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Editorial on the Research Topic

The Interplay Between Epigenetic Regulation and Other Cellular Processes

Epigenetic changes can influence chromatin structure and, in turn, the accessibility of genetic
information as well as the stability of the whole genome. As a result, epigenetic modifications
are important to many biological processes, and disruption of epigenetic configuration can lead
to developmental abnormalities in plants and mammals, such as failure in tomato fruit ripening
(Zhong et al., 2013; Lang et al., 2017) and embryo lethality inmice (Cortázar et al., 2011; Blewitt and
Whitelaw, 2013). In addition to coordinating with developmental processes, epigenetic regulation
can also play an important role in organisms’ responses and adaptation to environmental changes
(Etchegaray and Mostoslavsky, 2016; Zhang et al., 2018). Thus, epigenetic processes are tightly
regulated in coordination with other cellular processes.

On one hand, cellular processes with important functions can be mediated by epigenetic
modifications at the transcriptional level. For instance, Steadman et al. reported that algae cultures
treated with 5-aza-2’-deoxycytidine, an inhibitor of DNA methylation, resulted in a remarkable
increase in the level of lipid accumulation and increased cell size. Similarly, Zhang M. et al.
discovered that DNAmethylation regulates fatty acid metabolism and intramuscular fat deposition
in chicken. As reviewed in Zhang H. et al., histone deacetylation leads to the initiation and
progression of osteoarthritis; while Li et al. showed that knockdown of SETDB1, a histone H3 lysine
9 (H3K9) methyltransferase, resulted in increased levels of reactive oxygen species and impaired
proliferation of mouse spermatogonial stem cells.

On the other hand, epigenetic features can be affected by other important biological processes.
Certain cellular processes are inherently required for epigenetic modifications, especially DNA
methylation and histone post-transcriptional modifications, which are enzymatic processes that
involve not only the chromatin but also donor molecules for the modifications. For instance,
disruptions in the folate biosynthesis pathway impair the supply of methyl groups for DNA
methylation and for histonemethylation, resulting in transcriptional desilencing at certain genomic
loci in Arabidopsis thaliana due to lowered levels of DNA methylation and histone H3K9
dimethylation (Zhang et al., 2012). In this Research Topic, González et al. revealed that, in mouse
male germ cells, cocaine caused epigenetic reprogramming of histone modifications involved in
gene silencing and the histone-to-protamine replacement, while the effects of cocaine on the
histone modifications can be largely blocked by inhibition of the dopamine receptor 1 (DRD1),
suggesting a novel connection between the DRD1-dependent dopaminergic system and epigenetic
regulation. In Arabidopsis thaliana, Zhu et al. observed genome hypomethylation caused by
chemical inhibition of the target of rapamycin (TOR), thereby pointing to a connection between
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epigenetic regulation and this evolutionarily conserved master
regulator, which integrates multiple cellular processes to promote
growth in all eukaryotes (Dobrenel et al., 2016). As reviewed
by Ye et al., the transcription factor ZNF143, which shows
higher expression in cancer cells than normal cells, connects
promoters to distal regulatory elements and thereby mediates
chromatin looping.

Many important biological processes involve RNA
metabolism, such as N6-methyladenosine that carries many
functions in plants as reviewed by Zheng et al., as well as the
newly identified miRNAs that silence an important regulator
of apoptosis in the report by Coccia et al. Epigenetic regulation
of the chromatin are often closely related to RNA metabolism.
As reviewed by Zhang J. et al., a crosstalk exists between
epigenetic regulation and alternative RNA processing including
alternative splicing and alternative polyadenylation. Apparently,
the interplay between epigenetic regulation and certain cellular
processes can be bidirectional.

The interplay between epigenetic regulation and diverse
cellular processes has become increasingly valued over the past
few years. While this theme is highlighted by the articles in this

Research Topic, the need for a thorough understanding of the
epigenetics-connected cellular network continues to urge more
discoveries and new insights in this important research area.
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DNA methylation is an indispensable epigenetic modification that dynamically regulates
gene expression and genome stability during cell growth and development processes.
The target of rapamycin (TOR) has emerged as a central regulator to regulate many
fundamental cellular metabolic processes from protein synthesis to autophagy in all
eukaryotic species. However, little is known about the functions of TOR in DNA
methylation. In this study, the synergistic growth inhibition of Arabidopsis seedlings
can be observed when DNA methylation inhibitor azacitidine was combined with TOR
inhibitors. Global DNA methylation level was evaluated using whole-genome bisulfite
sequencing (WGBS) under TOR inhibition. Hypomethylation level of whole genome
DNA was observed in AZD-8055 (AZD), rapamycin (RAP) and AZD + RAP treated
Arabidopsis seedlings. Based on functional annotation and KEGG pathway analysis
of differentially methylated genes (DMGs), most of DMGs were enriched in carbon
metabolism, biosynthesis of amino acids and other metabolic processes. Importantly,
the suppression of TOR caused the change in DNA methylation of the genes associated
with plant hormone signal transduction, indicating that TOR played an important role in
modulating phytohormone signals in Arabidopsis. These observations are expected to
shed light on the novel functions of TOR in DNA methylation and provide some new
insights into how TOR regulates genome DNA methylation to control plant growth.

Keywords: target of rapamycin, DNA methylation, AZD-8055, rapamycin, plant growth, Arabidopsis

INTRODUCTION

DNA methylation is an important part of epigenetics, which is widely distributed in microbes,
animals and plants. DNA methylation plays an important role in controlling transcriptional
silencing of transposon, regulating gene expression and maintaining plant development (Moore
et al., 2013; Bouyer et al., 2017; Zhang et al., 2018), which is one of the most studied epigenetic
modifications in epigenetics. The methyl of DNA methylation provided by S-adenosylmethionine
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is transferred to the cytosine of genome DNA under the catalysis
of DNA methyltransferase (Razin and Riggs, 1980). Mammals
mainly methylate cytosine at symmetrical CG site, while plant
DNA methylation occurs in all cytosine sequence contexts:
CG, CHG, and CHH (H represents A, T, or C) (Lister et al.,
2008). DNA methylation regions are mainly found in highly
repetitive sequences (transposon and rDNA), promoter region
(suppressing gene expression), coding sequence region and
intergenic region. More than 5% of the expressed genes have
DNA methylation in their promoter region, and more than 33%
of genes contain DNA methylation within the coding sequence
region in Arabidopsis (Zhang et al., 2006). Promoter-methylated
genes are low expressed and show a greater degree of tissue
specific expression, whereas genes methylated in transcribed
regions are highly expressed (Zhang et al., 2006). However,
recently study also showed that methylation in transcribed
regions can negatively regulate the gene expression (Long et al.,
2014; Lou et al., 2014).

DNA methylation is critically important for normal growth
and development in both animals and plants; null mutations
of DNA methyltransferase DNMT1 or DNMT3 result in
embryonic lethality in mouse, and drm1/drm2/cmt3 triple
mutants exhibit developmental abnormalities in Arabidopsis
(Grace and Bestor, 2005; Chan et al., 2006). 5-Azacytidine
(Azacitidine) is a nucleoside analog of cytidine that specifically
inhibits DNA methylation by capturing DNA methyltransferase
in bacteria and mammalian (Christman, 2002). In plants,
genome-wide demethylation caused by methylation inhibitor
azacitidine leads to growth retardation, malformations, and
changes in the flowering time or flower sexuality (Fieldes
et al., 2005; Marfil et al., 2012). Interestingly, azacitidine can
increase amounts of somatic embryos in somatic embryogenesis
stage, indicating that DNA demethylation caused by azacitidine
promotes the reprogramming of gene expression, acquisition
of totipotency and initiation of embryogenesis in explant
(Osorio-Montalvo et al., 2018).

The target of rapamycin (TOR) is an evolutionarily conserved
protein kinase that integrates nutrient and energy signaling to
regulate growth and homeostasis in fungi, animals and plants.
TOR is activated by both nitrogen and carbon metabolites
and promotes energy-consuming processes such as mRNA
translation, protein biosynthesis and anabolism while represses
autophagy and catabolism in times of energy abundance
(Dobrenel et al., 2016; Juppner et al., 2018; Ahmad et al.,
2019). However, deregulated mammalian target of rapamycin
(mTOR) signaling is implicated in the progression of cancer
and diabetes, and the aging process in mammalian (Saxton
and Sabatini, 2017). Genetic, physiological and genomic studies
revealed that TOR plays central roles in plant embryogenesis,
seedling growth, root and shoot meristem activation, root hair
elongation, leaf expansion, flowering and senescence (Ren et al.,
2011, 2012; Xiong et al., 2013; Yuan et al., 2013; Xiong and
Sheen, 2014; Deng et al., 2017; Shi et al., 2018). TOR gene was
originally identified by genetic mutant screens for resistance to
rapamycin in budding yeast (Heitman et al., 1991). Subsequent
research showed that null mutation of tor resulted in embryonic
lethality in yeast, animals and plants (Heitman et al., 1991;

Ren et al., 2011; Saxton and Sabatini, 2017), indicating that TOR
was an essential kinase in eukaryotes. Since rapamycin acts as a
specific inhibitor of the TOR kinase, the TOR signaling pathway
is quickly considered as a central regulator by application
of rapamycin in yeast and animals (Benjamin et al., 2011).
However, TOR is insensitive to rapamycin in plants, which
is mainly due to evolutionary mutation of the FK506-binding
protein 12 (FKBP12) gene, resulting in loss of function to bind
rapamycin (Xu et al., 1998). To dissect TOR signaling pathway
in Arabidopsis by using rapamycin, Ren et al. (2012) generated
a rapamycin-hypersensitive line (BP12-2) by introducing yeast
FKBP12 gene into Arabidopsis. Inhibition of AtTOR in BP12-
2 line by rapamycin resulted in slower root, shoot and leaf
growth and development, leading to poor carbon and nitrogen
metabolism, nutrient uptake and light energy utilization (Ren
et al., 2012). Additionally, the ATP competitive TOR kinase
inhibitors including Torin2, WYE-132, Ku-0063794, and AZD-
8055 (AZD) were also applied to study the TOR pathway
in plants (Montane and Menand, 2013; Li et al., 2015; Song
et al., 2017, 2018). As revealed by recent studies, AZD had
high specificity and strong inhibitory effects on TOR activity in
flowering plants (Montane and Menand, 2013; Li et al., 2015),
implying that AZD can be preferentially applied to plants to
dissect TOR signaling pathway compared with other TOR kinase
inhibitors in angiosperms.

The TOR signaling pathway is a central regulator in regulating
cell growth, homeostasis, proliferation and metabolism
(Dobrenel et al., 2016; Saxton and Sabatini, 2017; Shi et al.,
2018). DNA methylation is an epigenetic mechanism that
plays key roles in genome integrity, suppression of transposon,
gene expression and somatic embryogenesis in plants (Osorio-
Montalvo et al., 2018; Zhang et al., 2018). However, it has not
been reported whether TOR directly or indirectly regulates
the methylation level of genome DNA to control plant growth
and development. In this study, we performed base-resolution
whole-genome bisulfite sequencing (WGBS) under TOR
inhibition in Arabidopsis. Differentially methylated regions
and genes support the evolutionarily conserved TOR functions
in ribosome biogenesis, metabolism, and cell growth. Our
detailed genome-wide analysis of DNA methylation under TOR
inhibition provides new insights into how TOR regulates global
DNA methylation to control plant growth.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
WTArabidopsisColumbia (Col-0) and the transgenicArabidopsis
BP12-2 line were used in this study (Ren et al., 2012). Sterile
treatment of Arabidopsis seeds surface prior to plating. The seeds
first repeatedly were shook in 75% ethanol for 2 min and the
supernatant was discarded. Then, shaking the seeds repeatedly
with 10% sodium hypochlorite containing 0.3% Tween-20 for
4 min, and discarding the supernatant; followed by four or five
rinses with sterile water, and the supernatant was discarded.
Finally, the seeds were suspended in 0.15% sterile agarose
solution and kept at 4◦C for 2 days. Sterilized seeds were plated
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on plates, and then grown in a controlled environment at 22◦C
under 16 h 60–80 µE·m−2 s−1 continuous light and 8 h darkness.

DNA Library Construction and
Whole-Genome Bisulfite Sequencing
BP12-2 seedlings of 7 days were treated with DMSO, AZD
(1 µM), RAP (5 µM), and AZD (1 µM) + RAP (5 µM) for
24 h, and each sample contained three biological replicates.
Total genomic DNA was extracted using a plant genomic DNA
kit (TIANGEN, Beijing, China) according to the manufacturer’s
instructions. Genomic DNA degradation and contamination was
monitored on agarose gels. DNA purity was checked using
the NanoPhotometer R© spectrophotometer (IMPLEN, Westlake
Village, CA, United States). DNA concentration was measured
using Qubit R© DNA Assay Kit in Qubit R© 2.0 Fluorometer
(Life Technologies, CA, United States). A total amount of
5.2 microgram genomic DNA spiked with 26 ng lambda
DNA were fragmented by sonication to 200–300 bp with
Covaris S220, followed by end repair and adenylation. Cytosine-
methylated barcodes were ligated to sonicated DNA as per
manufacturer’s instructions. Then these DNA fragments were
treated twice with bisulfite using EZ DNA Methylation-Gold
KitTM (Zymo Research). In addition, the resulting single-strand
DNA fragments were PCR amplificated using KAPA HiFi
HotStart Uracil + ReadyMix (2X). Library concentration was
quantified by Qubit R© 2.0 Fluorometer (Life Technologies, CA,
United States) and quantitative PCR, and the insert size was
checked on Agilent Bioanalyzer 2100 system. The clustering
of the index-coded samples was performed on a cBot Cluster
Generation System using TruSeq PE Cluster Kit v3-cBot-HS
(Illumia) according to the manufacturer’s instructions. After
cluster generation, the prepared library were sequenced on an
Illumina Hiseq 2000/2500 platform, and 100/50 bp single-end
reads were generated. Image analysis and base calling were
performed with the standard Illumina pipeline, and finally 100 bp
paired-end reads were generated.

Estimating Methylation Level
To identify the methylation level, we employed a sliding-window
approach, which was conceptually similar to approaches that have
been used for bulk BS-Seq. With window size = 3,000 bp and step
size = 600 bp (Smallwood et al., 2014), the sum of methylated
cytosine (mC) and unmethylated cytosine (C) read counts in each
window were calculated. Methylation level (ML) for each cytosine
site showed the fraction of methylated C, and was defined as:
ML (mC) = reads (mC)/reads (mC) + reads (C). Calculated
ML was further corrected with the bisulfite non-conversion rate
according to previous studies (Lister et al., 2013).

Analysis of Methylation Levels in
Genomic Functional Regions
Analysis of the average methylation level of the CG, CHG, and
CHH sites in genomic functional regions including promoter
(2 kb region upstream of the transcription start site), 5′UTR,
exon, intron and 3′UTR regions. Divided each functional element
region in the genome annotation into 20 bins, and counted the

number of mC and C reads in each bin. For average plots, average
values in 20 bins were calculated and plotted.

Differentially Methylated Regions (DMRs)
Analysis
Differentially methylated regions (DMRs) were identified using
the Bsseq R package software, which used a sliding-window
approach (reads coverage ≥5). The window was set to 1,000 bp
and step length was 100 bp. The main steps of identification
DMR were as follows: First set the sliding window and sliding
step size, every 1000 bp as a window and 100 bp as the step
size. Selected the DNA methylation level difference value >0.1
and the DNA methylation difference fold-change >2 between the
treatment and the control sample, and the number of cytosine
>10 as potential DMRs. Next, probabilities were calculated using
a Fisher’s exact test. The regions with significant differences
(p < 0.05) were considered as DMRs. Then, moved to the next
window with the step size and repeated the above steps to obtain
DMRs information of the whole genome. FDR (FDR < 0.05) was
used to correct the p value of all DMRs.

GO and KEGG Enrichment Analysis of
DMR-Related Genes (DMGs)
Gene Ontology (GO) enrichment analysis of genes related to
DMRs was implemented by the GOseq R package (Young
et al., 2010), in which gene length bias was corrected. GO
terms with corrected P-value less than 0.05 were considered
significantly enriched by DMGs. Kyoto Encyclopedia of Genes
and Genomes (KEGG) (Minoru et al., 2008) is a database
resource for understanding high-level functions and utilities of
the biological system, such as the cell, the organism and the
ecosystem, from molecular-level information, especially large-
scale molecular datasets generated by genome sequencing and
other high-through put experimental technologies1. We used
KOBAS software (Mao et al., 2005) to test the statistical
enrichment of DMGs in KEGG pathways.

Quantitative Real-Time PCR
Total RNA of transgenic Arabidopsis BP12-2 seedlings which
treated for 24 h in mediums containing DMSO, AZD (1 µM),
RAP (5 µM), and AZD (1 µM) + RAP (5 µM) was isolated
using the RNAprep Pure Plant Kit (TIANGEN, Beijing, China).
Total RNA was reverse transcribed into cDNA using the
PrimeScript R RT reagent kit (Takara, Dalian, China). Relative
transcript levels were assayed by the CFX96 real-time PCR
system (BIO-RAD, United States). AtACTIN2 was used as
an internal control. Real-time PCR primers were shown in
Supplementary Table S1. Reaction was performed in a final
volume of 20 µL containing 10 µL of 2 × Power Top Green
qPCR SuperMix (TRANSGEN, Beijing, China). RNA relative
quantification analyses were performed with the Bio-Rad CFX
manager software. The data represented the mean ± SD of three
independent experiments.

1http://www.genome.jp/kegg/
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FIGURE 1 | Azacitidine inhibits seedlings growth in dose-dependent manner in Arabidopsis. (A) Phenotypes of WT and BP12-2 seeds cultured on 1/2 MS medium
containing increasing concentrations of azacitidine for 10 days. (B,C) Fresh weight and root length of WT seedlings growing on different azacitidine concentrations
for 10 days. Each graph represents the average of 30 seedlings. Error bars indicate means ± SD of three biological replicates. Asterisks denote Student’s t-test
significant difference compared with DMSO (∗P < 0.05, ∗∗P < 0.01).

Combination Index (CI) Value
Measurement
Combination index (CI) values were used to evaluate the
interaction between azacitidine and AZD/RAP. The degree of
reagents interaction was based on synergistic effect (CI < 1),
additive effect (CI = 1), or antagonism (CI > 1) (Chou, 2006).
WT and BP12-2 seeds were sown on plates containing DMSO,
azacitidine, RAP, AZD, and pairwise combination for 10 days,
and then fresh weight was measured for CI value assessment.
Experiments were repeated at least three times. The values of
affected fraction (Fa) were calculated according to the CompuSyn
software program (Chou and Talalay, 1984; Chou, 2006).

RESULTS

Azacitidine and TOR Inhibitors
Synergistically Inhibit Seedlings Growth
in Arabidopsis
Azacitidine is a specific inhibitor of DNA methylation, which
interacts with DNA methyltransferase to inhibit DNA
methylation in mammalian (Christman, 2002). To test the
effect of azacitidine on seeds germination and seedlings growth
in Arabidopsis, we treated Arabidopsis seeds with different
concentrations of azacitidine. With the increase of azacitidine
concentrations, Col-0 (WT) and BP12-2 seeds germination was
not affected by azacitidine, whereas the seedlings growth was

subjected to different degrees of inhibition, reflecting in the
reduction of fresh weight and shorter root length (Figure 1). The
50% growth inhibitory dose (GI50) of azacitidine was 10 µM
in accordance with fresh weight (Figure 1B). The phenotype of
azacitidine-treated Arabidopsis seedlings is similar to that of TOR
kinase inhibitors, implying that TOR may play a role in regulating
DNA methylation in Arabidopsis. Interestingly, the transcription
level of AtTOR did not significantly change in azacitidine-treated
WT and BP12-2 seedlings (Supplementary Figure S1A),
indicating that azacitidine had no effect on TOR expression.

To examine the roles of TOR in the regulation of DNA
methylation, we used combinations of TOR inhibitors and
azacitidine to treat Arabidopsis seeds. Rapamycin (RAP) and
AZD-8055 (AZD) that act as different types of TOR kinase
inhibitors were selected to treat WT and BP12-2 Arabidopsis
seeds. Consistent with the previous reports (Ren et al., 2012),
RAP had no obvious inhibitory effect on WT seedlings, whereas
significantly inhibited roots and shoots elongation and leaves
expansion in BP12-2 seedlings (Figure 2A). The combination
of RAP and azacitidine enhanced the inhibition of seedlings
growth compared with RAP or azacitidine alone treatment,
resulting in leaves yellowing and growth retardation in BP12-2
seedlings (Figures 2A,B). Meanwhile, the combination of AZD
and azacitidine also enhanced the inhibition of seedlings growth,
implying that TOR inhibitors and azacitidine may synergistically
inhibit seedlings growth in Arabidopsis. To further explore
whether TOR inhibitors and azacitidine synergistically inhibit
seedlings growth, we used a combination index (CI) to calculate
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FIGURE 2 | Azacitidine and TOR inhibitors synergistically inhibit seedlings growth in Arabidopsis. (A) Phenotypes of 10-day-old WT and BP12-2 seeds sown on 1/2
MS medium containing DMSO, azacitidine (10 µM), RAP (5 µM), AZD (1 µM), and the combination of RAP (5 µM) + azacitidine (10 µM) and AZD
(1 µM) + azacitidine (10 µM). (B) Fresh weight of WT and BP12-2 seedlings sown on different plates for 10 days. Each graph represents the average of 30
seedlings. Error bars indicate means ± SD of three biological replicates. (C) Azacitidine and TOR inhibitors synergistically inhibit plant growth in vitro. WT and
BP12-2 seeds were sown on plates containing DMSO, azacitidine, RAP, AZD, and pairwise combination for 10 days, and then fresh weight was measured for CI
value assessment. The Fa-CI curve shows synergistic effects (CI < 1) between AZD + azacitidine and RAP + azacitidine in WT and BP12-2 seedlings, respectively.
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TABLE 1 | Data generated by whole-genome bisulfite sequencing (WGBS).

Samples Raw reads Clean reads GC content Total reads Mapped reads Mapping rate Uniquely mapping rate Bisulfite conversion rate

DMSO 56035294 53295965 20.12% 26438527 19114111 71.97% 58.56% 99.56%

AZD 59270545 55453129 20.43% 27726565 19734425 71.22% 59.59% 99.62%

RAP 57042080 51115347 20.35% 25557673 18379669 71.20% 59.48% 99.59%

AZD + RAP 64675954 58197908 20.45% 29098954 20895769 71.85% 58.49% 99.56%

the interaction between TOR inhibitors and azacitidine in
Arabidopsis. The combination treatment of RAP and azacitidine
generated a strong synergistic effect (CI < 0.5) in BP12-2
seedlings. Meanwhile, the combination treatment of AZD and
azacitidine also generated the synergistic effects (CI < 1) in WT
plants (Figure 2C). These results indicated that TOR inhibitors
and azacitidine synergistically inhibit the growth of Arabidopsis
seedlings, implying the functions of TOR in DNA methylation.

Inhibition of TOR Reduces
Whole-Genome Methylation Level in
Arabidopsis
To further analyze the functions of TOR in the regulation of
DNA methylation, we performed base-resolution whole-genome
bisulfite sequencing (WGBS) under TOR inhibition by AZD,
RAP, and AZD + RAP treatment in Arabidopsis. Each sample
contained more than 51 million clean reads after removing the
low-quality reads, duplicate reads and adapters. The bisulfite
conversion efficiency exceeded 99.5% in all samples, providing
a reliable guarantee of the accuracy of WGBS (Table 1). We
used Bowtie2 (Bismark) software to map the clean reads to the
reference genome, and more than 58% of the reads were uniquely
mapped to the Arabidopsis genome in each sample (Table 1).
Further statistical analysis found that DNA methylation occurred
mainly at three different sequence sites: CG, CHG, and CHH sites
(H = A, T, or C) in all samples, we calculated methylation ratio
of the three sequence contexts in the genome. The methylation
ratio of the CG sequence was the highest, followed by the CHG
sequence and the CHH sequence in all samples (Table 2). Among
them, the methylation ratio of CG context was decreased, while
the methylation ratio of CHH context was increased under
TOR inhibition. Importantly, the total mCX methylation ratio
was reduced in TOR-inhibited samples compared to DMSO
control group (Table 2). Furthermore, genome-wide methylation
level was decreased in TOR-inhibited samples, of which the
methylation level was most obviously decreased in AZD + RAP
treated sample (Figure 3A). Additionally, we analyzed the
proportion of methylated C site on each chromosome and found
that the methylation ratio of CG site on each chromosome
was higher than the CHG and CHH sites. Consistent with the
above findings, inhibition of TOR also reduced the proportion of
methylated CX sites on each chromosome (Figure 3B).

To explore the role of DNA methylation in regulating
gene expression, we analyzed the changes of DNA methylation
levels on genomic functional elements including promoters,
exons, introns and UTR regions. Similar methylation levels
were observed in the three methylated CX contexts in each

functional element of all samples. Among them, the promoter
had the highest DNA methylation ratio, followed by the exon
region, and the 5′UTR had the lowest DNA methylation ratio
in all samples (Figure 4). Interestingly, we found that inhibition
of TOR increased the average methylation level of mCHH
in the promoter region whereas mCG and mCHG had no
obvious change, implying that TOR plays an important role in
regulation of methylation of CHH site in promoter region. To
investigate whether the reduction in genome-wide methylation
was caused by methyltransferases, we examined the transcription
levels of methyltransferase and demethylase genes under TOR
inhibition. The transcription level of METHYLTRANSFERASE
1 (MET1) that maintains CG methylation in plants was down-
regulated in TOR-inhibited seedlings (Supplementary Figure
S2A). However, DOMAINS REARRANGED METHYLASE 1
(DRM1) and DRM2 genes, which maintain asymmetric CHH
site methylation in plants (Chan et al., 2005), were up-regulated
under TOR inhibition, which could account for high methylation
level of CHH site in the promoter region under TOR inhibition.
Besides, the transcription levels of demethylase genes including
ROS1, MBD7, and IBM1 were significantly up-regulated in TOR-
inhibited seedlings (Supplementary Figure S2B). These results
indicated that TOR regulated DNA methylation by altering the
transcription levels of methyltransferase and demethylase genes
in Arabidopsis.

Analysis of Differentially Methylated
Region (DMR) Under TOR Inhibition
Whole genome differential methylation analysis was performed
in AZD vs. DMSO, RAP vs. DMSO, and AZD + RAP vs. DMSO
groups. Total 1417, 4664, and 5282 DMRs were identified in AZD
vs. DMSO, RAP vs. DMSO, and AZD + RAP vs. DMSO groups,
respectively. All DMRs were classified into five types according
to genome elements, most of which were distributed in promoter
and exon regions. Moreover, hypermethylated DMRs were more
than hypomethylated DMRs under TOR inhibition, of which
hypermethylated DMRs were also mainly distributed in promoter
and exon regions (Figure 5A). We further mapped the obtained
DMRs of promoter, 5′UTR, exon, intron, and 3′UTR to genes.

TABLE 2 | The proportion of methylated C site in the genome.

Samples mCpG (%) mCHG (%) mCHH (%) Total mCX (%)

DMSO 29.17 15.41 5.29 49.87

AZD 27.66 15.68 6.23 49.57

RAP 27.96 15.18 5.53 48.67

AZD C RAP 27.01 15.24 6.58 48.83
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FIGURE 3 | Genome-wide methylation level and distribution of mCG, mCHG and mCHH on chromosomes. (A) Methylation level distribution of whole genome in
different samples. Take 10 Kb as a bin. The width of each violin represents the number of points at the methylation level. (B) The distribution of mCG, mCHG, and
mCHH in all methylated cytosine on chromosomes. The X-axis shows chromosomes, the Y-axis represents the proportion of the methylation level on the
corresponding chromosomes, different colors represent different context. a: DMSO, b: AZD, c: RAP, d: AZD + RAP.

A total of 1296, 4015, and 4520 differentially methylated genes
(DMGs) were found in AZD vs. DMSO, RAP vs. DMSO, and
AZD + RAP vs. DMSO groups, respectively. The Venn diagram
displayed that 314 DMGs were overlapping among three groups,
while approximately 50% of the DMGs were not overlapping
between these groups (Figure 5B). Furthermore, hierarchical
cluster analysis of DMGs was performed using Cluster software,
and methylated genes were clustered using a distance metric
based on the Pearson correlation. The results showed that some
DMGs had a hypomethylated status under TOR inhibition
(Figure 5C). Especially, some significant hypomethylated genes
were found in RAP-treated seedlings (Supplementary Table S2).

Gene Ontology (GO) and KEGG Pathway
Enrichment Analysis of DMGs
We further functionally categorized the DMGs and analyzed their
significant differences by using the GOseq R package (Young
et al., 2010). These DMGs were assigned to one or more of three
categories: biological process, cellular component, and molecular
function base on the GO assignments, and they were significantly
enriched in 25, 132, and 198 terms of three GO categories in AZD
vs. DMSO, RAP vs. DMSO, and AZD + RAP vs. DMSO groups,
respectively (corrected P < 0.05) (Supplementary Table S3). The
top three significantly enriched GO terms were “cell periphery,”
“plasma membrane,” and “catalytic activity” in AZD vs. DMSO
group, “catalytic activity,” “nucleotide binding,” and “nucleoside
phosphate binding” in RAP vs. DMSO group, and “nucleotide
binding,” “nucleoside phosphate binding,” and “ribonucleoside
binding” in AZD + RAP vs. DMSO group (Figure 6A
and Supplementary Figure S3A), suggesting that these GO
terms may play important roles in TOR-regulated genomic
methylation. Furthermore, the largest number of functional GO

term was “cell” under TOR inhibition, which distributed in the
cellular component category, implying that TOR may participate
in the regulation of cellular component GO terms.

To provide further insight into the pathways, we performed
KEGG pathway analysis of the DMGs under TOR inhibition.
The major metabolic pathways and signal transduction pathways
of DMGs were identified by KEGG significant enrichment. The
top two enriched KEGG pathways were “Carbon metabolism”
and “Biosynthesis of amino acids” under TOR inhibition
(Figure 6B and Supplementary Figure S3B). In addition,
DMGs in “RNA transport,” “Ribosome biogenesis in eukaryotes,”
and “beta-Alanine metabolism” pathways were also found
under TOR inhibition.

DMGs Involved in the Regulation of Cell
Growth
Carbon metabolism and synthesis of proteins are important
limiting factors for cell growth and proliferation (Webb
and Satake, 2015; Saxton and Sabatini, 2017). Among these
altered metabolic processes in KEGG pathways, the number
of “Carbon metabolism” and “Biosynthesis of amino acids”
pathways was the largest (Figure 6B), indicating that TOR
controlled cell growth and proliferation by regulating the
methylation level of the genes. We further analyzed the
methylation levels of “Carbon metabolism” and “Biosynthesis
of amino acids” pathways in RAP vs. DMSO group. A total
of 21 and 17 DMGs had significant changed methylation
levels in “Carbon metabolism” and “Biosynthesis of amino
acids” pathways, respectively (methylation ratio > 1.5-fold)
(Table 3). The genes encoding rate-limiting enzymes of
carbon metabolism and biosynthesis of amino acids such as
6-phosphofructokinase (PFK6) and isocitrate dehydrogenase

Frontiers in Genetics | www.frontiersin.org 7 March 2020 | Volume 11 | Article 18612

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00186 February 28, 2020 Time: 20:31 # 8

Zhu et al. TOR Regulates Genome Methylation

FIGURE 4 | Distribution of methylation levels of all samples on different genomic elements. Abscissa represented different genomic elements, ordinate represented
the average level of methylation, and different colors represented different sequence contexts (CG, CHG, and CHH). The promoter region is a 2 kb region upstream
of the TSS site.

(IDH5) were hypermethylated, suggesting that TOR inhibition
by RAP reduced the carbon metabolism levels in Arabidopsis.
In addition, the methylation levels of genes in “Carbon
metabolism” and “Biosynthesis of amino acids” pathways
were also changed in AZD-treated samples (Supplementary
Table S4). These results indicated that TOR regulated
multiple metabolic processes by altering the methylation
levels of related genes.

The ribosome, composed of ribosomal RNAs and ribosomal
proteins, is responsible for the synthesis of proteins in
prokaryotes and eukaryotes (Adam et al., 2011; Opron and
Burton, 2018). TORC1 positively regulates multiple steps

including ribosomal RNAs transcription, the synthesis of
ribosomal proteins and other components in ribosome biogenesis
(Iadevaia et al., 2014; Kos-Braun and Kos, 2017). We found that
38 DMGs associated with ribosome genes in RAP vs. DMSO
group (Table 3). Besides, a large number of DMGs associated
with ribosome were also found in AZD and AZD + RAP
treated samples (Supplementary Tables S4, S5). Interestingly,
“Ribosome biogenesis in eukaryotes” was the most enriched
pathway in AZD + RAP vs. DMSO group, of which 31
DMGs were found in this pathway (Supplementary Figure S3B
and Table S5). Additionally, we found that the methylation
level of TOR was reduced whereas the transcription level of
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FIGURE 5 | Differentially methylated regions (DMRs) analysis of DMSO, AZD, RAP, and AZD + RAP samples. (A) The numbers of DMRs in genome elements.
Histograms showing the overall DMRs numbers of genome elements: promoter, 5′UTR, exon, intron, and 3′UTR regions. Hyper: high methylation level, hypo: low
methylation level. (B) The Venn diagram of differentially methylated genes (DMGs) among different combinations of AZD vs. DMSO, RAP vs. DMSO, and AZD + RAP
vs. DMSO groups. (C) Cluster analysis of DMGs for DMSO, AZD, RAP, and AZD + RAP treated samples. The blue color represented lower methylation level and the
white color represented higher methylation level. Each row represented a sample, each column represented a gene.

TOR was up-regulated under TOR inhibition (Supplementary
Figure S1B), suggesting a feedback regulation of TOR inhibition
in Arabidopsis. Collectively, these results and observations

suggested that TOR plays a crucial role in plant growth and
development through regulating multiple metabolic processes
and protein synthesis.
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FIGURE 6 | Gene ontology (GO) and KEGG pathway enrichment analysis of DMGs under TOR inhibition. (A) The top 30 most enriched GO terms analysis of DMGs.
different colors represent biological processes, cellular components, and molecular functions. “∗” indicates significantly enriched GO terms, of which the
P-value < 0.05. (B) The top 20 functionally enriched KEGG analysis of DMGs.

DMGs Involved in the Regulation of Plant
Hormone Signal Transduction
Plant hormones play indispensable roles in mediating cellular
metabolism, regulating plant growth and development, and
resisting biotic and abiotic stresses (Rubio et al., 2009).
Based on the WGBS data, DMGs associated with auxin,
cytokinin (CK), brassinosteroid (BR), abscisic acid (ABA),
ethylene (ET), and jasmonic acid (JA) were detected under
TOR inhibition (Supplementary Table S6). Among these
phytohormone signaling pathways, the top three largest number
of DMGs were CK, BR, and ABA signaling pathways. Recent
studies showed that TOR interacted with ABA signaling to
balance plant growth and stress responses in plants (Wang
et al., 2018). Based on our data, several ABA signaling pathway-
related genes were significantly differentially methylated. In
detail, the protein kinase SnRK2 of the ABA signaling pathway
was hypermethylated, whereas protein phosphatase PP2CA
was hypomethylated. Besides, some important plant hormone-
related genes were differentially methylated. For example, auxin

responsive SAUR proteins were hypermethylated in the promoter
region, and BR signaling protein kinases BSK1 and BSK2 were
hypomethylated under TOR inhibition (Supplementary Table
S6). The transcription levels of ABI5, BSK2, and PP2CA genes
were up-regulated whereas methylation levels of these genes
were decreased in the promoter regions under TOR inhibition
(Supplementary Figure S2C and Supplementary Table S6).
These results showed that TOR may act as a regulator to mediate
plant hormone signals transduction in Arabidopsis.

Association of DMGs With Gene mRNA
Expression Level
To dissect the relationship between DMGs and gene mRNA
expression level, we examined the expression levels of related
genes using qRT-PCR. Eight DMGs were randomly selected
for the real-time PCR, of which three DMGs involved in
stresses response and five DMGs involved in metabolism and
cell growth. Consistent with the previous study (Zhang et al.,
2006), gene mRNA expression level was decreased in the
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TABLE 3 | Differentially methylated genes (DMGs) of carbon metabolism, biosynthesis of amino acids and ribosome in RAP vs. DMSO group.

Gene id Methylation ratio Status Regions Annotation

Carbon metabolism

AT1G17745 0.0065 Hypo Promoter PGDH2| Allosteric substrate binding domain

AT3G52200 0.3913 Hypo Exon/intron LTA3| 2-oxoacid dehydrogenase acyltransferase

AT5G08300 0.5078 Hypo Promoter ATP-citrate lyase/succinyl-CoA ligase

AT1G04410 0.5323 Hypo Promoter MDH1| Lactate dehydrogenase/glycoside hydrolas

AT4G13890 0.5464 Hypo Exon SHM5| Pyridoxal phosphate-dependent transferase

AT5G23250 0.6175 Hypo Exon/intron/utr3 ATP-citrate lyase/succinyl-CoA ligase

AT4G26970 0.6402 Hypo Exon/intron ACO3| Aconitase/3-isopropylmalate dehydratase

AT1G22020 0.6478 Hypo Exon/intron SHM6| Pyridoxal phosphate-dependent transferase

AT5G11670 0.6696 Hypo Promoter NADP-ME2| Malic enzyme, NAD-binding

AT1G79530 0.6699 Hypo Promoter GAPCP1| Glyceraldehyde 3-phosphate dehydrogenase

AT2G07732 1.5040 Hyper Promoter Ribulose bisphosphate carboxylase, large subunit

AT4G32840 1.5343 Hyper Promoter PFK6| Phosphofructokinase

AT2G36460 1.5464 Hyper Exon Fructose-bisphosphate aldolase

AT1G54220 1.5971 Hyper Promoter 2-oxoacid dehydrogenase acyltransferase

AT1G36370 1.6290 Hyper Exon SHM7| Pyridoxal phosphate-dependent transferase

AT1G74030 1.6688 Hyper Exon/intron/utr3 ENO1| Enolase

AT3G49360 1.9074 Hyper Promoter PGL2| 6-phosphogluconolactonase, DevB-type

AT5G03290 1.9497 Hyper Exon IDH5| Isocitrate dehydrogenase NAD-dependent

AT3G12780 1.9568 Hyper Exon/intron PGK1| Phosphoglycerate kinase

AT1G01090 2.0177 Hyper Exon/intron PDH-E1| Pyruvate dehydrogenase E1 component

AT1G17650 2.6505 Hyper Exon/intron GLYR2| 6-phosphogluconate dehydrogenase

Biosynthesis of amino acids

AT5G11880 0.1681 Hypo Exon/intron LYSA2| Diaminopimelate decarboxylase, LysA

AT1G58080 0.2884 Hypo Exon/intron HISN1A| ATP phosphoribosyltransferase

AT3G22425 0.4460 Hypo Promoter HISN5A| Imidazoleglycerol-phosphate dehydratase

AT4G13890 0.5464 Hypo Exon SHM5| Pyridoxal phosphate-dependent transferase

AT4G37670 0.5988 Hypo Exon/intron NAGS2| Acyl-CoA N-acyltransferase

AT4G26970 0.6402 Hypo Exon/intron ACO3| Aconitase dehydratase large subunit

AT1G22020 0.6478 Hypo Exon/intron SHM6| Pyridoxal phosphate-dependent transferase

AT1G79530 0.6699 Hypo Promoter GAPCP1| Glyceraldehyde 3-phosphate dehydrogenase

AT4G32840 1.5343 Hyper Promoter PFK6| Phosphofructokinase

AT2G36460 1.5464 Hyper Exon Fructose-bisphosphate aldolase, class-I

AT1G36370 1.6290 Hyper Exon SHM7| Pyridoxal phosphate-dependent transferase

AT1G74030 1.6688 Hyper Exon/intron/utr3 ENO1| Enolase

AT2G45440 1.6816 Hyper Intron DHDPS2| Dihydrodipicolinate synthase, DapA

AT4G01850 1.7869 Hyper Exon SAM2| S-adenosylmethionine synthetase

AT4G23590 1.9377 Hyper Exon Pyridoxal phosphate-dependent transferase

AT5G03290 1.9497 Hyper Exon IDH5| Isocitrate dehydrogenase NAD-dependent

AT3G12780 1.9568 Hyper Exon/intron PGK1| Phosphoglycerate kinase

Ribosome

AT4G27490 0.2287 Hypo Promoter Ribosomal protein S5 domain 2-type fold

AT1G23280 0.2364 Hypo Promoter Mak16| Ribosomal L28e

AT1G52930 0.2828 Hypo Exon/intron BRX1| Ribosome biogenesis protein

AT5G59180 0.3100 Hypo Exon/utr3 NRPB7| Ribosomal protein S1, RNA-binding domain

AT1G04170 0.3194 Hypo Promoter EIF2γ| Translation elongation factor EF1A gamma

AT1G32990 0.4472 Hypo Promoter RPL11| Ribosomal protein L11

AT1G07210 0.4729 Hypo Exon/intron Ribosomal protein S18

AT5G05470 0.4853 Hypo Exon/intron EIF2α| Translation initiation factor 2, alpha subunit

AT4G10450 0.5106 Hypo Promoter RPL9D| Ribosomal protein L6

AT1G07770 0.5567 Hypo Exon/intron RPS15AA| Ribosomal protein S8

AT3G06580 0.5818 Hypo Exon/intron GAL1| Ribosomal protein S5 domain 2-type

(Continued)
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TABLE 3 | Continued

Gene id Methylation ratio Status Regions Annotation

AT1G02830 0.6042 Hypo Promoter RPL22A| Ribosomal protein L22e

AT3G63490 0.6304 Hypo Exon/intron/utr3 RPL1| Ribosomal protein L1

AT2G44860 0.6369 Hypo Exon/utr3 Ribosomal protein L24e, conserved site

AT2G25210 0.6443 Hypo Exon/intron/utr5/promoter Ribosomal protein L39e

AT5G64650 0.6492 Hypo Exon/intron Ribosomal protein L17

AT1G41880 1.5163 Hyper Exon/utr3 RPL35AB| Ribosomal protein L35Ae

AT1G24240 1.5289 Hyper Promoter Ribosomal protein L19

AT3G10950 1.5472 Hyper Promoter RPL37AB| Ribosomal protein L37ae

AT1G31355 1.5676 Hyper Promoter Translation protein SH3-like family protein

AT4G16030 1.5756 Hyper Promoter Ribosomal protein L19/L19e

AT5G16130 1.5889 Hyper Promoter RPS7C| Ribosomal protein S7e

AT3G49010 1.6060 Hyper Promoter RPL13B| Ribosomal protein L13e

AT1G13950 1.6211 Hyper Promoter ELF5A-1| Ribosomal protein L2 domain 2

AT5G02870 1.7028 Hyper Promoter RPL4D| 60S ribosomal protein L4, C-terminal domain

AT1G26630 1.7231 Hyper Exon/intron ELF5A-2| Ribosomal protein L2 domain 2|

AT5G53920 1.8060 Hyper Promoter Ribosomal protein L11 methyltransferase

AT2G45030 1.9131 Hyper Exon/utr3 MEFG2| Ribosomal protein S5 domain 2-type fold

AT3G20260 1.9516 Hyper Promoter Ribosomal protein L34Ae

AT2G40205 1.9979 Hyper Promoter RPL41E| Ribosomal protein L41

AT4G34730 2.1114 Hyper Intron Ribosome-binding factor A

AT1G31355 2.1706 Hyper Promoter Translation protein SH3-like family protein

AT5G19720 2.2472 Hyper Promoter Ribosomal protein L25, beta-barrel domain

AT1G01220 2.4560 Hyper Promoter FKGP| Ribosomal protein S5 domain 2-type fold

AT4G29060 2.9800 Hyper Exon/utr3 emb2726| Ribosomal protein S1

AT2G20060 2.9911 Hyper Promoter Ribosomal protein L4

AT3G53890 3.4514 Hyper Exon/utr3 RPS21B| Ribosomal protein S21e

AT5G39785 6.5648 Hyper Exon/intron Ribosomal protein L34Ae

hypermethylated promoter region in this study (Figure 7). For
example, AT4G16520 (ATG8F) and AT4G16760 (ACX1) induced
by stresses were hypomethylated in the promoter region, while
mRNA expression level was upregulated under TOR inhibition.
AT5G05490 (SYN1) and AT5G49630 (AAP6) that involved in
cell growth were hypermethylated whereas mRNA expression
level was downregulated. Besides, some genes hypermethylated
in transcribed regions were highly expressed whereas other genes
were low expressed (Figure 7 and Supplementary Table S7),
demonstrating methylation in transcribed regions both positive
and negative relationships to gene expression (Zhang et al., 2006;
Lou et al., 2014).

DISCUSSION

In this study, we analyzed the functions of TOR in the
regulation of DNA methylation using WGBS. We found that
inhibition of TOR reduced whole-genome methylation levels
whereas the methylation level of CHH site in the promoter
region was increased. CHH methylation is maintained by DRM1
or DRM2 in plants. Through RNA-directed DNA methylation
(RdDM) pathway, DRM2 maintains CHH methylation at RdDM
target regions (Zhang et al., 2018). The transcription level
of MET1 gene was down-regulated whereas DRM1and DRM2

genes were up-regulated under TOR inhibition. Furthermore,
the transcription level of DNA demethylation genes were
significantly up-regulated in TOR-inhibited seedlings. These
results explained that inhibition of TOR results in lower genome-
wide methylation levels but increases methylation level of CHH
site in the promoter region. Besides, CHROMOMETHYLASE
2 (CMT2) is also involved in maintaining CHH methylation in
plants (Zemach et al., 2013; Stroud et al., 2014). Methylation
level of CMT2 was decreased in AZD + RAP treated sample,
implying that TOR inhibition may activate DRM2 or CMT2 to
maintain CHH methylation level. Interestingly, our study showed
that TOR regulated genome DNA methylation to control plant
growth in Arabidopsis, while curcumin induced the promoter
hypermethylation of mTOR gene in myeloma cells (Chen et al.,
2019), suggesting that TOR had a feedback regulation mechanism
in the process of regulating DNA methylation. The detailed
regulatory mechanisms of TOR and DNA methyltransferases still
need further study in the future.

In addition to reduced genome-wide methylation, we also
identified 1296, 4015, and 4520 DMGs in AZD vs. DMSO, RAP
vs. DMSO, and AZD+ RAP vs. DMSO groups, respectively. The
difference of DMGs between AZD and RAP may be caused by off-
target effects in ScFKBP12-overexpressed Arabidopsis. Previous
studies suggested that the expression of FKBP12 in Arabidopsis
might have unexpected molecular phenotypes unrelated to

Frontiers in Genetics | www.frontiersin.org 12 March 2020 | Volume 11 | Article 18617

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00186 February 28, 2020 Time: 20:31 # 13

Zhu et al. TOR Regulates Genome Methylation

FIGURE 7 | Relationship between DNA methylation and gene mRNA expression level in DMSO, AZD, RAP, and AZD + RAP treated BP12-2 samples. Error bars
indicate means ± SD of three biological replicates. Asterisks denote Student’s t-test significant difference compared with DMSO (∗P < 0.05, ∗∗P < 0.01).

TOR signaling pathway due to its peptidyl-prolyl isomerase
activity (Gerard et al., 2011; Alavilli et al., 2018). Changes
of non-TOR-kinase specific in intracellular metabolism caused
by RAP off-targets in ScFKBP12-overexpressed Arabidopsis still
need further study.

TOR signaling is indispensible for growth and development
from embryogenesis to senescence by modulating translation,
autophagy, metabolism, and cell cycle in plants (Ren et al., 2012;
Xiong and Sheen, 2014; Shi et al., 2018). In our study, many
genes of cellular metabolic processes and signal pathways were
differentially methylated under TOR inhibition, especially carbon
metabolism and biosynthesis of amino acids. Furthermore,
DMGs associated with ribosome and ribosome biogenesis were
detected. It is well known that TOR controls protein synthesis at
multiple levels from transcription, ribosome biogenesis to protein
translation in various eukaryotes (De Virgilio and Loewith, 2006;
Xiong et al., 2013; Yang et al., 2013; Xiong and Sheen, 2014;
Dong et al., 2015; Li et al., 2019). Our results indicated that TOR
involved in the regulation of ribosome and ribosome biogenesis
by changing the methylation levels of related genes, which is
responsible for protein synthesis and plant growth.

Plant hormones play essential roles in plant growth,
development and reproduction (Durbak et al., 2012). Previous
studies demonstrate that TOR is indispensable for auxin signaling
transduction, and auxin activates TOR to promote translation
reinitiation in Arabidopsis (Deng et al., 2016; Schepetilnikov et al.,
2017). Moreover, TOR signaling also promotes accumulation
of BZR1 protein to promote plant growth in Arabidopsis
(Zhang et al., 2016). Nevertheless, TOR signal and ABA or
JA signal are antagonism to balance plant growth and stress

response (Song et al., 2017; Wang et al., 2018). Based on
the WGBS data, we found some DMGs in plant hormone
signal transduction including auxin, BR and ABA signals. The
differential methylation of these genes may result in changes in
gene expression level, providing a new insight of the involvement
of TOR in phytohormone signaling.

In summary, DNA methylation inhibitor azacitidine and TOR
inhibitors synergistically inhibited the growth of Arabidopsis
seedlings, implying that TOR played a role in DNA methylation.
We therefore further systematically investigated changes in
genome DNA methylation levels under TOR inhibition by
high-throughput bisulfite sequencing, and we obtained a large
number of differentially methylated regions and genes. Based
on the whole-genome DNA methylation data, hypomethylation
level of whole-genome DNA was observed in AZD, RAP, and
AZD + RAP treated Arabidopsis. KEGG pathway enrichment
showed that DMGs were involved in many metabolic pathways,
such as carbon metabolism and biosynthesis of amino acids.
Additionally, we also found that some plant hormone signal
transduction-related genes displayed significant differences in
methylation level under TOR inhibition. In conclusion, the above
studies revealed the genome methylation pattern under TOR
inhibition, providing important clues for further analysis of the
functions of TOR in DNA methylation.
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Intramuscular fat (IMF), which regulated by genetics, nutrition and environment is an
important factor that influencing meat quality. Up to now, the epigenetic regulation
mechanism underlying poultry IMF deposition remains poorly understood. Here, we
focused on the DNA methylation, which usually regulate genes in transcription
level. To look into the essential role of DNA methylation on the IMF deposition,
chicken intramuscular preadipocytes were isolated and cultured in vitro, and a
model of intramuscular adipocyte differentiation was constructed. Combined the
whole genome bisulfite sequencing (WGBS) and RNA-Seq technologies, we identified
several methylated genes, which mainly affecting fatty acid metabolism and muscle
development. Furthermore, we reported that DNA methylation regulate intramuscular
adipogenesis by regulating the genes, such as collagen, type VI, alpha 1 (COL6A1) thus
affecting IMF deposition. Overexpression of COL6A1 increases the lipid droplet and
inhibits cell proliferation by regulating CHAD and CAMK2 in intramuscular adipocytes,
while knockdown of COL6A1 shows the opposite effect. Taken together, our results
reveal that DNA methylation plays an important role in poultry IMF deposition.

Keywords: DNA methylation, transcriptome, intramuscular adipocytes differentiation, COL6A1, IMF deposition

INTRODUCTION

Intramuscular fat (IMF) is one of the most important factors that affect meat quality (Fanatico
et al., 2007; Ros-Freixedes et al., 2014; Li et al., 2019). Previous researches have indicated that IMF
improved the quality of meat by improving the flavor, juiciness and tenderness (Gao and Zhao,
2009). IMF deposition is primarily dependent on the differentiation, maturation and proliferation
of intramuscular preadipocytes (Cristancho and Lazar, 2011; Zhang et al., 2019). Previous studies
have identified about several genes related to chicken IMF, including PPARG, GPAT1, ACC, CD36,
AGPAT1, and DGAT2, FABP, LPL, DGAT1, and SCL27A1 (Ye et al., 2010; Serão et al., 2011; Jeong
et al., 2012; Li et al., 2013; Qiu et al., 2017). The mechanism that underlies chicken IMF deposition
is very complicated obviously, involving many metabolic pathways and genes.
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As one of the earliest discovered epigenetic modification, DNA
methylation plays an extremely significant role in sustaining
cell’s normal function in animals, gene expression regulation
(Razin and Cedar, 1984), genetic imprinting (Jaenisch, 1997),
embryonic development (Li et al., 2018), and tumor formation
(Shivapurkar et al., 1986; Bender et al., 1998). Growing number
of studies suggested that DNA methylation played significantly
role in adipogenesis (Broholm et al., 2016; Chen et al., 2016;
Lim et al., 2016). Previous studies recommended that DNMT3A
inhibited porcine intramuscular preadipocytes differentiation by
changing the methylation levels of p21 and PPARγ (Abdalla
et al., 2018; Qimuge et al., 2019). Zhang et al. (2014) found
that MBD4 inhibited porcine preadipocytes differentiation by
changing the DNA methylation levels of adipogenic genes.
Li et al. suggested that DNA methylation regulated chicken
PPARG and CEBPA during the development of chicken adipose
tissue (Sun et al., 2014; Gao et al., 2015). Our previous study
identified large amount of differentially expressed genes (DEGs)
during intramuscular adipogenic differentiation (Zhang et al.,
2019). The epigenetic molecular mechanism, especially DNA
methylation that underlies IMF deposition remains, however,
poorly investigated.

In order to investigate the potential functions of DNA
methylation that affected the poultry intramuscular adipogenesis.
Whole genome single-base DNA methylation profiles of
intramuscular preadipocytes and differentiated adipocytes were
generated by whole genome bisulfite sequencing (WGBS). The
present study integrated the RNA-Seq and WGBS data, aimed to
describe the DNA methylation patterns in chicken intramuscular

adipocytes and reveal the novel methylated candidate genes
related to intramuscular adipogenesis. Our results offered basic
research data about intramuscular adipogenesis and the IMF
deposition in poultry.

RESULTS

The Identification of Chicken
Intramuscular Adipocyte Differentiation
Model
To investigate the IMF deposition of poultry, chicken
intramuscular adipogenic differentiation model in vitro was
constructed in the present study. After 80–90% confluence,
cells were exposed to MDIO differentiation medium. As shown
in Figure 1A, cells were filled with lipid droplets after 10
days’ induction. Furthermore, qRT-PCR results suggested
that the adipogenic markers PPARG, FABP4, CEBPA, and
FASN significantly increased with adipogenic differentiation
(p < 0.01) (Figure 1B).

Difference in DNA Methylation Level
Between Intramuscular Preadipocytes
and Adipocytes in Chickens
To explore the role of DNA methylation in intramuscular
adipogenic differentiation, 5 mC and 5 hmC levels were detected
by immunofluorescence staining. Compared with intramuscular
preadipocytes, the 5 mC levels of intramuscular adipocytes

FIGURE 1 | The identification of chicken intramuscular preadipocytes differentiation model. (A) The shape of chicken intramuscular preadipocytes before (a’) and
after (b’) adipogenic differentiation for 10 days. The oil red O staining of chicken intramuscular preadipocytes (c’) and mature adipocytes (d’); (B) qRT-PCR analysis of
adipogenic makers PPARG, FABP4, CEBPA, and FASN during chicken intramuscular preadipocyte differentiation. The mRNA levels of adipogenic makers were
detected by qRT-PCR at 0, 2, 4, 6, 8, 10 days after induced differentiation. (C) The OD value at 510 nm of Oil Red O staining during intramuscular preadipocyte
differentiation. (n = 3, **p < 0.01).
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FIGURE 2 | Difference in DNA methylation levels between intramuscular preadipocytes and adipocytes in chickens. (A) Immunofluorescence staining and
quantification (B) of 5 mC (green) and 5 hmC (red) abundance in intramuscular preadipocytes and mature adipocytes. (C) Relative mRNA abundance of TET1/2/3,
DNMT1, DNMT3A, and DNMT3B during the intramuscular adipogenic differentiation. qRT-PCR analysis of the relative mRNA levels DNA methylasferase DNMT1,
DNMT3A/3B, and TET1/2/3 during chicken intramuscular preadipocyte differentiation. (n = 3, **p < 0.01, #p > 0.05).

were significantly decreased (Figures 2A,B), whereas 5 hmC
levels were higher in the intramuscular adipocytes compared
to intramuscular preadipocytes (Figures 2A,B). At the same

time, the mRNA expression levels of DNA methylation-
related enzymes showed that mRNA expression levels of DNA
methyltransferases DNMT3A/3B and DNMT1 were significantly
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decreased after induction of differentiation (p< 0.01, Figure 2C),
while the demethylase TET1/2/3 were significantly increased after
induction of differentiation (from days 2 to 4) (Figure 2C).

The DNA Methylation Atlas of
Intramuscular Preadipocytes and
Adipocytes in Chickens
In the present study, 34.43 and 35.29 G raw data were generated
in intramuscular preadipocytes and matured intramuscular
adipocytes, respectively. After taking the low quality, N
(unknown) and connector contamination reads off, we finally
got 212,981,499 and 232,403,717 clean reads in IM_Pre and
IM_Ad groups, respectively (Table 1). There were 68.6 and 72%
of chicken genome were covered with the uniquely mapped
reads in the preadipocytes and adipocytes groups, respectively
(Table 1). The unique alignments rate of was more than 80%.
The Q30 value was more than 0.9, these results indicated a
reliable sequencing outcome. In addition, Circos plot displayed
the DNA methylation levels in the various sequence contexts
(mCG, mCHG, and mCHH) (where H is A, C, or T) in chicken
chromosomes (1–32 and the Z, W, MT chromosome; Figure 3).

Global DNA Methylation Patterns
Intramuscular Adipocytes in Chickens
Pearson correlation analysis of the CpG base suggested that our
samples have good data repeatability (r > 0.87) (Figure 4A).
To investigate the differences of global DNA methylation
profile between the two groups, DNA methylation levels in
three contexts: CG, CHG, and CHH (where H is A, C,
or T) were analyzed in the present study. As shown in
Figure 4B, most proportion (60%) of cytosines were methylated
in CpG context, only small proportion (1.2%) of cytosines
were methylated in non-CG context (CHG and CHH context).
To explore the patterns of methylated cytosines in chicken
intramuscular adipocytes, we analyzed the genome-wide mC
sequence preferences in various sequence contexts. Our results
showed that the methylated cytosines preference for being located
in CG, CHG, and CHH (H = A > T) (Figure 4C). The DMRs of
the CGI were mainly located in the openSea (60.4%) and CpG
island (CGI) (25.1%) (Figures 4D,E). The DMRs were mainly
located in the intergenic region (42.9%), followed by the introns
(31.25%) and the TSS region (16.9%) (Figures 4F,G).

Functional Characterization of
Differentially Methylated Genes (DMGs)
In the present study, a total of 7580 DMRs were discovered.
The DNA methylation level of adipocytes in the chicken genome
showing a “V” trend around the promoter region (Figure 5A),
which is consistent with previous studies in chicken breast
muscle tissues (Zhang et al., 2017). Furthermore, we found
that hypomethylation level in the promoter region and higher
genome-wide gene expression level in intramuscular adipocytes
groups compared with the preadipocytes group (Figures 5A,B).
In addition, a large proportion of DMRs were intron and exon
regions (Figure 5C). We noticed that most DMRs were length
100–200 bp and short than 1000 bp (Figure 5D). To look into the

TABLE 1 | The summary of data generated by genome-wide bisulfite sequencing.

Unique

Sample Clean Mapping alignments

ID Raw reads Clean reads rate (%) rate (%) rate (%) Q30

IM_Pre1 376,952,718 347,396,358 92.20 68.60 83.8 0.90

IM_Pre2 293,867,266 276,661,137 94.10 68.60 84.5 0.91

IM_Ad1 359,297,694 330,787,356 92.10 71.70 80.3 0.90

IM-Ad2 329,939,770 316,350,010 95.90 65.80 84.6 0.91

DMGs’ potential biological roles, gene ontogeny (GO) analysis
and KEGG pathway analysis were performed. Our results showed
that the DMGs mainly enriched in the regionalization and
skeletal system development terms (Figure 5E), focal adhesion,
fatty acid metabolism, ECM-receptor interaction and PPAR
signaling pathways (Figure 5F).

Candidate DMGs Associated With IMF
Deposition
To explore whether the candidate DMGs are related to IMF
deposition, we integrated the RNA-Seq and WGBS data to reveal
methylated candidate genes associated with IMF deposition.
Our results showed that there were 324 (hypermethylated and
down-regulated) and 338 (hypomethylated and up-regulated)
differentially expressed DMGs during adipocytes differentiation
process (Figure 6A), several lipid metabolism-related and
adipogenic differentiation genes, such as FASN,HADHA, INSIG1,
BMP4, and LCLAT1 were found in the present study (Figure 6B).
Besides, we observed that several genes were involved in the
ECM-receptor interaction, insulin signaling pathway and fatty
acid metabolism pathway, such as COL6A1, THBS1, LAMA2,
HADHA, ACAA2, ELOVL7, ACADL, LCLAT1, INSIG1, and
FOXO3 (Figure 6C). Moreover, the protein-protein interaction
(PPI) network analysis illustrated that these DMGs were
correlated with each other highly (Figure 6C). The DNA
methylation and gene expression levels of three DMGs, INSIG1,
BMP4, and COL6A1 were showed in Figure 6D. Furthermore,
the correlations between IMF content and gene mRNA levels
at different age stages were analyzed. Our results suggested that
the expression levels of COL6A1 and ABCA1 were positively
correlated with the IMF content (r = 0.980 and 0.994, p < 0.05)
(Figure 6E). To study the expression trend of candidate genes in
the differentiation of intramuscular adipocytes, the total RNA of
intramuscular adipocytes differentiated at different periods was
analyzed by qRT-PCR. Our results suggested that the mRNA
level of COL6A1 was significantly increased during adipogenic
differentiation of intramuscular preadipocytes. The mRNA level
of ABCA1 significantly increased in the day 2, while declined
slowly from days 4 to 10. And GSTT1L mRNA expression level
was downregulated in day 2, while increased slowly after from
days 4 to 10 (Figure 6F). Furthermore, our results suggested
that the mRNA level of COL6A1 was significantly positive
correlative with the TG content of intramuscular adipocytes
during differentiation process (r = 0.84, p = 0.03), while ABCA1
and GSTT1L were was not significant correlative with the
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FIGURE 3 | Distribution of identified methylation sites on each chromosome. The outer ring represents the chicken genome labeled with chromosome number and
position. (A–D) CG Methylation; (E–H) CHG Methylation; (I,J,M,S) CHH Methylation; (C,D,G,H,K,L) IMF_Pre; (A,B,E,F,I,J) IMF_Ad.

TG content (r = 0.14, p = 0.78 and r = 0.24, p = 0.65)
(Supplementary Figure S1).

DNA Methylation of COL6A1 Promoter
Region
According to the BSP results, there was a hypermethylated
(72%) promoter region of COL6A1 in the intramuscular
preadipocytes compared with differentiated adipocytes, while
a low methylation level (28%) in the matured intramuscular
adipocytes (Figures 7A,B). Furthermore, we found that the
methylation of COL6A1 promoter were significantly negatively

correlated with the mRNA level (r = −0.908, p < 0.05)
(Figure 7C). And the DNA methylation levels of ABCA1 and
GSTT1L promoter were significantly negatively correlated with
their mRNA levels (r =−0.94, p < 0.01, and r =−0.87, p < 0.05)
(Supplementary Figures S2, S3).

Effect of 5-Azacytidine (5-AZA) on
Intramuscular Preadipocytes
Differentiation
To further investigate whether the DNA methylation influence
intramuscular adipogenesis, the methylation inhibitor, 5-AZA
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FIGURE 4 | The DNA methylation characteristics of intramuscular preadipocytes and adipocytes in chickens. (A) The correlation analysis of the methylation between
samples. Heat maps showed the distribution of the methylated CpG sites, the bar plots showed the frequency of methylated CpG sites. (B) Comparison of DNA
methylation patterns in different samples. (C) Sequence preferences for methylation in various sequence contexts. 9 bp base information around the position of
mCG, mCHG, mCHH at the highest or lowest methylation levels, in which the methylated cytosine is in the fourth position. (D) The frequency distribution histogram
of the distance from DMR to CGI. (E) The DMR Annotation in CGI functional elements (Island, Shore, Shelf and OpenSea). (F) The frequency distribution histogram
of the distance from DMR to TSS. (G) The DMR Annotation in genome functional regions (5′UTR, 3′UTR, Exon, Intergenic, Intron, Promoter-TSS, and TSS).

was used to treat intramuscular preadipocytes. As shown in
Figure 8A, the methylation level declined 60% in preadipocytes
in the presence of 5-AZA relative to the control cells. Meanwhile,
the mRNA levels of COL6A1 and adipogenic makers, PPARG
and CEBPA were significantly up-regulated after differentiation
induction for 48 h in treating with 5-AZA cells (Figure 8B). In
addition, Oil Red O staining showed that 5-AZA promoted the
intramuscular adipogenesis (Figures 8C,D).

Chicken COL6A1 Promoted
Intramuscular Preadipocytes
Proliferation and Differentiation
To find out the potential role of COL6A1 in chicken intra-
muscular preadipocyte proliferation and differentiation, COL6A1
overexpression [pcDNA3.1(+)-COL6A1 vs. pcDNA3.1(+)-
EGFP] and knockdown (siRNA-NC vs. siRNA-COL6A1)
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FIGURE 5 | The characteristics of DMRs and function analysis. (A) Global DNA methylation levels in different functional regions between different samples. (B) Gene
expression levels (FPKM) in intramuscular preadipocytes and adipocytes. (C) The distribution of DMRs in different functional regions (5′UTR, 3′UTR, Exon, Intron,
Start-codon, and Stop-codon). (D) The frequency distribution of DMRs count in length. (E) GO terms enriched analysis of DMGs. (F) Scatter plot of the top 30
KEGG enrichments analysis. Tick represents the pathway involved in lipid metabolism.

experiments were performed. The mRNA levels of COL6A1
increased over 13-fold in pcDNA3.1(+)-COL6A1-transfected
group compared with control pcDNA3.1(+)-EGFP-transfected
group (Figure 9A). Overexpressed COL6A1 significantly
increased the mRNA expression levels of adipogenic makers
PPARG, CEBPA, FABP4, and ECM-related genes CHAD, MMP7,
MMP9, and CAMK2 (Figure 9B). In contrast, knockdown
the COL6A1 down-regulated their mRNA expression levels
(Figures 9C,D). EDU staining suggested that COL6A1 promoted
intramuscular preadipocytes proliferation (Figure 9E). BODIPY
staining showed that overexpressed COL6A1 significantly
promoted the formation of lipid droplet in the intramuscular
adipocytes, while decreased lipid droplet formation after RNA
interference with COL6A1 (Figure 9F). Wound healing test
suggested that COL6A1 promoted intramuscular adipocytes
migration (Figure 9G).

MATERIALS AND METHODS

Ethics Statement
All animal experiments were conducted with the guidelines
of Institutional Animal Care and Use Committee (IACUC)

at the Henan Agricultural University (Zhengzhou, Henan,
China) (#11-0085).

Animals and Cells
All of the Gushi chickens were purchased from the Animal Center
of Henan Agricultural University (Zhengzhou, Henan, China).
Chickens were fed with the same diet ad libitum in the same
environment. Tissues used for tissues expression profiles were
collected and stored at−80◦C until use. The breast muscle tissues
were used for the IMF preadipocytes isolation according to our
previous methods (Zhang et al., 2019).

DNA Extraction, Library Construction,
and Whole Genome Bisulfite Sequencing
(WGBS)
Genomic DNA used for WGBS was extracted by an animal
genomic DNA kit (Tiangen, China) according to the
manufacturer’s instructions. genomic DNA was interrupted
into fragments and purified by PCR purification kit. Fragmented
DNA was end-repaired, added “A” nucleotide to the 3′end and
ligated with methylated adapters. Fragments with adapters
were used for bisulfite convertion by a methylation-gold
kit (ZYMO, Los Angeles, CA, United States). Furthermore,
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FIGURE 6 | Candidate DMGs associated with IMF deposition. (A) The differentially expressed genes (DEGs) overlapped with differentially methylated gene (DMGs) in
different groups. (B) Integrated analysis of DNA methylation levels and gene expression levels. (C) KEGG pathways and protein-protein interaction (PPI) network
analysis of candidate DMGs associated with IMF deposition. (D) The DNA methylation levels (WGBS) and gene expression levels (RNA-seq) (IGV tracts) of three
candidate DMGs (INSIG1, BMP4, and COL6A1). (E) The relative mRNA levels of three genes (COL6A1, ABCA1, and GSTT1L) and IMF content in breast muscle at
6, 14, 22, and 30 weeks old. (r, pearson correlation coefficient). (F) The relative mRNA levels of three genes during intramuscular adipogenic differentiation (n = 3,
**p < 0.01, #p > 0.05).

converted DNA fragments were sequenced by Illumina HiSeq
2500. After removing unknown nucleotides and low-quality
reads of raw reads, clean reads were got and used for the
downstream analysis.

Data Analysis
Produced clean reads were mapped to chicken reference genome
(GGA_5.0) using the Bismark software (version: 2.90) (Krueger
and Andrews, 2011). Then, a methylkit R package (Akalin
et al., 2012) was to estimate methylation status and ratio of
the CpG sites, promoter region, CpG island region and gene
annotation. To get different methylation status in the chicken
different genomic regions, methylation levels at 5′-flanking 2 kb
regions and gene sequences in different samples were plotted. The

RNA-Seq data used in the present study come from our present
study (Zhang et al., 2019). The IMF content data used in the
present study came from our previous study (Fu et al., 2018).

Identification of DMRs and Functional
Analysis of DMR-Related Genes
The methylation regions with p ≤ 0.05 (chi-square test) and
the degree of difference methylation >20% were considered
as differentially methylated regions (DMRs). DMRs that
overlapping with genes body or up or downstream 2 kb of
body regions were considered as differentially methylated genes
(DMGs). To investigate the functions of the DMGs, GO, and
KEGG pathway analysis were conducted in the present study.
Fisher’s Exact Test is p ≤ 0.05 as threshold.
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FIGURE 7 | The DNA Methylation levels of COL6A1 promoter region. (A,B) The DNA Methylation levels of COL6A1 promoter region in intramuscular preadipocytes
and adipocytes. BSP analyses of the DNA methylation of COL6A1 promoter during intramuscular adipogenic differentiation. (C) The correlation between the
COL6A1 mRNA levels and DNA methylation levels during intramuscular adipogenic differentiation.

Bisulfite Sequencing PCR (BSP)
DNA methylation levels in gene promoters were measured by the
Bisulfite sequencing PCR (BSP). Briefly, 200 ng of the chicken
preadipocytes and adipocytes genomic DNA was treated with
bisulfite. The bisulfite-treated DNA was used for touchdown
PCR. BSP primers were designed using the MethPrimer software1

(Supplementary Table S1). The PCR products were cloned
into the pMD19-T vector (TaKaRa, China) and sequenced by
Comate Bioscience Co., Ltd. (Jilin, China). The methylation levels
visualizated by MSRcall software2.

Plasmid Construction, RNA Oligos, and
Cell Transfection
To construct the overexpressed plasmid of COL6A1, the CDS
sequence of chicken COL6A1 was synthesized and cloned
into pcDNA3.1(+)-EGFP vector (Invitrogen, United States).
Sanger sequencing was performed to confirm the sequence.

1http://www.urogene.org/methprimer/
2http://www.msrcall.com/MSRcalcalate.aspx

The siRNAs for COL6A1 were purchase from GenePharma
(Shanghai, China) and transfection with lipofectamine 3000
(Thermo, Shanghai, China). The siRNA-1 of COL6A1 were: 5′-
GGAUGAUGCUGCUAAUGAATT-3′, and 5′-UUCAUUAGCA
GCAUCAUCCTT-3′. The siRNA-2 of COL6A1 were: 5′-GGUC
AUCGCCAAAGCUGUUTT-3′, and 5′-AACAGCUUUGGCGA
UGACCTT-3′.

RNA Extraction, cDNA Synthesis and
Quantitative Real-Time PCR (qRT-PCR)
Total RNA was isolated by RNAiso Plus (TaKaRa, Dalian,
China) following the instruction of manufacturers. The
TAKARA PrimeScriptTM RT reagent kit (TaKaRa) was used
for reverse transcription. The qRT-PCR primers were designed
by Primer3plus3 (Supplementary Table S1). GAPDH was used
as internal control to normalized to the expression level of
genes. The analysis of genes relative expression levels was using
2−11Ct method.

3http://www.primer3plus.com/cgi-bin/dev/primer3plus.cgi
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FIGURE 8 | The effects of 5-AZA-dC treatment on intramuscular adipocytes differentiation. (A) The DNA methylation level (5 mC) in intramuscular preadipocytes
treated with or without 5-AZA-dC (5 µM) for 96 h. (B) The relative mRNA levels in intramuscular adipocytes treated with or without 5-AZA-dC (5 µM) for 96 h. (C,D).
Oil-red O staining of intramuscular adipocytes treated with or without 5-AZA-dC (5 µM) for 96 h. (n = 3). ∗∗p < 0.01.

Immunofluorescence Staining
For immunofluorescence, intramuscular adipocytes were fixed
with 4% PFA (Beyotime) for 40 min, permeabilized 0.5% Triton
X-100 for 10 min, and then blocked with 2% bovine serum
albumin (BSA) for 2 h. Following incubated overnight at 4◦C
with anti-5 mC (Active Motif, 1:200) and anti-5 hmC (Active
Motif, 1:200), stained at room temperature for 1 h with Alexa
Fluor 488 goat anti-mouse or 594 goat anti-rabbit. The DNA
were stained with DAPI (10 µg/mL, Beyotime) for 5 min. The
images were captured with fluorescence microscopy (Nikon,
Tokyo, Japan). The fluorescence intensity was analyzed by
ImageJ software.

5-aza-2′-Deoxycytidine (5-Aza-dC)
Treatments
After reaching 70–80% confluent, intramuscular preadipocytes
were treated with demethylation agent 5-aza-dC (Sigma)
(dissoloved in DMSO) at 5 µM for 96 h. DMSO treatment was
used as a control. Then cells were induced differentiation for 96 h,
then for downstream experiment.

5-Methylcytosine (5-mC) Analysis of
Genomic DNA
The genomic DNAs were extracted with TIANamp
Genomic DNA Kit (TIANGEN) following the instruction
of manufacturers. The methylation analysis was performed

by the 5 mC DNA ELISA Kit (Zymo Research, United States)
following the manufacturer’s instructions. The microplate reader
(Thermo Fisher) was used to detect the absorbance at 405 nm.

5-Ethynyl-2′-Deoxyuridine (EdU) Assay
After transfection for 48 h, intramuscular adipocytes were
incubated at 37◦C with 50 µM EdU (RiboBio, China) for 2 h,
then cells were fixed with 4% PFA for 30 min and neutralized
by 2 mg/mL glycine solution, permeabilized with 0.5% Triton X-
100. Then cells were incubated with Apollo Reaction Cocktail
(RiboBio, China) for 30 min at room temperature. The DNA
was stained with DAPI (Beyotime) for 15 min. The EDU-
positive cells were observation with a fluorescence microscope
(Nikon, Tokyo, Japan).

Wound Healing Test
After reached 70–80% confluence, intramuscular preadipocytes
were transfected with plasmid or RNA oligos. Subsequently,
10 µL pipette tips were used to generated linear wound. The
width of the scratches was measured by microscope (Nikon,
Japan) at 0 and 72 h.

Oil Red O and BODIPY 493/503 Staining
Oil red O staining was performed following our previously
method (Zhang et al., 2018). Cells were fixed with10%
PFA for 40 min, and then stained with oil red O for
20 min. The dye was extracted by isopropanol incubation
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FIGURE 9 | Continued
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FIGURE 9 | Continued
The effects of COL6A1 overexpression and knockdown on cell proliferation, differentiation and migration. (A) Overexpressed of COL6A1 promoted the expression of
adipogenic differentiation and ECM-related genes (B) of intramuscular adipocytes. The relative mRNA levels of genes were detected by qRT-PCR after transfected
with plasmid for 48 h. (C) Knockdown of COL6A1 suppressed the expression of adipogenic differentiation and ECM-related genes (D) of intramuscular adipocytes.
The relative mRNA levels of genes were detected by qRT-PCR after transfected with RNA oligos for 24 h. (E) COL6A1 promoted intramuscular preadipocytes
proliferation. The percentage of EDU positive cells was quantified after transfected with plasmid or RNA oligos. (F) COL6A1 accelerated intramuscular preadipocytes
differentiation. BODIPY (green) and DAPI (blue) staining of intramuscular adipocytes after transfected with plasmid or RNA oligos. (G) COL6A1 promoted
intramuscular adipocytes migration. The width of the scratches was measured by microscope after transfected with plasmid or RNA oligos for 72 h (n = 3),
*p < 0.05, **p < 0.01.

for 15 min at room temperature. Quantitative assessment was
obtained by microplate reader (Thermo Scientific) at 510 nm.
Where indicated, lipids were co-stained by adding BODIPY
493/503 (1 mg/mL, Molecular Probes #D3922) to secondary
antibody solution. Cells were washed three times with PBS
prior to imaging.

Statistical Analysis
Statistical analyses were performed using SPSS19 software (SPSS
Inc., Chicago, IL, United States). In the present study, the
results were presented as mean ± SEM, were subjected to
statistical analysis by two-tailed t-test. The level of significance
was presented as ∗p < 0.05) and ∗∗p < 0.01.

DISCUSSION

IMF content contributes to the meat juiciness and tenderness.
Our previous study suggested that the breast muscle of later
laying-period hens had higher IMF content than that of juvenile
hens, while they exhibited higher global DNA methylation levels
(Zhang et al., 2017). Growing numbers of studies demonstrated
that DNA methylation played important roles in adipogenesis.
Therefore, we speculated that DNA methylation might have great
influences on adipogenic differentiation of chicken intramuscular
adipocytes in vitro.

According to our WGBS data, 60% of mC were found to be
existed in the CG context, 0.6% in the CHG context, and 0.7%
in the CHH context in the present study. The methylation level
at the genome-wide scale was significantly reduced in the mature
intramuscular adipocytes. We noticed that the DNA methylation
level declined aggressively prior to TSS and gradually rose in
the coding region of the chicken genome, which is consistent
with previous studies in chicken (Zhang et al., 2017). The exon
and intron regions of the chicken genome consisted of a large
proportion of the DMRs, a small part of DMRs were belong to the
5′UTR and 3′UTR (Figure 5). The methylation regulation of the
intron regions underlying adipocytes differentiation was worth to
study in the future.

DNMT1 mainly involved in maintain methylation (Song
et al., 2012), while DNMT3A/3B mainly involved in the de novo
DNA methylation (Li et al., 2007; Hervouet et al., 2009). Tet
methylcytosine dioxygenases (TET1/2/3) play important roles
in elimination of methylation (Williams et al., 2011). qPCR
results showed that the mRNA levels of DNA methyltransferases
DNMT1, DNMT3A/3B, and TET1/2/3 were significantly down-
regulated during intramuscular adipocyte differentiation,

suggesting that whole-genome DNA demethylation may occur
during adipocyte differentiation. The process of adipocyte
differentiation requires the initiation of a large number of genes
and transcription factors for synergistic expression, which may be
related to the differentiation of adipocytes (Mersmann and Ding,
2001). Our previous study found that the hypermethylation in
the promoters of ABCA1, COL6A1, and GSTT1L, thus inhibiting
their expression in the later laying-period hens (Zhang et al.,
2017). Interestingly, we noticed that they were up-regulated after
adipocyte differentiation, suggesting that they may play crucial
roles in the differentiation of intramuscular preadipocytes.

ABCA1 maintains cholesterol homeostasis, regulates lipid
metabolism in adipocytes (Schmitz et al., 1999; Schmitz and
Langmann, 2005). The DNA methylation level of ABCA1
affects high density lipoprotein cholesterol (HDLC) levels in
patients with familial hypercholesterolemia (Yasuaki et al., 2017).
ABCA1 expression influenced triglyceride metabolism in bovine
mammary epithelial cells by regulating the expression of related
genes in the lipid metabolism pathway (Chen et al., 2019).
ABCA1 silencing by siRNA also reduce peroxisome proliferator-
activated receptor γ (PPARγ) expression and triglyceride content
during 3T3-L1 pre-adipocyte differentiation (Cuffe et al., 2018).
ABCA1 is significantly up-regulated after differentiation of
3T3-L1 adipocytes, which is consistent with our study on
chicken intramuscular adipocytes (Le et al., 2003). Glutathione
S-transferases (GSTT1) Glutathione S-transferases influencing
the lipid peroxides metabolism during adipocytes differentiation
process (Jowsey et al., 2003; Corton et al., 2008). Wang et al.
(2009) found that GSTT1 were upregulated in the adipose tissues
of fat line birds compared with lean line birds.

Muscle tenderness is closely related with the content of
collagen. The ECM not only affects the development of muscle
fibers, but also has an effect on IMF content and tenderness
(Cánovas et al., 2010). COL6A1 gene is involved in cell adhesion
and extracellular matrix (ECM). Previous studies suggested that
the expression of collagen synthesis related-genes is related to the
meat quality of beef (Zhang et al., 2011).

To further investigate the effects of DNA methylation on
intramuscular preadipocytes differentiation, we focused on
collagen type VI alpha 1 chain gene (COL6A1), which is located
in the extracellular matrix (ECM) receptor interaction and focal
adhesion pathway. With the differentiation of preadipocytes,
the lipid droplets gradually fill the cytoplasm, and the cells
are easily crushed and ruptured. At this time, the collagen
components that act as protective cells in the extracellular
matrix are synthesized in large amounts. It is generally believed
that DNA methylation of the gene promoter region inhibits
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FIGURE 10 | Schema of the epigenetic regulatory mechanism of DNA methylation intramuscular adipogenesis in chicken. The global DNA methylation level
decreased with the expression levels of DNA methylasferase (DNMTs, TETs) during intramuscular adipogenic differentiation. Thus, increasing large amount of lipid
metabolism and adipocyte differentiation-related genes (such as COL6A1, FASN, and INSIG1, etc.) expression.
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gene expression (Lorincz et al., 2004). In our study, we found
that the DNA methylation level of COL6A1 promoter was
decreased while the mRNA level was increasing after adipogenic
differentiation. The methylation inhibitor, 5-AZA-dC promotes
intramuscular adipocytes differentiation by increasing the core
adipogenic factors, PPARG and CEBPA. Furthermore, function
loss and gain of experiment of COL6A1 suggested that DNA
methylation can regulate the chicken intramuscular adipocytes
differentiation by affecting the expression of ECM-related genes
(such as COL6A1 gene).

CONCLUSION

In conclusion, our study firstly supplies comprehensive DNA
methylation atlas in chicken adipocytes. Integrated DNA
methylation with transcriptome, the present study revealed
several potential genes (such as COL6A1, FASN, and INSIG,
etc.) and pathways related to lipid metabolism and adipocytes
differentiation regulated by DNA methylation (Figure 10). Our
study will accelerate the study of genome epigenetic mechanism
in adipocytes differentiation and IMF deposition in poultry.
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FIGURE S1 | The correlation between the mRNA levels of COL6A1, ABCA1, and
GSTT1L and the TG content of intramuscular adipocytes during
differentiation process.

FIGURE S2 | The DNA Methylation levels of ABCA1 promoter region. (A,B) The
DNA Methylation levels of ABCA1 promoter region in intramuscular preadipocytes
and adipocytes. BSP analyses of the DNA methylation of ABCA1 promoter during
intramuscular adipogenic differentiation. (C) The correlation between the ABCA1
mRNA levels and DNA methylation levels during intramuscular adipogenic
differentiation.

FIGURE S3 | The DNA Methylation levels of GSTT1L promoter region. (A,B) The
DNA Methylation levels of GSTT1L promoter region in intramuscular
preadipocytes and adipocytes. BSP analyses of the DNA methylation of GSTT1L
promoter during intramuscular adipogenic differentiation. (C) The correlation
between the GSTT1L mRNA levels and DNA methylation levels during
intramuscular adipogenic differentiation.

TABLE S1 | Primer sequences for BSP and qRT-PCR.
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Paternal environmental perturbations, including cocaine intake, can affect the
development and behavior of the offspring through epigenetic inheritance. However,
the mechanism by which cocaine alters the male germ cells epigenome is almost
unexplored. Here, we report that cocaine-treated male mice showed alterations
on specific histone post-translational modifications (PTMs) including increased silent
chromatin marks H3K9me3 and H3K27me3 and decreased active enhancer and
promoter marks H3K27ac and H3K4me3 in isolated germ cells. Also, cocaine increased
H3K9ac and H4K16ac levels, involved in the replacement of histones by protamines
that take place at round spermatid stage. Cocaine also altered histones H3/H4
epigenetic enzymes by increasing acetyltransferase KAT8/MOF, deacetylase SIRT1
and methyltransferase KMT1C/G9A, and decreasing deacetylases HDAC1/2 and
demethylase KDM1A/LSD1 protein levels. Moreover, a pre-treatment with dopamine
receptor 1 (DRD1) antagonist SCH23390 (SCH) blocked cocaine effects on H3K4me3,
H3K27me3, and H4K16ac epigenetic marks. Interestingly, treatment with SCH-only was
able to modify most of the histone marks tested here, pointing to a dopamine role in
controlling histone PTMs in germ cells. Taken together, our data suggest a key role for
DRD1 in mediating cocaine-triggered epigenetic modifications related to the silencing
of gene transcription and the histone-to-protamine replacement that controls chromatin
architecture of maturing sperm cells, and pinpoints a novel role of the dopaminergic
system in the regulation of male germ cells reprogramming.

Keywords: cocaine, male germ cells, epigenetics, dopamine receptor 1, histone post-traslational modifications

INTRODUCTION

In the last years, there has been special interest in the characterization of epigenetic mechanisms
during spermatogenesis that control the reprogramming of the paternal genome, due to the possible
trans-generational transmission of acquired traits (Lacal and Ventura, 2018; Galan et al., 2019).
Epigenetic reprogramming involves histones post-translational modifications (PTMs),
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DNA methylation, and changes in small non-coding RNAs that
modulate gene expression in response to basal transcriptional
programs and environmental signals (Jenkins and Carrell, 2012).
Histones PTMs differentially signal chromatin states such as
open/transcription-permissive or closed/repressed, as well as
regulatory elements in DNA including active enhancers and
promoters (Miller and Grant, 2013). The spermatogenesis
in particular is characterized by an epigenetic program that
enables the multiple chromatin reorganizations and unique
transcriptional regulation that are required for proper meiotic
divisions and sperm maturation. During spermiogenesis, the
histone-to-protamine replacement occurs to facilitate chromatin
compaction in the sperm, and histones H3/H4 hyperacetylation
is essential for this process (Hazzouri et al., 2000; Steilmann
et al., 2011; Shirakata et al., 2014; Bao and Bedford, 2016).
Importantly, not all histones are removed from the sperm
nucleus; a small percentage (5–15%, depending on the species)
is retained at specific loci of key spermatogenesis and embryonic
developmental genes (Rajender et al., 2011; Carrell, 2012). It is
important to point out that, once paternal DNA compaction
has occurred, epigenetic marks may not be altered, creating
windows of vulnerability in male germs cells to environmental
reprogramming during spermatogenesis (Bale, 2015).

In line with this, recent evidence suggests that cocaine
administration in animal models can trigger non-genetic
inheritance of addiction traits from father to offspring, including
negative birth outcomes, increased rates of anxiety and
depression as well as impaired cognition affecting development
and behavior (Vassoler et al., 2013; White et al., 2016; Wimmer
et al., 2017). This paternal transmission is partly due to the
incomplete replacement of histones by protamines. For instance,
it has been reported an increased H3K9K14ac2 mark associated
with the Bdnf promoter in the sperm of cocaine-experienced rats
as well as their male offspring (Vassoler et al., 2013). Also, we
have recently reported that chronic cocaine treatment increased
specific germ cell H3/H4 acetylation (González et al., 2018).
Thus, histones PTMs represent epigenetic marks potentially
inheritable to offspring (Rajender et al., 2011; Vassoler et al.,
2013). However, the mechanism by which cocaine alters male
germ cells epigenome has been poorly investigated.

Cocaine intake has been associated with impaired male
reproductive function including increased oxidative stress,
fibrosis of the seminiferous tubules and germ cell apoptosis
that leads to a reduction in sperm production (Bracken et al.,
1990; Rodriguez et al., 1992; George et al., 1996; Li et al.,
1999; Brown et al., 2006; Fronczak et al., 2012; González
et al., 2015). In other tissues, cocaine binds to transporters,
receptors, voltage-gated ion channels, and plasma proteins
and metabolic enzymes (Heard et al., 2008). Importantly,
cocaine inhibits monoamine transporters increasing the
synaptic concentration of dopamine, nor-epinephrine and
serotonin, and which is responsible for cocaine reinforcing
and sympathomimetic effects (Heard et al., 2008). It has
been established that the major adverse effects of cocaine are
due to increased dopamine binding to dopamine receptor
1 (DRD1) in the mesocorticolimbic system (Anderson and
Pierce, 2005; Heard et al., 2008). Concerning the testis, we

have previously described that cocaine administration in
mice increases tyrosine hydroxylase expression, the rate-
limiting enzyme of catecholamine synthesis, and downregulates
DRD1 and DRD2, similarly to the mechanism described
in the brain (González et al., 2015). Interestingly, we
found that the DRD1 receptor was the only one expressed
in the spermatogonia nearest the basal lamina of the
seminiferous tubules (González et al., 2015). In line with
this, early reports have found dopamine located in the
wall of seminiferous tubules and interstitial cells (Zieher
et al., 1971). Taken together, these findings suggest that
the dopamine system could be involved in the epigenetic
reprogramming of germ cells.

To date, the mechanisms by which environmental traits can be
codified into the male germ cells epigenome and transmitted to
the progeny are the focus of intense research. Here, we evaluated
the effects of chronic cocaine treatment in adult male mice, and
participation of DRD1, on specific histone modifications and
epigenetic enzymes, and involved in the structural and dynamic
changes of chromatin in isolated male germ cells.

MATERIALS AND METHODS

Animals
Male C57BL/6 mice (10–12 weeks old) from the School of
Exact and Natural Sciences of the University of Buenos Aires
(UBA) were housed in a light- and temperature-controlled room.
Principles of animal care were followed in accordance with
“Guidelines for the Care and Use of Mammals in Neuroscience
and Behavioral Research” (National Research Council (US)
Committee on Guidelines for the Use of Animals in Neuroscience
and Behavioral Research, 2003) and approved by IACUC
Committee of the Faculty of Pharmacy and Biochemistry,
Universidad de Buenos Aires (Protocol Number: EXP-FYB N◦
52867/2019 RES(D) N◦ 2019-3534).

Pharmacological Treatment
Mice were treated with cocaine (Sigma-Aldrich, St. Louis, MO,
United States) or vehicle (sterile 0.9% saline), in an intermittent
binge protocol: 3 i.p. injections, 1 h apart, one day on/off for
13 days (González et al., 2015, 2018). To evaluate the involvement
of DRD1 in the deleterious action of cocaine, DRD1 antagonist
SCH23390 (TOCRIS bioscience, Ellisville, MO, United States)
was injected 15 min before each cocaine or vehicle injection
(González et al., 2016). Animals were assigned to four different
groups: COC (3 × saline s.c + 3 × cocaine 10 mg/kg i.p),
SCH (3 × SCH23390 0.5 mg/kg s.c + 3 × saline i.p), SCH-
COC (3 × SCH23390 0.5 mg/kg s.c + 3 × cocaine 10 mg/kg
i.p), and VEH (3 × saline s.c + 3 × saline i.p). Mice were
euthanized 24 h after the last binge on day 14 and testes removed
for isolation of germ cells.

Germ Cells Isolation
Germ cells were isolated from the testes of the four experimental
groups as was previously described (González et al., 2018).
The right and left testes of each animal were decapsulated
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FIGURE 1 | Effect of cocaine (COC), SCH23390 (SCH), and SCH 15 min before COC (SCH-COC) treatments on DRD1 mRNA and protein expression in male germ
cells. (A) DRD1 mRNA expression (RT-PCR), Kruskal–Wallis-paired comparisons H = 12.86, p = 0.005. (B) DRD1 protein levels (western blot), ANOVA-Bonferroni
F(3,23) = 4.49, p = 0.014. Values indicate mean ± SEM (n = 5–7). *p < 0.05 different from VEH, $p < 0.05 different from COC.

and digested with type I collagenase (0.23 mg/ml, Sigma)
in phosphate-buffered saline (PBS) with 0.1% bovine serum
albumin for 10 min at 34◦C in a shaking water bath. Collagenase
activity was stopped by adding cold PBS and the seminiferous
tubules were allowed to settle and washed three times with
PBS. Then, the seminiferous tubules were mechanically dispersed
and the supernatants were filtered (cell strainer, 41 µm) and
centrifuged at 150 g for 15 min. Finally, PBS was removed and
the cells were kept at−80◦C for molecular studies.

Western Blot
Western blot analyses were conducted as previously described
(González et al., 2018). Briefly, homogenates were prepared in
a solution containing 50 mM Tris–HCl pH 7.5, 150 mM NaCl,
0.1% Triton X100, 0.5% sodium deoxycholate, 0.1% SDS, 1 mM
PMSF, 5 µg/ml leupeptin, and 5 µg/ml aprotinin. After removal
of cell debris by centrifugation, the protein concentration of the
cell lysate was determined. The homogenates were combined
with loading buffer containing 4% SDS, 20% glycerol, 10%
β-mercaptoethanol, 125 mM Tris, (pH 6.8), and boiled at 100◦C
for 5 min. Protein samples (15–50 µg) were separated by
10–12% SDS-PAGE, and the proteins transferred to a PVDF
membrane. Blots were incubated with the following primary
antibodies: anti-DRD1 (1:50, sc33660), anti-HDAC2 (1:1000, sc-
7899), anti-G9a (1:250, sc515726), anti-Tip60 (1:250, sc166323),
anti-MOF (1:250, sc81163), anti-LSD1 (1:250, sc271720), and
anti-SIRT1 (1:500, sc74465) from Santa Cruz Biotechnology
Inc., United States; anti-H3K4me3 (1:1500, ab1012), anti-
H3K27me3 (1:250, ab192985), anti-H4K16ac (1:250, ab109463),
anti-H3K9me3 (1:1000, ab8898), and anti-H3K27ac (1:1000,
ab4729) from Abcam, United Kingdom; anti-HDAC1 (1:1000,
05-100-I) from Millipore, PAIS; anti-H3K9ac (1:500, #9649)
from Cell Signaling Technology, United States; and anti-
Actin (1:5000, A5441) and anti-a-tubulin (1:10000, T9026)
were from Sigma, United States. Immune complexes were

detected with anti-rabbit or anti-mouse secondary antibodies
and chemiluminescence reagents (Amersham, United States),
and bands were visualized with the image reader ImageQuant
350 (GE Healthcare). The resulting images were quantified with
ImageJ (NIH) software. Original blots shown in this study are
available in Supplementary Material.

Real Time PCR
RT-PCR was conducted as previously described (González et al.,
2015, 2018). Briefly, total germ cells RNA was extracted
with TRIzol (Invitrogen, Carlsbad, CA, United States)
according to the manufacturer’s instructions. Total RNA
(1 µg) was treated with DNAseI (Invitrogen, Carlsbad,
CA, United States) and used for reverse transcription in a
20 µl final volume containing M-MLV reverse transcriptase
(200 U/µl) (Promega, Madison, WI, United States), and
random hexamer primers (Biodynamics, Milwaukee, WI,
United States). Reverse transcribed cDNA was employed for
quantitative PCR using SYBR Green PCR Master Mix and
specific primers in a Stratagene MPX500 cycler (Stratagene,
San Diego, United States). Primers sequences for DRD1
and GAPDH are published in González et al. (2015).
Data from the reaction were collected and analyzed by the
complementary computer software (MxPro3005P v4.10 Build
389, Schema 85). Relative quantitation of gene expression
was calculated using standard curves and normalized to
GAPDH in each sample.

Statistical Analysis
Statistics were performed using one-way ANOVA followed
by Bonferroni post hoc test. Data were transformed when
required. For data that did not comply with parametric
test assumptions, Kruskal–Wallis ANOVA on ranks followed
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by paired comparisons was applied. InfoStat 2010 software1

was used for statistical analysis. Differences were considered
significant if p < 0.05.

RESULTS

Cocaine Elicits DRD1 Downregulation in
Germ Cells via a DRD1-Dependent
Mechanism
We have previously reported that male mice spermatogonia
express DRD1, and that cocaine administration affects the
testicular dopaminergic system decreasing DRD1 mRNA
(González et al., 2015). Therefore, we evaluated the effect of
cocaine (COC), DRD1 antagonist SCH23390 (SCH) receptor,
and SCH administered 15 min before COC (SCH-COC) on
DRD1 expression levels in isolated mouse germ cells. Both DRD1
mRNA (Figure 1A) and protein (Figure 1B) expression were
significantly reduced in germ cells from cocaine-treated mice
compared to vehicle (VEH). Combined SCH-COC treatment
was able to revert the effect of cocaine on DRD1 mRNA and
protein levels (Figure 1). No differences in mRNA and protein
expression of DRD1 were detected in SCH group compared to
VEH under these experimental conditions.

Cocaine Elicits Epigenetic
Reprogramming of Histone PTMs in
Male Germ Cells: Role of DRD1
We evaluated the effect of COC, SCH, and SCH-COC
treatments on protein expression levels of specific H3/H4 PTMs
related to the epigenetic regulation of gene expression and
chromatin remodeling during spermatogenesis: (i) H3K9me3
and H3K27me3 as silent chromatin marks, (ii) H3K27ac and
H3K4me3 as active enhancer and promoter marks, and (iii)
H3K9ac and H4K16ac as marks of open chromatin states and the
replacement of histones by protamines. We found a significant
increase in H3K9me3, H3K27me3, H3K9ac, and H4K16ac
protein levels in isolated germ cells of COC group compared to
VEH (Figure 2). Pre-treatment with SCH counteracted cocaine-
increased protein levels of H4K16ac and H3K27me3 (Figure 2).
On the other hand, we observed a decrease in H3K27ac and
H3K4me3 in isolated germ cells of COC group compared to
VEH (Figure 2). Pre-treatment with SCH was able to re-establish
protein levels of H3K4me3 (Figure 2).

Cocaine Affects the Expression of
Epigenetic Enzymes: Role of DRD1
We evaluated protein expression levels of histone modifying
enzymes acetyltransferases/deacetylases (KATs/HDACs) and
methyltransferases/demethylases (KMTs/KDMs) in isolated
germs cells from all groups. We found decreased protein levels
of class I deacetylases HDAC1 and HDAC2 and increased
class III deacetylase SIRT1 in COC group compared to VEH,
which reverted under pre-treatment with SCH (Figure 3).

1www.infostat.com.ar

FIGURE 2 | Effect of cocaine (COC), SCH23390 (SCH), and SCH 15 min
before COC (SCH-COC) treatments on H3 and H4 post-traslational
modifications expression in male germ cells. Protein expression levels
(western blot) of (A) H3K9me3, ANOVA-Bonferroni F(3,20) = 6.87, p = 0.004.
(B) H3K27me3, Kruskal–Wallis-paired comparisons H = 7.93, p = 0.047.
(C) H3K27ac, ANOVA-Bonferroni F(3,20) = 8.86, p = 0.0009. (D) H3K4me3,
ANOVA-Bonferroni F(3,23) = 23.84, p < 0.0001. (E) H3K9ac,
Kruskal–Wallis-paired comparisons H = 13.5, p = 0.004. (F) H4K16ac,
Kruskal–Wallis-paired comparisons H = 12.6, p = 0.005. Values indicate
mean ± SEM (n = 5–7). *p < 0.05 different from VEH, $p < 0.05 different from
COC.

SCH-only treatment was also able to increase SIRT1 (Figure 3).
Protein levels of acetyltransferase KAT8/MOF, which catalyzes
the specific acetylation of H4K16, increased in COC group
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compared to VEH and reverted under pre-treatment with SCH
(Figure 3). No differences in KAT5/TIP60 protein levels were
detected between groups under these experimental conditions
(Figure 3). We also found that KDM1A/LSD1, which can
demethylate both H3K4me and H3K9me, decreased both in
COC and SCH groups compared to VEH, whereas SCH-COC
was neither different from VEH nor COC groups. Protein levels
of KMT1C/G9A, which catalyzes H3K9 methylation, increased in
SCH, COC, and SCH-COC groups compared to VEH (Figure 3).

DISCUSSION

The once controversial idea that parental lifestyle can shape
the physiology and behavior of their offspring via epigenetic
inheritance has become a vibrant area of research. Accumulating
data has shown that male germ cells are epigenetically modified
at various time points during spermatogenesis to condense
and protect paternal DNA, and also to provide epigenetic
information for future embryo development. Here, we report
that cocaine, through both DRD1-dependent and independent
mechanisms, altered specific histones PTMs and epigenetic
modifying enzymes related to the control of gene transcription
and to the histone-to-protamine replacement, suggesting a novel
role for the dopaminergic system in the regulation of germ
cells reprogramming.

It has been found that H3 retention sites in normal sperm
are highly conserved, and specific PTMs alterations were linked
to epigenetic transgenerational transmission of environmental
toxicants exposure traits (Ben Maamar et al., 2018). Retained
H3 PTMs in the sperm epigenome were located at key
genes that control the spermatogenesis, showing a so-called
“spermatogenic memory,” as well as at developmental genes
that will take part in the future embryonic program (Carrell
and Hammoud, 2010). The active transcription mark H3K4me3
was highly detected in the sperm nucleosome fraction and
enriched at gene clusters of developmental genes, non-coding
RNAs and spermatogenesis-related genes (Erkek et al., 2013).
Also, sperm-retained H3K27ac was found enriched at super-
enhancers that are active in adult tissues, suggesting that
cis-regulatory elements critical for adult cell differentiation
are already specified in sperm (Jung et al., 2017). On the
other hand, H3K9me3 was found retained at satellite repeats
in mouse sperm, whereas H3K27me3 was found enriched in
promoters of developmental genes that are repressed in the
early pre-implantation stages of embryogenesis (Hammoud
et al., 2009; Brykczynska et al., 2010; Carrell, 2012; Erkek et al.,
2013). Here, we found that cocaine treatment increased silent
chromatin marks H3K9me3/H3K27me3 and decreased active
enhancer and promoter marks H3K27ac/H3K4me3 in mouse
germ cells. It has been shown that DNA methylation induces
H3K27me3 deposition at specific gene promoters (Hammoud
et al., 2009; King et al., 2016), and we have previously found
that cocaine increased 5-mC levels in DNA from isolated
germ cells and sperm (González et al., 2018). Interestingly,
blockade of DRD1 was only able to revert cocaine-induced
effects on the functionally opposite histone marks H3K4me3

and H3K27me3. Sperm retained nucleosomes often contain
H3K4me3/H3K27me3 bivalent marking, characteristic of gene
preactivation termed “poising” (Hammoud et al., 2014), and
localize at the promoters of hundreds of developmental genes,
including Hox-, Fox-, Sox-, and Gata-families (Hammoud
et al., 2009; Brykczynska et al., 2010). Therefore, our data
suggest that cocaine, through DRD1 activation, may cause
H3K4me3/H3K27me3 imbalance potentially affecting the
embryonic developmental program. In line with this, we
found that cocaine treatment increased KMT1C/G9A and
decreased KDM1A/LSD1 enzymes. KMT1C/G9A is a key
mediator of the epigenetic effects of cocaine in the mesolimbic
system (Maze et al., 2010; Anderson et al., 2019) and has been
described as a crucial epigenetic marker of heterochromatin
formation during meiosis (Tachibana et al., 2007). KDM1A/LSD1
participates in the demethylation of H3K4/K9 and is required
for spermatogonial differentiation and germ cell survival in mice
(Myrick et al., 2017). Also, it has been found that many bivalent
genes have increased H3K4me3 and decreased H3K27me3 levels
and are occupied by KDM1A/LSD1 to maintain low levels
of H3K4me2 that often co-localized with H3K4me3 (Adamo
et al., 2011; Whyte et al., 2012). Additionally, KDM1A/LSD1
inactivation results in increased global H3K27me3 leading to
suppression of gene expression (Leis et al., 2012). Interestingly,
KDM1A/LSD1 was found in the same transcriptional repressor
complex with HDAC1/2 (Kelly et al., 2018), which were also
downregulated in germ cells after cocaine treatment (González
et al., 2018), and its expression tightly correlated with H3K4me3
levels in male germ cells (Godmann et al., 2007). Altogether, these
data suggest that cocaine promotes alterations in KDM/KMT
enzymes that would trigger altered methylation patterns of
H3 lysine residues associated with the silencing of genetic
transcription in mouse germ cells.

During spermatogenesis, specific histones PTMs work
together to facilitate genome re-organization and packaging
of the sperm nucleus. Hyperacetylation of H3K9 and H4K16
triggers the histone-to-protamine replacement, which takes place
at stage 8–12 round spermatids (Hazzouri et al., 2000; Steilmann
et al., 2011; Shirakata et al., 2014). Here, we found increased
H3K9ac and H4K16ac in mouse germ cells after cocaine
treatment. We also found altered levels of the H4K16-specific
acetyltransferase KAT8/MOF and deacetylases HDAC1/2 and
SIRT1, which were all found to participate in the histone-to-
protamine transition at round spermatid stage (Fenic et al., 2004;
Bell et al., 2014; Jiang et al., 2018). In addition, we found that
SCH pre-treatment was able to revert cocaine-induced effects on
H4K16ac as well as HDAC1/2, SIRT1, and KAT8/MOF. These
data suggest that cocaine, via DRD1 regulation, has a key role in
modulating the acetylation status of male epigenome most likely
interfering with histone eviction and chromatin reassembly.

The data presented here showed that DRD1 blockade
is able to re-establish the levels of some epigenetic marks
altered by cocaine. Also, SCH-only treatment was able to
modify most of the epigenetic histone PTMs as well as
SIRT1, KDM1A/LSD1, and KMT1C/G9A, further supporting
a novel role of dopamine controlling epigenetic marks during
spermatogenesis. Noteworthy, H4K16ac, H3K4me3, H3K27me3,
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FIGURE 3 | Effect of cocaine (COC), SCH23390 (SCH), and SCH 15 min before COC (SCH-COC) treatments on histone modifying enzymes expression in male
germ cells. Protein expression levels (western blot) of (A) HDAC1, Kruskal–Wallis-paired comparisons H = 7.9, p = 0.048. (B) HDAC2, ANOVA-Bonferroni
F(3,24) = 6.32, p = 0.003. (C) SIRT1, Kruskal–Wallis-paired comparisons H = 10.2, p = 0.016. (D) TIP60, ANOVA-Bonferroni F(3,20) = 1, p > 0.05. (E) MOF,
ANOVA-Bonferroni F(3,24) = 6.8, p = 0.002. (F) LSD1, ANOVA-Bonferroni F(3,20) = 9.5, p = 0.0009. (G) G9a, Kruskal–Wallis-paired comparisons H = 11.3,
p = 0.01. *p < 0.05 different from VEH, $p < 0.05 different from COC.
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and SIRT1 showed that SCH-only treatment behaved like
cocaine, but returned to control values in the combined SCH-
COC group. This type of response is typical of the so-called
“inverted U-shaped” effect of DRD1, extensively studied in brain
cortical cells, where both low (as in SCH) and high (as in COC)
dopamine concentrations impact DRD1 signaling causing similar
detrimental effects in cells function and cognition (Williams and
Castner, 2006; González et al., 2016). Here, cocaine may have
increased local dopamine production by TH-expressing neuron-
like-cells and meiotic germ cells (Frungieri et al., 2000; González
et al., 2015), as well as plasmatic dopamine through sympathetic
nerves and/or adrenal medulla release (Rubí and Maechler, 2010).
Also, the DRD1-mediated effects found in germ cells could
have been triggered by autocrine-paracrine effects of DRD1-
expressing spermatogonia (González et al., 2015), by interstitial-
tubular effects of Leydig cells expressing DRD1 (González et al.,
2015), and also by endocrine hypothalamic-pituitary factors
under the control of the central tubero-infundibular dopamine
circuit such as prolactin (Rubí and Maechler, 2010). Our data
point to DRD1 involvement in germ cell epigenetic homeostasis,
but also, that these cocaine-reprogramming effects in germ cells
are potentially reversible. This type of evidence becomes of
great importance due to the existence of several therapeutic
drugs that affect the dopaminergic system and cause male
infertility. For instance, it was found that dopamine antagonists
and antidepressants such as reserpine (Yamauchi et al., 2000),
dopamine agonist bromocriptine (Richardson et al., 1984), and
antihypertensive drug methyldopa (Chapin and Williams, 1989)
cause testicular atrophy. Thus, epigenetic changes induced by
dopamine imbalance in male germ cells could be reversible if the
environmental conditions return to normal.

CONCLUSION

In conclusion, our findings strongly suggest that cocaine can
induce an epigenetic reprogramming of male germ cells through
changes in epigenetic enzymes and histones specific PTMs which
could trigger silencing of genetic expression and, moreover,
alter the histone-to-protamine replacement event necessary
to chromatin reorganization and DNA compaction. Although
this is a preliminary study performed in samples containing
all the germ cells populations, we show novel evidence that
pinpoint a key role for DRD1 in mediating specific epigenetic
modifications induced by cocaine in mouse germ cells. Further
studies in specific cell stages of spermatogenesis obtained by cell
sorting will be performed in order to expand to the knowledge
about the mechanisms by which environmental effects such as
addictive stimulants consumption can be codified in the paternal
epigenome and transmitted across generations.
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ZNF143, a human homolog of the transcriptional activator Staf, is a C2H2-type
protein consisting of seven zinc finger domains. As a transcription factor (TF),
ZNF143 is sequence specifically binding to chromatin and activates the expression of
protein-coding and non-coding genes on a genome scale. Although it is ubiquitous
expressed, its expression in cancer cells and tissues is usually higher than that in
normal cells and tissues. Therefore, abnormal expression of ZNF143 is related to
cancer cell survival, proliferation, differentiation, migration, and invasion, suggesting
that new small molecules can be designed by targeting ZNF143 as it may be a
good potential biomarker and therapeutic target for related cancers. However, the
mechanism on how ZNF143 regulates its targeting gene remains unclear. Recently,
with the development of chromatin conformation capture (3C) and its derivatives, and
high-throughput sequencing technology, new findings have been obtained in the study
of ZNF143. Pioneering studies have showed that ZNF143 binds directly to promoters
and contributes to chromatin interactions connecting promoters to distal regulatory
elements, such as enhancers. Further, it has proved that ZNF143 is involved in CCCTC-
binding factor (CTCF) in establishing the conserved chromatin loops by cooperating with
cohesin and other partners. These results indicate that ZNF143 is a key loop formation
factor. In addition, we report ZNF143 is dynamically bound to chromatin during the cell
cycle demonstrated that it is a potential mitotic bookmarking factor. It may be associated
with CTCF for mitosis-to-G1 phase transition and chromatin loop re-establishment in
early G1 phase. In the future, researchers could further clarify the fine mechanism of
ZNF143 in mediating chromatin loops with the help of CUT&RUN (CUT&Tag) and Cut-C
technology. Thus, in this review, we summarize the research progress of TF ZNF143 in
detail and also predict the potential functions of ZNF143 in cell fate and identity based
on our recent discoveries.
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INTRODUCTION

Schuster et al. (1995) found a transcription factor (TF), which
can be bound specifically to the promoter of selenocysteine
tRNA in Xenopus oocytes and named it Staf (selenocysteine
tRNA gene transcription activating factor). In the same year,
Tommerup and Vissing (1995) reported zinc finger protein 143
(ZNF143), a human homolog of the transcriptional activator
Staf, was located on the human 11th chromosome, 11p15.3–
15.4. Subsequently, Adachi et al. (1998) isolated and characterized
m-Staf from mouse mammary gland, which is consistent with
human ZNF143. ZNF143 is a member of the Kruppel family
and is a widely expressed transcriptional activation factor that
regulates gene expression associated with cell cycle and DNA
replication (Izumi et al., 2010). Therefore, it is widely involved
in a variety of cellular and pathogenic processes, such as cell
survival, growth, proliferation, etc. (Table 1). However, the
molecular mechanism of ZNF143 in regulating gene expression
remains elusive.

In recent years, studies have revealed that ZNF143 not only
exists in most cancer cells but is also necessary for the normal
development of tissues (Izumi et al., 2011; Halbig et al., 2012;

TABLE 1 | The role of ZNF143 in cancer progression.

ZNF143
status

Cancer type Association References

Knockdown Human prostate
cancer PC3

Induce cell
apoptosis

Izumi et al., 2010

Breast carcinoma Increase cellular
motility

Paek et al., 2017

Colon cancer
(HCT116)

Increase cell
migration and
invasion

Paek et al., 2014

HeLa-S3 Reduce cell
proliferation

Ngondo-Mbongo
et al., 2013

Breast cancer Better cell survival Paek et al., 2019

HeLa Reduce cell
proliferation,
cell-cycle
progression, and
cell viability

Parker et al., 2014

Colon cancer Increase cell
plasticity

Verma et al., 2019

Overexpression PC3 prostate
cancer cell lines

Increase cell
division

Izumi et al., 2011

Gastric cancer(GC) Enhance GC
migration

Wei et al., 2016

HepG2 and HeLa Increase cell
survival and
differentiation

Grossman et al.,
2014

Positively
expression

Lung cancer Increase cell growth Kawatsu et al.,
2014

Lung
adenocarcinoma

With highly invasive
and proliferation

Kawatsu et al.,
2014

Ovarian tumors and
Low-grade ovarian
cancers

Relate to cancer
invasion,
metastasis
formation

Sadlecki et al.,
2019

Kawatsu et al., 2014; Paek et al., 2014; Wei et al., 2016;
Paek et al., 2017). Genome-wide analyses have shown that TF
ZNF143 with sequence binding specificity is usually bound
to the promoter of its regulatory gene and promotes the
formation of chromatin loop by interacting with other chromatin
structure and organization factors, such as CCCTC-binding
factor (CTCF) and cohesin (Heidari et al., 2014; Bailey et al.,
2015; Ye et al., 2016; Yang et al., 2017; Mourad and Cuvier,
2018; Wen et al., 2018). In summary, as a key TF, ZNF143
plays a critical role in chromatin loop formation and gene
regulation (Table 2), illustrating great importance in the study of
its regulatory mechanism.

THE STRUCTURAL FEATURES OF
ZNF143

The amino acid sequence of human ZNF143 is highly
homologous to both m-Staf and Staf. Among its sequence, 97.1
and 84% residues are identical to those of m-Staf and Staf,
respectively (Schuster et al., 1995; Adachi et al., 1998; Myslinski
et al., 1998). Structurally, these proteins consist of three regions
(A, B, and C) (Figure 1). Analysis of the three regions indicates
that the central region B (residues 220–428 in ZNF143 and
m-Staf, residues 267–468 in Staf) encompasses seven tandemly
repeated zinc fingers of the C2H2 type, is highly basic, while
the regions A (residues 1–219 in ZNF143 and m-Staf, residues
1–266 in Staf) encodes four repeated motifs and C (residues

TABLE 2 | ZNF143 plays a critical role in chromatin interaction.

Cell type Detection method Interaction factor References

GM12878, K562,
HelaS3

Carbon-copy
chromatin
conformation
capture (5C), 3C,
ChIP-seq

Cohesin (SMC3),
CTCF

Bailey et al.,
2015

GM12878, K562 ChIA-PET,
ChIP-seq, RNA-seq

Cohesin (RAD21),
CTCF

Heidari et al.,
2014

GM12878, K562 ChIA-PET,
ChIP-seq

Cohesin (RAD21
and SMC3), CTCF

Ye et al., 2016

Kc167, GM12878 Hi-C, ChIP-seq Cohesin (RAD21),
CTCF

Mourad and
Cuvier, 2018

HEK293T Hi-C Cohesin (RAD21),
CTCF

Wen et al.,
2018

HeLa-S3, HEK293,
K562, HPB-ALL,
NIH3T3, mESC,
MEF

ChIP-Seq,
RNA-seq

Notch1, THAP11 Ngondo-
Mbongo
et al., 2013

293T/17, HeLa,
SW620, T98G

ChIP-Seq THAP11, HCF-1 Parker et al.,
2014;
Vinckevicius
et al., 2015

Mouse ES ChIP Oct4 Chen et al.,
2008

Human TLL RNA-microarray,
ChIP-Seq

Notch1, RBPJ Wang et al.,
2011

HeLa RNA-microarray,
ChIP-Seq

HCF-1, THAP11,
YY1, GABP

Michaud
et al., 2013
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FIGURE 1 | Schematic representation of structural features of human ZNF143 in comparison with m-Staf and Staf. Three regions of these three proteins can be
distinguished: A contains mRNA and snRNA activation domains with the presence of the four repeated motifs. B is the central seven zinc finger domain and is
therefore a DNA binding domain. C is a region with unknown function.

429–626 in ZNF143 and m-Staf, residues 469–600 in Staf) are
acidic (Figure 1). The central region of seven zinc fingers domain
is the DNA binding domain. Outside of the central domain,
N-domain (region A) is the activation domain both for mRNA
and snRNA, and the characteristic features of this domain of
these three proteins are very simlar. The function of C-domain
(region C) is unclear (Myslinski et al., 1998). Strikingly, the four
repeated motifs can be observed between residues 39 and 135
in region A of ZNF143/m-Staf (residues 84 and 176 in region
A of Staf) (Figure 1). Each repeat motif contains 15 amino
acids and the distance between them contains 10–12 amino acids
(Schuster et al., 1995).

As a TF, it is noted that the tandemly repeated zinc finger
domain (DNA binding domain) and the element of repeated
motifs (activation domain) are especially well conserved
among these three proteins (Myslinski et al., 1998). It is
reported that this TF possesses the capacity to bind over
2000 promoter regions of both mRNA and small nuclear
RNA (snRNA) genes (Myslinski et al., 1998, 2006). Recently,
Ngondo-Mbongo et al. (2013) have found that ZNF143 has
two main DNA binding motifs of high affinity, namely,
SBS1(GTTATGGAATTCCCATTATGCACCGCG) and SBS2
(AAACTACAATTCCCATTATGCACCGCG). Both of them are
closely related to its specific binding on the chromatin, and thus
initiate gene expression and regulation.

THE FUNCTION OF ZNF143

Regulating Cell-Cycle Progression
TF ZNF143 regulates gene expression associated with cell
cycle. Many studies utilize knockdown or overexpression
methods to evaluate the effect of ZNF143 on cancer cell
progression. For example, Izumi et al. (2010) have reported
that ZNF143 is associated with cell cycle and cell proliferation,
whereas ZNF143 knockdown causes human prostate cancer
PC3 cells to stagnate during G2/M and is accompanied
with apoptosis. By establishing two forced expression of
ZNF143 PC3 cancer cell lines, they found that overexpress
genes strongly associated with cell cycle and cell division

(Izumi et al., 2011). ZNF143 knockdown induces increased
breast cancer motility, which indicates that ZNF143 expression
contributes to breast cancer progression (Paek et al., 2017). In
addition, low ZNF143 expression exhibits better cell survival
through an autophagic process by regulating the p53–Beclin1
axis in breast cancer cells (Paek et al., 2019). ZNF143 is
essential and sufficient for Skp2 promoter activity and ZNF143
silencing inhibits cell proliferation; however, ectopic ZNF143
can rescue Skp2 expression (Hernandez-Negrete et al., 2011).
Overexpression of ZNF143 enhances transaldolase promoter
activity in HepG2 and HeLa cells and ZNF143 plays a key
role in controlling cell survival and differentiation (Grossman
et al., 2014). Simultaneously, other researchers have reported
that THAP11/ZNF143/HCF-1 complex is an indispensable
component of the transcriptional regulatory network and
disruption of this complex leads to reduced cell proliferation,
cell-cycle progression, and cell viability (Parker et al., 2014).
Ngondo-Mbongo et al. (2013) have also showed that ZNF143,
ICN1, and THAP11 play a pivotal role in modulating cell
proliferation of rapidly dividing cells. Myslinski et al. (2007)
have found that human BUB1B gene mediates the activity
of spindle checkpoints to ensure chromosomal stability and
euploidy, requires ZNF143 binding.

Regulating Embryonic Development and
Maintaining Stem Cell Identity
As a key TF, ZNF143 has a critical function in regulating
embryonic development. Halbig et al. (2012) have found that
ZNF143 significantly changes zebrafish embryonic phenotypes.
Therefore, ZNF143 is necessary for the normal development
of zebrafish embryos. The identification and characterization
of paralogous genes is also critical for understanding gene
function. In the functional study of ZNF143, Huning and Kunkel
(2020) have found that znf143a, a novel paralog of znf143,
encodes a strong transcriptional activator protein and performs a
similar role in the normal development of zebrafish embryos but
expressed at a different level during early development. In mouse
embryonic stem (ES) cells, ZNF143 regulates Nanog by regulating
the binding of Oct4, and ZNF143 is also critical for maintaining
human ES cell identity (Chen et al., 2008).
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Potential Drug Design Target
TF ZNF143 is a potential drug design target to treat solid
cancers. After cisplatin treatment, the binding activity of
ZNF143 and MRP S11 significantly increases. This indicates
that ZNF143 is involved in response to DNA damage (Ishiguchi
et al., 2004; Torigoe et al., 2005; Wakasugi et al., 2007).
P73 promotes ZNF143 binding with cisplatin-modified DNA,
indicating that ZNF143 can regulate the transcription of DNA
repair genes (Wakasugi et al., 2007). ZNF143 can also mediate
cell survival by upregulating glutathione peroxidase (GPX1)
activity. Thus, ZNF143 interference can increase drug sensitivity
to cisplatin treatment of mitochondrial dysfunction (Lu et al.,
2012). GAIP-interacting protein, C-terminus (GIPC) induces
ZNF143 expression by participating in IGF-1 signal transduction
to regulate reactive oxygen products (Paek and You, 2011).
ZNF143 is also involved in the migration and invasion of
colon cancer cells through a ZEB1-E- cadherin-linked pathway
(Paek et al., 2014). The expression levels of ZNF143 and
IL-8 are inversely correlated with three-dimensionally grown
spheroids and colon cancer tissues (Verma et al., 2019). ZNF143
is accompanied with an increase in MIB-1 index in patients
with lung adenocarcinoma, leading to high cell proliferation
activity and poor prognostic treatment (Kawatsu et al., 2014).
Wei et al. (2016) have found that ZNF143 expression can
enhance the metastasis of gastric cancer cells, indicating that
ZNF143 can be a drug target for the treatment of gastric
cancer. The reduction in ZNF143 expression eventually leads
to the cobaltamine transport protein not effectively transporting
cobalamin (Pupavac et al., 2016). The expression patterns of
ZNF143 and ZNF281 in serous borderline ovarian tumors
(SBOTs) and low-grade epithelial ovarian carcinomas (EOCs)
play a key role in cancer invasion, metastasis formation, and
chemotherapy resistance (Sadlecki et al., 2019). ZNF143 is an
upstream regulator to increase the expression of the RNA binding
protein TARBP2 in breast and lung cancers (Fish et al., 2019).
Thus, how to effectively design small molecule drugs to target
ZNF143 is imminent. Fortunately, Haibara et al. (2017) have
found that new small molecules YPC-21661 and YPC-22026
can reduce the expression of their target genes RAD51, PLK1,
and Survivin by inhibiting the binding of ZNF143 to their
promoters. In the future, it is believed that more and more
molecule drugs will be exploited by targeting ZNF143 to treat
related cancers.

ZNF143 REGULATES GENE
EXPRESSION AND ITS MECHANISM

ZNF143 Participates in the Regulation of
Coding and Non-coding Genes
As an important TF, ZNF143 regulates the expression of various
genes. During transcription activation, Schuster et al. (1998) have
found that ZNF143 activation domains bound by mRNA and
snRNA are different. Myslinski et al. (1998) first have found
ZNF143 can activate the transcription from RNA polymerase II
TATA box-containing mRNA promoters. For example, Kubota

et al. (2000) have reported that ZNF143 is the key TF upregulating
the molecular chaperone coding gene Cctα transcription through
binding with the two activation elements (CAE1 and CAE2).
Mach et al. (2002) have also showed that ZNF143 stimulates
transcription of the human interferon regulatory factor-3 (IRF-
3) gene by binding to SphI postoctamer homology (SPH)
elements in vitro and in transfected cells. ZNF143 plays an
important role in the transcription of neuronal nitric-oxide
synthase (nNOS) exon 1, the mutation of the binding site of
ZNF143 leads to a significant reduction in the activity of this
exon (Saur et al., 2002). Barski et al. (2004) use ChIP as well as
deletion/mutation analysis reveal that the aldehyde reductase is
significantly enhanced by transcription activation after binding
to ZNF143. Di Leva et al. (2004) have found that ZNF143,
together with CAAT factors, regulates human synaptobrevin-
like 1 (SYP-like 1) through binding to the SYBL1 promoter
in HeLa cells. Gerard et al. (2007) have reported that ZNF143
binds to the promoter of mitochondrial TF A (Tfam) to regulate
transcription initiation and replication of mitochondrial DNA
in consistent with Sp1, NRF-1, and NRF-2. ZNF143 binds with
the −305/−107 of the BUB1B promoter to regulate BUB1B
expression to maintain chromosomal stability and euploidy
(Myslinski et al., 2007). Gonzalez et al. (2017) have reported that
ZNF143, specifically binds to the 8-bp sequence (CCCAGCAG),
∼100 bases upstream of the C/EBPα transcription start site
(TSS), plays an important role in the expression of C/EBPα

in myeloid cells.
ZNF143 acts as a transcription-activated factor under the

joint action of RNA polymerase III (Schaub et al., 1997). The
snRNA and snRNA-type genes require the binding of ZNF143
during transcription, such as human U4C, U6, Y4, 7SK; mouse
U6 RNAs and Xenopus U1b1, U2, U5, MRP. However, the
binding of ZNF143 to snRNA occurs on a distal sequence element
(DSE) (Schaub et al., 1997). By comparing ZNF143 recognition
sequence of human U6 snRNA and selenocysteine tRNA, Schaub
et al. have found that there are only 47% consistent in sequences.
In the seven zinc fingers of ZNF143 recognition sequence, the
first zinc finger is necessary for selenocysteine tRNA promoter
identification, whereas U6 snRNA is not. The seventh zinc finger
is essential for the binding activity of them. The flexibility binding
results in differences in transcription activation mechanisms
(Schaub et al., 1999a). U6 snRNA transcription activation
requires ZNF143–DNA–Oct-1 complex, whereas selenocysteine
tRNA requires ZNF143-DNA complex (Schaub et al., 1999b).
Schaub et al. (2000) have found that zinc fingers 3–6 are the
minimum zinc finger regions.

Self-Regulation of ZNF143
To maintain stable ZNF143 expression at normal levels, the
transcription feedback regulation mechanism is the simplest
and most direct means. ZNF143 selectively adjusts reverse
expression by using a low affinity binding site (TSS2) located
downstream of the TSS. When ZNF143 expression is higher
than normal, transcripts containing longer 5′-UTR (few
translation products) are produced by TSS2 transcription.
In addition, when ZNF143 levels are lower than normal, the
canonical TSS1 binding site is used to express transcripts
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containing shorter 5′-UTR (many translation products).
This transcriptional auto-regulatory mechanism regulates
ZNF143 expression by the conversion of the TSS switch,
which plays an important role in cell proliferation and growth
(Ngondo and Carbon, 2004). Given that ZNF143 is closely
related to many biological processes, its expression must be
strictly regulated. Ngondo et al. have found that ZNF143
transcripts have three different lengths of 3′-UTR, with the
longer 3′-UTR isoform containing variable polyadenylation
sites, miRNA target sites, or AU-rich element (ARE). Thus,
it tends to post-transcriptional regulation. The longest 3′-
UTR isoform contains an unstabilizing ARE and is targeted
by mir-590-3p. These results emphasize that ZNF143 post-
transcriptional regulation depends on the long 3′-UTR isoform
(Ngondo and Carbon, 2014).

ZNF143 Is a Chromatin-Looping Factor
Myslinski et al. have predicted the whole genome binding
sites of ZNF143 through computer simulation (in silico) and
biochemical methods. They speculated that at least 2500

ZNF143-binding sites are distributed in 2000 promoter regions
throughout the mammalian genome. Further research has found
that the presence of ZNF143-binding site alone can initiate
the expression of a luciferase reporter gene, suggesting that
ZNF143 itself exhibits the ability to recruit the transcription
machinery (Myslinski et al., 2006). Recently, Wang et al. have
reported the co-localization of RBPJ/Notch1/ZNF143, in which
ZNF143 can bind with 40% of the Notch1 sites, and RBPJ
shows high promoter binding preference by embedding in
the ZNF143 motifs. These results may indicate a dynamic
exchange of RBPJ/Notch1 and ZNF143 complexes through
competition in the binding sites (Wang et al., 2011). Ngondo-
Mbongo et al. (2013) have revealed that ZNF143, THAP11,
and Notch1 regulate the common target genes through the
mutually exclusive occupation of overlapping binding sites.
Michaud et al. (2013) have found that HCF-1 is bound with
5400 CpG island promoters. HCF-1, ZNF143, and THAP11
exhibit co-localization, with HCF-1 in collaboration with ZNF143
and THAP11 plays an important role in the transcriptional
regulation of HeLa cells. Parker et al. have found that HCF-1, as

FIGURE 2 | Schematic representation of chromatin loop formation mediated by ZNF143, CTCF, cohesin, and other TFs during the cell cycle. ZNF143 is a potential
mitotic bookmarking factor helps to re-establish chromatin loops in early G1.
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a coregulator of the TF E2F proteins, is not directly collected in
the promoter region but is mediated by ZNF143 and THAP11.
HCF-1/ZNF143/THAP11 as a complex that occupies specific sites
of chromatin co-regulates the expression of cell proliferation
genes (Parker et al., 2014). However, how DNA sequences guide
the THAP11/ZNF143/HCF-1 complex to chromatin remains in
dispute. Vinckevicius et al. (2015) have explicitly proposed that
ACTACA, as a joint submotif of ZNF143 and THAP11, guides
THAP11 and HCF-1 to ZNF143-occupied loci and emphasized
the importance of the position, spacing, and direction relative to
the ZNF143 core motif.

TF ZNF143 can interact with other transcriptional regulators
in mediating chromatin loop formation. Chromatin interactions
between promoters and long-region regulatory elements can
determine the expression level of a gene (Fraser, 2006; Fraser
and Bickmore, 2007). In recent years, with the development
of high-throughput sequencing and chromatin conformation
capture technologies (3C, chromatin conformation capture;
Hi-C, chromatin conformation capture using high throughput
sequencing; ChIA-PET, chromatin interaction analysis by
paired-end tag sequencing) (Dekker et al., 2002; Fullwood
et al., 2009; Lieberman-Aiden et al., 2009), increasing evidence
indicates that the interaction between genomic regulatory
elements plays an important role in regulating gene expression.
Heidari et al. (2014) have discovered that ZNF143 plays an
important role in mediated distal chromatin interactions.
Bailey et al. (2015) have found that ZNF143, as a novel
and key chromatin-looping factor, with sequence specificity
dependency at promoters and links the distal regulatory
elements together, playing an important role in the establishment
of the genomic organization. ZNF143 binds to the PMM2
promoter could establish a functional chromatin loop enabling
interaction between the promoter and distal regulatory elements,
which allows specific spatiotemporal regulation of PMM2
(Cabezas et al., 2017). ZNF143 knockdown mainly eliminates or
destabilizes chromatin loops (Wen et al., 2018). We also found
that ZNF143 was involved in the CTCF-mediated chromatin
interactions by cooperating with cohesin (Ye et al., 2016).
Other researchers have showed that ZNF143 interactes with
other regulators are also important for chromatin domain
formation. For example, Mourad and Cuvier (2006) have
revealed that the formation of 3D chromatin domains is
affected by positive driving factors CTCF, cohesin, ZNF143,
polycomb proteins, and negative driving factors P300, RXRA,
BCL11A, ELK1. CTCF binding sites are not only closely
associated with topologically associating domain (TAD)
boundaries, but also interact with ZNF143 and Yin Yang (YY)1
(Hong and Kim, 2017).

CONCLUSION AND PROSPECTS

ZNF143 can bind with multi-species, multi-type coding and
non-coding genes (Schuster et al., 1995; Schaub et al., 1997;
Myslinski et al., 1998). However, ZNF143 binding and co-
initiative transcription differs due to the diversity of promoter
structures. Although the promoter structure of H1 RNA, the

RNA component of the human nuclear RNase P, is similar to
that of vertebrate snRNA, H1 RNA’s promoter is distributed
within 100 bp of the 5′ flanking sequence and presents a
highly compact structure to initiate transcription (Myslinski
et al., 2001). ZNF143 binding with U6 found in zebrafish
are located upstream of the TATA box and downstream of
proximal sequence element (PSE), unlike the U6 of other species
(Halbig et al., 2008). The promoter of SCARNA2 is contained
within 161 bp upstream of TSS due to its special transcription
(different from SCARNA), whereas ZNF143 is the basic regulator
(Gerard et al., 2010).

As a general TF, ZNF143 participates in numerous cellular
biological activities. Using comparative genomic analysis to
identify the distribution of ZNF143 target genes, Myslinski et al.
(2006) have found that DNA binding and TFs account for 23%,
protein synthesis/degradation/modification account for 21%, and
DNA replication/cell cycle/cell growth/differentiation/apoptosis
account for 13%. Anno et al. have also found that ZNF143
per se exhibits an inherently bidirectional transcription activity.
Thus, ZNF143 has the ability to control the expression of
divergent protein–protein and protein–non-coding RNA gene
pairs (Anno et al., 2011). ZNF143 is expressed differently
in various tissues. It is highly expressed in the lung, ovary
and thymus, but weakly expressed in the brain, liver, and
kidney (Grossman et al., 2014). ZNF143 is highly expressed in
many solid tumors, and it is involved in cisplatin resistance
because cisplatin induced ZNF143 binds to cisplatin-modified
DNA (Wakasugi et al., 2007; Paek and You, 2011; Lu et al.,
2012). Thus, novel small molecules can be designed for
ZNF143 to enhance the sensitivity of cisplatin chemotherapy
(Haibara et al., 2017). ZNF143 is not only indispensable for
the embryonic development of zebrafish but also necessary
for ES cell identity and self-renewal capability of ES cell
(Chen et al., 2008; Halbig et al., 2012). What is more, histone
methylation in the ZNF143 binding sites is usually related to
transcription regulation. Yang et al. (2019) have found that both
active (H3K4me1, H3K4me3, and H3K27ac) and suppressive
(H3K27me3) histone marks can modulate ZNF143 binding,
which in turn, regulate gene expression. However, how to develop
new and convenient detection systems to study the function
of ZNF143 is still a big challenge. Recently, Sathyan et al.
(2019) have developed an improved auxin-inducible degron
system to study TF function. After rapidly depleting the ZNF143
TF, transcriptional profiling indicates that ZNF143 activates
transcription in cis and regulates promoter-proximal paused
RNA polymerase density.

CTCF, cohesion, and ZNF143 are three major regulators
involved in the establishment and maintenance of long-range
chromatin interactions. In mammalian cells, TAD-free analysis
indicates that the blocking effects of CTCF, cohesin, and ZNF143
depend on the distance between loci because each protein may
participate at different scales of chromatin organization (Mourad
and Cuvier, 2018). CTCF and cohesin are the key factors in
organizing the mammalian genome to form TADs and loops,
and the CTCF loops are formed as a result of cohesin-dependent
loop extrusion (Dixon et al., 2012; Nor et al., 2012; Sanborn
et al., 2015; Fudenberg et al., 2016; Goloborodko et al., 2016;
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Busslinger et al., 2017; Nuebler et al., 2018). ZNF143 is not only
involved in CTCF/cohesin-mediated chromatin interactions, but
also can bind directly to the promoter and connect it to distal
regulatory elements (such as enhancer) to form chromatin loops
(Heidari et al., 2014; Bailey et al., 2015; Ye et al., 2016). The
recurrent C→T conversion at the ZNF143 locus influences the
chromatin loop formation and alters distal gene expression in
breast cancer (Yang et al., 2018). Lin et al. (2017) have reported a
new epigenetic feature called sparse conserved under-methylated
CpGs (scUMCs) is involved in cell-specific regulation of long-
range chromatin interaction mediated by chromatin-looping
factors (CTCF, cohesin, and ZNF143), providing a new direction
in the research of the relationship between DNA methylation
and chromatin organization. Recent technical developments
allow more accurately identify where TFs bind to DNA. Skene
et al. have showed that their new in situ methods, such as
cleavage under targets and release using nuclease (CUT&RUN)
and cleavage under targets and tagmentation (CUT&Tag), will
be viewed as a cost-effective and versatile alternative to ChIP
because of low backgrounds, which requiring only ∼1/10th the
sequencing depth as ChIP (Skene and Henikoff, 2017; Skene et al.,
2018; Kaya-Okur et al., 2019; Meers et al., 2019). Based on these
methods, Shimbo et al. (2019) have developed cleavage under
tethered nuclease for conformational capture (Cut-C) technology
to identify chromatin interactions mediated by a protein of
interest along with the genome-wide distribution of the target
proteins. Thus, using these latest technologies, we may be clearly
captured the accuracy of chromatin loops mediated by ZNF143
in a genome-wide scale.

During mitosis, transcription is globally shut down, chromatin
condenses, the nuclear envelope is disassembled, and most
TFs are stripped off the mitotic chromosomes. How do the
new daughter cells faithfully re-establish the cell-type specific
transcription program? Recent discoveries that a select set
of TFs remain associated with mitotic chromosomes suggest
a phenomenon termed mitotic bookmarking (Huang and
Wang, 2017). For example, many studies have reported that
CTCF is still partially retained in mitotic chromosomes and
chromatin structure dynamics during the mitosis-to-G1 phase
transition (Burke et al., 2005; Yan et al., 2013; Shen et al.,
2015; Teves et al., 2016; Oomen et al., 2019; Palozola et al.,
2019; Zhang et al., 2019). Thus, the presence of CTCF
during mitosis may function as candidate mitotic bookmarking
protein. This mechanism plays a potential and critical role in

maintaining cell identity and cell destiny. Meanwhile, ZNF143
can interact with CTCF and mediate the formation of the
chromatin loops. We recently discovered that ZNF143 was still
partially bound to the chromosome during mitosis and 80%
of the retained regions preferentially localized to promoters,
supporting that it functioned mainly through promoters (Ye
et al., 2020). Thus, the presence of CTCF and ZNF143 during
mitosis may be crucial to recruit other regulatory factors
to bind to chromosomes and re-establish chromatin loops
in early G1 phase (Figure 2). Therefore, further studies on
ZNF143 are necessary to help reveal its regulatory mechanism
during the cell cycle.

As a key TF, the role of ZNF143 in cancer progression
through transcriptional regulation of genes related to DNA
replication and cell cycle (Izumi et al., 2010). Furthermore,
Song et al. have showed that miR-590-3p could negatively
modulate the expression of ZNF143 via binding to the ZNF143
3′-UTR and ZNF143 can directly activate FAM224A expression
through binding to its promoter, forming the A1CF-FAM224A-
miR-590-3p-ZNF143 positive feedback loop. This loop plays a
critical role in regulating the malignant progression of glioma
cells, providing a novel molecular target for glioma therapy
(Song et al., 2019). In recent years, with the technology and
bioinformatics analysis development, the molecular mechanism
of ZNF143-mediated gene transcriptional regulation has been
largely exploited. Chromatin looping between promoters and
distal regulatory elements depends on DNA binding by ZNF143
and other partners. In the future, how to comprehensively analyze
the mechanism of ZNF143 in mediating gene expression of
different cell types and discover the novel and potential functions
of ZNF143 remains a considerable challenge.

AUTHOR CONTRIBUTIONS

BY, GaY, and YL drafted the manuscript. CZ, QW, and GuY
critically revised the manuscript.

FUNDING

This work was supported by Postdoctoral Research Grant
in Henan Province (001803040), the Key Scientific Research
Projects of Henan Higher Education (18A180019).

REFERENCES
Adachi, K., Saito, H., Tanaka, T., and Oka, T. (1998). Molecular cloning and

characterization of the murine staf cDNA encoding a transcription activating
factor for the selenocysteine tRNA gene in mouse mammary gland. J. Biol.
Chem. 273, 8598–8606. doi: 10.1074/jbc.273.15.8598

Anno, Y. N., Myslinski, E., Ngondo-Mbongo, R. P., Krol, A., Poch, O., Lecompte,
O., et al. (2011). Genome-wide evidence for an essential role of the human
Staf/ZNF143 transcription factor in bidirectional transcription. Nucleic Acids
Res. 39, 3116–3127. doi: 10.1093/nar/gkq1301

Bailey, S. D., Zhang, X., Desai, K., Aid, M., Corradin, O., Cowper-Sal Lari, R., et al.
(2015). ZNF143 provides sequence specificity to secure chromatin interactions
at gene promoters. Nat. Commun. 2:6186.

Barski, O. A., Papusha, V. Z., Kunkel, G. R., and Gabbay, K. H. (2004). Regulation
of aldehyde reductase expression by STAF and CHOP. Genomics 83, 119–129.
doi: 10.1016/s0888-7543(03)00213-1

Burke, L. J., Zhang, R., Bartkuhn, M., Tiwari, V. K., Tavoosidana, G., Kurukuti,
S., et al. (2005). CTCF binding and higher order chromatin structure of the
H19 locus are maintained in mitotic chromatin. EMBO J. 24, 3291–3300. doi:
10.1038/sj.emboj.7600793

Busslinger, G. A., Stocsits, R. R., van der Lelij, P., Axelsson, E., Tedeschi, A.,
Galjart, N., et al. (2017). Cohesin is positioned in mammalian genomes by
transcription, CTCF and Wapl. Nature 544, 503–507. doi: 10.1038/nature
22063

Cabezas, O. R., Flanagan, S. E., Stanescu, H., García-Martínez, E., Caswell, R.,
Lango-Allen, H., et al. (2017). Polycystic kidney disease with hyperinsulinemic

Frontiers in Genetics | www.frontiersin.org 7 April 2020 | Volume 11 | Article 33851

https://doi.org/10.1074/jbc.273.15.8598
https://doi.org/10.1093/nar/gkq1301
https://doi.org/10.1016/s0888-7543(03)00213-1
https://doi.org/10.1038/sj.emboj.7600793
https://doi.org/10.1038/sj.emboj.7600793
https://doi.org/10.1038/nature22063
https://doi.org/10.1038/nature22063
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00338 April 4, 2020 Time: 18:27 # 8

Ye et al. ZNF143 in Chromatin Loop Formation

hypoglycemia caused by a promoter mutation in phosphomannomutase 2.
J. Am. Soc. Nephrol. 28, 2529–2539.

Chen, X., Fang, F., Liou, Y. C., and Ng, H. H. (2008). Zfp143 regulates Nanog
through modulation of Oct4 binding. Stem Cells 26, 2759–2767. doi: 10.1634/
stemcells.2008-0398

Dekker, J., Rippe, K., Dekker, M., and Kleckner, N. (2002). Capturing chromosome
conformation. Science 295, 1306–1311. doi: 10.1126/science.1067799

Di Leva, F., Ferrante, M. I., Demarchi, F., Caravelli, A., Matarazzo, M. R., Giacca,
M., et al. (2004). Human synaptobrevin-like 1 gene basal transcription is
regulated through the interaction of selenocysteine tRNA gene transcription
activating factor-zinc finger 143 factors with evolutionary conserved cis-
elements. J. Biol. Chem. 279, 7734–7739. doi: 10.1074/jbc.m308140200

Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., et al. (2012).
Topological domains in mammalian genomes identified by analysis of
chromatin interactions. Nature 485, 376–380. doi: 10.1038/nature11082

Fish, L., Navickas, A., Culbertson, B., Xu, Y., Nguyen, H. C. B., Zhang, S., et al.
(2019). Nuclear TARBP2 drives oncogenic dysregulation of RNA splicing and
decay. Mol. Cell. 75, 967–981.

Fraser, P. (2006). Transcriptional control thrown for a loop.Curr. Opin. Genet. Dev.
16, 490–495. doi: 10.1016/j.gde.2006.08.002

Fraser, P., and Bickmore, W. (2007). Nuclear organization of the genome and the
potential for gene regulation. Nature 447, 413–417. doi: 10.1038/nature05916

Fudenberg, G., Imakaev, M., Lu, C., Goloborodko, A., Abdennur, N., and Mirny,
L. A. (2016). Formation of chromosomal domains by loop extrusion. Cell Rep.
15, 2038–2049. doi: 10.1016/j.celrep.2016.04.085

Fullwood, M. J., Liu, M., Pan, Y. F., Liu, J., Xu, H., Mohamed, Y. B., et al. (2009). An
oestrogen-receptor-alpha-bound human chromatin interactome. Nautre 462,
58–64.

Gerard, M. A., Krol, A., and Carbon, P. (2007). Transcription factor hStaf/ZNF143
is required for expression of the human TFAM gene. Gene 401, 145–153. doi:
10.1016/j.gene.2007.07.011

Gerard, M. A., Myslinski, E., Chylak, N., Baudrey, S., Krol, A., and Carbon, P.
(2010). The scaRNA2 is produced by an independent transcription unit and its
processing is directed by the encoding region. Nucleic Acids Res. 38, 370–381.
doi: 10.1093/nar/gkp988

Goloborodko, A., Marko, J. F., and Mirny, L. A. (2016). Chromosome compaction
by active loop extrusion. Biophys. J. 110, 2162–2168. doi: 10.1016/j.bpj.2016.
02.041

Gonzalez, D., Luyten, A., Bartholdy, B., Zhou, Q., Kardosova, M., Ebralidze,
A., et al. (2017). ZNF143 protein is an important regulator of the myeloid
transcription factor C/EBPalpha. J. Biol. Chem. 292, 18924–18936. doi: 10.1074/
jbc.m117.811109

Grossman, C. E., Qian, Y., Banki, K., and Perl, A. (2014). ZNF143 mediates
basal and tissue-specific expression of human transaldolase. J. Biol. Chem. 279,
12190–12205. doi: 10.1074/jbc.m307039200

Haibara, H., Yamazaki, R., Nishiyama, Y., Ono, M., Kobayashi, T., Hokkyo-Itagaki,
A., et al. (2017). YPC-21661 and YPC-22026, novel small molecules, inhibit
ZNF143 activity in vitro and in vivo. Cancer Sci. 108, 1042–1048. doi: 10.1111/
cas.13199

Halbig, K. M., Lekven, A. C., and Kunkel, G. R. (2008). Zebrafish U6 small nuclear
RNA gene promoters contain a SPH element in an unusual location. Gene 421,
89–94. doi: 10.1016/j.gene.2008.06.019

Halbig, K. M., Lekven, A. C., and Kunkel, G. R. (2012). The transcriptional activator
ZNF143 is essential for normal development in zebrafish. BMC Mol. Biol. 13:3.
doi: 10.1186/1471-2199-13-3

Heidari, N., Phanstiel, D. H., He, C., Grubert, F., Jahanbani, F., Kasowski, M., et al.
(2014). Genome-wide map of regulatory interactions in the human genome.
Genome Res. 24, 1905–1917. doi: 10.1101/gr.176586.114

Hernandez-Negrete, I., Sala-Newby, G. B., Perl, A., Kunkel, G. R., Newby,
A. C., and Bond, M. (2011). Adhesion-dependent Skp2 transcription requires
selenocysteine tRNA gene transcription-activating factor (STAF). Biochem. J.
436, 133–143. doi: 10.1042/bj20101798

Hong, S., and Kim, D. (2017). Computational characterization of chromatin
domain boundary-associated genomic elements. Nucleic Acids Res. 45, 10403–
10414. doi: 10.1093/nar/gkx738

Huang, X., and Wang, J. (2017). Mitotic bookmarking: maintaining the stem cell
identity during mitosis. Cell Stem Cell 20, 741–742. doi: 10.1016/j.stem.2017.
05.002

Huning, L., and Kunkel, G. R. (2020). Two paralogous znf143 genes in zebrafish
encode transcriptional activator proteins with similar functions but expressed
at different levels during early development. BMC Mol. Cell. Biol. 21:3. doi:
0.1186/s12860-020-0247-7

Ishiguchi, H., Izumi, H., Torigoe, T., Yoshida, Y., Kubota, H., Tsuji, S., et al. (2004).
ZNF143 activates gene expression in response to DNA damage and binds to
cisplatin-modified DNA. Int. J. Cancer. 111, 900–909. doi: 10.1002/ijc.20358

Izumi, H., Wakasugi, T., Shimajiri, S., Tanimoto, A., Sasaguri, Y., Kashiwagi,
E., et al. (2010). Role of ZNF143 in tumor growth through transcriptional
regulation of DNA replication and cell-cycle-associated genes. Cancer Sci. 101,
2538–2545. doi: 10.1111/j.1349-7006.2010.01725.x

Izumi, H., Yasuniwa, Y., Akiyama, M., Yamaguchi, T., Kuma, A., Kitamura, N.,
et al. (2011). Forced expression of ZNF143 restrains cancer cell growth. Cancers
3, 3909–3920. doi: 10.3390/cancers3043909

Kawatsu, Y., Kitada, S., Uramoto, H., Zhi, L., Takeda, T., Kimura, T., et al.
(2014). The combination of strong expression of ZNF143 and high MIB-1
labelling index independently predicts shorter disease-specific survival in lung
adenocarcinoma. Br. J. Cancer 110, 2583–2592. doi: 10.1038/bjc.2014.202

Kaya-Okur, H. S., Wu, S. J., Codomo, C. A., Pledger, E. S., Bryson, T. D., Henikoff,
J. G., et al. (2019). CUT&Tag for efficient epigenomic profiling of small samples
and single cells. Nat. Commun. 10:1930.

Kubota, H., Yokota, S., Yanagi, H., and Yura, T. (2000). Transcriptional regulation
of the mouse cytosolic chaperonin subunit gene Ccta/t-complex polypeptide 1
by selenocysteine tRNA gene transcription activating factor family zinc finger
proteins. J. Biol. Chem. 275, 28641–28648. doi: 10.1074/jbc.m005009200

Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T.,
Telling, A., et al. (2009). Comprehensive mapping of long-range interactions
reveals folding principles of the human genome. Science 326, 289–293. doi:
10.1126/science.1181369

Lin, X., Su, J., Chen, K., Rodriguez, B., and Li, W. (2017). Sparse conserved under-
methylated CpGs are associated with high-order chromatin structure. Genome
Biol. 18:163.

Lu, W., Chen, Z., Zhang, H., Wang, Y., Luo, Y., and Huang, P. (2012). ZNF143
transcription factor mediates cell survival through upregulation of the GPX1
activity in the mitochondrial respiratory dysfunction. Cell Death Dis. 3:e422.
doi: 10.1038/cddis.2012.156

Mach, C. M., Hargrove, B. W., and Kunkel, G. R. (2002). The Small RNA gene
activator protein, SphI postoctamer homology-binding factor/selenocysteine
tRNA gene transcription activating factor, stimulates transcription of the
human interferon regulatory factor-3 gene. J. Biol. Chem. 277, 4853–4858.
doi: 10.1074/jbc.m108308200

Meers, M. P., Bryson, T. D., Henikoff, J. G., and Henikoff, S. (2019). Improved
CUT&RUN chromatin profiling tools. eLife 8:e46314.

Michaud, J., Praz, V., James Faresse, N., Jnbaptiste, C. K., Tyagi, S., Schütz, F.,
et al. (2013). HCFC1 is a common component of active human CpG-island
promoters and coincides with ZNF143, THAP11, YY1, and GABP transcription
factor occupancy. Genome Res. 23, 907–916. doi: 10.1101/gr.150078.112

Mourad, R., and Cuvier, O. (2006). Computational identification of genomic
features that influence 3D chromatin domain formation. PLoS Comput. Biol.
12:e1004908. doi: 10.1371/journal.pcbi.1004908

Mourad, R., and Cuvier, O. (2018). TAD-free analysis of architectural proteins and
insulators. Nucleic Acids Res. 46:e27. doi: 10.1093/nar/gkx1246

Myslinski, E., Amé, J. C., Krol, A., and Carbon, P. (2001). An unusually compact
external promoter for RNA polymerase III transcription of the human H1RNA
gene. Nucleic Acids Res. 29, 2502–2509. doi: 10.1093/nar/29.12.2502

Myslinski, E., Gerard, M. A., Krol, A., and Carbon, P. (2006). A genome scale
location analysis of human Staf/ZNF143-binding sites suggests a widespread
role for human Staf/ZNF143 in mammalian promoters. J. Biol. Chem. 281,
39953–39962. doi: 10.1074/jbc.m608507200

Myslinski, E., Gerard, M. A., Krol, A., and Carbon, P. (2007). Transcription of the
human cell cycle regulated BUB1B gene requires hStaf/ZNF143. Nucleic Acids
Res. 35, 3453–3464. doi: 10.1093/nar/gkm239

Myslinski, E., Krol, A., and Carbon, P. (1998). ZNF76 and ZNF143 are two human
homologs of the transcriptional activator Staf. J. Biol. Chem. 273, 21998–22006.
doi: 10.1074/jbc.273.34.21998

Ngondo, R. P., and Carbon, P. (2004). Transcription factor abundance controlled
by an auto-regulatory mechanism involving a transcription start site switch.
Nucleic Acids Res. 42, 2171–2184. doi: 10.1093/nar/gkt1136

Frontiers in Genetics | www.frontiersin.org 8 April 2020 | Volume 11 | Article 33852

https://doi.org/10.1634/stemcells.2008-0398
https://doi.org/10.1634/stemcells.2008-0398
https://doi.org/10.1126/science.1067799
https://doi.org/10.1074/jbc.m308140200
https://doi.org/10.1038/nature11082
https://doi.org/10.1016/j.gde.2006.08.002
https://doi.org/10.1038/nature05916
https://doi.org/10.1016/j.celrep.2016.04.085
https://doi.org/10.1016/j.gene.2007.07.011
https://doi.org/10.1016/j.gene.2007.07.011
https://doi.org/10.1093/nar/gkp988
https://doi.org/10.1016/j.bpj.2016.02.041
https://doi.org/10.1016/j.bpj.2016.02.041
https://doi.org/10.1074/jbc.m117.811109
https://doi.org/10.1074/jbc.m117.811109
https://doi.org/10.1074/jbc.m307039200
https://doi.org/10.1111/cas.13199
https://doi.org/10.1111/cas.13199
https://doi.org/10.1016/j.gene.2008.06.019
https://doi.org/10.1186/1471-2199-13-3
https://doi.org/10.1101/gr.176586.114
https://doi.org/10.1042/bj20101798
https://doi.org/10.1093/nar/gkx738
https://doi.org/10.1016/j.stem.2017.05.002
https://doi.org/10.1016/j.stem.2017.05.002
https://doi.org/0.1186/s12860-020-0247-7
https://doi.org/0.1186/s12860-020-0247-7
https://doi.org/10.1002/ijc.20358
https://doi.org/10.1111/j.1349-7006.2010.01725.x
https://doi.org/10.3390/cancers3043909
https://doi.org/10.1038/bjc.2014.202
https://doi.org/10.1074/jbc.m005009200
https://doi.org/10.1126/science.1181369
https://doi.org/10.1126/science.1181369
https://doi.org/10.1038/cddis.2012.156
https://doi.org/10.1074/jbc.m108308200
https://doi.org/10.1101/gr.150078.112
https://doi.org/10.1371/journal.pcbi.1004908
https://doi.org/10.1093/nar/gkx1246
https://doi.org/10.1093/nar/29.12.2502
https://doi.org/10.1074/jbc.m608507200
https://doi.org/10.1093/nar/gkm239
https://doi.org/10.1074/jbc.273.34.21998
https://doi.org/10.1093/nar/gkt1136
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00338 April 4, 2020 Time: 18:27 # 9

Ye et al. ZNF143 in Chromatin Loop Formation

Ngondo, R. P., and Carbon, P. (2014). ZNF143 is regulated through alternative
3′UTR isoforms. Biochimie 104, 137–146. doi: 10.1016/j.biochi.2014.06.008

Ngondo-Mbongo, R. P., Myslinski, E., Aster, J. C., and Carbon, P. (2013).
Modulation of gene expression via overlapping binding sites exerted by
ZNF143, Notch1 and THAP11. Nucleic Acids Res. 41, 4000–4014. doi: 10.1093/
nar/gkt088

Nor, E. P., Lajoie, B. R., Schulz, E. G., Giorgetti, L., Okamoto, I., Servant, N., et al.
(2012). Spatial partitioning of the regulatory landscape of the X-inactivation
centre. Nautre 485, 381–385. doi: 10.1038/nature11049

Nuebler, J., Fudenberg, G., Imakaev, M., Abdennur, N., and Mirny, L. A. (2018).
Chromatin organization by an interplay of loop extrusion and compartmental
segregation. Proc. Natl. Acad. Sci. U.S.A. 115, E6697–E6706.

Oomen, M. E., Hansen, A. S., Liu, Y., Darzacq, X., and Dekker, J. (2019). CTCF
sites display cell cycle-dependent dynamics in factor binding and nucleosome
positioning. Genome Res. 29, 236–249. doi: 10.1101/gr.241547.118

Paek, A. R., Lee, C. H., and You, H. J. (2014). A role of zinc-finger protein 143
for cancer cell migration and invasion through ZEB1 and E-cadherin in colon
cancer cells. Mol. Carcinog. 53, E161–E168.

Paek, A. R., Mun, J. Y., Hong, K. M., Lee, J., Hong, D. W., and You, H. J. (2017).
Zinc finger protein 143 expression is closely related to tumor malignancy via
regulating cell motility in breast cancer. BMB Rep. 50, 621–627. doi: 10.5483/
bmbrep.2017.50.12.177

Paek, A. R., Mun, J. Y., Jo, M. J., Choi, H., Lee, Y. J., Cheong, H., et al. (2019). The
role of ZNF143 in breast cancer cell survival through the NAD(P)H quinone
dehydrogenase 1 (-) 53 (-) beclin1 axis under metabolic stress. Cells 8:E296.

Paek, A. R., and You, H. J. (2011). GAIP-interacting protein, C-terminus is involved
in the induction of zinc-finger protein 143 in response to insulin-like growth
factor-1 in colon cancer cells. Mol. Cells 32, 415–419. doi: 10.1007/s10059-011-
0078-7

Palozola, K. C., Lerner, J., and Zaret, K. S. (2019). A changing paradigm of
transcriptional memory propagation through mitosis. Nat. Rev. Mol. Cell. Biol.
20, 55–64. doi: 10.1038/s41580-018-0077-z

Parker, J. B., Yin, H., Vinckevicius, A., and Chakravarti, D. (2014). Host cell factor-1
recruitment to E2F-bound and cell-cycle-control genes is mediated by THAP11
and ZNF143. Cell Rep. 9, 967–982. doi: 10.1016/j.celrep.2014.09.051

Pupavac, M., Watkins, D., Petrella, F., Fahiminiya, S., Janer, A., Cheung, W., et al.
(2016). Inborn error of cobalamin metabolism associated with the intracellular
accumulation of transcobalamin-bound cobalamin and mutations in ZNF143,
which codes for a transcriptional activator. Hum. Mutat. 37, 976–982. doi:
10.1002/humu.23037

Sadlecki, P., Grabiec, M., Grzanka, D., Jozwicki, J., Antosik, P., and Walentowicz-
Sadlecka, M. (2019). Expression of zinc finger transcription factors (ZNF143
and ZNF281) in serous borderline ovarian tumors and low-grade ovarian
cancers. J. Ovarian Res. 12:23.

Sanborn, A. L., Rao, S. S., Huang, S. C., Durand, N. C., Huntley, M. H., Jewett, A. I.,
et al. (2015). Chromatin extrusion explains key features of loop and domain
formation in wild-type and engineered genomes. Proc. Natl. Acad. Sci. U.S.A.
112, E6456–E6465.

Sathyan, K. M., McKenna, B. D., Anderson, W. D., Duarte, F. M., Core, L., and
Guertin, M. J. (2019). An improved auxin-inducible degron system preserves
native protein levels and enables rapid and specific protein depletion. Genes
Dev. 33, 1441–1455. doi: 10.1101/gad.328237.119

Saur, D., Seidler, B., Paehge, H., Schusdziarra, V., and Allescher, H. D.
(2002). Complex regulation of human neuronal nitric-oxide synthase exon
1c gene transcription. Essential role of Sp and ZNF family members of
transcription factors. J. Biol. Chem. 277, 25798–25814. doi: 10.1074/jbc.m10980
2200

Schaub, M., Krol, A., and Carbon, P. (1999a). Flexible zinc finger requirement
for binding of the transcriptional activator staf to U6 small nuclear RNA and
tRNA(Sec) promoters. J. Biol. Chem. 274, 24241–24249. doi: 10.1074/jbc.274.
34.24241

Schaub, M., Krol, A., and Carbon, P. (2000). Structural organization of Staf-
DNA complexes. Nucleic Acids Res. 28, 2114–2121. doi: 10.1093/nar/28.10.
2114

Schaub, M., Myslinski, E., Krol, A., and Carbon, P. (1999b). Maximization of
selenocysteine tRNA and U6 small nuclear RNA transcriptional activation
achieved by flexible utilization of a Staf zinc finger. J. Biol. Chem. 274, 25042–
25050. doi: 10.1074/jbc.274.35.25042

Schaub, M., Myslinski, E., Schuster, C., Krol, A., and Carbon, P. (1997). Staf, a
promiscuous activator for enhanced transcription by RNA polymerases II and
III. EMBO J. 16, 173–181. doi: 10.1093/emboj/16.1.173

Schuster, C., Krol, A., and Carbon, P. (1998). Two distinct domains in Staf to
selectively activate small nuclear RNA-type and mRNA promoters. Mol. Cell
Biol. 18, 2650–2658. doi: 10.1128/mcb.18.5.2650

Schuster, C., Myslinski, E., Krol, A., and Carbon, P. (1995). Staf, a novel zinc finger
protein that activates the RNA polymerase III promoter of the selenocysteine
tRNA gene. EMBO J. 14, 3777–3787. doi: 10.1002/j.1460-2075.1995.tb00047.x

Shen, W. L., Wang, D., Ye, B. Y., Shi, M. L., Zhang, Y., and Zhao, Z. H. (2015).
A possible role of Drosophila CTCF in mitotic bookmarking and maintaining
chromatin domains during the cell cycle. Biol. Res. 48:27.

Shimbo, T., Kawamura, M., Wijaya, E., Takaki, E., Kaneda, Y., and Tamai, K.
(2019). Cut-C: cleavage under tethered nuclease for conformational capture.
BMC Genomics 20:614. doi: 10.1186/s12864-019-5989-2

Skene, P. J., Henikoff, J. G., and Henikoff, S. (2018). Targeted in situ genome-wide
profiling with high efficiency for low cell numbers. Nat Protoc. 13, 1006–1019.
doi: 10.1038/nprot.2018.015

Skene, P. J., and Henikoff, S. (2017). An efficient targeted nuclease strategy for
high-resolution mapping of DNA binding sites. eLife 6:e21856.

Song, Y., Shao, L., Xue, Y., Xuelei, R., Xiaobai, L., Chunqing, Y., et al. (2019).
Inhibition of the aberrant A1CF-FAM224A- miR-590-3p-ZNF143 positive
feedback loop attenuated malignant biological behaviors of glioma cells. J. Exp.
Clin. Cancer Res. 38:248.

Teves, S. S., An, L., Hansen, A. S., Xie, L., Darzacq, X., and Tjian, R. (2016). A
dynamic mode of mitotic bookmarking by transcription factors. eLife 5:e22280.

Tommerup, N., and Vissing, H. (1995). Isolation and fine mapping of 16 novel
human zinc finger-encoding cDNAs identify putative candidate genes for
developmental and malignant disorders. Genomics 27, 259–264. doi: 10.1006/
geno.1995.1040

Torigoe, T., Izumi, H., Ishiguchi, H., Yoshida, Y., Tanabe, M., Yoshida, T.,
et al. (2005). Cisplatin resistance and transcription factors. Curr. Med. Chem.
Anticancer Agents 5, 15–27.

Verma, V., Paek, A. R., Choi, B. K., Hong, E. K., and You, H. J. (2019). Loss of zinc-
finger protein 143 contributes to tumour progression by interleukin-8-CXCR
axis in colon cancer. J. Cell. Mol. Med. 23, 4043–4053. doi: 10.1111/jcmm.
14290

Vinckevicius, A., Parker, J. B., and Chakravarti, D. (2015). Genomic determinants
of THAP11/ZNF143/HCFC1 complex recruitment to chromatin. Mol. Cell.
Biol. 35, 4135–4146. doi: 10.1128/mcb.00477-15

Wakasugi, T., Izumi, H., Uchiumi, T., Suzuki, H., Arao, T., Nishio, K., et al. (2007).
ZNF143 interacts with p73 and is involved in cisplatin resistance through
the transcriptional regulation of DNA repair genes. Oncogene 26, 5194–5203.
doi: 10.1038/sj.onc.1210326

Wang, H., Zou, J., Zhao, B., Eric, J., Todd, A., Hoifung, W., et al. (2011). Genome-
wide analysis reveals conserved and divergent features of Notch1/RBPJ binding
in human and murine T-lymphoblastic leukemia cells. Proc. Natl. Acad. Sci.
U.S.A. 108, 14908–14913. doi: 10.1073/pnas.1109023108

Wei, S., Wang, L., Zhang, L., Li, B., Li, Z., Zhang, Q., et al. (2016). ZNF143
enhances metastasis of gastric cancer by promoting the process of EMT through
PI3K/AKT signaling pathway. Tumour Biol. 37, 12813–12821. doi: 10.1007/
s13277-016-5239-z

Wen, Z., Huang, Z. T., Zhang, R., and Peng, C. (2018). ZNF143 is a regulator
of chromatin loop. Cell. Biol. Toxicol. 34, 471–478. doi: 10.1007/s10565-018-
9443-z

Yan, J., Enge, M., Whitington, T., Dave, K., Liu, J., Sur, I., et al. (2013). Transcription
factor binding in human cells occurs in dense clusters formed around cohesin
anchor sites. Cell 154, 801–813. doi: 10.1016/j.cell.2013.07.034

Yang, J., Wei, X., Tufan, T., Kuscu, C., Unlu, H., Farooq, S., et al. (2018). Recurrent
mutations at estrogen receptor binding sites alter chromatin topology and distal
gene expression in breast cancer. Genome Biol. 19:190.

Yang, X., Bam, M., Nagarkatti, P. S., and Nagarkatti, M. (2019). Cannabidiol
regulates gene expression in encephalitogenic T cells using histone methylation
and noncoding rna during experimental autoimmune encephalomyelitis. Sci.
Rep. 9:15780.

Yang, Y., Zhang, R. C., Singh, S., and Ma, J. (2017). Exploiting sequence-based
features for predicting enhancer- promoter interactions. Bioinformatics 33,
i252–i260. doi: 10.1093/bioinformatics/btx257

Frontiers in Genetics | www.frontiersin.org 9 April 2020 | Volume 11 | Article 33853

https://doi.org/10.1016/j.biochi.2014.06.008
https://doi.org/10.1093/nar/gkt088
https://doi.org/10.1093/nar/gkt088
https://doi.org/10.1038/nature11049
https://doi.org/10.1101/gr.241547.118
https://doi.org/10.5483/bmbrep.2017.50.12.177
https://doi.org/10.5483/bmbrep.2017.50.12.177
https://doi.org/10.1007/s10059-011-0078-7
https://doi.org/10.1007/s10059-011-0078-7
https://doi.org/10.1038/s41580-018-0077-z
https://doi.org/10.1016/j.celrep.2014.09.051
https://doi.org/10.1002/humu.23037
https://doi.org/10.1002/humu.23037
https://doi.org/10.1101/gad.328237.119
https://doi.org/10.1074/jbc.m109802200
https://doi.org/10.1074/jbc.m109802200
https://doi.org/10.1074/jbc.274.34.24241
https://doi.org/10.1074/jbc.274.34.24241
https://doi.org/10.1093/nar/28.10.2114
https://doi.org/10.1093/nar/28.10.2114
https://doi.org/10.1074/jbc.274.35.25042
https://doi.org/10.1093/emboj/16.1.173
https://doi.org/10.1128/mcb.18.5.2650
https://doi.org/10.1002/j.1460-2075.1995.tb00047.x
https://doi.org/10.1186/s12864-019-5989-2
https://doi.org/10.1038/nprot.2018.015
https://doi.org/10.1006/geno.1995.1040
https://doi.org/10.1006/geno.1995.1040
https://doi.org/10.1111/jcmm.14290
https://doi.org/10.1111/jcmm.14290
https://doi.org/10.1128/mcb.00477-15
https://doi.org/10.1038/sj.onc.1210326
https://doi.org/10.1073/pnas.1109023108
https://doi.org/10.1007/s13277-016-5239-z
https://doi.org/10.1007/s13277-016-5239-z
https://doi.org/10.1007/s10565-018-9443-z
https://doi.org/10.1007/s10565-018-9443-z
https://doi.org/10.1016/j.cell.2013.07.034
https://doi.org/10.1093/bioinformatics/btx257
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00338 April 4, 2020 Time: 18:27 # 10

Ye et al. ZNF143 in Chromatin Loop Formation

Ye, B. Y., Shen, W. L., Wang, D., Li, P., Zhang, Z., Shi, M. L., et al.
(2016). ZNF143 is involved in CTCF-mediated chromatin interactions
by cooperation with cohesin and other partners. Mol. Biol. 50,
496–503.

Ye, B. Y., Shen, W. L., and Zhao, Z. H. (2020). ZNF143 is dynamically bound to
a subset of its interphase sites during mitosis. Biochem. Biophys. Res. Commun.
523, 293–298. doi: 10.1016/j.bbrc.2019.12.031

Zhang, H., Emerson, D. J., Gilgenast, T. G., Titus, K. R., Lan, Y., Huang, P.,
et al. (2019). Chromatin structure dynamics during the mitosis-to-G1 phase
transition. Nature 576, 158–162. doi: 10.1038/s41586-019-1778-y

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Ye, Yang, Li, Zhang, Wang and Yu. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 10 April 2020 | Volume 11 | Article 33854

https://doi.org/10.1016/j.bbrc.2019.12.031
https://doi.org/10.1038/s41586-019-1778-y
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fcell-08-00291 April 27, 2020 Time: 21:25 # 1

REVIEW
published: 29 April 2020

doi: 10.3389/fcell.2020.00291

Edited by:
Kai Tang,

Purdue University, United States

Reviewed by:
Thierry Lagrange,

UMR 5096 Laboratoire Génome et
Développement des Plantes, France

Ye Fu,
Harvard University, United States

Peter Dedon,
Massachusetts Institute

of Technology, United States

*Correspondence:
Xiansheng Zhang

zhangxs@sdau.edu.cn
Na Sui

suina@sdnu.edu.cn;
suina800101@163.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Epigenomics and Epigenetics,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 06 January 2020
Accepted: 03 April 2020
Published: 29 April 2020

Citation:
Zheng H, Li S, Zhang X and Sui N

(2020) Functional Implications
of Active N6-Methyladenosine

in Plants. Front. Cell Dev. Biol. 8:291.
doi: 10.3389/fcell.2020.00291

Functional Implications of Active
N6-Methyladenosine in Plants
Hongxiang Zheng1†, Simin Li1†, Xiansheng Zhang2* and Na Sui1*

1 Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China,
2 State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China

N6-methyladenosine (m6A) is the most common type of eukaryotic mRNA modification
and has been found in many organisms, including mammals, and plants. It has
important regulatory effects on RNA splicing, export, stability, and translation.
The abundance of m6A on RNA depends on the dynamic regulation between
methyltransferase (“writer”) and demethylase (“eraser”), and m6A binding protein
(“reader”) exerts more specific regulatory function by binding m6A modification sites
on RNA. Progress in research has revealed important functions of m6A modification in
plants. In this review, we systematically summarize the latest advances in research on
the composition and mechanism of action of the m6A system in plants. We emphasize
the function of m6A modification on RNA fate, plant development, and stress resistance.
Finally, we discuss the outstanding questions and opportunities exist for future research
on m6A modification in plant.

Keywords: N6-methyladenosine, functional implications, plant, RNA function, stress response

INTRODUCTION

More than 150 RNA modifications have been identified as post-transcriptional regulatory markers
in a variety of RNA species, including messenger RNA (mRNA), transfer RNA (tRNA), ribosomal
RNA (rRNA), small non-coding RNA (snRNA), and long non-coding RNA (lncRNA), RNA
methylation is one of the post-transcriptional modifications of RNA, and N6-methyladenosine
(m6A) is the most common type of RNA methylation modification, accounting for more than 80%
of RNA methylation modifications in organism. Current study suggests that the m6A modification
plays an important role in RNA fate, such as RNA splicing (Liu et al., 2015, 2017; Haussmann
et al., 2016; Lence et al., 2016; Xiao et al., 2016; Pendleton et al., 2017), RNA stability (Wang et al.,
2014; Du et al., 2016; Mishima and Tomari, 2016; Huang et al., 2018), RNA export (Roundtree
et al., 2017; Edens et al., 2019), 3′ untranslated region (UTR) processing (Ke et al., 2015; Bartosovic
et al., 2017; Wei et al., 2018; Yue et al., 2018), translation (Zhou et al., 2015; Choi et al., 2016; Li
et al., 2017; Shi et al., 2017), and miRNA processing (Alarcón et al., 2015a,b; Bhat et al., 2019).
Although the presence of m6A was detected in mammals (Desrosiers et al., 1974; Wei et al.,
1975; Schibler et al., 1977) and plants (Kennedy and Lane, 1979; Nichols, 1979) in the 1970s, it
had not received much attention because it was considered to be “static” due to the method of
detecting m6A sites. However, the discovery of the first m6A demethylase fat mass and obesity-
associated protein (FTO) was an exciting development (Jia et al., 2011), as it demonstrated that
the m6A modification process is dynamic and reversible in the cell. Subsequently, the methyl-RNA
immunoprecipitation combined with RNA sequencing (MeRIP-Seq) method was established for
identifying m6A modifications on mRNA in the transcriptome (Dominissini et al., 2012; Meyer
et al., 2012). This method relies on the highly specific antibody of m6A to precipitate m6A and then
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involves high-throughput sequencing to reveal methylated
transcripts (Dominissini et al., 2012; Meyer et al., 2012). This
method revealed that the m6A site is not uniformly distributed
over the mRNA: only some mRNAs have m6A sites, most
of which are located near the stop codon and the 3′ UTR
(Dominissini et al., 2012; Meyer et al., 2012). At the same
time, m6A is highly dynamic, and the level of m6A varies
greatly depending on the developmental stage (Dominissini
et al., 2012; Meyer et al., 2012). These findings suggested that
m6A modification may affect the fate and function of mRNA
in cells. As more m6A-related enzymes are identified, the
important biological functions played by m6A modification are
being gradually unveiled. Although the study of m6A functions
was mainly in animal systems, current studies shows that
m6A modification also plays important role in regulating plant
development (Zhong et al., 2008; Bodi et al., 2012; Shen et al.,
2016; Hofmann, 2017; Růžička et al., 2017; Anderson et al., 2018;
Arribas-Hernández et al., 2018; Chen et al., 2018; Scutenaire et al.,
2018; Wei et al., 2018; Zhang et al., 2019; Zhou et al., 2019; Luo
et al., 2020) and stress resistance (Martínez-Pérez et al., 2017;
Anderson et al., 2018; Li et al., 2018; Miao et al., 2020).

Writers, erasers, readers are the core components of the m6A
regulatory system. The writers and erasers are responsible for
adding or removing m6A to the conserved sequence “RRACH”
(where R = A/G, A is the modified m6A site, and H = A/C/U)
(Dominissini et al., 2012; Schwartz et al., 2013; Li et al., 2014; Luo
et al., 2014; Lence et al., 2016; Shen et al., 2016; Parker et al., 2020),
respectively. The readers are responsible for binding m6A sites
and play specific regulatory roles for modified-RNA. Writers,
erasers, and readers form the basis of a complex regulatory
network under the guidance of m6A modification. However, not
all RNAs containing the “RRACH” sequence will have m6A added
to them (Dominissini et al., 2012; Li et al., 2014). It is unclear
how the writers and erasers selectively add or remove m6A on
RNA sequences. Therefore, the discovery and functional studies
of more m6A-related enzymes can help us to understand the
mechanism of m6A regulation.

THE MAIN COMPONENTS OF THE m6A
SYSTEM: WRITERS, ERASERS, AND
READERS

Studies on m6A enzymes or novel functions have mainly
focused on animal systems, while there have been few studies
in plants, especially in crops. In mammals, m6A is produced
by a methyltransferase complex consisting of MTase complex
comprising methyltransferase-like 3 (METTL3) (Bokar et al.,
1994), wilms’ tumor 1-associating protein (WTAP) (Agarwala
et al., 2012), and methyltransferase-like 14 (METTL14) (Liu et al.,
2014) and is removed by the action of the demethylases FTO
(Jia et al., 2011) and α-ketoglutarate-dependent dioxygenase alkb
homolog 5 (ALKBH5) (Zheng et al., 2013). This modification
process is dynamic and reversible in the cell. The reader plays a
specific regulatory role by recognizing the m6A modification site,
which mainly includes the YTH (YT512-BHomology) domain-
containing proteins YTHDC1/2 (DC1/2) (Bailey et al., 2017;

Hsu et al., 2017; Roundtree et al., 2017; Zhang et al., 2010) and
YTHDF1/2/3 (DF1/2/3) (Dominissini et al., 2012; Wang et al.,
2014, 2015; Zhou et al., 2015; Shi et al., 2017), HNRNPA2B1
(Agarwala et al., 2012), and eukaryotic initiation factor 3 (eIF3)
(Meyer et al., 2015). However, it should be emphasized that the
core enzymes in the m6A system are highly conserved among
different species, so studying the regulatory patterns of m6A in
animals should also help us to explore its regulation in plants.

WRITERS

In Arabidopsis, the METTL3 homolog MTA (At4g10760) is
highly expressed in seeds, pollen microspores, and meristems.
In loss-of-function mutants of T-DNA insertion, an embryonic
lethal phenotype and m6A completion loss occur (Craigon et al.,
2004). This is consistent with the phenomenon of METTL3
mutation in animals and yeast (Geula et al., 2015). Yeast two-
hybrid assay and co-immunoprecipitation experiments showed
that MTA protein interacts with the protein encoded by FIP37
(At3g54170) in vitro and in vivo (Zhong et al., 2008). FIP37 is
a homolog of the selective cleavage protein WTAP in human
and Drosophila. FIP37 expression patterns are similar to those
of MTA. In addition, disruption of FIP37 by T-DNA insertion
also results in an embryonic lethal phenotype with developmental
arrest at the globular stage (Vespa et al., 2004; Růžička et al.,
2017). MTB is a homolog of human METTL14, which has
also been shown to be a part of the m6A methyltransferase
complex (Liu et al., 2014). Experiments on RNA interference
(RNAi) lines with inducible knockdown of MTB have shown that
such knockdown leads to a nearly 50% reduction in m6A levels
(Růžička et al., 2017). In addition, using the method of tandem
affinity purification (TAP), VIRILIZER (KIAA1429 human
homologous protein) (Schwartz et al., 2014) and E3 ubiquitin
ligase HAKAI (HAKAI human homologous protein) were also
found to be components of the Arabidopsis methyltransferase
complex (Růžička et al., 2017). Inhibition of the expression
of VIRILIZER and HAKAI resulted in a decrease in the level
of m6A in Arabidopsis mRNA (Růžička et al., 2017). MTA,
MTB, FIP37, VIRILIZER, and HAKAI are considered to be the
main components of the m6A methyltransferase complexes in
Arabidopsis system (Figure 1). In addition, the writers in the
m6A system have also been reported in other plants. Knockout of
OsFIP or OsMTA2 in rice significantly reduced the level of m6A,
while no effect on total m6A levels was observed in the OsMTA1,
OsMTA3, and OsMTA4 knockout lines (Zhang et al., 2019). This
suggested that OsMTA2 and OsFIP are the main components of
the m6A methyltransferase complex in rice (Zhang et al., 2019).

ERASERS

ALKBH9B (At2g17970) and ALKBH10B (At4g02940) have
been shown to be active m6A demethylases concerning
Arabidopsis system (Duan et al., 2017; Martínez-Pérez et al.,
2017). ALKBH9B was the first m6A demethylase reported
from Arabidopsis, which enables ssRNA to demethylate m6A
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FIGURE 1 | The main components of the m6A system in plants include writers, erasers, and readers. The writers consist of MTA, FIP37, MTB, HAKAI, and
VIRILIZER. The demethylases are mainly ALKBH2, ALKBH9B, and ALKBH10B. The m6A binding proteins are mainly ECT family proteins and CPSF30, both of which
contain a YTH domain. The writers and erasers are responsible for adding or removing m6A site on RNA. The readers interact with m6A-modified RNA and regulate
RNA splicing, RNA stability, and 3′UTR processing. This figure was created using smart Servier Medical Art (https://smart.servier.com/).

in vitro. Moreover, ALKBH9B has a positive effect on viral
abundance in plant cells. These findings indicate that methylation
status plays an important role in regulating viral infection in
Arabidopsis (Martínez-Pérez et al., 2017). Duan et al. (2017)
also demonstrated that ALKBH10B-mediated demethylation of
mRNA m6A affects the mRNA stability of key flowering time
regulators, thereby affecting flower turnover. In vitro experiments
and those involving transient transformation of tobacco showed
that tomato SlALKBH2 can effectively remove m6A modification
and reduce the m6A level in vitro and in vivo (Zhou et al., 2019).
This indicates that tomato SlALKBH2 has m6A demethylation
activity (Zhou et al., 2019).

READERS

The member of the ECT family containing the YTH domain is
the most important m6A binding protein in plants (Anderson
et al., 2018; Arribas-Hernández et al., 2018; Scutenaire et al.,
2018). Scutenaire showed that ECT2 binds to m6A via a tri-
tryptophan pocket, and if these amino acids are mutated, ECT2
loses its m6A binding ability (Scutenaire et al., 2018). They also
showed that ect mutants share phenotypes (defective trichomes)
withmtamutants and FIP37-overexpressing transgenic lines, and

the morphological changes in the ect mutant are the result of
higher cell ploidy caused by intranuclear replication (Scutenaire
et al., 2018), this result was consistent with the phenomenon
observed by Arribas-Hernández et al. (2018). In addition, ECT2
improves the stability of m6A methylated RNAs transcribed from
genes involved in trichome morphogenesis (Wei et al., 2018).
This observation contrasts to the reported decrease in stability
of RNAs caused by the binding of YTHDF proteins to this
mark in animal systems (Du et al., 2016). However, a previous
study by Shen in Arabidopsis found that m6A destabilizes a few
transcripts in undifferentiated tissues (Shen et al., 2016). Thus,
the mechanisms by which m6A regulates transcript stability have
still not been completely clarified in any organism. In a study
focused more on the morphological aspects of ECT proteins,
including ECT2/3 and 4, it was shown that these proteins are
intrinsically important for proper leaf morphogenesis, including
trichome branching (Arribas-Hernández et al., 2018).

As described in a recent report, sequence analysis of m6A
methyltransferase in 22 plants using Arabidopsis as a model
plant revealed that, in higher plants, the number of m6A writers
is greater than that in lower plants (Yue et al., 2019). This
suggests that higher plants may require more precise mechanisms
regulating m6A modification to cope with complex and variable
environments (Yue et al., 2019).
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Summarizing recent research, we can find that the key
component genes of the m6A system are mainly concentrated
in meristems and reproductive organs, and lower expression
in tissues that stop differentiation and mature (Zhong et al.,
2008; Hofmann, 2017; Růžička et al., 2017; Zhang et al., 2019;
Zhou et al., 2019). This suggests that m6A modifications are
more likely to occur on actively transcribed genes. Besides, m6A
modifications are detected on mRNA, rRNA, tRNA, and sn(o)
RNA in plant system (Li et al., 2014; Luo et al., 2014; Wan et al.,
2015; Anderson et al., 2018; Parker et al., 2020).

EFFECT OF m6A MODIFICATION ON
RNA FUNCTION

The above main components of the m6A system above regulate
the fate of RNA, by adding, removing, and binding m6A site on
RNA. In mammals, m6A modification plays an important role in
the regulation of RNA splicing (Liu et al., 2015, 2017; Haussmann
et al., 2016; Lence et al., 2016; Xiao et al., 2016; Pendleton et al.,
2017), RNA stability (Wang et al., 2014; Du et al., 2016; Mishima
and Tomari, 2016; Huang et al., 2018), RNA export (Roundtree
et al., 2017; Edens et al., 2019), 3′ UTR processing (Ke et al.,
2015; Bartosovic et al., 2017; Wei et al., 2018; Yue et al., 2018),
translation (Zhou et al., 2015; Choi et al., 2016; Li et al., 2017;
Shi et al., 2017), and miRNA processing (Alarcón et al., 2015a,b;
Bhat et al., 2019). On the contrary, much less is known about the
function of m6A modification regulation of RNA on plant. Our
understanding of how the m6A regulated RNA fate is limited to
it’s an mRNA stabilizing (Shen et al., 2016; Hofmann, 2017; Wei
et al., 2018) or 3′ UTR processing at specific genomic loci (Pontier
et al., 2019) mark. The roles in regulating plant RNA export, RNA
splicing, and translation remain unexplored. In addition, research
on the effect of m6A modification on RNA has mainly focused
on genetic interference, and there is no way to accurately predict
the effect of m6A modification on RNA at the transcriptome-wide
level. Only one or some of the effects of RNA due to changes in
m6A modification can be identified.

3′ UTR PROCESSING

In animal systems, m6A modification has been widely reported
to regulate mRNA processing including RNA splicing (Liu et al.,
2015, 2017; Haussmann et al., 2016; Lence et al., 2016; Xiao
et al., 2016; Pendleton et al., 2017) and 3′ UTR processing
(Ke et al., 2015; Bartosovic et al., 2017; Yue et al., 2018). For
example, in Drosophila, m6A modification regulates the sex
selection process by regulating alternative splicing of the sex
determination factor Sex lethal (Sxl) pre-mRNA (Haussmann
et al., 2016; Lence et al., 2016); In animal cells, METTL16
regulates the SAM synthetase gene MAT2A splicing process by
regulating the m6A modification on MAT2A mRNA, thereby
regulating regulate SAM homeostasis (Pendleton et al., 2017).
YTH domain-containing protein YTHDC1 regulates the cleavage
process by recognizing m6A on mRNA and recruiting the SR
protein to its corresponding binding site (Xiao et al., 2016).

Therefore, m6A is also considered to be a post-transcriptional
regulator of mRNA splicing in animal systems.

InArabidopsis, the methyltransferase VIRILIZER was found to
be co-localized with the splicing factor SR34, but no abnormally
spliced transcript was detected in the root of VIRILIZER mutant
(Růžička et al., 2017). This suggests that m6A is not involved in
large-scale splicing regulation of plant transcripts, which appears
to contrast with the findings reported from animals (Xiao et al.,
2016). Alternatively, variable splicing regulated by m6A occurs
only on specific transcripts or specific tissues, but the level of this
is below the limit of detection of the method used for analyzing it.

In mammals, m6A modification regulates alternative poly(A)
sites (APA) during 3′ UTR processing (Ke et al., 2015; Bartosovic
et al., 2017; Yue et al., 2018). Research by Ke et al. (2015)
shows that higher m6A modification in the last exon may
affect the usage of APA, while Bartosovic et al. (2017) further
shows that m6A modification in the last exon regulates 3′

UTR length by regulating APA. A similar situation was found
in plant systems. A recent study showed that the loss of
methylation enzyme function of FIP37 resulted in a decrease
in m6A modification (Shen et al., 2016) and the pair of
spatially adjacent two genes (such as the pair AT4G30570/580 or
AT1G71330/340) to form chimeric mRNA (Pontier et al., 2019).
The m6A modification can assist in the polyadenylation of the
first gene mRNA, thereby limiting mis-splicing to form chimeric
mRNA (Pontier et al., 2019). However, this process requires the
assistance of F30L, which is a protein comprising the typical m6A
recognition protein domain YTH (Figure 1; Pontier et al., 2019).
This suggested that the m-ASP (m6A-assisted polyadenylation)
pathway ensures transcriptome integrity at rearranged genomic
loci in plants (Pontier et al., 2019).

mRNA STABILITY

How does m6A modification work in plant systems? The most
recent report on this issue describes that m6A regulates plant
growth and development by affecting mRNA stability. The lack
of the Arabidopsis methyltransferase FIP37 results in reduced
m6A modification on the mRNA encoded by SAM proliferation-
related genes [WUSCHEL (WUS) and SHOOTMERISTEMLESS
(STM)], and enhances its stability (Shen et al., 2016). Excessive
accumulation of WUS and STM mRNA causes excessive
proliferation of SAM (Shen et al., 2016). However, Duan
et al. (2017) obtained results that differ from these findings.
Specifically, in the functional deletion mutant of Arabidopsis
demethylase ALKBH10B, m6A modification on the mRNA
encoded by key genes regulating FT, SPL3, and SPL9 was
increased, which reduced its stability, accelerated its degradation,
and produced a delayed flowering phenotype (Hofmann, 2017).
In addition, studies on the m6A reader ECT2 in plants have
indicated that it plays an important role in regulating 3′ UTR
processing in the nucleus and promoting mRNA stabilization in
the cytoplasm (Figure 1; Wei et al., 2018). Loss of function of
ECT2 accelerates the degradation of three ECT2-binding mRNAs
involved in morphogenesis of the trichome, thereby affecting the
branching of the trichome (Wei et al., 2018).
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Although m6A modification may stabilize mRNA in plants,
no consensus on this issue has yet been reached. In addition,
after the modification of methylation of mRNA, m6A binding
protein also plays an important role. Moreover, studies on the
stability of mRNA by m6A modification have mostly focused on a
single mRNA, and cannot explain the effect of m6A modification
on mRNA stability across the transcriptome. In summary, m6A
may have different effects on mRNA stability in different tissues
or organs. It should be emphasized that m6A readers may play
precise and complex regulatory roles by recognizing changes in
m6A modification on mRNA.

PLANT GROWTH AND DEVELOPMENT

The mechanism of how m6A modification regulates the fate
of plant RNA is still unclear. Previous studies have shown
that the loss of function of any key component in the m6A
system of writers, erasers, or readers can cause disorders
in the m6A regulatory system, leading to abnormal growth
and development (Figure 2). The lack or reduction of m6A
writers, including MTA (Zhong et al., 2008; Anderson et al.,
2018), MTB, FIP37 (Vespa et al., 2004), Virilizer (Růžička
et al., 2017), and HAKAI (Růžička et al., 2017), results in
a significant reduction in the overall level of m6A. This
causes phenotypes including embryonic lethality, epidermal
hair development abnormality, defective leaf sprouting, and
excessive proliferation of vegetative shoot apical meristem.
Moreover, loss of function of the eraser ALKBH10B results in
leaf dysplasia and a delayed flowering phenotype in Arabidopsis
(Hofmann, 2017). Several studies on m6A reader ECT family
members have also comprehensively demonstrated the role of
ECT protein in regulating Arabidopsis leaf and epidermal hair
development (Arribas-Hernández et al., 2018; Scutenaire et al.,
2018; Wei et al., 2018).

In addition, the role of m6A modification in regulating the
growth and development of other plants has also begun to
be discovered. In rice, the m6A writer OsFIP regulates the
development of pollen microspores by directly mediating the
addition of m6A to a group of threonine proteases and NTPase
mRNA, and regulates its expression and splicing (Zhang et al.,
2019). In addition, the complete loss of function of OsFIP
leads to a decrease in the level of m6A modification and early
degeneration of microspores at the vacuolated pollen stage
(Zhang et al., 2019).

Summarizing current studies, we find that the core component
of m6A in plant is mainly expressed in meristems, but at low
levels in mature tissues and leaves. This suggests that the main
regulatory mechanisms of m6A acting on plant growth and
development are achieved by adding, removing, or recognizing
m6A sites on transcripts that are particularly important for the
growth and development of the above-mentioned organs and
tissues. In addition, the use of genetic interference methods to
study the function of m6A modification will lead to changes in
the overall level of m6A modification, and produce unpredictable
effects, we need a useful tool to exploring the functions of specific
site m6A modifications on RNA.

FUNCTION IN BIOTIC STRESS
ADAPTATION

Plants have evolved a series of regulatory mechanisms in response
to viral infections. These include sRNA (silencing based on small
RNA) (Llave, 2010; Pumplin and Voinnet, 2013; Sharma et al.,
2013), DNA methylation (Tirnaz and Batley, 2019), and RNA
methylation (Martínez-Pérez et al., 2017). In animal systems,
m6A modification has been reported to play an important role in
regulating viral replication and the viral life cycle (Gokhale et al.,
2016; Kennedy et al., 2016; Lichinchi et al., 2016a,b; Tirumuru
et al., 2016). However, in plants, with the exception of the smaller
group of DNA viruses, most viruses are RNA viruses. RNA viruses
are hardly affected by DNA methylation because they do not have
DNA during replication. As a widespread modification on RNA,
m6A modification may have great potential in regulating plant
anti-RNA virus infection.

In the Arabidopsis T-DNA insertion mutant of alkbh9b, the
overall m6A level of viral RNA was found to be increased,
and relative to the decrease in viral accumulation in the wild
type, its resistance to alfalfa mosaic virus (AMW) was enhanced
(Martínez-Pérez et al., 2017). It should be emphasized that
ALKBH9B does not exhibit the ability to regulate cucumber
mosaic virus (CMV) infection. This may be due to the fact that
ALKBH9B can interact with the coat protein (CP) of AMV,
but not with that of CMV (Martínez-Pérez et al., 2017). In
addition, in tobacco, the level of m6A modification in tobacco
is significantly reduced after infection with TMV (Li et al., 2018).
This study suggests that m6A modification may represent a host
regulatory mechanism for plants to respond to viral infections.
Interestingly, in the genome of several single-stranded RNA plant
viruses, ALKB containing a conserved domain has been identified
(Bratlie and Drabløs, 2005; Van Den Born et al., 2008). This
suggests that some plant viruses have evolved mechanisms to
respond to host m6A system regulation.

ABIOTIC STRESS PROCESS

In responding to environmental stress, m6A modification
exhibits high sensitivity and complexity in the regulation of
responses to heat stress, salt stress, and drought stress. Under salt
stress, the m6A system enhances the stability of transcripts by
adding m6A sites to salt-tolerant transcripts to regulate the salt
tolerance process in Arabidopsis (Anderson et al., 2018). Under
drought stress, the expression levels of the maize writer and
reader members of the ALKBH10 family and ECT2 family were
found to be increased, and the overall level of m6A modification
in cells was decreased (Miao et al., 2020). In addition, in
different genotypes of maize, m6A modifications were shown
to be concentrated on different transcripts. This suggests that
m6A modification is involved in the regulation of maize drought
resistance and that there are different regulatory mechanisms
in different genotypes of maize (Miao et al., 2020). Under heat
stress conditions, the Arabidopsis reader ECT2 was found to
respond to heat stress and relocate to stress granules (SGs) in
the cell (Scutenaire et al., 2018; Wei et al., 2018). This process
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FIGURE 2 | Functions of N6-methyladenosine in plants. In plant systems, m6A modification has been shown to be involved in regulating organ development, SAM
proliferation, flowering, meiosis, embryo development, root development, and fruit ripening processes.

may result in the mRNA that binds to ECT2 relocalizing to stress
particles under heat stress. Existing research suggests that the
reader regulation of RNA is more direct and rapid than that by
adding or erasing m6A sites on RNA, which relies on a writer and
eraser. Regulation by a reader can be based on m6A modification
on the original mRNA, and it can rapidly regulate the stress
signal, especially in regulating short-term stress.

CONCLUSION AND PERSPECTIVES

At present, most m6A modification maps in plant systems
was drawn by the m6A-seq method. However, there are some
limitations to this approach, such as the need for a large number
of samples, high requirements for antibody quality, and inability
to accurately locate the position of m6A modifications on RNA.
Although some improvements have been made to the resolution

of m6A-seq, including m6A individual-nucleotide-resolution
cross-linking and immunoprecipitation (miCLIP) (Linder et al.,
2015), photo-crosslinking-assisted m6A-seq (PA-m6A-seq)
(Chen et al., 2015), and m6A-cross-linking immunoprecipitation
(m6A-CLIP) (Ke et al., 2015), but these improved methods
still have not yet been tested in plants. In addition, m6A
modifications are mainly concentrated in meristematic and
reproductive organs, suggesting that m6A modifications are
more likely to occur on actively transcribed genes. The sample
size of these sites is often small, and the m6A-seq methods cannot
accurately detect m6A modifications in tissues or cells and
perform biological duplication. Therefore, for the development
of new m6A detection methods, especially to reduce the sample
size and improve detection accuracy, accurate identification of
m6A modification at the cellular level is necessary.

Compared with detection methods based on NGS or PCR
amplification, the technology of direct detection of m6A
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modification on RNA, including single-molecule real-time
(SMRT) (Vilfan et al., 2013) and single-molecule nanoporous
sequencing has great potential. Because PCR amplification is
not required, direct detection-based methods do not produce
base mismatches and PCR bias, and have the potential to
detect multiple types of RNA modification at the same time.
And only a lower sample starting amount is required. Ayub
et al. have used α-hemolysin (αHL) nanopore sequencing
to distinguish between modified and unmodified bases in
RNA, including m6A and 5-methylcytosine (m5C) (Ayub
and Bayley, 2012). Especially in recent years, nanopore
sequencing technology has developed rapidly. Garalde et al.
have developed a method for highly parallel direct RNA
sequencing on Highly parallel direct RNA sequencing on an
array of nanopores (Garalde et al., 2018). Parker et al. used
nanopore sequencing technology to map the m6A modification
in Arabidopsis thaliana, and revealed the complexity of m6A
dynamic modification during mRNA processing (Parker et al.,
2020). Therefore, we believe that nanopore sequencing is very
suitable for studying small molecule samples and has the
potential to accelerate the study of biological functions of
modifications on RNA.

The m6A enzyme plays a fundamental role in the m6A
regulatory system. However, the number of m6A enzymes found
to date in plants is small relative to the number in animals,
and no homolog of the major demethylase FTO in animals has
been found. Only one demethylase of the ALKBH family was
discovered (Hofmann, 2017; Martínez-Pérez et al., 2017; Zhou
et al., 2019), and it is unclear whether ALKBH family protein can
complete the removal of the m6A site on the mRNA. Therefore,
it is also very important to find more key components of the
m6A system in plants. In addition, it is not clear how writers
and erasers selectively add or remove m6A on RNA, which may
be related to the special secondary structure of RNA. Cryo-
electron microscopy and molecular imaging may help to explore
the process of m6A selective modification.

The main way to explore the function of m6A modification
is still through genetic interference. However, the impact of

adding or removing any key component of the m6A system on
plants may be far more than we are concerned about. Therefore,
the development of RNA methylation without changing the
nucleotide sequence and the overall m6A modification level
may be a major development regarding m6A for exploring
the m6A function in the future. The CRISPR–Cas9 technology
is rapidly evolving and has enabled accurate genome editing,
including targeted DNA cleavage, repair, direct base editing,
and site-specific epigenome editing. Recently, researchers have
used a similar method to fuse m6A writers or erasers with
Cas protein, and under the guidance of sgRNA and PAMer,
edit the m6A modification on specific mRNA in the cell (Wei
and He, 2019). This method of editing m6A did not change
the nucleotide sequence and the overall m6A modification
level (Wei and He, 2019). This method provides a new tool
for studying the biological function of m6A modification
and makes it possible to edit m6A at a specific site to
improve crop quality.
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As a co-transcriptional process, RNA processing, including alternative splicing and
alternative polyadenylation, is crucial for the generation of multiple mRNA isoforms.
RNA processing mechanisms are widespread across all higher eukaryotes and
play critical roles in cell differentiation, organ development and disease response.
Recently, significant progresses have been made in understanding the mechanism
of RNA processing. RNA processing is regulated by trans-acting factors such as
splicing factors, RNA-binding proteins and cis-sequences in pre-mRNA, and increasing
evidence suggests that epigenetic mechanisms, which are important for the dynamic
regulation and state of specific chromatic regions, are also involved in co-transcriptional
RNA processing. In contrast, recent studies also suggest that alternative RNA
processing also has a feedback regulation on epigenetic mechanisms. In this review,
we discuss recent studies and summarize the current knowledge on the epigenetic
regulation of alternative RNA processing. In addition, a feedback regulation of RNA
processing on epigenetic regulators is also discussed.

Keywords: RNA processing, alternative splicing, alternative polyadenylation, epigenetics, DNA methylation,
histone modifications

INTRODUCTION

Messenger RNA production is a fantastically complex process in eukaryotes, including
transcription of mRNA precursors followed by capping, splicing, and polyadenylation. Alternative
RNA processing, including splicing and polyadenylation (AS/APA), leads to the formation of
distinct mRNA isoforms and explains how massive proteomic complexity can be accomplished with
the relatively few genes in higher eukaryotes (Elkon et al., 2013; Tian and Manley, 2016). AS/APA
are mechanisms widespread across all eukaryotic species, from yeast to humans and plants. Recent
advances based on a vast amount of high-throughput sequencing data indicate that nearly 95% of
multi-exon mammalian genes undergo alternative splicing (Pan et al., 2008; Barash et al., 2010)
and more than 70% of mammalian genes express APA isoforms (Derti et al., 2012; Hoque et al.,
2013). AS/APA have gained renewed and expanded consideration as crucial regulators of gene
expression and contribute to development and cellular differentiation and proliferation, neuron
activation and other biological processes (Hong et al., 2018; Xu and Zhang, 2018; Fan et al., 2018;
Yoshimi et al., 2019).
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Traditionally, alternative RNA processing has been thought
to be predominantly controlled by both cis-regulatory sequences
and trans-acting factors. In AS regulation, cis-regulatory
sequences include splicing enhancers and silencers, typically 10 nt
in length, the impact of which depends on their location and their
preferential splice sites (Cáceres and Kornblihtt, 2002; Cooper
et al., 2009). Trans-acting factors activate, whereas other factors
inhibit, the use of splice sites, by binding to splicing enhancers
and silencers (Jelen et al., 2007; Han et al., 2010). Similar to
AS, the combined effects of multiple trans-acting factors and cis
elements clearly determine the likelihood of diverse poly(A) site
usage (Movassat et al., 2016; Tian and Manley, 2016).

Despite the wide acceptance that these cis-regulatory
sequences and trans-acting factors regulate alternative RNA
processing, AS and APA are more complicated processes in
co-transcriptional events than originally anticipated. Here, we
review the implications of the recently exposed roles of epigenetic
mechanisms, such as DNA methylation, histone modifications,
histone variants, and some non-coding RNA (ncRNA) in
alternative RNA processing regulation. A feedback of alternative
RNA processing on epigenetic regulation was also discussed.

CHROMATIN-BASED REGULATION OF
ALTERNATIVE RNA PROCESSING

DNA Methylation and Alternative RNA
Processing
DNA methylation, resulting in 5’ methylation of cytosine (5mC),
is a conserved and heritable DNA modification that affects gene
expression in a genome-wide manner (Li and Zhang, 2014). The
impact of DNA methylation on gene expression varies depending
on its genomic contexts. The role of promoter DNA methylation
in gene expression has been well investigated, which is widely
believed to cause transcriptional inhibition of downstream genes
(Law and Jacobsen, 2010). Interestingly, recent studies in model
plant Arabidopsis revealed that two SU(VAR)3–9 homologs,
SUVH1 and SUVH3, bind to methylated DNA and recruit the
DNAJ proteins to enhance proximal gene expression, thereby
counteracting the repressive effects of transposon insertion
near genes (Harris et al., 2018; Xiao et al., 2019; Zhao et al.,
2019). Compared to DNA methylation in promoter regions, the
function of genic DNA methylation remains elusive (Ball et al.,
2009). During the last decade, several studies indicate that genic
DNA methylation has a positive effect on the expression of
associated genes and prevents spurious transcription initiation,
and it is present within a number of cancer-related genes and has
been regarded as a hallmark of human cancer (Baylin and Jones,
2011; Yang et al., 2014; Neri et al., 2017).

Recent studies reveal a strong correlation between DNA
methylation and alternative splicing. Yang et al. (2014)
showed that gene body DNA demethylation mediated by
DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine results
in reduced efficiencies of transcription elongation or splicing. In
human cells, Shukla et al. (2011) reported that a DNA-binding
protein, called CCCTC-binding factor (CTCF), can promote

inclusion of weak upstream exons by mediating local RNA
polymerase II pausing. In this case, DNA methylation inhibits
CTCF binding to CD45 exon 5, which enables Pol II to transcribe
more rapidly, giving rise to an exon 5 exclusion (Ong and Corces,
2014). More recently, Nanavaty et al. (2020) further revealed
that CTCF is a bifunctional regulator which influences both
alternative splicing and alternative polyadenylation. Removal
of DNA methylation enables CTCF binding and recruitment
of the cohesin complex, which in turn form chromatin loops
to promote proximal polyadenylation site usage. These works
clearly demonstrate that DNA methylation has an important
participation in RNA processing regulation. While, limited
information is currently available regarding how DNA binding
proteins disturb the elongation of Pol II. It reminded us that
there maybe are other factors influencing Pol II elongation in
CTCF-mediated AS regulation, like the cohesin complex.

Unlike CTCF protein which binds to unmethylated DNA, a
growing number of studies have shown that the methyl cytosine-
guanine dinucleotide (CpG) binding protein 2 (MeCP2) binds
to methylated regions to influence AS. MeCP2 is the earliest
reported multifunctional protein that contains both methyl-
CpG-binding domains and transcriptional repressor domains
(Nan et al., 1997). Acting as a chromatin adaptor, MeCP2 is
attracted to 5mC on alternative exons, triggering its interaction
with histone deacetylases (HDACs), which modulate alternative
splicing (Maunakea et al., 2013). As we delve deeper into
the function of MeCP2, it is becoming clear that MeCP2
recruiting splicing factors to regulate mRNA splicing is also a
nearly ubiquitous mechanism in animals (Cheng et al., 2017;
Wong et al., 2017).

In plants, the available information regarding whether
gene body DNA methylation affects AS and the extent of
this mediation is currently limited. The first study of DNA
methylation-related functions in splicing was reported in
maize (Regulski et al., 2013). More recently, the cytosine
methyltransferase OsMET1 was found to affect global AS events
in rice, in which a total of 6319 more events were identified
with the met1 mutant compared with those associated with the
wild-type strain (Wang et al., 2016). However, deeper research
combining DNA methylation and AS/APA in plant is lacking.
Whether it has the similar regulatory mechanism with mammals
needs to be further elucidated.

Histone Modification-Mediated
Regulation of Alternative RNA
Processing
Chromatin structure is dominated by nucleosome density
and positioning, as well as by histone modifications and
DNA methylation (Duan et al., 2018). In contrast to DNA
methylation, more than 50 diverse modifications have been
identified on histone tails. Different modifications are linked
with distinct functions, such as transcriptional activation or
inhibition (Henikoff and Shilatifard, 2011). Recent reports
indicate that histone modifications are also involved in the
regulation of RNA processing. In fact, the involvement of histone
modification in regulation of RNA processing was found earlier
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than DNA methylation (Luco et al., 2010). Similar to DNA
methylation, absence of histone marks results in chromatin
structure changes, immediately affecting Pol II elongation and
alternative RNA processing.

Histone H3 lysine 36 trimethylation (H3K36me3) mark is an
active mark and is abundant in actively transcribed gene bodies
(Liu et al., 2010). It has been shown that dysfunction of SETD2,
an H3K36me3 methyltransferase, induced changes in 186 AS
events (Yuan et al., 2017). In humans, the MORF-related gene
on chromosome 15 (MRG15) is a well-established model system
to study the interplay between histone modifications and the
splicing machinery. The H3K36me3 mark influences splicing
by impacting the recruitment of splicing regulators through a
chromatin-binding protein, that is, MRG15. In this mechanism,
the H3K36me3 mark serves as anchors for MRG15 binding,

which in turn recruits the splicing regulator polypyrimidine
tract-binding (PTB) to pre-mRNA (Figure 1A). The H3K36me3–
MRG15–PTB complex forms a chromatin-splicing adaptor
system regulating numerous splicing events, including FGFR2
splicing, which is essential for tumor growth and invasion of lung
cancer (Sanidas et al., 2014; Naftelberg et al., 2015).

In contrast to the H3K36me3–MRG15–PTB complex
which favors exclusion of alternative exons, diverse histone
modifications can lead to a diametrically opposite splicing
pattern. Heterochromatin protein 1 (HP1), which has three
isoforms in humans, HP1α, HP1β, and HP1γ, binds directly to
histone H3 lysine 9 trimethylation (H3K9me3; Bannister et al.,
2001). A previous study indicated that HP1γ forms an additional
link with chromatin, binding to the coding region where it
associates with pre-mRNA and favoring its transient retention

FIGURE 1 | A proposed model for chromatin-based epigenetic regulation of alternative RNA processing. (A) A proposed model of chromatin-based regulation of
alternative splicing in mammals. Adaptor proteins recognizes and binds to alternative exon, which is marked by epigenetic marks (such as 5mC and histone
modifications), to affect alternative splicing through two possible mechanisms: (1) Adaptor protein recruits chromatin regulators (such as chromatin remodelers,
cohesion complex, etc.) to change the chromatin status of alternative exon, leading to a stalling of Pol II elongation, which in turn favors the retention of alternative
exon. (2) Adaptor protein directly recruits splicing-related factors to promote the retention of alternative exon. (B) A proposed model of chromatin-based regulation of
alternative polyadenylation in plants. The ASI1-AIPP1-EDM2 (AAE) complex recognizes and binds to the intronic heterochromatin elements (such as 5mC and
H3K9me2) and corresponding pre-mRNA, favoring the passthrough of elongating Pol II, thereby promoting the usage of distal polyadenylation signal. When the AAE
complex is absent, Pol II elongation is slowed down at intronic heterochromatin region, which favors the usage of proximal polyadenylation signal. Different colored
boxes in (A) and (B) represent exons.
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on chromatin. The modification to the chromatin structures of
the CD44 gene slows the elongation rate of Pol II, which in turn
facilitates the recruitment of splicing factors such as U2AF65
and PRP8 to alternative exons, resulting in the inclusion of
alternative exons (Saint-André et al., 2011; Yearim et al., 2015).
Unsurprisingly, diverse adaptor proteins at H3K9me3 lead to
distinct splicing patterns. HP1α and HP1β bind to methylated
alternative exons and recruit the splicing factor serine/arginine-
rich splicing factor 3 (SRSF3), thus enhancing the role of as a
splicing silencer and reducing the number of induced alternative
exons (Yearim et al., 2015).

In plants, Arabidopsis encodes two homologs of human
MRG15, MRG1 and MRG2, which bind to H3K4me3/H3K36m3-
modifying histone marks and trigger temperature-induced
flowering via the florigen gene FT (Bu et al., 2014). However,
it seems like that MRG1/2 have diversified from their
animal homologs during evolution, yet they still maintain
their conserved H3K36me3-binding molecular function (Xu
et al., 2014; An et al., 2020; Guo et al., 2020). Recently, a
protein complex in Arabidopsis, called anti-silencing 1 (ASI1)-
ASI1 immunoprecipitated protein 1 (AIPP1)-enhanced downy
mildew 2 (EDM2) (AAE) complex, was identified targeting
genic heterochromatic elements to regulate APA (Duan et al.,
2017). In this complex, ASI1, also named IBM2 and SG1
(Saze et al., 2013; Coustham et al., 2014), is a plant-specific
chromatin regulator which bears chromatin- and RNA-binding
capacity through its bromo-adjacent homology (BAH) and RNA
recognition motif (RRM) domains, respectively (Wang et al.,
2013). EDM2 is a multifunctional chromatin regulator containing
two and half plant homeodomains (PHDs). Its PHD fingers
have the binding capacity of H3K9me2 and other histone
modifications (Lei et al., 2014). ASI1 and EDM2 associate in vivo
through an RRM motif-containing bridge protein AIPP1 (also
named EDM3; Duan et al., 2017). The AAE complex can
bind to intronic heterochromatin, most of which come from
insertions of epigenetically silenced transposable and repetitive
elements, promoting the usage of distal polyadenylation site
(Figure 1B). Dysfunctions of the AAE complex lead to ectopic
accumulations of proximally polyadenylated short transcripts.
Thus, the AAE complex is indispensable for the generation
of full-length transcripts of genic heterochromatin-containing
genes. Regarding the underlying mechanism, recent report
indicates that EDM2 and AIPP1 mutations can slow down Pol
II elongation rate at proximal polyadenylation site, leading to
a promotion of proximal polyadenylation site usage (Lai et al.,
2019). AAE complex-mediated polyadenylation regulation plays
an important role in multiple biological processes, including
modulating plant immunity by targeting innate immunity
receptor gene RPP7 (Tsuchiya and Eulgem, 2013), epigenome
regulation by targeting histone H3K9me2 demethylase gene
IBM1, and T-DNA suppression (Saze et al., 2013; Wang et al.,
2013). Similar mechanism may also exist in other plants, like
bamboo and oil palm (Wang et al., 2017). For example, in oil
palm, loss of Karma transposon methylation leads to ectopic
splicing of the homeotic gene DEFICIENS, which accounts for
the mantled soma clonal variant phenotype of oil palm (Ong-
Abdullah et al., 2015). Interestingly, recent study indicates that

FPA, a flowering time regulator in Arabidopsis, can antagonize
ASI1 in the selection of polyadenylation site. In the double
mutant of asi1 and fpa, the polyadenylation pattern phenocopies
fpa but not asi1. While, this antagonistic control only occurs in
specific target genes, indicating a complex regulation of AAE
complex-mediated polyadenylation (Deremetz et al., 2019).

Histone Variants and
Chromatin-Remodeling Factors
Nucleosome, consisting of 147-bp double-stranded DNA and a
single histone octamer, is the basic unit of chromatin. Histone
variants, which are transcribed from separate genes, have been
shown playing key roles in the regulation of chromatin features.
This finding reminds us that histone variants may also regulate
co-transcriptional RNA processing. In mammals, five somatic
H1 variants (H1.1 to H1.5) have been identified (Happel and
Doenecke, 2009). More recently, Glaich et al. (2019) reported that
H1.5 deposition is observed at the splicing sites of the short exons
in human lung fibroblasts (IMR90 cells), and Pol II on H1.5-
marked exons exhibits greater stalling than it does on unmarked
exons. Deletion of H1.5 affects the inclusion of short exons with
relatively long introns and reduces Pol II occupancy on these
exons (Glaich et al., 2019). This finding clearly indicates that
the linker histones participate in the regulation of alternative
RNA processing, which has not been previously demonstrated
(Glaich et al., 2019).

In addition to histone variants, chromatin remodeling
factors also affect chromosome segregation and transcription
(Clapier and Cairns, 2009). During the last two decades, a
growing number of studies have indicated that chromatin
remodeling factors also play a role in alternative splicing. Brahma
(BRM), the core adenosine triphosphatase (ATPase) subunit
of the switch/sucrose nonfermenting (SWI/SNF) chromatin-
remodeling complex, was firstly shown to facilitate the inclusion
of alternative exons by interacting with Pol II to induce its
stalling (Figure 1A; Batsché et al., 2006; Jancewicz et al., 2019).
Actually, chromatin remodeler mediated-regulation of AS is an
evolutionarily conserved mechanism across most species, such
as in maize. ZmCHB101, a SWI3D protein, has been shown
controlling AS by altering chromatin status and transcriptional
elongation rates under osmotic stress (Yu et al., 2019), although
the mechanism by which chromatin remodeling factors interact
with Pol II transcription to impact mRNA processing machinery
remains unclear.

NON-CODING RNAS AND ALTERNATIVE
RNA PROCESSING

In addition to the identification of many alternative RNA
processing events based on chromatin level, an interesting finding
suggests that ncRNAs may play a key role in RNA processing
regulation (Kishore and Stamm, 2006). Generally, ncRNAs are
divided into two groups according to their size: small ncRNAs
(< 200 bp), including rRNA, microRNA (miRNA), small nuclear
RNA (snRNA), small nucleolar RNA (snoRNA), small interfering
RNA (siRNA), and piwi interacting RNA (piRNA); long ncRNAs
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(> 200 bp, lncRNA; Bartel, 2009). ncRNAs are now commonly
believed to have a variety of biological functions, and it is possible
that certain ncRNAs catalyze some steps of the splicing reaction
(Cech and Steitz, 2014).

snoRNAs
It is assumed that most snoRNAs, nearly 70 nt in length, are
derived from excised introns through exonucleolytic processing
(Watkins and Bohnsack, 2012). There are hundreds of different
snoRNAs in vertebrates and have even been found in archaea
(Terns and Terns, 2002). The first evidence of the participation
of snoRNA in AS was snoRNA HBII-52, which regulates the
serotonin receptor 2C and is associated with the congenital
disease Prader–Willi syndrome (PWS). HBII-52 regulates AS of
5-HT2CR by binding to a silencing element in exon Vb. PWS
patients do not express HBII-52. They have different 5-HT2CR
messenger RNA (mRNA) isoforms than healthy individuals
(Kishore and Stamm, 2006). Recently, a class of intronic lncRNAs
named snoRNA-related lncRNAs (sno-lncRNAs) was identified
in humans. The sno-lncRNAs generated from the PWS region
associate strongly with Fox family splicing regulators, altering
serotonin receptor 5-HT2CR splicing (Figure 2A). In patients
with PWS, the expression of some specific sno-lncRNAs is
downregulated. As a result, these patients have different 5-HT2CR
mRNA isoforms than healthy individuals, which have been
identified during early embryonic development and adulthood
(Yin et al., 2012).

Almost all eukaryotic pre-mRNAs and many ncRNAs are
subject to cleavage/polyadenylation at the 3′ end, which takes
place in macromolecular machinery called the mRNA 3′-
processing complex (Tian and Manley, 2016). It has been
shown that snoRNAs, which are classified as trans-acting
RNAs, directly interact with Fip1, a component of the cleavage
and polyadenylation specificity factor (CPSF) complex. Small
Nucleolar RNA C.D Box 50A (SNORD50A), a U/A-rich C/D-
box snoRNA, inhibits mRNA 3 processing by disturbing the
Fip1-poly(A) site (PAS) interaction (Figure 2B). SNORD50A
depletion leads to more frequent binding of Fip1 to PAS
and increases the 3′ processing of target mRNAs containing
U-rich sequences (Huang et al., 2017; Shi et al., 2017). Taken
together, these studies strongly suggest that snoRNA is an
important regulator of polyadenylation for specific genes by
serving as an antagonistic RNA. An important question remains
for future studies to address: how do ncRNAs bind to neighboring
sequences and regulate the interactions between the core mRNA
processing factors and processing sites?

lncRNAs
Recently, lncRNAs have received increasing attention. In human,
Metastasis-associated lung adenocarcinoma transcript 1 (Malat1)
is the most widely studied lncRNA. Malat1 was first identified
in human non-small cell lung cancer (NSCLC; Ji et al., 2003).
A number of serine/arginine-rich (SR) proteins, including SRSF1,
SRSF2, and SRSF3, associate with Malat1. Absence of Malat1
affects the localization of some splicing factors in the HeLa cell
line and leads to changes AS pattern (Blencowe, 2006). However,
the loss of Malat1 in normal mice rarely causes global changes

in splicing factor levels and results only in the dysregulation
of small mRNAs (Zhang et al., 2012). Meanwhile, deletion of
Malat1 in mammary carcinoma mice leads to many AS events
in genes essential for cell differentiation and tumorigenesis
(Arun et al., 2016). It can therefore be proposed that Malat1
regulates AS in specific cells and tissues under particular
conditions. In human cells, the lncRNA Gomafu, which is
dynamically regulated by neuronal activation, directly binds to
the splicing factors QKI and SRSF1 and inhibits their association
with the schizophrenia disease-related gene transcripts, thereby
affecting alternative splicing (Barry et al., 2014). In Arabidopsis,
an lncRNA called alternative splicing competitor (ASCO) binds
to the highly conserved spliceosome component PRP8a, thereby
impairing the recognition of specific flagellin-related transcripts
by PRP8a (Rigo et al., 2020). Actually, it has been shown
that ASCO can binds to multiple splicing factors, indicating
that lncRNAs may integrate a dynamic network to modulate
transcriptome reprogramming, including alternative splicing.

In addition to the evidence we discussed above, some ncRNAs
are directly or indirectly involved in RNA processing. It has been
shown that piRNAs and piRNA biogenesis components affect
mRNA splicing of P-transposable element transcripts in vivo,
resulting in the production of a non-transposase-encoding
mature mRNA isoform in Drosophila germ cells (Teixeira et al.,
2017). In plants, there is a special family of ncRNAs that can
confer de novo DNA methylation through the RNA-directed
DNA methylation (RdDM) pathway, and thereby inducing
global AS/APA events (Matzke and Mosher, 2014; Wang and
Chekanova, 2016). As the non-coding transcriptome, ncRNAs are
important components of the eukaryotic genome. There may be
a large number of mechanisms by which ncRNAs enhance the
plasticity of the proteome by interacting with mRNA-processing
machinery. A deep understanding of this mechanism will open up
broad prospects for gene therapy of various diseases, including
cancer, and the application of biotechnology in agricultural and
human health fields.

EPIGENETIC REGULATION AND
ALTERNATIVE RNA
PROCESSING-MEDIATED STRESS
RESPONSE IN PLANTS

Unlike animals, plants display a high degree of plasticity
during growth and development. In plants, to overcome the
constant challenge from a rapidly changing environment,
specific adaptation mechanisms have been evolved, among which
alternative RNA processing is an important strategy (Chaudhary
et al., 2019). Recent work has indicated that the role of epigenetic
modifications in regulating AS/APA under stress is emerging
(Jabre et al., 2019). Temperature is one of the environmental
signals that strongly affects plant development. An recent study
indicated that temperature variation is memorized by chromatin
via H3K36me3 modification, resulting in a specific splicing
pattern, which enables a feasible adaptation to stress conditions
(Pajoro et al., 2017). Another study showed that genes which are
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FIGURE 2 | A proposed model for non-coding RNA (ncRNA)-mediated regulation of alternative RNA processing. (A) ncRNA directly interacts with different splicing
factor to influence alternative RNA processing through two possible mechanisms: ncRNA-splicing factor complex recognizes and binds to the junction region of
intron and alternative exon to promote the retention of alternative exon. ncRNA can also inhibit the targeting of splicing factor to the splicing site of pre-mRNA.
Asterisks represent polyadenylation signals. Rectangular boxes represent exons. (B) ncRNA recognizes and binds to polyadenylation signal-flanking sequence of
pre-mRNA, which prevents the accession of polyadenylation-related factors, thereby leading to the usage of distal polyadenylation signal. Different colored boxes in
(A) and (B) represent exons.

quickly activated under cold stress and differentially expressed at
the splicing level, were found to be modified by H3K27me3 in
non-stress conditions (Vyse et al., 2020). These reports suggest
a dynamic regulation of temperature stress-responsive genes
by alternative RNA processing and histone modification. In
Arabidopsis, the Nuclear speckle RNA binding proteins (NSRs)
have been known as regulators of AS functioning in auxin-
associated developmental processes such as lateral root formation
(Bazin et al., 2018). These proteins were shown to interact with
specific alternatively spliced mRNA targets and at least with
one structured lncRNA named ASCO (Bardou et al., 2014). The
specific interaction of NSR with the ASCO is able to modulate AS
patterns of a subset of NSR target genes, thereby impacting auxin
response (Bazin et al., 2018). In other plants, specific association
between epigenetic regulators and RNA processing factors under
stress conditions has also been found. A maize SWI3D protein,
ZmCHB101, has been found to impact alternative splicing
contexts of a subset of osmotic stress-responsive genes on
genome-wide level (Yu et al., 2019). In turn, alternative RNA
processing of pivotal regulatory genes confers plants quick
response to the changing climate conditions through alteration of
reversible epigenetic marks. While, most of the current researches
only focus on one aspect of how plants respond to changeable
environment. That means, alternative RNA processing impacts
the transcriptome of responsive genes or environment change
leads to dynamic alterations of diverse epigenetic modifications
(Rataj and Simpson, 2014; Calixto et al., 2018; Li et al., 2018).
The mechanistic insights into the detailed interplay between
epigenetic regulation and AS/APA in changing environment

remains largely limited. In addition, the complicated regulatory
mechanisms controlling mRNA isoform ratios in a tissue- or
condition-specific manner still remain unclear.

FEEDBACK REGULATION OF RNA
PROCESSIONG ON EPIGENETIC
MECHANISMS

On the one hand, the evidence above supports a notion that
chromatin- and ncRNA-based epigenetic mechanisms have a
huge impact on the patterns of alternative RNA processing.
On the other hand, alteration of RNA processing pattern can
also exert an important influence on epigenetic regulation
pathways. In agreement with the notion that the majority of
protein-coding genes show alternative processing (Elkon et al.,
2013; Naftelberg et al., 2015), a number of epigenetic modifier-
encoding genes are subjected to RNA processing regulation.
As mentioned above, one classic feedback case is IBM1, a
major H3K9me2 demethylase-encoding gene in Arabidopsis.
IBM1 is a target of the AAE complex which binds to its
intronic repetitive sequence region to promote the generation
of functional full-length transcript (Saze et al., 2008; Wang
et al., 2013). In one aspect, epigenetic regulators required
for the formation of intronic heterochromatin facilitates AAE
complex targeting. In line with this notion, mutations of
DNA methyltransferases MET1, CMT3 and histone H3K9me2
methyltransferase KYP (SUVH4) phenocopy the phenotype
observed in the aae mutants, resulting in great reduction of
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functional IBM1 transcript (Rigal et al., 2012; Duan et al., 2017).
In another aspect, reduced expression of IBM1 protein
causes an increase of genome-wide H3K9me2 level, which in
turn causes genic CHG hypermethylation through recruiting
more CMT3 DNA methyltransferase (Duan et al., 2017).
Thus, IBM1-AAE interaction implies an interdependency
between epigenetic regulation and alternative polyadenylation.
Intriguingly, DNA and H3K9me2 methylation levels in IBM1
intronic heterochromatin region were not obviously changed by
the dysfunction of the AAE complex (Duan et al., 2017). One
possible explanation is that the AAE complex may has a direct
participation in the regulation of the epigenetic status of intronic
heterochromatin.

Another example is the BAF complex, including at-rich
interactive domain-containing protein 1A (ARID1A), which
is an evolutionarily conserved chromatin-remodeling factor
(Narayanan et al., 2015). A recent study indicated that EWS–
friend leukemia integration 1 (FLI1), a well-established ES
oncoprotein, plays a precise role in chromatin regulation by
interacting with the BAF complex (Boulay et al., 2017). In
addition to modulating chromatin organization, EWS–FLI1 also
alters the splicing of many mRNA isoforms (Selvanathan et al.,
2015). Surprisingly, EWS–FLI1 leads to preferential splicing of
ARID1A-L, promoting ES growth, and ARID1A-L reciprocally
facilitates EWS–FLI1 protein stability to maintain the expression
of ARIDIA-L. The ARID1A-L isoform is essential for the splicing
event, and a reduction in both ARID1A isoforms leads to EWS–
FLI1 degradation and cell death. The loss of ARID1A-L has
been demonstrated as an explanation of its ability to stabilize
EWS–FLI1 (Selvanathan et al., 2019). In this EWS–FLI1-ARIDIA
system, chromatin remodeling and alternative splicing are both
indispensable. Future efforts should be directed at finding
interacting components of epigenetic regulation and AS/APA.

In addition, alternative RNA processing events can also lead
to the formation of ncRNAs (Memczak et al., 2013). More
recently, Ma et al. reported microRNA-mediated phased small
interfering RNA (phasiRNA) generation from long non-coding
genes coupled with alternative splicing/polyadenylation in litchi
(Ma et al., 2018). An miR482/2118-targeted locus generates
four primary transcript isoforms through AS/APA, and diverse
phasiRNAs generated from these isoforms appeared to target
long terminal repeat (LTR) retrotransposons and other unrelated
genes. This study raised the intriguing possibility of cross talk
between ncRNAs and AS/APA components. In addition, the
diverse alternative mRNA processing-mediated protein variants
thus generated immediately affect the properties of proteins,
resulting in dysfunction of epigenetic regulators, including
chromatin modification enzymes and remodeling factors (Lei
et al., 2014; Rusconi et al., 2017; Jancewicz et al., 2019).

CONCLUSION

Epigenetic modifications are dynamically regulated by different
catalytic enzymes and reader proteins. This feature makes
epigenetic mechanisms suitable for multiple biological
processes, ranging from cell differentiation, development
and environmental stress responses. RNA processing, a

widespread mechanism of gene expression in eukaryotic cells,
also play vital roles in multiple biological processes. During
the last two decades, a great deal of efforts has been made in
the crosstalk between epigenetic mechanisms and alternative
RNA processing. As shown in Figure 1, chromatin modification,
such as DNA methylation and histone modifications can inhibit
or reinforce the binding of diverse adaptors. These chromatin
adaptors induce alternative RNA processing through changing
chromatin structure by collaborating with certain chromatin
remodelers or the cohesion complex, or directly recruiting
RNA processing factors to distinct splicing/polyadenylation
site. Most of the current researches have focused on chromatin-
based global changes of alternative RNA processing. In
fact, it’s a precise mechanism that is dynamically regulated
under diverse conditions, such as during development and
environmental stresses.

Different from the chromatin-based alternative RNA
processing, ncRNA impact AS/APA on RNA level, mainly by
disturbing the binding of RNA processing factors (Figure 2).
They can bind to splicing/polyadenylation sites and inhibit the
targeting of other RNA binding protein. Study on ncRNA-
mediated regulation of alternative RNA processing is a
promising field, particularly in the field of pharmaceutical
research including RNA interference drugs. It may be a very
effective method to treat many human diseases, which are caused
by inaccurate splicing or polyadenylation, by covering false
splicing/polyadenylation site. Therefore, it is important to find
more cases of ncRNA-mediated regulation of RNA processing. In
addition, deciphering the physiological relevance of the crosstalk
between epigenetic regulation and alternative processing is also
important toward understanding normal tissue homeostasis and
transition to disease.

Study on the interplay between epigenetic regulation and
alternative RNA processing is a novel field which is still at an
early stage. In addition to the important researches described
above, there are still some outstanding questions regarding
the underlying mechanism of alternative RNA processing due
to the space constraints not discussed in this review, such
as the identification of conserved factors involved in such
regulation, a comparison of epigenetic regulation in RNA
processing between animals and plants, and the precise epigenetic
mechanisms of tissue- and environment-specific AS/APA events.
Addressing the remaining questions will undoubtedly expand
our understanding of the chromatin codes in the regulation
alternative RNA processing.
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Epigenetics plays an important role in the pathogenesis and treatment of osteoarthritis
(OA). In recent decades, HDAC family members have been associated with OA. This
paper aims to describe the different role of HDACs in the pathogenesis of OA through
interaction with microRNAs and the regulation of relevant signaling pathways. We found
that HDACs are involved in cartilage and chondrocyte development but also play a
crucial role in OA. However, the distinct HDAC mechanism in the pathogenesis and
treatment of OA require further investigation. Furthermore, HDAC inhibitors (HDACi) can
protect cartilage from disease, which may represent a potential therapeutic approach
against OA.

Keywords: osteoarthritis, HDAC, HDAC inhibitor, microRNA, cartilage

INTRODUCTION

Osteoarthritis (OA) is a common disease that not only causes physical disability but also imposes an
economic burden on society (Litwic et al., 2013; Liu et al., 2018). The prevalence of OA is high and
increases with age (Neogi, 2013). In Korea, 35% of people older than 65 years have been diagnosed
radiographically with OA (Cho et al., 2015). The etiology of OA is multifactorial and complex.
Mechanical stress, metabolic dysfunction and inflammation are all involved in OA progression
(Sarzi-Puttini et al., 2005; Johnson and Hunter, 2014). Due to the aging population and the rising
rate of obesity, the prevalence of OA is predicted to double by 2020 (Thomas et al., 2017).

OA is characterized by joint space narrowing, subchondral sclerosis, subchondral cysts,
and osteophyte formation (Kuyinu et al., 2016). Its major clinical symptoms include joint
pain and swelling and loss of movement (Shen and Chen, 2014; Moon et al., 2018). The
pathological mechanism of OA includes increased dysfunction and death of chondrocytes and
the disequilibrium of extracellular matrix synthesis and degradation (Zheng et al., 2018). There
are many signaling pathways involved inOA pathogenesis that are activated by pro-inflammatory
mediators and cytokines, such as interleukin-1β (IL-1β) (Jenei-Lanzl et al., 2019). Specifically, these
cytokines promote OA through mitogen-activated protein kinase (MAPK) signaling (Malemud,
2017), NF-κB, and other signaling pathways (Rigoglou and Papavassiliou, 2013; Jenei-Lanzl
et al., 2019). The activation of catabolic signaling pathways and inhibition of anabolic signaling
pathways lead to overexpression of matrix metalloproteinases (MMPs) and a disintegrin and
metalloproteinase with thrombospondin motifs (ADAMTS).
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Treatments for OA are developing rapidly. Platelet-rich
plasma (PRP), mesenchymal stem cells (MSCs) and physical
therapy are extensively applied to treatment of OA (Bennell
et al., 2014; Bennell et al., 2017; Si et al., 2017; Toh et al.,
2017). However, current medical management only focuses on
the relief of symptoms, not the reversal of OA progression. It’s
unavoidable that OA patients suffer from the side effects of
treatment. Therefore, it’s essential to identify new therapeutic
interventions for OA.

Recently, multiple studies have demonstrated that altered
activity, expression, and distribution of histone deacetylases
(HDACs) lead to the initiation and progression of OA. HDAC
inhibitors (HDACi) can protect chondrocytes and prevent
cartilage damage (Khan and Haqqi, 2018). This review focuses
on the following insights: (1) the relationship between each
HDAC and OA; (2) the relevant mechanisms governing
HDACs involvement in OA; (3) the potential of HDACi
in OA treatment.

HDAC STRUCTURE AND FUNCTION

HDACs, also called lysine deacetylases, are nuclear
transcriptional regulatory proteins that regulate chromosome
structure and the activity of transcription factors by removing
acetyl groups from histones (Araki and Mimura, 2017).
HDACs and histone acetyltransferases (HATs) are the two
major components that maintain a balance in transcription
activity, with HDACs inhibiting gene activation (Kroesen
et al., 2014). The substrates of HDACs are abundant; HDACs
can modify more than 3600 acetyl groups of over 1750
proteins. There are currently 18 HDACs, divided into four
groups (Figure 1): Class I(HDAC1, HDAC2, HDAC3, and
HDAC8), Class II(HDAC4, HDAC5, HDAC6, HDAC7,
HDAC9, and HDAC10), Class III (sirtuins, sirt1–7), and
Class IV (HDAC11). Class I and II HDACs require Zn2+

to maintain enzyme activity. The Class III HDACs are
NAD+ -dependent (Hesham et al., 2018), and Class IV
consists of a single HDAC11 (de Ruijter et al., 2003). Class I
HDACs exist mostly in the nucleus, expect for HDAC3 and
HDAC8, which can shuttle between the nucleus and cytoplasm
(Hull et al., 2016). The distribution of Class I HDACs is
highly tissue-specific (Yoon and Eom, 2016). Most Class II
HDACs are located in both the nucleus and cytoplasm and
need to recruit Class I HDACs to obtain catalytic activity
(Carpio and Westendorf, 2016).

In addition to transcriptional regulation, HDACs are involved
in posttranslational modifications (PTMs). PTMs determine
protein activity, stability, distribution and interaction (Yoon
and Eom, 2016). Non-histone proteins such as NF-κB, heat
shock protein (HSP), P53, signal transducers and activators
of transcription (STAT), forkhead transcription factor (FOXO)
and mitogen-activated protein kinase (MAPK) are all modified
by HDACs to regulate biological pathways (Gallinari et al.,
2007; Spange et al., 2009; Jeong et al., 2014; Leus et al., 2016).
Previous studies focused on the role of HDACs in cancer,
pulmonary fibrosis, cardiovascular disease and rheumatoid

arthritis (Ooi et al., 2015; Angiolilli et al., 2017; Lyu et al.,
2019). However, there are few articles indicating a role
for HDACs in OA.

Class III HDACs (sirtuins) differ from the Class I and II
HDACs structurally and mechanistically (NAD+- dependent)
(Dvir-Ginzberg et al., 2016). Meanwhile, there have been no
reports indicating a role for the Class IV HDAC in OA. Therefore,
we primarily discuss the role of the Class I and Class II HDACs
in cartilage development and OA progression and the potential
therapeutic effects of Class I and Class II HDAC inhibitors.

HDACs AND miRNA IN OA

MicroRNAs (miRNAs) are non-coding RNAs that regulate gene
expression through post-transcriptional modifications. Altered
miRNA expression is found in many diseases, including OA
(Sondag and Haqqi, 2016). There have been many studies
that identified a relationship between HDACs and miRNA in
pathogenesis of OA (Table 1).

HDAC1

MiR-146a has a protective effect against OA by inhibiting
inflammatory factors in cartilage and synovial tissues (Yang et al.,
2014; Guan et al., 2018). In contrast, HDAC1 inhibits miR-146a
expression in the synovium to aggravate cartilage damage (Wang
et al., 2013). It’s unclear whether HDAC1 regulates miR-146a
expression in cartilage in OA.

HDAC2

HDAC2 has a similar structure to HDAC1 and also acts as
a pro-inflammatory protein in OA pathogenesis (Brunmeir
et al., 2009). Increased HDAC2 expression is observed in the
cartilage and chondrocyte-secreted exosomes of OA patients
and inhibits cartilage-specific gene expression in chondrocytes
(Hong et al., 2009). Exosomal miR-95-5p delays OA progression
and promotes cartilage matrix expression in chondrocytes by
binding to the 3′-UTR of HDAC2 and inhibiting HDAC2
expression (Mao et al., 2018). Similarly, miR-92a-3p promotes
cartilage matrix gene expression both in chondrogenic hMSCs
and primary human chondrocytes (PHCs) by inhibiting HDAC2
expression through binding to the 3′-UTR of HDAC2 followed
by increased H3 acetylation on the Aggrecan (ACAN), COMP
and Col2a1 promotors and increased cartilage matrix expression
(Mao et al., 2017). MiR-455-3p also has a protective effect on
cartilage by inhibiting to the 3′-UTR of HDAC2, decreasing
its expression, and promoting H3 acetylation on the Col2a1
promoter (Chen et al., 2016b).

HDAC3

HDAC3 is involved in the repression of cartilage matrix
metabolism (Zhang et al., 2019b). MiR-193b-3p targets the 3′-
UTR of HDAC3 and inhibits its expression. HDAC3 suppression
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FIGURE 1 | Classification of HDACs (A) and the different mechanism of action (B).

TABLE 1 | The relationship between HDACs and miRNAs in OA.

HDAC miRNA Differential expression in OA Target gene(s) miRNA Biological effects References

HDAC2 miR-95-5p Downregulated HDAC2/8 Matrix synthesis Mao et al. (2018)

miR-92a-3p Downregulated HDAC2 Matrix synthesis Mao et al. (2018)

miR-455-3p Downregulated HDAC2/8 Matrix synthesis Chen et al. (2016b)

HDAC3 miR-193b-3p Downregulated HDAC3 Matrix synthesis Meng et al. (2018)

HDAC4 MiR-381 Upregulated HDAC4 Matrix degradation Chen et al. (2016c)

miR-438-5p Upregulated Matn3 and TIMP2 Chondrocyte hypertrophy and angiogenesis Wang et al. (2018a)

miR-365 Upregulated HDAC4 Inhibiton of MMP13 and Col X gene expression Yang et al. (2016)

miR-222 Downregulated HDAC4 Inhibition of chondrocyte apoptosis and MMP13 Song et al. (2015)

HDAC7 miR-193b-5p Downregulated HDAC7 Matrix synthesis Zhang et al. (2019a)

HDAC8 miR-95-5p Downregulated HDAC2/8 Matrix synthesis Mao et al. (2018)

miR-455-3p Downregulated HDAC2/8 Matrix synthesis Chen et al. (2016b)

results in H3 acetylation and over-expression of Col2a1, ACAN,
COMP, and SOX9 in hMSCs and PHC with or without IL-1β

stimulation (Meng et al., 2018).

HDAC4

The role of HDAC4 in OA has not been defined. Mammalian
target of rapamycin complex 1 (mTORc1) activation induces
extra cellular matrix (ECM) degradation through miR-483-
5p-mediated downregulation of Matn3 and tissue inhibitor of
metalloproteinase-2 (Timp2) in a Col2a1TSC1KO OA mouse
model (Wang et al., 2018a). HDAC4 reverses OA symptoms
by inhibiting miR-483-5p (Wang et al., 2018a). MiR-381
aggravates cartilage degradation and OA progression, whereas
HDAC4 reverses this effect. The underlying mechanism involves
the inhibition of HDAC4 expression by miR-381 binding
to its 3′-UTR. Such inhibition decreases MMP13 and Runt-
related transcription factor 2 (Runx2) expression in ATDC5
chondrocyte and SW1353 chondrosarcoma cell lines (Chen
et al., 2016c). MiR-365 also promotes osteoarthritic cartilage
destruction by targeting HDAC4 (Yang et al., 2016). Interestingly,
HDAC4 also acting as a pro-inflammatory factor, can accelerate
OA progression by inhibiting miR-146a in osteoarthritis
synovial fibroblast-like cells (OA-FLS) (Wang et al., 2013). This
contradictory phenomenon may be explained by the fact that this

latter study only focused on the effect of HDAC4 on miR-146a
and the downstream proteins interleukin-1 receptor-associated
kinase 1 (IRAK1) and tumor necrosis factor receptor-associated
factor 6 (TRAF6), but HDAC4 can be a positive regulator in
other processes. Thus, overall, HDAC4 has anti-inflammatory
and anti-arthritis effect. The second reason might be that HDAC4
acts as a pro-inflammatory factor in FLS but not chondrocytes.
However, Song et al. (2015) found that miR-222 over-expression
suppressed chondrocyte apoptosis and MMP13 expression by
inhibiting HDAC4. Thus, the distinct mechanism of HDAC4 in
OA requires further investigation.

HDAC5 AND HDAC6

There are no article about relationship between HDAC9,
HDAC10, and miRNAs in pathogenesis of OA.

HDAC7

HDAC7 evokes cartilage damage and ECM degradation through
the over-expression of MMP3 and MMP13. In contrast, miR-
193b-5p protects cartilage from injury by inhibiting HDAC7
through binding to its 3′-UTR (Zhang et al., 2019a). Interestingly,
HDAC7 inhibition by siHDAC7 also promotes miR-193b-5p
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expression, suggesting that HDAC7 regulates miR-193b-5p in OA
via a positive-feedback loop.

HDAC8

Like HDAC2, HDAC8 exacerbates OA by inhibiting matrix
metabolism, whereas miR-455-3p and miR-95-5p suppress
HDAC8 expression to protect cartilage as mentioned above
(Chen et al., 2016b; Mao et al., 2018).

HDAC9 AND HDAC10

There are no article about relationship between HDAC9,
HDAC10, and miRNAs in pathogenesis of OA.

HDACs AND SIGNALING PATHWAYS IN
CARTILAGE DEVELOPMENT AND OA

HDAC1
HDAC1 expression is elevated in OA cartilage (Hong et al.,
2009). The carboxyl-terminal domain (CTD) of HDAC1
is the major regulatory unit in OA pathogenesis. While
the CTD does not determine HDAC1 enzymatic activity,
it does affect the target gene specificity. The HDAC1 CTD
promotes Snail1 transcription factor activity, a known
repressor of Collagen2 (α1) in chondrocytes (Hong et al.,
2009). Leukemia/lymphoma-related factor (LRF) suppresses
expression of the COMP gene. HDAC1 increases LRF
activity and suppresses COMP transcription in chondrocytes
(Liu et al., 2004). In addition, HDAC1 assists HDAC9
in weakening Nkx3.2 stability by regulating acetylation
status, which is required for chondrocyte viability and
chondrocyte hypertrophy (Choi et al., 2016). Interestingly,
there have also been controversial observations. During
chondrocyte proliferation and chondrogenesis, zinc finger
nuclear regulator (Trps1) plays a critical role in mitosis.
An interaction between Trps1 and HDAC1 increases the
histone deacetylase activity of HDAC1, leading to normal
chondrocyte mitosis (Wuelling et al., 2013). HDAC1 also
promotes cartilage development through the canonical
Wnt/β-catenin pathway. HDAC1 suppresses β-catenin
expression through its promoter and increases β-catenin
degradation by regulating acetylation (Huang et al., 2014).
Thus, HDAC1 plays a positive role in early cartilage
formation and development but has a negative role in
OA pathogenesis.

HDAC2
The HDAC2 CTD also interacts with the Snail transcription
factor to promote its activity and inhibit COMP expression
(Hong et al., 2009). Protein kinase epsilon (PKCε) increases SOX9
expression, the deposition of glycosaminoglycans (GAGs) and
inhibition of Runx2 expression in OA through HDAC2 down
regulation (Queirolo et al., 2016).

HDAC3
HDAC3 plays an important role in the development of bone
and cartilage but can also exacerbate OA progression. HDAC3
is required for chondrocyte maturation at the early stage of
skeletal formation in mice (E10.5 and E16.5). Postnatal ablation
of HDAC3 in chondrocytes delays chondrocyte endochondral
maturation, ossification and induces inflammatory cytokines in
normal chondrocytes (Carpio et al., 2016). HDAC3 also inhibits
the Erk1/2 downstream proteins (Runx2 and MMP13) and
promotes chondrocyte maturation in the growth plate, which
inhibits temporal and spatial activation of Erk1/2 through the up-
regulation of the dual-specific phosphatase Dusp6 (Carpio et al.,
2017). HDAC3 also represses Phlpp1 transcription to promote
Akt phosphorylation and activation of its downstream targets
(mTOR and p70 SK6) in chondrocytes. These events are essential
for regulating chondrocyte hypertrophy and the promotion of
matrix gene expression (Bradley et al., 2013). In the pathogenesis
of OA, HDAC3 promotes OA progression via the regulation
of the nuclear transportation of NF-κB in OA cartilage and
chondrocytes with elevated MMP13 and ADAMTS5 expression
(Zhang et al., 2019b). The contradictory phenomenon may be
explained by the following: (1) HDAC3 is only essential for
chondrocytes during the embryonic growth period; (2) HDAC3-
deletion may slightly elevate inflammatory cytokines compared
to normal chondrocytes, but significantly inhibit inflammation
compared to chondrocytes treated with IL-1β.

HDAC4
HDAC4 is the most thoroughly studied HDAC in OA
pathogenesis. Decreased HDAC4 expression is observed in OA
patients. HDAC4 not only inhibits the expression of Runx2,
MMP1, MMP3, MMP13, ADAMTS4, and ADAMTS5 but also
partially blocks the catabolic events in chondrocytes stimulated
by IL-1β (Cao et al., 2014). As mentioned earlier, PKCε promotes
SOX9 expression and the deposition of GAGs in chondrocytes
via HDAC4 up-regulation (Queirolo et al., 2016). The PTHrp-
Zfp521-HDAC4 pathway could negatively regulate chondrocyte
hypertrophy. Zfp521 is a downstream target gene of PTHrp
and forms a complex with HDAC4 and Runx2, leading to the
repression of Runx2-mediated target gene activation (Correa
et al., 2010).

Alterations in HDAC4 and cellular localization can
regulate chondrocyte hypertrophy, OA progression and
affect chondrocyte hemostasis. PTHrp promotes the nuclear
translocation of HDAC4 and inhibition of MEF2 transcriptional
activity to prevent chondrocyte hypertrophy (Kozhemyakina
et al., 2009). In addition, HDAC4 is a mechanical-responsive
protein; its expression can be regulated by mechanical
compression in chondrocytes. Hydrostatic pressure (1–5 Hz)
significantly decreases HDAC4 expression in OA chondrocytes
to maintain the chondrocyte phenotype (Cheleschi et al., 2017).
Furthermore, mechanical stimulation also alters the subcellular
distribution of HDAC4 in these cells. Proper compression
of chondrocytes promotes matrix-related gene expression
through HDAC4 translocation to the nucleus (Chen et al.,
2016a). This effect is dependent on PP2A-induced HDAC4

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 September 2020 | Volume 8 | Article 56011777

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-560117 September 29, 2020 Time: 14:20 # 5

Zhang et al. HDACs Involved in Osteoarthritis

dephosphorylation. The relocation of HDAC4 associated with
14-3-3 to the cytoplasm also promotes CaMK IV-induced
expression of Runx2 and related proteins in the chondrocytes
(Guan et al., 2012). Interestingly, HDAC4 also has a destructive
role in OA. HDAC4 is an upstream mediator of MAPK and
promotes ADAMTS4, ADAMTS5, and cyclooxygenase 2
(Cox2) expression in rat articular chondrocytes stimulated with
IL-1β (Wang et al., 2018b). The reason for the inconsistent
phenomenon is unclear and still need further explored.

HDAC5
Little is known on the role of HDAC5 in cartilage development
and OA progression. HDAC5 acts as a co-activator of HDAC4 to
inhibit chondrocyte hypertrophy through parathyroid hormone-
related protein (PTHrP), which blocks the Mef2/Runx2 signaling
pathway (Cheng et al., 2019).

HDAC6
Mechanical intervention and physical activity can modify
the epigenetic state by regulating the HDACs. This
process is called mechanic-epigenetics (Chen et al., 2013).
HDAC6 is a mechanosensitive protein involved in OA. It
promotesADATMS5 expression through cilia disassembly and
hedgehog signaling at 0.33 Hz and 20% cyclic tensile strain
(CTS). This effect is not observed at 10% CTS (Thompson et al.,
2014). Mechanical loading also attenuates NF-κB activity in
chondrocytes stimulated with IL-1β through the regulation of
the intraflagellar transport (IFT)-dependent pathway. Under the
conditions of 0.33 Hz and 10% CTS, HDAC6 activity increases
followed by the recovery of cartilage (Fu et al., 2019).

HDAC7
HDAC7 plays a pivotal role in both cartilage development
and OA. Increased HDAC7 expression is observed in
the knee cartilage of OA patients, and HDAC7 induces
MMP13 overexpression in OA (Higashiyama et al., 2010).
Furthermore, insulin-like growth factor 1 (Igf1)/insulin-
dependent signaling activates β-Catenin signaling, which
promotes chondrocyte proliferation in immature chondrocytes.
Igf1/insulin pathway also promotes HDAC7 translocation from
the nucleus to the cytosol, where it is degraded by the proteasome
(Bradley et al., 2015).

HDAC8
HDAC8 promotes JNK phosphorylation to increase the
expression of ADAMTS4, ADAMTS5, ColX, and Cox-2 in
chondrocytes (Wang et al., 2018b). This effect is inhibited by
both HDAC8 siRNA and the HDAC8 inhibitor, PCI.

HDAC9
There are few reports on the role of HDAC9 in cartilage
development, chondrocyte hypertrophy and OA. Nkx3.2/Bapx1
is a crucial protein for maintaining chondrocyte viability.
The HDAC9-PIASy-RNF4 axis could promote chondrocyte
hypertrophy by regulating the sumoylation and ubiquitination of
Nkx3.2/Bapx1, leading to its degradation through the proteasome
(Choi et al., 2016).

HDAC10
HDAC10 is involved in the regulation of collagen II expression
through the epigenetic modification of enhancer elements in
the collagen II gene. HDAC10 overexpression in Swarm rat
chondrosarcoma (RCS) chondrocytes suppresses collagen II
transcription through interaction with the E2 enhancer element
in the collagen II gene, which locates 277 bp downstream of the
transcription start site (Figures 2, 3; Nham et al., 2019).

HDAC INHIBITORS AND OA TREATMENT

HDACi inhibit the enzymatic activity of HDACs and promote
acetylation of proteins. HDACi can be divided into four
groups, according to their structures: short-chain fatty
acids, hydroxamic acids, cyclic peptides, and benzamides
(Carpio and Westendorf, 2016). Currently, there have been
more than 609 completed/ongoing HDACi-related human
clinical trials, including trials for kidney disease (Chun, 2018),
cardiovascular disease (Yoon and Eom, 2016), neuronal memory
and regeneration (Ganai et al., 2016), myeloma and solid tumors
(Hull et al., 2016; Cengiz Seval and Beksac, 2019). Although, there
have been many studies on the effects of HDACi on OA, none of
the HDACi identified have been approved as an OA treatment by
the United States Food and Drug Administration (FDA).

The hydroxamic acids consist of trichostatin (TSA), vorinostat
(SAHA), ricolinostat (ACY-1215) and givinostat (ITF2357). TSA
is the most common broad spectrum HDACi. In vitro, TSA
inhibits MMP1, MMP3, MMP13, and IL-1 in OA chondrocytes
(Chen et al., 2010). One of the mechanisms of TSA treatment
is that TSA abolishes the pro-inflammatory effect of Kruppel-
like factor 4 (KLF4) (Fujikawa et al., 2017). Although TSA
inhibits the inflammatory response in OA, it decreases collagen
II mRNA levels in primary human chondrocyte stimulated
with IL-1β or fibroblast growth factor-2 (FGF-2) (Wang et al.,
2009). A Redox imbalance contributes to OA progression,
TSA inhibits synthesis of NO and prostaglandin (PGE2), and
the expression of inducible nitric oxide synthase (iNOS) and
Cox-2 in chondrocytes stimulated with IL-1β (Chabane et al.,
2008). Apoptosis is a crucial regulatory mechanism in OA. TSA
suppresses apoptosis to protect chondrocytes (Song et al., 2015).
In CTS-induced activation of the MAPK signaling pathway
in chondrocytes, TSA downregulates MAPK and suppresses
its downstream pro-inflammatory proteins (e.g., Runx2 and
MMP13) at both the mRNA and protein levels (Saito et al., 2013).
The protective effect of TSA is the same in leptin-stimulated
human chondrocytes (Iliopoulos et al., 2007). In vivo, Cai et al.
(2015) reported that TSA alleviates OA through the induction of
Nrf2 and its downstream proteins. TSA also increases the Timp-
1/MMP ratio in the OA model along with increased acetylation
levels of H3 and H4. However, whether there is a relationship
between histone acetylation and the Timp-1/MMP ratio needs
additional study (Higashiyama et al., 2010). The protective effect
of TSA was confirmed in an ACLT rabbit model through the
inhibition of cathepsins (Chen et al., 2011). Furthermore, TSA
also ameliorates OA by inhibiting synovial inflammation in an
OA mouse model (Nasu et al., 2008).
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FIGURE 2 | A schematic illustration of HDACs in chondrocyte maturation and cartilage development through different signaling pathways.

Vorinostat (SAHA) is another HDACi composed of
hydroxamic acids. It inhibits MMPs and iNOS by attenuating
the NF-κB and MAPK pathways in human chondrocytes
stimulated with IL-1β. However, vorinostat only inhibits p38
and Erk1/2 activation, not JNK activation (Zhong et al., 2013).
Treatment with vorinostat also suppresses IL-6 expression in
OA chondrocytes through the miR-9-MCPIP1 axis. Vorinostat
promotes the recruitment of CEBPα to the promoter of MCPIIP1
to inhibit IL-1 synthesis (Makki and Haqqi, 2017). Furthermore,
IL-6-induced MMP13 expression in the chondrocytes can be

reversed by vorinostat, which promotes Col2a1 and ACAN
expression in OA chondrocyte (Makki and Haqqi, 2016).

Ricolinostat (ACY-1215) is a selective HDAC6 inhibitor that
has anti-inflammatory and chondroprotective properties. ACY-
1215 inhibits MMP1 and MMP13 expression by down regulating
NF-κB and STAT3 activity in primary human chondrocyte
stimulated with IL-1β (Cheng et al., 2019).

Givinostat (ITF2357) is another anti-inflammatory compound
that can inhibit MMPs expression in an experimental arthritis
model (Joosten et al., 2011).
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FIGURE 3 | A schematic illustration of HDACs in OA and chondrocyte hypertrophy through different signaling pathways.

Butyrate acid is short-chain fatty acid that inhibits the
expression of pro-inflammatory mediators, pro-inflammatory
adipokines, and several inflammatory signaling pathways partly
through G protein-coupled receptor (GPR)-43 (Pirozzi et al.,
2018). Butyrate acid significantly abrogates IL-1β-induced MMPs
at both the RNA and protein levels by inactivating NF-
κB; however, butyrate acid inhibits Collagen II expression
(Bo et al., 2018).

Valproic acid (VPA) is short-chain fatty acid, which inhibits
HDAC1 activity and promotes the degradation of HDAC2
(Platta et al., 2008; Avery and Bumpus, 2014). VPA can

prevent inflammatory damage to cartilage. Its protective role is
achieved by the downregulation of microsomal prostaglandin E2
(Mpges-1) mediated by the induction of NAB1 in chondrocytes
stimulated with IL-1β, which binds to the promoter of Mpges-1
(Zayed et al., 2011). VPA also represses cytokine-induced MMP1,
MMP3, and MMP13 in human articular chondrocytes (HACs)
(Culley et al., 2013).

Entinostat (MS-275) belongs to the benzamide class of
compounds that selectively inhibits Class I HDACs (Lauffer et al.,
2013). MS-275 inhibits MMP13 expression in OA (Queirolo et al.,
2016), and prevents cartilage absorption (Culley et al., 2013).
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TABLE 2 | The classification of HDACi and effect of HDACi on OA.

Group and structure HDAC inhibitor HDAC selectivity Effect of HDAC inhibitor Mechanism References

Hydroxamic acids TSA Class I/II HDACs
IC50: 1.8 nM

Inhibition of MMPs and IL-1 ND and inhibition of
KLF4

Chen et al. (2010);
Fujikawa et al.
(2017); Wang et al.
(2009); Iliopoulos
et al. (2007)

Inhibition of NO and PGE2

synthesis; Inhibition of iNOS
and Cox-2 expression

ND and not through
NF-κB activity

Chabane et al.
(2008)

Inhibition of Runx2 and
ADAMTS5

Inhibition of MAPK
signaling

Saito et al. (2013)

Inhibition of MMPs, TNF-α,
IL-1, and IL-6

Promotion of Nrf2
signaling

Cai et al. (2015)

Regulation of MMP/TIMP-1
ratio

ND Higashiyama et al.
(2010)

Inhibition of cathepsins ND Chen et al. (2011)

Vorinostat (SAHA) HDAC1
IC50: 10 nM

Inhibition of MMPs and
iNOS

Attenuation of NF-
κB and MAPK
pathways

Zhong et al. (2013)

HDAC3
IC50: 20 nM

Inhibition of IL-1 synthesis Recruitment of
CEBPα to the
promoter of
MCPIIP1

Makki and Haqqi
(2017)

Inhibition of MMP13
expression and promotion
of Col2a1 and ACAN
expression

ND Makki and Haqqi
(2016)

Ricolinostat (ACY-1215) HDAC6 IC50: 5 nM Inhibition of MMP1 and
MMP13 expression

Down-regulation of
NF-κB and STAT3
activity

Cheng et al. (2019)

Givinostat (ITF-2357) HDAC1
IC50:198 nM
HDAC3
IC50: 157 nM

Inhibition of MMPs ND Joosten et al.
(2011)

Short-chain fatty acids Butyrate acid Class I/II HDACs
(except HDAC6
and HDAC10)
IC50: ND

Inhibition of pro-
inflammatory cytokines and
adipokines

Through G
protein-coupled
receptor (GPR)- 43

Pirozzi et al. (2018)

Inhibition of MMPs Through
inactivation of
NF-κB

Bo et al. (2018)

Valproic acid HDAC1
IC50: 0.4mM
HDAC2 IC50: ND

Down-regulation of
microsomal prostaglandin
E2 (Mpges-1)

Promotion of NAB1
which suppressed
promoter of
Mpges-1

Zayed et al. (2011)

Inhibition of MMP1, MMP3
and MMP13

ND Culley et al. (2013)

Benzamides Entinostat (MS-275) HDAC1
IC50: 243 nM
HDAC2
IC50: 453 nM
HDAC3
IC50: 248 nM

Inhibition of MMP13
expression and prevention
of cartilage absorption

ND Queirolo et al.
(2016); Culley et al.
(2013)

Suppression CTS- induced
expression of
Runx2,ADAMTS5 and
MMP3

Through inhibition
of MAPK signaling
pathway

Saito et al. (2013)

ND: Not determined. IC50 and chemical structure were cited by https://www.medchemexpress.cn/.
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Furthermore, it suppresses CTS-induced expression of Runx2,
ADAMTS5, and MMP3 at both the mRNA and protein levels
in chondrocytes through inhibition of MAPK signaling pathway
(Saito et al., 2013; Table 2).

There are also some major obstacles to using HDACi to treat
OA. HDACi affect many systems and organs through blood
flow after administration. Inevitably, unnecessary side effects
and toxicity occur, including secondary malignancies (Bhaskara
et al., 2010; Mendivil et al., 2013). Most HDACi are broad-
spectrum inhibitors. Thus, some beneficial HDACs may also
be inhibited, leading to side effects and a low efficiency of
HDACi therapy. Furthermore, the HDACi dosage should be
determined for individual patients (Khabele, 2014). Too much or
too little dosage drug will fail to achieve the expected therapeutic
effects against OA.

CONCLUSION

In recent years, HDACs have drawn more and more attention
in the pathogenesis of OA. Previous studies demonstrated
that HDACs not only regulate chondrocyte maturation and
hypertrophy but also protect cartilage from damage. However,
the mechanisms underlying the role of HDACs in OA are
unclear and require additional investigation. Clarification of the
roles of individual HDACs in cartilage will help define which
HDAC(s) should be inhibited or activated for the treatment
of OA. Moreover, a better understanding of the roles of
individual HDACs in OA will reveal the major HDAC isoform(s)
responsible for OA and allow the development of a selective
HDACi to achieve a more precise and effective therapy for OA.

Based on this review, HDACi have protective roles in cartilage
and enormous potential as new drugs to against OA. There are
currently limitations to the use of HDACi as OA therapy. With
non-selective HDACi, patients may suffer from severe side effect

and toxicity. The dosage is an important consideration for the
clinical use of HDACi. An unoptimized dosage might not achieve
the predicted effect and could even cause harm. Therefore it’s
essential to identify tissue-specific and HDAC-specific HDACi
to avoid side effect and toxicity. In parallel, the development of
specific HDACi will also help delineate the function of individual
HDACs in OA. Finally, it’s necessary to build a drug evaluation
system to guide dosage selection for individual patients to achieve
the best therapeutic effect.

In conclusion, although our knowledge of OA continues to
grow, understanding the underlying mechanisms involved in
OA pathogenesis and identifying effective treatments will require
further investigation. Based on current data, HDACs and HDACi
hold promise for the management of OA.
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SETDB1, a histone H3 lysine 9 (H3K9) methyltransferase, is crucial in meiosis and
embryo development. This study aimed to investigate whether SETDB1 was associated
with spermatogonial stem cells (SSC) homeostasis. We found that knockdown of
Setdb1 impaired cell proliferation, led to an increase in reactive oxygen species (ROS)
level through NADPH oxidase, and Setdb1 deficiency activated ROS downstream
signaling pathways, including JNK and p38 MAPK, which possibly contributed to SSC
apoptosis. Melatonin scavenged ROS and rescued the phenotype of Setdb1 KD. In
addition, we demonstrated that SETDB1 regulated NADPH oxidase 4 (Nox4) and E2F1.
Therefore, this study uncovers the new roles of SETDB1 in mediating intracellular ROS
homeostasis for the survival of SSC.

Keywords: SETDB1, H3K9me3, NOX4, ROS, spermatogonial stem cell

INTRODUCTION

Male fertility depends on spermatogenesis, by which the haploid spermatozoa generate in the
testes. This process starts with the mitosis of the spermatogonial stem cells (SSCs), followed by
meiosis of spermatocytes. Finally, the haploid spermatids transform into spermatozoa (Kanatsu-
Shinohara and Shinohara, 2013). This highly organized process of spermatogenesis requires timely
coordinated gene expression that is regulated at the transcriptional and post-transcription levels
(McSwiggin and O’Doherty, 2018). Histone modification has been implicated in the regulation of
gene expression.

Histone H3 lysine 9 (H3K9) can be methylated by the methyltransferase SETDB1 (Mozzetta
et al., 2015). Notably, the global level of H3K9me3 and SETDB1 gradually increases during
development of the testes (An et al., 2014). Loss of Setdb1 resulted in a reduced number of PGCs
and postnatal hypogonadism (Liu et al., 2015). Moreover, depletion of Setdb1 at postnatal day
7 caused germ cell apoptosis at the pachytene stage and defects in XY body formation (Hirota
et al., 2018). Setdb1 depletion induced SSC apoptosis through upregulating apoptotic inducers
and downregulating apoptotic suppressors, and upregulating cytochrome c oxidase subunit IV
isoform 2 (Cox4i2) through decreasing H3K9me3 (An et al., 2014). The up-regulation of COX4i2 is
associated with elevated mitochondria-produced reactive oxygen species (ROS) (Singh et al., 2009).

The active NADPH oxidase (NOX) generates superoxide, which spontaneously recombines
with other molecules to produce reactive free radicals (Katsuyama et al., 2012; Lambeth and
Neish, 2014). Under physiological conditions, the intracellular ROS are thought to act as a second
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messenger in cell signaling (Bigarella et al., 2014; Lambeth and
Neish, 2014; Wang et al., 2018). Recent studies found that
ROS generated by NOX1 and NOX3 was essential for SSC
self-renewal (Morimoto et al., 2013, 2015). Ablation of Nox1
severely compromises SSC self-renewal, and Nox3-depletion
causes apoptosis and impairs SSC proliferation. However,
the accumulated ROS is toxic to the cells. Enhancing the
expression of NOX4 in cardiac myocytes induces apoptosis
and mitochondrial dysfunction (Ago et al., 2010). Excessive
ROS causes apoptosis through the p38 MAPK-p16 pathway in
hematopoietic stem cells (Ito et al., 2006). High levels of ROS
could also induce oxidative stress and activation of FOXO4
that is a regulator of cell cycle, cell death, and cell metabolism
(Essers et al., 2004; Urbich et al., 2005; Eijkelenboom and
Burgering, 2013). Importantly, oxidative stress is associated
with male infertility (Bui et al., 2018). Thus, modest levels of
ROS benefits cell proliferation, while accumulated ROS impairs
cells. However, the function of SETDB1 in intracellular ROS
homeostasis remains elusive. In this study, we revealed that
Setdb1 deficiency caused an increased ROS level via the NOX
pathway and induced changes in the cell cycle through the
JNK-FOXO4 pathway.

RESULTS

Knockdown of Setdb1 Impairs
Proliferation and Induces Apoptosis in
Spermatogonial Stem Cells
Using the siRNA oligonucleotides of Setdb1, we efficiently
downregulated Setdb1 mRNA expression by approximately
70% (Supplementary Figure S1A). Western blotting analysis
confirmed a significant decrease of SETDB1 at protein level after
48 h transfection (Supplementary Figures S1B,C). As shown
in Figures 1A,B, the proliferation rate reduced in Setdb1-KD
cells compared with the control group (Figures 1A,B). Flow
cytometry analysis further confirmed that higher ratio of S phase
cells in Setdb1KD than that of the control at 36 h post transfection
(Figures 1C,D). Meanwhile, Setdb1 depletion induced apoptosis
at 48 h post transfection (Supplementary Figures S1D,E).
Similar to the previous report, Setdb1 KD caused an increase
of double-strand DNA breaks (Figures 1E,F) (Supplementary
Figures S1F,G) (Kim et al., 2016). Interestingly, overexpression
of Setdb1 had no effect on cell survival (Supplementary
Figures S1H,J). These observations confirm that SETDB1 is
required for the maintenance of SSCs.

Suppression of Setdb1 Induces ROS
Accumulation and NOX Expression
To clarify the expression of NOX4 in male germ cells, we
carried out double-immunohistochemistry staining of testes
tissue from 7-day-old and adult mice. NOX4 was co-localized
with THY1 (SSC/undifferentiated spermatogonia marker)
(Figure 2A). Intracellular ROS levels were detected by
DCFH-DA and DHE staining. Setdb1 KD increased the level
of total intracellular ROS (Figures 2B,E; Supplementary

Figure S2). To test the potential roles of SETDB1 in
mediating intracellular ROS homeostasis through NADPH
oxidase, we detected NOX expression. Setdb1 KD caused
an increase of expression of Nox3, Nox4, and p22phox
(NOX4 regulatory subunits) (Figure 2F). Western blot
assay showed that the level of total NOX4 and p22phox
were upregulated (Figure 2G,H). These data suggest that
Setdb1 KD resulted in ROS accumulation possibly by NOX
expression in SSCs.

SETDB1 Activates Nox4 Expression via
Regulating E2F Transcription Factor 1
(E2F1)
Western blotting and RT-qPCR assay showed that knockdown
of Setdb1 led to an increase of E2F1 expression at both mRNA
and protein levels (Figures 3A,C). In order to determine
whether E2F1 regulates the activity of Nox4 promoter, the vector
of luciferase containing Nox4 promotor were co-transfected
with E2F1 overexpression vector or empty vector control.
As shown in Figure 3D, luciferase reporter assay showed
that E2F1 overexpression significantly increased the luciferase
activity compared with that in the empty control group. Hence,
E2F1 modulated the activity of Nox4 promoter (Figure 3D).
Since Setdb1 KD caused the upregulation of E2F1 and
NOX4, we test whether E2F1 and Nox4 were repressed by
SETDB1-mediated histone modification at their promoter region
through H3K9me3 (Supplementary Figure S3). Chromatin
immunoprecipitation (ChIP) followed by a quantitative real-
time PCR (ChIP-qPCR) assay was performed to exam the
tentative binding sites of SETDB1 in the promoters of E2F1
and Nox4 (Figures 3E,H). We found that the enrichment
of SETDB1 and H3K9me3 in the E2F1 promoter region
were only 0.3–1.3% (Figures 3F,G) at these loci. ChIP-qPCR
analysis confirmed that there is little enrichment of SETDB1
and H3K9me in the Nox4 promoter region (Figure 3I,J),
suggesting that the regulation of SETDB1 on Nox4 expression is
independent of H3K9me3.

SETDB1 Regulates Intracellular ROS
Homeostasis Through NOX4
To clarify whether Setdb1-KD induces apoptosis via the ROS
pathway, we pretreated the cells with melatonin, a ROS scavenger,
before Setdb1 knockdown (Tan et al., 2002; Schaefer et al., 2019).
As shown in Figures 4A,B, addition of melatonin alleviated the
apoptosis induced by Setdb1 KD (Figures 4A,B), confirming
that Setdb1 KD induces apoptosis through the ROS pathway.
We found that addition of melatonin reduced the expressions
of Nox2 and Nox4 in SSCs, which are similar to preciously
published results (Supplementary Figure S4; Najafi et al., 2019).
These results indicate that abolition of ROS partially rescued the
death phenotype.

To test whether the ROS level is upregulated by NOX4,
we co-transfected specific siRNA against Setdb1 and Nox4 and
analyzed the knockdown efficiency (Supplementary Figure S5).
As shown in Figures 4C,D, ROS were decreased in cells
co-transfected with both siRNAs against Setdb1 and Nox4
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FIGURE 1 | Knockdown of Setdb1 impairs SSC proliferation. (A, B) The EdU incorporation assay showing the proliferation capability of SSCs after transfection with
siRNA for 36 h. (C,D) Analysis of the cell cycle by flow cytometry after transfection with Setdb1 siRNA or control siRNA for 36 h (C) and the ratios of cells in each
phase of the cell cycle (D). (E,F) Expression of γH2AX in SSCs shown by Western blot (E). γH2AX intensity analysis was calculated by ImageJ (F). Data are
presented as the mean ± SEM of three independent experiments. *P < 0.05, **P < 0.01. Bar = 50 µm.

compared with the group that was solely transfected with
the Setdb1 siRNA (Figures 4C,D). To address whether Setdb1
KD led to mitochondrial dysfunction by upregulating NOX4,
both siRNAs of Setdb1 and Nox4 were introduced to the
cells simultaneously. JC-1 assay showed that mitochondrial
dysfunction was reduced in cells co-transfected with both siRNAs
of Setdb1 and Nox4 compared with the group only transfected
with the Setdb1 siRNA (Figure 4E). Subsequently, we detected
the role of NOX4 in apoptosis and cell proliferation. As shown
in Figures 5A,B, Nox4 KD could partly alleviate the phenotype
induced by Setdb1 KD (Figures 5A,B). In addition, TUNEL

positive cells were reduced in cells co-transfected with both
Setdb1 siRNA and Nox4 siRNA compared with the group
transfected with the Setdb1 siRNA (Figures 5C,D). Based on
these data, we conclude SETDB1 regulates intracellular ROS
homeostasis through NOX4.

Setdb1 Knockdown Activates
p38/JNK-FOXO4 Pathway
We examined whether SETDB1 mediated the phosphorylation of
p38 MAPK and c-jun N-terminal kinase (JNK). We found that
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FIGURE 2 | Suppression of SETDB1 induces ROS accumulation and the expression of NADPH oxidase. (A) Immunohistochemical analysis of NOX4 and THY1 (an
SSC marker) in the testes. (B,C) Representative images of DCFH-DA evaluation for ROS production (B). DCFH-DA method was used to analyze ROS level after
Setdb1 knockdown (n = 3) (C). (D,E) Representative images of dihydroethidium fluorescence staining that evaluation for ROS production (D). Quantitative analysis of
DHE relative intensity (n = 3) (E). (F) The mRNA expression of Nox1, Nox3, Nox4, and p22phox upon Setdb1 knockdown. (G) The protein expression of NOX4 and
p22phox measured by Western blot analysis. β-actin is used as loading control. (H) The protein expression of NOX4 and p22phox were quantitative by ImageJ. Data
are presented as the mean ± SEM of three independent experiments. *P < 0.05. Bar = 100 µm.

Setdb1 KD led to the activation of p38 and JNK signaling in SSCs
(Figures 6A,B).

We further investigated whether Setdb1-KD
induced activation and translocation of FOXO4. The

immunofluorescence assay showed Setdb1 KD resulted in
FOXO4 translocation (Figure 6C). To further confirm the
nuclear translocation of FOXO4 after Setdb1 KD, we extracted
protein of the nucleus and cytoplasm. The western blot assay
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FIGURE 3 | Setdb1 deficiency in SSCs reduces the enrichment of H3K9me3 at the E2F1 and Nox4 transcriptional start site and increases E2F1 and Nox4
expression. (A) RT-qPCR was performed for detecting E2F1 expression. (B,C) Western blot analysis of E2F1 gene expression after transfection with Setdb1 siRNA
(B). The protein expression of E2F1 were quantitative by ImageJ (C). (D) The luciferase assay showing the activity of Nox4 promoter fragment in HEK 293T cells.
(E) Scheme of the E2F1 promoter used to analyze the enrichment of SETDB1 on different loci (R1–R7) of E2F1 genomic regions (R1: –549 –329 bp, R2:
496 716 bp, R3: 1167 1278 bp, R4: 1607 1714 bp, R5: 3997 4233 bp, R6: 4548 4707 bp, R7: 5838 5964 bp). (F,G) ChIP assays were carried out using
anti-SETDB1 (F) and anti-H3K9me3 (G) antibodies with cell extracts after transfection with Setdb1 siRNA or control siRNA. (H) Scheme of the six different positions
(R1–R6) of ChIP primers used to detect the enrichment of SETDB1 and H3K9me3 on Nox4 genomic regions. (R1: –3850 –3637 bp, R2: –2220 –2044 bp, R3:
–431 –593 bp, R4: 513 667 bp, R5: 24861 24987 bp, R6: 40409 40512 bp). (I,J) ChIP assays were carried out using anti-SETDB1 (I) and anti-H3K9me3 (J)
antibodies, followed by qPCR based on DNA samples. Data are presented as the mean ± SEM of three independent experiments. Ns, not significant. *P < 0.05.

confirmed that FOXO4 translocated from the cytoplasm to the
nucleus (Figures 6D, E). However, the expression of FOXO4
almost did not change at 48 h after Setdb1 KD (Figures 6F,G).
Setdb1 KD upregulated the expression of the target gene encoded
Catalase (Figures 6H,I). These results suggest that Setdb1 KD
activates the p38/JNK-FOXO4 pathway.

DISCUSSION

SETDB1 catalyzes H3K9me3, which is a repressive marker
(Mozzetta et al., 2015). In the present study, we found
that SETDB1 repressed expression of Nox4 and E2F1 and
mediated ROS levels.
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FIGURE 4 | Elimination of ROS helps to prevent the cell death induced by Setdb1 knockdown. (A,B) The TUNEL assay revealing apoptotic SSCs pretreated with
ROS scavenger melatonin (MT) before transfection with Setdb1 siRNA or control siRNA. (C,D) Representative images of DCFH-DA evaluation for ROS production
(C). DCFH-DA staining showing the generation of ROS after transfection with siRNA for 36 h (D). (E) Effects of Setdb1 knockdown on mitochondrial membrane
potential. Data are presented as the mean ± SEM of three independent experiments. *P < 0.05, **P < 0.01. Bar = 50 µm.

NOX consumes oxygen to generate O2
− using NADPH as

an electron donor, and the O2
− subsequently forms H2O2

(Katsuyama et al., 2012; Bigarella et al., 2014). Previous studies
have shown that ROS generated by NOX enhanced growth
factor signaling and acts as anti-microbial molecules (Nathan and
Cunningham-Bussel, 2013). Excessive ROS production induces
cellular injury and lipid peroxidation (Su et al., 2019). In
this study, we found that Setdb1 KD induced accumulation
of ROS and upregulation of Nox3, Nox4, p22phox, and E2F1.
Importantly, melatonin alleviated the apoptosis in Setdb1-
KD group. Co-transfecting with siRNAs of Nox4 and Setdb1
simultaneously resulted in the decrease of ROS and increase of

mitochondrial membrane potential compared with the Setdb1
depleted cells. Furthermore, melatonin reduced the expression
of Nox2 and Nox4, which is consistent with the previous report
(Najafi et al., 2019). Therefore, melatonin alleviated Setdb1-KD
induced SSC apoptosis, probably by down-regulating Nox2 and
Nox4. The excess ROS was generated from NOX4 and was
responsible for the apoptosis in Setdb1-KD cells. In this study,
we also found that Setdb1 KD led to increase of Nox3. Together,
SETDB1 mediates ROS homeostasis and likely keeps ROS below
a threshold level via NADPH oxidase.

It has been reported that ROS generated by NOX4 was
associated with DNA damage (Weyemi et al., 2012), which
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FIGURE 5 | SETDB1 regulates intracellular ROS homeostasis through NADPH oxidase 4. (A,B) The EdU incorporation assay showing the proliferation capability of
SSCs. (C,D) The TUNEL assay showing apoptotic SSCs. Data are presented as the mean ± SEM of three independent experiments. *P < 0.05, **P < 0.01,
***P < 0.005. Bar = 100 µm.

was consistent with the present findings on SSCs. Except for
double-strand DNA breaks, ROS activates the signal-transducing
molecules including JNK, p38, and FOXO4 (Ma et al., 2002;
Essers et al., 2004; Hua et al., 2017; Zheng et al., 2017).
In mammals, the FOXO family consists of four members
(FOXO1, FOXO3, FOXO4, and FOXO6) (Eijkelenboom and
Burgering, 2013). These FOXO transcription factors regulate
multiple cellular pathways, including apoptosis, inflammation,
proliferation, oxidative stress resistance, and aging (Henderson
and Johnson, 2001; Lin et al., 2001; Tuteja and Kaestner,
2007a,b; Zanella et al., 2010; Genin et al., 2014; Webb and
Brunet, 2014; Murtaza et al., 2017; Jiramongkol and Lam, 2020).
Meanwhile, FOXO nuclear translocation triggers apoptosis by
inducing the expression of death genes, such as the FasL,
and thereby participates actively in the process of apoptosis
(Brunet et al., 2004). In this study, knockdown of Setdb1
activated the ROS-JNK signaling pathway and FOXO4 that
was translocated into the nuclei, which led to an increase
of expression of the Catalase gene (FOXO4 target gene) that

encodes an anti-oxidant enzyme (Nandi et al., 2019). Taken
together, we propose that Setdb1 KD activates ROS downstream
signaling pathways, which partially contributes to the apoptotic
phenotype in SSCs.

SETDB1 is involved in heterochromatin formation and
transcription silencing via histone H3 methyltransferase activity
(Zhu et al., 2020). In this study, we found that Setdb1 KD led to
the upregulation of Nox4 and E2F1. ChIP-qPCR showed that 0.3–
1.4% of input for SETDB1 and H3K9me3 at the loci of the E2F1
and Nox4 promoters, indicating that SETDB1 does not target
E2F1 and Nox4 promoters. Recent studies revealed that Setdb1
KD resulted in the activation of endogenous retroviruses (ERVs)
and the long terminal repeat (LTR) and led to dysregulation
expression of neighboring genes (Tan et al., 2012). Thus, SETDB1
may regulate the expression of Nox4 and E2F1 due to silencing of
cis-regulatory elements or retrotransposons in SSCs.

NOX4 was involved in various physiological processes such
as apoptosis and differentiation in various cell types (Pedruzzi
et al., 2004; McKallip et al., 2006; Carmona-Cuenca et al., 2008;
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FIGURE 6 | Setdb1 knockdown activates p38/JNK-FOXO4 pathway. (A, B) Western blot analysis showing the phosphorylation of p38 MAPK and JNK after Setdb1
depletion (A). The expression of p-P38, P38, p-JNK, and JNK proteins were calculated by Image J (B). (C) Immunofluorescence staining of FOXO4 in SSCs.
FOXO4: red, DAPI: blue. (D, E) Immunoblotting for FOXO4 in cytoplasm and nuclei after downregulation of Setdb1 by specific siRNA (D). Intensity analysis of FOXO4
expression in the cell components was quantitative by ImageJ (E). β-actin and Laminin B are used as loading controls. (F, G) Western blot analysis for FOXO4 after
transfection with Setdb1 siRNA for 48 h (F). Quantitative result was illustrated for FOXO4 (G). (H, I) Western blot analysis of Catalase in SSCs transfected with
Setdb1 siRNA for 48 h (H). The protein expression of Catalase was calculated by ImageJ (I). Data are presented as the mean ± SEM of three independent
experiments. *P < 0.05, **P < 0.01. Bar = 100 µm.

Caja et al., 2009). It was reported that SETDB1 was recruited
to the E2F1 promoter and co-operated with Alien complex to
regulate the expression of E2F1 (Hong et al., 2011). Meanwhile,

E2F1 positively regulates the transcription of Nox4 in vascular
smooth muscle cells (Zhang et al., 2008). In this study, the
expression of E2F1 and NOX4 were elevated in Setdb1-KD group.
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The expression of E2F1 was upregulated in Setdb1-KD cells,
which in turn lead to upregulation of NOX4.

The role of SETDB1 has been explored extensively in
the development of male germ lines (An et al., 2014; Liu
et al., 2015, 2017; Hirota et al., 2018; Mochizuki et al.,
2018). SETDB1 is recruited to repress ERVs transcription via
H3K9me3 in primordial germ cells (Liu et al., 2015), and
suppresses the expression of Dppa2, Otx2, and Utf1 during PGC
determination (Mochizuki et al., 2018). Setdb1 knockout disrupts
spermatogenesis and expression of meiosis-related genes (Hirota
et al., 2018). Therefore, SETDB1 regulates different clusters of
genes in the development of male germ cells. It would be
interesting to further elucidate the mechanisms of recruitment in
SETDB1 to different genes.

In conclusion, SETDB1 regulates the expression of E2F1
and Nox4. Setdb1 depletion causes the derepression of E2F1
and upregulation of Nox4. On the other hand, NOX4 was
upregulated by E2F1 dysregulation. Thus, NOX4 contributes
to ROS generation and activates ROS downstream signaling
pathways. Meanwhile, excessive amounts of ROS induces cell
cycle arrest and apoptosis in SSCs. This study will provide a
new perspective on SETDB1 function and understanding of
male infertility.

MATERIALS AND METHODS

Cell Culture and Transfection
C18-4 cell line was obtained from Dr. Zuping He at Shanghai Jiao
Tong University, China. The cell line was established from mouse
type A spermatogonia from 6-day-old mice (Hofmann et al.,
2005). C18-4 cells were maintained in Dulbecco modified Eagle
medium (DMEM)/F12 (Hyclone, Logan, UT, United States)
supplemented with 10% fetal bovine serum (BI, Israel), 100 U/ml
penicillin and streptomycin (Gibco), 100 mM non-essential
amino acids (Gibco), and 2 mM L-glutamine (Gibco) at 37◦C
and 5% CO2. The 293T cell line was cultured in DMEM/Basic
medium supplemented with 10% fetal bovine serum, 100 U/ml
penicillin and streptomycin, 100 mM non-essential amino acids,
and 2 mM L-glutamine at 37◦C and 5% CO2.

A pair of Setdb1 small interfering RNAs (siRNAs), Setdb1-
1 and Setdb1-2, were ordered from GenePharma (Shanghai,
China). Sequences of mouse Setdb1 siRNA were as follows:
5′-CCAACC UGUUUGUCCAGAAUGUGUU-3′ (Setdb1-1), 5′-
UCAAGUUUGGCAUCAAUGAUGUAGC-3′ (Setdb1-2), 5′-UU
CUCCGAACGU GUCACGUTT-3′ (Scramble). The sequence
of mouse Nox4 siRNA was as follows: 5′-GTAGGAGAC
TGGACAGAAC-3′. The cells were transfected with siRNAs using
Lipofectamine 2000 Transfection Reagent (Invitrogen) according
to the manufacturer’s instructions.

Reverse Transcription-Quantitative
Polymerase Chain Reaction (RT-qPCR)
Total RNA was extracted using RNAiso Plus reagent (TaKaRa,
Dalian, China). RT-qPCR was performed as described
previously using the primers listed in Supplementary Table S1
(Chen et al., 2017).

Western Blot
The cells were transfected with Setdb1 siRNA for 48 h.
Approximately 30 µg protein was separated by 8–12% SDS-
PAGE and transferred to PVDF membranes (Millipore).
The membranes were probed using the following primary
antibodies: NOX4 (1:500; NB110-58849; Novus), beta-
Actin (1:2000; CW0096; CWBIO), SETDB1 (1:1000;
11231-1-AP; Proteintech), E2F1 (1:500; sc-193; Santa
Cruz Biotechnology), FOXO4 (1:500; sc-5221; Santa
Cruz Biotechnology), Lamin B (1:500; sc-6217; Santa
Cruz Biotechnology), JNK (1:500; sc-7345; Santa Cruz
Biotechnology), p-JNK (1:400; WL01813; WanleiBio),
γH2AX (1:000; 2577; Cell signaling technology), p38
(1:500; sc-7972; Santa Cruz Biotechnology), and p-P38
(1:500; sc-17852-R; Santa Cruz Biotechnology). All were
used as the manufacturer’s recommendation. The secondary
antibodies were horse radish peroxidase-linked anti-mouse,
anti-rabbit, or anti-goat IgG for 2 h at room temperature.
The membranes were visualized on a Bio-Rad Chemidoc
XRS using a Western Bright ECL Kit (Bio-Rad, Berkeley,
CA, United States).

ROS Measurement
Intracellular ROS was determined using the 2′, 7′-
dichlorofluorescein diacetate (DCFH-DA, Beyotime) and
Dihydroethidium (DHE, Beyotime) according to the
manufacturer’s instructions. Cells were incubated with 10 µM
2′, 7′-dichlorofluorescein diacetate or dihydroethidium at 37◦C
for 30 min. Subsequently, the fluorescence signals of the cells
were observed using a multi-detection microplate reader.
The excitation/emission of DCFH-DA is 488/525 nm,
and the excitation/emission of DHE staining are 370/
420 and 300/610 nm.

Cell Cycle Assay
The cell cycle analysis was performed with Flow cytometry.
The cells were harvested at 36 h post transfection of
Setdb1 siRNA or control siRNA. After being fixed in 70%
cold ethanol, the cells were incubated with RNase and
finally stained with 4′,6-diamidino-2-phenylindole (DAPI,
Bioworld). DNA content was analyzed by Flow cytometry
(BD FACSAriaTM III, United States). The data were analyzed
with ModFit LT 5.0.

TUNEL Staining
Apoptotic cells were detected with TUNEL BrightGreen
or BrightRed Apoptosis Detection Kit (Vazyme, Nanjing,
China) according to the manufacturer’s instructions. The
cells were seeded on 96-well plates and transfected with
siRNA. After washing with PBS, the cells were fixed in 4%
paraformaldehyde (PFA) for 30 min. Then the cells were treated
with proteinase K (20 mg/ml) for 5 min at room temperature
and incubated in TUNEL reaction mixture at 37◦C for 1 h in
darkness. The nuclei were counterstained with DAPI (Bioworld).
The cells were observed under a fluorescence microscope
(Nikon, Tokyo, Japan).

Frontiers in Genetics | www.frontiersin.org 9 October 2020 | Volume 11 | Article 99794

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00997 September 30, 2020 Time: 16:18 # 10

Li et al. SETDB1 Modulates Survival of SSCs

Immunocytochemistry
The cells were seeded onto a 96-well plate and transfected
with siRNA for 48 h. The cells were fixed with 4% PFA
for 30 min, permeabilized in 0.5% TritonX-100 for 10 min,
and blocked in 3% BSA for 2 h. The cells were incubated
with primary antibody for FOXO4 (sc-5221; Santa Cruz
Biotechnology) and γH2AX (2577; Cell signaling technology)
overnight at 4◦C. After washing with PBS, the cells were
incubated for 1 h with secondary antibody, followed by
incubation with DAPI.

Immunohistochemistry
Testes from 6-d- and 3-m-old C57BL/6J mice were
used for histologic analyses. In brief, the slides (5 µm
thick) were blocked with 10% donkey serum for 2 h
to block non-specific reactions. The following primary
antibodies were used: anti-NOX4 (NB110-58849; Novus)
and anti-THY1 (sc-9163, Santa Cruz Biotechnology).
The following secondary antibodies were used: Alexa
594-conjugated donkey anti-mouse IgG and Alexa 488-
conjugated donkey anti-rabbit IgG (1: 400, Invitrogen).
Photomicrographs were captured under a Nikon i90 microscope
(Nikon, Tokyo, Japan).

Plasmid Construction
The 2 kb region of the Nox4 gene promoter was amplified
by polymerase chain reaction (PCR). Subsequently, PCR
product was purified using AxyPrepTM PCR Clean-
Up Kit (Axygen, CA, United States). The resulting
fragments digested by KpnI/BgI II were inserted into
the KpnI/BgI II restriction sites of digested pGL3-Basic
vector. The ligated mixtures were transformed into
competent cells of Escherichia Coli DH5α using the
heat shock method.

Transfections and Luciferase Assays
The 293T cells were transiently transfected using TurbofectTM
(Thermo Fisher Scientific) reagent according to the
manufacturer’s protocol. The cells were seeded onto 24-well
plates, and transfected with 1 µg total plasmid containing
0.5 µg pGL3-basic-Nox4, 0.5 µg pCDNA3.1-E2F1, and
0.2 µg pRL-CMV, which were transfected as reference
plasmid. The transfected cells were cultured for 48 h and
analyzed using a dual-luciferase reporter assay system kit
(Promega, Madison, WI, United States) according to the
manufacturer’s protocol.

Chromatin Immunoprecipitation-qPCR
Chromatin Immunoprecipitation analysis was performed as
previously described using EZ-Magna ChIP A/G (Millipore)
(Liu et al., 2017). In brief, the cells were fixed with 1%
formaldehyde and lysed in lysis buffer. After the sonication
the cell lysates were immunoprecipitated with SETDB1
(11231-1-AP; Proteintech), H3K9me3 (07-442, millipore), or
normal IgG (millipore) antibodies. IgG is as a background
of the IP. The purified DNA was analyzed by RT-qPCR.

The primer was designed by published H3K9me3 ChIP-seq
data in mouse undifferentiated spermatogonia cells (Liu
et al., 2019). Then, ChIP-qPCR primers were designed
around the transcription initiation site, and the size of
the product was about 200 bp (Asp, 2018). Finally, the
statistical calculation methodology was performed as described
previously (Nelson et al., 2006). Briefly, the ChIP-qPCR
data output from RT-qPCR software was in the form of
Cycle threshold (Ct) values. The relative occupancy of the
SETDB1 and H3K9me3 at a locus is measured by the equation
2ˆ(Ctmock-Ctspecific), where Ctmock and Ctspecific are
mean threshold cycles of RT-qPCR. Primers were listed
in supplementary Table S2.

Statistics
The statistical analysis of the differences between two groups
was performed by Student’s t-test. P < 0.05 indicated
statistical significance.
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Eukaryotic organisms regulate the organization, structure, and accessibility of
their genomes through chromatin remodeling that can be inherited as epigenetic
modifications. These DNA and histone protein modifications are ultimately responsible
for an organism’s molecular adaptation to the environment, resulting in distinctive
phenotypes. Epigenetic manipulation of algae holds yet untapped potential for the
optimization of biofuel production and bioproduct formation; however, epigenetic
machinery and modes-of-action have not been well characterized in algae. We sought
to determine the extent to which the biofuel platform species Picochlorum soloecismus
utilizes DNA methylation to regulate its genome. We found candidate genes with
domains for DNA methylation in the P. soloecismus genome. Whole-genome bisulfite
sequencing revealed DNA methylation in all three cytosine contexts (CpG, CHH, and
CHG). While global DNA methylation is low overall (∼1.15%), it occurs in appreciable
quantities (12.1%) in CpG dinucleotides in a bimodal distribution in all genomic contexts,
though terminators contain the greatest number of CpG sites per kilobase. The
P. soloecismus genome becomes hypomethylated during the growth cycle in response
to nitrogen starvation. Algae cultures were treated daily across the growth cycle with
20 µM 5-aza-2′-deoxycytidine (5AZA) to inhibit propagation of DNA methylation in
daughter cells. 5AZA treatment significantly increased optical density and forward and
side scatter of cells across the growth cycle (16 days). This increase in cell size and
complexity correlated with a significant increase (∼66%) in lipid accumulation. Site
specific CpG DNA methylation was significantly altered with 5AZA treatment over the
time course, though nitrogen starvation itself induced significant hypomethylation in CpG
contexts. Genes involved in several biological processes, including fatty acid synthesis,
had altered methylation ratios in response to 5AZA; we hypothesize that these changes
are potentially responsible for the phenotype of early induction of carbon storage as
lipids. This is the first report to utilize epigenetic manipulation strategies to alter algal
physiology and phenotype. Collectively, these data suggest these strategies can be
utilized to fine-tune metabolic responses, alter growth, and enhance environmental
adaption of microalgae for desired outcomes.

Keywords: algae, epigenetics, 5-aza-2′-deoxycytidine, DNA methylation, lipid accumulation, fatty acid synthesis,
bisulfite sequencing
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INTRODUCTION

Eukaryotic organisms control the organization and accessibly
of their genomes via covalent modification of DNA and
chromatin proteins. These modifications are collectively referred
to as epigenetic modifications, which, under the purview of
strict scrutiny, are reversible and yet heritable during mitotic
activity (Feng et al., 2010b). Epigenetic mechanisms regulate
a plethora of processes in mammalian and plant species,
ranging from the fidelity of DNA replication, repair, and
protection to DNA transcription and expression (Jaenisch and
Bird, 2003). These processes are globally defined as either
(1) covalent modification of basic amino acids located in
the N-terminal domain of histone proteins that comprise
nucleosome structures (i.e., histone modifications) or (2)
covalent modification of the nucleic acids, adenosine or
cytosine (i.e., DNA modifications). In plants, methylation of
cytosines in DNA can occur in multiple genomic regions and
dinucleotide contexts, including CpG, CHH, and CHG (where H
corresponds to A, T or C). This DNA methylation is important
for plant growth and dynamic responses to environmental
perturbations and directly influences the plant’s phenotype
(Zhang et al., 2018).

Microalgae are photosynthetic, single-celled eukaryotes. Many
microalgae species have relatively small genomes, particularly
in comparison with humans and polyploid plant species.
Of the thousands of algae species, very few have been
sequenced, and even fewer have had their epigenomes measured
(Blaby-Haas and Merchant, 2019). The model algae organism,
Chlamydomonas reinhardtii, has been used extensively to study
the mechanisms of epigenetic regulation, inheritance, and
adaption (Cerutti, 1997; van Dijk et al., 2005; Shaver et al.,
2010; Pandey et al., 2012; Fu et al., 2015; Kronholm et al.,
2017). However, unlike mammalian species, in which the
presence and functionality of epigenetic modifications is similar
among several species, patterns of epigenetic modifications
(and even function) have proven to be dissimilar (or not
even present) in algae (Tirichine and Bowler, 2011; Veluchamy
et al., 2014; Tirichine et al., 2017). This is likely attributed to
either evolutionary divergence of algae and/or variable genome
size. Organisms with smaller genomes use other mechanisms
of genomic control, including operons and RNA interference
(RNAi), both of which alter gene expression without the
need for chromatin remodeling processes. Interestingly, despite
the lack of differentiation and the relative compactness of
their genomes, many microalgae tend to utilize some form of
epigenetic modification, though relatively few have been tested
(Müller et al., 1990; Umen and Goodenough, 2001; Babinger
et al., 2007; Zemach et al., 2010; Lopez et al., 2015; Ngan
et al., 2015). Thus, given the breadth of genetic diversity
among microalgae, these organisms provide an opportunity
to study the evolution of epigenetic mechanisms. However,
this diversity requires that each modification must be assessed
under environmental variability for each species of interest to
determine the presence and function of epigenetic modifications
in microalgae collectively.

We sought to determine the relative importance of
DNA modifications, particularly 5-methylcytosine, for our
microalgae species of interest, Picochlorum soloecismus, which
has a small haploid genome (15.6 Mb) (Gonzalez-Esquer
et al., 2018). We are interested in the phenotype of this
species, particularly under nutrient-limited conditions that
induce carbon sequestration into lipid and carbohydrate
molecules. This “carbon accumulation” phenotype under
duress has potential applications for the production of
biofuels and other bioproducts (Alishah Aratboni et al.,
2019). A recent algae biofuel consortium (the National
Alliance for Advanced Biofuels and Bioproducts) denoted
P. soloecismus as a promising feedstock for biofuel research
(Unkefer et al., 2017). The Picochlorum genus is highly
adaptive to environmental variation in salinity, temperature,
pH, and nutrients; it readily alters its gene expression as
such to induce particular phenotypes under these various
conditions (Foflonker et al., 2015; Krasovec et al., 2018;
Dahlin et al., 2019; Gonzalez-Esquer et al., 2019; Steadman
Tyler et al., 2019). Bioengineering P. soloecismus includes the
manipulation of gene expression to mimic environmental
conditions that drive carbon sequestration, but efforts have
been limited. Understanding the mechanisms by which this
organism controls its genome is thus useful for maximizing its
productivity. To aid in this challenge, we sought to quantify DNA
methylation and determine its influence on the physiology and
phenotype of P. soloecismus.

We used treatment with 5-aza-2′-deoxycytidine (5AZA)
in cultivation of P. soloecismus to inhibit the formation of
5-methylcytosine (5mC) DNA methylation under baseline
environmental conditions and during nitrogen starvation.
This treatment inhibits binding of DNA methyltransferase
enzymes to hemimethylated DNA during replication, thereby
interfering with maintenance methylation on the lagging
strand (Christman, 2002). After mitosis, daughter cells lack
this epigenetic modification, and over the course of growth,
each new cell has less 5mC DNA methylation (typically
halved in each subsequent generation of cells). In mammalian
cells, this treatment induces cell cycle arrest and apoptosis,
thus demonstrating the importance of DNA methylation
for maintaining cell function and physiology (Palii et al.,
2008). Here, we report that 5mC DNA methylation occurs
primarily in CpG contexts in P. soloecismus, though it was also
found in CHG and CHH contexts. The relative abundance
of DNA methylation is low but occurs in multiple genomic
loci, including gene bodies, promoters, terminators, and
intergenic regions. DNA methylation in P. soloecismus is
dynamic and responsive over the algal growth cycle. Inhibition
of 5mC propagation resulted in altered cell growth and
increased lipid accumulation, suggesting this epigenetic
modification has physiological relevance and control of
the P. soloecismus stress phenotype. This study suggests
that epigenetic manipulation of algal DNA methylomes
may allow for fine-tuning metabolic responses, alteration of
growth, and enhanced environmental adaption for biofuel and
bioproduct outcomes.
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MATERIALS AND METHODS

Data Mining for DNA Methyltransferase
Genes in the P. soloecismus Genome
Using methods previously described, we interrogated the
P. soloecismus genome for genes encoding epigenetic machinery
with the capacity for DNA methylation (Hovde et al., 2018).
Briefly, queries of known DNA methylation protein sequences
were tested against the P. soloecismus protein sequence data.
Sequences with similar homology were queried using BLASTP
(Altschul et al., 1990) and for specific Pfam domains (El-Gebali
et al., 2019). The presence of domains was confirmed in the
annotated P. soloecismus genome using Pfam and InterPro
domains considered essential for epigenetic function in each
protein (Mitchell et al., 2019).

Microalgae Cultivation
For DNA methylation experiments, P. soloecismus was cultivated
as previously described (Steadman Tyler et al., 2019). Briefly,
cells were grown in 250 mL shaker flasks, maintained at ambient
temperature, under 300 µmolm−2s−1 fluorescent light with a
16 h/8 h light:dark cycle in modified f/2 media with 8.8 mM
sodium nitrate. Cultures were shaken and supplemented with
1% CO2. Cultures naturally depleted of nitrogen after 6 days of
growth. Sterile sampling was used for obtaining aliquots on a
daily basis. Optical density at 750 nm (OD750) values were taken
immediately after sampling. Samples for analysis were stored
at 4◦C until use. For cell cycle studies, triplicate P. soloecismus
cultures were grown in 1 L volumes in 2.8 L spin flasks. Cultures
were constantly bubbled with air and maintained at pH 8.25
by on-demand CO2 injection. Cultures were mixed by magnetic
stirring at 200 rpm and illuminated with 800 µmolm−2s−1 in a
16 h/8 h light:dark cycle. Cultures were sampled every 2 h for 48 h
for cell cycle assessment.

Flow Cytometry Assessments (Cell
Counts, FSC/SSC, DNA Ploidy, Lipid
Accumulation)
Flow cytometry assessments were performed to determine
cell concentration, relative cell size, DNA ploidy, and lipid
accumulation in P. soloecismus as previously described (Unkefer
et al., 2017; Steadman Tyler et al., 2019). Assessments were
performed at the same time points and correlated to daily
OD750 measurements 4 h into the light cycle. Unstained samples
were used to determine cell concentration (cell/ml), relative
size (FSC – forward scatter), and internal complexity (SSC –
side scatter). Accumulation of neutral lipids was assessed using
BODIPY 505/515 (D3921, Thermo Fisher Scientific, Waltham,
MA, United States) staining and flow cytometry fluorescence
assessment at selected time points during nitrogen replete,
nitrogen starvation (N = 0), and nitrogen deplete culture
conditions. For assessment of DNA content and replication,
samples were taken every 2 h for 48 h, incubated with DyeCycle
Orange (V35005, Thermo Fisher Scientific, Waltham, MA,
United States), and assessed on the BD Accuri C6 Plus (BD
Biosciences, San Jose, CA, United States) flow cytometer.

DNA Methylation Inhibition
5-aza-2′-deoxycytidine was purchased from Sigma (A3656).
5AZA is preferable to 5-azacytidine for its retention in the cell;
both exert proapoptotic effects (Gnyszka et al., 2013). 5AZA was
prepared in 50% DMSO and 50% ice cold MilliQ water in the
least possible volume for all final concentrations (0–80 µM) in
250 ml shaker flasks. Stock solutions of 5AZA were stored at
−20◦C; aliquots were thawed on ice prior to treatment to prevent
drug instability and break down. Treatment occurred 4–5 h into
the light cycle prior to DNA replication in P. soloecismus as
determined by flow cytometry (see above) every day (days 1–16)
of the growth cycle. The half-life of 5AZA in most mammalian
cell cultures is between 8 and 10 h as determined in preclinical
trials (Hollenbach et al., 2010).

DNA Extraction
A modified, combined protocol was generated from the
manufacturer’s instructions using E.Z.N.A. Plant DNA DS Mini
Kit (D2411-01; Omega Bio-tek Inc., Norcross, GA, United States)
and Quick-DNA Fungal/Bacterial Miniprep Kit (D6005; Zymo
Research, Irvine, CA, United States) to isolate genomic DNA.
Briefly, 400 µl of reconstituted cells were lysed using bead
bashing lysis tubes and buffer at 4◦C. Samples were treated with
CSPL buffer and proteinase K solution and heated at 65◦C for
30 min. Samples were centrifuged and cleared supernatant was
passed through a mini column followed by RNase A treatment
at RT. Cleared supernatant was treated with RBB Buffer and XP2
Buffer, vortexed, and transferred to a HiBind DNA Mini Column.
HBC buffer and DNA wash buffers were added to the columns.
Columns were allowed to air dry followed by 2 min incubation
with elution buffer. DNA was purified using AMPure Purification
Beads (100-265-900; PacBio, Menlo Park, CA, United States) in
a 1:1 volumetric ratio per the manufacturer’s instructions. After
separation on a magnetic rack and washing with 70% ethanol,
the beads were incubated with PacBio elution buffer (101-633-
500; PacBio, Menlo Park, CA, United States) for 10 min at RT.
Purified DNA was removed in the supernatant and quantified
using a Qubit dsDNA HS Kit (32854; Thermo Fisher Scientific).
Lambda HindIII DNA marker was used to determine the DNA
size (SM0101; Thermo Fisher Scientific). DNA integrity and size
were assessed on E-Gel EX 1% agarose gel (G402001; Thermo
Fisher Scientific).

Global DNA Methylation Quantification
The presence of methylation on the 5′ carbon of cytosine in
DNA was determined using the 5mC DNA ELISA Kit (D5325;
Zymo Research, Irvine, CA, United States) per manufacturer’s
instructions with minor changes. Modifications to the protocol
included adding a 2.5% 5mC-DNA standard to the calibration
curve, using 200 ng of input DNA, and quantification at
405 nm wavelength using a Tecan spectrophotometer (Tecan
Life Sciences, Switzerland). For a positive control, P. soloecismus
DNA was incubated with CpG Methylase (M. Sssl) and 12 mM of
s-adenosyl methionine substrate (E2010; Zymo Research, Irvine,
CA, United States) for 12 h at 30◦C. The %5mC in DNA was
determined using a saturation binding curve (non-linear fit)
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in GraphPad Prism 8 software (GraphPad, San Diego, CA,
United States). Results are reported as %5mC.

Whole Genome Bisulfite Sequencing
(WGBS)
Picochlorum soloecismus samples were processed and analyzed
using the Methyl-MaxiSeq library preparation, sequencing,
and bioinformatics pipeline from Zymo Research (Irvine, CA,
United States). Triplicate biological replicates from 5AZA treated
and untreated cells over 5 days of the growth cycle representing
replete and deplete nitrogen conditions were used for analysis.
Briefly, Methyl-MaxiSeq libraries were prepared from 1 µg gDNA
digested with two units of dsDNA ShearaseTM Plus (E2018-
50; Zymo Research, Irvine, CA, United States). Fragments were
end-blunted, the 3′-terminal-A extended, and purified using
the DNA Clean & Concentrator Kit (D4003; Zymo Research,
Irvine, CA, United States). A-tailed fragments were ligated to
pre-annealed adapters containing 5mC instead of cytosine and
adapter-ligated fragments were filled in. Fragments were treated
with sodium bisulfite using the EZ DNA Methylation – Lightning
Kit (D5030; Zymo Research, Irvine, CA, United States). Treated
DNA was amplified with Illumina TruSeq indices; fragment DNA
purity and size were confirmed on the Agilent 2200 TapeStation
(Agilent Technologies, Santa Clara, CA, United States). DNA was
sequenced using Illumina PE75 on the HiSeq (Illumina Inc., San
Diego, CA, United States) instrument to 50X coverage.

Methylation Alignment and Calling
Three biological replicates over 5 days of the growth cycle
were sequenced for the presence of methylated cytosines.
Sequencing reads from bisulfite-treated EpiQuest libraries were
identified using standard Illumina base-calling software and then
analyzed using bismark bowtie21 for alignment. Methylation
calling was performed using MethylDackel.2 Index files were
constructed by bismark_genome_preparation command using
the entire reference genome of P. soloecismus (GenBank
PJAJ00000000). The –non-_directional parameter was applied
while running bismark. All other parameters were set to default.
For MethylDackel, parameters were also used to find sites in
CHG and CHH contexts. All other parameters for MethylDackel
were set to default. Methylation calls with greater than 20X
coverage were validated against a list of all possible methylation
sites in the genome. These validated sites were used to estimate
global methylation profiles for each timepoint. All called sites
are reported in Supplementary Tables (FigShare3). To obtain
feature-length corrected methylation site frequencies in the
genome, four features were used. These included “gene body,”
“promoter,” “terminator,” and “intergenic regions.” Gene bodies
denoted the protein coding regions and included introns and
exons. Promoters and terminators were defined as the 500 bp
5′ and 3′ UTRs flanking gene bodies. Any sequence span not
under these definitions of gene bodies, promoters, or terminators
was marked as an intergenic region (IGR). These features are

1http://www.bioinformatics.babraham.ac.uk/projects/bismark/
2https://github.com/dpryan79/MethylDackel/
3https://figshare.com/authors/Christina_Steadman/8855753

available as extended versions of the genomic annotation file
published for P. soloecismus in the Supplementary Tables.
Methylation sites were mapped to genomic features using Pandas
(McKinney, 2010). Briefly, counts of called sites were obtained
for each feature and divided by the size (bp) of that feature.
The resulting site density value (in counts/bp) was multiplied by
1000 to express density as counts per kb. Variables (averages and
standard deviations) were calculated with or without filtering out
zero-count entries; data is reported without zero-count entries.
The script for this calculation is available in GitHub: https://
github.com/lanl/DNA_methylation_analysis. All raw fastq files,
processed methylation tracks, and methylation calls are provided
on the Gene Expression Omnibus (GEO) website under the
accession record GSE155500.

Differential Methylation Analysis
Data from Zymo Research included called sites, the number
of total reads per site, and methylation ratio per site. The
methylation ratio of each sampled cytosine is estimated as the
number of reads reporting a cytosine divided by the total number
of reads reporting a C or T [C/(C or T)]. Reads were culled
according to NIH Roadmap Epigenomics Project (Bernstein
et al., 2010). For the P. soloecismus genome (15.2 million base
pairs, haploid), there was a median of 50X coverage for all
sites. A Student’s t-test was performed for each cytosine with
a minimum coverage of 20X aligned sequence reads (for every
day in culture) to identify statistically significant methylation
differences in each comparison. The differences in methylation
ratios between Day 4 and Day 10 in culture (the first and last
day of sequencing) were used to determine overall changes in
methylation across the time course. All significant methylation
ratio changes less than 0.1 and greater than −0.1 were not
considered in the analysis. The same parameters for calling were
used for sequences from 5AZA treated samples. To determine
the effect of 5AZA on methylation ratios per site, differences
in methylation ratios were calculated for each day in culture
between treated and untreated cultures. Data is plotted as
methylation ratio per day in culture.

Methylation Visualization, Annotation,
and Gene Cluster Analysis
To determine specific genes of interest that may contain sites
of methylation, genomic annotations were added to sites with
the most significant changes in methylation ratios (hyper or
hypomethylation) from the LANL Greenhouse database.4 Open
reading frames (ORF) extracted based on these annotations were
assigned KEGG Orthologies (KOs) (Kanehisa et al., 2016a,b)
using KofamKOALA (Aramaki et al., 2020), with an E-value
cutoff of 1E-24. For each predicted ORF encoded in the
annotations, we retained the KO assignment with the lowest
E-value. LANL in-house software was used to map KOs to
KEGG pathways (Kanehisa et al., 2016a,b), to determine if genes
with significantly different methylation ratios over the cultivation
time course clustered into particular metabolic processes. To
visualize sites in a gene (multiple sites per gene) under two

4https://greenhouse.lanl.gov
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different conditions (either day in culture or 5AZA treatment),
the relevant methylation sites were added to the annotations
extant in the greenhouse database and color coded in Microsoft
Excel for Mac 2019. Separate, augmented annotation files were
created for each timepoint and condition to enable simultaneous
viewing in standard genome browsers capable of interpreting the
GFF3 format. All scripts used for data analysis and methylation
calling are provided in GitHub.5

Statistics
All statistical analyses were performed using GraphPad Prism8
software packages (version 8.4.1 (460), GraphPad Software, San
Diego, CA, United States) with default parameters except when
Bonferroni or Tukey’s post hoc analyses were performed. One-
way ANOVA repeated measures was performed to determine
methylation ratio differences of P. soloecismus across the growth
cycle. Two-way ANOVA repeated measures analysis was used to
compare 5AZA treated and untreated P. soloecismus phenotypes
over the time course for three biological replicate cultures. These
phenotypes included optical density, cell counts, cell size (FSC),
cell complexity (SSC), and lipid accumulation. A Student’s t-test
was used to evaluate %5mC and to evaluate the difference in
methylation ratio between specific days in culture for treated or
untreated cultures.

RESULTS

The Presence of Epigenetic Machinery
for DNA Methylation in P. soloecismus
Prior to experimental determination of DNA methylation,
we interrogated the P. soloecismus genome for signatures
of epigenetic machinery. In plants, several enzymes are
responsible for imparting DNA modifications. Each enzyme
has a specific function for methylation in a particular cytosine
context (CpG, CHG, or CHH). DNA methyltransferase
enzymes contain specific DNA binding domains in addition
to their methyltransferase enzymatic activity domains. We
found homologs for a number of enzymes involved in DNA
methylation in the P. soloecismus genome, suggesting the
possibility of DNA methylation in multiple contexts (Table 1A).
Some of these enzymes have domains for both DNA binding and
5mC methyltransferase activity. These domains can be found in
several different databases. Pfam is a curated database of expertly
built multiple sequence alignments representing clusters of
proteins and/or protein domains (Finn et al., 2015). Clusters of
sequences are organized into “families,” and families are grouped
at a higher level into “clans.” InterPro is a similar but broader
database that combines information from member databases
like Pfam, including CATH-Gene3D, TIGRFAMs, and PROSITE
among others (Haft et al., 2003; Sigrist et al., 2012; Lewis et al.,
2017; Sillitoe et al., 2018; Mitchell et al., 2019). These databases
are particularly useful in annotation of remote homologs of
proteins that may be found in newly annotated genomes. Both
are commonly used in unison by automated annotation pipelines

5https://github.com/lanl/DNA_methylation_analysis

such as MAKER and AUGUSTUS (Stanke and Morgenstern,
2005; Cantarel et al., 2008). Interrogation of the P. soloecismus
genome with InterPro and Pfam domains of interest (described
in “Materials and Methods”) produced 14 hits for possible
methyltransferase enzymes (Table 1B). This information was
cross referenced with the homologs from Table 1A. Two of these
potential enzymes were aligned with DNA methyltransferase
enzymes from other species, demonstrating sequence variation
except in important catalytic domains required for DNA
methylation activity (Figure 1). This in situ data suggested that
P. soloecismus contains at least two enzymes capable of covalent
modification of DNA on the 5′ carbon of cytosine.

DNA Methylation Characteristics of
P. soloecismus
DNA methylation was determined using two methods: 5mC
ELISA and whole genome bisulfite sequencing (WGBS). Using
the 5mC ELISA, 0.82% 5mC was detected in P. soloecismus
gDNA. To generate a positive control, P. soloecismus gDNA was
treated with CpG Methylase (M. Sssl). This positive control had
1.3% 5mC methylation (Supplementary Figure 1, p < 0.0001).
This initial assessment of global 5mC suggested that genomic
DNA methylation of P. soloecismus was low but amenable to
alteration (based on treatment with the M. Sssl CpG methylase).
Of note, the antibody-based ELISA from Zymo Research has a
detection limit of >0.5% 5mC per 100 ng DNA.

Whole genome bisulfite sequencing provides metrics for
global and site-specific DNA 5mC methylation, including
sequencing metrics and calls for methylation (Table 2). For the
15.2 MB P. soloecismus genome, cytosine content should have
been called for approximately 1,014,486 CpG sites, 1,316,811
CHG sites, and 4,430,371 CHH sites (or about 44% of the
genome). Approximately 93% of CpG and CHG sites and 87%
of CHH sites were called for WGBS (Table 2). The methylation
fraction for each sample was determined for each context to
provide a picture of global methylation. For example, for Day
4 Control 1, there were 944,940 called CpG sites with an
approximate methylation ratio of 0.123. Thus, approximately
12.3% of these sites had methylation or, as noted later, most
CpG sites from this day in culture had approximately 12.3%
methylation based on read counts. Methylation ratios were
calculated as the number of methylated reads from the bisulfite
converted sequences divided by the total number of reads for that
particular site (# methylated C reads/# total C + T reads). From
this assessment, we determined that on average, methylation
occurred in 12.1% of CpG contexts, 0.8% of CHG contexts,
and 0.9% of CHH contexts (Figure 2A). From a genome-
wide perspective, the P. soloecismus genome had approximately
1.15% cytosine methylation (Figure 2A). This was determined
by calculating the number of sites with methylation divided by
the total genome size and normalized based on the number of
called sites for the sequencing run. This methylation was divided
across all cytosine contexts, with the majority of methylation
occurring at CpG sites.

For each cytosine context, we determined the relative
abundance of DNA methylation in four genomic features: gene
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TABLE 1A | Top gene ID hits for homologs of DNA methyltransferases in P. soloecismus.

ID Name Domains

NSC_03941 s-adenosyl-methyltransferase IPR002903, IPR023397

NSC_03950 Conserved hypothetical PF13578

NSC_00652 Cytosine-5 DNA methyltransferase IPR001525, IPR017198, IPR018117, IPR022702

NSC_01519 DNA-cytosine methyltransferase IPR001525

NSC_00143 Hypothetical protein IPR001025, IPR001357

NSC_06005 Meiosis expressed IPR001025

NSC_00846 es43 protein PR001025, IPR001965, IPR011011, IPR013083, IPR019786, IPR019787

NSC_03065 Chromodomain-helicase-DNA-binding protein IPR000330, IPR000953, IPR001650, IPR014001, IPR016197, IPR023780

NSC_05938 Ankyrin repeat domain IPR000953, IPR002110, IPR016197, IPR020683, IPR023780

NSC_03492 Elongation factor ef-3 IPR003439, IPR003593, IPR011989, IPR015688, IPR016024, IPR017871, IPR021133, IPR023780

NSC_00815 Arid bright DNA binding domain protein IPR001487, IPR001606, IPR022702

The IPR domains associated with genes of interest (Name and ID) in the P. soloecismus genome are provided.

TABLE 1B | Epigenetic machinery domains of interest for 5mC DNA methylation and hits within the P. soloecismus genome.

Domain Name Hits Function

IPR001025 BAH_dom 3 Protein-protein interaction module specialized in gene silencing

IPR001091 RM_Methylase 0 Site-specific DNA-methyltransferase, N-6 adenine-specific DNA methylase and cytosine-N4-specific

IPR001525 C5_MeTfrase 2 Methylates the C-5 carbon of cytosines in DNA

IPR002941 DNA_methylase_N4/N6 2 Family contains both N-4 cytosine-specific DNA methylases and N-6 Adenine-specific DNA methylases

IPR015270 RDM1_plant 0 Small protein that binds single-stranded methylated DNA; co-localizes with RNA polymerase II, AGO4 and DRM2 in the
nucleus

IPR017198 DNMT1-like 1 Methylates CpG residues with a preference for hemimethylated DNA

IPR017985 MeTrfase_CN4_CS 0 Methylates the amino group at the C-4 position of cytosines in DNA

IPR018117 C5_DNA_meth_AS 1 Methylates the C-5 carbon of cytosines in DNA

IPR022702 Cytosine_MeTrfase1_RFD 2 Part of DNA (cytosine-5)-methyltransferase 1 that targets the protein towards replication foci

IPR023780 Chromo_domain 3 Conserved region of around 60 amino acids; condenses morphology of heterochromatin

IPR025794 Hist-Lys_N-MeTrfase_plant 0 Silencing mechanism; interacts with DNA CpNpG methylation requires the targeting of chromomethylase CMT3 to
methylated histone

IPR029063 SAM-dependent_MTases 0 Transfer a methyl group from a donor (S-adenosyl methionine) to an acceptor

IPR030380 SAM_MeTfrase_DRM 0 Domains Rearranged Methylases (DRM1 and DRM2) are de novo cytosine methyltransferases from plants involved in
the initial methylation of unmethylated DNA sequences

IPR030486 DNMT3L 0 Inactive regulatory factor of de novo DNA methyltransferases DNMT3A and DNMT3AB

IPR030487 C5_MeTfrase 0 Propagates methylation patterns with DNMT3B stimulating DNMT3A activity by promoting its association with
nucleosomes

IPR030488 DNMT3B_ADD 0 ADD domain of DNMT3B

IPR033375 Cggbp1 0 A repetitive DNA-binding transcription regulator with target sites at CpG-rich sequences such as CGG repeats and
Alu-SINEs and L1-LINEs

IPR036319 RDM1_sf 0 Superfamily includes protein RDM1 from Arabidopsis thaliana

IPR040175 TET1/2/3 0 Converts 5-methylcytosine to 5-hydroxymethylcytosine

PF00145 DNA methylase 0 Methylates the C-5 carbon of cytosines in DNA

PF00385 Chromo 0 Conserved region of 60 amino acids; condenses morphology of heterochromatin

PF01426 BAH 0 Protein-protein interaction module specialized in gene silencing; commonly found in chromatin-associated proteins
including eukaryotic DNA (cytosine-5) methyltransferases and recognition complex 1 (Orc1) proteins

PF02182 SAD_SRA 0 Binds hemi-methylated CpG dinucleotides and other 5mC containing dinucleotides

PF09187 RDM1_plant 0 Family of plant proteins includes RDM1 from Arabidopsis thaliana; a component of the RNA-directed DNA methylation
(RdDM) effector complex

PS51058 ZF_CXXC 0 Binds specifically to non-methylated CpG DNA; sequence found in mammalian DNMT1, MBD1, and MLL1

IPR domain names and numbers involved in DNA methylation are listed; the number of hits per IPR domain found in the P. soloecismus genome is provided along with
the function of the domain.

bodies, promoters, terminators, and intergenic regions. For CpG
sites, there were, on average, 4.95 sites per kb for gene bodies,
5.83 sites per kb for promoters, 6.39 sites per kb for terminators,

and 5.86 sites per kb for intergenic regions. Given that gene
bodies are larger than most other features, there were more
CpG sites of methylation found in genes; however, per kb,
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FIGURE 1 | Alignment of common DNA methyltransferase enzymes with a candidate sequence from P. soloecismus. Amino acid sequences for DNA
methyltransferase proteins MET4 (A. thaliana), DMT1 protein (A. thaliana), and MET1A protein (O. sativa) are aligned with a candidate sequence (NSC_00652) from
P. soloecismus. All three enzymes have a C-5 cytosine methyltransferase domain (IPR001525). Alignment for this domain for MET4 is outlined (black box) from amino
acid 1078 to amino acid 1512. The IPR001525 domain extends from amino acids 1093 to 1527 for DMT1 and 1092 to 1526 for MET1A (not outlined). The
conservation of the amino acid sequences is shown on a colored scale with pink indicating the highest percent conservation. Below the amino acid sequence,
conservation is quantified in green, with the tallest bars indicating 100% conservation. The protein sequence annotated with IPR001525 from P. soloecismus is
shown and is a likely candidate for a cytosine methyltransferase (MTase).

terminators had the most CpG sites (Figure 2B). The distribution
of methylation in all contexts is bimodal (Figures 2C–E). Of
the 699,653 called CpG sites on Day 4 in the first control
sample (Supplementary Table 1), approximately 7% (48667)
sites were largely methylated (>0.8 methylation ratio), and
approximately 83% of sites were largely unmethylated (<0.2
methylation ratio). Approximately 2% of sites had moderate
methylation (0.4–0.6). This finding correlated with the global
methylation analysis indicating that 12.3% of CpG called sites
for Day 4 had some methylation. Of that 12.3%, most sites were

largely methylated (Figure 2C). Validation of called CpG sites
resulted in other called CHG and CHH sites, which showed a
bimodal distribution of methylation as well. Thus, while there
were very few methylated CHG and CHH sites, the degree of
methylation at those sites was large.

Changes in global and site-specific DNA methylation of
P. soloecismus across its growth cycle were determined from
the WGBS data. Global CpG DNA methylation decreased
(hypomethylation) across the growth cycle (Figure 2F), with
significant differences between early days (nitrogen replete) in the
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TABLE 2 | Metrics for global and site-specific DNA 5mC methylation from whole genome bisulfite sequencing.

Sequencing metrics Median coverage of Called sites Methylation fraction

all sites

Read pairs Mapping
efficiency

Unique CpGs Coverage CpG CHG CHH CpG CHG CHH CpG CHG CHH

Day 4 Control 1 41,023,876 75% 972,932 73 62 57 40 944940 1228396 3846923 0.123 0.008 0.009

Day 4 Control 2 33,648,831 77% 973,618 63 81 78 59 942047 1223285 3817927 0.122 0.006 0.007

Day 4 Control 3 29,579,086 76% 973,104 53 44 41 28 928325 1202508 3674044 0.121 0.005 0.007

Day 5 Control 1 25,654,725 77% 973,344 54 47 45 33 937428 1219080 3780033 0.123 0.008 0.010

Day 5 Control 2 29,937,985 79% 971,660 54 44 40 26 910613 1176724 3483664 0.126 0.005 0.007

Day 5 Control 3 45,111,988 77% 975,224 92 52 48 33 964233 1257465 4098185 0.123 0.010 0.013

Day 6 Control 1 36,639,600 80% 973,029 69 58 54 37 938805 1219379 3782740 0.123 0.005 0.007

Day 6 Control 2 40,794,105 74% 972,768 74 63 59 41 943226 1226052 3830516 0.122 0.007 0.009

Day 6 Control 3 29,191,188 74% 972,574 52 43 40 26 916792 1186033 3549572 0.123 0.006 0.007

Day 7 Control 1 33,885,815 77% 972,102 61 52 47 33 934725 1212452 3731159 0.123 0.007 0.009

Day 7 Control 2 40,610,069 72% 972,679 66 54 49 35 941356 1221066 3827818 0.120 0.007 0.008

Day 7 Control 3 26,226,738 77% 972,111 50 44 41 30 931596 1209022 3711732 0.119 0.007 0.008

Day 10 Control 1 44,523,335 72% 972,336 77 65 60 41 942568 1224561 3816369 0.119 0.008 0.009

Day 10 Control 2 31,106,461 73% 972,473 55 48 44 32 937025 1216470 3783515 0.115 0.008 0.009

Day 10 Control 3 31,278,928 71% 976,178 63 57 56 45 965823 1260295 4140910 0.117 0.011 0.013

Day 4 AZA 1 35,175,861 78% 974,284 68 58 54 39 953024 1240912 3971269 0.121 0.005 0.007

Day 4 AZA 2 25,810,214 80% 979,296 72 68 67 62 972892 1269534 4252504 0.119 0.017 0.018

Day 4 AZA 3 51,025,989 81% 973,858 103 53 49 34 956954 1247256 3995715 0.124 0.009 0.011

Day 5 AZA 1 23,711,109 77% 974,016 50 44 42 31 934472 1215456 3753189 0.122 0.009 0.011

Day 5 AZA 2 38,010,117 80% 976,674 88 81 79 65 970660 1266406 4206109 0.119 0.010 0.012

Day 5 AZA 3 24,571,651 78% 972,998 59 49 46 33 927143 1204554 3706979 0.129 0.009 0.010

Day 6 AZA 1 32,609,015 78% 973,530 62 46 43 29 935134 1213880 3753222 0.121 0.005 0.007

Day 6 AZA 2 36,869,188 78% 974,719 75 69 66 51 963066 1255704 4086914 0.119 0.009 0.010

Day 6 AZA 3 26,727,193 80% 974,765 59 53 51 40 955764 1245567 3991086 0.122 0.011 0.014

Day 7 AZA 1 37,076,497 78% 972,230 68 48 44 30 939065 1218808 3778410 0.120 0.007 0.008

Day 7 AZA 2 27,862,914 81% 973,613 54 46 43 29 934476 1212377 3747479 0.118 0.005 0.006

Day 7 AZA 3 32,739,443 80% 973,978 64 54 50 35 945266 1229569 3875733 0.120 0.005 0.007

Day 10 AZA 1 32,085,678 77% 974,843 77 66 63 46 950340 1237985 3940037 0.124 0.009 0.011

Day 10 AZA 2 31,462,613 79% 973,459 58 88 84 58 931975 1208968 3716882 0.121 0.006 0.007

Day 10 AZA 3 25,019,781 80% 972,153 47 39 36 24 908946 1173978 3481932 0.119 0.005 0.006

WGBS was performed for P. soloecismus untreated (control) and treated (5-aza-2′-deoxycytidine, 5AZA) cultures over five days in triplicate. The read pairs, mapping
efficiency, unique CpGs identified, and sequencing coverage per sample are provided. The median coverage per cytosine context is provided, along with the number of
called sites and the average methylation fraction per context, per sample, per day in culture.

time course (Days 4, 5, 6) and late (nitrogen deplete) in the time
course (Day 10) (p< 0.05). No significant changes in global DNA
methylation in the CHG and CHH contexts across the growth
cycle were observed (Figures 2G,H). All Supplementary Tables
can be found on FigShare (see text footnote 3).

Site Specific DNA Methylation
Characteristics of P. soloecismus
To determine site specific hyper or hypomethylation across
the time course, WGBS data was trimmed according to
significant differences (p < 0.01) between Day 4 and Day 10
in culture for control cultures. Methylation differences between
−0.1 and 0.1 were not considered in this analysis. Called
sites were validated for cytosine context, some of which were
CHH and CHG sites and removed from the analysis. There
were 1102 significantly hypomethylated sites from Day 4 to

Day 10 in culture with methylation differences ranging from
−0.36 > x > −0.1 (Supplementary Table 2). There were 41
significantly hypermethylated sites from Day 4 to Day 10 in
culture with methylation differences ranging from 0.19 > x > 0.1
(Supplementary Table 3). These sites were annotated and
assigned KEGG orthologies, which were in turn, mapped to
KEGG Pathways to determine the most impacted metabolic
processes (also shown in the tables) using LANL in house
software (Kanehisa et al., 2016a).

There were two main features of the sites that became
hypomethylated across the P. soloecismus growth cycle. First,
most sites were largely methylated (average methylation ratio
was 0.72) and became hypomethylated but not completely
demethylated (average methylation ratio was 0.58 by Day 10
in culture). Very few sites started with low methylation and
became even less methylated, though there were some sites
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FIGURE 2 | Genomic DNA methylation characteristics of P. soloecismus. (A) Graphical representation of genomic cytosine methylation in P. soloecismus. The larger
circle depicts the P. soloecismus genome of 15.6 MB nucleic acids with AT content of 66% and GC content of 44%. The total number of CpG sites is shown in dark
blue (1,014,486 sites) with called sites shown in lighter blue and labeled as CpG (94,195,597 sites). This constitutes approximately 93% of total CpG sites in the
genome. The same quantification is presented for CHG (in orange) and CHH (in green), where 93% and 87% of sites were called, respectively. Of those called sites
for CpG, the average methylation ratio is 0.121 or 12.1% (light blue slice of smaller pie). The average methylation ratio for CHG is 0.08% (orange) and for CHH is
0.09% (green). The gray circle depicts the sum total of 1.15% cytosine methylation with the majority derived from the CpG context (blue). (B) 5mC DNA methylation
can be found in four features of the P. soloecismus genome: gene bodies, promoters, terminators, or intergenic regions (IGR). The number of sites per genomic kb
for each of these four features in all three cytosine contexts is shown. Data is presented as mean ± SD (standard deviation). Representative histograms showing the
distribution of 5mC DNA methylation in P. soloecismus for (C) CpG, (D) CHG, and (E) CHH cytosine contexts. Control samples are shown in orange, 5AZA samples
are shown in purple, and the overlap is shown in magenta. The number of sites for each methylation ratio is shown in 0.1 bins. Given the low percentage of genomic
methylation for P. soloecismus, sites from bin 0 to 0.05 were removed as most cytosines are unmethylated. (F) Global methylation ratios for CpG sites across the
growth cycle of P. soloecismus as determined by WGBS. Tukey post hoc correction was performed for Student’s t-tests; the significance of those post hoc
assessments is shown between days 4, 5, and 6 compared with day 10 in culture. (G) Global methylation ratios for CHG sites and (H) CHH sites across the growth
cycle of P. soloecismus as determined by WGBS. No significant differences in global methylation across the growth cycle for CHG and CHH sites were found. Data
are presented as mean ± SEM (standard error of the mean). * p < 0.05 and ** p < 0.01.

Frontiers in Genetics | www.frontiersin.org 9 October 2020 | Volume 11 | Article 560444106

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-560444 October 11, 2020 Time: 10:54 # 10

Steadman et al. DNA Methylation Controls Algae Phenotype

with moderate methylation that became hypomethylated. This
pattern can be seen in the top 100 sites with the greatest
change in methylation ratio (Figure 3, p < 0.01). The third
most significantly hypomethylated site was annotated as acetyl
CoA synthetase, an important protein involved in lipid synthesis
(Figure 3). The 1102 significantly hypomethylated sites were
mapped to specific metabolic pathways deemed important for
algal biofuel species (Figure 4). Of note, several sites aligned
with genes involved in the cell cycle, fatty acid synthesis, amino
acid metabolism, glycolysis, gluconeogenesis, MAPK signaling,

and photosynthesis. Other significantly hypomethylated sites
were annotated to genes involved in ribosome formation, RNA
synthesis, splicing, transport, and degradation (Supplementary
Table 4). All Supplementary Tables can be found on FigShare
(see text footnote 3).

DNA Replication in P. soloecismus
Modifications to the epigenome of an organism can be induced
by altering the expression and function of epigenetic machinery
within the cell using drugs such as 5AZA. To determine the

FIGURE 3 | The top 100 CpG sites that became significantly hypomethylated across the growth cycle of P. soloecismus. The top 100 annotated sites with the
greatest change in methylation ratio across the growth cycle from Day 4 to Day 10 are listed (p < 0.01 for all sites). The greatest change in methylation ratio (–0.3) is
shown under the column METHYL DIFF in yellow; change in methylation ratio decreases in absolute value down the column (dark green). Sites are largely methylated
(red) and become less methylated (darker, black). Few sites have lower methylation (lighter green) and become less methylated over time (darker green). Some sites
start with moderate methylation (black) and become hypomethylated (green). Annotations (NSC_ID corresponding to the P. soloecismus genomic ID) and the KO
(KEGG Orthologies, within E-24) definitions are provided.
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FIGURE 4 | CpG sites that became hypomethylated across the growth cycle of P. soloecismus belong to metabolic pathways important for algal biofuel
characteristics. CpG sites from the 1102 most significantly hypomethylated sites are shown; these were chosen based on their annotations to specific metabolic
pathways, and their role in lipid accumulation and the cell cycle. All pathways have sites with decreased methylation ratios across the time course (labeled as
METHYL DIFF, derived from subtracting Day 4 methylation ratio from Day 10, shown as negative values). All methylation differences are significant (p < 0.009).
Annotations (NSC_ID corresponding to the P. soloecismus genomic ID) and the KO (KEGG Orthologies, within E-24) definitions are provided.

optimal time of drug delivery, DNA ploidy of P. soloecismus was
assessed every 2 h over a 48 h period. As previously described,
P. soloecismus has a haploid genome; DNA populations are

denoted as N = 1, N = 2, and N = 4 in flow cytometry data
(Gonzalez-Esquer et al., 2018; Steadman Tyler et al., 2019). The
stable haploid population (N = 1) was present 3–5 h into the
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light cycle (Figure 5A). The N = 1 population increased during
the “dark” part of the diurnal cycle and had the greatest number
of cells from 17:00–19:00 h, or 4–6 h into the light cycle. As

N = 1 population diminished, the N = 2 and N = 4 populations
increased due to DNA replication. A large N = 4 population
emerged 10 h into the light cycle (23:00). At 14 h into the

FIGURE 5 | The effect of 5AZA on cellular characteristics, biomolecule composition, and global DNA methylation of P. soloecismus. (A) DNA ploidy was determined
using flow cytometry assessment of DyeCycle Orange fluorescence over 24 h. The histogram depicts quantitative assessment as measured by the number of cells
with DCO fluorescence (fraction of events) in the appropriate gates (N = 1, 2, 4) every 2 h over a 24 h period. N indicates relative ploidy, where N = 1 is haploid, N = 2
is diploid, etc. DCO intensity was measured in duplicate and data are shown as mean ± SD (standard deviation). The 16:8 light/dark cycle is indicated on the graph:
lights were turned off at 5:00 AM and on at 13:00 (1:00 PM). The maximum number of cells in haploid state before DNA replication is between 17:00 and 19:00 and
thus indicates the appropriate time for 5AZA treatment indicated on graph. (B) P. soloecismus shaker cultures were treated daily 4–5 h into the light cycle with
20 µM 5-aza-2′deoxycycdine (5AZA). Optical density (OD750nm) was assessed to track growth (prior to 5AZA treatment each day). Treatment with 20 µM 5AZA
significantly altered the optical density of P. soloecismus after 4 days of treatment; this effect is perpetuated throughout the entire time course (p < 0.0001).
Bonferroni post hoc correction was performed for Student’s t-tests; the significance of those post hoc assessments is shown on the graph. (C) Cell counts were
determined for Days 4–16 in culture in control and 20 µM 5AZA treated P. soloecismus cultures; there was no significant effect of 5AZA treatment. (D) Forward
scatter (FSC) was determined for Days 4–16 in culture in control and 20 µM 5AZA treated P. soloecismus cultures; an initial effect of 5AZA treatment was observed
but not propagated throughout the time course. Significant Bonferroni corrected post hoc analyses are shown on the graph with asterisks for Days 6 and 8 in
culture. (E) Side scatter (SSC) was determined for Days 4–16 in culture in control and 20 µM 5AZA treated P. soloecismus cultures; a significant effect of 5AZA
treatment on the complexity of cells across most of the time course was determined (p < 0.05). Significant Bonferroni corrected post hoc analyses are shown on the
graph with asterisks. (F) Lipid accumulation (as determined by BODIPY fluorescence) was determined for Days 4–12 in culture in control and 20 µM 5AZA treated
P. soloecismus cultures. Treatment with 5AZA after 6 days induced significant lipid accumulation in P. soloecismus, an effect that was perpetuated across the time
course (p < 0.0001). Bonferroni post hoc correction was performed for Student’s t-tests; the significance of those post hoc assessments is shown on the graph with
asterisks for Days 6, 8, 10, and 12 in culture. (G) Global DNA methylation was determined for Days 4–10 in culture in control and 20 µM 5AZA treated
P. soloecismus cultures; methylation ratios for CpG methylation across days in culture show no effect of 5AZA until Day 10 in culture (p < 0.05). (H) Methylation
ratios for CHG and (I) CHH sites across days in culture show no effect of 5AZA. For all graphs, N = 0 denotes nitrogen starvation in the culture, and data are
presented as mean ± SEM (standard error of the mean). * p < 0.05; ** p < 0.01; *** p < 0.001; and **** p < 0.0001.
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light cycle (3:00) the cells started to divide. Cell counts and
forward scatter (FSC, indicative of cell size) were also determined
for these times points. From these experiments, we determined
introduction of 5AZA prior to DNA replication would induce the
most efficacious phenotype. Thus, drug treatment occurred 4–5 h
into the light cycle (between 17:00 and 18:00).

5AZA Treatment Altered Growth of
P. soloecismus
Picochlorum soloecismus was cultivated in shaker flasks and
optical density measurements were taken approximately 4–5 h
into the light phase of growth every 24 h for 16 days. Algae
were treated with 0–20 µM 5AZA and the dose response
was determined (Supplementary Figure 2). Drug treatment
pharmacodynamics follow an inverted-U dose response with
low and high concentrations of the same drug not eliciting a
significant response (Tyler et al., 2018). We assessed 0–80 µM
of 5AZA treatment and found this inverted -U dose response
(data not shown); 20 µM 5AZA induced the most distinct growth
response. The treatment effect of 20 µM 5AZA was repeated with
biological triplicates and appropriate controls. Optical density at
750 nm (OD750) is an appropriate initial measurement of growth
phenotype for P. soloecismus. We did not observe a decrease
in OD750 in response to drug treatment as expected; in fact,
treatment with 20 µM 5AZA increased the OD750 (Figure 5B,
p < 0.0001). The effect of 5AZA treatment became apparent
(and significant) after 4 days of treatment in culture. Statistical
analysis suggested a significant main effect of time in culture and
treatment with 5AZA with a significant interaction between the
factors (p < 0.0001) (All ANOVA statistical analyses, including
F and p values are provide in Table 3). Nitrogen starvation
occurred on Day 6 of culture (data not shown) and may have
had a combined effect with 5AZA treatment. It is typical of all
algae cultures to utilize available nitrogen for rapid growth, and
thus, “nitrogen starvation” occurs later in cultivation (Sharma
et al., 2012; Banerjee et al., 2017). Overall, treatment with 20 µM
5AZA significantly altered the optical density of P. soloecismus
after 4 days of treatment; this effect was perpetuated throughout
the growth cycle (Figure 5B, p < 0.0001).

5AZA Treatment Altered Cellular
Characteristics and Biomolecule
Composition of P. soloecismus
Increased optical density of algae cells can result from a number
of cellular and physiological changes. Cell counts, forward scatter
(FSC, indicative of cell size), and side scatter (SSC, indicative of
cell complexity) were assessed via flow cytometry (Figures 5C–
E). Cell counts were not significantly impacted by 5ZA treatment
(Figure 5C), though this lack of significance is likely due to
the large variance in measurement. Both FSC and SSC were
impacted by 5AZA treatment in similar ways: initially 5AZA
significantly increased both FSC (Figure 5D, p < 0.01) and
SSC (Figure 5E, p < 0.001) until Days 8 and 10, respectively,
but this effect was abrogated as the days in culture increase.
In other studies of microalgae cultivation, lack of change in
cell counts accompanied by an increase optical density, FSC,

and SSC suggests altered cellular composition particularly of
biomolecules like neutral lipids (Bono et al., 2015; Gonzalez-
Esquer et al., 2019; Steadman Tyler et al., 2019). Using a BODIPY
fluorescent probe (Steadman Tyler et al., 2019), we found that
lipid accumulation was significantly increased after 4 days of
5AZA treatment (Figure 5F). This increase remained apparent
across the growth cycle of P. soloecismus (p < 0.0001). Every
day in culture had significantly increased lipid accumulation in
response to 5AZA (Figure 5F). While Day 4 showed a 22%
increase in lipid accumulation, this was not significant as the
coefficient of variance was 12.92 and 15.27 for the control
and 5AZA treated cultures, respectively. This increased variance
in measurement likely contributed to the lack of significance.
Similarly, Day 12 showed a 5% increase in lipid accumulation,
but the coefficient of variance was low for both control (0.72) and
5AZA treated cultures (1.98), providing statistical significance.
5AZA significantly increased lipid accumulation on Day 6 (32%),
Day 8 (66%), and Day 10 (31%) all of which had nominal
coefficients of variance (CoV < 1%) (All ANOVA statistical
analyses, including F and p values are provide in Table 3).

The Effect of 5AZA Treatment on DNA
Methylation in P. soloecismus
Whole genome bisulfite sequencing was performed on samples
treated with 5AZA across the time course (Days 4, 5, 6, 7, and
10 in culture). There was no change in total global methylation
for any cytosine context (CpG, CHH, and CHG) in response to
5AZA treatment except on CpG sites on the last day assessed (Day
10, p < 0.05 for CpG) (Figures 5G–I). The methylation ratios
across all called sites for each day in culture for all three replicates
were averaged for these calculations.

Treatment with 5AZA did not impact the percent of global
DNA methylation for the entire P. soloecismus genome. Yet,
for specific sites, 5AZA treatment induced hypomethylation and
hypermethylation (Figures 6A,B). Differences in methylation
ratios were determined for each day comparing control
versus 5AZA treated cultures. The most significant differences
(p < 0.05) were kept, and sites with methylation ratio differences
in the −0.1 < x < 0.1 range were trimmed from the analysis
(as performed in all analyses). Called sites were validated for
context and annotated (see methods). By Day 4 in culture, 855
sites were hypomethylated and 407 sites were hypermethylated
in response to 5AZA treatment (Figure 6A). The most significant
impact of 5AZA treatment occurred on Day 10 in culture: 2255
sites were hypermethylated and 161 sites were hypomethylated
(Figure 6A). Given that mitosis does not occur after Day 6
in culture, this effect is likely due to the lack of efficacy of
the 5AZA drug, which begins on Day 7 with 607 sites of
hypermethylation. Days 4, 6, and 10 had the most significant
effect of 5AZA coinciding with the most physiologically relevant
days in culture (Figures 5F, 6A). All sites with significant
methylation ratio differences (hyper and hypomethylation) are
provided in Supplementary Tables 5–9 for all days in culture;
these sites are also annotated. A subset of hypomethylated CpG
sites (∼190) in response to nitrogen starvation had significantly
differential methylation in response to 5AZA treatment on Day 4
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TABLE 3 | F and p-values for ANOVA statistical analyses.

Assessment Main effect of time in culture
(Factor 1)

Main effect of 5AZA
treatment (Factor 2)

Interaction between
factors

Post-hoc Analyses

Effect of time on CpG methylation ratios
(Figure 2F)
1-way ANOVA repeated measures

F (4,5) = 11.98
p = 0.0089

No AZA treatment N/A Tukey corrected post hoc:
Day 4 to Day 10: p < 0.05
Day 5 to Day 10: p < 0.01
Day 6 to Day 10: p < 0.05

Effect of 5AZA on optical density (Figure 5B)
2-way ANOVA repeated measures

F (12,120) = 2868
p < 0.0001

F (1,10) = 34.88
p < 0.0001

F (12,120) = 19.88
p < 0.0001

Bonferroni corrected post-hoc:
Days 4, 10, 11: p < 0.01
Days 5-10: p < 0.0001

Effect of 5AZA on cell counts (Figure 5C)
2-way ANOVA repeated measures

F (6,48) = 45.25
p < 0.0001

F (1,9) = 0.02904 ns F (6,48) = 2.778
p < 0.05

Bonferroni corrected post-hoc:
ns

Effect of 5AZA on forward scatter (FSC)
(Figure 5D)
2-way ANOVA repeated measures mixed
effects

F (2.482,24.21) = 431.1
p < 0.0001

Geisser-Greenhouse’s epsilon 0.4137

F (1,10) = 4.083
ns

F (6,59) = 3.721
p < 0.01

Bonferroni corrected post-hoc:
Day 6, 8: p < 0.05

Effect of 5AZA on side scatter (SSC)
(Figure 5E)
2-way ANOVA repeated measures mixed
effects

F (2.205,21.31) = 521.0
p < 0.0001

Geisser-Greenhouse’s epsilon 0.3675

F (1,10) = 9.694
p < 0.05

F (6,58) = 4.458
p < 0.001

Bonferroni corrected post-hoc:
Days 4 and 8: p < 0.01

Day 5: p < 0.001
Day 10: p < 0.05

Effect of 5AZA on lipid accumulation
(Figure 5F)
2-way ANOVA repeated measures

F (1.138,11.38) = 784.5, p < 0.0001 F (1,10) = 3677
p < 0.0001

F (4, 40) = 12.49
p < 0.0001

Bonferroni corrected post-hoc:
Day 6: p < 0.05

Day 8: p < 0.001
Days 10 and 12: p < 0.01

All ANOVA statistical analyses for each type of assessment is provided. The F and p-values for the main effect of time in culture, the main effect of treatment in culture,
the factors’ interaction, and any post-hoc analyses are listed.

of the time course (Figure 6C, p < 0.05). The methylation ratios
for the following days in culture, starting on Day 5 for control
cultures, were more similar (closer in color) to the 5AZA-treated
culture on Day 4. Thus, 5AZA-induced hypomethylation early
in treatment was similar to the hypomethylation that occurred
across the growth cycle in response to nitrogen starvation
(Figure 6C). This trend suggests that the 5AZA simply shifted
the hypomethylation status of specific sites sooner than would
normally occur during nitrogen starvation. For sites that were
significantly hypomethylated during the growth cycle that were
mapped to metabolic pathways deemed important for algal
biofuel species (Figure 4), the pattern was not as clear. These
sites were either not impacted by 5AZA or were hypomethylated
early after 5AZA treatment (Day 4); many of these sites
became hypermethylated after several days of 5AZA treatment
(Day 10) (Figure 7).

Interestingly, there was a subset of sites where 5AZA induced
significant hypomethylation on Day 4 and significant changes
in methylation ratio on Day 10 (Figure 8, p < 0.05). For this
analysis, sites with significant methylation differences between
−0.1 < x < 0.1 were not considered unless either Day 4 or Day
10 fulfilled the criteria for selection. All of these sites became
significantly hypomethylated across the time course without
5AZA treatment due to nitrogen starvation. Of note, a pattern
emerged of significant hypomethylation on Day 4 followed by
hypermethylation of the same site by Day 10 (Figure 8). The
genes associated with these sites did not fall into a particular
category. Of the 855 CpG sites that became hypomethylated on
Day 4 by 5AZA, 283 of these sites remained hypomethylated with
no significant change by Day 10 (Supplementary Figure 3).

There were several sites of cytosine methylation found
within or near genes involved in epigenetic regulation. Some
of these sites (CpG and CHG) became hypomethylated across
the time course (Figure 9) and were impacted by 5AZA
treatment; many of them became significantly hypermethylated
in response to 5AZA treatment by Day 10 in culture.
These sites included histone methyltransferases (MLL and
SET proteins), histone acetyltransferases (MYST1), histone
deacetylases (HDAC1/2), and chromatin remodeling proteins
(SWI/SNF). To date, histone modifications have not been
measured in P. soloecismus. However, this data suggests that this
microalgae may use histone modifications for regulation and
that these sites are themselves regulated by DNA methylation.
All Supplementary Tables can be found on FigShare (see
text footnote 3).

DISCUSSION

Approximately 40,000 species of microalgae have been reported,
though some estimates are double (Khan et al., 2018). Many
of these species have not been sequenced and even fewer have
epigenome characterization. The handful of algal methylomes
available do not show a distinctive pattern of DNA methylation;
further, there is some disagreement on the amount and
distribution of methylation within the same species (Hattman
et al., 1978; Feng and Chiang, 1984; Cerutti, 1997; Wu-Scharf
et al., 2000; Babinger et al., 2001, 2007; Jeong et al., 2002; Feng
et al., 2010a; Zemach et al., 2010; Maumus et al., 2011; Veluchamy
et al., 2014; Lopez et al., 2015). Collectively, the methylation
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FIGURE 6 | Sites-specific changes in CpG methylation ratios due to 5AZA treatment. (A) The number of CpG sites with significantly altered methylation ratios after
5AZA treatment (p < 0.05) per day in culture are shown. (B) The percent of hypomethylated or hypermethylated sites normalized to total sites affected by 5AZA per
day are shown. Green, hypomethylation; Red, hypermethylation (C) CpG sites in P. soloecismus that are significantly hypomethylated on Day 4 of 5AZA treatment
are shown. Methylation ratios from control and 5AZA treated cultures on Day 4 are side by side, followed by methylation ratios for control cultures for Days 5–10, all
of which are significantly hypomethylated. Methylation differences between control and 5AZA treated cultures on Day 4 are labeled as METHYL DIFF Day 4; all
methylation differences are significant (p < 0.05). Annotations (NSC_ID corresponding to the P. soloecismus genomic ID) and the KO (KEGG Orthologies, within
E-24) definitions are provided.
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FIGURE 7 | Hypomethylated CpG sites belonging to metabolic pathways important for algal biofuel characteristics are most impacted by 5AZA treatment on Day
10. CpG sites become hypomethylated across the growth cycle (in response to nitrogen starvation). Methylation differences across the growth cycle are labeled as
METHYL DIFF. All methylation differences are significant (p < 0.009). Significant differences in methylation ratios (–0.1 > x > 0.1) due to 5AZA treatment are outlined
in yellow boxes (p < 0.05). The p-values for methylation differences between control and 5AZA treated cultures for each site are labeled as “Day X Co vs. Aza DIFF.”
Annotations (NSC_ID corresponding to the P. soloecismus genomic ID) and the KO (KEGG Orthologies, within E-24) definitions are provided.

context, location, and percentage all vary significantly (so far);
this is likely due to the highly divergent nature of algal genomes.

Given the potential role of P. soloecismus in the future of
algae-based biofuel production, understanding even one small
aspect of its genomic regulation could have larger implications
for the algae field (Barry et al., 2016; Unkefer et al., 2017;
Gonzalez-Esquer et al., 2019). The three major findings of
this work are as follows: (1) P. soloecismus has a small

but quantifiable amount of global DNA methylation; (2) this
methylation changes during the growth cycle of P. soloecismus
in response to nitrogen starvation and 5AZA treatment,
leading to the induction of lipids; and (3) CpG sites exhibit
dynamic methylation in genes involved in fatty acid biosynthesis
and the cell cycle. All three findings suggest that epigenetic
regulation plays a key role in the growth and productivity
of P. soloecismus.
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FIGURE 8 | The top CpG sites with significantly altered methylation ratios due to 5AZA treatment on Day 4 and Day 10. Average methylation ratios are shown for
control and 5AZA treated cultures on Day 4 and Day 10. All methylation ratio differences between control and 5AZA treated cultures, labeled as METHYL DIFF Day 4
or Day 10, are significant (p < 0.05). Annotations (NSC_ID corresponding to the P. soloecismus genomic ID) and the KO (KEGG Orthologies, within E-24) definitions
are provided.

We determined the following features of DNA methylation
in P. soloecismus. First, the P. soloecismus genome encodes for
at least two putative DNA methyltransferases. Approximately
1.15% of the P. soloecismus 15.2 MB genome contains some
form of cytosine methylation. Contextually, this methylation
occurs in a bimodal distribution predominately in (∼12.1%)
CpG sites, though there are some (<1%) CHH and CHG

sites of methylation. Methylated sites are found in all genomic
features, though terminators have the most abundant CpG sites
per kilobase of the genome. For context, DNA methylation
in microalgae varies from less than 1% CpG methylation
in C. reinhardtii (Lopez et al., 2015) and Volvox carteri
(Babinger et al., 2007) to almost 80% CpG methylation in
Chlorella variabilis NC64A (Zemach et al., 2010).
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FIGURE 9 | CpG and CHG sites in P. soloecismus belonging to genes for chromatin modifying proteins with differential methylation ratios. Methylation ratios across
the growth cycle (control) and in response to 5AZA treatment are shown for sites annotated to epigenetic machinery. Significant hypomethylation across the growth
cycle (for controls) occurs for all sites shown (labeled as METHYL DIFF) (p < 0.009). Methylation ratios significantly altered by 5AZA are outlined in yellow with the
majority of differences (hypermethylation) occurring on Day 10 of 5AZA treatment. These are calculated by subtracting the methylation ratios for a specific day in the
controls from the 5AZA treated methylation ratios (i.e., methyl ratio Day 4 5AZA – methyl ratio Day 4 control). Annotations (NSC_ID corresponding to the
P. soloecismus genomic ID) and the KO (KEGG Orthologies, within E-24) definitions are provided.

We found that DNA methylation in P. soloecismus is dynamic
and responsive to the environment. Treatment of P. soloecismus
gDNA with a methylase derived from Escherichia coli increased
global DNA methylation, suggesting sites of methylation are
responsive to perturbation. Global hypomethylation on CpG sites
occurred across the growth cycle of P. soloecismus, potentially
in response to nitrogen starvation, with the greatest impact
occurring by Day 10 in culture under severe nitrogen depletion
conditions. We have previously observed that during nitrogen
starvation, P. soloecismus ceases dividing and accumulates
lipids in response to this stress. Several of the hypomethylated
CpG sites are annotated as genes in pathways involved
in lipid biosynthesis, including acetyl-CoA synthetase, long-
chain acyl-CoA synthetase, 3-ketoacyl-CoA synthetase, acetyl-
CoA carboxylase, and glutaryl-CoA dehydrogenase. Acyl-CoA
synthetases have been shown to stimulate the release of lipids
in C. reinhardtii (Jia et al., 2016), while acetyl-CoA production
is associated with increased lipid accumulation in green algae
(Avidan et al., 2015). The last step of lipid biosynthesis dependent
on acyl-CoA is catalyzed by diacylglycerol acyltransferase
(DGAT) (Wei et al., 2017); a CpG site within this gene (annotated
as diacylglycerol O-acyltransferase 2) became hypomethylated
across the growth cycle of P. soloecismus as well. Further,
several CpG sites within genes involved in glycolysis and
gluconeogenesis also became hypomethylated; the formation of
glucose 6-phosphate eventually leads to the synthesis of pyruvate
for fatty acid biosynthesis (Xue et al., 2017). This suggests

that DNA methylation plays a role in nitrogen responses in
P. soloecismus and potentially regulates genes that are involved
in stress responses and lipid accumulation.

To determine how important DNA methylation is for the
survival of P. soloecismus, we employed the use of 5AZA
in culture. Once inside a cell, 5AZA forms a covalent bond
with the DNA methyltransferase (DNMT) enzyme during
DNA replication and inhibits the DNMT from binding to the
newly synthesized DNA. Maintenance DNA methylation from
hemimethylated DNA on the lagging strand is impeded by
the presence of 5AZA. Over the growth cycle, daughter cells
generated during mitosis lose DNA methylation (Stresemann
and Lyko, 2008). Previous studies have demonstrated significant
DNA demethylation and cellular responses (including apoptosis
and DNA damage) after 5AZA treatment in several cell
types (Christman, 2002; Madlung et al., 2002; Chang and
Pikaard, 2005; Akimoto et al., 2007; Karahoca and Momparler,
2013). We anticipated that 5AZA would exert similar effects
on P. soloecismus.

We did not observe global changes in DNA methylation in
response to daily 20 µM 5AZA treatment: markedly, despite
obvious differences in phenotype, it seemed that cytosine
methylation was unaffected by the drug, except on Day 10 in
culture when there was a striking increase in global methylation
with drug treatment. Deeper analysis into site-specific changes
in methylation ratios in response to 5AZA provided a clearer
picture. 5AZA induced site-specific changes in DNA methylation
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for each day in culture: most sites became hypomethylated
early in treatment and then became hypermethylated after
several days of treatment. Given that P. soloecismus eventually
undergoes hypomethylation during its growth cycle (and
lipid accumulation), it is possible that 5AZA simply induced
hypomethylation early on these particular sites to drive the
same phenotype. This early hypomethylation pattern due to
5AZA treatment occurred on several genes involved in lipid
synthesis and the cell cycle, including on the CpG site within
diacylglycerol O-acyltransferase 2. As many as 40% of sites
became hypermethylated in response to 5AZA after several days
of 5AZA treatment; however, this hypermethylation coincided
with lack of cell division in P. soloecismus cultures. It is unlikely
that 5AZA interfered with de novo methylation; thus, the reversal
in the methylation pattern was likely due to lack of efficacy
of 5AZA given that mitosis had ceased. A subset of genes
involved in fatty acid synthesis and elongation have CpG sites
and were hypomethylated by 5AZA treatment on Day 6. These
included the very-long-chain enoyl-CoA reductase (TER), which
catalyzes the last of the four reactions of the long-chain fatty
acids elongation cycle; DGAT1, an enzyme that catalyzes the
terminal and only committed step in triacylglycerol synthesis
by using diacylglycerol and fatty acyl CoA as substrates; and
phosphoglycolate phosphatase, which regulates the cellular levels
of glycerol-3-phosphate (a metabolic intermediate of glucose)
and thus lipid and energy metabolism (Mueller et al., 2017). Thus,
while we did not observe global hypomethylation in response
to 5AZA treatment, these site specific changes may have been
sufficient to alter phenotype.

One of the more interesting findings in this study was the
significant hypomethylation of CpG and CHG sites located
within genes encoding for chromatin modifying enzymes. These
included histone methyltransferase and demethylases, histone
acetyltransferases and deacetylases, and the SWI/SNF chromatin
remodeling complex. Histone modifications have yet to be
measured in P. soloecismus; however, the data suggests that
in addition to DNA methylation, P. soloecismus may use
histone modifications. The enzymes responsible for histone
modifications are themselves regulated by DNA methylation and
responsive to environmental conditions during growth of this
species. Indeed, 5AZA treatment altered the methylation ratios
of many of these sites within chromatin modifying genes. Several
studies demonstrate the importance of histone modifications
in regulation of the life cycle and even lipid metabolism in
C. reinhardtii (Waterborg et al., 1995; van Dijk et al., 2005; Casas-
Mollano et al., 2007; Ngan et al., 2015). Our ongoing efforts in
analyzing genomic regulation of P. soloecismus will explore these
mechanisms as well.

In addition to altering methylation ratios on specific CpG
sites, 5AZA treatment, remarkably, impacted the phenotype of
P. soloecismus during the growth cycle. Significant increases in
optical density, cell size, cell complexity, and accumulation of
lipid biomolecules resulted from 5AZA treatment. 5AZA did not
statistically impact cell proliferation, though the variance in this
measurement was large. Given the limited number of studies on
the effects of 5AZA in microalgae cultures (Xue et al., 2019), it is
difficult to put these findings into context. To our knowledge this

is the first report of repeated treatments with 5AZA for any algae
species. In microalgae cultivation, an increase in optical density,
cell size, and cell complexity accompanied by a lack of cellular
proliferation, suggests that cellular composition has changed.
Using an established flow cytometry assay for assessing lipid
content (Steadman Tyler et al., 2019), we measured a significant
increase in lipids in the 5AZA treated cultures, beginning on
Day 6 in culture. This increase was as much as 66% by Day
8 in culture. Lipid accumulation is a hallmark phenotype that
algal researchers seek in selecting a biofuel platform species.
Potentially, this finding has far reaching implications, suggesting
that manipulation of DNA methylomes (and perhaps other
epigenetic modifications) could drive microalgae phenotypes
toward any desired feature, including lipid accumulation.

CONCLUSION

We sought to determine the role DNA methylation plays in
regulating growth and lipid accumulation of P. soloecismus, a
promising algal biofuel production species. We found genomic
sequences for putative DNA methyltransferase enzymes, and
initially measured low, but adaptable, 5mC levels. WGBS
revealed that approximately 1.15% of the P. soloecismus genome
contains cytosine methylation in all three contexts, localized
to several genomic regions, with approximately 12.1% CpG
methylation. The genome becomes hypomethylated across the
algal growth cycle, suggesting that nutrient deprivation has an
impact on epigenetic regulation of the P. soloecismus genome.
DNA methylation was further altered by treatment with a
DNA methyltransferase inhibitor, 5AZA, across the growth
cycle. Hypomethylation of site-specific CpGs in genes involved
in fatty acid synthesis and the cell cycle correlated with
changes in phenotype, including larger cell size and complexity
and accumulation of lipids. Potentially, DNA methylation
regulates the cellular response to environmental stressors, such
as nitrogen limitation, resulting in carbon sequestration into
lipid biomolecules; deeper molecular investigation is needed to
assess the validity of this assertion. This is the first report on
manipulation of epigenetic mechanisms in algae for the purposes
of enhanced biofuel production.
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SUPPLEMENTARY FIGURE 1 | Global DNA methylation of P. soloecismus
determined by ELISA. P. soloecismus gDNA percent 5mC was determined using
an antibody-based ELISA. P. soloecismus gDNA contains 0.82% 5mC content,
while P. soloecismus gDNA treated for 12 h with CpG methylase has 1.3% 5mC
content (p < 0.0001); comparison done using Student’s t-test. Data are presented
as mean ± SEM (standard error of the mean).

SUPPLEMENTARY FIGURE 2 | Dose response of P. soloecismus after treatment
with 5AZA. P. soloecismus shaker cultures were treated daily 4–5 h into the light
cycle with 0, 5, 10, and 20 µM 5-aza-2′deoxycycdine (5AZA). Prior to treatment
each day, optical density (OD750nm) was assessed to track growth. 20 µM 5AZA
induced the greatest change in optical density of the cultures after
4 days of treatment.

SUPPLEMENTARY FIGURE 3 | Top CpG sites with the largest methylation ratio
differences between control and 5AZA treated cultures on Day 4. These sites

remain hypomethylated through the time course. Average methylation ratios are
shown for control and 5AZA treated cultures on Day 4. Methylation ratio
differences between control and 5AZA treated cultures on Day 4 are labeled as
METHYL DIFF and are significant (p < 0.05). Annotations (NSC_ID corresponding
to the P. soloecismus genomic ID) and the KO (KEGG Orthologies, within E-24)
definitions are provided.

SUPPLEMENTARY TABLE 1 | All cytosine sites called from whole genome
bisulfite sequencing analysis (WGBS).

SUPPLEMENTARY TABLE 2 | All significantly hypomethylated CpG sites for all
days in culture.

SUPPLEMENTARY TABLE 3 | All significantly hypermethylated CpG sites across
all days in culture with KO annotations.

SUPPLEMENTARY TABLE 4 | Hypomethylated CpG sites belonging to
specific KO pathways.

SUPPLEMENTARY TABLE 5 | Day 4 in culture with 5AZA treatment; all
significantly hypomethylated and hypermethylated CpG
sites.

SUPPLEMENTARY TABLE 6 | Day 5 in culture with 5AZA treatment; all
significantly hypomethylated and hypermethylated CpG sites.

SUPPLEMENTARY TABLE 7 | Day 6 in culture with 5AZA treatment; all
significantly hypomethylated and hypermethylated CpG sites.

SUPPLEMENTARY TABLE 8 | Day 7 in culture with 5AZA treatment; all
significantly hypomethylated and hypermethylated CpG sites.

SUPPLEMENTARY TABLE 9 | Day 10 in culture with 5AZA treatment; all
significantly hypomethylated and hypermethylated CpG sites.
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Apoptosis plays an important role during development, control of tissue homeostasis
and in pathological contexts. Apoptosis is executed mainly through the intrinsic pathway
or the death receptor pathway, i.e., extrinsic pathway. These processes are tightly
controlled by positive and negative regulators that dictate pro- or anti-apoptotic death
receptor signaling. One of these regulators is the Fas Apoptotic Inhibitory Molecule
(FAIM). This death receptor antagonist has two main isoforms, FAIM-S (short) which
is the ubiquitously expressed, and a longer isoform, FAIM-L (long), which is mainly
expressed in the nervous system. Despite its role as a death receptor antagonist, FAIM
also participates in cell death-independent processes such as nerve growth factor-
induced neuritogenesis or synaptic transmission. Moreover, FAIM isoforms have been
implicated in blocking the formation of protein aggregates under stress conditions
or de-regulated in certain pathologies such as Alzheimer’s and Parkinson’s diseases.
Despite the role of FAIM in physiological and pathological processes, little is known
about the molecular mechanisms involved in the regulation of its expression. Here, we
seek to investigate the post-transcriptional regulation of FAIM isoforms by microRNAs
(miRNAs). We found that miR-206, miR-1-3p, and miR-133b are direct regulators of
FAIM expression. These findings provide new insights into the regulation of FAIM and
may provide new opportunities for therapeutic intervention in diseases in which the
expression of FAIM is altered.

Keywords: microRNA, neurodegenerative diseases, nervous system, death receptor, FAIM, Fas apoptotic
inhibitory molecule

INTRODUCTION

Several types of molecules are able to block apoptotic pathways, conferring cells with protection
against threatening stimuli. The extrinsic apoptotic pathway is mediated by death receptors
that integrate and transmit the extracellular apoptotic stimuli. In the last 20 years, mounting
evidence has shed light on the physiological and pathological functions of these molecules and
has widened the array of identified responses elicited by these receptors beyond cell death.
Indeed, Fas receptor and TNF receptors (TNFRs) are paradigmatic cases of receptors that can

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 December 2020 | Volume 8 | Article 584606120

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2020.584606
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2020.584606
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2020.584606&domain=pdf&date_stamp=2020-12-23
https://www.frontiersin.org/articles/10.3389/fcell.2020.584606/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-584606 December 18, 2020 Time: 18:54 # 2

Coccia et al. Regulation of FAIM by miRNAs

trigger apoptotic and non-apoptotic responses depending on the
cellular and molecular context (Marques-Fernandez et al., 2013).

The molecular response upon death receptor activation,
depends on the activity of proteins called death receptor
antagonists. Among these, FAIM (Fas apoptosis inhibitory
molecule) was first identified as a negative regulator of Fas
signaling (Schneider et al., 1999). It was later found to play
multifaceted roles in other physiological processes such as the
protective or deleterious effects of TNFα in neurodegenerative
disorders (Carriba et al., 2015), regulating axon-selective
pruning, hippocampal long-term depression (LTD) (Martinez-
Marmol et al., 2016) and opposition to stress-induced
accumulation of protein aggregates (Kaku and Rothstein, 2020).

Two main FAIM isoforms generated by alternative splicing
have been found at the protein level. While the shorter isoform,
named FAIM-S, is ubiquitously expressed, FAIM-L is expressed
exclusively in neurons and testes (Zhong et al., 2001; Segura et al.,
2007). In the nervous system, FAIM-S participates in neurite
outgrowth by activating Ras-ERK and NF-κB pathways. On the
other hand, FAIM-L has been shown to modulate death receptor-
induced apoptosis and caspase activation by binding to the
receptor (Segura et al., 2007), as well as through interaction with
X-linked inhibitor of apoptosis (XIAP) (Moubarak et al., 2013).

Alterations in the expression of FAIM may be relevant in
several types of human diseases. For example, in multiple
myeloma (MM) patients, FAIM expression is increased in B
lymphocyte cells compared with normal individuals and its
expression is higher in symptomatic MM patients compared with
asymptomatic and premalignant individuals (Huo et al., 2013).
FAIM expression is also elevated in CD34 hematopoietic stem
cells and leukocytes. This deregulation is associated with chronic
myeloproliferative pathogenesis (Tognon et al., 2011).

Other results show FAIM as an important molecule in
metabolic processes. When both isoforms of FAIM are knocked
out, mice spontaneously develop non-hyperphagic obesity, as
well as also manifest hepatosteatosis, adipocyte hypertrophy,
dyslipidemia, hyperglycemia, and hyperinsulinemia. In obese
patients, FAIM expression is lower in blood cells and is inversely
correlated with insulin resistance biomarkers (Huo et al., 2016).

Moreover, FAIM-L levels have been found to be relevant in
neurodegenerative diseases. FAIM-L was found to be reduced
in the hippocampus of Alzheimer’s disease patients (Carriba
et al., 2015) and in the entorhinal and hippocampal cortex of
Alzheimer’s disease mouse models (APP-PS1) (Carriba et al.,
2015). In Parkinson’s disease, the expression of FAIM-L was
found to be reduced in midbrain dopaminergic neurons after
trophic factor deprivation, as well as to sensitize them to Fas-
induced cell death (Yu et al., 2008). Recent findings also show
that FAIM could play a role in Amyotrophic Lateral Sclerosis
inhibiting the aggregation of mutant SOD1, suggesting that FAIM
participates in maintaining cell homeostasis (Kaku and Rothstein,
2020). Kaku et al. (2020) also described that FAIM is recruited
to cellular stress-induced ubiquitinated proteins, and the levels
of stress-induced protein aggregates are much greater in FAIM-
deficient cell lines.

Despite the pathological consequences of FAIM de-regulation,
little is known about how its expression is modulated. Kaku et al.

reported that murine Faim promoter contains three interferon
regulatory factor (IRF) binding sites, and Faim expression is
positively regulated through IRF4 in primary B cells (Kaku and
Rothstein, 2009). At post-transcriptional level, FAIM can also
be regulated by MicroRNAs (miRNAs) (Patron et al., 2012;
Santosa et al., 2015). MiRNAs are short non-coding RNA of
18–25 base pairs in length that are involved in the regulation of
gene expression at the post-transcriptional level. Mature miRNAs
repress gene expression through binding to the 3′UTR of the
mRNA with the miRNA seed region, a 6–8 bases located at
the 5′ end of the mature miRNA and perfectly complementary
to the target mRNA sequence (Mullany et al., 2016), thereby
inhibiting mRNA translation or inducing mRNA degradation
(Alvarez-Garcia and Miska, 2005; Shingara et al., 2005). Thus far,
the evidence of FAIM being regulated by miRNA was reported
by Patron and colleagues who showed that miR-133b directly
impairs the expression of FAIM, thereby enhancing Fas-induced
cell death in HeLa and PC3 cells (Patron et al., 2012).

Owing to the pathological consequences that FAIM de-
regulation may have for certain human diseases like are those
involved in neurodegeneration, we sought to screen for other
miRNA that could bind to the FAIM 3′UTR and modulate its
expression. Our study identified miR-206, miR-1-3p and miR-
133b as direct regulators of FAIM, thereby providing a deeper
knowledge on the FAIM regulation mechanisms and opening up
new opportunities for therapeutic intervention.

MATERIALS AND METHODS

FAIM 3′UTR Analysis
The miRWalk 2.0 database using five miRNA-target
prediction algorithms (miRDB (RRID:SCR_010848), miRWalk
(Vlachos et al., 2015), miRanda (Betel et al., 2010), miRMap
(RRID:SCR_016508) and TargetScan; version 6.2 (Agarwal
et al., 2015) were used for the computational miRNA target
prediction analysis. The miRNA target search was restricted to
the 3′UTR of FAIM and with a minimum complementarity of
7 nucleotides in the seeding region. Probability distribution of
random matches was set at 0.05 (Poisson p-value). MiRNAs
with p ≤ 0.05 predicted by all five algorithms were selected for
further analysis.

Cell Culture and Transfection
SH-SY5Y (Cat# CRL-2266, RRID:CVCL_0019), SK-N-AS (Cat#
CRL-2137, RRID:CVCL_1700), HEK293T (Cat# CRL-3216,
RRID:CVCL_0063) and HeLa (CLS Cat# 300194/p772_HeLa,
RRID:CVCL_0030) cell lines were purchased from American
Type Culture Collection (ATCC, Rockville, MD, United States).
SH-SY5Y, SK-N-AS and HEK293T were grown in Dulbecco’s
modified Eagle’s medium (DMEM, Thermo Fisher Scientific,
Waltham, MA, United States) containing 10% fetal bovine
serum (HEK293T, SK-N-AS) or 15% fetal bovine serum (SH-
SY5Y) (Thermo Fisher Scientific, Waltham, MA, United States).
HeLa cells were cultured in Roswell Park Memorial Institute
(RPMI) 1640 (Thermo Fisher Scientific) supplemented with
10% fetal bovine serum, sodium pyruvate 1 mM (Thermo
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Fisher Scientific) and 1% of non-essential amino acids (Thermo
Fisher Scientific). All media were supplemented with 100 U/mL
penicillin, 100 µg/mL streptomycin (Thermo Fisher Scientific)
and 5 µg/mL PlasmocinTM (InvivoGen). Culture conditions were
maintained at 37◦C in a humidified atmosphere containing 5%
CO2. For miRNA transfection, SH-SY5Y, SK-N-AS and HeLa
were seeded at 6 × 105, 4.5 × 105, and 4 × 105 cells in
60 mm dishes, respectively, and transfected 24 h later with
the indicated miRIDIAN microRNA mimic oligonucleotides
(25 nM, Dharmacon), GE Healthcare using Lipofectamine 2000
transfection reagent (Thermo Fisher Scientific, Waltham, MA,
United States), following the manufacturer’s instructions. Mimic
Transfection Control with Dy547 was used as a negative control.

Luciferase Reporter Assay
Wild type and mutated 3′UTR sequences of FAIM were
synthetized using the GeneArt Gene synthesis platform (Thermo
Fisher Scientific, Waltham, MA, United States) and cloned into
the psiCheckTM-2 dual luciferase reporter vector (Promega,
C8021). For luciferase assays, HEK293T (Cat# CRL-3216,
RRID:CVCL_0063) cells were co-transfected with 50 ng of
psiCheckTM-2 vectors containing wild type or mutated FAIM
3′UTR and 25 nM of the indicated miRNAs, using Lipofectamine
2000 (Invitrogen, Carlsberg, CA, United States), following the
manufacturer’s protocol. Luciferase activity was measured 24 h
post-transfection using the Dual Luciferase Reporter Assay
System (Promega Corporation, Madison, WI, United States).
Luminescence was measured in an Appliskan (Thermo Fisher
Scientific) microplate reader. Renilla luciferase activity was
normalized to corresponding firefly luciferase activity and plotted
as a percentage of the control.

Quantitative Real-Time PCR
Total RNA, including small RNA, was isolated from human
cell lines using the miRNeasy Mini Kit (Qiagen) following the
manufacturer’s instructions. Equal amounts of RNA (1 µg) were
converted to cDNA using the High Capacity RNA-to-cDNA Kit
(Applied Biosystems), following the manufacturer’s instructions.
The quantitative real-time PCR (RT-qPCR) was performed
using TaqMan Universal PCR Master Mix Kit (Thermo Fisher
Scientific). Samples were subjected to a PCR amplification
protocol using an AB7900HT Real Time PCR System (Thermo
Fisher Scientific, Waltham, MA, United States) using the
following primers for FAIM-L (Hs00992098_m1;Thermo
Fisher Scientific, Waltham, MA, United States) and for FAIM
(Hs00216756_m1; Thermo Fisher Scientific, Waltham, MA,
United States). The PCR conditions were: 94◦C for 3 min,
40 cycles of 45 s at 94◦C, followed by 30 s at 55◦C, 72◦C for
1 min and 72◦C for 10 min. The data were analyzed using the
SDS 2.3 software (Thermo Fisher Scientific, Waltham, MA,
United States) and normalized using GAPDH as a housekeeping
gene. TaqMan MicroRNA Assay (Applied Biosystems) was used
to convert miRNA to cDNA for the analysis of mature miRNAs.
cDNA was quantified by Taqman Universal Master Mix (Applied
Biosystems). MiRNA expression was normalized against RNU-44
small RNA. The reactions were performed in triplicate for each

sample and incubated in optical 384-well reaction plates. FAIM
mRNA expression level was calculated as (Rao et al., 2013).

Western Blot
Proteins were extracted using SET lysis buffer [10 mM Tris–
HCl pH7.4, 150 mM NaCl, 1 mM EDTA and 1% sodium
dodecyl sulfate (SDS)] and then quantified using a modified
Lowry assay (DC protein assay, Bio-Rad). Equal amounts of
protein (30 µg per lane) were separated by 10% sodium
dodecyl sulfate polyacrylamide gel (SDS-PAGE) electrophoresis,
and then transferred onto a polyvinylidene fluoride membrane
(PVDF, Merck Millipore, MA, United States). Membranes were
blocked with 5% non-fat milk at room temperature for 1 h
and then incubated with the primary antibodies against FAIM
(1:1000) (Segura et al., 2007) and α-tubulin (1:10000, Cat#
T9026, RRID:AB_477593;Sigma-Aldrich) overnight at 4◦C. The
membranes were then incubated with horseradish peroxidase-
conjugated goat anti-rabbit IgG secondary antibody (1:10000,
Cat# AP132, RRID:AB_11214051;Sigma-Aldrich) and anti-
mouse (1:20000, Cat# AP124, RRID:AB_92455;Sigma-Aldrich)
for 1 h at room temperature. An enhanced chemiluminescence
detection System, EZ-ECL detection kit (Biological Industries)
was used to develop signals, using α-tubulin as a loading control.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism 7.0.
All data in this study were shown as the mean of three
independent experiments ± SEM. Statistical differences in
multiple groups were examined by one-way ANOVA followed by
Dunnett’s multiple range test. P value < 0.05 was considered as
statistically significant.

RESULTS

Five MiRNAs Are Predicted to Target
FAIM by Five Different MiRNA-Binding
Algorithms
In order to screen for potential miRNAs able to modulate the
expression of FAIM, we compared the prediction of putative
miRNA-binding sites in the 3′UTR of FAIM from five different
prediction algorithms, i.e., TargetScan, miRanda, miRWalk,
miRMap, and miRDB (see Supplementary Table 1). When
predictions from the different algorithms were overlapped, five
miRNAs were commonly found, namely miR-140-3p, miR-206,
miR-1-3p, miR-133a-3p, and miR-133b (Figure 1A). The two
main isoforms codified by FAIM gene, FAIM-S and FAIM-L,
differ in their 5′UTR composition, and in the inclusion of the
exon 2b in the neuronal isoform FAIM-L. On the other hand,
the 3′ UTR which includes the predicted target sites of these 5
miRNAs, is common to both isoforms (Figure 1B). Of note, while
the protein sequence is highly conserved during the evolution,
the 3′UTR, and more precisely, the identified miRNA-binding
sites are conserved only among vertebrates, thereby suggesting
that this mechanism of regulation was incorporated lately in the
evolution (Supplementary Figure 1).
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FIGURE 1 | In silico screening for potential FAIM targeting miRNAs. (A) Venn diagram showing the overlap of potential FAIM 3′UTR binding miRNAs using five target
prediction tools. (B) Schematic representation of the two main FAIM isoforms. Labels shows the miR-140-3p (blue), miR-206/miR-1-3p (pink) and
miR-133a-3p/miR133b (green) binding sites in the 3′UTR of FAIM. UTR: untranslated region; CDS: coding sequence.
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MiR-206, MiR-1-3p and MiR-133b Can
Bind Directly to the 3′UTR of FAIM
To confirm whether the identified miRNAs are truly direct
regulators of FAIM expression, a luciferase-reporter vector
containing the wild type 3′UTR was cloned and co-transfected
with control mimic oligonucleotides or the indicated miRNA
mimics. Since miR-133a-3p and miR-133b are almost identical
(20/21 nucleotides) and share the exact same seed region, we
proceeded with our analyses only with miR-133b. A remarkable
reduction in luciferase activity was observed upon transfection of
miR-206, miR-1-3p, and miR-133b but not with the transfection
of miR-140-3p (Figure 2A). The 3′UTR region of FAIM contains
one binding site common to miR-206 and miR-1-3p, and one
binding site for miR-133b. In order to confirm the interactions
were sequence specific we engineered specific mutations in the
3′UTR, giving rise to correspondingly 3′UTR mut206/1-3p and
3′UTR mut 133b, respectively (Figure 2B). Luciferase activity
reduction found in the wild type- 3′UTR was almost completely
restored to control levels when miRNAs were co-transfected with
the respective 3′UTR mutated forms (Figure 2C). Of note, Clip-
seq data mining also showed binding of Ago2 in the 3′UTR of
FAIM for miR-133a-3p, miR-133b, miR-206, and miR-1-3p but
not for miR-140-3p (Supplementary Table 2). Overall, we were
able to show that miR-206, miR-1-3p, and miR-133 have the
capacity to directly bind FAIM 3′UTR.

MiR-206, MiR-1-3p, and MiR-133b
Modulate FAIM Expression
To elucidate whether the direct binding of miRNAs to the
3′UTR causes a downregulation of FAIM expression, we decided
to transfect miRNA mimics oligonucleotides into human cells
lines that could represent different tissues where one or both
FAIM isoforms are expressed (Figure 3A). On the one hand, we
selected the neuroblastoma cell line SH-SY5Y that express both
FAIM-L and FAIM-S, and SK-N-AS that only express FAIM-S.
Furthermore, we added HeLa cells, since is one of the few models
where the functionality of FAIM in human models has been tested
(Patron et al., 2012). The expression at mRNA and protein levels
was measured in the indicated cell lines after transfection of miR-
140-3p, miR-206, miR1-3p, and miR-133b (Figures 3B,C). While
miR-140-3p did not modulate the levels of FAIM in any of the cell
lines tested, transfection of miR-206, miR-1-3p, and miR-133b
caused a ∼2-fold reduction in FAIM mRNA levels (Figure 3B).
Similarly, FAIM protein levels decreased in presence of miR-
206, miR1-3p, and miR-133b overexpression in the three cell
lines tested (Figure 3C). Overall, we were able to confirm that
among the predicted miRNAs targeting FAIM 3′UTR, miR-206,
miR-1-3p, and miR-133b regulate FAIM isoforms levels, while
miR-140 does not.

DISCUSSION

Death receptor-induced cell death is essential during
development due to its role regulating tissue homeostasis
and differentiation. In the adult, death receptor signaling can be
important under physiological or pathological circumstances.

FAIM acts as a death receptor antagonist by binding directly to
the death receptor (Segura et al., 2007) or by interacting with
downstream effectors such as X-linked inhibitor of apoptosis
protein (XIAP) (Moubarak et al., 2013). De-regulation of
FAIM is associated with the pathophysiology of cancer and
neurodegenerative diseases among others. In Alzheimer’s
disease (AD), the levels of FAIM-L were shown to be decreased
according to Braak stages in AD patients (Braakman et al., 1991;
Carriba et al., 2015). At molecular level, FAIM-L levels reduction
abolished TNFα protection against amyloid-β neurotoxicity
(Carriba et al., 2015). Thus, a better understanding on how
FAIM levels are modulated can be paramount for better
characterization of human disease and for the design of new
therapeutic approaches.

MiRNAs have important roles in regulating diverse biological
processes, such as cell proliferation, immunity, development,
differentiation, metabolism and cell death, and generally they
act as a negative feedback factor in cell signaling (Ha, 2011).
Furthermore, miRNA deregulation is a frequent event in human
disease, and they can be used as therapeutic tools to treat
pathologies with unbalanced cell death and survival pathways
(Paul et al., 2018).

We found that miR-206, miR-1-3p, and miR-133b directly
regulate FAIM by binding to 3′UTR, decreasing the mRNA
and protein levels. MiR-133b has already been described to
target FAIM in PC3 and HeLa cells (Patron et al., 2012). The
authors showed that FAIM silencing or miR-133b overexpression
exacerbated death receptor-induced cell death. Our results
confirmed that miR-133b is a direct regulator of FAIM in
a broader spectrum of cell types including the neuronal
lineage. As regards the potential connection of miR-133b-FAIM
in neurodegenerative diseases, Jimenez-Jimenez et al. (2014)
reported that variations in miR-133b could contribute to the risk
of developing Parkinson’s disease. In this regard, the expression
of FAIM-L was also described to be reduced in dopaminergic
neurons in Parkinson’s disease (Yu et al., 2008), thus making
this type of neurons more vulnerable to Fas-induced death.
Thus, high levels of miR-133b could contribute to lowering the
expression of FAIM in these neurons. However, in Alzheimer’s
disease, miR-133b was found to be significantly downregulated
after Aβ25-35 treatment (Yang et al., 2019). In a different study,
FAIM levels also appear to be reduced in hippocampal samples
from AD patients (Carriba et al., 2015), thus suggesting that
the miR-133b-FAIM axis would not be relevant in this disease
and opens up the question of whether other miRNAs could be
responsible for FAIM downregulation.

Here, we report, for the first time, that miR-206 and miR-
1-3p can also be direct modulators of FAIM. Interestingly,
miR-206 and miR-1-3p belong to the same miRNA family,
which means that, they share the same seed region, thereby
suggesting a major overlap in their targets. Furthermore, miR-
206, is clustered with miR-133b in the short arm of chromosome
6, indicating that these miRNAs can be co-regulated and
provide a strong mechanism in the regulation of FAIM. MiR-
206 was found to be significantly upregulated in blood samples
from Alzheimer’s disease patients compared with age-matched
normal controls. Furthermore, upregulation of miR-206 has
been detected in serum from patients with mild cognitive
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FIGURE 2 | miR-206, miR-1-3p, and miR-133b bind directly to FAIM 3′UTR. (A) Dual luciferase activity assay in HEK293T cells after the transfection of 25 nM of the
indicated miRNAs using psiCheckTM-2 vectors encoding the wild type 3′UTR of FAIM. (B) Schematic representation of the indicated miRNA binding sites in the wild
type (wt) and mutated (mut) 3′UTR of FAIM. The mutated nucleotides are indicated in red. (C) Dual luciferase activity assay in HEK293T cells after the transfection of
25 nM of the indicated miRNAs using psiCheckTM-2 vectors encoding the wild type and mutated forms of FAIM 3′UTR. Graph represents the values of luciferase
activity and are the mean of three independent experiments ± SEM. *P < 0.05, **P < 0.01, and ***P < 0.001, compared with control vector. ##P < 0.05 compared
with the wild type 3′UTR of FAIM.
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FIGURE 3 | FAIM expression is modulated by miR-206, miR-1-3p, and miR-133b. (A) MiRNAs expression levels were assessed by RT-qPCR. (B) SK-N-AS,
SH-SY5Y and HeLa cells were transfected with 25 nM of miR-140-3p, miR-206, miR-1-3p, miR-133b or a control miRNA (miR-Scr) and FAIM mRNA expression
levels were assessed by RT-PCR. (C) Representative western blots of FAIM in neuroblastoma and HeLa cells transfected with the indicated miRNAs. Lower panels
show the quantification of the band intensity of the western blots normalized to the control miRNA (miR-Scr) condition. *Unspecific band. Graphs represent the mean
of four independent experiments ± SEM. Tubulin was used as a loading control. *P < 0.05, **P < 0.01, ***P < 0.005.
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impairment (Xie et al., 2015), and in the temporal cortex of
human AD brains (Lee et al., 2012). Previous studies using
microglial BV-2 cells and miR-206 mimics demonstrated that
a pro-inflammatory stimulus (LPS treatment), increased miR-
206 expression and enhanced the release of pro-inflammatory
cytokines, including IL-1β and TNFα. Thus, in a scenario with
high levels of TNFα and low levels of FAIM as reported in some
neurodegenerative diseases, TNFα signaling can be switched
from a pro-survival to a pro-apoptotic response. Previous results
from our lab showing that Aβ treatment decreased the levels
of FAIM-L and blocked TNFα protection against Aβ toxicity
(Carriba et al., 2015) would support this hypothesis.

To date, there are no effective therapies for these diseases
and new strategies are needed. Given the encouraging results
of profiling studies and preclinical testing, miRNAs are now
being integrated into human clinical trials. For example,
miR-122 has successfully reached clinical trials as a targeted
therapy for hepatitis C (Lanford et al., 2010). Disrupting the
miRNA-mediated reduction of anti-apoptotic proteins such as
FAIM, could represent a new neuroprotective strategy against
neurodegenerative diseases such as Alzheimer’s or Parkinson’s.
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