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Sepsis was first described by the ancient Greek physicians over 2000 years ago.

The pathophysiology of the disease, however, is still not fully understood and hence

the mortality rate is still unacceptably high due to lack of specific therapies. In

the last decade, great progress has been made by shifting the focus of research

from systemic inflammatory response syndrome (SIRS) to multiple organ dysfunction

syndrome (MODS). Sepsis has been re-defined as infection-inducedMODS in 2016. How

infection leads to MODS is not clear, but what mediates MODS becomes the major topic

in understanding the molecular mechanisms and developing specific therapies. Recently,

the mechanism of infection-induced extensive immune cell death which releases a

large quantity of damage-associated molecular patterns (DAMPs) and their roles in the

development of MODS as well as immunosuppression during sepsis have attracted

much attention. Growing evidence supports the hypothesis that DAMPs, including high-

mobility group box 1 protein (HMGB1), cell-free DNA (cfDNA) and histones as well as

neutrophil extracellular traps (NETs), may directly or indirectly contribute significantly

to the development of MODS. Here, we provide an overview of the mechanisms and

consequences of infection-induced extensive immune cell death during the development

of sepsis. We also propose a pivotal pathway from a local infection to eventual sepsis

and a potential combined therapeutic strategy for targeting sepsis.

Keywords: sepsis, extensive immune cell death, damage-associated molecular patterns (DAMPs), multiple organ

dysfunction syndrome (MODS), extracellular histones, immunosuppression

SEPSIS

Sepsis is still the leading cause of death inmost intensive care units (ICU) with an unacceptably high
mortality rate (10–20%), although there has been a significant decrease in mortality rates in recent
decades (from 1994 to 2014) (1, 2). Center for Disease Control in the United States estimated that
over half a million people developed sepsis there per year with about a 1.5% increase per annum
(3). A recent investigation of a cohort of 568 patients who died in six hospitals in the United States
showed that sepsis presented in 300 patients (52.8%) and was the most common immediate
cause of death in 198 patients (34.9%), indicating that sepsis is still the major cause of death in
hospitals (4). For years, it was believed that high morbidity and mortality were due to systemic
inflammatory response syndrome (SIRS), but many clinical trials to inhibit inflammation failed to
improve survival (5–7). In 2016, sepsis has been redefined as multiple organ dysfunction syndrome
(MODS) caused by a dysregulated host response to infection (8) and is now termed Sepsis-3.
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This has changed the focus from SIRS (9, 10) to MODS. Thus,
finding what mediates MODS is now the major challenge in
understanding the pathophysiology of sepsis (11).

DISCOVERY OF IMMUNE CELL DEATH IN
SEPSIS

Cheadle et al. (12) reported that a significant lymphopenia
occurred in a group of trauma patients with sepsis. Years
later, lymphopenia in sepsis began to attract increased attention
(13–16). In human, depletion of both B cells and CD4+ T
lymphocytes caused by sepsis-induced apoptosis were reported
(16). In baboon and murine sepsis models, extensive apoptosis
of lymphoid tissue was also found (17–19). Rapidly progressing
lymphocyte exhaustion after severe sepsis has been widely
recognized (20) and early circulating lymphocyte apoptosis was
associated with poor outcome in patients with sepsis (21, 22).
Thus, a number of research groups have focused on the role of
altered cell death in contributing to MODS in sepsis and clinical
trials for a new type of therapy has emerged (23–26).

TYPES OF IMMUNE CELL DEATH AND
CLINICAL RELEVANCE

Lymphocyte death occurs in the spleen, thymus, and lymphoid
tissues (27). The peripheral lymphocyte count is also dramatically
reduced in both sepsis models and patients (16, 22, 24). Changes
in the subsets of lymphocyte involved varies depending on the
bacterial origin of sepsis (28), but there is no doubt that both
T and B lymphocyte subsets are significantly changed by sepsis.
CD3+, CD3+CD4+, and CD3+CD8+ lymphocyte counts drop
significantly in septic patients, while CD3+CD4+ lymphocytes
return to normal after 14 days in most patient survivors, but
this is not true of the CD3+CD8+ counts (29). The ratio of
Th1/Th2 helper cells has been found to be significantly lower
in sepsis (30). Circulatory Th1, Th2, Th17, and Treg as well
as Th1/CD4 + ratios are significantly lower in non-survivors
compared to survivors (31). The αβ and γδ T cell subsets are
all reduced in sepsis, but the CD3+ CD56+ γδ T cells show the
largest decrease, and their loss is strongly associated with septic
severity and mortality (32, 33). Sepsis causes progressive and
profound depletion of B lymphocytes in patients (16). Thus, the
percentage of CD19+CD23+ was significantly lower in patients
who died of septic shock than in survivors (34). In a mouse poly-
microbial sepsis model, substantial apoptosis of lamina propria B
cells mediated by FasL has been reported (35).

Not only are B and T lymphocytes susceptible to programmed
cell death, many other types of immune cells including
neutrophils, macrophages and dendritic cells are also vulnerable
to cell death in sepsis (22, 36, 37). Neutrophils are the first line
of defense against invading bacteria. Neutrophils phagocytose
bacteria or form neutrophil extracellular traps (NETs), and
both these mechanisms are critical for clearance of invading
bacteria (38). After taking up bacteria, neutrophils undergo a
respiratory burst and die (39). NETs formation is also a novel
program for cell death (40–42). Therefore, large numbers of

neutrophils die during sepsis. In mouse models, apoptosis of
mouse peritoneal macrophages may be due to the release of
HMGB1 in sepsis (43). Dendritic cells have unique capabilities
to regulate the activity and survival of T and B cells. Thus splenic
interdigitating dendritic cells (IDCs) and follicular dendritic cells
(FDCs) initially expand in sepsis. The FDCs expand to fill the
entire lymphoid zone of spleen, which is otherwise occupied
by B cells (44). Twelve hours after the onset, these dendritic
cells undergo apoptosis (44). In contrast, natural killer (NK) cell
counts increase in early sepsis and higher levels predict mortality
in severe sepsis (45). Thus, the ratio of NK cells to CD4+
lymphocytes was used to predict the mortality of patients with
sepsis (46). NK cells also contribute to the lethality of a murine
model of sepsis, and NK cell-depleted and NK cell-deficient mice
showed much high survival rates than wild type controls (47).

MECHANISMS OF IMMUNE CELL DEATH

Apoptosis is the major mechanism of lymphocyte death in sepsis
(35, 48). Both the death receptor and mitochondrial pathways
activated by multiple triggers are involved in apoptosis of a broad
range of subsets of lymphocyte (49). Apoptosis could occur via
p53-dependent and -independent pathways (50). The increase
in apoptosis in the thymus, spleen, lungs, and gut during poly-
microbial sepsis of mice is mediated by FasL via death receptors,
but not by endotoxins nor TNF-α (14, 35). Monocytes can induce
Fas-mediated apoptosis of T lymphocytes (51). Caspase-1 is
involved in apoptosis of splenic B lymphocytes (52). Activation
of caspase-3 and externalization of phosphatidylserine in CD4+,
CD8+, and CD19+ lymphocytes were reported in patients with
sepsis (53). Activation of programmed cell death ligand 1 (PD-
L1) pathway is involved in T cell exhaustion in patients with
sepsis (54). In addition, endoplasmic reticulum (ER) stress can
mediate lymphocyte apoptosis in sepsis (55). Bcl-2 is an anti-
apoptosis protein and is found to be reduced in sepsis (56).
Overexpression of Bcl-2 in septic mice provides protection by
decreasing lymphocyte apoptosis (57, 58). In CD4+ T and B
lymphocytes isolated from septic patients, the Bcl-2 protein was
decreased but the expression of pro-apoptotic proteins Bim,
Bid, and Bak were massively upregulated (23, 53). It has also
been reported that overexpression of histamine H4 receptors
counteracts the effect of NF-kB in contributing to splenic cell
apoptosis in sepsis (59).

There is no doubt that multiple factors are involved in
lymphocyte apoptosis, but the detailed molecular mechanisms
are still not fully understood. In addition, apoptosis has been the
major focus of cell death in last two decades, but recently other
processes have emerged, e.g., pyroptosis, necroptosis, ferroptosis,
parthanatos, entotic cell death, NETotic cell death, immunogenic
cell death, and mitotic catastrophe, to explain the complexity of
cell death (60). Pyroptosis is caused by rapid plasma-membrane
rupture by non-selective gasdermin-D pore and releases of
DAMPs (61). Neutrophil and endothelial cell pyroptosis has been
considered as a major pathological factor in sepsis (62, 63).
Increased membrane permeabilization in necroptosis releases
specific DAMPs, and lipid peroxidation in ferroptosis may be
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involved in renal failure (64–66). These regulated cell deaths may
turn to necrosis if their resolution is delayed (67). The roles and
mechanisms of different types of cell death in sepsis is far from
clear and more work need to be done to understand how the
immune cells die so extensively in sepsis.

Neutrophil respiratory burst and NETosis all involve
generation of reactive oxygen species (ROS) and NADPH
oxidase pays a critical role (40). Endotoxin reduced CD95-
mediated neutrophil apoptosis occurs via cIAP-2 activation
and the degradation of caspase-3 (68). The detailed molecular
mechanisms of neutrophil respiratory burst, NETosis, and
homeostasis will not be discussed in this review.

In summary, the types of cell death and underlying
molecular mechanisms are still not fully understood, although
the subpopulations of immune cells that die during sepsis is
almost clarified.

ROLES AND CONSEQUENCE OF IMMUNE
CELL DEATH

It is known that the extent of immune cell death is strongly
associated with severity and mortality of sepsis. However,
the biological roles are still not clear. The direct cause-effect
relationship of extensive immune cell death with sepsis has not
yet been proven. When splenectomy to remove the largest lymph
organ in mice prior to septic modeling was undertaken, it is
found that this procedure protects mice against secondary sepsis
(69, 70). This observation suggests that extensive splenocyte
death is potentially pathogenic in sepsis. Neutrophil death,
particularly NETosis, has been reported to be involved in the
development of multiple organ failure in sepsis (71–73). Abrams
et al. (74) recently showed that strong NETs formation mainly
occurs in severe sepsis and is associated with disseminated
intravascular coagulation (DIC) and ultimately poor outcomes.
Patel et al. (75) recently showed that a reduction in ex vivo
PMA-induced NETosis of neutrophils isolated from patients
with severe sepsis is associated with poorer outcomes. This
observation demonstrates the pathological role of in vivo NETs
formation, a mechanism that eliminates the majority of pro-
NETosis neutrophils. This result is also consistent with the
current general consensus (72, 74). However, the pathological
role of immune cell death in sepsis is still not fully understood,
but the following mechanisms are widely considered to be
very important.

DAMPs and Histone Release
The “danger” theory was proposed by Matzinger in 1994 (76)
that damaged cells initiate immune responses by releasing
substances were termed damage-associated molecular patterns
(DAMPs) byWalter Land in 2003 (77). DAMPs represent danger-
associated or damage-associated molecular patterns, which are
released from the cell through activation of inflammasome or
passively following cell death (78–80) and recognized by pattern
recognition receptors (PRRs), including Toll-like receptors
(TLRs) NOD-like receptors, DNA sensors, C-type lectin receptor,
and non-PRR DAMP receptors, including RAGE receptor (81).

Many DAMPs that origin from extracellular matrix and different
components or organelles of cells have been identified, such as
histones, DNAs, HMGB1, heat shock protein, and ATP. More
information can be found in a recent review (82). In sepsis, a
large number of immune cell death releases a large quantity of
DAMPs (83, 84). Similarly, NETs are released from neutrophils
during inflammation (41). These NETs are brokendown into free
DNA and histones and become a source of DAMPs (72, 85).
DAMPs trigger the host’s immune response, activate coagulation
and mediate MODS (86–88). Therefore, they play a central role
in development of sepsis and its progression (84, 89). DAMPs
include a large group of molecules and are involved in different
pathological processes during sepsis.

Release of chromatin protein HMGB1 triggers inflammation
and mediates endotoxin lethality in mice (90, 91). HMGB1
facilitates LPS entering cells to trigger pyroptosis, which plays
an important role in sepsis (63, 92, 93). In 2009, extracellular
histones were shown to be major mediators of death in sepsis
(94) and have attracted more and more attention. Extracellular
histones bind to the cell membrane and form pores to allow
calcium influx which leads to calcium overload, which directly
damages cells that contacted (87, 88). Histones also induce rapid
thrombocytopenia, increase thrombin generation and contribute
to DIC (95–99). Anti-histone antibodies and non-anticoagulant
heparin neutralize extracellular histones and improves survival
in sepsis (87, 88, 99–101). Recently, the role of extracellular
histones in the development of MODS in critical illnesses and
animal models, including sepsis, pancreatitis, and trauma, has
been demonstrated (86). Mitochondrial DNA released into the
cytosol or outside cells also serves as DAMPs and play important
roles in sepsis (11, 102). In addition, circulating cell-free DNA
is associated with poor outcomes in patients with severe sepsis
(103–106). The pathological roles of these cell-free DNAs are
not clear but strengthening blood clots resistant to fibrin lysis
may facilitate DIC development (107). A recent report shows
increased S100 proteins, including A8/A9 and A12, which are
types of DAMPs, are associated with a higher risk of death in
patients with sepsis (108).

NETs Formation
Although NETs are an important source of DAMPs,
NETs formation has specific roles in thrombosis, DIC and
microcirculatory impairment. NETs formation induces organ
injury and exacerbates the severity of sepsis (42, 73, 74, 109–112).
Suppression of NETosis using PAD4 inhibitors or cleavage of
NETs using DNase 1 improves survival in a murine sepsis model
(113), but other reports showed the opposite effect (114, 115).
Recently it has been reported that delayed, not early treatment
with DNase 1 reduces organ injury and improves outcome in
sepsis model (116). These observations strongly indicate the
complex roles of NETs formation during sepsis.

Coagulopathy and DIC
Sepsis-induced coagulopathy and DIC play a major role
in microcirculatory impairment and MODS development
(117). DAMPs play important roles in septic coagulopathy
(118). Extracellular histones are the most important DAMPs
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that promote coagulation activation by inducing rapid
thrombocytopenia, enhancing thrombin generation, impairing
thrombomodulin-dependent protein C activation, damaging
endothelial cells and increasing tissue factor activity (95–
99). cfDNA exert both pro- and anti-fibrinolytic effects and
NETs serve as scaffolds for immunothrombosis and promote
intracellular coagulation together with platelets (107, 119, 120).
The overall consequence is the development of coagulopathy and
DIC, which significantly enhance disease severity and worsen the
outcomes (74, 86, 99, 104, 105).

Immune Suppression
As our understanding of the pathophysiology in sepsis has
improved, we now know that the role of immunosuppression is
more important than previously thought. IL-7, as an immune-
adjuvant therapy that increased absolute lymphocyte counts
and in circulating CD4+ and CD8+ T cells (3–4 fold), and T
cell proliferation and activation (121), supports this contention.
However, why IL-7 protected mice with sepsis but showed
no effects on 28-days survival of patients with sepsis is not
clear and further investigation is required (122). IL-15 is also
reported to prevent apoptosis, reverse innate and adaptive
immune dysfunction, and improve survival in murine models
of sepsis (123). Changes associated with immunosuppression
is more obvious in patients who died of sepsis than those
who survived (31, 124). Immune cell death, particularly T
and B lymphocytic apoptosis, is a major contributor to the
development of immunosuppression (15, 32, 125), besides
the usual anti-inflammatory cytokine release, such as that
of IL-10 (126). Myeloid-derived suppressor cells (MDSCs)
are closely related to neutrophils and monocytes. They
are immature myeloid cells that have immunosuppressive
functions and play important roles in the development of
immunosuppression in sepsis (2, 127–129). DAMPs activate
TLR-4 to enhance MDSCs accumulation (130). Many DAMPs
possess both pro- and anti-inflammatory properties to induce
both immune response and immunosuppression, which
has been well-studied in trauma (131). Recently, the roles
of PD-1 and PD-L1 in sepsis as key mediators of T-cell
exhaustion in infections have been investigated (132, 133).
Blocking PD-1 or PD-L1 inhibits lymphocytic apoptosis,
reverses monocyte and immune dysfunction, and improves
survival during sepsis (54, 134–136). Monneret et al. (137)
demonstrated that after septic shock anti-inflammatory response
became dominate with high IL-10 and low HLA-DR on
monocytes, a surrogate marker of monocyte non-responsiveness
(138). IL-7 and anti-PD-1 or blocking IL-10 reverse sepsis-
induced immunosuppression, including increasing HLA-DR
expression and IFN-γ production, and improve survival
in mouse models (126, 139). Monitoring HLA-DR, PD-1,
or PD-L1 may guide clinical immunotherapies (140). All
available evidences showed no doubt that immunosuppression
is the major pathological feature and immunotherapies
will become a critical management in severe sepsis with
poor outcomes.

In summary, the major consequence of immune cell death
is the DAMPs release and NETs formation, both of which

contribute to the development of coagulopathy and MODS.
Another major consequence is immunosuppression. All these
consequences are the major pathological changes during severe
sepsis, strongly indicating that DAMPs and NETs are critical in
the development of severe sepsis.

INHIBITION OF IMMUNE CELL DEATH IN
SEPSIS AND POTENTIAL DOWNSTREAM
THERAPY

Caspase inhibitors, which inhibit apoptosis and improve the
survival of immune cells, have been demonstrated to improve
survival in sepsis. Thus, caspase-3−/− mice have decreased levels
of apoptosis (141, 142). Increasing anti-apoptotic proteins, such
as Bcl-2, or decreasing pro-apoptotic proteins, such as Bim,
reduces immune cell apoptosis and improves survival in septic
animal models (57, 58, 142–145). The Protease Inhibitor (PI)
class of antiretroviral agents also significantly improved survival
of mouse septic models by reducing lymphocyte apoptosis (146).
These anti-apoptosis therapies have been demonstrated in animal
models (147), but there have been no successful clinical trials in
humans as yet.

Therapies with immune modulators have attracted
more attention in recent years. The success of the IL-
7 clinical trial shed some light on the management
of sepsis (121). Immunotherapy is potentially a major
strategy (145, 148, 149), but the focus of research has
shifted from simply suppressing the immune response to
immune modulation and precision medicine based on
immune status (148, 150–153). Targeting immune cell
checkpoints during sepsis is also a potential therapeutic
strategy (154).

Another promising strategy is to neutralize DAMPs, including
histones, DNAs and HMGB1. Anti-histone therapy has been
proposed by Xu et al. from 2009 (94). Anti-histone antibodies
or heparin can neutralize extracellular histones and reduce
their toxicity so as to increase survival rates in septic animal
models, but no clinical trial has been reported yet (86–88,
94, 100). Normal heparin has anticoagulant activity which
may cause side effects if it is used at a wrong time with
high doses. Non-anticoagulant heparin has been developed and
hold the promise for future clinical application (100, 155).
DNase 1, used to digest free DNA or NETs, has also been
shown to increase the survival rate of septic animal models
(116, 156). Many reagents targeting HMGB1, its release or
downstream pathways have been reported, but no drug has
yet been fully developed for clinical management of sepsis
(157, 158).

Correction of downstream events, such as coagulopathy, have
been trialed. Activated protein C, an anti-coagulant enzyme, was
used clinically for a few years, but was withdrawn from the
market due to failure in randomized controlled trials (159). It
is very difficult to justify the correct time to use anti-coagulants
and fibrinolysis reagents, such as low-molecular-weight heparin,
antithrombin, thrombomodulin, and tissue factor inhibitors
(117). Therefore, anti-coagulant therapy for sepsis is difficult to
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FIGURE 1 | Potential pathological mechanisms of sepsis which develops from a local bacterial infection and potential therapeutic strategies. Gray boxes: pathways

from a local infection to sepsis. Once a local bacterial infection causes host abnormal immune responses to pathogen-associated molecular pattern (PAMPs),

extensive immune cell death, including B/T lymphocytes (spleen, thymus, lymphoid tissues, and peripheral blood), and neutrophils could occur and result in

immunosuppression. Neutrophils could also form NETs. NETs and immune cell death could release a large quantity of DAMPs, mainly HMGB1, cfDNA, and histones.

HMGB1 can delivers LPS into cells to trigger pyroptosis by forming pores in the cell membrane. Extracellular histones could also bind to cell membrane to form pores

which may cause calcium overload and subsequently endothelial damage and organ injury. Indirectly, extracellular histones activate coagulation to form thrombi in the

microvascular lumen to impair microcirculation. cfDNA could serve as scaffolds for thrombosis or stabilize thrombi by increasing their resistance to fibrinolysis.

Microcirculatory impairment is the major feature of sepsis and a major contributor to MODS. Red boxes: Potential therapeutic strategies. Besides early diagnosis,

prompt use of effective antibiotics, and supportive therapies, such as maintaining blood pressure and circulation, improving microcirculation, and protecting individual

organs, the potential specific therapies include the combination of modulating immune status, preventing immune cell death and NETosis, neutralizing or clearing

DAMPs. These new approaches could become the leading research directions in reducing the mortality rate of sepsis.

use clinically. Developing therapies to target upstream events
appears a better strategy.

CLINICAL PERSPECTIVE

Sepsis was first described by the ancient Greek physicians.
Despite millennia of experience with this illness, we are still
investigating the nature of sepsis. In the last decade, great
progress has been made by shifting the focus of research from

SIRS to MODS. However, the pathophysiology of sepsis is
still not fully understood, particularly the roles of extensive
immune cell death and DAMPs. Many types of DAMPs could
directly or indirectly mediate MODS by their cytotoxicity or by
triggering inflammation and activating coagulation, respectively.
Therefore, the axis of infection, immune response, immune
cell death, DAMPs release and MODS could be the central
pathological pathway in the transition of a local infection
to sepsis (Figure 1).
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Targeting this central pathological pathway is already
underway. However, fully understand the pathophysiology
of sepsis is still the first task toward the success in
clinical management.

DISCUSSION

There is no doubt that extensive immune cell death is a major
driver of sepsis. This mainly involves T and B lymphocyte
apoptosis in the spleen, thymus, lymphoid tissues, and
circulation. Neutrophil apoptosis, respiratory burst, and
NETosis are also involved in this event. Macrophages and
dendritic cells may also be involved, but their contributions
may be negligible. However, the mechanism of how bacterial
infection leads to extensive immune cell death is still not
fully understood. Moreover, significant gaps still exist in our
understanding of how extensive immune cell death proceeds
to the development of sepsis. The obvious consequence
of immune cell death would be immunosuppression but
no direct link has been demonstrated. It is clear that
the release of large quantities of DAMPs can enhance
inflammation, directly damage endothelial cells, impair
microcirculation and cause multiple organ injury, but to

what extent these DAMPs contribute to the development
of sepsis is still unclear. Some DAMPs, such as histones
and NETs, strongly activate coagulation and eventually lead
to DIC. Therefore, the importance of DAMPs in sepsis
development and progression cannot be underestimated. In
the future, targeting the axis of immune cell death-DAMPs
release-and microcirculatory impairment, will become the
most comprehensive strategy to reduce the unacceptably high
mortality rate of sepsis.
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Thrombomodulin (TM), which is predominantly expressed on the endothelium, plays an

important role in maintaining vascular homeostasis by regulating the coagulation system.

Intravascular injury and inflammation are complicated physiological processes that are

induced by injured endothelium-mediated pro-coagulant signaling, necrotic endothelial-

and blood cell-derived damage-associated molecular patterns (DAMPs), and DAMP-

mediated inflammation. During the hypercoagulable state after endothelial injury, TM

is released into the intravascular space by proteolytic cleavage of the endothelium

component. Recombinant TM (rTM) is clinically applied to patients with disseminated

intravascular coagulation, resulting in protection from tissue injury. Recent studies

have revealed that rTM functions as an inflammatory regulator beyond hemostasis

through various molecular mechanisms. More specifically, rTM neutralizes DAMPs,

including histones and high mobility group box 1 (HMGB1), suppresses excessive

activation of the complement system, physiologically protects the endothelium, and

influences both innate and acquired immunity. Neutrophil extracellular traps (NETs)

promote immunothrombosis by orchestrating platelets to enclose infectious invaders

as part of the innate immune system, but excessive immunothrombosis can cause

intravascular injury. However, rTM can directly and indirectly regulate NET formation.

Furthermore, rTM interacts with mediators of acquired immunity to resolve vascular

inflammation. So far, rTM has shown good efficacy in suppressing inflammation in

various experimental models, including thrombotic microangiopathy, sterile inflammatory

disorders, autoimmune diseases, and sepsis. Thus, rTM has the potential to become a

novel tool to regulate intravascular injury via pleiotropic effects.

Keywords: thrombomodulin, damage-associated molecular patterns, disseminated Intravascular coagulation,

neutrophil extracellular traps, high mobility group box 1, immunothrombosis

INTRODUCTION

Endothelial cells coordinate vascular homeostasis, including vessel permeability, provision of
a lining surface, and coagulation system regulation. To prevent unnecessary clotting, the
endothelium expresses anti-coagulant factors, such as tissue factor pathway inhibitor and
thrombomodulin (TM), and regulators of platelet activation, such as nitric oxide, prostacyclin,
and ADPase, at steady state. When traumatic vascular injury occurs, platelet aggregation and
the activated blood coagulation system invoke a thrombus to prevent blood loss. Moreover,
damaged endothelium reduces the expression of anti-coagulant and platelet molecules, and releases
pro-coagulant factors via the activation of nuclear factor-kappa B (NF-κB) signaling, consequently
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enhancing thrombus formation. Meanwhile, during non-
traumatic intravascular injury, including disseminated
intravascular coagulation (DIC), atherosclerosis, and thrombotic
microangiopathy (1), the endothelium collaborates with the
blood coagulation system and platelets to cope with the
traumatic situation, possibly forming an unwanted thrombus.
In addition, cross-talk between the activated coagulation system
and inflammatory signaling leads to mutual amplification (2).
Accordingly, damage-associated molecular patterns (DAMPs)
released from injured tissues and blood cells activate the
innate immune system and elicit vascular inflammation (3, 4).
DAMPs directly activate platelets and indirectly induce platelet
aggregation via interaction with neutrophils, leading to an
enhancement of the pre-existing pro-coagulant state. This
series of events of coagulation and blood cell activation,
collectively referred to as immunothrombosis, is supposed to
physiologically enclose and effectively kill invading microbes
as part of an innate immune response (5). The structural
basis of the immunothrombotic clot is formed by fibrin,
consisting of coagulant factors, platelets, and leukocytes. The
immunothrombus can also be involved in the development
of non-infectious diseases, including ischemia-reperfusion,
drug-induced tissue damage, autoimmune diseases, and cancer
as an executor of intravascular injury. In the pro-coagulant
state, TM derived from altered endothelium serves to maintain
vascular homeostasis by participating in the coagulation system.
Furthermore, TM possesses multiple regulatory properties
against inflammation beyond its anti-coagulant effect, which
could possibly contribute to the termination of intravascular
injury (6, 7).

ANTI-COAGULANT EFFECTS OF TM IN
VASCULAR BIOLOGY

TM is a transmembrane glycoprotein encoded by theTHBD gene,
and it is expressed on endothelium, immune cells (including
neutrophils, macrophages, monocytes, and dendritic cells),
vascular smooth muscle cells, keratinocytes, and lung alveolar
epithelial cells (8–10). The structure of TM comprises five
domains; each domain possesses a different function. Surface
domains are a lectin-like domain (TMD1), a domain with
six epidermal growth factor-like structures (TMD2), and a
serine- and threonine-rich domain (TMD3). Certain stimuli,

Abbreviations: AE-IPF, Acute exacerbation of idiopathic pulmonary fibrosis;

ANCA, Anti-neutrophil cytoplasmic antibody; APC, Activated protein C;

DAMPs, Damage-associated molecular patterns; DIC, Disseminated intravascular

coagulation; EGPA, Eosinophilic granulomatosis with polyangiitis; GPA,

Granulomatosis with polyangiitis; GVHD, Graft-vs.-host disease; HMGB1,

High mobility group box 1; HUS, Hemolytic uremic syndrome; IRI, Ischemia-

reperfusion injury; LPS, Lipopolysaccharide; Mac-1, Macrophage-1 antigen;

MPA, Microscopic polyangiitis; MPO, Myeloperoxidase; NETs, Neutrophil

extracellular traps; NF-κB, Nuclear factor-kappa B; RAGE, Receptor for advanced

glycation endproducts; rTM, Recombinant thrombomodulin; STEC, Shiga

toxin-producing Escherichia coli; sTM, Serum thrombomodulin; TAFI, Thrombin

activatable fibrinolysis inhibitor; TA-TMA, transplant-associated thrombotic

microangiopathy; TLR, Toll-like receptor; TM, Thrombomodulin; TMA,

Thrombotic microangiopathy; TTP, Thrombotic thrombocytopenic purpura;

VEGF, Vascular endothelial growth factor.

including tissue factor, orchestrate the coagulation cascade and
produce thrombin as a coagulant executor. In response to
thrombin production, thrombomodulin on the endothelium
acts as a thrombin receptor to reduce the ability of thrombin
that converts fibrinogen to fibrin and activates platelet. The
thrombin-thrombomodulin complexes activate protein C and
the activated protein C (APC) inactivates Va and VIIIa, resulting
in the suppression of thrombin generation (11, 12). As such, TM
naturally serves to terminate excessive intravascular coagulation.

ANTI-INFLAMMATORY EFFECTS OF TM

The surface TMD1 domain has no anti-coagulant effects, but
has various anti-inflammatory properties. TM directly acts as
a natural regulator of inflammation via its lectin-like domain
TMD1 by (1) inhibiting leukocyte-mediated intravascular injury,
(2) neutralizing DAMPs, including high mobility group box 1
(HMGB1) protein and histones, (3) binding to bacteria-derived
components, and (4) suppressing the complement system. (1)
Transgenic mice with a genetically deleted TMD1 domain
showed increased mortality in endotoxin-induced sepsis,
together with the finding that adhesion molecule expression
and neutrophil infiltration were increased in TMD1-deficient
endothelium (13). Ex vivo studies have shown that additional
TMD1 binds to endothelial antigen during inflammation,
competitively inhibiting leukocyte migration and adhesion
(14). Furthermore, we (15) showed that recombinant TM
(rTM), containing TMD123, directly binds to neutrophils via
the macrophage-1 antigen (Mac-1) receptor, and thus inhibits
neutrophil activation. In addition, rTM affects lymphocytes
to inhibit pro-inflammatory cytokine/chemokine production
during an inflammatory response. (2) Necrotic parenchymal
cells and neutrophil extracellular traps (NETs) release HMGB1
and histones into the extracellular space. The former is a
nuclear chromatin-binding protein that transduces intracellular
pro-inflammatory signals via toll-like receptor 4 (TLR4) and
the receptor for advanced glycation endproducts (RAGE)
(16). The latter exerts distinct biological effects, including
direct cell toxicity, exacerbation of immune responses via
TLR stimulation, and the activation of platelets, consequently
exacerbating DIC, thrombosis, post-ischemic organ damage,
and sepsis (17, 18). TM potentially neutralizes these DAMPs,
attenuating intravascular injury and organ damage (19, 20).
(3) The TMD1 domain potentially binds to the Lewis Y
antigen of lipopolysaccharide (LPS) that has pro-inflammatory
properties, as it can interact with CD14 and TLRs, thus
inhibiting excessive inflammatory responses (21). (4) TM
and its TMD1 domain regulate the complement system
by eliciting complement-inhibitory signals (22). Abnormal
complement activation leads to endothelial dysfunction,
including thrombotic microangiopathy. TM may negatively
regulate the alternative complement pathway by enhancing
complement factor I-mediated inactivation of C3b. In addition,
TM interferes with thrombin-mediated complement factor C5
activation, which involves the production of anaphylatoxin,
and the formation of a membrane attack complex. TMD2
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and TMD3 also exert indirect anti-inflammatory effects
via APC production, which activates protease-activated
receptor-1 on the endothelium to induce cell protection by
inhibiting NF-κB signaling (23). Furthermore, TM-thrombin
binding enhances the activation of thrombin activation of
fibrinolysis inhibitor (TAFI) that degrades bradykinin and
complement factors (24), contributing to the regulation of
inflammation. Collectively, TM regulates inflammation, the
complement system, and endothelial protection in addition
to anti-coagulation during intravascular injury, consequently
preserving intravascular homeostasis.

NETS AND TM

Various stimuli induce NETs through their own NETs-signaling
mechanisms. However, regardless of the type of trigger,
the NETs resulting from it could become major sources
of DAMPs, and act as initiators of immunothrombosis in
the face of intravascular injury (25, 26). Thus, NETs have
the potential to become a therapeutic target for treatment
of immunothrombosis-related diseases. Previously, rTM
has been reported to downregulate several types of NET
formation. Shimomura et al. showed that rTM inhibited NET
formation following treatment with LPS-primed platelets
by suppressing TLR4 signaling (27, 28). Studies by Shrestha
et al. (29) indicated that rTM treatment ameliorated histone-
induced sepsis by neutralizing extracellular histones and
suppressing the formation of NETs (20). These previous reports
implied indirect effects against neutrophils. Recently, we (15)
could show the direct effect of rTM binding to neutrophils,
which inhibited auto-antibody-mediated NET formation.
In anti-neutrophil cytoplasmic antibody (ANCA)-associated
vasculitis, pathogenic myeloperoxidase (MPO)-ANCA binds
to MPO expressed on tumor necrosis factor α-primed
neutrophils, and the Fc region of ANCA crosslinks with
the Fcγ receptor coupled with Mac-1 on neutrophils to activate
spleen tyrosine kinase signaling and ROS production, which
results in peptidylarginine deiminase 4 activation and NET
formation (30–32). In this scenario, rTM binds to Mac-1 to
competitively interfere with ANCA binding on neutrophils,
and inhibits downstream signaling, which suppresses ANCA-
induced NET formation. Thus, TM potentially has direct
and indirect inhibitory effects on NET formation, which
contributes to the resolution of intravascular inflammation and
immunothrombosis (Figure 1A).

EXPERIMENTAL EVIDENCE OF
RTM-MEDIATED RESOLUTION OF
INFLAMMATORY INTRAVASCULAR
INJURY [SEPSIS, ISCHEMIC
REPERFUSION INJURY, THROMBOTIC
MICROANGIOPATHY (TMA), AND
MACROANGIOPATHY]

Of note, rTM containing all the extracellular domains
acts not only as an anti-coagulant, but also displays

anti-inflammatory properties, hence contributing
to the resolution of various diseases (Figure 1B
and Table 1A).

Sepsis
Sepsis involves multi-organ dysfunction with systemic
inflammatory processes, immune dysregulation, coagulopathy,
and other physiological responses. Among these processes, NETs
and necrotic cell-derived DAMPs directly injure the endothelium
and contribute to the development of immunothrombosis
through the activation of platelets, coagulation systems,
and recruitment of neutrophils (17, 25, 89, 90). In a mouse
histone-induced septic model, pretreatment with rTM
reduced mortality rates by neutralizing histones (20). In
a rat sepsis/peritonitis model (33) and a murine LPS-
induced septic model (34), rTM controlled sepsis-related
immunothrombosis by limiting abnormal hemostasis and
NET formation.

Ischemia-Reperfusion Injury (IRI)
IRI occurs in response to the physiological processes that
accompany tissue ischemia with inadequate oxygen supply.
This is followed by reperfusion that drives regulated necrosis
and subsequent inflammatory responses, leading not only to
local organ damage, but also to remote organ injury in the
form of necroinflammation (91, 92). In the animal brain,
heart, lung, and liver, rTM (the entire ectodomain with lectin-
like domain TMD1) ameliorated IRI tissue damage via anti-
inflammatory effects, including neutralization of HMGB1 and
histones, subsequently triggering the TLR4 signaling pathway
(13, 38–40, 93). In a mouse model of renal IRI, ischemia-
initiated tubular epithelial cell necrosis released extracellular
histones and induced NET formation, which further contributed
to remote lung injury (94). Interestingly, rTM (35) and a
histone-neutralizing antibody (94) ameliorated remote organ
damage, but did not have sufficient effects on local kidney
injury. Conversely, inhibition of regulated necrosis, including
necroptosis, mitochondrial necrosis, and ferroptosis, rescued
local kidney injury at primary lesions, but had less effect
on remote organ injury compared with histone neutralization
(94). The discrepancy between local and remote injury was
compatible with the phenomenon observed in an rTM-
treated intestinal IRI mouse model, in which rTM improved
remote liver injury, but not local intestinal damage (37).
These findings imply that primary necrotic organ injury
might develop based on the intracellular signaling cascades
arising in response to IRI, but remote organ injury might
mainly be caused by DAMPs and inflammatory responses,
which could provide a better understanding of DAMP-related
IRI pathogenicity.

TMA
TMA is characterized by thrombocytopenia, microangiopathic
hemolytic anemia, and organ injury. The underlying
pathogenesis of TMA is understood to be endothelial
dysfunction, which is caused by bacterial toxins, deficiency
or dysfunction of the complement system, deficiency or
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FIGURE 1 | (A) The pleiotropic effects of rTM in autoimmune vasculitis. Pathogenic anti-neutrophil cytoplasmic antibody (ANCA) produced by lymphocytes binds to

neutrophil antigen, inducing neutrophil extracellular traps (NETs). The NETs components cause vasculitis and could become auto-antigens, resulting in the further

(Continued)
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FIGURE 1 | ANCA production. rTM suppresses the pro-inflammatory lymphocytes and inhibits the ANCA binding to Mac-1 on neutrophil, resulting in the suppression

of NETs, which leads to the reduction of auto-antigens and ANCA production. Furthermore, rTM neutralizes cytotoxic extracellular histones in NETs and directly

protects endothelium. Collectively, rTM could regulate the multiple points in pathogenesis of autoimmune vasculitis. (B) Thrombomodulin terminates auto-amplification

of intravascular injury. (I) Intravascular injury in sepsis, ischemia-reperfusion injury, thrombotic microangiopathy, and vasculitis develops due to fibrinolysis, necrosis,

coagulation/endothelial dysfunction, and neutrophil activation, respectively, as an initial event. In the next step, these events appear jointly with endothelial dysfunction,

coagulation, neutrophil activation, damage-associated molecular patterns, complement activation, and acquired immunity to exacerbate the disease. In particular,

immunity and coagulant systems collaborate to generate robust immune-thrombi, which accelerate intravascular injury, leading to an amplification loop.

(II) Thrombomodulin is released into the intravascular space after endothelial injury and serves to counteract excessive coagulation and inflammation via its

pleiotropic effects.

TABLE 1A | Experimental evidence on recombinant thrombomodulin (rTM, including TMD1, TMD23, and TMD123 domains) in animal disease models.

Animal model Outcomes Mechanisms References

Histone-induced thrombosis (mouse) Improved mortality and thrombosis Neutralization of histones (20)

Cecal ligation and puncture-induced

peritonitis (rat)

Improved coagulopathy Regulation of NETs (33)

LPS-induced sepsis (mouse) Improved mortality Neutralization of HMGB1 (34)

Renal ischemia-reperfusion injury

(mouse)

Improved lung injury (remote organ) Regulation of NETs (35)

Renal ischemia-reperfusion injury (rat) Improved renal function and histology Reduction of leukocyte infiltration (36)

Intestinal ischemia-reperfusion

(mouse)

Increased survival and liver damage

(remote organ)

Regulation of NETs (37)

Myocardial ischemia (mouse) Reduced myocardial damage Suppression of leukocyte-endothelial

interaction and TLR signaling

(13, 38)

Lung ischemia-reperfusion injury

(mouse)

Suppressed protein leakage Reduction of leukocyte infiltration (39)

Cerebral ischemic injury (mouse) Reduced infarct volume Neutralization of HMGB1 (40)

Anti-glomerular basement membrane

glomerulonephritis (rat)

Improved histology Neutralization of HMGB1 (41)

Experimental autoimmune

encephalomyelitis (mouse)

Improved clinical and pathological

severity

Neutralization of HMGB1 (42)

ANCA-associated vasculitis (rat and

mouse)

Improved renal and lung vasculitis Suppression of NETs, acquired

immunity

(15)

Hemolytic uremic syndrome (mouse) Improved mortality and renal histology Regulation of the complement system (43)

Diabetic glomerulopathy (mouse) Improved nephrosis Inhibition of the complement system

and inflammasome

(44, 45)

Arthritis (mouse) Improved arthritis Complement inhibition (46)

Acute respiratory distress syndrome

(mouse)

Increased survival rate Neutralization of HMGB1 and

increase in regulatory T cells

(47)

Bleomycin-induced pulmonary

fibrosis (mouse)

Improved lung damage Inhibition of transforming growth

factor-β1 and HMGB1

(48, 49)

Bronchial asthma (rat) Improved lung function Modulation of dendritic cells (9)

Pre-eclampsia (rat) Improved maternal and fetal

conditions

Improvement of hypo-perfusion (50)

Recurrent spontaneous miscarriage

(mouse)

Improved fetal resorption Increase of VEGF expression (51)

Lung metastasis (mouse) Inhibited invasion and metastasis of

cancer cells

Thrombin-independent mechanism (52)

Pancreatic cancer (mouse) Suppressed tumor growth Inhibition of NF-κB activation (53)

Atherosclerosis (mouse) Improved atherosclerotic change Anti-autophagic action and inhibition

of thrombin-induced endothelial

activation

(54, 55)

Aortic aneurysm (mouse) Suppressed aneurysm Inhibition of HMGB1-RAGE signaling (56, 57)

ANCA, anti-neutrophil cytoplasmic antibody; HMGB1, high mobility group box 1; LPS, lipopolysaccharide; NETs, neutrophil extracellular traps; NF-κB, nuclear factor-kappa B; RAGE,

receptor for advanced glycation end product; TLR, Toll-like receptor; VEGF, vascular endothelial growth factor.
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TABLE 1B | The levels of serum thrombomodulin (TM) in diseases with intravascular injury.

Disease References Levels of sTM Correlation With

Sepsis/DIC (58) – Positive DIC, multiorgan dysfunction,

mortality

(59) Increase Positive Disease severity, mortality

Cerebral infarction (60) Increase – –

(61) No change Inverse Disease severity

(62) Increase No Disease severity

(63) Increase Positive Disease progression

<Autoimmune disease>

Systemic lupus erythematosus (64–66) Increase Positive Disease activity

ANCA-associated vasculitis (GPA) (67, 68) Increase Positive Disease activity

ANCA-associated vasculitis (GPA or MPA) (69) – Positive Disease activity

ANCA-associated vasculitis (EGPA) (70) – Positive Disease activity

Diabetes (71) Increase Positive Nephropathy and/or Retinopathy

(72–74) Increase Positive Nephropathy

(75) – Inverse Risk of type 2 Diabetes

<Cardiovascular disease>

Coronary heart disease (76) No change – –

(77, 78) – Inverse Risk of coronary heart disease

(79) Increase – –

(80) – Positive Risk of coronary heart disease

(81) – None Risk of coronary heart disease

Atherosclerosis (82, 83) Increase – –

(77) – Positive Risk of carotid atherosclerosis

(84) Increase Positive Sclerotic changes in

hypertensive retinopathy

(85) Increase Positive Intima-media thickness

Aortic aneurysm (86) Increase Positive Risk factors for atherosclerosis

Pre-eclampsia (87, 88) Increase – –

ANCA, anti-neutrophil cytoplasmic antibody; DIC, disseminated intravascular coagulation; EGPA, eosinophilic granulomatosis with polyangiitis; GPA, granulomatosis with polyangiitis;

MPA, microscopic polyangiitis; sTM, serum thrombomodulin.

inhibition of ADAM-TS13, drug-induced reactions, and
transplant complications (95). The major disorders are hemolytic
uremic syndrome (HUS) and thrombotic thrombocytopenic
purpura (TTP). Escherichia coli (O157:H7) induces HUS
by producing Shiga toxins, which bind to endothelial cells
in the kidney and brain, triggering them to undergo cell
death by inhibiting protein synthesis and inducing the
secretion of Von Willebrand factor multimers, which leads
to endothelial injury and microthrombi (96, 97). In mice,

TM deficiency (more specifically, lectin-like domain TMD1)
exacerbated Shiga toxin-producing E. coli (STEC)-HUS (98).

Furthermore, in STEC-HUS-induced mice, rTM treatment
protected them from kidney injury by regulating intravascular

inflammation, complement dysfunction, and the coagulation

system (43).

Macroangiopathy, Including Aortic
Aneurysm
Aortic aneurysm develops in association with certain risk
factors, including age, genetic predisposition, atherosclerosis,
and smoking. The underlying pathogenesis is characterized by
chronic vascular inflammation and degradation of collagen-
producing structural matrix proteins, which weaken the aortic
wall (99). In a CaCl2-induced abdominal aortic aneurysmmodel,
rTM [entire ectodomain (56) and lectin-like domain TMD1
(57)] treatment ameliorated abdominal aortic aneurysm by
suppressing inflammatory mediators, macrophage recruitment,
and HMGB1-RAGE signaling. In an apolipoprotein E-deficient
atherosclerosis model, rTM (TMD23) inhibited autophagy-
related cell death of aortic endothelial cells, preventing the
progression of atherosclerosis (54). In vitro studies have shown
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that rTM directly binds to fibroblast growth factor receptor 1
on the endothelium, which activates the phosphatidylinositol
3-kinase-AKT/mammalian target of rapamycin complex 1
signaling pathway, and inhibits autophagy (54, 100). These
findings indicate that TM could potentially mediate large
vessel homeostasis by controlling immunological responses and
endothelium protection.

EXPERIMENTAL EVIDENCE OF RTM AS AN
IMMUNE MODULATOR BEYOND AN
INFLAMMATORY REGULATOR

In previous sections, the anti-inflammatory effects of rTM
against intravascular injury were mainly described. In
autoimmune diseases, including Goodpasture’s syndrome
(41) and autoimmune encephalomyelitis (42), rTM ameliorated
the disease by suppressing inflammation and neutralizing
DAMPs. Interestingly, recent reports have indicated that rTM
acts as an immune modulator in addition to serving as an
inflammatory regulator. In our study, rTM affected acquired
immunity as well as neutrophil activation to resolve autoimmune
vasculitis (15). Pathogenic ANCA auto-antibodies play a pivotal
role in the development of ANCA-associated vasculitis. In this
regard, rTM binds to antibody-producing lymphocytes to alter
their activities from pro-inflammatory to anti-inflammatory,
which contributes to the reduction of ANCA production and
the resolution of the disease. Furthermore, Takagi et al. (9)
reported that rTM ameliorated the ovalbumin-induced asthma
model by regulating pathogenic dendritic cells. In a graft-vs.-host
disease (GVHD) model, rTM increased regulatory T cells via
the induction of anti-apoptotic Mcl-1 expression, resulting
in the improvement of GVHD (101, 102). Similarly, rTM
ameliorated acute respiratory distress syndrome in mice with
an increase in regulatory T cells (47). Van De Wouwer et al.
(46) showed that rTM (lectin-like domain TMD1) improved
mouse arthritis by suppressing excessive inflammatory responses
by macrophages and complement activation. As such, rTM
could potentially modulate systemic acquired immunity in
response to intravascular injury separately from maintaining
local vessel homeostasis.

CLINICAL EVIDENCE FOR RTM-BASED
STRATEGIES

Several studies have reported the serum TM level to examine its
role in various diseases. Sepsis (58), ischemic disease (63), and
autoimmune diseases (64) showed high levels of soluble TM in
serum and plasma that reflected prevailing endothelial injury,
indicating that soluble TM levels might be useful for disease
diagnosis (Table 1B). Does endogenous soluble TM protect from
intravascular injury in human disease? In coronary heart disease,
the level of soluble TM is inversely correlated with disease
severity (77), implying that endogenous TM might contribute to
the resolution of this disease. However, because soluble TM is
released from damaged endothelium to counteract the disease,
soluble TM levels are often found to increase with disease severity

(Table 1B) (77). Meanwhile, genetic polymorphisms of TM could
influence the disease beyond the quantity of TM, which might
explain the discrepancy between the titer and disease (103). It
might be difficult to determine the role of endogenous TM based
on soluble TM levels. However, the efficacy of additional TM has
been clinically revealed with regard to several diseases during the
past two decades.

DIC
In randomized, double-blind clinical trials, in which patients
with DIC associated with hematologic malignancy or infection
were treated with rTM or heparin, rTM improved DIC, and
alleviated hemorrhagic complications compared with heparin
(104). Although rTM therapy did not reduce all-cause mortality
in a large clinical trial, post-hoc subgroup analysis stratified by
the persistence of abnormal coagulation showed a tendency to
decrease mortality (105). Meanwhile, a one-arm prospective trial
revealed the effectiveness of rTM in solid tumor-associated DIC
(106). Moreover, rTM administration could potentially be useful
for treatment of obstetric DIC. During pregnancy, placental
abruption, bleeding, and hypoxia could drive DIC underlying
obstetric disorders, which is associated with maternal and fetal
morbidity and mortality (107). A retrospective comparative
study revealed that rTM significantly improved clinical and
laboratory findings compared with controls in patients with
obstetric DIC (108).

TMA
TMA is associated with high mortality regardless of
the underlying disease, including HUS, TTP, transplant
complications, and drug side effects. In a case series of three
patients with HUS, rTM ameliorated clinical outcomes with
improvements reflected in reduced platelet counts and excessive
complement activation (109). Furthermore, rTM could be
beneficial for patients with transplant-associated (TA)-TMA.
The latter is a severe complication after hematopoietic stem
cell transplantation. The putative etiology is endothelial
injury, which is caused by cytotoxic agents, infections, and
GVHD (110). A case report (111) and retrospective cohort
study (112, 113) showed the effectiveness of rTM with
favorable clinical features and overall survival. Likewise,
hepatic sinusoidal obstructive syndrome shows clinical
manifestations characterized by hepatomegaly, jaundice,
ascites, fluid retention, and thrombocytopenia following
hematopoietic stem cell transplantation, with pathogenesis
mechanisms similar to those of TA-TMA (114). Moreover,
patients treated with rTM showed remission and survival
rates equivalent to that of patients receiving defibrotide, which
is the only recommended therapy for sinusoidal obstructive
syndrome (115).

Acute Exacerbation of Idiopathic
Pulmonary Fibrosis (AE-IPF)
AE-IPF is a lethal condition associated with endothelial damage
and abnormalities of the coagulation system (116, 117). HMGB1
is involved in the pathophysiology of pulmonary fibrosis (48).
Furthermore, NETs are identified in the bronchi of patients
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diagnosed with AE-IPF, and are believed to contribute to disease
progression (118). Kataoka et al. (119) reported that rTM therapy
resulted in improved mortality rates compared with the control
group (rTM vs. control: 30 vs. 65%). However, similar to the
sepsis clinical trial, a large randomized phase III study in patients
with AE-IPF did not show the superiority of rTM using the
state of the control as primary endpoint (120). The cause is
thought to be the heterogeneous pathology in the comparison
group. Therefore, an appropriate study protocol with stratified
risk factors is required.

Clinical Perspectives of rTM Therapy via
the Anti-inflammatory and
Immune-Regulatory Effects
Although the efficacy of rTM has not been clinically shown
in autoimmune disease and inflammatory disorder, several
experimental data represent the potential to overcome these
diseases. In vitro and animal studies indicate that rTM
possesses the direct immunomodulatory effects in innate and
acquired immunity independently of anti-coagulant effect (9, 15).
Based on animal studies (Table 1A), rTM is being clinically
expected to contribute to resolving diseases with inflammation
including diabetes mellitus, arthritis, bronchial asthma, and
ischemic-reperfusion injury. In particular, autoimmune ANCA
vasculitis, which is characterized by immune dysregulation and
intravascular injury, might be a candidate for rTM treatment.
However, the dosage of rTM in many experimental situations
(15, 33, 41) is 15–50 times of therapeutic dosage in patients with
DIC and the effective concentration as an anti-inflammatory and
immune-regulatory property remains unclear. Thus, in the future
the indications of rTM therapy and the suitable dosage with

no serious complications such as bleeding tendency should be
carefully addressed.

CONCLUSIONS

Immunothrombosis during intravascular injury leads to
organ damage and further intravascular injury via cellular
and molecular signaling, including excessive inflammation,
coagulation, and cell activation. rTM regulates the
immunothrombosis to terminate inflammation/coagulation,
neutralize DAMPs, and affect immunity. The administration of
rTM has the potential to become a novel therapeutic strategy for
various diseases associated with immunothrombosis-mediated
intravascular injury.
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Obstruction
Maja Wyczanska and Bärbel Lange-Sperandio*

Department of Pediatrics, Dr. v. Hauner Children’s Hospital, University Hospital, Ludwig Maximilian University, Munich,
Germany

Damage-associated molecular patterns (DAMPs) are released from tubular and interstitial
cells in the kidney after unilateral ureteral obstruction (UUO). DAMPs are recognized by
pattern recognition receptors (PRRs), which mediate the initiation of an immune response
and the release of inflammatory cytokines. The animal model of UUO is used for various
purposes. UUO in adult mice serves as a model for accelerated renal fibrosis, which is a
hallmark of progressive renal disease. UUO in adult mice enables to study cell death,
inflammation, and extracellular matrix deposition in the kidney. Neonatal UUO is a model
for congenital obstructive nephropathies. It studies inflammation, apoptosis, and
interstitial fibrosis in the neonatal kidney, when nephrogenesis is still ongoing. Following
UUO, several DAMPs as well as DAMP receptors are upregulated. In adult UUO, soluble
uric acid is upregulated and activates the NOD-like receptor family, pyrin domain
containing-3 (NLRP3) inflammasome, which promotes fibrosis, apoptosis, and reactive
oxygen species (ROS) injury. Further DAMPs associated with UUO are uromodulin,
members of the IL-1 family, and necrotic cell DNA, all of which promote sterile
inflammation. In neonatal UUO, the receptor for advanced glycation endproducts
(RAGE) is highly upregulated. RAGE is a ligand for several DAMPs, including high
mobility group box 1 (HMGB1) and S100 proteins, which play an important role in renal
fibrosis. Additionally, necroptosis is an important mechanism of cell death, besides
apoptosis, in neonatal UUO. It is highly inflammatory due to release of cytokines and
specific DAMPs. The release and recognition of DAMPs initiate sterile inflammation, which
makes them good candidates to develop and improve diagnostic and therapeutic
strategies in renal fibrosis and congenital obstructive nephropathies.

Keywords: damage-associated molecular patterns (DAMPs), unilateral ureteral obstruction (UUO), inflammation,
innate immunity, kidney
INTRODUCTION

Sterile inflammation is a response to acute or chronic tissue injury without pathogens being involved.
However, how does the body recognize damage? The activation of the immune system as a response to
pathogens is possible by detection of molecular motifs conserved in so-called pathogen-associated
molecular patterns (PAMPs). In the case of sterile injury, the immune system reacts in a similar way.
Damage-associated molecular patterns (DAMPs) are intracellular molecules that are released as a
org October 2020 | Volume 11 | Article 581300126

https://www.frontiersin.org/articles/10.3389/fimmu.2020.581300/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.581300/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:baerbel.lange-sperandio@med.uni-muenchen.de
mailto:baerbel.lange-sperandio@med.uni-muenchen.de
https://doi.org/10.3389/fimmu.2020.581300
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.581300
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.581300&domain=pdf&date_stamp=2020-10-07


Wyczanska and Lange-Sperandio DAMPs in UUO
response to sterile injury and are able to activate innate immunity
just like PAMPs. DAMPs and PAMPs are recognized by pattern
recognition receptors (PRRs), which then mediate the initiation of
an immune response (1, 2). PRRs can be of several types, like Toll-
like receptors (TLRs), NOD-like receptors (NLRs), AIM2-like
receptors (ALRs), RIG-I-like RNA helicases, C-type lectin
receptors (CLRs), and more (3, 4). DAMPs are molecules that
have specific functions inside the cell; they operate as signals of cell
damage only when they are released into the cytosol or the
extracellular space (5). Released DAMPs expose hydrophobic
portions of molecules that are naturally hidden within living cells
and can thus be recognized as danger signals (6, 7). One way for
DAMPs to leave the cell is to be passively released from dying cells.
It is important to differentiate between different cell death pathways
here. Apoptosis, being a non-inflammatory programmed way of cell
death, does not lead to the release of DAMPs. By contrast,
necroptosis, necrosis, and pyroptosis, induce inflammatory
responses through the release of cytokines and DAMPs (8).
DAMPs can also be secreted by living cells, which are exposed to
life-threatening stress. High mobility group box 1 (HMGB1), for
instance, is a DAMP that can be secreted by stressed cells without
involving the endoplasmic reticulum (9). HMGB1 release is induced
in monocytes by lipopolysaccharide (LPS), tumor necrosis factor
(TNF)‐a or interleukin (IL)‐1. Upon activation, HMGB1 exits the
nucleus into the cytoplasm, translocates into the cytoplasmic
organelles and is released through lysosome exocytosis.

DAMPs play a role in a variety of kidney diseases and could be
used as biomarkers, or reveal novel drug targets for inhibiting the
inflammatory response. In this review, we focus on DAMPs in
unilateral ureteral obstruction (UUO) in mice (Table 1), which is
used as a model for various purposes. UUO in adult mice is an
experimental model of renal injury, leading to tubulointerstitial
fibrosis (26). Renal fibrosis is the final common pathway of
numerous kidney diseases leading to end-stage renal disease with
dialysis or renal transplantation, as no effective treatments exits yet
(23). UUO enables to study different stages of fibrosis development
in an accelerated manner, like inflammatory cell infiltration, tubular
cell death, extracellular matrix (ECM) deposition, and tubular
atrophy (Figure 1) (28, 29). Urinary tract obstruction in the
newborn mouse kidney also permanently impairs renal
Frontiers in Immunology | www.frontiersin.org 227
development (29). Neonatal UUO at the second day of life
investigates the pathological mechanisms of congenital obstructive
nephropathy (30, 31), which is the most common identifiable cause
of chronic kidney disease in children and infants (32, 33). Neonatal
UUO studies inflammation, apoptosis, and interstitial fibrosis in the
neonatal kidney, while nephrogenesis is still ongoing. In humans,
nephrogenesis is completed before birth by the 34-36 gestational
week. By contrast, nephrogenesis in mice ceases 1-2 weeks
postnatally. Therefore, performing UUO in newborn mice allows
studying the effect of ureteral obstruction on kidney development.
This experimental urinary tract obstruction in neonatal mice is
analogous to the obstruction arising in the midtrimester human
fetus with congenital obstructive nephropathy (28). UUO in
neonatal and adult mice leads to sterile inflammation and thus to
upregulation and release of DAMPs (Figure 2). DAMPs released
during tissue injury, together with the immune receptors that
recognize these, most likely contribute to the development of
renal fibrosis (23). This review focuses on danger signals
associated with obstruction in adult and neonatal kidneys.
FIBROSIS

Renal fibrosis is the hallmark of progressive renal disease and
involves glomerular sclerosis and interstitial fibrosis (26).
Fibrogenesis is considered a failed wound healing process after an
injury. Processes leading to fibrosis are: proliferation of interstitial
fibroblasts with myofibroblast transformation and deposition of a
large amount of ECM components (34). There are several markers
that are used to characterize fibrosis, like a-smooth muscle actin
(aSMA) (34) or collagen I, III, and IV (35). Epithelial-mesenchymal
transition (EMT) is also a process associated with UUO and renal
fibrosis. It is a mechanism by which epithelial cells lose their cell
polarity and cell-cell adhesion, and gain migratory and invasive
properties to become mesenchymal stem cells (36). These
multipotent stromal cells can differentiate into a variety of cell
types. Epithelial cells dedifferentiate to mesenchymal cells as a repair
mechanism, however, in the case of chronic or repetitive injury they
can differentiate into myofibroblasts, thus building fibrotic scar
tissue (37, 38). Following UUO monocytes infiltrate the renal
interstitium and release cytokines such as transforming growth
factor b1 (TGF-b1) (26). TGF-b1 promotes either apoptosis of
tubular epithelial cells, leading to tubular atrophy, or EMT, leading
to fibrosis. Several DAMPs, like IL-33, HMGB1, and biglycan also
play a role in EMT (36, 39–41). Chronic inflammation is a critical
process in fibrogenesis. Following kidney injury various pro-
inflammatory stimuli activate fibroblasts (42). Fibroblasts can be
activated by DAMPs through ligation with TLRs (43) (Figure 2).
CELL DEATH AND INFLAMMASOMES

Necrosis and apoptosis are cell death mechanisms and both
occur during UUO (28, 44). During apoptosis the plasma
membrane integrity is maintained, whereas during necrosis it
raptures (45). Additional difference between apoptosis and
TABLE 1 | List of known DAMPs in UUO.

DAMPs Putative Receptors Pro-fibrotic References

Biglycan TLR2, TLR4, NLRP3 N/A (10)
Decorin TLR2, TLR4 ⚬ (11, 12)
HMGB1 TLR2, TLR4, TLR9, RAGE ⦁ (13–15)
IL-1a IL-1R N/A (16, 17)
IL-33 ST2 ⦁ (18, 19)
Necrotic DNA TLR9, ALR ⦁ (20, 21)
sUa NLRP3 ⦁ (22)
S100A8/A9 TLR2, TLR4, RAGE ⦁ (23, 24)
Uromodulin TLR4 ⚬ (25)
Black dot indicates that the criterion is fulfilled; white dot indicates that the criterion is not
fulfilled; N/A, no data available for the UUO model. TLR, toll-like receptor; RAGE, receptor
for advanced glycation end-products; NLRP3, NOD-, LRR-, and pyrin domains-containing
protein 3; HMGB1, high mobility group box 1; ALR, absent in melanoma 2-like receptors;
sUa, soluble uric acid.
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necrosis is the release of DAMPs, which is absent in apoptosis.
Necrosis was seen as an unregulated form of cell death for a long
time, but there are several cell death modalities of regulated
necrosis, like necroptosis and pyroptosis. Engagement of
receptors for Fas, TNF, or TNF-related apoptosis-inducing
ligand (TRAIL) can lead to programmed cell death, apoptosis,
through recruitment and activation of caspase-8 (46). However,
in presence of caspase-inhibitors the cell death mechanism
switches to a more rapid and necrotic mode of cell death, so-
called necroptosis (47). Necroptosis is a well-characterized form
of regulated necrosis, mediated by receptor interacting protein
kinase-3 (RIPK3) and its substrate mixed lineage kinase like
(MLKL) (48). Necroptosis is seen as a trigger for inflammation
through release of DAMPs due to rapid cell rupture (49).
DAMPs released through cell death can themselves trigger
other endothelial and epithelial cells to undergo further cell
death (Figure 2). It is unlikely, that both necrosis and
necroptosis release the exact same cluster of DAMPs. DAMPs
released by accidental cell death and secondary necrotic cells are
well studied, however, studies about specific DAMPs associated
with necroptosis were rarely conducted until recently (49). A
crucial step of the necroptotic cell death pathway is
phosphorylation of MLKL, thus pMLKL is seen as a marker
for necroptosis (50).

Pyroptosis is a programmed necrosis that involves the
activation of inflammasomes (45). Inflammasomes are
intracellular sensors, they can be activated by extracellular
Frontiers in Immunology | www.frontiersin.org 328
DAMPs through the ligation of DAMPs and TLRs on cell
surface. This process activates the nuclear factor (NF)-kB
signaling pathway (51) or mitochondrial ROS production (22)
and triggers the inflammasome. NOD-like receptor family, pyrin
domain containing-3 (NLRP3) is one of the best-studied
inflammasomes. Its activation results in inflammation. NLRP3
canonical activation in macrophages and other immune cells
requires two steps: priming and activation. Priming is stimulated
by binding of DAMPs or PAMPs to TLRs or cytokine receptors.
It generally involves NF-kB signaling and expression of NLRP3,
pro-caspase-1, pro-IL-1b, and pro-IL-18 (52, 53). Activation
induces inflammasome assembly and caspase activation.
NLRP3 proteins bind to apoptosis-associated speck-like
proteins, which recruit pro-caspase-1 proteins that are cleaved
into mature caspase-1. Active caspase-1 then processes pro-IL-
1b and pro-IL-18 into mature IL-1b and IL-18. It also cuts
gasdermin-D into N-terminal and C-terminal fragments, of
which gasdermin-D-N creates extensive membrane pores,
causing leakage of IL-1b, IL-18, and other cell compartments,
which sets up the sterile inflammation (53). This process is called
pyroptosis. Known DAMPs released due to pyroptosis after
NLRP3 activation are HMGB1, IL-1a, and apoptosis associated
speck-like protein containing a CARD (caspase activation and
recruitment domain) (8). These are also known to be upregulated
after UUO (13, 54, 55). The NLRP3 inflammasome itself can be
activated by a variety of DAMPs such as uric acid crystal, silica
crystals, ATP, asbestos, alum, and X-ray (53).
FIGURE 1 | Scheme of the pathophysiology of unilateral ureteral obstruction (UUO). As a response to unilateral ureteral obstruction the glomerulus increases
vascular renin production along with activation of the renin-angiotensin system, which leads to stimulation of transforming growth factor-b1 (TGF-1b). The proximal
tubular epithelium activates the renin-angiotensin system as well. Additionally, it increases production of reactive oxygen species (ROS), which impair mitochondrial
function, as well as kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL). Collecting duct injury leads to downregulation of epidermal
growth factor (EGF) and upregulation of peritubular mesenchymal collars that express a-smooth muscle actin (a-SMA) and L1 cell adhesion molecule (L1CAM). Injury
of glomeruli, proximal tubule, and collecting duct lead to tubular cell death (apoptosis, necrosis, and necroptosis), which itself leads to atubular glomeruli and tubular
atrophy. In the interstitium, there is an upregulation of chemokines (CCL-2, CCL-5) and adhesion molecules as an response to obstruction. This leads to
macrophage recruitment, interstitial inflammation, and stimulation of myofibroblast proliferation, which causes fibrosis. The figure is adapted from (27).
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IL-1a AND IL-33

IL-1a and IL-33, which count as cytokines as well as DAMPs, are
actively released during necroptosis (16, 45). IL-1a can also be
actively secreted by epidermal epithelial cells (56). IL-33 was
detected in the plasma of RIPK1-deficient mice and is dependent
on the presence of RIPK3 and MLKL (16). Taken together with
the observations of increased IL-33 expression in necroptotic
Frontiers in Immunology | www.frontiersin.org 429
epidermal keratinocytes (57), IL-33 was categorized as a
necroptotic DAMP. IL-33 is able to activate basophils and
eosinophils, as well as to induce type 2 immune responses (58).
Recently it was shown that necroptosis and necroinflammation
are accompanied phenomena in neonatal kidneys with ureteral
obstruction (17). Biochemical analyses showed a decrease in
caspase-8 expression and an increase in RIPK3 and pMLKL
expression, indicating a role of necroptosis in UUO. IL-1a
FIGURE 2 | Different outcomes of cell death and DAMP release due to urinary tract obstruction. Unilateral ureteral obstruction causes cell injury and necrosis, as
well as the regulated forms necroptosis and pyroptosis. Due to cell stress and cell death DAMPs are released by injured endothelial (EC) and tubular epithelial (TEC)
cells. These DAMPs activate PRRs such as TLRs on other cells. This can lead to further renal cell necrosis, with amplification of DAMPs. Fibroblasts and pericytes
activated by DAMPs trigger fibrosis through proliferation, ECM secretion and myofibroblast transition. Activated dendritic cells (DC) and macrophages release
cytokines and chemokines, which initiate an inflammatory response. IL-22 secreted by renal DCs, on the other hand, is able to activate the IL-22 receptor on TECs,
which accelerates tubular re-epithelialization, thus promoting regeneration of TECs.
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and IL-33 were measured in this study. IL-1a was significantly
upregulated in the kidneys following obstruction. In the neonatal
UUO model, in contrast to the adult one (18), the expression of
IL-33 was downregulated. It is unknown, why IL-33 expression
decreased in this particular disease model despite clear
indications of necroptosis. A possible explanation is that
interferon gamma (IFNg), an immunomodulatory cytokine
that was also upregulated following UUO, is able to
downregulate pro-fibrotic IL-33 under certain conditions (59).
IL-33 has been linked to fibrosis (18, 19) and can induce EMT in
vitro (19). In HK-2 cells IL-33 was able to promote the cellular
motility and migration capabilities of these cells. IL-33 activates
the p38 mitogen-activated protein kinase (MAPK) signalling
pathway, which induces the EMT process (60). The more pro-
inflammatory and less pro-fibrotic state after neonatal UUO
could be linked to the IFNg activity and IL-33 downregulation.
Even though the expression of only two possible necroptotic
DAMPs were measured in this study, it can be assumed that due
to necroptosis, other DAMPs are released as well and contribute
to further inflammation and/or fibrosis after ureteral obstruction
in the kidney.
IL-1–EXTENDED FAMILY

Two members of the IL-1 extended family, IL-1a and IL-33 are
referred to as cytokines that also act as DAMPs (61). The IL-1
extended family consists of IL-1a, IL-1b, IL-18, IL-33, IL-36a, IL-36b,
and IL-36g. All members play different biological activities involved in
innate immunity (62). A recently published hypothesis argues that all
members of the extended IL-1 family function as DAMPs (63). IL-1a
and IL-1b are released from dying cells due to necroptosis and
pyroptosis. Additionally, IL-18 is released from pyroptotic cells and
IL-33 from necroptotic cells. Three of these cytokines (IL-1a, IL-1b,
IL-18) are known to be upregulated during UUO (64, 65), IL-33 is
upregulated in adult UUO (18), but downregulated in neonatal UUO
(17). However, do all these cytokines qualify as canonical DAMPs?
The definition of DAMPs is not completely clear. They are often
portrayed as molecules that would only be released upon cell death
and through certain pathways would initiate an inflammatory
response (66). Most candidate DAMPs are structurally divers
molecules that do not share common mechanisms of action. The
author argues that the IL-1 family cytokines are good DAMP
candidates due to their ability to drive inflammation in sterile
injury. They are activated (IL-1b, IL-18, IL-36a, IL-36b, IL-36g)
and released mostly in cell death processes (67). One important
argument is that the IL-1 family cytokines signal via receptors that
contain intracellular Toll/IL-1 receptor signaling motifs, just like a
subset of PAMPs. Additionally both receptor classes share signaling
intermediates, like MyD88, and IRAK kinases. The main difference is
stated in a part of the definition of DAMPs. DAMPs have a non-
inflammatory “day job” within the cytosol or nucleus of cells, which
cytokines generally do not have (68). Most members of the IL-1
family (IL-1b, IL-18, IL-36a, IL-36b, IL-36g) require proteolytic
processing to activate their biological activity, putting them in an
inactive state, without function, until activation of the inflammasome
Frontiers in Immunology | www.frontiersin.org 530
or necrosome. An exception here would be cellular IL-1a, which has
been associated with cellular senescence and other functions, as well
as IL-33, which is expressed by a variety of cells and has a possible role
in regulating gene expression (69). Given this, only IL-1a and IL-33
can be seen as both cytokines and DAMPs. However, if the cellular
non-inflammatory active function of DAMPs would be neglected,
then the other cytokines could also be counted as DAMPs. The
quiescent state of the IL-1 family cytokines inside the cell seems to be
the only argument against their categorization as DAMPs.
SOLUBLE URIC ACID

Uric acid, a purine catabolism product, is a DAMP released from
injured and dying cells (70). Upon crystallization, it activates the
immune system. It triggers the NLRP3 inflammasome activation
through phagocytosis (71). Recently it has been reported that
beside uric acid crystals, soluble uric acid (sUA) is also able to act
as a DAMP and activate the NLRP3 inflammasome (22).
Elevated serum uric acid induces inflammation dependent on
mitochondrial ROS production and changes in the redox state. It
is released in a hypoxic environment (72) and able to trigger
NLRP3 through production of mitochondrial ROS, which leads
to caspase-1 activation and IL-1b production. To study this, a
murine UUO model was used, as it leads to increased levels of
sUA. Additionally, correlation between tissue damage and the
degree of sUA formation was observed (22). This also confirms
the findings that NLRP3 plays a role in the acute phase following
UUO (51, 73). Accordingly, NLRP3-/- mice demonstrate reduced
inflammation, tubular injury and fibrosis after UUO, which is
associated with reduced caspase-1 activation and IL-1b and IL-
18 maturation (64, 65). Inhibition of NLRP3 in UUO would have
beneficial effects, as it plays a key role in sterile inflammation and
fibrosis. However, NLRP3 is also involved in antiviral responses
(74), so it may be more beneficial to inhibit DAMPs, like
crystalized or soluble uric acid that trigger this inflammasome,
without losing the protection from viruses. Inhibitors of uric acid
like the xanthine oxidase inhibitors allopurinol and febuxostat
are used to treat chronic kidney disease patients with
hyperuricemia (75). Allopurinol treatment in UUO mice
reduces type 1 collagen mRNA levels and hydroxyproline, the
main amino acid that forms collagen (22). It also reduces the
mRNA expression of Il-33 and Nlrp3. The administration of
febuxostat to mice after UUO inhibits the induction of
proinflammatory and fibrogenic cytokines (76). It suppresses
TGF-b, type I collagen and a-SMA expression and thus fibrosis.
Treatment of patients with obstructive nephropathies with
allopurinol or febuxostat may be therefore promising in the
suppression of uric acid induced fibrosis.
NECROTIC CELL DNA

DNA has the ability to impact immunity itself or by forming
complexes with other molecules and create unique danger signals
(20). For the stimulation of immunity DNA has to have access to
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internal cell sensors. Extracellular DNA, either released from
pathogens or by necrosis of host cells, can reenter another cells
when bound to antibodies or nucleic acid-binding proteins.
Necrotic cell DNA triggers dendritic cells and macrophages to
mature phenotypically and functionally (77). As UUO in mice
induces tubular necrosis (44), necrotic DNA is released and
functions as DAMP in this model. Absent in melanoma 2
(AIM2) inflammasome is typically activated by pathogen DNA
and triggers innate immunity, but it can also be activated by
DNA released from dying cells (78). AIM2 is a cytosolic PRR that
assembles an inflammasome in response to double-stranded
DNA. Its activation drives proteolytic maturation of the
proinflammatory cytokines IL-1b and IL-18, and pyroptosis
(78). AIM2 has a protective role in microbial infection but a
pathological one in sterile inflammation. Recently it has been
shown, that Aim2 deficiency reduces renal injury, fibrosis, and
inflammation in adult mice after UUO (21). AIM2 is upregulated
in the tubular epithelium and in inflammatory infiltrates in the
kidney. In UUO-induced renal inflammation and injury, AIM2
is activated in recruited macrophages by uptake of necrotic cell
DNA and aggravates the pathological state. Nlrp3-/-Aim2-/- mice
were used to examine the relative contribution of the
inflammasomes NLRP3 and AIM2 to renal injury. There were
no significant phenotypic differences between Nlrp3-/-Aim2-/-

mice compared with Aim2-/- mice, suggesting a partially
redundant role for the inflammasomes during renal injury.
Nlrp3-/-Aim2-/- mice had less injury, inflammation, and fibrosis
compared with WT mice. However, still ongoing injury and
inflammation in the injured kidney indicates an important role
of other inflammasomes after ureteral obstruction. It also shows
that inhibition of just one type of inflammasome might be able to
reduce sterile inflammation and fibrosis, but not prevent
it entirely.
MITOCHONDRIAL DAMPS

Mitochondrial dysfunction plays an important part in various
chronic inflammatory diseases, including UUO (64, 79).
Mitochondrial damage causes production of mitochondrial
reactive oxygen species, aberrant calcium mobilization, potassium
efflux, reduction in cytoplasmic levels of NAD+, and upregulation of
extracellular ATP (80). These changes have been shown to be
involved in NLRP3 activation. In case of mitochondria injury or
dysfunction production of mitochondrial DAMPs is possible (5, 80).
Cytochrome C is a small soluble electron carrier hemeprotein that
transfers electrons from complex III to complex IV to facilitate cell
energy production (81). It is released in apoptotic cell death to
trigger non-inflammatory cell death processes. However, when
translocated into the extracellular space, cytochrome C functions
as a DAMP. Cardiolipin is a phospholipid of mitochondria and
confined to it (82). Due tomitochondrial stress or dysfunction it can
undergo oxidation and be released into the extracellular milieu as a
DAMP (83). Cardiolipin can directly bind and activate NLRP3 (84).
Mitochondrial N-formyl peptides, which are released upon injury,
can bind to formyl peptides receptors on neutrophils, monocytes,
Frontiers in Immunology | www.frontiersin.org 631
and dendritic cells and activate these (80). Mitochondrial DNA also
seems to act as a DAMP (85). Upon opening of the mitochondrial
permeability transition pore fragments of mitochondrial DNA are
released from mitochondria (86). If this mitochondrial DNA enters
thy cytoplasm, extracellular space or circulation, it can engage
multiple pattern-recognition receptors and trigger pro-
inflammatory responses (85). There is an ongoing debate,
whether mitochondrial DNA is a bona fide DAMP following
necroptotic killing (8). Recent findings however suggest that
extracellular intact mitochondria are released during necroptosis
and indeed act as danger signals (87). The released mitochondria
were determined to be intact, as they did not emit detectible
amounts of mitochondrial DNA. These extracellular
mitochondria activate cytokine production in macrophages and
cell maturation of dendritic cells, which classifies them as DAMPs
(87). There has been no research on blocking these DAMPs in
UUO, nonetheless UUO causes mitochondrial stress and
dysfunction (64, 79), as well as necroptosis (17). It is probable
that mitochondrial DAMPs play an important role in sterile
inflammation and renal fibrosis following UUO. UUO decreases
nuclear factor erythroid 2-related factor 2 (Nrf-2) translocation and
activity, which is accompanied with an increase of mitochondrial
BCL2 associated X protein translocation and an increase of cytosolic
cytochrome c release (88). Overexpression of Nrf-2 attenuates
mitochondrial dysfunction and has anti-fibrotic effects in UUO
(88, 89). It is unknown whether the anti-fibrotic effect results from
Nrf-2 induced reduction of TGF-b expression and hydroxyproline
level alone or whether the reduction of cytochrome c release might
also play a role. Research on mitochondrial DAMPs during UUO
might be important in the future.
S100A8/A9

The calcium binding protein S100A8/A9 is a DAMP that activates
the receptor for advanced glycation end-products (RAGE) (24).
RAGE is a multiligand pattern recognition receptor linked to
chronic inflammation (90, 91). RAGE binds and mediates the
cellular response to a variety of DAMPs. It is expressed at low
level under normal physiological conditions, but is highly
upregulated in chronic inflammation due to the accumulation of
various ligands. RAGE has been identified as a receptor directly
mediating leukocyte recruitment in vivo. S100A8/A9 heterodimer is
expressed and released by phagocytes and has been shown to induce
chemotaxis, cytoskeleton reorganization, and cytokine expression
through activation of macrophages and neutrophils (92). It can be
either passively released via necrosis, cellular damage, or neutrophil
extracellular traps formation of myeloid cells, or actively from
myeloid cells during acute or chronic local inflammation.
S100A8/A9 exerts a critical role in initiating an inflammatory
response by stimulation leukocyte recruitment and inducing
cytokine secretion (93). Adult S100A9-/- mice lacking the S100A8/
A9 heterodimer that were subjected to UUO were protected from
renal fibrosis (23). S100A8/A9 mediates renal fibrosis, tubular
apoptosis, and crucial events for epithelial-mesenchymal
transition in the kidney after UUO. High concentrations of
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S100A8/A9 induce a caspase-independent cell death, possibly
necrosis, in tubular epithelial cells, thus leading to further release
of DAMPs. Blocking S100A8/A9 activity has been shown to be
beneficial in a variety of diseases (92, 93) and it could be a crucial
factor for the reduction of fibrosis. Furthermore, RAGE, the
receptor of S100A8/A9 is upregulated early in neonatal mice after
UUO (94). This upregulation induces activation of the transcription
factor NF-kB and its target genes, including proinflammatory
cytokines. RAGE-/- mice showed less tubular apoptosis and less
interstitial fibrosis after neonatal UUO (95). Besides inhibition of
inflammasomes and specific DAMPs, blocking DAMP receptors
may be a promising target to treat sterile inflammation and fibrosis.
HMGB1

High-mobility group box-1 (HMGB1) is also shown to be a
DAMP released by necroptotic cells (96). HMGB1 is the best
characterized DAMP and it is also a ligand of RAGE. (97). It has
been identified as an important extracellular mediator in local
and systematic inflammation (98). In the nucleus, HMGB1
organizes nucleosomes and DNA and regulates gene
transcription (99). Due to cell injury or activation, nuclear
HMGB1 is released into the cytoplasm, where it is involved in
inflammasome activation as well as regulation of the autophagy/
apoptosis balance through activation of immune and endothelial
cells. Translocated HMGB1 has chemokine, cytokine,
neuroimmune, and metabolic activities (99). HMGB1 can be
actively secreted by macrophages/monocytes in response to
inflammatory stimuli or passively released by necrotic cells (49,
96, 100). The release mode of HMGB1 can be divided into two
groups: burst-mode and sustained-mode. Different durations of
the release, being either 7.1 or 109 min on average, were observed
(96). In the burst-mode HMGB1 is rapidly released from the
cytoplasm, probably due to existing cytoplasmic membrane
damage, in the sustained-mode the release is slowed down.
The sustained-mode release of HMGB1 shows a balance
between the extent of pore forming activity and membrane
repair capacity of associated proteins. The biological
significance of these two different modes remains unclear.
However, it demonstrates a possible plasticity of cell death
pathways and release of DAMPs. Thus, HMGB1 could play a
role in prognosis and therapy. Furthermore, an acidic
environment is able to trigger HMGB1 release in vitro (13).
Thus, besides cell death it is hypothesized that acidosis, due to
UUO or other pathologies, may cause release of HMGB1 or other
DAMPs leading to inflammation. HMGB1 is upregulated after
UUO in adult mice (13–15). It can induce the classically
activated macrophages (M1) phenotype at the early stage of
UUO (13). M1 activation is associated with injury, inflammation,
and production of reactive nitrogen and oxygen species.
Inhibition of HMGB1 diminished the presence of M1
macrophages (13). The treatment also resulted in an
upregulation of M2 macrophages in the early stage of injury.
As no previous M2 macrophage activation was observed in this
Frontiers in Immunology | www.frontiersin.org 732
stage of UUO, the M2 macrophages after inhibition of HMGB1
were likely to be converted from M1 macrophages. Additionally,
inhibition of HMGB1 attenuated UUO-induced interstitial
inflammation and blocked the injury-induced collagen
deposition in the kidney. This indicates an important role of
HMGB1 in sterile inflammation and fibrosis after UUO. Another
link to fibrosis is that HMGB1 expression is highly elevated in
diabetic nephropathy, which results in apoptosis and EMT
progression of podocytes due to inhibition of autophagy (39).
Downregulation of HMGB1 inhibits EMT progression.
DECORIN AND BIGLYCAN

Decorin and biglycan are small leucine rich proteoglycans. They
are important components of the ECM. Recent studies however
also show their involvement in different signaling pathways,
indicating a role in autophagy, host immune responses and
fibrosis (11). Decorin is the best studied proteoglycan; it
regulates collagen fibrillogenesis and is a key factor for the
mechanical integrity of such tissues as skin, tendon and
ligaments (101). Additionally, it interacts with a variety of
growth factors and thus has tumor suppressive, anti-
inflammatory and anti-fibrotic properties. Decorin can be
cleaved by proteases and cytokines and the cleavage fragments
act as DAMPs. Decorin and biglycan activate as DAMPs the
production of TNF a, IL-12, and macrophage inflammatory
protein 2 in macrophages by binding to TLR4/2 (11). Decorin
has anti-fibrotic activities through inhibition of TGF-b activities
(101). Furthermore, decorin inhibits connective tissue growth
factor signaling in fibroblasts, inhibits apoptosis of renal tubular
epithelial cells and down-regulates microRNA miR-21 (43). The
inhibition of these processes further alleviates interstitial fibrosis.
In UUO decorin is highly upregulated (12, 102). Furthermore,
decorin deficient mice show aggravation of renal fibrosis,
highlighting the anti-fibrotic properties of this proteoglycan
(12). Inhibition of decorin in renal sterile inflammation would
have negative effects on fibrosis. However, inhibition of cleaved
decorin, which functions as a DAMP, or the factors necessary for
the cleavage could have beneficial effects. This should be
elaborated in future research.

Biglycan can be found in most tissues as a stationary
component of the ECM (10). However, upon release from
injured cells or secretion by activated macrophages, biglycan
becomes available in its soluble form and acts as a DAMP.
Biglycan is involved in the activation of the NLRP3
inflammasome in sterile inflammation, leading to secretion of
mature IL-1b. Similar to decorin, the expression of biglycan is
upregulated after UUO (12). Biglycan deficient mice after UUO
display lower levels of active caspase-1 and mature IL-1b, leading
to reduction of infiltrating macrophages and less renal injury
(10). Inhibition of biglycan attenuates inflammation, but its role
in renal fibrosis is not yet clear (11). However, an upregulation of
biglycan induces EMT by TGFb activation (36). Biglycan binds
extracellular TGFb1 and modulates its access to the TGFb
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receptors. TGFb induces EMT, via a group of specific
transcription factors (36, 103). Hence, an upregulation of
biglycan seems to have pro-fibrotic properties.
UROMODULIN

Uromodulin (UMOD), also known as Tamm-Horsfall protein, is
the most abundant protein in normal human urine (104).
UMOD has been assigned a role in a variety of functions:
modulating renal ion channel activity, intertubular
communication, salt/water balance, inflammatory response,
mineral crystallization, and bacterial adhesion (105). UMOD is
synthesized in thick ascending limb tubular epithelial cells (106).
It reaches the plasma membrane in a monomeric form. Its
luminal release into the urine and subsequent polymerization
is dependent on its cleavage mediated by the serine protease
hepsin (107). Additionally, small amounts of UMOD are also
released basolaterally into the interstitium and blood and show a
positive association with kidney function (108). However, this
positive effect results from monomeric UMOD. Polymeric
UMOD in serum stimulates an inflammatory response (109).
Many studies do not distinguish between these two possible states
of UMOD. Polymerized UMOD is not immunostimulatory inside
the tubular lumen, but once leaked into the interstitial
compartment, it functions as a DAMP (56). UMOD can activate
TLR4 on myeloid dendritic cells, leading to maturation of these
cells (110). It has also the ability to activate the NLRP3
inflammasome leading to IL-1b release (111). Recently, UUO
studies with UMOD deficient adult mice were conducted (25). In
UMOD+/+ mice UMOD protein expression increased 9-13x above
sham levels following obstruction. In UMOD-/- mice apoptosis
and cellular debris were reduced. The intensity of the interstitial
inflammatory response was evaluated by F4/80 monocyte/
macrophage protein levels. These were significantly lower (50%)
in the UMOD-/- mice, showing a proinflammatory function of
UMOD after UUO. However, there were no significant difference
in renal fibrosis between UMOD+/+ and UMOD-/- mice. This
suggests that in the absence of UMOD interstitial macrophages are
recruited that are distinct and functionally polarized to a more
robust fibrogenic phenotype. Blocking extratubular polymerized
UMOD may be an interesting target to treat patients with
obstructive nephropathies.
DISCUSSION

Extensive progress has been made in the field of DAMPs in
recent years. New DAMPs and the corresponding pathways have
been identified, as well as different release modes. DAMPs play
an important role in UUO, as they drive inflammation and can
have pro-fibrotic functions. They present possibilities for new
biomarkers and anti-inflammatory therapies. At present, there is
a lack of precise and reliable markers of urinary tract obstruction
(31). Prenatal diagnosis of obstructive nephropathies is
important as it allows for the planning of appropriate prenatal
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and postnatal care. It is key to distinguish between kidneys that
do not need surgery and kidneys that would deteriorate and lose
function or growth potential without. The perfect biomarker for
renal fibrosis should be specific, non-invasive, directly involved
in the mechanisms offibrosis, with the ability to reflect treatment
effects, and have low or no background in healthy individuals
(112). DAMPs secreted in the urine may be future biomarkers in
patients with congenital obstructive nephropathies and renal
fibrosis, respectively. In a variety of diseases DAMPs are already
used as biomarkers (92, 93, 113, 114). They can differentiate
between diseases (114) and recognize inflammation as well
as the site of infection or sterile injury (92). DAMPs
assign valid outcome prognoses (115, 116) and help to
differentiate between beneficial and harmful immune responses
(115). Recently it has been shown that different isoforms of
HMGB1 provide information on the type of injury (113).
HMGB1 can be either slowly excreted from stressed or
inflammatory cells, or rapidly released from dying cells. Non-
acetylated HMGB1 is released from dying cells, whereas
acetylated HMGB1 is associated with active secretion. This
finding improves diagnostics, as it helps to estimate the
severity of the inflammatory response. As for diagnostic
purposes it is advised to use a mix of biomarkers, as under
specific circumstances one biomarker could be inhibited and
thus deliver false results. This can be seen in the case of IL-33,
which is used as a marker for necroptotic cell death. However,
IL-33 wasn’t upregulated after obstruction in the neonatal kidney
despite evidence for necroptosis (17). A variety of factors,
especially organ development or different diseases can alter the
expression of certain biomarkers. There is a risk of false negative
or false positive results if not taken into account.

Besides being used as biomarkers, DAMPs and DAMP
associated pathways may also play a role in therapy. Inhibition
of cell death pathways, like necroptosis can be helpful in
inflammatory diseases, but only if the necroptotic cell death
plays a major role (117). Inhibition of inflammasomes and
receptors can be beneficial in reducing inflammation and
fibrosis in the kidney. Knock-out of Nlrp3 and Aim2 resulted
in less injury, inflammation, and renal fibrosis after obstruction
(21). Neonatal RAGE-/- mice showed less tubular apoptosis and
interstitial fibrosis after UUO (95). There are several inhibitors of
NLRP3 or RAGE (55, 91), however inhibition of inflammasomes
and their receptors can also be harmful, as this would hinder
pathogen detection. PAMPs and DAMPs are both recognized by
PRRs like TLRs (4, 118) Inhibition of receptors would also
inhibit their ability to detect PAMPs and initiate an
inflammatory response to fight the infection (118–120). If a
sterile inflammation would be accompanied or followed by a
bacterial infection, receptor inhibition would worsen rather than
improve the state of the patient. Another important issue is that
most inhibitors block only one inflammasome (55) and therefore
reduce inflammation only to a certain extent. An alternative
would be to block several DAMPs associated with sterile
inflammation during UUO. Inhibition of HMGB1 attenuated
UUO-induced interstitial inflammation and renal fibrosis (13).
Adult S100A9-/- mice that were subjected to UUO were protected
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from renal fibrosis (23). HMGB1 and S100A8/A9 are well
studied DAMPs and a variety of inhibitors have been designed
that are used to reduce inflammation in diseases and injury (92,
93, 113). These inhibitors are widely used against harmful
inflammation; their use against fibrosis needs to be studied in
future research.

It should be considered that DAMPs are not always harmful
and can have beneficial effects on repair. TLR2 on renal
progenitor cells is activated by certain DAMPs and accelerates
tubular repair (43). Additionally, TLR4 on dendritic cells, when
activated by DAMPs, triggers IL-22 release. IL-22 activates the
IL22-receptor on tubular epithelial cells and accelerates tubular
re-epithelialization (Figure 2) (43, 121). HMGB1 recruits bone
marrow derived mesenchymal stem cells and thus promotes
repair (6). It also plays a role in proliferation and differentiation
of tissue-associated resident stem cells. Moreover, HMGB1
Frontiers in Immunology | www.frontiersin.org 934
promotes angiogenesis, which is required for tissue repair.
These differences between beneficial and harmful functions of
HMGB1 may be due to its redox state (113, 122) and should be
further investigated. Directly inhibiting DAMPs could be helpful
to fight sterile inflammation, however fine tuning might be a
better option. Overexpression of DAMPs is harmful; however,
they also contribute to tissue repair and healing. Research into
DAMPs as biomarkers and their use in therapeutic application,
especially regarding inflammation and fibrosis in the kidney, is a
promising field for future research. There are still many open
research questions that need to be answered (Table 2).
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Clotting and inflammation are effective danger response patterns positively selected by

evolution to limit fatal bleeding and pathogen invasion upon traumatic injuries. As a

trade-off, thrombotic, and thromboembolic events complicate severe forms of infectious

and non-infectious states of acute and chronic inflammation, i.e., immunothrombosis.

Factors linked to thrombosis and inflammation include mediators released by

platelet granules, complement, and lipid mediators and certain integrins. Extracellular

deoxyribonucleic acid (DNA) was a previously unrecognized cellular component in the

blood, which elicits profound proinflammatory and prothrombotic effects. Pathogens

trigger the release of extracellular DNA together with other pathogen-associated

molecular patterns. Dying cells in the inflamed or infected tissue release extracellular

DNA together with other danger associated molecular pattern (DAMPs). Neutrophils

release DNA by forming neutrophil extracellular traps (NETs) during infection, trauma or

other forms of vascular injury. Fluorescence tissue imaging localized extracellular DNA to

sites of injury and to intravascular thrombi. Functional studies using deoxyribonuclease

(DNase)-deficient mouse strains or recombinant DNase show that extracellular DNA

contributes to the process of immunothrombosis. Here, we review rodent models of

immunothrombosis and the evolving evidence for extracellular DNA as a driver of

immunothrombosis and discuss challenges and prospects for extracellular DNA as a

potential therapeutic target.

Keywords: thrombosis, leukocytes, platelets, vasculitis, mouse model, stroke, sepsis

INTRODUCTION

Evolution positively selected four major danger response programs, i.e., inflammation, clotting,
epithelial healing, and mesenchymal healing because they assure survival upon traumatic injury
(1). Blood clotting and inflammation are early responses that immediately create barriers. Clotting
creates an inside-out barrier for blood loss and clotting and inflammation both create an outside-in
barrier for pathogen entry. Balanced clotting can prevent fatal bleeding and balanced inflammation
can prevent fatal sepsis. However, trade-offs exist and largely contribute to prevalent disease
pathomechanisms in clinical medicine (2). Thrombotic and thromboembolic events are important
complications in severe forms of infectious and non-infectious states of acute and chronic
inflammation, i.e., immunothrombosis (3). Proinflammatory mediators released from platelets,
complement, and lipid mediators link clotting and inflammation as do certain integrins, and
neutrophil extracellular traps (NETs).

As a novel entry, extracellular deoxyribonucleic acid (DNA) can elicit profound
proinflammatory and pro-thrombotic effects in the extracellular space (4). Pathogens release
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DNA together with other pathogen-associated molecular
patterns (PAMPs). Dying parenchymal cells release extracellular
DNA together with other danger- or damage-associated
molecular patterns (DAMPs) and neutrophils release DNA
by forming neutrophil extracellular traps (NETs) during
infection, trauma or other forms of vascular injury (5–
7). Extracellular DNA localizes to the sites of injury and
experimental studies employing deoxyribonuclease (DNase)-
deficient mouse strains or recombinant DNase demonstrate
a functional contribution of this extracellular DNA to the
development of immunothrombosis.

In this review, we summarize basic knowledge about
the process of immunothrombosis, and discuss the role of
extracellular DNA as a modulator of thrombosis in the
arterial and venous segments of the vasculature. Furthermore,
we describe several mouse models to study the process of
immunothrombosis in different disease settings.

Experimental Models of Venous
Thrombosis
Venous thrombosis is a common clinical health care problem
and causes congestion and pain when affecting the deep veins
of the limbs or acute thoracic pain, dyspnea, and shock when
affecting the pulmonary arteries. Pulmonary embolism is a severe
life-threatening complication of deep vein thrombosis. Venous
thrombosis frequently develops in the perianal venous plexus
region and usually presents as painful swelling at the site of the
blood clot. The most popular rodent model of venous thrombosis
is obstruction of the inferior vena cava via a surgical intervention,
which generates clots of sufficient size for measuring clot weight
and for histopathological characterization of the clot material (8).
Here, we introduce several types of venous thrombosis models
which are studied in mice (Table 1).

Inferior Vena Cava Stasis Occlusion Model
The stasis occlusion variant is a model of permanent inferior vena
cava (IVC) ligation, mimicking the clinical condition of complete
vascular occlusion. Technically, the IVC and all collateral side
branches distal to the left renal vein are ligated. Thrombus
formation in this model involves venous stasis and local release
of tissue factor (TF) with augmented coagulation inside the IVC
(9, 80). The advantages of this model are its low mortality,
high frequency of thrombus generation, and highly consistent
thrombus sizes (10, 11). Ultrasound can sequentially monitor
thrombus progression and to select an optimal time point for
harvesting the thrombus. This model has proven valuable to
study the interactions between the venous wall and thrombus
progression from acute (first 2–3 days) to chronic inflammation
as well as to study the subsequent remodeling of the venous wall
(12, 13). As a relevant discrepancy to most venous thromboses
in human, blood flow does not establish. Peternel et al. used
the stasis occlusion model in rats and found it well-suited for
evaluating antithrombotic therapies (14).

Inferior Vena Cava Stenosis Model
Partially reducing rather than completely blocking venous blood
flow is more similar to the process of venous thrombus in

humans. Technically, this implies only partial ligation of side
branches of the IVC and using a wire as a spacer during IVC
ligation that, once removed, maintains a small lumen with a
residual flow avoiding endothelial cell damage (15–21). These
subtle modifications mimic a residual flow that is typical for
human venous thrombosis and critical for its pathophysiology.
As a disadvantage, the thrombus formed in the IVC is generally
smaller and the size is more variable (22). This model allows us
to better study early thrombotic events (16).

Electrolytic Inferior Vena Cava Thrombosis Model
Cooley et al. first described thrombus induction by electrical
injury to the common femoral vein of mice (23, 24). Diaz et al.
modified the protocol by applying a constant current to a copper
wire inserted into the IVC. The electrical current induces free
radicals inside the wire, which subsequently activate endothelial
cells with minor cell damage (25–27). A thrombus develops
quickly in the direction of the blood flow and thrombus sizes are
highly consistent. This venous thrombosis model is used to study
pro-thrombotic, anti-thrombotic, and thrombolytic therapies
(28–30). Moreover, this model canmimic the early and late stages
of venous thrombosis. Disadvantages include long procedure
time and potential venous wall injury.

Ferric Chloride (FeCl3) Inferior Vena Cava Thrombosis

Model
Local application of FeCl3 solution causes oxidative damage to
the surface of the exposed venous wall followed by thrombus
formation (31, 32). To achieve this, a small piece of filter paper
soaked with a defined concentration of FeCl3 solution is applied
to the IVC for 3min (33). As toxin exposure allows only a short
observation period, thrombus size is usually small with little
thrombus material for evaluation. Gustafsson et al. combined
FeCl3-induced vessel injury with IVC stenosis in rats to obtain
a larger thrombus size (34).

Recurrent Inferior Vena Cava Thrombosis Model
Patients with deep vein thrombosis face a high risk of post-
thrombotic syndrome and 30% experience recurrent thrombosis
with 45% occurring in the ipsilateral leg within the following 10
years. Attempts to model recurrent thrombosis employ first the
electrolytic method and 21 days later a secondary thrombus is
induced using either a second electric insult or a ligature-based
method. At the time of the second intervention, the primary
thrombus has been incorporated into the venous wall, and the
lumen has recovered. This clinically more relevant model has
proven valuable to study the biology of recurrent deep vein
thrombosis (35).

Experimental Models of Arterial
Thrombosis
Arterial thrombosis is followed by territorial ischemia and
infarcts during spontaneous rupture of atherosclerotic plaques,
or in patients with an anti-phospholipid syndrome or with
trauma. Arterial thrombosis is the central pathologic mechanism
contributing to myocardial infarction and ischemic stroke (81).
It is a major health concern in terms of cardiovascular morbidity
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TABLE 1 | Animal models of immunothrombosis.

Model Strengths Weaknesses References

Venous thrombosis

IVC ligation model (stasis

model)

Thrombus size is highly consistent. It completely blocks blood flow. (9–15)

IVC stenosis model Thrombus reduces blood flow, endothelial cell damage. Thrombus formation is strain-dependent, clamp relevant

injury is unclear.

(16–22)

Modified IVC stenosis

model

Thrombus reduces blood flow, no endothelial cells damage. Variable in thrombus incidence and size. (16–22)

Electrolytic IVC model

(EIM)

Thrombus size is highly consistent, with no endothelial cells

damage.

Long operation time. (23–30)

FeCl3 IVC model Produces thrombus within minutes, thrombus size is

time-dependent.

Transmural vein wall injury, the thrombus is small, only be

used to study early time points.

(31–34)

Recurrent IVC model Most clinically relevant. Twice surgeries on the same mouse. (35)

Arterial thrombosis

Photothrombotic model Localize the ischemic lesion, minimal variation in infarction,

low mortality and invasiveness, highly reproducible.

The translational impact is poor. (36–47)

Thromboembolic clot

models

Any kind of embolus-like material can be used, perfectly

matches human embolic stroke.

High variability in infarct size, embolic material not lysisable,

high price.

(48–52)

Microsphere/macrosphere

model

Infarcts with penumbras, induce ischemic cell death and

inflammation. Occlusion can be postponed.

Permanent ischemia, multiple vessels occluded, blood flow

redistribution, immediate disruption of the blood-brain barrier

and vasogenic edema.

(53–55)

Cholesterol clot model Cholesterol crystal triggers clots formation, appropriate for

thrombolytic agent study, low mortality, low invasiveness,

highly reproducible.

Requires a high degree of surgical skill, the high variability of

infarct size, localized ischemic region.

(56)

Thrombotic microangiopathy

Acquired TTP model A simple approach leads to salient features of TTP. It requires rabbit or mouse antibodies. (57–61)

Hereditary TTP model Spontaneous thrombocytopenia High mortality. (61)

HIT/T model Severe thrombocytopenia, allowing pre-clinical studies. Needs high doses of heparin, Four factors (Heparin, hPF4,

FcγRIIA, and anti-heparin/hPF4 antibodies) are present

simultaneously.

(62–65)

Disseminated intravascular coagulation (DIC)

Sepsis-related DIC model Inducible DIC with multiple organ failure, suitable for

candidate drugs testing.

Mice are relatively resistant to endotoxin. Needs more than

bolus injection.

(66–74)

CLP-related DIC model Inducible DIC with multiple organ failure. Technically easy,

reproducible and similar to human disease.

High mortality and variability. (75–79)

IVC, inferior vena cava; TTP, thrombotic thrombocytopenic purpura; HIT/T, heparin-induced thrombocytopenia/thrombosis; CLP, cecal ligation and puncture.

and mortality and has become an attractive drug target for the
treatment of these diseases. A variety of reproducible animal
models have been developed to investigate the pathomechanisms
of arterial thrombosis (Table 1).

Photothrombosis Model of Cerebral Stroke
The photothrombotic model uses a photosensitive dye (e.g., Rose
Bengal) that after injection responds to illumination across the
intact or thinned skull with laser light of a specific wavelength
(36, 37). Light exposure induces the formation of oxygen and
superoxide radicals damaging surrounding endothelial cell
membranes. Endothelial damage promotes local activation
and aggregation of platelets. As a consequence, platelet-rich
thrombi occluding cerebral microvessels, and causing cortical
ischemic infarcts. The photothrombotic stroke model involves
the neuroplasticity of perilesional and contralesional brain
tissues (38, 39). Modifications of the classical photothrombotic
stroke model mimic also a perilesional penumbra. A ring filter

model produces a central area of brain injury surrounded
by tissue without thrombosis (40), but whether this model
sufficiently reflects the penumbra in a human disease context
is still under discussion (41). Other modifications include the
targeting of individual brain arterioles or implantable optical
fibers to produce small subcortical infarcts (42, 43), which
surround areas of hypoperfusion with characteristics resembling
an inverted penumbra (40). The photothrombotic stroke model
allows real-time analysis of many parameters in freely moving
rats and mice with acute stroke without the need for anesthesia
(44, 45). The activating light can be placed into the specific
cortical region of the desired brain area. Using this in vivomodel,
highly reproducible infarct size and low mortality are suitable
to study repair mechanisms of the brain and related long-
term functional outcomes (46, 47). Since microvascular clots
are unusually platelet-rich recombinant tissue plasminogen
activator (t-PA) can resolve such clots to a limited
extent (42).
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Thromboembolic Stroke Model
This model is frequently referred to study human
thromboembolic stroke, injecting thrombus-like materials
into the cerebral vessels, and the internal carotid artery (48, 49).
Depending on the size and amount of the injected material, this
model is characterized by leading to one or multiple arterial
occlusions followed by ischemic infarcts in the respective
territory. Compared to models of middle cerebral artery
occlusion (MCAO), cerebral thromboembolism models-induced
brain infarcts are surrounded by a well-defined penumbra but
infarct sizes are more variable. This model is suitable to study the
pathomechanisms of arterial immunothrombosis and the effects
of thrombolytic drugs in this process (50, 51). However, the
emitting source of the embolus is still not part of this model (52).

Microsphere/Macrosphere Embolic Stroke Model
Embolic stroke can also be induced by injection of synthetic
large-sized macrospheres (diameter between 300 and 400µm)
or small-sized microspheres (diameter between 20 and 50µm)
into the cerebral artery.Many differentmaterials, such as silicone,
collagen, and titanium dioxide have been used to induce embolic
stroke in vivo (53). This model has been characterized by
permanent ischemia as the fibrinolytic system cannot dissolve
such spheres. Microspheres cause multifocal and heterogeneous
small infarcts due to microembolization into multiple arteries
(54). Unlike thrombus formation, microspheres block blood
vessels suddenly, leading to a rapidly developing edema and
redistribution of blood flow (55). Although the macrosphere
model induces similar infarct development to the ligation
models, it does not allow to study the effect of thrombolytic drugs.

Cholesterol Embolism Model
We recently developed a model of cholesterol embolism by
injecting cholesterol crystals into the left renal artery of mice (56).
According to the size and number of cholesterol crystals, intra-
arterial injection leads to multiple microvascular thrombotic
occlusions followed by ischemic territorial infarcts. Interestingly,
these occlusions are sensitive to thrombolytic therapy preventing
tissue infarction and kidney failure. However, it does not
appear to be the crystals themselves but rather the blood clots
surrounding the crystals that cause vascular obstruction, tissue
ischemia, and organ failure (56). As a disadvantage, infarct size
is highly variable in this model but the degree of organ failure
tightly correlates with the injected crystal dose.

Experimental Models of Thrombotic
Microangiopathy
Thrombotic microangiopathies (TMAs) are heterogeneous
disorders characterized by thrombocytopenia, microangiopathic
hemolytic anemia, renal failure, and neurological symptoms
(82). Complex histopathological features have been detected
in TMAs, including thrombosis in arterioles and capillaries
with abnormalities in the endothelium and vessel wall [Table 1;
(83)]. TMAs can result from having numerous different
pathophysiological mechanisms resulting in a spectrum of
distinct but frequently overlapping clinical presentations, as
discussed in detail elsewhere (84). An important element is

genetic and acquired complement system alterations that either
alone or in combination with other triggers cause TMA. Such
triggers of uncontrolled complement activation at the endothelial
interface include infections, bacterial toxins, certain drugs, and
malignancies. Placental as well as maternal factors can trigger
TMA during pregnancy that can present with different clinical
features referred to by a traditional nomenclature, i.e., (pre-)
eclampsia or hemolysis-elevated liver enzymes and low platelet
count (HELLP) syndrome. Another entity relates to the von
Willebrand factor (vWF) cleaving protease disintegrin and
metalloproteinase with a thrombospondin type 1 motif, member
13 (ADAMTS13)-induced damages. Given this complexity of
disease pathomechanisms, animal models of TMA can mimic
only selective scenarios of the broad clinical spectrum of TMA.
Some are presented here.

Thrombotic Thrombocytopenic Purpura (TTP) Models
TTP develops from absence or inactivation of the ADAMTS13,
leading to the accumulation of vWF multimers and the
formation of microvascular thrombi with ischemic end-organ
damage (57, 82). Two important mouse models have been
developed to study the ADAMTS13 function in vivo. The TTP-
ADAMTS13 proteolytic activity inhibition model is based on
the administration of human anti-ADAMTS13 recombinant
single-chain variable region antibody fragments (scFv’s), which
inhibits the enzymatic activity of ADAMTS13 in mice (58, 59).
This in vivo treatment leads to persisted ADAMTS13 deficiency
for over 2 weeks and the formation of microvascular thrombi
(58, 60). Administration of Shiga toxin-2 to these mice results
in lethal TMA affecting the brain, heart, and kidney (61). In
anothermousemodel, ADAMTS13-deficientmice are challenged
with a second hit to develop TTP, e.g., the infusion of Shiga
toxin causes a syndrome closely resembling human TTP with
widespread vWF-rich and fibrin-poor hyaline thrombi in the
microvasculature of multiple organs (62).

Heparin-Induced Thrombocytopenia (HIT) and

Thrombosis
Heparin can trigger an immune-mediated thrombocytopenic
disorder characterized by venous and arterial thrombus
formation via antibodies against complexes of human
platelet factor 4 (PF4) and heparin (63, 64). Heparin-induced
thrombocytopenia in mice requires transgenic expression of
human PF4 and a lack of the genetic equivalent of human Fc
gamma receptor IIA (FcRIIA). As a third requirement, mice
are injected with anti-heparin-PF4 immunoglobulin (IgG) and
heparin (64, 65, 85). Although this combination of causal factors
is not identical to the clinical scenario in patients, the mouse
model is suitable to study HIT. Also, in some cases, lethal
TTP with disseminated arterial and venous thrombi have been
described in mouse models of HIT.

Disseminated Intravascular Coagulation (DIC) Model
Thrombocytopenia is frequently observed in septic patients who
have a systemic activation of immunothrombotic mechanisms
(66, 86, 87). Several important models have been developed to
study the pathology of DIC in mice. In the endotoxemia model,
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injection of lipopolysaccharide (LPS), zymosan or E. coli bacteria
in mice initiates an overwhelming activation of innate immunity
and procoagulant pathways that can lead to DIC with multiple
organ dysfunction (67–70). Pathophysiological characteristics of
this treatment are reduced platelet count, prolonged bleeding
time, decreased plasma fibrinogen levels, and increased plasma
D-dimer levels (71–73). This model is often used for the testing
of drug candidates (74, 75).

Caecal Ligation and Puncture Model
This represents the gold standard for research on polymicrobial
sepsis (76, 77). It consists of DIC-like microvascular thrombosis
and multiple organ failure representing an irreversible stage of
sepsis (78, 79).

Cellular Components and Molecular
Mechanisms of Immunothrombosis
Platelets
Studies using mouse models of sepsis revealed the accumulation
of platelets in the microvasculature. Indeed, LPS injection
resulted in thrombocytopenia in mice, the accumulation of
platelets was found in the lung and liver. Several Toll-
like receptors (TLRs) were identified in human and mouse
platelets to bind a major component of the wall of gram-
negative microorganisms (LPS), transmitting signals between
platelets and the innate immune system, thereby inducing
inflammatory responses. TLR-2 and−4 on human and mouse
platelets bind LPS and increase nitric oxide and cyclic
guanosine monophosphate (GMP) levels, and activate protein
kinase G (88). TLR4 activates the nuclear factor-κB (NF-κB)
and the mitogen-activated protein (MAP) kinases increasing
interleukin6 (IL-6), cyclooxygenase (COX-2), and prostaglandin
E2 (PGE2) production (89). Platelet TLR-1- and−4 are
involved in the development of microvascular thrombosis
and sepsis-induced intravascular coagulation by triggering
platelet degranulation, which releases proinflammatory cytokines
from alpha (α)-granules and promotes platelet-neutrophil
interaction (Figure 1). Several other isoforms of TLRs have
been studied in human and mouse platelets, connecting TLR
signaling to pathogenesis of virus-induced thrombocytopenia,
and intravascular coagulation. Platelet glycoprotein (GP) Ib and
αIIbβ3 integrins are involved in this process, together with an
extracellular matrix bridge formed by vWF and fibrinogen. It has
been shown that collagen-mediated-activation of GPVI signaling
in platelets plays an important role in platelet adhesion onto
the inflamed endothelium (90). Altogether, these results suggest
that platelets can distinguish between cellular immunity and
hemostasis using a combination of different platelet TLRs and,
depending on the ligand binding of the pathogens, platelet TLRs
can transduce effector signals to immune cells.

Endothelial Injury, TF, and Thrombus Formation
In the inflamed vessel wall, endothelial cells start to expose
TF and extracellular matrix molecules at the luminal surface,
which induces functional crosstalk between platelets, immune
cells and activates the coagulation cascade. Platelets and
neutrophils are the first blood cells adhering to the luminal

endothelial surface of the inflamed vessel wall. Platelet GPIb
binds vWF, GPVI binds collagen, laminin, and fibrin (91,
92). Besides these interactions, α2β1 integrin and GPV bind
collagen, and α6β1 interacts with laminin during thrombus
formation (93, 94). Thrombus growth involves additional
platelet recruitment, thereby accelerating the coagulation cascade
and the immune response, which stabilizes the growing
thrombus on the endothelium surface (Figure 1). Thrombin
generation amplifies platelet granule secretion priming the innate
immune system. Granule-resident factors released by platelets
have diverse effects on the innate immune system, including
monocyte cell differentiation (95), neutrophil cell migration
(96), phagocytosis, and cytokine responses. For example, platelet
granules contain second wave mediators [adenosine triphosphate
(ATP) and serotonin], plasma factors, TFs, fibrinogen, and (pro)-
inflammatory cytokines, and chemokines. Platelet serotonin
released from delta (δ)-granules could significantly increase
neutrophil accumulation and extravasation during inflammation
(97). Platelet inflammatory cytokines interleukin-1 (IL-1),
regulated upon Activation, Normal T Cell Expressed and
Presumably Secreted (RANTES), platelet-derived growth factor
(PDGF), transforming growth factor-β (TGFβ), and epidermal
growth factor (EGF) enhance local inflammatory responses
and supported by platelet chemokines, such as chemokine (C-
C motif) ligand 5 (CCL5), chemokine (C-X-C motif) ligand
4 (CXCL4), and 7 (CXCL7) that activate monocytes and
neutrophils. Interestingly, monocytes express TF in certain
pathological conditions (98, 99), connecting the innate immune
system to the coagulation cascade. In addition, microparticles
released by monocytes bind the platelet surface to accumulate
TFs and to promote coagulation (100).

Platelet-Immune Cell Interactions
Platelet attachment to the inflamed vessel walls is supported
by the interaction between platelets and extracellular matrix
components, thereby promoting the interaction of platelets with
immune cells and endothelial cells. Indeed, the interaction of
surface receptors of activated immune cells and platelets strongly
influences innate immune responses. It has been shown that
liver-resident macrophages (Kupffer cells) can interact with
platelets via platelet GPIb receptor and the exposed vWF on
the Kupffer cell surface, e.g., during bacterial infection-induced
immunothrombosis (101). Such platelet-immune cell conjugates
correlate to the severity of sepsis (102). Although the detected
lifetime of this conjugates in the peripheral blood is very short,
this interaction activates integrins and induces granule secretion.
Platelet-neutrophil adhesion to the endothelium involves the
interaction between neutrophil P-selectin glycoprotein ligand-
1 (PSGL-1) and αMβ2 integrin to platelet P-selectin and GPIb,
respectively. Neutrophil macrophage antigen 1 (Mac-1) also
binds platelet GPIb and αIIbβ3 integrin in the presence of
fibrinogen, inducing exposure of proinflammatory chemokines
CXCL4 and CCL5 (103). P-selectin and PSGL-1 interactions
also contribute to the formation of platelet-monocyte conjugates
resulting in monocyte activation. Also, monocyte-resident Mac-
1 receptor and platelet adhesion receptors GPIb, junction
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FIGURE 1 | Central paradigms of immunothrombosis. Damaged vessel walls and injured endothelial cells release tissue factor (TF) and extracellular matrix molecules,

inducing functional crosstalk between platelets and leading to platelet aggregation. Activated platelets promote thrombin formation thereby enhancing platelet

degranulation and fibrin formation. Activated platelets release proinflammatory cytokines from α-granules, which promotes platelet-neutrophil interaction and triggers

the release of the NETs. vWF, von Willebrand Factor; GPIb, glycoprotein Ib; GPVI, glycoprotein VI; TLR, toll-like receptor; LPS, lipopolysaccharides; NO, nitric oxide;

GMP, guanosine monophosphate; NF-κβ, nuclear factor-κ beta; IL-6, interleukin 6; MPO, myeloperoxidase; NETs, neutrophil extracellular traps; MAC-1, macrophage

antigen 1.

adhesion molecule 3 (JAM3), or αIIbβ3 integrin form transient
interactions (104).

Platelets and NET Formation
Electron micrographs showed adhesion and aggregation of
activated platelet within a fibrous meshwork of NETs (105).
In addition, platelet aggregation accurred in a time-dependent
manner, and DNase treatment simultaneously cleared NETs and
platelets (105). The release of NET into the circulation is followed
by platelet adhesion and aggregation, which together with
histones released from NETs promote thrombus formation and
growth (4). The NET release was observed also in non-infectious
inflammatory conditions, such as venous-, microvascular-,
and cancer-related thrombosis, acute lung injury, endothelial
damage with trauma, autoimmune diseases, preeclampsia, and
systemic lupus erythematosus (106). Interestingly, the structure
of thrombi in the presence of NETs is more rigid and
less permeable. In a mouse model of sepsis, TLR2, and
TLR4 on the surface of platelets in liver sinusoids and lung
capillaries contribute to platelet-neutrophil interaction and NET
formation (107). In addition, synchronized activation of surface
integrins and chemokine receptors induce NET formation (108).
Thromboxane A2 (TxA2)-released from activated platelets can

also amplify NET formation and this process is inhibited by
aspirin (109).

Coagulation
The blood coagulation cascade operates in three steps:
(i) formation of prothrombin activator, (ii) conversion of
prothrombin to thrombin, and (iii) conversion of fibrinogen to
fibrin (Figure 1). The first step involves the intrinsic coagulation
pathways. The intrinsic pathway is activated by exposure of
endothelial collagen and the extrinsic pathway is activated
through TF released by injured endothelial cells. The following
two steps encase platelet aggregates and red blood cells into
a fibrin network and attach it to the damaged endothelium.
At sites of the damaged vessel wall, platelet activation and
degranulation convert inactive IL-1 to the active form by
thrombin cleavage, thereby connecting the coagulation system
to immunothrombosis. NET release influences the coagulation
cascade by activating coagulation factor XII (FXII), inactivating
anticoagulant tissue factor pathway inhibitor (TFPI), and
by providing an active surface for platelet adhesion and
aggregation. All of these mechanisms lead to the inhibition of
fibrinolytic activity, thereby promoting thrombus formation
and growth.
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TABLE 2 | Experimental evidence for the role of extracellular DNA in immunothrombosis.

Model Type of evidence References

Venous thrombosis IVC model, ecDNA were present in thrombosis, DNase degrades ecDNA, breaks down

NETs, reduces thrombus size.

(16, 114, 115)

Acute limb IRI model, DNase I reduced DNA traps, inflammation,

Thrombin-Anti-Thrombin-III expression, and enhanced post-ischemic hind limb perfusion.

(116)

Ex vivo, DNA-histones complexes improved stability and rigidity of thrombus, and DNase

promotes clot lysis.

(117)

Arterial thrombosis Murine models of atherosclerosis, DNase I reduced atherosclerosis burden. (118)

Ischemic stroke model, circulating nucleosomes and DNA was increased after ischemic

stroke. DNase I reduced infarct size and improved stroke outcome.

(119)

Cholesterol clot model, ecDNA were presented in crystal clots, DNase prevented clots

formation, reduced organ infarction.

(56)

Thrombi collected from stroke patients, neutrophils were abundant in all thrombi, and

NETs contributed to the composition of all thrombi especially in their outer layers.

(120, 121)

Thrombotic microangiopathies

syndromes

HIT/T model, thrombi including neutrophils, extracellular DNA. While neutrophil depletion

abolishes thrombus formation, DNase treatment limited venous thrombus size.

(122, 123)

Sepsis-induced DIC in the murine model, ecDNA were presented in thrombus, the blood

vessel of lung occluded in DNase deficient mice, DNase treatment prevented NETs clot.

Time-dependent increase of cfDNA, later administration of DNase reduced cfDNA,

inflammation, and suppressed organ damage.

(124, 125)

In a murine CLP model, later administration of DNase 4 or 6 h after CLP resulted in

reduced cell-free DNA, inflammation, prevented organ damage, and improved survival.

(126)

In acute TMA patients, levels of DNase activity of plasma showed a significant reduction in

compared with healthy controls, plasma-mediated degradation of NETs is reduced in

patients with acute TMA.

(127)

IVC, inferior vena cava; ecDNA, extracellular DNA; cfDNA, cell-free DNA; NET, neutrophil extracellular trap; HIT/T, heparin-induced thrombocytopenia/thrombosis; CLP, cecal ligation

and puncture.

PRO-THROMBOTIC
DANGER-ASSOCIATED MOLECULAR
PATTERNS (DAMPs): THE ROLE OF
EXTRACELLULAR DNA IN
IMMUNOTHROMBOSIS

Among the mediators released from injured cells, extracellular
DNA acts as pro-thrombotic DAMP (110–112). Released
chromatin forms similar functional structures as the fibrin
network to trap red blood cells, platelets, and coagulation
factors including TF and fibrin (113). Here, we discuss some
experimental pieces of evidence derived from studies on venous,
arterial and microvascular thrombosis, and ischemic stroke
(Table 2).

Contribution of Extracellular DNA to
Venous Thrombosis
Several animal models established the role of extracellular
DNA in venous thrombosis (Table 2). Ligation of the IVC
in mice can increase plasma levels of extracellular DNA
during several days (114). Immunofluorescence studies revealed
colocalization of extracellular DNA with histones and vWF in
the thrombus. DNase I administration protected mice from
thrombosis at 6 h and 48 h in this model, indicating that the
extracellular DNA itself is a critical component of fibrin-rich
thrombi. Several experimental studies confirmed the presence of
extracellular DNA in venous thrombi induced by the restriction
of blood flow (16, 114, 115). In a mouse model of acute limb

ischemia-reperfusion injury, DNase I treatment significantly
reduced the presence of extracellular DNA traps, immune
cell infiltration, thrombin-anti-thrombin-III generation, and
enhanced post-ischemic hind limb perfusion. Interestingly,
neutrophil depletion resulted only in a small reduction in DNA
traps without inducing any skeletal muscle injury, or hind limb
perfusion (116). Indeed, ex vivo experiments showed that DNA-
histone complexes stabilized the fibrin network resulting in a
higher rigidity of an artificial thrombus that was resistant to t-PA.
In contrast, adding DNase I promoted clot lysis in combination
with t-PA (117). Thus, evolving data in a set of different
models of venous thrombosis consistently demonstrated a role
of extracellular DNA in venous thrombosis.

Contribution of Extracellular DNA to
Arterial Thrombosis
Numerous studies on animal models suggested the role of
extracellular DNA in arterial thrombosis. In murine models of
atherosclerosis, DNase I treatment resulted in a reduced burden
of atherosclerosis (118). Recently, we showed that in a murine
model of cholesterol embolism, extracellular DNA can be a non-
redundant component of crystal clots forming within a few hours
upon embolization and vascular occlusion. Similar to the platelet
purinergic receptor P2Y12 antagonism with clopidogrel, DNase
I treatment significantly reduced the numbers of obstructed
arteries, decreased ischemic-related organ failure, and tissue
infarction (56). In addition, preincubation of washed platelets
with DNAse I inhibited platelet activation, P-selectin exposure,
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and aggregation response to a collagen-related peptide (CRP) and
thrombin. Furthermore, treatment with DNAse I inhibits ATP
release and the formation of a fibrin network.

Contribution of Extracellular DNA in
Ischemic Stroke
In stroke patients, extracellular DNA components have been
also observed in ischemic brain tissues, possibly contributing
to stroke development. In support of this, histological analysis
of thrombi collected from stroke patients revealed that a large
number of nucleated leukocytes presented in all thrombosis
specimens, neutrophils were abundant in all observed thrombi,
and NETs were found in all thrombi, in particular in their
outer layers (119, 120). In a murine model of transient middle
cerebral artery occlusion (tMCAO), increased levels of circulating
nucleosomes and DNA were found after ischemic stroke. Under
hypoxic conditions, an increased level of extracellular chromatin
was detected. Moreover, targeting extracellular chromatin
components with DNase I improved stroke outcome (121).
Strikingly, adding DNase I to t-PA significantly accelerated the
ex vivo lysis of thrombi compared to t-PA alone (119, 120).

Contribution of Extracellular DNA to
Thrombus Formation in the
Microvasculature
Recent experimental evidence suggests that extracellular DNA
plays an important role in DIC-related organ dysfunction,
probably caused by elevated levels of circulating thrombin,
high platelet aggregation, vascular leakage, the release of
proinflammatory cytokines, and NET formation (128). In sepsis-
induced DIC, large numbers of NETs are accumulated mainly in
the microvasculature of the lung and liver (124). Studies using
DNase-deficient mice reported that the formation of NET clots
associates with TMA and DIC, including schistocytes, hemolytic
anemia, and organ failure due to vascular occlusions. Similar
observations have been detected in patients with severe bacterial
infections (124). Studies using multicolor confocal intravital
microscopy studies showed the presence of aggregated platelets
and fibrin clots together with extracellular DNA in septic tissues
(125). NETosis is regulated by the citrullinating enzyme peptidyl
arginine deiminase 4 (PAD4) which induces decondensation
of the chromatin through arginine modification of histones.
Accordingly, in mouse models of sepsis, deficiency of PAD4, or
DNase I treatment significantly inhibited systemic intravascular
thrombin activity, reduced platelet aggregation, and improved
microvascular perfusion (125). Patients with acute TMA show
lower plasma levels of DNase I when compared with healthy
controls (127). In a murine caecal ligation and puncture model,
a time-dependent increase in cell-free DNA was accompanied by
systemic inflammation (126). Interestingly, early administration
of DNase I at 2 h after caecal ligation and puncture resulted in a
drop in circulating cell-free DNA levels, increased inflammation,
and organ damage in the lungs and kidneys. In contrast, later
administration of DNase I, 4 or 6 h after caecal ligation and
puncture, resulted in less cell-free DNA and inflammation,
preventing organ damage and improving survival (126).

In a mouse model of HIT, thrombi are composed of
neutrophils, extracellular DNA, citrullinated histone H3, and
platelets. Interestingly, neutrophil depletion or Pad4-deficiency
abrogates thrombus formation and DNase I treatment reduced
the size of venous thrombi (122, 123).

As the studies on animal models supported a therapeutic
potential of recombinant DNase I against thrombus formation
in different types of vessels, this concept deserves further
investigation at the clinical level. Recently, clinical studies
suggested that endogenous DNase I activity could represent a
therapeutic biomarker during acute myocardial infarction (129).
Accordingly, coronary NET burden and endogenous DNase
activity are shown as predictors of myocardial infarct size and
stenosis resolution (130). Indeed, recombinant DNase I can
accelerate t-PA-mediated lysis of human coronary and cerebral
thrombi ex vivo (119, 120). Patients with acute microvascular
thrombosis displayed reduced DNase I activity (127). Timely
and efficient removal of extracellular DNA is required to
prevent excessive thrombus formation. The restoration of
plasma DNase I activity possibly represents a new therapy for
thrombotic complications.

Cellular Sources of Extracellular DNA in
Immunothrombosis
Extracellular DNA could be released by activated immune cells
such as neutrophils and monocytes, by apoptotic platelets or
by the damaged vasculature (131–134). Therefore, it is difficult
to identify precisely the sources of extracellular DNA that
contribute to thrombus formation in vivo context. Neutrophils
are considered as a major source of extracellular DNA when
they release their chromatin as NETs (105, 135). As indicated
above, NETs are critical for the development of sepsis-
induced intravascular coagulation regardless of the inciting
bacterial stimulus (gram-negative, gram-positive, or bacterial
products). Indeed, many clinical and experimental studies use
extracellular DNA as a marker for NETs in the circulation.
NETs and extracellular DNA are present in patients with HIT.
In patients with myocardial infarction, blood samples contain
DNA, nucleosomes, myeloperoxidase, and neutrophil elastase,
and their plasma levels correlated with the burden of NETs,
detected within coronary thrombi, as well as with the infarct
size (130). In ischemic stroke, thrombi in cerebral arteries
stain positive for neutrophils, extracellular DNA, and neutrophil
elastase, suggesting NET formation (119).

Extracellular traps are also released from monocytes, referred
to as METs. METs have a similar web-like structure comprising
DNA, granular enzymes, and citrullinated histones, and
procoagulant activity, similar to NETs (132). Besides neutrophils
and monocytes, it has been reported that eosinophils also form
extracellular traps (134).

Another source of extracellular DNA can be released by
necrotic vascular or parenchymal cells. During thrombosis-
induced tissue ischemia, the majority of cells die primarily via
a process of necrosis, this process releases nuclear DNA into
the extracellular space and bloodstream. Injured cardiomyocytes
are probably a major source of extracellular DNA in patients
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with myocardial infarction (136, 137). Another source is
injured endothelial cells at the site of vascular obstruction
(56, 138). Finally, activated platelets release DNA from their
mitochondria. Although the total amount of mitochondrial
DNA per platelet is low, the large numbers of platelets
involved in blood clotting also render platelets as a potentially
significant source of extracellular DNA (139, 140). Taken
together, numerous sources contribute to the pool of extracellular
DNA in immunothrombosis.

Therapeutic Potential of Recombinant
DNAse I in Immunothrombosis
In a mouse model of sepsis-induced intravascular coagulation,
NET release coincided with increased platelet aggregation,
thrombin generation, and fibrin clot formation (125). DNase I
treatment reduced NET formation and degraded extracellular
DNA, which was associated with inhibited platelet aggregation
and microvascular obstructions (Figure 2). In the LPS-
induced sepsis mouse model, NET release and fibrin clot
formation were inhibited by the combined treatment of DNase
I with the thrombin inhibitor argatroban. However, these
treatments did not influence bacterial dissemination (141).
In line with this, in septic patients, NETs also significantly
increased the generation of thrombin and fibrin clot formation,
and this effect was reduced by DNase I treatment (142).
Of note, DNase I treatment leads to the release of NET
components into the bloodstream, which may elicit procoagulant
activity and intravascular thrombosis in septic patients. Free
extracellular DNA fragments enhance the intrinsic coagulation
pathway (143), which is also observed in patients with
deep vein thrombosis (144), leading to tissue hypoxia and
endothelial damage.

It is known that DNA intercalates with fibrin to form a
scaffold that stabilizes clot structure in the bloodstream (4),
therefore DNA-fibrin complexes have a fundamental effect on
clots lysis. In plasma of septic patients, extracellular DNA
significantly delayed t-PA-mediated clot lysis times by forming
DNA-plasmin-fibrin ternary complex which results in a densely
packed clot structure (145). Elevated levels of extracellular DNA
in plasma from septic patients promoted thrombin generation
(146). DNA alone or NETs inhibited plasminogen activation
and t-PA-induced resolution of plasma clots (147). In a murine
model of HIT, PF4 combines with NET-forming complexes
that selectively bind HIT-induced antibodies, DNase I treatment
limited venous thrombus size (148). Extracellular DNAmarkedly
affects the hemostatic system by activating factor XI (FXI) and
factor XII (FXII) (149). Extracellular DNA present in the fibrin
clot inhibits the antithrombotic activities of anticoagulants, such
as unfractionated heparin and enoxaparin (150). In contrast,
RE31 DNA aptamers inhibit thrombin formation, accelerates
fibrinolysis in vitro, and suppress thrombosis in vivo (151, 152).

In cystic fibrosis the lung is frequently affected by recurrent
bacterial infections and chronic inflammation causing
progressive lung destruction; the development of thick mucus in
small bronchioles and peribronchial regions of the lung thereby
triggering permanent bacterial infection. Infiltrated neutrophils

release granular content to eliminate the pathogens, and also
release high concentrations of extracellular DNA, forming NETs
in the inflamed bronchioles, which contribute to airway damage,
aggravating mucus viscosity, and its mucociliary clearance
from the bronchioles. Blood samples from patients with cystic
fibrosis showed an increased number of activated platelets (153),
which form cell conjugates with monocytes and neutrophils
(153, 154). Increased platelet aggregation responses to adenosine
diphosphate (ADP) and thrombin receptor-activating peptide
(TRAP), and second-wave mediators (TxA2, ATP, serotonin),
and α-granule-resident proteins [tumor necrosis factor alpha
(TNFα), CD40 ligand (CD40L), leukotriene B4 (LTB4), and
interleukins] were also detected (155, 156). Plasma levels of
platelet granule-resident proteins are correlated with a decreased
lung function of these patients (157, 158). DNase I treatment
showed significant improvement in rheological parameters in
cystic fibrosis, reducing the thick mucus layer by cleaving the
extracellular DNA of NETs. Therefore, patients can release more
easily the accumulated mucus up from the inflamed lung tissue.

The literature also describes that following bacteremia,
neutrophils recruited to the liver sinusoids enhance the clearance
of pathogens from the circulation (107, 159). Similar to the
phenomenon observed in septic lung tissues, and in liver
sinusoids, neutrophils also release intravascular NETs (69).
Blocking NET formation by DNase I reduced the capture
of circulating bacteria in the liver, resulting in increased
dissemination of bacteria to distant organs.

NET formation was also detected in acute ischemic
stroke, located in the outer layer of developing thrombi,
and consequently, the increase of extracellular DNA content in
the blood plasma correlates with stroke severity. Although
thrombolysis with t-PA administration promotes fibrin
degradation in the occluded vessel of acute ischemic stroke,
t-PA-resistant clot formation has been frequently observed
in platelet-rich arterial thrombi. Hence, fibrin accumulation
in the growing thrombi is limited at the early phase of acute
ischemic stroke (160, 161). Interestingly, the co-administration
of DNase I with t-PA accelerated thrombolysis ex vivo. However,
DNase I treatment alone had no thrombolytic effect ex vivo.
These results suggest that both fibrin and NET formations can
be targeted simultaneously to induce successful thrombolysis
and recanalization of the artery in acute ischemic stroke (120).
In line with these results, combined treatment of DNase I
with t-PA also attenuated infarct size in a murine model of
myocardial ischemia-reperfusion injury. Again, DNase I or
t-PA treatment alone had no beneficial effects in this mouse
model (162). Altogether, these results suggest that DNase I and
t-PA treatment together improve both myocardial and cerebral
post-ischemic infarction. However, a clinically implemented and
safe pharmacological strategy of DNase I treatment is currently
established in patients with cystic fibrosis (163) and limited
clinical trials investigated the thrombolytic effects of NET
degradation in other disease conditions. Altogether, these data
suggest that in some cases, DNA-targeted therapies by DNase I
may improve thrombolysis and inhibit coagulation. Therefore,
further investigation is necessary to establish the role of DNase I
treatment in immunothrombosis.
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FIGURE 2 | Proposed model of DNase function in immunothrombosis. Damaged endothelial cells release tissue factor (TF) and ecDNA. TF activates the coagulation

cascade, converting prothrombin to thrombin, which further activates platelets through PAR receptors. The ecDNA acts as DAMP and directly activates platelets and

triggers inflammatory responses. The damaged endothelial layer exposes extracellular matrix proteins (collagen, laminin), and accumulates vWF, fibrinogen and other

blood plasma proteins on the endothelial surface, further supporting platelet adhesion and activation through platelet specific glycoprotein receptors (GPIb, GPVI) and

integrins (αIIbβ3, α2β1). During degranulation, second wave mediators (ATP, ADP, serotonin), extracellular matrix components (vWF, fibrinogen), and inflammatory

cytokines are released by activated platelets, triggering thrombus formation and enhancing immune cell responses and NET formation. Platelet purinergic receptors

(P2Y1, P2Y12) are activated by ADP, further promoting platelet aggregation and thrombus growth. P-selectin exposure on the plasma membrane of activated platelets

increases procoagulant activity and supports platelet-immune cell interaction and NET formation. In the process of immunothrombosis, DNase could inhibit NETosis

by fragmenting DNA within the NETs, thereby dissociating platelet-rich components from the endothelial surface, and inhibiting thrombus growth. DNAse may also

inhibit purinergic signals in platelets and immune cells. TF, tissue factor; ec-DNA, extracellular deoxyribonucleic acid; vWF, von Willebrand Factor; ADP, adenosine

diphosphate; ATP, adenosine triphosphate; TNFα, tumor necrosis factor alpha (TNFα); GPIb, glycoprotein Ib; GPVI, glycoprotein VI, DNase, deoxyribonuclease; ADP,

adenosine diphosphate; ATP, adenosine triphosphate.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Immunothrombosis is a complex process involving numerous
elements of the cascades of coagulation and inflammation. In

vivo preemptive administration of recombinant DNase I not
only cleaves deposits of extracellular DNA but also inhibits
ATP release from platelet δ-granules and prevents the formation
of fibrin network. Extracellular DNA may directly induce
fibrin formation, thereby enhancing thrombus growth. Studies
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analyzing the role of extracellular DNA in immunothrombosis
related to either the use of DNase-deficient mice or the
recombinant DNase I. It worth to postulate that DNAse I
treatment may limit thrombus formation by inhibiting the
function of platelet-derived second wave mediators, such ATP.

Several questions remain unanswered: What is the main
source of extracellular DNA during the early phase of blood
clotting in vivo? How does the extracellular DNA released from
infarcted tissues may contribute to the clot formation and the
resistance to the fibrinolysis? Is extracellular DNA a suitable
therapeutic target in humans beyond the anticoagulants or
fibrinolytic drugs? Does recombinant DNase I have a better safety
profile compared to the anticoagulants? A better understanding
of the role of extracellular DNA in a immunothrombosis context
is required to clarify these issues.
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Sterile inflammation develops as part of an innate immunity response to molecules
released upon tissue injury and collectively indicated as damage-associated molecular
patterns (DAMPs). While coordinating the clearance of potential harmful stimuli, promotion
of tissue repair, and restoration of tissue homeostasis, a hyper-activation of such an
inflammatory response may be detrimental. The complex regulatory pathways modulating
DAMPs generation and trafficking are actively investigated for their potential to provide
relevant insights into physiological and pathological conditions. Abnormal circulating
extracellular vesicles (EVs) stemming from altered endosomal-lysosomal system have
also been reported in several age-related conditions, including cancer and
neurodegeneration, and indicated as a promising route for therapeutic purposes. Along
this pathway, mitochondria may dispose altered components to preserve organelle
homeostasis. However, whether a common thread exists between DAMPs and EVs
generation is yet to be clarified. A deeper understanding of the highly complex, dynamic,
and variable intracellular and extracellular trafficking of DAMPs and EVs, including those of
mitochondrial origin, is needed to unveil relevant pathogenic pathways and novel targets
for drug development. Herein, we describe the mechanisms of generation of EVs and
mitochondrial-derived vesicles along the endocytic pathway and discuss the involvement
of the endosomal-lysosomal in cancer and neurodegeneration (i.e., Alzheimer’s and
Parkinson’s disease).

Keywords: Alzheimer’s disease, damage-associated molecular patterns, endo-lysosomal system, inflammation,
innate immunity, mitochondrial-derived vesicles, Parkinson’s disease, quality control system
INTRODUCTION

Inflammation is part of the innate immunity response to pathogens or molecules released upon
tissue injury, collectively indicated as damage-associated molecular patterns (DAMPs) (1). This
non-specific first line of organismal defense is mounted upon binding of DAMPs to a set of pattern
recognition receptors (PRRs), including Toll-like receptors (TLRs) and inflammasomes that sense
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DAMPs and elaborate an immune response (2, 3). Albeit
DAMPs-triggered inflammation is protective towards harmful
stimuli via the coordination of their clearance, promotion of
tissue repair, and restoration of tissue homeostasis, an excessive
inflammatory response in the setting of persistent stimuli may be
detrimental. Indeed, if dysregulated or not timely resolved,
inflammation contributes to the development of several disease
conditions (e.g., autoimmune diseases, cardiovascular disease,
neurodegeneration, and cancer) (4, 5). Hence, a hyper-resolution
response aimed at limiting hyper-inflammation and triggered by
DAMPs-activated/initialized innate immune cells is in place (6).
This pro-resolving pathway is possibly mediated by suppressing/
inhibiting inducible DAMPs (SAMPs) (6).

A large deal of research has been devoted to understanding
the complex regulatory pathways involved in DAMPs
production and trafficking. The endo-lysosomal system that
includes a set of dynamic and inter-convertible intracellular
compartments such as early-, recycling-, and late endosomes,
and lysosomes is a major component of such response. Along
with this, autophagosomes are autophagy executors that deliver
intracellular contents to lysosomes (7). The fusion of endosomes
and/or autophagosomes with lysosomes installs an acidic
environment and enables cargo degradation for recycling
unnecessary components into re-usable biological building
blocks (e.g., carbohydrates, proteins, lipids, and nucleotides)
within the cell (7). These events are accomplished via vesicle
trafficking, protein sorting, and selective cargo degradation. In
particular, two opposite sorting systems are in place: the
endosomal sorting complex required for transport (ESCRT)
that supports cargoes degradation and the retromer complex
that allows specific retrograde cargo retrieval (7).

Mitochondria are highly interconnected organelles that
form a dynamic network by contacting the endoplasmic
reticulum (ER), lysosomes, and the actin cytoskeleton (8, 9).
While inter-mitochondrial junctions allow mitochondrial
membrane cristae remodeling between adjacent mitochondria
(10), mitochondrial fusion enables the mixing of matrix and
intermembrane space contents (11). Recently, an additional
mechanism of mitochondrial interconnection based on tube-
like protrusions (mitochondrial nanotunnels) has been described
(9). Mitochondrial nanotunnels may be especially relevant in
establishing connections between organelles immobilized within
post-mitotic tissues (e.g., skeletal muscle, myocardium), in which
fusion events are limited (9). Finally, Golgi-derived vesicles
contribute to the maintenance of mitochondrial homeostasis
through participating in mitochondrial dynamics (12).

Altered regulation of the endosomal-lysosomal system has
been implicated in several age-related conditions, including
cancer and neurodegeneration, and might therefore be targeted
for therapeutic purposes (13). Remarkably, small extracellular
vesicles (sEVs) isolated from primary fibroblasts of young
humans have shown to ameliorate senescence biomarkers in
cells obtained from old donors (14). A major task of the
endosomal-lysosomal system is the disposal of dysfunctional,
but not severely damaged mitochondria via a housekeeping
process of mitochondrial quality control (MQC) (15). Herein,
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we provide an overview on vesicle trafficking along the endocytic
pathway, the generation of exosome and mitochondrial-derived
vesicles (MDVs), and discuss the involvement of the endosomal-
lysosomal system in physiological and pathological conditions,
including cancer and neurodegeneration [i.e., Alzheimer’s (AD)
and Parkinson’s disease (PD)].
GENESIS OF ENDO-LYSOSOMAL
VESICLES

Exosomes are EVs of endosomal origin with a diameter of 50-150
nm. The biogenesis of exosomes is associated with the generation
and fate of multivesicular bodies (MVBs) (16). These organelles
owe their name to the accumulation of intraluminal vesicles
(ILVs) after inward budding of plasma membrane
microdomains, fission, and release (16). ILVs have a small
diameter (50-150 nm) and are identified as exosome
precursors. As part of the endocytic trafficking, endosomal
organelles undergo maturation and MVBs, moving from cell’s
periphery to the center along microtubules, mature in late
endosomes. For this reason, MVBs are considered to be
newborn late endosomes derived from the maturation of early
endosomes. However, according to an alternative model, MVBs
are identified as intermediate transporters between early and late
endosomes (17). Realistically, MVBs can follow two alternative
directions: 1) toward fusion with other MVBs or late endosomes
to undergo maturation and acidification, thus becoming
lysosomes for cargo degradation or 2) toward the plasma
membrane to fuse and release into the extracellular space ILVs,
such as exosomes (16) (Figure 1).

Hence, the biogenesis of MVBs and exosomes is closely
related. There are two different mechanisms that guide the
origin of MVBs. In fact, they can originate via the sequential
action of ESCRT or from endosomes containing lipid rafts (16,
18). The ESCRT system consists of five cytosolic complexes [i.e.,
ESCRT 0, I, II, III, and vacuolar protein sorting (VPS) 24] (19)
and its role in exosome biogenesis has been proven by the
identification of several ESCRT proteins in exosomes purified
from different cell culture types or biological fluids. For this
reason, ESCRT proteins are now used as exosomal markers (20).

ESCRT 0 recognizes a specific group of ubiquinated proteins
on early endosomes referred to as phosphatidyl inositol
monophosphate (PI3P) enriched domains. The recognition of
ubiquitin and PI3P areas occurs through the interaction with the
two subunits of the ESCRT 0 complex: HRS (hepatocyte growth
factor regulated tyrosine kinase substrate) and STAM1/2 (signal
transducing adaptor molecule 1/2). This is the first transition
step from early endosomes to MVBs followed by the HRS-
mediated recruitment of ESCTR I to endosomes (17, 21–23).
ESCRT I in mammalian cells is a heterodimeric complex
composed by tumor susceptibility gene 101 (TSG101), VPS28,
VPS37A-D, and the ortholog of the yeast Mvb12 (22). In this
step, the formation of stable vacuolar domains starts through
TSG101 action carrying on the maturation of early endosome
intoMVBs (24). ESCRT I takes the place of ESCRT 0 and recruits
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ESCRT II that, in mammalian cells, is composed of ELL-
associated protein of 30 kDa (EAP) 30, EAP20, and EAP45
(22). ESCRT III is a heterotetrameric complex composed by
VPS20-CHromatin-Modifying Protein (CHMP) 6, Sucrose Non-
Fermenting protein (SNF) 7-CHMP4, VPS24-CHMP3, and
VPS2-CHMP2 subunits. ESCRT II recruits ESCRT III through
the interaction between EAP20 and CHMP6, while CHMP-6 has
been shown to regulate cargo sorting (25). ESCRT III has the role
of recruiting deubiquitinating enzymes to remove ubiquitin
residues from the protein with consequent complete
invagination of the membrane and generation of ILVs. This is
the last crucial step for the entry of cargoes into ILVs (22, 26).
ESCRT III recruits accessory subunits, such as BRO1/ALIX
(BCK1-like resistance to osmotic shock protein-1/apoptosis
linked gene 2 interacting protein X) for cargo deubiquitination
(27), and could also play a role in the fusion of MVBs with late
endosomes (26, 28, 29). Finally, the interaction between ESCRT
III and VPS4 allows the VPS4 ATPase activity to determine the
final membrane budding, scission, and detachment of ESCRT
subunit for recycling and cargo delivery (22). Thus, the whole
process of ILV budding, cargo selection, membrane remodeling,
and the incorporation of ILVs into MVBs is regulated by the
ESCRT complex. However, only a few ESCRT components are
necessary in this process, including HRS, TSG101, and STAM1
(ESCRT 0/I) (30). Indeed, the silencing of these proteins induces
a decrease in exosome secretion, while an increase of exosome
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release is observed by inhibiting CHMP4C, VPS4B, VTA1 and
ALIX (ESCRT III complex) (30). ALIX also interacts with several
ESCRT proteins (e.g., TSG101 and CHMP4) and is involved in
regulating protein composition/cargo loading, budding of ILVs,
and MVB incorporation (31). Recent studies have also indicated
that ALIX is crucial for the connection between syndecans and
the ESCRT machinery through the binding of syntenins.
Syntenins are soluble proteins acting as intracellular adaptors,
via their PDZ domains that recruit syndecans. These latter are
membrane proteins carrying heparan sulfate chains (HS) that are
necessary to bind adhesion molecules and growth factors
allowing them to interact with their receptors and assist in the
endocytic process. This heterotrimeric complex is involved in
endosomal budding and exosomes biogenesis (31, 32).

The exosome biogenesis can also follow an ESCRT-
independent pathway. Indeed, even in the setting of
simultaneous depletion of core ESCRT proteins, MVB and
exosome biogenesis can still ensue via specific membrane lipid
composition. Endosomes, which have domains enriched in
cholesterol and sphingolipids, named lipid rafts, are able to
curve inward and determine the formation of MVBs with the
support of the pH gradient across the membrane (33). In this
case, phospholipases mediate the synthesis of ceramides from
sphingolipids and assure endosome membrane invaginations
without ESCRT assistance. In fact, cone-shaped structures of
ceramides, alone or associated with cholesterol, generate areas
FIGURE 1 | Schematic representation of the mechanisms involved in exosomes biogenesis. The most investigated mechanism through which exosomes are
generated involves endocytosis after receptor/ligand binding at the cell’s membrane. After the ligand dissociates from its receptor, it is located into an early
endosome. The receptor can either be recycled and relocated on the membrane surface or degraded into lysosomes. Through the activity of the endosomal sorting
complex request for transport (ESCRT), the early endosome maturates into multivesicular bodies (MVBs) containing intraluminal vesicles (ILVs). Eventually, MVBs
migrate toward the plasma membrane and fuse to release ILVs as exosomes. As an alternative route, MVBs can fuse with other MVBs or late endosomes and
receive vesicles containing lysosomal enzymes from trans Golgi, evolving into lysosomes for degradative purposes.
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suitable for membrane deformation and ILV budding (34). The
conversion of sphingomyelin in ceramide is catalyzed by neutral
sphingomyelinases (SMases) which are enzymes located in the
Golgi but also in the plasma membrane favoring exosomal
biogenesis. Indeed, the inhibition of SMases reduces exosome
secretion in specific cell types (35).

Originally identified in B lymphocytes and implicated in
several cellular processes like cell fusion, cell migration and cell
adhesion, the three tetraspanins CD9, CD81, and C63 are
acknowledged as exosomal markers for their abundance in
exosomes (36). These proteins generate the TEM domain
(tetraspanin-enriched domain) and are composed by four
transmembrane domains that interact with several other
proteins, cholesterol, and gangliosides. Cargo sorting and
formation of ILVs are mediated by the tetraspanins. Indeed,
CD9 cooperates in the fusion of plasma membrane, while CD63
interacts with the PDZ syntenin domain (37).

The mechanisms through which MVBs move towards
the plasma membrane for the release of exosomes instead of
their fusing with lysosomes are presently unclear. Nevertheless,
during the fusion of MVBs with the plasma membrane, the
interaction between specific proteins and lipids determines
exosome secretion, a process involving SNARE (soluble N-
ethylmaleimide-sensitive fusion protein attachment protein
receptors) proteins and small GTPases (38). Indeed, exosomes
secretion is inhibited by overexpression of R-SNARE VAMP7
(vesicle-associated membrane protein 7), which induces
enlargement of MVBs and their clustering at the cell’s
periphery (39). The transport of MVBs towards the plasma
membrane is regulated by microtubules and microfilaments
such that the modulation of the expression of cortactin induces
changes in the release of exosomes (40). Moreover, members of
the Ras-related in brain (RAB) protein family, known for their
role in endosomal trafficking, are also involved in exosome
biogenesis and release. In this regard, several studies have
shown a pivotal role for RAB27 and RAB35 in the docking of
MVBs at the plasma membrane (41–43), while the silencing of
RAB7A, the master regulator of late endocytic pathway,
decreases syntenin-mediated exosome secretion (31, 44) or
increases the release of CD9- and CD81-positive exosomes in
cisplatin resistant cancer cells (45, 46).

DAMPs of different nature can be shuttled via EVs. Of note,
mitochondria can also exploit this pathway for preserving organelle
homeostasis. The mechanisms assisting in the generation of EVs
from mitochondria are discussed in the next paragraph.

Mitochondrial-Derived Vesicles
MDVs are generated by the selective incorporation of protein
cargoes, including outer and inner membrane constituents, and
matrix content. These vesicles have a uniform size (from 70 to
150 nm) and can follow two distinct fates: 1) they can fuse with
MVBs and/or late endosomes for degradation (47) or
extracellular secretion (13, 48); 2) they can be delivered to a
subpopulation of peroxisomes (49).

Upon mitochondrial stress and isolation of mitochondria in
vitro, it is possible to observe the formation of MDVs enriched in
Frontiers in Immunology | www.frontiersin.org 456
oxidized protein (50), revealing a mitochondrial stress-dependent
selective cargo incorporation. An elegant work by Soubannier et al.
(50) showed that MDVs carrying the outer membrane pore protein
voltage-dependent anion channel (VDAC) are generated after the
production of xanthine oxidase/xanthine-induced reactive oxygen
species (ROS), while generation of ROS upon treatment with the
complex III inhibitor antimycin A determines MDV formation
without enrichment in VDAC, thus suggesting that MDVs can
transport any oxidized cargo.

The protein kinase phosphatase and tensin homolog (PTEN)-
induced putative kinase 1 (PINK1) and the cytosolic ubiquitin E3
ligase Parkin are required for the generation of MDVs targeted to
the endocytic pathway and, finally, to the lysosomes (51). Both
mutated in familial forms of Parkinson’s disease (52, 53), PINK1
and Parkin are known relevant factors in MQC and inducers of
the mitophagic pathway. PINK1 is targeted to mitochondria but
is normally degraded very rapidly (54–56). Indeed, during the
import process at the site of mitochondria, a set of matrix
processing peptidases and presenilins-associated rhomboid-like
protein (PARL) cleave PINK1, thereby allowing its release from
the mitochondrial import channel and subsequent cytosolic
proteolytic degradation (56). However, in the setting of
damaged mitochondria, the import machinery is inactivated
thus determining the trapping of PINK1 within or near the
import channel at the mitochondrial outer membrane (55). Here,
PINK1, by exposing its kinase domain to the cytosol, induces
Parkin phosphorylation. As a consequence, a stable recruitment
of Parkin at the mitochondria and a Parkin-dependent
ubiquitination of several proteins at the mitochondrial surface
occur (57). Finally, a set of autophagic adaptor proteins recognize
mitochondrial Parkin-ubiquitinated proteins and deliver damaged
organelles to the autophagosome for subsequent disposal (57).

Sugiura et al. (58) proposed a model in which they predicted a
similar mechanism in PINK1- and Parkin-mediated MDV
transport. The authors hypothesized that a local mitochondrial
oxidative damage or complex assembly defects may induce
protein aggregation at the mitochondrial import site that may
clog the import process into the organelle. Along with this, the
oxidation of phosphatidic acid and cardiolipin alters the
membrane curvature which may support an early outward
bending of the mitochondrial membrane, thus forming MDVs
(59). Hence, a dual role for MDVs generation can be envisioned.
On the one hand, MDVs can be considered as the first step of
MQC, accomplished through the extrusion of damaged proteins
as an attempt to avoid complete mitochondrial dysfunction. This
would occur in the setting of mildly damaged organelles in which
the autophagic pathway is not triggered (47, 51). On the other
hand, severe mitochondrial dysfunction and uncoupling could
induce a switch from local displacement of mitochondrial
content to a complete arrest of PINK1 in all import channels,
followed by the recruitment of autophagic mediators and
degradation of the whole organelle (Figure 2).

Such a view supports the hypothesis of including the delivery of
MDVs to lysosomes amongMQCmechanisms. Indeed, cells perform
MQCs via four different mechanisms: 1) degradation of unfolded
and oxidized proteins within the mitochondrial matrix or
November 2020 | Volume 11 | Article 601740

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Picca et al. Extracellular Vesicles in Health/Disease
intermembrane space by mitochondrial protease (60);
2) ubiquitination and delivery of mitochondrial outer membrane
proteins to the cytosolic proteasome (61, 62); 3) activation of
mitophagy to remove severely damaged mitochondria, whether
linked to global protein misfolding or depolarization (63), and
4) generation and delivery of MDVs to lysosomes to protect the
cell from premature mitophagy by removal of PINK1 and Parkin
from each failing import channel.
DAMAGE-ASSOCIATED MOLECULAR
PATTERNS AND STERILE INFLAMMATION

Chronic sterile inflammation ensues in several pathological
conditions for which a common thread may reside into
dysregulated EV trafficking. Therefore, a deeper understanding
of the pathways generating EVs and triggering innate immunity
may help clarify the events linking cellular dyshomeostasis with
peripheral changes. The generation of MDVs orchestrated by
mitochondrial-lysosomal crosstalk (64) is a strong candidate
mechanism linking the two processes. Indeed, while operating
as an housekeeping system in healthy mitochondria (16), in the
setting of failing mitochondrial fidelity pathways, the clearance of
dysfunctional organelles viaMDVs may release noxious material
with the potential of triggering inflammation (64). This response,
mediated by the release of interferons (IFNs), pro-inflammatory
cytokines, and chemokines, is part of innate immunity and starts
with the recognition of an infectious agent (either viral or
bacterial) that binds and activates membrane or cytoplasmic
immune sentinel molecules termed PRRs [reviewed in (65)]. Of
these, membrane-bound TLRs and the cytosolic retinoic-acid-
inducible gene I (RIG-I)-like receptors (RLRs, RIG-I, and MDA5)
are the best characterized in the setting of viral infections (66).
Upon detection of double-stranded RNA produced during viral
genome replication (67), TLR3 located in the endolysosomal
compartment signals the binding via Toll-interleukin-1 receptor
domain-containing adaptor inducing IFN-b (TRIF) and activates
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the IkB kinase (IKK) complex and the IKK-related kinases TRAF
family member-associated NF-kB activator (TANK)-binding
kinase 1 (TBK1) and IKKe. As a result of this activation, the
translocation of nuclear factor-kappa B (NF-kB) and IFN-
regulatory factors (IRFs) to the nucleus and their activation
occur, thus inducing the production of type I and III IFNs
together with a set of inflammatory chemokines including the
regulated on activation normal T cell expressed and secreted
(RANTES), and IFN-g-inducible protein 10 (IP-10) (68–70).
Viral RNAs can also be sensed in the cytoplasm by the RLRs,
which signal via the mitochondrial antiviral signaling protein
(MAVS) adaptor located at the mitochondrial outer membrane.
Following the RLR-MAVS pathway, the activation of IKK and
IKK-related kinases and, subsequently, NF-kB and IRFs occurs
(71–73). Once induced, IFNs upregulate the expression of
hundreds of IFN-stimulated genes (ISGs), ultimately installing
an antiviral response that halts viral replication and spread (74).
Along shared pathways, mitochondrial DAMPs can also trigger
inflammation. In particular, mitochondrial DNA (mtDNA), due
to its bacterial ancestry and its hypomethylated CpG motifs, is a
potent trigger of innate immunity response involving the release
of pro-inflammatory mediators installing an inflammatory milieu
(75, 76). Indeed, mtDNA can interact with PRRs including TLRs,
but also NOD-like receptors (NLRPs), and the cyclic GMP-AMP
synthase–stimulator of interferon genes (cGAS–STING) systems
(77, 78). The TLR pathway is engaged by mtDNA via its binding
to TLR9 at the endolysosomal level, followed by the recruitment
of the innate immune signal transduction adaptor myeloid
differentiation primary response 88 (MyD88). The latter, by
activating the mitogen-activated protein kinase, triggers
inflammation via NF-kB signaling (79–81). Alternatively,
mtDNA can ignite inflammation as part of the innate
immunity response either via inflammasome or cGAS–STING
system activation at the cytosolic level (82–86). The cGAS–
STING DNA-sensing pathway operates via the TBK1/IRFs/
IFNs pathways described above as part of inflammation
mounted in the presence of viral infections (84–86). The
activation of the STING pathway is also triggered as part of
FIGURE 2 | Proposed mechanism of mitochondrial-derived vesicle generation and release. Mitochondrial-derived vesicles (MDVs) may represent an additional level
of mitochondrial quality control through which mildly damaged mitochondria are targeted and displaced. Phosphatase and tensin homolog-induced kinase 1 (PINK1)
and Parkin prime damaged mitochondria for disposal. Membrane curvatures generated by oxidized cardiolipin (oxoCL) and other unknown proteins allow generation
of MDVs that form multivesicular bodies (MVBs) within the endolysosomal system. Eventually, MVBs are extruded from the cell as extracellular vesicles (EVs).
PARL, presenilin-associated rhomboid-like; ROS, reactive oxygen species; TIM23, translocase of inner mitochondrial membrane 23; TOM, translocase of the outer
mitochondrial membrane.
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neutrophil activation and neutrophil extracellular trap (NET)
formation, a specific cell death route characterized by the
extrusion of chromatin-bound cytosolic content (87). NETs
have been implicated in the pathogenesis of autoimmune
disorders. In particular, NETs enriched in oxidized mtDNA
stimulate a type I IFN response and have been implicated in
lupus-like diseases (88). In systemic lupus erythematosus,
mtDNA binding to the histone-like protein mitochondrial
transcription factor A (TFAM) has shown to assist in rerouting
oxidized mtDNA of neutrophils to lysosomes for degradation
(89). Once extruded, TFAM-oxidized mtDNA complexes are
powerful immune system activators (89). Similarly, the release
of activated platelet-derived microparticles enriched with high-
mobility group box 1 (HMGB1) protein has been described in
systemic sclerosis (90). This DAMP molecule might contribute to
vasculopathy and tissue fibrosis possibly via the presentation of
HMGB1 to neutrophils to induce their activation and consequent
endothelial damage (90).

Finally, the engagement of NLRP3, the best studied multi-
subunit inflammasome system, elicits caspase-1 signaling and
promotes caspase-1-dependent cleavage and activation of
interleukin (IL) 1 and 18 via binding to adaptor molecules
(91). This route of inflammation is particularly relevant to
mitochondrial dysfunction since the synergistic activation of
redox-sensitive inflammation and inflammasome reinforce
inflammation (92). The molecular triggers of the inflammatory
response via inflammasome are unclear. However, bacterial-like
motifs of mtDNA are sensed by NLRs (93). Furthermore, NLRP3
is involved in facilitating the organization of the mitochondrial
transition pore and assist in mtDNA release (94). A self-
sustaining circle involving mitochondrial damage, ROS
production, and consequent mtDNA damage/DAMPs release
triggered by NLRP3 activators has been hypothesized (83). In
particular, damaged/oxidized mtDNA/DAMPs are preferentially
sensed and bound by NLRP3 (83).

Following the view of MQC failure as a source of MDVs/
DAMPs, we will discuss in the next section the main literature
supporting the involvement of mitophagy impairment and
DAMPs release in the setting of cancer and two common
neurodegenerative diseases (AD and PD).
IMPLICATION OF EXTRACELLULAR
VESICLES AND DAMAGE-ASSOCIATED
MOLECULAR PATTERNS IN DISEASE

Cancer
Although the involvement of DAMPs in cancer pathogenesis is
debated, the installment of an inflammatory milieu is recognized
as a factor favoring tumor progression (95, 96). In particular,
increasing levels of pro-inflammatory mediators, including IFN-
g, IL1, IL6, lymphotoxin (LT)-b, tumor necrosis factor alpha
(TNF-a), and transforming growth factor b, have been
implicated in the promotion of carcinogenesis (95–97), for
their potential role in modulating DAMPs expression and
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release (95, 98). Intracellular and extracellular DAMPs are,
indeed, hallmarks of cancer that have been implicated in the
early stages of carcinogenesis (95). While oxidative stress triggers
the release of DAMPs in the extracellular space thus stimulating
hyper-inflammation and immune injury, the loss of intracellular
DAMPs, [i.e., HMGB1, histones, ATP, and DNA] induces
genomic instability, epigenetic alterations, telomere attrition,
reprogrammed metabolism, and impaired degradation (98). In
the setting of such DAMPs-mediated pathogenic changes, cancer
initiation and development are favored. Along with this, the
release of ATP, IL1a, adenosine, and uric acid have also been
implicated in carcinogenesis via induction of inflammation,
immunosuppression, angiogenesis, and tumor cell proliferation
(95) (Figure 3).

Strikingly, inflammatory pathways may also be activated
by damaged mitochondrial constituents displaced within
MDVs (65) that may trigger caspase-1 activation and secretion
of pro-inflammatory cytokines (99). Interestingly, adaptive
immunity responses are suppressed by PINK1 and Parkin
that redirect MDVs toward lysosomal degradation to prevent
endosomal loading with mitochondrial cargoes on major
histocompatibility complex (MHC) class I molecules for
antigen presentation purposes (48). Furthermore, the
possibility that MDVs are used by cells as a homeostatic
mechanism by horizontal mitochondrial transfer cannot be
disregarded (100). Bone marrow mesenchymal stromal cells
(BM-MSCs) eliminate damaged depolarized mitochondria
through EVs and export them to neighbouring macrophages
(101). Macrophages, in turn, recycle these MDVs to secrete
exosomes which contain microRNAs (miRNAs) that inhibit
TLR stimulation and induce macrophage tolerance to
transferred damaged mitochondria (101). Moreover, cells with
impaired mitochondria are able to transfer and take up fully-
functional mitochondria displaced within MVDs to rescue
aerobic respiration (102–105). A mitochondrial transfer was
also shown between A549 mtDNA depleted (p0) lung cancer
cell and BM-MSCs to rescue respiration in lung cancer cells
lacking mtDNA-encoded subunits of the electron transport
chain (ETC) (104). However, vesicles enriched in whole
mitochondria or mitochondria void of envelops can also be
released and serve as DAMPs in pathological conditions,
including tissue injury and cancer (106). In particular, the
release of mitochondria by damaged mesenchymal stem cells
has been found to function as a danger signal to activate their
rescue properties (107). The uptake of whole mitochondria by
epidermal growth factor-activated human osteosarcoma cells via
macropinocytosis has also been described (108).

Recent findings indicate that cancer cells can reprogram their
energy metabolism to adapt and survive in unfavorable
microenvironments via EVs (109). Indeed, an efficient
mitochondrial respiration is required by cancer cells to
maintain their tumorigenicity (110). Upon acquisition of
mtDNA through EVs, estrogen receptor (ER)-positive breast
cancer can evolve from hormonal therapy sensitive (HTS) to
dormant (HTD) or resistant (HTR) with poorer outcome. EVs
from patients with HTR disease contain full mitochondrial
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genome that might have been transferred to HTS/HTD cells to
sustain oxidative phosphorylation, an exit from dormancy and
the development of HTR disease (111). Additional findings show
that EVs frommelanoma, ovarian and breast cancer tissues contain
mitochondrial membrane proteins and active mitochondrial
enzymes that are not detected in healthy controls (112), thus
corroborating the hypothesis that energy metabolism
reprogramming in cancer cells may occur also via EVs.

Similar to HMGB1 and histones, miRNAs can also be releases
in the extracellular space as DAMPs in cancer (113, 114). Recent
work has shown an exosomes-dependent pathway to secrete
miRNA in cancer cells (115). For instance, in pancreatic cancer
cells, exosomes containing miR-212-3p are secreted and lead to
decreased expression of MHC II in dendritic cells (DCs), thereby
inducing immune tolerance (116). Another system used by
cancer cells to escape their recognition by the immune system
is based on PD-L1. This factor binds to the PD1 receptor on
immune cells thereby inhibiting proliferation and survival of
CD8+ cytotoxic T lymphocyte (117). A recent study has shown
that exosomes derived from lung cancer express PD-L1 and this
is implicated in immune escape and promotion of cancer growth
(118). These mechanisms enable cancer cell survival,
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proliferation, and undisturbed dissemination into other bodily
districts, even located at long distance from the primary
neoplastic mass. Thus, exosomes are useful shuttles for cancer
cells to elude the immune system’s response and achieve
undisturbed survival and proliferation.

Moreover, cancer cells can also transfer miRNAs via exosomes to
favor angiogenesis. These miRNAs of exosomal origin are ultimately
DAMPs promoting cancer proliferation. Indeed, their secretion is
induced under oxidative stress (119). An elegant work by Deng et al.
(120) showed that gastric cancer cells released exosomes containing
miR-155 to increase the expression of vascular endothelial growth
factor (VEGF) and promote proliferation and tube formation of
vascular cells. In further support to the role of exosomal miRNAs in
promoting angiogenesis are findings showing a strong enhancement
of angiogenesis and tumor growth in mice under the infusion of
exosomes containing miR-155 (120).

Finally, DAMPs may also act as a suppressor of tumor
progression by promoting immunogenic cell death. Under
physiologic conditions, cell death linked to normal turnover is
not immunogenic and does not activate PRRs, such as TLRs and
NLRPs (121). In contrast, immunogenic cell death is essential for
tumor suppression after chemotherapeutic treatments (122).
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FIGURE 3 | Schematic representation of the main pathways triggered by damage-associated molecular patterns and involved in tumor progression. ATP, adenosine
triphosphate; DAMPs, damage-associated molecular patterns; HMGB1, high-mobility group box 1, IL1a, interleukin 1a; miRNA, micro RNA.
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Immunogenic and non-immunogenic cell death are
characterized by different biochemical and metabolic events. In
particular, during immunogenic cell death, antigens from dying
cells are incorporated by DCs and presented bound to MHC to
mount a T cell immune response. In this context, co-stimulatory
signals and cytokines are required for differentiation of specific T
cells (123). The preapoptotic exposure of calreticulin on the
plasma membrane of dying cells promotes their uptake by DCs
(124). Interestingly, the release of HMGB1 in the surroundings
of dying cells (125) induces an increase in tumor antigen
presentation and regulates the TLR4-dependent immune
response (126). The role of the NLRP3 inflammasome is
crucial for the immune response against dying tumor cells as it
interacts with the adaptor molecule apoptosis-associated speck-
like protein to induce caspase-1 activation (127). The caspase-1
pathway is involved in the production of proinflammatory
cytokines (i.e., IL1b and IL18) which are essential to induce an
immunogenic response (127). Notably, ATP released from dying
tumor cells mediates immunogenic cell death via the activation
of the NLRP3 inflammasome (128). Therefore, understanding
the fine-tuning of DAMPs release may be crucial for unveiling
new pathways that modulate tumor cell’s death vs. survival.
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Neurodegeneration
As a first line of defense against microbes, microglial cells of the
central nervous system (CNS) preserve tissue homeostasis by
clearing out damaged neurons and limiting the spread of
infections. This macrophage population accomplishes these
housekeeping activities by triggering inflammation via the
release of cytokines and by instigating ROS production (129).
However, upon prolonged stressors, a persistent microglia
activation installs a pro-inflammatory and pro-oxidant
environment that impinges on tissue homeostasis. A state of
chronic, low-grade inflammation is observed during aging (i.e.,
inflamm-aging) which has been associated also with metabolic
changes in microglia (130, 131). The age-related microglial and
metabolic reshaping plays relevant roles in the context of AD and
PD (132, 133). Indeed, neuroinflammation may represent a
common thread in a large set of neurological disorders for
which DAMPs of different origins, including mitochondrial,
may support disease progression (134) (Figure 4).

Alzheimer’s Disease
AD is the most common age-associated dementia and is
characterized by neuronal degeneration mainly in the
FIGURE 4 | Cellular alterations and damage-associated molecular patterns involved in neuroinflammation. cGAS–STING, GMP-AMP synthase–stimulator of
interferon genes; IFN, interferon; IL, interleukin; IRF-1, IFN-regulatory factor 1; MDV, mitochondrial derived vesicle; MHC, major histocompatibility complex; mtDNA,
mitochondrial DNA; NLRP3, NOD-like receptor 3; NF-kB, nuclear factor kappa B; TLR, toll-like receptor; TNF-a, tumor necrosis factor alpha.
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neocortex and the hippocampus (12). The extracellular
deposition of amyloid beta (Ab) aggregates and intracellular
neurofibrillary tangles are distinctive histopathological traits of
AD (12). Amyloid plaque deposition instigates microglia
activation which, in turn, promotes the development of a pro-
inflammatory environment through the release of inflammatory
cytokines, including IL1b, IL6 and TNF-a (135). This
neuroinflammatory response may represent an inter- and
intracellular signaling system between microglia and astrocytes
aimed at clearing damaged neuronal components (136). Indeed,
in the setting of inefficient intracellular quality control (137), the
persistence of damaged components and hyper-inflammation
may favor the generation and spread of Ab peptides, thereby
triggering neurotoxicity (135).

Dysregulation of the endo-lysosomal system contributes to
the generation of amyloid plaques and AD pathogenesis. Indeed,
Ab42 aggregates, the most pathogenic Ab peptides, have been
detected in the soma of neurons at the level of lysosomes or
lysosome-derived components (138). Furthermore, neurons
from AD transgenic mice show enlarged and dysfunctional
MVBs in the presence of Ab42 accrual (139). As a
consequence of MVB dysfunction, higher levels of the amyloid
precursor protein (APP) are secreted extracellularly in this
murine model (139). In the endosomal compartment is also
located the activity of the b-site APP-cleaving-enzyme (BACE1),
a hub for the intracellular trafficking of APP and a relevant
contributor to amyloid plaque generation (140). Conversely, a
retrograde transport of APP from endosomes to the trans Golgi
network is in place to reduce Ab production (141). Notably, an
impairment in the retromer complex activity has been involved
in AD pathogenesis (141).

Circulating levels of HMGB1 and the soluble form of the
receptor for advanced glycation end products (RAGE) have been
detected in the serum of AD patients. The concentration of these
DAMPs correlate with the extent of Ab deposition (142).
Moreover, HMGB1 and thrombin proteins have been
identified as pro-inflammatory mediators contributing to
dysfunction of the blood-brain barrier (BBB) (142). Similarly,
serum levels of the brain-derived protein S100B have been
associated with the severity of the disease (143). The
administration of the S100B inhibitor pentamidine was able to
reduce the levels of S100B and RAGE and blunt Ab-induced
gliosis and neuroinflammation in a mouse model of AD (144).

Mitochondrial dysfunction and the ensuing oxidative stress
have also been involved in the pathogenesis of AD. Indeed, a
lower copy number and a higher levels of mtDNA heteroplasmy
have been found post-mortem in brains of people with AD (145–
147). In addition, oxidative damage to mitochondrial
components has been described as an early event in AD, which
suggests a role for oxidative stress in disease pathogenesis (148,
149). Interestingly, Ab peptide aggregates and neurofibrillary
tangles can impact mitochondrial function by binding to
proteins of the mitochondrial import machinery (150). As a
result, increased ROS production occurs (151). The
mitochondrial localization of fragments of the E4 variant of
apolipoprotein E, the main susceptibility gene for sporadic AD,
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has also been reported and associated with mitochondrial
dysfunction and oxidative stress in hippocampal neurons
(152, 153).

While primary mitochondrial deficits have been observed in
AD, aberrant mitochondria can also result from defective quality
control mechanisms, especially mitophagy. In particular, a
vicious circle between defective mitophagy and mitochondrial
dysfunction may be triggered Ab and phosphorylated Tau (p-
Tau), ultimately leading to neuronal disruption (154–156).
Altered expression of the mitophagy receptor disrupted-in-
schizophrenia 1 (DISC1) has been reported in AD patients,
transgenic AD mice, and cultured cells treated with Ab (157).
DISC1 is a promoter of mitophagy that binds to microtubule-
associated proteins 1A/1B light chain 3 (LC3) and protects
synaptic plasticity from the toxicity of Ab accrual (157). The
positive effect exerted by the pharmacological restoration of
mitophagy on cognitive dysfunction and Ab proteinopathy
in APP/PS1 mice highlights the central role of defective
mitophagy in AD pathogenesis (158). Following pro-
mitophagy pharmacological treatments, reduced levels of Tau
phosphorylation and mitigation of inflammation induced by
microglia activation have also been observed (154). As such, a
link between neuronal bioenergetic failure resulting from
defective MQC, inflammation, and neuronal loss can also be
hypothesized in AD (92). Following mitophagy impairment,
cGAS–STING-DNA-mediated inflammation has been
described in neurodegeneration (159) and NLRP3-induced
inflammation has been observed in AD [reviewed in (160)].

A defective mitophagy and the resulting accrual of
dysfunctional mitochondria in AD may instigate the extrusion
of damaged organellar components with consequent stimulation
of innate immunity (77, 78). Mitochondrial DAMPs have been
retrieved within circulating EVs in several age-related conditions,
including neurodegeneration (161, 162). Whether this
mechanism is relevant to AD is worth being explored.

Parkinson’s Disease
PD is the second most common age-related neurodegenerative
disorder (163) and is characterized by a progressive degeneration
of dopaminergic neurons of the substantia nigra pars compacta
and dopamine depletion in the striatum (164). These
histopathological and biochemical abnormalities underlie a set
of motor (i.e., bradykinesia, postural inability, rigidity, and
tremor) and non-motor signs and symptoms (e.g., constipation,
depression, sleep disorders, cognitive dysfunction) (164).

Neuroinflammation is a noticeable feature of PD (165). In
particular, the HMGB1-TLR4 axis seems to plays an important
role. Higher serum levels of HMGB1 and TLR4 protein have
been detected in PD patients and correlated with disease stage
(166). Moreover, the administration of anti-HMGB1
monoclonal antibody in a rat model of PD was able to reduce
inflammation by preserving the BBB and lowering IL1b and IL6
secretion (167). The chemokine fractalkine (CX3CL1), which is
mainly expressed by neurons and serves as a modulator of
microglial-neuronal communication, has been indicated as a
possible biomarker for PD (168). Increased levels of the S100B
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protein were also detected in the substantia nigra and
cerebrospinal fluid of persons with PD and in the ventral
midbrain of a murine PD model treated with 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP) (169). Notably, the
ablation of S100B in the murine model was neuroprotective by
reducing microgliosis and the expression of both RAGE and
TNF-a (169). Noticeably, a systemic inflammatory signature,
involving IL8, IL9, and macrophage inflammatory protein 1a
and 1b, has been identified in older adults with PD (170).

A defective cellular quality control, manifested by deposition
of aberrant a-synuclein in dopaminergic neurons, is
acknowledged as an important mechanism underlying
neurodegeneration in PD (171). The accumulation of a-
synuclein at the mitochondrial complex I has been shown to
impair its activity (171). Such an inhibitory function, together
with mutations in genes encoding for the mitochondrial
regulators Parkin, PINK1, and protein deglycase DJ-1 have
been linked with enhanced ROS generation in PD (172, 173)
and a-synuclein aggregation (174–177). Derangements in
mtDNA homeostasis, including large deletions, have been also
detected in neuronal cells of the substantia nigra of persons with
PD (178–180). These observations indicate that mitochondrial
dysfunction plays a major role in the pathogenesis of familial PD
(181). On the other hand, PD in its sporadic form recapitulates
all major hallmarks of aging (182). Indeed, MQC derangements
and the generation of DAMPs have been indicated as a major
contributors to the co-occurrence of mitochondrial dysfunction
and neuroinflammation in PD (159, 183, 184). An innate
immune response triggered by defective autophagy and
impaired disposal of damaged mitochondria has been
described in mice lacking PINK1 or parkin gene (PARK2)
(159). Moreover, the activity of the mitophagy mediator Parkin
mediates a mitophagic control over inflammation (48). In
particular, Parkin regulates adaptive immunity via the
presentation of mitochondrial antigens to endosomes for
loading onto MHC class I molecules (48). Similarly, the
intracellular trafficking regulator RAB7A exerts also a
mitochondrial antigen presentation role by controlling the
fusion of MDVs with late endosome for their subsequent
degradation (48). The function of RAB7A as a mitochondrial
antigen-presenting system in immune cells via MDV trafficking
ensures that the process can be finalized in the absence of PINK1
or Parkin (48). Indeed, alterations in PINK1/Parkin expression
and activity in PD result in MQC dysregulation and possibly
neuroinflammation via mitochondrial antigen presentation by
MDVs (48). Recent work by our group described the presence of
mitochondrial DAMPs among circulating EVs in older adults
with PD along with a specific inflammatory signature (162). In
particular, higher serum concentrations of small EVs including
exosomes of endosomal origin were identified in older adults
with PD (162). However, lower levels of MDVs were retrieved in
people with PD relative to non-PD controls (162). A lower
secretion of MDVs in older adults with PD is in keeping with
the hypothesis of intracellular accrual of dysfunctional
mitochondrial secondary to engulfed MQC system (162).
According to this view, MDV generation may serve as a
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housekeeping mechanism that complements MQC to preserve
cell homeostasis (15). A link between mitochondrial damage and
inflammatory and metabolic disarrangements in PD has also
been proposed (184, 185); however, the molecular mechanisms
linking these processes are missing. An involvement of the
cGAS–STING-DNA driven inflammation in neurodegeneration
following mitophagy impairment has been reported (159). Indeed,
higher circulating levels of the pro-inflammatory cytokines IL6 and
IFNb have been detected in Pink and Parkin knockout mice
challenged with exhaustive exercise (159). Notably, the deletion
of STING or the administration of IFNa/b receptor-blocking
antibody was able to blunt this response, thus suggesting that the
accrual of dysfunctional mitochondria may trigger inflammation in
people with PD (159). Among the ever-growing list of molecules
linking mitochondrial dysfunction to systemic inflammation in
PD, the fibroblast growth factor 21 (FGF21) has emerged as a
relevant mediator (162). Indeed, FGF21 has been indicated as a
“mitokine” for its association with impaired MQC in neurons of
murine models of tauopathy and prion disease (186). Taken as a
whole, these findings suggest that a deeper understanding on the
intracellular and extracellular trafficking of DAMPs and vesicles,
including those of mitochondrial origin, may be key to unveiling
relevant pathogenetic pathways of PD and, hence, novel targets for
drug development.
CONCLUSION

Cells bearing DAMPs receptors sense and bind extracellular
DAMPs as triggers of inflammation and fibrotic responses.
Higher levels of circulating DAMPs have been identified during
aging and related to inflamm-aging (3, 98, 187). A multicomponent
senescence-associated secretory phenotype consisting of cytokines,
chemokines (CXCLs), growth factors, and proteases has also been
reported (188–191). While these secreted molecules contribute to
preserving cell homeostasis in healthy tissues (192), the installment
of an age-associated chronic secretory phenotype is a candidate
pathway for the deployment of pathological hallmarks of aging,
(e.g., inflamm-aging, tumorigenesis, loss of cell stemness). A core of
circulating factors has been identified among plasma biomarkers of
aging; however, their relationship with DAMPs is still unclear. The
identification of circulating EVs stemming from altered regulation
of the endosomal-lysosomal system in several age-related
conditions, including cancer and neurodegeneration, holds hope
for targeting this route for therapeutic purposes (13). Therefore, a
deeper understanding of the complex, dynamic, intracellular and
extracellular trafficking of DAMPs and vesicles, including those of
mitochondrial origin, may be key to unveiling relevant pathogenic
pathways and novel targets for drug development.
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Underlying Potassium Efflux for
NLRP3 Inflammasome Activation
Ziwei Xu1†, Zi-mo Chen2†, Xiaoyan Wu1, Linjie Zhang3, Ying Cao1 and Pingzheng Zhou1*

1 Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical
University, Guangzhou, China, 2 19th grade, Pharmacy Major, School of Pharmaceutical Sciences, Southern Medical
University, Guangzhou, China, 3 Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China

The NLRP3 inflammasome is a core component of innate immunity, and dysregulation
of NLRP3 inflammasome involves developing autoimmune, metabolic, and
neurodegenerative diseases. Potassium efflux has been reported to be essential for
NLRP3 inflammasome activation by structurally diverse pathogen-associated molecular
patterns (PAMPs) or danger-associated molecular patterns (DAMPs). Thus, the molecular
mechanisms underlying potassium efflux to activate NLRP3 inflammasome are under
extensive investigation. Here, we review current knowledge about the distinction channels
or pore-forming proteins underlying potassium efflux for NLRP3 inflammasome activation
with canonical/non-canonical signaling or following caspase-8 induced pyroptosis. Ion
channels and pore-forming proteins, including P2X7 receptor, Gasdermin D, pannexin-1,
and K2P channels involved present viable therapeutic targets for NLRP3 inflammasome
related diseases.

Keywords: P2X7 receptor, pannexin-1, Gasdermin D, K2P channels, TWIK protein-related acid-sensitive potassium
channel 2, THIK-1, inflammasome
NLRP3 INFLAMMASOME

Inflammasomes are intracellular multiprotein complexes and core components of innate immunity
(1–3). To date, the NOD-like receptor (NLR) family and the PYHIN family have been reported to
form inflammasomes (4). These are composed of six NLR family proteins, including NLRP1,
NLRP2, NLRP3, NLRP6, NLRC4, NLRP12, and two members of the PYHIN family, including
AIM2 and IFI16 (5, 6).

Among various inflammasomes, NLRP3 inflammasome has been widely under investigation
because of its most significant clinical relevance (7, 8). NLRP3 inflammasome consists of sensory
protein NLRP3, adaptor protein ASC (the adaptor molecule apoptosis-associated speck-like protein
containing a CARD), and effector protein caspase-1 (7, 8). Canonical NLRP3 inflammasome
activation requires two steps: priming and activation. The priming process leads to the expression of
NLRP3, pro-IL-1b, and pro-IL-18, which could be initiated by Toll-like receptors (TLR) ligands (9).
The activation process promotes the assembly of inflammasome complexes, cleaving pro-caspase-1
to form active caspase-1, thereby cleaving pro-IL-1b and pro-IL-18 to release mature IL-1b and
IL-18 (Figure 1).
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Besides, activated caspase-1 also cleaves GasderminD (GSDMD)
to release its N-terminal domain, which forms pores at the plasma
membrane and induces a rapid, pro-inflammatory form of cell death
termed “pyroptosis” (10–12). Intriguingly, the activation process of
NLRP3 inflammasome could be provided by surprisingly various
types of PAMPs (pathogen-associatedmolecular pattern) orDAMPs
(danger-associated molecular pattern). These include extracellular
ATP, pore-forming toxins (nigericin and maitotoxin, etc.),
particulate matter (urate crystalline MSU, aluminum adjuvant,
silica, and asbestos), and misfolded proteins related to
neurodegenerative diseases (fibrillar Ab protein; a-synuclein) (10–
12). The dysregulated activation of NLRP3 inflammasome is closely
related to various auto-inflammatoryor chronic inflammations, such
as gout, atherosclerosis, obesity, Alzheimer’s disease, Parkinson’s
disease, and type 2 diabetes (13–15). Besides the canonical
activation process, the non-canonical inflammasome pathway is
mediated by caspase-11 in mouse cell or caspase-4/caspase-5 in a
human cell in response to cytoplasmic bacterial lipopolysaccharide
(LPS) (Figure 2) (16, 17).

Cytoplasmic LPS directly binds the caspase recruitment domain
(CARD) of caspase-4/5/11, triggering caspase-4/5/11 cleaves
GSDMD to initiate pyroptosis (18, 19). Caspase-11 mediated
pyroptosis in response to cytosolic LPS is critical for antibacterial
defense and septic shock in mice as demonstrated that GSDMD–/–

and caspase11–/– mice could be protected against LPS-induced
lethality (20, 21). Besides directly causing pyroptosis, the non-
canonical inflammasome also promotes the canonical NLRP3
Frontiers in Immunology | www.frontiersin.org 269
inflammasome to cause the maturation and release of IL-1b and
IL-18 (19).
ION CHANNELS AND PORE-FORMING
PROTEINS MEDIATING POTASSIUM
EFFLUX DURING NLRP3 INFLAMMASOME
ACTIVATION

It has been well accepted that potassium (K+) efflux is both necessary
and sufficient for NLRP3 inflammasome activation in most cases
(22–25). First, a large reduction of intracellular potassium
concentration was observed to activate the NLRP3 inflammasome
by ATP, nigericin, and crystal molecules (23). Furthermore,
incubation of primed macrophages in a K+-free medium was
sufficient to trigger NLRP3 inflammasome activation (26). In
contrast, NLRP3 inflammasome activation could be blocked by
high concentrations of extracellular potassium (30-45 mM) (23,
26). Besides, AIM2 and NLRC4 inflammasomes activation was not
affected by high concentrations of extracellular K+, indicating
potassium’s specific role in modulating NLRP3 inflammasome
(23–25).

Structurally diverse DAMPs/PAMPs employ distinct mechanisms
tocausepotassiumefflux toactivate theNLRP3 inflammasome.Firstly,
the existing research mainly focuses on the molecular mechanism of
potassium efflux during ATP-induced NLRP3 inflammasome
FIGURE 1 | Canonical NLRP3 inflammasome activation. Canonical NLRP3 inflammasome activation includes two signals: priming and activation. The priming
process leads to the expression of NLRP3, pro-IL-1b and pro-IL-18 could be provided by Toll-like receptors activation. The activation process promotes the
assembly of inflammasome complexes through various PAMPs or DAMPs, including extracellular ATP, nigericin, and particulate matters. The activation of NLRP3
inflammasome cleaves pro-caspase-1 to active caspase-1, thereby cleaves pro-IL-1b and pro-IL-18 to produce mature IL-1b and IL-18. Besides, activated caspase-1 also
cleaves GSDMD to release its N-terminal domain, which forms pores at the plasma membrane and mediates the release of mature IL-1b and IL-18. The P2X7 receptor,
Pannexin-1, TWIK2, and THIK1 have been proposed to mediate potassium efflux during NLRP3 inflammasome activation under different circumstances.
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activation. The P2X7 receptor, pannexin-1, and K2P channels have
been reported to participate in the process above (24, 25, 27). Secondly,
toxins such as nigericin directly promote potassium efflux by forming
pores on the plasmamembrane. NLRP3 inflammasome could also be
activated following the non-canonical inflammasome or caspase-8
mediated pyroptosis, which also depends onpotassium efflux (28–31).
Controversially, GSDMD, and pannexin-1 have been proposed to
mediate potassium efflux in the above process to activate NLRP3
inflammasome (19, 29, 30, 32, 33). This sectionwill review the current
knowledge about ion channels’ roles and pore-forming proteins
mediating potassium efflux during NLRP3 inflammasome activation
under different circumstances.

P2X7 Receptor
The P2X7 receptor is an ATP-gated cation-selective channel widely
expressed in various immune cells (34). At resting conditions,
extracellular ATP concentration is at low levels (<10 nM/L), which
will be massively increased to several tens or hundreds of mmoles/l
within stressed or dying cells (35). The elevated extracellular ATP
activates the P2X7 receptor, which then mediates potassium efflux
and thus leads to NLRP3 inflammasome activation (34, 36–38).

Besides, the canonical NLRP3 inflammasome, P2X7 receptor,
and pannexin-1 (see Pannexin-1) also have been reported to
participate in non-canonical inflammasome (39) coordinately. It
was reported that the activated caspase-11 cleaves pannexin-1
followed up by ATP release, which in turn activates the P2X7
receptor to mediate potassium efflux and NLRP3 inflammasome
activation (39). Correspondingly, the P2X7 receptor ablation
Frontiers in Immunology | www.frontiersin.org 370
significantly reduced the mortality of mice and IL-1b secretion in
peritoneal fluid in a sepsis mice model (39). However, this study is
contradicted with studies by several other groups that we will
discuss in the next section.

Gasdermin D
Gasdermin D (GSDMD) has been identified as the executor of
pyroptosis activated by caspase-1/4/5/11 in 2015 (19, 31, 40).
Full-length GSDMD includes the N-terminal (GSDMD-N) and
C-terminal repressor domain (GSDMD-C) interacting with each
other in the absence of stimulation. This auto-inhibitory
conformation is released upon efficient cleavage at a conserved
glutamic acid residue (D276 in mouse and D275 in human
GSDMD) caspase-1/4/5/11, dividing GSDMD into GSDMD-N
and GSDMD-C. The generation of GSDMD-N allows it to insert
into the plasma membrane and form large oligomeric pores,
leading to IL-1b and IL-18 secretion and pyroptosis. Kayagaki
et al. and Shi et al. reported that potassium pass through the pore-
forming GSDMD, which further leads to NLRP3 inflammasome
activation during non-canonical inflammasome activation (18,
19). Besides mediating pyroptosis and NLRP3 inflammasome
activation, GSDMD was recently reported to restrain type I
interferon response to cytosolic DNA by driving potassium
efflux (41).

Caspase-8 has long been considered to play key roles in extrinsic
apoptosis and suppress necroptosis by inhibiting RIPK1/RIPK3 and
MLKL.More recently, three independent studies have demonstrated
the “apoptotic” caspase-8 also could cleave GSDMD leading to
FIGURE 2 | NLRP3 inflammasome activation following non-canonical inflammasome activation. The non-canonical inflammasome pathway is mediated by caspase-
11 in mouse cell and caspase-4/caspase-5 in a human cell in response to cytoplasmic bacterial lipopolysaccharide (LPS). Caspase-4/5/11 cleaves GSDMD to initiate
pyroptosis, thus leads to NLRP3 inflammasome activation. GSDMD and P2X7 receptor/Pannexin-1 have been proposed to mediate potassium efflux, which
underlies the mechanism of NLRP3 inflammasome activation following non-canonical inflammasome.
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pyroptosis-like cell death, further triggering NLRP3 inflammasome
activation inmurinemacrophages (Figure 3) (29, 30, 32). It has been
proposed that potassium efflux underlies NLRP3 inflammasome
activation, followed by caspase-8 mediated pyroptosis. However,
three groups disagree with the molecular mechanism underlying
potassium efflux in the process above. Orning et al. and Sarhan et al.
suggest that NLRP3 inflammasome activation is dependent on
GSDMD-mediated potassium efflux based on delays in ASC
oligomerization in GSDMD-/- cells (29, 30). However, Chen et al.
observed normal caspase-1 processing in GSDMD-/- and/or
GSDME-/- (Gasdermin E; another member of Gasdermin protein)
cells, which suggests NLRP3 inflammasome activation is not
dependent on GSDMD or GSDME (32).

Pannexin-1
The pannexin-1 is a non-selective, large-pore channel that releases
potassium and nucleotides, including ATP (42, 43). Pannexin-1 is
expressed in most cell types and functionally auto-inhibited by its
cytoplasmic C-terminal domain. In response to apoptosis, the
pannexin-1 channel can be functionally activated by caspase-3
mediated cleavage of the inhibitory C-terminal domain (44, 45).

The relationship betweenpannexin-1 andNLRP3 inflammasome
is still controversial. By using pannexin-1 inhibitors or siRNA,
Pelegrin et al. reported that pannexin-1 is responsible for IL-1b
release upon NLRP3 inflammasome agonists ATP or nigericin (46–
48). However, this channel was lately reported to be dispensable for
canonical NLRP3 inflammasome activation using pannexin-1
knockout mice (49).
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Together with the P2X7 receptor, pannexin-1 was also
implicated in promoting pyroptosis and NLRP3 activation during
non-canonical inflammasome activation (discussed in P2X7
Receptor) (39). In LPS-induced sepsis mouse models, the ablation
of pannexin-1 significantly reducedmicemortality, which indicates
the role of pannexin-1 in non-canonical inflammasome activation
(39). This finding is at odds with the observation that caspase-11
drives NLRP3 inflammasome activation through GSDMD pores
(18, 19, 40). A recent study further pointed out that pannexin-1 is
dispensable for canonical or non-canonical inflammasome
activation within pharmacological inhibition and two other
macrophages strain with pannexin-1 ablation (33).

Interestingly, during the NLRP3 inflammasome activation
following caspase-8 activated pyroptosis, Chen et al. observed
that potassium efflux mediated by pannexin-1 but not GSDMD is
critical for NLRP3 inflammasome activation following caspase-8
mediated pyroptosis (32, 33).

K2P Channels
Two-pore domain potassium (K2P) channels comprise a major
and structurally distinct subset of mammalian K+ channel
superfamily, including fifteen K2P subtypes that form six
subfamilies (TWIK, TASK, TRESK, TALK, THIK, and TRESK)
(50, 51). K2P channels contribute to the background leak currents,
responsible for maintaining the resting membrane potential in
nearly all cells. They are regulated by various physical, chemical,
and biological stimuli and implicated in multiple physiological
processes. In recent years, significant roles of K2P channels for the
FIGURE 3 | NLRP3 inflammasome activation following caspase-8 mediated pyroptosis. The NLRP3 inflammasome could also be activated following by caspase-8
mediated pyroptosis. The “apoptotic” caspase-8 cleaves GSDMD and further mediated potassium efflux leading to NLRP3 inflammasome activation in murine
macrophages. In contrast, Chen et al. demonstrated the pannexin-1 but not GSDMD mediating potassium efflux contributed to NLRP3 inflammasome activation
following caspase-8 mediated pyroptosis.
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activation of NLRP3 inflammasome and innate immunity have
been gradually revealed (27, 52).

TWIK2 is a member of K2P channels, highly expressed in the
gastrointestinal tract, blood vessels, and immune system (53).
Given that TWIK2 showed no or little conductance in
heterologous expression systems, the physiological functions of
TWIK2 is poorly understood (54). Interestingly, a recent study
demonstrated that pharmacological inhibition or genetic
deletion of the TWIK2 channel blocked the activation of
NLRP3 inflammasome induced by ATP and thus reduced the
release of caspase-1 and IL-1b (27). In contrast, the TWIK2
channel had no effect on the activation of NLRP3 inflammasome
activated by imiquimod or nigericin. The TWIK2 channel was
mechanistically suggested to cooperate with the P2X7 receptor
activated by extracellular ATP, thus mediated potassium efflux
required for NLRP3 inflammasome activation.

Furthermore, TWIK2 deletion prevents inflammatory lung
injury in sepsis mice (27). Besides TWIK2, THIK1 channel,
another member of K2P channels, was recently discovered to play
key roles in microglia (52). THIK1 channel was reported to be the
main potassium channel expressed in microglia. Pharmacological
inhibition or gene knockout of THIK1 depolarizes microglia,
decreasing microglial ramification, reducing surveillance function,
and IL-1b secretion. This study indicates that THIK1 is necessary
for NLRP3 inflammasome activation and immune surveillance
in microglia.
THE MECHANISMS OF POTASSIUM
EFFLUX DURING NLRP3 INFLAMMASOME
ACTIVATION

K+ efflux is proposed as an important event upstream of NLRP3
inflammasome activation, and the decrease in intracellular K+ can
activate the NLRP3 inflammasome; however, the mechanisms of
potassium efflux during NLRP3 inflammasome activation is not
understood.Macrophages expressing a constitutively activemutant
NLRP3 R258W, which could not be suppressed by high
extracellular concentrations of potassium, suggests that potassium
effluxmayberelated toNLRP3protein conformational change (23).
Two individual studies show that potassium efflux is essential for
NLRP3 and NEK7 interaction, which is an important part of the
assembly of the NLRP3 inflammasome, given that the interaction
disappears with high extracellular concentrations of potassium (55,
56). These studies suggest that potassium efflux may be closely
related to the conformational change of NLRP3 protein and
Frontiers in Immunology | www.frontiersin.org 572
NLRP3-NEK7 interaction during NLRP3 activation, and the
underlying mechanism ought to be further investigated.
Moreover, K+ efflux might promote NLRP3 activation by
mitochondrial dysfunction and mtROS production (57).
SUMMARY AND OUTLOOK

Given the critical role of NLRP3 inflammasome in autoimmune,
metabolic, and neurodegenerative diseases and the essential role
of potassium efflux in NLRP3 inflammasome activation, it is of
great significance to explore the molecular mechanisms
underlying potassium efflux during NLRP3 inflammasome
activation under different circumstances.

The important role of the P2X7 receptor and GSDMD in
immune responses has gained a lot of attention, both
academically and industrially (31, 34). An inhibitor JNJ-55308942
targeting the P2X7 receptor is now in phase I clinical study to treat
neuroinflammation (58). The role of pannexin-1 in NLRP3
inflammasome activation following caspase-11 or caspase-8
induced pyroptosis is still under debate. Furthermore, although
crystalline substances also depend on potassium efflux to activate
NLRP3 inflammasome, this process’s mechanism is not clear and
needed to be resolved in the future.

Last but not least, the lately identified TWIK2 and THIK1
channels were the only “specific” potassium channels involved in
NLRP3 inflammasome activation (27, 52). Both TWIK2 and
THIK1 channels could be attractive therapeutic targets for the
treatment of NLRP3 inflammasome related autoimmune
diseases in the future.
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STING, the Endoplasmic Reticulum,
and Mitochondria: Is Three a Crowd
or a Conversation?
Judith A. Smith*

Department of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States

The anti-viral pattern recognition receptor STING and its partnering cytosolic DNA sensor
cGAS have been increasingly recognized to respond to self DNA in multiple pathologic
settings including cancer and autoimmune disease. Endogenous DNA sources that
trigger STING include damaged nuclear DNA in micronuclei and mitochondrial DNA
(mtDNA). STING resides in the endoplasmic reticulum (ER), and particularly in the ER-
mitochondria associated membranes. This unique location renders STING well poised to
respond to intracellular organelle stress. Whereas the pathways linking mtDNA and STING
have been addressed recently, the mechanisms governing ER stress and STING
interaction remain more opaque. The ER and mitochondria share a close anatomic and
functional relationship, with mutual production of, and inter-organelle communication via
calcium and reactive oxygen species (ROS). This interdependent relationship has potential
to both generate the essential ligands for STING activation and to regulate its activity.
Herein, we review the interactions between STING and mitochondria, STING and ER, ER
and mitochondria (vis-à-vis calcium and ROS), and the evidence for 3-
way communication.

Keywords: STING, cGAS, mitochondria, endoplasmic reticulum, unfolded protein response, reactive
oxygen species
INTRODUCTION

Nature has a dramatic capacity for repurposing. The same pattern recognition receptors (PRRs) that
recognize pathogen-associated molecular patterns (PAMPs) on invaders such as bacteria and
viruses also respond to endogenous products, particularly those generated during tissue damage
(damage associated molecular patterns or DAMPs (1)). For example, Toll Like Receptor 4 (TLR4)
not only recognizes bacterial cell wall lipopolysaccharide, but also responds to components of the
extracellular matrix such as fibrinogen and fibronectin that are released during infectious and
immune damage (2, 3). Not all endogenous PRR stimuli are from infection-mediated tissue damage,
as PRRs are also involved in normal physiologic function. For instance, TLRs direct development
and cell fate in Drosophila, C. elegans and mice (4). In the brain, TLRs modulate neuronal
connectivity and function (5). “Sterile” PRR engagement also drives pathology: In autoimmune
disease (e.g. lupus), nucleotide-activated receptors such as TLR7 (RNA) and TLR9 (DNA) respond
to material released from apoptotic cells, regulating inflammation in a cell-specific manner (6, 7).
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Most PRRs, such as TLRs, C-lectin type receptors, Retinoic acid-
inducible gene I (RIG-I) like receptors, inflammasomes and
Nod-like Receptors (NLRs), reside on the plasma membrane,
within endosomes or within the cytosol. These locations prime
PRRs to respond to both pathogen and endogenous products in
the extracellular space or cytosol. In contrast, Stimulator of
Interferon Gene (STING) resides in the endoplasmic reticulum
(ER), particularly in ER-mitochondrial appositions, with its
triggering face to the cytosol (8). This unique location is not
only useful for detecting cytosolic invaders; the organelle
associations position STING to respond to alarm signals
generated by the mitochondria and ER. Interestingly, the multi-
molecular inflammation generating machinery triggered by RIG-I
family PRRs and inflammasomes, including the lynchpin
mitochondrial anti-viral signaling protein (MAVS) aggregates at
the mitochondria (9); The MAVS C-terminal transmembrane
domain inserts in the outer mitochondrial membrane where it
nucleates the formation of filamentous signaling platforms (10,
11). Involvement of, and crosstalk between these organelles may
critically contribute to PRR signaling by increasing signal
amplitude and providing further context (intracellular stress). In
this review, we will focus on the crosstalk between STING, ER and
mitochondria. Although many previous lines of inquiry have
focused on dyads in this triangle (Figure 1, conceptual
framework for this review), we posit that DAMP-stimulated
STING signaling may reflect three-way communication between
these organelles and STING.
Frontiers in Immunology | www.frontiersin.org 276
THE KEY PLAYERS: CGAS AND STING

Viruses depend exclusively upon host building blocks and
machinery to produce the RNA and DNA strands that encode
their genomes. During some portion of their lifecycle (e.g.
uncoating, creating progeny), viral genomic nucleic acid will be
present in the host cytosol. Thus, sensors of cytosolic nucleic acids
such as STING constitute a vital defense that has been in place
across 600million years of evolution (12, 13). STING directly binds
cyclic-di-nucleotides (CDNs). STING also “senses” cytosolic
dsDNA indirectly via its “partner” in detection, cyclic-GMP-
AMP (cGAMP) synthase (cGAS); upon binding dsDNA, cGAS
generates endogenous cyclic-di-nucleotides that serve as the actual
STING ligands. Although multiple molecules may detect cytosolic
dsDNA in addition to cGAS (e.g. Gamma interferon inducible
protein 16 (IFI16), Dead box helicase 41 (DDX41)), cGAS is the
primary dsDNA-sensor required for STING activation by dsDNA
(14, 15). The role of these other sensors remains unclear, though
IFI16 promotes cGAS activation and enhances STING
phosphorylation, translocation, and Tank binding kinase 1
(TBK1) recruitment (16, 17). DDX41 may promote IFN-induced
cGAS expression (18). cGAS senses cytosolic DNA, but in the
resting state in macrophages and other cell types, the vast majority
of cGAS resides inside the nucleus, sequestered by chromatin (19–
21). One study from Barnett et al. also placed cGAS at the plasma
membrane via an N-terminal phosphoinositide interaction; the
basis for this discrepancy with the other studies is not clear (22).
FIGURE 1 | STING stimulation by stressed organelles: an interactive triad. STING plays a critical role in preserving health but also mediates disease, even in the
absence of infectious triggers. Mitochondrial DNA (red lines) has recently emerged as a trigger of STING activation. The endogenous ligand mediating the ER-STING
reciprocal relationship is not clear. The endoplasmic reticulum (ER) and mitochondria share a very close anatomic and functional relationship, and together modulate
homeostatic and pathologic levels of intracellular calcium (Ca2+) and reactive oxygen species (ROS). This relationship may generate the “missing ligand” for ER
stress-mediated STING activation via mitochondrial DNA release.
January 2021 | Volume 11 | Article 611347
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Recent cryo-electron microscopy structural data has elucidated the
inhibitory relationship between chromatin and cGAS that prevents
self-recognition: an acidic patch on the nucleosome histone H2A-
H2B heterodimer occupies the dsDNA binding site, preventing
cGAS activation and dimerization (23–27). This new information
begs the question of how nuclear cGAS responds to pathogenic
challenges, as described in the setting of HIV2 recognition (28).
Perhaps nuclear proteins such as non-POU domain-containing
octamer-binding protein (NONO) extract cGAS from the
nucleosomes during infection to enable response to nucleus-
located viruses. The mechanism by which nuclear cGAS access
cytosolic dsDNA is equallymysterious. Clarification of this process
awaits further study.

cGAS recognizes dsDNA at least 45nt in length, retrovirus-
transcribed cDNA and Y-form DNA with an overhanging stretch
of guanines (29–31). Retroviral triggers of cGAS include both
pathogen-derived nucleic acid and potentially endogenous
retroviruses (30, 32). cGAS directly binds the DNA deoxyribose
sugar phosphate backbone, explaining the sequence-independence
of recognition (33). DsDNA recognition is both length and
concentration dependent, requiring a size ~1 kb at more
physiologic levels (31). DsDNA-bound cGAS forms liquid-phase
like droplets, potentially increasing local DNA concentration and
valency (34). The formation of two by two structures (2 strands of
DNA, 2 cGAS molecules) induces a conformational change in
cGAS, which activates its nucleotidyl-transferase enzymatic
activity (35). Using ATP and GTP as initial substrates, cGAS
catalyzes the production of an asymmetric cyclic-di-nucleotide
product with a 2’-5’ phosphodiester bond between the 2’ hydroxyl
of GMP and 5’ phosphate of AMP, and a 3’-5’ phosphodiester
bond linking the 3- hydroxyl of AMP back to the 5’ phosphate of
GMP, referred to as 2’3’-cGAMP (36, 37). STING also binds the
bacterial second messenger cyclic-di-GMP, which was the first
identified ligand for STING, cyclic-di-AMP produced by Gram-
positive bacteria such as Staphylococcus and Listeria, and bacterial
origin 3’3’-cGAMP (38–40). Interestingly, the affinity of STING
for bacterial products is much lower (>1–2 logs) than the
endogenously generated 2’3’-cGAMP, suggesting an anti-viral
evolutionary priority (37, 41, 42). Another possibility is that
bacteria serendipitously coopted STING’s CDN-binding capacity
to enhance type I interferon (IFN) production by the host cells,
which benefits multiple bacterial species (13, 43, 44).

In its inactive state, the STING molecule, which has 4
membrane-spanning helices, resides in the ER plasma membrane
as a dimer, with its v-like CDN binding domain facing the cytosol
(45). Upon binding cGAMP, STING undergoes a conformational
change that enables a lid-like 4-pass beta sheet toflopdownover the
CDN binding site in a “closed” position, and rotates the cytosolic
portion 180 degrees. This rotation allows for higher order STING
oligomerization and lateral stacking (46–48). CDNs such as cyclic-
di-GMP stabilize STING in a more open position vs. cGAMP,
perhaps explaining their lower affinity and activity (41, 49). Inmost
vertebrates, with few exceptions, this lid also contains a flexible
extended random coil C-terminal tail (CTT, amino acids 341–379
in humans) that has binding sites for TBK1 family kinases (TBK1
and Inhibitor of nuclear factor kappa B kinase (IKK)e) (50). Some
Frontiers in Immunology | www.frontiersin.org 377
TBK1 associates constitutively with STING dimers, but the TBK1
dimer’s kinase domains face away from each other, preventing cis-
phosphorylation (51). The higher order structures promote TBK1
trans-phosphorylation and activation. STING phosphorylation on
Thr376 enhances TBK1 association ~20-fold (47). TBK1 also
phosphorylates STING on Ser365/366 (mouse/human), forming
abinding site for the interferon-regulatory transcription factor IRF3
(52). TBK1phosphorylates IRF3, enabling the dimerization of IRF3
required for nuclear entry (53). The kinase domain of STING-
attached TBK1 cannot access the cis-IRF3 molecule and thus relies
on the close proximity of otherTBK1molecules to accomplish IRF3
activation (51). Changes in STING localization appear to be very
important for specific activation steps in the TBK1-IRF3 signaling
pathway. Following CDNbinding, STING transits via the ERGolgi
intermediate compartment (ERGIC) to the Golgi in a Coat protein
complex II (COPII), Sar1 GTPase, ADP ribosylation factor (Arf1)-
dependentmanner (54, 55). Blocking this transitionwithagents like
Brefeldin A, or the Shigella flexneri IpaJ protein prevents TBK1
association and phosphorylation (55, 56). Activated TBK1-STING
then clusters together in peri-nuclear punctae where IRF3 is
phosphorylated in multi-molecular “signalosome” complexes.
These multi-molecular complexes also result in the activation of
nuclear factor kappa-B (NF-kB), which then cooperates with IRF3
to induce the prototypic IFN gene IFNB1 and promotes pro-
inflammatory cytokine transcription. For a summary of cGAS-
STING activation, see Figure 2.

STING is most widely known for IFN stimulation, and
secondarily pro-inflammatory cytokine stimulation via NF-kB.
However, STING triggers multiple signaling cascades: STING
activates MAP kinase signaling, STAT6, inflammasomes (e.g.
NLR family pyrin domain containing 3 (NLRP3)), autophagy
and apoptosis (57–62). STING also suppresses translation,
inhibiting viral infection, independently of eukaryotic initiation
factor 2a (63). The detailed mechanisms by which STING initiates
these different functions remain to be elucidated. Consider NF-kB
activation for example: multiple reports document the necessity of
the CTT and TBK1 for NF-kB activation (50, 58, 64). TBK1 does
appear to be critical for IRF3 activation, an observation that has
borne up over time. However, in myeloid cells, either TBK1 or
IKKe can mediate NF-kB activation (50). TBK1 or IKKe activates
Mitogen-activated protein kinase kinase kinase 7 (TAK1) and thus
inhibitor of nuclear factor kappa-B kinase subunit (IKKb/IKKa),
resulting in inhibitor of kB (IkB) phosphorylation, IkB
proteasomal degradation and nuclear factor kappa B (NF-kB)
nuclear translocation (58). In myeloid cells, STING-dependent
NF-kB activation did not require Tumor necrosis factor associated
factor 6 (TRAF6). An alternatively spliced form of STING lacking
the CTT, designated as MITA-related protein (MRP), functions as
a dominant negative of IFN production yet activates NF-kB
signaling independently of TBK1 (65). In the setting of
genotoxic DNA damage, STING activates NF-kB independently
of cGAS (and cGAMP) via association with p53, TRAF6, and
IFIT16 (66). The zebrafish STING CTT contains an extra tail-end
module that enhances NF-kB activation through increased
recruitment of TRAF6 (67). In zebrafish, TRAF6 was essential
for both NF-kB and IRF3 activity. Interestingly, TBK1 deletion in
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zebrafish only decreased IFN production by ~60% and NF-kB not
at all, suggesting some flexibility and substitution capacity in
STING modular functional domains. Together, these studies
support context-dependent requirements for TBK1-family
kinases and specific NF-kB activating pathways.

Evolution poses other questions regarding primordial STING
function and NF-kB activation. Recognizable STING and cGAS
orthologs are present in unicellular choanoflagellates, pre-dating
NF-kB (68). Nematostella vectensis, a sea anemone that diverged
from human ancestors >500 million years ago, possesses a STING
molecule with only ~29% aa identity to human STING, but
virtually an identical crystal structure to the STING core (12).
Interestingly, the Mab-21 domain containing nucleotidyl-
transferases such as cGAS date back as far as STING, but the
Nematostella homologue makes 3’3’-cGAMP, not 3’2’-cGAMP
(12).Nematostella cGAS also lacks the zinc-binding region present
in vertebrates that is required for dsDNA binding. TBK1 and NF-
kB also date back to Nematostella, but the CTT only developed in
vertebrates, so it is not clear if primordial (pre-CTT) STING
stimulates NF-kB in a TBK1-dependent manner (13). Thus, even
though all the components were present early in evolution, their
interactions and scope of activity remain a mystery.

The mechanisms by which STING induces autophagy are also
not entirely clear. It has been proposed that the STING coremoiety
(lacking the CTT) contains a primordial autophagy function: In
reconstitution experiments in HEK293 cells, the STING core was
sufficient for initiating autophagyupon stimulationwith exogenous
cGAMP. Further, this core autophagy function exerted anti-viral
activity – particularly against DNA virus such as Herpes Simplex
Frontiers in Immunology | www.frontiersin.org 478
Virus 1 (HSV1), but not the RNA virus Sendai virus (SeV). In this
report, upon transit to the Golgi, the CTT-deleted STING core
initiatedMicrotubule-associated protein 1A/1B-light chain 3 (LC3)
lipidation through a non-canonical mechanism involving WD
repeat domain phosphoinositide-interacting protein 2 (WIPI2)
and Autophagy related 5 (Atg5), but not Unc-51 Like Autophagy
Activating Kinase 1 (ULK1) and the Vacuolar protein sorting 34
(VPS34) complex. Although Mammalian target of rapamycin
(mTOR) regulates autophagy, STING did not dephosphorylate or
inhibit mTOR (54). However, in a recent report examining S365A
andCTT deletionmutants inmice, HSV-1 viral resistance was IFN
independent, but required the CTT and TBK1 for both autophagy
and viral resistance. S365 phosphorylation was also important for
enhancing NF-kB activation in macrophages (64). Multiple
components of the cGAS-STING activation cascade interact with
autophagy relatedmolecules andpathways:TBK1hasbeennoted to
activate mitophagy via phosphorylation of Calcium Binding And
Coiled-Coil Domain 2 (NDP52), p62, TAX1BP1 and optineurin
(69). Following translocation to the Golgi, STING co-localizes with
p62, LC3 and Atg9a (59). cGAS may also participate in autophagy
induction independently of STING: cGAS binds Beclin1, releasing
Run domain Beclin-1 interacting and cysteine-rich containing
(RUBICON, a potent negative regulator of autophagy) thus
stimulating autophagy (70). In summary, multiple signaling
routes link STING-cGAS signaling with autophagy, and
activation of any particular pathway(s), or dependence upon
specific STING moieties, may be context-dependent.

STING also stimulates apoptosis and cell death via multiple
mechanisms (71). During “intrinsic” apoptosis, mitochondria
FIGURE 2 | cGAS and STING activation. Cytosolic dsDNA from viruses, mitochondria or nucleoids formed during nuclear breakdown bind cGAS, triggering its catalytic
formation of 2’3’ cGAMP. 2’3’ cGAMP serves as a ligand for STING, which resides in the ER with its ligand binding domain (LBD) facing the cytosol. TM=transmembrane
domain. Bacterial cyclic-di-nucleotides, such as cyclic-di-AMP, cyclic-di-GMP and 3’3’ cGAMP also bind STING. Upon ligand binding, the cytosolic domains of STING close
over the di-nucleotide ligand and rotate 180 degrees, enabling lateral stacking. STING translocates to the Golgi where it oligomerizes. This oligomerization enhances trans-
phosphorylation of the STING CTT (C terminal tail)-associated TBK1 family kinases. TBK1 has a scaffold and dimerization domain (SDD), ubiquitin like domain (Ub) and
Kinase domain (KD). Activated TBK1 phosphorylates the STING CTT, enabling recruitment and subsequent phosphorylation of IRF3. TBK1 family kinases also activate
signaling pathways leading to NF-kB nuclear translocation. STING activation has diverse immune stimulatory outputs including pro-inflammatory cytokine responses
(via NF-kB), interferon responses (via IRF3), apoptosis and autophagy. STING/TBK1 structural cartoon adapted from (51).
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form Bcl2 Associated X (BAX)/Bcl2 antagonist killer 1 (BAK)-
dependent micropores, resulting in mitochondrial outer
membrane permeabilization, release of cytochrome c, and
caspase activation (72). BAX/BAK macropores subsequently
enable herniation of inner mitochondrial membranes and
extrusion of mitochondrial DNA (mtDNA) (73). STING
promotes phosphorylation of receptor-interacting protein
kinase 3 (RIP3), which activates p53 upregulated modulator of
apoptosis (PUMA, another pro-apoptotic Bcl2 family member),
leading to mitochondrial outer membrane permeabilization (74).
IRF3 and p53 also coordinately upregulate PUMA and Noxa
(60). Moreover, activated IRF3 binds BAX directly via its BH3
domain, stimulating apoptosis (75). STING activation also leads
to mitochondria-induced apoptosis indirectly via ER stress and
its multiple pro-apoptotic programs (more on this connection
below and in (71)). When apoptosis is inhibited by infection or
genetically, STING-dependent type I IFN and TNF promote
regulated necrosis or “necroptosis” (76, 77). Depending upon
STING signaling strength and cell type, STING trafficking to
lysosomes following autophagy induction results in lysosomal
permeabilization and so called “lysosomal cell death” (61).
Lysosomal rupture induces potassium efflux, and secondary
NLRP3 activation, stimulating pyroptosis (61, 78). It should be
noted however, that STING-inflammasome cooperation does
not invariably increase pyroptosis (62).

Both cGAS and STING are subject to multiple types of
transcriptional and post-translational modifications and
regulation, reviewed extensively elsewhere (79–81), with a few
examples presented here. IFN increases cGAS and STING
expression, driving a positive feedback loop (18, 82). Both cGAS
and STING expression are suppressed by DNA methylation in
many tumors (83). PalmitoylationofSTING in theGolgi is essential
for its oligomerization and activity (84). cGAS can be inhibited by
ProteinKinase B (Akt) phosphorylation and glutamylation (TTLL4
andTTLL6) (85, 86).Complexubiquitinationcanactivateor inhibit
cGAS and STING by targeting them for degradation (79). The
autophagic flux stimulated by STING may facilitate its lysosomal
destruction post-stimulation in an ULK1-dependent manner (87).
The same pro-apoptotic caspases stimulated by cGAS-STING
operate to inhibit their activation: During intrinsic apoptosis,
initiator and effector caspases (Caspase 9 and Caspase 3) result in
cleavage of cGAS, STING and IRF3, thus limiting further STING
signaling (88, 89). Inflammasome processed caspase1 also cleaves
cGAS and inhibits its enzymatic activity following Gasdermin-D
dependent K+ influx (90, 91). Regulation of STING/cGAS activity
by ROS and calcium will be described below.
STING IN THE “STERILE” PATHOLOGY OF
DISEASE STATES

Although cGAS and STING are poised to respond to pathogens,
increasing evidence supports their critical role in a number of
“sterile” physiologic and pathologic conditions, including cancer,
heart disease, diabetes, neurodegenerative disease, lupus as well
as normal aging/cellular senescence (Figure 3) (92–98).
Frontiers in Immunology | www.frontiersin.org 579
For example, gain of function mutations in STING and
diminished nuclease activity lead to distinctive IFN-driven
autoinflammatory conditions such as STING Associated
Vasculopathy presenting in Infancy (SAVI) and Aicardi Goutieres
syndrome, respectively (93). Increased STING trafficking to the
Golgi (and sustained activation) results in autoimmunity in COPA
syndrome (99). Lupus patients show a strong type I IFN signature in
their peripheral blood, and a sub-group of lupus patients (~15%)
has elevated circulating cGAMP (100, 101). However some
autoimmune conditions dependent upon other PRRs may be
regulated by STING and worsen with STING deficiency (102,
103). In regards to cancer, STING essentially mediates the anti-
tumor effect of radiation (104). IFN promotes maturation and
antigen presentation by CD8a+ dendritic cells (DC) and thus
priming and activation of tumor infiltrating CD8 T cells and
Natural Killer (NK) cells (49, 105). Related to these consequences
of STING activation, STING agonists have shown promise as anti-
cancer therapeutic agents (106). On the other hand, STING can
promote toleragenic responses via Indoleamine-pyrrole 2,3-
dioxygenase (IDO), especially with low antigenicity tumors, and
induce the T cell exhaustion stimulus Programmed death ligand 1
(PDL1) (49, 107, 108). Inter-tumor cell cGAMP transfer and
subsequent STING activation can also facilitate metastasis (109).
Regarding cardiovascular disease, cGAS critically mediates
inflammation post-myocardial infarction (MI), and induces
CXCL10, iNOS expression and M1 differentiation. In this setting,
STING or cGAS deficiency improved post-MI survival (110).
STING activity may attenuate type I diabetes, but exacerbate type
II diabetes and the associated metabolic syndrome (97, 111, 112).
The dual positive and negative effects of STING on health mandate
caution in modulating STING activity therapeutically.

One of themajor questions posed by these observations relates to
the source of “endogenous” STING/cGAS ligands in sterile
pathology. In health, self DNA might be expected to be sequestered
in the nucleus and within mitochondria. However, it has become
clear that nuclei andmitochondria are not as “air tight” as previously
thought. To maintain the status quo in health, nucleases patrol the
cytosol and extracellular milieu, degrading rogue cytosolic nucleic
acids. Even in the face of this nucleotide cleanup crew, increasing
evidence suggestsmtDNAandunder certain conditions, nuclear and
extracellular DNA serve as stimuli for STING. Extracellular dsDNA
fromapoptotic cells canbe takenupbyendocytosis, or in the formsof
microvesicles and exosomes (113, 114). Internalized dsDNA
translocates from lysosomes (especially if deficient in DNAse) into
the cytosol (115). Extracellular cGAMP that evades Ectonucleotide
pyrophosphatase/phosphodiesterase family member 1 (ENPP1)
degradation can also be taken up by and stimulate cells (116).
Studies in senescence, infection, neurodegenerative diseases, cancer
and lupus have greatly elucidated the generation (and recognition) of
mitochondrial and genomic DNA ligands. Genomic DNA will be
discussed briefly, but the remaining focus will be on mtDNA.

Without killing the involved cell, genotoxic stress can result in
partial breakdown of the laminin nuclear envelope structure and
extrusion of so-called “micronuclei” into the cytoplasm (117). In
senescence, telomere dysfunction and breakdowns in DNA
repair lead to genotoxic stress. In cancer, genotoxic stress may
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result from aberrant mitosis, mutation in DNA-repair enzymes as
well as exogenously applied radiation. Micronuclei only form
during cell division, and breakdown of the micronuclei envelope
duringmitosis is required for recognition (117, 118). This damaged
genomic DNA in micronuclei then becomes an available substrate
for cGAS (95). It is unclear how the extra-nuclear DNA avoids
nucleosomal inhibition of cGAS, unless the DNA dissociates from
histones. The chromatin state in micronuclei is not well described.
Once cytosolic micronuclei dsDNA stimulates cGAS, the resulting
cGAMP can also transfer across cellular boundaries via gap
junctions (109, 119). For instance in cancer, cGAMP from tumor
cells transfers to STING-expressing myeloid and B-cells that
produce natural killer cell-stimulating IFN (120). One bacterium,
Burkholderia pseudomallei, induces cell fusion, genomic instability
and aberrant mitosis resulting in micronuclei formation.
Interestingly, in this case, the micronuclei triggers STING
activation and IFN transcription but not IFN protein, and
STING/autophagy-dependent cell death. Polyethylene glycol
induced cell fusion also triggers IFN gene expression and
autophagy, suggesting a critical role for the cell fusion process
(121). Micronuclei detected in human Huntington’s disease
embryonic stem cell-derived neurons have been linked to
inflammation and autophagy (122).
FURTHER CUES ON ENDOGENOUS
LIGANDS FROM LUPUS AND RELATED
CONDITIONS: IMPORTANT ROLES FOR
NUCLEASES AND MITOCHONDRIAL DNA

Discovery of the linkage between nuclease deficiencies and type I
interferonopathies has thrown the requirement for nucleotide
“clean-up” into sharp relief. The cytosolic nuclease TREX1/
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DNAseIII was one of the first described molecular associations
with type I IFN-driven diseases (123, 124). TREX1 deficiency and
mutations have been implicated in Aicardi-Goutieres syndrome
(AGS), Familial chilblain lupus, systemic lupus erythematosus
(SLE) and retinal vasculopathy with cerebral leukodystrophy
(RVCL) (123, 125–127). Full deletions are more likely to be
associated with the severe early-onset manifestations, as in AGS,
whereas heterozygous deficiencies are more common in complex
milder or later onset conditions, such as familial chilblain
lupus (126). AGS also results from defects in RNAse H2, which
cleaves RNA from DNA to decrease DNA damage, and SAM
and HD Domain Containing Deoxynucleoside Triphosphate
Triphosphohydrolase 1 (SAMHD1), a dNTPase that acts at
stalled replication forks and regulates reverse transcription to
cDNA (128–130). Mice deficient in extracellular DNAseI develop
high titer anti-nuclear antibodies and glomerulonephritis (131).
Lysosomal DNAseII deficiency is embryonic lethal in mice, but
completely rescued by cGAS or STING absence. Interestingly
DNaseII-/-Ifnar (type I IFN receptor)-/- mice survive to adulthood,
but develop rheumatoid arthritis-like disease, most likely reflecting
the NF-kB stimulating activity of STING (132). TREX1, which is
located in the cytosol and localizes to the ER, is active against ssDNA,
nicked end dsDNA, and retroviral cDNA (produced for instance
during HIV-1 infection) (133). TREX1 may also degrade
endogenously transcribed retroviral elements (124, 134). Mutations
in the DNAse region are mostly associated with AGS, whereas
DNAse intact C-terminal truncations have been identified in
RVCL and SLE (93). The non-DNAse TREX1 functions may be
mediated through its association with and regulation of
oligosaccharyltransferase, as C-terminal TREX1 mutations result in
production of large amounts of immunostimulatory free
glycans (135).

The association of SLE-like type I IFN driven diseases with
these rare nuclease mutations serves as proof of principle
FIGURE 3 | Concept map of STING in sterile pathology. Irradiation, cancer, aging/senescence and infection can drive genotoxic stress, resulting in the generation of
micronuclei. Nuclease mutations, deficiencies, and mitochondrial DNA release lead to increased cytosolic dsDNA. These immediate drivers of cytosolic dsDNA are in red
boxes. STING aberrantly activated through these processes, as well as STING mutations and altered STING regulation (blue boxes) all result in pathologic disease states.
Excess STING-dependent IFN and inflammatory cytokines contribute to pathology (green boxes) in Type I interferonopathies, autoimmunity and post-MI (Myocardial Infarction).
However the effects of STING on other types of pathologies (Cancer, Diabetes) can vary (yellow boxes) depending upon the specific situation.
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regarding the importance of endogenous DNA in driving
autoimmune disease. Work over the last decade has shed light
on pathogenic mechanisms that may be more prevalent. Cells
from lupus patients, most prominently neutrophils tend to
extrude their nuclear contents in stringy structures rich in
histones and dsDNA known as neutrophil extracellular traps
(NETs). These NETS also contain inflammatory proteins such as
Cathelecidin LL37 antimicrobial peptides and High Mobility
Group Box 1 (HMGB1) (136). Wang et al. reported the
presence of mitochondrial (mt)DNA in ex-vivo stimulated
NETs and increased anti-mtDNA antibodies in lupus patients.
These antibodies correlated with IFN scores and disease activity
scores, including lupus nephritis scores, better than the standard
anti-dsDNA. This group also found mtDNA in NETs in SLE
subject kidney biopsies. MtDNA-anti-mtDNA complexes were
strong stimulators of plasmacytoid DC IFN, even more so than
anti-dsDNA. This group then performed a proof of concept trial
with metformin, which decreases mitochondrial respiratory
chain complex I and NADPH oxidase activity, suggesting that
oxidation played a key role in pathogenesis (137). MtDNA lacks
protective histones and DNA repair enzymes present in the
nucleus and thus, is more susceptible to oxidation. Oxidized
DNA is also resistant to TREX1 degradation, making this a
plausible scenario (138). This study concluded the IFN was
TLR9-dependent, but the evidence was very indirect.

Two further studies from 2016 further explored the relationship
between oxidized mtDNA and lupus. Caielli et al. reported that
neutrophils from healthy subjects that sustain mitochondrial
damage extrude DNA. This damaged mtDNA dissociates from
the mitochondrial transcription factor A mitochondrial (TFAM)
molecule that packages it into nucleoids en route to lysosomes for
degradation. Dissociation requires protein kinase A (PKA)-
mediated TFAM phosphorylation. Exposure of either type I IFN-
treated neutrophils or neutrophils from lupus patients to anti-RNP
immune complexes decreased the cAMP required for PKA
activation. The TFAM-associated nucleoids remained in the
cytosol, became oxidized and were released from the cell through
unclear means. TLR9 and RAGE participated in uptake of the
TFAM-associated oxidized mtDNA nucleoids by DC, thereby
stimulating IFN production. In support of this mechanism,
oxidized mtDNA autoantibodies were present in a fraction of
patients and oxidized mtDNA nucleoids visualized in SLE patient
neutrophils (139). In the report by Lood et al, they tied oxidized
mtDNA to STING-dependent IFN as follows: anti-RNP immune
complex stimulation increased mitochondrial ROS. Mitochondrial
ROS resulted in hypopolarization, translocation of mitochondria to
the plasma membrane and release of oxidized mtDNA into the
extracellular milieu. This oxidized mtDNA was a potent stimulus of
IFN production by peripheral blood mononuclear cells (PBMC)
and monocytic THP1 cells. In mice, injection of oxidized mtDNA
induced IFN in a STING-dependent manner. Furthermore, lupus
patient low-density granulocytes spontaneously released NETS
enriched in mtDNA in a mitochondrial ROS-dependent manner.
As proof of principle, they administered a mitochondrial ROS
antagonist (mitoTEMPO) to mice continuously via a pump,
decreasing disease severity in lupus prone MRL/lpr mice. MtDNA
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oxidation occurred independently of NADPH-oxidase, in Nox
knockout mouse cells and chronic granulomatous disease patients
(140). Together these reports firmly establish a link between
mitochondrial ROS, oxidized mtDNA and IFN generation in
lupus (summarized in Figure 4). Some of the differences, for
instance TLR9 vs. STING dependence, might reflect species in
some experiments (mouse vs. human) as well as mtDNA stimulated
target cell (DC vs. PBMC and monocytes).

Beyond lupus, mtDNA appears to play a role in STING
activation in other sterile diseases, such as cancer, and toxin-
stimulated injury. Cisplatin-induced acute kidney injury depended
upon mitochondrial damage and stimulation of STING.
Interestingly, in this report, STING stimulated NF-kB but not
type I IFN production, yet more evidence that different STING
outputs can be uncoupled (141). In regards to cancer, oxidized
mtDNA sensing by STING promoted the antitumor effect of
irradiated immunogenic cancer cells (142). DC appropriated
oxidized mtDNA released from dying irradiated tumors and
then cross-presented antigen to cytotoxic CD8 T cells.

Mitochondria also mediate STING stimulation in a variety of
infectious settings, in effect, functioning as both DAMP and
PAMP. STING plays an unanticipated role in responding to
RNA viruses, with mitochondria mediating the interaction.
Interestingly, many of these viruses express mitochondria
targeting proteins. Dengue virus M protein targets the
mitochondrial membrane, forming pores that result in swelling
and loss of membrane potential (143). NS2B3 cleaves mitofusins 1
(Mfn1) and Mfn2, influencing the structure and function of
mitochondria (144). Dengue-induced mitochondrial stress and
damage results in release of mtDNA into the cytosol (145). NS2B3
also directly cleaves STING, limiting production of type I IFN
(146). Encephalomyocarditis and influenza induce mtDNA release
into the cytoplasm via viroporins, stimulating cGAS and DDX41-
dependent immune responses (147). Although Herpesviruses are
DNA viruses, the HSV1 gene product UL12, that depletes TFAM
and results in enlarged mitochondrial nucleoids and mtDNA
release, is essential for full IFN production and anti-viral activity
(145). Different strains of Mycobacterium tuberculosis induce
varying amounts of mitochondrial stress and mtDNA release
stimulating cGAS/STING-dependent IFN (148, 149). M.
abscessus induces IFN and NLRP3 activity via mitochondrial
oxidative stress. In this setting, IFN and IL-1b exhibited a
mutually inhibitory reciprocal relationship (150).
STING AND THE ER: CROSS TALK
AND CROSS REGULATION

The studies highlighted above describe a connection between
mitochondria and STING activation via the release of mtDNA,
which is oxidized in many cases. Increasing evidence also supports
communication and cross-regulation between the ER and STING,
in which an ER stress response known as the “Unfolded Protein
Response” (UPR) takes center stage (UPR recently reviewed in
(151) and in (152), Figure 5). The ER serves as the protein-
producing factory of the cell. Different types of physiologic
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FIGURE 4 | Connection between oxidized mtDNA and Lupus. Stimulation of IFN-treated neutrophils or neutrophils from lupus patients with anti-RNP immune
complexes can lead to release of oxidized (ox) mtDNA by multiple mechanisms: 1) Stimulation of NETosis, with extrusion of DNA containing oxidized mtDNA. 2) Increased
mitochondrial ROS leads to membrane translocation and extrusion of oxidized mtDNA into the extracellular milieu. 3) Anti-RNP and type I IFN decrease the levels of cyclic
AMP (cAMP), a second messenger required for activation of protein kinase A (PKA), which normally phosphorylates TFAM, enabling its release from mtDNA. When TFAM
is released, the mtDNA can then go to the lysosome for degradation. If PKA is inhibited, TFAM remains associated with mtDNA in nucleoids that accumulate in
mitochondria and then are released from the neutrophils through unclear mechanisms. Extracellular oxidized mtDNA is sensed by monocytes in a STING-dependent
manner and internalized by pDC via RAGE receptors. Downstream of RAGE, the IFN-generating sensor in pDC is unclear, although both oxidized and non-oxidized
mtDNA stimulation of pDC is TLR9-dependent (139). The abundance of anti-mtDNA antibodies in lupus and correlation with disease support the critical involvement of
these mechanisms in disease pathogenesis (137, 139, and 140).
FIGURE 5 | Unfolded Protein Response (UPR), STING and autophagy. When cellular insults or protein production demands compromise ER function, the ER initiates
the UPR. Misfolding proteins bind the chaperone BiP, releasing it from three stress sensors, IRE1 (blue), ATF6 (green) and PERK (red). IRE1 is a bifunctional kinase/
endonuclease that initiates JNK-dependent signaling and excises a 26bp stretch from the XBP1 mRNA, removing a premature stop codon via frameshift mutation. IRE1
also decreases ER load through more promiscuous endonuclease activity (RIDD). Upon release of BiP, ATF6 translocates to the Golgi, where S1 and S2 proteases
generate an active transcription factor. PERK kinase phosphorylates eIF2a, resulting in global translational attenuation apart from select mRNAs such as ATF4. ATF4
promotes transcription of the pro-apoptotic transcription factor CHOP and Ero1a oxidoreductase. PERK also leads to nuclear factor erythroid 2–related factor 2 (Nrf2)
nuclear translocation and resulting anti-oxidant responses. The UPR promotes STING activity and STING increases the UPR (right green arrows). This STING-dependent
increase in UPR also enhances autophagy of ER components (“ER-phagy”, left side), which can limit ER stress responses. Many questions remain regarding the
mechanistic details connecting STING, UPR and ERphagy.
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demands and insults that impact protein folding, including
increased protein production, misfolding proteins, nutrient
deprivation, hypoxia, calcium and oxidative dysregulation, all
lead to induction of the UPR. The UPR encompasses three
primary signaling arms set in motion by the activation of ER-
membrane associated stress sensors, serine/threonine-protein
kinase/endoribonuclease inositol-requiring enzyme 1 a (IRE1),
Protein Kinase R-like endoplasmic reticulum kinase (PERK) and
activating transcription factor 6 (ATF6).Verybriefly, in the absence
of stress, these sensors associate with an ER-protein folding
chaperone GRP78 (Immunoglobulin heavy chain binding protein
(BiP)). An overabundance of unfolded protein results in the release
of these sensors from BiP, thus activating UPR signaling. IRE1 is
both a kinase and endonuclease which processes the X-box binding
protein 1 (XBP1) transcription factor mRNA, yielding the active
transcription factor. XBP1 promotes production of ER chaperones,
ER associated degradation (ERAD) proteins, and ER expansion. In
certain settings, IRE1 also displays non-specific endonuclease
function decreasing protein load, a process termed Regulated
IRE1-dependent decay (RIDD). IRE1 kinase signals via NF-kB
and JNK pathways, stimulating inflammation, autophagy and
apoptosis. PERK is a kinase whose activity results in the
phosphorylation of eukaryotic initiation factor 2 a (eIF2a).
Phosphorylation inhibits global mRNA translation apart from
select transcripts with 5’Cap-independent upstream open reading
frames such asATF4. PERKregulates amino acid acquisition, redox
status and apoptosis via induction of the C/EBP Homologous
Protein (CHOP) transcription factor. ATF6 is a proto-
transcription factor that traffics to the Golgi following BiP
dissociation. There, Site1 and Site2 proteases cleave ATF6 to an
active transcription factor that induces ER chaperones and with
XBP1, increases ER capacity. As the UPR accomplishesmuch of its
adaptive program through gene transcription, it is oftenmonitored
experimentally by quantitating UPR target gene expression.
Together these pathways re-establish proteostasis (proteome
homeostasis) by decreasing protein load, at least temporarily, and
enhancing ER function. If ER stress is profound or fails to resolve,
these pathways trigger apoptosis.

The UPR intersects with, and activates pro-inflammatory
signaling [extensively reviewed elsewhere (153–155)]. Moreover,
cells undergoing ER stress respond to PRRs with synergistic
cytokine production; thus, the UPR acts as an amplifier for
pathogen recognition (153, 156, 157). In TLR4-stimulated
macrophages, IFN-b was one of the most dramatically enhanced
cytokines by ER stress (157). Further, using chemicalUPR inducers
and oxygen-glucose deprivation, we found that ER stress was
sufficient for phosphorylation and nuclear translocation of IRF3
(158). Interestingly, IRF3activationwasonlySTING-dependent for
certain types of ER stress induction, such as oxygen glucose
deprivation and treatment with Thapsigargin, which induces ER
stress via inhibition of the calcium-regulating sarco/endoplasmic
reticulum Ca2+-ATPase (SERCA) pump (159). Oxygen glucose
deprivation can also increase cytosolic calcium via modulation of
SERCA, Ryanodine receptors (RyR) or other receptors (160, 161).
Tunicamycin, an UPR-inducing N-linked glycosylation inhibitor
resulted in IRF3 phosphorylation through a STING-independent,
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but ATF6-dependent mechanism (158). Calcium may be key for
STING activation by the UPR, but increased cytosolic calcium,
introduced with a calcium ionophore, was not sufficient in the
absence of ER stress.

The linkage between ER stress and STING activation detected
with in vitro pharmacologic manipulation was observed in several
disease models: Patrasek et al. reported that in early alcoholic liver
disease, alcohol induced ER stress, which resulted in STING
activated IRF3 and IRF3-dependent apoptosis (162). In
traumatic brain injury, a PERK inhibitor abrogated STING
activation and ameliorated damage (163). In a report from Cui
et al, Mycobacterium bovis STING activation of TBK1 and IRF3
was dependent upon ER stress (164). In this study, IRF3-BAX-
initiated apoptosis required TBK1 activity. We found that during
Brucella abortus infection, induction of the UPR was critical for
STING activation and induction of the STING-dependent type I
IFN program genes. However, this study also brought up an
interesting, somewhat thorny observation: Induction of the UPR
was STING dependent (lower in STING-/- cells), so there is
reciprocal regulation. Further, type I IFN enhanced UPR
induction (165). This type of reciprocal crosstalk was also
described in a report on heart inflammation and fibrosis.
Angiotensin II induced STING expression and increased IFN in
cardiac myocytes in an ER stress dependent manner. In this study,
STING-/- mice exhibited decreased ER stress following aortic
banding (166). Moretti et al. described STING activated ER stress
and autophagy induction in the setting of Listeria innocua
infection. Listeria c-di-AMP stimulated STING, resulting in
upregulation of ER stress markers, inhibition of mTOR and
autophagy. In this particular type of autophagy, “ER phagy”, ER
membranes that were autophagocytosed included ER markers, ER
stress proteins and STING. They observed a yin-yang relationship
between ER stress and autophagy: ERphagy reduced ER stress
(especially the PERK pathway). Inhibition of autophagy (and
increased ER stress) resulted in apoptosis. PERK deletion
decreased IFN production and autophagy, suggesting an ER-
stress feed forward mechanism (167). Putting these studies
together, ER stress can induce STING activity and STING
increases ER stress and ER stress-dependent autophagy.

A report by Wu et al. examined the molecular basis for the
UPR-STING connection by focusing on a STING gain of
function (GOF) mutant associated with SAVI (168). Patients
afflicted with SAVI develop early onset vasculitis, rash and
interstitial lung disease (169). SAVI is largely IRF3-
independent in mice, suggesting non-IFN STING activities are
important drivers of the inflammatory disease (170). Wu et al.
found increased expression of UPR markers, BiP and CHOP in
GOF human T cells, less so in B cells and not in macrophages,
MEFs or fibroblasts (UPR was cell type-dependent). In the Jurkat
cell line, the STING GOF mutant was not sufficient for UPR
induction but synergized with T cell receptor (TCR) stimulated
ER stress. In wild type murine T cells, TCR engagement typically
induces ER stress, but not apoptosis. In the wild type T cells, the
strong STING agonist DMXAA and TCR stimulation, but not
DMXAA alone, significantly increased ER stress. Similarly, the
GOF STING mutant synergized with TCR signaling to increase
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ER stress and IRF3-independent apoptosis. Furthermore, Wu
et al. defined a requisite “UPR motif” within STING, in aa322–
343, a highly conserved sequence encoding a helix on the exterior
of the STING dimer, next to the CDN ligand-binding domain.
Residues R331 and R334 were particularly important for UPR
function. A deletion around the IRF3 binding site (343–354)
abolished IFN, but not UPR or NF-kB outcomes (168).
STING AND CALCIUM

In addition to the UPR, a second related aspect of ER function,
calcium regulation, has been implicated in STING activation and
function. The ER serves as the primary calcium storage within
the cell, maintaining a huge gradient across the ER membrane.
ER calcium concentrations are estimated at 2mM with free
calcium at 500mM, whereas cytoplasmic calcium is in the 100–
100 nM range (171, 172). These high concentrations of calcium
are critical for optimum function of the ER protein-folding
machinery. ER-resident calcium binding proteins with low
affinity but high capacity include the chaperones calreticulin,
calnexin, BiP, grp94 and Protein disulfide isomerase (PDI) (173).
Calreticulin and calnexin work with Erp57, the thiol disulfide
isomerase, to form disulfide bonds and promote protein folding
(174). Calreticulin and calnexin also direct protein trafficking
through the ER and ERAD (175). The BiP ATPase prevents
protein aggregation (176). Calsequestrins and Chromogranins
further buffer ER calcium. Three families of proteins, SERCA,
Inositol triphosphate receptors (IP3R) and RyRs, mediate the
tremendous ER-cytosol gradient and regulate calcium release.
Expression and relative roles of these proteins is cell-dependent.
For instance, there are 3 SERCA genes with multiple splice
variants, but SERCA2b is most widely expressed, has the
highest calcium affinity of the SERCAs and is primarily
responsible for maintaining high ER calcium (177). Type 1
IP3R is located throughout the ER but type 3 IP3R localize to
the mitochondrial associated membranes (MAMs) and primarily
transmit calcium to mitochondria (178). RyRs are expressed
most prominently in muscle, but even at lower concentrations,
they may exert strong effects, as RyRs release ~20x more calcium
into the cytosol than IP3Rs (179). Stromal interaction protein 1
(STIM1) is a transmembrane calcium sensor that senses ER
calcium levels through its EF hand and other calcium binding
sites (180). When ER calcium is depleted, STIM1 translocates to
the plasma membrane where it binds the Calcium release-
activated calcium channel protein 1 (Orai1) resulting in
capacitative calcium entry, also known as Store operated
calcium channel (SOC) entry (181).

STING monomers share 2 Ca2+ binding sites when they form
dimers, andacertain amountof cytosolic calciumappearsnecessary
for activation (182). For instance, during dsDNA-stimulated
STING activation in macrophages, calcium chelators such as
BAPTA and mitochondrial calcium export inhibitors (CGP37157
sodium pump inhibitor) both reduce IRF3 and NF-kB activation
(183). W-7, a potent calmodulin inhibitor also reduced STING
activation by a pharmacologic STING-stimulating adjuvant (184).
Early sensing ofHCMV(human cytomegalovirus) andSendai virus
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membrane perturbations and ensuing STING activation is calcium
dependent (185). Cyclosporin A (the calcineurin inhibitor)
decreases mitochondrial calcium release and STING-dependent
IFN in macrophages (183). Short-term elevations in cytosolic
calcium increase STING activity through the following
mechanism: calcium binds and activates Calcium/calmodulin-
dependent protein kinase II (CAMKII), which then
phosphorylates 5’ AMP-activated protein kinase (AMPK) (186).
AMPK represses ULK1, which phosphorylates (and negatively
regulates) STING (87). However, saturating levels of cytosolic
Ca2+ (as following ionomycin treatment) can also inhibit STING
activation, so a happy medium is required by STING for optimal
function (187). The importance of the calcium-STING connection
has borne out in lupus: dipyridamole (a Ca channel blocker and
cGMP phosphodiesterase inhibitor) reduces cytokine production
in SLE T cells (188). CAMKIV is overexpressed in lupus nephritis
and CAMK deficiency or inhibitors (e.g., KN-93) decrease disease
in murine lupus models (189, 190).

Calcium homeostasis is also important for controlling STING
location in its basal state and during activation. The ER calcium
sensor, STIM1 physically interacts with and inhibits STING
activation and translocation to Golgi (191). Exogenously
increased STIM1 greatly decreases STING activation and UPR
induction. The STIM1-STING inhibition is mutual, in that STING
inhibits STIM1 translocation. When STING is absent, STIM1
enriches at the plasma membrane, and mediates increased
calcium entry via SOC.

Not only does calcium regulate STING activity and location, but
STING, in a reciprocal fashion,may regulate calcium levels. STING
associates closely with ER SERCA pumps and mitochondrial
calcium transporters VDAC1 and VDAC3 in the MAMs (192).
Direct association between STING and IP3Rs increases cytosolic
calcium release and drives lethal coagulation during sepsis (193).
The STING GOF mutant (chronic STING activity) exhibits
decreased ER Ca2+ release and lower influx across the plasma
membrane. However, acute T cell receptor signaling and
activation of the GOF mutant resulted in increased calcium-
dependent ER stress. Exacerbating this effect with the SERCA
pump inhibitor Thapsigargin (but not Tunicamycin) synergized
with the STING GOF mutation in inducing apoptosis (168). Thus,
STING may regulate calcium homeostasis and set thresholds for
calcium-mediated signaling and apoptosis. For a summary of
STING and calcium reciprocal regulation, see Figure 6.
THE ER MITOCHONDRIAL CONNECTION:
COMMUNICATION VIA ROS AND
CALCIUM

It is evident how mtDNA could stimulate STING via cGAS.
However, it is much less apparent how ER stress or calcium
mechanistically stimulates STING without an activating ligand.
This conundrum brings us to the base of our conceptual tripod
(Figure 1): the ER-mitochondria connection. The ER and
mitochondria share a close relationship, both anatomically in the
MAMs and functionally. Mitochondria host metabolic pathways,
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biosynthetic activities, ATP generation, and buffer calcium, generate
most of the cellular reactive oxygen species (ROS), and regulate cell
death by apoptosis. The ER synthesizes lipids and steroids, regulates
calcium, and through oxidative protein folding, generates ROS. We
hypothesize that the close connection and functional feedback
between these organelles may generate the “missing ligand” in the
form of released mitochondrial DNA. Below we will review their
interconnections (Figure 7) focusing on two “coins of the realm”,
calcium (touched on above) and reactive oxygen species (ROS).

Close apposition between ER membranes and mitochondria at
the MAMs or MERCs (mitochondria ER contacts) enables
phospholipid transfer, calcium movement, and redox control and
regulatesmitochondrial fusionandfission, inflammasomeactivation,
autophagy, and apoptosis (96, 194). Consider phospholipid synthesis
as a prime example of the ER mitochondrial partnership: ER
synthesized phosphatidylserine goes to the mitochondria where it
is decarboxylated to phosphatidylethanolamine, which then returns
to theER tobemethylated tophosphatidylcholine, themost common
lipid in cell membranes (195). During mitochondrial fission, the ER
first wraps around mitochondria (196). Constriction of the
mitochondria via ER-bound inverted formin 2 (INF2) requires
actin polymerization and increased ER-mitochondria calcium
transfer (197). Protein folding requires abundant ATP generated by
mitochondrial respiration.

Multiple molecular interactions anatomically bridge the two
organelles, facilitating the exchange of small molecules and
calcium. These interacting partners include mitofusin2 (Mfn2) on
the ER and mitofusin1 (Mfn1) on mitochondria, Vesicle associated
membrane protein B (VAPB) and Protein tyrosine phosphatase
interacting protein 51 (PTPIP51), IP3R3 and VDAC1 (voltage
dependent anion channel 1) ((198–200), Figure 7). Mitofusins not
only controls ER structure, but also regulate mitophagy and facilitate
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calcium transfer. VABP and PTPIP51 also facilitate calcium transfer
between ER andmitochondria and regulate autophagy (199). On the
mitochondrial side, the outer mitochondrial membrane is permeable
to calcium through the VDAC channels, but the innermitochondrial
membrane is much less so. However, the steep negative membrane
potential generated by respiration can drive the mitochondrial
calcium uniporter (MCU) (201). On the external surface, VDACs
form pores that allow release of small molecules such as ATP,
metabolites, superoxide anions, and cytochrome c. GRP75 stabilizes
the bridge between VDACs and IP3Rs (200). Therefore, when the
ER releases calcium, particularly through IP3R, the mitochondria are
well situated to act as a calcium buffer, maintaining optimally low
cytoplasmic calcium. Too much ER calcium release, though and the
mitochondria initiate apoptosis. ER stress sensors (more on this
below) and protein-folding chaperones also cluster at the MAMs,
including BiP, calnexin, calreticulin, ERp44, ERp57, and Sigma 1
receptor (202, 203).

Both ER and mitochondria generate ROS during normal
physiologic function and pathologic intracellular stress. ROS also
play a critical role in immunity, for instance in NF-kB induction,
macrophage phagocytic function and inflammasome activation
(204–206). The ER accounts for about 25% of total cellular ROS,
primarily produced during protein folding (207). Formation of the
inter- and intra-molecular disulfide bonds required for protein
structure requires an oxidizing milieu. The Protein disulfide
isomerase (PDI) oxidoreductase catalyzes the formation,
reduction and isomerization of disulfide bonds. PDI family
members ERp57 and ERp72 also form disulfide bonds (208). In
order to re-oxidize PDI, electrons are transferred to Endoplasmic
Reticulum Oxidoreductase 1 Alpha (ERO1a) via a flavin adenine
cofactor, and from there to molecular oxygen, ultimately
generating H2O2 (209, 210). During ER stress, ERO1a is one of
FIGURE 6 | Reciprocal effects of calcium on STING activity and STING on calcium homeostasis. Increases in cytosolic calcium (Ca2+) enhances STING activity
through multiple mechanisms: 1) calcium directly binds STING dimers, promoting cyclic-di-nucleotide signaling, 2) increased cytosolic calcium enhances
mitochondrial DNA extrusion (thus triggering cGAS), and 3) calcium stimulated calmodulin activates CAMKII, which phosphorylated AMPK, which then inhibits ULK1,
a STING inhibitor. SERCA pump inhibitors Thapsigargin (Tpg), infection and oxygen glucose deprivation (OGD) increase cytosolic calcium, thereby stimulating STING.
The mechanisms underlying these observations are not yet established. Too much calcium (as in ionomycin treatment) inhibits STING activity. On the right, STING
stimulates IP3R-dependent calcium release, a process that may be counteracted by SERCA activity. In its inactive state, STING sequesters STIM1 in the ER,
preventing extracellular calcium entry. STIM1 reciprocally “tethers” STING to the ER, inhibiting its activity.
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the key downstream targets induced by PERK (via CHOP) to
increase folding capacity (211). Too much ERO1a however causes
a hyperoxidizing environment, excessive ROS production and
thus induces ER stress (212). NADPH family oxidoreductases
NOX2, NOX4 and NOX5 also localize to the ER (213, 214). Other
ER oxidoreductases filling a similar role to ERO1 include vitamin
K epoxide reductase, quiescin sulfydryl oxidase and peroxiredoxin
IV (215). Glutathione peroxidases and GSH help scavenge excess
ROS (216). Binding of oxidized glutathione peroxidase to BiP
enhances its chaperone activity (217). GSH also reduces disulfide
bonds in improperly folded proteins. However, there are relatively
low levels of GSH in the ER, predisposing to the oxidizing
environment. Ratios of GSH:GSSG are 1:1–3:1 vs. 30–100:1 in
the cytosol (218).

Mitochondria generate the lion’s share of ROS in the cell via
fatty acid beta-oxidation, respiration (electron transport chain
(ETC) Complex I and III, cytochrome b5 reductase) and other
metabolic enzymes including monoamine oxidase, a-ketoglutarate
dehydrogenase, pyruvate dehydrogenase, flavoprotein ubiquinone
oxidoreductase (219). A subset of NOX4 localizes to the
mitochondria where it regulates mitochondrial bioenergetics
(220). Superoxide anions are the primary ROS produced by
mitochondria. Mitochondrial ROS are scavenged by super oxide
dismutases (SODs), glutaredoxin, glutathione, thioredoxin,
Frontiers in Immunology | www.frontiersin.org 1286
glutathione reductases, peroxidase and peroxiredoxins (215,
216). Negative feedback loops also keep ROS generation in
check. For instance, mitochondrial ROS stabilize Hypoxia
inducible factor 1 alpha (HIF1a), which decreases the Krebs
cycle and electron transport chain (ETC) activity and stimulates
mitophagy (221–224). Mitochondrial fission and fusion also
exhibit cross-regulation with ROS; for instance, reactive oxygen
species modulator 1 (ROMO1) decreases ROS production and
maintains structural integrity by enhancing OPA1 Mitochondrial
Dynamin Like GTPase (OPA1) oligomerization (increasing
metabolic function and ROS production). However, excessive
ROS inactivates ROMO1, leading to cleavage of OPA1, loss of
mitochondrial cristae, mitochondrial fragmentation and decreased
respiration (225). As an example of positive feedback, excessive
ROS induces translocation of the fission-requiring dynamin
protein Drp1, and fission promotes mitochondrial ROS over-
production (226, 227).

ROS production and calcium fluxes intercommunicate within
organelles and between the ER, cytosol and mitochondria on many
different levels (Figure 7) [reviewed in (171)]. At steady state,
constitutive ER calcium release via IP3R supports mitochondrial
oxidative phosphorylation (228). However, boosting the Krebs cycle
dehydrogenases and activating NO synthase increases ROS. ER
calcium release that causes cytoplasmic Ca2+ spikes generates a
FIGURE 7 | ER-mitochondria connections at the ER mitochondria-associated membranes (MAMs). Mitochondria are closely associated with ER membranes
through multiple sets of molecular bridges, including the mitofusins (Mfsn) that regulate mitochondria fission/fusion, the inositol triphosphate receptor (IP3R) calcium
channel and non-selective voltage-dependent anion channel (VDAC) stabilized by GRP75, and Vesicle APC-Binding Protein (VAPB) and protein tyrosine
phosphatase-interacting protein 51 (PTIP51), which also regulate calcium flux. ER stress sensors inositol-requiring enzyme 1 (IRE1), PKR-like ER kinase (PERK) and
folding chaperones (e.g. GRP78/BiP) congregate at the ER mitochondria- associated membranes (MAMs). STING is also enriched at the MAMs. In the resting state,
STING associates with STIM1. ER calcium is primarily regulated by three types of calcium channel: Sarcoplasma/ER calcium ATPase (SERCA), which pumps calcium
(Ca2+) into the ER, and the IP3Rs and ryanodine receptors (RyR), which release ER calcium. Mitochondrial respiration and the action of the electron transport chain
(ETC) generate ROS. Protein folding is the primary source of ROS generation in the ER. PERK indirectly induces (dashed arrow) Endoplasmic Reticulum
Oxidoreductase 1 Alpha (Ero1a) expression, which is one of the primary sources of ER ROS. ROS decrease ER calcium by inhibiting SERCA and activating IP3R
and RyR. ROS also stimulate the translocation of Stromal interaction molecule 1 (STIM1) from ER to plasma membrane, where it interacts with Calcium release-
activated calcium channel protein 1 (Orai1) to enable store operated calcium entry (SOC). SOC stimulates NADPH oxidase, generating a positive feedback loop. At
the mitochondria, too much calcium and ROS stimulate Bak/Bax mediated release of cytochrome c and extrusion of mitochondrial DNA (mtDNA). The mtDNA
stimulates cGAS production of 2’3’-cGAMP, an activating ligand for STING. Calcium regulating molecules are in green, apoptosis in solid yellow, and UPR-
associated molecules as in Figure 5.
January 2021 | Volume 11 | Article 611347

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Smith STING, ER, and Mitochondria Interactions
“nanodomain” of mitochondria-generated H2O2, which in turn
induces a positive feedback increase in calcium release (229). ROS
directly regulate the activity of ER calcium channels. For instance,
oxidation of RyRs causes calcium leak, further ROS generation and
muscle weakness (230). ROS inhibit SERCA by preventing ATP
binding, thus depleting ER calcium and increasing cytosolic
calcium. ERO1a highly enriches at the MAMs in normal
oxidizing conditions (231). ERO1a activity generates H2O2,
which oxidizes IP3Rs and results in increased activity and
calcium flux out of the ER (232, 233). In the cytosol, increased
calcium efflux via IP3R stimulates CAMKII, which then exacerbates
the situation by stimulating NOX2-dependent ROS production.
NOX2 can also stimulate mitochondrial ROS and mitochondrial
superoxide activates NOX2 (234, 235). A stressed ER in need of
more ATP for folding could thus communicate via ROS and
calcium to mitochondria to increase ATP production. However
too much cytosolic calcium or excess ROS results in opening of the
mitochondrial membrane permeability transition pore, resulting
in cytochrome c loss, compromise of ECT function (generating
more ROS) and initiation of apoptosis (232). Besides activating
ER calcium channels, ROS (hydrogen peroxide) also stimulate
translocation of STIM1 and possibly STIM2 to the plasma
membrane, increasing cytosolic calcium through SOC entry (236,
237). Here also, there is feed-forward reciprocal regulation: STIM1
and Orai1 calcium channels contribute to ROS generation by
NADPH oxidase, and NOX2 drives STIM1-mediated SOC entry
(238, 239). Putting these observations together, optimum calcium
concentrations and limited release enhances communication
between organelles and increases their function (i.e. protein
folding and metabolic respiration), but excess ROS production
and calcium movement out of the ER into mitochondria or
cytosol initiates problematic positive feedback loops that can
drive apoptosis.

The UPR further impacts ROS and calcium signaling and is in
turn regulated by them. The pharmacologic agent Thapsigargin, a
SERCA pump inhibitor, rapidly and potently induces the UPR by
depleting ER calcium. Oxidized cholesterol causes inflammatory ER
stress in macrophages (240). In skeletal muscle, free fatty acids
increase oxidative stress and mitochondrial dysfunction, thus
leading to ER stress and autophagy. The Sigma1R, which
modulates IP3R activity and calcium flux, decreases ER stress and
stabilizes IRE1 oligomerization and generation of pro-survival
responses (202, 241). TLR signaling induces IRE1 activation and
XBP1 production viaNOX2 by an unclear mechanism (156). In the
direction of ER stress to calcium/ROS, ER stress increases cytosolic
calcium to the point of calcium-dependent mitochondrial outer
membrane permeabilization and apoptosis. PERK, which is
abundant at the MAMs, contributes to ROS-driven mitochondrial
stress and apoptosis (242). PERK both increases ROS via ERO1a
induction and conversely induces anti-oxidant responses via nuclear
factor erythroid 2–related factor 2 (Nrf2). PERK directly
phosphorylates Nrf2, leading to its dissociation from Kelch-like
ECH-associated protein 1 (KEAP1) which prevents Nrf2 nuclear
translocation (243). With ATF4, Nrf2 induces SODs, Heme
oxygenase-1, glutathione transferase and uncoupling mitochondrial
protein 2 (UCP2) (215). PERK regulation of proteostasis (and
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oxidative ROS-generating protein folding) can also have a large
impact on cell capacity to survive ER stress (244).
EVIDENCE FOR A TRIAD OR GUILT BY
ASSOCIATION?

To this point, we have addressed the various dyads between STING
and mitochondria, STING and ER, and mitochondria and ER, but
what evidence is there for a three-way interaction? UPR activation
has been previously implicated in some of the same settings where
mitochondrial damage is now taking the spotlight. Consider the
case of STING and the RNA virusDengue virus. The elaboration of
viral mitochondria-targeting proteins and resulting mitochondrial
stress and damage was described above. Dengue replicates in ER-
derived vesicles and also induces theUPR. Viral induction of PERK
and IRE1 signaling pathways increase viral autophagy and
replication (245). Similarly, in the case of Cisplatin induced acute
kidney injury, Cisplatin has long been known to cause ER stress and
UPR activation (246). In these two scenarios, mtDNA-induced
STING activation and UPR coexist in the same pathologic setting,
but the whether these manifestations are interconnected or occur
independently is not yet clear.

More work on the relationship betweenUPR andmitochondria
had been done in cancer (Figure 8). One report suggested ER stress
contributes to mitochondrial exhaustion of CD8 T cells (247). In a
murine sarcoma model, tumor-infiltrating PD1+ cells had greater
levels of mitochondrial ROS. Mitochondrial ROS correlated with
mitochondrial dysfunction as evident by lower oxygen
consumption rates. PERK inhibition decreased mitochondrial
ROS in PD1+ cells. PERK inhibitor and ERO1 inhibitor treated T
cells exhibited both higher O2 consumption rates and improved
IFN-g production. IFN-g, produced by tumor-infiltrating CD8 T
cells and NK cells, enhances cytotoxicity and antigen presentation,
and exerts direct anti-tumor effects – although in some settings, the
cytokine may be pro-tumorigenic (248). Further, PERK deficiency
and PERK and ERO1a inhibitor treatment of T cells resulted in
higher energy reserve and enhanced anti-tumor activity in vivo.
Others have shown constitutive XBP1 activation by ROS (lipid
peroxidation byproducts more specifically) drives tumor
progression by limiting antigen presentation and T cell activation
(249). Thus, through IRE1 orPERK, theUPR canhave a deleterious
effectoncancer containment.However, STINGagonists (which can
increase ER stress) improve CD8 T cell anti-tumor activity, despite
increasing PDL1 expression (49). When it comes to T cell
regulation, STING may exert competing effects on IFN
production vs. ER stress and exhaustion. Thus, in developing
therapeutics, the various effects of STING agonists on
mitochondria and UPR signaling in CD8 T cells or their
interacting DCs will require clarification in specific contexts.

The effects of UPR/PERK-mitochondria signaling may also be
cell-specific. Myeloid derived suppressor cells (MDSC) have been
implicated in tumor progression. These cells show signs of UPR
activation correlating with chemoresistance (250). Thapsigargin
treatment expanded splenic MDSC and enhanced tumor growth
whereas the UPR inhibitor TUDCA had the opposite effect.
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Mohamed et al. reported that the PERK pathway was highly
activated in MDSC in tumors (251). PERK enhanced MDSC-
mediated immunosuppression via Nrf2, preventing oxidative
damage, mitochondrial DNA release and DNA sensing via
cGAS/STING. Ablating PERK in the myeloid branch delayed
tumor growth. In a separate report, CHOP contributed to MDSC
activity. However, the PERK effect noted by Mohamed et al. required
Nrf2, not CHOP. PERK deficient MDSC exhibited increased cellular
ROS, altered mitochondrial morphology, membrane potential,
reduced oxygen consumption and release of mtDNA. The mtDNA
activated STING and induced type I IFN. Blocking STING or IFNAR
restored the immunosuppressive effect of MDSC in the absence of
PERK. Thus, in the case of MDSC, PERK promoted suppressor cell
“well-being” and inhibited STING activation through its anti-oxidant
activities (251). Interestingly, Nrf2 also antagonizes STING expression
by mRNA destabilization (252).

Thus, in some settings STING agonists hold dramatic promise
as anti-tumor agents. However, other reports suggest they may
increase metastases and tumor progression. We are just beginning
to scratch the surface of how STING regulates different types of
tumors and the different cells in tumor environments.
Understanding the potential mechanisms by which ER stress
and mitochondrial dysfunction interact and regulate STING is
lagging further behind but a ripe area for further study.
SUMMARY AND PERSPECTIVE

An underlying hypothesis in this review is that ER stress may
activate STING in the absence of an obvious ligand via calcium/
ROS mediated mitochondrial damage and mtDNA release. To
Frontiers in Immunology | www.frontiersin.org 1488
illustrate how this might work based on the previous discussion
consider cancer once more: In tumor microenvironments,
unregulated cellular proliferation may outstrip the neo-vascular
supply of nutrients including oxygen, glucose and amino acids.
This lack of nutrients negatively impacts ER function, triggering
the UPR. Hypoxia may directly uncouple electron transport and
damage mitochondria. However, it is also likely that the
disruptions in ER calcium homeostasis, ROS production and
stress will lead to mitochondrial damage and release of mtDNA
into the cytosol. cGAS would then sense the mtDNA and
generate cGAMP, which stimulates STING to produce type I
IFN. This scenario raises multiple questions: It may be a logical
fallacy to invoke crosstalk between all three corners of the triad;
just because A goes to B and B goes to C, doesn’t mean A requires
B to get to C. The effect of hypoxia on mitochondria may be
sufficient in the absence of ER stress to cause mtDNA release. ER
stress may activate STING in some unknown way without the
mitochondrial intermediary, for instance by stabilizing STING
oligomerization or altering STING trafficking.

The data presented above raise other questions regarding ER
stress-mitochondria-STING interactions: It is still unclear why
calcium mobilization during ER stress was necessary for
Thapsigargin and oxygen-glucose induced STING activation—
was it because of a unique calcium-dependent effect on
mitochondria and subsequent mitochondrial DNA release or
another mechanism? Was the role of the ER stress simply to
generate ROS? Another issue is how the UPR could trigger
mtDNA release without initiating apoptosis. The UPR triggers
multiple pathways converging on mitochondria-dependent
intrinsic apoptosis including suppression of anti-apoptotic
molecules, induction of pro-apoptotic molecules and JNK
FIGURE 8 | Different outcomes of PERK activation in T cells vs. MDSC and STING input. In T cells, PERK and ERO1a increase ROS production, leading to
mitochondrial dysfunction, increased exhaustion and lower IFNg production, rendering these PD1+ T cells less adept at fighting tumors. ROS-stimulated XBP1 also
decreases T cell activation. Although STING activation could make matters worse by increasing UPR induction and PDL1 expression, many studies indicate a
positive role for STING and type I IFN in pDC-dependent CD8 T cell activation and anti-tumor activities, suggesting a balance of effects. On the other hand, in
MDSC, PERK-stimulated Nrf2 activity predominates. Nrf2 prevents mitochondrial ROS and dysfunction. Mitochondrial ROS also leads to dsDNA extrusion and
STING activation, which further inhibit MDSC via Type I IFN signaling. MDSC promote tumor progression.
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signaling, in addition to the calcium and ROS dysregulation
described above (253). The decision between mitochondrial
DNA release and apoptosis may simply be a matter of degree
of ER stress and relative amount of mitochondrial destruction,
but such a threshold model would require further experimental
support. There is certainly evidence for a yin-yang balance
between apoptosis and mtDNA stimulation of STING in that
caspase deficiency increases STING induced IFN (254).
Alternatively, in addition to Bax-Bak pores, VDAC pores in
oxidatively stressed mitochondria enable mtDNA extrusion,
perhaps promoting STING activation short of apoptosis (255).

Let us come back full circle. What is the physiologic need for
repurposing PRRs such as STING? One possibility is the context
added by DAMPs; inside the cells, sufficient damage from pathogens
can trigger PRRs to amplify immune responses. However,
endogenous PRR stimulation represents a double-edged sword with
its own perils, as manifest by the involvement of STING in heart
disease, cancer and autoimmunity. In cancer, STING stimulation by
endogenous stressors not only can bolster innate and adaptive anti-
tumor immunity but can also undermine anti-tumor defenses.
Similarly, STING may drive type I interferonapathies, but STING
deficiency exacerbates autoimmunity triggered by other PRRs.
STING is particularly well situated to respond to organelle-
generated alarm signals resulting from disruptions in calcium
homeostasis and critically increased reactive oxygen species. The
Frontiers in Immunology | www.frontiersin.org 1589
close apposition of ER and mitochondria and calcium-ROS cross talk
between these organelles offers the tantalizing possibility that stress
initiated in either organelle could ultimately generate the required
ligand for STING and regulate STING activity. It will be interesting to
see how elucidation of the underlying mechanisms leading from
intracellular stress and damage to STING activation unfolds. Linear
sequential pathways are much easier to assess via common tools
such as expression modulation or inhibitors, but reciprocal
regulation and mutually augmenting feedback loops present much
more of a challenge. Despite these issues, it remains important to
determine the key intermediaries and interactions within these
pathways under different scenarios, because this knowledge will
be critical for guiding therapeutic interventions.
AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.
FUNDING

All funding for this work comes from the University of
Wisconsin-Madison (institutional support).
REFERENCES

1. Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about
danger. J Leukoc Biol (2007) 81(1):1–5. doi: 10.1189/jlb.0306164

2. Mollen KP, Anand RJ, Tsung A, Prince JM, Levy RM, Billiar TR. Emerging
paradigm: toll-like receptor 4-sentinel for the detection of tissue damage.
Shock (2006) 26(5):430–7. doi: 10.1097/01.shk.0000228797.41044.08

3. Yu L, Wang L, Chen S. Endogenous toll-like receptor ligands and their
biological significance. J Cell Mol Med (2010) 14(11):2592–603. doi: 10.1111/
j.1582-4934.2010.01127.x

4. Anthoney N, Foldi I, Hidalgo A. Toll and Toll-like receptor signalling in
development. Development (2018) 145(9):dev156018. doi: 10.1242/dev.
156018

5. Chen CY, Shih YC, Hung YF, Hsueh YP. Beyond defense: regulation of
neuronal morphogenesis and brain functions via Toll-like receptors.
J BioMed Sci (2019) 26(1):90. doi: 10.1186/s12929-019-0584-z

6. Tilstra JS, John S, Gordon RA, Leibler C, Kashgarian M, Bastacky S, et al. B
cell-intrinsic TLR9 expression is protective in murine lupus. J Clin Invest
(2020) 130(6):3172–87. doi: 10.1172/JCI132328

7. Ewald SE, Barton GM. Nucleic acid sensing Toll-like receptors in
autoimmunity. Curr Opin Immunol (2011) 23(1):3–9. doi: 10.1016/
j.coi.2010.11.006

8. Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-
mediated, type I interferon-dependent innate immunity. Nature (2009)
461(7265):788–92. doi: 10.1038/nature08476

9. Mohanty A, Tiwari-Pandey R, Pandey NR. Mitochondria: the indispensable
players in innate immunity and guardians of the inflammatory response.
J Cell Commun Signal (2019) 13(3):303–18. doi: 10.1007/s12079-019-00507-9

10. Seth RB, Sun L, Ea CK, Chen ZJ. Identification and characterization of
MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB
and IRF 3. Cell (2005) 122(5):669–82. doi: 10.1016/j.cell.2005.08.012

11. Wu B, Hur S. How RIG-I like receptors activate MAVS. Curr Opin Virol
(2015) 12:91–8. doi: 10.1016/j.coviro.2015.04.004

12. Kranzusch PJ, Wilson SC, Lee AS, Berger JM, Doudna JA, Vance RE.
Ancient Origin of cGAS-STING Reveals Mechanism of Universal 2’,3’
cGAMP Signaling. Mol Cell (2015) 59(6):891–903. doi: 10.1016/
j.molcel.2015.07.022

13. Margolis SR, Wilson SC, Vance RE. Evolutionary Origins of cGAS-STING
Signaling. Trends Immunol (2017) 38(10):733–43. doi: 10.1016/
j.it.2017.03.004

14. Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a
cytosolic DNA sensor that activates the type I interferon pathway. Science
(2013) 339(6121):786–91. doi: 10.1126/science.1232458

15. Li XD, Wu J, Gao D, Wang H, Sun L, Chen ZJ. Pivotal roles of cGAS-
cGAMP signaling in antiviral defense and immune adjuvant effects. Science
(2013) 341(6152):1390–4. doi: 10.1126/science.1244040

16. Jonsson KL, Laustsen A, Krapp C, Skipper KA, Thavachelvam K, Hotter D,
et al. IFI16 is required for DNA sensing in human macrophages by
promoting production and function of cGAMP. Nat Commun (2017)
8:14391. doi: 10.1038/ncomms14391

17. Almine JF, O’Hare CA, Dunphy G, Haga IR, Naik RJ, Atrih A, et al. IFI16
and cGAS cooperate in the activation of STING during DNA sensing in
human keratinocytes. Nat Commun (2017) 8:14392. doi: 10.1038/
ncomms14392

18. Ma F, Li B, Liu SY, Iyer SS, Yu Y, Wu A, et al. Positive feedback regulation of
type I IFN production by the IFN-inducible DNA sensor cGAS. J Immunol
(2015) 194(4):1545–54. doi: 10.4049/jimmunol.1402066

19. Gentili M, Lahaye X, Nadalin F, Nader GPF, Lombardi EP, Herve S, et al.
The N-Terminal Domain of cGAS Determines Preferential Association with
Centromeric DNA and Innate Immune Activation in the Nucleus. Cell Rep
(2019) 26(13):3798. doi: 10.1016/j.celrep.2019.03.049

20. Orzalli MH, Broekema NM, Diner BA, Hancks DC, Elde NC, Cristea IM,
et al. cGAS-mediated stabilization of IFI16 promotes innate signaling during
herpes simplex virus infection. Proc Natl Acad Sci U S A (2015) 112(14):
E1773–81. doi: 10.1073/pnas.1424637112

21. Volkman HE, Cambier S, Gray EE, Stetson DB. Tight nuclear tethering of
cGAS is essential for preventing autoreactivity. eLife (2019) 8:e47491. doi:
10.7554/eLife.47491

22. Barnett KC, Coronas-Serna JM, Zhou W, Ernandes MJ, Cao A, Kranzusch
PJ, et al. Phosphoinositide Interactions Position cGAS at the Plasma
January 2021 | Volume 11 | Article 611347

https://doi.org/10.1189/jlb.0306164
https://doi.org/10.1097/01.shk.0000228797.41044.08
https://doi.org/10.1111/j.1582-4934.2010.01127.x
https://doi.org/10.1111/j.1582-4934.2010.01127.x
https://doi.org/10.1242/dev.156018
https://doi.org/10.1242/dev.156018
https://doi.org/10.1186/s12929-019-0584-z
https://doi.org/10.1172/JCI132328
https://doi.org/10.1016/j.coi.2010.11.006
https://doi.org/10.1016/j.coi.2010.11.006
https://doi.org/10.1038/nature08476
https://doi.org/10.1007/s12079-019-00507-9
https://doi.org/10.1016/j.cell.2005.08.012
https://doi.org/10.1016/j.coviro.2015.04.004
https://doi.org/10.1016/j.molcel.2015.07.022
https://doi.org/10.1016/j.molcel.2015.07.022
https://doi.org/10.1016/j.it.2017.03.004
https://doi.org/10.1016/j.it.2017.03.004
https://doi.org/10.1126/science.1232458
https://doi.org/10.1126/science.1244040
https://doi.org/10.1038/ncomms14391
https://doi.org/10.1038/ncomms14392
https://doi.org/10.1038/ncomms14392
https://doi.org/10.4049/jimmunol.1402066
https://doi.org/10.1016/j.celrep.2019.03.049
https://doi.org/10.1073/pnas.1424637112
https://doi.org/10.7554/eLife.47491
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Smith STING, ER, and Mitochondria Interactions
Membrane to Ensure Efficient Distinction between Self- and Viral DNA. Cell
(2019) 176(6):1432–46.e11. doi: 10.1016/j.cell.2019.01.049

23. Michalski S, de Oliveira Mann CC, Stafford C, Witte G, Bartho J, Lammens K,
et al. Structural basis for sequestration and autoinhibition of cGAS by
chromatin. Nature (2020) 587(7835):678–82. doi: 10.1038/s41586-020-2748-0

24. Zhao B, Xu P, Rowlett CM, Jing T, Shinde O, Lei Y, et al. The Molecular
Basis of Tight Nuclear Tethering and Inactivation of cGAS. Nature (2020)
587(7835):673–7. doi: 10.1038/s41586-020-2749-z

25. Pathare GR, Decout A, Gluck S, Cavadini S, Makasheva K, Hovius R, et al.
Structural mechanism of cGAS inhibition by the nucleosome. Nature (2020)
587(7835):668–72. doi: 10.1038/s41586-020-2750-6

26. Boyer JA, Spangler CJ, Strauss JD, Cesmat AP, Liu P, McGinty RK, et al.
Structural basis of nucleosome-dependent cGAS inhibition. Science (2020)
370(6515):450–4. doi: 10.1126/science.abd0609

27. Cao D, Han X, Fan X, Xu RM, Zhang X. Structural basis for nucleosome-
mediated inhibition of cGAS activity. Cell Res (2020) 30(12):1088–97. doi:
10.1038/s41422-020-00422-4

28. Lahaye X, Gentili M, Silvin A, Conrad C, Picard L, Jouve M, et al. NONO
Detects the Nuclear HIV Capsid to Promote cGAS-Mediated Innate
Immune Activation. Cell (2018) 175(2):488–501.e22. doi: 10.1016/
j.cell.2018.08.062

29. Herzner AM, Hagmann CA, Goldeck M, Wolter S, Kubler K, Wittmann S,
et al. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA
structures as found in primary HIV-1 cDNA. Nat Immunol (2015) 16
(10):1025–33. doi: 10.1038/ni.3267

30. Gao D, Wu J, Wu YT, Du F, Aroh C, Yan N, et al. Cyclic GMP-AMP
synthase is an innate immune sensor of HIV and other retroviruses. Science
(2013) 341(6148):903–6. doi: 10.1126/science.1240933

31. Luecke S, Holleufer A, Christensen MH, Jonsson KL, Boni GA, Sorensen LK,
et al. cGAS is activated by DNA in a length-dependent manner. EMBO Rep
(2017) 18(10):1707–15. doi: 10.15252/embr.201744017

32. Nelson PN, Carnegie PR, Martin J, Davari Ejtehadi H, Hooley P, Roden D,
et al. Demystified. Human endogenous retroviruses. Mol Pathol (2003) 56
(1):11–8. doi: 10.1136/mp.56.1.11

33. Civril F, Deimling T, de Oliveira Mann CC, Ablasser A, Moldt M, Witte G,
et al. Structural mechanism of cytosolic DNA sensing by cGAS. Nature
(2013) 498(7454):332–7. doi: 10.1038/nature12305

34. Du M, Chen ZJ. DNA-induced liquid phase condensation of cGAS activates
innate immune signaling. Science (2018) 361(6403):704–9. doi: 10.1126/
science.aat1022

35. Li X, Shu C, Yi G, Chaton CT, Shelton CL, Diao J, et al. Cyclic GMP-AMP
synthase is activated by double-stranded DNA-induced oligomerization.
Immunity (2013) 39(6):1019–31. doi: 10.1016/j.immuni.2013.10.019

36. Gao P, Ascano M, Wu Y, Barchet W, Gaffney BL, Zillinger T, et al. Cyclic [G
(2’,5’)pA(3’,5’)p] is the metazoan second messenger produced by DNA-
activated cyclic GMP-AMP synthase. Cell (2013) 153(5):1094–107. doi:
10.1016/j.cell.2013.04.046

37. Zhang X, Shi H, Wu J, Zhang X, Sun L, Chen C, et al. Cyclic GMP-AMP
containing mixed phosphodiester linkages is an endogenous high-affinity
ligand for STING. Mol Cell (2013) 51(2):226–35. doi: 10.1016/
j.molcel.2013.05.022

38. Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, HyodoM, et al.
STING is a direct innate immune sensor of cyclic di-GMP. Nature (2011)
478(7370):515–8. doi: 10.1038/nature10429

39. Woodward JJ, Iavarone AT, Portnoy DA. c-di-AMP secreted by intracellular
Listeria monocytogenes activates a host type I interferon response. Science
(2010) 328(5986):1703–5. doi: 10.1126/science.1189801

40. Sauer JD, Sotelo-Troha K, von Moltke J, Monroe KM, Rae CS, Brubaker SW,
et al. The N-ethyl-N-nitrosourea-induced Goldenticket mouse mutant
reveals an essential function of Sting in the in vivo interferon response to
Listeria monocytogenes and cyclic dinucleotides. Infect Immun (2011) 79
(2):688–94. doi: 10.1128/IAI.00999-10

41. Gao P, Ascano M, Zillinger T, Wang W, Dai P, Serganov AA, et al. Structure-
function analysis of STING activation by c[G(2’,5’)pA(3’,5’)p] and targeting by
antiviral DMXAA. Cell (2013) 154(4):748–62. doi: 10.1016/j.cell.2013.07.023

42. McFarland AP, Luo S, Ahmed-Qadri F, Zuck M, Thayer EF, Goo YA, et al.
Sensing of Bacterial Cyclic Dinucleotides by the Oxidoreductase RECON
Promotes NF-kappaB Activation and Shapes a Proinflammatory
Frontiers in Immunology | www.frontiersin.org 1690
Antibacterial State. Immunity (2017) 46(3):433–45. doi: 10.1016/
j.immuni.2017.02.014

43. Auerbuch V, Brockstedt DG, Meyer-Morse N, O’Riordan M, Portnoy DA.
Mice lacking the type I interferon receptor are resistant to Listeria
monocytogenes. J Exp Med (2004) 200(4):527–33. doi: 10.1084/
jem.20040976

44. de Almeida LA, Carvalho NB, Oliveira FS, Lacerda TL, Vasconcelos AC,
Nogueira L, et al. MyD88 and STING signaling pathways are required for
IRF3-mediated IFN-beta induction in response to Brucella abortus infection.
PLoS One (2011) 6(8):e23135. doi: 10.1371/journal.pone.0023135

45. Burdette DL, Vance RE. STING and the innate immune response to nucleic
acids in the cytosol. Nat Immunol (2013) 14(1):19–26. doi: 10.1038/ni.2491

46. Shang G, Zhang C, Chen ZJ, Bai XC, Zhang X. Cryo-EM structures of
STING reveal its mechanism of activation by cyclic GMP-AMP. Nature
(2019) 567(7748):389–93. doi: 10.1038/s41586-019-0998-5

47. Zhao B, Du F, Xu P, Shu C, Sankaran B, Bell SL, et al. A conserved PLPLRT/
SD motif of STING mediates the recruitment and activation of TBK1.
Nature (2019) 569(7758):718–22. doi: 10.1038/s41586-019-1228-x

48. Ergun SL, Fernandez D, Weiss TM, Li L. STING Polymer Structure Reveals
Mechanisms for Activation, Hyperactivation, and Inhibition. Cell (2019) 178
(2):290–301. doi: 10.1016/j.cell.2019.05.036

49. Chin EN, Yu C, Vartabedian VF, Jia Y, Kumar M, Gamo AM, et al.
Antitumor activity of a systemic STING-activating non-nucleotide
cGAMP mimetic. Science (2020) 369(6506):993–9. doi: 10.1126/
science.abb4255

50. Balka KR, Louis C, Saunders TL, Smith AM, Calleja DJ, D’Silva DB, et al.
TBK1 and IKKepsilon Act Redundantly to Mediate STING-Induced NF-
kappaB Responses in Myeloid Cells. Cell Rep (2020) 31(1):107492. doi:
10.1016/j.celrep.2020.03.056

51. Zhang C, Shang G, Gui X, Zhang X, Bai XC, Chen ZJ. Structural basis of
STING binding with and phosphorylation by TBK1. Nature (2019) 567
(7748):394–8. doi: 10.1038/s41586-019-1000-2

52. Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, et al. Phosphorylation of innate
immune adaptor proteins MAVS, STING, and TRIF induces IRF3
activation. Science (2015) 347(6227):aaa2630. doi: 10.1126/science.aaa2630

53. Hiscott J, Pitha P, Genin P, Nguyen H, Heylbroeck C, Mamane Y, et al.
Triggering the interferon response: the role of IRF-3 transcription factor.
J Interferon Cytokine Res (1999) 19(1):1–13. doi: 10.1089/107999099314360

54. Gui X, Yang H, Li T, Tan X, Shi P, Li M, et al. Autophagy induction via
STING trafficking is a primordial function of the cGAS pathway. Nature
(2019) 567(7747):262–6. doi: 10.1038/s41586-019-1006-9

55. Ogawa E, Mukai K, Saito K, Arai H, Taguchi T. The binding of TBK1 to
STING requires exocytic membrane traffic from the ER. Biochem Biophys
Res Commun (2018) 503(1):138–45. doi: 10.1016/j.bbrc.2018.05.199

56. Dobbs N, Burnaevskiy N, Chen D, Gonugunta VK, Alto NM, Yan N. STING
Activation by Translocation from the ER Is Associated with Infection and
Autoinflammatory Disease. Cell Host Microbe (2015) 18(2):157–68. doi:
10.1016/j.chom.2015.07.001

57. Chen H, Sun H, You F, Sun W, Zhou X, Chen L, et al. Activation of STAT6
by STING is critical for antiviral innate immunity. Cell (2011) 147(2):436–
46. doi: 10.1016/j.cell.2011.09.022

58. Abe T, Barber GN. Cytosolic-DNA-mediated, STING-dependent
proinflammatory gene induction necessitates canonical NF-kappaB
activation through TBK1. J Virol (2014) 88(10):5328–41. doi: 10.1128/
JVI.00037-14

59. Saitoh T, Fujita N, Hayashi T, Takahara K, Satoh T, Lee H, et al. Atg9a
controls dsDNA-driven dynamic translocation of STING and the innate
immune response. Proc Natl Acad Sci U S A (2009) 106(49):20842–6. doi:
10.1073/pnas.0911267106

60. Gulen MF, Koch U, Haag SM, Schuler F, Apetoh L, Villunger A, et al.
Signalling strength determines proapoptotic functions of STING. Nat
Commun (2017) 8(1):427. doi: 10.1038/s41467-017-00573-w

61. Gaidt MM, Ebert TS, Chauhan D, Ramshorn K, Pinci F, Zuber S, et al. The
DNA Inflammasome in Human Myeloid Cells Is Initiated by a STING-Cell
Death Program Upstream of NLRP3. Cell (2017) 171(5):1110–24.e18. doi:
10.1016/j.cell.2017.09.039

62. Swanson KV, Junkins RD, Kurkjian CJ, Holley-Guthrie E, Pendse AA, El
Morabiti R, et al. A noncanonical function of cGAMP in inflammasome
January 2021 | Volume 11 | Article 611347

https://doi.org/10.1016/j.cell.2019.01.049
https://doi.org/10.1038/s41586-020-2748-0
https://doi.org/10.1038/s41586-020-2749-z
https://doi.org/10.1038/s41586-020-2750-6
https://doi.org/10.1126/science.abd0609
https://doi.org/10.1038/s41422-020-00422-4
https://doi.org/10.1016/j.cell.2018.08.062
https://doi.org/10.1016/j.cell.2018.08.062
https://doi.org/10.1038/ni.3267
https://doi.org/10.1126/science.1240933
https://doi.org/10.15252/embr.201744017
https://doi.org/10.1136/mp.56.1.11
https://doi.org/10.1038/nature12305
https://doi.org/10.1126/science.aat1022
https://doi.org/10.1126/science.aat1022
https://doi.org/10.1016/j.immuni.2013.10.019
https://doi.org/10.1016/j.cell.2013.04.046
https://doi.org/10.1016/j.molcel.2013.05.022
https://doi.org/10.1016/j.molcel.2013.05.022
https://doi.org/10.1038/nature10429
https://doi.org/10.1126/science.1189801
https://doi.org/10.1128/IAI.00999-10
https://doi.org/10.1016/j.cell.2013.07.023
https://doi.org/10.1016/j.immuni.2017.02.014
https://doi.org/10.1016/j.immuni.2017.02.014
https://doi.org/10.1084/jem.20040976
https://doi.org/10.1084/jem.20040976
https://doi.org/10.1371/journal.pone.0023135
https://doi.org/10.1038/ni.2491
https://doi.org/10.1038/s41586-019-0998-5
https://doi.org/10.1038/s41586-019-1228-x
https://doi.org/10.1016/j.cell.2019.05.036
https://doi.org/10.1126/science.abb4255
https://doi.org/10.1126/science.abb4255
https://doi.org/10.1016/j.celrep.2020.03.056
https://doi.org/10.1038/s41586-019-1000-2
https://doi.org/10.1126/science.aaa2630
https://doi.org/10.1089/107999099314360
https://doi.org/10.1038/s41586-019-1006-9
https://doi.org/10.1016/j.bbrc.2018.05.199
https://doi.org/10.1016/j.chom.2015.07.001
https://doi.org/10.1016/j.cell.2011.09.022
https://doi.org/10.1128/JVI.00037-14
https://doi.org/10.1128/JVI.00037-14
https://doi.org/10.1073/pnas.0911267106
https://doi.org/10.1038/s41467-017-00573-w
https://doi.org/10.1016/j.cell.2017.09.039
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Smith STING, ER, and Mitochondria Interactions
priming and activation. J Exp Med (2017) 214(12):3611–26. doi: 10.1084/
jem.20171749

63. Franz KM, Neidermyer WJ, Tan YJ, Whelan SPJ, Kagan JC. STING-
dependent translation inhibition restricts RNA virus replication. Proc Natl
Acad Sci U S A (2018) 115(9):E2058–E67. doi: 10.1073/pnas.1716937115

64. Yamashiro LH, Wilson SC, Morrison HM, Karalis V, Chung JJ, Chen KJ,
et al. Interferon-independent STING signaling promotes resistance to HSV-
1 in vivo. Nat Commun (2020) 11(1):3382. doi: 10.1038/s41467-020-17156-x

65. Chen H, Pei R, Zhu W, Zeng R, Wang Y, Wang Y, et al. An alternative
splicing isoform of MITA antagonizes MITA-mediated induction of type I
IFNs. J Immunol (2014) 192(3):1162–70. doi: 10.4049/jimmunol.1300798

66. Dunphy G, Flannery SM, Almine JF, Connolly DJ, Paulus C, Jonsson KL,
et al. Non-canonical Activation of the DNA Sensing Adaptor STING by
ATM and IFI16 Mediates NF-kappaB Signaling after Nuclear DNA Damage.
Mol Cell (2018) 71(5):745–60. doi: 10.1016/j.molcel.2018.07.034

67. de Oliveira Mann CC, Orzalli MH, King DS, Kagan JC, Lee ASY, Kranzusch
PJ. Modular Architecture of the STING C-Terminal Tail Allows Interferon
and NF-kappaB Signaling Adaptation. Cell Rep (2019) 27(4):1165–75. doi:
10.1016/j.celrep.2019.03.098

68. Wu X, Wu FH, Wang X, Wang L, Siedow JN, Zhang W, et al. Molecular
evolutionary and structural analysis of the cytosolic DNA sensor cGAS and
STING. Nucleic Acids Res (2014) 42(13):8243–57. doi: 10.1093/nar/gku569

69. Richter B, Sliter DA, Herhaus L, Stolz A, Wang C, Beli P, et al.
Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains
and promotes selective autophagy of damaged mitochondria. Proc Natl Acad
Sci U S A (2016) 113(15):4039–44. doi: 10.1073/pnas.1523926113

70. Liang Q, Seo GJ, Choi YJ, Kwak MJ, Ge J, Rodgers MA, et al. Crosstalk
between the cGAS DNA sensor and Beclin-1 autophagy protein shapes
innate antimicrobial immune responses. Cell Host Microbe (2014) 15
(2):228–38. doi: 10.1016/j.chom.2014.01.009

71. Murthy AMV, Robinson N, Kumar S. Crosstalk between cGAS-STING
signaling and cell death. Cell Death Differ (2020) 27(11):2989–3003. doi:
10.1038/s41418-020-00624-8

72. Westphal D, Kluck RM, Dewson G. Building blocks of the apoptotic pore:
how Bax and Bak are activated and oligomerize during apoptosis. Cell Death
Differ (2014) 21(2):196–205. doi: 10.1038/cdd.2013.139

73. McArthur K, Whitehead LW, Heddleston JM, Li L, Padman BS, Oorschot V,
et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA
efflux during apoptosis. Science (2018) 359(6378):eaa06047. doi: 10.1126/
science.aao6047

74. Chen D, Tong J, Yang L, Wei L, Stolz DB, Yu J, et al. PUMA amplifies
necroptosis signaling by activating cytosolic DNA sensors. Proc Natl Acad
Sci U S A (2018) 115(15):3930–5. doi: 10.1073/pnas.1717190115

75. Chattopadhyay S, Marques JT, Yamashita M, Peters KL, Smith K, Desai A,
et al. Viral apoptosis is induced by IRF-3-mediated activation of Bax. EMBO
J (2010) 29(10):1762–73. doi: 10.1038/emboj.2010.50

76. Brault M, Olsen TM, Martinez J, Stetson DB, Oberst A. Intracellular Nucleic
Acid Sensing Triggers Necroptosis through Synergistic Type I IFN and TNF
Signaling. J Immunol (2018) 200(8):2748–56. doi: 10.4049/jimmunol.1701492

77. Sarhan J, Liu BC, Muendlein HI, Weindel CG, Smirnova I, Tang AY, et al.
Constitutive interferon signaling maintains critical threshold of MLKL
expression to license necroptosis. Cell Death Differ (2019) 26(2):332–47.
doi: 10.1038/s41418-018-0122-7

78. Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M, Sarkar A, et al. Caspase-1-
induced pyroptosis is an innate immune effector mechanism against intracellular
bacteria. Nat Immunol (2010) 11(12):1136–42. doi: 10.1038/ni.1960

79. Hu MM, Shu HB. Innate Immune Response to Cytoplasmic DNA:
Mechanisms and Diseases. Annu Rev Immunol (2020) 38:79–98. doi:
10.1146/annurev-immunol-070119-115052

80. Wan D, Jiang W, Hao J. Research Advances in How the cGAS-STING
Pathway Controls the Cellular Inflammatory Response. Front Immunol
(2020) 11:615. doi: 10.3389/fimmu.2020.00615

81. Hopfner KP, Hornung V. Molecular mechanisms and cellular functions of
cGAS-STING signalling. Nat Rev Mol Cell Biol (2020) 21(9):501–21. doi:
10.1038/s41580-020-0244-x

82. Ma F, Li B, Yu Y, Iyer SS, Sun M, Cheng G. Positive feedback regulation of
type I interferon by the interferon-stimulated gene STING. EMBO Rep
(2015) 16(2):202–12. doi: 10.15252/embr.201439366
Frontiers in Immunology | www.frontiersin.org 1791
83. Xia T, Konno H, Ahn J, Barber GN. Deregulation of STING Signaling in
Colorectal Carcinoma Constrains DNA Damage Responses and Correlates
With Tumorigenesis. Cell Rep (2016) 14(2):282–97. doi: 10.1016/
j.celrep.2015.12.029

84. Mukai K, Konno H, Akiba T, Uemura T, Waguri S, Kobayashi T, et al.
Activation of STING requires palmitoylation at the Golgi. Nat Commun
(2016) 7:11932. doi: 10.1038/ncomms11932

85. Xia P, Ye B, Wang S, Zhu X, Du Y, Xiong Z, et al. Glutamylation of the DNA
sensor cGAS regulates its binding and synthase activity in antiviral
immunity. Nat Immunol (2016) 17(4):369–78. doi: 10.1038/ni.3356

86. Seo GJ, Yang A, Tan B, Kim S, Liang Q, Choi Y, et al. Akt Kinase-Mediated
Checkpoint of cGAS DNA Sensing Pathway. Cell Rep (2015) 13(2):440–9.
doi: 10.1016/j.celrep.2015.09.007

87. Konno H, Konno K, Barber GN. Cyclic dinucleotides trigger ULK1 (ATG1)
phosphorylation of STING to prevent sustained innate immune signaling.
Cell (2013) 155(3):688–98. doi: 10.1016/j.cell.2013.09.049

88. Ning X, Wang Y, Jing M, Sha M, Lv M, Gao P, et al. Apoptotic Caspases
Suppress Type I Interferon Production via the Cleavage of cGAS, MAVS,
and IRF3. Mol Cell (2019) 74(1):19–31.e7. doi: 10.1016/j.molcel.2019.02.013

89. White MJ, McArthur K, Metcalf D, Lane RM, Cambier JC, Herold MJ, et al.
Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN
production. Cell (2014) 159(7):1549–62. doi: 10.1016/j.cell.2014.11.036

90. Wang Y, Ning X, Gao P, Wu S, Sha M, Lv M, et al. Inflammasome Activation
Triggers Caspase-1-Mediated Cleavage of cGAS to Regulate Responses to
DNA Virus Infection. Immunity (2017) 46(3):393–404. doi: 10.1016/
j.immuni.2017.02.011

91. Banerjee I, Behl B, Mendonca M, Shrivastava G, Russo AJ, Menoret A, et al.
Gasdermin D Restrains Type I Interferon Response to Cytosolic DNA by
Disrupting Ionic Homeostasis. Immunity (2018) 49(3):413–26.e5. doi:
10.1016/j.immuni.2018.07.006

92. Corrales L, McWhirter SM, Dubensky TWJr., Gajewski TF. The host STING
pathway at the interface of cancer and immunity. J Clin Invest (2016) 126
(7):2404–11. doi: 10.1172/JCI86892

93. Yan N. Immune Diseases Associated with TREX1 and STING Dysfunction.
J Interferon Cytokine Res (2017) 37(5):198–206. doi: 10.1089/jir.2016.0086

94. Bader V, Winklhofer KF. Mitochondria at the interface between
neurodegeneration and neuroinflammation. Semin Cell Dev Biol (2020)
99:163–71. doi: 10.1016/j.semcdb.2019.05.028

95. Li T, Chen ZJ. The cGAS-cGAMP-STING pathway connects DNA damage
to inflammation, senescence, and cancer. J Exp Med (2018) 215(5):1287–99.
doi: 10.1084/jem.20180139

96. Moltedo O, Remondelli P, Amodio G. The Mitochondria-Endoplasmic
Reticulum Contacts and Their Critical Role in Aging and Age-Associated
Diseases. Front Cell Dev Biol (2019) 7:172. doi: 10.3389/fcell.2019.00172

97. Bai J, Liu F. The cGAS-cGAMP-STING Pathway: A Molecular Link Between
Immunity and Metabolism. Diabetes (2019) 68(6):1099–108. doi: 10.2337/
dbi18-0052

98. King KR, Aguirre AD, Ye YX, Sun Y, Roh JD, Ng RPJr., et al. IRF3 and type I
interferons fuel a fatal response to myocardial infarction. Nat Med (2017) 23
(12):1481–7. doi: 10.1038/nm.4428

99. Deng Z, Chong Z, Law CS, Mukai K, Ho FO, Martinu T, et al. A defect in
COPI-mediated transport of STING causes immune dysregulation in COPA
syndrome. J Exp Med (2020) 217(11):e20201045. doi: 10.1084/jem.20201045

100. An J, Durcan L, Karr RM, Briggs TA, Rice GI, Teal TH, et al. Expression of
Cyclic GMP-AMP Synthase in Patients With Systemic Lupus Erythematosus.
Arthritis Rheumatol (2017) 69(4):800–7. doi: 10.1002/art.40002

101. Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J, et al.
Interferon and granulopoiesis signatures in systemic lupus erythematosus
blood. J Exp Med (2003) 197(6):711–23. doi: 10.1084/jem.20021553

102. Sharma S, Campbell AM, Chan J, Schattgen SA, Orlowski GM, Nayar R, et al.
Suppression of systemic autoimmunity by the innate immune adaptor STING.
Proc Natl Acad Sci U S A (2015) 112(7):E710–7. doi: 10.1073/pnas.1420217112

103. Pestal K, Funk CC, Snyder JM, Price ND, Treuting PM, Stetson DB. Isoforms
of RNA-Editing Enzyme ADAR1 Independently Control Nucleic Acid
Sensor MDA5-Driven Autoimmunity and Multi-organ Development.
Immunity (2015) 43(5):933–44. doi: 10.1016/j.immuni.2015.11.001

104. Deng L, Liang H, Xu M, Yang X, Burnette B, Arina A, et al. STING-
Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I
January 2021 | Volume 11 | Article 611347

https://doi.org/10.1084/jem.20171749
https://doi.org/10.1084/jem.20171749
https://doi.org/10.1073/pnas.1716937115
https://doi.org/10.1038/s41467-020-17156-x
https://doi.org/10.4049/jimmunol.1300798
https://doi.org/10.1016/j.molcel.2018.07.034
https://doi.org/10.1016/j.celrep.2019.03.098
https://doi.org/10.1093/nar/gku569
https://doi.org/10.1073/pnas.1523926113
https://doi.org/10.1016/j.chom.2014.01.009
https://doi.org/10.1038/s41418-020-00624-8
https://doi.org/10.1038/cdd.2013.139
https://doi.org/10.1126/science.aao6047
https://doi.org/10.1126/science.aao6047
https://doi.org/10.1073/pnas.1717190115
https://doi.org/10.1038/emboj.2010.50
https://doi.org/10.4049/jimmunol.1701492
https://doi.org/10.1038/s41418-018-0122-7
https://doi.org/10.1038/ni.1960
https://doi.org/10.1146/annurev-immunol-070119-115052
https://doi.org/10.3389/fimmu.2020.00615
https://doi.org/10.1038/s41580-020-0244-x
https://doi.org/10.15252/embr.201439366
https://doi.org/10.1016/j.celrep.2015.12.029
https://doi.org/10.1016/j.celrep.2015.12.029
https://doi.org/10.1038/ncomms11932
https://doi.org/10.1038/ni.3356
https://doi.org/10.1016/j.celrep.2015.09.007
https://doi.org/10.1016/j.cell.2013.09.049
https://doi.org/10.1016/j.molcel.2019.02.013
https://doi.org/10.1016/j.cell.2014.11.036
https://doi.org/10.1016/j.immuni.2017.02.011
https://doi.org/10.1016/j.immuni.2017.02.011
https://doi.org/10.1016/j.immuni.2018.07.006
https://doi.org/10.1172/JCI86892
https://doi.org/10.1089/jir.2016.0086
https://doi.org/10.1016/j.semcdb.2019.05.028
https://doi.org/10.1084/jem.20180139
https://doi.org/10.3389/fcell.2019.00172
https://doi.org/10.2337/dbi18-0052
https://doi.org/10.2337/dbi18-0052
https://doi.org/10.1038/nm.4428
https://doi.org/10.1084/jem.20201045
https://doi.org/10.1002/art.40002
https://doi.org/10.1084/jem.20021553
https://doi.org/10.1073/pnas.1420217112
https://doi.org/10.1016/j.immuni.2015.11.001
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Smith STING, ER, and Mitochondria Interactions
Interferon-Dependent Antitumor Immunity in Immunogenic Tumors.
Immunity (2014) 41(5):843–52. doi: 10.1016/j.immuni.2014.10.019

105. Fuertes MB, Kacha AK, Kline J, Woo SR, Kranz DM, Murphy KM, et al. Host
type I IFN signals are required for antitumor CD8+ T cell responses through
CD8{alpha}+ dendritic cells. J Exp Med (2011) 208(10):2005–16. doi:
10.1084/jem.20101159

106. Flood BA, Higgs EF, Li S, Luke JJ, Gajewski TF. STING pathway agonism as a
cancer therapeutic. Immunol Rev (2019) 290(1):24–38. doi: 10.1111/imr.12765

107. Huang L, Li L, Lemos H, Chandler PR, Pacholczyk G, Baban B, et al. Cutting
edge: DNA sensing via the STING adaptor in myeloid dendritic cells induces
potent tolerogenic responses. J Immunol (2013) 191(7):3509–13. doi:
10.4049/jimmunol.1301419

108. Lemos H, Mohamed E, Huang L, Ou R, Pacholczyk G, Arbab AS, et al.
STING Promotes the Growth of Tumors Characterized by Low Antigenicity
via IDO Activation. Cancer Res (2016) 76(8):2076–81. doi: 10.1158/0008-
5472.CAN-15-1456

109. Chen Q, Boire A, Jin X, Valiente M, Er EE, Lopez-Soto A, et al. Carcinoma-
astrocyte gap junctions promote brain metastasis by cGAMP transfer.
Nature (2016) 533(7604):493–8. doi: 10.1038/nature18268

110. Cao DJ, Schiattarella GG, Villalobos E, Jiang N, May HI, Li T, et al. Cytosolic
DNA Sensing Promotes Macrophage Transformation and Governs
Myocardial Ischemic Injury. Circulation (2018) 137(24):2613–34. doi:
10.1161/CIRCULATIONAHA.117.031046

111. Lemos H, Mohamed E, Huang L, Chandler PR, Ou R, Pacholczyk R, et al.
Stimulator of interferon genes agonists attenuate type I diabetes progression
in NOD mice. Immunology (2019) 158(4):353–61. doi: 10.1111/imm.13122

112. Hu HQ, Qiao JT, Liu FQ, Wang JB, Sha S, He Q, et al. The STING-IRF3
pathway is involved in lipotoxic injury of pancreatic beta cells in type 2
diabetes. Mol Cell Endocrinol (2020) 518:110890. doi: 10.1016/j.mce.
2020.110890

113. Diamond JM, Vanpouille-Box C, Spada S, Rudqvist NP, Chapman JR,
Ueberheide BM, et al. Exosomes Shuttle TREX1-Sensitive IFN-Stimulatory
dsDNA from Irradiated Cancer Cells to DCs. Cancer Immunol Res (2018) 6
(8):910–20. doi: 10.1158/2326-6066.CIR-17-0581

114. Torralba D, Baixauli F, Villarroya-Beltri C, Fernandez-Delgado I, Latorre-
Pellicer A, Acin-Perez R, et al. Priming of dendritic cells by DNA-containing
extracellular vesicles from activated T cells through antigen-driven contacts.
Nat Commun (2018) 9(1):2658. doi: 10.1038/s41467-018-05077-9

115. Lan YY, Londono D, Bouley R, Rooney MS, Hacohen N. Dnase2a deficiency
uncovers lysosomal clearance of damaged nuclear DNA via autophagy. Cell
Rep (2014) 9(1):180–92. doi: 10.1016/j.celrep.2014.08.074

116. Li L, Yin Q, Kuss P, Maliga Z, Millan JL, Wu H, et al. Hydrolysis of 2’3’-
cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat Chem Biol
(2014) 10(12):1043–8. doi: 10.1038/nchembio.1661

117. Mackenzie KJ, Carroll P, Martin CA, Murina O, Fluteau A, Simpson DJ, et al.
cGAS surveillance of micronuclei links genome instability to innate
immunity. Nature (2017) 548(7668):461–5. doi: 10.1038/nature23449

118. Harding SM, Benci JL, Irianto J, Discher DE, Minn AJ, Greenberg RA.
Mitotic progression following DNA damage enables pattern recognition
within micronuclei. Nature (2017) 548(7668):466–70. doi: 10.1038/
nature23470

119. Ablasser A, Schmid-Burgk JL, Hemmerling I, Horvath GL, Schmidt T, Latz E,
et al. Cell intrinsic immunity spreads to bystander cells via the intercellular
transfer of cGAMP. Nature (2013) 503(7477):530–4. doi: 10.1038/nature12640

120. Marcus A, Mao AJ, Lensink-Vasan M, Wang L, Vance RE, Raulet DH.
Tumor-Derived cGAMP Triggers a STING-Mediated Interferon Response in
Non-tumor Cells to Activate the NK Cell Response. Immunity (2018) 49
(4):754–63.e4. doi: 10.1016/j.immuni.2018.09.016

121. Ku JWK, Chen Y, Lim BJW, Gasser S, Crasta KC, Gan YH. Bacterial-induced
cell fusion is a danger signal triggering cGAS-STING pathway via
micronuclei formation. Proc Natl Acad Sci U S A (2020) 117(27):15923–
34. doi: 10.1073/pnas.2006908117

122. SharmaM, Rajendrarao S, Shahani N, Ramirez-Jarquin UN, Subramaniam S.
Cyclic GMP-AMP synthase promotes the inflammatory and autophagy
responses in Huntington disease. Proc Natl Acad Sci U S A (2020) 117
(27):15989–99. doi: 10.1073/pnas.2002144117

123. Crow YJ, Hayward BE, Parmar R, Robins P, Leitch A, Ali M, et al. Mutations in
the gene encoding the 3’-5’ DNA exonuclease TREX1 cause Aicardi-Goutieres
Frontiers in Immunology | www.frontiersin.org 1892
syndrome at the AGS1 locus. Nat Genet (2006) 38(8):917–20. doi: 10.1038/
ng1845

124. Stetson DB, Ko JS, Heidmann T, Medzhitov R. Trex1 prevents cell-intrinsic
initiation of autoimmunity. Cell (2008) 134(4):587–98. doi: 10.1016/
j.cell.2008.06.032

125. Namjou B, Kothari PH, Kelly JA, Glenn SB, Ojwang JO, Adler A, et al.
Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes
Immun (2011) 12(4):270–9. doi: 10.1038/gene.2010.73

126. Rice G, Newman WG, Dean J, Patrick T, Parmar R, Flintoff K, et al.
Heterozygous mutations in TREX1 cause familial chilblain lupus and
dominant Aicardi-Goutieres syndrome. Am J Hum Genet (2007) 80(4):811–
5. doi: 10.1086/513443

127. Richards A, van den Maagdenberg AM, Jen JC, Kavanagh D, Bertram P,
Spitzer D, et al. C-terminal truncations in human 3’-5’ DNA exonuclease
TREX1 cause autosomal dominant retinal vasculopathy with cerebral
leukodystrophy. Nat Genet (2007) 39(9):1068–70. doi: 10.1038/ng2082

128. Crow YJ, Leitch A, Hayward BE, Garner A, Parmar R, Griffith E, et al.
Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-
Goutieres syndrome and mimic congenital viral brain infection. Nat Genet
(2006) 38(8):910–6. doi: 10.1038/ng1842

129. Rice GI, Bond J, Asipu A, Brunette RL, Manfield IW, Carr IM, et al.
Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as
regulator of the innate immune response. Nat Genet (2009) 41(7):829–32.
doi: 10.1038/ng.373

130. Coquel F, Silva MJ, Techer H, Zadorozhny K, Sharma S, Nieminuszczy J,
et al. SAMHD1 acts at stalled replication forks to prevent interferon
induction. Nature (2018) 557(7703):57–61. doi: 10.1038/s41586-018-0050-1

131. Napirei M, Karsunky H, Zevnik B, Stephan H, Mannherz HG, Moroy T.
Features of systemic lupus erythematosus in Dnase1-deficient mice. Nat
Genet (2000) 25(2):177–81. doi: 10.1038/76032

132. Ahn J, Gutman D, Saijo S, Barber GN. STING manifests self DNA-dependent
inflammatory disease. Proc Natl Acad Sci U S A (2012) 109(47):19386–91. doi:
10.1073/pnas.1215006109

133. Yang YG, Lindahl T, Barnes DE. Trex1 exonuclease degrades ssDNA to
prevent chronic checkpoint activation and autoimmune disease. Cell (2007)
131(5):873–86. doi: 10.1016/j.cell.2007.10.017

134. Lim YW, Sanz LA, Xu X, Hartono SR, Chedin F. Genome-wide DNA
hypomethylation and RNA:DNA hybrid accumulation in Aicardi-Goutieres
syndrome. eLife (2015) 4:e08007. doi: 10.7554/eLife.08007

135. Hasan M, Fermaintt CS, Gao N, Sakai T, Miyazaki T, Jiang S, et al. Cytosolic
Nuclease TREX1 Regulates Oligosaccharyltransferase Activity Independent
of Nuclease Activity to Suppress Immune Activation. Immunity (2015) 43
(3):463–74. doi: 10.1016/j.immuni.2015.07.022

136. Garcia-Romo GS, Caielli S, Vega B, Connolly J, Allantaz F, Xu Z, et al.
Netting neutrophils are major inducers of type I IFN production in pediatric
systemic lupus erythematosus. Sci Trans Med (2011) 3(73):73ra20. doi:
10.1126/scitranslmed.3001201

137. Wang H, Li T, Chen S, Gu Y, Ye S. Neutrophil Extracellular Trap Mitochondrial
DNA and Its Autoantibody in Systemic Lupus Erythematosus and a Proof-of-
Concept Trial of Metformin. Arthritis Rheumatol (2015) 67(12):3190–200. doi:
10.1002/art.39296

138. Gehrke N, Mertens C, Zillinger T, Wenzel J, Bald T, Zahn S, et al. Oxidative
damage of DNA confers resistance to cytosolic nuclease TREX1 degradation
and potentiates STING-dependent immune sensing. Immunity (2013) 39
(3):482–95. doi: 10.1016/j.immuni.2013.08.004

139. Caielli S, Athale S, Domic B, Murat E, Chandra M, Banchereau R, et al.
Oxidized mitochondrial nucleoids released by neutrophils drive type I
interferon production in human lupus. J Exp Med (2016) 213(5):697–713.
doi: 10.1084/jem.20151876

140. Lood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS, Smith
CK, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial
DNA are interferogenic and contribute to lupus-like disease. Nat Med (2016)
22(2):146–53. doi: 10.1038/nm.4027

141. Maekawa H, Inoue T, Ouchi H, Jao TM, Inoue R, Nishi H, et al. Mitochondrial
Damage Causes Inflammation via cGAS-STING Signaling in Acute Kidney
Injury. Cell Rep (2019) 29(5):1261–73.e6. doi: 10.1016/j.celrep.2019.09.050

142. Fang C, Mo F, Liu L, Du J, Luo M, Men K, et al. Oxidized mitochondrial
DNA sensing by STING signaling promotes the antitumor effect of an
January 2021 | Volume 11 | Article 611347

https://doi.org/10.1016/j.immuni.2014.10.019
https://doi.org/10.1084/jem.20101159
https://doi.org/10.1111/imr.12765
https://doi.org/10.4049/jimmunol.1301419
https://doi.org/10.1158/0008-5472.CAN-15-1456
https://doi.org/10.1158/0008-5472.CAN-15-1456
https://doi.org/10.1038/nature18268
https://doi.org/10.1161/CIRCULATIONAHA.117.031046
https://doi.org/10.1111/imm.13122
https://doi.org/10.1016/j.mce.2020.110890
https://doi.org/10.1016/j.mce.2020.110890
https://doi.org/10.1158/2326-6066.CIR-17-0581
https://doi.org/10.1038/s41467-018-05077-9
https://doi.org/10.1016/j.celrep.2014.08.074
https://doi.org/10.1038/nchembio.1661
https://doi.org/10.1038/nature23449
https://doi.org/10.1038/nature23470
https://doi.org/10.1038/nature23470
https://doi.org/10.1038/nature12640
https://doi.org/10.1016/j.immuni.2018.09.016
https://doi.org/10.1073/pnas.2006908117
https://doi.org/10.1073/pnas.2002144117
https://doi.org/10.1038/ng1845
https://doi.org/10.1038/ng1845
https://doi.org/10.1016/j.cell.2008.06.032
https://doi.org/10.1016/j.cell.2008.06.032
https://doi.org/10.1038/gene.2010.73
https://doi.org/10.1086/513443
https://doi.org/10.1038/ng2082
https://doi.org/10.1038/ng1842
https://doi.org/10.1038/ng.373
https://doi.org/10.1038/s41586-018-0050-1
https://doi.org/10.1038/76032
https://doi.org/10.1073/pnas.1215006109
https://doi.org/10.1016/j.cell.2007.10.017
https://doi.org/10.7554/eLife.08007
https://doi.org/10.1016/j.immuni.2015.07.022
https://doi.org/10.1126/scitranslmed.3001201
https://doi.org/10.1002/art.39296
https://doi.org/10.1016/j.immuni.2013.08.004
https://doi.org/10.1084/jem.20151876
https://doi.org/10.1038/nm.4027
https://doi.org/10.1016/j.celrep.2019.09.050
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Smith STING, ER, and Mitochondria Interactions
irradiated immunogenic cancer cell vaccine. Cell Mol Immunol (2020). doi:
10.1038/s41423-020-0456-1

143. Catteau A, Roue G, Yuste VJ, Susin SA, Despres P. Expression of dengue
ApoptoM sequence results in disruption of mitochondrial potential and caspase
activation. Biochimie (2003) 85(8):789–93. doi: 10.1016/S0300-9084(03)00139-1

144. Yu CY, Liang JJ, Li JK, Lee YL, Chang BL, Su CI, et al. Dengue Virus Impairs
Mitochondrial Fusion by Cleaving Mitofusins. PLoS Pathog (2015) 11(12):
e1005350. doi: 10.1371/journal.ppat.1005350

145. West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, et al.
Mitochondrial DNA stress primes the antiviral innate immune response.
Nature (2015) 520(7548):553–7. doi: 10.1038/nature14156

146. Aguirre S, Maestre AM, Pagni S, Patel JR, Savage T, Gutman D, et al. DENV
inhibits type I IFN production in infected cells by cleaving human STING.
PLoS Pathog (2012) 8(10):e1002934. doi: 10.1371/journal.ppat.1002934

147. Moriyama M, Koshiba T, Ichinohe T. Influenza A virus M2 protein triggers
mitochondrial DNA-mediated antiviral immune responses. Nat Commun
(2019) 10(1):4624. doi: 10.1038/s41467-019-12632-5

148. Wiens KE, Ernst JD. The Mechanism for Type I Interferon Induction by
Mycobacterium tuberculosis is Bacterial Strain-Dependent. PLoS Pathogens
(2016) 12(8):e1005809. doi: 10.1371/journal.ppat.1005809

149. Watson RO, Bell SL, MacDuff DA, Kimmey JM, Diner EJ, Olivas J, et al. The
Cytosolic Sensor cGAS Detects Mycobacterium tuberculosis DNA to Induce
Type I Interferons and Activate Autophagy. Cell Host Microbe (2015) 17
(6):811–9. doi: 10.1016/j.chom.2015.05.004

150. Kim BR, Kim BJ, Kook YH, Kim BJ. Mycobacterium abscessus infection leads
to enhanced production of type 1 interferon and NLRP3 inflammasome
activation in murine macrophages via mitochondrial oxidative stress. PLoS
Pathogens (2020) 16(3):e1008294. doi: 10.1371/journal.ppat.1008294

151. Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the
unfolded protein response. Nat Rev Mol Cell Biol (2020) 21(8):421–38. doi:
10.1038/s41580-020-0250-z

152. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded
protein response. Nat Rev Mol Cell Biol (2007) 8(7):519–29. doi: 10.1038/
nrm2199

153. Smith JA. Regulation of Cytokine Production by the Unfolded Protein
Response; Implications for Infection and Autoimmunity. Front Immunol
(2018) 9:422. doi: 10.3389/fimmu.2018.00422

154. Grootjans J, Kaser A, Kaufman RJ, Blumberg RS. The unfolded protein
response in immunity and inflammation. Nat Rev Immunol (2016) 16
(8):469–84. doi: 10.1038/nri.2016.62

155. Todd DJ, Lee AH, Glimcher LH. The endoplasmic reticulum stress response
in immunity and autoimmunity. Nat Rev Immunol (2008) 8(9):663–74. doi:
10.1038/nri2359

156. Martinon F, Chen X, Lee AH, Glimcher LH. TLR activation of the
transcription factor XBP1 regulates innate immune responses in
macrophages. Nat Immunol (2010) 11(5):411–8. doi: 10.1038/ni.1857

157. Smith JA, Turner MJ, DeLay ML, Klenk EI, Sowders DP, Colbert RA.
Endoplasmic reticulum stress and the unfolded protein response are linked
to synergistic IFN-beta induction via X-box binding protein 1. Eur J
Immunol (2008) 38(5):1194–203. doi: 10.1002/eji.200737882

158. Liu YP, Zeng L, Tian A, Bomkamp A, Rivera D, Gutman D, et al. Endoplasmic
Reticulum Stress Regulates the Innate Immunity Critical Transcription Factor
IRF3. J Immunol (2012) 189(9):4630–9. doi: 10.4049/jimmunol.1102737

159. Sehgal P, Szalai P, Olesen C, Praetorius HA, Nissen P, Christensen SB, et al.
Inhibition of the sarco/endoplasmic reticulum (ER) Ca(2+)-ATPase by
thapsigargin analogs induces cell death via ER Ca(2+) depletion and the
unfolded protein response. J Biol Chem (2017) 292(48):19656–73. doi:
10.1074/jbc.M117.796920

160. Larsen GA, Skjellegrind HK, Moe MC, Vinje ML, Berg-Johnsen J.
Endoplasmic reticulum dysfunction and Ca2+ deregulation in isolated
CA1 neurons during oxygen and glucose deprivation. Neurochem Res
(2005) 30(5):651–9. doi: 10.1007/s11064-005-2753-6

161. Toyoda H, Kawano T, Sato H, Kato T. Cellular mechanisms underlying the
rapid depolarization caused by oxygen and glucose deprivation in layer III
pyramidal cells of the somatosensory cortex. Neurosci Res (2020) S0168–
0102(19):30682–0. doi: 10.1016/j.neures.2020.03.003

162. Petrasek J, Iracheta-Vellve A, Csak T, Satishchandran A, Kodys K, Kurt-
Jones EA, et al. STING-IRF3 pathway links endoplasmic reticulum stress
Frontiers in Immunology | www.frontiersin.org 1993
with hepatocyte apoptosis in early alcoholic liver disease. Proc Natl Acad Sci
U S A (2013) 110(41):16544–9. doi: 10.1073/pnas.1308331110

163. Sen T, Saha P, Gupta R, Foley LM, Jiang T, Abakumova OS, et al. Aberrant
ER Stress Induced Neuronal-IFNbeta Elicits White Matter Injury Due to
Microglial Activation and T-Cell Infiltration after TBI. J Neurosci (2020) 40
(2):424–46. doi: 10.1523/JNEUROSCI.0718-19.2019

164. Cui Y, Zhao D, Sreevatsan S, Liu C, Yang W, Song Z, et al. Mycobacterium
bovis Induces Endoplasmic Reticulum Stress Mediated-Apoptosis by
Activating IRF3 in a Murine Macrophage Cell Line. Front Cell Infect
Microbiol (2016) 6:182. doi: 10.3389/fcimb.2016.00182

165. Guimaraes ES, Gomes MTR, Campos PC, Mansur DS, Dos Santos AA,
Harms J, et al. Brucella abortus Cyclic Dinucleotides Trigger STING-
Dependent Unfolded Protein Response That Favors Bacterial Replication.
J Immunol (2019) 202(9):2671–81. doi: 10.4049/jimmunol.1801233

166. Zhang Y, Chen W, Wang Y. STING is an essential regulator of heart
inflammation and fibrosis in mice with pathological cardiac hypertrophy
via endoplasmic reticulum (ER) stress. BioMed Pharmacother (2020)
125:110022. doi: 10.1016/j.biopha.2020.110022

167. Moretti J, Roy S, Bozec D, Martinez J, Chapman JR, Ueberheide B, et al.
STING Senses Microbial Viability to Orchestrate Stress-Mediated
Autophagy of the Endoplasmic Reticulum. Cell (2017) 171(4):809–23.e13.
doi: 10.1016/j.cell.2017.09.034

168. Wu J, Chen YJ, Dobbs N, Sakai T, Liou J, Miner JJ, et al. STING-mediated
disruption of calcium homeostasis chronically activates ER stress and primes
T cell death. J Exp Med (2019) 216(4):867–83. doi: 10.1084/jem.20182192

169. Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE, Sanchez GAM, et al.
Activated STING in a vascular and pulmonary syndrome. N Engl J Med
(2014) 371(6):507–18. doi: 10.1056/NEJMoa1312625

170. Warner JD, Irizarry-Caro RA, Bennion BG, Ai TL, Smith AM, Miner CA,
et al. STING-associated vasculopathy develops independently of IRF3 in
mice. J Exp Med (2017) 214(11):3279–92. doi: 10.1084/jem.20171351

171. Gorlach A, Bertram K, Hudecova S, Krizanova O. Calcium and ROS: A mutual
interplay. Redox Biol (2015) 6:260–71. doi: 10.1016/j.redox.2015.08.010

172. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of
calcium signalling. Nat Rev Mol Cell Biol (2000) 1(1):11–21. doi: 10.1038/
35036035

173. Kaufman RJ, Malhotra JD. Calcium trafficking integrates endoplasmic
reticulum function with mitochondrial bioenergetics. Biochim Biophys
Acta (2014) 1843(10):2233–9. doi: 10.1016/j.bbamcr.2014.03.022

174. Zapun A, Darby NJ, Tessier DC, Michalak M, Bergeron JJ, Thomas DY.
Enhanced catalysis of ribonuclease B folding by the interaction of calnexin or
calreticulin with ERp57. J Biol Chem (1998) 273(11):6009–12. doi: 10.1074/
jbc.273.11.6009

175. Hebert DN, Molinari M. Flagging and docking: dual roles for N-glycans in
protein quality control and cellular proteostasis. Trends Biochem Sci (2012)
37(10):404–10. doi: 10.1016/j.tibs.2012.07.005

176. Hendershot LM. The ER function BiP is a master regulator of ER function.
Mt Sinai J Med (2004) 71(5):289–97.

177. Vandecaetsbeek I, Vangheluwe P, Raeymaekers L, Wuytack F, Vanoevelen J. The
Ca2+ pumps of the endoplasmic reticulum and Golgi apparatus. Cold Spring
Harb Perspect Biol (2011) 3(5):a004184. doi: 10.1101/cshperspect.a004184

178. Mendes CC, Gomes DA, Thompson M, Souto NC, Goes TS, Goes AM, et al.
The type III inositol 1,4,5-trisphosphate receptor preferentially transmits
apoptotic Ca2+ signals into mitochondria. J Biol Chem (2005) 280
(49):40892–900. doi: 10.1074/jbc.M506623200

179. Kiviluoto S, Vervliet T, Ivanova H, Decuypere JP, De Smedt H, Missiaen L,
et al. Regulation of inositol 1,4,5-trisphosphate receptors during endoplasmic
reticulum stress. Biochim Biophys Acta (2013) 1833(7):1612–24. doi:
10.1016/j.bbamcr.2013.01.026

180. Gudlur A, Zeraik AE, Hirve N, Rajanikanth V, Bobkov AA, Ma G, et al.
Calcium sensing by the STIM1 ER-luminal domain. Nat Commun (2018) 9
(1):4536. doi: 10.1038/s41467-018-06816-8

181. Park CY, Hoover PJ,Mullins FM, Bachhawat P, Covington ED, Raunser S, et al.
STIM1 clusters and activates CRAC channels via direct binding of a cytosolic
domain to Orai1. Cell (2009) 136(5):876–90. doi: 10.1016/j.cell.2009.02.014

182. Shu C, Yi G, Watts T, Kao CC, Li P. Structure of STING bound to cyclic di-
GMP reveals the mechanism of cyclic dinucleotide recognition by the immune
system. Nat Struct Mol Biol (2012) 19(7):722–4. doi: 10.1038/nsmb.2331
January 2021 | Volume 11 | Article 611347

https://doi.org/10.1038/s41423-020-0456-1
https://doi.org/10.1016/S0300-9084(03)00139-1
https://doi.org/10.1371/journal.ppat.1005350
https://doi.org/10.1038/nature14156
https://doi.org/10.1371/journal.ppat.1002934
https://doi.org/10.1038/s41467-019-12632-5
https://doi.org/10.1371/journal.ppat.1005809
https://doi.org/10.1016/j.chom.2015.05.004
https://doi.org/10.1371/journal.ppat.1008294
https://doi.org/10.1038/s41580-020-0250-z
https://doi.org/10.1038/nrm2199
https://doi.org/10.1038/nrm2199
https://doi.org/10.3389/fimmu.2018.00422
https://doi.org/10.1038/nri.2016.62
https://doi.org/10.1038/nri2359
https://doi.org/10.1038/ni.1857
https://doi.org/10.1002/eji.200737882
https://doi.org/10.4049/jimmunol.1102737
https://doi.org/10.1074/jbc.M117.796920
https://doi.org/10.1007/s11064-005-2753-6
https://doi.org/10.1016/j.neures.2020.03.003
https://doi.org/10.1073/pnas.1308331110
https://doi.org/10.1523/JNEUROSCI.0718-19.2019
https://doi.org/10.3389/fcimb.2016.00182
https://doi.org/10.4049/jimmunol.1801233
https://doi.org/10.1016/j.biopha.2020.110022
https://doi.org/10.1016/j.cell.2017.09.034
https://doi.org/10.1084/jem.20182192
https://doi.org/10.1056/NEJMoa1312625
https://doi.org/10.1084/jem.20171351
https://doi.org/10.1016/j.redox.2015.08.010
https://doi.org/10.1038/35036035
https://doi.org/10.1038/35036035
https://doi.org/10.1016/j.bbamcr.2014.03.022
https://doi.org/10.1074/jbc.273.11.6009
https://doi.org/10.1074/jbc.273.11.6009
https://doi.org/10.1016/j.tibs.2012.07.005
https://doi.org/10.1101/cshperspect.a004184
https://doi.org/10.1074/jbc.M506623200
https://doi.org/10.1016/j.bbamcr.2013.01.026
https://doi.org/10.1038/s41467-018-06816-8
https://doi.org/10.1016/j.cell.2009.02.014
https://doi.org/10.1038/nsmb.2331
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Smith STING, ER, and Mitochondria Interactions
183. Zhang W, Zhou Q, Xu W, Cai Y, Yin Z, Gao X, et al. DNA-dependent
activator of interferon-regulatory factors (DAI) promotes lupus nephritis by
activating the calcium pathway. J Biol Chem (2013) 288(19):13534–50. doi:
10.1074/jbc.M113.457218

184. Gamage AM, Lee KO, Gan YH. Anti-Cancer Drug HMBAActs as an Adjuvant
during Intracellular Bacterial Infections by Inducing Type I IFN through
STING. J Immunol (2017) 199(7):2491–502. doi: 10.4049/jimmunol.1602162

185. Hare DN, Collins SE, Mukherjee S, Loo YM, Gale MJr., Janssen LJ, et al.
Membrane Perturbation-Associated Ca2+ Signaling and Incoming Genome
Sensing Are Required for the Host Response to Low-Level Enveloped Virus
Particle Entry. J Virol (2015) 90(6):3018–27. doi: 10.1128/JVI.02642-15

186. Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA.
The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated
protein kinase kinases. J Biol Chem (2005) 280(32):29060–6. doi: 10.1074/
jbc.M503824200

187. Kwon D, Sesaki H, Kang SJ. Intracellular calcium is a rheostat for the STING
signaling pathway. Biochem Biophys Res Commun (2018) 500(2):497–503.
doi: 10.1016/j.bbrc.2018.04.117

188. Kyttaris VC, Zhang Z, Kampagianni O, Tsokos GC. Calcium signaling in
systemic lupus erythematosus T cells: a treatment target. Arthritis Rheumatol
(2011) 63(7):2058–66. doi: 10.1002/art.30353

189. Ichinose K, Juang YT, Crispin JC, Kis-Toth K, Tsokos GC. Suppression of
autoimmunity and organ pathology in lupus-prone mice upon inhibition of
calcium/calmodulin-dependent protein kinase type IV. Arthritis Rheumatol
(2011) 63(2):523–9. doi: 10.1002/art.30085

190. Koga T, Ichinose K, Mizui M, Crispin JC, Tsokos GC. Calcium/calmodulin-
dependent protein kinase IV suppresses IL-2 production and regulatory T cell
activity in lupus. J Immunol (2012)189(7):3490–6.doi: 10.4049/jimmunol.1201785

191. Srikanth S, Woo JS, Wu B, El-Sherbiny YM, Leung J, Chupradit K, et al. The
Ca(2+) sensor STIM1 regulates the type I interferon response by retaining
the signaling adaptor STING at the endoplasmic reticulum. Nat Immunol
(2019) 20(2):152–62. doi: 10.1038/s41590-018-0287-8

192. Mathavarajah S, Salsman J, Dellaire G. An emerging role for calcium
signalling in innate and autoimmunity via the cGAS-STING axis. Cytokine
Growth Factor Rev (2019) 50:43–51. doi: 10.1016/j.cytogfr.2019.04.003

193. Zhang H, Zeng L, Xie M, Liu J, Zhou B, Wu R, et al. TMEM173 Drives Lethal
Coagulation in Sepsis. Cell Host Microbe (2020) 27(4):556–70. doi: 10.1016/
j.chom.2020.02.004

194. Marchi S, Patergnani S, Pinton P. The endoplasmic reticulum-mitochondria
connection: one touch, multiple functions. Biochim Biophys Acta (2014)
1837(4):461–9. doi: 10.1016/j.bbabio.2013.10.015

195. Flis VV, Daum G. Lipid transport between the endoplasmic reticulum and
mitochondria. Cold Spring Harb Perspect Biol (2013) 5(6):a013235. doi:
10.1101/cshperspect.a013235

196. Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK.
ER tubules mark sites of mitochondrial division. Science (2011) 334
(6054):358–62. doi: 10.1126/science.1207385

197. Chakrabarti R, Ji WK, Stan RV, de Juan Sanz J, Ryan TA, Higgs HN. INF2-
mediated actin polymerization at the ER stimulates mitochondrial calcium
uptake, inner membrane constriction, and division. J Cell Biol (2018) 217
(1):251–68. doi: 10.1083/jcb.201709111

198. de Brito OM, Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to
mitochondria. Nature (2008) 456(7222):605–10. doi: 10.1038/nature07534

199. Gomez-Suaga P, Paillusson S, Stoica R, Noble W, Hanger DP, Miller CCJ.
The ER-Mitochondria Tethering Complex VAPB-PTPIP51 Regulates
Autophagy. Curr Biol (2017) 27(3):371–85. doi: 10.1016/j.cub.2016.12.038

200. Szabadkai G, Bianchi K, Varnai P, De Stefani D, Wieckowski MR, Cavagna
D, et al. Chaperone-mediated coupling of endoplasmic reticulum and
mitochondrial Ca2+ channels. J Cell Biol (2006) 175(6):901–11. doi:
10.1083/jcb.200608073

201. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R. A forty-kilodalton
protein of the inner membrane is the mitochondrial calcium uniporter.
Nature (2011) 476(7360):336–40. doi: 10.1038/nature10230

202. Hayashi T, Su TP. Sigma-1 receptor chaperones at the ER-mitochondrion
interface regulate Ca(2+) signaling and cell survival. Cell (2007) 131(3):596–
610. doi: 10.1016/j.cell.2007.08.036

203. Simmen T, Lynes EM, Gesson K, Thomas G. Oxidative protein folding in the
endoplasmic reticulum: tight links to the mitochondria-associated
Frontiers in Immunology | www.frontiersin.org 2094
membrane (MAM). Biochim Biophys Acta (2010) 1798(8):1465–73. doi:
10.1016/j.bbamem.2010.04.009

204. Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kappaB
signaling. Cell Res (2011) 21(1):103–15. doi: 10.1038/cr.2010.178

205. Dupre-Crochet S, Erard M, Nubetae O. ROS production in phagocytes: why,
when, and where? J Leukoc Biol (2013) 94(4):657–70. doi: 10.1189/jlb.1012544

206. Harijith A, Ebenezer DL, Natarajan V. Reactive oxygen species at the
crossroads of inflammasome and inflammation. Front Physiol (2014)
5:352. doi: 10.3389/fphys.2014.00352

207. Tu BP,Weissman JS. Oxidative protein folding in eukaryotes: mechanisms and
consequences. J Cell Biol (2004) 164(3):341–6. doi: 10.1083/jcb.200311055

208. Kozlov G, Maattanen P, Thomas DY, Gehring K. A structural overview of the
PDI family of proteins. FEBS J (2010) 277(19):3924–36. doi: 10.1111/j.1742-
4658.2010.07793.x

209. Frand AR, Kaiser CA. The ERO1 gene of yeast is required for oxidation of
protein dithiols in the endoplasmic reticulum. Mol Cell (1998) 1(2):161–70.
doi: 10.1016/S1097-2765(00)80017-9

210. Pollard MG, Travers KJ, Weissman JS. Ero1p: a novel and ubiquitous protein
with an essential role in oxidative protein folding in the endoplasmic reticulum.
Mol Cell (1998) 1(2):171–82. doi: 10.1016/S1097-2765(00)80018-0

211. Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, et al.
CHOP induces death by promoting protein synthesis and oxidation in the
stressed endoplasmic reticulum. Genes Dev (2004) 18(24):3066–77. doi:
10.1101/gad.1250704

212. Hansen HG, Schmidt JD, Soltoft CL, Ramming T, Geertz-Hansen HM,
Christensen B, et al. Hyperactivity of the Ero1alpha oxidase elicits
endoplasmic reticulum stress but no broad antioxidant response. J Biol
Chem (2012) 287(47):39513–23. doi: 10.1074/jbc.M112.405050

213. Laurindo FR, Araujo TL, Abrahao TB. Nox NADPH oxidases and the
endoplasmic reticulum. Antioxid Redox Signaling (2014) 20(17):2755–75.
doi: 10.1089/ars.2013.5605

214. Touyz RM, Anagnostopoulou A, Rios F, Montezano AC, Camargo LL.
NOX5: Molecular biology and pathophysiology. Exp Physiol (2019) 104
(5):605–16. doi: 10.1113/EP086204

215. Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in
cell fate decision and human disease. Antioxid Redox Signaling (2014) 21
(3):396–413. doi: 10.1089/ars.2014.5851

216. Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. Reactive
Oxygen Species in Metabolic and Inflammatory Signaling. Circ Res (2018)
122(6):877–902. doi: 10.1161/CIRCRESAHA.117.311401

217. Wei PC, Hsieh YH, Su MI, Jiang X, Hsu PH, Lo WT, et al. Loss of the
oxidative stress sensor NPGPx compromises GRP78 chaperone activity and
induces systemic disease. Mol Cell (2012) 48(5):747–59. doi: 10.1016/
j.molcel.2012.10.007

218. Hwang C, Sinskey AJ, Lodish HF. Oxidized redox state of glutathione in the
endoplasmic reticulum. Science (1992) 257(5076):1496–502. doi: 10.1126/
science.1523409

219. Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell
(2005) 120(4):483–95. doi: 10.1016/j.cell.2005.02.001

220. Shanmugasundaram K, Nayak BK, Friedrichs WE, Kaushik D, Rodriguez R,
Block K. NOX4 functions as a mitochondrial energetic sensor coupling
cancer metabolic reprogramming to drug resistance. Nat Commun (2017) 8
(1):997. doi: 10.1038/s41467-017-01106-1

221. Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, et al.
Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic
response to hypoxia. J Biol Chem (2008) 283(16):10892–903. doi: 10.1074/
jbc.M800102200

222. Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated
expression of pyruvate dehydrogenase kinase: a metabolic switch required
for cellular adaptation to hypoxia. Cell Metab (2006) 3(3):177–85. doi:
10.1016/j.cmet.2006.02.002

223. Hwang HJ, Lynn SG, Vengellur A, Saini Y, Grier EA, Ferguson-Miller SM, et al.
Hypoxia Inducible FactorsModulateMitochondrial Oxygen Consumption and
Transcriptional Regulation of Nuclear-Encoded Electron Transport Chain
Genes. Biochemistry (2015) 54(24):3739–48. doi: 10.1021/bi5012892

224. Qutub AA, Popel AS. Reactive oxygen species regulate hypoxia-inducible
factor 1alpha differentially in cancer and ischemia. Mol Cell Biol (2008) 28
(16):5106–19. doi: 10.1128/MCB.00060-08
January 2021 | Volume 11 | Article 611347

https://doi.org/10.1074/jbc.M113.457218
https://doi.org/10.4049/jimmunol.1602162
https://doi.org/10.1128/JVI.02642-15
https://doi.org/10.1074/jbc.M503824200
https://doi.org/10.1074/jbc.M503824200
https://doi.org/10.1016/j.bbrc.2018.04.117
https://doi.org/10.1002/art.30353
https://doi.org/10.1002/art.30085
https://doi.org/10.4049/jimmunol.1201785
https://doi.org/10.1038/s41590-018-0287-8
https://doi.org/10.1016/j.cytogfr.2019.04.003
https://doi.org/10.1016/j.chom.2020.02.004
https://doi.org/10.1016/j.chom.2020.02.004
https://doi.org/10.1016/j.bbabio.2013.10.015
https://doi.org/10.1101/cshperspect.a013235
https://doi.org/10.1126/science.1207385
https://doi.org/10.1083/jcb.201709111
https://doi.org/10.1038/nature07534
https://doi.org/10.1016/j.cub.2016.12.038
https://doi.org/10.1083/jcb.200608073
https://doi.org/10.1038/nature10230
https://doi.org/10.1016/j.cell.2007.08.036
https://doi.org/10.1016/j.bbamem.2010.04.009
https://doi.org/10.1038/cr.2010.178
https://doi.org/10.1189/jlb.1012544
https://doi.org/10.3389/fphys.2014.00352
https://doi.org/10.1083/jcb.200311055
https://doi.org/10.1111/j.1742-4658.2010.07793.x
https://doi.org/10.1111/j.1742-4658.2010.07793.x
https://doi.org/10.1016/S1097-2765(00)80017-9
https://doi.org/10.1016/S1097-2765(00)80018-0
https://doi.org/10.1101/gad.1250704
https://doi.org/10.1074/jbc.M112.405050
https://doi.org/10.1089/ars.2013.5605
https://doi.org/10.1113/EP086204
https://doi.org/10.1089/ars.2014.5851
https://doi.org/10.1161/CIRCRESAHA.117.311401
https://doi.org/10.1016/j.molcel.2012.10.007
https://doi.org/10.1016/j.molcel.2012.10.007
https://doi.org/10.1126/science.1523409
https://doi.org/10.1126/science.1523409
https://doi.org/10.1016/j.cell.2005.02.001
https://doi.org/10.1038/s41467-017-01106-1
https://doi.org/10.1074/jbc.M800102200
https://doi.org/10.1074/jbc.M800102200
https://doi.org/10.1016/j.cmet.2006.02.002
https://doi.org/10.1021/bi5012892
https://doi.org/10.1128/MCB.00060-08
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Smith STING, ER, and Mitochondria Interactions
225. Norton M, Ng AC, Baird S, Dumoulin A, Shutt T, Mah N, et al. ROMO1 is
an essential redox-dependent regulator of mitochondrial dynamics. Sci
Signal (2014) 7(310):ra10. doi: 10.1126/scisignal.2004374

226. Wu S, Zhou F, Zhang Z, Xing D. Mitochondrial oxidative stress causes
mitochondrial fragmentation via differential modulation of mitochondrial
fission-fusion proteins. FEBS J (2011) 278(6):941–54. doi: 10.1111/j.1742-
4658.2011.08010.x

227. Yu T, Robotham JL, Yoon Y. Increased production of reactive oxygen species
in hyperglycemic conditions requires dynamic change of mitochondrial
morphology. Proc Natl Acad Sci U S A (2006) 103(8):2653–8. doi: 10.1073/
pnas.0511154103

228. Cardenas C, Miller RA, Smith I, Bui T, Molgo J, Muller M, et al. Essential
regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer
to mitochondria. Cell (2010) 142(2):270–83. doi: 10.1016/j.cell.2010.06.007

229. Booth DM, Enyedi B, Geiszt M, Varnai P, Hajnoczky G. Redox
Nanodomains Are Induced by and Control Calcium Signaling at the ER-
Mitochondrial Interface. Mol Cell (2016) 63(2):240–8. doi: 10.1016/
j.molcel.2016.05.040

230. Andersson DC, Betzenhauser MJ, Reiken S, Meli AC, Umanskaya A, Xie W,
et al. Ryanodine receptor oxidation causes intracellular calcium leak and
muscle weakness in aging. Cell Metab (2011) 14(2):196–207. doi: 10.1016/
j.cmet.2011.05.014

231. Gilady SY, Bui M, Lynes EM, Benson MD, Watts R, Vance JE, et al.
Ero1alpha requires oxidizing and normoxic conditions to localize to the
mitochondria-associated membrane (MAM). Cell Stress Chaperones (2010)
15(5):619–29. doi: 10.1007/s12192-010-0174-1

232. Li G, Mongillo M, Chin KT, Harding H, Ron D, Marks AR, et al. Role of
ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor
activity in endoplasmic reticulum stress-induced apoptosis. J Cell Biol (2009)
186(6):783–92. doi: 10.1083/jcb.200904060

233. Anelli T, Bergamelli L, Margittai E, Rimessi A, Fagioli C, Malgaroli A, et al.
Ero1alpha regulates Ca(2+) fluxes at the endoplasmic reticulum-
mitochondria interface (MAM). Antioxid Redox Signaling (2012) 16
(10):1077–87. doi: 10.1089/ars.2011.4004

234. Dikalov SI, Nazarewicz RR, Bikineyeva A, Hilenski L, Lassegue B, Griendling
KK, et al. Nox2-induced production of mitochondrial superoxide in
angiotensin II-mediated endothelial oxidative stress and hypertension.
Antioxid Redox Signaling (2014) 20(2):281–94. doi: 10.1089/ars.2012.4918

235. Nazarewicz RR, Dikalova AE, Bikineyeva A, Dikalov SI. Nox2 as a potential
target of mitochondrial superoxide and its role in endothelial oxidative stress.
Am J Physiol Heart Circ Physiol (2013) 305(8):H1131–40. doi: 10.1152/
ajpheart.00063.2013

236. Hawkins BJ, Irrinki KM, Mallilankaraman K, Lien YC, Wang Y,
Bhanumathy CD, et al. S-glutathionylation activates STIM1 and alters
mitochondrial homeostasis. J Cell Biol (2010) 190(3):391–405. doi:
10.1083/jcb.201004152

237. Berna-Erro A, Braun A, Kraft R, Kleinschnitz C, Schuhmann MK, Stegner D,
et al. STIM2 regulates capacitive Ca2+ entry in neurons and plays a key role
in hypoxic neuronal cell death. Sci Signal (2009) 2(93):ra67. doi: 10.1126/
scisignal.2000522

238. Brechard S, Melchior C, Plancon S, Schenten V, Tschirhart EJ. Store-
operated Ca2+ channels formed by TRPC1, TRPC6 and Orai1 and non-
store-operated channels formed by TRPC3 are involved in the regulation of
NADPH oxidase in HL-60 granulocytes. Cell Calcium (2008) 44(5):492–506.
doi: 10.1016/j.ceca.2008.03.002

239. Gandhirajan RK, Meng S, Chandramoorthy HC, Mallilankaraman K,
Mancarella S, Gao H, et al. Blockade of NOX2 and STIM1 signaling limits
lipopolysaccharide-induced vascular inflammation. J Clin Invest (2013) 123
(2):887–902. doi: 10.1172/JCI65647

240. Li Y, Schwabe RF, DeVries-Seimon T, Yao PM, Gerbod-Giannone MC, Tall
AR, et al. Free cholesterol-loaded macrophages are an abundant source of
tumor necrosis factor-alpha and interleukin-6: model of NF-kappaB- and
map kinase-dependent inflammation in advanced atherosclerosis. J Biol
Chem (2005) 280(23):21763–72. doi: 10.1074/jbc.M501759200
Frontiers in Immunology | www.frontiersin.org 2195
241. Mori T, Hayashi T, Hayashi E, Su TP. Sigma-1 receptor chaperone at the ER-
mitochondrion interface mediates the mitochondrion-ER-nucleus signaling
for cellular survival. PLoS One (2013) 8(10):e76941. doi: 10.1371/
journal.pone.0076941

242. Verfaillie T, Rubio N, Garg AD, Bultynck G, Rizzuto R, Decuypere JP, et al.
PERK is required at the ER-mitochondrial contact sites to convey apoptosis
after ROS-based ER stress. Cell Death Differ (2012) 19(11):1880–91. doi:
10.1038/cdd.2012.74

243. Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA. Nrf2 is
a direct PERK substrate and effector of PERK-dependent cell survival. Mol
Cell Biol (2003) 23(20):7198–209. doi: 10.1128/MCB.23.20.7198-7209.2003

244. Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D. Perk is essential for
translational regulation and cell survival during the unfolded protein
response. Mol Cell (2000) 5(5):897–904. doi: 10.1016/S1097-2765(00)
80330-5

245. Lee YR, Kuo SH, Lin CY, Fu PJ, Lin YS, Yeh TM, et al. Dengue virus-induced
ER stress is required for autophagy activation, viral replication, and
pathogenesis both in vitro and in vivo. Sci Rep (2018) 8(1):489. doi:
10.1038/s41598-017-18909-3

246. Yan M, Shu S, Guo C, Tang C, Dong Z. Endoplasmic reticulum stress in
ischemic and nephrotoxic acute kidney injury. Ann Med (2018) 50(5):381–
90. doi: 10.1080/07853890.2018.1489142

247. Hurst KE, Lawrence KA, Essman MT, Walton ZJ, Leddy LR, Thaxton JE.
Endoplasmic Reticulum Stress Contributes to Mitochondrial Exhaustion of
CD8(+) T Cells. Cancer Immunol Res (2019) 7(3):476–86. doi: 10.1158/2326-
6066.CIR-18-0182

248. Castro F, Cardoso AP, Goncalves RM, Serre K, Oliveira MJ. Interferon-
Gamma at the Crossroads of Tumor Immune Surveillance or Evasion. Front
Immunol (2018) 9:847. doi: 10.3389/fimmu.2018.00847

249. Cubillos-Ruiz JR, Silberman PC, Rutkowski MR, Chopra S, Perales-Puchalt
A, Song M, et al. ER Stress Sensor XBP1 Controls Anti-tumor Immunity by
Disrupting Dendritic Cell Homeostasis. Cell (2015) 161(7):1527–38. doi:
10.1016/j.cell.2015.05.025

250. Cubillos-Ruiz JR, Bettigole SE, Glimcher LH. Tumorigenic and
Immunosuppressive Effects of Endoplasmic Reticulum Stress in Cancer.
Cell (2017) 168(4):692–706. doi: 10.1016/j.cell.2016.12.004

251. Mohamed E, Sierra RA, Trillo-Tinoco J, Cao Y, Innamarato P, Payne KK, et al.
The Unfolded Protein Response Mediator PERK Governs Myeloid Cell-Driven
Immunosuppression in Tumors through Inhibition of STING Signaling.
Immunity (2020) 52(4):668–82.e7. doi: 10.1016/j.immuni.2020.03.004

252. Olagnier D, Brandtoft AM, Gunderstofte C, Villadsen NL, Krapp C, Thielke
AL, et al. Nrf2 negatively regulates STING indicating a link between antiviral
sensing and metabolic reprogramming. Nat Commun (2018) 9(1):3506. doi:
10.1038/s41467-018-05861-7

253. Hetz C, Papa FR. The Unfolded Protein Response and Cell Fate Control.Mol
Cell (2018) 69(2):169–81. doi: 10.1016/j.molcel.2017.06.017

254. Rongvaux A, Jackson R, Harman CC, Li T, West AP, de Zoete MR, et al.
Apoptotic caspases prevent the induction of type I interferons bymitochondrial
DNA. Cell (2014) 159(7):1563–77. doi: 10.1016/j.cell.2014.11.037

255. Kim J, Gupta R, Blanco LP, Yang S, Shteinfer-Kuzmine A, Wang K, et al.
VDAC oligomers form mitochondrial pores to release mtDNA fragments
and promote lupus-like disease. Science (2019) 366(6472):1531–6. doi:
10.1126/science.aav4011

Conflict of Interest: The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Smith. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
January 2021 | Volume 11 | Article 611347

https://doi.org/10.1126/scisignal.2004374
https://doi.org/10.1111/j.1742-4658.2011.08010.x
https://doi.org/10.1111/j.1742-4658.2011.08010.x
https://doi.org/10.1073/pnas.0511154103
https://doi.org/10.1073/pnas.0511154103
https://doi.org/10.1016/j.cell.2010.06.007
https://doi.org/10.1016/j.molcel.2016.05.040
https://doi.org/10.1016/j.molcel.2016.05.040
https://doi.org/10.1016/j.cmet.2011.05.014
https://doi.org/10.1016/j.cmet.2011.05.014
https://doi.org/10.1007/s12192-010-0174-1
https://doi.org/10.1083/jcb.200904060
https://doi.org/10.1089/ars.2011.4004
https://doi.org/10.1089/ars.2012.4918
https://doi.org/10.1152/ajpheart.00063.2013
https://doi.org/10.1152/ajpheart.00063.2013
https://doi.org/10.1083/jcb.201004152
https://doi.org/10.1126/scisignal.2000522
https://doi.org/10.1126/scisignal.2000522
https://doi.org/10.1016/j.ceca.2008.03.002
https://doi.org/10.1172/JCI65647
https://doi.org/10.1074/jbc.M501759200
https://doi.org/10.1371/journal.pone.0076941
https://doi.org/10.1371/journal.pone.0076941
https://doi.org/10.1038/cdd.2012.74
https://doi.org/10.1128/MCB.23.20.7198-7209.2003
https://doi.org/10.1016/S1097-2765(00)80330-5
https://doi.org/10.1016/S1097-2765(00)80330-5
https://doi.org/10.1038/s41598-017-18909-3
https://doi.org/10.1080/07853890.2018.1489142
https://doi.org/10.1158/2326-6066.CIR-18-0182
https://doi.org/10.1158/2326-6066.CIR-18-0182
https://doi.org/10.3389/fimmu.2018.00847
https://doi.org/10.1016/j.cell.2015.05.025
https://doi.org/10.1016/j.cell.2016.12.004
https://doi.org/10.1016/j.immuni.2020.03.004
https://doi.org/10.1038/s41467-018-05861-7
https://doi.org/10.1016/j.molcel.2017.06.017
https://doi.org/10.1016/j.cell.2014.11.037
https://doi.org/10.1126/science.aav4011
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Frontiers in Immunology | www.frontiersin.

Edited by:
Martin Heil,
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Both plants and animals are endowed with sophisticated innate immune systems to
combat microbial attack. In these multicellular eukaryotes, innate immunity implies the
presence of cell surface receptors and intracellular receptors able to detect danger signal
referred as damage-associated molecular patterns (DAMPs) and pathogen-associated
molecular patterns (PAMPs). Membrane-associated pattern recognition receptors
(PRRs), such as Toll-like receptors (TLRs), C-type lectin receptors (CLRs), receptor-like
kinases (RLKs), and receptor-like proteins (RLPs) are employed by these organisms for
sensing different invasion patterns before triggering antimicrobial defenses that can be
associated with a form of regulated cell death. Intracellularly, animals nucleotide-binding
and oligomerization domain (NOD)-like receptors or plants nucleotide-binding domain
(NBD)-containing leucine rich repeats (NLRs) immune receptors likely detect effectors
injected into the host cell by the pathogen to hijack the immune signaling cascade.
Interestingly, during the co-evolution between the hosts and their invaders, key cross-
kingdom cell death-signaling macromolecular NLR-complexes have been selected, such
as the inflammasome in mammals and the recently discovered resistosome in plants. In
both cases, a regulated cell death located at the site of infection constitutes a very effective
mean for blocking the pathogen spread and protecting the whole organism from invasion.
This review aims to describe the immune mechanisms in animals and plants, mainly
focusing on cell death signaling pathways, in order to highlight recent advances that could
be used on one side or the other to identify the missing signaling elements between the
perception of the invasion pattern by immune receptors, the induction of defenses or the
transmission of danger signals to other cells. Although knowledge of plant immunity is less
advanced, these organisms have certain advantages allowing easier identification of
signaling events, regulators and executors of cell death, which could then be exploited
directly for crop protection purposes or by analogy for medical research.

Keywords: pattern recognition receptors, Toll-like receptors, NOD-like receptors, pathogen-associated molecular
patterns, damage-associated molecular patterns, hypersensitive response, regulated cell death
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INTRODUCTION

Eukaryotic cells have evolved complex defense mechanisms in
order to combat microbial challenges and preserve organism
integrity. Both plants and animals are endowed with a conserved
innate immune system able to neutralize pathogens and to
contain the infection. It uses specialized receptors to detect
microbial patterns, pathogen-derived compounds, and danger
signals and elicits an adapted response. The immune response
includes a transcriptional reprogramming, the production of
antimicrobial molecules, the activation of a regulated cell death
program in infected cells and the release of soluble factors such as
cytokines and phytohormones able to signal away from the
original infection site and alert the host organism of danger. In
plants, a systemic resistance is transiently established to prevent
forthcoming microbial assault (1). In addition, vertebrates have
evolved an adaptive immune system involving specialized cells
able to produce a stronger, specific immune response and ensure
a long-term protection.

The activation of cell death processes at the site of pathogen
attack constitutes an efficient strategy shared by plants and
animals to protect the organism from pathogen invasion by
directly destroying the pathogen niche. Cell death can also
produce alert signals for neighboring cells through the release
of intracellular components that can elicit or amplify the anti-
microbial response. During a microbial infection, three types of
regulated cell death are classically described in animals for
confining pathogen progression: apoptosis, pyroptosis, and
necroptosis (2, 3). Apoptosis is defined by specific morphological
criteria that include cell shrinkage, condensation of the chromatin
and fragmentation of the nucleus, plasma membrane blebbing, and
the formation and release of apoptotic bodies that are engulfed
through a phagocytosis-like process named efferocytosis. At the
molecular level, apoptosis involves a cascade of events that
culminates in the activation of specific proteases belonging to
the caspase family responsible for cell dismantling (2). Of note,
apoptosis is a “silent form” of cell death that does not directly
cause inflammatory response because of conserved plasma
membrane integrity and efferocytosis. Efferocytosis has even
been linked to the resolution of inflammation, required for the
clearance of dead cells after infection, reducing the production of
inflammatory factors by phagocytes and progressively allowing
the restoration of homeostasis (4). On the opposite, pyroptosis
and necroptosis are associated with the release of pro-
inflammatory molecules allowing the establishment of the
adaptive immunity. They both involve pore-forming proteins
[gasdermin-D (GSDMD) in pyroptosis and mixed lineage kinase
domain-like (MLKL) in necroptosis] that trigger membrane
permeabilization and osmotic imbalance leading to cell
swelling. Many connections exist between signaling pathways
leading to apoptosis, pyroptosis, and necroptosis, and these cell
death processes can occur simultaneously.

Recognition of invading microbes by plants can also trigger a
specific cell death referred to as the hypersensitive response (HR)
which efficiently blocks the spreading of biotrophic pathogens in
healthy tissues by limiting their access to plant metabolites (5).
Frontiers in Immunology | www.frontiersin.org 297
However, the molecular events involved in HR have not yet been
completely deciphered. HR-associated cell death is characterized
by an early rupture of the plasma membrane associated with
some apoptosis-like features such as cytoplasm shrinkage,
chromatin condensation, and nucleus disruption (6). These
events are associated with plant-specific cell death features
including the dismantling of tonoplast and the vacuolar
collapse (7). Consequently, the release of active hydrolases and
proteases from collapsed vacuoles can trigger autophagy-like
processes (8). Thus, HR appeared as a plant regulated necrosis
displaying some feature of necroptosis or pyroptosis in animals
(5, 9). As observed during necroptosis and pyroptosis, leakage of
the cellular content can constitute alert signals for neighboring
cells and prepare them to cope with infections. All of these
concerted events insure a global and effective defense response.

The theory that innate immune response is elicited by
specialized receptors which recognize conserved microbial
components referred to as pathogen-associated molecular
patterns (PAMPs) was laid out by Medzhitov and Janeway (10),
rewarded by the Nobel Prize in 2011. The first pattern recognition
receptor (PRR) was described in plants as a cell surface receptor
encoded by the rice gene Xa21, which confers resistance to the
bacteria Xanthomonas oryzae pv. Oryzae (11). For many years,
two major strategies to study the plant innate immunity have
existed. The first was based on a genetic approach: certain varieties
of a plant species express R genes leading to the perception of
microbial effectors encoded by avirulence genes (Avr) and then
generally to the establishment of the HR. This is the basis of the
gene-for-gene concept (R-Avr) described by Flor on flax and then
widely used for genetic breeding of crop plants (12). The second
used a biochemical approach coupled with pharmacological
studies. Several teams have purified microbial-derived
compounds, commonly referred to as elicitors (chitin, flagellin,
elicitin, b-glucans, …) able to trigger plant immune responses.
They also characterized high-affinity plasma membrane binding
sites interacting with elicitors and showing biochemical features of
receptors. To combine the results of these two approaches and to
get closer to the concept of PAMPs existing in mammals came the
concept of PAMP-Triggered Immunity (PTI), that takes into
account the recognition of PAMPs by surface receptors, and
Effector-Triggered Immunity (ETI), related to the recognition of
effectors (pathogen Avr gene products) by intracellular receptors
(encoded byR genes). However, this PTI-ETI concept proposed by
Jones and Dangl (13) was a bit controversial because it was too
binary (ETI or PTI) and did not reflect all the existing shade of
gray levels of plant immune responses, notably during symbiotic
interactions. Recently, new models have emerged in the plant
innate immunity with the concept of invasion patterns (14) and
signs of danger perceived by a complex plant surveillance system
that can produce secondary host-derived immunogenic factors
termed phytocytokines (15).

This review aims at highlighting similarities and specificities
of the immune responses existing in mammals and plants,
mainly focusing on recent advances in the discovery of
immune receptors and the involvement of signaling pathways
leading to cell death.
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MEMBRANE-ASSOCIATED PRRs

Cells employ a large number of cell surface or endosomal
receptors to sense PAMPs and endogenous danger signals
referred to as damage-associated molecular patterns (DAMPs)
to engage defense responses. In vertebrates, membrane-bound
immune receptors belong to the Toll-like receptors (TLRs)
family, which are located either at the cell surface or within the
endosomal compartment, and C-type lectin receptors (CLRs)
located at the cell surface. Plant PRRs are mainly plasma
membrane-localized and are divided into two categories: the
receptor-like kinases (RLKs) and the receptor-like proteins
(RLPs) (Figure 1). In both plants and vertebrates, recognition
of PAMPs/DAMPs by membrane PRRs primarily activates
transcriptional programs that culminate in the production of
antimicrobial molecules and in the implementation of an
adaptive response of the host to counteract the pathogen attack.

Membrane-bound PRRs are composed of an N-terminal
extracellular domain that functions as a ligand recognition and
binding domain, a transmembrane intermediate and a C-
terminal cytoplasmic signal transducing domain (Figure 1). In
animals, PAMPs are recognized by tandem copies (16–22) of
LRR (leucine-rich repeat) in TLRs and by C-type lectin-like
domains in CLRs (23). Thirteen TLR paralogs were described in
vertebrates. Cell surface TLRs (TLR1, 2, 4–6, and 10) recognize
components of microbial membranes such as lipids, lipoproteins,
membrane anchored proteins, or extracellular proteins bound to
pathogens such as heat shock proteins (HSP) 60 and 70 while
TLRs found within endosomal compartment (TLR3, 7–9, and
11–13) likely sense virus and bacteria-derived nucleic acids or
endogenous nucleic acids in some pathological conditions. On
the other hand, CLRs are dedicated to the defense against fungal
infections (23). CLRs can also sense commensal fungi and thus
contribute to maintain homeostasis (24, 25). Molecular
Frontiers in Immunology | www.frontiersin.org 398
mechanisms of signal transduction in animal cells are well
characterized. They involve the presence of conserved modular
domains found in receptors, adaptor proteins or signaling effectors
and mediate, through homotypic interaction, the assembly of
oligomeric signaling platforms favoring the activation by
proximity of signaling effectors. In TLRs, the intracytoplasmic
signal transduction domain is the conserved Toll/IL-1 receptor
(TIR) domain, also found in the adaptor proteins myeloid
differentiation factor 88 (MyD88), MyD88 adaptor-like (MAL),
TIR-domain-containing adaptor-inducing IFN-b (TRIF), TRIF-
related adaptor molecule (TRAM), and sterile a- and armadillo-
motif-containing protein (SARM). Ligand binding triggers TLR
homo- or hetero-dimerization, conformational change in their
intracellular TIR domain and the consecutive recruitment via TIR-
TIR homotypic interaction of adaptor proteins to form a signaling
platform and initiate downstream signaling pathway. TLR
stimulation engages MAPKs and/or NF-kB and ultimately
promotes inflammatory response that constitutes the first line of
defense in mammals and appears critical to maintain homeostasis
and tissue integrity. This includes the production of antimicrobial
molecules, pro-inflammatory cytokines, and immune cell
differentiating mediators responsible for the recruitment and
activation of specialized immune cells to the site of infection
(Figure 2) (16). However, in some situations such as a sustained
infection, the presence of pathogens that resist to inflammatory
defense or in some pathological conditions [e.g., some cancers,
X-linked lymphoproliferative syndrome type 2 (XLP-2)] (17, 18),
several TLRs such as TLR3 that recognizes virus-derived double
stranded RNAs and RNAs released from damaged cells, and TLR4
that senses LPS from Gram-negative bacteria, can also trigger cell
death (19–21). For CLRs, the signal transduction motif is the
immunoreceptor tyrosine-based activation motif (ITAM) or
ITAM-like motif that mediates the binding and the activation
via phosphorylation of the spleen tyrosine kinase (Syk). Generally,
FIGURE 1 | Structural comparison of the main immune receptors found in animals and plants. ALR, AIM2 (absent in melanoma 2)-like receptors; BIR, Baculovirus
Inhibitor of apoptosis protein Repeat; CARD, caspase recruitment domain; CC, coiled coil domain; CCr, CC-RPW8; CLR; C-type lectin receptors; CRD,
Carbohydrate-Recognition Domain; EGF-like, Epidermal Growth Factor like; HIN200(s), Hematopoietic Interferon-inducible Nuclear protein with a 200 amino acid
repeat; ITAM, Immunoreceptor Tyrosine-based Activation Motif; LRR, leucine-rich repeat; LysM, Lysin Motif; NACHT, NAIP (neuronal apoptosis inhibitory protein),
CIITA (MHC class II transcription activator), HET-E (incompatibility locus protein from Podospora anserina) or TP1 (telomerase-associated protein); NB-ARC,
Nucleotide-Binding domain Apaf1, Resistance, CED4; NLR, Nucleotide-binding and oligomerization domain (NOD)-Like Receptor (animals) or Nucleotide-Binding
Domain (NBD)-containing LRRs (plants); PYD, Pyrin effector Domain; RD, Regulator Domain; RLK, Receptor-Like Kinase; RLP, Receptor-Like Protein (contain a short
cytoplasmic domain devoid of kinase activity); RLR, RIG-I–like receptors; TIR, Toll/Interleukin-1 receptor; TM; Transmembrane; TLRs, Toll-like receptors.
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CLR stimulation does not trigger cell death but results in MAPKs,
NF-kB, or interferon-regulatory factors (IRFs) activation (23).

By comparison, plants have evolved hundreds of membrane
PRRs able to recognize a wide variety of PAMPs such as flagellin,
peptidoglycan, chitin, elicitin, polygalacturonase, and xylanase
(22, 26) or DAMPs such as fragments of the plant cell wall
extracellular matrix (oligogalacturonides from pectins,
cellobiose, and cellodextrines from cellulose and xyloglucans
from hemicellulose) (27, 28), extracellular ATP, NAD+, or
secondary endogenous phytocytokines such as systemin, rapid
alkalinization factors (RALFs), pathogen-associated molecular
pattern-induced peptides (PIPs), and elicitor peptides (PEPs)
(15). The diversity of sensed PAMPs is made possible thanks to
the presence of different extracellular domains (Figure 1). For
example, LRRs found in flagellin sensing 2 (FLS2) sense flagellin
or its 22-amino acid epitope flg22 (29, 30), whereas Lysin motif
(LysM) specifically recognizes chitin oligosaccharides in chitin
elicitor receptor kinase 1 (CERK1) associated with LYK4/5 (31–
34) or peptidoglycan with lysin-motif proteins LYM1/LYM3
Frontiers in Immunology | www.frontiersin.org 499
(35). Epidermal growth factor (EGF)-like domain present in
the wall-associated kinase 1 (WAK1) senses oligogalacturonides
released during the degradation of the plant cell wall by fungal
hydrolases (36, 37), whereas the lectin domains present in
AtLecRK1.9 (DORN1) and AtLecRK1.8 perceive extracellular
ATP and NAD+, respectively (38, 39).

Unlike animal PRRs that require the recruitment of adaptor
proteins to transduce signal, plant membrane-associated RLKs
are endowed with kinase activity thanks to the presence of a
cytoplasmic kinase domain (KD) (Figure 1). PAMP-sensing
induces oligomerization of RLKs and kinase activation that
directly triggers numerous cellular responses (Figure 3) such
as ion fluxes across the plasma membrane, a burst of reactive
oxygen species (ROS), a phosphorylation cascade activating
MAPKs, and transcription factors leading to the expression of
defense genes which encode enzymes involved in the production
of defensive secondary metabolites (e.g., phytoalexins, callose,
and lignin that reinforce plant cell wall) (26). Because of their
very short cytoplasmic domain (about 24 amino acids) devoid of
FIGURE 2 | TLR-mediated signaling pathway. The activation of TLR (toll like receptor) 1–2, 4–6, or 10 by lipids, lipoproteins or membrane-anchored proteins and
the activation of TLR7-9, 11–13 by virus-derived nucleic acids induce the dimerization of TLRs and the recruitment of Myd88 (myeloid differentiation factor 88) and
IRAKs via homotypic interaction domains, forming the Myddosome. IRAKs catalyze phosphorylation cascade leading to the recruitment of TRAF6 [tumor necrosis
factor (TNF) receptor associated factor 6]. In turn, TRAF6 promotes the activation by proximity of TAK1 (tumor growth factor-b-activated kinase 1)/TAB1-3
(transforming growth factor-activated kinase1-binding protein 1, 2, and 3) and the IKK (Inhibitor of kB kinase) complexes that result in the activation of MAPK
(Mitogen-activated protein kinases), NF-kB (nuclear factor-kappa B)-signaling pathways, and pro-inflammatory response. TLR3 and TLR4 stimulation induces the
recruitment of TRIF (TIR-domain-containing adaptor-inducing IFN-b) through a TIR-TIR homotypic interaction. The adaptor TRAM (Trif-related adaptor molecule)
serves as a bridge between TLR4 and TRIF. In turn TRIF can recruit TRAF3 that engages IFN (Interferon) response, TRAF6 that leads to MAPK and NF-kB activation,
or the kinases RIP (Receptor Interacting Protein) 1 and/or RIP3. When poly-ubiquitinated, RIP1 can recruit TAK1/TAB1-3 and IKK complexes and activates the
pro-inflammatory response. In a non-ubiquitinated form, RIP1 can assemble with FADD and caspase-8 to form the ripoptosome that leads to caspase cascade
activation and apoptotic cell death or can activate RIP3 in the necrosome. RIP3 catalyzes the activating phosphorylation of MLKL, which oligomerizes and
translocates into the plasma membrane to form pores and induces necroptosis. The DAI (DNA-dependent activator of IRFs) can also directly recruit RIP3 via RHIM
homotypic interaction to induce MLKL phosphorylation and necroptosis in response to virus-derived nucleic acids. The necrosome has also the ability to induce ROS
(Reactive oxygen species) production resulting in NLRP3 (NOD (Nucleotide-binding oligomerization domain)-like receptor protein) inflammasome and pyroptosis
(details of pyroptosis available in Figure 4). The TLR-mediated production of TNF-a can induce an autocrine stimulation of TNFR1 that can lead to RIP1 engagement
and an amplification of the signal.
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kinase activity, RLPs are not able to transduce signal but function
as co-receptors heterodimerized with RLKs that finally elicit a
similar cascade of immune signaling events. Most of the PAMPs
and DAMPs recognized by plant cell surface PRRs are unable to
elicit specific plant cell death. Only some proteinaceous elicitors
secreted by pathogens in the apoplast can trigger HR in a plant
species dependent manner.
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NUCLEOTIDE-BINDING
OLIGOMERIZATION DOMAIN (NOD)-LIKE
RECEPTORS (NLRs)

Nucleotide-binding oligomerization domain (NOD)-like
receptors (NLRs), also generalized as nucleotide-binding
domain (NBD)-containing LRRs (NB-LRR in plants), are a
FIGURE 3 | Signaling events leading to HR in plants. PRRs are activated by the recognition of eliciting molecules resulting from the degradation of plant cells
(DAMPs) or released by the pathogens (PAMPs, elicitins, apoplastic avirulence factors: Avr). The signal is then transduced by a cascade of phosphorylation events
involving MAPKs, cytoplasmic protein kinases (CPKs), and transcription factors, mainly from the WRKY family. This phosphorylation can also activate the NADPH
oxidase RbohD, leading to the production of ROS [O:−

2 transformed into hydrogen peroxide (H2O2) by a superoxide dismutase (SOD)]. An influx of intracellular Ca2+,
initiated quickly after perception of H2O2 by HPCA1 leads to the production of nitric oxide (NO), as well as the activation of transcription factors via the calcium
dependent protein kinases (CDPKs). This is followed by a reprogramming of the transcriptional activity leading to the expression of defense genes involved in the
synthesis of phytohormones (SA, JA, …), the antimicrobial phytoalexins or even the release of hydrolytic enzymes (glucanases, chitinases, …) from the pathogenesis-
related proteins family. In the meantime, effectors secreted by pathogens to counter the plant’s defenses can also be directly or indirectly (via the recognition of a
modified host-protein) recognized by NLRs. This recognition generally induces a conformational change in the protein (noted here by an asterisk and a color change),
allowing the exchange of ADP by an ATP and therefore the activation of the NLR leading in some cases to macromolecular complexes such as the resistosome or to
the activation of transcription factors. These larger-scale molecular complexes have been proposed to act via the recruitment of other signaling actors leading to a
potentiation of the defenses already in place or by the formation of pores in the plasma membrane. A HR cell death is then observed locally to block the spreading of
the pathogen. This will also be associated with the release of DAMPs, phytohormones and phyto-cytokines which will transmit information to neighboring cells and
organs to prevent future infections in healthy tissues. Some plant peptides (e.g., PEPs) can be matured by metacaspase-mediated cleavage and released in the
apoplast to prime immune responses in neighboring cells, thus enabling the establishment of a local resistance.
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class of immune proteins found across both plant and animal
kingdoms, with some exceptions in taxa such as Algae,
Nematoda, and Drosophila. They were previously classified in
plants as R-proteins in the gene-for-gene model. In the animal
kingdom, NLRs are the most represented family of cytosolic
immune receptors, along with ALRs [AIM2 (absent in melanoma
2)-like receptors] and RLRs (RIG-I–like receptors) (Figure 1).
ALRs recognize cytosolic DNAs and RLRs sense cytosolic RNAs
that include virus nucleic acids as well as endogenous
microRNAs (miRNAs) whereas NLRs sense cytosolic PAMPs
(e.g., bacteria-secreted toxins, components of bacteria with pore
forming activity, internalized LPS, viral proteins) but also
markers of intracellular stresses acting as DAMPs such as
ATP, uric acids, ROS, metabolic products, or cell-derived
peptides that are released by cells in response to endogenous
(e.g., ER stress, disruption of ion gradients) or environmental
stresses. Stimulation of cytosolic immune receptors can trigger
inflammatory response. However, for most of them, the main
response is the release of the pro-inflammatory molecules IL-1b
and IL-18 and pyroptosis (Figure 4). NLR stimulation can also
indirectly lead to apoptosis, necroptosis, or activate autophagy
process to clear pathogen (40). In plants, NLRs directly or
Frontiers in Immunology | www.frontiersin.org 6101
indirectly detect pathogen-secreted effectors (i.e., virulence
proteins) to generally promote HR cell death.

Although NLRs are found in both animals and plants, they seem
to result from an independent evolutionary process (41). They are
characterized by the presence of a central NBD (also named NOD)
that may be originated from a prokaryotic class of AAA+ ATPases.
Both mammals and plants would have selected the NBD for the
flexibility of its architecture. It catalyzes the ADP/ATP exchange
which promotes the NLR oligomerization and activation. ATP-
bound active forms are generally unstable and rapidly recycled into
inactive forms or degraded. This mode of activation allows the NLR
to quickly react after detection of pathogens and enable to preserve
the organism from a costly and useless mobilization of defenses in
their absence. Animal NLRs are characterized by a “NACHT”
[NAIP (neuronal apoptosis inhibitory protein), CIITA (MHC
class II transcription activator), HET-E (incompatibility locus
protein from Podospora anserina) or TP1 (telomerase-associated
protein)] NBD subtype while plants NLRs possess an “ARC”
(Apaf1, Resistance, CED4) NBD subtype, also found in some
animal adaptor proteins involved in apoptosis such as Apaf-1 (42).

In addition to NBD, LRR is common to both sides. As in
animal TLRs, this domain is involved in sensing microbe
FIGURE 4 | NLR-mediated signaling pathway in mammals. The recognition of PAMPs/DAMPs [Pathogen-Associated Molecular Patterns/Damage-Associated
Molecular Patterns) by NLRs (NOD (Nucleotide-binding oligomerization domain)-like receptor proteins: NLRCs, NLRPs] promotes the recruitment of procaspase-1
(Pro-Casp1) through homotypic domain interaction, forming a large cytoplasmic complex named inflammasome. In some situation, the adaptor ASC (apoptosis-
associated speck-like protein containing a CARD domain) can take part to the complex, bridging the receptor to procaspase-1. The procaspase-1 undergoes auto-
activation and processing of its 2 active sub-units (p10 and p20) which assemble into a tetrameric active form. Active caspase-1 catalyzes the cleavage of proIL-18
(proInterleukine-18), proIL-1b (proInterleukine-1b) into mature cytokines, and gasdermin-D releasing the PFD domain that can oligomerizes and anchors into the
membrane to form pores. Processing of gasdermin-D can also be ensured by caspase-4 and caspase-5, which are activated after LPS binding. The gasdermin PFD
can also form pores into the mitochondrial membrane that induce K+ release and ROS production. In addition, pores created in the plasma membrane by PFD also
lead to IL1b and IL18 release and to an ion imbalance that finally results in pyroptosis. The recognition of PAMPs/DAMPs by NOD1/2 promotes the formation of the
NODosome composed of the sensor and the protein RIP2 (Receptor Interacting Protein 2) through CARD-dependent homotypic interaction. RIP2 can then recruit
TAB1/TAB2/3/TAK1 and IKK complexes that engage MAPK and NF-kB signaling pathways leading to the production of pro-inflammatory cytokines.
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effectors or modified host-proteins. As an alternative, some
animal NLRs own other motif domains with sensing activity
such as WD/WD40, HEAT, Ankyrin, or TPR (tetratricopeptide)
motifs. LRR domain is widespread among immune receptors of
any kinds, probably because of its pre-disposition for forming
mismatches thus easily creating diversity and therefore new
potential recognition sites, as suggested by Baggs et al. (43).
After invasion pattern recognition, LRRs undergo a
conformational change allowing NLR switch from an inactive
NBD-ADP-bound closed conformation to an active NBD-ATP-
bound open conformation and the recruitment of downstream
signaling effectors (44, 45). LRR has also the ability to negatively
regulate the NBD through intramolecular interactions that
prevent its oligomerization (46).

The domains found in the N-term part of the protein are
involved in the transduction of downstream signaling (45, 47). In
animals, these domains belong to the death-fold superfamily
which are homotypic interacting domains also found in adaptor
and signaling molecules. The pyrin effector domain (PYD) is the
most represented and characterizes the NLRP (NOD-like
receptor protein) sub-family of NLRs (also named NALP). The
NLRC sub-family contains one or two caspase-activation and
recruitment domains (CARD), NLRA the acidic transactivation
domain and NLRB the baculoviral inhibitory repeat-like domain
(BIR) (Figure 1) (40).

In plants, if present, the N-term accessory domain could be of
three main types: TIR defining the TIR-NB-LRR (TNLs) group,
CC (Coiled-Coil) which defines the CNLs subgroup of NLRs, or
CCr (the CC domain subtype with high similarity with the non-
NBD-LRR resistance gene RPW8) that characterizes RNLs (48,
49). In addition, different structure variants lacking one or two of
the previously described NLR domains can be found (42, 50, 51).
Some of these truncated forms, also termed “adapters” or
“helpers”, amplify the immune response in plants or could
serve as effector baits.

Because of the wide diversity and shorter lifespan of pathogens,
different modes of NLR-mediated detection of pathogens have
emerged, allowing them to bypass the recognition issue due to
their obvious slowly evolution (43, 52). In addition to the classic
direct detection of one effector by its related NLR, different ways to
activate NLRs have been observed such as the “guard and decoy
concept” (42). In this strategy, a decoy protein is in close relation
with and constitutively represses the activity of a guard NLR.
Effectors or endogenous danger signals mediate decoy
modification such as direct cleavage, phosphorylation,
acetylation, or uridylation (53–56). These post-translational
modifications (PTMs) finally disrupt the inhibition signal
allowing the NLR to be fully active (42). In this way, many
pathogen effectors can be only detected by monitoring a small
number of targets, whether directly involved in defenses (guardee
model) or not (decoy model). Moreover, as NLRs are often
working by pairs or oligomers, it is not rare to observe an
“autoimmune” phenotype, i.e., a constitutive activation of NLRs
in the absence of pathogen. This phenotype can result from
mutations within the molecule (57, 58) or might also be the
consequence of the absence of its related inhibitor, as well as an
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inappropriate negative interaction between closely related NLRs
(59, 60). This is particularly common in the case of crossed plant
populations, where inappropriate allelic combinations generate
underdeveloped or self-deteriorating seedlings due to the fitness
imbalance between growth and defense (61, 62). This
phenomenon, also known as hybrid incompatibility, thus
facilitates the natural selection of related units. In connection
with this, integration of decoy domains inside the NLR protein
may have been selected more easily, as the probability of
recombination being more important in genetically distant
partners than in linked proteins. This then gives rise to the last
NLR activation strategy described by Jones et al. (42), the
“integrated decoy” model, exemplified by the RRS1 TLR that
contains an integrated WRKY transcription factor domain, target
of numerous effectors, or the NLR RGA5 that holds an integrated
heavy metal-associated copper binding domain.
DOWNSTREAM SIGNALING EVENTS
LEADING TO CELL DEATH IN ANIMALS

In Animals, although many interplays between cell death
signaling pathways exist, pyroptosis is primarily the result of
the stimulation of intracellular immune receptors (NLRs and
cytosolic DNA sensors) while apoptosis and necroptosis are
mainly triggered by membrane-associated TLRs.

NLR-Induced Pyroptosis
The signaling pathway induced by NLR stimulation has been
extensively studied in animals and is about to be well
characterized [for review, see (63)]. Sensing of PAMPs or
DAMPs by the C-term domain triggers NLRs oligomerization
and the recruitment of downstream adaptors or signaling
proteins to the N-terminal death fold domain via homotypic
domain interaction, forming large, cytoplasmic, ring-like multi-
protein complexes. The best characterized are known as
inflammasomes and result in pyropotosis. However, some
NLRs such as NOD1 and NOD2 from the NLRC subfamily are
not able to induce the assembly of an inflammasome but of a
NODosome that ultimately results in the activation of a
transcriptional program through NF-kB and/or MAPK
signaling pathways (Figure 4) (64–66).

Inflammasome is built by the association of a cytoplasmic
immune receptor and the effector pro-caspase 1, a cysteine
protease from the caspase family (Figure 4). Pro-caspase 1 is
composed by a CARD-containing prodomain and two active
subunits. Its recruitment into the inflammasome via CARD-
dependent homotypic interactions induces an activating
dimerization and subsequent auto-cleavage of the two active
subunits that assemble into the tetramer active form. Once
activated, caspase-1 induces the processing of the pro–IL-1b
and pro–IL-18 into mature cytokines. Caspase-1 can also
catalyze the cleavage and activation of the pore-forming
protein gasdermin D. Gasdermin D belongs to the pore-
forming protein family gasdermin (GSDM) characterized by
the presence of an N-terminal pore-forming domain (PFD).
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It is synthetized as a precursor composed of two domains linked
by a loop. Caspase-1 cleaves Gasdermin D within the loop,
releasing the PFD that oligomerizes and anchors into the inner
plasma membrane to form pores. Inflammasome-mediated
Gasdermin D activation results in IL-1b and IL-18 release, and
ionic imbalance that culminates in cell swelling (67, 68). The
cleavage of gasdermin D can also be performed by the human
CARD-containing caspase-4 and -5 (mouse caspase-11) that is
activated in the so-called non-canonical inflammasome thanks to
their ability to directly sense LPS by their CARD domain (69).
Interestingly, Gasdermin D is also able to form pores into
bacterial and organelle membrane such as mitochondria or
endoplasmic reticulum that can result in potassium efflux,
calcium mobilization and ROS generation (70).

Among NLRs, NLRP1, -3, -4, -6, -7, and NLRC4 can form
inflammasome. Moreover, the cytosolic DNA sensors AIM2 and
IFI16 also have the ability to form it (71–73). For NLRP3 and AIM2
that do not contain a CARD domain, the molecular adaptor ASC
(apoptosis-associated speck-like protein containing a CARD
domain), that owns both a pyrin and a CARD domain, is
recruited as an intermediate bridge to link the sensor to the pro–
caspase-1 (Figure 4). ASC adaptor is also observed in the NLRC4
and NLRP1 inflammasomes, stabilizing the interaction between the
NLR and the pro–caspase-1 (74). The activation process of NLRP3-
inflammasome is the most documented (75). It involves a priming
step that can be provided by sensing LPS by TLRs which induces
NF-kB-dependent expression of NLRP3 and ASC (76). As the
intracellular amount of these proteins have reached a sufficient level,
NLPR3-inflammasome activation can be completed by sensing
DAMPs (such as ATP) or some PAMPs (viral RNA or proteins,
bacterial-derived compounds). Some PTMs such as
phosphorylation (77) and de-ubiquitination (78) could also be of
importance for the priming step.

TLR-Mediated Apoptosis and Necroptosis
As described above, TLR-mediated signal transduction involves
the assembly of multiprotein signaling platforms thanks to the
presence of homotypic interacting domains in the receptors,
adaptors and effector proteins (16). Ligand binding triggers TLR
homo- or heretodimerization, conformational change in their
intracellular TIR domain and the consecutive recruitment via
TIR-TIR homotypic interaction of adaptor proteins.
Schematically, TLR signaling pathways are subdivided into
MyD88-dependent and TRIF-dependent signaling. Briefly,
MyD88 can bind most of endosomal and cell-surface-TLRs. In
turn, it promotes the recruitment of serine/threonine IL-1R–
associated kinase (IRAK) family members, via homotypic
interaction with its C-term death domain (DD), to form a
multiprotein complex named Myddosome. IRAK4 catalyzes a
phosphorylation reaction that leads to the recruitment of the E3-
ubiquitine ligase TRAF6 [tumor necrosis factor receptor
(TNFR)-associated factor 6], the subsequent recruitment and
activation of TAK1/TAB1/3 and IKK complexes. This signaling
platform engages MAPKs and NF-kBs, and that ultimately leads
to the expression of pro-inflammatory cytokines that include
TNFa (tumor necrosis factor-a) (16) (Figure 2).
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The endosomal TLR3 and the cell surface TLR4 recruit the
adaptor TRIF. While TLR3-TRIF binding is direct via TIM-
mediated homotypic interaction, TLR4 requires the adaptor
TRAM that bridges TLR4 to TRIF. TRIF can recruit TRAF3
and/or TRAF6 thanks to the presence of TRAF-binding motifs in
the N-terminal part of the protein. TRAF6 promotes subsequent
MAPK or NF-kB-dependent transcriptional program while
TRAF3 engages the IRF3-activating signaling pathway and the
expression of type I IFN genes (16) (Figure 2). In addition to the
TIR and TRAF-binding domains, TRIF owns a C-terminal RIP
homotypic interaction motif (RHIM) also found in the receptor-
interacting kinases (RIPs) RIP1 and RIP3 (79).

The serine/threonine kinase RIP1 has been identified in 1995
because of its capacity of binding death receptors from TNFR
superfamily (80). Thus, RIP1-dependent signaling pathway can be
activated by TLR3 and TLR4 as described above and also indirectly
by the other TLRs via the NF-kB-dependent production of TNFa
and autocrine stimulation of TNFR1. RIP1 appears as the core
component of signaling platforms, at the crossroad between
inflammatory response, apoptotic and necroptotic cell death
signaling pathways [for review see (81)] (Figure 2). When
modified by non-degradative ubiquitin chains, RIP1 constitutes a
scaffold for the recruitment of the kinase complexes TAK1/TAB1/
TAB2 and IKK that activate MAPK and NF-kB-dependent
transcriptional response. In a non-ubiquitinated form, RIP1
promotes the assembly of a secondary cytoplasmic cell death
signaling platforms thanks to its kinase activity. Associated with
the adaptor FADD (Fas-associated protein with DD) and caspase-8,
it promotes caspase-dependent apoptotic cell death via the
activation of the proteolytic cascade involving the caspase-3 (82).
RIP1 can recruit its closely related protein RIP3 via their respective
RHIM domain and forms a necrosome (Figure 2). Independently
of RIP1, RIP3 can also be directly engaged by TLR3 and TLR4 via a
RHIM-dependent binding to TRIF, and also by the cytosolic DNA
sensor DAI from RLR family that owns a RHIM domain (83).

RIP3 is the main effector of necroptosis (84). It is activated by
homodimerization and autophosphorylation. RIP3 promotes the
activating phosphorylation of MLKL (85). Once activated, MLKL
oligomerizes and translocates to the plasma membrane where it
interacts with phosphatidylinositols and forms pores or cation
channels responsible for membrane permeabilization and
disruption and cell death (84, 86). Necroptosis has been
associated with the production of ROS. Deletion of RIP3
completely blocked ROS production suggesting that this event
occurs downstream of necrosome activation (87).

The concept of necroptosis has emerged over the two last
decades but its contribution to the control of pathogen infections
is still not very well understood. Experimental necroptosis model
usually requires an inhibition of apoptotic signaling pathway,
suggesting that necroptosis occurred as a secondary event (88).
The role of RIPK3-mediated cell death in antiviral response was
highlighted by the analysis of mice deficient in RIPK3 that
appeared highly susceptible to Influenza A virus or vaccinia
virus (87, 89). In the same manner, macrophages or lung
epithelial cell death induced by some bacteria (that include
Salmonella typhimurium, Staphylococcus aureus, Staphylococcus
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marcescens, or Streptococcus pneumoniae) are inhibited by
RIPK3 deficiency or necroptosis inhibitors (90–92).
Necroptosis could constitute an important defense mechanism
against infection with pathogens able to bypass apoptosis
induction by expressing anti-apoptotic proteins.
DOWNSTREAM SIGNALING EVENTS
LEADING TO CELL DEATH IN PLANTS

NLR-Mediated HR
ETI-related HR cell death is frequently associated with early
signaling events such as NLR oligomerization, activation of a
MAPK cascade, ROS generation, transcriptional reprogramming,
and a later accumulation of phytohormones associated to plant
immune responses (93, 94). Once the pathogen is detected
through the direct recognition of an effector or via a
modification of a host molecular target, larger immune receptor
complexes are built. Recently, an NLR supramolecular structure
termed resistosome and showing similarities with the mammalian
inflammasomes has been discovered in plants. In this case, the
bacterial pathogen Xanthomonas campestris injects into the host
plant cells the AvrAC effector which uridylates the PBS1-like
protein 2 (PBL2) decoy receptor-like cytoplasmic kinase (RLCK).
This modification (PBL2UMP) triggers its association with the
second RLCK resistance-related kinase 1 (RKS1) that interacts
with the NLR Hop-Z–activated resistance 1 (ZAR1). This allows
the NBD to become active by exchanging its ADP to ATP (95, 96).
Subsequent ATP binding triggers the pentamerization of the
ZAR1-RKS1-PBL2 resistosome complex (Figure 3). The
assembled supramolecular complex forms a funnel-shaped
structure with a pore diameter ranging from ~10 to 30 Å.
Because of its structural resemblance with the hemolytic pore
forming protein fragaceatoxin C and the partial requirement of its
association with the plasma membrane for the induction of cell
death, Wang and collaborators hypothesized this complex to be
pore-forming. The ZAR1 resistosome would thus disrupt the
plasma membrane integrity and/or alter the ions homeostasis by
acting in a similar manner to the MLKL and gasdermins in
mammals (9). Nonetheless, we cannot rule out that the ZAR1
resistosome could also serve as a docking site for others immune
actors. Furthermore, some NLRs complexes appear to directly
activate the expression of transcription factors, rather than
associating with the membrane, to finely tune cell death and
immune responses in plants. In that way, the Arabidopsis thaliana
(Arabidopsis) helper NLR AtNRG1 (N-requirement gene 1) forms
a cell death signaling hub when it is associated with the
heterodimer formed by the lipase-like protein enhanced disease
susceptibility1 (AtEDS1) interacting with the senescence-
associated gene101 (AtSAG101) (97–99). However, if AtEDS1
interacts with phytoalexin-deficient 4 (AtPAD4), this molecular
complex associates with another helper NLR AtADR1 (accelerated
disease resistance 1) to promote the expression of immune genes
via transcriptional reprogramming (99).

In Arabidopsis, HR cell death pathway is regulated by a
MAPK cascade, involving the MAPK kinase kinase MEKK1,
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the MAPK kinases MKK1/2, and the MAPK MPK4.
Interestingly, the CC-NLR protein SUMM2 (suppressor of
mkk1/2, 2) has been shown to monitor this MAPK cascade
(100). Indeed, the Arabidopsis mekk1, mkk1/2, and mpk4
mutants or plants in which MEKK1 has been silenced
exhibited spontaneous cell death and constitutive immune
responses such as defense gene activation and ROS production
(101–106), whereas mutations in SUMM2 suppressed the cell
death ofmekk1,mkk1/2, andmpk4mutants (100). A screening of
Arabidopsis T-DNA insertion lines identified SUMM2, MEKK2,
and calmodulin-binding receptor-like cytoplasmic kinase 3
(CRCK3) as key regulators of MEKK1 depletion-induced cell
death (107). At the opposite, overexpression of CRCK3 induced a
SUMM2- and MEKK2-dependent cell death (106). Altogether,
these results suggest that a dedicated plant MAPK cascade plays
an important role in the HR signaling, which is under the tight
control of different regulator proteins.

The onset of HR is also often associated with the production
of ROS. Most of the apoplastic ROS generated during plant-
pathogen interactions are produced via plasma membrane-
localized enzymes with homology to the mammalian
phagocytes NADPH oxidases (NOXs) and called respiratory
burst oxidase homologs (RBOHs) in plants (108). These
enzymes generate apoplastic superoxide ions (O: −

2 ) that rapidly
dismutate to hydrogen peroxide (H2O2), a well-known
microbicide. Following infection by a bacterial pathogen
possessing the avirulence gene AvrRpm1, HR is reduced in
Arabidopsis AtrbohD mutant and AtrbohD/F double mutant
plants, indicating that RBOHs and ROS promote and/or
mediate cell death (109). This process requires the
concomitant production of nitric oxide (NO; see below).
Nevertheless, infection with an avirulent oomycete pathogen in
Arabidopsis AtrbohD/F double mutant plants caused more HR
and resistant phenotype even though ROS production was
suppressed (109). Similarly, Arabidopsis nca1 (no catalase
activity 1) and cat2 (catalase 2) mutants, supposed to have an
increased H2O2 level, surprisingly showed reduced cell death
when infected by a bacterial pathogen expressing AvrRpm1
(110). At the molecular level, the discovery that RBOHD
activity is positively and negatively regulated by many PTMs
via different phosphorylation or ubiquitination events suggests a
finely tuned control of the spatio-temporal ROS production
during plant-pathogen interaction (111–114). Thus, the
connection between ROS and HR still needs clarifications.
Interestingly the Arabidopsis LRR-RK HCPA1 has been
recently shown to perceive extracellular H2O2 via cysteine
oxidation to trigger Ca2+ influx, which then leads to immune
responses such as stomatal closure to delay the pathogen
penetration through this natural opening in plants (115).

PRR-Triggered Signaling Events Leading
to HR
Apoplastic elicitors which trigger HR are more the exception
than the rule. Nevertheless, Avr2/4/5/9 proteins secreted by the
fungus Cladosporium fulvum induce HR in tomato expressing the
corresponding surface RLP Cf-2, Cf-4, Cf-5, or Cf-9, respectively
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(116–118). Similarly, fungal endopolygalacturonases secreted by
Botrytis cinerea trigger plant cell death in a specific Arabidopsis
ecotype (Columbia-0) co-expressing the RLPs RBPG1
(responsiveness to Botrytis cinerea polygalacturonases1)
associated with SOBIR1 (suppressor of BIR1-1) (119). Elicitin
proteins secreted by different species of Phytophthora can also
trigger HR in different solanaceous plants after recognition by the
RLP ELR (elicitin response) which forms a molecular receptor
complex with the RLK BAK1 (brassinosteroid insensitive 1-
associated receptor kinase 1) (120).

Cryptogein produced by Phytophthora cryptogea proved to be
an efficient biological tool to study the mechanism underlying
HR. More precisely, Phytophthora cryptogea induces an immune
response in tobacco plants characterized by a HR and a transient
systemic resistance conferring protection against numerous
micro-organisms, including virulent ones (121). Cryptogein
secreted by this oomycete is the major inducer of plant
immunity and mimics the effects of the oomycete once applied
to tobacco plants and cell suspensions (122, 123). Cryptogein is
an elicitin protein of 10 kDa that acts as sterol carriers and could
supply Phytophthora species with sterols, these latter being sterol
auxotrophs (124). In vitro binding assays provided first evidences
that cryptogein is recognized by a putative plasma membrane
receptor (125). Even if its molecular identity has not been
reported so far, it is plausible to assume that the RLP ELR
fulfils this role (120).

The cellular and molecular processes leading to the
cryptogein-induced HR have been widely studied, mostly using
tobacco cell suspensions. Cells undergoing cell death show a
vacuole shrinkage within few hours (126). This vacuole volume
loss has been functionally linked to fast and ample nitrate effluxes
across the plasma membrane resulting from the activity of anion-
permeable channels (126, 127). Accordingly, inhibition of these
effluxes, as well as Ca2+ influxes from the extracellular space,
suppressed or delayed cell death (128). A similar result was
observed in cryptogein-treated tobacco cells in which the activity
of protein kinases, including MAPK, has been suppressed (129).
All together, these data highlighted that the machinery leading to
cell death is a dynamic process requiring early signaling events.
These latter also include the production of NO and ROS. More
precisely, cryptogein triggers within minutes the activation of a
plasma membrane NADPH oxidase (NtRBOHD) which
produces O: −

2 simultaneously dismutated into H2O2 through
the activity of superoxyde dismutases (130). Interestingly, a
coordinated action of ROS and NO has been highlighted (131).
Indeed, the production of H2O2 is a prerequisite for NO
synthesis and functions as impairment of NtRBOHD
expression compromises NO production as well as its
involvement in cell death. In turn, NO negatively regulates the
level of H2O2 through the formation of peroxynitrite (ONOO–)
resulting from the chemical combination between NO and O:−

2 .
The formation of ONOO–might mitigate the effects of H2O2 and
provide a mean to control the intensity of cell death. The
possibility that NO also mitigates H2O2 production and the
amplitude of HR through the inhibition of NtRBOHD by S-
nitrosation, a NO-dependent post-translational protein
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modification, has been reported in other plant-pathogens
models (132). However, the occurrence of this mechanism in
cryptogein-treated cells has not been confirmed (131).

Caspase-like activities have also been detected in plants
during HR. If genes encoding true orthologs of caspases
(cysteine dependent aspartate-directed proteases) are absent in
the plant genomes, many proteases involved in HR have been
identified such as metacaspases in the cytosol, vacuolar
processing enzymes (VPEs) in the vacuole or saspase,
cathepsin B or papain-like cysteine protease (PLCP-like Rcr3
or Pip1) in the apoplast (9). Interestingly, plant metacaspases are
lysine- and arginine-specific, whereas caspases found in
mammals are aspartate-specific, indicating a different substrate
specificity of these plant enzymes. Based on their protein
structure, the phylogenetic analysis of plant metacaspases
indicated three major clades that can be divided into type I
with, or without, a zinc finger motif in the N-terminus region,
and type II harboring a linker region between the two subunits of
10 and 20 kDa of the caspase-like regulatory and catalytic
domains (133). In Arabidopsis, the type I metacaspase AtMC1
promotes HR during biotic stresses whereas AtMC2 acts
antagonistically by inhibiting plant cell death without any
different pathogen dissemination in both atmc1 and atmc2
mutants (134). The type II metacaspase AtMC4 is a calcium-
dependent cysteine protease which cleaves the PROPEP1 phyto-
cytokine in order to release PEP1 in the apoplast, itself detected
by the PEPR1 PRR in neighboring cells to amplify plant immune
responses during the damage-triggered immunity (135). The
recent resolution of the AtMC4 crystal structure highlights the
inhibitory role of the large linker domain which blocks activation
and substrate access to the catalytic domain (136). Concerning
VPEs, they have been shown to exhibit similar enzymatic
properties as the animal caspase 1 except that they are active
in the vacuole (7). They possess an autocatalytic conversion of
the inactive proprotein (pVPE) into the mature active mVPE
(137). In tobacco plants infected by the tobacco mosaic virus
(TMV), caspase-1 inhibitors or VPE gene silencing reduces the
caspase-1–like activity associated to the rupture of the vacuolar
membrane normally leading to the virus-induced HR (138).
During plant immunity, bacterial harpin-induced cell death
was compromised in Nicotiana benthamiana VPE-silenced
plants (139) and inhibitors of caspase-1 delayed the HR cell
death normally triggered in tobacco cells by the oomycete elicitor
cryptogein (126). In Arabidopsis, a vpe null mutant lacking the
four VPE genes (a−, b−, g−, and d−vpe) was unable to show any
VPE or caspase-like 1 activity (140) and g-vpe mutant was more
susceptible to viral, bacterial or fungal infection (141). The
extracellular proteases Pip1 and Rcr3 also actively participate
to the perception of the fungal pathogen C. fulvum in tomato. C.
fulvum secretes Avr2 into the apoplast which associates with
Rcr3 and Pip1. The mentioned complexes perceived by Cf-2, a
RLP, trigger HR and induce resistance to C. fulvum (142).
Recently, the first proteolytic cascade has been discovered in
plants where the extracellular immune protease proRcr3 is
cleaved by the subtilase P69B in mature Rcr3 that interacts
with Avr2 before that the molecular complex binds to the Cf-2
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RLP (143). Interestingly, this P69B subtilase has been previously
shown to be itself the target of the matrix metalloproteinases Sl2-
MMP and Sl3-MMP (144, 145), suggesting that these MMP are
initiator proteases whereas Rcr3 plays an effector role in this
cascade, as shown for intracellular caspases in mammals.
CELL DEATH REGULATIONS IN
MAMMALS AND PLANTS

In host-pathogen interactions, the control of the regulated cell
death is crucial for both partners. Host have to adapt their
defense responses to contain pathogen development while
avoiding their own lethal outcome. At the opposite, pathogens
need to modulate the regulated cell death to ensure their
infection cycle.

Cross Regulation Mechanisms Between
Immune Signaling Pathways
Organisms need to adapt their response as the infection evolves.
Thus, many interplays and cross-regulation mechanisms exist
between the different immune cell signaling pathways. The
stimulation of one receptor can cause different responses
including the activation of transcriptional programs or the
engagement of cell death pathways, depending on the nature,
the duration and the intensity of the stimuli. These responses can
occur simultaneously or successively and cells have the ability to
change the response very quickly. In animals, the interplay
between TLR and NLR signaling pathways is illustrated by the
activation of NLRP3-inflammasome in a two-step process. The
first priming step involves the TLR-mediated, NF-kB-dependent
expression of NLRP3. Then DAMPs or PAMPs can stimulate the
NLRP3-inflammasome assembly and pyroptosis (76). Thus,
NLRP3-inflammasome-mediated pyroptosis is only activated
when the TLR-mediated immune response is not sufficient to
neutralize pathogens. As illustrated Figure 2, TLR4 is able to
trigger NF-kB-dependent pro-inflammatory response, IFN-
response, necroptosis, or apoptosis. This implies the presence of
accurate regulation mechanisms. In addition to promote the
production of microbicidal molecules and pro-inflammatory
mediators, TLR-mediated NF-kB activation induces the
expression of several survival proteins such as cellular inhibitors
of apoptosis (cIAPs) (146). cIAPs act as E3-ubiquitin ligases
promoting poly-ubiquitination of RIP1. Therefore, they are
required for the TLR-dependent activation of transcriptional
programs while they inhibit RIP-dependent apoptotic and
necroptotic pathways (18, 147). The presence of a second signal
that neutralizes cIAP activity could convert the transcriptional
signal to a cell death signal. It is interesting to note that some
viruses such as baculovirus express proteins from IAP family (148)
that block cell death of infected cells and allow viral propagation.
The different cell death signaling pathways are also interconnected
and have the ability to regulate each other [for review, see (75)].
Blocking apoptosis signaling pathway is generally a prerequisite
for detecting necroptosis because the apoptotic caspase-8 can
inhibit the activity of key components of the necroptosis
Frontiers in Immunology | www.frontiersin.org 11106
signaling pathway including RIP1 and RIP3 (84, 88). On the
contrary, caspase-8 can activate the NLRP3-inflammasome (149)
or directly cleave the caspase-1 leading to pyroptosis (150).
Conversely, inflammasomes can connect caspase-8 to induce
apoptosis (151). The necroptotic effector RIP3 is also able to
cause NLRP3-inflammasome activation and pyroptosis via ROS
production (152, 153).

Although less documented, such cross-regulations between
immune receptor-mediated signaling pathways probably exist in
plants. Mutations or overexpression of some plant immune
receptors such as the RLK CERK1, the co-receptor BAK1, its
closest homolog BKK1 (BAK1-like 1) or the RLP BIR2 (BAK1-
interacting RLK 2) can trigger an enhanced cell death (154–157).
This discovery suggests that a plant surveying system probably
guards these immune receptors from inhibition by pathogen
effectors to trigger HR (9, 158, 159).

Modulation of Immune Signaling Pathways
by Post-Translational Modifications
Molecular mechanisms that dictate the response to immune
receptor stimulation are not completely understood and are
subject of intense research. Because of their flexibility and speed
of implementation, PTMs constitute a remarkable and effective
process to modulate the intracellular signaling and to regulate the
communication networks between cell transduction pathways.

In mammals, as reported above, the priming step required for
the full activation of NLRP3-inflammasome has also been shown to
involve some PTMs of NLRP3 such as phosphorylation (77) and
de-ubiquitination (78). A nice example is given by RIP proteins
(RIP1, RIP2, and RIP3) for which the recruitment into various
multiprotein signaling platforms, the kinase activity and the ability
to engage downstream signaling pathways is orchestrated by PTMs,
mainly ubiquitination and phosphorylation (160). The serine/
threonine kinase RIP1 is recruited to the TLR3 and TLR4-
associated signaling complex (Figure 2) and RIP2 is associated
with the cytosolic NLRs NOD1 and NOD2 (161) (Figure 4). When
polyubiquitinated RIP1 and -2 function as a molecular scaffold. It
promotes the recruitment and the activation of the kinase
complexes IKK and TAB1/TAB2/TAK1 that promote a pro-
survival and pro-inflammatory response (Figure 2) (146, 160,
161). On the other hand the non-degradative ubiquitination also
completely inhibits RIP1 kinase activity that is essential for the
assembly of secondary cytoplasmic cell death signaling platforms
leading to apoptosis or necroptosis (18, 160). Of note, some viruses
have developed strategies to counteract the death of infected cells by
modulating RIP ubiquitination (162).

The plant immune responses are also finely regulated by PTMs
of signaling proteins. The ubiquitin-proteasome system (UPS)
plays an essential role in plant immunity. Among UPS
components, E3 ubiquitin ligases have been particularly studied.
Wang et al. (163) showed that the E3 ligase OsPUB15 interacts
with the homodimerized PID2K, a transmembrane RLK, which
confers rice resistance against Magnaporthe oryzae. Interestingly,
the authors demonstrated that the overexpression of OsPUB15 led
to an enhanced resistance against the pathogen, correlated with
up-regulation of some defense genes, excessive accumulation of
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ROS and plant cell death, suggesting that ubiquitination of PID2K
could favor its activity. However, in this case, the observed lesions
were so important that they conducted to the plant death. Another
example of the importance of UPS in plant immunity is provided
by studies investigating the function of the ATPase cell division
cycle 48 (CDC48). CDC48 is a highly conserved chaperone-like
protein from yeast to plants and animals [also named VCP
(vasolin-containing protein) or p97 in mammals]. This protein
catalyzes the disassembly of protein complexes and/or the
extraction of ubiquitinated proteins from membranes or
chromatin in order to deliver them to the proteasome.
Therefore, it plays an important function in UPS and, more
generally, proteostasis (164). Investigations of CDC48 function
in plant immunity demonstrated that the tobacco CDC48 isoform
rapidly accumulates in its hexameric active structure in tobacco
cells exposed to cryptogein (165). A screening for its binding
partners allowed to the identification of key regulators of the redox
status, including cytosolic ascorbate peroxidase (cAPX) a pivotal
enzyme for ROS removal (165, 166). In CDC48-overexpressing
tobacco cells, the activity of cAPX was impaired, leading to severe
decrease in the cell capacity to respond to oxidative stress (167).
Accordingly, a faster and pronounced cell death was observed in
those cells. Although speculative, the involvement of CDC48 in
cell death could also be explained by its ability to promote the
degradation of cell death repressors. In animals, several studies
have reported a role for its ortholog p97 in viral spreading
(poliovirus, herpes simplex virus, cytomegalovirus, or influenza
virus) by regulating the cycle of viral replication in infected cells
(168). However, the mechanisms and the relationship with
immune receptor-induced cell death have not been
clearly demonstrated.

Histone deacetylases (HDACs) of type 2 (HD2s) have also
been identified as important regulators of the cryptogein-
induced HR in tobacco. HD2s design a plant specific family of
nuclear histone deacetylases (169). Two HD2s tobacco isoforms,
NtHD2a and NtHD2b, were shown to undergo a fast
phosphorylation in tobacco cells treated with cryptogein (170).
This process was followed by a decrease both at the transcript
and protein levels. Interestingly, silencing of HD2 in cell
suspensions or in planta led to a faster and amplified cell death
manifested by exacerbated HR symptoms. Based on these data, it
has been proposed that NtHD2a and NtHD2b act as constitutive
negative regulators of HR by modulating the expression or
activity of HR regulators or effectors which identities remain to
be discovered. In a similar manner, a role for histone deacetylases
in the acquisition of cell resistance phenotype has also been
observed in mammal macrophages. An upregulation of HDAC8
has been correlated with the acquisition of a resistance
phenotype to anthrax lethal toxin (LeTx). HDAC inhibitors
sensitized cells to LeTx-induced pyroptosis while inversely
upregulation of HDAC8 prevents LeTx-induced cell death (171).

Regulation of Immune Signaling Pathways
by miRNAs
As NLRs are often tightly linked to strong immune process
including cell death, these proteins need to be finely tuned to
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avoid any deleterious impact on the plant fitness in the absence
of pathogen. In accordance, animals and plants possess several
regulation processes among which are miRNAs. These
regulatory elements function similarly in animals and plants
and are in the same way excised from long primary miRNA
transcripts by Dicer or Dicer-like enzymes (such as DCL1) before
being loaded into an RNA-induced silencing complex (RISC)
and to repress the gene by DNA methylation or by cleavage,
destabilization or translational inhibition of its messenger RNA
(mRNA) (172). These miRNAs are involved in the regulation of
different biological processes, and particularly studied in plants
in development and defense contexts. In addition to interact with
exogenous nucleic acid and defend plant cells against viral
pathogens (173), some host miRNAs also target their own
transcripts encoding immune receptors such as the NLR
proteins (174–177). This is believed to allow them to control
their immune reactions in the absence of pathogen and therefore
to avoid any unnecessary waste of energy. In addition, since some
bacterial and viral pathogens infect their host by blocking its
miRNA interference process, the decrease in these miRNAs
would also, at the same time, lead to an accumulation of the
previously repressed immune receptors, ultimately leading to a
potentiation of defenses (174, 176, 178).

Regulation of Plant Immunity by
Phytohormones
Plant immunity is also regulated by a complex network of
phytohormones, which integrate signals from biotic and abiotic
stresses in order to finely tune the spatio-temporal expression of
the different immune responses. Among them, salicylic acid (SA)
and jasmonic acid (JA) play major roles and their antagonism is
believed to specifically adapt the plant immunity to biotrophic or
necrotrophic pathogens, respectively (179). SA has been shown
to positively regulate the HR cell death during interaction with
biotrophic pathogens whereas JA seems to be more important for
the plant resistance against invading necrotrophs or insects.
Actually, low level of SA downregulates HR cell death whereas
high level of SA triggers plant cell death (180). Moreover, this
hormonal balance between SA and JA seems to finely regulate
plant cell death locally as SA accumulates into the HR-related cell
death zone whereas JA level increases in the surrounding area to
act antagonistically with the SA-pathway (181).

Pathogens Interfere With Cell Death
Signaling Pathways to Their Own Benefits
According to their infection cycle, some pathogens also interfere
with regulated cell death signaling pathways to their own benefits
(182). So, it is generally accepted that viruses and biotrophic
pathogens whose survival is fully dependent on the intracellular
machinery of host cells can delay or inhibit cell death contrary to
necrotrophic ones which take nutrients from dead cells.
However, the classification does not always reflect the
complexity of the pathogen cycle infection. The strategies used
by pathogens to evade host defenses in order to favor their
multiplication and spread have been widely studied in animal
cells. Many viruses or bacteria deliver anti-apoptotic proteins
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that directly block apoptotic, necroptotic and/or pyropotic
machineries. For example, caspase-1 and/or caspase-8 involved
in pyroptosis and apoptosis (Figures 2 and 4), respectively, can
be directly inhibited by serpin (serine proteinase inhibitor)
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homologs encoded by poxvirus, the influenza virus protein
NS1, the vaccinia virus protein B15N or effectors molecules
secreted by Pseudomonas aeruginosa or Yersinia spp. (183).
The necroptosis executor RIP3 can be sequestered by MLKL
TABLE 1 | Main signaling pathways driving cell death or transcriptional reprogramming in response to activation of membrane-associated or intracellular immune
receptors in animals and plants.

Animals Plants

Receptors TLRs, CLRs RLKs, RLPs

Membrane-
associated
receptors

Signal transduction domain homotypic interacting domains kinase domains

Mechanisms of signal
transduction

assembly of multiprotein complexes in which executors are
activated by proximity

PRR oligomerization, kinase activation &
trans-phosphorylation

Signaling pathways leading to
transcriptional reprogramming

MAPK, NF-kB or IRFs MAPKs and phosphorylation-dependent
kinases
ROS/NO production
Ca2+ influx
transcription factors activation
Phyto-cytokines secretion

(MyD88, TRIF or RIP1-dependent)

Cell Death Necroptosis Apoptosis Hypersensitive Response (HR)*
Cell death signaling,
executors,
associated features,
regulation

Signaling platforms:
Necrosome Ripoptosome Ions fluxes across the PM

Production of NO and ROS
Key executors: Inhibition/degradation of cell death

repressors (HD2s…)RIP3, RIP1,
pore-forming
MLKL

Caspases cascade Proteases activation (metacaspases in the
cytosol, VPEs in the vacuole)

(RIP1 dependent (caspase-8, -3, -7)
or independent) Phyto-cytokines secretion

associated features: Chromatine condensation, nucleus
disruption,

ROS, membrane
permeabilisation

Silent form of cell death vacuolar collapse

Intracellular
receptors

Receptors NLRs, RLRs, ALRs NLRs

Signal transduction Homotypic interacting domains Proteins interaction

Mechanisms of signaling
activation

Assembly of multiprotein complexes in which executors are
activiated by proximity

Effectors detection (direct) or proteins
modification (indirect)

Signaling pathways leading to
transcriptional reprogramming

NODosome assembly leading to Unknown
MAPK & NF-kB (direct activation of transcription factors by

NLRs or linked to pore-forming structures
in the PM?)

Cell Death Main: Pyroptose Hypersensitive response (HR)
Alternative: Necroptose

Signaling pathways/platforms
leading to cell death

Inflammasome Resistosome, other NLR complexes

Key executors of cell death Caspase 1, Unknown (pore-forming Ca2+-dependent
activation of proteolytic cascade?)pore-forming Gasdermin D

Associated-features, regulations IL-1b, IL-18 release, membrane permeabilisation, ionic
unbalance, ROS production

ROS & NO production, phytohormones
accumulation, membranes
permeabilization, release of active
proteases and phyto-cytokines
ALR, AIM2 (absent in melanoma 2)-like receptors; AtEDS1, Arabidopsis thaliana enhanced disease susceptibility 1; AtNRG1, Arabidopsis thaliana N-requirement gene 1; AtSAG101,
Arabidopsis thaliana senescence-associated gene101; CLR, C-type lectin receptors; HD2, Histone deacetylase; HR, Hypersensitive response; IL, Interleukin; IRF, Interferon-regulatory
factors; MAPK, Mitogen-activated protein kinase; MLKL, Mixed lineage kinase domain-like; MyD88, myeloid differentiation factor 88; NLR, Nucleotide-binding and oligomerization domain
(NOD)-Like Receptor [animals] or Nucleotide-Binding Domain (NBD)-containing LRRs [plants]; NO, Nitric oxide; PLCP, papain-like cysteine proteases; PM, plasma membrane; RLK,
Receptor-Like Kinase; RIP, receptor-interacting kinase; RLP, Receptor-Like Protein (contains a short cytoplasmic domain devoid of kinase activity); RLR, RIG-I-like receptors; ROS,
Reactive oxygen species; TLRs, Toll-like receptors; TRIF, TIR-domain-containing adaptor-inducing IFN-b; VPE, Vacuolar processing enzyme.
*HR cell death induced by membrane-associated receptors is an exceptional outcome.
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homologs produced by poxviruses (184). RIP1 involved in TLR3
and 4 signaling pathways (Figure 4) is also frequently found as a
target. Virus or bacteria effectors can modulate the PTM of RIP1
such as phosphorylation or ubiquitination, thereby affecting its
kinase activity and its cell death-promoting ability (apoptosis or
necroptosis). Thus, the latent membrane protein 1 (LMP1) from
Epstein-Barr virus (EBV) and op-IAP produced by baculovirus
can promote the poly-ubiquitination of RIP1 (162, 185) and the
Yersinia pestis effector YopJ/P modulates the phosphorylation
status of RIP1 by targeting the kinases TAK1 and IKK or MK2
(186). Pathogens can bypass host defense mechanisms by blocking
signaling pathways just downstream of the pathogen recognition-
receptor. This is illustrated by the enterohemorrhagic bacteria type
3 that produces a protease that cleaves the RHIM domain owned
by RIP1, RIP3, TRIF, the adaptor proteins involved in TLR3 and
TRL4-mediated signaling pathways and the cytosolic DNA sensor
DAI (187). On the other hand, RHIM-homotypic interaction that
mediates the assembly of the necrosome, as well as the recruitment
of RIPs to sensors (Figure 4) can be affected by the presence of
viral RHIM-containing proteins such as the proteins ICP6 and
ICP10 produced by Herpes simplex virus (188), vaccinia virus
innate immune evasion protein E3 (189), or vIRA encoded by the
murine cytomegalovirus (190).

What is the situation in plants? Biotrophic or hemibiotrophic
phytopathogens have to keep plant cells alive to ensure their
infection cycle. In this way, they secrete many effectors which
target receptors or key signaling components to suppress host
immunity triggered by their own invading patterns (191, 192).
As examples, RipAY produced by Ralstonia solanacearum
inhibits SA-dependent defense responses and HR induced by
the effector RipE1 in Nicotiana benthamiana (193), and RipAK
suppresses catalase activity and HR of Nicotiana tabacum (194).
Phytophtora infestans AVR3a targets the E3 ligase CMPG1 and
suppresses HR induced by the elicitin INF1 in Nicotiana
benthamiana (195, 196). In addition, it has been shown that P.
infestans PexRD2 interacts with the KD of MAPKKKϵ, a positive
regulator of cell death, increasing the susceptibility of Nicotiana
benthamiana to this pathogen (197).

Inversely, necrotrophic phytopathogens favor plant cell death
to ensure the infection spreading. For example, the broad host
range necrotrophic plant pathogen Sclerotinia sclerotiorum
secretes oxalic acid (OA) which is considered as a key
molecule for its pathogenesis. It has been shown that OA has
opposite roles: i) to suppress host oxidative burst and then HR at
early state of infection allowing the establishment of the
pathogen and ii) to activate plant cell death, via ROS
production, facilitating disease development (198, 199). Besides
OA secretion, Sclerotinia sclerotiorum produces several effectors
or toxins inducing plant cell death (200). For some of them,
secreted in apoplast such as SsNE1-SsNE5, the death-inducing
signal is mediated by the BAK1/SOBIR1 receptor complex (200).
The involvement of these RLK was already highlighted for the
necrotizing activity of the xylanase BcXYG1 secreted by Botrytis
cinerea (201). Others would be internalized in host cells as the
“effector-like” protein SsSSVP1 which interacts with QCR8, a
subunit of plant cytochrome complex in mitochondrial
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respiratory chain (202). This leads to the loss of function of
QCR8 and to plant cell death induction. Actually, numerous
phytopathogens secrete several toxins or effectors to induce cell
death. Around 180 apoplastic cell death-inducing proteins
(CDIPs) have been identified and for some of them, the
associated receptors are known (203, 204). Other toxins are
internalized in host cells and interact in some case with NB-LRR
(182). Thus, the Arabidopsis susceptibility to Cochliobolus
victoriae is due to the interaction between the secreted toxin
victorin with the NB-LRR LOV1. In this case, the pathogen co-
opts HR to facilitate its development (205).

A beneficial effect of cell death for pathogens to ensure
infection cycle has also been described in mammals. It is well
illustrated by the human immunodeficiency virus (HIV) that
hijacks the immune surveillance by promoting the pyroptosis of
immune cells (CD4+ lymphocytes) (206).
CONCLUDING REMARKS

Although number of questions still remain to address, the
intense research of the scientific communities on innate
immunity in mammals during the three last decades and
recent technological advances gave rise to a relative clear
scheme of the cell death-signaling pathways activated in
response to immune receptors (Table 1). By comparison, the
understanding of the immune receptor-induced cell death
signaling pathways remains incipient in plants although the
use of Arabidopsis mutants allowed the identification of
signaling molecules and regulators of HR (207–209). Up to
date, more than 600 RLKs and 100 NLRs have been
inventoried but only few have been characterized and many
have not even been identified yet. The abundance of immune
receptors, the different processes used for their activation as well
as the diversity of cellular models make the decoding of cell death
signaling pathways very difficult. The generic name HR does not
reflect the complexity of signaling pathways and, as in mammals,
recognition of PAMPs, DAMPs or effectors does probably not
lead to the engagement of one unique cell death response but
likely activates different cell death-signaling pathways with
specific features and outcomes. The cell death signal also likely
depends on the cell type and plant species.

The plant immune response is associated with different
biochemical modifications and cellular signals that include
MAPK activation, oxidative and nitrosative bursts, calcium
fluxes, phytohormones production, protease activation, and
transcriptional reprogramming (5). Studies analyzing their
involvement in immune receptor-induced cell death reported
controversial results and their direct role in transducing cell
death signal is still debated. A closer characterization of the
spatial and temporal aspects of these cellular events could
probably provide a better view of their involvement. By putting
animal models into perspective, we can hypothesize that the
stimulation of plant membrane PRRs or NLRs have the ability to
engage (i) signaling pathways leading to transcriptional
reprogramming responsible for phytohormones production
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and expression of defense genes, and (ii) a cell death signaling
pathway that can culminate into ions imbalance and in the
rupture of plasma membrane, both regulated by interplays and
cross-regulation mechanisms.

The analysis of plant NLRs structure showed that the signal
transduction domains belong to conserved homotypic
interacting domain family. This suggests that mechanisms of
activation involve the assembly of multiprotein platforms. A
range of evidences indeed suggests that plant NLRs form
signaling platforms to promote cell death (39, 96–99, 204,
210), as observed for mammals NLRs. The recent works of
Wang and colleagues (96, 210) highlighting the presence of a
resistosome that can translocate into plasma membrane to
probably form pore-like structures provided very important
elements into understanding the plant NLR-mediated cell
death signaling. It is interesting to note that the lumen of the
funnel-shape structure found in the resistosome has negative
electrostatic potentials given by two negatively charged glutamic
acid residues (96). Such negatively charged glutamate residue is
thought to be critical for anion selectivity in several human Ca2+

voltage-dependent channels (211, 212). It is thus tempting to
speculate that this selectivity for cations could be associated with
a death process. The similarities between the ZAR1-resistosome
and NLR inflammasomes as discussed in the recent review of
Xiong et al. (213) suggest that the NLR-mediated cell death
signaling pathway could be a conserved process.

While the role and mechanisms of activation of proteases (i.e.,
caspases-1, -8, and -3) in PRR-induced signaling pathways start
to be well characterized in mammals, the activation mechanisms
of plant proteases and their importance in the immune-receptor-
induced HR remain important questions to address. Indeed, our
knowledge about the proteolytic cascades involved in HR cell
death is really scarce and fragmentary. Of interest, AtMC4 has
been recently shown to be activated by Ca2+ (136), suggesting a
link between calcium influx, metacaspase activation and release
of mature phytocytokines. However, many things remain to
discover such as the different proteolytic cascades involved,
their initiation and regulation during plant HR.
FUTURE APPLICATIONS FOR PLANT
PROTECTION

In Arabidopsis, the screening of vast mutant collections and
naturally occurring ecotypes, as well as forward genetic
approaches, has led to the successful identification of novel
immune receptors involved in HR cell death. In crops,
analyzing genomic variations within different cultivars but also
the “wild” relative species and their introgression lines allowed to
map the Quantitative Trait Loci (QTLs) related to disease
resistance. Although QTLs will mostly carry R-genes, they may
also contain PRR genes (encoding RLKs or RLPs). In a scientific
point of view, it is interesting to note that PRRs can be
successfully transferred from one plant species to another to
provide a novel source of resistance. A very effective
Frontiers in Immunology | www.frontiersin.org 15110
demonstration was achieved in tomato (from the Solanaceae
family), where the transfer of the EFR RLK receptor (from the
Brassicaceae family) led to a great resistance of plants against a
wide range of different bacterial pathogens (214). Different
studies also showed that the ectodomain and KDs from
distinct PRRs can be combined in order to form chimera
receptors with preserved signal transduction. Such a chimeric
receptor was built from the chitin-binding ectodomain of
OsCEBiP and the KD of Xa21. This chimera receptor was able
to initiate HR in rice thus conferring to the plant a highly
improved resistance to the fungus Magnaporthe oryzae. This
strategy thus represents an interest for practical use in disease
resistance engineering (215).

Analysis of the polymorphism occurring in plant immune
receptors or cell death regulators in different cultivars or species
could lead to the identification of more efficient variants. As an
alternative to the transgenic approach, conventional breeding
can be assisted by the use of molecular markers that help to
deliver the desired gene into the crop, pyramiding it with other
genes important for the plant resistance such as R-genes.

All over, the immune receptor-based breeding, the transfer
and creation of novel chimeric PRRs might be applicable as an
alternative in agriculture disease and pest management, as a
“tailored immune-receptor therapy” that might provide more
durable and broader resistance when associated with R-genes.
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de Bourgogne-Franche-Comté”, the ANR, (“Investissements
d’Avenir” program, grant # ANR-11-LABX-0021) and the
European Union program FEDER.
March 2021 | Volume 11 | Article 612452

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Roudaire et al. Immune Receptors and Cell Death
REFERENCES

1. Klessig DF, Choi HW, Dempsey DA. Systemic Acquired Resistance and
Salicylic Acid: Past, Present, and Future. Mol Plant Microbe Interact (2018)
31(9):871–88. doi: 10.1094/MPMI-03-18-0067-CR

2. Amarante-Mendes GP, Adjemian S, Branco LM, Zanetti LC, Weinlich R,
Bortoluci KR. Pattern Recognition Receptors and the Host Cell Death
Molecular Machinery. Front Immunol (2018) 9:2379. doi: 10.3389/
fimmu.2018.02379

3. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al.
Molecular mechanisms of cell death: recommendations of the
Nomenclature Committee on Cell Death 2018. Cell Death Differ (2018)
25:486–541. doi: 10.1038/s41418-018-0102-y

4. Doran AC, Yurdagul A Jr., Tabas I. Efferocytosis in health and disease. Nat
Rev Immunol (2020) 20(4):254–67. doi: 10.1038/s41577-019-0240-6

5. Locato V, De Gara L. Programmed Cell Death in Plants: An Overview.
Methods Mol Biol (2018) 1743:1–8. doi: 10.1007/978-1-4939-7668-3_1

6. Lord CE, Gunawardena AH. Programmed cell death in C. elegans,
mammals and plants. Eur J Cell Biol (2012) 91(8):603–13. doi: 10.1016/
j.ejcb.2012.02.002

7. Hatsugai N, Yamada K, Goto-Yamada S, Hara-Nishimura I. Vacuolar
processing enzyme in plant programmed cell death. Front Plant Sci
(2015) 6:234. doi: 10.3389/fpls.2015.00234

8. Balakireva AV, Zamyatnin AA. Cutting Out the Gaps Between Proteases
and Programmed Cell Death. Front Plant Sci (2019) 10:704. doi: 10.3389/
fpls.2019.00704

9. Pitsili E, Phukan UJ, Coll NS. Cell Death in Plant Immunity. Cold Spring
Harb Perspect Biol (2020) 12(6):a036483. doi: 10.1101/cshperspect.a036483

10. Medzhitov R, Janeway CAJr. Innate immunity: the virtues of a nonclonal
system of recognition. Cell (1997) 91(3):295–8. doi: 10.1016/s0092-8674(00)
80412-2

11. Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, et al. A receptor
kinase-like protein encoded by the rice disease resistance gene, Xa21. Science
(1995) 270(5243):1804–6. doi: 10.1126/science.270.5243.1804

12. Flor H. Current status of the gene-for-gene concept. Annu Rev Phytopathol
(1971) 9:275–96. doi: 10.1146/annurev.py.09.090171.001423

13. Jones JDG, Dangl JL. The plant immune system. Nature (2006) 444
(7117):323–9. doi: 10.1038/nature05286

14. Cook DE, Mesarich CH, Thomma BP. Understanding plant immunity as a
surveillance system to detect invasion. Annu Rev Phytopathol (2015) 53:541–
63. doi: 10.1146/annurev-phyto-080614-120114

15. Gust AA, Pruitt R, Nürnberger T. Sensing Danger: Key to Activating Plant
Immunity. Trends Plant Sci (2017) 22(9):779–91. doi: 10.1016/
j.tplants.2017.07.005

16. Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol
(2014) 5:461. doi: 10.3389/fimmu.2014.00461

17. Salaun B, Coste I, Rissoan MC, Lebecque SJ, Renno T. TLR3 can directly
trigger apoptosis in human cancer cells. J Immunol (2006) 176(8):4894–901.
doi: 10.4049/jimmunol.176.8.4894

18. Lawlor KE, Feltham R, Yabal M, Conos SA, Chen KW, Ziehe S, et al. XIAP
Loss Triggers RIPK3- and Caspase-8-Driven IL-1beta Activation and Cell
Death as a Consequence of TLR-MyD88-Induced cIAP1-TRAF2
Degradation. Cell Rep (2017) 20(3):668–82. doi: 10.1016/j.celrep.2017.06.073

19. Feoktistova M, Geserick P, Kellert B, Dimitrova DP, Langlais C, Hupe M,
et al. cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing
intracellular cell death complex differentially regulated by cFLIP isoforms.
Mol Cell (2011) 43(3):449–63. doi: 10.1016/j.molcel.2011.06.011

20. He S, Liang Y, Shao F, Wang X. Toll-like receptors activate programmed
necrosis in macrophages through a receptor-interacting kinase-3-mediated
pathway. Proc Natl Acad Sci USA (2011) 108(50):20054–9. doi: 10.1073/
pnas.1116302108

21. Estornes Y, Toscano F, Virard F, Jacquemin G, Pierrot A, Vanbervliet B,
et al. dsRNA induces apoptosis through an atypical death complex
associating TLR3 to caspase-8. Cell Death Differ (2012) 19(9):1482–94.
doi: 10.1038/cdd.2012.22

22. Boller T, Felix G. A Renaissance of Elicitors: Perception of Microbe-
Associated Molecular Patterns and Danger Signals by Pattern-Recognition
Frontiers in Immunology | www.frontiersin.org 16111
Receptors. Annu Rev Plant Biol (2009) 60:379–406. doi: 10.1146/
annurev.arplant.57.032905.105346

23. Speakman EA, Dambuza IM, Salazar F, Brown GD. T Cell Antifungal
Immunity and the Role of C-Type Lectin Receptors. Trends Immunol (2020)
41(1):61–76. doi: 10.1016/j.it.2019.11.007

24. Eriksson M, Johannssen T, von Smolinski D, Gruber AD, Seeberger PH,
Lepenies B. The C-Type Lectin Receptor SIGNR3 Binds to Fungi Present in
Commensal Microbiota and Influences Immune Regulation in Experimental
Colitis. Front Immunol (2013) 4:196. doi: 10.3389/fimmu.2013.00196
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Innate immune activity plays an essential role in the development of Kawasaki disease (KD)
vasculitis. Extracellular release of high mobility group box-1 (HMGB-1), an endogenous
damage-associated molecular pattern protein that can activate the innate immune system
and drive host inflammatory responses, may contribute to the development of coronary
artery abnormalities in KD. Prednisolone (PSL) added to intravenous immunoglobulin
treatment for acute KDmay reduce such abnormalities. Here, we evaluate the dynamics of
HMGB-1 and therapeutic effects of PSL on HMGB-1-mediated inflammatory pathways on
KD vasculitis in vitro. Serum samples were collected prior to initial treatment from patients
with KD, systemic juvenile idiopathic arthritis (sJIA), and from healthy controls (VH), then
incubated with human coronary artery endothelial cells (HCAECs). Following treatment of
KD serum-activated HCAECs with PSL or PBS as a control, effects on the HMGB-1
signaling pathway were evaluated. Compared to that from VH and sJIA, KD serum
activation induced HCAEC cytotoxicity and triggered extracellular release of HMGB-1. KD
serum-activated HCAECs up-regulated extracellular signal-regulated kinase (ERK)1/2, c-
Jun N-terminal kinase (JNK) and, p38 phosphorylation in the cytoplasm and nuclear factor
kappa B (NF-kB) phosphorylation in the nucleus and increased interleukin (IL)-1b and
tumor necrosis factor (TNF)-a production. PSL treatment of KD serum-activated HCAECs
inhibited extracellular release of HMGB-1, down-regulated ERK1/2, JNK, p38, and NF-kB
signaling pathways, and decreased IL-1b and TNF-a production. Our findings suggest
that extracellular HMGB-1 plays an important role in mediating KD pathogenesis and that
PSL treatment during the acute phase of KD may ameliorate HMGB-1-mediated
inflammatory responses in KD vasculitis.

Keywords: pediatrics, Kawasaki disease (KD), DAMPs (damage-associated molecular patterns), prednisolone, high
mobility group box-1
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Ueno et al. Prednisolone Suppresses HMGB-1 Inflammatory Responses
INTRODUCTION

Kawasaki disease (KD), an acute systemic vasculitis of unknown
etiology, commonly occurs in children (1), and can ultimately
lead to complex coronary artery abnormalities (CAAs). Despite
standard treatment with high-dose intravenous immunoglobulin
(IVIG) and aspirin, approximately 10% to 20% of patients
experience persistent or recurrent fever and appear to have
elevated risk of developing CAAs (2, 3). Notably, combined
treatment with prednisolone (PSL) is more effective in
preventing CAAs than IVIG alone in non-responders, thereby
reducing the need for additional rescue treatments (4). Thus,
corticosteroid combination therapy is considered a promising
pre-emptive primary treatment (5, 6).

Innate immune activity is integral toward KD vasculitis
etiology (7). High mobility group box-1 (HMGB-1), a
representative damage-associated molecular pattern (DAMP)
protein, plays a central role in regulating programmed cell
death and survival (8). As sentinel innate immune cells,
endothelial cells release DAMPs as endogenous danger signals
that alert the innate immune system to unscheduled cell death,
microbial invasion, and stress (9). Extracellular HMGB-1
coordinates cellular responses associated with immune system
activation, cell migration, cell growth, and tissue repair and
regeneration, and binds to receptors, such as receptor for
advanced glycation end products (RAGE) and Toll-like
receptors (TLRs) to activate proinflammatory responses.
Downstream signaling involving mitogen-activated protein
kinase (MAPK) such as extracellular signal-related kinase
(ERK)/c-Jun N-terminal kinase (JNK)/p38 and nuclear factor
kappaB (NF-kB) facilitates cellular responses including
inflammatory cytokine, chemokine, and corresponding
receptor expression (10). Injury-evoked increased HMGB-1-
mediated inflammatory responses can increase cardiovascular
disease severity (11–14). Notably, serum HMGB-1 and S100
protein levels are also elevated in patients in the acute phase of
KD (15–17). Moreover, Nucleotide-binding oligomerization
domain-like receptor family, pyrin domain-containing 3
(NLRP3)-dependent endothelial cell pyroptosis via HMGB-1/
RAGE/cathepsin B signaling may contribute to coronary artery
endothelial cell (CAEC) damage in KD vasculitis (18). Thus,
DAMP-mediated innate immune system activation may
facilitate pathological inflammatory responses in KD vasculitis.

We hypothesize that PSL treatment, a standard anti-
inflammatory therapy, may suppress inflammation in KD by
reducing inflammatory cytokines and DAMPs produced by
Abbreviations: KD, Kawasaki disease; HMGB-1, high mobility group box-1; PSL,
Prednisolone; sJIA, systemic juvenile idiopathic arthritis; HCAECs, human
coronary artery endothelial cells; ERK, extracellular signal-regulated kinase;
JNK, c-Jun N-terminal kinase; NF-kB, nuclear factor kappa B; NLRP3,
Nucleotide-binding oligomerization domain-like receptor family, pyrin domain-
containing 3; IL, interleukin; TNF, tumor necrosis factor; CAA, coronary artery
abnormalities; IVIG, intravenous immunoglobulin; DAMPs, damage-associated
molecular pattern; RAGE, receptor for advanced glycation end products; TLRs,
Toll-like receptors; PBS, phosphate buffered saline; MTT, 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyl tetrazolium bromide; GAPDH, glyceraldehyde-3-phosphate
dehydrogenase; RT-PCR, reverse transcription–polymerase chain reaction.

Frontiers in Immunology | www.frontiersin.org 2118
CAECs consequent to acute KD vasculitis. In this study, we
clarified the role of HMGB-1 and evaluated the in vitro
therapeutic effects of PSL on HMGB-1-mediated inflammatory
responses in CAECs during acute KD vasculitis.
MATERIALS AND METHODS

Patients
The study was approved by the Kagoshima University and
Kagoshima City Hospital Ethics Committee and performed in
accordance with the International Conference on Harmonization
guidelines for Good Clinical Practice and the Declaration of
Helsinki (approval number: MD26-156, Approval date: January
13, 2016). We enrolled eight consecutive patients undergoing
treatment for KD at the host institution applying the following
exclusion criteria: 1) cardiovascular disease, hematological
disease, congenital malformations, primary disease of major
organs, and genetic/chromosomal abnormalities; 2) bacteremia
or sepsis with positive blood culture; 3) recurrent KD symptoms;
4) previous use of corticosteroids or immunosuppressive
treatment; 5) development of coronary artery lesions. We used
four healthy subjects and four patients with systemic juvenile
idiopathic arthritis (sJIA) as vehicle and disease controls,
respectively. Written informed consent was obtained from the
parents of all study participants and serum samples were
collected from the patients and healthy subjects.

KD was defined using the Japanese criteria (19). The first day of
illness was defined as the first day of fever. Treatment was initiated
when KD was considered highly likely even if all KD criteria were
not met. Patients with KD received a single IVIG infusion (2 g/kg)
together with aspirin (30 mg/kg/day, decreased to 3 to 5 mg/kg/day
if afebrile for ≥ 28 days following fever onset).
Blood-Sample Collection
Serum samples were collected from patients with KD and sJIA
before initial treatment and from healthy controls, separated by
centrifugation (700 × g, 15 min), and stored at −40°C.
Endothelial Cell Culture and Preparation
Primary human CAECs (HCAECs) were purchased from
PromoCell (Heidelberg, Germany) and cultured using MV 2 kit
endothelial cell growthmedium (PromoCell). Mediumwas changed
every 24 h. Cells at 70% to 80% confluence were seeded into 96-, 8-,
or 6-well microplates for assays and fluorescence microscopy. Third
passage HCAECs were used for experiments. Vehicle (VH) and KD
controls comprised HCAECs at 90% confluence incubated for 24 h
in MV 2 basal medium (PromoCell) with 7.5% healthy volunteer or
KD patient serum, respectively. Serum-activated HCAECs treated
with phosphate buffered saline (PBS) and PSL (10−6 M/well (20);
Shionogi, Osaka, Japan) for 24 h were defined as KD+PBS and KD+
PSL HCAECs, respectively. After each experiment, media were
replaced with serum-free fresh MV 2 growth media to discriminate
serum cytokine effects. ELISA evaluation of final washes
demonstrated TNF-a levels (R&D systems, Minneapolis, MN,
May 2021 | Volume 12 | Article 640315
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USA) below detectable limits (< 5.5 pg/mL) (Supplementary
Figure 1). Experiments were repeated at least twice and media
were maintained between pH 7.2 and 7.4.

Analysis of Serum-Activated HCAEC
Viability and Cytotoxicity
Cell viability wasmeasured using 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyl tetrazolium bromide (MTT) assay (Dojindo, Kumamoto,
Japan).HCAECswere cultured in growthmedium in 96-well plates
(0.5 × 104 cells/well). Following each experiment, medium was
replaced with fresh MV 2 basal medium and the final sample
volume adjusted to 100 mL/well. Samples were subjected to MTT
assay according to manufacturer instructions and measured in
duplicate, using Microplate Reader (Tecan Infinite M200).

Cytotoxicity was evaluated via fluorescence to measure the
activity of dead-cell protease, which is released from cells with
impaired membrane integrity, using a CytoTox-Glo cytotoxicity
assay (Promega, Madison, WI, USA) according to manufacturer
instructions. Briefly, HCAECs (0.5 × 104 cells/well) were cultured
in growth medium in 96-well plates. After each experiment,
medium was replaced with fresh MV 2 basal medium (100 mL/
well final volume). Fluorescence measured using a Tristar
multimode microplate reader (LB 941; Berthold Technologies,
Oak Ridge, TN, USA), was directly proportional to the number
of dead cells. Each sample was measured in duplicate.

Assessment of Extracellular
HMGB-1 Released From KD
Serum-Activated HCAECs
HMGB-1 content in supernatant released from KD serum-
activated HCAECs for 24 h was measured in duplicate using a
commercial ELISA kit (Shino-Test Corporation, Tokyo, Japan)
according to manufacturer instructions. The minimumHMGB-1
detection value was 1.0 ng/mL.

Quantitative Analysis of Receptors on KD
Serum-Activated HCAECs
Total RNA samples were extracted from cell lysates of serum-
activated HCAECs using the RNeasy Mini Kit (#74104; QIAGEN,
Hilden, Germany) according tomanufacturer’s instructions. Reverse
transcription was performed using a PrimeScript RT Reagent Kit
(TaKaRa, Tokyo, Japan) according to manufacturer’s instructions.
An equivalent volume of cDNA solution was used for real-time PCR
quantification using a Thermal Cycler Dice Real Time System
(TaKaRa), with glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) as the internal standard. At least two biological replicates
were performed and specific PCR product amplification was
confirmed by melting curve analysis. Gene expression was
calculated using the 2−DDCT method. Table 1 lists primer sequences
(GAPDH, RAGE, TLR2, and TLR4) and RT-PCR conditions.

Soluble RAGE (sRAGE) Production
Supernatant sRAGE levels released from KD serum-activated
HCAECs for 24 h were measured in duplicate using a
commercially available ELISA kit (R&D Systems) according to
manufacturer instruction. The minimum sRAGE detection value
was 4.21 pg/mL.
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Immunofluorescence Staining for HMGB-1
HCAECspreparedon8-well imaging chamber (7.0× 104 cells/well)
were incubated with MV 2 growth medium (37°C, 5% CO2). VH,
KD control, KD+PBS, and KD+PSL HCAECs were washed with
PBS, fixed, permeabilized using the Image-iT fixation/
permeabilization kit (Invitrogen, Grand Island, NY, USA) and
intracellularly stained with Alexa Fluor 594 anti-HMGB-1 (red)
in blocking buffer overnight at 4°C. Nuclei were counterstained
using ProLong Gold Antifade reagent with 4′,6-diamidino-2-
phenylindole (DAPI, blue) (Life Technologies, Eugene, OR,
USA). Randomly selected cells (n = 100) from each group were
observed using fluorescence microscopy (Keyence BZ-X700; Carl
Zeiss, Oberkochen, Germany). Quantitative analysis of
immunofluorescence staining was performed using ImageJ
software (National Institutes of Health, Bethesda, MD, USA) (21).

Western Blot Analysis
Third-passageHCAECswerecultured in6-wellplates (4.0×105cells/
well) with growth medium. After each experiment, adherent cells
were lysed using the total protein extraction kit for animal cultured
cells and tissues (Invent Biotechnologies, Plymouth, MN, USA) and
prepared for immunoblotting. Each 15 mL sample was subjected to
10% gradient SDS-PAGE and electrotransferred onto a
polyvinylidene difluoride membrane, then immunoblotted using
primary antibodies against phosphorylated ERK 1/2 (p-ERK; Cell
Signaling Technology (CST), Beverly, MA, USA; 1:2,000 dilution),
ERK 1/2 (CST; 1:1,000), phosphorylated stress-activated protein
kinase (SAPK)/c-Jun amino terminal kinase (JNK) (CST; 1:1,000),
SAPK/JNK (CST; 1:1,000), phosphorylated p38 (CST; 1:1,000), p38
(CST; 1:1,000), anti-NLRP3 (CST; 1:1,000), anti-cleaved Caspase-1,
(CST; 1:1,000), IL-1b (CST; 1:1,000), and TNF-a (CST; 1:1,000),
followed by horseradish peroxidase-conjugated secondary antibody
(Medical&Biological Laboratories, Nagoya, Japan; 1:1,000). ForNF-
kB p65, nuclear and cytoplasmic proteins were extracted using an
extraction kit (SC-003, Invent Biotechnologies) according to
manufacturer instructions. Each 15 mL sample was subjected to
10% gradient SDS-PAGE and electrotransferred onto a
polyvinylidene difluoride membrane and immunoblotted using
primary antibodies against phosphorylated NF-kB p65 (p-NF-kB
p65; CST; 1:1,000) or NF-kB p65 (CST; 1:1,000), followed by
horseradish peroxidase-conjugated secondary antibody (Medical &
Biological Laboratories; 1:1,000). Housekeeping protein, such as
b-actin and glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
were used as loading controls on the account of their expression
levels. Proteins were visualized by chemiluminescence with
SignalFire ECL Reagent (CST), and quantified using Fluor Chem
FC2(Alpha InnotechKasendorf,Germany).All blottingexperiments
were repeated at least twice.

Statistical Analysis
Continuous variables are reported as median values with
interquartile ranges (IQR; 25th–75th percentiles). Categorical
variables are presented as frequencies and percentages. Baseline
comparisons between patients were performed using Student’s
t-tests, Mann–Whitney U-tests, or c2 analysis (with Yates’
correlation or Fisher’s exact test, as appropriate). Differences
between > 2 groups were evaluated by one-way ANOVA followed
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by the Bonferroni or Games–Howell test and the Kruskal–Wallis
test with the Dunn’s post hoc test. The former was performed
when the variables showed a normal distribution; otherwise, the
latter was used. All statistical analyses were performed using SPSS
statistical software (v.25.0; SPSS Japan Inc., Tokyo, Japan). A
two-tailed P < 0.05 was considered statistically significant.

RESULTS

Clinical Characteristics and Laboratory
Findings in Patients With KD and sJIA
Sera from eight patients with KD (median, 1.6 years) and four
with sJIA (median 7.8 years) were evaluated. Table 2 lists patient
clinical characteristics and laboratory findings. Age and body
weight significantly differed between the groups as KD and sJIA
patients exhibited different peak ages of onset. Laboratory data,
including baseline white blood cell counts, neutrophil counts,
and C-reactive protein levels, did not significantly differ with the
exception of total protein and sodium levels.

Serum Concentration From Patients With
KD Necessary to Serum-Activate HCAECs
To determine the serum concentration from patients with KD
necessary to exert cytotoxic effects on HCAECs, we first exposed
HCAECs to four independent KD sera concentrations, 0%
(untreated), 5%, 7.5%, and 12.5%, for 24 h. KD serum induced
significant cytotoxic effects on HCAECs at concentrations ≥ 7.5%
(Supplementary Figure 2A) while maintaining cellular viability
(Supplementary Figure 2B). Therefore, 7.5% KD serum was
used for subsequent in vitro experiments.

Proliferative Activity and Cytotoxicity
of Serum-Activated HCAECs
MTT assay revealed that cell proliferation of serum-activated
HCAECs from KD controls was significantly higher than that from
the VH and sJIA groups (each P < 0.001) (Figure 1A). In KD, the
proliferation of serum-activated HCAECs from the KD+PSL group
was significantly lower than those of serum-activated KD controls
and KD+PBS group (P < 0.002, and P = 0.012, respectively)
(Figure 1B). Cytotoxicity in serum-activated HCAECs from KD
controlswas significantlyhigher than those in theVH(P=0.007) and
sJIA groups (P = 0.044) (Figure 1C). In KD, cytotoxicity of serum-
activatedHCAECs from the KD+PSL group tended to be lower than
Frontiers in Immunology | www.frontiersin.org 4120
thoseof serum-activatedKDcontrols andKD+PBSgroupbutdidnot
achieve statistical significance (Figure 1D).

KD Serum-Activated HCAEC Supernatant
HMGB-1 and sRAGE Levels and HMGB-1
Receptor Expression
Supernatant HMGB-1 levels (Figure 2A) and sRAGE levels
(Figure 2B) in the KD controls were significantly higher than
those in the VH (each P < 0.001) and sJIA (P < 0.001 and P =
0.046, respectively) groups. HMGB-1 levels in the KD+PSL
group were significantly lower than those in KD control and
KD+PBS (each P < 0.001) (Figure 2C) groups, whereas sRAGE
levels did not significantly differ between the groups (Figure 2D).

Basal expression levels ofRAGE,TLR2, andTLR4 receptorswere
increased in KD serum-activated HCAECs compared to those in
VHserum-activatedHCAECs (Figure 2E).OfKD serum-activated
HCAECs,RAGE expression in theKD+PSL groupwas significantly
lower than that in the KD control and KD+PBS groups (each P =
0.007); however, TLR2 and TLR4 expression did not differ
significantly between the groups (Figure 2F).

Immunofluorescence Staining for HMGB-1
in Serum-Activated HCAECs
Representative images revealed that serum activation of HCAECs
inducedHMGB-1 release fromthenucleus. Comparedwith theVH
group, KD control and KD+PBS HCAECs showed increased
HMGB-1 staining in the cytoplasm or the extracellular space
(Figures 3A, a–c). Conversely, compared with KD control and
KD+PBS HCAECs, KD+PSL HCAECs showed significant
reduction in cytoplasmic and extracellular HMGB-1 (Figures
3A, d). Quantitative analysis of the fluorescence intensity of
HMGB-1 released from nucleus of serum-activated HCAECs
revealed significantly lower values for KD+PSL than KD control
and KD+PBS HCAECs (each P < 0.001) (Figure 3B).

Phosphorylation of Mitogen-Activated
Protein Kinase and NF-kB, and NLRP3
Inflammasome in Endothelial Cell Lysates
From KD Serum-Activated HCAECs
To determine the role of mitogen-activated protein kinase signaling,
we evaluated the levels of ERK, pERK, JNK, pJNK, p38, and pp38 in
serum-activated HCAEC lysates. The ERK:b-actin, JNK:b-actin,
and p38:b-actin ratios did not significantly differ between VH and
TABLE 1 | Primer sequences and PCR conditions.

mRNA Primer sequences Annealing time and temperature (°C) Cycle no. Fragment length/base pairs

GAPDH sense: 5′-GCACCGTCAAGGCTGAGAAC-3′ 0.5 min; 95 40 138
antisense: 5′-TGGTGAAGACGCCAGTGGA-3′

RAGE sense: 5′-GGAAAGGAGACCAAGTCCAA-3′ 1 min; 59 30 166
antisense: 5′-CATCCAAGTGCCAGCTAAGA-3′

TLR2 sense: 5′-GGCTTCTCTGTCTTGTGACC-3′ 0.5 min; 49 32 294
antisense: 5′-GGGCTTGAACCAGGAAGACG-3′

TLR4 sense: 5′-TTGTATTCAAGGTCTGGCTGG-3′ 0.5 min; 47 32 438
antisense: 5′-GCAAACCTTTGAAACTCAAGCC-3′
May 2021
GAPDH, Glyceraldehyde-3-phosphate dehydrogenase; RAGE, receptor for advanced glycation end products; TLR2, Toll-like receptor 2; TLR4, Toll-like receptor 4.
Bold values indicate statistically significance in patient characteristics between KD group and sJIA group.
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KD groups; however, pERK:b-actin, pJNK:b-actin and pp38:b-actin
ratios in lysates from KD controls were significantly higher than
those in VH lysates (P < 0.001). The ERK:b-actin, JNK:b-actin, and
p38:b-actin ratios did not significantly differ between KD controls,
Frontiers in Immunology | www.frontiersin.org 5121
KD+PBS, and KD+PSL groups, however, pERK:b-actin, pJNK:b-
actin, and pp38:b-actin ratios were significantly lower in lysates
from KD+PSL groups than in lysates from the KD controls (P =
0.004) and KD+PBS groups (P = 0.006) (pERK:b-actin; P = 0.004
A B

DC

FIGURE 1 | Cell proliferation and cytotoxicity of serum-activated human coronary artery endothelial cells (HCAECs). MTT and cytotoxicity assay results for HCAECs
stimulated with sera from healthy controls (VH, n = 4) and patients with systemic juvenile idiopathic arthritis (sJIA, n = 4) or Kawasaki disease (KD; n = 8) for 24 h
(A, C), and serum-activated HCAECs from patients with KD (n = 8), and treated with PBS or prednisolone (PSL) for 24 h (B, D). *P < 0.05, **P < 0.01 [one-way
ANOVA followed by Bonferroni post-test (A–C) and Games–Howell post-test (D)].
TABLE 2 | Patient characteristics between Kawasaki disease (KD) and systemic juvenile idiopathic arthritis (sJIA).

Group KD (n = 8) sJIA (n = 4) P value

Male, N (%) 5 (62.5) 2 (50.0) 0.692
Age at onset (years) 1.6 (0.5–2.9) 7.8 (4.6–13.3) 0.011
Body weight (kg) 10.8 (7.8–13.0) 17.7 (13.0–25.1) 0.061
White blood cell count (×103/mL) 15.8 (11.9–18.1) 14.6 (12.1–24.4) 1.000
Neutrophil count (×103/mL) 11.7 (7.9–14.5) 11.7 (10.0–20.0) 0.734
Platelet count (×104/mL) 32.8 (28.3–41.5) 59.0 (34.6–66.4) 0.089
Aspartate aminotransferase (IU/L) 45 (26–288) 29 (23–33) 0.202
Alanine aminotransferase (IU/L) 56 (10–336) 14 (10–21) 0.348
Lactate dehydrogenase (IU/L) 336 (273–394) 353 (283–494) 0.610
Total protein (g/dL) 6.6 (6.4–7.0) 7.7 (7.3–7.8) 0.006
Albumin (g/dL) 3.4 (3.2–3.7) 3.3 (3.1–3.5) 0.330
Sodium (mEq/L) 134 (129–134) 138 (137–142) 0.006
C-reactive protein (mg/dL) 6.9 (4.4–10.5) 6.9 (5.3–9.0) 1.000
May 2021 | Volume 12 | Article
Data are expressed as median values and interquartile range (25th, 75th percentile), or number (proportion, %).
Bold values indicate statistically significance in patient characteristics between KD group and sJIA group.
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and P = 0.006, pJNK:b-actin; P < 0.001 and P < 0.001, pp38:b-actin;
P = 0.002 and P = 0.004, respectively) (Figure 4A).

The NLRP3:GAPDH and cleaved caspase 1:GAPDH ratios in
the lysates from KD controls were higher than those in VH
lysates (P = 0.017 and P = 0.018, respectively), while the NLRP3:
GAPDH and cleaved caspase 1:GAPDH ratios were lower in the
lysates from KD+PSL groups compared to the lysates from the
KD controls and KD+PBS; no significant difference was observed
between the groups (Figure 4B).

The total NF-kB p65:GAPDH ratio in cell lysates did not
significantly differ between the nuclear and cytoplasmic fractions
of the VH group, KD controls, KD+PBS group, or KD+PSL
Frontiers in Immunology | www.frontiersin.org 6122
group. Conversely, the nuclear p-NF-kB p65:GAPDH ratio in
lysates from KD controls was significantly higher than those in
lysates from the VH group (P < 0.001), whereas it was
significantly reduced in the KD+PSL group compared to that
in KD control and KD+PBS groups (each P < 0.001) (Figure 4C).

IL-1b and TNF-a Production
in Endothelial Cell Lysates From KD
Serum-Activated Hcaecs
Both IL-1b and TNF-a levels in lysates of KD serum-activated
HCAECs were significantly higher than those from the VH
group (each P < 0.001), whereas both were significantly lower
A B

D

E F

C

FIGURE 2 | HMGB-1 and sRAGE production in Kawasaki disease (KD)-serum-activated human coronary artery endothelial cells (HCAECs). HMGB-1 levels and
sRAGE levels in supernatants from (A, B) healthy control (VH, n = 4), systemic juvenile idiopathic arthritis (sJIA, n = 4), and KD (n = 8) serum-activated HCAECs and
(C, D) KD control, KD+PBS, and KD+prednisolone (PSL) HCAECs. Expression of HMGB-1 receptors in KD serum-activated HCAECs. Artificial Unit of RAGE, TLR2,
and TLR4 receptors in (E) VH and KD serum-activated HCAECs, and (F) KD control, KD+PBS, and KD+PSL HCAECs. *P < 0.05, **P < 0.01 [one-way ANOVA
followed by Bonferroni post-test (A, B, D, F) and Games–Howell post-test (C), Mann–Whitney U-tests (E)].
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in endothelial cell lysates from the KD+PSL group than those
from KD controls and KD+PBS groups (IL-1b, each P < 0.001;
TNF-a, P = 0.001, and P = 0.009. respectively) (Figures 5A, B).
DISCUSSION

In this study, we demonstrated that serum obtained from
patients with KD prior to IVIG treatment exhibited a cytotoxic
effect on HCAECs compared to that from healthy controls and
patients with sJIA, in addition to triggering extracellular release
of HMGB-1, up-regulating NF-kB-mediated inflammatory
Frontiers in Immunology | www.frontiersin.org 7123
responses, and increasing IL-1b and TNF-a production.
Although PSL treatment for KD serum-activated HCAECs did
not show direct cytoprotective effects, it inhibited endothelial cell
proliferation, HMGB-1 translocation, release, and downstream
signaling and reduced IL-1b and TNF-a expression. These
findings provide a new perspective regarding the anti-
inflammatory function of PSL during the acute phase of KD.

The vasculopathic process in the acute phase of KD involves
necrotizing arteries progressively destroying the arterial wall
from adventia to intima, particularly the coronary arteries (22,
23). Our results are in line with this pathological process in
which the KD serum induced stronger cytotoxicity to coronary
endothelial cells than sJIA serum, although there was no
A

B

FIGURE 3 | Immunostaining of HMGB-1 in serum-activated human coronary artery endothelial cells (HCAECs) (magnification, ×400). (A) Representative images of
from healthy control (VH), Kawasaki disease (KD), and KD serum-activated HCAECs treated with PBS and prednisolone (PSL) showing DNA (blue) labelled using
DAPI, HMGB-1 (red) labelled using immunofluorescence staining, and merged images. Scale bar = 100 mm. (B) Relative fluorescence staining of extranuclear
HMGB-1 from 100 cells, selected from KD serum-activated HCAECs alone and treated with PBS and PSL. Scale bar = 100 mm. **P < 0.01 (one-way ANOVA
followed by Bonferroni post-test).
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difference in patients’ laboratory data between KD and sJIA.
Since KD serum also up-regulated DAMP receptors, such as
RAGE and TLRs, and induced subsequent intracellular
activation of downstream ERK1/2, JNK, p38, and NF-kB
signaling pathways in HCAECs, endothelial cell damage
consequent to pathogenic proteins in KD serum may thus
underlie several of the pathological features of KD and the
effects observed during the early stages of disease progression.
Specifically, during cytotoxic response to KD serum, HMGB-1
translocated from the nucleus to the extracellular space, where it
may function as a DAMP or alarmin to stimulate the innate
immune system and mediate inflammation in accordance with
its role in the pathogenesis of delayed inflammatory responses
and organ dysfunction (24).

Moreover, extracellular HMGB-1 can interact with RAGE or
TLRs on the surface of inflammatory endothelial cells. HMGB-1
functional interaction with receptors activates inflammation-
associated pathways and triggers a cascade of proinflammatory
cytokines, including ILs, TNF-a, and macrophage inflammatory
protein-1a and -1b, thereby forming a self-reinforcing
inflammatory cycle (25, 26). As serum levels of HMGB-1 and
S100 are elevated during the acute KD phase (7, 15–17) and
RAGE activation results in up-regulated proinflammatory
cytokine expression in patients with KD (18), these processes
Frontiers in Immunology | www.frontiersin.org 8124
may stimulate granulocytes or endothelial cells to secrete
DAMPs, thereby establishing a self-amplifying positive
feedback loop. However, sRAGE, a truncated soluble form of
the receptor, acts as a decoy and prevents the RAGE activation-
mediated inflammatory response (27). Consistent with our
results, Wittkowski et al. (28) found that sRAGE levels in acute
KD were significantly lower than those post-IVIG or in the
subacute phase, suggesting the potential anti-inflammatory effect
of sRAGE on inflammatory vascular disorders. Additionally,
subsequent activation of HMGB-1/RAGE-specific downstream
signaling pathways and increased levels of IL-1b or TNF-a
constitute parallel or consecutive events in response to
increased HMGB-1 levels. The HMGB-1/RAGE signaling
pathway in endothelial cells also induces cathepsin B
activation, subsequently inducing canonical pyroptosis via
NLRP3 inflammasomes in KD vasculitis (18). Therefore, our
study also supports the hypothesis that extracellular HMGB-1 is
possibly up-regulated to act as a functional cytokine influencing
inflammation and the innate immune response, and that it may
thus contribute to the pathogenesis of KD vasculitis (29, 30).

We further revealed that PSL treatment of KD serum-
activated HCAECs inhibited extracellular HMGB-1 release,
reduced RAGE expression, and inhibited NF-kB-mediated
inflammatory responses, in addition to reducing IL-1b and
A B

C

FIGURE 4 | ERK1/2, JNK, p38 and NF-kB levels in serum-activated human coronary artery endothelial cells (HCAECs). (A) Western blot analysis of ERK1/2,
pERK1/2, JNK, pJNK, p38 and pp38 from healthy controls (VH, n = 4), Kawasaki disease (KD, n = 8), KD serum-activated HCAECs treated with PBS and
prednisolone (PSL) (KD+PBS and KD+PSL, n = 8, respectively). Bar graph shows immunoblotting results for the ERK1/2:b-actin, pERK 1/2: b-actin, JNK:b-actin,
pJNK: b-actin, p38:b-actin and pp38: b-actin ratio **P < 0.01 (one-way ANOVA followed by the Bonferroni, post-test). (B) NLRP3 and Caspase-1(p20) in serum-
activated HCAECs from healthy controls (VH, n = 4), KD (n = 8), and KD serum-activated HCAECs treated with PBS and PSL (KD+PBS and KD+PSL, n = 8,
respectively). Bar graphs show immunoblotting results for NLRP3:GAPDH and Caspase-1(p20):GAPDH ratio in HCAEC lysates. *P < 0.05 (Kruskal–Wallis test
followed by Dunn’s post-test). (C) Cytoplasmic and nuclear NF-kB and p-NF-kB in serum-activated HCAECs from healthy controls (VH, n = 4), KD (n = 8), and KD
serum-activated HCAECs treated with PBS and PSL (KD+PBS and KD+PSL, n = 8, respectively). Bar graphs show immunoblotting results for NF-kB:GAPDH and
p-NF-kB:GAPDH ratio in HCAEC lysates. **P < 0.01 (Kruskal–Wallis test followed by Dunn’s post-test).
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TNF-a production. Conversely, PSL treatment did not show
cytoprotective effects or sRAGE up-regulation in KD-serum-
activated HCAECs, supporting that the effects of PSL treatment
might occur by directly inhibiting extracellular HMGB-1 release.
In general, the anti-inflammatory effects of glucocorticoids are
attributable to the transcriptional effects of glucocorticoid-
receptor agonism, which alters the transcription of numerous
genes both positively and negatively by targeting specific cell
populations to combat the immune system hyperactivation or
systemic infections (10, 31–33). Glucocorticoid treatment
inhibits the expression of proinflammatory genes, including
NF-kB and activator protein 1 (10); therefore, the observed
PSL-induced inhibition of HMGB-1 release might occur via
NF-kB signaling.

Another possible mechanism is that glucocorticoids inhibit
TNF-a synthesis in activated monocytes/macrophages, a process
at least partially involved in the anti-inflammatory effects of TNF-
a-induced HMGB-1 secretion from endothelial cells (30).
Therefore, PSL treatment of KD serum-activated HCAECs likely
Frontiers in Immunology | www.frontiersin.org 9125
has an upstream regulatory component and potentially inhibits the
HMGB-1 signaling pathway. CD14 is important in efficient
HMGB-1-dependent TLR activation (34, 35), whereas RAGE
offers a different transduction pathway in providing a transport
route for HMGB-1 and its partner molecule complexes by
endocytosis to the endolysosomal component (36). Rather than
being degraded in the lysosomes, HMGB-1 transported molecules
then leak out from the permeabilized lysosomes into the cytosol to
reach and activate cognate cytoplasmic receptors, thereby causing
inflammation (36). In the present study, we could not confirm a
functional role for the HMGB-1/TLRs signaling pathway and
HMGB-1 induced NLRP3 inflammasome activation through the
serum stimulation experiments using cultured HCAECs owing to
the lack of lymphocytes and macrophages. However, our findings
suggest that PSL application during acute KD has a distinct
potential to also ameliorate HMGB-1/RAGE-mediated
inflammatory responses in KD vasculitis, which is borne out by
the efficacy of glucocorticoids at reducing the incidence ofCAAand
the number of IVIG non-responders in KD (4–6).
A

B

FIGURE 5 | Cytokine production in serum-activated human coronary artery endothelial cell (HCAEC) lysates. Western blot analysis and quantitation of (A) IL-1b and
(B) TNF-a production in serum-activated HCAEC lysates from healthy controls (VH) and Kawasaki disease (KD), and KD serum-activated HCAECs treated with PBS
and prednisolone (PSL) (8 independent experiments). GAPDH was used as an internal standard. **P < 0.01 (one-way ANOVA followed by Bonferroni post-test).
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Nevertheless, there were several limitations in this study with
respect to the effects of PSL treatment in KD vasculitis that remain
unaddressed. Serum samples from patients with KD used in this
study were limited; hence, we did not measure cytokine and
inflammatory markers other than those from routine blood
testing. Glucocorticoids affect virtually all immune cells and their
precise effects depend on the differentiation and activation state of
the cell, making interpretation of in vivo effects in specific
populations difficult. Glucocorticoids inhibit neutrophil-
dependent endothelial cell injury (37) or platelet–neutrophil
aggregate formation (38), thereby reducing cytokine-induced
adhesion and inhibiting amplified reciprocal vascular
inflammatory activation. However, we could not examine the
contribution of neutrophil-, monocyte-, and platelet-dependent
endothelial cell activation since our serum-stimulation experiments
wereperformedusing culturedcoronary endothelial cells.Given the
differences in glucocorticoid-receptor levels between endothelial
cells and various vascular beds, the relative proportion of specific
glucocorticoid-receptor isoforms in tissues and cells may influence
their responses to glucocorticoid treatment (39–41). IVIG is the
standard andmost effective treatment for KD, however, the present
study focused on themechanism of action of corticosteroids in KD;
and hence no examination or analysis of the effects of IVIG was
conducted in this study.

In conclusion, our findings suggest that extracellular HMGB-
1 is potentially up-regulated to act as a functional cytokine with
roles in both inflammation and the innate immune response,
thereby mediating KD pathogenesis. Treatment with PSL during
the acute phase of KD ameliorates HMGB-1/RAGE-mediated
inflammatory responses and reduces IL-1b and TNF-a
production. Inhibiting extracellular HMGB-1 may also inhibit
the over-activated innate immune system, thus offering potential
relief from or prevention of severe KD vasculitis.
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The immune response of Anopheles mosquitoes to Plasmodium invasion has been
extensively studied and shown to be mediated mainly by the nitric oxide synthase
(NOS), dual oxidase (DUOX), phenoloxidase (PO), and antimicrobial peptides activity.
Here, we studied the correlation between a heat shock insult, transcription of immune
response genes, and subsequent susceptibility to Plasmodium berghei infection in
Anopheles albimanus. We found that transcript levels of many immune genes were
drastically affected by the thermal stress, either positively or negatively. Furthermore, the
transcription of genes associated with modifications of nucleic acid methylation was
affected, suggesting an increment in both DNA and RNA methylation. The heat shock
increased PO and NOS activity in the hemolymph, as well as the transcription of several
immune genes. As consequence, we observed that heat shock increased the resistance
of mosquitoes to Plasmodium invasion. The data provided here could help the
understanding of infection transmission under the ever more common heat waves.

Keywords: Anopheles albimanus, Plasmodium berghei, heat shock, immunity, infection resistance
INTRODUCTION

Insects are commonly stressed by pathogens (1), toxic compounds, dietary factors, temperature (2),
and hypoxia (3). These stressors share commonalities in their effects on the molecular components
of cells, and therefore much of the transcriptional response they elicit is conserved (4). There is
significant crosstalk in the signalling cascades that regulate each of the various stress-specific
transcription factors (5, 6) and so any stressor has the potential to, and generally does, affect the
transcription of genes that are not directly related to the specific stress applied (7). When
microorganisms challenge insects, molecular patterns on the pathogen trigger alterations in
transcription via Toll, IMD, and the JAK-STAT pathway, ultimately activating the Rel1, Rel2,
and STAT transcription factors. These transcriptional factors control the expression of hundreds of
genes, including many immune response genes. The immune response has been shown to be
intertwined with the general stress response in several insect models, and a number of genes
activated by pathogen invasion are not directly linked to anti-pathogenic functions. For instance,
org June 2021 | Volume 12 | Article 5846601128
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LPS injection of the Tribolium castaneum beetle also induces
heat shock stress response genes (HSP 68 and HSP 27) and
hypoxia-inducible gene transcription (7). Conversely, in the
same insect, heat shock triggers the transcription of the
immune genes tlr6, pgrp2, defensin1, and defensin2 (8). In
Galleria mellonella larvae, heat shock alters the expression of
antimicrobial peptide genes. For example, apoLp-III gene
expression is transiently inhibited after heat shock but, when
an infection occurs 96 h after the heat shock, it is induced at
higher levels than in the absence of prior heat shock (9). Some
Drosophila melanogaster immune genes are regulated by the heat
shock factor, and in fact, most Heat shock Factor Binding Sites in
the genome are found in Non-Heat shock Genes (10). The
regulatory cascades of Heat shock Factor 1 and NF-kB share
some components, such as Droj2 (HSP40) that functions
downstream of or directly regulates Relish and DNAJA3 which
are required for IkB phosphorylation (11).

Interestingly, heat shock-mediated immune activation can be
transgenerational, hence affecting immune homeostasis over a long
period of time (12). Upon stress, the beetle Nicrophorus vespilloides
initiates a transposon-mediated genomic reorganization of its
immune genes, suggesting that this reorganization might
constitute a common pathway to enhance survival during protein
damage (13). This reorganization could occur because stress or
infection mobilizes HSP 90 protein, impairing its mutation-
dampening function (14). Aside from heat shock direct
transcriptional effects, or genomic reorganization, the temperature
also affects the function of enzymes that modify genomic DNA such
as the Ten eleven translocation (TET) dioxygenase, providing
another level of transcriptional regulation (15).

HSP70 also protects the midgut of Aedes aegypti mosquitoes
against the dramatic increase in body temperature after ingesting
a hot blood meal (16), considering that the mosquito ingests its
own weight of blood at 37°C (17). Though immune signaling
pathways of anopheline mosquitoes have been scrutinized in
great detail, little is known about their interactions with hypoxia
(HIF) and heat shock factor (HSF) mediated transcriptional
regulation. The blood-feeding of female mosquitoes implies
that a heat shock is produced in the midgut and that HSP70
proteins are transiently expressed (16). In anopheline
mosquitoes, Toll and Imd pathways show a certain amount of
cross signaling (18); opening the possibility of a cooperative
effect of bacterial infection response and Plasmodium mediated
response, as shown in Anopheles gambiae by Ramirez et al. (19).
The gut tissues of hematophagous insects are subjected to large
temperature changes when feeding. As a consequence, HSP 82,
HSP 90, and HSP 105 of A. gambiae are up-regulated during
blood-feeding (20, 21). Later, ex vivo analysis of the A. gambiae
HSC70B promoter revealed that the transcription was influenced
by immune activation (5), proving the existence of a cross-talk
between immune and heat shock activation cascades. In
Anopheles stephensi, the rearing temperature alters the
transcription levels of immune effectors differentially. While
the nitric oxide synthase (NOS) expression peaked at 30°C, the
humoral melanization, phagocytosis, and defensin expression
were maximum at 18°C (22), though the melanization reaction
Frontiers in Immunology | www.frontiersin.org 2129
has been described as a minor factor in resistance to P.
falciparum (23). In general, phenoloxidase (PO) and NO have
been implicated in the immune response to Plasmodium
infection in Anopheles. In A. stephensi, the metabolites of NOS
activity increase nitric oxide concentrations and subsequent
ookinete death (24). The enzymatic cleavage regulating NOS
activity is temperature-dependent (25). Some heat shock
proteins (HSPs), such as A. gambiae HSC70B have shown
antiviral activities capable of suppressing O’nyong’nyong viral
infection (26). In turn, this observation opens the possibility that
the HSPs could affect the microorganisms directly, once released
in the hemolymph. In particular, heat shock triggers a general
damage response in mosquitoes, including immune gene
transcription. Though P. berghei does not constitute a natural
A. albimanus parasite, this model has proven an invaluable tool
for the study of the immune response of this insect. Here, we use
this model to investigate the effects of heat shock on the
expression of immune-related genes and the subsequent effect
on susceptibility to infection.
MATERIALS AND METHODS

Mosquito Rearing and Infection
With P. berghei
A Plasmodium-susceptible strain of A. albimanus females (27)
were obtained from the insectary of the National Institute of
Public Health (INSP) in Cuernavaca, Mexico. Mosquitoes were
bred under a 12:12 photoperiod at 28°C and 70–80% relative
humidity. At four-days post-emergence, mosquitoes were
infected with P. berghei ANKA strain expressing the green
fluorescent protein (GFP) (28) (kindly donated by Robert E.
Sinden, Imperial College, U.K.). Ookinetes were produced by
culturing gametocyte-infected mouse blood, as described
previously (29). Groups of 300 female mosquitoes were fed for
1 h using artificial membrane feeders with: (i) mouse blood +
GFP ookinetes (infected group, with approximately 900
ookinetes per ml), or (ii) mouse blood only (control group).
Unfed mosquitoes were removed, and the engorged ones
maintained at 21°C to allow for parasite invasion and
interaction with the mosquito midgut. Three experimental
repetitions were performed.

Mosquito Heat Shock
Since in Drosophila HSF binding reaches a maximum level
following a 30-minute heat shock at 36.5°C (30), and
mosquitoes endure a thermic shock while feeding on mammals
blood (16), we exposed the mosquitoes to 30 min of 37°C heat
shock, with 80% humidity and availability of 10% sugared water.
In nature, the blood feeding is concomitant to the heat shock in
naturally infected mosquitoes, and lead to the infection of the
mosquito (16). Since the objective of our experiments is to test
the effect of abiotic stress on the susceptibility to P. berghei
infection of A. albimanus, we challenged them thermally 6 h
before the infective blood meal.
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Mosquito Protein Extract Preparation for
Acrylamide Electrophoresis
About 10 mosquitoes per sample were homogenized in 100 µl of
lysis solution (8 M urea, 2 M thiourea, 1% Chaps, 13 mM DTT,
and 4 µl of protease inhibitor cocktail (Sigma, P2714)). The
resulting solution was cleared by 15 min centrifugation at
14,000g and 4°C. The total protein content of the supernatant
was determined according to Lowry et al. (31). Samples were
obtained before the heat shock, immediately after, and at 2 and
6 h after 30 min of exposure at 37°C.

Acrylamide Electrophoresis and
Western Blot Assay of the Mosquito
Protein Extracts
Some 25 mg of mosquito protein extract were separated in SDS-
PAGE (10% acrylamide) and transferred to Immobilon-P
membrane. The protein transfer on the membrane was
assessed by Ponceau S (P7170 Sigma-Aldrich) staining. For the
Hsp-70 immunodetection, anti-Hsp70 monoclonal antibody
[3A3] Thermo Scientific MA3-006 was used as primary
antibody at a final dilution of 1:1,000, and goat anti-mouse-
IgG-horseradish peroxidase (Abcam) diluted 1:1,000 as
secondary antibody. Development of immunoblots was
performed with an ECL kit from Amersham. Fluorescence was
developed on a Kodak BioMax ML-2 film for capturing
chemiluminescent data (Catalog Number Z370428) using
Kodak Developer (Catalog Number P7042) and Kodak Fixer
(Catalog Number P7167).

Mosquito Hemolymph Collection
Hemolymph was obtained by perfusion from 30 control and
heat-shocked mosquitoes (at six hours post-heat shock), and 24-
hours post-P. berghei infection (30-hours post-heat shock) as
described elsewhere (32). Three experimental repetitions
were performed.

Mosquito RNA Extraction
Total RNA from 10 whole female mosquitoes (without head) and
midguts only, were obtained by Trizol method (Invitrogen) and
then re-purified using RNA Clean-Up Kit (Zimo Research).
cDNA was synthesized by reverse transcription using 1 µg of
RNA, 100 ng of oligonucleotide dT, and 200 U of the enzyme
reverse transcriptase RNase H-SuperScript II (Gibco BRL). Three
experimental repetitions were performed, each counting three
samples per conditions.

RT-qPCR Amplification
The amplification of genes of the An. albimanus immune
response was carried out with previously recovered genetic
material. Specific primers were used for each gene (Table 1).

The samples were run in a real-time thermal cycler (viiA7;
Applied Biosystems) under optimal running conditions,
according to the manufacturer’s recommendations. Samples
were incubated at 60°C in a master mix containing SYBR
Green (Maximum SYBR Green/Rox qPCR Master Mix;
Thermo Scientific), primers, and cDNA of each of the samples,
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set to a volume of 20 ml with water free of nucleases (Thermo
Scientific). The relative expression was quantified by normalizing
the expression of immune response genes with the S7
ribosomal gene.

Assays were performed three times in different batches of 10
mosquitoes and three times in different batches of five
mosquitoes’ midguts. The control and experimental tests were
made at the same time. For real-time PCR, 2.5 µl of cDNA was
used in SYBR Green I Kit (Applied Biosystems) following the kit
instructions. The primers used are described in Table 1. The fold
changes in expression were calculated using the comparative
“delta delta Ct” (Ct) method against the blood-fed control (33)
using three replicates per sample. Three independent
experiments were done. The data represents the average fold-
change relative to the control group. The amplification efficiency
was similar between the test and control genes.

Phenoloxidase (PO) Activity
PO activity was measured as described (34). Three pools of 30
female mosquitoes were macerated and centrifuged at 10,000g
for 10 min at 4°C. L-DOPA was used as the substrate for PO,
which is transformed into the dye dopachrome. Auto-oxidation
controls (L-DOPA only) and blanks (macerated mosquitoes)
were included. PO activity was measured every minute for
30 min at 490 nm in a microplate reader (ELISA iMark,
BIO-RAD).

NO Quantification
Nitrites (NO−

2 ) and nitrates (NO−
3 ) were evaluated by the Griess

assay (35). Pools of 30 female mosquitoes per treatment were
macerated and centrifuged twice at 10,000g for 10 min at 4°C.
Proteins were eliminated with ZnSO4. Nitrates were reduced into
nitrites using VCl3 immediately followed by the addition of
sulfanilamide and NED. The reaction was incubated for
TABLE 1 | Oligonucleotides used to amplify the mRNA transcripts of A.
albimanus genes.

ppo1 F 5’-GGCGGACCAAATCAAGCAG-3’
ppo1 R 5’-CGATTGCCCGATTCGTCAAC-3’
tet 2 F 5’-TCCTCCGATCCGAGGATCAGGT-3’
tet 2 R 5’-GTACCTTGCTGTTGCTGGGCA-3’
dnmt2 F 5’-GAGCCATCTTTTCCGATTCGTC-3’
dnmt2 R 5’-GAGCCATCTTTTCCGATTCGTC-3’
CECA-R 5’-ATTTGCCAAGTGCCTTCAC-3’
CECA-F 5’-AGTGGACGCTGGTTTTCTCAAG-3’
Gam F 5’-CGCTTATGCTTCGACTTGC-3’
Gam R 5’-AATCATCGTCTGACCATCGC-3’
GNBPA F 5´-CACTCGATACGGAGTCGGC-3´
GNBPA R 5’-AACTAATCTGGGCTCATCGTG-3’
duox F 5’-CTCTCTCTGTTGCAGAATCCAG-3’
duox R 5’-TGGTGTGAGATGGTTATCGACT-3’
hsp70 F 5’-CCAGCATGGAAAGGTGGAGA-3’
hsp70 R 5’-CCATCCATCAGGGCGTCAAT-3’
frep3 F 5’-CAGTGCGTGTCGTGCAAT-3’
frep3 R 5’-AACCGTTTGAGAATCTGTAGCA-3’
S7 F 5’-AACAACAAGAAGGCCATCGTC-3’
S7 R 5’-GGCTTGGGCAGAATACGA-3’
J

ppo1, Prophenol oxidase 1; tet2, ten-eleven translocation methylcytosine dioxygenases;
dnmt2, DNA methyltransferase 2; duox, Dual oxidase; hsp70, heat shock protein 70;
frep3, Fibrinogen related protein 3, cecropin, gambicin and GNBP4.
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15 min at R.T., and the absorbance was measured at 490 and 630
nm in a microplate reader.

Statistical Analysis
Data were analyzed and graphed in Prism v6.01 statistical
software. qPCR results were evaluated by one way ANOVA
followed Tukey’s test (Whole body RT-qPCR), and unpaired t
test with Welch’s correction (Midgut RT-qPCR). The infection
parameters were analyzed through Mann–Whitney. Considering
that three independent repetitions of the experiment were
performed, we applied a log-like generalized lineal model with
random effect to determine the difference in ookinete prevalence
between control and heat shocked mosquitoes. We used the
individual experimental repetitions as categorical variable, this
with the objective of measuring the effect of the individual
repetitions on the mean differences between the two conditions.
PO and NO results were analysed by Student’s t-test comparing the
heat shock and control groups for the non-infected and
infected mosquitoes.
RESULTS

Heat Shock Diminishes Infection of an
A. albimanus Susceptible Strain
To assess the global effects of heat shock response on parasite
development, female A. albimanus (susceptible strain)
mosquitoes were heat-shocked at 37°C for half an hour, 6 h
before infective blood-feeding (900 ookinetes/µl) in three
separate experiments with three replicates. Oocyst numbers
were assessed five days post blood meal. The prevalence and
the intensity were significantly diminished in the heat-shocked
mosquitoes (control 77.27%, n = 198 vs HS 67%, n = 184 with
X2 = 4.7 and p = 0.0102). A median of three oocyst per mosquito
midgut were found in control mosquitoes while a median of two
oocysts per midgut were found in the heat shocked mosquitoes
midguts (Figure 1A). A log-like generalized lineal model with
random effect showed that oocyst prevalence is 83% smaller in
the heat-shocked mosquitoes than in the control (95% IC 80–
87%) with p = 0.00. The individual experiments performed
(considering each experiment separately) do not affect the
outcome of the analysis (P = 0.98).

Anti-HSP-70 western-blot analysis of the mosquito protein
extracts shown in Figure 1B reveal an increase in expression of
HSP 70 at both 2 and 6 h after heat shock. The protein profile of
the mosquito’s midguts was altered by the treatment,
demonstrating the impact of the heat stress on the mosquito
cells 2 and 6 h post heat shock (Figure 1C, black arrows).

Hemolymph and Body From Heat-Shocked
A. albimanus Susceptible Strain
Mosquitoes Present Higher
Phenoloxidase Activity
Phenoloxidase activity has been previously described as an
important factor limiting the Anopheles infection by
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Plasmodium (36). The effect of heat shock upon the enzyme
activity could be key to understanding the reduction of the
mosquito’s susceptibility to the parasite.

Therefore, we measured the PO activity in the hemoplymph
and full mosquito body during the heat shock. In three separate
experiments, the hemolymph from 30 female A. albimanus
susceptible strain that were heat-shocked at 37°C for 30 min
was collected. The sampled hemolymph was obtained at 6 h post-
heat shock, and 24 h post-P. berghei infection (30 h post-heat
shock). Samples were tested for phenoloxidase activity using the
colorimetric L-DOPA assay. As can be seen in Figure 2,
phenoloxidase activity was altered by the heat shock regime. The
heat-shock by itself did not increase the phenoloxidase activity
significantly in the hemolymph. As shown previously (37, 38),
P. berghei infection increased hemolymph phenoloxidase activity,
mainly through enzymatic activation by proteolysis and secretion
of prophenoloxidase. While heat shock alone did not increase
hemolymph phenoloxidase activity, heat shock increased the
hemolymph phenoloxidase activity (Figure 2) in the P.berghei
infected mosquito hemolymph when compared to the heat-
shocked non infected mosquitoes hemolymph and relative to
non-heat shocked infected mosquitoes.

The phenoloxidase activity encountered in the whole
mosquito body increased upon heat shock. However, when
comparing both control/Pb and HS/HS Pb conditions, the
activity diminishes upon infection. When considering the
whole mosquito body mRNA, the heat shock did alter the PPO
gene transcription at 6 h post-heat shock (Figure 4), and showed
a tendency to diminish in the midgut (Figure 5). Considering
that, in insects, the central organ of phenoloxidase production
are the hemocytes (39) this result was expected.

Hemolymph From Heat-Shocked
A. albimanus susceptible Strain
Mosquitoes Present Higher Nitric
Oxide Concentration
Another key factor involved in the immune response of A.
albimanus to Plasmodium infection occurs through NO
synthesis (32). The only stable product of NO, which decays in
seconds, is nitrite (NO−

2 ), however, the more oxidized
nitrate (NO−

3 ) can also be produced. Therefore, to measure the
total NO production, one must measure the total NOx
derivatives. The NO−

2 found in the hemolymph of the heat-
shocked mosquitoes diminished (Figure 3A) while NO−

3 levels
increased when compared with their control (Figure 3B),
indicating that total NOx production was not changed. This
may, however, indicate more oxidizing conditions in the
hemolymph after heat shock. In whole body extracts, we observed
that the combination of HS and infection increased NO−

2

production above either heat shock or infection alone
(Figure 3). NO−

3 production in the body of mosquitoes was
decreased by heat shock both in uninfected and those infected by
P. berghei. From these results we suggest that P. berghei infection
creates reducing conditions in the mosquito body that limits the full
oxidation of nitrites into nitrates (Figure 3B).
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Heat Shock Response Affects Gene
Transcription in the Whole Mosquito Body
To follow the transcription of inducible heat shock response, RT-
qPCR was performed on female An. albimanus cDNA. Three
independent experiments were performed with three groups of
five mosquitoes per condition, per experiment, and the S7 gene
cDNA was used to normalize the RT-qPCR. We observed an
increase of ppo and hsp70 transcripts upon heat shock. Decreases
in tet gene transcription were observed immediately after heat
shock while dnmt2 increased two hours post-heat shock, and
continued to increase thereafter. The hsp70 gene showed a
transcriptional upsurge after the heat shock, as expected. The
transcription of effector molecules commonly considered central
to the early response to P. berghei infection, such as duox and
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ppo, also increased following heat shock. ppo transcription
increased significantly 6 h post-heat shock, with duox
increasing slightly (Figure 4, Supplementary Information).

Heat Shock Alters Antimicrobial Peptide
Genes Transcription in the Mosquito Midgut
Control and heat-shocked mosquito midguts were extracted 6 h
post-treatment, mRNA was extracted and cDNA synthetized.
Cecropin, gambicin, GNBP4B and ppo genes were analyzed by
RT-qPCR. Transcription of ppo was diminished at 6 h post-heat
shock (Figure 5). This observation is in contradiction with whole
body ppo transcription results. Inhibition of ppo transcription in
the midgut could result from a specific sensitivity of this organ to
heat shock or may involve a negative feedback loop resulting
A

B C

FIGURE 1 | Effect of Heat shock on P. berghei infection in A. albimanus. (A) A. albimanus susceptible strain oocyst infection prevalence expressed as the ratio of
infected mosquitoes over total mosquitoes sampled with (0.67 on average) and without previous heat shock (0.77 on average). (B) Western blot using the anti-
HSP70 antibody of a 10% acrylamide gel of control 0, 2, and 6 h post-heat shock A. albimanus body protein extracts. (C) Protein profile of the A. albimanus body
control T0C (control), T0P (Time zero post heat-shock), 2H (2 h post-heat shock), 6H (6 h post-heat shock). Black arrows indicate differential bands appearing in the
ponceau red staining of protein profile of the 2 h post heat shock and 6 h post heat shock sample.
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from proteolytic phenoloxidase activation. Transcription of the
cecropin, gambicin, and GNBP4B genes increased upon heat
shock (Figure 5, Supplementary Information) while ppo
transcription slightly decreased, indicating again a crosstalk
between heat shock and the immune response.
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DISCUSSION

Stress history drastically influences the mosquito immune system.
The response to heat shock is generally characterized by heat shock
protein expression. This response is, in the case of A. gambiae,
protective from O’nyong’nyong virus infection (26). The
experimental heat shock scheme chosen allowed us to track the
effect of heat stress upon the mosquito immune system, although
without a direct relation with the natural circumstances
encountered by the mosquito in the wild, with the exception of
the ever more common heat waves that are occurring worldwide
due to climate change. Heat shock induces a state of increased
resistance that lasts for at least 6 h. The heat shock possibly poises
the immune system of the insect to respond faster and more
intensively to the infection. For this to happen, the relevant
changes must persist through the subsequent changes in the
cellular environment. Methylation, demethylation, and other
alterations to DNA and chromatin constitute a good theoretical
mechanism for this ongoing physiological change. In mammals, the
differentiation and specification of hematopoietic stem cells is
mediated by tet2 gene transcription. This gene codes for a
methylcytosine dioxygenase that is required for activation of
genes associated with differentiation (40, 41). In A. albimanus, the
tet2 gene could be involved in alteration of transcriptional activity
upon P. berghei exposure (42). In this article, it was demonstrated
that P. berghei infection of A. albimanus mosquitoes results in
alterations in both DNA and mRNA methylation. The resulting
methylation in turn alters the transcriptional pattern of the insect
cells, suggesting longer term biological accommodation when
challenged with P. berghei (42). In Tribolium beetles, general
stress conditions do also lead to alterations in DNA methylation,
allowing for wide spread transcriptional reprogramming (15). In
insects, heat shock leads to substantial changes in the transcription,
particularly in the expression of the Bt DNMT2 (DNA
methyltransferase) gene, a part of the DNA methylation system.
In the white fly Bemisia tabaci DNMT3 inhibition leads to an
A

B

FIGURE 3 | Effect of heat shock on the nitric oxide derivatives of A.
albimanus during a P. berghei infection. (A) NO−

2 production (B) NO−
3

production. Nitric oxide derivatives present in the hemolymph and body of A.
albimanus female mosquitoes upon P. berghei (Pb) infection and 6 h post
30 min at 37°C heat-shock (heat shock) and the respective control samples.
Data of three independent experiments were analyzed using Student’s t-test.
FIGURE 2 | Effect of heat shock on the phenoloxidase response of female A. albimanus during a P. berghei infection. Phenoloxidase activity in macerated body
extracts (right) and hemolymph (left). Control, Mosquitoes without heat shock; HS, heat shock mosquitoes; Pb, Plasmodium berghei fed mosquitoes. Data of three
independent experiments were analyzed using Student’s t-test and are represented with their standard deviations.
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increase in heat susceptibility (43). Here, we observed that when
aseptic stress in the form of heat shock is applied to A. albimanus, it
enhances resistance to P. berghei infection. After heat shock, the
activity of oxidative enzymes present in the mosquito hemolymph
increased, potentially providing an explanation for the resistance
Frontiers in Immunology | www.frontiersin.org 7134
observed (Figure 6). When analyzing the effect of heat shock on
immunity gene transcription, we observed that genes related to
DNA methylation modification (tet, dnmt2) showed the largest
effect. In summary, heat shock alters the expression of many genes
and induces the activation of phenoloxidase enzyme as well as
FIGURE 4 | Gene expression at different times post-heat shock in whole body. Gene expression was evaluated immediately (0 h), at 2, and 6 h after 30 min of
exposure at 37°C (heat shock) in whole mosquitoes body. Data are indicated as mean ± SD. Data of three independent experiments were analyzed using ANOVA-
one way followed by Tukey’s test. Different letters indicate statistical significance.
FIGURE 5 | Gene expression at 6 h post heat shock in midguts. Gene expression was evaluated at 6 h after 30 min of exposure at 37°C (heat shock-HS) in
midguts. Data of three independent experiments were analyzed using unpaired t test with Welch’s correction. Data are indicated as mean ± SD. Cecropin 6.2 ± 1.4,
Gambicin 3.2 ± 1.2, PPO 0.5 ± 0.6, and GNBP4B 9.6 ± 7.7.
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increasing transcription of its gene. Infection also increased the
activation of phenoloxidase.

The heat shock had little effect on NO−
2 production, a species

resulting from oxidation of the highly reactive NO. A slight
increase in NO−

3 production was detected. Altogether, the results
obtained demonstrate that immune alteration induced by heat
Frontiers in Immunology | www.frontiersin.org 8135
shock is sufficient to decrease P. berghei infection without requiring
a prerequisite bacterial immune challenge as reported by Dieme
et al. (44). The resistance of Anopheles to Plasmodium infection
induced by high temperature has been reported elsewhere (45),
though the mechanism underlying the phenomenon was not
described. Here we observed that thermal stress affected the
transcription of both heat shock proteins and elements of the
anti-pathogenic immune response. Given the recent increases in
temperature in the tropical regions, the effect of heat shock on
malaria transmission is relevant to future disease tends.
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