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With the increasing number of neuroimaging 
studies appearing yearly in the literature, 
the need to consider the synthesis of the 
underlying data into new knowledge and 
research directions has never been more 
important. The development of large-scale 
databases and grid-enabled computing has 
laid the groundwork for mining these rich 
datasets beyond the scope of their initial 
collection. Additionally, meta-analyses of 
the summary results contained in published 
research articles have provided a powerful way 
to explore hidden trends in the neuroscience 
literature. In each case, the processing of 
data requires a careful consideration of the 
individual processing steps involved and 

how they can be assembled into reliable workflows. In results from published studies, the 
manner in which data were processed may influence meta-analytic results which can have 
implications on clinical interpretation. Several efforts now exist that provide tools for use 
in the construction of data processing workflows. However, careful thought must be given 
to ensuring appropriate, efficient, optimal, and replicable processing. The results obtained 
from data-mining and meta-analysis must tell a story about a collection of existing data. Also 
they must suggest novel and testable hypotheses for further investigation with implications 
for understanding of the brain in health and disease. Where they do, these new results and 
interpretations often provide fresh insights into the data that extend beyond the rationale for 
their original collection. In this volume, we have asked leaders in the field of neuroimaging 
data mining and meta-analysis to provide their thoughts on methods for efficient workflow 
design, interoperability with large-scale databases, and to discuss their work in exploring the 
richness of brain imaging data as well as the literature of published research results.

Image caption: “The development of data mining and workflow technologies maximizes 
opportunities for neuroimaging data analysis and re-use.”
Image credit: The Laboratory of Neuro Imaging (LONI)
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The development of sophisticated neuroimaging data processing 
tools has been of major importance for distilling the large amount 
of information present in brain imaging data sets into useful 
and enlightening results. Neuroinformatics-based algorithms, in 
particular, have been instrumental in analyzing population level 
cortical anatomy, changes in BOLD activity, and, more recently, 
the rapid processing of diffusion weighted images (DTI/HARDI). 
Several notable examples include Statistical Parametric Mapping 
(Friston, 2006), FSL (Smith et al., 2004), FreeSurfer (surfer.nmr.
mgh.harvard.edu), AFNI (Cox, 1996), and BrainVoyager (Goebel 
et al., 2006), among other analysis packages. The wide availability 
of neuroinformatics tools has helped to signifi cantly spur growth in 
cognitive and clinical neuroscience, as well as permitted the effi cient 
re-analysis of data contained in large-scale data archives (Kennedy 
and Haselgrove, 2006).

Within any of the aforementioned software packages it is possible 
to fi nd the majority of individual steps needed for processing the 
most common types of brain imaging data. With these individual 
operations, accompanied by various inputs, parameters, and other 
options, investigators frequently link executable programs together 
as “scripts” or batch processes in which inputs are passed to one 
executable and the resulting outputs become the input to the next 
processing executable, and so on. In so doing, many laboratories 
have found it possible to create effi cient yet fl exible data processing 
streams to not only process data within modality but also between 
modalities. The notion of scientifi c workfl ows has now taken on its 
own formalism, moving from beyond custom-built scripts toward 
fully-fl edged software environments with several available software 
platforms available to construct neuroimaging workfl ows, optimize 
their performance, and that take advantage of super-computing 
and grid infrastructures to expedite data processing throughput 
(Romano et al., 2005; Oinn et al., 2006; Van Horn et al., 2006; Ruping 
et al., 2007; Verdi et al., 2007). With a fully encompassing workfl ow 
platform it is also possible to break out of a “package-centric” view of 
neuroimage data processing and toward an informatics model that 
draws processing capabilities from across existing software suites 
as well as the incorporation of local informatics tools into hetero-
geneous analysis workfl ows. Such workfl ow descriptions, which 
themselves are often highly structured fi le formats describing the 
executable operations and their various processing choices, can serve 
to provide needed data provenance ensuring the fi delity of data 
reanalysis and replication (Mackenzie-Graham et al., 2008).

More than simply processing individual subject datasets or 
even the data from complete neuroimaging studies, the notion of 
workfl ows has permeated the next level of neuroimaging  analysis 
beyond subject or study-based processing: that of data mining and 
meta-analysis. Data mining is a process of exploring data to identify 
potentially interesting patterns in the data that might not have been 

Neuroimaging workfl ow design and data-mining: a Frontiers 
in Neuroinformatics special issue

John Darrell Van Horn* and Arthur W. Toga

Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
* Correspondence: jvanhorn@loni.ucla.edu

examined in the original research studies in question or perhaps were 
not detected by traditional statistical methods. These approaches to 
sifting through large archives of data to extract potentially useful 
patterns and relationships has been most evident in the genomic 
sciences although neuroimagers have explored these methods as 
well (Mitchell, 1999; Megalooikonomou et al., 2000; Wigle et al., 
2001; Anderle et al., 2003). Meta-analysis, on the other hand, fi rst 
gained the attention of the social sciences and related fi elds in the 
late 1970’s and 1980’s as a means to examine the study-specifi c and 
experimental factors that predicted reported effect sizes present in 
published studies (Glass et al., 1981; Rosenthal, 1984). The notion 
of performing an “analysis of analyses” to quantitatively critique, 
explore, and synthesize a literature has proved to be highly compel-
ling and powerful. With the burgeoning growth of neuroimaging 
studies of brain structural differences between clinical populations 
and examinations of human cognition using PET and fMRI, the 
concept of meta-analysis soon found its way into the realm of brain 
imaging (Van Horn and McManus, 1992; Fox and Woldorff, 1994; 
Cabeza and Nyberg, 2000). Data mining and meta-analyses permit 
the exploration of not only the neural structure or patterns of cog-
nitively-induced activity, but these analyses can also provide insights 
into those study factors that can predict the magnitude of reported 
effects. These approaches help to synthesize data from across studies, 
craft general trends in results from across studies, and quantify the 
effects of predictor variables obtained from the studies themselves 
that may infl uence the size and scale of differences.

Data processing workfl ow concepts have been an important ele-
ment for meta-analyses and data mining, too, providing the basis 
for how suffi cient summary metrics are obtained, combined with 
appropriate study meta-data, and then systematically compared and 
combined from across subjects and studies (Figure 1). Visualizing 
the relationships between subjects and study results has also been an 
important element for meta-analysis results and workfl ows are needed 
to provide graphical representations to still further neuroinformat-
ics tools needed for dynamic and interactive visualization (Toga and 
Thompson, 2002; Van Essen, 2002; Van Essen and Dierker, 2007).

In this special issue of Frontiers in Neuroinformatics, we have 
invited several leading groups to provide articles focusing on the 
development of workfl ow technologies and perspectives for effi -
cient neuroimage data processing and that help to permit subse-
quent meta-analysis of the results. Articles by Dinov et al., Ooi 
et al., Kenny et al., and Cheng et al. showcase recent developments 
in advanced workfl ow technologies for effi cient processing of neu-
roimaging data. Contributions from Keator and colleagues discuss 
the use of high-performance computing capabilities upon which 
workfl ow environments have been specifi cally designed to take 
advantage of for rapid processing, while articles from Costafreda 
et al., Bockholt et al., Lohrey et al., and Laird et al. discuss the 

5

http://www.frontiersin.org/neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/neuroinformatics/archive
http://www.frontiersin.org/Neuroinformatics/
http://www.frontiersin.org/neuroinformatics/editorialboard
http://www.frontiersin.org/neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics/10.3389/neuro.11.031.2009/full
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=1270&sname=JohnDarrellVanHorn
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=164&sname=ArthurToga


Van Horn and Toga Neuroimaging workfl ows and data mining

Frontiers in Neuroinformatics www.frontiersin.org September 2009 | Volume 3 | Article 31 | 

 development of data mining workfl ows and feature interesting 
examples of data  synthesis. Finally, contributions from Nielsen and 
from Joshi et al. discuss the important role of visualization in data 
mining and the workfl ows necessary to inform novel informatics 
tools that focus on interactively exploring the relationships amongst 
large collections of brain data. The quality of these articles is excep-
tional and provides a broad overview at how workfl ow concepts 
have matured for the neuroimaging fi eld, how they are now being 
used to expedite data mining, meta-analysis, and helping to provide 
the content needed for graphical data interaction.

Informatics as had a historical foothold in the data-rich 
fi eld of neuroimaging. However, with in vivo datasets continu-

ally increasing in size, scope, and complexity, the continued 
 development of effi cient processing tools remains necessary to 
extract the maximal amount of useful information from them. 
Workfl ow technologies for data processing design, application, 
and execution link these tools into high-throughput process-
ing pipelines. Their ongoing development can be expected to 
greatly enrich the ability of researchers to not only process newly 
obtained neuroimaging data but also to compare, contrast, and 
combine results from previous research studies via meta-analytic 
and data mining approaches and to visualize unique patterns 
present in neuroimaging results that could only be identifi ed 
through large-scale informatics approaches.

FIGURE 1 | Scientifi c workfl ows provide fl exible platforms for 

multimodal neuroimage processing that facilitate high-throughput 

analysis of individual subjects as well as complete studies. These are also 
essential software and informatics frameworks for data mining and 

exploration, meta-analytic consideration of effects from across multiple 
studies, as well as providing effi cient approaches for visualizing synthesized 
results and the functional/structural relationships that exist between brain 
imaging data sets.
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An integrated object model and method framework for 
subject-centric e-Research applications

Jason M. Lohrey1,2, Neil E.B. Killeen3* and Gary F. Egan2,3
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A framework that integrates an object model, research methods (workfl ows), the capture of 
experimental data sets and the provenance of those data sets for subject-centric research is 
presented. The design of the Framework object model draws on and extends pre-existing object 
models in the public domain. In particular the Framework tracks the state and life cycle of a 
subject during an experimental method, provides for reusable subjects, primary, derived and 
recursive data sets of arbitrary content types, and defi nes a user-friendly and practical scheme 
for citably identifying information in a distributed environment. The Framework is currently used 
to manage neuroscience Magnetic Resonance and microscopy imaging data sets in both clinical 
and basic neuroscience research environments. The Framework facilitates multi-disciplinary and 
collaborative subject-based research, and extends earlier object models used in the research 
imaging domain. Whilst the Framework has been explicitly validated for neuroimaging research 
applications, it has broader application to other fi elds of subject-centric research.

Keywords: object model, experimental methods, data repository, subject-centric, e-Research, collaborative research

standards within domains, let alone across domains. Our approach 
is to develop a framework that represents the essential components 
of subject-centric research without prescribing particular metadata. 
The Framework then requires the domain specialists to defi ne the 
appropriate metadata for their research.

Research is increasingly distributed through collaborations 
involving researchers at different institutions. The location of 
objects associated with data and metadata should be largely trans-
parent to the researcher and accessible from anywhere through 
a number of mechanisms including distributed queries, remote 
access and replication.

In this paper, we describe a framework that defi nes an object 
model to explicitly represent research methods and the result-
ing acquired and derivative data for subject-centric research. The 
Framework captures the core relationships required for auditable 
and reproducible research. The Framework is extended with meta-
data that is specifi c to the type of subject and domain of research 
and it explicitly provides an identifi cation scheme that supports 
distributed objects. The Framework has been implemented and is 
used to manage distributed neuroimaging data.

MATERIALS AND METHODS
BACKGROUND
Neuroscience research increasingly involves scientifi c collaborations 
across sub-domains that acquire, share and analyze multi-modal 
data (e.g. Gardner et al., 2003; Martone et al., 2004; Toga, 2002). 
For example, neuroscience research may include types of data such 
as: magnetic resonance imaging (MR) and spectroscopy (MRS), 
optical and electron microscopy (OM and EM), positron-electron 
tomography (PET), computed tomography (CT), electrophysio-
logical, genotype, electroencephalogram (EEG) and event related 

INTRODUCTION
Research groups worldwide are facing data management chal-
lenges1. Not only is the volume of data rising dramatically, but 
also the processes that a researcher follows to analyze and man-
age research data are increasingly complex. Of crucial importance 
for a data management system is the way in which information is 
organized. A common method of data organization is use of an 
object model that is motivated by the processes and protocols of the 
specifi c research domain. These include how the data are acquired, 
what the relationships between data are, and how the data will be 
distributed, analyzed and interpreted.

Neuroimaging is a rapidly developing research domain in which 
enormous quantities of data are acquired. Identifi cation of an 
appropriate object model for neuroimaging involves fi rstly identify-
ing the particular class of research that it belongs to. Neuroimaging 
is an example of “subject-centric” research, which refers to well-
defi ned, persistent subject matter for which data are being acquired 
over some (perhaps extended) period of time. For example, a sub-
ject might be an animal (human, mouse etc.), chemical or mineral 
sample with a number of data acquisitions undertaken for each 
subject over time.

A second important aspect of data management is to recognize 
that research data are often obtained through a well-defi ned, and 
sometimes complex workfl ow. Although organization of infor-
mation with an object model is an established methodology, the 
method (or workfl ow) is less commonly captured along with the 
data.

An object model captures domain-specifi c data and metadata. 
It is a very signifi cant challenge to develop metadata (and data) 
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the Patient represents the subject of the investigation, and may 
undertake a number of Visits over time to imaging facilities. Each 
Visit results in a number of Studies that represent a particular 
imaging setup and procedure. Each Study generates a number of 
actual acquisitions of a particular type (e.g. MR image volumes) 
that are called Series.

The DICOM object model is limited in that it lacks the concept 
of a project consisting of many subjects, is unable to record the 
experimental method, nor represent the state of a subject. In addi-
tion, the DICOM standard requires the data sets to be encapsulated 
in the DICOM fi le format.

Biomedical Informatics Research Network (BIRN) XCEDE Schema
The XCEDE metadata schema (and implicit object model) is 
intended for the exchange of clinical and research imaging studies. 
The objects in the XCEDE model are Project, Subject, Visit, Study 
and Series (Figure 1B), with the XCEDE objects equivalent to the 
DICOM objects from the Subject level. The XCEDE object model, 
and the associated metadata hierarchy described in the XCEDE 
XML schema are highly specifi c to image-based analysis and cannot 
be easily applied more generally. However, the model contains a 
number of interesting and useful concepts related to experimental 
method. For example, the provenance of any object may be used 
to describe the data processing protocol that was used to generate 
a sub-set of data. The inclusion of provenance information at any 
level in the object model hierarchy is an advantage of the XCEDE 
schema.

PSS Object Model
The project subject study (PSS) object model (Figure 1C) was 
derived from the DICOM object model with two key extensions. 
Firstly, the Project object at the top of the hierarchy (like XCEDE) 
corresponds to the virtual project team collaborating on a specifi c 
scientifi c experiment. Secondly, the Subject object may be decom-
posed into two parts: the project-specifi c attributes of the subject, 
and the project-invariant aspects that are common to all projects. 
The ability to re-use Subjects in multiple Projects required a rela-
tionship to be specifi ed between the Project and Study objects. The 
PSS model also removed the DICOM Visit object.

The PSS model was used in research using MR imaging data 
and although not mandated by the PSS model, only DICOM for-
mat data were included. While the PSS model had a number of 
improvements over the DICOM model, additional key require-
ments including the ability to capture the experimental method 
and track subject state were not met.

CCLRC Object Model
The CCLRC model was defi ned as a generic model for handling 
e-Science data (Figure 1D). This model was examined to estab-
lish if it satsifi ed the requirements for representing subject-centric, 
neuroimaging research studies. The CCLRC Study is sometimes 
referred to as a Project and each Investigation is directly linked 
with one Data Holding that contains the data generated by the 
investigation. A Data Holding is a hierarchy of Data Collections 
and/or atomic Data Objects. The CCLRC model has no concept 
of the “subject” of an investigation (and associated state), nor the 
method of research and thus does not meet the requirements for 

potential (ERP) data types. This list will undoubtedly continue 
to lengthen, particularly as new forms of collaborative research 
emerge over time. Various neuroimaging and related groups world-
wide have developed applications to provide data management 
and application capabilities (examples include Keator et al., 2008; 
Marcus et al., 2007; Marenco et al., 2003; SenseLab2, LONI Image 
Data Archive3 and fMRIDC4).

The need in our own research environment to manage many 
different types of data using a consistent model was the catalyst 
to seek a generic object model that supports: (i) project-based 
virtual organizations, (ii) representation of the subject of a study, 
(iii) recording the state changes in a subject, (iv) representation 
of the experimental method (process or workfl ow), (v) participa-
tion by subjects in multiple research projects, (vi) disassembling 
of subjects into constituent parts, (vii) controlled access to all 
information and especially the identity of a subject, (viii) capture 
and storage of all types of data, and (ix) the capability to manage 
raw and processed data.

The requirement to record state arises because the subject may 
undergo a number of procedures in an experimental process. These 
state changes might may be transient (e.g. anesthesia) or perma-
nent (e.g. death) and affect the subsequent acquisition of data. 
A given subject may be disassembled (e.g. removal of the brain) 
into constituent parts for subsequent study. There may be parallel 
studies on different “parts”, each with a separate procedure and 
life cycle.

Rather than create yet another object model, we investigated 
whether an existing model would satisfy our main require-
ments. Consideration was given to: (i) the Digital Imaging and 
Communications in Medicine (DICOM5) model, (ii) the XML-
based Clinical and Experimental Data Exchange (XCEDE6 and 
see also Keator et al., 2006) model, (iii) a Project-Subject-Study 
(PSS) model (our own earlier generation object model) and (iv) 
the Council for the Central Laboratory of the Research Councils 
(CCLRC7). As will be demonstrated, none of these object models 
fully met the requirements, but all provided valuable components 
that have been used and extended.

DICOM Object Model
The DICOM standard includes formatting, communications and 
object modeling components. DICOM is ubiquitous in medical 
imaging and was originally created for clinically oriented stud-
ies conducted with patients although it can be utilized for other 
studies. The DICOM object model is complex – the key objects 
that are relevant to neuroimaging research are shown in a Unifi ed 
Modeling Language (UML) object diagram8 (Figure 1A). Briefl y, 

2SenseLab: http://senselab.med.yale.edu/
3http://ida.loni.ucla.edu/
4The fMRI Data Center’s data management tools http://www.fmridc.org/f/fmridc/
database/index.html
5Digital Imaging and Communications in Medicine (DICOM). http://medical.
nema.org
6XML-based Clinical and Experimental Data Exchange (XCEDE). http://www.
nbirn.net/tools/xcede/index.shtm
7Sufi  S, Mathews B. Council for the Central Laboratory of Research Councils 
(CCLRC) Scientifi c Metadata Model: Version 2. See http://epubs.cclrc.ac.uk
8Unifi ed Modeling Language. http://www.uml.org
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neuroimaging research without extension. However, novel parts of 
the model, such as the hierarchy of Data Holding objects, provide 
useful elements for inclusion into subject-centric data models.

FRAMEWORK DESCRIPTION
Overview
A subject-centric research object model that includes details of 
research experimental methods has been developed. The model 
can be applied to studies involving subjects such as people, ani-
mals, plants or minerals. The model does not prescribe any particu-
lar domain-specifi c metadata, but instead the domain of research 
defi nes specifi c metadata and semantic interpretation through 
associated ontologies. The model is independent of a particular 
implementation technology.

The Framework has a number of characteristics including: 
 (i) objects may have location independent Citable Identifi ers 
that allow objects to be referenced in a distributed environment; 
 (ii) objects are primarily organized into a hierarchy of Project, 
Subject, ExMethod, Study and DataSet (see below); (iii) the R-Subject 
object allows subjects to be used in multiple projects; (iv) the 

research Method (i.e. the set of steps in a workfl ow where each 
step may have meta-data and/or produce data) can be encoded; 
(v) all state changes for a subject are recorded; any data set pro-
duced is a function of the state of the subject at that point in time; 
and (vi) DataSets may be further organized into a hierarchy of 
DataSet(s) and DataObject(s).

Citable Identifi cation
The ability to cite research data and data sets is an important part 
of research publication, allowing peer access, review and reuse of 
raw and derived data. Citation requires the assignment of unique 
and long lived identifi ers (see Brase, 2004; Klump et al., 2006, 2008) 
to each citable entity.

In this model, objects are identifi ed using a hierarchical iden-
tifi cation scheme that supports unique identity in a distributed 
environment. The citable identifi er scheme is a human-friendly, 
arbitrary depth hierarchy of positive integer numbers (NA.ORG.
r.n

1
.n

2
…n

k
). Citable identifi ers are used for all objects (see below 

for an example) within the object model that may be externally 
cited to allow collections to be distributed across many repositories. 

PSS DICOM XCEDEA B C D CCLRC

Patient

Project

Patient

VisitVisit

uses 1..*

Subject

SeriesSeriesSeries

StudyStudyStudy

Project

Participated-by 0..*

 0..*

 0..* 0..*

 0..*

 0..* 0..*

 0..*

 0..*

 0..*

Programme

Investigation

DataHolding

Study

1..*

0..*

Policy

0..*

1..*

FIGURE 1 | UML object diagrams for the (A) DICOM, (B) XCEDE, 

(C) PSS and (D) CCLRC object models. In addition to the UML notation 
the horizontal arrows indicate equivalence of objects between the 
different models. The UML notation can be summarized as follows: Objects 
(or classes) are shown in rectangles and named relationships are 

shown between objects that are qualifi ed by their cardinality 
(* means infi nity, 0..* means 0 to infi nity). The relationship direction is 
indicated via an arrow. Filled diamonds indicate that the relationship is 
containment (also called composition) and open diamonds indicate an 
aggregation (has) relationship.
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Once assigned, an identifi er is immutable although replicas of the 
same object may exist in multiple locations. These identifi ers are 
compatible with other identifi cation schemes, such as DOI9 and 
HANDLE10 (see also PILIN11).

These identifi ers should be interpreted as follows: (i) an iden-
tifi er has depth N (the number of dot characters (“.”) plus one), 
(ii) the identifi er part at depth 1 is the Naming Authority, (iii) the 
identifi er part at depth 2 is the Organization that can resolve the 
location of a resource, (iv) the pair (NA.ORG) is unique and (v) 
the naming authority must be able to reference the organization. 
The third digit, which follows the NA.ORG part of the identifi er 
provides root namespace separation (e.g. to separate collections of 
Projects, R-Subjects and Methods).

Objects with the same parent are considered to be in the same 
collection. These collection semantics allow the members of a col-
lection to be easily located (including any replicas) in a distributed 
system without requiring more complex centralized registries or 
cross-repository references.

Object Hierarchy
The object hierarchy (Figure 2) and the objects (Table 1) can be 
used in two ways. Firstly, a subject may exist only in a single project 
(Figure 2A). Secondly, a subject may exist in multiple projects (e.g. 
people, a calibration reference) in which case it may be represented 
by the (real) R-Subject (Figure 2B).

A Subject is Project based and so has attributes of particular inter-
est to that Project. The subject matter of an investigation may be 
disassembled into sub-parts. That is, parts may be removed (e.g. the 
brain removed from the skull of a mouse) and become independ-
ent entities for investigation. When a subject participates in more 

FIGURE 2 | UML object diagram of the Framework object model (see 

Table 1 for defi nitions). (A) When subjects are not re-used across multiple 
projects, only the project specifi c objects are used. (B) If subjects participate in 

multiple projects then additional objects are required. (C) The Method object 
contains Steps, each of which is comprised of a possible State Change, 
production of a DataSet and a Branch Point.

9Digital Object Identifi er (DOI). http://www.doi.org
10Unique persistent identifi ers. http://www.handle.net
11http://www.pilin.net.au
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than one project, both R-Subject and Subject objects will represent 
it. The R-Subject captures time invariant characteristics, and, like 
the Subject, which is the subject’s manifestation in a project, an 
R-Subject may be an assembly of discrete parts.

Where ethics requirements allow, an R-Subject can be used to 
identify all of the Projects in which a subject has participated. The 
discovery or measurement of new time-invariant characteristics, or 
recognition of existing and potentially signifi cant characteristics, 
may be retrospectively important and inform any of the projects 
in which the subject has participated.

A subject will have one or more identities. Access to the identity 
(and other attributes) may be restricted by the implementation.

Subjects need not have a direct physical manifestation. They 
may represent derived entities, such as a probabilistic calculation 
from multiple input subjects (e.g. an atlas) or a computed model 
based on data sets from other subjects.

The ExMethod object represents the execution of a specifi c 
Method (which codifi es a workfl ow and is discussed further below). 
The ExMethod object contains a reference to the specifi c Method 
that is being executed and specifi es the state (e.g. “incomplete”, 
“complete”) of each step of the Method being executed. Subjects may 
have multiple Methods executed on them, and therefore may have 
multiple ExMethod objects. DataSets may be original (measured) 
or computed (processed). A computed data set may be derived 
from one or more other data sets.

The object model indicates containment by the fi lled diamonds. 
Therefore deleting a parent object will also delete all children 
objects. For example, deleting a Project will delete all contained 
Subject, ExMethod, Study, DataSet and DataObject objects. However, 
deleting a Subject does not delete any disassembled Subjects that 
were previously part of that Subject, since they are autonomous 
objects, nor would it delete any associated R-Subjects.

The following objects typically have citable identifi cation: 
Project, Subject, ExMethod, Study, DataSet, R-Subject and Method. 
Although a DataSet is a member of the Subject collection based on 

the semantics of the assigned citable identifi ers, there is an explicit 
relationship to the Subject to identify the state of the subject at the 
time of acquisition. Note that the identifi er scheme can be used 
to allow for different identifi er roots. For example, using r = 1 
(see above) for collections of Projects and r = 2 for collections of 
R-Subjects results in NA.ORG.1.10.23.2.12 referring to Study 12 
of ExMethod 2 of Subject 23 of Project 10, whereas NA.ORG.2.17 
refers to R-Subject 17.

Methods
A Method is comprised of a number of Steps (Figure 2C), with each 
step uniquely identifi ed within the scope of the Method. A Method 
can utilize a specialized step to prescribe the metadata required to 
create a Subject (and optionally R-Subject) as well as the metadata 
for each workfl ow step. A Method object should not be confused 
with an ExMethod. A Method is simply the specifi cation of a proc-
ess. When a Method is actually executed, then an ExMethod object 
is instantiated for the Subject executing the Method. This object 
holds the citable identifi er of the Method, the number of the cur-
rent step, as well as containing the Studies generated as a result of 
executing certain steps.

A step may affect a change of state in the subject, or result in 
the generation of a Study, or branch to another step or method. 
Branching may be qualifi ed as “any” or “all” if there are multiple 
options. A step may pre-defi ne metadata or defi ne metadata that 
must be entered by the researcher. An example of a multi-step 
Method that acquires MR and MicroscopyStudies is show in the 
Section “Results”. Note that the Method and defi nition of metadata 
can be used to dynamically drive user interfaces.

A Project may have one or more prescribed Methods (selectable 
by the researcher) which are applied to a Subject and which may 
result in the generation of Studies. All subjects may require the same 
Method, or there may be different Methods for different subjects. 
For example, there could be N control subjects, and M non-control 
subjects each with different research Methods. In addition, Figure 2 

Table 1 | The object defi nitions for the Framework object model.

Object Defi nition

Project Established by a team to undertake a specifi c investigation.

Subject The subject matter (e.g. animal, plant etc.) of a particular Project. There are typically many Subjects per Project.

ExMethod Container for the execution of a specifi c Method; holds reference to Method and the state of execution (e.g. executed Step) 

 of the Method.

Study A container for a class of measurements. For example, a neuroscience study might be of type MR, Microscopy, PET or EEG.

DataSet A set of acquired or processed data that may take any form (e.g. an MR volume) 

State The state (changes may be transient or permanent) of the subject at a point in time.

Method The specifi cation of a research process. Methods are applied to Subject objects.

Step A single step in a Method. A Method may have one or more Steps to be performed. Methods may allow Steps to be 

 performed sequentially or in any order

State Change A specialized Step in a Method that results in recording a state change for the Subject. The state change will be recorded 

 using the metadata specifi ed for the step,

Data Set Step A specialized Step in a Method that produces one or more Data Sets. The Data Set Step details the metadata to be 

 generated for the acquired or derived Data Sets.

Branch Step A conditional branch that refers to one or more other Methods. The branch may require one or all of the specifi ed 

 sub-Methods be performed.

R-Subject An R-Subject (R for “re-usable” or “real”) is used when the subject matter participates in multiple Projects (e.g. a person).
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shows that Subjects may contain one or more ExMethods providing 
research fl exibility. For example, subsequent Methods may refi ne 
an experimental process, or allow simple ad-hoc capture of data 
without prescriptive specifi cation of process or metadata.

Methods are identifi ed using citable identifi ers so they may be 
referenced and re-used within a distributed environment. For 
example, an organization may have “standard” Methods that can 
be used directly or incorporated into more complex methods.

Life-Cycle and State
A subject’s state may be altered (transiently or permanently; e.g. 
application of chemicals, death, etc.) prior to the acquisition of 
data. An acquisition of data at a point in time refl ects the state 
of the subject at that point in time. The conditions that cause a 
state change are fully recorded in metadata associated with the 
Subject. A state change is uniquely identifi ed within the context of 
a Subject and the pair (Subject, State) is unique. Permanent changes 
should be recorded with the R-Subject, if there is one, or the Subject 
otherwise.

DataSets and DataObjects
A DataSet contains the acquired or derived data and may hold 
data directly or be comprised of one or more DataSets and/or 
DataObjects (the smallest addressable item in our object model). 
We have made use of concepts in the CCLRC’s DataHolding object 
model in this design. The defi nition of “small” is a matter of agree-
ment, since, for example, the smallest unit of data might be a pixel 
within an image rather than an image.

DataSets may hold content directly, or they may be comprised of 
a number of smaller DataSets as well as zero or more DataObjects 
(Figure 2A). For example, many measurements involve the acquisi-
tion of calibration data followed by a series of measurements. The 
calibration data constitute a DataSet in their own right, but they are 
also directly associated with the subsequent measurement DataSets. 
As well as storing primary data, as in the above example, the object 
model provides for derived DataSets that are the transformation of 
one or more other DataSets. The method of  transformation (e.g. 
a series or analysis applications) must be recorded in metadata 
attached to the DataSet. The DataSet object may store the trans-
formed data, or may simply maintain the method for the generation 
of the data, which may be computed dynamically. The ability to 

precisely record the method for generating a DataSet then allows 
the method of construction to be peer reviewed, and the data can 
be discarded (e.g. to release storage resources) and re-created on 
demand.

DataSet identifi ers are of two types either with all or none of 
the members having citable identifi ers. A DataSet that contains 
members with citable identifi ers (and can return the list of members 
upon request) is unordered and mutable. A DataSet that contains 
members that have no citable identifi cation can identify the number 
of members and return the metadata and/or data for any member 
based on the ordinal position of that member.

A DataSet that is accessed by ordinal position must guarantee 
that the ordinal position of every member is immutable; members 
may only be appended. For example, a DataSet that contains other 
DataSets is unordered. Therefore, the members therein must also 
have citable identifi cation. A DICOM Series is an example of an 
ordered DataSet with no requirement to cite individual members 
since it contains one or more images, each addressable by an ordinal 
(slice) position.

Metadata
The object model prescribes a minimum set of metadata elements 
for each object (Table 2).

These are then extended with domain-specifi c metadata to fully 
describe the objects and the research being undertaken. For the 
purpose of hierarchical presentation, identifying metadata must be 
attached to each Project, Subject, R-Subject, ExMethod, Study and 
DataSet object. This will allow type independent presentation of 
each collection. The “type” is important for semantic interpretation 
and the “name” provides identifying information for users.

If the DataSet is derived from one or more other DataSets, then 
the provenance of the DataSet must be identifi ed. In addition, the 
nature of the derivation should be defi ned, ideally using structured 
metadata (when that metadata can easily be captured). A precise 
description is required if the DataSet is to be computed/recom-
puted at any time. The defi nition of other provenance metadata 
is domain specifi c.

Augmenting the generic prescribed metadata, domain- specifi c 
metadata is placed on the objects according to the concept that 
they represent and the temporal scope of the object (Table 3 and 
see Results). For example, a Project object may hold metadata 

Table 2 | The required minimum metadata for specifi c objects in the Framework object model. Elements are mandatory unless otherwise specifi ed.

Object Element Description

All type One of [project, subject, r-subject, ex-method, study, dataset].

 name The name of the collection.

 description Arbitrary description (optional).

ExMethod method The citable identifi er of the method being executed. 

 context The current execution context (method, sub-method, step).

Study type An extensible set of study types. In a neuroimaging implementation, the set might include 

  values such as [mr,pet,om,em,eeg].

DataSet (primary) subject The citable identifi er of the Subject.

 state The state identifi er of the Subject. 

DataSet (derived) input A citable identifi er for an input DataSet. There may be zero or more input elements. 

  Not set if the DataSet is primary acquisition data.
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 describing the project team accessing it as well as hold identifi ers 
for Ethics documents. A Subject may hold demographical and iden-
tity information, medical and educational history (for humans), 
genetic breeding details (for animals) and so on. These choices are 
entirely driven by the needs of the research.

Where metadata standards are available for a domain, it is advan-
tageous to follow those standards, or at least provide a means to 
transform metadata to those standards.

The Method may be used to defi ne much of this metadata (it may 
utilize a specialized step to prescribe metadata needed to create a 
subject as well as that for workfl ow) but other agents (e.g. a DICOM 
server) may also add metadata to objects (e.g. Study and DataSet).

Controlled Access
Data in a repository must have controlled access. Explicit control 
over access to metadata and content is best provided by role-based 
authorization and we have defi ned four project-specifi c, hierar-
chical roles where each role inherits the rights of the subordinate 
roles. The roles are ProjectAdministrator (“super-user” project 
 permissions), SubjectAdministrator (administer subjects 
within the project), Member (read access to all research data and 
metadata generated by the project except protected identity infor-
mation and Guest (can search the metadata only to fi nd out what 
types of information are available). When an R-Subject is created, 
the Administrator roles have the ability to view the identity and 
update the details of the R-Subject. Alternatively, if an R-Subject 
is not utilized, the visibility of any sensitive identity information 
located on the Subject could be controlled via this role.

These roles are further qualifi ed by the citable identifi er of the 
project to provide project-specifi c access control. For example, for the 
project with citable identifi er 1.1.1.2, the ProjectAdministrator 
role would be named ProjectAdministrator_1.1.1.2.

RESULTS
The Framework has been extensively tested through a functioning 
reference implementation applied to the neuroimaging research 
domain to manage research data.

REFERENCE IMPLEMENTATION
A data repository has been built with a service-oriented Digital Asset 
Management system (Mediafl ux™,12). A package of Mediafl ux™ 
services implementing the Framework object model has been cre-
ated. These services provide the basic interface to the data repository 

and allow a user to create, access and manage the objects of the 
model. As well as enabling the creation of the generic objects and 
metadata, the services also provide for the addition of domain-
specifi c metadata and content, and the creation and use of Methods 
to manage experimental process and state.

The implementation uses the citable identifi ers described above 
as arguments to many services to identify specifi c objects. The 
implementation does not explicitly create a State object. Instead, 
the state is contained within the Subject object. The implementa-
tion uses a well-defi ned XML metadata structure for each object. 
For example, on Subject and R-Subject objects, the implementation 
allows public and private metadata. The visibility of the metadata 
contained within these elements then depends upon the user’s role 
(e.g. ProjectAdministrator [can see private] or Member [cannot 
see private]) and their semantic interpretation.

Sophisticated adaptive (to the metadata) graphical (“Web 2.0” 
and Java) interfaces that are driven by the object model (and espe-
cially the Method) have also been created (see below). These inter-
faces (which in turn use the above Mediafl ux™ package) provide 
the primary interface to the system for research scientists. These 
interfaces are generic and domain independent.

SPECIFIC NEUROIMAGING IMPLEMENTATION
The Framework object model and implementation is currently 
being used to manage a data repository in the Neuroimaging 
domain. Services that are not explicitly part of the Framework 
implementation are used to upload the data (and some associ-
ated metadata) into the repository (e.g. a DICOM client). The 
repository manages over 60 projects that contain mainly MR data 
(human and small animal) in DICOM (and proprietary formats) 
and optical microscopy data in TIFF format. Thus we have defi ned 
modular (reusable) XML metadata documents and Methods spe-
cifi cally to handle these kinds of data in a neuroimaging research 
environment.

In this implementation, an authorized user fi rst creates a 
Project object, defi ning the project goals, project context and 
the team members (and their roles). When the Project is created, 
pre-existing Method objects (one or more) are also registered 
for use with that Project. Subsequently, team members with the 
SubjectAdministrator role for this project create Subjects (and 
possibly R-Subjects) as needed (ExMethod objects are auto-created 
in this process). Study objects are generally created as needed by the 
agents that upload data (although they can pre-created).

A design principle of the implementation has been to enable 
the creation of adaptive user interfaces by providing services 

Table 3 | Placement of domain-specifi c metadata on Framework objects.

Object Metadata

Project Details of the objectives, standard methods, investigators, organizations, etc.

Subject Attributes of the Subject that are relevant to the project and which will be constant during the lifetime of the project.

State Metadata describing the state of each Method/step.

Study Metadata that is common to all contained DataSets. Could also describe relevant information about the subject at the time of acquisition, 

 rather than placing as time-dependent metadata on the Subject.

DataSet Metadata specifi c to the acquisition or computation itself. For example, this might include method/protocol, the ambient air temperature etc.

R-Subject Time invariant attributes of the subject. For example, in the case of an animal, the date of birth or date of death will not change.

12Mediafl ux™ digital asset management platform. http://www.arcitecta.com
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step has a name and specifi es metadata, the state, and whether 
a Study is created or not. The inset shows the metadata for the 
Perfusion step. These metadata are immutable and pre-specifi ed 
by the Method so that entry by the user is not required.

The subject undergoes distinct (permanent) state changes 
during the execution of the Method. When the imaging data are 
uploaded and the Study objects created, each Study is tagged with 
the relevant step of the Method. The Method branches can be exe-
cuted in parallel or serially as the tissue specimens are imaged. 
Each removed tissue specimen could be represented as a new (dis-
assembled) Subject.

Substantial effort from a number of groups has begun the devel-
opment of biomedical ontological frameworks (e.g. the Unifi ed 
Medical Language System13 and the Open Biomedical Ontology14 
(Smith et al., 2007). Specifi cation of metadata in the system could 
adhere to existing domain standards either by direct use of metadata 
defi nitions, or by the ability to inter-operate through exchange 
processes (e.g. utilizing XSL and XSL Transformations15). The 
implementation of metadata also needs to remain fl exible so that 
scientists can incorporate any metadata that they need, whilst still 
retaining standard components.

Because the PSSD framework enables project-specifi c Method 
specifi cation, and because each Method specifi es metadata inde-
pendently, the system provides for fl exibility and the adherence 
to standards.

DISCUSSION
SIGNIFICANCE
Modern scientifi c research involves distributed collaborative teams, 
distributed data with distributed processing16,17; these are aspects 
of the e-Research paradigm. Whilst the need to organize informa-
tion via an object model and the ability to federate information is 
of course not new, the Framework and methodology described in 
this paper have a number of signifi cant advantages for e-Research 
applications. Firstly, the use of a distributed object model enables 
project teams to participate in a collaborative research project whilst 
using distributed data repositories and interfaces. Distributed 
object collections can be managed using the semantics of the cit-
able identifi cation scheme without requiring costly and potentially 
error prone distributed or centralized registries.

Secondly, codifying research processes into a Method means 
that: (i) Methods can be presented unambiguously and reviewed 
using simple diagrams, (ii) Methods can be re-used, (iii) applica-
tion interfaces can be automatically constructed, (iv) research-
ers can defi ne new research method(s) without requiring the 
development of new application interfaces to support the execu-
tion of those methods, and (v) the metadata for each class of 
experiments is derived from the relevant Method(s). Note that a 
Method can contain a super-set of any existing metadata standard. 
Importantly, by recording all state changes for a subject regard-
less of whether they are transient or permanent, the conditions 

FIGURE 3 | The metadata specifi ed by a particular Method (developed for 

a particular Project) that is required to create a Subject. The adaptive 
graphical interface interrogates the Method to discover the required metadata. 
Metadata are presented in XML fragments. Some metadata are predefi ned 
and immutable (e.g. species) whereas other metadata requires entry.

that: (i)  retrieve the metadata required to create objects and (ii) re-
trieve metadata and data on existing objects for subsequent presen-
tation. The implementation makes heavy use of Method objects. In 
particular, a Method object defi nes the metadata required to create 
Subject (and possibly R-Subject) objects; this can be thought of as a 
specialized Method step. The Method object also defi nes the meta-
data required per step of the Method during execution and this may 
include metadata for Study objects. The Method may pre-specify 
metadata values and whether it is immutable or not.

As an example, Figure 3 shows the metadata required to create a 
Subject for a specialized Method that combines MR, optical micros-
copy and electron microscopy image data acquired in translational 
research of mice (Wu et al., 2007).

This Method specifi es that the subjects are a particular strain 
of mouse targeting a specifi c disease (and these metadata are 
immutable). Details such as birth date are entered by the user 
to complete the Subject creation. Other Methods may specify the 
use of an R-Subject, or different metadata for the creation of the 
Subject/R-Subject.

The ExMethod (the instantiation of the Method) object that was 
(auto) created for the above Subject is show in Figure 4. This Method 
acquires MR (of the whole brain) and optical microscopy (of the 
removed optic nerve) images for mouse subjects. Each numbered 

13http://www.nlm.nih.gov/research/umls
14http://www.obofoundry.org
15http://www.w3.org/Style/XSL/
16http://www.nsf.gov/pubs/2007/nsf0728/nsf0728.pdf
17http://www.jisc.ac.uk
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the led to the acquisition of data can be identifi ed, reviewed and 
reconstructed.

Thirdly, identifi cation of “real” subjects (R-Subject) enables 
identifi cation of all projects in which a particular subject has par-
ticipated. For example, a genetic sequence may be identifi ed in a 
subject that was not previously known. The state of the R-Subject 
could then be updated, with prior research conducted using that 
subject re-analyzed.

Finally, the Framework object model is extensible to  accommodate 
new relevant information. For example, a human subject may enter 
into an agreement defi ning the terms and conditions under which 
their data may be used. That agreement may apply to all projects in 
which they have participated or alternatively may be project specifi c. 
The agreement may be scanned and associated with either the R-
Subject or Subject objects, depending on the scope of the agreement. 
Similarly, a researcher may associate other information (via new 
objects) such as documents or data with any object.

IMPLEMENTATION CONSIDERATIONS
Our implementation of the Framework utilizes a service-oriented 
digital asset management platform which supports distributed citable 
identifi cation and distributed repositories. All metadata are encoded 
using XML. Depending on the type of research, XML schemas for 
metadata are defi ned using existing standards where they exist, or 
defi ned specifi cally for the research method, or a combination of 
both. The Framework may be implemented with any service- oriented 
system utilizing most database technologies. A service-oriented 
approach, such as web-services, ensures user interfaces and other 
systems interact with the Framework’s interface, hiding the underly-
ing method of implementation. The key capabilities supported are: 
(i) citable identifi er allocation, (ii) object creation with the ability to 
associate metadata and arbitrary data with an object, (iii) metadata 
defi nitions (e.g. XML Schema) so that domain-specifi c metadata can 
be created for any type of object, and (iv) distributed data repositories 
where distributed projects are undertaken.

FIGURE 4 | The adaptive interface shows the object trees for the projects 

that the user is authorized to access. The Project with citable ID 1005.4.361 is 
opened and the ExMethod object 1005.4.361.1.1 is displayed. For 
presentation, this fi gure shows a simplifi ed version of the ExMethod object (it 

has more steps in reality). The inset shows the (immutable) metadata for the 
Perfusion step. It can be seen that the overall Method (1005.5.388), from which 
this ExMethod is instantiated, was built from a number of Method fragments 
(1005.5.[384,385,386]).
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LIMITATIONS
The Framework has been developed for subject-centric research 
and thus is not necessarily optimal for other research domains. 
The number of objects in the object model has been minimized in 
order to improve accessibility of the model by researchers. However, 
a number of important aspects of information management are 
not included in the Framework. For example, many information 
models and metadata schema have been developed for the pres-
ervation of digital data (see OCLC working group report18). The 
development of a long-term information management capability 
requires the incorporation of aspects of these models and schemas. 
Since the Framework object model is extensible, future integration 
with other information object model components is possible.

The Framework includes the ability to notate and track subject 
state. In neuroimaging research the subject state changes slowly. 
However, this limitation could be overcome by acquiring vectors of 
metadata during the data acquisition process in order to measure 
rapid state changes. Whilst the Framework has broad applicability, 
limitations may arise from wider application of it to other domains 
of subject-centric research.

FUTURE WORK
Future developments of the Framework in the neuroimaging 
domain will include acquisition of data from different imaging 

modalities as well as increasingly complex workfl ows in distributed 
projects. Research outcomes should be enhanced by integration of 
the Framework with other resources such as application processing 
pipelines, brain atlases and publication portals. Finally, tools that 
support research uses of the model are being developed includ-
ing a graphical user interface application to enable researchers to 
create Methods and defi ne metadata themselves. The Framework 
will promote modularization of research processes and associated 
metadata, which in turn promote re-use and standardization. The 
unpredictable path of future research provides a signifi cant chal-
lenge for identifying re-usable research specifi c metadata, but is 
important for interoperability and retrospective interpretation.

CONCLUSIONS
A Framework that incorporates an object model and research meth-
ods for distributed subject-centric research has been developed. 
The Framework facilitates multi-disciplinary and collaborative sub-
ject-based research, and extends earlier object models used in the 
research imaging domain. Whilst the Framework has been explicitly 
validated for neuroimaging research applications, it has broader 
applications to other fi elds of subject-centric research.
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Whilst workfl ows are important tools for both designers and con-
sumers in their own right, they also form a vital line of  communication 
within the neuroimaging community to disseminate new algorithms 
or pipelines, optimised module parameters and standardised pro-
cedures. A workfl ow represents the collective wisdom on how to 
perform a data analysis task and documents the process allowing 
experience to be reused, transferred, and consolidated.

A review of workfl ow applications reveals that the majority of 
existing workfl ow environments are effective at modifying pipe-
lines, but not optimised for processing large amounts of data. 
CamBAfx is an Eclipse (International Business Machines, 2006) 
Rich Client Platform (RCP, McAffer and Lemieux, 2005) based 
workfl ow application that provides both a front-end (user inter-
face) optimized for data processing and a back-end pipeline model 
to facilitate creation and manipulation of pipelines. Additionally, it 
offers the fl exibility of using different process strategies (for exam-
ple, single machine scripting or grid-based computing) within the 
same pipeline description.

We begin with a brief overview of alternative workfl ow appli-
cations providing context for the objectives of CamBAfx. The 
operation of CamBAfx from the viewpoint of consumers is then 
considered showing how the user interface helps in the analysis 
of their data. For designers, discussion is orientated towards the 
delivery of the pipelines and workfl ows to consumers through the 
deployment of Eclipse-based facilities. Examples of delivering pipe-
lines from a variety of neuroinformatics packages are given and 
concluding remarks made on future directions.

INTRODUCTION
Workfl ows are the combination of pipelines (i.e. modules repre-
senting individual programs with connecting pipes representing 
data transfer from one module to another) and data control systems 
that coordinate data processing on local or distributed computer 
architectures. Neuroimaging brings together two broad scientifi c 
constituencies: the design and implementation of workfl ows and 
the application of these workfl ows to brain imaging datasets. 
Correspondingly, the demands made upon workfl ow-based soft-
ware change according to circumstances.

Conceptually, workfl ows are a useful way to gain traction over 
complex data analysis tasks. By decomposing the workfl ow into 
constituent parts, the problem is reduced to the creation and 
maintenance of small, simple programs that can be reused across 
workfl ows. To workfl ow designers (designers), the development 
environment should offer uncomplicated integration of their pro-
grams into existing pipelines, quick construction of new pipelines 
from existing modules and facilities for rapid testing, validation 
and deployment of workfl ows.

For those who apply workfl ows (consumers), the small effect 
sizes and large between-subject variance associated with most 
neuroimaging techniques call for a simple system for entering 
data into the workfl ow at low error rates and data control systems 
that emphasize high dataset throughput. Ideally, all workfl ows 
should follow a common ontology and it should be possible to use 
the same workfl ows with different data control systems without 
modifi cation.
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WORKFLOW ENVIRONMENTS
Workfl ows are normally visualised as pipelines, i.e., a collection of 
modules with pipes to represent the data fl ow from output ports 
of one module to the input ports of another. Traditionally, Visual 
Pipeline Editors (VPEs) are used to manipulate pipelines. VPEs 
represent pipelines graphically, usually with boxes as modules, lines 
as pipes, and small shapes inside the module box as input and 
output ports. Users modify workfl ows by manipulating this graphi-
cal representation, such as adding modules or re-routing pipes. 
Commercially available software offers workfl ow capability in two 
different ways: either specialised for workfl ow operations (National 
Instruments’ LabView)1, with a VPE as the main user interface 
and programming interface for module creation and different data 
processing strategies, or as extensions to existing programming lan-
guages (Simulink)2 that provide VPEs and programming interfaces 
for modules to accommodate pipelines.

The LONI Pipeline (Rex et al., 2000) looks and behaves like a 
traditional Visual Pipeline Editor. To enter data, consumers click 
on input ports which then request single values or a list of values. 
Batch processing is achieved by asking the input port of a module 
to interpret a list of values one-at-a-time instead of all-at-once. For 
batch-processing, LONI Pipeline offers the run-on-machine method, 
including via a script containing the individual processing instruc-
tions, as well as grid processing. It uses Extensible Markup Language 
(XML, Bray et al., 2008) to describe the pipeline as a combination 
of modules, connections, ports and data. Conveniently, meta-data 
about modules such as their creators and the software suite to which 
the modules belong can also be stored. LONI Pipeline modules may 
be downloaded separately to augment the main package.

Fiswidgets (Fissell et al., 2003) visualizes its pipeline as a linear 
stack without pipes or ports. Modules need not be activated in the 
order the visual representation implies. Clicking on modules brings 
up a module window that asks for data and parameters. Fiswidgets’ 
modules are defi ned in Java or in XML and describe the layout of 
the module window. For batch-processing a visual programming 
approach is adopted with loop structures for iteration within the 
pipeline. Inside the module windows, symbols defi ne inputs and 
outputs. During data processing the symbols are substituted with 
the corresponding values from a lookup table. Fiswidgets distrib-
utes modules as part of the main software.

BrainVISA (Cointepas et al., 2001) has a collection of workfl ows 
each with a “confi guration page” that presents a workfl ow as a tree 
of modules. Important module parameters can be attached as leaves 
to the module in the tree, others in an associated detail page. Batch 
processing is initiated by duplicating the “confi guration page” for 
each dataset. BrainVISA’s pipeline is implemented in the form of 
Python scripts. Pipelines are delivered in toolboxes bundled with 
the software or downloaded post-installation. The toolbox itself is 
a directory of confi guration fi les, binary fi les, text fi les, help fi les 
and python scripts. BrainVISA has an optional database for man-
aging datasets that uses a data ontology and provides software for 
conversion between images fi le formats.

In summary, based on the applications’ look-and-feel both LONI 
and FisWidgets give strong emphasis to pipeline  manipulation 

while softwares like BrainVISA prioritise clear data entry. Finally, 
an established way to deliver workfl ow-based software is to write a 
custom user interface for each workfl ow; some program interfaces 
in FSL (Smith et al., 2004) and SPM (Friston et al., 1995) fall into 
this category.

CamBAfx is a user interface for neuroinformatics software 
designed to support multiple pipelines and to provide the facilities 
needed to support workfl ow operation; namely, data management 
and batch processing. The philosophy is to provide the shortest 
possible bridge between designers and consumers, iteratively 
improving processing with pipelines via software development 
and practical experience. CamBAfx aims to provide resource in 
equal measure to both constituencies.

CamBAfx
OBJECTIVES
Workfl ows evolve as algorithms are developed and applications 
become more demanding. A Workfl ow environment must therefore 
be able to maintain fl exibility for development while being able 
to include new applications without modifi cation and maintain a 
consistent user interface across all pipelines. Thus, a major objec-
tive in the design of CamBAfx is to provide for consumers’ needs 
at the front-end, while exploiting the fl exibility of workfl ows at 
the back-end in order to deliver the pipeline assembly capability 
for designers. As expectations change, the environment should be 
fl exible enough to refocus these different aspects from front-end 
to back-end and vice-versa.

The user interface practices a minimalist philosophy: the  initial 
download is a complete, ready-to-use package but only con-
tains those functions that are needed immediately to get started. 
Consumers customise the interface as dictated by their needs.

Generic functions to manage pipelines and data are provided. 
Designers are encouraged to make their pipelines more attractive 
by adding supporting functions.

The environment should reuse existing industrial-grade soft-
ware and follow existing and de facto standards and practices. 
Availability of an Integrated Development Environment (IDE) 
that supports day-to-day programming work such as debugging, 
version control and automation of mundane tasks greatly improves 
developers’ productivity.

FRONT-END: RESOURCES FOR WORKFLOW CONSUMERS
Our observations indicate that normal practice for workfl ow con-
sumers is to maintain a library of workfl ows. Once a workfl ow 
has been demonstrated as robust and capable, its composition 
and parameters are infrequently reconfi gured suggesting that it 
would not be appropriate to focus on workfl ow manipulation 
capability for these users. Instead, the biggest workload under-
taken by consumers is to enter specifi c data instances into the 
workfl ow and to ensure the data is valid to maximize the suc-
cess rate of processing. Thus, the front-end of CamBAfx has as 
its most important undertaking the acceptance and validation of 
data entered by consumers. Careful validation of the data reduces 
the number of problematic datasets in a multi-subject dataset, but 
cannot completely eliminate them. The problems that then arise 
are corrected between repeats of batch processing. The challenge 
is to design a system that accommodates multiple repeats, but 

1http://www.ni.com/labview/
2http://www.mathworks.co.uk/products/simulink/
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A  New
pipeline

B  Select Pipeline

C  Configure Pipeline

E  Pipeline Scheme

D  Input Table

FIGURE 1 | Steps in operation by consumers to select, create and modify workfl ows. See text for details.

reduces unnecessary reprocessing of datasets already successfully 
processed. This overall process maps well onto a traditional soft-
ware usage pattern:

(1) select a workfl ow and confi gure it
(2) enter the data into the interface
(3) run the processing in batch mode

Selecting and confi guring workfl ows
In CamBAfx, the process starts by selecting a pipeline from a library 
of pipelines using a New Wizard (Figures 1A,B). A pipeline-specifi c 
wizard (Figure 1C) is then used to guide the confi guration of the 
pipeline, including a review of the important module parameters 
and requests to supply values to parameters that cannot have default 
values. CamBAfx requires pipeline designers to guarantee that the 
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pipeline created at the end of this process is valid and immediately 
useable.

Data entry via the interface
The pipeline itself is not graphically represented. Instead an Input 
Table (Figure 1D) is presented where all the data necessary for 
batch processing is specifi ed. The Input Table is customised to 
the workfl ow, although there is consistency across the instances 
of the interface for each pipeline. In general, each row refers to 
the data for a particular imaging dataset. A table cell only displays 
the appropriate interactive element determined by the pipeline 
to solicit data (e.g. text boxes, drop-down lists of choices, fi le and 
directory selection dialogs). If the data required is a list, then a 
new table with one column is presented with the same interactive 
element facilities as the Input Table. If there are two or more list-
based data required, they can each use a separate table or share a 
multi-column table.

To improve the chances for successful data processing the table 
cells accept or reject data following input. This can be as simple 
as rejecting letters when numbers are expected or enforcing spe-
cifi c restrictions imposed by the pipeline, such as minimum and 
maximum values or lengths. Error messages, possibly containing a 
message from the pipeline designer, are displayed to the user where 
available. The Input Table additionally contains a free-text cell enti-
tled “Notes” where annotations can be made about the dataset.

Associated with each dataset is a “Pipeline Schemes” (Figure 1E). 
This is a drop-down list with preconfi gured schemes that defi ne the 
precise list of modules activated in the processing of that dataset. 

By default, the two schemes that bound the possible processing 
are available; namely, one that activates all modules and another 
that entirely bypasses all the modules. Pipeline designers can add 
new schemes that activate only part of the pipeline and in doing so 
lead to more effi cient analyses of datasets that have been partially 
processed previously.

A drop-down box below the Input Table (Figure 2A) is used to 
host functions that work on the Input Table as a whole. A function 
to copy data from another instance of the same pipeline is avail-
able. Pipeline designers can add pipeline-specifi c functions into 
this drop-down box. The table of parameters (Figure 2B) can also 
be invoked from here. Parameters are variables for modules that 
remain constant throughout processing of the datasets (e.g. a spatial 
smoothing kernel). In keeping with the philosophy of a pipeline-
centric view, this table shows all parameters for all modules. It 
uses a two column format with one parameter per row. The fi rst 
column contains the parameter name and the second its value. The 
table offers the same interactive elements and validation facilities 
as the Input Table. For parameters that must share the same value, 
only one will be listed and any modifi cation here is propagated to 
all parameters.

Batch mode processing
Once data entry is complete, the workfl ow is initiated via the “Run 
Wizard” (Figures 3A,B,C). Here additional information required 
by the data processing engine, such as the summary output direc-
tory name, will be requested. Currently, the data processing engine 
operates by script generation and execution.

A  Dropdown Box

B  Parameter Table

FIGURE 2 | Steps in operation by consumers to modify parameters for the workfl ow. See text for details.
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Other practical issues
CamBAfx is a self-extracting archive available for download3 con-
taining both CamBAfx, the workfl ow environment, and a set of 
pipelines based on modules of the CamBA software (Suckling and 
Bullmore, 2004; Suckling et al., 2006). Also included are support-
ing functions such as functions to copy the results of one pipeline 
as the input to another. New pipelines and functions are delivered 
post-installation as plug-ins that are downloaded, dropped into the 
original installation and included into the distribution following a 
restart of the software. Most plug-ins orientated towards consumers 
modify the user interface to advertise their availability.

BACK-END: RESOURCES FOR WORKFLOW DESIGNERS
Out of the box, CamBAfx has all the generic facilities needed to man-
age workfl ows. For all pipelines, CamBAfx provides all the expected 

facilities to confi gure pipelines as well as collect, collate and batch-
process datasets that together form the workfl ow. However, since 
the Eclipse Extension Mechanism (EEM, Bolour, 2003) gives access 
to the user interface and allows them to contribute new functions, 
CamBAfx plug-ins customize the user interface to support the spe-
cifi c processing requirements of each pipeline and implement sup-
port facilities such as data imports from other pipelines.

Pipeline features
All information CamBAfx needs is contained in the pipeline 
fi le, written in XML, with three sections: Pipeline, Input Data 
and Preferences. The Pipeline section represents the pipeline as 
a collection of modules and connections. The modules are fur-
ther decomposed into variables (i.e. installation specifi c values), 
parameters, input and output ports, and how to invoke the pro-
gram. Almost everything describing the pipeline is in XML except 
for complex data manipulation, such as generating the command 3http://www-bmu.psychiatry.cam.ac.uk/software/

A   Run Pipeline

B   Run Wizard

C   Run Output

FIGURE 3 | Steps in operation by consumers to run the workfl ow. See text for details.
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line instructions, where Java program code is used in the form of 
a BeanShell Script4. Variables, parameters, input and output ports 
all carry datatype information (e.g., integer or string) and include 
restrictions on the data. All pipeline components can have varia-
tions on, for example, datatypes, modules (input or standard) and 
ports (data or signals). They start with a XML element with the 
same name, but with an attribute that identifi es the variant. The 
attached XML leaf elements change according to the variant. The 
Input Data section simply contains a description of each dataset 
as displayed by the Input Table. The Preference section contains 
optional information about the pipeline such as pipeline schemes 
and a list of linked parameters that should share the same value.

Steps are taken to make the pipeline simpler and easier to 
understand: First, looping constructs, normally used to effect batch 
processing, but complicating data fl ow, are eliminated by insist-
ing that each dataset is processed through the complete workfl ow 
from beginning to end and that each input port can only have 
one connection. Second, uncertainty about whether an input port 
needs to be connected is removed by insisting that all ports need 
to be connected. To satisfy this, and to show where datasets enter 
the pipeline, each pipeline has one (and only one) input module 
responsible for communication with the outside world.

Data standard and datatype hierarchy
For effective data exchange between modules, CamBAfx has a Data 
Standard for all datatypes it uses that defi nes the fi le format and 
the meta-data it must provide. For example, functional magnetic 
resonance imaging data (fMRI) is in 4D NifTI (Cox et al., 2004) 
single fi le format and must carry the sequence in which the slices 
of the three-dimensional volume were acquired, which is encoded 
as the slice_code meta-data. This approach guarantees the exact 
content available to designers for writing modules. In return, the 
output from a module should also satisfy this standard and the 
designer is responsible for converting data to and from the data 
format their program expects. Adhering to this data standard means 
data can be easily exchanged between modules. Designers only have 
to convert their data to one other format, i.e. to the data stand-
ard only and not all possible data formats they might encounter. 
Although CamBAfx is organised to validate data against the data 
standard following input, this is postponed until CamBAfx develops 
the appropriate editors to edit the data in situ as consumers prefer 
to be able to do this if their data fail validation.

Datatypes are organized into a hierarchy, with each datatype 
having only one parent and children must carry all data inherited 
from its parent as well as optional data of its own. A special equiva-
lence is used to defi ne a unidirectional relationship between two 
datatypes that do not share a common ancestry. This data hierarchy 
tree is used to prevent incompatible data transfer between modules 
in the VPE by restricting connection of output ports to input ports 
that expect the same datatype or its parents.

New pipeline wizards
A new pipeline can be created by cloning, i.e., loading the pipeline 
into the user interface and then saving it under a new name. This 
approach may, however, also copy unwanted details from the old 

pipelines, such as the specifi c dataset names and modifi cations to 
the pipeline. Therefore in CamBAfx, the preferred approach is to 
create pipelines using a New Pipeline Wizard where the new pipe-
line is cloned from a clean copy of the parent pipeline and can be 
manipulated if necessary before being presented to consumers.

CamBAfx DESIGN AND ARCHITECTURE
Eclipse and eclipse rich client platform
CamBAfx is an Eclipse Rich Client Platform (RCP, McAffer and 
Lemieux, 2005) application. Eclipse5 (International Business 
Machines, 2006) was originally created as an IDE with an exten-
sion mechanism (Eclipse Extension Mechanism, EEM, also known 
as Eclipse Plug-in Architecture, Bolour, 2003) designed to integrate 
development tools. The EEM is a way of extending an Eclipse-
aware program. A program that supports extensions publishes an 
extension point and its expectation. Interested parties then provide 
extension(s) that latch on to this extension point. Extensions can 
provide confi guration information or program code or both and 
together with their supporting data, such as icons and programs, 
are packaged into plug-ins.

Eclipse itself is designed as a collection of plug-ins, with the 
exception of a small kernel that starts up and bootstraps the EEM. 
After bootstrapping, the EEM discovers and manages all the installed 
plug-ins. It then searches the command that invoked it, and if neces-
sary a confi guration fi le, to fi nd the master application. This is read 
through the EEM and executed. In the original design there was 
only one master application: the Eclipse IDE. However, the Eclipse 
Extension Mechanism proved suffi ciently useful as a platform for 
development of standard programs that it was exploited by the 
Rich Client Platform (RCP) project. The RCP project allows other 
applications, such as CamBAfx, to be the master application.

All RCP applications are programs built using the EEM, and 
all share a common architecture and plumbing. RCP developers 
simply write the missing part, i.e. the program code specifi c to their 
project and insert it into the RCP framework.

CamBAfx as a RCP application
CamBAfx, like all RCP applications, is actually a collection of plug-
ins. For example, all CamBA’s command line programs, pipelines 
and supporting functions are encapsulated into Eclipse plug-ins and 
managed through the EEM. Tasks such as creating a New Pipeline 
Wizard are performed by extending CamBAfx using EEM.

The Eclipse extension point org.eclipse.core.runtime.applications, 
is the only mandatory extension point allowing CamBAfx to be 
invoked as a master application. CamBAfx also uses other Eclipse 
extension points such as org.eclipse.ui.editors for the main Input 
Table and org.eclipse.ui.actionSets to add menu and toolbars items. 
CamBAfx also defi nes its own extension points including the org.
genericfx.ui.inputtable.taskagents extension point which adds items 
to the Input Table’s drop-down box. Extension points, such as org.
genericfx.data.hierarchy which defi ne the datatype hierarchy custom-
ize CamBAfx for designers. CamBAfx also provides a special generic 
New Pipeline Wizard for the org.eclipse.ui.newWizards extension 
point eliminating the need to write generic wizards for pipelines by 
using instead CamBAfx’s org.genericfx.ui.base.newWizards extension 

4http://www.beanshell.org/ 5http://www.eclipse.org/
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point to read in the pipeline from a fi le. Part of CamBAfx, such as 
new items for the Input Table drop-down box, are constructed by 
extending its own extension points. All extension points, either those 
of Eclipse or CamBAfx, are available to downstream developers who 
can also defi ne their own.

Developing for CamBAfx
As standard Eclipse plug-ins, CamBAfx and its plug-ins are devel-
oped using Eclipse’s Plug-in Development Environment (PDE, 
Melhem and Glozic, 2003) that is designed specifi cally to develop, 
test and integrate plug-ins with their intended application. CamBAfx 
provides an editor, integrated into the IDE, for development and 
testing of pipelines. This editor has the Input Table and a rudimen-
tary VPE. CamBAfx has two data processing engines: traditional 
batch processing controlled directly by the program itself and a 
version that writes and then executes the processing steps via scripts. 
Both are callable from the IDE via its Run Wizard.

Eclipse also makes available supporting software facilities, such 
as an update mechanism and help browser. It provides tools for 
CamBAfx such as the Graphical Editor Framework6 (GEF, Hudson, 
2004) which is the basis of CamBAfx’s VPE.

Developers “pick-and-mix” CamBAfx plug-ins for their applica-
tions. Architecturally, there are three major parts: Pipeline, Input 
Table and Data Processing Engine (Figure 4). These three parts are 
kept independent of each other with minimum communication 
between them. Conceptually, the software is developed in three 
layers (Figure 5): At the bottom is GenericFX, a complete generic 
pipeline application; BrainFX is the middle layer that customizes 
GenericFX for neuroinformatics applications by defi ning the data 
hierarchy, data standard and some commonly used routines, such 
as NifTI data conversion. CamBAfx is the top layer and contains 
only CamBA-specifi c pipelines and functionalities. Third party 
developers who do not need CamBA can create their applications 
from either GenericFX or BrainFX. The same Eclipse Branding 

Mechanism (Eidsness and Rapicault, 2004) that defi nes CamBA’s 
own About Dialog, splash screen and icons can be used to brand 
other applications.

IMPLEMENTATION OF PIPELINES
CamBA ANALYSIS PIPELINES
CamBA is software for the analysis of neuroimaging data. The initial 
download contains a number of pipelines available for fi rst-level 
(within-subject) and second-level (between-subject) analysis for 
which CamBAfx provides customised interfaces. The CamBAfx 
application running CamBA pipelines has been widely used in 
the analysis of functional and structural MRI (examples include: 
Chamberlain et al., 2008, 2009; Habets et al., 2008; Menzies et al., 
2008; Wink et al., 2008).

CamBA’s fi rst-level analysis pipelines’ main purpose is to gen-
erate maps that summarise responses or signal properties from 
raw 4D fMRI. For example, a “time-series analysis pipeline” pre-
processes the data removing subject movement related artefacts 
followed by response estimation with the general linear model. 
The resulting effect maps are mapped into a standard stereotactic 
space in readiness for second-level pipelines.

Consumers start by choosing the “group activation mapping” 
pipeline from the library of pipelines (Figures 1A,B). Its pipeline 
wizard (Figure 1C) can confi gure the pipeline to perform house-
keeping tasks to meet the Data Standard, such as inserting the correct 
slice_code into the fMRI 4D data and removing unwanted 3D 
scans from the start of the data. The Input Table (Figure 1D) asks 
for the fMRI data and the design matrix fi le. Its Pipeline Schemes 
are carefully selected to activate parts of the pipeline according to 
the specifi ed usage of the pipeline.

At the second level, pipelines that offer fl exibility in choosing 
different statistical models present a more diffi cult challenge for 
parameter confi guration, with many parameters dependent on oth-
ers. The pipeline can be invalidated if the wrong combination of 
parameter values is chosen. The corresponding New Pipeline Wizard 
therefore guides consumers by changing the display according to 
the model required. At pipeline creation, the available parameter 
values are screened to remove incompatibilities. The Wizard adds, 

FIGURE 4 | Conceptually, CamBAfx application is constructed from of 

three components: Pipeline, Input Table and Data Processing Engine, 

integrated inside the Eclipse Rich Client Platform (RCP) framework. 

Minimal communication between each component allows components to be 
replaced or removed. The separation between front-end (user interface) and 
back-end can be reconfi gured as needs change. “S” denotes supporting 
functions which can be attached to the application as plug-ins.

6http://www.eclipse.org/gef/

FIGURE 5 | Architecturally, CamBAfx is organized in three layers (Solid 

boxes): CamBAfx, BrainFX and GenericFX. CamBA is unmodifi ed and 
completely contained inside a plug-in in the CamBAfx layer. They are all built 
on top of the Eclipse RCP Framework and developed inside Eclipse Integrated 
Development Environment’s (IDE) Plug-in Development Environment (dashed 
boxes). CamBAfx extends the Eclipse IDE with a Visual Pipeline Editor to 
visualize the pipelines during their development and testing.
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on request, new ports and connections to the pipeline that represent 
additional variables. These variables also appear on the Input Table 
as additional columns. The majority of the Input Table columns are 
programmed to accept numbers only and where appropriate are fur-
ther restricted to a small range of values. In effect, the wizard creates 
different variations of pipelines for the consumers. All second-level 
pipelines insert an item into the drop-down box below the Input 
Table that can import results from fi rst-level pipelines.

In general, data generated by one software suite cannot be used 
by another because the data are stored as a different data type. The 
most common data type mismatch is 32 bit and 64 bit fl oating-
point data and therefore CamBAfx provides a pipeline to convert 
data between these formats. Additional information for performing 
data type conversions from specifi c software suite is available inside 
the Help Browser bundled with the core CamBAfx download.

For fi rst-level pipelines, the repetitive entering of data is assisted 
by a supporting function for automatically reading data into the 
Input Table from a directory-based data organization. Following 
download and installation, it adds itself to the drop-down box of 
the Input Table. Another download adds a menu item to extract 
statistics from data in predefi ned regions-of-interest (anatomical 
or identifi ed by statistical testing). Finally, users can download a 
menu item that modifi es the NifTI header data in batch mode and 
checks that the modifi cation satisfi es the data standard.

IMPLEMENTATION OF FSL TRACK-BASED SPATIAL STATISTICS 
To illustrate the fl exibility of the CamBAfx approach, a plug-in 
(TBSSfx) is available which repackages the tract-based spatial sta-
tistics (TBSS, Smith et al., 2006) software for diffusion tensor image 
analysis, available as part of the FSL package. Since TBSS is part of 
the FSL pipeline, licensing restrictions require a separate download 
of FSL7. In brief, TBSS is a fi ve step process:

(1) Input data is organised into a directory. Pre-processing sof-
tware relocates input data into a subdirectory.

(2) If there is a target image that defi nes the stereotactic space 
of the analysis, copy and rename into the subdirectory. The 
target image cannot be copied until step 1 is completed.

(3) The analysis software is executed.
(4) A design matrix and a contrast fi le are created and further 

analysis takes place.
(5) Call a collection of programs to perform voxel-wise statisti-

cal analysis.

There are a number of restrictions on these steps, particularly with 
regard to the order in which they are conducted. Furthermore, con-
struction of the design matrix is interactive and unconstrained.

TBSSfx is a collection of plug-ins with a plug-in used to host 
the FSL archive, which the consumers download separately. TBSSfx 
simplifi es data entry and automates the processing ensuring com-
pliance with the restrictions on the processing steps. For example, 
during pipeline creation, TBSSfx asks the user to name the number 
of conditions (columns) for the design matrix and to specify the 
contrast fi le and then validates this against the format of the design 
matrix. The contrast fi le is defi ned at this stage (and not later in 

the pipeline) to guarantee that the pipeline created is confi gured 
 correctly. In the Input Table consumers enter the image data 
fi lename in the fi rst row with subsequent columns only accepting 
numerical data corresponding to the design matrix.

The Run Wizard asks for an output directory, which is cleaned 
and populated with hard links to the actual data for speed and 
economy of resources as well as ensuring that the original data are 
preserved. The design matrix fi le and contrast fi le are then created 
with fi lenames constructed to maintain the list orders from the 
Input Table. The processing script manages data processing in a 
way consistent with the original TBSS process.

DISCUSSION
CamBAfx is an application that presents workfl ows according the 
needs of users: designers or consumers. The initial download con-
sists of the basic program only. New functionalities and pipelines 
can be added post-installation maintaining the installation to a size 
adequate for local needs. This is made possible by the EEM which 
manages plug-ins for consumers.

The overall organisation is as Input Table, Pipeline Confi guration 
and Data Processing Engine. The Input Table presents the full view 
of the datasets, allows users to take notes and fi ne tune the actual 
processing of individual datasets. Both Input Table and Parameter 
Table validate and reject invalid data. These are all designed to 
improve the chances of successful data processing.

CamBAfx packages neuroinformatics software, without modi-
fi cation, inside plug-ins. Other CamBAfx plug-ins provide the 
branding, the pipelines and their New Pipeline Wizards as well as 
supporting functions. Pipelines are organized into directories and 
each pipeline comes with its own customized wizards.

The back-end’s aim is to deliver workfl ows to the user. It uses 
the traditional pipeline view of the workfl ow making modifi cations 
straightforward. Facilities like data hierarchy, data standards and 
pipeline simplifi cation strategies are designed to assist pipeline con-
struction and improve readability. Pipelines are written in XML for 
human-readability and can be manipulated programmatically.

For developers, CamBAfx supplies a generic set of functions for 
their pipelines. However, customization of CamBAfx is encouraged 
by developing supporting facilities. These supporting functions 
have access to the user interface via Eclipse or CamBAfx extension 
points.

Organising software in a consistent manner facilitates construc-
tion of new pipelines from modules originating from different soft-
ware packages and is an important design objective for CamBAfx. 
Analysis software is not merely repackaged, rather consumers and 
designers can integrate tools to generate custom workfl ows or 
undertake optimisation of pipelines through systematic compari-
son of modules.

Using Eclipse RCP technology means that CamBAfx uses 
industrial standard architecture reducing development time and 
ensuring that the underlying technology is constantly updated 
and improved. Eclipse-based tools can be incorporated easily and 
CamBAfx can integrate with other Eclipse programs. Eclipse’s 
PDE is a useful aid for developing CamBAfx and its plug-ins. 
CamBAfx’s extensions for Eclipse IDE allows plug-in integra-
tion to be debugged and tested using PDE. The source code is 
organized in a logical and fl exible manner to maximize reuse 7http://www.fmrib.ox.ac.uk/fsl/
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 potential. Workfl ow applications can be developed from BrainFX 
or GenericFX if CamBA is not needed.

CamBAfx is released under the terms of General Public License 
(GPL, Free Software Foundation, 2007) and specifi cally allows 
designers to integrate their pipelines before shipping. This removes 
problems associated with consumers having to download pipelines 
and workfl ow applications separately and following instructions 
to integrate them to form the fi nal application.

GenericFX, BrainFX, CamBAfx and TBSSfx can be downloaded 
from SourceForge.net8 or NITRC9.

CONCLUSION
CamBAfx is a workfl ow application designed to be the user interface 
that services consumers’ needs in the front-end by guiding them 
throughout the whole process from pipeline creation, through data 
entry and validation, to data processing. At the back-end, workfl ow 
creation and manipulation are made easier by adopting a pipe-
line model complete with a strategy to understand and use a data 
standard and data hierarchy as well as facilities to manipulate these 
pipelines. Out of the box, CamBAfx provides all the generic facili-
ties expected of a workfl ow application for any pipeline although, 
uniquely, designers are encouraged to customize CamBAfx for their 
own pipelines. CamBAfx is built as an Eclipse RCP application and 
benefi ts from industrial standard architecture and modern soft-
ware facilities, such as supporting post-installation modifi cation. 
EEM makes CamBAfx highly fl exible, confi gurable and extensible. 
Designers use it to customise CamBAfx for their pipelines, to insert 
supporting functions and to access the user interface. Moreover, by 

selecting components from CamBAfx and with the help of Eclipse 
Branding Mechanism, new workfl ow applications can be created. 
The availability of PDE, designed to support Eclipse plug-in devel-
opments, improves CamBAfx designers’ productivity.

FUTURE WORK
New versions of CamBAfx will use EEM more extensively. Small 
utility programs are being developed to check that the CamBAfx 
instance is error free. The current XML pipeline descriptor can 
contain two or more ways to describe the same data. This will be 
reduced to one as part of the effort to rationalise the XML descrip-
tors. The new XML will use XML Namespace (Bray et al., 2006) 
and support XML Schema (Fallside and Walmsley, 2004) valida-
tion. Meta-data such as the author’s name and email, are managed 
centrally using the Resource Description Framework (RDF, Beckett, 
2004), removing duplication and simplifying updates. RDF also 
stores the relationship between meta-data.
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were used for a particular analysis, becomes complicated by the 
heterogeneity of the collecting sites yet is critically important to 
the interpretation and reuse of derived results. Numerous recent 
publications have discussed the benefi ts of documenting the ori-
gin and steps by which data were collected and derived (Foster 
et al., 2003; Simmhan et al., 2005; Zhao, et al., 2006; MacKenzie-
Graham et al., 2008; Moreau et al. 2008). Provenance, as defi ned 
by the Oxford English Dictionary, is “the source or origin of an 
object; its history and pedigree; a record of the ultimate deriva-
tion and passage of an item through its various owners” (Freire 
et al., 2008). MacKenzie-Graham et al. (2008) make a distinction 
between data provenance and processing provenance where the 
former refers to metadata describing how the original data was 
collected and the later referring to the processing original data 
undergoes after the initial collection. Both types of metadata are 
crucially important for subsequent use of the data by a single labo-
ratory and the scientifi c community. In multi-site, distributed, 
collaboratories where information is dynamic in nature and not 
centrally managed, robust, scalable metadata management tools 
are essential (Moreau et al., 2008).

INTRODUCTION
The biomedical science community has seen increased numbers 
of multi-site consortia driven in part by advances in speed and 
robustness of internet technologies, the demand for cross-scale 
data to understand fundamental disease processes, the need for 
experts from diverse domains to integrate and interpret the data, 
and the movement of science in general toward freely availa-
ble information (Arzberger and Finholt, 2002). The Science of 
Collaboratories website1 lists 213 collaboratories since 1993. These 
consortia face increased challenges in managing, interpreting, 
and sharing data without informatics methods to clearly docu-
ment necessary metadata at both the time of data collection 
and subsequent data processing and analysis.(Olsen et al., 2008; 
Paton, 2008) The diffi culties in sharing and combining raw data 
become amplifi ed after post-processing and/or data analysis in 
which the new dataset of interest is a function of the original 
data and may have been collected by multiple collaborating sites. 
Simple metadata, documenting which subject and version of data 
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graphical user interface, the XML-Based Clinical Experiment Data 
Exchange (XCEDE2)5 schema used to defi ne valid XML documents 
for structured data/metadata storage and exchange, and data pub-
lication scripts to organize and transfer data to the distributed 
fi le system and send appropriate uniform resource locator (URL) 
links to the HID database. In this manuscript we introduce tools 
from the BIRN software suite used for documenting multi-site 
functional and structural neuroimaging analyses in a federated 
database and distributed data handling environment. The discus-
sion centers around two data processing pipelines, one designed for 
multi-site preprocessing of fMRI data and the other, a structural 
analysis of schizophrenia in humans. Our intention is to provide 
the informatics community with insights into the data structures 
used and our view of the extensibility of this system.

MATERIAL AND METHODS
FBIRN NEUROIMAGING DATA MANAGEMENT AND 
WORKFLOWS OVERVIEW
Scientifi c data management systems generally consist of at least a 
few core components: a back-end database for permanent, struc-
tured, data storage and effi cient query, a front-end graphical user 
interface for client interaction, and an import/export mechanism to 
get data into and out of the database and share with collaborators 
(Keator et al., 2008). These systems can exist entirely at a single site 
or be distributed geographically. FBIRN operates in a completely 
distributed environment. The suite of tools developed by FBIRN 
form the FIRE, providing management support of clinical, behav-
ioral, and imaging data in a decentralized way using federated data-
bases and a distributed fi le system (Figure 1). Each site maintains its 
own HID database back-end and graphical user interface (Ozyurt 
et al., 2004a,b, 2006; Keator et al., 2006; Keator, 2009). The HID is 

The Biomedical Informatics Research Network (BIRN)2 is a 
large multi-site consortia of individual test beds coalesced around a 
shared set of resources, developing standards, methods, and process-
ing tools in a distributed, grid-enabled environment (Grethe et al., 
2005; Keator et al., 2006). The BIRN enables scientists across dis-
parate domains to securely and transparently share data and tools. 
The Function BIRN test bed (Keator et al., 2006) brings together 
investigators developing data sharing standards, instrument calibra-
tion methods in the context of functional MRI (fMRI), novel statis-
tical models, and advanced clinical/cognitive paradigms necessary 
to study the neural substrates of schizophrenia in a collaborative 
setting. Since its inception in 2002, FBIRN has prospectively col-
lected over 400 fMRI human datasets collected during the protocol 
design and execution of four separate studies and thousands of agar 
phantom calibration datasets across the 11 participating sites. The 
datasets generally consisted of a minimum of fi ve functional acquisi-
tions and at least a T1-weighted structural acquisition. Details about 
the publically available data can be found at http://nbirn.org/bdr.

Beyond prospective data collection, the FBIRN neuroinfor-
matics working group, in collaboration with other BIRN test bed 
informatics groups, has developed data structures and software 
to dynamically track and document data acquired and analyzed 
as part of human imaging studies. The suite of tools forms a 
cooperative system for managing and documenting acquired and 
derived data entitled the FBIRN Federated Informatics Research 
Environment (FIRE)3. Data management in the federated environ-
ment of both the original and derived data is supported through 
three core components: the Human Imaging Database (HID)4 for 
distributed/federated relational database support and web-enabled 

FIGURE 1 | Schematic of original (raw) data entry and fi le registration process at a node in the federation and FBIRN node locations.

2www.nbirn.net
3www.nitrc.org/projects/fbirn/
4www.nitrc.org/projects/hid 5www.xcede.org
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an open-source extensible database schema designed to support 
multi-site,  federated, installations and inclusion of new data types 
without changing the core table space. The graphical user interface 
is a three-tier J2EE application supporting data input, single-site 
and multi-site query, data export, and core system administration 
tasks. More detailed information about HID can be found in the 
references and the software is available through the NITRC  website6. 
Currently, within FBIRN, there are 11 federated installations man-
aging 790 imaging visits and 4239 clinical assessments as collected 
across four prospective FBIRN studies and retrospective data con-
tributed by the Brainscape repository of Washington University, 
St. Louis7. Clinical assessments collected are those common in stud-
ies of Schizophrenia such as SCID, Beckman Depression Inventory 
(BDI), North American Adult Reading Test (NAART), InterSePT 
scale, and many others. Details of publically available data can be 
found at http://nbirn.org/bdr. Data fi les that are part of an imag-
ing study are published to the Storage Resource Broker (SRB) dis-
tributed fi le system and cross-linked in the database using a URL 
string (Rajasekar et al., 2003). The data publication process involves 
data reorganization into a standardized directory hierarchy, for-
mat conversions, and the creation of XCEDE2 XML (eXtensible 
Markup Language)8 fi les containing minimal metadata about the 
experiment stored with the imaging fi les on the SRB. This process 
is facilitated by data publication scripts. The scripts use an XML 
formatted template which a site can confi gure using an XML edi-
tor or a provided GUI. The upload template consists of metadata 
describing the imaging series, visit, and project information. When 
available the information is automatically extracted from DICOM 
image headers. Information that is not available in the DICOM 
headers is input manually. The data publication scripts include 
schematron validation defi nitions which are prepared during study 
design to validate the data publication XML templates. Once the 
templates are created they can be reused with minor modifi cations 
to visit dates and subject IDs using the GUI provided with the pub-
lication scripts. The bulk of metadata describing the subject visit 
is stored in the database. Additional details about data provenance 
and management of the original collected data can be found in 
publications by Ozyurt et al. (2006) and Keator et al. (2006).

Once the data has been published into the federated system, it 
is available for processing. The FBIRN has developed quality assur-
ance and image processing utilities optimized to work with data 
from the federated system. Data analysis and/or post-processing 
workfl ows currently instantiated in FBIRN share a few common 
steps. First, the datasets are located in the federation, either by 
browsing the low-level distributed fi le system or interacting with 
the HID graphical user interfaces to query and fi lter data collected 
in the federation. Once datasets of interest are identifi ed, they are 
downloaded to the local system for computation (Figure 2). The 
downloaded datasets contain both imaging data fi les and the XML 
metadata fi les stored with the dataset. Additional metadata exports 
from the HID database are also available during the downloading 
process if one is using the graphical user interface. Once data is 
downloaded, any number of analysis algorithms could be run and 

a new derived dataset created. If an investigator feels the derived 
dataset is of suffi cient technical quality and scientifi c interest to 
others in the collaboratory, it should be published to the federa-
tion with suffi cient processing provenance and searchable metadata 
such that others can effectively interpret and reuse the derived data. 
This overall process of documenting steps in an analysis pipeline, 
representing the provenance in a consistent and well documented 
way, and providing a means of querying derived data which refer-
ences original subjects collected at geographically distributed sites 
in a robust and extensible manner were the motivations driving 
the informatics components presented here.

CASE STUDIES
Two analysis workfl ows will be referred to throughout the following 
sections, giving substantive context to the abstract informatics struc-
tures discussed. Each workfl ow has slightly different requirements 
for processing provenance and metadata storage. Together the case 
studies illustrate the robustness of the informatics structures.

Structural MRI analysis workfl ow
This workfl ow consists of a multi-site structural MRI analysis of 
schizophrenia. The imaging data consisted of 3D T1-weighted 
MRI images collected across consortium sites. The original images 
were shared using the data management components described in 
Section “FBIRN Neuroimaging Data Management and Workfl ows 
Overview.” The structural morphometric (StructMorph) analysis 
was performed across two participating sites. Data were analyzed 
with the FreeSurfer software9 using a single program “autorecon-
all”. The “autorecon-all” script calculates cortical and sub- cortical 
thickness statistics in two stages: a volumetric processing stage 
which includes noise correction, volumetric registration, and white 
matter segmentation, and a surface processing stage for cortical 
parcellation and thickness measurements. The “autorecon-all” is 

FIGURE 2 | FBIRN data management discovery and analysis workfl ow.

6http://www.nitrc.org/projects/hid/
7www.brainscape.org
8www.w3.org/XML 9http://surfer.nmr.mgh.harvard.edu
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a black box processing script. Provenance documentation about 
which FreeSurfer binaries are called by “autorecon-all” were not 
provided with the analysis. It has a version number and compilation 
date that uniquely identifi es the script but the details about what 
other modules it calls during the course of execution is hidden from 
the user. Cortical and sub-cortical thickness estimates from the 
structural processing pipeline were chosen by study investigators 
as metadata to make available for query in the database federation. 
All other images, intermediate fi les, and program specifi c outputs 
were made available on the distributed fi le system. Cortical thick-
ness measurements are extracted from output fi les using the script 
“fsstats2xcede.pl”. The overall workfl ow is shown in Figure 3. This 
case study is used to illustrate the process of extracting relevant 
analysis specifi c metadata, encapsulating it in XML, loading it into 
database tables, and making it available for query in the federated 
data management system in a generic way.

fMRI data preprocessing workfl ow
The fMRI data preprocessing (PreProc) workfl ow consists of a 
multi-level pipeline with numerous intermediate derived results 

combined with original data inputs at various points in the  workfl ow 
(Figure 4). The complex nature of the workfl ow makes it an ideal 
test case for the informatics structures. This workfl ow was designed 
to provide an automated and consistent pre- processing pipeline for 
FBIRN studies. Preprocessing in fMRI is a general term describing 
any processing done after image reconstruction prior to statistical 
analysis of brain activation (Strother, 2006). The PreProc pipeline 
consists of motion correction, slice timing correction, magnetic fi eld 
inhomogeneity correction (B

0
), and spatial smoothing. For addi-

tional information on the FBIRN imaging processing pipeline used 
for the PreProc analysis, please visit www.nitrc.org/projects/fi ps/. 
For this workfl ow, investigators were most interested in document-
ing the processing provenance. Unlike the StructMorph analysis 
discussed in Section “Structural MRI Analysis Workfl ow” in which 
the processing is treated as a single black box script, this work-
fl ow has many separate programs put together in a specifi c order. 
Changing the order and/or any of the parameter settings poten-
tially alter the derived results. Investigators were most interested 
in carefully documenting the ordering of steps and the parameters 
used. Proper documentation of the PreProc workfl ow enables its 
use in higher order analyses without duplicating work. As the data 
federation grows, original data may be processed numerous times 
with slightly different steps or with different parameter settings and 
made available through the data management systems. It is therefore 
critically important to document the workfl ow as completely as 
possible given limited time and resources of investigators to enable 
maximum derived data reusability.

DERIVED DATA EXCHANGE SCHEMA
The XML-Based Clinical Experiment Data Exchange (XCEDE2)10 
schema was designed for documenting research and clinical studies 
(Keator et al., 2006). The schema defi nes components and con-
straints on those components required to form a valid XCEDE2 
compliant XML document. Initially the focus of XCEDE2 was on 
human imaging studies but the schema contains many generic and 
extensible structures useful for a wider range of scientifi c domains. 
Development of the schema was a joint effort within BIRN and is 
the exchange medium for many database web services currently FIGURE 3 | Original data fi les (blue) downloaded from data federation are 

processed using autorecon-all and cortical thickness data extracted 

(green). Resulting data fi les are loaded back into data federation. 

FIGURE 4 | fMRI PreProc data preprocessing workfl ow. Original data inputs colored blue, intermediate derived data colored yellow, fi nal derived data output 
colored green. Workfl ow transform modules Fips-mc-fsl, Fips-b0c-fsl, Fips-stc-fsl, and Fips-sm2-fsl contains variable numbers of sub-transform steps to produced 
intermediate and fi nal derived results.

10www.xcede.org
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in use. The schema is fl exible, providing mechanisms for linking 
to external output fi les and for storing analysis data directly in 
the XML document. XCEDE2 documents can be split into sub-
 documents and linked together using constructs of the schema. 
The data analysis portion of the XCEDE2 schema is the most rel-
evant to the case studies and will be presented in more detail. For 
complete documentation of the schema readers are encouraged to 
visit the website. The analysis component of the XCEDE2 schema 
was designed as a generic container used for documenting results 
of analyses. An analysis in this context is composed of the “inputs” 
(i.e., the fi les and parameters used in an analysis or processing of 
data), a list of the application(s) or method(s) used in the analysis 
(provenance), and the resultant data (i.e., values and output fi les) 
(Figure 5).

The format of the <input> and <output> components 
(Figure 6A) are essentially identical. Using the ID attributes 
<dataID> and <analysisID>, they serve as pointers to other por-
tions of the XCEDE dataset (in the same XML document or another 
XCEDE2-compliant XML fi le) that more fully describe the analysis 
or data consumed or written by this processing step.

The <measurementGroup> component is used to store informa-
tion and data related to the outcome of analyses (Figure 6B). Each 
measurement group contains observations on an entity. Entities 
are used to give meaning to the measurements being stored. The 
entity element can reference any number of terminology sources 
and is composed of multiple nomenclature/termID pairs. The 

observation element of a measurementGroup contains the actual 
measurement values for the particular entity along with attributes 
defi ning the data type and units of the measurement. An example 
of the <measurementGroup>entry for the StructMorph analysis is 
shown in Figure 7. The measurements for this analysis are related 
to curvature and thickness of particular anatomical parcellations 
of the cortex. The <measurementGroup> component is exten-
sible in that any number of self-describing observations can be 

FIGURE 5 | Base <analysis> component.

FIGURE 6 | <analysis_t> components of the XCEDE2 schema. The input/
output components (panel A) used to reference input data and output derived 
data fi les and/or metadata. The measurement group component (panel B) used 

to store derived data values directly in XML formatted fi le. The provenance and 
processStep components (panel C) used for documenting processing pipeline 
specifi c metadata.
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grouped together to record a derived data output complete with 
entity  information. The nomenclature used in this example is the 
FreeSurfer native terminology thus giving meaning to an other-
wise arbitrary anatomical location identifi er. In the StructMorph 
analysis, there are many <measurementGroup> entries, one for 
each anatomical region analyzed. Hemispheric analyses are physi-
cally separated into different XCEDE2 fi les but could alternatively 
be contained within one fi le. The decision to separate results into 
multiple XCEDE2 fi les was to facilitate granularity of analysis sum-
mary downloads.

In thinking about how users would interact with the derived 
results, there were two methods that were most desirable to support 
in FBIRN. The fi rst method is a direct query of the database, fi ltering 
on cortical thickness and/or curvature measurements by anatomical 
region for the StructMorph analysis shown in Figure 7. To facilitate 
this use case, the parcellation results need to be loaded into the 
data management system. Web services for the HID database were 
developed in support of derived data loading using the XCEDE2 
format. Effectively any derived result that can be represented using 
XCEDE2’s <analysis> component can be directly imported into the 
HID database without table space changes (see Section “Derived 
Data Database Schema” for database design). The intermediate 
representation of derived results in the form of an XCEDE2 fi le 
is important for downstream processing tools, data management 
systems, and structured data exchange. Tools that might otherwise 
not have access to a processing pipeline’s native output fi le formats 
can be written to parse XCEDE2 documents and obtain an agnostic 
view of derived results. For those pipeline stages that don’t directly 
export XCEDE2 data, it is a simple matter to create wrapper scripts 
that extract relevant summary data into XCEDE2 documents. The 
second method of derived data use in the FBIRN federation is down-
loading the entire analysis output and exploring the output within 
the analysis tool or pipeline itself. For this method of interaction, a 
user may just need to fi lter on some aspect of the processing prov-
enance. For example, a user might query on all analyses performed 
using named pipeline PreProc, version 1.0. Additionally, the user 
might want to fi nd all analyses that used a particular dataset as input. 
To support these use cases, structured documentation of original 
data and processing provenance is needed.

The <provenance> element of the <measurementGroup> 
co mponent provides a mechanism for documenting processing 
provenance in an XCEDE2 compliant XML document (Figure 6C). 
A typical <provenance> entry consists of many <processStep> blocks 
used to store metadata about the analysis pipeline itself. The schema 
provides elements for documenting program arguments, compiler 
and library information, platform and architecture, time stamping, 
and user identifi cation. Typically in standalone analysis packages 
and in arbitrary processing pipelines constructed from multiple 
standalone applications, rich metadata is diffi cult to capture. Unless 
there has been concerted effort by software developers to provide 
provenance with analysis execution, it is up to the user to main-
tain accurate records. Workfl ow environments such as the LONI 
pipeline11 and Fiswidgets12 augment information provided by tool 
developers with enhanced pipeline metadata easing the burden 
of provenance documentation (Fissell et al., 2003; MacKenzie-
Graham et al., 2008). The XCEDE2 schema provides fl exibility in 
storing pipeline provenance alongside derived data. Figure 8 shows 
examples of processing provenance collected for the StructMorph 
and PreProc use cases. The complete provenance records for the 
analyses are quite long so selected segments have been extracted. 
To provide the ability to reconstruct arbitrarily complex pipelines, 
the data provenance schema in XCEDE2 supports multiple forks, 
merges, and/or parallel analysis streams. Currently, the XCEDE2 
provenance <processStep> components have attributes “id” and 
“parent” that together are used to document complex tree structured 
processing pipelines. The schema does not put any restrictions on 
“parent” attributes allowing maximum fl exibility at some expense 
of clarity. In the StructMorph use case, provenance wrapping scripts 
were written by FBIRN developers working directly with FreeSurfer 
software developers. In the PreProc use case, provenance was com-
piled by FBIRN developers using information available from only 
the standalone tools and linked together using XCEDE2 constructs 
consistent with the defi ned the pipeline. The <provenance> com-
ponents in an XCEDE2 compliant export of an analysis are used 
directly by the HID database web services to store the processing 

FIGURE 7 | XCEDE2 XML entry for thickness and curvature derived data. Entity tags document terminology source “rh.aparc.annot” and term 
“caudalmiddlefrontal” which is the native term and source within FreeSurfer analysis software.

11http://pipeline.loni.ucla.edu
12http://grommit.lrdc.pitt.edu/fi swidgets/
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pipeline description. The <measurementGroup> data is also parsed 
by the web service layer and loaded into the data management 
system (see Section “Derived Data Database Schema”).

DERIVED DATA DATABASE SCHEMA
Cataloging derived data and metadata in the HID data manage-
ment system is a vital step in making the analytic results available 
to BIRN collaborators and ultimately the wider scientifi c commu-
nity. Because the BIRN infrastructure is inherently distributed and 
federated in nature, simple changes to database schema at one site 
becomes diffi cult and time consuming in the federation. Therefore, 
an important requirement for the database schema is a stable set of 
generic tables capable of storing processing pipeline provenance, 
interesting analytic results, and metadata about analyses complete 
with ontology and terminology source references. The table space 
should not change when presented with new derived data types 
and/or pipeline defi nitions. The StructMorph and PreProc analyses 

are interesting cases to test the stability of the data management 
schema. The StructMorph use case tests the capability of storing 
derived data values directly in the database and the automated 
query interface creation by the web application. The PreProc use 
case tests the table space for documenting multi-layered processing 
pipeline provenance. As shown in Figure 4, the processing pipeline 
is complex with transforms composed of sub-transforms hierar-
chically, with inputs and outputs interleaved along with multiple 
intermediate states.

The database schema for documenting processing pipeline defi -
nitions consists of four core tables: nc_analysis, nc_analysisFlow, 
nc_analysisComponent, and nc_transformation (Figure 9). Defi ning 
a processing pipeline is differentiated from any particular instantia-
tion of that processing pipeline on actual data. The nc_ transformation 
table serves as a generic bag of processes where each entry contains a 
reference name, reference version, package name, package version, 
and ontological information. The  reference name and version are 

FIGURE 8 | Example XCEDE2 provenance blocks from PreProc (top) analysis and StructMorph (bottom) analyses.
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user-defi ned identifi ers for the process whereas the package name 
and version corresponds to the name given by the process devel-
opers. The idea is to select processes from the nc_transformation 
table and put them together into pipelines. By adding the processes 
to the nc_transformation table, one can reuse tools in subsequent 
analytic pipelines. With respect to the use cases, the nc_transforma-
tion table contains entries for “autorecon-all” and “fsstats2xcede.
pl” for the StructMorph analysis and “avwmerge”, “avwmaths++”, 
“mcfl irt”, “nifti_tool”, “bet”, “fugue”, “fl irt”, “slicetimer”, “mri_fwhm”, 
and “ip_32R” for the PreProc analysis. By comparing the list with 
Figure 4 there are four occurrences of the “nifti_tool” process in the 
pipeline but only a single entry in the nc_transformation bag of tools 
table. Next, the processing pipeline is assembled from the tools avail-
able in the nc_transformation table and the processing fl ow defi ned. 
The nc_analysisFlow table defi nes the fl ow through the processing 
tree defi ned in the nc_analysisComponent table.

For the PreProc pipeline, the nc_analysisFlow table contains 
two entries, one for “autorecon-all” and one for “fsstats2xcede.pl”. 
The analysisid entry uniquely identifi es the processing pipeline as 
described in the nc_analysis table’s name, version and ontology 
source fi elds. The componentid fi eld in the nc_analysisFlow table 
references the component ID stored in the nc_analysisComponent 
table for a process (autorecon-all for example). The priorcomponen-
tid fi eld in the nc_analysisFlow table defi nes a component executing 
immediately prior to the current step of the pipeline. Any number 
of entries for prior components can be added to the nc_analysisFlow 
table for a given componentid providing fl exibility in defi ning com-
plex pipelines. The nc_analysisComponent table defi nes the hier-
archical relationship between steps in the pipeline. The analysisid 
and transformationid fi elds reference the pipeline and processing 
steps. Fields parentcomponentid and nodelevel reference the par-
ent processing step and the depth within the processing pipeline 
tree. The nodelevel fi eld is used to both identify the fi rst step in the 

processing pipeline tree (nodelevel = 1) and to group processing 
tasks into distinct levels (or depths). The parentcomponentid identi-
fi es the parent node in the pipeline. Cyclic operations in a graph 
representation of a processing pipeline where there are multiple 
executions of a particular step are duplicated in the current imple-
mentation. Database queries through the HID web interface can be 
constructed either as simple queries fi ltering on particular compo-
nents of the pipeline (nc_analysisComponent table), on sequences 
of tools (nc_analysisComponent and nc_analysisFlow tables), and 
by overall pipeline named identifi ers (nc_analysis table). More 
advanced concept and ontology based queries are also supported 
if the ontology fi elds are populated for the processing pipeline.

Pipeline metadata related to output formats from an analysis are 
described in a generic way similar to those used in HID for storing 
new data types (Ozyurt et al., 2004a,b, 2006). The nc_extendedTuple 
table along with a number of accessory tables enables new classes 
of data to be described in a similar way as one constructs classes in 
programming languages such as C++ and Java. In the StructMorph 
use case, the extended tuples functionality is used to describe the 
anatomical thickness measurements that are loaded into the data-
base from the XCEDE2 document discussed above. The database 
graphical user interface uses the extended tuples class defi nition to 
construct a query interface in the web application that is appropri-
ate for basic logical queries over the results from an instantiation of 
the pipeline on actual data (Figure 10). The mechanisms used by 
HID to automatically construct web based query forms are in active 
development and beyond the scope of this manuscript. Interested 
readers are encouraged to visit the NITRC HID website for further 
details and documentation.

The instantiation of a processing pipeline and the resulting 
derived data is stored among a variety of HID tables linking the 
analysis fi les deposited in the data grid (SRB) with the pipeline 
metadata stored using the data class description discussed above. 

FIGURE 9 | Core HID tables for defi ning processing pipelines.
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Because the databases are federated, it may not be the case that 
the original data used to produce a derived result are registered 
in the database where the pipeline outputs are to be stored. The 
provenance information stored in the XCEDE2 formatted output 
fi les includes information about which original data were used 
in the processing pipeline. This information is used by the HID 
import web service to determine whether the original data exists 
in the particular HID the derived result is being deposited or not. 
If the original data does not exist in the database, an entry is put 
into the nc_externalData table with information about which HID 
to contact for more detail about the original input data such as 
demographics, behavioral assessments, visit dates, etc. The HID 
federated query mechanism used to fi nd information across the 
data federation is used in this context to provide additional infor-
mation about the data included in an analysis pipeline. Interesting 
queries can be executed to locate all data processed with a particular 
pipeline and fi nd which pipelines a particular dataset were used 
in, for example.

RESULTS
The StructMorph analysis was performed on 146 subjects collected 
across the FBIRN sites. The analysis was performed at two sites and 
the resulting derived data loaded into the HID systems at those two 
sites. Beyond the database and schema structures, code was writ-
ten to convert the FreeSurfer cortical parcellation and volumetric 
segmentation output measures to XCEDE2 XML fi les. Instantiated 
pipeline provenance for each of the 146 runs was more diffi cult to 
obtain. Log fi les extracted from the processing tools were parsed for 
provenance and in some cases were unsatisfactory depending on 
the amount of information stored by the applications. The “fsstat-
s2xcede.pl” tool was written within the FBIRN consortium and 
contained rich provenance information highlighting the need for 

either provenance wrappers around tools developed elsewhere or 
advocating the use of workfl ow environments such as LONI and 
Fiswidgets. Preliminary testing of metadata queries was successful, 
identifying the derived data consistently. The design of the derived 
data query pages required programmer input for clearer organiza-
tion of form components.

The PreProc analysis was performed at one site after down-
loading the distributed data sets from the data federation and the 
resulting derived data loaded into the HID at the site performing the 
analysis. The database tables and XCEDE schema structures were 
suffi cient in describing the more complicated processing pipeline. 
Investigators were initially interested in querying the PreProc data 
by fi ltering on pipeline provenance therefore the pipeline defi nition 
itself was used in test queries. For instance, a query to fi nd all data 
derived using the “fugue” tool in the pipeline could be executed or 
a query to fi nd the pipeline called “FIPS_MBTS_preprocs” (name 
stored in nc_analysis table for the PreProc pipeline, Figure 4).

There were many analyses done using the data collected prospec-
tively by the FBIRN consortium. Details about the data processing 
pipelines and results can be found in publications Friedman and 
Glover (2006), Magnotta and Friedman (2006), Friedman et al. 
(2008), Ford et al. (2009), Potkin and Ford (2009), Potkin et al. 
(2009a,b) and Wible et al. (2009). The StructMorph and PreProc 
workfl ows were chosen to illustrate two different use cases for the 
derived data constructs presented here. Design of the derived data 
system was focused on the capability to represent the derived data 
generated as part of the publications listed above. Currently the 
derived datasets are being loaded into the data management system 
using the components discussed in this manuscript.

The most challenging aspect has been obtaining suffi cient prov-
enance from the applications used for processing. Convincing the 
tool developers to output detailed provenance records is time 

FIGURE 10 | HID web interface derived data query form for StructMorph analysis.
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 consuming and diffi cult even when there is a good relationship 
between the developer and the users. Extracting provenance infor-
mation from software log fi les is very demanding, error-prone, 
incomplete, and brittle. What has worked best for the FBIRN test 
bed, but far from satisfying, is a combination of working with devel-
opers (where possible) and scripting/automating analysis pipelines 
such that provenance is automatically documented during script 
execution. Processing pipelines are effectively wrapped with code 
to populate XCEDE formatted XML fi les with proper provenance 
detailing the analysis. There are no guarantees of provenance accu-
racy when wrapping pipelines. One could easily change a parameter 
and it not be refl ected in the provenance output. FBIRN has found 
that regardless of the provenance capturing system and analysis 
automation method used, a human curator is invaluable for main-
taining high quality data within the federation.

DISCUSSION
Storing and documenting derived results in data management 
systems along with important provenance information about the 
original input data and the pipeline itself in the context of a feder-
ated system is a challenging yet critically important endeavor. In 
large multi-site consortia where many geographically distributed 
investigators process the original data in different ways, providing 
a mechanism for them to contribute their work back to the federa-
tion and inform collaborators is desirable.

In the “The First Provenance Challenge” by Moreau et al. (2008), 
a challenge pipeline is presented along with a set of criteria to 
categorize and compare provenance systems (Moreau et al., 2008). 
Table 1 describes the derived data system presented here in terms 
of the Moreau et al. (2008) categorization criteria. The derived 
data system is capable of storing the provenance challenge work-
fl ow described in Moreau et al. (2008) and addressing all of the 
core provenance queries. Core queries Q5, Q8, and Q9 in Moreau 
et al. (2008) fi lter on specifi c key-value pairs extracted from derived 
intermediate outputs or command line parameters of processing 
stage execution. Our system provides a very fl exible method of 
allowing the researchers to specify which metadata and/or key-value 
pairs from the pipeline execution should be made query-able in 
the database graphical user interface (through the XCEDE XML 
representation, Section “Derived Data Exchange Schema”).

The derived data management system introduced here is a joint 
effort by many collaborators across the BIRN consortium and the 
authors believe have promise in facilitating knowledge discovery 
through collaborative, distributed, data collection and analysis. 
The design and implementation is still being tested on many 

derived datasets produced and published by consortium members. 
Further testing of the query capabilities and automatic creation 
of derived data query forms is needed. Ultimately the goal is to 
create a dynamic federated system where collaborators can down-
load original data (or derived data), perform novel analyses, and 
contribute that information back to the federation in a consistent 
and well documented way with minimal programmer input. The 
generic structures presented here are a good start and have been 
useful to the FBIRN consortium.
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Table 1 | Characteristics of the derived data system with respect to the 

categorization presented in Moreau et al. (2008), “The First Provenance 

Challenge”.

1. Characteristics of provenance systems

1.1 Execution environment Web

1.2 Challenge execution environment Not applicable

1.3 Provenance representation XML and RDBMS

1.4 Query language SQL

1.5 Research emphasis R/S/Q

1.6 Challenge implementation Not applicable

2. Properties of provenance representation

2.1 Includes workfl ow representation Yes

2.2 Data derivation vs. causal fl ow events D/E

2.3 Arbitrary annotations in scope/ +AS

          implemented 

2.4 Time supported/required (+TS/+TR)

2.5 Naming required URIs

2.6 Tracked data and granularity File collections or process

2.7 Abstraction mechanisms Layered provenance model
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A few neuroinformatics databases now exist that record results from neuroimaging studies in 
the form of brain coordinates in stereotaxic space. The Brede Toolbox was originally developed 
to extract, analyze and visualize data from one of them – the BrainMap database. Since then 
the Brede Toolbox has expanded and now includes its own database with coordinates along 
with ontologies for brain regions and functions: The Brede Database. With Brede Toolbox and 
Database combined, we setup automated workfl ows for extraction of data, mass meta-analytic 
data mining and visualizations. Most of the Web presence of the Brede Database is established 
by a single script executing a workfl ow involving these steps together with a fi nal generation 
of Web pages with embedded visualizations and links to interactive three-dimensional models 
in the Virtual Reality Modeling Language. Apart from the Brede tools I briefl y review alternate 
visualization tools and methods for Internet-based visualization and information visualization 
as well as portals for visualization tools.

Keywords: neuroimaging, visualization, software, meta-analysis, database, text mining, Web service, Brede

(NIF) (Gardner et al., 2008), Neuroimaging Informatics Tools 
and Resources Clearinghouse (NITRC) (Buccigrossi et al., 2008), 
I Do Imaging and Internet Analysis Tools Registry (IATR), see also 
(Dinov et al., 2008). Some of these have an API so that HTML or 
XML for a specifi c tool can be requested. The NIF resource may be 
downloaded as an XML fi le. NITRC, IATR and I Do Imaging have 
Web 2.0 components with user-provided tool ratings and NITRC 
has an associated wiki. Since 2001, I have updated the Bibliography 
on Neuroinformatics which also lists numerous tools. Recently I 
began the Brede Wiki with structured information about neuro-
science including neuroimaging visualization tools. Anyone can 
‘micro-publish’ relevant information, and the structured content 
allows for off-wiki database queries (Nielsen, 2009).

META-ANALYTIC VISUALIZATION
Many meta-analyses use so-called forest plots and funnel plots, where 
scatter plots with whiskers display effect sizes and estimators of their 
variations in two dimensions (Lewis and Clark, 2001), see Figure 1. 
These meta-analyses typically investigate a single variable – continu-
ous or dichotomous – and its relation to another variable, e.g., a 
personality trait and its association with a genetic polymorphism. In 
neuroimaging meta-analysis, we have a quite different situation: The 
neuroimage result contains not just one variable but many variables, 
i.e., voxels. One would need thousands of standard meta-analysis 
plots to capture the result across studies. Another much more fun-
damental problem stems from the fact that neuroimaging researchers 
typically only report the positive results, e.g., areas with activation 
to a given task, – not signal changes for brain regions that did not 
survive the statistical threshold selected. Meta-analysts usually regard 
the discarding of negative results as a heresy, referring to it as the fi le 
drawer problem or with the term publication bias. All the standard 
statistical meta-analysis technique require that also negative results 
are reported, – at least to some extent (Hedges and Olkin, 1985). So 

INTRODUCTION
In a narrow sense, neuroimaging workfl ows involve neuroimaging 
image processing and analysis. In a more broader sense, the work-
fl ow in a neuroimaging study involves a number of other processes: 
gathering information, designing the experiment, brain scanning, 
interpretation of the study, relating it to other studies and commu-
nicating the study. Data mining in neuroimaging may not only be 
applied as the standard neuroimaging analysis but also set to work on 
other components in workfl ow, and visualization of the data mining 
results may help the individual researcher in understanding his or 
her data as well as in communication with other researchers.

A number of tools exists for visualizing neuroimaging data min-
ing results when the result is a volumetric neuroimage. There are, 
however, also visualization tools for other aspects of the neuroim-
aging process, and one example is our Brede Toolbox (Nielsen and 
Hansen, 2000a). Starting out as a program for handling and visuali-
zation of data from the BrainMap database of Fox et al. (1994) the 
Brede Toolbox now includes its own database of results from neu-
roimaging – the Brede Database (Nielsen, 2003) – as well as analysis 
and visualization functions for a range of tasks. We have setup an 
automated workfl ow involving a few non-interactive batch scripts 
that construct practically the entire Web presence of the Brede 
Database with static Web pages and visualizations. Furthermore, 
automated workfl ows using the ontologies of the Brede Database 
can perform mass meta-analysis across brain functions or brain 
regions (Nielsen, 2005; Nielsen et al., 2006a).

PORTALS FOR VISUALIZATION TOOLS
The abundance of tools for visualization as well as for other aspects 
of the neuroimaging process has spawned an interest in generating 
overviews for these tools, and now there exist several Web-based 
directories: Neuroscience Database Gateway (NDG) (Gardner 
and Shepherd, 2004), Neuroscience Information Framework 
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we may ask if it is at all possible to make appropriate analyses and 
visualizations across studies in neuroimaging?

One simple visualization simply plots the positive results – the 
reported coordinates – in stereotaxic space. The program associ-
ated with the original BrainMap database displayed coordinates in 
2D tri-planar plot (Fox et al., 1994). This type of visualization is 
maintained in a newer version of the database with the program 
Sleuth (Laird et al., 2005). WebCaret may display coordinates in 3D 
as colored spheres together with an infl ated cortical surface (Van 
Essen and Dierker, 2007), see Figure 2. The Brede Toolbox can 
generate 3D visualizations in the corner cube style of Rehm et al. 
(1998). Plotting points in 3D is not straightforward, – simple ‘zero’ 
dimensional graphics do not give an important perception of depth, 
therefore we use 3D glyphs of different color and shape. To help the 
viewer in spatial localizing the coordinates we can add components 
in a confi gurable workfl ow such as AC/PC axes, stalks for the glyphs, 
glyph shadows on the tri-planar walls, contour and cerebral cortex 

outlines from the atlas of Talairach and Tournoux (1988). Figure 3 
shows two visualizations of this kind with Figure 3A displaying all 
coordinates in the Brede Database from papers authored by Edward 
T. Bullmore and Figure 3B displaying cingulate coordinates colored 
according results from a text mining of the associated abstracts 
(Nielsen et al., 2005, 2006a). The batch script setup for the Brede 
Database will automatically generate a plot like Figure 3A for each 
author mentioned in the author ontology. Sometimes these simple 
plots reveal interesting features: The Bullmore coordinates appear 
somewhat limited to the middle of the inferior-superior axis per-
haps refl ecting a restricted fi eld of view selected for some of the 
studies. The elaborate and automated workfl ow for generating a 
plot like Figure 3B involves:

1. Select a brain region and from the Brede Database brain region 
ontology get all naming variation of the brain region and its suba-
reas. With these names extract coordinates from papers recorded 

FIGURE 1 | Meta-analytic forest plot as a Web service with studies on 

personality genetics. Components in the Scalable Vector Graphics image fi le 
are hyperlinked and the content may be controlled interactively through a HTML 

form. Recent work with image-based meta-analysis has shown the possibility of 
constructing sensible forest and funnel plots for functional neuroimaging data 
(Salimi-Khorshidi et al., 2009b).
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FIGURE 3 | Two examples of coordinates in a 3D corner cube visualization. 

(A) Coordinates from the fi ve studies in the Brede Database authored by Edward T. 
Bullmore. The 3D glyphs have type and color according to paper: Dark blue (Phillips 
et al., 1997), light blue (Phillips et al., 1998), light green boxes (Bullmore et al., 

1996), orange spheres (Hunkin et al., 2002), red (Calvert et al., 1999). (B) Cingulate 
coordinates colored according to the clustering results after a text mining of 
abstracts in the Brede Database. Dark magenta glyphs are from the ‘memory’ 
cluster while the light yellow are from the ‘pain’ cluster. From Nielsen et al. (2006a).

FIGURE 2 | WebCaret server-side display of returned coordinates from the 

Surface Management System Database (SumsDB) with a query on ‘middle 

frontal gyrus’. The right window offers some control over the rendering and the 

buttons in the left window may rotate the cortical surface. SumsDB allows the 
query on a neuroanatomical label to be invoked from another program or Web site 
by simple Web linking, and the Brede Wiki automatically constructs such links.

in the database, model their spatial distribution and include extra 
non-matched coordinates that lies within the region.

2. Get abstracts from the Brede Database that – for the brain 
region in question – have one or more coordinates and perform 

text mining, which results in clusters of themes, such as ‘pain’ 
and ‘memory’ and documents belonging to these clusters.

3. Perform statistical tests on the spatial distribution of the 
coordinates grouped according to the text mining clusters to 
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determine if the text mining has discovered functions that are 
segregated in the region.

The procedure is done for all brain regions in the Brede Database 
brain region ontology and Figure 3B shows one of the regions 
that listed high after sorting brain regions according to statistical 
signifi cance in the spatial distribution test.

Data mining directly with the coordinates has been termed coor-
dinate-based meta-analysis (CBMA) and several methods exists 
(Wager et al., 2009), see also Laird et al. (2009), this issue. For the 
most part they involve a form of estimation of a conditional prob-
ability density p(v|c) in stereotaxic space v. The conditioning, c, may 
be, e.g., for a specifi c brain function or a specifi c anatomical label. 
Once the probability density is estimated it can be converted to a 
volume by sampling the probability density in voxels and visual-
ized in the same way as standard neuroimages, or the density can 
be used to color-code the cortical surfaces in a 3D visualization, 
see Wager et al. (2009).

Fox et al. (1997) introduced the method to model the prob-
ability density: a single confi ned area – the primary motor area 
for the mouth – were examined so only a model with mean and 
standard deviation was devised, i.e., a simple Gaussian model. 
As more complex brain functions are distributed in brain space, 
more fl exible models are needed. Our fi rst effort in modeling the 
probability density was by Gaussian mixture models (Nielsen and 
Hansen, 1999):

p c p k P k c
k

Kc

( ) ( ) ( )v v| | | ,∑=  (1)

where each p(v|k) estimates a 3D Gaussian probability density. 
Figure 4A shows the isosurfaces in a model of this type where the 
parameters have been fi tted to data from the BrainMap database. 
Here, each ellipsoids corresponds to a single Gaussian p(v|k) and 
c corresponds to three different labels of ‘behavioral domain’ from 

the BrainMap database that are associated with each coordinate. 
Although the Gaussian mixture model may generalize, the ellipsoids 
do not look neuroanatomical plausible and call for yet more fl exible 
models. Figure 4B is generated with kernel density estimation using 
a Gaussian kernel (Nielsen and Hansen, 2000b). Such models seems 
to generate probabilities that are somewhat more neuroanatomical 
plausible than the Gaussian mixture model.

The isosurfaces in the probability densities in both subplots of 
Figure 4 has been set for display purpose. More statistically grounded 
values can be obtained with the methods by Turkeltaub et al. (2002); 
Nielsen (2005); Costafreda et al. (2009). The methods for probability 
density estimation of coordinates are not limited to activations but 
may be applied to any kind of coordinates in stereotaxic space from 
‘deactivations’, cortical stimulations, lesions or structural changes, 
e.g., obtained with voxel-based morphometry.

When a probability density estimate is constructed for a set of 
coordinates and it is converted to a voxel-volume, then the volumes 
across multiple sets of coordinates may be aggregated into a single 
data matrix X(sets × voxels). This data matrix may then be decom-
posed with multivariate analysis in a number of ways, e.g., with 
singular value decomposition for principal component analysis, 
ULV = X, where the left factorization matrix U(sets × components) 
contains loading over sets of coordinates for each principal com-
ponent and the right factorization matrix V(vowel × components) 
contains loadings over voxels. Other types of decomposition for 
this matrix are independent component analysis (MS = X, with M 
the mixing matrix and S the source matrix), non-negative matrix 
factorization (WH = X) and K-means clustering (CA = X, with C a 
centroid matrix and A an assignment matrix). The right decompo-
sition matrices, V, S, H and A all contain vectors that each represents 
a volume. As part of the workfl ow for presenting the information 
in the Brede Database on the Web the decompositions work on 
data matrices formed from sets of papers and sets of experiments, 
and corner cube visualizations are automatically constructed with 

FIGURE 4 | VRML visualizations with coordinate-based meta-analysis of 

data from BrainMap with isosurfaces in conditional probability densities. 

(A) Gaussian mixture model of the three main behavioral domains in BrainMap: 

Perception (red wireframe), cognition (green surface) and motion (‘M’-textured 
surface). From Nielsen and Hansen (1999). (B) Kernel density modeling of auditory 
(red wireframe) and vision (green) studies. From Nielsen and Hansen (2000b).
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user interface in Java. Among these tools are JIV that renders multiple 
volume data by orthogonal slice views implemented as a Java applet 
(Cocosco and Evans, 2001). iiV implements a similar functional-
ity (Lee et al., 2008), and MindSeer can also render in 3D remotely 
(Moore et al., 2007). NeuroTerrain implements 3D visualization and 
has demonstrated its use in connection with a Mouse atlas (Gustafson 
et al., 2007). The Talairach Applet renders a digital representation of 
the Talairach Atlas and combines it with neuroanatomical labeling of 
coordinates via the Talairach Daemon described by Lancaster et al. 
(2000). Also in connection with the BrainMap database the Java cli-
ent-program Sleuth plots 3D points in orthogonal 2D slices based 
on user query to the BrainMap server (Laird et al., 2005).

The Internet Brain Volume Database (IBVD) records published 
values for brain region volumes across variables such as gender 
and diagnosis (Kennedy et al., 2003). Since the neuroimaging data 
analysis arrives at one single value – the brain volume in cubic cen-
timeters – the visualization of the data is relatively simple compared 
to other neuroinformatics visualizations: From Web-based user 
queries IBVD generates on-the-fl y PNG image-fi les with the brain 
volumes from the different studies plotted as a function of age with 
color-coding and the variability indicated. Interactive visualization 
systems for neuroimages with server-side 3D rendering have been 
described by Poliakov et al. (2005) and a public system is available 
with the WebCaret Web service, see Figure 2.

With the Brede Toolbox we construct 3D visualizations brows-
able on the Web by using the Virtual Reality Modeling Language 
(VRML) (ISO/IEC, 1997; Nielsen and Hansen, 2000a), see the 
VRML examples in Figure 4. When defi ned in the middle of 1990s 
VRML held great promise to get wide-spread use for 3D interactive 
and hyperlinked visualizations, but since then it has had limited 
growth: VRML lacks good browser implementations and there has 
been erratic adoption of a scripting language. Nevertheless, it is 
one of the few means for Web distribution of 3D content in free 
standardized form. An alternative format is the Universal 3D File 
Format (U3D) that can be embedded in newer versions of the PDF 
format. Apart from the Brede Toolbox ImageSurfer described by 
Feng et al. (2007) implements VRML export.

For the Web presentation of the Brede Database, we generate 3D 
corner cube visualizations of the coordinates in the database with an 
offl ine Matlab batch script, – both as image fi les embedded on the 
Web page as well as VRML fi les, see Figure 6. Matlab is not well suited 
to work as a Web script, and for the interactive Web scripts associated 
with the Brede Database, there are presently no visualization imple-
mented. The INC Interactive Talairach Atlas renders 2D orthogonal 
slices from the Talairach and the MNI single subject atlases. This Web 
service can merge a user-given coordinate with the visualization, and 
as such we use it for visualization of individual coordinates from the 
Brede Database and the Brede Wiki, see Figure 7 for an example.

Besides Java, VRML and standard image fi les such as PNG 
the Scalable Vector Graphics (SVG) format may prove useful for 
Internet-based visualizations, see Figure 1 for an example. These 
fi les may contain hyperlinks and JavaScript. However, Web browsers 
do not yet consistently implement the standard.

INFORMATION VISUALIZATION
Data mining results from neuroimaging analysis are not the only type 
of information for visualization. Information about the  background, 

isosurfaces in the volumes contained in the right decomposition 
matrices. Figure 5 shows such a visualization for a component from 
non-negative matrix factorization, i.e., a row in the H matrix. Such 
visualizations may be useful for navigating among the studies in the 
database, and to a certain extent they reveal spatial distributions of 
the ‘cognitive components’ of the brain. Together with the visuali-
zation on the Web page are listed the experiments that have high 
association with the component, i.e., experiments associated with 
large elements in a column of the left matrix W. For the component 
in Figure 5 they are experiments described as, e.g., ‘Visual object 
decision’, ‘Buildings visual objects’, ‘Color perception during free 
viewing’ and ‘Passively viewed scenes’.

Before putting too much trust in visualizations and analysis across 
studies one needs to remember that the study results may have arisen 
in quite different ways. In standard meta-analysis the only variations 
between studies that are usually modeled is the number of subjects 
and the standard deviation of the data in the individual studies. In 
neuroimaging meta-analysis and visualization these variables are not 
usually modeled, for exceptions see Fox et al. (1997). Besides there 
are several other variables that neither are considered: The varying 
thresholds applied, e.g., corrected and uncorrected P-values (Nielsen 
et al., 2006b), the difference in fi eld of view between studies, the 
reporting style of coordinates (e.g., ‘extent threshold’, ‘number of 
maxima per cluster’) as well as the variation from the different pre-
processing and analysis choices that have been made. Furthermore, 
the different CBMA models may produce different results on the 
same material. Salimi-Khorshidi et al. (2009a) compared different 
CBMA models and their application of a threshold makes a ‘blob’ 
appear and disappear depending on the type of CBMA.

INTERNET-BASED VISUALIZATION
Quite a few tools exist for interactive neuroimaging visualization 
across the Internet. Often these tools are based on a client–server 
model with the client implementing the visualization and graphical 

FIGURE 5 | Corner cube visualization on the Web page of the Brede 

Database with results from a non-negative matrix factorization of 

experiments in the database.
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design, scanning, analysis procedure, and  interpretation surrounds 
the data mining results of a typical neuroimaging study. In scien-
tifi c articles, the body text mostly carries this ‘context’ information, 
though sometimes authors also use tables to describe, e.g., subject 
information. Authors rarely apply visualizations for this kind of 
information except in situations with explanation of the experi-
mental design and scanning. The experimental design has a natural 
temporal evolution and as such the visualization often displays the 
design as a function of time. Users of the behavioral experiment 
software from Psychology Software Tools is familiar with the graphi-
cal programming environment of E-Prime which has this kind of 
visualization as an integral part of the development of the experi-
ment. Other parts of the neuroimaging study may be visualized with 
what is usually referred to as information visualization.

In a demonstration visualization, we employed a torus topol-
ogy for an entire neuroimaging study process constructing 3D 
icons for ‘funding’, the experimental design, authors, experimental 
subjects, etc. (Nielsen and Hansen, 1997), see also Figure 8. The 
 usefulness of such a visualization depends on how effective it con-
veys information compared to standard text, and if the visualization 
format requires specialized and limited distributed programs for 
rendering and interaction the impact may be small. Manual crea-
tion of these visualizations is infeasible, – the visualization should 
be constructed automatically from description of the study, e.g., 
the so-called ‘provenance’ (Fissell, 2007). In related visualizations, 

some workfl ow management systems display the processing fl ow 
 graphically (Dinov et al., 2008).

When neuroimaging studies get reported in articles the rela-
tionships between the articles can be turned in to visualizations. 
Many types of visualizations exist and many relationships may be 
revealed: Between terms, concepts, citations to and from articles 
as well as between authors, cited authors and cited journals. The 
visualizations are of course not limited to articles only in neuroim-
aging, see, e.g., Card et al. (1999); Chen (1999). For an example in 
neuroscience Naud et al. (2007) use a spherical embedding algo-
rithm to display a bipartite graph in 3D space with two spheres. 
One of their illustrations visualized the relationship between poster 
sessions in the Society for Neuroscience 2006 meeting together with 
words from the abstracts in the sessions. Another example of text 
mining result visualization is what we termed a ‘cluster bush’, that 
describe the clusters in a hierarchical multivariate analysis (Nielsen 
et al., 2005): Clusters are indicated with dots and thick lines indicate 
a large similarity between two clusters. Given a set of abstracts the 
automated workfl ow for generating a plot like Figure 9 involves the 
conversion of the texts to a bag-of-words matrix, the exclusion of 
a large number of words (stop words), hierarchical non-negative 
matrix factorization and lastly the ‘cluster bush’ visualization all 
implemented with the functions of the Brede Toolbox.

Coordinate-based meta-analysis and text mining can be com-
bined to form visualizations, see Figure 10 and Nielsen et al. 

FIGURE 6 | Screenshot of the Web page for an experiment in Brede 

Database with a corner cube visualization of the coordinates in a 

experiment together with a wireframe indicating an isosurface of 

the kernel density estimate with the coordinates. An interactive 
rendering is provided with the link to a generated corner cube visualization 
in a VRML fi le.
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(2004). The workfl ow for constructing the visualization in the 
fi gure involves the setup of a matrix describing the words in the 
abstract of papers and the construction of another matrix from 
kernel density estimation with the coordinates in each paper. After 
non-negative matrix factorization each individual factor may be 
rendered in 3D and associated with words from the abstract, e.g., 
the blue area in Figure 10A in the occipital lobe is associated with 
words such as ‘visual’ and ‘eye’.

Based on a corpus of articles published between 1997 and 2000 in 
the journal NeuroImage we could plot cited authors and cited journals 
in 2D. The data mining with visualization would for example reveal 
a dichotomy between PET and fMRI (Nielsen, 2002), see Figure 11. 
Here, the workfl ow involves specialized algorithms that extract 
citations and the use of matrix computations, particularly singular 
value decomposition, for multidimensional scaling-like projection 
of the data onto 2D. For the Brede Database, we automatically con-
struct what we have termed ‘bullseye plots’ to display the network of 

 coauthors for each recorded author. Figure 12 shows a larger bullseye 
plot on coauthors in the NeuroImage corpus. Authors near the center, 
such as Friston and Dolan, have high network degrees, which here 
corresponds to the number of authored articles (Nielsen, 2002).

The well-tested and widely used GraphViz package provides spa-
tial graph layout for a given network (Gansner and North, 2000). At 
one point the PubGene Web service used GraphViz in a large-scale 
application for displaying relations between genes based on litera-
ture in PubMed (Jenssen et al., 2001). GraphViz layouts graphs for 
the Web presentation of the Brede Database. These graphs display 
the brain function and brain region ontologies, e.g., indicating that 
‘vision’ has ‘perception’ as taxonomic parent or that the cingulate 
area is a parent for the posterior cingulate, see Figure 13. Our work-
fl ow with the Brede Toolbox involves extraction of the ontology 
from Brede Database XML fi les, construction of a fi le with the 
graph that GraphViz reads, invoking GraphViz for generation of 
an image fi le, and then fi nally construction of the Web page with 

FIGURE 7 | The Web-based INC Interactive Talairach Atlas queried with a coordinate from the Brede Wiki.
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FIGURE 8 | Screenshot of a VRML rendering seeking to convey parts of the information surrounding a neuroimaging study: 3D icons for funding, research 

organization, researchers, software, subjects, and scanner placed in a torus.
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FIGURE 12 | Coauthor bullseye plot (target diagram) with data from 

NeuroImage 1997–2000. A line between two authors indicates that they 
co-wrote a paper. The concentric circles indicate the number of articles written 

by the author in the corpus. The Brede Toolbox automatically constructs similar, 
albeit smaller, bullseye visualizations for each author represented in the Brede 
Database author ontology. These are available on the Web.

the image fi le embedded. GraphViz can construct HTML image 
maps so the nodes in the graph image are associated with clickable 
hyperlinks. On the fi nal Web page a reader may navigate the brain 
region and brain function ontologies by clicking on the nodes in 
the graph. The Brede Toolbox can also use GraphViz for layout of 
other types of data that can be described as a network, e.g., from 
structural equation modeling of regional neuroimaging data. A 
number of journal Web sites use plots called Citation map in the 
style of GraphViz for visualizing in- and out-going citations of each 
article, see, e.g., BMJ and The Journal of Neuroscience Web sites.

Another type of graph visualization within neuroimaging is 
the interactive graph visualization with a hyperbolic browser that 
features in tools from the Laboratory of Neuro Imaging (LONI): 
LOVE and iTools (Dinov et al., 2006, 2008). ISI Web of Knowledge 
provides a Java applet to render their citation information with a 
similar topology.

CONCLUSION AND FUTURE WORK
With the Brede Toolbox we are able to build a workfl ow with extrac-
tion of data from the Brede Database, automated data mining and 

visualizations. The automated procedures generate publicly acces-
sible Web pages with interactive visualizations. An advantage of the 
automated procedure is that little human intervention is required 
to update the visualizations as new data is added to the database. 
The visualizations can display not only spatial neuroimages, but 
for example also results from text mining, and visualization can 
take place across the Internet with data originating on one server 
and displayed on another.

The Brede Database represents just a small fragment of the 
results from the published literature (Derrfuss and Mar, 2009). 
Databases such as NeuroNames, BrainMap and SumsDB are much 
larger. However, no universal database exist for coordinates from 
functional neuroimaging. To gain a higher degree of coverage 
future work may attempt to aggregate data from different data-
bases for combined visualizations. Since typical meta-analytic 
data is anonymous and small (compared to a typical neuroim-
aging study), it is easier to share such data and we may see col-
laborative Internet-based analyses and visualizations. Our wiki 
for personality genetics (Figure 1) is such a collaborative system. 
Building a collaborative system for neuroimaging data requires 
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FIGURE 13 | For presenting the Brede Database brain region ontology on the Web the workfl ow with the Brede Toolbox invokes the GraphViz program 

which generates hyperlinked plots of the brain region hierarchy, here for the ‘posterior cingulate gyrus’.

more effort, and in the Brede Wiki only simple visualizations 
are presently available. A target for future development should 
be towards ‘Science 2.0’ where data, analyses and visualizations 
can be shared in Web-based collaborative and user-friendly 
environments.
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ALE meta-analysis workfl ows via the BrainMap database: 
progress towards a probabilistic functional brain atlas
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With the ever-increasing number of studies in human functional brain mapping, an abundance 
of data has been generated that is ready to be synthesized and modeled on a large scale. The 
BrainMap database archives peak coordinates from published neuroimaging studies, along 
with the corresponding metadata that summarize the experimental design. BrainMap was 
designed to facilitate quantitative meta-analysis of neuroimaging results reported in the literature 
and supports the use of the activation likelihood estimation (ALE) method. In this paper, we 
present a discussion of the potential analyses that are possible using the BrainMap database 
and coordinate-based ALE meta-analyses, along with some examples of how these tools can 
be applied to create a probabilistic atlas and ontological system of describing function–structure 
correspondences.

Keywords: BrainMap, meta-analysis, activation likelihood estimation, ontology, functional atlas

allow interaction with the BrainMap database, all of which are 
coded in Java. The desktop applications run in the Java Runtime 
Environment on Macintosh, Windows, Linux, and Unix operat-
ing systems, while the web application uses Java server-side tech-
nologies. Scribe2 is used to code papers for entry into BrainMap. 
Peer-reviewed publications can be submitted to the database by 
the original authors (uncommon) or by investigators performing 
a meta-analysis (very common). Most data fi elds have candidate 
responses presented in scrollable lists. Coordinate tables of peak 
locations can be imported from a tab-delimited fi le or entered 
by hand. Upon insertion into the database, each x,y,z, coordinate 
is assigned an anatomical location using the Talairach Daemon3 
(Lancaster et al., 2000). All entries are reviewed for quality con-
trol by BrainMap staff and faculty before being entered into the 
database to ensure the accuracy and consistency of coding. The 
Sleuth application4 allows a user to search the BrainMap data-
base and retrieve data, which can then be fi ltered and visualized 
on a standard Talairach atlas image. Specifi c locations may be 
searched for according to user-defi ned, coordinate-based regions 
of interest (defi ned by Talairach or MNI coordinates) or anatomi-
cal labels from the Talairach Daemon nomenclature. BrainMap 
queries may also be implemented via an internet browser using 
BrainMapWeb5, which includes query functions that are similar 
to those of Sleuth, but lack 3D brain visualizations. Data view 
and manipulation capabilities are much more restricted than 

INTRODUCTION
Over the last three decades, neuroimaging research has produced 
an enormous amount of data localizing the neural effects of spe-
cifi c mental operations in both healthy and diseased populations. 
Community-wide standards of spatial normalization and the report-
ing of peak activation locations in stereotactic coordinates allow 
researchers to compare results across studies when the primary data 
are unavailable or diffi cult to obtain. Due to the nearly universal 
adherence to these standards, the BrainMap project was designed to 
create tools for large-scale data mining and meta-analysis of the brain 
mapping literature (Fox and Lancaster, 2002; Laird et al., 2005a).

BrainMap is a community accessible database1 that allows a user 
to relate behavioral functions to specifi c brain locations through 
retrieval and visualization of peak coordinates and their associated 
metadata. These metadata allow each coordinate to be linked with 
how the observed activation was experimentally derived, a for-
mulation that lends itself to very rich data mining. BrainMap was 
originally conceived by Peter Fox in 1987 and received its original 
funding from the James S. McDonnell Foundation (1988–1990). 
Continued BrainMap development was funded by the Offi ce of 
Naval Research (1991–1992), the EJLB Foundation (1992–1996), 
and the National Library of Medicine (2000–2003). BrainMap 
is currently funded by the Human Brain Project of the National 
Institute of Mental Health.

BrainMap SOFTWARE
There are three desktop applications (Scribe, Sleuth, and 
GingerALE) and one web application (BrainMapWeb) that 
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in Sleuth, which can output data in  publication-ready graphics, 
text fi les of Talairach or MNI coordinates, or workspaces that 
specify search rules and fi lters for meta-analyses. By archiving 
coordinates of activation locations rather than raw image data, 
BrainMap focuses on discoveries derived from coordinate-
based meta-analyses of functional neuroimaging data. The 
last BrainMap application, GingerALE6, is used for performing 
activation likelihood estimation (ALE) meta-analyses on sets of 
 coordinates extracted from the database in Talairach or MNI 
space. Scribe, Sleuth, and GingerALE are closely integrated to 
transition seamlessly from database submission to search refi ne-
ment to meta-analysis results (Figure 1).

BrainMap CODING SCHEME
To summarize the experimental design and results of a published 
study for inclusion in the database, BrainMap utilizes a  rigorous 
 taxonomy that is composed chiefl y of structured keywords. 

BrainMap entries include descriptions on the scanned subjects 
and experimental conditions, including the presented stimuli, 
instructions, and responses. A complete metadata listing can be 
seen in Figure 2. To facilitate meta-analysis, several hierarchi-
cally structured keywords have been developed that categorize the 
nature of each experimental contrast to allow rapid, comprehensive 
retrieval of results. “Context” broadly categorizes the purpose of the 
work; for example, normal mapping (the comparison of different 
experimental conditions in a group of healthy subjects), age effects, 
disease effects, or drug effects. “Behavioral Domain” classifi es the 
research in terms of the neural systems studied according to six 
main categories and their related subcategories: cognition, action, 
perception, emotion, interoception, or pharmacology (Figure 3). 
“Paradigm Class” categorizes the challenge presented, preferably in 
the jargon of the fi eld, such as anti-saccades, Stroop, delayed match 
to sample, or mental rotation tasks (Figure 4).

While a given a given paradigm class (e.g., n-back) is often imme-
diately associated with a given behavioral domain (e.g., working 
memory), this is not always the case. Each experiment must be eval-
uated based on the conditions contrasted since many  comparisons 
are designed to elicit processing in domains not directly linked 
to the paradigm class employed. For example, n-back and work-
ing memory are appropriate choices when comparing an n-back 
condition to a control condition, but if two n-back conditions are 
contrasted that differ only in the modality of stimulus presenta-
tion (e.g., visual or auditory), then additional perceptual domains 
should be coded for that experiment. We have found that the con-
text, behavioral domain, and paradigm class represent the three 
most critical components of a functional neuroimaging study; their 
orthogonality fully defi nes and gives contextual meaning to the 
coordinates archived in the database.

Typically, investigators use citation indexing services such as 
PubMed to search the literature according to user-defi ned key-
words. This results in the identifi cation of a subset of desired stud-
ies that explicitly match the search criteria. BrainMap’s strategy 
has been to design paradigm class entries in order to pool similar 
studies, rather than segregate them according to domain-specifi c 
keywords. Categories and sub-categories are created and refi ned 
only as needed, based on the demands of the literature and the 
continued development of functional brain imaging. For example, 
the fi rst study entered into BrainMap that utilized the Wisconsin 
Card Sorting Test was initially coded under the paradigm class of 
“Deductive Reasoning”. This was done to classify the study in the 
same set as other similar papers in the database (i.e., “best fi t”), a 
practice that the classes are rich enough to be useful. Once four 
papers of the same sub-category are entered into the database, a new 
class is created and defi ned (e.g., “Wisconsin Card Sorting Test”). 
Then all entries matching this new class are manually searched for 
and updated to refl ect the new designation. This procedure requires 
continuous and labor-intensive maintenance of the database, yet 
yields a high-quality database full of rich metadata categories and 
provides an evolving and fl exible tool.

Given the sheer volume of neuroimaging data that is currently 
being produced, it is rapidly becoming overwhelming for an investiga-
tor to reconcile new results to those previously published, particularly 
when studies pertain to different areas of research. Derrfuss and Mar 
(2009) estimated that BrainMap contains approximately one-fi fth 

FIGURE 1 | BrainMap software applications. There are three desktop 
applications that allow interaction with the BrainMap database: Scribe (data 
entry), Sleuth (search and retrieval), and GingerALE (meta-analysis). These 
Java applications are freely downloadable from the BrainMap website (http://
brainmap.org). Database statistics are current as of 04/01/09.

6http://brainmap.org/ale
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of the relevant published studies, making it the largest coordinate-
based database in functional neuroimaging to date. In BrainMap, an 
ROI of 1 cm3 currently contains an average of 23 experiments, and 
includes results from 15 paradigm classes. Databases designed to sim-
ply retrieve studies reporting activations in proximate locations result 
in subsequent manual fi ltering and interpretation. While BrainMap’s 
data entry procedure is labor-intensive (Laird et al., 2005a), the depth 
of the current coding strategy is what provides diverse data min-
ing opportunities and establishes the overall value of the database. 
BrainMap was structured with the goal of not only retrieving studies 
returned by regional searches without domain-specifi c biases, but 
also allowing the results to be synthesized. Specifi cally, BrainMap 
development of neuroinformatics tools focuses on knowledge dis-
covery that is made possible by coordinate-based function–location 
meta-analysis (Fox et al., 1998).

ACTIVATION LIKELIHOOD ESTIMATION META-ANALYSIS
Activation likelihood estimation (ALE) is a method of coordinate-
based meta-analysis that is supported within the BrainMap software 
environment. It is a useful tool for integrating the neuroimaging lit-
erature wherein consistent regions of activation are identifi ed across a 
collection of studies. In particular, peak coordinates are collected from 
studies that share a similar feature of interest, which can be a specifi c 
task (e.g., go/no-go) or a more generalized cognitive process (e.g., 

inhibition). In ALE, coordinates are then modeled with a Gaussian 
function to accommodate the spatial uncertainty associated with a 
reported coordinate and are analyzed for where they converge.

Since its introduction (Chein et al., 2002; Turkeltaub et al., 2002), 
ALE has been applied in many aspects of normal brain function 
(Costafreda et al., 2008; Decety and Lamm, 2007; Eickhoff et al., 
2006a; Grosbras et al., 2005; Soros et al., 2009; Spreng et al., 2009), 
as well as in studies of neuropsychiatric and neurological disorders, 
such as schizophrenia (Glahn et al., 2005; Minzenberg et al., 2009; 
Ragland et al., 2009), obsessive-compulsive disorder (Menzies et al., 
2008), depression (Fitzgerald et al., 2008), and developmental stut-
tering (Brown et al., 2005). Recently, ALE has been extended to 
voxel-based morphometry (Ellison-Wright et al., 2008; Glahn et al., 
2008; Schroeter et al., 2007) and diffusion tensor imaging studies 
(Ellison-Wright and Bullmore, 2009).

The most interesting ALE applications do not merely merge 
previous results in a retrospective fashion, but instead generate or 
test a new hypothesis (Eickhoff et al., 2009a; Price et al., 2005), iden-
tify a previously unspecifi ed region (Derrfuss et al., 2005), resolve 
confl icting views (Laird et al., 2005b; Petacchi et al., 2005), or 
validate a new paradigm (McMillan et al., 2007). Several studies 
have used ALE as a preliminary step, followed by an analysis of 
network co-occurrences (Lancaster et al., 2005; Neumann et al., 
2005, 2008; Toro et al., 2008) or structural equation modeling 

FIGURE 2 | The BrainMap coding scheme. The BrainMap metadata coding 
scheme follows a hierarchy naturally occurring within the brain mapping 
literature. Every Paper reports experimental results drawn from one or more 
subject groups, the members of which have been functionally imaged during 

one or more behavioral Conditions. In BrainMap, an Experiment is defi ned by 
the production of a statistical parametric image. From each Experiment one or 
more functional activations (Locations) are extracted in the form of peak 
coordinates.
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FIGURE 3 | BrainMap behavioral domains. In the BrainMap coding scheme, 
the behavioral domain is recorded for each statistical contrast, which 
describes the research in terms of the neural systems studied according to 
6 main categories: cognition, action, perception, emotion, interoception, or 
pharmacology. The yellow background represents that this fi eld lies at the 
Experiment level.

FIGURE 4 | BrainMap paradigm classes. The paradigm class is recorded for 
each statistical contrast in BrainMap. This fi eld categorizes the task or 
challenge presented, preferably in the jargon of the fi eld. BrainMap currently 
contains 80 paradigm classes. The yellow background represents that this 
fi eld lies at the Experiment level.

(Laird et al., 2008). Each of these novel meta-analytic applica-
tions was  carried out using typical ALE analysis parameters, and 
many of them involved the comparison of multiple meta-analyses. 
For example, Price et al. (2005) examined the results of a picture 
naming meta-analysis and found that use of a high-level base-
line condition to control for speech production and perceptual 
processing resulted in increased sensitivity to activation in areas 
associated with semantic processing, visual-speech integration, 
and response selection. A prospective fMRI study was performed 
to test this hypothesis, which subsequently allowed the picture 
naming system to be decomposed into its perceptual, semantic, 
and phonological components. In a different application of the 
ALE method, a meta-analysis was performed on studies in which 
transcranial magnetic stimulation was applied to left motor cortex 
(Laird et al., 2008). The results of this meta-analysis were used to 
determine the location of regions of interest in a prospective study 

of TMS/PET data that examined the effective connectivity of the 
motor system using structural equation modeling. These examples 
of how meta-analysis results have been applied to guide analyses 
in newly acquired experimental data demonstrate the power of the 
ALE method and provide evidence of its effi cacy beyond that of a 
purely retrospective tool.

MODIFICATIONS TO THE ALE ALGORITHM
The ALE method was originally developed and validated by Turkeltaub 
et al. (2002) in a meta-analysis of single word reading. BrainMap 
developers obtained the algorithm from the Georgetown University 
CSL group, ported the code into Java, and created a  graphical user 
interface (GingerALE). A cluster analysis script was added that identi-
fi es ALE clusters (areas of high activation likelihood) and returns the 
cluster extent above a user-specifi ed threshold, x-y-z coordinates of 
the weighted center-of-mass and peak locations, and an anatomi-
cal label assigned by the Talairach Daemon (Lancaster et al., 2000). 
A coordinate conversion utility was also included to convert MNI 
coordinates to Talairach space (Lancaster et al., 2007). Two extensions 
of the original ALE method, a correction for multiple comparisons 
and a method for computing statistical contrasts of pairs of ALE 
images, were also added (Laird et al., 2005c).
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In the original implementation of the ALE method, several limi-
tations were known to exist: (1) the size of the modeled Gaussian 
distribution was user-specifi ed and therefore subjective, (2) the 
permutation test for signifi cance was not anatomically constrained, 
leading to some modeled activation in white matter, and (3) the 
analysis tested for above-chance clustering of individual coordinates 
(a fi xed-effects analysis), preventing the generalization of results 
that is possible in a random-effects analysis (Wager et al., 2007, 
2009). Recent advances in the ALE technique have overcome these 
limitations to provide a more valid and statistically reliable meta-
analysis framework (Eickhoff et al., 2009b). Rather than relying 
on user-dependent Gaussian distributions, quantitative estimates 
of the between-subject and between-template variability were 
empirically determined in order to more explicitly model the spa-
tial uncertainty associated with each coordinate (a correction that 
also includes a weighting of each study by the number of included 
subjects). In addition, the permutation test was limited to regions 
of gray matter and modifi ed to test for the above-chance clustering 
between experiments, resulting in a transition from a fi xed-effects 
to a  random-effects method of statistical inference. By progress-
ing from an analysis based on the clustering across coordinates 
to the clustering across experiments, ALE results no longer may 
potentially be driven by a single study. The new ALE  formulation 

was validated against the classical algorithm and experimental 
data (Grefkes et al., 2008) and found to increase the specifi city 
of results without losing the sensitivity of the original approach. 
These improvements have been implemented in the most recent 
version of GingerALE, which is currently available for beta testing 
on the BrainMap website.

FUNCTION-BASED META-ANALYSES
The ALE meta-analysis method can be applied in a variety of 
ways to answer specifi c research questions. Most frequently, ALE 
is applied to sets of neuroimaging studies that share some simi-
lar aspect of evoked brain function. These function-based meta-
analyses usually involve pooling studies with similar experimental 
designs, and these studies may also be segregated into different col-
lections to evaluate the functional specifi city of the task or process 
being investigated. In the BrainMap coding scheme, experimen-
tal conditions are described according to the presented stimuli, 
instructions given, and response requested. Each of these fi elds has 
candidate entries to choose from, which collectively capture the 
essence of the scanned conditions (Figure 5). These three condition 
axes (stimulus, response, and instructions) provide a structure in 
which differential activation patterns can be systematically probed 
for variations of a given task.

FIGURE 5 | BrainMap conditions. In each paper archived in BrainMap, the 
scanned experimental conditions can be segregated into components based on 
the stimulus presented (modality and type), instructions given, and required 

response (modality and type). The values in the BrainMap metadata scheme are 
standardized to as few options as possible, so as to group similar studies. The 
blue background represents that this fi eld lies at the Paper level.
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For example, we performed an ALE meta-analysis of all studies 
in BrainMap that were coded with a paradigm class of “word gen-
eration” (66 papers, 197 experiments, 1552 coordinates), a widely 
used test of neuropsychological function. The meta-analytic results 
revealed extensive convergence in large portions of the left inferior 
frontal gyrus, centering on Brodmann area 44/45 (Broca’s area), and 
the left dorsolateral prefrontal cortex (DLPFC, BA 46/9), regions 
commonly known to be associated with word retrieval and execu-
tive function. ALE clusters were also observed in the bilateral insula, 
anterior cingulate cortex (ACC, BA 32), supplementary motor area 
(SMA, BA6), precuneus (BA 7), posterior cingulate cortex (PCC, 
BA 31), left posterior temporal cortex (Wernicke’s area, BA 22), left 
inferior parietal cortex (BA 40), right posterior cerebellum, and 
left thalamus. These areas are generally understood to be involved 
with the production of language and executive processing that is 
characteristic of verbal fl uency tasks (Heim et al., 2008; Petersen 
et al., 1988; Warburton et al., 1996; Wise et al., 1991).

We then examined BrainMap metadata for these studies and 
found that the imaged tasks varied according to the modality of 
responses (covert or overt), the modality of stimulus presenta-
tion (visual or auditory), or the stimulus type (words or letters). 
Supplemental ALE meta-analyses were then performed according 
to each of these task variations, yielding differential patterns of 
activation likelihood (Figure 6). Covert word generation yielded 
more extensive engagement of lateral and medial prefrontal areas 
(similar to Basho et al., 2007), precuneus, and posterior cingulate 
cortex, while analysis of overt tasks revealed distinct concordance 
in the right cerebellum. ALE results of studies using visual stimuli 
were observed in visual cortex (BA 17/18) and the fusiform gyrus 
(BA 37), while auditory stimuli were localized to left auditory cortex 
(BA 41), Wernicke’s area (BA 22), and precuneus. Generation of 
words in response to a presented word (visual or auditory) was asso-
ciated with the middle frontal gyrus (BA 9). Semantic verbal fl uency 
was also associated with the ventral portion of the left  inferior 

FIGURE 6 | Function-based meta-analysis of word generation. Studies 
utilizing a word generation paradigm were downloaded from the BrainMap 
database. Papers were segregated according to stimulus and response features. 
Separate ALE meta-analyses were performed for each set of coordinates: overt 
speech responses (30 papers, 78 experiments, 604 coordinates), covert 
speech responses (35 papers, 92 experiments, 729 coordinates), visual stimuli 
(39 papers, 115 experiments, 906 coordinates), auditory stimuli (32 papers, 

86 experiments, 621 coordinates), visual words (25 papers, 88 experiments, 
638 coordinates), visual letters (14 papers, 38 experiments, 373 coordinates), 
auditory words (39 papers, 124 experiments, 1001 coordinates), and auditory 
letters (14 papers, 35 experiments, 279 coordinates). Results are displayed at 
P < 0.05, corrected. Left lateral (x = −44) and medial (x = 0) sagittal slices display 
the comparative meta-analytic results. In all images, the overlap between meta-
analysis results is shown in yellow.
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frontal gyrus, in agreement with previous meta-analysis results 
(Costafreda et al., 2006), as well as BA 45 (Amunts et al., 2004). 
The observation that Wernicke’s area was preferentially involved 
auditory stimulation, particularly with words, likely refl ects this 
region’s role in auditory processing and the comprehension of spo-
ken words. This word generation meta-analysis highlights the rich 
data mining that is possible using the BrainMap coding scheme.

STRUCTURE-BASED META-ANALYSES
While function-based meta-analyses tend to dominate the literature, 
structure-based meta-analyses offer an alternative meta-analytic 
strategy. Instead of pooling studies that share a common experi-
mental design, structure-based meta-analyses focus on a specifi c 
anatomical region and look for global coactivation patterns across a 
diverse range of tasks. The theory behind this type of meta-analysis 
is that groups of coordinates that coactivate across experiments can 
be pooled to identify functionally connected networks in the brain. 
Like other methods of analyzing functional connectivity (Cordes 
et al., 2000; Rogers et al., 2007; Xiong et al., 1999), structure-based 
meta-analyses are based on the co-occurrence of spatially sepa-
rate neurophysiological events. Koski and Paus (2000) used this 
technique to study the meta-analytic connectivity of the anterior 
cingulate cortex, although their analysis was limited to the frontal 
lobe. In their study, the authors manually collected and fi ltered 
data from 107 studies tasks to examine regional co-occurrences 
and found evidence for functional heterogeneity within the ACC. 
A similar meta-analysis was performed on basal ganglia activation 
using 126 published studies to determine the functional connectiv-
ity between cortex and striatum (Postuma and Dagher, 2006).

Increasing both the size and diversity of structure-based meta-
analyses adds to the generalizability of the results. When used in 
conjunction with the BrainMap database, the procedure is more 
automated, resulting in larger meta-analyses that include decades of 
neuroimaging data from a diverse range of paradigms and behavio-
ral domains. Recently, a large-scale meta-analysis of the functional 
connectivity of the amygdala was carried out in which the ROIs for 
left and right amygdala were defi ned according the Harvard-Oxford 
structural probability atlas distributed with FSL (Smith et al., 2004) 
and seeded in BrainMap (Robinson et al., 2009). This anatomically 
defi ned meta-analysis of 240 papers (326 experiments with 3842 
coordinates) revealed that the amygdala plays a integrative role in 
both emotion and cognition, and was validated according to the 
non-human primate database, CoCoMac (Stephan et al., 2001).

To illustrate the use of structure-based meta-analyses, we note 
that the function-based meta-analysis of verbal fl uency studies 
(Figure 6) was characterized by extensive activation of the left 
inferior frontal gyrus, centered on Broca’s area in BA 44 and 45. 
To determine what connectivity differences exist between these 
two cytoarchitectonic regions, a location query was performed 
within BrainMap for studies activating these regions, using ROIs 
of the cytoarchitectonically defi ned areas (Amunts et al., 1999) as 
distributed with the SPM Anatomy Toolbox (Eickhoff et al., 2005, 
2006b). The returned studies were then analyzed in a structure-
based meta-analysis of both left BA 44 and BA 45 (Figure 7). For 
both regions, extensive bilateral connectivity was observed across 
the inferior frontal gyrus, precentral gyrus, inferior parietal lob-
ule, fusiform gyrus, and insula, as well as medial ACC and SMA. 

Joint connectivity was also observed in the left thalamus and right 
cerebellum. In contrast to the word generation meta-analysis, no 
connectivity was observed in the precuneus or posterior cingulate 
cortex, likely refl ecting a memory retrieval component (Cabeza 
and Nyberg, 2000) of verbal fl uency processing. Much overlap 
was observed between the two images; however, comparison of 
the maps for BA 44 and BA 45 revealed strong dissociation in 
subcortical regions. BA 44 exhibited extensive connectivity with 
bilateral thalamus, caudate, and putamen in agreement with 
Eickhoff et al. (2009a), while only the left thalamus was observed 
for BA 45. In addition, only the BA 44 map returned connectiv-
ity in Wernicke’s area, refl ecting preferential engagement of this 
region in comparison to BA 45. Structure-based meta-analyses 
can therefore fi nd distinct differences in functionally connected 
networks even for regions that lie very close to each other, such 
as BA 44 and 45.

Toro et al. (2008) expanded upon the idea of structure-based 
meta-analyses and developed an algorithm to test the likeli-
hood of a functional connection between regions, yielding a 3D 

FIGURE 7 | Structure-based meta-analysis of Brodmann areas 44 and 45. 

ALE meta-analyses were performed for all experiments in BrainMap that 
reported activation in either BA 44 or BA 45 to determine the meta-analytic 
functional connectivity of these cytoarchitectonically-defi ned regions. Results 
are displayed at P < 0.05, corrected. The top slices (left and right) are centered 
at x = −54, y = 18, z = 24. The upper left slices display the ROIs used to search 
BrainMap for BA 44 (red) and BA 45 (blue), which were obtained from the 
SPM Anatomy Toolbox (Eickhoff et al., 2005; Eickhoff et al., 2006b). ALE 
results for these regions are shown on the top right in axial, sagittal, and 
coronal slices, as well as on the bottom panel in axial slices from z = 58 to 
z = −26. The overlap between meta-analyses for BA 44 and 45 is shown in 
purple.
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meta-coactivation map for every voxel in the brain. In their analysis 
of 825 papers (3402 experiments with 27,909 coordinates), Toro 
et al. observed distinct and recognizable functional networks that 
are commonly associated with processes such as attention, motor 
function, and the resting state. Given that meaningful networks 
were extracted from the coordinates contained in BrainMap via a 
coactivation analysis, a recent study proposed that known func-
tional networks of the brain during explicit activation could be 
derived using independent component analysis (ICA) of BrainMap 
data (Smith et al., 2009). These networks, when compared to rest-
ing state networks (RSNs) obtained by ICA of resting state fMRI 
data (Damoiseaux et al., 2006) were virtually identical. That is, the 
set of major covarying activation networks identifi ed from a mas-
sive-scale meta-analysis (1687 papers, 7342 experiments, 58,620 
coordinates) matched the set of networks that are present in the 
resting brain. These results provide strong evidence that RSNs 
refl ect functional neural networks, and that these dynamic net-
works are engaged even at rest (Fox and Raichle, 2007). Given the 
independent nature of these two analyses on fundamentally dif-
ferent types of data, as well as the heterogeneity of data contained 
in BrainMap due to differences in subjects, scanners, analyses, 
and paradigms, it is remarkable that such strong correspondence 
was observed between the resting state and meta-analytic results. 
In sum, this study supports the validity of using BrainMap and 
coordinate-based meta-analyses to identify functional neural net-
works on a large scale.

MAPPING FUNCTION–STRUCTURE RELATIONSHIPS 
IN THE BRAIN
One of the broad goals of functional neuroimaging research is to 
determine function–structure relationships in the brain. A concrete 
deliverable of this aim is a probabilistic functional atlas, in which 
specifi c mental operations are mapped to discrete networks of brain 
regions. Price and Friston (2005) point out that the relationship 
between a brain region and a mental function is not a one-to-one 
mapping. Instead this relationship is a many-to-many mapping, 
as a single region can be involved in many cognitive processes, 
and a single process usually activates multiple regions. Evaluating 
these mappings will require collating the immense amount of neu-
roimaging data that has been acquired thus far and continuing the 
development of advanced meta-analytic techniques in order to 
effi ciently and effectively synthesize all of these data.

As the development of comprehensive neuroinformatics tools 
progresses, the need for comprehensive data ontologies increases. 
An ontology is a machine-interpretable description of concepts 
and their relationships with the purpose of sharing of ideas and 
information in a manner facilitated by semantic interoperabil-
ity (Stevens et al., 2000). Until a foundational ontology for neu-
roimaging is established and adopted, the communication within 
and between databases will be limited, hindering the creation of 
a functional brain atlas. In the fi eld of neuroimaging, ontology 
development is proceeding rapidly in the domains of represent-
ing neuroanatomical fi ndings [e.g., NeuroNames, Bowden and 
Dubach, 2003; Bowden and Martin, 1995 and the Foundational 
Model of Anatomy (FMA), Rosse and Mejino, 2003], describing 
imaging acquisition strategies (e.g., RadLex, Langlotz, 2006; Rubin, 
2008), and identifying clinical assessments [e.g., the Systematized 

Nomenclature of Medicine (SNOMED), Coté and Robboy, 
1980]. In addition, the Neuroscience Information Framework 
Standardized (NIFSTD) Ontology, developed by BIRN and the 
NIF, is a collection of these and other neuroscience ontologies 
(Bug et al., 2008).

There is currently no accepted ontology for describing the range 
of mental operations performed by the human brain, although 
need for such an ontology is increasingly being discussed (Binder 
et al., 2009; Poldrack, 2006; Price and Friston, 2005; Toga, 2002). 
A research question such as “fi nd the data examining the rela-
tionship between hippocampal volume in Alzheimer’s disease” 
requires knowledge about clinical diagnosis, neuroanatomy, and 
MR scan acquisition. As mentioned previously, there are ongoing 
ontological efforts designed to curate knowledge in these domains. 
However, a query such as “fi nd the data examining neural activa-
tions observed during sustained attention” involves knowledge 
about cognitive processing, for which no ontology exists to date. 
Creating a realistic functional brain atlas will require a systematic 
description of mental operations that are reported in the literature 
so that informative and standardized labels can be applied to dif-
ferent brain networks.

Investigators frequently utilize alternate and sometimes compet-
itive terminologies when referring to the cognitive processes elicited 
by specifi c tasks. When different words are employed to represent 
the same concepts, the grouping of related ideas across different 
resources is impeded. For example, a semantically interoperable 
ontology will allow the linking of data designated with terms such 
as “declarative” and “explicit” memory types and be capable of relat-
ing “working memory” to either “memory” or “executive process-
ing”. Cognition represents the most diffi cult domain to explicate 
as it contains the most intricate of all concepts, such as language, 
attention, and memory. But while much imaging research focuses 
on cognitive processing, important results are also being published 
in the areas of perception, action, emotion, and autonomic func-
tions. To comprehensively describe the many-to-many mappings of 
structure and function being investigated in neuroimaging research, 
a complete mental ontology must be developed.

Poldrack (2008) suggests that the many-to-many mapping 
dilemma may be complicated by our current understanding of 
what cognitive processes exist and how they are defi ned across 
functional neuroimaging experiments. Optimally, an appropri-
ate and useful cognitive ontology will not merely be a catalogue 
of various mental operations parsed down to very fi ne detail in 
accord with current theories of cognitive psychology. While the 
consideration of competing theories often results in new knowledge 
discovery, the development of such a top-down ontology would be 
so continuously and vehemently debated that it could never reach a 
suffi cient degree of consensus in order to be considered adoptable 
by the neuroimaging community. In contrast, a biologically based 
ontology that is driven by the way we observe the brain to operate 
in imaging experiments may reveal a cognitive architecture that 
has not previously been considered.

BrainMap’s FUTURE ROLE IN ATLAS AND ONTOLOGY 
DEVELOPMENT
The synergy that exists between the BrainMap database and the 
ALE meta-analysis method was designed to facilitate the  creation 
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of a functional brain atlas. BrainMap’s search capabilities can 
 support different types of queries, such as “for a given function, 
what regions are typically engaged?”, “for a given region, what tasks 
elicit activation?”, or “for a given region, what other regions are 
coactivated?” These questions highlight the value of meta-analytic 
results in comparison to results from individual studies. We believe 
that these correspondences (function-to-regions, region-to-tasks, 
or region-to-network) must be constructed according to a bottom-
up strategy, using knowledge gleaned from data-driven analyses. 
Current probabilistic structural atlases (e.g., the Harvard-Oxford 
structural probability atlas, Smith et al., 2004, or the Jülich cytoar-
chitectonic atlas, Eickhoff et al., 2005, 2006a) have proven to be 
useful in testing region-to-tasks or region-to-network associations, 
as shown in Figure 7. Theoretically, any method of determining 
regions of interest can be used to query the BrainMap database, 
whether structurally or functionally defi ned.

BrainMap is also capable of generating function-to-regions 
associations, albeit at a coarse resolution. Whole brain meta-ana-
lytic maps can be created for each behavioral domain category 
in BrainMap, which can then be decomposed into sub-networks 
based on different levels of the domain hierarchy. To illustrate, 
ALE meta-analyses were performed on nine different behavioral 
domain categories and sub-categories: action, cognition, emotion, 
perception, interoception, language, memory, vision, and audition 
(Figure 8). Each ALE image provides a unique mapping of the neu-
ral network associated with the relevant domain. Many regions are 
observed in multiple domain maps, and some maps are very similar, 
but none are identical. However, a more detailed domain structure 
is needed to fully characterize the range of human cognition. We 
propose that applying high-level fi lters from the entire BrainMap 
coding scheme to these meta-maps, in the way condition-based 
fi lters were applied in the word generation meta-analysis (Figure 6), 

can be an effective strategy for refi ning the spatial specifi city of 
these images. Thus, while paradigm class and behavioral domain 
are important metadata fi elds in the BrainMap coding scheme, all 
fi elds have the potential to assist in unraveling the brain’s systems 
and their interactions.

As the BrainMap database increases in size, these results will 
evolve and grow more powerful, perhaps leading to a multi-lay-
ered, multi-modal probabilistic functional brain atlas derived 
from many different large-scale coordinate-based meta-analyses. 
This approach would likely be enhanced by the development of a 
standardized mental ontology. Differences in competitive termi-
nology must be resolved to allow for the union of experimentally 
similar data sets. Perhaps the best strategy would be to combine 
all of BrainMap’s data-driven methods in establishing function–
structure relationships with other ontology initiatives, such at the 
Cognitive Atlas7 (Bilder et al., 2009), the NIFSTD ontology (Bug 
et al., 2008), or the Neural ElectroMagnetic Ontologies (NEMO) 
(Frishkoff et al., 2009). Given the complex nature of human brain 
function, it is reasonable to suggest that no single approach will 
be powerful enough to solve the fundamental challenges asso-
ciated with mapping the mind, but rather a joint effort will be 
required.
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FIGURE 8 | BrainMap’s functional atlas development strategy. ALE meta-
analyses were performed on nine arbitrarily selected behavioral domain 
categories and sub-categories: action, cognition, emotion, perception, 
interoception, language, memory, vision, and audition. These results illustrate 
the mapping of function-to-regions correspondences that are currently 

capable using the BrainMap database. Refi nement of these maps can be 
accomplished through high-level fi ltering and mining of the database. 
Results are displayed at P < 0.05, corrected. The total number of coordinates in 
each meta-analysis is listed after the domain heading for each map in 
parentheses.
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The importance of a NI framework and system cannot be 
overstated. A NI system is critical in order to shorten the time 
between study conception and results. Second, a scalable system is 
required when large numbers of participants are studied. Further, 
when multiple sites participate in research projects, organizational 
issues become diffi cult. Optimized NI applications mitigate these 
problems. Finally, NI software enables coordination across multiple 
studies, leveraging the advantages of each to potentially lead to 
exponentially greater research discoveries. The web-based Mind 
Research Network (MRN) system has been designed and improved 
through our experience with several multi-site translational neu-
roscience research studies and feedback from researchers from 
seven different institutions. The MRN tools permit the collection, 
management, reporting and effi cient use of large scale, heteroge-
neous data sources, e.g., multiple institutions, multiple principal 
investigators, multiple research programs and studies, and mul-
timodal acquisitions (Carneiro and Vasconcelos, 2005; Bockholt 
et al., 2007).

Applications typically contain complex features often found to be 
non-intuitive by end-users, especially when they are fi rst starting to 
use them. Our framework has been shaped by the requirements of 
several years of experience in providing NI tools to a full- spectrum 
of investigators and researchers conducting data acquisition,  storage, 

INTRODUCTION
Modern science is marked by an accumulation of massive 
amounts of data and neuroscience is no exception. The differ-
ent neuroimaging modalities, such as diffusion tensor imaging 
(DTI), functional magnetic resonance imaging (fMRI), structural 
MRI (sMRI), electroencephalography (EEG), positron emission 
tomography, or magnetoencephalography, each produce a huge 
amount of data that when combined with genetic information, 
psychological assessment results, and socio-demographics makes 
it impossible for researchers to draw conclusions without sophis-
ticated storage, recall, and inference methods. As research has 
moved to multi-site collaborations, the diffi culties of working 
with large datasets have only increased, underlining the need 
for comprehensive tools to address these problems (Amari et al., 
2002).

Neuroinformatics (NI) aims to solve these problems and increase 
the effectiveness of researchers through intelligent use of data stor-
age, data analysis, and data presentations. NI makes storage and 
retrieval of data easy and transparent to researchers, but also assists 
them by supplying only the data that is relevant to their needs (Toga, 
2002). Combining these services with data repositories enables easy 
sharing and reduces the diffi culties of scanning enough subjects to 
draw meaningful conclusions.
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management, analysis, and retrieval. The MRN approach and tools 
have proven to be effective and scalable. When researchers have 
access to an existing, well-designed, well-documented turnkey solu-
tion, that is already specialized to their domain of research, they can 
use the tools for their own projects, providing a distinct advantage 
to the group in both startup time and in minimizing future data 
integrity problems. However, the ultimate goal of data mining is to 
effectively use data sources to their full potential. The framework 
presented herein strives to achieve this end for the scientists that 
access the vast MRN data sources by providing intuitive access to 
fully annotated, anonymous data sources for novel exploration.

MATERIALS AND METHODS
The MRN Clinical Imaging Consortium (MCIC) is one example of 
a multi-institutional program for which the described framework 
was initially developed, built, and deployed (Demirci et al., 2008; 
Kim et al., 2009; Segall et al., 2009; Sui et al., 2009). The MCIC 
project needed sophisticated tools to analyze and support the 
multi-site heterogeneous data sources that were collected by the 
consortium of investigators (Carneiro and Vasconcelos, 2005). The 
tools within the framework needed to provide security, querying, 
reporting, analyzing, summarizing, exporting, and archiving capa-
bilities (see Figure 1). The MCIC project is composed of sources 
from more than 400 human research volunteers that have had com-
prehensive baseline and longitudinal neuroimaging (sMRI, fMRI, 
DTI), genetic, clinical, socio-demographic, and neuropsychological 
assessments. This NI capability has been actively used by several 
investigators and researchers distributed across The University of 
New Mexico, The University of Iowa, The University of Minnesota, 
and Massachusetts General Hospital at Harvard University. In addi-
tion to the MCIC project, the framework presented has benefi ted 
enormously through years of collaboration with the Biomedical 
Informatics Research Network (BIRN1), the National Alliance for 
Medical Imaging Computing (NA-MIC2) and collectively, all of the 
investigators and researchers within the scope of the MRN.

A large volume of data is collected, managed, and made available 
for exploration in any type of neuroscience research project. In 
Figure 2 is an overview of the applications that commonly access 
and use the MRN clinical research tools. The framework focuses on 
real-time neuropsychological assessment acquisition via a tablet-PC 
platform, real-time annotation via web services, collaborative web 
portals for data management and reporting, automated neuroim-
aging analyses, web application tools for monitoring and staging 
data analyses, quality assurance (QA) methods, and data mining 
capabilities. The full implementation details for this framework 
will be made available on The Neuroimaging Informatics Tools 
and Resources Clearinghouse (NITRC)3.

DATABASE
A system for storing, archiving, accessing, and integrating the 
various sources of data is clearly needed. One tier of the system 
is a relational database management system (RDBMS) (Farn and 
Hu, 1995). The advantage of using a RDBMS over other types of 

FIGURE 1 | Neuroinformatics data tools.

 databases is that the RDBMS technology is mature, stable, portable, 
scalable, and easy to integrate (Brinkley and Rosse, 2002; Bly et al., 
2004; Bota and Arbib, 2004; Bota et al., 2005). In the MRN data-
mining framework, we have determined that the following items 
in Table 1 should be supported within the RDBMS schema.

COLLABORATIVE WEB PORTAL APPLICATION
The public face of the MRN framework is a collaborative portal 
that provides secure access to data sources for the participating 
researchers and investigators. This web-tier application manages 
requests between a user’s desktop browser and the RDBMS tier.
To accompany the RDBMS, we have identifi ed functional require-
ments and designed and implemented a comprehensive web-based 
system to support the translational neuroscience research needs 
within the MRN organization. These requirements have been sum-
marized in Table 2.

The specifi c requirements for an end-user’s ability to create, 
modify, query, or export a given item of research data depends 
on the site and role of the user requesting the data manipulation 
event (Prasad et al., 1987; Brinkley and Rosse, 2002; Bota and Arbib, 
2004; Costa, 2004; Bota et al., 2005; Jovicich et al., 2005). We have 
developed tools for attaching roles to portal users, such as princi-
pal investigator, co investigator, study coordinator, rater, etc. The 
features that a given user has access to depends upon the assigned 
role that user has in the study. The MRN framework provides a 
mechanism for indicating who the principal investigator is on a 
given study and a means for managing the users and their role on 
each study.

WEB-BASED DATA-ENTRY
The socio-demographic, clinical, and neuropsychological assess-
ments collected in the MCIC protocol, along with many other types 
of multi-site consortium studies, generate a large amount of data 
that must be made electronic so that it can be integrated with data 

1http://www.nbirn.net
2http://www.na-mic.org
3http://www.nitrc.org/projects/mindknowdb/
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FIGURE 2 | Overview of MRN Neuroinformatics System.

Table 1 | Items that should be supported within the RDMBS schema.

One or more data collection sites

One or more research participants at one or more sites

One or more studies across one or more sites

One or more subjects that can be assessed at one or more sites

One or more assessments conducted by one or more raters

One or more visits by a given subject participating in one or more studies

One or more neuroimaging modalities across one to many sessions

Support for multiple image analysis pipelines

Support for multiple image analysis results from one or more pipelines

Support for genetic polymorphisms (SNP results)

Support for real-time annotation of all data sources

Table 2 | Functional requirements for the  web-based system supporting 

the translational neuroscience research needs within the MRN 

organization.

Protocol and consents to participate in research Document library

Timeline of required events for each cohort Weekly progress

 reports

PDF documents of all required assessments Presentations and

 publications

Meeting information, agendas, minutes Investigator initiated

 reports

Simple summary of collection by site demographics  Clinical raters

Data requests Roster of participants

Metadata summary Calibration information

Real-time annotation tool Training information

Summary of requests by other investigators Ad hoc queries

Archive of delivered data requests 

collected in other research domains. After completing a training 
program, raters, the individuals that conduct the assessment events, 
are trained to document the interview results on standard paper-
based forms. When a complete set of assessments has been col-
lected and documented for a given subject, the stack of assessments 
for that subject is shipped to a centralized data-entry. This data 
 acquisition process generates specifi c requirements for an applica-
tion to manage the multitude of paper-based assessments.

Data-entry of clinical, socio-demographic, neuropsychological 
and other types of assessments performed is necessary since most 
of the time these data sources are collected as pen-and-paper-based 
assessments. The following web application requirements for an 
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assessment data-entry system have been determined: perform fi rst 
entry of assessment by data-entry operator; perform second entry 
of assessment by alternative data-entry operator; perform confl ict 
screening and logical checks of doubly-entered assessments by clini-
cal program manager; summarize data acquisition by assessment, 
subject, site, and other custom report generating features as needed 
(Andreasen et al., 1995; Vessey et al., 2003).

The pen-and-paper forms must be data-entered in a secure and 
fault tolerant manner. The web-based data entry application, acces-
sible via the intranet, facilitates the fi rst and second entry of assess-
ment data by two different data-entry operators. A clinical program 
manager then utilizes the application to perform confl ict screening 
and logical checks on the double-entered assessments. Data acquisi-
tion summaries may then be generated by assessment, subject, and 
site along with other custom report generating features as needed.

TABLET-BASED DATA-ENTRY
The purpose of the tablet PC entry capability is to provide end-users 
with a capability for the real-time collection and quality  validation of 
clinical neuroscience research assessment data. This tool (written 
for use on any tablet hardware running Windows XP Tablet Edition 
with SDK 1.7, operating system patched to SP2, Microsoft.Net 2.0 
framework 1.7) provides our researchers a means to capture assess-
ment data electronically in settings where a network connection 
may not be possible or permitted. Electronic acquisition of assess-
ment events also permits a more effi cient research process since 
data-entry of paper-based assessments is not required. Additionally, 
quality control can be conducted in real-time, since the tablet PC can 
provide feedback to the rater during the data acquisition process. 
Finally, tablet PC based data collection was found to be preferred 
by raters (Pace and Staton, 2005; Cole et al., 2006).

The Tablet Assessment software validates data as it is entered, 
including: required fi elds; data type for the response (e.g., numeric, 
character string or date); bounds checking information (e.g., 
systolic blood pressure is a number between 0 and 300); question 
dependencies (e.g., question 2 “How many cigarettes do you smoke 
a day?” does not need to be answered if the answer to question 1 
“Do you smoke?” is no).

During an interview, the rater is notifi ed immediately when a 
required fi eld is skipped or data entered does not meet quality criteria, 
but the software does not constrain the rater to fi x the data immedi-
ately. This allows the rater to complete the interview smoothly and fi x 
data issues at a later time if necessary. Assessments that do not pass 
data quality validation may be stored on the rater’s tablet and edited 
at any time, but they may not be submitted to the database until all 
issues are resolved. The tablet-based product stores and maintains 
the data that it manages in XML and is capable of exporting data via 
a SOAP webservice4 using XCEDE5 or other XML schema.

SCAN ANNOTATION
In providing NI tools for the MCIC project, we have developed 
a utility for having integrated data sources and real-time docu-
mentation of what, when, and where items (such as neuroimag-

ing events) succeed or fail. This documentation permits timely, 
effi cient processing and maximizes data-usability. In Figure 3, 
we present a screenshot of a real-time, web-based, image anno-
tation tool. During a neuroimaging session, this annotation 
tool allows the end-user to track and document each imag-
ing series. The web application is connected to both a custom 
DCM4CHE-based DICOM receiver6 and the MRN RDBMS 
database described above. The order of events, whether or not 
the event was completed, whether or not the end-user thinks 
that the imaging data is usable for analysis can be annotated by 
using this tool. Furthermore, the end-user may attach additional 
detailed documentation such as why an image may not be usable. 
Finally, auxiliary fi les, such as behavioral data, may be attached 
and submitted in real-time.

AUTO-ANALYSIS DESCRIPTION
We have standards in place at The MRN for researchers to fol-
low for scanning and naming data. When research subjects are 
scanned, information is input into a database form on the scanner 

FIGURE 3 | Real-time annotation tool.
4http://www.w3.org/TR/soap/
5http://www.xcede.org/

6http://dicom.offi s.de/dcmtk.php.en
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console that feeds the information directly into the NI database 
about the scan session. The scanned data is then archived onto 
a backup storage space. The subject data is then transferred by 
auto-analysis scripts to a local analysis area. Here the data is refor-
matted, so that all scans are in an analyzable format. Automation 
performs the fi rst level analysis for fMRI, the two modalities of 
sMRI, and DTI. Preprocessing is done on both the fMRI and sMRI 
data that allows researchers to work on the statistical analysis, 
instead of having to pre-process their data fi rst. For the struc-
tural scans, FreeSurfer provides cortical and subcortical results 
for individual subjects. VBM provides volume and density results 
for grey matter and white matter tissues. In the case of FreeSurfer, 
which is processed on a computing cluster, auto-analysis has saved 
investigators lots of time and local computing resources, for it is 
a computationally intensive software package. DTI gives us water 
diffusion results for white matter tracts. We are currently in the 
process of automating magnetic resonance spectroscopy. This 
auto-analysis pipeline benefi ts the PIs, boosting their effective-
ness, and it also magnifi es the value of the information, allowing 
it to be pooled from smaller datasets to larger datasets, yielding 
large Ns to analyze effects, such as gender, that are not seen in 
smaller datasets.

DATA QUERYING
We have learned that users of our MRN tools wish to perform 
customized queries within individual research studies and across 
 studies, where permitted. To that end, we have developed a pro-
totype application to handle queries within and across research 
studies for all data domains stored in the MRN database. For cus-
tom queries, users typically wish to fi rst be able to select the study 
or studies they wish to query, and then perform some high-level 

fi ltering of the major data domains in order to set the criteria for 
the subjects they wish to analyze.

In Figure 4, we demonstrate the applications fi ltering capability. 
The user is able to select assessment criteria, such as the instrument, 
the visit type, the fi eld, and operator and a value. In the example, the 
user wished to query all MCIC subjects where neuropyschological 
batteries were conducted at a baseline visit and where the total read-
ing score was assessed at greater than a value of 50. The result is a 
fi ltered list of subjects for which the user is then asked what they 
wish to report from that fi ltered list of subjects. The example contin-
ues where the user is able to select and report all of the data sources 
available on that fi ltered list of subjects. Finally, we demonstrate 
how the user may export the data in a format that suits their needs. 
The application currently permits a customizable fi eld delimiter, 
line terminator, and selectable data orientation. This functional 
prototype permits extensive customized querying, and given that 
it may be used across all data sources from all studies stored in the 
MRN database, it will prove to be an invaluable tool, forming the 
foundation for planned data mining activities.

QUALITY ASSURANCE AND QUALITY CONTROL
We now present two QA protocols: one for morphological data and 
one for behavioral data. We have used individuals control charts 
on the morphological data because of an automated segmentation 
algorithm that allows us to inspect every brain. When multiple struc-
tural scans are taken, the variation within session is too small to be 
identifi able (Spiring, 2007). Each segment is normalized to total 
brain volume due to differences across gender, age, and scanner dif-
ferences (Tofts, 2004). Our control limits are set by the data, but as 
our database size continues to increase, the variability will decrease. 
With an increasingly large dataset that has multiple subject types, a 

FIGURE 4 | Data querying application tool.
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regression control chart (Aroian and Levene, 1950) can be used to 
detect outliers by subject type. The morphological fi ndings show that 
within psychometrically normal subjects, neuromorphometric out-
liers are detected. These outliers will begin to lead us into research-
ing more of the predictive potential of neuromorphometric data. 
Figure 5 illustrates an example of a control chart. In the example, a 
single subject is found to be an outlier on the left thalamic proper 
label (that has been normalized by total brain volume). When this 
particular subject is fl agged as a statistical outlier on this measure, 
the end-user is prompted to review the entire neuromorphometric 
results for that subject and make a decision on whether or not to 
use that subject in their particular analysis.

In tandem with the QA of the neuromorphometric data is 
the QA of the assessment data. The three aims of using QA of 
 assessment data are: make certain that collected data falls within 
acceptable boundaries, use subject type to determine quality of 
data, and, integrate neuroimaging data and clinical assessment data 
to create multivariate control charts.

Quality assurance of the processed data is always a concern. We 
have designed measures to ensure that both the automation process 
is working correctly on all of the data analysis methods and that the 

quality is consistent. The NI database has a fi eld to include notes 
about issues that come up during the individual scans. Incoming 
scans and processed scans are monitored daily by a team of people 
involved in automation. A weekly report of disk space and total 
number of scans is generated to make sure the process is operating 
properly. QA measures are being built in to the automation stream 
that notifi es us when data fails to meet QA standards. These issues 
can then be resolved and the corrections implemented into future 
analyses to prevent concerns.

RESULTS
Within the MRN system across fi ve sites and 280 system users, the 
framework encompasses access to 8502 subjects with 10,410 MRI 
scan sessions, 1200 EEG session, 752 unique instruments have 
been developed for 140,692 assessment events with a total of 
2,533,868 questions available for use in mining nearly 150 TB 
of raw and analyzed data. We are now actively sequencing one 
million SNP arrays on prospective subjects, as well as  continuing 
to collect vast amounts of baseline and longitudinal  clinical, 
 neuropsychological, behavioral, and treatment  assessment 
results. While the preliminary research studies that drove the 

FIGURE 6 | First level analysis planning.

FIGURE 5 | Quality control chart example.
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initial  development of MRN tools were primarily based on 
 schizophrenia, MRN studies managed in MRN tools now involve 
a wide range of psychiatric, psychological, and neurological disor-
ders  including post- traumatic stress disorder, psychopathy, addic-
tion, traumatic brain injury, lupus, vascular dementia, stroke, mild 
cognitive impairment, Alzheimers, as well as studies of creativity 
and accelerated learning.

The following three case studies provide examples of results of 
data-mining using the MRN framework.

CASE STUDY ONE: NOVEL ANALYSIS PLANNING
As part of a study’s confi guration in the NI system, a protocol must 
be devised regarding the necessary assessments, tasks, and auto-
mated analysis pipelines that are to be performed on each subject 
entered into the study. These protocols are specialized to a specifi c 
subject type under which each subject may be registered. From this 
information, along with the data results and metadata contained 
in the database, the system can determine which subject data has 
been completed, which data is not yet scheduled to be completed, 
and which data is delinquent.

The system is fl exible enough to accommodate multiple types 
of protocols to enable growth that may come with future analysis 
techniques. For example, it currently supports the management of 
assessment data and analysis snapshots, but will soon be used to 
drive automated quality control systems that will rely on profes-
sional, human confi rmation. Furthermore, this unifi ed protocol 
schema enables a commonized system of viewing the data collected 
from the subjects.

Persons with the necessary privileges may view the summarized 
results from their study’s web portal. The user must choose a type 
of analysis to be summarized and may optionally fi lter their results 
by subject type. The results are displayed in a color-coded grid 
and can be sorted by the links at the tops of the columns. Data 
results that have been completed can be viewed by clicking on the 
appropriate link in their representative box. In the case of analysis 
pipelines, various images are displayed for fast reviewing purposes 
in thumbnail form (see Figure 6). These can be expanded, along 
with metadata concerning their entry, to be viewed in full size for 
a more detailed qualitative review. Assessment questions and their 
responses can be viewed in a similar way.

This tool provides investigators with a tool to summarize the 
results of the analysis done on their subjects’ data and bring to 
light the results that are tardy in their completion. Much time can 
be spared from the waste of manually sifting through fi lesystem-
based data storage to view results. As an added boon, problems with 
analysis pipelines may also now be found more easily.

CASE STUDY TWO: CONDUCTING ANALYSIS
An image processing module in the database can be used as a quick 
diagnostic tool to compare groups such as controls vs patients. 
A number of tests are supported including one sample t-tests, two 
sample t-tests, Class mean, and K-means clustering.

The input data for these algorithms are the contrast images 
obtained from the fi rst level analyses using Statistical Parametric 
Mapping. Figure 7 shows an example where six healthy and six 
schizophrenics contrast images are used to generate a one sample 

FIGURE 7 | One sample t-test calculated on 12 images (six healthy and six schizophrenics) with a T-threshold of 1.5 applied to the t-map.
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t-test map. In addition, we plan to provide data mining tools which 
work with the preprocessed spatiotemporal fMRI data for example. 
In this case, the processing must be done in an offl ine manner as 
the wait time will be considerably longer.

CASE STUDY THREE: CLASSIFICATION
In this case study, the entire system can be tested, including deter-
mining selection criteria for each group, ensuring that fi rst and 
second level analyses are performed and available, after which, a 
further classifi cation analysis is performed. In this example, a class 
mean is used to classify a given image by computing the distance 
from the mean of each of the input groups.

To illustrate the method, we use fi ve subjects from a healthy 
group and fi ve subjects from schizophrenics group and two subjects 
from an unknown group that needs to be classifi ed. Based on the 
Euclidean distance measure, both the unknown subjects belonged 
to the fi rst group (Figure 8).

DISCUSSION
This novel workfl ow utilizes a custom web application client that 
communicates with a database back-end along with a custom 
DICOM receiver that permits the end-user to conduct real-time 
annotation of neuroimaging data during acquisition. The user has 
the ability to annotate each imaging series with metadata such 
as the order of events, whether or not the event was completed, 
whether or not the end-user thinks that the imaging data is usable 
for analysis, and any other notes or relevant information. In addi-

tion, the web application allows the end-user to upload auxiliary 
data, such as stimulus response time fi les, supporting video or other 
fi les that may be needed for full analysis of functional neuroimag-
ing datasets.

For automated image analysis to be feasible in the NI  framework 
presented here, the protocol metadata (what type, kind, and 
 condition an imaging run belongs to) and the usability of an 
 imaging session, are needed to perform analyses. As soon as the 
end-user has set the status of an imaging session to usable, an 
 automated process evaluates the constraints of the protocol, 
 metadata, and usability status in order to execute the appropriate 
image  analysis pipeline. In functional imaging runs where behav-
ioral data is needed to process activation maps, when the end-user 
attaches the behavioral data, it triggers the functional imaging 
pipeline processing. The other strength of managing research pro-
tocols is the ability to monitor and enforce compliance as well as 
provide a platform for QA.

Since we have integrated this annotation tool with a DICOM 
receiver, and a comprehensive RDBMS, we are able to provide 
end-users with rich metadata associated with each neuroimag-
ing session and run. This integration of annotation along with 
comprehensive NI tools that combine clinical, socio-demographic, 
and neuropsychological data sources collected in a study greatly 
enhances the usability of data and establishes the foundation 
for effi cient, semantic-based retrieval of complex images via a 
secure web application. When combined with fully automated 
image analyses, this  annotation tool can serve as a powerful quality 

FIGURE 8 | Class mean run on fi ve healthy, fi ve schizophrenics and two images unknowns. Image shown is the mean image of group 1 thresholded at 1.0.
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control mechanism for the end-user to fl ag problematic cases or 
guide automated procedures and subsequent users of the data with 
pertinent  information that may otherwise be lost, such as protocol 
deviations, subject noncompliance, poor data acquisition, etc.

We have developed a capability to handle queries within and 
across research studies for all data domains stored in the MRN 
database. The user is able to select assessment criteria, such as 
the instrument, the visit type, the fi eld, an operator and a value. 
The result is a fi ltered list of subjects for which the user is then 
prompted for what data they want reported. Following that step, 
the user is able to select and report all of the data sources available 
on that fi ltered list of subjects. Finally, the user may export the 
data in a format that suits their needs (CSV, SAS, SPSS, XCEDE, 
or custom format). This capability permits extensive customized 
querying, and given that it may be used across all data sources 
from all studies stored in the MRN database, it will prove to be an 
invaluable tool, forming the foundation for planned data mining 
activities. Once queries take place they can be saved and run again 
to refl ect new subjects being available, and fi nally the queries can 
be leveraged to plan and execute meta-analyses across all subjects 
and research studies permitting analyses of individual data sources 
that were not envisioned by the investigator that may have collected 
the original data.

Within an active study, the NI system provides investigators with 
a tool to manage and evaluate the quality of their data through the 
structured protocol schema and its associated display. The user may 
evaluate their study both on a subject-by-subject basis and by view-
ing a summary of the study as a whole. In the near future, this tool 

will further lead to the implementation of automated quality control 
mechanisms that can fl ag suspicious data for review by a human 
expert and collect the results of their assessment. The image processing 
module is especially advantageous because it helps people to perform 
a quick group comparison and classifi cation within the database and 
thus avoids the need to use analysis packages for doing these diag-
nostic tests. Furthermore, the database-driven analysis will grant a 
more detailed on-the-fl y analysis of the quality of the existing data to 
provide insight into the progress of a given study as well as supporting 
the likelihood of a hypothesis proposed for future studies.

We believe this novel framework represents an enormous step 
toward the effi cient mining of large scale heterogeneous translational 
neuroscience research. Data mining of such large NI repositories 
can lead to the creation of classifi ers with the ability to perform 
diagnosis, predict treatment outcomes, and identify novel targets 
for pharmaceuticals. We provided a data mining example of clas-
sifi cation, but current users are also using the NI system to perform 
clustering, regression, and associative rule learning. Ultimately this 
type of mining should hasten translation neuroscience discover-
ies to 1 day lead to better treatments, cures, and more complete 
understanding of the basic neurosciences.
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for  processing, analysis, or simulation of brain data. Additionally 
the Clinical Data Interchange Standards Consortium (CDISC) 
(Souza et al., 2007) strives to improve data exchange across mul-
tiple domains and platforms for medical research as well as health 
care initiatives.

Notably, the LONI Image Data Archive (IDA) contains neuro-
anatomical data from nearly 30 research projects and serves as the 
primary repository for large studies such as the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI). Data sharing has also indirectly 
benefi tted and affected computational neuroscientifi c tool devel-
opment. As algorithms get tested on more and more diverse data-
sets, they evolve to become more general and robust. Data sharing 
has been the fi rst step in neuroinformatics research efforts and 
has largely been the focus of the past decade, and will continue 
to be so. The neuroscientifi c community is now getting ready to 
prepare for the next logical step – database integration (Forsberg 
and Roland, 2008). Most data storage facilities like the ones above, 
have implemented centralized repositories in proprietary formats. 
The challenge that the informatics community faces in the near 
future is the unifi cation of existing large, heterogeneous neuroda-
tabases in a user-transparent manner. This goes above and beyond 

INTRODUCTION
The past decade has seen an explosive rise in the volume of brain 
image scans for clinical, diagnostic as well as research purposes. 
Fortunately, the neuroimaging research community recognized 
early on that facilitating data sharing among collaborative research 
centers is the key to boosting neuroscientifi c knowledge and dis-
covery. Drawing a parallel with genomics research which has 
immensely benefi tted with such data sharing strategies, a position 
paper (Eckersley et al., 2003) even goes far to suggest the use of 
public domain licensing policies, not unlike the GNU public license, 
for neuroscience data. The consensus on the archiving and shar-
ing of primary neuroimaging data has fostered several large-scale 
initiatives: The Biomedical Informatics Resource Network (BIRN), 
the Morphometry and Function BIRN testbed projects (Grethe 
et al., 2005); The NIH MRI Study of Normal Brain Development 
(Pediatric MRI Study) and resulting Pediatric MRI Data Repository 
(Evans, 2006); and The fMRI Data Center (fMRIDC) (Van Horn 
et al., 2001; Van Horn and Gazzaniga, 2002). Much recently, the 
Neuroscience Information Framework (NIF) (Hurd, 2005) has 
initiated the development of a comprehensive experimental, 
clinical and translational databases, knowledge bases, atlases etc 

Interactive exploration of neuroanatomical meta-spaces
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Large-archives of neuroimaging data present many opportunities for re-analysis and mining that 
can lead to new fi ndings of use in basic research or in the characterization of clinical syndromes. 
However, interaction with such archives tends to be driven textually, based on subject or image 
volume meta-data, not the actual neuroanatomical morphology itself, for which the imaging was 
performed to measure. What is needed is a content-driven approach for examining not only the 
image content itself but to explore brains that are anatomically similar, and identifying patterns 
embedded within entire sets of neuroimaging data. With the aim of visual navigation of large- 
scale neurodatabases, we introduce the concept of brain meta-spaces. The meta-space encodes 
pair-wise dissimilarities between all individuals in a population and shows the relationships 
between brains as a navigable framework for exploration. We employ multidimensional scaling 
(MDS) to implement meta-space processing for a new coordinate system that distributes all 
data points (brain surfaces) in a common frame-of-reference, with anatomically similar brain 
data located near each other. To navigate within this derived meta-space, we have developed a 
fully interactive 3D visualization environment that allows users to examine hundreds of brains 
simultaneously, visualize clusters of brains with similar characteristics, zoom in on particular 
instances, and examine the surface topology of an individual brain’s surface in detail. The 
visualization environment not only displays the dissimilarities between brains, but also renders 
complete surface representations of individual brain structures, allowing an instant 3D view 
of the anatomies, as well as their differences. The data processing is implemented in a grid-
based setting using the LONI Pipeline workfl ow environment. Additionally users can specify 
a range of baseline brain atlas spaces as the underlying scale for comparative analyses. The 
novelty in our approach lies in the user ability to simultaneously view and interact with many 
brains at once but doing so in a vast meta-space that encodes (dis) similarity in morphometry. 
We believe that the concept of brain meta-spaces has important implications for the future of 
how users interact with large-scale archives of primary neuroimaging data.
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data sharing, where the user can not only access a single database, 
but can sift through multiple repositories at once without having 
the database to be localized in a central place. This is very much 
like the WWW, where there is an interconnection of data process-
ing and storage nodes in a decentralized network. An important 
step towards this goal will be designing and standardizing robust 
database exchange protocols, while maintaining compatibility with 
privacy regulations and laws.

However, an alternate parallel goal complementing these 
efforts is the ability to graphically navigate, browse and query 
such aggregations of repositories. With the increasing progress in 
computational processing, and visualization, textual queries and 
interactions continue to be a severe drawback in future database 
access, especially with the enormity of the data involved. Recently, 
Herskovits et al. (Herskovits and Chen, 2008) have developed an 
open source implementation for a database system with data min-
ing capabilities for managing, querying, analyzing and visualizing 
brain-MR images. We anticipate a compelling need for similar tools 
in the neuroscience community that facilitate informatics-driven 
approaches for users to better examine databases and explore the 
inter- relatedness of subjects in the population. Our goal then is to 
facilitate the large-scale informatics, mining, and visualization of 
the contents of existing neuroimaging data repositories by devel-
oping streamlined data processing workfl ows to decompose the 
contents of an archive, compare each image volume against all oth-
ers in the archive, and visually display the results in a user friendly 
client application. We claim that the neuroimaging data itself can 
form the basis for such mining, that visualization of how brains 
relate to one another carries essential information, and that well-
designed tools can permit data from outside the archive to be used 
as the basis for similarity-based searching.

This paper is organized as follows: the Section “Introduction” 
makes an argument for visual explorative interfaces for large-scale 
neuroimaging databases. The Section “Materials and Methods” 
outlines the main idea of this paper. It proposes neuroimaging 
workfl ows (see Introduction) focusing towards discriminative 
analysis for visualization. The Section “Materials and Methods” 
introduces the concept of a neuroanatomical meta-space built 
on top of the dissimilarity measures generated by the workfl ows. 
A meta-space is constructed in a case study (see Introduction) on 
a sample dataset of 400 subjects from the ADNI dataset. Finally 
Section “Discussion” proposes a 3D visualization environment 
for interactively navigating through this meta-space followed 
by a discussion.

NEED FOR VISUAL MINING OF NEURODATABASES
There is a growing interest in content-based searches for neuroim-
aging because of the limitations inherent in meta-data-based sys-
tems (Nielsen et al., 2006), as well as the large range of possible uses 
for effi cient image retrieval. Without the ability to examine image 
content, searches currently rely on meta-data such as captions or 
keywords, which may be laborious or expensive to produce manu-
ally. While textual information about images can be easily searched 
using existing technology, it requires humans to personally tag and 
annotate every image in the database. This can be impractical for 
very large databases. Similarly, there are added benefi ts for manipu-
lating the search criteria and results visually. A visual interface will 

present an opportunity to cluster, classify, and graphically represent 
data in ways not possible based on textual meta-data alone. We 
identify the following scenarios where such a graphical navigation 
system can be applied.

Visualizing anatomical differences and relatedness simultaneously
A single brain image scan may give rise to a variety of anatomies. 
Pertaining to a specifi c neuroscientifi c study, researchers may 
choose to directly work with MRI images, or work with suitable 
anatomical representations deconstructed from an MRI image. 
For e.g. the boundary of the volume, the cerebral cortex can be 
 represented by a topographic two-dimensional geometrical struc-
ture (Thompson et al., 2001; Hinds et al., 2008). This structure can 
be further differentiated by the anatomical folds also known as the 
sulci and the gyri. One can further descend beneath the cortex 
to delineate various other structures such as the limbic system, 
thalamus, hypothalamus, corpus callosum (Narr et al., 2005) etc. 
Existing neuroimaging analysis and visualization tools restrict 
users to a single, individual brain image or surface for anatomical 
studies. While this is useful for structural analysis or evaluation of 
pertinent anatomies, neuroimaging studies often consist of large 
population of subjects and resulting brain images. Especially for 
large-scale statistical or discriminative analyses focusing on dis-
ease, genetic, or heritable effects and changes according to neuro-
morphology, it would be useful to simultaneously visualize the 
morphology in an appropriate metric space resulting from the 
analysis. Currently most neurodatabases are accessible solely by 
textual queries. Furthermore there is no existing application or 
workfl ow that enables the neuroscientist to manipulate neuroin-
formatics search criteria, and the resulting queries and outputs 
in a visual manner.

Educational resource or a training environment for neuroscientists
Developments in the area of content representation, interaction, 
and search has been employed for graphical data with the notable 
example of Microsoft’s Photosynth that been used to mine the 
Flickr1 photo sharing site to then graphically depict a collection of 
images from a spatial reconstruction of their taken vantage point. 
Likewise, Google Earth2 displays satellite imagery, mapping, and 
geographic data, permitting interactive search, annotation, and 
other functions. In the astronomy community, the recent launch 
of the World wide Telescope® [for historical context, see (Szalay 
and Gray, 2001)] has revolutionized the exploration and search 
capabilities for astral, galactic, and planetary data obtained from 
multiple imaging sources. These applications continue to enhance 
educational instruction, both for the general public and the spe-
cialists alike. Similar tools do not yet exist in the neuroimaging 
community where there is a tremendous potential for computer-
simulated training for neuroscientists.

Visual cataloging of neurodatabases
Visual data mining (VDM) is useful in exploratory analysis, 
where one has limited views and information of the data. With 
the recent advances in computing and storage, VDM has been 

1http://www.fl ickr.com/
2http://earth.google.com/
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For e.g. the LONI Pipeline (Rex et al., 2003)3 is a highly fl exible, 
distributed computing environment that enables parallelized 
execution of application software especially dealing with brain 
mapping protocols. It offers an effi cient GUI interface to the user, 
where one can quickly build complete applications using plug-
gable components called pipeline modules. The pipeline user 
can further extend the functionality of the pipeline by develop-
ing modules in addition to the ones existing in the library. The 
pipeline communicates back and forth with the grid scheduler 
to queue up user tasks in an effi cient manner. It also provides 
a feedback mechanism to the user where he can monitor pro-
gram execution real time from the pipeline interface. Moreover 
the pipeline also allows the data as well as programs required 
for analysis, to reside on the user’s local machine that launches 
the pipeline thereby integrating both local and remote resources 
in a seamless manner. Throughout this discussion, the LONI 
Pipeline will serve as a convenient execution environment for 
our  architecture. We would also like to stress that the user is not 
restricted to the LONI computing infrastructure to take advantage 
of the LONI pipeline. The LONI pipeline is independent of the 
underlying grid computing environment and can be tailored and 
adapted to other suitable execution infrastructures4.

DATA MINING WORKFLOW FOR DISCRIMINATIVE ANALYSIS
The data is typically stored as MRI images either in the Analyze or 
the NIFTI format. For the purpose of this discussion, we focus on 
neuroanatomical volumes, though in the future functional imaging 
could be incorporated. Depending upon the experimental setup, the 
data is usually corrected to minimize geometric distortions or non-
linearities, and any non-uniform intensities resulting due to mag-
netic properties of the RF coils. The data can further be sharpened 
using histogram techniques that can further lead to a reduction of 
intensity non-homogeneities. The corrected MR images are then 
stripped of skulls, unwanted tissue, and other extra unneeded ana-
tomical features such as the cerebellum or the brain stem. We used 
the Brain Extraction Tool (Smith, 2002) tool for skull stripping MRI 
images in our workfl ow, although any such similar tool can be used. 
All image volumes in the database are  registered (Woods et al., 1998) 
to a standard Montreal Neurological Institute (MNI) atlas image. 
The resulting gray/white matter image is then processed in parallel 
to i) extract the cortical (gray/CSF boundary) surface (Shattuck 
and Leahy, 2002), and ii) extract about 56 sub-cortical features 
(Tu et al., 2008) such as the major gyri, hippocampus, the putamen, 
etc. This process exclusively gives rise to a geometrical representa-
tion that is stored in the form of a triangular mesh using a suitable 
fi le format. Henceforth in this paper, brain anatomies will be taken 
to mean the cortical surface as well as surface parameterizations of 
the individual sub structures beneath the cortex. The top portion 
of Figure 1 shows the pre-processing and feature extraction steps. 
These steps are implemented as completely automated LONI pipe-
line modules. Figure 2 shows an example of a parcellated volume 
colored according to  different anatomies. The original input data 

used for diverse applications such as exploring geospatial data 
(Keim, 2002; Keim et al., 2004), internet web resource databases 
(Chen et al., 2007), and analyzing business intelligence patterns 
(Hao et al., 2000). Such an effort currently does not exist in the 
fi eld of neuroimaging. The development of visual catalogs of 
neuroimaging data would enable and enhance large-scale scien-
tifi c interaction among users. Though some basic image viewing 
tools exist, we believe a different approach is needed altogether. 
A content-based solution is benefi cial for researchers to more 
easily examine (dis)similarity between brains and to dynamically 
visualize patterns that may be indicative of the demographic and 
clinical attributes of the data themselves. By navigating through a 
virtual environment via an easy-to-use, web driven application, 
users will be able to examine large collections of brain data using 
only their computer mouse.

Visualization of atlas spaces
Individual brain anatomies, have their own local coordinate 
systems that measure local distortions of features such as cur-
vatures, intensities, and surface areas. For large populations of 
such anatomies, most approaches construct an atlas template 
(Mazziotta et al., 2001) and transform all individuals to the atlas. 
This yields a single anatomical object that is then analyzed or 
visualized as a representative of the population. This approach 
also transforms the individual local variation to the atlas thus 
providing the researcher with an at-a-glance view of the variation 
across population. The drawback of atlas visualization is that the 
atlas depicts a single view of the population, and it is diffi cult to 
get an overview of the underlying dissimilarity patterns between 
individual subjects in the study. Often, these atlases are probabi-
listic in nature and thus only provide a statistical interpretation 
of the relationship between the template and the individual. Thus 
one has to continually go back and forth between the template 
and the individual to relate to, and observe the changes in the 
native brain space. Instead, a visualization scheme that simultane-
ously displays the atlas and the data used for its construction, in 
a meta-space is highly desirable. Moreover, one could technically 
extend this idea to multiple atlases grouped together with their 
respective populations.

MATERIALS AND METHODS
This section outlines the concept of a meta-space that follows 
from large-scale discriminative analyses on a brain population. 
Essential to the construction of the meta-space is the data process-
ing framework that enables complete workfl ows leading from 
the original data in the form of images to the various metrics 
that attempt to classify, cluster and separate individuals in the 
population. Due to the enormity of the data, as well as the types 
of processing involved, we employ a grid-based execution envi-
ronment. While large-scale distributed processing is an essential 
component in scientifi c computing, it has only recently (Rex et al., 
2003; Callahan et al., 2009) evolved to adapt itself to biomedical or 
neuroimaging workfl ows. The main hindrance for adapting such 
technologies is the specialized knowledge required to maintain, 
develop, and execute applications for common neurocomputing 
tasks. However with latest advances in interfaces and visualiza-
tion, much of these tasks have become oblivious to the end-user. 

3http://pipeline.loni.ucla.edu
4For more information about the pipeline, the reader is referred to the article 
“ Effi cient, Distributed and Interactive Neuroimaging Data Analysis using the LONI 
Pipeline” by Dinov et al., 2009.
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FIGURE 2 | Surface rendering of segmented sub-cortical structures labeled according to regions. (A) Examples of image slices along the axial view. 
(B–D) Parcellated cortical and sub-cortical regions along three views.
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FIGURE1 | A schematic of the data mining workfl ows exposed through the 

LONI pipeline (Rex et al., 2003). The workfl ow is divided into three parts, 
i) Processing, ii) Feature Extraction – extracting anatomical features such as 
cortical surfaces, sub-cortical structures etc. and having 3D mesh 

representations for each feature, and iii) Feature Analysis – calculating the local 
curvature, shape index, cortical complexity, and encoding each surface mesh 
with these attributes. Each stage is implemented via pipeline without user 
intervention.
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is  usually accompanied by appropriate meta-tags using predefi ned 
XML schemas. The above pre-processed data is then stored hier-
archically for a streamlined access in a database.

A NEUROANATOMICAL META-SPACE
The central idea behind atlas meta-spaces is the modeling of the dis-
similarities between individuals in a population. The population can 
be analyzed all at once, or the individual subjects can be grouped 
according to some well-defi ned categories. Before performing any 
type of discriminatory analysis, one needs to consider an appropriate 
metric space of objects and defi ne a notion of distance associated with 
it. Metric spaces are mathematically easier to defi ne in case of sim-
ple tractable objects such as two-dimensional, or three-dimensional 
points, multidimensional vector measurements, or objects that lend 
themselves to functional representations in a well-defi ned space. In 
case of neuroanatomical structural data, such as cortical surfaces and 
sub-cortical structures, it is diffi cult to have a rigorous defi nition of 
a metric space of such entities directly. There are ongoing research 
efforts to model the geometry of the cortex, or defi ne the shape of 
three dimensional closed surfaces corresponding to the sub-cortical 
structures. The goal is to have a mathematical representation of the 
shape geometry, independent of indeterminacies such as the scale, 
position, orientation etc. Various researchers have used harmonic 
functions on a sphere to represent closed genus zero surfaces. In this 
case the shape distance is measured by a L2 distance between the coef-
fi cients in the space of harmonic functions. Others have used level 
set representations for shapes of surfaces, again using the L2 metric 
between two signed distance representations for surfaces. Yet another 
approach by researchers uses global measurements such as the volume, 
average curvature, or the surface area of cortex, or the sub-cortical 
structures. Although, this may interpreted as a gross simplifi cation 
of brain geometry, numerous studies have shown the effectiveness of 
such simple metrics in capturing a global underlying pattern of the 
data. A study based on simple volume analysis of the Hippocampus 
(Chupin et al., 2008) was able to correctly classify 82% of Alzheimer’s 
disease (AD) patients with respect to the elderly controls. Another 
study (Gosche et al., 2002) has also shown that hippocampal volume 
can be used as an indicator for Alzheimer neuropathology. A recent 
study (Dubois et al., 2007) also supports that quantitative volumetric 
analysis on the hippocampus was able to distinguish AD across young 
and old ages. We will follow a similar approach and utilize metrics that 
are simple to compute, and lend themselves to an easy interpretation. 
A few of the metrics considered in this paper are cortical complexity, 
shape indices, volume and surface area of the segmented structures. 
We then represent these quantities in the space of real numbers and 
adopt the standard Euclidean metric. As a specifi c example, for a 
database with N subjects and L delineated sub-volumes, given by 
{ } ... ..V i N k Lk

i , = , , , = , ,1 1 .  we fi rst normalize all the volumes to have 
a unit scale. We then calculate a N-by-N distance matrix given by,
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Likewise, one can in practice utilize different metrics to generate dif-
ferent distance matrices. In order to establish a frame-of- reference, 
we construct a template atlas for the population and also include it 

in the distance calculation. This process yields a distance space of 
neuroanatomical structures with the atlas conveniently treated as the 
“origin”. One can even defi ne distance units in this space and defi ne a 
centralized coordinate system with the atlas at the origin. This result-
ing distance space is extremely high dimensional and not straightfor-
ward to visualize. In the analysis stage, we will pre-store multiple such 
distance matrices based on different metrics for the above features in 
the database. As new data enters the LONI IDA, the workfl ow engine 
will automatically detect new entries and subject them to regional 
extraction, surface modeling, and regional measurement, etc. Random 
spot checking to ensure accuracy will help to reduce improper data 
from entering into and possibly biasing the comparison of image 
data-sets. Each new data set’s relative distance from each of the brain 
volumes already in the overall distance matrix will be performed and 
this new information will take its place in the matrix. Upon updating 
of the distance matrices, the multidimensional scaling (MDS) will 
then be recomputed and the positions of each brain surface in the 
space adjusted accordingly. We expect that once fully deployed the 
continuous processing of new entries into the IDA and the updating 
of the geometric similarities will not require extensive computational 
loads or interfere with other jobs being processed on the LONI grid. 
Lastly, we will post the automated processing meta-algorithm via the 
community web forum so that others may download the workfl ow 
and use the LONI Pipeline on their own systems to validate results. 
Using the online web forum as well as client-side user interface tool, 
users will be able to post their reviews of the validity of meta-algo-
rithm, note outlier subjects, or annotate interesting cases. These pub-
licly given annotations will form additional meta-data information 
to be made available to other users of these tools.

In order to explore the dissimilarities between brain volumes, 
we need to project the dissimilarity matrix into an appropriate 
2D or 3D space. There are numerous techniques to project high 
dimensional data into lower dimensional spaces for analysis or 
visualization. As discussed above, one could calculate principal 
coeffi cients, or principal factors explaining the maximum observed 
population variability in terms of a few determining factors. For 
visualization purposes, only the fi rst 3 eigen projections can be used 
to display objects in a 3D space. Sophisticated visualization tools 
(Swayne et al., 2003) exist for performing such high dimensional 
data visualizations, as well as plotting multivariate statistics of the 
data. However, these tools usually represent objects by points in 3D 
space and thus limit the interaction with the original objects them-
selves. Moreover, since the construction of our meta-space relies 
on dissimilarities among neuro-structures, we will use the multi-
dimensional scaling (Kruskal and Wish, 1978) approach for pro-
jecting the dissimilarity matrix into a 3D space. Multidimensional 
scaling is an optimization technique that projects a high dimen-
sional dissimilarity matrix into a low dimensional space that most 
accurately represents the pair-wise distances between the objects. 
This is achieved by minimizing a cost function that minimizes a 
Euclidean cost between the original dissimilarity matrix and a set 
of low dimensional (3D in our case) vectors. Additionally, since 
most studies come equipped with meta-data tags along with the 
images, one can easily perform comparative analyses of individual 
brain locations with the mean brain locations for each categorical 
meta-data type. For example, in case of an Alzheimer’s study, this 
implies that a brain whose standardized distance from the mean 

76

http://www.frontiersin.org/neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/neuroinformatics/archive


Frontiers in Neuroinformatics www.frontiersin.org November 2009 | Volume 3 | Article 38 | 

Joshi et al. Interactive exploration of neuroanatomical meta-spaces

AD patient location is smaller than the normal subject will increase 
the likelihood that the brain belongs to an AD patient. Figure 3 
shows an illustrative visualization of the meta-space after the MDS 
projection of pair-wise distances between a group of brains with 
respect to an atlas.

Case study for a subset of ADNI dataset
As a case study for our framework, we sampled the LONI IDA and 
identifi ed three groups of subjects obtained from the ADNI data-
set. Subjects included N = 244 mild cognitively impaired (MCI) 
subjects, N = 56 Alzheimer’s Disease (AD) patients, and N = 100 
normal control subjects, for an overall group of N = 400 neuro-
anatomical Magnetization-Prepared Rapid Acquisition Gradient-
Echo (MPRAGE) image volumes. All images in this example were 

scanned using a 3T MR scanning platform, although, a mixture 
of data from across scanner manufacturers and fi eld strengths 
would also be possible. The distance matrix computed using Eq. 1 
is visualized in Figure 4A. This distance matrix is projected to a 
three dimensional space using MDS and the results is displayed 
in Figure 4B. The spheres are drawn with a radius equal to 5% 
of the standard deviation from the population mean. From the 
MDS analysis, we extracted the fi rst three latent dimensions which 
accounted for more than 66% of the distance variation between 
subjects (50%, 10%, and 6%, respectively). No inferential statisti-
cal test thresholding (e.g. T-tests, F-tests, etc) was performed and 
no signifi cance-levels were determined concerning the differences 
between groups as “group” variables were not specifi ed a priori. 
Rather, all data were considered equally in terms of  processing 

FIGURE 3 | An illustration of distributions of brain surfaces in an atlas meta-space. The atlas can be treated as the origin. The locations of the brain surfaces are 
derived using MDS applied to the distance matrix of discriminative features. A radial coordinate system is shown for convenience, in practice any other informative 
reference frame can be used.

77

http://www.frontiersin.org/neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/neuroinformatics/archive


Frontiers in Neuroinformatics www.frontiersin.org November 2009 | Volume 3 | Article 38 | 

Joshi et al. Interactive exploration of neuroanatomical meta-spaces

FIGURE 4 | (A) Visualization of the pair-wise distance matrix for N = 400 subjects of the ADNI dataset. (B) MDS projection of the dissimilarity matrix into 3D 
coordinates, each projection colored according to subject status, NC = blue, AD = red, MCI = yellow.

and MDS analysis. Subjects segregated maximally along the 
fi rst principle axis. Along this dimension, normal subjects were 
clearly distinguishable from AD patients, whereas MCI patients 
were observed to overlap both normal and AD distributions. Each 
extracted brain surface was positioned in space by its MDS coor-
dinate triad. This served to offset each brain from the origin, to 
position brains that are similar near one another, and those that 
are dissimilar far from each other. In this way a user can graphically 
examine similar brains to identify similar meta-data characteristics 
from those brains that might have bearing on etiology of disease, 
demographic factors, etc. The intention in processing these data 
in this manner was to determine and demonstrate whether the 
imaging data, based upon the characteristics of content-based 
regional brain geometry, would separate themselves in a manner 
that would be obvious to an end-user. Other metrics, however, 
besides the profi le of regional volumes, might also segregate sub-
jects equally well or even better. Different metrics of distances 
can lead to differing patterns of results. This scheme sets the stage 
for systematic evaluation of which metric discriminate between 
subjects best, best express individual variability, or classify subjects 
to heretofore unappreciated classifi cations based on anatomical 
similarity, meta-data factors, etc.

INTERACTIVE VISUALIZATION OF NEURO- META-SPACES
Finally, we provide the user with a fully interactive 3D exploration 
experience by allowing visual navigation of the meta-space. As seen 
earlier, the meta-space comprises of 3D projections of pair-wise 
distances among the population along with the atlas template. 
Intuitively, this can also be thought of as scaling, stretching and 
collapsing a set of 3D points (corresponding to brain anatomies) 
such that their pair-wise distances in the higher dimensional space 
are accurately approximated. Thus we have the target locations for 
all brain anatomies after the MDS procedure converges. We now 
simply scale and translate the corresponding brain cortical surfaces 
extracted in the data mining workfl ows to the appropriate location 

in the 3D space. The end result is a graphical rendering of a large 
volume of brain surfaces all at once. The visualization display is 
dynamic, thus enabling the user to rotate, zoom, and pan the view 
in real time. Additionally, the user can also navigate through the 
meta-space, thus discovering and verifying the brain surface geom-
etry simultaneously in relation to it’s neighbors. Each brain surface 
is accompanied by an XML description of its meta-data that can 
be quickly displayed on the screen to get more information about 
the individual brain.

A growing challenge to the visualization environment is the 
rapidly accumulating data. Both long-term storage and memory 
requirements for data multiply progressively with increase in 
the sheer data volume. Real time visualization of large data-sets 
presents numerous diffi culties with regards to limited process-
ing power and computer memory. For e.g. a triangular mesh 
parameterization of a moderate resolution cortical surface 
roughly includes 250 K triangles and 100 K vertices. A fl oat-
ing point representation for the geometry alone requires about 
1.5 MBytes of storage, while attributes such as colors and normals 
are represented at an additional cost. For a brain volume database 
in excess of 500 brains, the storage requirements start becom-
ing prohibitive for any real time manipulation of data. For this 
reason, it is necessary to represent the data in a multi-resolution 
manner. There is an ongoing research effort in the area of trian-
gular mesh simplifi cation for visualization or compression for 
storage purposes. For our visualization interface, we have imple-
mented the quadric error mesh simplifi cation strategy (Garland 
and Heckbert, 1997) that keeps on contracting edges defi ned by 
vertex-pairs until the desired number of faces are achieved. The 
multi-resolution representation and rendering enables faster 
response times, and facilitates better user interaction. Currently 
the surface geometry is stored as triangular meshes with faces, 
vertices, and colors. We also allow surfaces to be colored according 
to attributes for each vertex. These can represent measures such as 
cortical thickness, functional activity, or other statistics. Figure 5 
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FIGURE 5 | A snapshot of the 3D Visualization environment for the neuro- meta-space displaying a group of brain surfaces from the ADNI 400 dataset. 

(A) A zoomed-in view of the 3D interface. (B) A close-up of an individual brain belonging to the AD category. (C) Alternate view of the interface with the meta-data 
(green text) displayed, as a result of a right-click action on one of the brains.

shows the functioning prototype of our visualization interface. 
The visualization environment is a desktop-based application 
designed in C++ and Open GL® and is available on all Windows, 
Mac OS X, and Unix-based platforms. The OpenGL pipeline con-
veniently provides a built-in framework for polygonal rendering 
and transformations.

DISCUSSION
We foresee the development of graphical visualization tools that 
enable and enhance scientifi c interaction with large-scale databases, 
as the next step in neuroimaging informatics. Though some basic 
image viewing tools exist, we have argued for a need for a next gen-

eration visual interaction framework. We have also demonstrated a 
content-based solution that can be applied to any such archive in 
order for researchers to more easily examine dissimilarity between 
brains and to dynamically visualize patterns in the degree of prox-
imity between brains that may be indicative of the demographic 
and clinical attributes of the data themselves. In fact, all throughout 
our approach, we have made as few assumptions about the data as 
possible, and really let the data segregate itself based upon the char-
acteristics of regional shape and geometry. A key component of this 
framework is the fully interactive, 3D visualization environment. By 
navigating through a virtual environment via an easy-to-use, web 
driven application, users will be able to examine large collections of 
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brain data using only their computer mouse. The underlying data 
distribution manifested through classifi cation and collocated with 
the respective brain anatomies would be a very valuable tool for 
data processing, mining and interactive visualization of large-scale 
neuroanatomical databases. This will form a common frame-of-
reference for neuroimaging informatics that is (a) familiar to most 
neuroimaging scientists, (b) provides a navigable space in which 
to position brain data, and (c) allows measurement of brain dis-
similarity to be visually represented.

Our plan now is to (i) apply this meta-workfl ow to the thousands 
of MR anatomical images contained in the LONI IDA to obtain 
cortical surface and partition shape statistics, (ii) measure the pair-
wise distances between the shapes obtained from the individual MR 
volumes, (iii) apply multidimensional scaling (MDS) and related 
decompositions of the matrix of pair-wise distances to determine 
which brains are most related, and (iv) broaden the concept of 
the standard brain atlas space to extend beyond the boundaries of 
the atlas to form a large space, analogous to a celestial coordinate 
system, wherein the atlas is centered at the origin and the individual 

brain surface representations are distributed in clusters with respect 
to it. We also plan on enhancing the user interface and scaling its 
performance with the increasing data.
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INTRODUCTION
Modern tools for image processing employ large amounts of het-
erogeneous data, diverse computational resources and distributed 
web-services (Toga and Thompson, 2007). Effi cient analysis pro-
tocols combine diverse data, software tools and network infra-
structure to obtain, analyze and disseminate results. Construction 
of such analysis protocols are signifi cantly enhanced by a graphi-
cal workfl ow interface that provides high-level manipulation of 
the analysis sequence while hiding many of its technical details. 
In this manuscript, we discuss the challenges of development, 
maintenance and dissemination of integrated resources including 
data, software tools and web-services, as platform-independent, 
agile and scalable frameworks. We demonstrate the development 
and utilization of the LONI Pipeline environment for combin-
ing of user computational and biological expertise with disparate 
resources and Grid infrastructures. Version 4 of the LONI Pipeline, 
extends the previous implementation of this environment (Rex 
et al., 2003).

To provide an extensible framework for interoperability of diverse 
computational resources the LONI Pipeline employs a decentralized 

infrastructure, where tools, services and data are linked through an 
external resource-mediating-layer. This approach requires no mod-
ifi cations of existing tools to enable their interoperability with other 
computational counterparts. A new XML schema forms the back-
bone for the inter-resource-mediating-layer. Each XML resource 
(module) description includes important information about the 
resource location, the proper invocation protocol (i.e., I/O types, 
parameter specifi cations, etc.), run-time controls and data-types. 
Also included are auxiliary meta-data about the resource state, spec-
ifi cations, history, authorship and bibliography. This infrastructure1 
facilitates the integration of disparate resources and provides a 
natural and comprehensive data provenance (MacKenzie-Graham 
et al., 2008a). The LONI Pipeline also enables the broad dissemina-
tion of resource meta-data descriptions via web-services and the 
constructive utilization of multidisciplinary expertise by experts, 
novice users and trainees.

There are a number of efforts to develop environments for tool 
integration, interoperability and meta-analysis (Rex et al., 2004). 
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There is a clear community need to establish effi cient tool 
 interoperability, which enables new types of analyses and facili-
tates new applications (Dinov et al., 2008). Taverna (Oinn et al., 
2005) is an open-source, platform-independent graphical workfl ow 
environment, which enables linking tools after explicit rebuilding. 
It is mainly employed for bioinformatics applications via myGRID 
infrastructure. Kepler (Ludäscher et al., 2006) is another scientifi c 
workfl ow environment used for various applications, which also 
requires rebuilding each executable to link it with the core libraries. 
The Triana (Churches et al., 2006) workfl ow environment enables 
external data storage which signifi cantly improves the effi ciency and 
robustness of its user interface and optimizes the system require-
ments (e.g., low memory demands). VisTrails (Callahan et al., 2006) 
addresses the problem of visualization from a data management 
perspective where imaging data and meta-data are represented as 
a conjoint visualization product. Swift is another graphical work-
fl ow environment, which uses a scripting language, SwiftScript, 
to enable concise high-level specifi cation of workfl ows based on 
various applications using large quantities of data. The Swift engine 
provides effi cient execution of these workfl ows on sequential or 
parallel computers or distributed grids (Stef-Praun et al., 2007). 
There are a number of other graphical workfl ow environments 
that are proposed, tested and validated for specifi c applications, 
types of users, scientifi c areas or hardware infrastructures (Bowers 
et al., 2008).

Compared to other graphical workfl ow environments, the 
LONI Pipeline offers several advantages. It facilitates the back-
end integration with distributed Grid-enabled and client-server 
infrastructures, and provides an effi cient and robust framework 
for deployment of new resources to the community (new tools 
need not be recompiled, migrated or altered in anyway to be made 
functionally available to the community). The choice of a particular 
analysis workfl ow infrastructure always depends on the application 
domain, the type of user, types of access to resources (e.g., compu-
tational framework, human or machine resource interface, data-
base, etc.), as well as, the desired features and functionalities (Bitter 
et al., 2007). There are inevitable similarities between the LONI 
Pipeline and other such environments. These include the graphical 
interface provided by most workfl ow environments, which facili-
tates the design of analysis protocols and improves the usability of 
these graphical protocols. Visual interfaces present complex analysis 
protocols in an intuitive manner and improve the management of 
technical details. Most of the graphical workfl ow environments 
provide the ability to save, load and distribute protocols through 
servers, SOAP/WSDL/XML or other means.

The LONI Pipeline addresses the specifi c needs of the neuroim-
aging and computational neuroscience community, but its gen-
eral goals of providing portability, transparency, intuitiveness and 
abstraction from Grid mechanics make it appealing in other fi elds. 
The Pipeline is a dynamic resource manager, treating all resources 
as well-described external applications that may be invoked with 
standard remote execution protocols. The LONI Pipeline XML 
description protocol allows any command-line driven process, 
web-service or data-server to be accessed within the environment 
by reference, with dependencies validated (checked) dynamically 
on-demand. There is no need to reprogram, revise or recompile 
external resources to make them usable within the LONI Pipeline. 

One side effect of this design choice is that to all external Pipeline 
server installations require complete installations of all software 
tools, services and data as currently available on the LONI Grid. 
This however, is only required, if a remote Pipleine server must 
mirror all tools and resources as available on the LONI Grid. In 
most situations, each site has specifi c suits of tools that they utilize 
to meet their computational needs. This design reduces the integra-
tion/utilization costs of including new resources within the LONI 
Pipeline environment. This approach provides the benefi t of quick 
and easy management of large and disparately located resources 
and data. In addition, this choice signifi cantly minimizes the user/ 
client machine hardware and software requirements (e.g., memory, 
storage, CPU). Finally, a key difference between the LONI Pipeline 
and some other environments is its management of distributed 
resources via its client-to-server infrastructure and its ability to 
export automated makefi les/scripts. These allow the LONI Pipeline 
to provide processing power independently of the available com-
putational environment (e.g., SOLARIS, LINUX, Grid, mainframe, 
desktop, etc.). The LONI Pipeline servers communicate and interact 
with clients and facilitate secure transfer of processes, instructions, 
data and results via the Internet.

Version 4 of the LONI Pipeline introduces several important 
improvements and extensions of the previous version of the LONI 
Pipeline (Rex et al., 2003). These include a 3-tier failover mechanism 
for Grid hardware, Sun Grid Engine (SGE)/Distributed Resource 
Management Application API (DRMAA) middleware, and the 
Pipeline server, as well as client-server communication, makefi le/
script export and data provenance model. LONI Pipeline v.4 also 
includes a new more functional and robust graphical user interface 
and a signifi cantly increased library of tools. V.4 also simplifi es the 
inclusion of external data display modules and facilitates remote 
database connectivity (e.g., LONI Imaging Data Archive2, BIRN 
Storage Resource Broker3, XNAT4, etc.)

MATERIALS AND METHODS
The main goal of developing the LONI Pipeline was to provide 
a robust and extensible infrastructure for computational neuro-
science enabling effi cient data utilization, construction of reliable 
analysis workfl ows, and provide the means for wide dissemination 
and validation of research protocols and scientifi c fi ndings. The 
LONI Pipeline developments are subdivided into several comple-
mentary goals:

• Effi cient Distributed Computing: Facilitate the integration of 
disparate, heterogeneous and multi-platform implementations 
of software tools, database protocols and remote web- services. 
The LONI Pipeline client-server communication protocol 
allows blending of resources that are built on remote server 
architectures to be accessed by the pipeline clients. This greatly 
lowers the usability requirements for the general user. In addi-
tion, we need a fl exible export of available pipeline workfl ows 
into makefi les and bash scripts that can be submitted virtually 
to any computational architecture.

2http://ida.loni.ucla.edu
3http://www.nbirn.net/tools/srb
4http://www.xnat.org
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• Design a robust 3-tier failover mechanism for the LONI Grid: 
This included the three layers of the Grid submission protocol – 
Sun Grid Engine (SGE), Distributed Resource Management 
Application API5, and the Pipeline job handling server. These 
three layers of background-server executions enable various 
types of users and systems to utilize the Pipeline environment 
in any of these three execution modes: single machines, or 
main-frames with only one queue job submission protocol; 
Globus Grid infrastructure, and SGE Grid Infrastructure.

• Provenance: LONI Pipeline includes a provenance manager, 
which enables tracking data, workfl ow and execution history 
of all processes. This functionality improves the communica-
tion, reproducibility and validation of newly proposed expe-
rimental designs, scientifi c analysis protocols and research 
fi ndings. This includes the ability to record, track, extract, 
replicate and evaluate the data and analysis provenance to ena-
ble rigorous validation and comparison of classical and novel 
design paradigms.

• Tool Discovery: Enable expert researchers to quickly design, 
test and validate novel experimental designs and data analy-
sis protocols. This is achieved via a dynamic, responsive and 
intelligent graphical user interface for tool exploration and 
construction of draft pipeline workfl ows.

• Friendly Graphical User Interface: Create a robust environment 
for tool interoperability, Grid integration and low-cost inte-
ractive user interface. For maximum portability, scalability and 
effi ciency, this environment is built in Java and utilizes XML 
for storing and communication of meta-data, and descriptors 
for tools and services.

The LONI Pipeline execution environment controls the local 
and remote server connections, module communication, proc-
ess management, data transfers and Grid mediation. The XML 
descriptions of individual modules, or networks of modules, may 
be constructed, edited and revised directly within the LONI Pipeline 
graphical user interface, as well as saved or loaded from disk or the 
LONI Pipeline server. These workfl ows completely describe new 
methodological developments and allow validation, reproducibil-
ity, provenance and tracking of data and results. The core six types 
of Pipeline specifi cations are summarized below.

TYPES OF TOOLS AND SERVICES THAT CAN BE INTEGRATED WITHIN THE 
LONI Pipeline
The development and utilization of the LONI Pipeline environ-
ment is focused on neuroimaging data and analysis protocols. 
However, by design, the LONI Pipeline software architecture is 
domain agnostic and has been adopted in other research and clini-
cal fi elds, e.g., bioinformatics (Dinov et al., 2008). There are two 
major types of resources that may be integrated within the LONI 
Pipeline. The fi rst one is data, in terms of databases, data services 
and fi le systems. The second type of pipelineable resources includes 
stand-alone tools, comprising local or remote binary executables 
and services with well-defi ned command line syntax. This fl ex-
ibility permits effi cient resource integration, tool interoperability 
and wide dissemination.

GENERAL LONI Pipeline SPECIFICATIONS INCLUDING GRID 
INTEGRATION
The LONI Pipeline routinely executes thousands of simultaneous 
jobs on our symmetric multiprocessing systems (SMP) and on 
DRMAA6 clusters. On SMP systems, the LONI Pipeline can detect 
the number of available processing units and scale the number 
of simultaneous jobs accordingly to maximize system utilization 
and prevent system crashes. For computer clusters, a grid engine 
implementing DRMAA, with Java bindings, may be used to submit 
jobs for processing, and a shared fi le system is used to store inputs 
and outputs from individual jobs. Later, we will extend the scope 
of the LONI Pipeline server to interact and submit jobs to other 
Grid infrastructures, e.g., Condor, Globus, etc.

The LONI Pipeline environment has been integrated with UNIX 
authentication using Pluggable Authentication Module (PAM), to 
enable a username and password challenge-response authentication 
method using existing credentials. A dependency on the underlying 
security and encryption system of the LONI Pipeline server’s host 
machine offers maximum versatility in light of the diverse policies 
governing system authentication and access control.

Using Java binding to DRMAA interface, we have integrated the 
LONI Pipeline environment with the SUN Grid Engine (SGE), a 
free, well-engineered distributed resource manager (DRM) that 
simplifi es the processing and management of submitted jobs on 
the grid. It is important to note, however, that other DRMs such as 
Condor, LSF and PBS/Torque could be made compatible with the 
LONI Pipeline environment using the same interface. DRMAA’s 
Java foundation allows jobs to be submitted from the LONI Pipeline 
to the compute grid without the use of external scripts and pro-
vides signifi cant job control functionality internally. We accom-
plished several key goals with the LONI Pipeline-DRMAA-SGE 
integration:

• the parallel nature of the LONI Pipeline environment is enhan-
ced by allowing for both horizontal (across compute nodes) 
and vertical (across CPUs on the same node) processing 
parallelization;

• the LONI Pipeline’s client-server functionality can directly 
control a large array of computational resources with DRMAA 
over the network, signifi cantly increasing its versatility and 
effi cacy;

• facilitate the use of a heterogeneous set of neuroimaging sof-
tware tools in pipelines involving large number of datasets and 
multiple processing tools;

• the overall usability of grid resources is improved by the intui-
tive graphical interface offered by the LONI Pipeline environ-
ment, and

• the ability to display interim results from user-specifi ed modu-
les, which can be used for visual inspection of the outputs of 
various tools (interactive outcome checking).

LONI Pipeline DATA PROVENANCE
In neuroimaging studies, data provenance, or the history of how 
the data were acquired and subsequently processed, is often dis-
cussed but seldom implemented (MacKenzie-Graham et al., 2008b). 

5http://www.DRMAA.org 6http://www.drmaa.org
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Recently, several groups have proposed provenance challenges in 
order to evaluate the status of various provenance models (Miles 
et al., 2006). For instance, collecting provenance information from a 
simple neuroimaging workfl ow (Zhao et al., 2007) and documenting 
each system’s ability to respond to a set of predefi ned queries. Some 
of the existing provenance systems are designed as mechanisms for 
capturing provenance in neuroimaging (MacKenzie-Graham et al., 
2008a; Zhao et al., 2007). It is diffi cult to provide systematic, accurate 
and comprehensive capture of provenance information with minimal 
user intervention. The processes of data provenance and curation 
are signifi cantly automated via the LONI Pipeline. Each dataset has 
a provenance fi le (*.prov) that is automatically updated by the LONI 
Pipeline, based on the protocols used in the data analysis. This data 
processing history refl ects sequentially the steps that a dataset goes 
through and provides a detailed record of the types of tools, ver-
sions, platforms, parameters, control and compilation fl ags. The data 
provenance can be imported and exported by the LONI Pipeline, 
which enables utilization internally by other Pipeline workfl ows or 
by external resources (e.g., databases, workfl ow environments).

Provenance can be used for determining data quality, for result 
interpretation, and for protocol interoperability (Simmhan et al., 
2005; Zhao et al., 2007). It is imperative that the provenance of neu-
roimaging data be easily captured and readily accessible (MacKenzie-
Graham et al., 2008b). For instance, increasingly complex analysis 
workfl ows are being developed to extract information from large 
cross-sectional or longitudinal studies in multiple sclerosis (Liu et al., 
2005), Alzheimer’s disease (Fleisher et al., 2005), autism (Langen et al., 
2007), depression (Drevets, 2001), schizophrenia (Narr et al., 2007), 
and studies of normal populations (Gogtay et al., 2006). The imple-
mentation of the complex workfl ows associated with these studies 
requires provenance-based quality control to ensure the accuracy, 
reproducibility, and reusability of the data and analysis protocols.

We designed the provenance framework to take advantage of 
context information that can be retrieved and stored while data is 
being processed within the LONI Pipeline environment (MacKenzie-
Graham et al., 2008b). Additionally, the LONI Provenance Editor is 
a self-contained, platform-independent application that automati-
cally extracts provenance information from image headers (such as 
a DICOM images) and generates an XML data provenance fi le with 
that information. The Provenance Editor7 allows the user to edit the 
meta-data prior to saving the provenance fi le, correcting inaccura-
cies or adding additional information. This provenance information 
is stored in.prov fi les, XML formatted fi les that contain the meta-data 
and processing provenance and follows the XSD defi nition8. Then 
the data provenance is expanded by the LONI Pipeline to include 
the analysis protocol, the specifi c binaries used for analysis, and the 
environment that they were run in. The LONI Pipeline dramatically 
improves compliance by minimizing the burden on the provenance 
curator. This frees the user to focus on performing neuroimaging 
research rather than on managing provenance information.

LONI Pipeline INTELLIGENCE
Construction of elaborate, functional and valid workfl ows within 
the LONI Pipeline environment requires deep understanding of 

the research goals, tool specifi cations and neuroscientifi c expertise. 
To enhance the usability of this environment, we developed an 
intelligent LONI Pipeline component. It has two complementary 
features – constructive and validating. The pipeline constructive 
intelligent feature uses the spectra of available module descriptors 
and pipeline workfl ows to automatically generate valid versions of 
new graphical protocols according to a set of user-specifi ed key-
words. This intelligence feature uses a grammar on the set of XML 
module and pipeline descriptions to determine the most appro-
priate analysis protocol, and its corresponding module inputs and 
outputs, according to the keywords provided by the user. Then, it 
exports a.pipe fi le, which contains a draft of the desired analysis 
protocol, Figure 1.

The pipeline validating intelligence feature offers interactive sup-
port for running or modifying existent pipeline workfl ows. This 
feature contextually monitors the consistency of the data types, 
parameter matches, validity of the analysis protocol, and ensures 
optimal job-submission (e.g., order of module execution). The 
LONI Pipeline intelligence component reduces the need to review 
in details of, and double check modifi cations of new or existing 
workfl ows. Still, users control the processes of saving workfl ows 
and module descriptions, data input and output, and the scien-
tifi c design of their experiments. This functionality signifi cantly 
improves usability and facilitates scientifi c exploration.

LONI Pipeline GRAPHICAL AND SCRIPTING INTERFACES
Pipeline workfl ows (.pipe fi les) may be constructed in many dif-
ferent ways (e.g., using text editors) and these protocols may be 
executed in a batch mode without involving the LONI Pipeline 
graphical user interface (GUI). However, the LONI Pipeline GUI 
signifi cantly aids most users in designing and running analysis 
workfl ows. A library of available tools for usage is presented on 
the left hand side of the LONI Pipeline client window. Users may 
search for, drag and drop these tools onto the main canvas to create 
or revise a workfl ow. Connections between the nodes are used to 
represent the piping of output from one program to another. This 
is accomplished without requiring the user to specify fi le paths, 
server locations or command line syntax. Pipeline workfl ows 
may be constructed and executed with data dynamically fl owing 
(by reference) within the workfl ow. This enables trivial inclusion 
of pipeline protocols in external scripts and integration into other 
applications. Currently, the LONI Pipeline allows exporting of any 
workfl ow from XML (*.pipe) format to a makefi le or a bash script 
for direct or queuing execution.

FUNCTIONALITY AND USABILITY
In the past 3 years, we have gone through several cycles of design, 
implementation, analysis and re-design stages of the new LONI 
Pipeline. During this process a number of usability issues were 
addressed. These included the editing and usage modes of the graphi-
cal user interface, state specifi c menus, pop-up and information dia-
logs, the handling of local and global variables within the pipeline, the 
integration of data sources and executable module nodes, data type 
checking and workfl ow validation, client connect and disconnects, 
job management and client-server communications. All of these were 
critical in improving the usability of the LONI Pipeline and are neces-
sary before the execution of any data analysis workfl ow.

7http://www.loni.ucla.edu/Software/Software_Detail.jsp?software_id = 57
8http://www.loni.ucla.edu/~pipelnv4/pipeline_xsd.xsd
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The core LONI Pipeline functionality is based on our prior expe-
rience (Rex et al., 2003), user feedback and information technology 
advancements over the past several years. The current LONI Pipeline 
functionality includes – tool discovery engine, plug-in interface 
for meta algorithm design, grid interface, secure user authentica-
tion, data transfers and client-server communications, graphical 
and batch-mode execution, encapsulation of tools, resources and 
workfl ows, and data provenance.

RESULTS
LONI Pipeline can be used to construct a wide variety of process-
ing and analysis workfl ows. Here we demonstrate the utilization of 
the LONI Pipeline to conduct and validate new (semi)automated, 
robust and user-friendly protocols for (1) regional parcellation and 
volume extraction, (2) population-based atlas construction, and 
(3) the analysis of multiple population cohorts. In the following 
sections, we discuss the graphical Pipeline workfl ows for each of 
these applications:

BRAIN PARCELLATION
Regional parcellation of distinct brain regions is often needed to per-
form region-of-interest-based analyses between healthy as compared 
to diseased subjects. Manual region drawing can be labor intensive, 
prone to errors, and have poor reproducibility. Figure 2 illustrates 

a pipeline workfl ow constructed to automatically extract 3D masks 
of 56 regions of interest using Brain Parser (Tu et al., 2008)9. These 
regions can be then be used to examine regionally specifi c shape char-
acteristics among other variables of interest to the neuroimaging com-
munity. The ability to automatically obtain robust 3D masks of various 
brain regions is a critical step in many brain mapping studies.

BRAIN ATLAS CONSTRUCTION
Brain atlasing is a major research effort in the fi eld and the develop-
ment of effi cient workfl ows to take large numbers of T1-weighted 
anatomical images, spatially warp them into a common space, and 
then to pool them to result in a representative atlas is often a com-
plex process. Development of effi cient workfl ows and utilizing a 
large-scale computational Grid, based at LONI, permits streamlined 
and rapid atlas creation in normal subjects as well as in disease, 
Figure 3. Using Automated Image Registration (Woods et al., 1998), 
we constructed a workfl ow to systematically create a whole brain 
atlas for use in describing the average brain anatomical structure in 
patients drawn from the ADNI series of Alzheimer’s subject MRI 
data contained in the LONI Image Data Archive (IDA) (Mueller 
et al., 2005). Such atlases characterize “mean” population features 
such as shape, regional area, sulcal anatomy, etc.

FIGURE 1 | LONI Pipeline intelligence component uses key-words to 

automatically generate a hierarchical interface and the complete analysis 

workfl ow, which represents the proposed study protocol, using semantic 

natural language processing of language grammar. The image insert 
shows the graphical user interface invoking the pipeline intelligence 
grammar view.

9http://www.loni.ucla.edu/Software/BrainParser
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STRUCTURAL ANALYSIS OF ALZHEIMER’S DISEASE (AD) 
NEUROIMAGING STUDY
We used brain imaging data from the Alzheimer’s Disease 
Neuroimaging Initiative, ADNI (Mueller et al., 2005), to demon-
strate the processes of construction, validation and execution of 
integrated workfl ow analysis protocols. This AD pipeline work-
fl ow represents a complex neuroimaging analysis protocols based 
on disparate tools, data and distributed parallel-computing infra-
structure. Figure 4 demonstrates this Alzheimer’s disease Pipeline 
workfl ow. The left-panel in the Pipeline environment contains 
some predefi ned module defi nitions and complete workfl ows. 
The user may drag-and-drop these in the main workfl ow canvas 
to design new analysis protocols. The central workfl ow canvas 
shows that main six steps of the AD data analysis. These include 
data conversion, volumetric data pre-processing, automated 
extraction of regions of interest, shape processing, global shape 
analysis and automated cortical surface extraction. Each of these 
steps is itself a nested collection of groups of modules, a nested 
pipeline workfl ow, which contains a series of processing steps. 
The insert-fi gure illustrates the 3-level deep nested processing 

part of the Global Shape Analysis node (see the top-level tabs 
of the insert).

This pipeline workfl ow demonstrates the entire data process-
ing and analysis protocol, from retrieval of the data from the 
LONI Imaging Data Archive10, through the data manipulation, 
shape processing, generation of derived data (e.g., global shape 
measures like curvature, fractal dimension, surface area, etc.), to 
the fi nal statistical analysis. In this case, the study design included 
three age-matched populations – asymptomatic subjects (NC), 
minor cognitive impairment (MCI), and Alzheimer’s disease 
(AD) patients. There were fi ve males and fi ve females for each 
group and each subject was scanned several times longitudinally. 
A total of 104 brain volumes were automatically processed in 
about 26 h. The time of workfl ow completion depends on the 
study and workfl ow designs, number of subjects, and general 
hardware infrastructure specifi cations (e.g., system characteris-
tics and user demand). The results of this completely automated 

FIGURE 2 | Using a robust executable entitled Brain Parser (Tu et al., 2008), LONI Pipeline can be used to extract 56 predefi ned ROI masks from any input brain 
image volume (inserts).

10http://IDA.loni.ucla.edu
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FIGURE 3 | LONI Pipeline workfl ow for constructing a population-based whole brain anatomical atlas in Alzheimer’s Disease patients (insets).

FIGURE 4 | An Alzheimer’s Disease (AD) Pipeline workfl ow. The left-panel 
contains some predefi ned Pipeline module defi nitions including some 
complete workfl ows. The central-panel shows the main six steps of the 
data analysis – data conversion, pre-processing, automated extraction 
of regions of interest, shape processing, global shape analysis and 

automated cortical surface extraction. Each of these steps is itself a 
nested collection of modules, a pipeline, which contains a series of 
processing steps. The insert-fi gure illustrates the 3-level deep nested 
processing part of the Global Shape Analysis node (see the top-level tabs 
of the insert).
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 pipeline  workfl ow included cortical surface representations 
(shapes) for each subject,  parcellations of the raw MRI brain scans 
into 56 regions of interest (labels), surface models for each of the 
56 regions for each subject and time-point, and global statistical 
mapping identifying the NC, MCI and AD group differences for 
each of the 56 regions.

Figure 5 depicts the shape-curvature measure for fi ve regions of 
interest (ROI’s) at two time-points – baseline (blue) and 12-month 
follow-up (green) for the cohort of normal subjects (NC). Figure 6 
compares the shape measures for one region (right Superior Frontal 
Gyrus) across all three cohorts, at baseline (time = 0). Notice the 
consistent decrease of shape and volume measures, for both time 

FIGURE 5 | NC shape-curvature measure for 5 ROI’s at two times (T1, baseline, blue, and T2, 12-month follow-up, green). L_Caudate and R_Caudate, left and 
right caudate, L_Hippo and R_Hippo, left and right hippocampus, R_SupFrontalGyrus, right superior frontal gyrus.

MeanCurv, average global shape
mean curvature

MeanSurf, total shape
surface area

MeanFract, mean global shape
fractal dimension

MeanVol, volume bound by the
shape

FIGURE 6 | Comparison of the four volume and shape measures for both 

times (baseline and 12-month follow up) across the three cohorts for one 

region of interest – the Right Superior Frontal Gyrus. T1 and T1 labels 
represent baseline and follow-up time scans. The statistics signature vector 

includes MeanCurv, average global shape mean curvature; MeanSurf, total 
shape surface area; MeanFract, mean global shape fractal dimension; and 
MeanVol, volume of the inside region of the shape. The three different cohorts, 
NC, MCI and AD, are colored in blue, green and red, respectively.
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points, going from NC (asymptomatic) to MCI and AD (most 
effected individuals).

DISCUSSION
Interactive workfl ow environments for automated data analysis are 
critical in many research studies involving complex computations and 
large datasets (Kawas et al., 2006; Myers et al., 2006; Oinn et al., 2005; 
Taylor et al., 2006). There are three distinct necessities that underlie 
the importance of such graphical frameworks for management of 
novel analysis strategies – high data volume and complexity, sophis-
ticated study protocols and demands for distributed computational 
resources. These three fundamental needs are evident in most modern 
neuroimaging, bioinformatics and multidisciplinary studies.

The LONI Pipeline environment aims to provide distributed access 
to varieties of computational resources via its graphical interface. The 
ability of investigators to share, integrate, collaborate and expand 
resources will increase the statistical power in studies involving hetero-
geneous datasets and complex analysis protocols. New challenges that 
emerge from our increased abilities to utilize computational resources 
and hardware infrastructure include the need to assure reliability and 
reproducibility of identically analyzed data, and the desire to continu-
ally lower the costs of employing and sharing data, tools and serv-
ices. The LONI Pipeline environment attempts to provide the means 
to address these diffi culties by providing secure integrated access to 
resource visualization, databases and intelligent agents.

The LONI Pipeline already has been used in a number of neu-
roimaging applications including health (Sowell et al., 2007), dis-
ease (Thompson et al., 2003), animal models (MacKenzie-Graham 
et al., 2006), volumetric (Luders et al., 2006), functional (Rasser 
et al., 2005), shape (Narr et al., 2007) and tensor-based (Chiang 
et al., 2007) studies. The LONI Pipeline infrastructure improved 
consistency, reduced development and execution times, and enabled 
new functionality and usability of the analysis protocols designed by 
expert investigators in all of these studies. Perhaps the most power-
ful feature provided by the LONI Pipeline environment is the abil-
ity to quickly communicate new protocols, data, tools and service 
resources, fi ndings and challenges to the wider community.

The main LONI Pipeline page11 provides links to the forum, 
support, video tutorials and usage. There are examples demonstrat-
ing how to describe individual modules and construct integrated 
workfl ows. Version information, download instructions and server/
forum account information is also available on this page. There are 
example pipeline workfl ows and the XSD schema defi nition12 for 
the.pipe format used for module and workfl ow XML description. 
Users may either install Pipeline servers on their own hardware 
systems, or they may use some of the available Pipeline servers. The 
primary LONI Pipeline server is cranium.loni.ucla.edu. It utilizes 
a CentOS-based compute cluster comprised of approximately 800 
Core 2, 2.4GHz, 8GB RAM, AMD Opteron processors. Each dual-
processor compute node has eight gigabytes of memory to accom-
modate memory-intensive neuroimaging applications. We selected 
SUN Grid Engine v6, bound by DRMAA, as the LONI Pipeline 
distributed resource manager. A highly-optimized non-blocking 
Cisco Gigabit network provides the connectivity infrastructure with 

sixteen terabytes of fault-tolerant, clustered storage from Isilon 
Systems acting as a cache fi le system for the LONI Pipeline environ-
ment. Users may obtain accounts on this Grid13.

In general, some practical diffi culties in validating new LONI 
Pipeline workfl ows may be caused by unavailability of the initial raw 
data, differences of hardware infrastructures or variations in compiler 
settings and platform confi gurations. Such situations require analysis 
workfl ow validation by teams of experts capable of validating the 
input, output and state of each module within the pipeline work-
fl ow. Further LONI Pipeline validation would require comparison 
between synergistic workfl ows that are implemented using different 
executable modules or module specifi cations. For example, one may 
be interested in comparing similar analysis workfl ows by choosing 
different sets of imaging fi lters, reconfi guring computation param-
eters or manipulating the resulting outcomes, e.g., fi le format, (Bitter 
et al., 2007). Such studies contrasting the benefi ts and limitations of 
each resource or processing workfl ow aid both application developers 
and general users in the decision of how to design and utilize module 
and pipeline defi nitions to improve resource usability.

A signifi cant challenge in computational neuroimaging stud-
ies is the problem of reproducing fi ndings and validating analyses 
described by different investigators. Frequently, methodological 
details described in research publications may be insuffi cient to 
accurately reconstruct the analysis protocol used to study the data. 
Such methodological ambiguity or incompleteness may lead to 
misunderstanding, misinterpretation or reduction of usability of 
newly proposed techniques. The LONI Pipeline mediates these dif-
fi culties by providing clear, functional and complete record of the 
methodological and technological protocols for the analysis.

Even though the LONI Pipeline was designed and tested to 
solve neuroimaging problems, its generic architecture will permit 
applications in other fi elds, where computationally intense tasks 
are performed and there is a need of resource interoperability. Its 
light-weight and platform-independent design and its low memory 
requirements make the LONI Pipeline potentially useful in many 
research fi elds relying on the integration of large and heteroge-
neous processing protocols. For example, the LONI Pipeline was 
recently used in conjunction with a number of bioinformatics data 
processing and analysis protocols (Dinov et al., 2008). We are also 
working on several new features of the LONI Pipeline including 
web-service-based client interface, direct integration with external 
resource archives (e.g., http://www.ncbcs.org/biositemaps, http://
NeuroGateway.org, etc.) and interface enhancements using intel-
ligent plug-in components.

ACKNOWLEDGMENTS
This work was supported in part by the National Institutes of 
Health through the NIH Roadmap for Medical Research, Center 
for Computational Biology Grant U54 RR021813, NIH/NCRR 5 
P41 RR013642 and NIH/NIMH 5 R01 MH71940. The authors are 
also indebted to members of the Laboratory of Neuro Imaging, and 
various collaborators and users for their patience with testing the 
LONI Pipeline. Arash Payan, Jia-Wei Tam, Celia Cheung, Cornelius 
Hojatkashani and Jagadeeswaran Rajendiran contributed to the 
implementation of Pipeline V.4.

11http://Pipeline.loni.ucla.edu
12http://www.loni.ucla.edu/~pipelnv4/pipeline_xsd.xsd 13http://www.loni.ucla.edu/Collaboration/Pipeline/Pipeline_Download.jsp

90

http://www.ncbcs.org/biositemaps
http://NeuroGateway.org
http://Pipeline.loni.ucla.edu
http://www.loni.ucla.edu/~pipelnv4/pipeline_xsd.xsd
http://www.loni.ucla.edu/Collaboration/Pipeline/Pipeline_Download.jsp
http://www.frontiersin.org/neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/neuroinformatics/archive


Frontiers in Neuroinformatics www.frontiersin.org July 2009 | Volume 3 | Article 22 | 

Dinov et al. LONI Pipeline

Myers, J., Allison, T. C., Bittner, S., 
Didier, B., Frenklach, M., Green, W. H., 
Ho, Y. L., Hewson, J., Koegler, W., 
Lansing, C., Leahy, D., Lee, M., 
McCoy, R., Minkoff, M., Nijsure, S., 
Von Laszewski, G., Montoya, D., 
O l uw o l e ,  L . ,  Pa n c e r e l l a ,  C . , 
Pinzon, R., Pitz, W., Rahn, L. A., 
Ruscic, B., Schuchardt, K., Stephan, E., 
Wagner, A., Windus, T., and Yang, C. 
(2006). A collaborative informatics 
infrastructure for multi-scale science. 
Cluster Comput. 8, 243–253.

Narr, K. L., Bilder, R. M., Luders, E., 
Thompson, P. M., Woods, R. P., 
Robinsond, D., Szeszkod, P.R., 
Dimtcheva, T., Gurbani, M., and 
Toga, A. W. (2007). Asymmetries of 
cortical shape: effects of handedness, 
sex and schizophrenia. NeuroImage 
34, 939–948.

Oinn, T., Greenwood, M., Addis, M., 
Alpdemir, M. N., Ferr is, J. , 
Glover, K., Goble, C., Goderis, A., 
Hull , D., Marvin, D., Li , P. , 
Lord, P., Pocock, M. R., Senger, M., 
Stevens, R., Wipat, A., and Wroe, C. 
(2005). Taverna: lessons in creating 
a  workfl ow environment for the life 
sciences. Concur. Comput. Prac. Exp. 
18, 1067–1100.

Rasser, P., Johnston, P., Lagopoulos, J., 
Ward, P. B., Schall, U., Thienel, R., 
Bender, S., Toga, A. W., and 
Thompson, P. M. (2005). Functional 
MRI BOLD response to Tower of 
London performance of fi rst-episode 
schizophrenia patients using cortical 
pattern matching. NeuroImage 26, 
941–951.

Rex, D. E., Ma, J. Q., and Toga, A. W. 
(2003). The LONI pipeline process-
ing environment. Neuroimage 19, 
1033–1048.

Rex, D. E., Shattuck, D. W., Woods, R. P., 
Narr, K. L., Luders, E., Rehm, K., 
Stolzner, S. E., Rottenberg, D. A., 
and Toga, A. W. (2004). A meta-
 algorithm for brain extraction in MRI. 
NeuroImage 23, 625–637.

Simmhan, Y. L., Plale, B. and Gannon, D. 
(2005). A survey of data provenance 
in escience. ACM SIGMOD Rec. 34, 
31–36.

Sowell, E., Peterson, B. S., Kan, E., 
Woods, R. P., Yoshii, J., Bansal, R., 
Xu, D., Zhu, H., Thompson, P. M., and 
Toga, A. W. (2007). Sex differences in 
cortical thickness mapped in 176 healthy 
individuals between 7 and 87 years of 
age. Cereb. Cortex 17, 1550–1560.

Stef-Praun, T., Clifford, B., Foster, I., 
Hasson, U., Hategan, M. S., Small, L., 
Wilde, M., and Zhao, Y. (2007). 
Accelerating medical research using 
the swift workfl ow system. In Studies 

Thompson, P. M. (2006). Dynamic 
mapping of normal human hippoc-
ampal development. Hippocampus 
16, 664–672.

Kawas, E., Senger, M., and Wilkinson, M. 
(2006). BioMoby extensions to the 
Taverna workflow management 
and enactment software. BMC 
Bioinformatics 7, 523.

Langen, M., Durston, S., Staal, W., 
Palmen, S., and van Engeland, H. 
(2007). Caudate nucleus is enlarged 
in high- functioning  medication-
naive subjects with autism. Biol. 
Psychiatry 62, 262–266.

Liu, L., Meier, D., Polgar-Turcsanyi, M., 
Karkocha, P., Bakshi, R., and 
Guttmann, C. R. G. (2005). Multiple
sclerosis medical image  analysis 
and information management. 
Neuroimag ing  15(4 Suppl .) , 
103S–117S.

Ludäscher, B., Altintas, I., Berkley, C., 
Higgins, D., Jaeger, E., Jones, M., 
Lee, E. A., Tao, J., and Zhao, Y. (2006). 
Scientifi c workfl ow management and 
the Kepler system. Concur. Comput. 
Prac. Exp. 18, 1039–1065.

Luders, E., Narr, K. L., Thompson, P. M., 
Rex, D. E., Woods, R. P., DeLuca, H., 
Jancke, L., and Toga, A. W. (2006). 
Gender effects on cortical thickness 
and the influence of scaling. Hum. 
Brain Mapp. 27, 314–324.

MacKenzie-Grahama, A., Tinsleyb, M. R., 
Shaha, K. P. , Agui lara , C. , 
Stricklanda, L. V., Bolinea, J. , 
M a r t i n c ,  M . ,  M o r a l e s d ,  L . , 
Shattucka, D. W., Jacobse, R. E., 
Voskuhld, R. R., and Toga, A. W. 
(2006). Cerebellar cortical atro-
phy in experimental autoimmune 
encephalomyelitis. Neuroimage 32, 
1016–1023.

MacKenzie-Graham, A., Payan, A., 
Dinov, I. D., Van Horn, J. D., and 
Toga, A. W. (2008). Neuroimaging data 
provenance using the LONI pipeline 
workfl ow environment. LNCS 5272, 
208–220.

MacKenzie-Graham, A., Van Horn, J. D., 
Woods, R. P., Crawford, K. L., and 
Toga, A. W. (2008). Provenance in neu-
roimaging. NeuroImage 42, 178–195.

Miles, S., Groth, P., Branco, M., and 
Moreau, L. (2006). The requirements 
of using provenance in e- science exper-
iments. J. Grid Comput. 5, 1–25.

Mueller, S., Weiner, M., Thal, L., 
Petersen, R., Jack, C., Jagust, W., 
Trojanowski, J., Toga, A., and Beckett, L. 
(2005). Ways toward an early diag-
nosis in Alzheimer’s disease: The 
Alzheimer’s Disease Neuroimaging 
Initiative (ADNI). Alzheimers Dement. 
1, 55–66.

REFERENCES
Bitter, I., Van Uitert, R., Wolf, I., 

Ibanez, L. A., Kuhnigk, J. M. A., and 
Kuhnigk, J. M. (2007). Comparison of 
four freely available frameworks for 
image processing and  visualization 
that use ITK. Trans. Vis. Comput. 
Graph. 13, 483–493.

Bowers, S., McPhillips, T., and Ludäscher, B. 
(2008). Provenance in collection-
 oriented scientifi c workfl ows. Concur. 
Comput. Prac. Exp. 20, 519–529.

Callahan, S., Freire, J., Santos, E., 
Scheidegger, C. E., Silva, C. T., 
and Vo, H. T. (2006). VisTrails: 
Visualization Meets Data Management, 
in Proceedings of the 2006 ACM 
SIGMOD International Conference 
on Management of Data. Chicago, 
IL, ACM.

Chiang, M.-C., Dutton, R. A., 
Hayashi, K. M., Lopez, O. L., 
Aizenstein, H. J., Toga, A. W., 
Becker, J. T., and Thompson, P. M. 
(2007). 3D pattern of brain atrophy 
in HIV/AIDS visualized using tensor-
based morphometry. NeuroImage 34, 
44–60.

Churches, D., Gombas, G., Harrison, A., 
Maassen, J., Robinson, C., Shields, M., 
Taylor, I., and Wang, I. (2006). 
Programming scientific and dis-
tributed workfl ow with Triana serv-
ices. Concur. Comput. Prac. Exp. 18, 
1021–1037.

Dinov, I. D., Rubin, D., Lorensen, W., 
Dugan, J., Ma, J., Murphy, S., 
Kirschner, B., Bug, W., Sherman, M., 
F lor a tos ,  A . ,  Kennedy, D. , 
Jagadish, H. V., Schmidt, J., Athey, B., 
Califano, A., Musen, M., Altman, R., 
Kikinis, R., Kohane, I., Delp, S., 
Parker, D. S., and Toga, A. W. (2008). 
iTools: a framework for classifica-
tion, categorization and integration 
of computational biology resources. 
PLoS ONE 3, e2265.

Drevets, W. C. (2001). Neuroimaging and 
neuropathological studies of depres-
sion: implications for the cognitive-
emotional features of mood disorders. 
Curr. Opin. Neurobiol. 11, 240–249.

Fleisher, A., Grundman, M., Jack, C. R. Jr., 
Petersen, R. C., Taylor, C., Kim, H. T., 
Schiller, D. H. B., Bagwell, V., 
Sencakova, D., Weiner, M. F., 
DeCarli, C., DeKosky, S. T., van 
Dyck, C. H., and Thal, L. J. (2005). 
Sex, apolipoprotein E {varepsilon}4 
status, and hippocampal volume in 
mild cognitive impairment. Arch. 
Neurol. 62, 953–957.

Gogtay, N., Nugent, T. F., Herman, D. H., 
Ordonez, A., Greenstein, D., 
Hayashi, K. M., Clasen, L., Toga, A. W., 
Giedd, J. M., Rapoport, J. L., and 

in Health Technology and Informatics: 
From Genes to Personalized 
HealthCare: Grid Solutions for the Life 
Sciences – Proceedings of HealthGrid 
2007, H. M. Nicolas Jacq, I. Blanquer, Y. 
Legré, V. Breton, D. Hausser, V. 
Hernández, T. Solomonides, and M. 
Hofmann-Apitius, eds, pp. 207–216.

Taylor, I., Shields, M., Wang, I., and 
Harrison, A. (2006). Visual grid 
workfl ow in Triana. J. Grid Comput. 
3, 153–169.

Thompson, P., Hayashi, K. M., de 
Zubicaray, G., Janke, A. L., Rose, S. E., 
Semple, J., Herman, D., Hong, M. S., 
Dittmer, S. S., Doddrell, D. M., and 
Toga, A. W. (2003). Dynamics of gray 
matter loss in Alzheimer’s disease. 
J. Neurosci. 23, 994–1005.

Toga, A. W., and Thompson, P. M. (2007). 
What is where and why it is important. 
NeuroImage 37, 1045–1049.

Tu, Z., Narr, K. L., Dollar, P., Dinov, I., 
Thompson, P. M., and Toga, A. W. 
(2008). Brain anatomical structure 
segmentation by hybrid discrimina-
tive/generative models. IEEE Trans. 
Med. Imaging. 27, 495–508.

Woods, R., Grafton, S. T., Holmes, C. J., 
Cherry, S. R., and Mazziotta, J. C. (1998). 
Automated Image Registration: I. 
General Methods and Intrasubject, 
Intramodality Validation. J. Comput. 
Assist. Tomogr. 22, 139–152.

Zhao, J., Goble, C., Stevens, R., and 
Turi, D. (2007). Mining Taverna’s 
semantic web of provenance. Concur. 
Comput. Prac. Exp. 20, 463–472. doi: 
10.1002/cpe.1231

Conflict of Interest Statement: The 
authors declare that the research was con-
ducted in the absence of any commercial or 
fi nancial relationships that could be con-
strued as a potential confl ict of interest.

Received: 04 April 2009; paper pending 
published: 18 May 2009; accepted: 26 June 
2009; published online: 20 July 2009.
Citation: Dinov ID, Van Horn JD, Lozev 
KM, Magsipoc R, Petrosyan P, Liu Z, 
MacKenzie-Graham A, Eggert P, Parker 
DS and Toga AW (2009) Effi cient, distri-
buted and interactive neuroimaging 
data analysis using the LONI Pipeline. 
Front. Neuroinform. (2009) 3:22. doi: 
10.3389/neuro.11.022.2009
Copyright © 2009 Dinov, Van Horn, Lozev, 
Magsipoc, Petrosyan, Liu, MacKenzie-
Graham, Eggert, Parker and Toga. This is 
an open-access article subject to an exclusive 
license agreement between the authors and 
the Frontiers Research Foundation, which 
permits unrestricted use, distribution, and 
reproduction in any medium, provided the 
original authors and source are credited.

91

http://www.frontiersin.org/neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/neuroinformatics/archive


Frontiers in Neuroinformatics www.frontiersin.org	 October	2009	 |	Volume	3	 |	 Article	35	 |	

NEUROINFORMATICS
Original research article

published:	09	October	2009
doi:	10.3389/neuro.11.035.2009

model can vary from domain to domain (Freire et al., 2008). In 
particular, although the VisTrails, Swift, VIEW and LONI workflow 
systems have been applied to neuroimaging, a number of prov-
enance modeling and management issues that are specific to the 
neuroimaging domain have to be explored further:

(Q1) The provenance model varies from domain to domain and 
has to be identified and appropriately customized for the neuroim-
aging domain. First, as the neuroimaging databases, such as XNAT 
(Marcus et al., 2007), HID (Keator et al., 2008) and NDAR (Ndar 
2009), manage raw data provenance information, the neuroimaging 
workflow systems should be customized to work seamlessly with 
neuroimaging databases to minimize duplicated efforts and stor-
age redundancy for provenance management. Second, as the neu-
roimaging domain involves domain specific user interaction and 
annotation, the provenance model should be extended to include 
this kind of information.

(Q2) The representation of the provenance is still not well 
addressed in the scientific workflow research community and 
needs to be adequately addressed in the neuroimaging domain. 
Improper representation of the provenance can result in huge 
redundancy. One way of minimizing the redundancy is to structure 
the provenance into layers of normalized components (Freire et al., 
2008). However, definition of the layers and components can still 
vary from domain to domain. In particular, this issue needs to be 
appropriately addressed in the neuroimaging domain.

(Q3) The provenance granularity can vary across domains, and 
has not been explicitly explored for the neuroimaging domain. The 
provenance can be recorded at different levels of granularity, i.e., 
varying levels of details. Improper selection of the granularity of 

IntroductIon
Scientific workflow systems that are capable of tracking the details 
of data processing history can facilitate a number of fundamental 
requirements in everyday scientific research, such as scheduling batch 
processing on multiple computers, interpreting and comparing differ-
ent results, sharing and reusing existing workflow, etc. In the scientific 
workflow research community, the information that describes the 
details of data processing history is referred to as “provenance” (also 
“lineage” or “pedigree”) (Simmhan et al., 2005). Provenance manage-
ment is a critical component of scientific workflow systems and most 
of the existing popular scientific workflow systems have a module for 
management of provenance information. For e.g., the Kepler work-
flow system is able to collect the provenance information (Ludäscher, 
2006), while the Taverna workflow system stores the provenance infor-
mation for users to manage and reuse previous workflows (Oinn 
et al., 2004). VisTrails is a provenance management system (PMS) 
that provides infrastructure for data exploration and visualization 
through workflows (Callahan et al., 2006; Silva et al., 2007; Koop et al., 
2008). The Swift workflow system builds on and includes technology 
previously distributed as the GriPhyN Virtual Data System to capture 
the provenance (Zhao et al., 2007). The Pegasus workflow system also 
uses the Virtual Data System to capture the provenance (Miles et al., 
2008). The VIEW workflow system manages the provenance data 
with a provenance management module (Lin et al., 2009). The LONI 
workflow system has a provenance management framework to man-
age the provenance data (MacKenzie-Graham et al., 2008).

Despite its importance, however, provenance modeling and 
management is still a relatively new area in the scientific workflow 
research community (Simmhan et al., 2005) and the provenance 
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provenance can produce inordinately large volume of provenance 
data bigger than the data it describes (Simmhan et al., 2005), which 
may not be useful and may be hard to manage. In the neuroimag-
ing workflow system, theoretically, the provenance granularity can 
be set at voxel-level, slice-level, volume-level, session/visit-level, 
 subject-level, or group-level. Variability in granularity can result in 
a big difference in performance and storage overhead. The optimal 
provenance granularity for the neuroimaging workflow has hith-
erto not been explicitly explored in the existing literature.

(Q4) The provenance model can be implemented in many differ-
ent ways which vary from application to application. The different 
approaches can vary in the way they capture, store and retrieve the 
provenance information. The capturing mechanism can be at vari-
ous levels, i.e., at the OS-level, processing-level and workflow-level. 
The storage mechanism can be either file-system based or database 
based. The retrieval mechanism can be a special scripting language, 
like SQL or a visual user interface. When a new neuroimaging prov-
enance model is created, the corresponding implementation issues 
have to be properly addressed as well.

In general, proper solutions for provenance modeling and 
management problems need to be explored for the neuroimag-
ing domain. In this paper, we introduce the Bio-Swarm-Pipeline 
(BSP), a scientific workflow management system for bio-medical 
research developed at the Genes, Cognition and Psychosis Program 
(GCAP) of NIMH/NIH. It was designed to facilitate the fundamen-
tal requirements for everyday scientific research, such as scheduling 
batch processing on multiple computers, interpreting and compar-
ing different results, sharing and reusing existing workflows, etc. 
This system is based on a new provenance model developed to meet 
the needs specific to a neuroimaging workflow management system. 
It systematically addresses the issues involved in the provenance 
modeling and management in the neuroimaging domain. First, by 
proper extension of the provenance model, the workflow manage-
ment system can work seamlessly with existing neuroimaging data-
bases and effectively reduce unnecessary storage and developing 
efforts. Second, by properly structuring provenance into two layers 
of six independent sub-provenance components, the BSP effec-
tively minimizes the recording redundancy of provenance; Third, 
by proper determination of the provenance granularity, the BSP 
effectively eliminates unnecessary information, makes the system 
more light weighted and manageable; Fourth, by providing an opti-
mal number of user interfaces, it makes provenance management 
and task scheduling an efficient and effective procedure. Finally, by 
taking swarm as analogy, an unsophisticated user with little or no 
knowledge in programming can easily capture the core concepts 
and understand how a task is processed by the system. Although 
this system stems from applications in the neuroimaging domain, 
the system can potentially be adapted to meet the requirements for 
a wide range of bio-medical application scenarios.

The remainder of this paper is organized as follows: in the meth-
ods section, we describe the BSP system architecture, highlight the 
structured provenance model, and demonstrate how it works with 
real examples; in the results section, we describe the current appli-
cation status and impact of the system to the work at the GCAP of 
NIMH; and in the discussion section, we discuss how provenance 
modeling and management problems were addressed in the BSP. 
We also discuss some additional features and future extensions.

Methods (BsP systeM archItecture)
The BSP system architecture is made up of three layers – (I) pipe-
line interface layer, (II) PMS layer, and (III) data processing clients 
(DPCs) layer as shown in Figure 1. The interface layer interacts 
with the PMS layer to submit data processing tasks and tracks the 
data processing provenance information. The DPC layer interacts 
with the PMS layer to perform data processing and updates prov-
enance information. In this section, we will highlight layer II, i.e., 
PMS, and demonstrate how it works. We will also briefly introduce 
layer I and layer III.

PIPelIne Interface
The interface enables the user to interact with the PMS to submit 
data processing tasks and tracks the data processing provenance 
information. Each interface is presented in the next section along 
with the provenance data that is managed.

Provenance ManageMent systeM
The PMS manages a structured provenance model as shown in 
Figure 1. The design and implementation is based on the MySQL 
relational database system. Conceptually, the model can be divided 
into two layers.

The first layer contains three sub-provenance components, 
i.e., task/job provenances, static workflow provenances and 
 computational resource provenances. The task provenances record 
all the necessary information to reproduce a specific data process-
ing result, including the run-time task provenances (such as result 
location, processing time, status) and user annotations as well as the 
references to static workflow provenances and the computational 
resource provenances.

In the second layer, the sub-provenance components are fur-
ther decomposed. For example, the static workflow provenances 
are further divided into wrapper provenance, parameter prov-
enance and data source provenance. The computational resource 
provenances are further divided into storage provenance and 
DPC provenance.

In this section, we will first introduce the static workflow and 
the computational resource provenances, and then introduce the 
task/job provenance. Later on in the discussing section, we will also 
discuss how this model systematically addresses the provenance 
modeling problems mentioned in Section “Introduction”.

Static workflow provenances
Static workflow provenances are specifications about workflows 
which can be shared across different tasks. This includes the speci-
fication of the wrappers, processing parameters and data sources.

Wrapper provenance management. The wrapper provenance 
management module manages the specification of the wrapper 
libraries for different data processing packages. Each data process-
ing package (e.g. SPM (Friston et al., 1995), AFNI (Cox, 1996), 
VBM (Ashburner and Friston, 2000), FreeSurfer (Dale et al., 1999), 
etc.) is encapsulated by a wrapper so that they have a uniform 
calling interface like do + package_name + version + release. Each 
wrapper is uniquely identified by a wrapper ID so that the task/
job provenances component can be simplified by referring to the 
wrapper ID.
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Parameter provenance management. The parameter provenance 
management module manages the instantiated processing param-
eters for each given wrapper. It tracks everything related to the 
processing parameters that a user may be interested in. These 
include the parameter ID, the wrapper ID, the user login name who 
created the parameter set and the parameter body and some com-
ments fields. Within the parameter ID, the user can easily interpret 
and compare the different results and check if they are generated 
from the same procedure.

The parameter set is managed in the parameter management 
interface. As an illustration, in Figure 2 we use SPM-based first level 
data processing as an example to help the reader evaluate how the 
system works. In this illustration the processing parameters with 
parameter ID 11 are associated with wrapper SPM2. The parameter 
management interface allows the users to create new parameters 

or adapt from existing parameters. For the latter, users can first 
retrieve the parameters they want to duplicate from, and then click 
“borrow and create” button to make a new parameter. Then the 
user can modify the parameter as required. When a parameter set 
is first created, a unique parameter ID is automatically assigned to 
it. If the parameter set is derived from another parameter, users can 
add comments to indicate what the parent parameter ID is. This 
allows users to track the relationships among a family of related 
parameter sets.

Data source provenance management. The data source prov-
enance management module makes it easy for the workflow 
management system to inter-communicate with the neuroim-
aging database and other heterogeneous data sources and take 
input data from there. By default, BSP was designed to be work 

Figure � | Bio-Swarm-Pipeline system architecture.
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 seamlessly with XNAT@GCAP neuroimaging database (Cheng 
et al., 2008). It assumes that the raw data provenance informa-
tion, such as the raw data locations, data acquisition parameters 
and subject demographics information are all managed by the 
neuroimaging database with XNAT like database schema (Marcus 
et al., 2007). Therefore only references to the raw data provenance 
are kept in the system. The data source provenance component is 
able to retrieve raw data provenance information from the neu-
roimaging database when necessary.

Computational resource provenances
Computational resource provenances are specifications about com-
putational resources that can be shared across different tasks. This 
includes specifications about the DPC and storage devices.

Data processing clients provenance management. The DPCs 
provenance management module manages the profiles of hetero-
geneous client workstations in the database. The profile describes 
the following information: hostname, system architecture, proc-
essor speed, memory capacity, operating system, network speed, 
available storage space, version of wrapper libraries and traffic 
lights, etc.

The storage provenance management. The storage provenance 
management module simplifies the dynamical management of 
the mappings between processing parameters and storage devices. 

The mappings are defined by the storage allocation rules in the 
format of (parameter_ID, output_dir, is_active), which specify 
a list of alternative output directories for each parameter IDs. 
When the available physical storage is below a certain threshold, 
the is_active flag will be automatically set to 0 by a daemon pro-
gram so that the DPC will try to find the next available output 
directory with adequate space for ensuing tasks. If there is no 
output directory with adequate space, DPC will switch the task 
into “pending” status. When an output directory with adequate 
space is made available, DPC will automatically enable processing 
of the pending tasks.

Task/job provenances management
The task provenances record the most detailed information to 
reproduce an individual result. This includes the run-time task 
provenances (such as result location, processing time, status) and 
user annotations (such as data quality notes, etc.) as well as the 
references to static workflow provenances and the computational 
resource provenances defined above.

All the task provenance information is maintained in the task 
table of the database as shown in Figure 3. Each task is identi-
fied by a unique ID in the task table. The task table specifies thetask table. The task table specifies the. The task table specifies thetask table specifies the specifies the 
following information for task processing: such as the priority of 
the task, the wrapper ID and the parameter ID required to proc-
ess this task, and the name of the DPC (hostname) assigned to 
handle the task so that different tasks can be assigned to different 

Figure � | Parameter management interface.
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hosts and processed in parallel, the directory where the results will 
be outputted, and the email addresses that should be notified upon 
completion of the tasks. Most of this information is collected before 
the task execution.

Moreover, the task status and quality annotations are custom-
ized to accommodate the requirements in neuroimaging domain. 
In our system, the possible status of a task can be “pending”, 
“ready-for-processing”, “failed”, “ready-for-review” or “reviewed” 
as shown in Figure 4.

After a task is being created, if all the required data sources 
are ready and the storage space is available, the task will be set 
to the “ready-for-processing” status. Otherwise it will be set to a“ready-for-processing” status. Otherwise it will be set to aready-for-processing” status. Otherwise it will be set to a” status. Otherwise it will be set to a status. Otherwise it will be set to a 
“pending” status. When processing has completed successfully, thepending” status. When processing has completed successfully, the” status. When processing has completed successfully, the status. When processing has completed successfully, the 
pipeline is switched to “ready-for-review” status by the DPC. After“ready-for-review” status by the DPC. Afterready-for-review” status by the DPC. After” status by the DPC. After status by the DPC. After 
the review is complete, it can be switched to the “reviewed” status 
by the user through the user interface, and the quality of the task 
will be marked as either + or − to indicate whether the results are 
usable. If the processing fails, the status will be set to “failed” by 
DPC, allowing the administrator to fix the error, and switch the 
status to “pending” or “ready-for-processing”.

To make the provenance model lightweight, the optimal 
 granularity level of the provenance must be chosen. The available 
choices in the neuroimaging domain are voxel-level, slice-level, 

volume-level, session/visit-level, subject-level, and group-level. In 
most occasions, researchers may only be interested in the session/
visit-level provenance information. The provenance informa-
tion at this level is easily manageable, so the BSP provenance 

Figure � | Structure of the task table in the database.

Figure � | Flow chart of task status.
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model is explicitly set at this level. However, the system can 
be easily extended to work on a different level of granularity 
when necessary.

A series of web user interfaces are provided to make it easier 
for the user to submit tasks, retrieve tasks and review the results 
on-line. In the following demonstration, we will again take SPM-
based batch processing as an example to help the reader further 
evaluate the system.

First, a user can submit tasks through the task management 
interface as shown in Figure 5. Here, the user can create a new data 
processing project by click the “append” button. The user can then“append” button. The user can thenappend” button. The user can then” button. The user can then button. The user can then 
specify the project name, the parameter ID, the machine list to be 
used and a list of e-mail addresses where notifications can be sent 
upon the completion of the task. Afterwards, the user can click 
the “add session” button to add data and click the “place order”“add session” button to add data and click the “place order”add session” button to add data and click the “place order”” button to add data and click the “place order” button to add data and click the “place order”“place order”place order”” 
button to place data processing task (we also call them orders) for 
them. Multiple dataset (sessions) can be added to the project at the 
same time. Each dataset will be assigned to an individual task. If 

Figure � | Task management interface.

multiple machines are provided, the tasks will be split evenly among 
them. The processing status of each dataset is also available in the 
task management screen. As can be seen in the lower part of the 
Figure 5, each processed session now has a green check mark on 
the left side of the row.

After the tasks have been submitted, the user can log off and wait for 
the process to finish. Upon the completion of each task, the user will 
get an email notification indicating the status of the task. An example 
of the email notification is shown in Figure 6. If a task finishes without 
error, the user can log into the web interface, as shown in Figure 7, to 
query the results by subject ID, task IDs or parameter ID.

When the user provides the parameter ID and clicks the “get“getget 
results” button (” button ( button (Figure 7), the corresponding results of the tasks 
will be available for on-line review through the web user inter-
face as shown in Figure 8. In our illustration using SPM-based 
first level data processing the following results are made available 
for inspection: preprocessed results (lower left plot in Figure 8), 
 contrast map (middle plot in Figure 8), quality control images and 

97

http://www.frontiersin.org/neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/neuroinformatics/archive


Frontiers in Neuroinformatics www.frontiersin.org	 October	2009	 |	Volume	3	 |	 Article	35	 |	

Cheng	et	al.	 Bio-Swarm-Pipeline	for	biomedical	batch	processing

There are also a number of command line tools used for 
 simplifying routine administrative tasks such as task scheduling, 
traffic control and diagnosis.

data ProcessIng clIents
DPCs manage data processing in each client workstation by 
communicating with PMS. Each DPC is made up of two types 
of swarms, i.e., the manager-swarm (M-swarm) and the worker-
swarm (W-swarm). The M-swarm, running as services on each 
local computer, manages (i.e., creates or kills) W-swarms in the local 
computer, retrieves tasks from the task table by local host name and 
task priority, and dispatches them to be processed by W-swarms. The 
W-swarm takes the task from M-swarm and processes them. The 
DPCs can be extended to incorporate computational resource(s) 
from a high-performance computing center like Beowulf cluster 
(Gropp et al., 2003) by installing a customized DPC.

results
The BSP has been built, maintained and supported by GCAP 
since 2006. To date, around 130 workflows and above 32000 data 
processing tasks have been completed through this scientific work-
flow management system, with each task taking about 10–60 min. 
Currently the system supports SPM (for fMRI and VBM) and 
Freesurfer based data processing, but other popular packages or 
in-house packages can be easily integrated as well. The workflow 
system in its current status has been playing a critical role in the 
day-to-day neuroimaging research within GCAP, including but not 
limited to the following aspects:

Figure � | example of email notification.

Figure � | Querying the processing results.

measures (right plot in Figure 8). The user can add annotations con-
cerning the quality of the results after visual inspection. The quality 
information can then be used in a query to filter the datasets.
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• Improved productivity: due to its parallel data processing 
 capabilities, the workflow system has refreshed data processing 
records in the past 2 years. The most recent accomplishment has 
been to successfully process almost 3000 high-resolution struc-
tural MRI preprocessing for VBM in <1 week, and nearly 5000 
fMRI first level data processing for SPM in 2 weeks. This has been 
achieved using just one W-swarm per workstation because some 
of the packages were not multi-thread-able. The modern quad-
core processor will be able to easily scale up to four W-swarms 
without compromising performance. Making the data proces-
sing packages multi-thread-able will make this a more efficient 
process. This kind of capability makes the BSP very efficient even 
when compared to the crowded Beowulf cluster.

• Improved efficiency of workflow within GCAP neuroimaging 
research groups. By enabling automated data processing of 
large datasets, it has made more time available for researchers 
to pursue more intellectually challenging tasks.

• Facilitates easy and efficient replication of results using identi-
cal parameters. This decreases the necessity to backup proces-
sed data and thereby decreases storage space requirements.

dIscussIon
In this section first we discuss how the BSP provenance model 
addressed the provenance modeling and management prob-
lems mentioned in Section “Introduction” for the neuroimaging 
domain. Second we summarize the additional features of BSP 
along with the provenance model. Finally we list some possible 
future extensions.

the BsP Provenance Model addresses the Provenance 
ModelIng and ManageMent ProBleMs In the neuroIMagIng 
doMaIn
The BSP provenance model has systematically addressed the prov-
enance modeling and management problems for the neuroimaging 
domain (Q1–Q4) as outlined in Section “Introduction:”

(P1) the BSP provenance model is extended to cover the 
 neuroimaging domain. First, the BSP is extended to work seamlessly 
with the XNAT@GCAP (Cheng et al., 2008) neuroimaging data 
archiving system, i.e., the BSP data source component just keeps 
the references to the raw data provenance, such as the data acquisi-
tion parameters as well as the subject’s demographic information, 
and is able to retrieve the raw data provenance information from 
the XNAT@GCAP neuroimaging database as necessary. Therefore, 
the duplicated efforts and storage redundancy for the maintenance 
of the provenance information are minimized. Second, the BSP 
model is extended to include information specific to neuroimaging. 
Particularly, the system is customized to accommodate the domain 
specific user interactions for reviewing the quality of the images, 
for example the task status field is extended to include options 
like “ready-for-review”,“reviewed”, etc“ready-for-review”,“reviewed”, etcready-for-review”,“reviewed”, etc”,“reviewed”, etc, “reviewed”, etc“reviewed”, etcreviewed”, etc”, etc, etc. After a task is reviewed, the 
annotation and comments related to the data quality can be stored. 
Special user interfaces (see Figures 2, 5, 7 and 8) are also provided 
for the user to manage parameter sets, make queries, visually inspect 
the results, and manage the annotations. These extensions are dif-
ferent from existing workflow systems. For example, most work-
flows except LONI do not work with neuroimaging databases.

(P2) the BSP provenance model was structured into two layers of 
six independent sub-provenance components (i.e., wrapper prov-
enance, parameter provenance, data source provenance, storage 
provenance, DPC provenance and task provenance) to minimize 
the recording of redundant information. Referring to Figure 3, 
although the task provenance component tracks all the details nec-
essary to reproduce the results, the storage overhead are very small, 
as most of the common information (such as the static workflow 
provenance and the computational resources provenance) is stored 
as references. In general, the BSP provenance model structure is 
quite different from that of other existing provenance models. For 
example, in VisTrails, the provenance model is structured into 
three layers: the workflow evolution, the workflow instance and 
the execution log (Freire et al., 2008). In the LONI workflow system, 

Figure � | Visual inspection interface.
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the provenance model is divided into four components: the data 
provenance, the binary provenance, the executable provenance, 
the workflow provenance, the processing provenance (MacKenzie-
Graham et al., 2008). Although these systems have some features 
that are similar to the BSP provenance model, the overall structure 
is different.

(P3) in the BSP provenance model, the provenance granularity 
is explicitly selected to be at the session-level so that only informa-
tion of interest to the user is tracked. However, there is no limita-
tion if a user wants to extend the current model to include other 
levels of the provenance. Usually the provenance granularity for 
the neuroimaging domain is not explicitly specified in other work-
flows. As mentioned before, without explicitly specifying the level 
of granularity, the neuroimaging workflow system can potentially 
store too much detailed information – such as the provenance at 
the slice or voxel-level, which can result in a huge and unnecessary 
storage overhead. However, most users may not be interested in 
such fine-grained provenance.

(P4) the provenance model, implementation has been care-
fully chosen in the BSP to optimize the performance. First, most 
of the provenance information is collected prospectively (e.g., the 
wrapper provenance, parameter provenance, data source prov-
enance, storage provenance, DPC provenance are all specified 
before task execution). Only little information in task provenance 
is collected retrospectively. Compared to the OS-level capturing 
mechanism, which needs to filter through all the system calls 
and files touched during the execution of a task’s, this approach 
is more efficient. Second, the BSP provenance model is based 
on a relational database system. In comparison to file-based 
provenance storage system, the data storage is optimized by the 
database system, and the query/retrieval stage is more flexible 
and efficient.

Although the BSP provenance model originates in the neuroim-
aging domain, it can be potentially adapted to cover many other 
bio-medical domains as well.

addItIonal features of the BsP
Along with the BSP provenance model, here we would like to sum-
marize some additional features of the BSP in general.

• BSP is parallel in nature
In contrast to workflow systems that are primarily designed 
to handle inter-package heterogeneities but do not facilitate 
parallel processing, the BSP allows optimal distribution of 
multiple data processing tasks across a number of computers 
to maximize the throughputs.

• BSP is light weighted
This is because: (A) The swarm is conceptually simple, an 
unsophisticated user can capture the core concepts and under-
stand how a task is processed by the system fairly quickly 
without having to read the whole manual; (B) The system 
boundary is properly tailored, so that duplicated work is avoi-
ded; (C) The redundancy of provenance data is minimized as 
the provenance model is highly normalized; (D) The granula-
rity of the provenance is set at session level, the unnecessary 
provenance information is effectively ignored.

• BSP is built on top of the relational database
This is a big advantage of the BSP over workflow systems that 
are not bundled with a database. With the powerful MySQL 
database and SQL language, routine management tasks such as 
wrapper management, DPCs management, task/job manage-
ment, data source management and storage management can 
be very easy and flexible.

• BSP is reliable
The failure of one machine will not affect the data processing 
on another in the network, and is therefore easy to identify and 
recover from failure.

• BSP is scalable
 –  As there is no communication between the different proces-

sing tasks, the throughputs of the workflow system increases 
almost linearly with the number of workstations.

 –  A work station can join or leave the workflow system at any 
time without affecting the overall batch processing.

•	 BSP is extensible
 –  The workflow system can be extended to cover different data 

processing packages as long as the appropriate wrappers are 
provided.

 –  The DPCs are extensible. For example, a high performance 
computing center like Beowulf cluster can be treated as a 
DPC and managed by the workflow system

 –  Data sources can be extended to accommodate a wide range 
of different data sources as long as the appropriate data 
source adaptors are provided.

The BSP is flexible and has a number of other advantages. 
For example, when compared to the Beowulf cluster, it is: 
(1) capable of applying complicated and flexible data process-
ing management; (2) free from limited license issue (e.g., the 
Beowulf cluster usually limits the number of Matlab licenses to 16 
for each user); (3) no need to transfer data and results back and 
forth as is required between Beowulf and the local file systems; 
and (4) no waiting time (in comparison to the high performance 
computing center).

PossIBle extensIons
As some of the provenance management is currently conducted 
through command line, more user friendly interfaces will be pro-
vided in the new release. These include interfaces for: (1) wrapper 
management; (2) storage management; (3) task re-scheduling and 
traffic control; (4) data source management.
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2009). There are two basic components to CNARI: First is the use 
of relational database technology to represent the diverse data types 
of the study in a uniform representational framework that facili-
tates distributed data access, and permits powerful queries and data 
reductions to be performed signifi cantly faster by parallelized sta-
tistical analysis procedures. Second is the use of “virtual data” grid 
computing, in which data and data processing are widely  distributed 
on storage devices and computers, and where data transformation 
and analysis is specifi ed in terms of abstract (“virtual”) procedure 
descriptions. Together, these techniques enable a community of 
researchers to access and share data and perform data preparation 
and analysis without detailed knowledge of the internal workings 
of distributed computing and storage systems or of the network 
infrastructure that connects them.

Longitudinal functional brain imaging requires comparison of 
brain activation images within a single individual over time, and 
possibly also between single individuals and a group that repre-
sents some standard. For example, in a study of recovery from 
brain injury, the individual data might be compared to a normative 
(healthy) group. Although such comparisons can be performed 
using various scalar indices, we have recently begun to do this with 
entire activation networks. One way of modeling such networks of 
activation is with structural equation modeling (SEM), a method 
that uses known anatomy to augment the functional information 
with structural connectivity information, to create a model of both 
static and dynamic relationships (McIntosh and Gonzalez-Lima, 
1994; Buchel and Friston, 1997; Horwitz et al., 1999). We have 
developed several such models (Solodkin et al., 2004; Skipper et al., 

INTRODUCTION
CONCEPTS AND BACKGROUND ON CNARI AND DRIVING 
NEUROSCIENCE USAGE MODEL
In the past decade, there has been tremendous growth in the number 
and scope of functional brain imaging studies performed in the 
basic and applied neurosciences. These studies have been more 
complex than those of the past, often incorporating large  numbers 
of participants, multiple physical sites, longitudinal follow-up, 
combinations of healthy groups and those with disease or injury, 
and/or additional types of behavioral or biological measurements. 
Although their numbers are increasing, the inherent complexity 
of data management and processing in such studies, particularly 
regarding anatomical and physiological data, represents a major 
stumbling block to their ultimate success. In studies of recovery 
from stroke, for example, medical data are stored in paper charts or 
in hospital medical information systems, behavioral and linguistic 
data are saved in spreadsheets on personal workstations, structural 
and metabolic magnetic resonance imaging (MRI) data are stored 
in manufacturer formats on scanners and/or with the functional 
MRI data in the fi le systems of data processing workstations. With 
these diverse representations of information, not even counting 
the possible addition of electrophysiological and other structurally 
unique data types, it is hard enough to perform single case studies 
that attempt to relate these data to each other, let alone studies that 
include statistically meaningful numbers of participants.

We have started building the Computational Neuroscience 
Applications Research Infrastructure (CNARI) to address these 
concerns (Stef-Praun et al., 2007; Hasson et al., 2008; Small et al., 
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2007, 2009; Walsh et al., 2008), based on a combination of primate 
and human data (Ban et al., 1984, 1991; Petrides and Pandya, 1984, 
1988, 1999; Rosa et al., 1993; Seltzer and Pandya, 1994; Rizzolatti 
et al., 1997, 1998; Hackett et al., 1999; Barbas, 2000). In one of 
these studies, we constructed a group network model for healthy 
right handed individuals performing bimanual movements, and 
compared this normative group model to two individuals with 
different biological states, two healthy left handed people and one 
individual with stroke. The fi t between a strong left hander (i.e., 
one who used his left hand for everything) and the model was very 
tight if the hemispheres were fl ipped in the model. The fi ts between 
either the weak left hander (i.e., someone more ambidextrous) or 
the person with stroke and the group model were poor. These three 
examples were highly informative for understanding the neurobiol-
ogy of bimanual movements (Walsh et al., 2008).

Building such models can be very complex and time consuming, 
requiring advanced anatomical knowledge and skill. Furthermore, 
while these previous methods have been useful for generating a 
set of possible models in the absence of exhaustive techniques, 
they are inherently fl awed since they are based on anatomical con-
nectivity data from non-human primates. In addition, the models 
created depend on the hypotheses being tested, and thus there is 
a large number of possible models for any particular set of fMRI 
activation data. To address these issues, we have embarked on an 
extension to CNARI that aims to facilitate a more objective type of 
data-driven SEM via highly parallelized workfl ows for generating 
and processing large numbers of models in a manner that is easily 
reconfi gurable and replicable. The goal for this modeling approach 
is to explore as much as possible of the entire space of plausible 
models that account for the data. In this paper, we discuss the 
nature of this grid-enabled SEM, and describe how it can be used 
and applied to various research problems in brain imaging. One 
of the original purposes of CNARI was to facilitate the study of 
stroke recovery, with particular emphasis on natural recovery and 
treatment for language problems (aphasia). In our presentation, 
we will use specifi c examples from language processing, though the 
workfl ows presented are generalizable to a wide variety of other 
SEM problems.

CONCEPTS AND BACKGROUND ON SEM: THE MOTIVATION AND DESIGN 
OF OPENMX
Structural equation modeling (SEM) has a long history dating 
back to the development of path analysis by Wright (1921). SEM 
is a statistical tool for estimating a set of predicted covariances 
between variables that may be connected with either regression 
(asymmetric, directional) parameters or covariance (symmetric, 
non-directional) parameters (see Boker and McArdle, 2005, for 
a review). The advent of high speed computers and high level 
programming languages in the 1960s, together with advances in 
statistical methodology led to the development of software for 
fi tting models to observed covariance matrices by maximum likeli-
hood (Joreskog, 1967). This procedure is now commonly known 
as SEM (see e.g., Bollen, 1989; Loehlin, 1992, for introductions; see 
McIntosh and Gonzalez-Lima, 1994 for its use in neuroimaging). 
SEM is widely used for fi tting statistical models to epidemiologi-
cal, psychological, sociological and econometric data where there 
are multivariate outcomes and theoretical reasons to expect that 

linear or non-linear systems of equations may provide explanatory 
power in summarizing these large data sets. For instance, in an epi-
demiological study of heart disease, one may wish to control for a 
wide variety of possible behavioral covariates while simultaneously 
accounting for variance due to group membership or genetic vari-
ation. For such problems, SEM models represent state-of-the-art 
in statistical techniques. Neuroimaging data, is a prime candidate 
for modeling with SEM, given overlapping sources of variance 
both across space and time within individual as well as sources 
of variance across individuals due to group membership and 
other covariates.

SEM models can be described as a function of two model matri-
ces, A, S, a fi lter matrix, F and a residual matrix U, such that the 
expected covariance between observed variables is:

R = F(I − A)–1 S((I − A)–1)′F′ + U

where the model matrix A contains the asymmetric paths (regres-
sion coeffi cients), S contains the symmetric paths (covariance 
coeffi cients), and the fi lter matrix, F, strips the latent variables 
from the model matrices so that the result only contains expec-
tations for the observed covariances (McArdle and McDonald, 
1984; McArdle and Boker, 1990). One implementation of SEM is 
the software package Mx (Neale et al., 2003). The set of built-in 
functions that Mx can optimize includes maximum likelihood, 
generalized least squares, and full information maximum likeli-
hood analysis of covariance matrices and/or observed means. In 
2007, the OpenMx development project was started in order to 
rewrite Mx into open source, provide a scripting interface to the 
R statistical language (Ihaka and Gentleman, 1996) and provide a 
number of extensions to the software. Among these improvements 
was integrating the Mx SEM optimization engine into parallel 
workfl ow management software in order to be able to estimate 
parameters for large numbers of SEM models simultaneously. 
In this way, statistical resampling techniques such as bootstrap-
ping, simulations to verify the performance of new models, and 
exhaustive search routines could make use of large-scale paral-
lel computing resources. The current article describes the fi rst 
application of the OpenMx software to a real-world exhaustive 
search problem.

WORKFLOW MANAGEMENT
BACKGROUND AND GOALS
The ability to submit a large number of processes simultaneously to 
multiple grid sites is a major computational challenge and cannot 
be accomplished without an evolved workfl ow management system. 
In a related research project, we have been developing a workfl ow 
system called Swift (Zhao, 2007), which has been our system of 
choice for submission and management of large-scale workfl ows 
for neuroimaging. Using Swift, individual researchers are able to 
map large amounts of input and output explicitly and make calls 
to the cataloged executables that sit on remote grid sites. We have 
been investigating ways to execute and manipulate exhaustive or 
partially pruned, data-driven SEM workfl ows using Swift to oper-
ate on covariance data derived from a relational fMRI experiment 
database. From the standpoint of parallel computing and workfl ow 
management this poses some interesting issues and also demon-
strates, quite strikingly, the convenience (to the research scientist) 
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of having an elegant, high-level means of expressing, reconfi guring 
and rerunning such workfl ows. Here we present several examples 
of such workfl ows and explain how they can be expressed and 
run using Swift, OpenMx and the computational resources of the 
TeraGrid (Catlett et al., 2007).

The availability of high performance computing systems (HPCs), 
ranging from multi-core workstations to clusters, grids, clouds, and 
now petascale supercomputers, creates opportunities to explore 
experimental datasets with SEM in ways never before possible. The 
availability of this computing power, however, can be diffi cult to 
harness, particularly for a neuroscientist not versed in high per-
formance computing. For these researchers, it is undesirable to 
divert mental and manual effort from scientifi c exploration to the 
mechanics of large-scale parallel computing. At the same time, both 
the complexity and the scale of high performance environments 
makes it ever more challenging to assure the validity of scientifi c 
results obtained via such systems.

What scientists in general - and neuroscientists in particular - 
need, are ways to express the processing they want to perform in a 
compact, abstract, high-level notation that specifi es only the logical 
nature of their computations, but which abstracts and automates all 
of the potential, varying details of implementing those computing 
abstractions across a wide range of computing platforms.

SWIFT AND CNARI
For the past two years our group at the University of Chicago Human 
Neuroscience Laboratory, in collaboration with the Computation 
Institute, has been developing and evaluating Swift, a parallel 
scripting language, for this purpose. Together with members of 
the OpenMx project described above, we have recently focused 
signifi cant effort to create a library of Swift procedures for the 
fl exible processing and analysis of data from fMRI and other neu-
roscience experiments.

We employ a programming model that “loosely couples” 
 application programs. In this model, complete programs 
become our functions, and the arguments to, and results from 
these  functions can be fi les, fi le-structured datasets, as well as 
database entries.

The goals of expressing data processing steps in an abstract 
notation are multifold: 1) to distill the computation down to 
the salient details and eliminate the mechanical details of fi le 
manipulation from the expression of the basic workfl ow steps; 
2) to abstract data at a high level to relieve the programmer of 
concerns for the layout of the data on storage systems; 3) to enable 
the automatic parallelization of scripts in which independent 
streams of data are processed; and, 4) to enable the recording of 
all of the steps of a computation in an automatic, transparent 
manner. An overview of the scripting modules for SEM analysis, 
coded by the research scientist within the CNARI framework can 
be seen in Figure 1. The Swift programming language enables 
this model by providing the ability to represent application pro-
grams as procedures, and to defi ne compound procedures that 
permit the user to create libraries of higher level processes that 
capture the essential protocols of an application’s data prepara-
tion and analysis. The language’s data model provides the ability 
to describe the datasets that are consumed and produced by 
the procedural abstractions by combining basic primitive data 
type defi nitions with a mapping mechanism of on-disk directory 
structures to form structures and arrays. These data objects are 
then automatically and transparently sent across distributed exe-
cution environments to remote and parallel Swift procedures.

The Swift language has a C-like syntax, but enforces many of 
the semantic aspects of a “functional” programming language. 
Procedures are expressed as functions, permitted to return 
 multiple values; statements are executed in data-dependency order; 
 variables (including array elements and structure members) are 

Swift:
scripting language, task coordination, 
throttling, data management, restart

OpenMx:
R-based SEM package with built-in 
optimizer

R:
general purpose, portable, open source 
data analysis scripting language

R
Libraries 

(remote site)

-in 

Swift
scripts

SEM 
models

(generated
by R script)

R script for
generating

models

R
Libraries

(remote site)

FIGURE 1 | User Interface: Overview of the CNARI scripting modules for SEM workfl ows.
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single-assignment, making it signifi cantly simpler to determine 
 independent operations and threads of control, and to execute 
these threads in parallel; a construct called “mapping” is provided 
to translate between the simple, clean regular abstract data model 
of Swift and the potentially messy, complex model of real-world 
directory structures and the fi le naming and structuring conven-
tions expected by real-world applications.

The notation provides a simple set of fl ow-of-control 
 statements, such as if and switch (case) statements. The primary 
way to express a set - potentially large - of parallel operations in 
swift is to utilize the foreach() statement. This statement iterates 
over a collection, assigning each member of the collection to a 
control variable, and then evaluating the body of the foreach() 
loop once for each value of the target collection. All iterations 
of a foreach() are potentially (and conceptually) performed in 
parallel; the runtime system provides appropriate “throttling” 
and scheduling of the potentially enormous number of par-
allel operations that this construct can generate and submit 
for processing.

Atomic procedures in Swift consist of wrappers around speci-
fi cations that detail the invocation of application programs. In 
our SEM project, this mechanism is used by Swift to invoke the 
individual parallel model optimizations of the many thousands 
of models generated in an OpenMx SEM analysis workfl ow. “R” 
is the application program of execution. The invoking (master) 
program that calls the individual R programs creates a (potentially 
very long) list of evaluations, each of which is an R expression that 
embodies the OpenMx engine. The master program generates a 
large set of model calls and marshals the model’s matrix into a 
text character stream.

The Swift model of data abstraction was to some degree 
inspired and motivated by the fi eld of fMRI data analysis. In 
our earliest efforts to execute fMRI preprocessing workfl ows on 
computing grids we observed that the data model of the fMRI 
domain had a natural tree structure in which the vast number 

of fi les stored in traditional fi le system directories had some-
what similar patterns. These fi les included data from myriad 
experiments, test conditions and scans, and also included vari-
ous types of lower level data such as anatomical and time series 
data represented in the image/header fi le pairs of the functional 
data format (e.g., Analyze or AFNI formats). This suggested to 
us that data defi nition constructs could be of signifi cant ben-
efi t for scientifi c workfl ow scripting, such that data could be 
described in a “typed” fashion, much like the hierarchical model 
of “structs” in C or “classes” in Java. To enable an organization 
(or even a discipline, through community curation efforts such 
as those managed by collaborations like BIRN)1 to defi ne and 
standardize a uniform format for describing their common data 
elements, Swift provides the notion of data type and “mapping” 
of each type to a physical representation. The logical type is sim-
ple and abstract, and refl ects only the logical level of the data; the 
“mapping” describes how each element of a structure is mapped 
onto the structure’s physical representation on a fi le system. To 
some extent, Swift emulates the mapped fi lesystem structure on 
the remote resources where it instantiates processing. Generic 
mappers with a modest degree of representational fl exibility are 
pre-defi ned in the swift system; but additional mappers can be 
created by users for their own communities and used throughout. 
Figure 2 shows the Swift modules used for execution manage-
ment once a user has mapped his fi les, and defi ned processing 
jobs within a Swift script.

Swift is easy for users to install, and its runtime system pro-
vides the client capabilities needed to use workstation, grid and 
cluster computing resources. From a single client computer, e.g., 
a modest workstation or personal laptop, the user can launch and 
control scripts that send parallel work for simultaneous execution 
on clusters, grids and supercomputers. The user can test the correct 
execution of the logical script workfl ow, just by executing directly 

Swift
Script

Abstract
computation

Execution Engine

C
C C C

Swift runtime
callouts

Status reporting

Worker Nodes

file1

launcher

launcher

Provenance
data

Provenance
data

App
F1

App
F2

file2

file3

SwiftScript
Compiler

Specification Scheduling Execution Provisioning

Resource
Provisioners

Open Science Grid

Multicore systems

TeraGrid

PetaScale Clusters

FIGURE 2 | Swift architecture: Managing workfl ow execution within CNARI. Specifi cation and scheduling are implemented on the client side while execution is 
implemented on the remote computing resources.

1http://www.loni.ucla.edu/BIRN/
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on a local workstation. If the user’s workstation has multiple cores, 
Swift can take advantage of those for modest but invaluable paral-
lelism. And as the user’s needs grow or the user is ready to scale 
up to increasingly large systems, Swift can readily expand to those 
systems with a single representation and a single client as we will 
show in our example workfl ows.

Swift scripts afford a highly productive way to produce and 
manage the software of neuroscience research units, whether they 
be local campus departments or international collaborations. In 
today’s practice, organizations that need to process data from fMRI 
experiments typically develop and rely on locally produced sets of 
ad hoc scripts, usually written in a Linux “shell” language such as 
“c shell” (csh) or bash, or perhaps Perl, to organize the processing 
protocols and processes of the collaborations. In Swift, however, 
as all procedures are “typed” with a specifi c “signature” of data 
types for the input and output arguments, a more rigorous and 
less error-prone paradigm is imposed on the overall structure of 
the scripts. Thus Swift procedures serve as an interface-defi nition 
language for ordinary shell procedures. The overall higher-level 
process is then defi ned in a multilevel fashion, from top (highest) 
to bottom (lowest level) being:

• overall application (such as multiNetworkSEM)
• high-level scripts (such as getCovariance())
• low level Swift interfaces (atomic procedures) such as 

mxModelProcessor()
• an external R wrapper script to do further argument manipu-

lation (RInvoke.sh)
• the R tool itself (R CMD BATCH)

Special power and structure is afforded when the tool being run is 
not a “canned” compiled application, but rather itself a powerful data 
manipulation environment such as Perl or Python, or more specifi c 
to the model we describe in detail here, the R data analysis language 
with its vast package library of statistical and analytical procedures, 
including the OpenMx package used here. In this case, the actual 
script to be performed can be dynamically generated or selected from 
a template library, and sent to any computing site, which already has 
a suitable version of R and the OpenMx package installed.

DESCRIPTION OF THE fMRI EXPERIMENT DATA: THE EMBLEM 
DATABASE
We now give some concrete examples of how Swift can manipu-
late large datasets and enable novel analysis techniques by means 
of effective workfl ow management. The example framework we 
have employed our grid-enabled analysis techniques on is an fMRI 
investigation of the neural processing associated with emblematic 
gesture observation. Emblematic gestures (“emblems”) are goal-
directed, symbolic manual actions that, while expressed as cultur-
ally recognizable manual gestures, communicate a linguistically 
associable propositional meaning. Four experimental conditions 
were presented to participants in the MRI scanner: 1) Emblem, 
the symbolic manual gestures; 2) Speech, the spoken form of the 
linguistic propositions associated with the emblems; 3) Emblem 
with Speech, simultaneous presentations of the emblems with their 
verbalized linguistic associations; and 4) Grasping, observation of 
another type of goal-directed manual action, for which the neural 
regions associated with its processing have been well- characterized. 

Data were processed with AFNI (Cox, 1996) and mean normalized 
values of each of the hemodynamic response functions for every 
condition at every voxel in the brain were projected to 2-D  cortical 
surface representations and spatially smoothed on the surfaces 
using SUMA (Saad et al., 2004). These surface values were then 
imported into MySQL database tables for relational indexing and 
further analyses.

SEM WORKFLOWS IN SWIFT
We have begun exploring extremely large, exhaustive SEM 
workfl ows as a means of investigating how effi cient workfl ow 
tools can address computational problems that were previously 
considered unmanageable. Particularly, in using SEM for look-
ing at functional connectivity many researchers are confi ned to 
hypothesis-driven approaches because they lack the tools to reli-
ably implement data-driven methods; this situation can greatly 
impact mining and interpretation of datasets. In an attempt to 
address these issues, we are building an infrastructure that can 
be used by researchers to iterate over various parameters within 
these large sets in a reasonable amount of time and in a man-
ner that is both dynamic and reliable. The following workfl ows 
were run on a TeraGrid HPC system known as Ranger. Ranger 
comprises 3,936 16-way SMP compute nodes providing 15,744 
AMD Opteron™ processors for a total of 62,976 compute cores. 
The workfl ows were developed on and submitted (to Ranger) 
from a single-core Linux workstation running an Intel® Xeon™ 
3.20 GHz CPU.

A model generator was developed for the OpenMx package and 
is designed explicitly to enable parallel execution of exhaustive or 
partially pruned sets of model objects. Given an n x n covariance 
matrix, it can generate the entire set of possible models with any-
where from 0 to n2 connections; however, it can also take as input 
a single index from that set and it will generate and run a single 
model. What this means in the context of workfl ow design is that 
the generator can be controlled (and parallelized) easily by a Swift 
script. For example, using Swift as the interface to OpenMx we have 
these few lines of code:

WORKFLOW 1: 4-REGION EXHAUSTIVE SEM FOR A SINGLE 
EXPERIMENTAL CONDITION

 1. app (mxModel min) mxModelProcessor(file
    covMatrix, Rscript mxModProc, int modnum,
    float initweight, string cond){
 2. {
 3.      RInvoke @filename(mxModProc) @
    filename(covMatrix) modnum initweight cond;
 4. }
 5. file covMatrix<single_file_
    mapper;file="speech.cov">;
 6. Rscript mxScript<single_file_mapper;file="sin-
    glemodels.R">;
 7. int totalperms[] = [1:65536];
 8. float initweight =.5;
 9. foreach perm in totalperms{

10.    mxModel modmin<single_file_mapper; file=@
    strcat(perm,".rdata")>;
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11.    modmin = mxModelProcessor(covMatrix, 
       mxScript, perm, initweight, "speech");
12. }

First, a covariance matrix containing activation data for 4 brain 
regions, over 8 time points, averaged over a group of subjects in 
the Speech condition was drawn from the experiment database and 
its location (in this example, on the local fi le system, though the 
fi le could be located anywhere) is mapped in line 5. Line 6 maps 
the R processing script and lines 1 through 4 defi ne the atomic 
procedure for invoking R. Each iteration of the foreach loop maps 
its optimized model output fi le and calls mxModelProcessor() 
with the necessary parameters to generate and run a model. Each 
of these invocations of mxModelProcessor() is independent 
and is submitted for processing in parallel. Swift passes 5 variables 
for each invocation: (1) the covariance matrix; (2) the R script 
containing the call to OpenMx; (3) the permutation number, i.e., 
the index of the model; (4) the initialization weight for the free 
parameters of the given model; and (5) the experimental condition. 
Clearly, in this workfl ow all free parameters of the given model 
will have the same initialization weight as Swift is passing only one 
weight variable. When the job reaches a worker node on Ranger 
an R process is initialized, the generator creates the desired model 
by calculating where in the array that permutation of the model 
matrix falls. OpenMx then estimates the model parameters using a 
non-linear optimization algorithm called NPSOL (Gill et al., 1986), 
and the optimized model is returned and written out by Swift to 
the location specifi ed in its mapping on line 10.

The above script completed in approximately 40 minutes. The 
script can then be altered to run over multiple experimental condi-
tions by adding another outer loop:

WORKFLOW 2: 4-REGION EXHAUSTIVE SEM FOR 2 EXPERIMENTAL 
CONDITIONS

1. string conditions[] = ["emblem", "speech"];
2. int totalperms[] = [1:65536];
3. float initweight =.5;
4. foreach cond in conditions{

5.    foreach perm in totalperms{
6.     file covMatrix<single_file_mapper;file=@
       strcat(cond,".cov")>;
7.     mxModel modmin<single_file_mapper;file=@
       strcat(cond,perm,".rdata")>;
8.     modmin= mxModelProcessor(covMatrix,
       mxScript,perm, initweight, cond);
9. }

When the outer loop is added, the new workfl ow consists 
of 131,072 jobs since we are now running the entire set for two 
conditions. This workfl ow completed in approximately 2 hours 
(Figure 3).

WORKFLOW 3: 4-REGION EXHAUSTIVE SEM FOR MULTIPLE NETWORKS
In this workfl ow multiple 4-region networks are run for the Emblem 
with Speech experimental condition. The regions of interest (ROIs) 
designated are from FreeSurfer’s2 automatic parcellation of ana-
tomical regions, based on the Duvernoy atlas (1991), and further 
manual subdivisions to delineate anterior and posterior extents of 
the superior temporal gyrus and sulcus, as well as superior and 
inferior segments of the precentral gyrus. Because Emblem with 
Speech involved subjects’ perceiving simultaneously both spoken 
(audiovisual) and manual information, here we chose candidate 
regions expected to be involved in audiovisual recognition of 
speech and manual action: occipital pole (OP), middle occipital 
gyrus (MOG), anterior occipital sulcus (AOS), posterior superior 
temporal sulcus (STSp), posterior superior temporal gyrus (STGp), 
transverse temporal gyrus (TTG), and supramarginal gyrus (SMG). 
Covariance matrices of activation data for Emblem with Speech for 
several networks comprised of these ROIs were then queried from 
the database:

network 1: {OP, STGp, TTG, AOS}
network 2: {OP, MOG, AOS, STSp}
network 3: {TTG, STGp, SMG, STSp}

 1. string conditions[] = ["emblemwithspeech"];
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FIGURE 3 | Number of active processes during workfl ow execution: (left) 

Processing of the 4-region workfl ow over 2 experimental conditions. (Right) 
Processing of the 4-region workfl ow over multiple networks. The red line 

represents the execution of jobs on Ranger, while the blue and green represent 
the staging in and out of fi les respectively. Plots were generated by 
swift-plot-log, part of the Swift suite of tools.

2http://surfer.nmr.mgh.harvard.edu/
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 2. int networks[] = [1:3];
 3. int totalperms[] = [1:65536];
 4. float initweight =.5;
 5. foreach cond in conditions {
 6.   foreach perm in totalperms {
 7.    foreach n in networks {
 8.     file covMatrix<single_file_mapper; file=@
        strcat("matrices/net",n,"_",cond,".
        cov")>;
 9.     mxModel modmin<single_file_mapper; file=@
        strcat(n,"_",cond,"_",perm,".rdata")>;
 10.    modmin = mxModelProcessor(covMatrix,mxScr-
        ipt,perm,initweight,
 11.                             condition,@
                                strcat("net",n));
 12.    }
 13.  }
 14. }

This results in a workfl ow containing 196,608 processing jobs 
(1 condition x 3 networks x 65536 models) and completed in 
approximately 5 hours on Ranger. For an example of how this 
might be used as part of a larger processing workfl ow see Section 
“Language Study Workfl ow in Swift” in the Appendix.

DISCUSSION AND FUTURE WORK
The workfl ows presented here do not result in a single “best” model 
representing connectivity amongst the four brain regions for the 
given conditions. Rather, their value lies in that they produce an 
exhaustive set of optimized models from which to begin searching 
for good-fi tting models. Thus, a natural extension to this set of 
workfl ows might be a model-selection component based on a fi t 
statistic (e.g., Bayesian information criterion, Akaike information 
criterion, RMSEA), an exploratory visualization component (see 
“Language Study Workfl ow in Swift” in the Appendix) or  perhaps 
a combination of these methods. A “model-selection workfl ow” 
based on one or more fi t statistics extending, for example, work-
fl ow 1 would extract the desired fi t statistic from each of the 65,536 
optimized models and potentially keep or discard a given model 
based on whether or not it is above or below a selected thresh-
old. It is worth noting that there is a good deal of controversy 
around which measures provide the most accurate model-selec-
tion (Bullmore et al., 2000) as well as some variation in how SEM 
software packages actually calculate those fi t statistics (Clayton 
and Pett, 2008).

While the present workfl ows suggest new possibilities for exhaus-
tive search and large-scale, parallel analysis techniques, their utility 
lies heavily in the ability to be easily replicated and reconfi gured 
for use on varying datasets. Exhaustive search through a space of 
structural equation models is, ab initio, an exploratory technique. 
Thus, one cannot make statements concerning the probability that 
there are signifi cant differences between models or that a selected 
parameter is signifi cantly different from zero. The number of 
tested models is so great that any statistical argument concerning 
the likelihood of the data given a null hypothesis is overwhelmed 
by the number of comparisons made. In addition, one must be 
concerned about generalizability of results if a single data set was 

used—the exhaustive search may have overfi t idiosyncrasies of the 
target data. Thus, it is imperative to cross-validate results from 
exhaustive search using other data sets.

On the other hand, an exhaustive search of the space of structural 
equation models for a particular data set does result in an empirical 
distribution of the fi t statistics of the models. By plotting the log likeli-
hood resulting from each fi t against the number of degrees of freedom 
in its associated model, it is likely that clusters in the fi t statistics will 
be observed. In this way, we may observe patterns of candidate models 
that are roughly equivalent given the data. Some of these models may 
be algebraically equivalent (vonOertzen, in press), and others may be 
empirically equivalent given the data. We intend the CNARI develop-
ment effort to enable this type of data exploration.

Beginning with some basic pruning techniques, we can start to 
narrow down the space of models in the exhaustive set while leverag-
ing Swift’s ability to submit large numbers of processes, resulting in 
some powerful workfl ows. The fi rst reduction in the exhaustive set 
of models is elimination of any models that are unidentifi ed, that is, 
models containing negative degrees of freedom due to the presence 
of more unconstrained than constrained variables. The degrees of 
freedom can be easily calculated using the following formula:

(n(n+1)/2)-k

where n is the number of brain regions in the model and k is 
the number of free parameters and if the result is negative, the 
model is underidentifi ed (Bollen, 1989). Additionally, a model 
with two-way symmetric connections is likely to fail attempts 
at optimization. Such a connection represents a type of cycle. In 
fact, most models containing cycles will be diffi cult to optimize as 
they are not usually identifi ed in the absence of, e.g., longitudinal 
data (Neale and Cardon, 1992; Heath, 1993; Neale et al., 1994). 
The size if the acyclic set is given by

4((n*(n-1)/2).

An algorithm exists for fi nding cycles (Boker et al., 2002) that 
could potentially be used to further prune the model set. In addition 
to pruning cyclic and underidentifi ed models, the set may also be 
pruned for models containing variables that lack residual error. The 
fi t function cannot be evaluated under these circumstances, because 
the predicted covariance matrix is singular; therefore its determinant 
is zero, which results in the division of a negative quantity by zero in 
the calculation of the multivariate normal distribution probability 
density function, so optimization cannot be performed.

As Table 1 shows, with a moderate degree of pruning, the set 
for four regions becomes trivial to run in the present infrastruc-
ture. Furthermore, the fi ve-region set, while still a large number of 
processing jobs, becomes much more manageable.

Table 1 | Number of models produced for exhaustive and partially 

pruned workfl ows.

Regions Exhaustive set Identifi ed Acyclic

4 65,536  50,642  4,096

5 33,554,431  26,434,915  1,048,576

6 68,719,476,736  54,802,674,727 1,073,741,824
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CNARI has been developed with the aim of managing a broad 
range of diverse neuroscience datasets and performing effi cient, 
reliable parallel analysis workfl ows on them. Here we have dem-
onstrated workfl ows that fully exercise this capability by  applying 
this framework to large computational problems; namely, exhaus-
tive search SEM. The need for data-driven techniques in modeling 
connectivity has emerged not only in our own work in studying 
language and aphasia but in SEM in general (Bullmore et al., 
2000; Marrelec et al., 2007), though there has been little discus-
sion of workfl ow  management and parallel computing as means 
of addressing this need. Researchers, faced with seemingly insur-
mountable computational problems when selecting appropriate 
models to test, are often forced to rely on less-than-satisfactory 
approximations not only due to the sheer amount of processing 
power required but because of the daunting task of distributing 
those processing tasks in a cohesive manner such that the results 
are useful and replicable. As CNARI continues to evolve, we hope 
to expand these large-scale, data-driven workfl ows as we use them 
to address the complex research questions facing us.
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APPENDIX
LANGUAGE STUDY WORKFLOW IN SWIFT
The following is a prototype using Swift and demonstrating how the 
above modules can be assembled into a larger exploratory workfl ow. 
Exhaustive search is run for the Emblem with Speech condition on 
several four-region networks, and the results of the optimized mod-
els are stored in a connectivity database for visualization, further 
analysis, and pattern detection.

For each of the selected networks multiNetworkSEM is called with 
confi guration fi les for the user to access the databases, information 
on the network to be processed, and the total number of models in 
the exhaustive set. First, the covariance data is pulled from the experi-
ment database. This is seen in the runQuery  function, which is Swift’s 
call to a python database interface (see Small et al., 2009 for a more 
detailed description of this mediator  component). Then for each 
iteration of the loop in line 34, Swift invokes  mxModelProcessor, 
assigning each process a model to generate and optimize in OpenMx. 
The instantiation of the OpenMx model object and the call to the 
optimizer are encapsulated in the R script mapped on line 33, which 
is also passed to mxModelProcessor. Each of these processes writes 
out a fi le containing the result of the optimization, and these results 
can be read and inserted into the connectivity database, which is done 
with insertOptMod. It should be noted that both insertOptMod 
and getCovariance operate on the same principle: the user assem-
bles a query that the python DBI will submit to the database. If the 
user also passes an R script (as in line 62), it will process the query 

result with that R script. Each result fi le is read, and its contents are 
inserted into the connectivity database where they can be further 
analyzed. A call to plotLogLik can be used to plot of the minimum 
values obtained by OpenMx for each model allowing for identifi ca-
tion of patterns or clusters within the set (Figure 4).

 #### MultiNetworkSEM.swift

1. type file;
2. type mxMin;
3. type Rscript;
4. type dbConnect;
5. type mxModel{
6. int modnum;
7. int dof;
8. string best;
9. }
10.# ----------- atomic procedures ----------- #
11.
12.app (file matrix) runQuery (dbConnect dbconn,
   string query, Rscript calcCov){
13.     } 
14.     mysqlPythonDBI query @calcCov @dbconn;
15.    }
16.
17.app (external inserted) insertMxResult 
   (dbConnect dbconn, string query, file 
    datafile)
18.    {
19.     mysqlPythonDBI query @dbconn stdout=@
        filename(inserted) @datafile; 
20.    }
21. app (file min) mxModelProcessor ( file 
    cov, Rscript mxModProc, int modnum, float
    weight, string cond, int net) 
22.      {
23.     RInvoke @mxModProc @filename(cov) modnum 
        weight cond net;
24.    }
25. 
26. # ------ user-defined SEM procedures ------ #
27. 
28. multiNetworkSEM(string condition,dbConnect 
    emblemdb, dbConnect semdb, int n, string net,
    int totalperms[])
29. {
30.  float initweight =.75; 
31.  file covariance<single_file_mapper;file=@
     strcat("net",n,"/",condition,".cov")>;
32.  covariance = getCovariance(condition, n,
     net, emblemdb);
33.  Rscript mxModProc<single_file_
     mapper;file="scripts/singlemodels.R">; 
34.  foreach perm in totalperms{
35.    file modmin<single_file_mapper;file=@
       strcat("net",n,"/",condition,"_",perm,".
       stat")>;
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36.    modmin = mxModelProcessor(covariance,mxMod
       Proc,perm,initweight,condition,n);
37.    external doneflag = insertOptMod(n, semdb,
       condition, modmin); 
38. }
39. 
40. (external ins) insertOptMod(int net,
    dbConnect dbconn, string cond, file modfile)
41. {
42.  string mysqlstr = @strcat("INSERT 
     INTO optimized_models (network, deg_of_
     freedom, mx_minimum, modnum, cond) VALUES
     (",net,",DOF,BEST,MODNUM,",cond,");");
43.  string argList = @strcat(
44.  " --query ", mysqlstr,
45.  " --data ", @filename(modfile),

46.  " --conf ", @filename(dbconn));
47.  ins = insertMxResult(dbconn, argList,
     modfile);
48. }
49. 
50. (file covariance) getCovariance (string cond,
    int net, string rois, dbConnect dbconn) 
51. {
52.  string mysqlstr = @strcat("SELECT 
     avg(",cond,"0B), avg(",cond,"1B),
     avg(",cond,"2B),",
53. "avg(",cond,"3B), avg(",cond,"4B), 
     avg(",cond,"5B),",
54. "avg(",cond,"6B), avg(",cond,"7B), 
     avg(",cond,"8B) ",
55. "FROM emblemfemlh where roi in (",rois,")

worksta�on

covariance

models

Network1 Network2

Connec�vityDB

Network3

Ac�va�onDB

Visualiza�on

FIGURE 4 | Multinetwork Swift workfl ow for the Emblem with Speech condition.
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71.  " --conf ", @filename(dbconn),
72.  " --query ", mysqlstr,
73.  " --r_script ", "scripts/plotloglik.R",
74.  " --r_swift_args ", @filename(plotfile));
75.  plotfile = runQuery(dbconn, argList, rplot);
76.  
77.  # ---------------- Main ----------------- #
78. 

79. string condition = "emblemwithspeech";

80. string networks[] = ["42, 34, 33, 60", "42, 
    15, 60, 80", "33, 34, 23, 80"];

81. dbConnect emblemdb <single_file_mapper;
    file="./user.config">;

82. dbConnect semdb <single_file_mapper; file="./user2.
  config">;

83. int totalperms[] = [1:65536];
84. foreach net,n in networks{
85.   multiNetworkSEM(condition,emblemdb,semdb,n,net,
    totalperms);

86.   }

     group by roi "); 
56. string argList = @strcat
57. " --conf ", "user.config",
58. " --query ", mysqlstr,
59. " --r_script ", "scripts/cov.R",
60. " --r_swift_args ", "matrices/net",net, "/",
    cond);
61. Rscript calcCov<single_file_
    mapper;file="scripts/cov.R">;
62. (covariance = runQuery(dbconn, argList,
    calcCov);
63. }
64. {
65. (file plotfile) plotLogLik(int net, string 
    cond, dbConnect dbconn)
66.  
67.  Rscript rplot<single_file_
     mapper;file="scripts/plotloglik.R">;
68.  string mysqlstr = @strcat("SELECT deg_of_
     freedom,mx_minimum FROM optimized_models",
69.  " where network = ",net,";");
70.  string argList = @strcat(
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seen as designed mega-analyses, and the necessary databasing, 
data-sharing and analysis tools are emerging (Keator et al., 2008, 
2009; Bockholt et al., 2009).

In the following, current limitations in function-location brain 
mapping are examined, along with strategies for their remediation 
through data pooling. Following the meta/mega-analysis distinc-
tion frequently employed in the fi eld, the advantages and shortcom-
ings of different types of data-sharing based on the type of data used 
as prime matter for pooling are also discussed. Finally, the different 
steps for a valid data pooling exercise, from data collection to the 
selection of suitable analysis methods, are considered.

LIMITATIONS IN BRAIN MAPPING AND 
DATA-POOLING REMEDIES
ERRONEOUS RESULTS IN SINGLE-STUDY fMRI ANALYSIS
The aim of conventional group analysis of fMRI data is to detect the 
regions that show signifi cant increases in BOLD signal in response 
to a given task. For explanatory purposes, a comparison between 
an active task and a baseline condition will be assumed, although 
the following reasoning can be easily extended to more complex 
designs. Localizing signifi cant changes is often done through vox-
elwise hypothesis testing, where a null (H

0
) and an alternative (H

1
) 

hypothesis are compared. The null hypothesis states that there is no 
difference in mean signal across subjects between the active and the 
baseline tasks, while the alternative hypothesis states that such differ-
ence exists. The decision as to whether or not H

0
 should be rejected 

in favor of H
1
 is then made on the basis of the value of a suitable test 

(e.g. t-test). Table 1 presents the possible decision outcomes.

False positive results
This mapping strategy is liable to false positive (FP) fi ndings, if H

0
 

is rejected when it is in fact correct, that is if the area declared to be 
active was truly not engaged by the active task. The probability α of a 

INTRODUCTION
A goal of brain mapping in healthy subjects is to associate mental 
functions with specifi c brain locations. In its clinical application, 
brain mapping aims at identifying the location of brain activation 
differences between persons suffering from a given neurological or 
psychiatric disorder and healthy controls during the performance 
of a cognitive task. Functional magnetic resonance imaging (fMRI) 
has become the main tool in the brain mapping fi eld as, relative to 
other techniques, it is non-invasive, has increased spatial resolution, 
wider availability and lower cost (Pekar, 2006). Conversely, brain 
mapping studies represent well over half of the fMRI literature to 
date (Logothetis, 2008).

It has been recognized that data pooling across individual studies 
has the potential to signifi cantly accelerate progress in the brain 
mapping fi eld (Van Horn et al., 2004), following other success-
ful data-sharing initiatives, such as The Human Genome Project 
(Collins and Mansoura, 2001). The most immediate advantage of 
data pooling is an increase in power due to the larger number of 
subjects available for analysis. Data pooling across scanning centers 
can also lead to a more heterogeneous and potentially representative 
participant sample. Finally, the study of the causes of variability 
across related experiments may also lead to novel scientifi c insights 
(Matthews et al., 2006; Costafreda et al., 2008).

Meta-analysis techniques based on published coordinates of 
activation have been used since early on to summarize research 
data and generate novel insights (Fox et al., 1998). Mega- analysis, 
defi ned as the pooling of the fMRI time-series, has been less suc-
cessful so far in spite of its much greater potential, probably due 
to the diffi culty in databasing and making publicly available these 
“raw” data, and a lack of specifi c analysis methods that recog-
nize the additional heterogeneity introduced by different scan-
ning centers. Such diffi culties may be easing as the fi eld evolves 
towards multi-site studies (Schumann, 2007), which can be 
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FP result can be kept acceptably low by using multiple comparisons 
control procedures such as the random fi eld theory (Worsley et al., 
1996). In practice, the level of FP results in the literature is likely 
to be higher than the conventional 5% value of α, as uncorrected 
results are sometimes reported and sub-optimal fi xed-effects group 
analysis is still occasionally used.

However, under the assumption that FP appear at random brain 
locations, aggregating results across studies is likely to result in 
improved brain mapping accuracy in the sense of FP reduction, as a 
FP fi nding in a given region is unlikely to be replicated across stud-
ies (Fox et al., 1998). In other words, the more studies which have 
reported that a given area is recruited by a certain paradigm, the less 
likely it is to be a false positive result. This idea can be formalized: 
if an observed level of replication in a given location across studies 
is greater than what would be expected by chance alone, then the 
null hypothesis of a FP result can be rejected. Recent years have 
seen the development of several voxel-based meta-analysis methods 
(Chein et al., 2002; Turkeltaub et al., 2002; Wager et al., 2004, 2007; 
Laird et al., 2005a; Neumann et al., 2005; Costafreda et al., 2009a; 
Eickhoff et al., 2009). The initial breakthrough was provided by 
the Activation Likelihood Estimate (ALE) method presented by 
Turkeltaub et al. (2002). ALE is a kernel-based approach currently 
implemented in BrainMap, an online database of published studies 
(Laird et al., 2009). In kernel-based methods, individual studies 
are represented by a pattern of activation peak coordinates, which 

are smoothed using a spatial kernel function (Silverman, 1986). 
The smoothed patterns are aggregated to obtain a summary map 
with voxel-level scores representing the local density of activation 
peaks. This summary map is then thresholded using simulation 
(Wager et al., 2004; Laird et al., 2005a) or parametric (Costafreda 
et al., 2009a) approaches, and the areas that survive the threshold 
are declared as true positive activations. Voxel-based meta-analysis 
techniques have liberated the meta-analysis process from simple 
counting of anatomical labels reported by each study and have 
increased sensitivity to detect aggregate sub-regional activations. 
A workfl ow example for one of such methods, Parametric Voxel-
based Meta-analysis (PVM, software available from the author; 
Costafreda et al., 2009a), is presented in Figure 1.

False negative results
Brain mapping also suffers from False Negative (FN) reporting, 
when a region truly active during the task is not recognized as 
such. This problem is exacerbated by the low number of subjects 
and, hence, low power that is common in fMRI research. Using 
a 3T scanner, Thirion et al. (2007) estimated that at least 20 and 
preferably 27 or more subjects were needed to obtain reproduc-
ible results with a simple sensori-motor task under random-effects 
assumptions. Although specifi c to the particular scanner, task and 
analysis employed by the authors, these fi ndings suggest that many 
fMRI studies may be underpowered. Additionally, Thirion et al. 
(2007) also found that high inter-subject variability was the key 
element producing low reliability of group mapping. Factors which 
increase inter-subject variability in BOLD response, such as the 
inclusion of psychiatric or neurological populations, will therefore 
require larger samples.

Under certain conditions, data pooling may also result in 
an increase of power to detect brain activations and therefore 
a decrease in FN results. It is this potential for increased power 
through the aggregation of sub-signifi cant results that underpins 
meta-analysis applications in most fi elds (Whitehead, 2002). This 

Threshold r

… …

Study 1 

Study 2 

Study n

r

r

Smooth

Sum

Plot

FIGURE 1 | Parametric Voxel-based Meta-analysis. Step 1: the coordinates for 
each study are plotted in standard space brain (MNI). Step 2: After smoothing 
with a uniform kernel of size r, each study map is transformed into an indicator 
map, where voxels with 1 values (red) indicate the presence of at least one 
activation within distance r. Step 3: all study-level indicator maps are summed 
and then divided by the number of studies n, to obtain a summary map 
refl ecting the proportion of studies reporting an activation within distance r of 

each voxel. Step 4: the p value of the observed proportion is computed, under 
the null hypothesis that the activations are generated at random spatial 
locations. The fi nal thresholded map refl ects the areas where the proportion of 
studies reporting activation is too high to have been generated by such null 
random process alone. In this example of a meta-analysis of language 
production in healthy subjects, Broca’s area and anterior cingulate are revealed 
as areas of signifi cant activation (Costafreda et al., 2009a).

Table 1 | Outcomes of hypothesis testing.

 State of the world

 H
0
 H

1

Decision

 H
0
 Correct acceptance Type II error (β)

 H
1
 Type I error (α) Correct rejection
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type of effect-size meta-analysis is based on study-level estimates of 
a given scalar effect size (e.g. difference in treatment effects across 
clinical trials) plus, crucially, the standard error of such estimates. 
Effect sizes from several studies are then statistically pooled to 
obtain a summary effect size, which has increased precision over 
any of the original studies.

An equivalent for fMRI research of this primary data would be 
the (group-level) effect size image or “beta map” accompanied by 
its corresponding standard error image. However, fMRI researchers 
rarely publish the complete statistical images, but instead present a 
highly compact and refi ned, but impoverished, representation of the 
original brain activation maps. Regions of signifi cant brain activa-
tion, also known as “blobs”, are three-dimensional structures which 
approximately follow grey matter distribution and its associated 
complicated topography. As a description of such structures, only 
a list of three-dimensional coordinates is available in a standard 
paper, usually the points of maximum activation (most statistically 
signifi cant voxel) for each blob, or its centroid. Results published 
in this format also lack a measure of variance (i.e. standard error), 
which precludes the use of traditional effect-size meta-analytical 
techniques (Fleiss, 1993).

Kernel-based meta-analysis methods can be seen as an attempt 
to recover a richer representation by deeming as active not only 
the point of the activation coordinates, but also some neighboring 
area (Turkeltaub et al., 2002; Wager et al., 2007; Costafreda et al., 
2009a). Non-active areas are simply represented by zero. An una-
voidable consequence of this impoverished representation is that 
subtleties in the three-dimensional spatial distribution of the blobs 
are lost when studies are pooled. Another result is that because the 
(non-signifi cant) measurements of non-active areas are also lost 
and simply coded as zero it is not possible to add non- signifi cant 
fi ndings across studies to decide whether the pooled outcome 
does, in fact, reach signifi cance. In other words, meta-analysis of 
 coordinate-based data cannot aggregate power across studies and 
thus cannot remediate the FN problem. Improvements in power 
can only be obtained through mega-analysis.

In fact, current meta-analysis techniques for brain mapping can 
be described, from a statistical point of view, as spatial vote- counting 
(Hedges and Olkin, 1980), where each study “votes” through its 
reported peak coordinates on whether a particular location is active 
or not. Vote-counting is a less than ideal technique for research 
synthesis in statistical terms (Hedges and Olkin, 1980). In particular 
for fMRI research, detection of signifi cant activation in a given 
study is a factor of both activation effect size and power, mainly 
determined by its sample size. Given that sample size is usually 
limited in typical fMRI experiments, there is scope for misleading 
fi ndings when aggregating vote-counting results.

VARIABILITY IN EXPERIMENTAL DESIGN, POWER AND 
GENERALIZATION
From the previous discussion, it can be seen that the initial appeal 
of pooling fMRI data is therefore a very practical one: to increase 
the reliability of fi ndings and the power of the statistical analy-
sis. However, this comes at a price: relative to a single large-scale 
study, a multi-site (or analogously multi-study) design of a similar 
scale would suffer from infl ated variability in its fMRI measure-
ments. This is because it is rare that independent fMRI  experiments 

can be considered exact replicates of each other. For instance, 
Matthews et al. (2006) described how a subtle variation in the visual 
 presentation of the cue for a simple hand-tapping task across cent-
ers in a multi-center study generated signifi cant between-study 
variability in visual cortical BOLD responses. Findings such as this 
one suggest that minor changes in experimental conditions may 
result in signifi cant differences in brain activation. Examples of 
experimental characteristics with empirical evidence of an effect 
on fMRI results include: scanner strength (Friedman et al., 2006), 
subject sample composition (D’Esposito et al., 2003) and analy-
sis method (Strother et al., 2004). The resulting infl ation in vari-
ability of the fMRI measurements due to these between-study or 
between-site factors, even when a standardised protocol across sites 
is enforced (Zou et al., 2005; Friedman et al., 2006) may reduce the 
statistical power relative to a large single-site design.

Although optimal from the point of view of maximising statis-
tical power, recruitment and other pragmatic issues have tended 
to make such large-scale single site studies an exception in neu-
roimaging. Particularly when elusive clinical samples are neces-
sary, recruitment diffi culties may recommend a multi-site design 
(see for example the Alzheimer’s Disease Neuroimaging Initiative, 
Mueller et al., 2006). Also, for many research questions, a sample 
of relevant studies already exists, and pooling results across this 
sample through meta- and mega-analysis techniques will often be 
a more effi cient use of these data than considering the fi ndings of 
each study in isolation (Salimi-Khorshidi et al., 2009).

Apart from the above practical considerations, the increased 
variability inherent to multi-site or multi-study design is not nec-
essarily detrimental, and can even present advantages for certain 
research questions. The main potential benefi t is that including 
participants from different sites may lead to a more representative 
sample of participants, an important consideration if the results 
of the analysis are intended to be generalized to the population at 
large. Additionally, activations that generalize over sites and stud-
ies are more likely to be linked to the substantive research question 
under consideration than to idiosyncrasies in study design. As an 
illustration, the discovery of the resting state brain network in an 
early mega-analysis was “(…) particularly compelling because these 
activity decreases were remarkably consistent across a wide variety 
of task conditions” (Raichle and Snyder, 2007). Data pooling can 
then be useful to quantitatively examine the generalization of a 
fi nding by pooling the results of related studies performed under 
different conditions. Finally, the causes of between-study variability 
may also be of interest in themselves. In Costafreda et al. (2008), we 
applied a meta-regression approach to a large sample of experiments 
on emotional processing to identify the study characteristics that 
predicted amygdala activation. Independent predictors of amygdala 
activation included the type of emotion depicted in the experimental 
stimuli (e.g. fear), along with more “methodological” variables such 
as modality of presentation of the stimulus or scanner strength.

REVERSE INFERENCE
Reverse inference in functional neuroimaging is the deduction of the 
presence of a particular cognitive process as a component of a task 
due to the engagement of the region (or set of regions) during the 
task (Poldrack, 2006). An example of reverse inference is conclud-
ing that reward may be present during a particular task on the basis 
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of observing activation in striatum. Although problematic from a 
 logical point of view, used cautiously reverse inference may be useful 
to elucidate the component processes for a task, and it is often used 
by functional neuroimaging practitioners (Poldrack, 2006).

In Costafreda et al. (2008) we reported quantitative estimates of 
the selectivity of amygdala for different emotions relative to neutral 
material. For example, we found that the amygdala is four to seven 
times more likely to be activated by fear than by stimuli of neutral 
content. This probabilistic estimate may be useful in the interpre-
tation of a particular study fi nding by quantifying the specifi city 
of the link between an area (or network) and a cognitive process. 
This estimate also acts as an explicit reminder of the limitations in 
reverse inference, in that such link is not absolute, but probabilistic 
and necessarily relative to an alternative state (in this example, a 
neutral stimulus). Therefore, detecting amygdala activation in a 
particular experiment cannot lead to the conclusion that the task 
must have involved a fearful stimulus, but simply that it is more 
likely that the stimulus was fearful than neutral. Additionally, this 
single estimate cannot exclude a number of credible alternatives, 
such as amygdala reactivity to social stimuli per se or emotions 
other than fear.

SPATIAL RESOLUTION AND FUNCTIONAL SEGREGATION
The spatial resolution of fMRI has been estimated as a point spread 
function with full width at half maximum (FWHM) of 3.5 mm 
for 1.5 T scanners (Engel et al., 1997) and as low as 2 mm for 7 T 
scanners (Shmuel et al., 2007). However, inter-subject variability in 
cytoarchitecture is substantial (Amunts et al., 1999), which signifi -
cantly reduces the resolution obtainable at group level. In addition, 
the analysis of fMRI data usually involves Gaussian fi ltering, with 
typical fi lter sizes (FWHM) being in the range of 6–15 mm, thus 
further limiting the effective resolution obtained in practice.

Spatial resolution is particularly relevant to the study of functional 
segregation. Functional segregation aims to delineate discrete corti-
cal regions along functional lines. Very fi ne-grained examinations 
of functional segregation have been attempted by pooling results 
from different studies (Picard and Strick, 1996). In Costafreda et al. 
(2006; Figure 2), we developed a quantitative method to determine 
whether two sets of activation peaks are spatially segregated in 
their cortical distribution. We applied this method to the analysis 
of verbal fl uency studies demonstrating different distributions for 
the activation peaks of phonological and semantic studies within 
Broca’s area. The signifi cant difference in mean location identifi ed 
between both distributions (2–18 mm) was comparable or below 
the usual resolution of any single study.

A TYPOLOGY OF fMRI DATA-POOLING
META-ANALYSIS
Activation coordinates as primary data
Almost all the pooling exercises to date have been meta-analysis, 
conducted using the coordinates of the location of activations as the 
primary data. Some of this popularity may be due to the availability 
of coordinate data, which has become a standard of neuroimaging 
reporting (Laird et al., 2009). As discussed earlier, its main dis-
advantage is the impossibility to aggregate power across studies. 
Therefore most meta-analyses compute estimates of between-study 
reliability of activations, although many other coordinate-based 

approaches are possible, such as the examination of between-study 
co-activation of brain as a proxy of functional connectivity (Toro 
et al., 2008).

Meta-analysis using additional descriptors
Neuroimaging publications often report both coordinates of peak 
or maximum activation and their associated anatomical label. 
Meta-analysis based on labels (Laird et al., 2005b), or a combina-
tion of labels and coordinates (Costafreda et al., 2008) is possible, 
and can even be more powerful than voxel-based meta-analysis 
when the number of studies is low (<10) as multiple testing is 
reduced from the number of voxels to the number of regions. 
However, the variability in anatomical nomenclature in published 
studies can be a serious limitation. Additionally, voxel-based meta-
analysis may be more sensitive if the clustering of activations across 
studies is not well matched by the chosen anatomical label (Laird 
et al., 2005b).

Often, in addition to location coordinates, additional meas-
ures of the activation characteristics are reported. If the volume 
of the activated “blobs” was consistently reported, then it could 
be used for more accurate approximation of the original acti-
vations. In our experience though, volume of activation is not 
consistently reported.

Often the T or Z statistics of signifi cant activations are also 
reported. It is possible to employ these quantities to generate effect 

FIGURE 2 | Bootstrap 95% confi dence intervals for the mean locations of 

peak activations in a meta-analysis of phonological and semantic verbal 

fl uency activations in the left inferior frontal gyrus. Updated version of the 
analysis in Costafreda et al. (2006): the systematic literature search has been 
updated to September 2008 with a total of 25 studies included, and the 
bootstrap method has been modifi ed to take into account the clustered nature 
(activations within studies) of the data. The conclusions are the same as the 
ones in the published paper. Left lateral view of a rendered image of the brain 
(MNI template). The confi dence intervals (CI) for the mean location of peak 
BOLD responses associated with semantic verbal fl uency (red) were 
signifi cantly more ventral (z-axis) than for those for phonological verbal fl uency 
(blue) at α = 0.05. Areas of intersections of the CI (phonological semantic) are 
shown in mauve.
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size meta-analyses. The diffi culty with this approach,  however, 
 consists of how to handle non-signifi cant effects, for which no effect 
size estimate is given: are we to assume these unknown effect sizes 
are zero, or just below signifi cance, or simply exclude them from 
the dataset? In our view any of these alternatives leads to further 
diffi culties in the form of potential biases of our results, while the 
benefi t is only an apparent increase in power (apparent because 
the subsignifi cant results are unknown).

In conclusion, while acknowledging the serious limitations 
inherent in coordinate-based data, and short of a decided move 
towards full voxel-based reporting of signifi cant and non-
 signifi cant effect sizes discussed below, coordinates are currently 
the best available substrate for meta-analysis.

MEGA-ANALYSIS
fMRI time-series as primary data
As the raw time-series contains the record of all the measurements 
obtained during an fMRI experiment, it would seem the obvious 
prime matter for data pooling: mega-analysis can reduce both false 
positive and false negative results. However, three practical diffi cul-
ties have severely limited the application of this approach. First, 
fMRI measurements from a single study typically generate gigabytes 
of data. Databasing such large volumes of information and making 
it publicly available is no trivial technical task (Van Horn et al., 
2001; Bockholt et al., 2009). Secondly, fMRI data sharing initiatives 
have in the past sparked serious objections in the scientifi c commu-
nity, which has often proven reticent to share data that are diffi cult 
and expensive to acquire (Koslow, 2002). Only a very small fraction 
of fMRI experiments are nowadays publicly available for download. 
Finally, there is currently a paucity of quantitative methods that are 
able to cope with the processing complexity that may arise in fMRI 
data mega-analysis. These factors create a classical egg and chicken 
situation: as very limited data are available for download, limited 
effort is put into developing mega-analysis methods, which in turn 
further limits the appeal of data-sharing in this format.

This situation, however, is starting to change. Empirical stud-
ies have shown low scanner-related variance relative to between-
subject variability and measurement error (Costafreda et al., 2007; 
Suckling et al., 2008) thus encouraging multi-center designs and 
associated databasing technology (Keator et al., 2008). Methods of 
analysis are also starting to refl ect the need for large-scale integra-
tion of results (Pinel et al., 2007; Costafreda et al., 2009b; Dinov 
et al., 2009; Salimi-Khorshidi et al., 2009), as discussed below.

Statistical maps as intermediate format
The complexity in databasing and publishing time-series data 
would be reduced if instead statistical brain maps were made 
publicly available. If effect-size brain maps were accompanied by 
their standard error images, then usual effect-size meta-analysis 
methods could be applied (Whitehead, 2002), and power could 
be aggregated across studies with smaller databasing overheads. 
Additionally, standard random-effects fMRI analysis techniques 
could be used validly on such summaries (Salimi-Khorshidi et al., 
2009). If subject-level statistical maps, rather than group-level 
maps, were to be released, this would also allow the examination 
of the causes of between-subject variability, which has been con-
sistently identifi ed as the main source of heterogeneity in fMRI 

measurements (Zou et al., 2005; Costafreda et al., 2007; Thirion 
et al., 2007; Suckling et al., 2008).

In spite of its convenience, it must be stressed that such inter-
mediate data format would also have its disadvantages. Temporal 
data, and therefore, connectivity information, would be lost in the 
translation. Relative to time-series pooling, extraneous variability 
would also be introduced by those statistical maps, as different labs 
would report maps obtained through varying pre-processing and 
fi rst-level analysis approaches.

REQUIREMENTS AND ANALYSIS TOOLS FOR VALID 
fMRI DATA POOLING
SYSTEMATIC SEARCH STRATEGY
The validity of data pooling is crucially dependent on which studies 
are included. In effect-size meta-analysis, a particularly important 
problem is publication bias. Also known as the “fi le-drawer” prob-
lem, it originates from the fact that negative studies are less likely 
to be published, biasing the overall estimate of effect size towards 
higher values (Sterne and Egger, 2001). Unbiased, exhaustive and 
a priori literature-sampling strategies are necessary to ensure the 
inclusion of all relevant studies, or at least of a representative sam-
ple, of which only clearly fl awed or inadequate studies should be 
excluded. It is worth insisting that these sampling considerations 
also apply to mega-analysis of fMRI data, as negative studies may be 
less likely to be represented in publicly available data repositories. 
In our view, databases containing the results of fMRI experiments 
(e.g. Brainmap, fMRIDC) (Laird et al., 2009) should be used to 
complement the systematic literature search bearing in mind the 
caveat they do not include all potential studies, and the criteria for 
inclusion in the database are often not explicitly stated, creating 
room for selection biases. By contrast, in coordinate-based meta-
analysis, the focus of the analysis is usually the determination of 
the location of an effect, which may be less affected by the exclusion 
of non-signifi cant results (Fox et al., 1998).

STUDY AS A RANDOM EFFECT
Both meta- and mega-analysis require analysis methods adapted to 
the specifi cities of pooling data across experimental designs. As dis-
cussed earlier, functional MRI experiments are highly heterogene-
ous in their subjective recruitment strategies, cognitive paradigms, 
acquisition software and hardware, and analysis methods. Even 
with standardized protocols and adequate data preprocessing (Zou 
et al., 2005; Friedman et al., 2006; Costafreda et al., 2007) two fMRI 
measurements coming from the same center can be expected to be 
more similar to each other than what would be expected by chance 
alone, compromising crucial independence assumptions inherent 
to most analysis methods. Therefore, the existence of multiple sites 
for data acquisition will in most cases have to be recognized during 
data analysis as well.

In the analysis of the effi cacy of clinical interventions, meta-
analysis of (scalar) data from heterogeneous trials is also the rule 
(Whitehead, 2002). It is often dealt with in a double strategy: (1) by 
employing study-level covariates that are likely to explain some 
of the study heterogeneity as fi xed-effects in a meta- regression 
approach, and (2) through the inclusion of a study-level error 
term capturing residual inter-study variability. This second point 
is equivalent to treating the study factor as a random effect, in a 

117

http://www.frontiersin.org/neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/neuroinformatics/archive


Frontiers in Neuroinformatics www.frontiersin.org September 2009 | Volume 3 | Article 33 | 

Costafreda fMRI data pooling

similar way as subjects are treated in fMRI group-level estimates 
(Mumford and Nichols, 2006).

Meta- and mega-analysis of functional imaging data could 
benefi t from a similar approach. The study should therefore be 
recognized as a further level in the usual fMRI data hierarchy of 
task runs within subjects within studies (Penny et al., 2003). Most 
methods currently in use for fMRI meta-analysis, however, con-
sider the foci of activation as the independent observations and 
ignore the clustering of coordinates in the original studies (Chein 
et al., 2002; Turkeltaub et al., 2002; Wager et al., 2004; Laird et al., 
2005a; Neumann et al., 2005). These approaches are therefore fi xed-
effects meta-analysis techniques. The results of fi xed-effects meta-
 analysis only apply to the specifi c sample of experiments under 
consideration and cannot be generalized to a population of studies 
if between-study heterogeneity is present. In practical terms, the 
main undesirable consequence of omitting study-level clustering 
is that statistically signifi cant density can be obtained with fi xed-
effects methods simply by the report of several contiguous foci 
by a single paper, which may have been obtained through overly 
generous statistical thresholding and thus a marker of poor study 
quality (Wager et al., 2007). Random-effects alternatives for fMRI 
meta-analysis have been recently developed using simulation-based 
(Wager et al., 2007; Eickhoff et al., 2009) and parametric analytical 
approaches (Costafreda et al., 2009a), and should in our view be 
preferentially employed.

In particular, PVM (Costafreda et al., 2009a; Figure 1) is a statis-
tical method for function-location meta-analysis that allows valid, 
powerful, fast and scalable detection of the areas with signifi cance 
concordance between studies for maps expressed in proportions. 
That is, the statistic computed in this approach is, for each voxel, 
the proportion of studies that have reported activation within a 
pre-determined local neighbourhood. Proportions are “natural” 
random effects estimators, in the sense of taking between-study 
variability into account. They are also easily interpretable, even 
when translated into a map. Finally proportions, and ratios between 
proportions, can be directly used as quantitative estimates of prob-
ability, for example as guidance in reverse inference.

Regarding mega-analysis, the existence of study-level clustering 
effects would need to be recognized through, for example, the intro-
duction of a study level in the analysis hierarchy (e.g. runs within 
tasks within subjects within group within centers/studies). If the 
highest-level, “top” summary map is of interest, a random-effects 
analysis can be obtained through the application of split-level anal-
ysis using usual software libraries, such as FSL (Salimi-Khorshidi 
et al., 2009). Costafreda et al. (2009b) presents a mega-analysis tool 
that may be useful for more complex designs, especially in the 
presence of clusters (families, studies) with potentially low degrees 
of freedom. If covariate estimation is required, then clusters with 
low counts may present an identifi ability problem (if number of 
parameters ≥ items in cluster). The Bayesian all-in-one approach 
allows the estimates to “borrow strength” across clusters, thus sta-
bilizing the model fi tting process (Bowman et al., 2008).

STUDY DIFFERENCES AS FIXED EFFECTS
As discussed earlier, heterogeneous experimental designs are inevi-
table in many data pooling situations. Some of this heterogeneity 
may have direct consequences on the results of the experiments. 

Known or suspected sources of heterogeneity may be controlled at 
the study selection step by restriction, for example by only includ-
ing studies with exclusively right-handed samples in a language 
meta-analysis. At the analysis step, covariates can be included as 
fi xed effects in a meta-regression strategy (Costafreda et al., 2008). 
Covariate adjustment is often an attractive option, because the 
addition of the extraneous factor as a covariate maximizes power 
both by allowing the inclusion of a larger number of studies than if a 
restrictive approach had been used, and by removing the variability 
associated with the covariate factor. Whether a covariate is, in fact, 
infl uencing the summary fi ndings can then also be determined, 
which may be interesting in itself.

Finally, if the covariate is associated with both the outcome 
under study and the predictor of primary interest, this association 
may result in confounding, which would lead to biased meta-
 analytical fi ndings if not taken into account (Greenland et al., 
1999; Lawlor et al., 2004). A hypothetical example of confounding 
would be created if fMRI was a more sensitive technique than PET, 
and experiments on negative emotions were mostly done with 
fMRI while those on positive emotions were conducted with PET. 
Thus, ignoring this potential confounding effect in the analysis 
would create an apparent increase in the probability of amygdala 
activation for negative over positive emotions. Two diffi culties 
have to be acknowledged when dealing with confounding. First, 
potential confounders are not always accurately measured. For 
example, while functional neuroimaging publications do not 
always disclose enough methodological detail to ascertain whether 
fi xed or random-effects multisubject analysis was performed, this 
methodological choice infl uences the sensitivity and generaliz-
ability of the analysis (Friston et al., 1999). Accurate and exten-
sive meta-data collection is thus a pre-requisite for pooled data 
analysis, which should benefi t from recent advances in automated 
meta-data collection (Bockholt et al., 2009). Second, the number 
of potential confounding factors that can be effectively introduced 
in the analysis depends ultimately on the size of the available 
dataset. A general rule-of-thumb in linear modeling is that one 
predictor may be included for each 10 independent observations 
(Harrell, 2001), although newer statistical approaches may be 
able to remediate this limitation (Fu et al., 2008). If these steps 
for heterogeneity control are not available, for example due to 
incomplete information, then the likely impact of potential con-
founding factors should be addressed when discussing the results 
(Costafreda et al., 2006).

Crucially, random and fi xed-effects strategies are not compet-
ing alternatives to deal with between-study heterogeneity. When 
possible, pertinent covariates can be used in a meta-regression to 
explain some of the variability or to study the causes for between-
study heterogeneity. Additionally, all attempts at fMRI data pooling 
should include a study-level error even if study factors are already 
included as fi xed effects, because it is unlikely that the measured 
covariates capture all the between-study variability.

THE VALUE OF fMRI DATA POOLING
Pooling data across sites responds primarily to pragmatic necessi-
ties, such as the maximization of sample size, especially in elusive 
clinical populations. It can also satisfy the need to utilize already 
existing, but frequently underpowered, neuroimaging studies in 
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a more effi cient way than the consideration of their individual 
 fi ndings. Last but not least, as fMRI research grows exponentially, 
quantitative synthesis of published fMRI research will remain 
necessary simply to allow researchers a summary of a moun-
tain of research data. As functional neuroimaging becomes more 
data-rich, such computational approaches able to extract novel 
insights from existing large-scale datasets are likely to become 
increasingly valuable.
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