin and Gu, 2014; Oroskar et al., 2015; Shimizu et al., 2016; Quan et al., 2017; Su
et al., 2017; Zhang Z. et al., 2017; Bai et al., 2018; Das et al., 2019; Salassi et al., 2019; He et al., 2020)

DPD (Lee and Larson, 2008; Yang and Ma, 2010; Ding and Ma, 2012, 2014a; Ding et al., 2012; Tian et al., 2014b; Liu et al., 2016; Bai et al., 2018),

Implicit Solvent (Vácha et al., 2011; Schubertová et al., 2015)
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(Smith et al., 2018). It is possible for nanoparticles, particularly
if they are hydrophobic, to directly transfect, also referred
to as translocation, through the cell membrane and many
nanoparticles enter the cell through this route. There is, however,
an alternative: the nanoparticle can be designed to cross the
membrane via receptor mediated endocytosis (Gao et al., 2005).
When a nanoparticle is taken up via endocytosis it is possible
to take advantage of pH triggered release due to the lowered
pH environment on the interior of the endosome (Hu et al.,
2015). Valuable insight in both the context of direct membrane
transfection and endocytosis have been obtained through MD
simulation. As is the case with drug loading and release, MD
simulation of nanoparticle-lipid membrane interactions have
been carried out for different nanoparticle forms, including
carbon dots, graphene, dendrimers, gold nanoparticles (shown
in Table 5), and nanocrystals (Song et al., 2011); examples can
be found of all levels of model resolution being used including
atomistic MD, MARTINI model, DPD, and implicit solvent
(Table 5). An overview of MD simulation of nanoparticle – lipid
membrane interactions has been written by Tian et al. (2014a).

For nanoparticles that enter the cell through direct
transfection, the issue is the direct physical reaction between
the nanoparticle and the membrane; this phenomenon can be
studied directly through an MD simulation of the nanoparticle
interacting with the membrane (Yang and Ma, 2010; Ding
et al., 2012; Liang, 2013; Van Lehn and Alexander-Katz, 2014b;
Shimizu et al., 2016; Zhang Z. et al., 2017; Erimban and
Daschakraborty, 2020; Gupta et al., 2020). When nanoparticles
translocate through the membrane, the membrane structure
can be disrupted and leakage and even pore formation can
occur; this has been studied directly using MD (Song et al.,
2012; Mhashal and Roy, 2014; Van Lehn and Alexander-Katz,
2014b; Oroskar et al., 2015; Ding and Ma, 2018). The effect
of size (Lin X. et al., 2010), shape (Li Y. et al., 2012; Liu et al.,
2016; Yang Y. et al., 2019), and surface properties (Ding and
Ma, 2016) of the nanoparticle on membrane transfection has
also been studied, including effect of PEGylation (Oroskar et al.,
2016; Bai et al., 2018), and other polymer coatings (Liang, 2013;
Xia et al., 2020) as well as protein (Ding and Ma, 2014a) and,
for the study of inhaled nanoparticles, pulmonary surfactant
corona (Bai et al., 2018) and other issues related to translocation
across the pulmonary surfactant monolayer (Chen P. et al.,
2018). Additionally, Gupta et al. used MD simulations to study
transdermal delivery of interferon-alpha using gold nanoparticles
(Gupta et al., 2018).

Regarding receptor mediated endocytosis, the interaction
is more complex; while direct simulation of nanoparticle
endocytosis has been performed and gained important insight
(Vácha et al., 2011; Ding and Ma, 2012; Li et al., 2014a) this only
tells part of the story as many aspects of the specific interaction
between the ligand and the receptors are not elucidated by such
a simulation. Nanoparticles can be designed to actively target
specific cell types through functionalizing targeting ligands onto
the nanoparticle surface. These targeting ligands bind to the
specific receptors that induce endocytosis. There are two issues
that govern the efficacy of this binding: (1) the distribution of the
targeting ligands on the surface, i.e., the pattern of where they

are located and (2) the orientation and, as a result of orientation,
extent of exposure at the nanoparticle surface and thus availability
to the target receptors. The effect of ligand distribution has been
studied by Liu et al. (2016) through direct MD simulation of
nanoparticle-membrane interactions and ligand density has been
studied through a different computational modeling technique:
Monte Carlo simulation (Martinez-Veracoechea and Frenkel,
2011; Wang and Dormidontova, 2012; Angioletti-Uberti, 2017a).

Regarding the orientation, and thus exposure, of the
targeting ligand to the receptor that induces receptor mediated
endocytosis, one needs chemically accurate atomistic simulations
of the nanoparticle surface to investigate the degree to which
the targeting ligand is exposed and available to the receptor.
We have performed such simulations for the case of liposome
based delivery systems, with targeting ligands, in several previous
publications, for example our determination of the cause of
failure of the new AETP moiety (Lehtinen et al., 2012). These
involved simulating a section of the liposome membrane with
the targeting ligands and, in some cases, the protective polymer
corona as well. Our study regarding the AETP moiety was
another example of a specific topic where we were able to
obtain concrete insight, not obtainable experimentally. The
AETP moiety was found to be successful, when its binding affinity
for the target receptor was tested experimentally, however, when
functionalized to a PEGylated liposome the targeting moiety
failed to show any effect. In comparison to the more hydrophilic
RGD peptide, that has been shown to be an effective targeting
moiety for a PEGylated liposome, the AETP moiety is more
hydrophobic; it could be hypothesized, from the experiment
alone, that the moiety is obscured within the membrane core;
our MD simulation, however, showed this not to be the case: it
was rather the PEG corona itself that was obscuring the AETP
moiety; as PEG is soluble in both polar and non-polar solvents it
was thus a more comfortable, i.e., less hydrophilic, environment
for the AETP moiety than the polar solvent (Lehtinen et al.,
2012). Since it was the PEG corona itself that was the culprit we
could propose a solution: replace PEG with a more hydrophilic
polymer that has been approved for internal use. Just such a
polymer exists: Poly-methoxazoline (PMOZ); in a subsequent
study we performed a simulation with the PEG corona replaced
by a PMOZ corona and we saw increased exposure of the
AETP moiety (Magarkar et al., 2017). We have also studied
liposomes functionalized with stearylamine arginine ligands
(Pathak et al., 2016). A comprehensive review of the theoretical
and computational investigation of nanoparticle interactions
with biomembranes has been written by Ding and Ma (2014b).

CONCLUSION

In this review, we have attempted to summarize the role
that molecular dynamics modeling can play as a tool in drug
delivery research in a fashion that is hopefully comprehensible
to both those with an expertise in molecular modeling who
wish to pursue pharmaceutical applications of their research
and pharmaceutical researchers interested in what insight this
new tool can provide. All aspects of the journey that the drug
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molecule takes, from dissolution to solvation or transit through
the bloodstream inside a nanoparticle, to finally crossing the
plasma membrane of the target cell, is a story of molecular
interactions. The interactions involved, however, are not all
interactions. Any chemist reading this review will have noticed
an omission: chemical reactions; these play a very small role in
the story, one dominated by intermolecular interactions. For this
reason, MD simulation is the perfect tool to obtain molecular
level insight as precisely the variety of interaction it is best able
to study are those which play the dominant role: formation of
structure based on lipophilicity and H-bonding. Whether it is
the hydration that occurs during dissolution, interaction between
drug molecule and excipients, behavior of molecules at the
surface of the nanoparticle in the bloodstream, or the interaction
between the nanoparticle and the plasma membrane of the target
cell, these are the interactions that determine the most important
aspects of behavior.

Molecular dynamics modeling is still a new tool in the
design of drug delivery mechanisms; only in the past decade
have we seen the explosion in the number of publications
that make use of this tool. Widespread adoption is hindered
by the fact that, unlike computational drug design tools like
ligand docking and QSAR/QSPR, the calculations involved are,
as of yet, for the most part too expensive to be carried out
anywhere other than national level supercomputing resources.
As the widely available computational power continues to grow
exponentially, this barrier may dissipate. Looking toward the
future and the role that molecular dynamics modeling will be
able to play in the development of drug delivery systems, the
analogy that we feel is most apt is that of computationally
assisted design (CAD) (Narayan et al., 2008), in mechanical
and civil engineering. Before the advent of computational

technology, engineers were forced to build scale models of
systems and experiment with them, testing every aspect with
real experimental models and sometimes varying parameters
empirically. Now, with widespread computational resources
available to all engineers, CAD allows every aspect of a new
machine, or structure, to be examined and tested in silico
with all aspects of mechanical stress, heat dissipation etc. of
the system visible, and the change resulting from any design
alteration straightforward to analyze entirely virtually. While
we clearly do not mean to imply that human physiology is no
more complex than designing a car or a bridge, we foresee
that, in the future, drug delivery devices will be designed in an
analogous fashion, with molecular dynamics modeling playing
the role in pharmaceutics that CAD plays in mechanical and
civil engineering. Our studies of the AETP targeting moiety
and itraconazole in liposome based delivery systems show clear
examples of how the design approach can be applied, using
in silico modeling to test aspects of the delivery system design
in an analogous approach to CAD. Alongside cutting edge
experimental techniques that complement it, molecular dynamics
simulation has the potential to lead the way to a new era of
rational design in the development of drug delivery systems.
Finally, other complementary reviews that cover similar material
can also be found (Thota and Jiang, 2015; Ramezanpour et al.,
2016; Thewalt and Tieleman, 2016; Katiyar and Jha, 2018; Sen
et al., 2018; Shamsi et al., 2019).
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For the investigation of protein-ligand interaction patterns, the current accessibility

of a wide variety of sampling methods allows quick access to large-scale data.

The main example is the intensive use of molecular dynamics simulations applied to

crystallographic structures which provide dynamic information on the binding interactions

in protein-ligand complexes. Chemical feature interaction based pharmacophore

models extracted from these simulations, were recently used with consensus scoring

approaches to identify potentially active molecules. While this approach is rapid and

can be fully automated for virtual screening, additional relevant information from such

simulations is still opaque and so far the full potential has not been entirely exploited.

To address these aspects, we developed the hierarchical graph representation of

pharmacophore models (HGPM). This single graph representation enables an intuitive

observation of numerous pharmacophore models from long MD trajectories and further

emphasizes their relationship and feature hierarchy. The resulting interactive depiction

provides an easy-to-apprehend tool for the selection of sets of pharmacophores as

well as visual support for analysis of pharmacophore feature composition and virtual

screening results. Furthermore, the representation can be adapted to include information

involving interactions between the same protein and multiple different ligands. Herein, we

describe the generation, visualization and use of HGPMs generated from MD simulations

of two x-ray crystallographic derived structures of the human glucokinase protein in

complex with allosteric activators. The results demonstrate that a large number of

pharmacophores and their relationships can be visualized in an interactive, efficient

manner, unique binding modes identified and a combination of models derived from long

MD simulations can be strategically prioritized for VS campaigns.

Keywords: pharmacophore modeling, protein structure, clustering, human glucokinase, hierarchical graph

representation, protein ligand binding, molecular dynamic (MD) simulation, virtual screening

INTRODUCTION

Understanding the biomolecular recognition of ligands and their interactions withmacromolecular
targets is of utmost importance for the successful discovery of novel biologically active compounds
(Fenwick et al., 2011). One way to approach this problem in drug design is the modeling of
ligand-target interactions as pharmacophores. Pharmacophores are defined as an ensemble of steric
and electronic features that is necessary to ensure the optimal supramolecular interactions with a
specific biological target and to trigger (or block) its biological response (Wermuth et al., 1998).
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In general, pharmacophore models are either derived from
ligand-target complexes (structure-based) and/or a set of known
active molecules (ligand-based) and can then be used as queries
for an in silico virtual screening (VS) to find compounds with
similar stereoelectronic features (Langer, 2010; Leach et al.,
2010; Schuster, 2010). One limitation of structure-based (SB)
modeling is that all possible interactions between a target-ligand
complex may not be captured since they are derived from static
representations. The fact that proteins are flexible structures
and interactions with ligands are inherently dynamic is well-
known and remains to be an important problem with emerging
in silico solutions in various contexts (Cozzini et al., 2008; Boehr
et al., 2009). Molecular dynamics (MD) simulations have recently
been used to sample possible protein conformations (Durrant
and McCammon, 2011; De Vivo et al., 2016; Liu et al., 2018)
which were then used to derive multiple pharmacophore models
from an initially static crystallographic structure. Choudhury
et al. (2015) generated 3-D pharmacophore models from each
snapshot of a MD simulation and selected the best performing
model after docking and VS rescoring. The selection of a single
“best performing” pharmacophore model was also pursued by
means of clustering (Sohn et al., 2013; Spyrakis et al., 2015),
providing better VS results than “classical” x-ray crystallographic
derived structure-based pharmacophore models. However, to
determine the “best performing” model requires datasets of
known active and inactive compounds to assess the performance
of the models. In cases with new targets during early hit
finding stages, this information may be yet not be available
and prioritizing pharmacophore models for VS campaigns can
be challenging.

To overcome the need to select one unique representative
set of pharmacophore models, Wieder et al. (2017) developed
the “Common Hits Approach” (CHA) in which multiple 3D
pharmacophore models derived from a MD simulation were
partitioned according to their feature compositions and used
for subsequent VS runs. A single final hit-list was obtained
using a consensus scoring function to rank and combine
the screening results which were originally obtained for each
unique model enabling a prioritization of virtual hits based
on a set of MD derived models. Recently, Polishchuk et al.
(2019) improved the workflow by adapting the consensus
scoring function to consider the number of conformations
of each molecule retrieved by the VS runs. Based on these
studies, Madzhidov et al. (2020) analyzed the performance of
a set of pharmacophore models and developed a probabilistic
approach for consensus scoring, leading to a method which
is less sensitive to the poor performing models in the
pool. Although these consensus-based approaches provided
better results than a “classical” pharmacophore approach, they
demanded considerable computational resources due to the
required multiple VS runs.

Nowadays, MD simulations allow for a thorough sampling
of the conformational space—even of large biological systems
and the generation of structure-based pharmacophore models
is no longer limited to single crystallographic structures. As a
direct result of the improvement of modern hardware, most
computation laboratories can now perform MD simulations

at the nanosecond scale in a few hours. However, performing
consecutive VS runs on very large libraries (millions of
compounds) is still a crucial time limiting factor. To address
this issue, this paper presents a hierarchical graph representation
of pharmacophore models “HGPM,” which aims at the easy
to comprehend visualization of pharmacophore model related
information and thus can greatly aid in the prioritization
and selection of pharmacophore models for subsequent
processing steps. While previous works reduced the number of
pharmacophore models by clustering crystallographic structures
or 3D pharmacophore information, this graph representation
focuses on the view of hierarchical pharmacophore feature
information to support the users in the model selection process
in order to reduce the number of models for ensuing VS
runs. A single representation of multiple pharmacophore
models, for example, derived from an MD simulation,
has several advantages: (i) The introduction of an easy to
comprehend graph-based view of all unique models and their
relationship, that were observed (Maggiora and Bajorath,
2014; Métivier et al., 2018). (ii) A simpler, less error-prone
selection process of 3D pharmacophore models especially
for long MD simulations for virtual screening runs. (iii)
The possibility to expand the displayed information by
the addition of models generated from other systems or
MD simulations.

The following sections will focus on the algorithmic
details and the computational procedure for the
generation of the hierarchical graph representation of
pharmacophore models. Furthermore, the methodology
will be demonstrated and discussed in the context of
the human hexokinase IV as a case study, illustrating
how pharmacophore information derived from MD
simulations can be displayed and put to good use with
this approach.

MATERIALS AND METHODS

Protein–Ligand Complex Preparation
Two crystal structures of the human glucokinase in complex
with activators were downloaded from the RCSB PDB databank
(Berman, 2000), with PDB IDs 1v4s (Kamata et al., 2004) and
4no7 (Petit et al., 2011). The sequences of the proteins were
aligned and the amino acid subsequently renumbered, using
the RCSB PDB comparison tool (Prlić et al., 2010) and the
jFATCAT_flexible algorithm (Ye and Godzik, 2003). Amino
acids 92–99 were not present in the 4no7 complex. Since they
did not impact the protein stability during the simulations
and no interactions with the ligand in the 1v4s system could
be observed, they were not modeled. A table containing the
alignment block is available in Supplementary Figure 1. The
Maestro software (Schrodinger, 2010) was used to remove water
molecules, add hydrogens and minimize the structures. The
capping of the termini, the solvation and the addition of ions for
the protein complexes had been set up through the CHARM-GUI
web interface (Jo et al., 2008). Information about the prepared
protein-ligand complexes is available in Supplementary Table 1.
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Molecular Dynamics Simulations
MD simulations were carried out using Amber 16 (Case et al.,
2016). Parameters for the ligands were generated by tleap using
the general AMBER force field (GAFF) (Wang et al., 2004).
The MD simulation protocol started with an equilibration and
thermalization phase of 125 ps with a 1 fs time step. Then
each system was simulated for a total of 300 ns composed
of 3 replicates of 100 ns with different initial velocities and
using Langevin dynamics at a temperature of 303.15K. The
pressure was kept around 1 atm by a Monte Carlo barostat.
The SHAKE algorithm (Ryckaert et al., 1977) was used to keep
all bonds involving hydrogen atoms rigid. The time step of
the production runs was set to 2 fs. Plots of the root-mean-
square deviations for the proteins and their ligands are shown
in Supplementary Figure 2.

Library Generation
Compounds with experimental activities measured on human
glucokinase were taken from the ChEMBL database (Gaulton
et al., 2017). In total, 756 unique molecules with activity toward
the target protein expressed in EC50 were extracted. This set was
split based on the activity value threshold of 1.5µM, resulting
in 601 molecules labeled as actives and 155 as decoys. The
KNIME Analytics platform (Berthold et al., 2009) was used in
combination with the InteLigand Expert KNIME LigandScout
Diversity Picker node (InteLigand Expert KNIME Extensions) to
extract the 20,000 diverse molecules from the ChEMBL library
based on extended connectivity fingerprint (ECFP) similarity,
also labeled as decoys. Finally, a library for virtual screening
was calculated using the idbgen algorithm in LigandScout 4.4
Expert (LigandScout 4.4 Expert). The procedure included the
generation of a maximum of 25 conformations for each of the
20,756 molecules using the icon Fast settings (Poli et al., 2018).
The active molecules were clustered in 5 groups based on ECFP
similarity. Examples of the molecules present in each cluster is
shown in Supplementary Table 2. The ligands from the x-ray
derived structures PDB codes 1v4s and 4no7 were in cluster
numbers 4, and 2, respectively.

Pharmacophore Generation and Virtual
Screening
Structure-based pharmacophore models were generated for each
frame output from the MD simulations using LigandScout
4.4 Expert (Wolber and Langer, 2005). Models generated by
LigandScout support the following chemical feature types:
hydrophobic interactions, hydrogen bonds donor/acceptor,
positive/negative ionizable area, aromatic ring and halogen bond
donor features. In addition, pharmacophore models from the x-
ray derived crystallographic structures of 1v4s and 4no7 were
created. Water molecules were discarded before the generation
of the models. The LigandScout activity profiling KNIME node
was used to perform all virtual screening runs of models against
the dedicated database of 20,756 molecules. Receiver operating
characteristic (ROC) curves were generated for the virtual
screening runs and the performance of the models was assessed
by the calculation of area under the curve (AUC) values at specific
percentages of the number of screened database molecules.

Hierarchical Graph of Pharmacophore
Models Generation
Feature Vectors and Graph Nodes
The pharmacophore models derived from the MD simulations
were transformed into feature vectors in a related manner
as described by the paper of Wieder et al. (2017). Each
element of the vector represents a unique pharmacophore feature
observed in the system. For this study, pharmacophore features
are considered unique if they differ in any of the following
components—pharmacophore feature type, ligand identifier,
and/or identifier of the interacting environment residue(s). The
3D information is not taken into account in the identification
of the unique pharmacophore features. Thus, e.g., a hydrogen
bond acceptor feature generated for a ligand nitrogen atom that
interacts with Serine will be considered as being different from a
corresponding feature which represents the same nitrogen atom
interacting with Threonine regardless of their shared feature
type or their 3D position. Both pharmacophore features will be
considered as being unique. In that, unique features are specific
to the set of pharmacophores they were created from, as are
the feature vectors. Feature vectors are represented as bit-strings
describing the composition of the 3D pharmacophore models: a
value of 0 simply denotes that the considered unique feature is
absent in the model, and a value of 1 that the feature is present. A
bit-string representation allows quick filtering of pharmacophore
models with similar feature sets and furthermore enables a fast
calculation of feature appearance counts during the simulation.
Each node in the hierarchical graph representation is associated
with a unique feature vector and contains additional derived
information such as related frame number(s), appearance count,
and linked pharmacophore models. Figure 1 shows the feature
vector generation process for a set of pharmacophore models
and their association to the graph nodes. To limit noise in the
initial set of pharmacophore models, unique feature vectors are
filtered according to their appearance count. The pharmacophore
models were filtered to keep the models which appear at least
2 times as in the paper of Wieder et al. (2017), or 0.001 times
the number of initial frames. The first pharmacophore models
observed during the MD simulation for every unique feature
vector in the hierarchical graphs were considered for VS.

Hierarchical Linkage
The hierarchical linkage of the graph is based on the unique
pharmacophore feature composition of the feature vector in each
node. Links are created between nodes if their feature vectors
are a subset or a superset of each other. Figure 2 depicts the
linkage process. If two feature vectors do not exhibit a subset
or superset relation, a new feature vector is temporarily created.
This new feature vector represents the intersection set of the
unique features for the two considered nodes. If this temporary
feature vector is identical to an already existing node, the two
considered nodes are linked to this one. If the temporary node
is unique a new permanent node is created. The creation of
“Artificial” feature vectors associated with a new node has been
implemented to allow the generation of a unique hierarchical
graph. Therefore, the “Observed” or “Artificial” nature of the
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FIGURE 1 | Generation of the feature vectors and their node representation from an initial set of 5 pharmacophore models. The set of pharmacophore models was

converted into a corresponding set of feature vectors by first identifying all encountered unique features. Then the feature vector elements are initialized with 1 or 0

depending on the presence or absence of the corresponding unique feature in the pharmacophore model. A filtering step is done in order to remove duplicates with

identical feature vectors. Finally, the graph nodes are created for each unique feature vector and the corresponding pharmacophore models and appearance count

values are stored. The pharmacophore model features are: yellow spheres (hydrophobic), red and green arrows (hydrogen-bond acceptors and donors, respectively).

The corresponding vector features are colored yellow, red, and green accordingly.

feature vectors is stored as an attribute of each graph node in the
form of its appearance count. Once all subset and superset links
are generated, the redundant paths are removed.

Visualization
For an easy comprehension of the information contained in
the graph nodes and their links, the visualization plays an
important role. From the feature vectors, information about the
composition of the pharmacophore models and the hierarchical
links between them is already present. Several visual parameters
can be used to depict additional graph properties. For this
publication the following properties have been chosen, unless
otherwise indicated:

- The appearance count of the pharmacophore models is
represented by the size of the nodes. Therefore, the higher the
appearance count, the larger visual representation of the node.

- The “Observed” or “Artificial” nature of the node is
represented by its color. Blue is used to depict “Observed”
nodes, and orange for “Artificial” nodes.

- The specificity of the pharmacophore models is represented
by organizing the nodes in the x axis based on the number of
unique pharmacophore features of which they are composed.
Considering a node, each other node in the same column has
the same number of pharmacophore features, each node on
its left side is composed of fewer features and every node on
its right is composed of more features.

- The representation of pharmacophore model similarity is
achieved by dimension reduction using a Multidimensional
Scaling Method (MDS) (Mead, 1992; Borg and Groenen,
2003). This method places all the elements of a distance
matrix in a single dimension, preserving the distance

between nodes as much as possible. The distance matrix
is obtained by calculating the Manhattan distance between
the feature vectors of the nodes. The similarity between the
pharmacophore models is then represented by the relative
distance between the nodes projected on the vertical axis of the
graph. The reliability of this process is visualized by displaying
the proportion of variance of the scaled data.

Figure 3 depicts an example of the graph representation.

RESULTS AND DISCUSSION

Case Study: Glucokinase
The hexokinase IV, or glucokinase (GK) is an isoenzyme
responsible for glucose phosphorylation (Beck and Miller, 2013).
The concentration of glucose in the plasma determines the
conformational switch of GK between its active and inactive
states. The glucose level impact on GK activity makes this enzyme
act as a sensor responsible for the glucose homeostasis in the
human body (Bell and Polonsky, 2001). Therefore, GK has been a
primary target for the development of antidiabetic drugs (Kamata
et al., 2004; Osbak et al., 2009; Petit et al., 2011).

Two crystallographic structures of the active conformation
of GK with bound activators have been selected for this study
(PDB codes: 1v4s and 4no7). The structures of the ligands,
their position in the binding pocket and the pharmacophore
features derived from the independent x-ray experiments are
depicted in Figure 4. The binding poses of the two ligands
show similarities with respect to pharmacophoric hydrogen bond
donor and acceptor features capable of forming interactions with
the backbone of Arginine 63. As it has been observed in previous
studies (Petit et al., 2011), the loop comprising the residues
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FIGURE 2 | Hierarchical linkage of the graph nodes. Starting from 3 “Observed” nodes in blue, the stored feature vectors are tested for subset/superset relations,

represented as blue dotted ellipses. Edges are then created if the relation is found. In the case that two nodes do not depict this relation, represented as an orange

ellipse, a new node is created and linked to them. The appearance count for this “Artificial” node is set to 0 and its color is changed to orange. The pharmacophore

model features are: yellow spheres (hydrophobic), red and green arrows (hydrogen-bond acceptors and donors, respectively). The corresponding vector features are

colored yellow, red, and green accordingly.

92–102 is poorly ordered, which results in the opening of an
allosteric sub-pocket that can accommodate the chloro-phenyl-
methane-sulfonate of the ligand in the 4no7 protein data bank
(PDB) structure

Hierarchical Graphs of Pharmacophore
Models
Three MD simulation runs each of 100 ns were performed
for both protein-ligand complexes. From the MD simulation
trajectories obtained, 10,000 frames were extracted and
subsequently used for the generation of pharmacophore models
as described in the Methods part. The hierarchical graphs
were then generated from the frame-based pharmacophore
models including also the crystallographic structure-based
pharmacophore models. The pharmacophore models were
filtered according to their appearance count before subjecting
them to the hierarchical graph generation procedure. The
graphs were generated for each individual run as well as for
the reunification of all runs for each crystallographic structure.
Table 1 summarizes the composition of the graphs. In a previous
publication (Wieder et al., 2017), we used a filtering criteria on
the unique pharmacophore model appearance count in order
to reduce the noise by removing pharmacophore models which
appeared only once during the simulation. In this study, we

investigated the impact of several values for the filtering criteria,
discarding models appearing <2 frames up to <1% of the
number of frames, in order to both reduce the noise and improve
the readability of the graph. Source code for the generation and
visualization of the graphs is available online (Source code for the
HGPM Implementation, 2020). Source code for the generation
and processing of LigandScout pharmacophore models has
been excluded due to intellectual property reasons. Output data
for an interactive demonstration of the Hierarchical Graph
representation of Pharmacophore Models generated from the
first MD run of 4no7 can also be accessed online (Demonstration
of HGPM, 2020). A listing of all unique features for this system
can be seen in the online demonstration when hovering the
mouse over the feature vector.

Analysis of the Unique Feature Vectors
To visualize the composition of the pharmacophore models that
were obtained for each performedMD simulation of the systems,
the individual partitioning of the unique observed features is
represented as Venn diagrams shown in Figure 5. For the 1v4s
system, 37 out of 81 (46%) of all unique observed features are
present in every of the 3 MDs runs if the appearance count
filtering criteria is set to 2 frames or more. This ratio stays similar
when the appearance count criteria is set to 10 frames or more,
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FIGURE 3 | Visualization of the Hierarchical graph representation of pharmacophores models derived from a molecular dynamics simulation of human glucokinase in

complex with an activator (PDB code: 1v4s). The feature vector is represented on the top of the graph and each box represents a unique pharmacophore feature. The

color of the boxes indicates the type of the corresponding feature: yellow (hydrophobic), red and green (hydrogen-bond acceptors and donors, respectively), and blue

(aromatic). The hierarchical graph below the feature vector represents all pharmacophore models observed during the simulation. Nodes are linked by hierarchical

relations and their color denotes their origin: blue (“Observed” pharmacophore models), or orange (“Artificial” models only composed of a subset of features from the

“Observed” pharmacophores). The graph is interactive, nodes can be selected to depict all related pharmacophore models, as shown with the selection of node 1.

When two nodes are selected, the node that depicts the pharmacophore feature intersection set is also highlighted (Node 3), as depicted with the selection of Nodes

1 and 2. For each node, the associated pharmacophore model can be easily retrieved.

resulting in 18 out of 39 (46%) unique observed features being
in common. Although approximately half of the unique features
are always observed, each individual run led to the observation of
5–17 unique features which are only present in this specific run
(filtering criteria of 2 frames or more). When the filtering criteria
is set up to 10, the number of unique features solely observed in
a specific run decreases, but the ratio stays similar.

Considering the 4no7 system, the trend slightly differs with an
increase in the ratio of unique features in common to the 3 runs.
We observed 29 out of 50 (58%) unique common features with

the appearance count filtering criteria set to 2 frames or more and
21 out of 29 (72%) with the filtering criteria set to 10 or more.
Consequently, the number of unique features solely observed
in single runs decreased between 5 and 7 with the filtering
criteria set to 2 and 0–3 with the criteria set to 10. While several
unique features were always present regardless of the run, each
individual MD simulation provided exclusive information. Every
further analysis presented in this work was made considering
every pharmacophore model obtained from any of the 3 runs
performed for each system.
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FIGURE 4 | 2D- and 3D-depictions of co-crystallized ligands and their putative interactions with human glucokinase derived from x-ray structures (PDB codes: 1v4s

and 4no7) using LigandScout 4.4. Hydrophobic, hydrogen-bond donor and acceptor interactions are displayed in yellow (spheres), red and green (arrows),

respectively.

The filtering criteria applied on the appearance count have
been set to decrease the complexity of the hierarchical graphs
in terms of number of nodes and links, as can be seen in
Table 1. To investigate the impact of the filtering criterion on
the feature vector composition, Figure 6 depicts details of the
nature of the unique pharmacophore features. Among all unique
pharmacophore features observed in the MD simulations for
1v4s and 4no7 62 out of 81 and 31 out of 50 are hydrophobic

interactions. This high number of hydrophobic features is partly
caused by the nature of the feature serial generation algorithm.
For example, a hydrophobic feature that involves the fluorine
atom of the ligand in 1v4s and amino acids ILE211, TYR214,
TYR215 will be considered different from another hydrophobic
feature involving the same fluorine atom on the ligand, but
different amino acids like THR65, MET210, ILE211, TYR214,
TYR215, even though every amino acid of the first feature is also
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TABLE 1 | Results from the HGPMs obtained for each MD simulation providing the graphs node composition, pharmacophore filtering criterion, variance of the MDS

projection, and the generation time.

System Run(s) Number of

pharmacophore

models

Minimum

appearance

count of the

pharmacophore

model

Number of

unique

features

Number of

“observed”

nodes

Number of

“artificial”

nodes

Total number

of nodes

Variance of

the projection

(%)

Time to generate

(s)

1v4s 1 10,001 2 63 515 478 993 11.5 30

10 24 135 100 235 15.1 19

2 2 56 457 464 921 12.5 26

10 27 145 119 264 15.5 19

3 2 52 549 766 1,315 13.4 50

10 28 160 243 403 14.5 20

1,2,3 30,001 2 81 1,163 1,207 2,370 11.7 258

10 41 346 337 683 13.3 54

30 28 174 186 360 14.9 51

4no7 1 10,001 2 37 814 680 1,494 12.7 63

10 26 177 139 316 17.1 18

2 2 36 813 645 1,458 10.7 51

10 23 172 133 305 14.0 17

3 2 39 852 728 1,580 10.2 60

10 25 191 150 341 13.4 21

1,2,3 30,001 2 50 1,807 1,394 3,201 10.3 511

10 29 461 285 746 13.5 51

30 26 172 130 302 16.2 50

involved in the second one. This is inherent in the LigandScout
definition of hydrophobic features and has been kept as is.

However, setting the appearance count filtering criterion
to 10 frames or more tends to discard more hydrophobic
features than any other type of pharmacophore interaction, as
it can be observed for both systems shown in Figure 6. Table 1
additionally provides information about hierarchical graphs with
an appearance count set to 1% of the number of frames. For graph
readability reasons, we chose to use a filtering criterion of 10 for
the rest of this study.

Uses and Analysis of the Hierarchical
Graphs
The hierarchical graphs of both investigated systems are shown
in Figure 7. A detailed description of the information which
can be visually retrieved from these graphs is given in detail in
section Visualization.

For system 1v4s, the graph spans nine columns and thus
includes models with up to 8 pharmacophore features. Several
nodes are converging close to the pharmacophore model
obtained from the crystallographic structure, labeled as PDB.
However, no other pharmacophore models were observed
that comprise a superset of the features represented by the
PDB node. The node with the highest appearance count (HF
node) among the 3 runs is vertically displaced from the
PDB node and while they share 3 features, they are not
directly related in terms of feature hierarchy as shown in more
detail in Supplementary Figure 3. The node associated with

the hydrogen bond donor and acceptor features that interact
with Arginine 63 (CF node) is located on the third column of
the graph, since it possesses a low number of features and is
therefore not specialized. The PDB and HF nodes were used
to perform VS runs against the active and decoy database
as described in the Methods section. In addition, a selection
of all pharmacophore models which represent a superset of
the HF and CF nodes were used for a consensus screening
run. The CHA (Wieder et al., 2017), that is a consensus
approach considering all observed pharmacophores was also
carried out. A summary of the VS results can be found in
Table 2.

We observed that the PDB pharmacophore for 1v4s did not
retrieve hits during the VS, which might be due to the number of
defined and specific directional hydrogen bond vectors defining
its specific binding mode, with 5 of the 7 pharmacophore features
containing defined directions for hydrogen bonding. The 4 other
pharmacophore selections for this system performed well, with
area under the curve (AUC) values above 0.96 at 1% of the
number of database molecules. The HF pharmacophore model
performed as well as the other models regarding the AUC at 1%
but slightly below for the other and retrieved 65 hits out of 20,756
molecules. The selection of all superset models of the CF node
provided the most stable and best results regarding the AUC,
even outperforming the CHA. Those good results can be linked to
the high amount of pharmacophore models which were used for
screening, 236 for the CF+ selection and 346 for the CHA. Lastly,
the set of all pharmacophore models which are supersets of the
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FIGURE 5 | Venn diagrams showing the unique pharmacophore feature similarities between the MD simulation runs performed for the 1v4s and 4no7 systems,

respectively. The pharmacophore models considered for the sampling of the unique features were filtered based on an appearance count criteria, set to 2 for the

diagrams on the left and 10 on the right.

HF nodes performed close to the HF node alone but retrieved
87 molecules.

The overall hierarchical graph of pharmacophore models of
the 4no7 system differs from the one of the 1v4s system mainly
by the two branches involving the nodes with the highest number
of features on the right side of the graph. Additionally, the PDB,
HF, and CF nodes are vertically quite close and are hierarchically
linked as it can be seen in Supplementary Figure 4. This leads
to the conclusion that these three nodes are part of only one of
the two branches among the most specialized pharmacophore
models. Therefore, an additional node has been selected to
involve an arbitrary model of the second branch, which has been
labeled as “Selection” in Figure 7. Table 2 shows the VS results
obtained with the PDB and HF nodes. The CHA was applied

and additional consensus scoring runs were made considering
the pharmacophore supersets of the PDB, HF, CF and custom
selected nodes. For 4no7, the PDB pharmacophore obtained
the best AUC results at 1% of the database and retrieved 401
molecules. The CHA performed as good as the PDB node
regarding the AUC at 1% and showed its stability by delivering
comparable AUC values at higher percentages than the other
approaches while retrieving 13,868 molecules. The HF node
model did not perform as well as othermodels with an AUC value
of 0.81 at 1% that fell to 0.41 at 5%. The selection of all superset
models of the HF node, however, achieved significantly better VS
results than the HF node alone. Lastly, the selection based on
the “Arbitrary” node delivered high AUC values with the best
observed results at all thresholds superior to 1%. It is interesting
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FIGURE 6 | Pie charts of the unique pharmacophore feature composition of the feature vectors generated from all 3 MD simulations, based on the applied

appearance count filtering criterion for both the 1v4s and 4no7 systems. Hydrophobic interactions are colored yellow, aromatic interactions blue, hydrogen bond

donors green, hydrogen bond acceptors red and the halogen bond donors gray.

to point out that the “Arbitrary” selected node and the HF node
are of disparate feature composition, but still deliver high AUC
values. To scrutinize this observation, we looked at the structural

clusters of the activemolecules retrieved by these two approaches,
as detailed in Supplementary Figure 5. We observed that for a

hitlist truncated at 2,076 molecules (10% of the database), the

HF node retrieves a consequent number of molecules from all

5 clusters, when the arbitrary selected node selection mostly
retrieves molecules from the cluster numbers 2, 3, and 5. This

difference in the virtual screening hitlist composition suggests the
presence of two different binding modes, involving structurally
distinct active molecules. Therefore, investigating why these two
different branches are nonetheless able to distinguish between
active and inactive molecules can be of high value for elucidating

the binding modes of highly affinity GK ligands. It can also
be highlighted that without prior knowledge of the systems,
the selections of multiple pharmacophore models proved to
be especially stable and reliable in terms of AUC values in
comparison to the single pharmacophore models.

Analysis of Hierarchical Graphs of
Pharmacophore Models Colored by Virtual
Screening Results
The hierarchical graph representations provided intuitive
support for the selection and evaluation of pharmacophore
models, as detailed in the previous part. Nonetheless, additional
information can be depicted to emphasize special characteristics
of the pharmacophore models. To better understand the
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FIGURE 7 | The HGPMs based on the 3 MD simulation runs of the 1v4s system is shown on the top, and for the 4no7 system on the bottom. The nodes matching

the pharmacophore models obtained from the PDB structure, the models with the highest frequency of appearance and with the highest count of common features

between the crystallographic structures of the systems are highlighted in green and labeled HF and CF, respectively. The feature vectors of the highlighted models are

shown above of the corresponding hierarchical graphs.

features involved in correctly distinguishing active and inactive
molecules, all pharmacophore models associated with the feature
vectors of the hierarchical graphs were used for VS. Then, each
node was colored according to its AUC value at 10% of the
database. For both systems, the corresponding results are shown
in Figure 8. In the shown hierarchical graphs, the greener the

node the closer its AUC value is to 1, and the redder its color
becomes, the closer its AUC value is to 0. The “Artificial” nodes
were not used for VS runs and are colored gray.

The graph of the 1v4s system shows a clear separation of
colors. All nodes in the area of the HF node, as well as all
its superset nodes are depicted in green. Therefore, prioritizing

Frontiers in Molecular Biosciences | www.frontiersin.org 11 December 2020 | Volume 7 | Article 59905997

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Arthur et al. Hierarchical Graph of Pharmacophore Models

TABLE 2 | Virtual screening results for both systems using different selections of pharmacophore models.

System Selection Number of

common

features

Number of

pharmacophore

model(s)

Number of

hits

Auc at 1% Auc at 5% Auc at 10% Auc at 50% Auc at 100%

1v4s pdb 7 1 0 0.00 0.00 0.00 0.00 0.00

CHA 0 346 3,676 0.96 0.95 0.93 0.86 0.74

HF 5 1 65 0.98 0.90 0.81 0.59 0.53

HF+ 5 7 87 0.98 0.91 0.82 0.59 0.53

CF+ 2 236 1,337 0.98 0.96 0.95 0.82 0.68

4no7 pdb 4 1 401 0.98 0.77 0.68 0.54 0.51

pdb+ 4 6 655 0.96 0.82 0.74 0.56 0.52

CHA 0 461 13,868 0.98 0.79 0.71 0.64 0.58

HF 3 1 2,761 0.81 0.41 0.34 0.51 0.50

HF+ 3 22 3,545 0.95 0.82 0.72 0.56 0.52

CF+ 2 49 2,546 0.93 0.81 0.74 0.59 0.54

Selection + 3 30 3,421 0.96 0.88 0.81 0.58 0.53

Selections labeled with a + represent a subset of models used for consensus scoring. Model subsets comprise every pharmacophore with at least the same features as the initial node.

a selection of pharmacophore models from this area might be
indicated in order to find the best balance between consensus
virtual screening performance and number of consideredmodels.
On the other hand, the top half of the graph mainly depicts bad
performing models, including the PDB node. The region around
the CF node is depicted in gray as the VS was not performed
for the pharmacophore model of the “Artificial” nodes. However,
the consensus VS runs using all pharmacophore model supersets
of the CF nodes performs well, although the sets contain both
individual good and poorly performing models.

The graph for the 4no7 system is homogeneous and most of
the nodes deliver good VS results (AUC > 0.5). The HF node
is colored brown, leading to below average results. However, the
more specialized nodes located on the top branch of the graph
performed well, including the PDB node. The region around
the custom selected node, present on the other branch, also
performed well, which can be interpreted as a different ligand
bindingmode. All models from the “Observed” nodes in the same
columns as the CF node are displayed in red since models with
less than three features do not lead to an unambiguous model
alignment in 3D space and therefore return no hits.

Analysis of the Hierarchical Graph of
Pharmacophore Models Projected to the
GK Protein
The information gained for each individual system is present
in the form of pharmacophore selection and in the comparison
of the feature composition of the nodes. This is due to
the pharmacophore feature label generation algorithm that
considers which part of the ligand is interacting and allows
a better accuracy in distinguishing unique features. Thus, the
comparison between two systems with different ligands, as we
did it for the 1v4s and 4no7 crystallographic structures is not
possible. However, by disregarding the ligand identifier in the
pharmacophore feature serial generation procedure we only

keep the type of interaction of the pharmacophore feature
and the protein identifier. In this way, we are trading the
accuracy of where the interaction occurs on the ligand side,
for the ability to ‘project’ the interaction on the protein
side. This therefore unlocks the possibility to consider all
pharmacophore models generated from a specific protein,
regardless of which ligand was involved in the pharmacophore
interactions. To demonstrate this alternative way of generating
the pharmacophore feature serial, a HGPM based on all runs
from both 1v4s and 4no7 systems has been created and is shown
in Figure 9. Detailed information about the graph is provided in
Supplementary Table 3.

The number of graph nodes and the number of unique
pharmacophore features present in this hierarchical graph are
both greater than those of the 2 previous graphs, which
increases the complexity of the depiction. Among the 55 unique
observed features, 7 where shared between 1v4s and 4no7: 3
hydrogen bond acceptor interactions with Arginine 63, Serine
64 and Threonine 65; a hydrogen bond donor interaction with
Arginine 63; 3 hydrophobic features engaged in interactions
with Tyrosine 24, the amino-acids Isoleucine 211, Threonine
65 and Tyrosine 214 and the amino-acids Threonine 65 and
Tyrosine 214. Despite these common interactions, no “Observed”
pharmacophore models were present in both the 1v4s and 4no7
MD simulation runs. We can nonetheless clearly observe a
distinction between the two colored clusters, depicting the initial
node affiliation. The top half of the graph with cyan colored
nodes represent all pharmacophoremodels from the 1v4s system,
where we can recognize a single branch leading to the specialized
pharmacophore model of the PDB structure. For the bottom
half of the graph with the orange nodes from the 4no7 system,
we observe a more homogeneous spacing. The two branches
previously observed are not easily distinguishable. It can be
pointed out that the 4no7 PDB node is located near the nodes
originating from 1v4s, and the custom selection node tends to
fork more to the bottom part of the graph as more detailed
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FIGURE 8 | The hierarchical graph of pharmacophore models derived from human glucokinase PDB codes of the 1v4s system is shown on the top, and of the 4no7

system on the bottom. The nodes are colored according to their AUC values at 10% of the database molecules. The greener the node, the closer is its AUC value to

1, and the redder the closer to 0. Nodes with “Artificial” pharmacophore models are colored gray. The nodes corresponding to the pharmacophore models obtained

from the PDB structure, from the highest frequency of appearance and with the two common features between the systems are labeled accordingly. Associated

feature vectors are shown above the corresponding graphs.

on Supplementary Figure 6. As the feature vector differs from
the individual graphs, the pharmacophore selection for the CHA
and for the subsets of pharmacophore models with the same
feature as the CF nodes were different than previously and their
virtual screening results details for this graph are presented on
Supplementary Table 4.

Based on the heterogeneity of the graph, two pharmacophore
models were selected. The hierarchical graph as well as two
selected nodes, respectively binding mode 1 (BM1) and 2 (BM2)
are shown in Figure 10. Both models are among the most
specialized observed pharmacophores with 7 and 6 features,
respectively. The single shared feature is a hydrogen bond
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FIGURE 9 | HGPM obtained from the MD simulation runs of both the 1v4s and 4no7 system. The nodes are colored based on the system they were derived from:

cyan for 1v4s and orange for 4no7. The nodes matching the pharmacophore models obtained from the PDB structures, the custom selection and the node with the

two observed common features of the systems are labeled and highlighted in green. The feature vector is displayed on the top of the graph.

acceptor interaction with the Arginine 63, whose corresponding
node is labeled CoreF. In the 3D representations of the
pharmacophore models in Figure 10, we observed that the
hydrophobic and halogen bonding interactions are present in
different areas of the GK pocket as they involve different amino
acids. Due to the important difference in the pharmacophore
models in terms of feature composition and 3D alignment, the
observed results can be linked to distinct binding modes due
to the presence of the allosteric sub-pocket. This information
can be used to provide a better depiction of the specific
binding modes than the initial comparison between the two PDB
pharmacophore models. Additionally, it allows the selection of
smaller pharmacophore sets for consensus virtual screening in
comparison with the CHA or the CF+ selection of models.

CONCLUSION

Motivated by the recent interest in consensus-based virtual
screening methods involving pharmacophore models (Wieder
et al., 2017; Polishchuk et al., 2019; Madzhidov et al., 2020),
we developed an intuitive hierarchical graph representation
of pharmacophore models. A user-friendly interactive
visualization of the pharmacophore-based graph provides
valuable information for computational chemists toward the
understanding of protein-ligand interaction patterns and can aid
in the selection of pharmacophore models for VS experiments.
The graph can be created from sets of pharmacophore models
generated for multiple crystallographic structures with identical
macromolecular targets or for the output of MD simulation runs
to provide insight into the dynamic aspects of the investigated

systems. The graph generation has proven to be computationally
inexpensive as it takes seconds to be created even for bigger
ensembles with more than 10,000 models (see Table 1).

We selected two crystallographic structures of the human
glucokinase to evaluate the HGPM generation algorithm in
its ability to identify different binding modes and to select

small representative pharmacophore model sets for consensus
VS experiments. MD simulations and graph generations were
performed individually for the two systems. Different selections

of pharmacophore models were used to distinguish between
active and inactive molecules for the two investigated systems.
The selection of all models which possess a superset of the
features contained in the pharmacophore model with the highest
appearance count performed similarly to the CHA method in
terms of AUC value and stability, while at the same time reducing
the number of considered models for the 1v4s system by 20-fold
and by more than 45-fold in the case of the 4no7 system (see
Table 2), and thus helped to significantly reduce the required
screening time. The hierarchical graph in Figure 8 also helped
to identify the best performing ensembles of pharmacophore
features by depicting the virtual screening results for every
pharmacophore model. Although the presence of two specialized
branches in the hierarchical graph of the 4no7 system (in
Figure 7) has already been noticed, the two different binding
modes of GK were clearly identified by the hierarchical graph
generated from the models extracted from both the 1v4s and
4no7 MD simulations (Figure 10), which is in perfect agreement
with literature (Petit et al., 2011).

Depending on the goal, the graph representation can
be adapted flexibly by either changing the pharmacophore
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FIGURE 10 | HGPM obtained from the MD simulation runs human glucokinase starting from both the 1v4s and 4no7 systems. The nodes BM1 and BM2 were

selected to show examples of different observed binding modes. 2D and 3D depictions of the corresponding pharmacophore models are shown below the graph.

feature serial generation algorithm or by showing additional
properties. Highlighting the hierarchical relationship between
pharmacophore models, this graph allows the user to
analyze a target system by comparing the composition
of several pharmacophore models in a single graphical
representation, thus promoting the understanding of the
binding process and the selection of pharmacophore models
for consensus virtual screening runs. A typical workflow
using the information provided by the graph representation
is e.g., to first select a single pharmacophore model with
the highest observed frequency, then perform a virtual
screening run and finally add or remove individual features
identified by following hierarchical links to build a refined
model with the best ratio between accuracy and specificity.
Presenting the hierarchical graph of pharmacophore models,
we want to introduce an intuitive representation of multiple
pharmacophore models and provide the computational and

medicinal chemists with a new tool to enable an advanced
understanding of the protein-ligand binding process, allowing
for better decision support in the process of optimizing
bio-active molecules.
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The virtual screening of large numbers of compounds against target protein binding sites

has become an integral component of drug discovery workflows. This screening is often

done by computationally docking ligands into a protein binding site of interest, but this

has the drawback of a large number of poses that must be evaluated to obtain accurate

estimates of protein-ligand binding affinity. We here introduce a fast pre-filtering method

for ligand prioritization that is based on a set of machine learning models and uses simple

pose-invariant physicochemical descriptors of the ligands and the protein binding pocket.

Our method, Rapid Screening with Physicochemical Descriptors + machine learning

(RASPD+), is trained on PDBbind data and achieves a regression performance that is

better than that of the original RASPD method and traditional scoring functions on a

range of different test sets without the need for generating ligand poses. Additionally, we

use RASPD+ to identify molecular features important for binding affinity and assess the

ability of RASPD+ to enrich active molecules from decoys.

Keywords: structure based drug design, virtual screening, physicochemical molecular descriptors, machine

learning, protein-ligand complex, binding free energy

1. INTRODUCTION

Virtual screening to assess in silico the binding of candidate ligands to a target protein is a key
component of structure-based drug design procedures (Torres et al., 2019; Wang et al., 2020).
Typically, screening is done by docking the ligands at many different positions or poses in the
three-dimensional structure of the target protein. At every position, a scoring function is evaluated
to approximate the binding-free energy, and this is used to rank the binding poses and different
candidate ligands for their ability to bind to the target protein. While correct docking poses
are frequently generated, scoring functions often lack the accuracy necessary to correctly rank
poses or ligands (Li et al., 2019). Docking procedures are therefore frequently supplemented by
methods employing molecular dynamics simulations with the aim of computing more accurate
binding affinities. However, both docking andmolecular dynamics simulations often fail to provide
predictions of binding free energy at the level of accuracy desired. Furthermore, they are demanding
in terms of computational effort and expertise (Willems et al., 2020). There is therefore a need
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Graphical Abstract | Overview of the overall workflow of RASPD+ (Rapid Screening with Physicochemical Descriptors + machine learning).

for quick approaches with robust predictive scoring functions
to facilitate the screening and prioritization of large libraries of
compounds prior to applying docking and simulation methods.

While the assessment of ligand properties, e.g., for
drug-likeness (Lipinski et al., 2001), to filter ligand libraries
is well established, we here address the need to filter and
prioritize ligands based not only on ligand properties but also
on the properties of the target protein. For this purpose, we
previously developed a simple hybrid regression approach called
RASPD (Rapid Screening with Physicochemical Descriptors)
(Mukherjee and Jayaram, 2013). In this linear regression model,
the binding-free energy 1G was predicted using a minimal set of
physicochemical descriptors for typical interactions. Hydrogen
bonding was accounted for by counting potential donor and
acceptor atoms. Van der Waals forces were approximated by the
Wiener topology index (Wiener, 1947) and the molar refractivity,
which describes the polarizability of a molecule (Ghose and
Crippen, 1987). Additionally, the partition coefficient logP
allowed for the estimation of the hydrophobic effect. While
the descriptor values for the ligand are straightforward to
compute, simplifying assumptions were made to obtain the
physicochemical descriptors for the target protein. A sphere was
centered on a known or assumed binding pocket position with
a radius encompassing the maximum size of the ligand. This
sphere was then used to select the amino acid residues for which
descriptors were computed (Mukherjee and Jayaram, 2013)
(Figure 1A).

However, the linear regression model used (Mukherjee and
Jayaram, 2013) has limited abilities to capture complex feature
interactions compared to non-linear models. Since RASPD was
first developed, more high-quality data sets on protein-ligand
complexes with associated binding-free energies have been made
available (Liu et al., 2015; Gathiaka et al., 2016), and a large
number of machine learning methods have been developed

(Yang et al., 2019). Moreover, machine learning approaches have
successfully been used to either replace (Gomes et al., 2017;
Feinberg et al., 2018; Jiménez et al., 2018) or enhance (Pei et al.,
2019; Boyles et al., 2020) the predictions of traditional scoring
functions for protein-ligand binding.

We have thus developed RASPD+, which is a new tool
that improves on the conceptual framework of the original
RASPD method by using the following: (i) a set of diverse
machine learning methods to derive an ensemble prediction,
(ii) additional and more fine-grained descriptors for the target
proteins, and (iii) larger training sets of newer protein-ligand
binding data. We here describe the training, testing, and
application of RASPD+. We demonstrate the capabilities of
RASPD+ for binding free energy regression and compare its
performance to established scoring functions. We also analyze
the features contributing to the predictions to gain insights
into the important features for binding affinity. Finally, we
show that RASPD+ can enrich active molecules in tests with
the Directory of Useful Decoys-Enhanced data set (DUD-E)
(Mysinger et al., 2012).

2. METHODS

The computational workflow and the training and validation
procedure used for RASPD+ are illustrated in Figure 1.

2.1. Datasets
The PDBbind refined data set (release 2018) (Wang et al.,
2004; Liu et al., 2015), containing 4,463 protein-ligand crystal
structures and experimentally measured binding affinities, served
as the initial data set. Although the PDBbind refined data set
contains data on binding from different measurements reported
in the literature and no experimental method was specified as
a requirement for the data to be incorporated in PDBbind,
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FIGURE 1 | The computational workflow of RASPD+ comprises featurization (A) and the training and evaluation of machine learning models (B). (A) For each ligand

molecule, simple physicochemical descriptors are computed based on atomic contributions. Information about the target protein is gathered within a sphere around a

putative binding position whose size is determined by the radius of the ligand. For residues within this sphere, similar descriptors are computed. (B) Data from the

PDBbind refined set featurized in this way served as the training data in a nested cross-validation strategy. To compare linear regression (LR), k-nearest neighbors

(kNN), support vector regression (SVR), neural network (DNN), random forest (RF), and extremely random forest (eRF) models, test sets were split off in 10 replicates in

an outer loop. In the inner loop, six-fold cross-validation was used to select the best hyperparameters for the given model.

it contains high-quality structures of non-covalent protein-
ligand interactions with a resolution better than 2.5 Å and
no steric clashes. The PDBbind refined data set is therefore
extensively used as a benchmark set for protein-ligand binding
affinity prediction (Liu et al., 2015). We thus obtained structural
information about each protein in the data set, the position
and structure of the ligand binding to it, and the corresponding
binding constant. As we considered modeling the coordination
of metal ions to be beyond the scope of our approach, the
structures were filtered to exclude cases with metal ions within
2.1 Å of the ligand. Dissociation and inhibition constants and
IC50 values were converted to binding-free energies using the
following equation:

1G = −RT lnK where K ∈ {Kd,Ki, IC50} assuming

T = 298.15 K (1)

This processing resulted in a set of 3,925 protein-ligand
complexes for training, validation, and testing.

For further testing, the following previously published
benchmark sets served as external test sets: The Community
Structure-Activity Resource (CSAR) NRC-HiQ 2010 selection
(Dunbar et al., 2011; Smith et al., 2011), data sets from the
CSAR 2012 (Dunbar et al., 2013), and CSAR 2014 (Carlson et al.,
2016) challenges, and a data set described by Wang et al. (2015).

The CSAR-NRC 2010 HiQ release (Dunbar et al., 2011; Smith
et al., 2011) contains two sets of protein-ligand complexes, with

55 and 49 docked complexes, respectively, as well as information
about experimental binding affinities.

Another set of binding-free energies and corresponding
structures was assembled from the CSAR 2012 (Dunbar et al.,
2013) and CSAR 2014 (Carlson et al., 2016) data sets that
are now curated by the Drug Design Data Resource (D3R)
(drugdesigndata.org) (Gathiaka et al., 2016). For this set, which
we refer to as the D3R data set, we downloaded the data
for the proteins urokinase, cyclin-dependent kinase 2 (CDK2),
checkpoint kinase 1 (CHK1), MAP kinase 1 (ERK2), LpxC
deacetylase (LpxC), spleen tyrosine kinase (SYK), tRNA (m1G37)
methyltransferase (tRMD), heat shock protein 90 (HSP90), and
a CDK2-Cyclin A complex. The SMILES strings of 1,271 active
inhibitors of these proteins in the D3R data set were converted
to 3D structures in PDB format using Open Babel (O’Boyle
et al., 2011). For HSP90, we excluded 46 compounds that
were all assigned the same 1G of −5.860 kcal/mol as this
value, likely represented a threshold value for the experimental
measurements rather than the actual binding affinity of
the ligands.

Wang et al. (2015) aggregated previous experimental results
and PDB structures for 283 complexes of seven different proteins:
beta-secretase (BACE), CDK2, induced myeloid leukemia cell
differentiation protein (Mcl-1), p38 MAP kinase, protein-
tyrosine phosphatase 1B (PTP1B), thrombin, and tyrosine kinase
2 (TYK2). For this set, protein structures were retrieved from
the RCSB protein data bank (http://www.rcsb.org) and hydrogen

Frontiers in Molecular Biosciences | www.frontiersin.org 3 December 2020 | Volume 7 | Article 601065106

https://drugdesigndata.org
http://www.rcsb.org
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Holderbach et al. RASPD+: Protein-Ligand Binding Prediction

atoms were added to the protein structures with the tleap
module of AMBER 14 (Case et al., 2005). The structural data for
inhibitors and experimental binding-free energies were obtained
from the literature (Wilson et al., 2007; Baum et al., 2009;
Goldstein et al., 2011; Cumming et al., 2012; Friberg et al.,
2013; Liang et al., 2013a,b; Wang et al., 2013, 2015). This
included additional ligands for Mcl-1 (Friberg et al., 2013) and
TYK2 (Liang et al., 2013a,b) that were not used by Wang et al.
(2015). The structures of the 283 inhibitors were redrawn and
verified in the MOE software (Chemical Computing Group,
Montreal, QC).

Further details on the source of structures and experimental
binding affinities are given in Supplementary Table 1.

2.2. Generation of Molecular Descriptors
To model the non-covalent interactions, physicochemical
molecular descriptors were computed using an improved
pipeline based on that for the original RASPD procedure
described in Mukherjee and Jayaram (2013) (Figure 1A). For
each ligand, the molecular weight (here abbreviated as MASS),
the number of hydrogen bond donors (D) and acceptors (A),
an approximate octanol-water partition coefficient log P (logP)
(Wildman and Crippen, 1999), the molar refractivity (MR)
(Wildman and Crippen, 1999), and the Wiener topology index
(W) (Wiener, 1947) were computed as described previously
(Mukherjee and Jayaram, 2013). Based on the ligand position
in the protein structure, the most likely interacting amino
acid residues were selected using a sphere whose radius was
derived from the maximum distance (maxD) between ligand
atoms and the center of mass (Figure 1A). For the computation
of the logP and MR descriptors, this sphere was extended
by 0.9 Å over maxD, and residues were selected based on
their center of mass. To count hydrogen bond donors and
acceptors, a sphere extending 3Å beyond maxD was used to
select atoms. Details regarding the protein pocket selection
procedure and the choice of the cut-off radii are given in
Mukherjee and Jayaram (2013). To make the protein descriptors
more fine grained than in the previous RASPD procedure,
we computed molar refractivity and log P for aromatic and
non-aromatic residues separately [PMR(Arom), PMR(Non-
Arom), PlogP(Arom), PlogP(Non-Arom)]. Hydrogen bond
donors were counted separately for the backbone amide
group [PD(Amide-NH)] as well as for the following amino
acid sets: Positively charged PD (K+R+HIP), neutral amino
groups PD(K+N+Q), heteroaromatic donors PD (W+H), and
hydroxyl-containing groups PD (T+S+Y+D+E). The number
of hydrogen bond acceptors was determined for the backbone
amide [PA(Amide-O)] and the following sets: negatively
charged PA (D+E), neutral non-aromatic PA (N+Q+T+S+D-
H+E-H), and aromatic acceptors PA (Y+H). The individual
protein residue-derived descriptors were scaled by the ligand
maxD. Additionally, the volume of the protein pocket (PVol)
was computed using tools from the TRAPP software suite
(Kokh et al., 2013; Yuan et al., 2020). In total, therefore,
six ligand and 14 protein descriptors were computed per
ligand-protein complex.

2.3. General Strategy for Training and
Testing
To obtain a robust estimate of performance on the PDBbind
data set as well as the test sets, a nested cross-validation
strategy was used (Figure 1B). For 10 replicates, the PDBbind
refined set was split into a test set covering 12.5% of the
data and a set for cross-validation training. For each of these
replicates, six-fold cross-validation training was performed to
select the best hyperparameters for each replicate based on the
Pearson correlation coefficient. For each replicate, therefore,
2,860 complexes were used for training, 572 for cross-validation,
and 493 for testing.

The input features were robustly centered and scaled by the
median and interquartile range (IQR) of the training set for each
train-test split. All models obtained by the hyperparameter search
were evaluated on the corresponding PDBbind test set as well
as on the external test sets. We report the mean and standard
deviation of the performance metrics.

2.4. Evaluation Metrics
To assess model performance, the root-mean-squared error
(RMSE), Pearson (r), and Spearman (ρ) correlation coefficients,
and the coefficient of determination, R2, were computed using
the sklearn.metrics and scipy.stats Pythonmodules.
Additionally, we report the Q2

F3 metric (Equation 2) (Consonni
et al., 2009), as it is considered to be better suited for QSAR-like
tasks than R2 (Todeschini et al., 2016).

Q2
F3 = 1−

∑ntest
i (ŷ− ytest)

2

∑ntest
i (ŷ− ytrain)2

(2)

2.5. Models and Hyperparameters
As part of this work, we evaluated different machine learning
models. We considered linear regression (LR), as it was also
used in the previous RASPD approach (Mukherjee and Jayaram,
2013), support vector regression (Drucker et al., 1997) (SVR), k-
Nearest Neighbors (kNN), simple deep neural networks (DNN),
random forests (Breiman, 2001) (RF), and a variant of the
former, extremely random forests (Geurts et al., 2006) (eRF).
The associated hyperparameters for each method were optimized
by a grid search covering a typical space. Further details on
each method and their associated hyperparameters are given in
the Supplementary Materials. A comprehensive list of tested
hyperparameters is given in Supplementary Table 2. All models
except the neural networks were built using thescikit-learn
Python package (version 0.20.2) (Pedregosa et al., 2011). For the
neural networks, the Keras API (version 2.2.4) (Chollet et al.,
2015) for TensorFlow (version 1.12) was used in conjunction
with the talos package (version 0.4.6) (Kotila, 2018) for
hyperparameter optimization.

2.6. Estimation of Feature Importance
To estimate the importance of individual input features, a simple
permutation-based approach was used (Breiman, 2001). After
prediction on a real-world test set, the column of each feature
in the data set was shuffled in five replicates, and the mean
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FIGURE 2 | Correlation analysis on the PDBbind data set reveals that the experimental binding-free energy has the strongest negative correlation with the ligand

molar refractivity (MR, Spearman ρ = −0.51), and with the number of peptide bond oxygen atoms (hydrogen bond acceptors) present in the putative protein binding

pocket [PA(Amide-O), Spearman ρ = −0.49]. The value of the Spearman’s correlation coefficient is indicated by color.

change in Pearson correlation coefficient was computed. The
model then has to make a prediction based on a random sample
from a distribution with the same mean and variance. A drop in
predictive performance indicates that the prediction is dependent
on this feature.

2.7. Enrichment Analysis With Decoy
Compounds From the DUD-E Dataset
To evaluate the performance of RASPD+ for capturing active
molecules from a pool of computationally generated decoys,
3D coordinates of active and decoy molecules were retrieved
from the DUD-E data set (Mysinger et al., 2012). This set
contains 102 targets with on average≈ 200 distinct and validated
binding ligands and corresponding ≈ 14, 000 selected decoys
for each system. Information about the proteins, as well as
the number of active and decoy molecules for each system, is
given in Supplementary Table 9. Enrichment was performed by
selecting a given percentage of molecules that scored highest
in the given method. For scoring, the predictions across the
six cross-validation folds of a replicate were averaged. The

enrichment factor was defined as the ratio of the fraction of
active molecules in the enriched set divided by the fraction of
the active molecules in the total set. For failure case analysis,
we additionally determined which systems contained another
cofactor in the binding pocket by checking for non-protein
atoms within the pocket structure. Surface-only binding sites
were identified by filtering interactions with few amino-acids and
manually validating surface binding. More detailed subsets of
DUD-Ewere adopted fromVieira and Sousa (2019) instead of the
more coarse-grained classification from Mysinger et al. (2012).

3. RESULTS

3.1. Analysis of the Descriptors and Data
Sets
To confirm the usefulness of the chosen molecular descriptors,
we performed correlation analysis on the PDBbind refined set
(Figure 2, Supplementary Table 3). The Spearman correlations
with the binding free energy, 1G, were negative for most
descriptors, as stronger binding is indicated by negative values
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TABLE 1 | Comparison of the performance of the models derived with seven different machine learning methods for predicting the protein-ligand binding free energy for

the PDBbind test set.

Model RMSE r ρ R2 Q2
F3

Null model 2.76± 0.05 0.0± 0.0 NA −0.00± 0.00 −0.03± 0.05

LR 2.19± 0.05 0.61± 0.02 0.60± 0.02 0.37± 0.02 0.35± 0.03

kNN 2.03± 0.04 0.68± 0.02 0.67± 0.02 0.46± 0.03 0.44± 0.03

lSVR 2.20± 0.05 0.61± 0.02 0.60± 0.02 0.37± 0.02 0.35± 0.03

SVR 2.04± 0.05 0.68± 0.02 0.67± 0.02 0.45± 0.03 0.44± 0.03

DNN 2.05± 0.05 0.67± 0.02 0.66± 0.02 0.45± 0.02 0.43± 0.03

RF 1.88± 0.04 0.74 ± 0.02 0.73± 0.02 0.53± 0.02 0.52± 0.02

eRF 1.86 ± 0.05 0.74 ± 0.02 0.74 ± 0.01 0.55 ± 0.02 0.54 ± 0.03

The five metrics of performance are given as mean and standard deviation values computed by averaging from the 10 different random test set splits and six cross-validation folds. The

RMSE is given in kcal/mol. NA, not applicable.

of 1G. The strongest negative correlations were observed for
the molar refractivity of the ligand molecule (MR, −0.51) and
the abundance of peptide bond oxygen atoms (hydrogen bond
acceptors) inside the protein binding pocket [PA(Amide-O),
−0.49]. The correlations with 1G for the features for specific
amino acids were lower than 0.25 inmagnitude, which is less than
the corresponding correlation (> 0.4) obtained for the backbone
[PA(Amide-O), PD(Amide-NH)] and non-aromatic amino acid
[PlogP(Non-Arom), PMR(Non-Arom)] descriptors.

We next analyzed the correlations among the descriptors in
particular to check for possible biases for certain interactions
in the protein-ligand complexes of the PDBbind data. Amongst
the ligand descriptors, the strongest correlations were observed
between molecular weight, molar refractivity, and Wiener index
(MASS, MR, and W). For the protein features, the strongest
correlation was between the two descriptors for the aromatic
amino acids, PlogP(Arom) and PMR(Arom). In addition, the
backbone-based features, [PA(Amide-O) and PD(Amide-NH)],
had a high correlation with the log P and molar refractivity
values of the non-aromatic residues. Among the hydrogen bond
contributions of the amino acids, we observed the strongest
correlation with ρ = 0.66 between PD(T+S+Y+DH+EH) and
PA(N+Q+T+S+DH+EH). This correlation is expected because
they share the highest number of amino acids.

A higher correlation between the ligand and the protein
features was observed between ligand features that directly scale
with the size of the molecule (MASS, W, and MR) and the
more general protein features, such as the backbone features and
the log P and MR values of the non-aromatic residues. These
protein features are expected to be related to the ligand size
and, therefore, do not indicate any data set-specific bias of the
PDBbind data set.

Comparing the distributions of binding-free energies 1G
between the PDBbind data set used for training and validation
and the CSAR 2012 and 2014 (Dunbar et al., 2013; Carlson
et al., 2016) and Wang et al. (2015) external data sets used for
testing revealed that the PDBbind data set covers a wider range of
binding free energies (Supplementary Figure 1). In contrast, the
101 protein-ligand complexes from the CSAR NRC-HiQ release
cover a wider 1G range than PDBbind.

From the distribution of the individual descriptors, it
is clear that the PDBbind data set encompasses the full
range of descriptor values covered by the other data sets
(Supplementary Figure 2), even though there are differences in
the mean values of the descriptors. For example, the average
ligand molecular weight was lowest for the CSAR-NRC HiQ
data and highest for the D3R data from CSAR 2012 and
CSAR 2014.

3.2. Trained Models Random Forests
Outperform Neural Networks
Initial tests revealed high variability in the performance metrics
that depended on a random training and validation data split.
We thus chose a nested cross-validation strategy to find the
machine learning models best suited for the chosen descriptors
(Figure 1B). Therefore, performance metrics are reported as
the mean of sixty models resulting from 10 random data set
draws and six-fold cross-validation. The corresponding standard
deviation enables the quantification of the uncertainty of the
performance metrics. Apart from the baseline correlation values
between the individual descriptors and the target variable 1G,
we included a null model, which simply predicted the mean 1G
of the training data, to verify predictive power. The root-mean-
squared error, RMSE, of 2.76± 0.05measured for this null model
is identical to the population standard deviation for the respective
training folds (Table 1, Figure 3). The linear regression model
derived by ordinary least squares fitting, similar to the original
RASPD approach (Mukherjee and Jayaram, 2013), achieved a
RMSE of 2.19± 0.05 kcal/mol on the test set. We tested six other
methods and assessed whether they improved on this value.

SVR with a Gaussian radial basis function (RBF) kernel
and a neural network with two hidden layers performed with
RMSE values of 2.04± 0.05 kcal/mol and 2.05± 0.05 kcal/mol,
respectively, these were similar to k-nearest neighbors with an
RMSE of 2.03± 0.04 kcal/mol. Superior performance in terms of
both deviation, quantified by RMSE, and ranking, as measured
by the Spearman correlation ρ, was achieved with the two
random forest-based models. The eRF model had a RMSE of
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FIGURE 3 | Systematic evaluation of the predictive performance of the seven different machine learning methods on the PDBbind test set shows that, according to

three metrics, the extremely random forests (eRF) model performs better than models derived by the other machine learning methods in predicting protein-ligand

binding free energy. The error bars indicate the standard deviation for 10 replicates with six-fold cross-validation.

FIGURE 4 | (A) Binding-free energies predicted by a single eRF model on unseen PDBbind test data. The dashed line indicates the ideal prediction. The absolute

errors of the predictions shown in (A) are plotted against (B) the respective true 1G and (C) the atom efficiency, which describes the 1G contributed on average by

each non-hydrogen atom (atom efficiency = 1G/Nnon−H−atoms).

1.86± 0.05 kcal/mol and a Pearson correlation r of 0.74 ± 0.02,
and the RF model performed similarly (Table 1, Figure 3).

We therefore selected the resulting eRF models for further
analysis. We note that these eRF regressors, which use 200
trees and have no limits on the number of samples per leaf,
overfit the training set despite showing better validation set
performance compared to more strongly regularized variants
(see Supplementary Tables 4, 5). Nevertheless, an examination
of the predictions of the eRF models on the PDBbind test
data shows that the general trends in the data are captured
although the lowest 1G values are overestimated, and the
highest 1G values are underestimated (Figure 4A). The greatest
deviations from the experimental values are thus observed for
those complexes with extremely low or high binding free energies
(Figure 4B). There is, however, no clear relation between having
a higher error value and the atom efficiency (Figure 4C). The

same trends were also observed with all the other machine
learning methods.

3.3. Results on External Test Sets
To compare our RASPD+ approach using eRF models as well
as LR with existing methods, we performed an evaluation on
several external data sets from the literature (Dunbar et al.,
2011, 2013; Wang et al., 2015; Carlson et al., 2016) that have
different characteristics, as previously done by Jiménez et al.
(2018) To compare to other methods for predicting protein-
ligand binding free energy, we considered the previous RASPD
approach (Mukherjee and Jayaram, 2013) as a method that does
not rely on full docking, KDEEP (Jiménez et al., 2018) as a
representative deep learning-based method, RF-Score (Ballester
and Mitchell, 2010) as a method using random forests, and
cyScore (Cao and Li, 2014) and X-Score (Wang et al., 2002) as
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TABLE 2 | Comparison of the performance of RASPD+ using eRF and LR models with five other methods to compute protein-ligand binding-free energy.

RASPD+

Data set eRF LR RASPD KDeep* RF-Score* CyScore* X-Score*

RMSE

CSAR HiQ 1 3.02 ± 0.04 3.07 ± 0.02 3.43 2.84 2.71 3.18 3.15

CSAR HiQ 2 2.23 ± 0.04 2.44 ± 0.02 2.79 2.60 2.26 3.00 2.51

CSAR12 1.50 ± 0.02 1.68 ± 0.02 1.93 2.17 1.36 2.84 1.27

CSAR14 1.36 ± 0.03 1.64 ± 0.02 2.05 2.39 1.19 2.03 1.36

Wang et al. 1.39 ± 0.03 1.39 ± 0.02 2.00 1.47 1.19 5.74 1.49

Pearson r

CSAR HiQ 1 0.62 ± 0.02 0.58 ± 0.01 0.54 0.72 0.77 0.65 0.60

CSAR HiQ 2 0.78 ± 0.01 0.68 ± 0.01 0.67 0.65 0.75 0.64 0.65

CSAR12 0.40 ± 0.03 0.25 ± 0.01 0.29 0.37 0.46 0.26 0.48

CSAR14 0.55 ± 0.03 0.23 ± 0.02 0.32 0.61 0.80 0.67 0.82

Wang et al. 0.70 ± 0.02 0.68 ± 0.01 0.55 0.29 0.24 0.27 0.25

The RMSE [kcal/mol] and Pearson correlation coefficients for predictions on five external test sets are given. RASPD used simpler descriptors and the LR parameters from Mukherjee

and Jayaram (2013). The values for the other methods are taken from Jiménez et al. (2018). The values for the best performing models are shown in bold.

*pK values reported by Jiménez et al. (2018) were converted to 1G for comparison of RMSE values.

traditional docking scoring functions. Previously reported RMSE
values (Jiménez et al., 2018) were transformed from errors in pK
values to errors in 1G for the comparisons. The RASPD+ eRF
model consistently achieved lower error and higher correlation
compared to the linear regression using the RASPD+ descriptors
and this difference was more pronounced when comparing to
the original RASPD linear regression model. With respect to the
absolute deviation, measured by RMSE, the established scoring
functions, RF-Score and X-Score performed best (Table 2). Only
on set 2 of the challenging CSAR-NRCHiQ release (Dunbar et al.,
2011) did RASPD+ with the eRF model have a lower RMSE,
with a value of 2.23± 0.04 kcal/mol, than the existing docking-
based methods. When considering the Pearson correlation as a
proxy for the ranking performance, RASPD+ with eRF models
not only achieved the best result on the CSAR-NRC HiQ set 2
(r = 0.78 ± 0.01) but also achieved r = 0.70 ± 0.02 on the data
set curated by Wang et al. (2015) (Table 2).

The good performance of the RASPD+ eRF on the Wang
et al. data set is also borne out in the distribution of predictions
(Supplementary Figure 3), which, compared to the results on
CSAR-NRC HiQ (Supplementary Figure 6), not only ranks but
also faithfully captures the range of energies. On both the CSAR
2012 and CSAR 2014 data sets, clear failures of the RASPD+ eRF
and most other methods can be observed. For some cases, the
RASPD+ model predicts energies in a very narrow range around
−10.5 kcal/mol (Supplementary Figures 4, 5), but, interestingly,
this value does not correspond to the mean 1G value for the
training data.

As the CSAR 2012 (Dunbar et al., 2013) and CSAR 2014
(Carlson et al., 2016) releases and the data set from Wang et al.
(2015) provided data for several ligands for each individual
protein target, we analyzed the failure cases at the level of the
individual proteins (Supplementary Tables 6–8). The Pearson

and Spearman correlations are below 0.3 for the BACE and CDK2
systems from the Wang et al. set (Wang et al., 2015) and CHK1
and SYK in the CSAR sets. In contrast, the CDK2 complexes
in the CSAR 2012 set (Dunbar et al., 2013) achieved a Pearson
correlation of r = 0.50 ± 0.05. The highest correlations were
observed for the PTP1B, Mcl-1, TYK2 systems in the Wang
et al. (2015) data (Supplementary Table 6) and for the CDK2-
Cyclin A complex (Supplementary Table 7) and TrmD on the
CSAR data (Supplementary Table 8). Strikingly, only for PTP1B,
TYK2, and TrmD was R2 > 0.3 observed while all Q2

F3 values
were above 0.5.

3.4. Feature Importance Analysis
To assess which features contribute to accurate predictions,
two strategies were chosen. By permutation feature importance,
the contribution to the prediction was quantified by the
change in the Pearson correlation coefficient after shuffling
the values in the individual feature columns randomly. Three
different model types – namely, linear regression, support vector
machine, and extremely random forests – showed different
relative contributions of the individual features (Figure 5A).
While LR assigned high contributions to a few features, the
reduction in predictive performance for each shuffled feature
was lower for eRF and the contribution signal was more
evenly distributed among the different features.Molar refractivity
(MR), which was the feature most strongly correlated with
the target variable 1G , showed the strongest effect in the
LR, lSVR, and eRF models. For LR, randomizing MR almost
completely removed the predictive power (r < 0.2). Among
the protein features, the LR, SVR, and RF methods showed
high contributions for the general descriptor PlogP(Non-
Arom) (Figure 5A). While both SVR and eRF assigned high
contributions to the PMR(Non-Arom), LR, and lSVR placed
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FIGURE 5 | Analysis of feature importance for the predictive performance of RASPD+. (A) The average change in predictive performance as measured by Pearson

correlation when the corresponding feature column was shuffled. Results are reported for linear regression (LR), linear support vector regression (lSVR), support vector

regression (SVR), and extremely random forests (eRF). (B) Ablation based analysis entailing training eRF models with different feature sets. The models trained on just

the values for molar refractivity (MR only) and molecular weight (MASS only) serve as lower bounds for measuring performance. The “ligand only” and “protein only”

models trained on either only ligand or only protein features, respectively, perform better than the “MR only” and “MASS only” models but not as well as the models

derived from all features. The protein features contain implicit information on the ligand size and this may indicate why the performance of the “protein only” model is

better than that of the “ligand only” model (see Figure 1 for details).

higher contributions on PlogP(Arom) and PMR(Arom) among
the general protein features. PA(Amide-O), which had the
second-highest correlation with 1G , showed a pronounced
signal for the editedSVR and eRF models. The hydrogen bond
acceptor count at the negatively charged amino acid residues
[PA(D+E)] was informative for all these machine learning
methods. In the eRF model, it had an importance value similar
to the general protein features, such as the residue log P values.
This is especially surprising as no information on the ligand
charge was provided, and the count of positively charged amino
acid hydrogen bond donors [PD(K+R+HIP)] did not contribute
strongly to the predictions.

Additionally, we trained eRFmodels on subsets of the features
and compared their performance to the full model (Figure 5B).
Among the models trained on a single feature, the model trained
on molar refractivity (MR) achieved better performance than

that trained on molecular weight (MASS). Models trained on
just the features of the protein pocket performed better than
models using only ligand descriptors. In this case, the protein
features still contained information about the ligand implicitly,
as each protein descriptor is dependent on the size of the sphere
surrounding the ligand. These reduced feature set models were
also subjected to permutation feature importance analysis. For
models with only ligand features, a very similar ranking of
ligand features compared to the full training set was observed,
illustrating the general preference for using those features for
prediction (Supplementary Figure 7).

When examining the feature importance for protein-only
models, the backbone hydrogen bond acceptor [PA(Amide-O)]
stands out compared to the feature importance on the full
feature set (Supplementary Figure 8). This could be partially
explained by the fact that this feature showed a strong correlation
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TABLE 3 | Average enrichment factors with corresponding standard deviations for the top 1, 5, and 10% of the data selected from the DUD-E systems.

Full DUD-E w/o cofactor/surface binding

nsystems= 102 nsystems = 55

Method EF 1% EF 5% EF 10% EF 1% EF 5% EF 10%

eRF 1.8± 2.5 1.5± 1.4 1.3± 0.9 2.0± 3.0 1.7± 1.5 1.0± 1.0

RF 1.9± 2.4 1.5± 1.5 1.3± 1.0 2.3± 2.8 1.7± 1.7 1.4± 1.1

DNN 2.0± 2.0 1.4± 1.2 1.3± 0.9 1.8± 2.3 1.6± 1.3 1.4± 0.9

kNN 1.5± 1.9 1.3± 1.3 1.2± 0.9 1.8± 2.4 1.6± 1.6 1.0± 1.0

lSVR 2.6± 3.1 1.9± 1.6 1.6± 1.1 2.6± 3.3 2.0± 1.7 1.7± 1.2

SVR 2.3± 3.5 1.6± 1.5 1.4± 1.0 3.1± 4.3 1.9± 1.8 1.5± 1.1

LR 2.7± 3.4 2.0± 1.7 1.7± 1.2 2.9± 3.7 2.1± 1.8 1.8± 1.3

RASPD 4.1± 4.0 2.2± 1.7 1.7± 1.1 4.2± 4.2 2.3± 1.7 1.7± 1.2

Mean ensemble 2.0± 3.0 1.8± 1.6 1.6± 1.1 2.6± 3.4 2.0± 1.8 1.7± 1.1

Union 2.4± 2.3 1.8± 1.4 1.6± 1.0 2.8± 2.6 2.1± 1.6 1.8± 1.1

Union w/o kNN 2.5± 2.7 1.8± 1.5 2.0± 1.0 3.0± 3.0 2.1± 1.7 1.7± 1.1

Union Top 3 2.8± 3.6 1.9± 1.7 1.6± 1.2 3.3± 4.2 2.0± 2.0 1.8± 1.3

Union is the enrichment achieved by selecting the non-redundant set of candidate compounds obtained by combining the selections of each method. Performance when excluding

cofactor and surface binding sites is also reported. Values are also given for the original RASPD method.

with general ligand features (Figure 2) and thereby provides
information related to general ligand size.

3.5. Enrichment of Active Molecules From
the DUD-E Data Set
To assess the usefulness of our RASPD+ method, we simulated
a drug discovery setting using the benchmark DUD-E data
set, which contains several computationally generated decoys
per active compound (Mysinger et al., 2012). For each of
the seven machine learning models, we calculated enrichment
factors (EF) to quantify how effective ranking by predicted
binding free energies was at enriching active molecules from
the whole data set (Table 3). We also compared the RASPD+
results with those of RASPD (Mukherjee and Jayaram, 2013)
and found that the linear regression models of both RASPD+
and RASPD were the most effective when filtering to 1, 5, and
10% of the samples, with EFs of 2.7 ± 3.4 and 4.1 ± 4.0,
respectively, when filtering down to 1% of the samples. The
high standard deviation in the mean EF resulted from high
variability in the performance of different methods on individual
proteins (Supplementary Table 9). As methods that ranked on
average less favorably provided the only acceptable enrichment
on some of the systems, we chose a conservative approach to
interpreting the results by combining the predictions of all the
methods. We thus also considered the union of the sets of top
candidate molecules from all seven machine learning models.
This combination achieved an enrichment at 1% of 2.4± 2.3,
similar to the linear methods. By excluding the predictions of
the worst-performing method kNN (Union w/o kNN), this set
improved to 2.5± 2.7. When only combining the predictions
of the three methods performing best on the DUD-E set LR,
lSVR, and SVR (Union Top 3), this further increased to 2.8± 3.6.
For comparison, the performance of scoring functions functions
based on the docked structures of ligand-protein complexes on

the DUD-E set has been assessed by Chen et al. (2019). The
highest early (1%) and late (10%) enrichment factors were 6.67
and 2.55, respectively, and were obtained using the knowledge-
based DLIGAND2 scoring method, whereas the corresponding
values obtained with the widely used AutoDock Vina scoring
function were 5.12 and 2.60. The late EF obtained with the
RASPD+ union w/o kNN approach is similar to that of these
docking-based methods.

One of the reasons for some of the poor predictions with
DUD-E is that, in contrast to the training with PDBbind,
the query ligands may bind at a different position to the co-
crystallized ligand in the target whose center of mass is used
to define the binding site for which protein properties are
computed. If the query ligand binds in a somewhat different
position, the computed protein features may not be so relevant.
From the feature importance analysis (Figure 5), we see that for
the eRF model, all the features contribute in a similar way to
the final prediction. In contrast, for the LR and lSVR models,
the dominant contributions to the prediction were from ligand
molar refractivity and just three out of the 15 protein features.
Since, in the LR and lSVR models, only a few protein features
contribute to the final score, erroneous protein features may have
less impact on the final predicted value compared to the random
forest-based models. The average EF values for the LR method,
and for the original RASPD LR model, for all the DUD-E sets
are therefore higher than for the other methods. Another reason
for low EF values for some targets is the presence of cofactors or
structural water molecules in the binding site in some proteins
as well as highly solvent exposed binding sites. To assess how
much the performance is impacted by situations not properly
modeled by RASPD+, we also considered whether a cofactor
in the binding site or a mostly solvent-exposed surface binding
site affects performance. For most methods, the exclusion of
those challenging pockets, which by design could not be fully
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TABLE 4 | Mean enrichment factors for different subsets of the DUD-E set.

Union Union top 3

Target subset Count EF 1% EF 5% EF 10% EF 1% EF 5% EF 10%

Cytochrome P450 2 1.86 1.25 1.28 1.11 1.65 1.42

GPCR 5 4.30 2.94 2.18 7.37 3.61 2.61

Ion channel 2 5.54 2.15 1.61 7.67 2.16 1.56

Kinase 23 3.04 2.55 2.15 4.43 3.03 2.49

Metal containing enzyme 18 2.47 1.66 1.42 2.89 1.84 1.55

Miscellaneous 30 1.83 1.49 1.41 1.57 1.34 1.12

Nuclear receptor 11 1.73 1.18 1.11 1.14 0.93 1.01

Protease 11 1.56 1.62 1.41 1.91 1.75 1.60

Performance reported both the union over the predictions of all methods and the union of the predictions from the three best ranking methods (LR, lSVR, and SVR).

modeled with RASPD and RASPD+ descriptors, improved the
mean performance (Table 3).

Additionally, we analyzed the performance of the different
protein subgroups in the DUD-E set (Table 4). Here we observed
the lowest average performance for the protease subgroup when
considering the union over all methods and when considering
only the top three union, cytochrome P450, and nuclear receptor
targets were the groups with the lowest enrichment. The poor
performance for cytochrome P450s may be due to the heme
cofactor in their binding site whereas it is notable that the
eight proteases (out of the 11 in the DUD-E data set) with
low EF factors have ligands that are solvent exposed in the
crystal structure or there are structural water molecules bridging
between polar atoms of the ligand and the protein. The highest
enrichment was observed for ion channels, G-protein coupled
receptors (GPCR), and kinases in both settings (Table 4).

4. DISCUSSION

As the global health crisis surrounding the SARS-CoV-2
pandemic (Wu et al., 2020) has demonstrated, there is a need
for fast computational tools to accelerate drug design and
development processes. Themethodwe present here, RASPD+, is
able to perform virtual screening of large libraries of compounds
(Irwin and Shoichet, 2005; Wishart et al., 2006) at a fraction of
the time typically required for protein-ligand docking methods.
This enables quick prioritization of candidates for a follow
up with more accurate yet computationally more demanding
methods, such as docking. We achieved the speed up by training
machine learning models on simple pose-invariant ligand and
protein descriptors. With this simplified approach, we achieved
results comparable to existing scoring functions (Wang et al.,
2002; Ballester and Mitchell, 2010; Cao and Li, 2014; Jiménez
et al., 2018) when predicting the binding free energy, 1G ,
on several data sets. By splitting the PDBbind training, testing,
and validation data in a nested cross-validation setup, we were
able to assess reliably that random forest models, particularly
the extremely random forest model, performed best on this
type of data. While this splitting strategy increases confidence
in the comparison of learning methods and feature importance

analysis within the study, other data set splitting strategies, which
explicitly control how similar proteins or ligands are between
training and test sets (Feinberg et al., 2018; Sieg et al., 2019; Su
et al., 2020), may be more appropriate to assess performance on
completely different ligands or proteins directly.

We accounted for this deficiency by not only testing the
regression performance on different external test sets but also
by assessing the ability of the RASPD+ models to enrich active
molecules from a set of inactive decoys. Although the achievable
enrichment factors were not as high as state-of-the-art docking
or free energy prediction methods (Li et al., 2014), RASPD+
still displayed appreciable enrichment of active molecules on
the DUD-E data set (Mysinger et al., 2012). RASPD+ was able-
without sampling docking poses-to achieve similar performance
to an older scoring function in a docking method comparison
(Li et al., 2013; Chen et al., 2019). This is remarkable for two
reasons: First, the training set only includes molecules displaying
binding to their specific target protein. Secondly, four of the six
physicochemical descriptors (molecular weight, hydrogen bond
donor and acceptor count, and logP value), used to describe
the ligand molecule, were initially used to select decoys similar
to the active molecules for the DUD-E data set (Huang et al.,
2006; Mysinger et al., 2012). This makes the task of distinguishing
active and inactive molecules particularly difficult for our models
that employ only basic ligand descriptors (Lagarde et al., 2015).
Notably, however, molar refractivity (MR), which was not used
for the creation of the DUD-E decoys, was not only a powerful
predictor on its own (r > 0.5) but was also consistently assigned
the highest feature importance among the ligand features. The
high importance of MR agrees with results from a recent study
that used ligand descriptors to enhance the performance of a
common docking scoring function (Boyles et al., 2020).

Not considering pockets containing metal ions or other
cofactors, which are not taken into account by the simple
RASPD+ descriptors, yielded slightly higher average enrichment
than on the full DUD-E set. Random forest methods, which
were best suited for the 1G regression on known binders,
were for most proteins outperformed by the simpler linear
regression methods. This observation might support the recent
finding that random forest methods, in particular, benefit from
highly similar training molecules (Su et al., 2020). Considering
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the strengths and weaknesses of the different machine learning
methods, we therefore recommend that for applications of
RASPD+, the results of the seven different machine learning
methods are combined by picking top candidates from the
rankings produced by each method. For this, we demonstrated
different combinations using the union of selection sets from the
different methods.

If this approach is applied to pick the top 10% of RASPD+
candidates, this can provide a 10-fold reduction in the time
spent for docking. Notably, we achieved computation times
for RASPD+ that were over 100 times faster than Glide SP
docking (Friesner et al., 2004) (Schrödinger Release 2019-4:
Glide, Schrödinger, LLC, New York, NY) on a laptop grade CPU
(data not shown), meaning that computation times for RASPD+
screening are negligible compared to times for docking and
molecular dynamics simulation.

Thus, the use of RASPD+ is clearly beneficial in time-critical
applications of virtual screening of large compound libraries
against individual protein targets. Moreover, higher structure-
based screening throughput could also enable more effective
inverse virtual screening of protein databases to assess the
specificity and potential side-effects of candidate molecules.
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Jiménez, J., Škalič, M., Martínez-Rosell, G., and De Fabritiis, G. (2018). DEEP :

protein- ligand absolute binding affinity prediction via 3D-convolutional neural

networks. J. Chem. Inf. Model. 58, 287–296. doi: 10.1021/acs.jcim.7b00650

Kokh, D. B., Richter, S., Henrich, S., Czodrowski, P., Rippmann, F., andWade, R. C.

(2013). TRAPP: a tool for analysis of transient binding pockets in proteins. J.

Chem. Inf. Model. 53, 1235–1252. doi: 10.1021/ci4000294

Kotila, M. (2018). Talos. Available online at: https://github.com/autonomio/talos

Lagarde, N., Zagury, J.-F., and Montes, M. (2015). Benchmarking data sets for

the evaluation of virtual ligand screening methods: review and perspectives. J.

Chem. Inf. Model. 55, 1297–1307. doi: 10.1021/acs.jcim.5b00090

Li, G.-B., Yang, L.-L., Wang, W.-J., Li, L.-L., and Yang, S.-Y. (2013). ID-score: a

new empirical scoring function based on a comprehensive set of descriptors

related to protein-ligand interactions. J. Chem. Inf. Model. 53, 592–600.

doi: 10.1021/ci300493w

Li, J., Fu, A., and Zhang, L. (2019). An overview of scoring functions used for

protein ligand interactions in molecular docking. Interdisc. Sci. 11, 320–328.

doi: 10.1007/s12539-019-00327-w

Li, Y., Han, L., Liu, Z., and Wang, R. (2014). Comparative assessment of scoring

functions on an updated benchmark: 2. evaluation methods and general results.

J. Chem. Inf. Model. 54, 1717–1736. doi: 10.1021/ci500081m

Liang, J., Tsui, V., Van Abbema, A., Bao, L., Barrett, K., Beresini, M., et al. (2013a).

Lead identification of novel and selective TYK2 inhibitors. Eur. J. Med. Chem.

67, 175–187. doi: 10.1016/j.ejmech.2013.03.070

Liang, J., van Abbema, A., Balazs, M., Barrett, K., Berezhkovsky, L., Blair, W., et al.

(2013b). Lead optimization of a 4-aminopyridine benzamide scaffold to identify

potent, selective, and orally bioavailable TYK2 inhibitors. J. Med. Chem. 56,

4521–4536. doi: 10.1021/jm400266t

Lipinski, C. A., Lombardo, F., Dominy, B. W., and Feeney, P. J. (2001).

Experimental and computational approaches to estimate solubility and

permeability in drug discovery and development settings. Adv. Drug Deliv. Rev.

46, 3–26. doi: 10.1016/S0169-409X(00)00129-0

Liu, Z., Li, Y., Han, L., Li, J., Liu, J., Zhao, Z., (2015). PDB-wide collection

of binding data: current status of the PDBbind database. Bioinformatics 31,

405–412. doi: 10.1093/bioinformatics/btu626

Mukherjee, G., and Jayaram, B. (2013). A rapid identification of hit molecules

for target proteins via physico-chemical descriptors. Phys. Chem. Chem. Phys.

15:9107. doi: 10.1039/c3cp44697b

Mysinger, M. M., Carchia, M., Irwin, J. J., and Shoichet, B. K. (2012). Directory

of useful decoys, enhanced (DUD-E): better ligands and decoys for better

benchmarking. J. Med. Chem. 55, 6582–6594. doi: 10.1021/jm300687e

O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T.,

Hutchison, G. R. (2011). Open Babel: an open chemical toolbox J. Cheminform.

3:33. doi: 10.1186/1758-2946-3-33

Pedregosa, F., Varoquaux, G., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

et al. (2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12,

2825–2830.

Pei, J., Zheng, Z., Kim, H., Song, L. F., Walworth, S., Merz, M. R., et al. (2019).

Random forest refinement of pairwise potentials for protein–ligand decoy

detection. J. Chem. Inf. Model. 59, 3305–3315. doi: 10.1021/acs.jcim.9b00356

Sieg, J., Flachsenberg, F., and Rarey, M. (2019). In need of bias control: evaluating

chemical data for machine learning in structure-based virtual screening. J.

Chem. Inf. Model. 59, 947–961. doi: 10.1021/acs.jcim.8b00712

Smith, R. D., Dunbar, J. B., Ung, P. M.-U., Esposito, E. X., Yang, C.-Y.,

Wang, S., et al. (2011). CSAR benchmark exercise of 2010: combined evaluation

across all submitted scoring functions. J. Chem. Inf. Model. 51, 2115–2131.

doi: 10.1021/ci200269q

Su,M., Feng, G., Liu, Z., Li, Y., andWang, R. (2020). Tapping on the black box: how

is the scoring power of a machine-learning scoring function depended on the

training set? J. Chem. Inf. Model. 60, 1122–1136. doi: 10.1021/acs.jcim.9b00714

Todeschini, R., Ballabio, D., and Grisoni, F. (2016). Beware of unreliable Q2 ! A

comparative study of regression metrics for predictivity assessment of QSAR

models. J. Chem. Inf. Model. 56, 1905–1913. doi: 10.1021/acs.jcim.6b00277

Torres, P. H. M., Sodero, A. C. R., Jofily, P., and Silva, F. P. Jr. (2019).

Key topics in molecular docking for drug design. Int. J. Mol. Sci. 20:4574.

doi: 10.3390/ijms20184574

Vieira, T. F., and Sousa, S. F. (2019). Comparing autoDock and vina

in ligand/decoy discrimination for virtual screening. Appl. Sci. 9:4538.

doi: 10.3390/app9214538

Wang, L., Deng, Y., Knight, J. L., Wu, Y., Kim, B., Sherman, W., et al. (2013).

Modeling local structural rearrangements using FEP/REST: application to

relative binding affinity predictions of CDK2 inhibitors J. Chem. Theory

Comput. 9, 1282–1293. doi: 10.1021/ct300911a

Wang, L., Wu, Y., Deng, Y., Kim, B., Pierce, L., Krilov, G., et al. (2015). Accurate

and reliable prediction of relative ligand binding potency in prospective drug

discovery by way of a modern free-energy calculation protocol and force field.

J. Am. Chem. Soc. 137, 2695–2703. doi: 10.1021/ja512751q

Wang, R., Fang, X., Lu, Y., and Wang, S. (2004). The PDBbind database:

collection of binding affinities for protein-ligand complexes with known three-

dimensional structures. J. Med. Chem. 47, 2977–2980. doi: 10.1021/jm030580l

Wang, R., Lai, L., and Wang, S. (2002). Further development and validation of

empirical scoring functions for structure-based binding affinity prediction. J.

Comput. Aided Mol. Des. 16, 11–26. doi: 10.1023/A:1016357811882

Wang, Z., Sun, H., Shen, C., Hu, X., Gao, J., Li, D., et al. (2020). Combined

strategies in structure-based virtual screening. Phys. Chem. Chem. Phys. 22,

3149–3159. doi: 10.1039/C9CP06303J

Wiener, H. (1947). Structural determination of paraffin boiling points. J. Am.

Chem. Soc. 69, 17–20. doi: 10.1021/ja01193a005

Wildman, S. A., and Crippen, G. M. (1999). Prediction of physicochemical

parameters by atomic contributions. J. Chem. Inf. Comput. Sci. 39, 868–873.

doi: 10.1021/ci990307l

Willems, H., De Cesco, S., and Svensson, F. (2020). Computational

Chemistry on a Budget: supporting drug discovery with limited

resources. J. Med. Chem. 63, 10158–10169. doi: 10.1021/acs.jmedchem.9b

02126

Wilson, D. P., et al. (2007). Structure-based optimization of protein tyrosine

phosphatase 1B inhibitors: from the active site to the second phosphotyrosine

binding site. J. Med. Chem. 50, 4681–4698. doi: 10.1021/jm0702478

Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P.,

et al. (2006). DrugBank: a comprehensive resource for in silico drug

Frontiers in Molecular Biosciences | www.frontiersin.org 13 December 2020 | Volume 7 | Article 601065116

https://doi.org/10.1021/acscentsci.8b00507
https://doi.org/10.1021/jm301448p
https://doi.org/10.1021/jm0306430
https://doi.org/10.1007/s10822-016-9946-8
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1021/jm101423y
https://doi.org/10.26434/chemrxiv.12636704.v1
https://doi.org/10.1021/jm0608356
https://doi.org/10.1021/ci049714+
https://doi.org/10.1021/acs.jcim.7b00650
https://doi.org/10.1021/ci4000294
https://github.com/autonomio/talos
https://doi.org/10.1021/acs.jcim.5b00090
https://doi.org/10.1021/ci300493w
https://doi.org/10.1007/s12539-019-00327-w
https://doi.org/10.1021/ci500081m
https://doi.org/10.1016/j.ejmech.2013.03.070
https://doi.org/10.1021/jm400266t
https://doi.org/10.1016/S0169-409X(00)00129-0
https://doi.org/10.1093/bioinformatics/btu626
https://doi.org/10.1039/c3cp44697b
https://doi.org/10.1021/jm300687e
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1021/acs.jcim.9b00356
https://doi.org/10.1021/acs.jcim.8b00712
https://doi.org/10.1021/ci200269q
https://doi.org/10.1021/acs.jcim.9b00714
https://doi.org/10.1021/acs.jcim.6b00277
https://doi.org/10.3390/ijms20184574
https://doi.org/10.3390/app9214538
https://doi.org/10.1021/ct300911a
https://doi.org/10.1021/ja512751q
https://doi.org/10.1021/jm030580l
https://doi.org/10.1023/A:1016357811882
https://doi.org/10.1039/C9CP06303J
https://doi.org/10.1021/ja01193a005
https://doi.org/10.1021/ci990307l
https://doi.org/10.1021/acs.jmedchem.9b02126
https://doi.org/10.1021/jm0702478
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Holderbach et al. RASPD+: Protein-Ligand Binding Prediction

discovery and exploration.Nucleic Acids Res. 34, D668–D672. doi: 10.1093/nar/

gkj067

Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., et al. (2020). A new

coronavirus associated with human respiratory disease in China. Nature 579,

265–269. doi: 10.1038/s41586-020-2008-3

Yang, X., Wang, Y., Byrne, R., Schneider, G., and Yang, S. (2019). Concepts of

artificial intelligence for computer-assisted drug discovery. Chem. Rev. 119,

10520–10594. doi: 10.1021/acs.chemrev.8b00728

Yuan, J.-H., Han, S. B., Richter, S., Wade, R. C., and Kokh, D. B. (2020).

Druggability assessment in TRAPP using machine learning approaches. J.

Chem. Inf. Model. doi: 10.1021/acs.jcim.9b01185

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Holderbach, Adam, Jayaram, Wade and Mukherjee. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org 14 December 2020 | Volume 7 | Article 601065117

https://doi.org/10.1093/nar/gkj067
https://doi.org/10.1038/s41586-020-2008-3
https://doi.org/10.1021/acs.chemrev.8b00728
https://doi.org/10.1021/acs.jcim.9b01185
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Advantages  
of publishing  
in Frontiers

OPEN ACCESS

Articles are free to read  
for greatest visibility  

and readership 

EXTENSIVE PROMOTION

Marketing  
and promotion  

of impactful research

DIGITAL PUBLISHING

Articles designed 
for optimal readership  

across devices

LOOP RESEARCH NETWORK

Our network 
increases your 

article’s readership

Frontiers
Avenue du Tribunal-Fédéral 34  
1005 Lausanne | Switzerland  

Visit us: www.frontiersin.org
Contact us: frontiersin.org/about/contact

FAST PUBLICATION

Around 90 days  
from submission  

to decision

90

IMPACT METRICS

Advanced article metrics  
track visibility across  

digital media 

FOLLOW US 

@frontiersin

TRANSPARENT PEER-REVIEW

Editors and reviewers  
acknowledged by name  

on published articles

HIGH QUALITY PEER-REVIEW

Rigorous, collaborative,  
and constructive  

peer-review

REPRODUCIBILITY OF  
RESEARCH

Support open data  
and methods to enhance  
research reproducibility

http://www.frontiersin.org

	Cover
	Frontiers eBook Copyright Statement
	Molecular Dynamics and Machine Learning in Drug Discovery
	Table of Contents
	Editorial: Molecular Dynamics and Machine Learning in Drug Discovery
	Author Contributions
	References

	On Calculating Free Energy Differences Using Ensembles of Transition Paths
	1. Introduction
	2. Methods
	2.1. Host-Guest Systems
	2.2. Molecular Dynamics
	2.3. Reweighting of Ensembles by Variance Optimization
	2.4. Calculating Rates by Ensemble Splitting
	2.5. Calculating Electrostatic Interaction Energies

	3. Results
	3.1. Derivation of Correction Terms
	3.2. Extended Trajectory Ensembles With Lower Friction Coefficients
	3.3. Free Energy Estimates, Correction Terms, and Comparison With Previous Benchmarks

	4. Discussion and Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Recent Developments in Linear Interaction Energy Based Binding Free Energy Calculations
	1. END-Point Methods and Linear Interaction Energy
	2. Statistical Weighting of Multiple Protein-Ligand Binding Conformations
	3. Applicability Domain Analysis for LIE
	4. (Semi-)Automated LIE Modeling and Analysis Tools
	5. Conclusions
	Author Contributions
	Funding
	References

	An Analysis of Proteochemometric and Conformal Prediction Machine Learning Protein-Ligand Binding Affinity Models
	Introduction
	Materials and Methods
	Data Set Source and Preparation
	Machine Learning Model Training and Conformal Prediction

	Results
	Retrospective Analysis
	Semi-prospective Test

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

	Time-Lagged t-Distributed Stochastic Neighbor Embedding (t-SNE) of Molecular Simulation Trajectories
	1. Introduction
	2. Methods
	3. Results
	3.1. Alanine Dipeptide
	3.2. Trp-Cage

	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Hybrid MM/CG Webserver: Automatic Set Up of Molecular Mechanics/Coarse-Grained Simulations for Human G Protein-Coupled Receptor/Ligand Complexes
	Introduction
	Materials and Methods
	Input
	Setup Modes
	Automatic Preparation
	Interactive Preparation

	Workflow
	Output
	Server Architecture
	Front-End
	Back-End


	Results
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery
	Introduction
	The Molecular Mechanics Paradigm and Molecular Dynamics Simulation
	Mechanistic Insight Into Drug Dissolution and Solubility From Md Simulation
	Nanomedicine
	Nanoparticle Design and Function
	Molecular Dynamics Simulation Applied to Nanomedicine
	Md Insight Examples
	Behavior in the Bloodstream and Protective Polymer Corona
	Drug Loading and Controlled Release
	Nanoparticle Interaction With the Lipid Membrane

	Conclusion
	Author Contributions
	References

	Hierarchical Graph Representation of Pharmacophore Models
	Introduction
	Materials and Methods
	Protein–Ligand Complex Preparation
	Molecular Dynamics Simulations
	Library Generation
	Pharmacophore Generation and Virtual Screening
	Hierarchical Graph of Pharmacophore Models Generation
	Feature Vectors and Graph Nodes
	Hierarchical Linkage
	Visualization


	Results and Discussion
	Case Study: Glucokinase
	Hierarchical Graphs of Pharmacophore Models
	Analysis of the Unique Feature Vectors
	Uses and Analysis of the Hierarchical Graphs
	Analysis of Hierarchical Graphs of Pharmacophore Models Colored by Virtual Screening Results
	Analysis of the Hierarchical Graph of Pharmacophore Models Projected to the GK Protein

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	RASPD+: Fast Protein-Ligand Binding Free Energy Prediction Using Simplified Physicochemical Features
	1. Introduction
	2. Methods
	2.1. Datasets
	2.2. Generation of Molecular Descriptors
	2.3. General Strategy for Training and Testing
	2.4. Evaluation Metrics
	2.5. Models and Hyperparameters
	2.6. Estimation of Feature Importance
	2.7. Enrichment Analysis With Decoy Compounds From the DUD-E Dataset

	3. Results
	3.1. Analysis of the Descriptors and Data Sets
	3.2. Trained Models Random Forests Outperform Neural Networks
	3.3. Results on External Test Sets
	3.4. Feature Importance Analysis
	3.5. Enrichment of Active Molecules From the DUD-E Data Set

	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

	Back Cover



