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Editorial on the Research Topic

Novel Advances in Allergy Diagnosis and Treatment

The term “allergy” was coined by Clemens von Pirquet in 1906 to describe a general change of the
organisms’ reactivity in quality, quantity and time, including hyper- and hyposensitivity reactions to
exogenous substances (allergens) which are also depending on endogenous factors (1). Today, the
word “allergy” is associated with an abnormal, adaptive immunologic hypersensitivity reaction to
non-infectious environmental substances. The most common manifestations of allergic diseases are
IgE-mediated hypersensitivity reactions which in the last decades have become a major health
problem as already more than one quarter of the population in industrialized countries is affected
and prevalence is further rising (2). Allergen sources include a wide variety of environmental
substances such as pollen, house dust mites, animal dander, foods, drugs or insect venoms and the
disease can manifest itself e.g. as rhinitis, conjunctivitis, chronic asthma, urticaria or even life-
threatening anaphylaxis (2, 3). Long before the availability of anti-allergic drugs, Leonard Noon
demonstrated in 1911 that prophylactic inoculation with grass pollen extract was efficient in
suppressing symptoms of hay fewer (4). Since that time, allergen-specific immunotherapy (AIT)
remains the only available curative treatment for allergic patients. Nevertheless, in recent times,
several novel approaches aiming at enhancing therapeutic efficacy and diagnostic accuracy have
been developed. Moreover, the ongoing elucidation of immunological mechanisms of allergic
sensitization, disease progression and tolerance induction to allergens will facilitate the development
of new preventive and therapeutic strategies against allergy (5).

AlthoughAIT is a well-established disease-modulating treatment for IgE-mediated allergic diseases,
the induction of immune tolerance is an evolving area that is still not sufficiently understood. Zissler and
Schmidt-Weber give a comprehensive overview on immunological changes during AIT and their
usefulness as biomarker for monitoring and predicting therapeutic success. They discuss that clinical
allergen tolerance depends on multiple mechanisms across different immune cell and tissue
compartments. Hence, it is likely that only combinations or ratios of gene expression levels are
promising to achieve predictive value and definition of helpful biomarkers. Outstanding effective
tolerance induction can be achieved by AIT of Hymenoptera venom-allergic patients. Blank et al.
describe how the classification of venom-allergic patients into different disease endotypes and
phenotypes applying available biomarkers and diagnostic tolls can provide therapeutic guidance and
strengthen personalized treatment strategies and precision medicine. Along the same lines, Czolk et al.
provide an overview on the immune basis for phenotype variations in peanut-allergic individuals. They
discuss that deep immunephenotyping andmulti-omics technologies can build a reliable basis for novel
insights into disease pathophysiology and identification of biomarkers or biomarker signatures
org April 2021 | Volume 12 | Article 66269915
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predictive for reaction phenotypes. This knowledge shall advance
the stratification of individuals prior to selection for oral
immunotherapy or early food introduction for prevention.

Efficacy and safety of AIT relies on the type of allergy and the
disease status of the patient. Several approaches aiming at
enhancing therapeutic efficacy and reducing side-effects have
been developed or are in the scientific pipeline. For instance, the
use of adjuvants may optimize the immunological response to AIT
in themost appropriateway for a specificdiseasemanifestation.The
current status of the application of the adjuvant Microcrystalline
Tyrosine (MCT) and adjuvant systems comprising MCT and
Monophosphoryl Lipid A (MPL) in AIT is reviewed by Heath
et al.Montamat et al. describe the potential ofCpGoligonucleotides
as adjuvant for AIT with a focus on dose- and concentration-
dependent effects that are crucial for the induction of inflammatory
or tolerogenic responses. A broader overview on existing and
promising new candidates for formulations of AIT of human and
veterinary patients, including adjuvants, immunomodulators,
physical packaging, conjugates and combinations thereof to
modify allergenic proteins, making them safer, and more
efficacious in AIT, is given by Pali-Schöll et al.

There are some disadvantages associated with AIT when using
complete protein extracts from allergenic sources. These include
among others, problemswith standardization and allergen stability,
as well as the fact that the patients will be treated with a whole
cocktail of allergens and non-allergenic proteins, while having a
specific IgE-profile (6). AIT based on recombinant hypoallergenic
allergens has raised attention, especially in allergic diseases which
are triggered by one dominant allergen as e.g. birch pollen allergy.
Aglas et al. demonstrate a robust IgG immune response against a
hypoallergenic variant of the major birch pollen allergen Bet v 1 in
rats that efficiently blocks human IgE-binding to the wild-type
allergen, thereby demonstrating its potential therapeutic value in
AIT. Flicker et al. discuss the potential benefit of nanobodies, single
domain antibodies with several superior properties compared to
conventional antibodies, for passive treatment of IgE-mediated
allergy. The study by Krause et al. presents the development of a
high throughput analytical platform for unbiased IgE target epitope
detection. Such epitopes may represent interesting candidates for
diagnosis as well as therapy. Pomés et al. give a comprehensive
overview of state-of-the-art approaches to analyze the interaction
between IgE-antibodies and corresponding allergen epitopes. This
information on antigenic determinants will facilitate the design of
hypoallergens for AIT and further elucidate fundamental
mechanisms of the IgE immune response.

Evolutionary old responses against helminth parasites closely
resemble the patho-mechanisms that drive allergic diseases. This
implies that studying the helminth-host-interaction may contribute
to novel strategies for fighting against the rise of allergic diseases.
Bohnacker et al. review theprotective roleofhelminths inasthmaand
allergy. The immunomodulatory properties of helminth molecules
make them promising candidates to become the next generation of
biotherapeutics for the treatment of type 2 inflammatory disorders.
Also commensal microbes have a tremendous impact on human
health and recent evidence indicates that the susceptibility to food
allergy is critically linked to microbial dysbiosis. Kreft et al. give an
Frontiers in Immunology | www.frontiersin.org 26
overview on this important research area and explore future
directions for a potential microbial therapy of food allergy. In most
cases, proteins are recognized as allergens, although the relevance of
carbohydrate-specific antibodies as mediators of IgE-mediated
allergy was described decades ago. Hils et al. review the historical
development of carbohydrate-allergen-research with a particular
focus on clinical and immunological features of the alpha-gal
syndrome, the underlying feature of red meat allergy.

Many immune mechanisms of allergic diseases were uncovered
byapplyinganimalmodels of allergywhichalsooftenbuild thebasis
for the development of anti-allergic treatments. Alessandrini et al.
give an overview of currently used type 2 and non-type 2 rodent
asthmamodels and discuss the limits of extrapolation frommice to
humans. Currently available biological therapies applying
monoclonal antibodies to treat asthma and their possible effects
onairway remodeling are reviewedbyKardas et al. There is growing
evidence that allergic diseasesmaydevelopover lifetime fromatopic
dermatitis and food allergy in infancy to gradual development into
allergic rhinitis and allergic asthma in childhood. Yang et al. give an
overview on this so called atopic march and discuss new
perspectives for prevention and treatment of atopic diseases that
are provided by this concept.

Importantly, the success of AIT depends on an accurate allergy
diagnosis that aims at identifying the primary allergen source and
risk factors for disease severity. Based on recombinant allergens,
molecular or component-resolved allergy diagnosis was introduced
into clinical practice and allowed dissecting the molecular
sensitization profiles of allergic patients. Huang et al. demonstrate
that detection of IgE- and IgG-reactivity to a panel of respiratory
allergensmicro-arrayedonto silicon elements ismore sensitive than
glass-based chips. Furthermore, they discuss the advantages of
silicon-based allergen microarrays and how this technology will
allow addressing hitherto unmet needs in micro-array-based
molecular allergy diagnosis. Another powerful tool and sensitive
marker that can be used to detect clinically relevant allergy is the
basophil activation test (BAT). Eberlein gives an overview on this
diagnostic approach and on how the BAT provides information on
the severity of an allergic reaction and its use to monitor
immunotherapy and desensitization. Barbaud et al. report a multi-
center study demonstrating that standardization of intradermal tests
withdrugs reducesvariability andenables amore reliable comparison
of results between individuals and centers. Nowadays, it becomes
evident that also clinical decision support systems (CDSS) reinforce
health care professionals in taking informed decisions during their
clinical routine. Dramburg et al. give an overview on existing tools,
new developments and novel concepts and discuss the potential of
digital CDSS in improving prevention, diagnosis and monitoring of
allergic diseases.

In conclusion, state-of-the-art and novel promising diagnostic,
therapeutic and basic concepts that will help to fight the global
burden of allergic diseases have been introduced and discussed in
this Research Topic. Recent advances in diagnostic strategies and
biomarker development have greatly improved diagnostic
sensitivity and specificity and demonstrate rising potential for
detecting clinically relevant allergy and risk factors for severe
reactions as well as to predict and monitor therapeutic success
April 2021 | Volume 12 | Article 662699
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in the future. Furthermore, the development of new therapeutic
formulations and the uncovering of basic mechanisms of immune
tolerance increasingly will contribute to more efficient AIT
regimens, even in difficult to treat patients, and presumably also
to completely new therapy concepts for allergy.
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Background: Intradermal tests (IDTs) are performed and interpreted differently in drug

allergy centers making valid comparison of results difficult.

Objective: To reduce method-related and intercenter variability of IDTs by the

introduction of a standardized method.

Materials and methods: In 11 centers of the European Network for Drug Allergy, IDTs

were prospectively performed with saline and with amoxicillin (20 mg/ml) using (1) the

local method and (2) the standardized European Network in Drug Allergy (ENDA) method

(0.02ml). The diameters of the initial injection wheal (Wi) for the different volumes and sites

injected obtained from each center were analyzed.

Results: Themost reproducible method was to fill a syringe with test solution, then expel

the excess fluid to obtain exactly 0.02ml. The median Wi diameter with 0.02ml injection

using the standardized method was 5mm [range 2–10mm; interquartile range (IQR)

5–5mm; n = 1,096] for saline and 5mm (range 2–9mm; IQR = 4.5–5mm; n = 240) for

amoxicillin. IDT injection sites did not affect the Wi diameter. Training improved precision

and reduced the variability of Wi diameters.

Conclusion: Using the standardized IDT method described in this multicenter study

helped to reduce variability, enabling more reliable comparison of results between

individuals and centers.

Keywords: drug allergy, intradermal test, amoxicillin, standardization, specificity of drug skin tests
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INTRODUCTION

Allergy skin testing is essential for the correct diagnosis of
immediate and delayed drug hypersensitivity (DH). It is also
used to identify alternative drugs for patients with positive skin
or provocation tests with suspected drugs. The intradermal test
(IDT) is the most sensitive skin test and may be used when
soluble forms of the drugs are available. A questionnaire survey in
2004 (1) within the European Network in Drug Allergy (ENDA),
the Drug Allergy Interest Group of the European Academy of
Allergy and Clinical Immunology (EAACI), showed differences
in performing drug allergy investigations. Guidelines such as
those by the European Society of Contact Dermatitis (ESCD)
(2), the EAACI (3), anesthesiology societies (4, 5), and the
United States of America (6) differ in their recommendations
(Table 1), making valid comparison of the results between centers
virtually impossible. A position paper providing guidelines on
drug concentrations for skin testing was published in 2013 (7),
but at the present time, there is no consensus on themethodology
and interpretation of drug IDT. The drug concentration, the
method used, and the criteria for positive skin tests all influence
the sensitivity and specificity of IDT; consequently, thresholds
for specific results may vary between different centers (8, 9).
Barbaud et al. (8), using the ESCD guideline, showed that
the highest specific concentration before causing an irritant
reaction for cefotiam was 10 mg/ml and, for cefotaxime, 25
mg/ml, but Torres et al. (9) in the EAACI Interest Group
on DH position paper recommended using 1–2 mg/ml for
cephalosporin IDT.

A questionnaire survey on the skin test methods used by
different centers in the ENDA group was carried in 2008/2009.

TABLE 1 | Comparison of international guidelines published for performing drug intradermal tests.

ESCD (2) EAACI (3) BSACI (4) SFAR (5) Macy et al. (6)

Volume injected 0.04ml sequential dilutions

in saline or phenolated

saline

0.02–0.05ml 0.03ml 0.02–0.05ml 0.02ml with a

27-gauge tuberculin

Measurement of the Wi Yes

Raising a wheal of 4–6 mm

Yes

Raising a bleb of 3mm

Yes

Raising a bleb of

4–6 mm

Yes

Wheal ≤4mm

No

Time interval to immediate

skin test reading (minutes)

30 15–20 20–30 20 15

Criteria for immediate

positivity

Wheal ≥10mm W20 ≥ Wi+ 3mm with

surrounding flare

A wheal that is ≥3mm

larger than the initial

bleb with surrounding

flare

W20 ≥ Wi × 2 Wheal ≥5mm with a

surrounding erythema

Criteria for delayed positivity Papule at 24 h 24–72 h

infiltrated

erythema

Not defined Not defined Not defined

Site Extensor surface of the arm Volar aspect of the forearm

(or other regions)

Not defined Back, arm or forearm Not specified

Negative control with saline Yes Yes Yes Yes Yes, with Tris-buffered

saline

ESCD, European Society of Contact Dermatitis; EAACI, European Academy of Allergy and Clinical Immunology; BSACI, British Society for Allergy and Clinical Immunology, Societe

Francaise d’Anesthesie et Reanimation.

Wi, diameter of initial wheal just after injection; W20, diameter of the wheal 20-min post-injection.

It showed a wide variation in the method used and in the
interpretation of the results. This led to the setting up of
a multicenter study comparing local IDT methods with the
proposed new standardized IDT method based on the ENDA
consensus and to determine if the standardized method will
minimize the intercenter variability in performing IDT. As
the initial results and analysis had showed large variation in
the diameter of initial wheal just after injection (Wi) readings
obtained in the different centers, a practical session was organized
during an ENDAmeeting in one participating hospital.We noted
the different ways of filling the syringe and differences in the
injection needle gauge, injection, and test measurement methods.
A standardized IDT (the Guideline) was written and validated by
all coauthors.

MATERIALS AND METHODS

All tests performed in this prospective descriptive study were
part of routine investigations in patients who had been referred
for investigation of DH, and no additional tests were carried
out. Information on the methodology used to carry out the
drug IDT was collected from databases of 11 departments
in Europe with special interest in DH. The following data
were recorded: age and gender of the patients, the method
for filling the syringe, the injected volume of saline and
amoxicillin (AX), the injection site, and the diameter of Wi
and 20min post-injection. For AX (20 mg/ml), the parenteral
AX powder (the manufacturer may vary depending on the
center and dispensed by local hospital pharmacy) was dissolved
in sterile isotonic saline and used within 2 h of the IDT as
recommended (9).
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Questionnaires on the Methods for Doing
IDT
A questionnaire was sent by email to all the members of
the ENDA group. The main questions aimed at highlighting
differences in the local practice between centers, and the returns
are summarized in Table 1.

Evaluating Injection Volume Obtained by
Using Different Syringe Sizes and
Syringe-Filling Methods
Two methods, used in participating centers, to fill a syringe
with 0.02ml normal saline (NS) were evaluated. In Nancy,
three nurses specialized in drug allergy workup drew up exactly
0.02ml into a 1-ml syringe using a 25-G needle, which was then
emptied into a small vial (Method 1). Another nurse filled a
syringe with 0.05–0.07ml saline, then expelled the excess fluid
and air bubbles to obtain exactly 0.02ml, which was similarly
emptied into a vial (Method 2). The two procedures were
repeated 10 consecutive times. The weight of the NS collected
by both methods was determined using a precision scale (KERN
EW/EG version 2.4 11/2006) and then converted into milliliters.
Method 2 was also carried out in Copenhagen using a 1-ml
syringe as in Nancy, and a 0.5-ml syringe and a 27-G needle in
both instances.

Comparing Non-standardized Methods
With Injection of a Standardized Volume
The first part of the study was done in order to determine
if adhering to previously published international guidelines

minimizes intercenter variability in performing drug IDT; each
participating center performed IDT using its local IDT protocol
with NS and AX (20 mg/ml) test solutions. In the second part of
the study, the ENDA method, injecting a fixed volume (0.02ml)
of AX or NS, was carried out on additional new patients. We
also analyzed if the injection site, the syringe size, and the needle
gauge influenced the size of Wi.

The injection sites used for saline or AX IDT were the lateral
aspect of the upper arm (UA) and/or the flexor aspect of the
forearm (FA), and, in a limited number of patients, the back
(B). All centers used 25- to 27-G needles except one, which used

FIGURE 1 | Tuberculin syringe with a 25-G needle and a flat-end plunger

drawn up with 0.02-ml solution.

TABLE 2 | Results of Questionnaire Survey of Drug Intradermal Test (IDT) methods used in 20 European allergy centers.

Questions Answers

Number of IDT done per year 30–6,000 IDT

Do you use dissolved and filtered drug solution for IDT? Yes: 5/20 (crushed pills or other non-injectable forms of the drugs, diluted in saline then filtered)

No: 15/20

Which solvent do you use? Saline or phenolated saline: 16/20

Sterile distilled water or the solvent recommended as diluent for the infusion: 4/20

What volume do you inject? No fixed volume but a volume to raise a wheal: 12/20

A fixed volume:

0.02 ml: 1

0.03 ml: 3

0.04 ml: 3

0.05 ml: 1

Site of injection Upper arm: 4

Forearm: 14

Back: 1

Non-specified: 1

Measurement of the Wi Yes: 15/20

No: 5/20

What are your criteria for a positive immediate reading? The existence of a given diameter of W20: 4 centers (3–5mm depending on the centers)

The existence of a given diameter of erythema at 20min (E20) 3mm ≥: 6mm depending on the centers

(2 centers also consider the W20).

W20 ≥ Wi + 3 mm: 6 centers

Wi, mean diameter of the wheal (bleb or papule) immediately after ID injection.

W20, mean diameter of the wheal or the wheal developed at 20 min.

E20, mean diameter of the erythema developed at 20 min.
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30-G needles. The injection sites were inspected just after the
injection, with the measurement of the Wi and at 20min post-
injection for wheal (W20) and erythema (E20), respectively, and
their diameter was measured as recommended (2–5).

Analysis of Wi When Standardized IDT Is
Performed by Individual Tester Injecting
0.02 and 0.03ml Saline, Respectively
As the preliminary results showed that the test volumes injected
varied among allergy centers from 0.02 to 0.05ml, it was decided
to compare the most used volume of 0.03ml with the proposed
lower volume of 0.02ml NS. This was carried out by trained
operators using the standardized IDT method on volunteer
subjects in six centers.

The results obtained, the Wi obtained using the local and
the standardized IDT methods on different injection sites and
volume injected, were subject to chi-square and Kruskal–Wallis
tests and non-parametric data by Wilcoxon test. The differences
in wheal sizes were considered statistically significant if the p-
value was≤0.05. The statistical analysis was performed using SAS
software, version 9.2.

RESULTS

Questionnaires on the Methods for Doing
IDT
All centers answered that they followed the ESCD and/or EAACI
guidelines (2, 3), but no two centers carried out and interpreted
the IDT in the same way (Table 2). Even if the two European
guidelines recommended injecting a given volume (between 0.02
and 0.05ml) (2, 3), 12/20 centers did not use a fixed volume but
injected a volume to produce the targeted Wi diameter.

In addition to the answers summarized in Table 2, the centers
may differ on the syringe size and the gauge of the needle
used, on the way syringes are filled with the test solution, and
in the training for IDT. Some centers also used crushed pills,
diluted in saline then filtered, for performing IDT, which was not
recommended by any previous guidelines.

Evaluating Injection Volume Obtained by
Using Different Syringe Size and
Syringe-Filling Method
Drawing up a larger volume and expelling excess solution to the
required volume gave more reproducible result (mean 0.024ml,
SD = 0.002). This method of syringe filling was adopted into the
standardized IDT method (Figure 1). The needle gauge did not
appear to affect the injection volume obtained as shown by the
results acquired in Copenhagen and Nancy. Copenhagen (27-G
needle and 1-ml syringe) mean volume= 0.027ml (range 0.019–
0.037), SD = 0.0.0037. Nancy (25-G needle and 1-ml syringe)
mean volume = 0.027ml (range 0.012–0.037), SD = 0.0035.
When a 0.5-ml syringe instead of a 1-ml syringe was used to
draw up the solution, the mean volume was less and the standard
deviation lower, 0.023ml (range 0.017–0.027), SD= 0.0019.

Comparing Non-standardized Methods
With Injection of a Standardized Volume
Seven centers performed local non-standardized NS IDT with
injection volumes that ranged from 0.02 to 0.05ml and also with
a fixed volume of 0.03ml (Table 3). Local center IDT methods of
skin testing were based on previously published guidelines (2, 3).

There were large intercenter and interindividual variations in
the Wi when local IDT methods were compared. This is likely to
be due to the different ways the injection volume was measured
and the injection technique. There was a statistically significant
difference in the mean Wi diameter across centers even when a
fixed volume of 0.03-ml injection was used for IDT (p < 0.0001).
The overall median Wi was 5mm (n = 318) with a range of 2–
11mm, variation in meanWi of 3–8mm, and interquartile range
of 4–5 mm.

Investigation of Whether Standardized IDT
Method Reduces Intercenter Variability
During an ENDA meeting, syringe filling, differences in the
injection needle gauge, injection technique, and reading of the
skin reaction were evaluated.

Needles of 25–30G did not affect the Wi produced. However,
the volume of the syringe used affected the actual volume
drawn up into the syringe, probably due to the dead volume
of the syringe. In addition, a 0.5-ml syringe has wider
spacing between markings, which enables a more accurate
measurement of volume of the test solution. Unfortunately,
the 0.5-ml syringe is not available throughout Europe. We
also consider the variability due to syringe size to be limited.
For the standardized method, we, therefore, advised that
either 0.5- or 1-ml syringes can be used for IDT, subject to
local availability.

To help decide on the test volume to be used in
the study, NS IDT was performed on the skin of the
coauthors of this study. It was noted that larger injection
volumes (>0.02ml) tended to produce very big wheals. A
standardized IDT method with a description of each step,
using 0.02-ml injection, was proposed and agreed by the study
group (Table 4).

Eight centers performed IDT using 0.02-ml saline, and six of
these, in addition, performed IDT with 0.02-ml AX (20 mg/ml).

IDT performed with standardized method syringe filling
(Figure 1) and 0.02-ml saline on 1,096 patients (Table 5)
showed that a significant difference in the Wi persisted
between centers (p < 0.0001). However, differences in
the mean and median diameters between centers were
reduced, with variation in the mean Wi (4.5–5.4mm)
in the range 2–10mm, with a median diameter of 5mm
(IQR 5–5mm).

IDT with standardized syringe filling with 0.02-ml AX
performed on 240 patients gave a mean Wi diameter of 5.2mm
and a median Wi of 5mm (range 2–9mm, IQR 4.5–5mm). The
difference inWi between centers remained statistically significant
(p < 0.0001) (Table 5).

There was no correlation of wheal size with age or sex with
either local methods or standardized IDT.
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TABLE 3 | Median injection wheal (Wi) diameter for intradermal tests with saline using non-standardized individual protocols, demonstrating large inter-center variations.

Center Porto Vilnius Ankara Paris (Necker) Firenze Nancy Munich Total

Mean age (yrs.) 8 47 43 9 45 55 32 42

Site

UA (n) 15 9 24 24 72

FA (n) 6 32 11 99 22 24 194

B (n) 28 24 52

Injected volume

0.02ml (n) 3 36 39

0.03ml (n) 6 22 48 9 99 46 36 266

0.04–0.05ml (n) 10 3 13

Total (n) 6 32 54 9 99 46 72 318

Median Wi diameter (R)

mm by center

6 (5–8) 5 (3–11) 3 (2–4) 8 (7–9) 5 (4–6) 5 (3–7) 4.5 (3–7) Wi diameter

Median 5mm

Range (2–11)

IQR 4–5

**p < 0.0001

UA, Upper Arm; FA, Forearm; B, Back; n, number of tests; R, range minimal and maximal; IQR, interquartile range.

**The variables were subject to a chi-squared test for the qualitative variables, a Kruskal-Wallis test for the quantitative variables.

TABLE 4 | Summary of proposed ENDA protocol for performing and reading drug intradermal test.

1. IDT must be performed, following negative prick tests, using pharmaceutical grade human drugs in injectable form. IDT is contraindicated in severe cutaneous

adverse drug reactions

2. Syringe size and needle gauge:

• Tuberculin syringe of preferably 0.5ml or if not available, 1-ml volume

• Needle gauge of 25, 27, or 30G

• Same fixed or new needle can be used for test IDT

3. Injection technique:

- Adopt sterile techniques.

- Fill syringe with test solution; change the needle if not fixed. Tap the barrel of the syringe to make the air bubble rise to the needle end of the syringe. Expel air bubble

and excess volume pushing the plunger to the 0.02-ml mark on the barrel (Figure 1). A syringe with a flat end plunger is better than one with a tapered end to help

measure the volume of the test solution drawn into the syringe.

- With the bevel of the needle facing upward, pierce skin tangentially in the upper dermis (at about 10◦ angle to the skin surface).

- Then slowly inject the measured volume intradermally.

4. Control:

- After intradermal injection of 0.02ml of saline or test solution at recommended concentration, an injection wheal measuring 4.5- to 5.5-mm diameter should form.

- If no clear wheal forms, repeat injection.

5. Record all injected solutions, batch number, and map of injection sites. Draw around and/or measure the diameter of the immediate injection wheal (Wi). If you

surround the wheal with ink, always measure the inner diameter.

6. Read the IDT after 20min. Measure wheal (W20) and surrounding erythema (E20).

7. If the wheal is not round, measure the length (L), then the width (w) taken perpendicularly, in the middle of the axis length Wi = (L+w)/2.

8. In patient records and publications, IDT results must be recorded as follows: Wi, W20, and E20.

9. At 20min, the IDT is considered positive only if there is a wheal, W20 ≥ Wi + 3mm and surrounding erythema, E20.

10. For delayed reactions read at 24, 48 h, or later (please specify the time interval). IDTs are considered positive when there is an erythematous induration or swelling

at the injection site.

Analysis of Wi When Standardized IDT Is
Performed by Individual Tester Injecting
0.02- and 0.03-ml Saline, Respectively
The Wi obtained by an individual tester injecting 0.02- and 0.03-
ml NS, respectively, using the standardized IDT was compared in
six different centers (Table 6).With 0.02-ml NS injection volume,
the Wi mean diameter was 5.1mm (range 3–8mm) and median
= 5mm (IQR 4.5–5mm). When 0.03-ml NS was injected, the
mean Wi was 6.2mm (range 3–8mm) and median = 6mm
(IQR 5.5–6mm) (Table 6).

Standardization of IDT produced larger Wi. For the 0.03-ml

injection volume, the mean Wi was 6mm (Table 6) compared

to 5mm before standardization (Table 3). However, the smaller
injection volume of 0.02ml produced smaller Wi (5mm)
(Table 6).

Injection Site Does Not Affect Wi Readings
The Wi diameter was not affected by the injection site when the
standardized IDT method was used. NS IDT was performed on
two or more injection sites (UA, FA, B) in three centers (Ankara,
Nancy, and Munich). There was no significant difference in
the Wi diameter obtained in the different injection sites (p >

0.05) (Table 3). In addition, the Wi diameter obtained using
the standardized IDT with NS and AX at the recommended
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TABLE 5 | Diameter of IDT injection wheal (Wi) after injecting 0.02ml saline and amoxicillin (20 mg/ml) using standardized method for drug intradermal tests.

Porto Vilnius Ankara Firenze Nancy Malaga Graz Groningen Total

Saline number tested 26 87 78 118 734 6 24 23 1,096

Age 10 51 48 46 59 28 28 44 43

Site

UA 0 0 0 0 409 0 8 0 417

FA 26 87 78 118 133 6 8 23 479

Back 192 8 200

Median Wi diameter (R)

mm

5 (4–6) 5 (3–10) 5 (4–6) 5 (3–6) 5 (2–7) 5 (4–6) 5.4 (4–7) 4.5 (3–6) Wi diameter

Median 5mm

Range (2–10)

Q1 = 5, Q3 = 5,

IQR = 0,

**p < 0.0001

Amoxicillin number

tested

3 23 0 86 88 17 0 23 240

Age 5 51 45 53 35 44 48

Site

UA 0 0 0 0 88 0 0 0 88

FA 3 23 0 86 0 17 0 23 152

Median Wi diameter (R)

mm by center

5 (5–6) 6 (4–9) 5 (3–6) 5 (2–7) 6.4 (4–7) 5 (4–7) Wi diameter

Median 5mm

Range (2–9)

Q1 = 4.5, Q3 = 5,

IQR = 0.5,

**p < 0.0001

R, range minimal and maximal; IQR, interquanrile range; Wi, injection wheal; UA, Upper Arm; FA, Forearm; B, Back. **The variables were subject to a chi-squared test for the qualitative

variables and a Kruskal-Wallis test for the quantitative variables.

TABLE 6 | Comparison of diameter of IDT injection wheal (Wi) after injection of saline (0.02ml or 0.03ml) by trained operators using the standardized method and syringe

size used.

Groningen Firenze Porto Nancy Malaga Munich Total

Number of volunteers 23 11 10 15 10 8 77

Mean age 44 44 34 30 48 30 30

Site (p = 0.4735)

UA (N) 0 0 0 30 0 0 30

FA (N) 46 22 20 0 20 16 124

Wi diameter (mm) with injection volume (ml)

0.02ml 5 (3–6) 5 (4–7) 5 (4–6) 5 (5–6) 6 (5–7) 5 (5–8) 5 (3–8)

0.03ml 6 (3–6) 6 (5–8) 6 (6–7) 6 (6–6) 7 (6–8) 7 (6–7) 6 (3–8)

Syringe size (ml)

0.5ml (n) 46 0 20 0 0 0 66

1ml (n) 0 22 0 30 20 16 88

N, number of test; M, median; R, range; SD, standard deviation; UA, Upper arm; FA, Forearm; IQR, interquartile range; No difference of Wi according to the site of injection (p = 0.4735).

concentrations (8–10) performed on the UA, FA, and B was not

significantly different and suggested that variation of the test
results between centers was independent of the injection site and
the drug used. Differences in Wi in different sites in the same
individual patients were not compared.

DISCUSSION

IDTs are essential for the diagnosis of DH. This study
demonstrates significant differences in the IDT methods used,

in the volume injected, and in the Wi diameter obtained by the

study centers. It shows that standardization of the IDT procedure

and injection volume produced improved, reproducible, and
more comparable skin test results. Tester training had a positive

influence on precision and reduced variability. The identification
of several causes of variability in the performance of IDT enabled
an IDT standardized method to be proposed (Table 4). The

adoption of the proposed method and training should lead to
more reproducible and comparable results between centers and

clinical studies.
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In spite of the many guidelines published, our questionnaire
survey of 20 allergy centers in ENDA showed that the majority
did not follow published guideline recommendations. Indeed,
most of the centers (12/20) did not inject a fixed volume as
recommended by all guidelines (2–6), but injected a volume
to achieve the target Wi. Using a fixed volume of an IDT
drug solution of known concentration means injecting a known
and fixed quantity of the tested drug. Drug IDT could induce
immediate or delayed flare reactions in addition to the wheal
(11, 12). The incidence of these flares may depend on themethod,
the concentrations, and the volume injected. Three flares were
observed among 30 patients with IDTs for cutaneous adverse
drug reactions (11). The incidence of systemic reactions in
patients with positive skin tests to penicillin varies from 0.7 to
9.4% (12, 13). Even with a fixed injection volume, the diameter
of Wi could be affected by the age of the individual and the
degree of skin atrophy. Injecting a fixed test volume would allow
more robust comparison of IDT results between individuals and
centers. As illustrated in Table 1, the five guidelines vary in
the volume of drug injected, the target Wi diameter, the time
before reading the immediate skin reaction, the criteria for an
immediate and delayed positive test reading, and the site for
performing IDT. The differences in the Wi diameter following
injection of test volumes used in the guidelines and in our
standardized method are stark.

With the ENDA IDT standardized method, the 0.02-ml
injection volume produced a mean Wi of 5.1mm (range 3–
8mm), whereas 0.03ml produces a mean Wi diameter of
6.2mm (3–8mm), median = 6mm. With the ESCD guidelines
showing that injecting 0.04ml results in raising a Wi of 4–
6mm (2), the EAACI guidelines show that injecting 0.02–
0.05ml produced a Wi of 3mm (3), and the SFAR guidelines
show that injecting 0.02–0.05ml caused a Wi ≤4mm (5).
Such differences make the comparison of IDTs performed
following different guidelines of doubtful value. The BSACI
guideline uses a fixed volume of 0.03ml. The resulting wheal,
a median Wi of 6mm, is similar to that obtained by the
ENDA standardized method. However, there is a difference
in the time when the immediate test reading is taken, 20–
30min with the BSACI guideline and 20min with the ENDA
standardized method.

Macy et al. (6), in their IDT protocol, used 0.02ml and took
the reading of the immediate reaction 15min after the injection,
which was considered positive when the wheal is ≥5mm. In
a recent paper, the similarities and differences between Europe
and North America in the approach to the diagnosis of DH
reactions have been highlighted (14). However, the method for
doing and reading IDT, which we have shown to be different
among ENDA allergy centers, is not in the list of differences
between the two continents.

With the standardized IDT method, the 0.02-ml injection
volume produced a mean Wi of 5.1mm, whereas 0.03ml and
above produced a Wi diameter of 6.2mm (3–8mm). Due to the
small risk of sensitization and anaphylaxis induced by IDT (9), it
is considered good practice to inject a small as possible volume
of potential drug allergen that will produce a test wheal that
enables accurate reading of the diameter. That is why we have
recommended that 0.02ml of non-irritating test allergen solution
should be used for IDT.

Variability could also be caused by differences in measuring
wheal sizes and differences in the depth of injection. The
somewhat surprising but interesting finding that the injection
site did not significantly affect Wi needs further evaluation. It
appears that IDT is amore complicated and variable method than
previously acknowledged and that detailed recommendations
and training are needed for method consistency and reproducible
results and interpretation. Intertester variability could be reduced
by having designated trained members of staff to perform
IDT (15).

We hope that these highly detailed ENDA guideline for
performing IDT will help to standardize the IDT method.
We envisage that further studies will be necessary using this
standardized method to determine if Wi could be affected by the
age of the patient, the test site, and skin atrophy. It would also
be interesting to determine the negative predictive value of IDT
in using different criteria for their positivity W20 ≥ Wi+ 3mm,
W20 ≥Wi× 2 or W20≥ a fixed diameter of 10 or 5 mm.
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Asthma is a chronic and heterogenic respiratory tract disorder with a high global

prevalence. The underlying chronic inflammatory process and airway remodeling (AR)

contribute to the symptomatology of the disease. The most severely ill asthma patients

may now be treated using a variety of monoclonal antibodies aiming key inflammatory

cytokines involved in asthma pathogenesis. Although clinical data shows much beneficial

effects of biological therapies in terms of reduction of exacerbation rates, improvement

of lung functions, asthma control and patients’ quality of life, little is known on the

effects of these monoclonal antibodies on AR—a key clinical trait of long-term asthma

management. In this review, the authors summarize the data on the proven effects of

monoclonal antibodies in asthma on AR. To date, in terms of reversing AR, the mostly

studied was omalizumab. However, some studies also addressed this clinical issue

in context of other severe asthma biological therapies (mepolizumab, benralizumab,

tralokinumab). Still, data on effects of particular biological therapies on AR in severe

asthma are incomplete and require further studies. According to the American Thoracic

Society research recommendations, future research shall focus on AR in asthma and

improve drugs targeting AR, including the available and future monoclonal antibodies.

Keywords: asthma, airway remodeling, airway remodeling in asthma, biological therapy, omalizumab,

mepolizumab/reslizumab, benralizumab

INTRODUCTION

Asthma is a chronic, heterogeneous and inflammatory respiratory condition characterized by
shortness of breath, cough, wheezing, and chest tightness. It belongs to the group of obstructive
diseases for which the variable airflow limitation is characteristic (1). Various asthma phenotypes
differ in causes and mechanism of symptom formation, and thus in severity and frequency of
symptoms and exacerbations (2). Currently, asthma affects 1–18% of the population in various

countries (1, 3, 4). It occurs in all age groups, with new diagnoses mostly made in children
aged 0–9 [early-onset asthma, usually atopic (5)] and in adults aged 40–49 [late-onset asthma,
often with eosinophilic phenotype (6)]. Noteworthy is that not only asthma, but also other
allergic diseases’–urticaria, allergic rhinitis or food allergies—prevalence increase worldwide (4,
7, 8). The causes of this epidemiological phenomenon mainly include: environmental changes
associated with the modification of the surrounding microbiome affecting microbiological and
immunological changes in the human respiratory tract from the earliest years of life (the so-called
“hygiene theory”), past respiratory infections, exposure to allergens, air pollution, and other
pollutants (9, 10).
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Currently, “asthma” is considered an umbrella term, which
encompasses several, both clinically and pathophysiologicaly
different variants of the disease. The two main divisions concern
the type of inflammation: Th2-predominant and non-Th2.
Further, phenotypes are distinguished as either eosinophilic
asthma or non-eosinophilic (11). In particular, among Th2-
predominant phenotypes, the most prevalent endotype is the
allergic asthma. It develops on basis of atopy, in particular in
response to inhaled allergens such as house dust mites, grass
pollen, trees, and pets (6). Apart from classical childhood-onset
allergic asthma, late-onset eosinophilic asthma is now one of the
best-defined phenotypes (12). Several other endotypes of asthma
include obesity-associated asthma, neutrophilic asthma, very-late
onset asthma and other.

In the pathogenesis of the disease, mediators of the Th2-
dependent reaction play a key role, including: IgE, IL-3, IL-
4, IL-5, IL-13, IL-33, TSLP, and other (13). In non-allergic
asthma, although the cellular pathomechanism is different,
most of the mediators remain the same, with main variations
including IL-17 and PGD2. The underlying immunopathological
mechanisms of asthma lead to chronic airway inflammation
resulting in number of consequences for the bronchi. The
airways become hypersensitive and constrict when subject to
stressful stimuli. Another result of this ongoing inflammation
is airway remodeling (AR), a process of structural changes
of bronchi walls. The chronic airway inflammation thus leads
to reduced airway airflow and clinical symptoms—wheezing,
shortness of breath cough, chest tightness. Unfortunately,
those symptoms are few and non-specific, thus the differential
diagnosis of asthma is often difficult. Additionally, asthma is
often associated with comorbidities, including: other allergic
conditions (rhinosinositus, nasal polyps, atopic dermatitis),
obesity, diabetes, gastroesophageal reflux, depressive and anxiety
disorders, and other (14).

In clinical practice, we distinguish 3 levels of asthma severity
(mild, moderate and severe) and 5 Global Initiative for Asthma
(GINA) treatment steps (1). Mild asthma comprises of GINA
steps 1. and 2. Moderate asthma, characterized by more severe
symptoms and more frequent exacerbations is GINA step 3.
Severe asthma are GINA steps 4. and 5. The most severely ill
patients, i.e., those who do not achieve asthma control despite
using high doses of inhaled steroids, are qualified for step 5.
biological treatment with monoclonal antibodies against key
asthma mediators. The overall clinical goal in asthma is disease
control, i.e., a therapy that provides optimal symptom reduction.
Drugs and their doses are modified depending on the symptoms,
severity of the disease and exacerbation frequency. Treatment
may be intensified in absence of control or reduced if long-term,
optimal disease control is achieved.

AIRWAY REMODELING IN ASTHMA

In the pathogenesis of asthma symptoms, bronchospasm under
the influence of external stimuli plays a key role (15).
Simultaneously, the inflammation that occurs in the bronchi
is responsible for the onset of symptoms. Currently, another

TABLE 1 | Key molecular factors contributing to airway remodeling (in

particular—the factors that are aimed by currently available or investigated

biological therapies of asthma).

Factor Key effect(S) on airway remodeling References

IgE 1. Indirect contribution—IgE stimulates production of

cytokines involved in airway remodeling (IL-4, IL-5,

IL-13, TGFβ1, and other) during the late phase

2. Direct contribution—induction of ASM proliferation

in vitro

1. (25)

2. (26)

IL-4 1. Increased synthesis of α-smooth muscle actin and

collagen III

2. Induction of TGF-β release by airway epithelial cells

1. (27)

2. (28)

IL-5 1. Promotion of subepithelial and peribronchial fibrosis

by eosinophil recruitment and subsequent production

of TGFβ1

1. (29, 30)

IL-13 1. Induction of TGF-β release by airway epithelial cells

2. Changes in goblet cell density

1. (28, 31)

2. (32)

IL-17 1. Promotion of ASMC migration

2. Increase of matrix metaloproteinases

3. Cross-talk with TGFβ1 resulting in EMT

4. Stimulation of inactive fibrocytes maturation to

fibroblast, which deposit collagen within ECM

1. (33)

2. (34)

3. (35)

4. (36)

TSLP 1. Promotion of collagen deposition

2. Goblet cells hyperplasia

3. Local eosinophil recruitment in airway

4. Increase in type-I collagen and α-SMA expression in

human lung fibroblasts

1, 2, 3. (37)

4. (38)

distinguished disease component is AR, i.e., a process of
reconstruction of the bronchi wall. Much research is currently
focused on AR, the understanding of which will allow to search
for new therapeutic possibilities of asthma (16, 17).

Chronic respiratory epithelium inflammation leads to changes
in microvascularization, thickening of the airway walls and
impaired airflow through the bronchi, and consequently to
impaired ventilation (18). Thus, AR is a change of composition,
content and distribution of cellular and molecular components
in the airway wall (19). In asthma, it is associated with many
structural changes–epithelial damage, subepithelial fibrosis,
angiogenesis, hypertrophy and proliferation of myofibroblasts
and myocytes and increased number of smooth muscle fibers
in airway smooth muscle cells (ASMC), that increase airway
smooth muscle (ASM) mass (20, 21). A number of inflammatory
molecular factors are involved in these structural changes, either
directly or via further induction of inflammatory reaction,
namely eosinophilic (22). Starting with the local epithelium-
derived factors, the key AR mediators include: PDGF (platelet-
derived growth factor), TGFβ (transforming growth factor β,
with particular emphasis on TGFβ1, among its three isoforms),
FGF (fibroblast growth factor), EGF (epidermal growth factor),
prostaglandin D2 (PGD2), CXCL2, CXCL3, IL-8, eotaxin, TSLP,
CCL1, and other, which all promote ASMC migration (23, 24).
The cytokines produced by Th2 (IL-4, IL-13) and Th17 cells
(IL-17, IL-21, IL-22, TNFα) share the same effect. All of the
inflammatory factors that are targeted by currently available and
investigated biological therapies contribute to AR. The summary
of their effects on particular components of AR is available
in Table 1.
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Currently, the possible role of epithelial-mesenchymal
transition (EMT) in AR is also strongly discussed. EMT is a
transformation of epithelial cells into mesenchymal-like cells
by loss of their epithelial traits (39). Features of EMT in AR are
currently intensively studied and emerging studies confirm that
EMT occurs in AR in asthma (40, 41). A major mediator of that
process is TGFβ1, which has been proven to induce EMT of
airway epithelial cells–this process occurs to a greater extent in
cells of asthmatic than of non-asthmatic patients (42). It is thus
worth to pay attention to the inflammation mediators which
are targeted by biological therapies of severe asthma and their
effect on TGFβ1-mediated EMT [eg. IL-4, IL-17 (35, 43)]. In
vitro studies also show that neutrophils from severe asthmatics
induce EMT in healthy bronchial epithelial cells via TGFβ1
dependencies (44). A need for further research in this area is
suggested in the literature (40, 45, 46).

As a result of AR, patients may experience irreversible airway
obstruction which leads to worsening of lung function, airway
dilatation and response to bronchodilators. AR thus significantly
contributes to the development and long-lasting persistence of
asthma symptoms (16, 47–49).

SEVERE ASTHMA AND ITS BIOLOGICAL
THERAPY

Severe asthma affects 3.6–10.0% of patients with asthma (50–
52), which corresponds to around 4 million patients globally.
Currently, much research is focused on pathomechanisms of
severe asthma and development of its new biological therapies
(53). Although it is much less prevalent than mild and moderate
asthma, severe asthma contributes to about 60% of costs
associated with this disease, mainly due to drug costs (54, 55).

The ground-breaking achievement in severe asthma treatment
was the introduction of its first biological treatment—anti-IgE
monoclonal antibody omalizumab. The following years brought
further biological agents aimed at different factors, including IL-
5, IL-5R, IL-13, IL-4R, and other. Each of these drugs blocks a
certain immunological pathway triggering and controlling the
allergic or non-allergic airway inflammation. With the now-
available monoclonal antibodies in asthma, clinicians may select
a drug according to asthma phenotype. Currently, approved
by the FDA and available on the market are: omalizumab,
mepolizumab, benralizumab, reslizumab, and dupilumab (56).

Omalizumab is a humanized IgG1/κ monoclonal antibody
that binds to the IgE immunoglobulin Fc fragment (57). Thus, it
inhibits the mainmediator of type I reaction pathway. By binding
blood-circulating free IgE molecules, it inhibits the activation of
mast cells and basophils (58). Launched in 2003, omalizumab has
been used in severe allergic asthma and, since 2014, in chronic
urticaria. Omalizumab is the very first monoclonal antibody
included in the GINA recommendations (in 2004) on step 5. as an
addition to standard therapy with high doses of inhaled steroids,
β2-agonists and other drugs. Clinical and observational studies
conducted over several years of using omalizumab have proven
that it improves asthma control and relieves its symptoms,
reduces exacerbation risk and improves lung function (59–61).

Long-term safety of this drug was demonstrated in adults in
terms of oncological safety and pregnancy (62–64) and in
children (65).

Mepolizumab–another biological drug for severe asthma
treatment—was registered in 2015. This antibody binds IL-5,
which prevents it from binding to the IL-5R α subunit on
eosinophils. This drug is thus used in patients with eosinophilic
asthma as by blocking the IL-5 signaling, the patient’s eosinophil
population is reduced, which leads to clinical improvement (66).
Clinical and observational studies confirmed that mepolizumab
used in the treatment of severe eosinophilic asthma improves
asthma control, reduces the number of exacerbations and
doses of steroids used and improves lung function (67, 68).
Importantly, both mepolizumab and omalizumab exhibit a
comparable safety profile (69).

Whilst having achieved greatly beneficial clinical effects with
biological treatment, as research in severe asthma progressed,
further drugs were introduced by FDA, including: benralizumab
(which targets IL-5R α subunit), dupilumab (which inhibits IL-
4 and IL-13 signaling) and reslizumab (anti-IL-5 antibody) (56,
70, 71). The summary of their biological and clinical effects is
available in Table 2.

EFFECTS OF PARTICULAR BIOLOGICAL
DRUGS ON AIRWAY REMODELING

AR in asthma is mainly caused by long-term, uncontrolled airway
inflammation (16). With the duration of the disease and its
symptoms, structural changes in the bronchi progress, whichmay
lead to a significant and long-term impairment of lung function
(49). Considering the above and the immunomodulatory effect
of biological therapies, it may be assumed that these drugs
may significantly affect AR. However, data on this subject are
limited and few studies cover this clinical aspect. A summary of
research covering biological therapies’ impact on AR is available
in Table 2.

Omalizumab
Roth et al. described the effects of IgE-contained serum from
allergic asthma patients on ASM cells. The effects of such
incubation were: ASM cells proliferation, deposition of type-I
collagen in 48 h and of fibronectin in 24 h. A 1 h pre-incubation
of ASM cells with omalizumab, prevented these three effects. The
addition of allergens did not increase the IgE-dependent effects
on cells incubated in omalizumab (73). Another interesting study
on omalizumab was published by Huang et al. (72), in which
the authors analyzed of omalizumab on allergen- and IL1β-
stimulated proinflamatory cytokine and nitric oxide production
in human bronchial epithelial cells (BECs) and compared them
to those of budesonide. In that study omalizumab shared similar
effects as budesonide in decrease of TNF-α, TGFβ and IL-4
production (72).

In 2012 Hoshino and Ohtawa compared 16 patients
on omalizumab to 14 patients with conventional severe
asthma treatment and measured their airway dimensions with
high-resolution computed tomography (HRCT). A 16-week
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TABLE 2 | Summary on biologic therapies for the treatment of severe asthma and with their clinical effects and confirmed effects on AR.

Drug Form Target Biological effects Clinical effects Effects on airway remodeling Other fda-approved

indications

FDA—approved

monoclonal antibodies

for treatment of

moderate-to-severe

asthma

Omalizumab Humanized

IgG1/κ,

monoclonal

antibody

IgE ◦ ↓ circulating total IgE

◦ Down-regulation of FcεRI

receptors on basophils, mast

cells, and dendritic cells

◦ Improvement of lung function (FEV1)

◦ Improvement of quality of life (AQLQ)

◦ Improvement of asthma control (ACT)

◦ ↓ oral and inhaled corticosteroid use

◦ Reduction in exacerbation and

hospitalization frequency (59)

◦ Reduction of production of TNF-α, TGFβ

and IL-4 in bronchial epithelial cells (72)

◦ Prevention of ASM cell remodeling

in vitro(73)

◦ Reduction of airway wall thickness in

computed tomography (74, 75)

◦ Chronic idiopathic urticaria

Mepolizumab Humanized

IgG1/κ,

monoclonal

antibody

IL-5 ◦ Blockage of IL-5/IL-5R

binding on eosinophils

◦ ↓ blood eosinophils

◦ ↓ sputum eosinophils

◦ Reduction in exacerbation frequency vs

placebo

◦ Improvement in AQLQ vs placebo

◦ No significant effect on FEV1,

PEF, PC20 (76)

◦ Reduction of airway remodeling markers

(tenascin, lumican, and procollagen III)

and airway eosinophils expressing TGFβ1

in bronchial reticular basement

membrane and reduction of TGFβ1 in

bronchioalveolar lavage after

mepolizumab treatment (77)

◦ Reduction of AR observed in

computed tomography (78)

NA

Benralizumab Humanized

IgG1/κ,

monoclonal

antibody

IL-5 Receptor

alpha subunit

(IL-5Rα)

◦ ↓ eosinophils and basophils

via antibody dependent cell

mediated cytotoxicity (ADCC)

◦ Reduction in exacerbation frequency

◦ No significant effect on FEV1

◦ Mixed data on quality of life and asthma

symptom scores (79)

◦ Decrease in airway smooth muscle mass

(predicted using computational modeling

approach) (80)

NA

Dupilumab human IgG4

monoclonal

antibody

IL-4 Receptor

alpha subunit

(IL-4Rα)

◦ Blockage of IL-4/IL-4Rα

binding

◦ Blockage of IL-13/

IL-4Rα binding

◦ Reduced rate of severe asthma

exacerbations and improved lung function

(FEV1), asthma control and quality of life

(81, 82)

Studies on in vitro or in vivo effects of

dupilumab on airway remodeling are

currently non-available

◦ Eczema

◦ Moderate-to-severe atopic

dermatitis in adolescents

◦ Chronic rhinosinusitis with

nasal polyps

Resliuzmab humanized IgG4/κ

mAb

IL-5 ◦ Blockage of IL-5/IL-5R

binding

◦ ↓ circulating eosinophils

◦ ↓ sputum eosinophils

◦ Reduced exacerbations, improved FEV1,

forced vital capacity, the 7-item Asthma

Control Questionnaire (83)

Studies on in vitro or in vivo effects of

reslizumab on airway remodeling are

currently non-available

NA

Drugs investigated

(currently or previously)

in severe asthma

treatment

Secukinumab human IgG1κ

monoclonal

antibody

IL-17A ◦ Blockage of IL17A -, −17F -,

−17A/F heterodimer -, and

−17E–(IL-25)/IL-17RA

binding

NA Studies on in vitro or in vivo effects of

secukinumab on airway remodeling are

currently non-available

◦ Plaque psoriasis

◦ Psoriatic arthritis

◦ Ankylosing spondylitis

◦ Discontinued in asthma

Brodalumab human, IgG2

monoclonal

antibody

IL-17 receptor A

(IL-17RA)

◦ Blockage of IL17A -, −17F -,

−17A/F heterodimer -, and

−17E–(IL-25) /IL-17RA

binding

◦ No significant improvement in lung function

(FEV1) and asthma control in subjects with

inadequately controlled moderate to severe

asthma (84)

Studies on in vitro or in vivo effects of

brodalumab on airway remodeling are

currently non-available

Plaque psoriasis

Tralokinumab Human IgG4

monoclonal

antibody

IL-13 ◦ Blockage of IL-13/IL-13Rα1

◦ Blockage of

IL-13/IL-13Rα2 binding

◦ Inconsistent effects on annualized asthma

exacerbation rate (85)—development of

tralokinumab in severe asthma was

discontinued by the producer after this

study (86)

◦ No significant effect on bronchial

eosinophilic count

◦ No significant reduction of airway

remodeling in bronchial biopsy

features–Airway smooth muscle

◦ None available (possibly

in atopic dermatitis in the

future) (88)

◦ Discontinued in asthma

◦ No significant improvement of lung function

(FEV1) (87)

area, RBM thickness, collagen type IV,

periostin, TGFβ and other (87)

Secukinumab Humanized IgG4

monoclonal

antibody

IL-13 ◦ Blockage of IL-13/IL-13Rα1

◦ Blockage of

IL-13/IL-13Rα2 binding

◦ Decrease in asthma exacerbations

incidence

◦ Improved lung function (FEV1%) (89)

◦ Greater clinical effects (decrease in

exacerbation rate and improvement in

lung function) in patients with high serum

periostin levels – a protein contributing to

airway remodeling (90)

◦ None available (possibly

in atopic dermatitis in

the future)(91)

◦ Discontinued in asthma

Tezepelumab

(AMG 157)

human, IgG2

monoclonal

antibody

TSLP ◦ Blockage of

TSLP/TSLP-receptor binding

◦ Inhibition of late allergen-induced asthmatic

response (FEV1) (92)

◦ Reduction of annualized asthma

exacerbation rate (93)

◦ Studies on in vitro or in vivo effects of

tezepelumab on airway remodeling are

currently non-available

NA

The table includes approved and emerging therapies with published human data. NA, none available.
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omalizumab treatment significantly reduced the airway wall
thickness measures: airway wall area corrected for body surface
area (WA/BSA)−13.7 to 12.1 mm2/m2, percentage wall area
(WA%)−71.1 to 64.7% and wall thickness (T)/

√
BSA−1.21 to

0.92 mm/m. Luminal area (Ai/BSA) at the right apical segmental
bronchus significantly increased (4.8 to 6.4 mm2/m2) and the
percentage of sputum eosinophils significantly decreased. These
effects were not observed in the conventional therapy group (74).

Tajiri also studied effects of omalizumab in regard to AR
in a 48-week follow-up of omalizumab in 26 patients (CT
measurements were analyzed in 14 patients). A significant
reductions of WA% was observed (57.1 vs. baseline 62.0) and
a small, but significant, increase in Ai/BSA (12.1 vs. baseline
12.0) (75).

However, Przybyszowski et al. reached slightly different results
to the above. The authors analyzed changes of HRCT airway
dimensions in 12 patients before and after at least 4 months of
omalizumab treatment. They observed a decrease in airway wall
area and WA/BSA, but no changes in WA% nor in luminal area
to total bronchial area ratio (94).

Mepolizumab
Flood-Page published in 2003 a study on the effects of
mepolizumab on AR markers in bronchial biopsies of 24
atopic asthmatics from a randomized, double-bind, placebo-
controlled study, which were obtained before and after three
mepolizumab infusions. Compared to placebo, treatment with
mepolizumab significantly reduced the expression of three
extracellular matrix proteins: tenascin, lumican and procollagen
III in the reticular basement membrane. Moreover, mepolizumab
significantly reduced the number and percentage of airway
eosinophils expressing TGFβ1 mRNA and decreased TGFβ1 in
BAL fluid (77).

Only one clinical study (12-month mepolizumab vs. placebo
trial, 61 subjects) analyzed the effect of mepolizumab on AR. The
mean change in CT measured wall area and total area corrected
for body surface area was significantly greater in treatment
group than in placebo group. In fact, in mepolizumab group the
values decreased whereas in placebo group an increase of these
parameters was observed (78).

Benralizumab
A very interesting approach in assessing effects of benralizumab
on AR was taken by Chachi et al. (80). The researchers used
bronchial biopsies of 15 patients on benralizumab and 10
patients receiving placebo, which were collected from subjects
with eosinophilic asthma during a previous phase I multicenter,
randomized, double-blind, placebo-controlled trial (95). The
eosinophil count in airway lamina propria was assessed in
pre- and post-treatment biopsies. It decreased significantly in
benralizumab group by 66.4% and by 88% relative to placebo.
Knowing the mechanism of action of benralizumab, and with
the observed mean change in eosinophil count, the authors
used a computational model to predict effects of this drug on
AR. They concluded that in benralizumab group the drugs pro-
apoptosis efficiency was 47%, corresponding to a consequent
29% relative reduction of ASM mass. Additionally, in the

benralizumab group, a non-significant reduction in the number
of tissue myofibroblasts was observed. The authors suggest that
as ASM cells do not express IL-5R, the effects of benralizumab
on ASM mass are an indirect effect of reduced eosinophilic
inflammation. They proposed an assumption that depletion of
local eosinophils results in decrease of airway TGFβ–a major
growth factor contributing to AR, which is majorly expressed in
lungs by the eosinophils.

Other Antibodies (Dupilumab, Reslizumab,
Secukinumab, Brodalumab, Tralokinumab,
Lebrikizumab, Tezepelumab)
To authors knowledge, no study covered any aspect of
AR alleviation (either in vitro, in vivo in animal models
or in vivo in humans) in therapy with FDA-approved
dupilumab and reslizumab. The issue was also not addressed
regarding secukinumab, brodalumab, and tezepelumab—which
were clinically studied in asthma, but are now discontinued in
this indication.

Fragmentary data can be found regarding tralokinumab
and lebrikizumab. In a phase 2 trial of tralokinumab in
asthma, features of AR in bronchial biopsies (ASM area, RBM
thickness, collagen type IV, periostin, TGFβ and other) were not
reduced, neither was the bronchial eosinophilic infiltration (87).
Lebrikizumab in turn showed greater clinical effects (decreased
exacerbation rate and improved lung function) in asthmatic
patients with high serum periostin levels (protein contributing to
AR) in a phase 2 trial (90). However, the two drugs’ development
in asthma is also discontinued.

SUMMARY

According to the American Thoracic Society (ATS) 2017
expertise—and other researchers’ opinions (16, 96)–it should be
further investigated whether, and if so, to what extent, biological
therapy of asthma significantly affects AR and what are the
clinical consequences of such an effect. Moreover, research on AR
was indicated by ATS as crucial in the development of knowledge
about asthma and its treatment. The need to monitor AR in
future clinical studies is pointed out as an important aspect of
response to modern biological treatment of severe asthma. These
recommendations also highlight the need to study the impact of
currently available biological preparations on AR and to look for
new drugs that alleviate it (97).

The development of biological therapies has opened a new
chapter in treatment of severe asthma. Since the introduction
of the first monoclonal antibody in this disease—the anti-IgE
drug omalizumab in 2004—a new range of biology-oriented
therapy emerged. With the arrival of the subsequent antibodies
targeting other molecules involved in asthma pathophysiology,
it became possible to treat the most severely ill patients using
phenotype-oriented drugs. However, as only since recent years
new drugs in this field arrive, little is known about their effect
on the AR—a key clinical feature of severe asthma and its long-
lasting consequences. The data available to date confirms with a
high degree of probability only the beneficial role of omalizumab
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in reversing AR. Some promising studies cover this topic in
regard to mepolizumab and benralizumab. Yet, future research
of available and upcoming biological therapies in severe asthma
shall address this clinical issue as an important feature of long-
term severe asthma management.
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Allergen immunotherapy is currently the only causal treatment for allergic diseases in

human beings and animals. It aims to re-direct the immune system into a tolerogenic

or desensitized state. Requirements include clinical efficacy, safety, and schedules

optimizing patient or owner compliance. To achieve these goals, specific allergens

can be formulated with adjuvants that prolong tissue deposition and support uptake

by antigen presenting cells, and/or provide a beneficial immunomodulatory action.

Here, we depict adjuvant formulations being investigated for human and veterinary

allergen immunotherapy.

Keywords: immunotherapy, adjuvant, allergy, allergen, veterinary, human

INTRODUCTION

Allergen immunotherapy (AIT) is currently the only causative treatment for allergic diseases of
animals andman. Subcutaneous administration of allergen extracts—with or without an aluminum
hydroxide adjuvant—historically has proven efficacious for many allergic patients. However, recent
studies suggest that desensitizing properties of the allergen potentially can be enhanced by alternate
adjuvants or delivery systems, while maintaining freedom from adverse effects.

A number of delivery systems for AIT are currently being investigated (1–3) and applied in
animal models, but rather few human or veterinary clinical studies exist. For nano- (NP) or
microparticle (MP) preparations, various particulate compositions are complexed or filled with
allergens (3). The particulate materials must be biocompatible (resulting in no adverse reaction)
and can either be biodegradable (broken down in the organism) or non-biodegradable. Several non-
biodegradable materials tested as delivery systems for allergens in vitro as well as in animal models,
such as dendromers/dendrosomes (4), polyethylenimine (5), polypropylene sulfide (6), multiwalled
carbon nanotubes (7), gold nanoparticles (8), or fullerenes (9) have been comprehensively reviewed
(2). However, their fate in the organism is not absolutely clear and thus must be carefully studied.

We selected here themost promising novel AIT formulations, encompassing bothmodifications
of allergen and inclusion of immunomodulators, and describe their performance in human and
veterinary trials.
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FORMULATIONS WITH VEHICLES THAT

PROTECT IMMUNOGENICITY

For an allergen-specific and prolonged effect of AIT, allergens
must reach the immune system in a recognizable form, and be
released from any carrier in an optimal, perhaps gradual manner.
Thus, one general approach to enhance response to AIT is to
protect allergens from degradation, and/or ensure optimal release
by packing them into resistant carrier materials.

Methylmethacrylate Coating
Grass pollen allergen was coated with a co-polymer of
methacrylic acid and methylmethacrylate, called Eudragit
L-100 R©, to protect against gastric degradation, and administered
orally to Guinea pigs (10). The secondary antibody response
was greater than with an aqueous solution of the allergen.
An encapsulated ragweed allergen extract given to people with
hay fever led to an increase of anti-ragweed IgG antibodies, a
dampened increase of IgE antibodies, and decreased symptom-
medication scores without systemic reactions (11).

Plant Cell-Wall Fusion Proteins
Plant cell-expressed or complexed allergen proteins delivered
orally are protected from gastric acid and enzymatic degradation,
but are then digested by gut microbes in the colon and release
the allergens to the immune system (12). Transgenic rice
expressing the major house dust mite (HDM) allergen Der p
1 was developed as an edible AIT product (13). Several other
proteins have been used in this fashion to induce tolerance
in mice. After oral prophylactic administration of transgenic
rice expressing modified Japanese cedar pollen allergens Cry
j 1 and Cry j 2 (14, 15) to BALB/c mice or HDM allergen
Der p 2 in transgenic tobacco in a murine asthma model (16),
a decreased allergic response was uniformly seen. Chemically
modified ragweed pollen shells fed to BALB/c mice were
incorporated in the subepithelial tissue (17). In addition, bone-
marrow derived macrophages and dendritic cells cultured with
this pollen increased expression of CD40, CD80, CD86, and
MHC class II molecules and secreted proinflammatory cytokines
TNF-alpha and IL1-beta. Such studies have not been performed
in human or veterinary patients.

Polyanhydrides
Particles made of amphiphilic polyanhydrides are biodegradable
and show a favorable safety profile. Poly[methyl vinyl ether-co-
maleic anhydride] (Gantrez R© AN 119) has been investigated
in mouse models for oral immunotherapy against peanut
allergy (18–20), cashew nut allergy (21), and Lolium perenne
pollen allergy (22). Three doses of nanoparticle-coated peanut

Abbreviations: AIT, allergen immunotherapy; FDA, U.S. Food and Drug

Administration; HDM, house dust mite; MP, microparticle; MPLA,

monophosphoryl lipid A; NP, nanoparticle; ODN, oligodeoxynucelotides;

OVA, ovalbumin; PEG, polyethylene glycol; PGA, poly-glutamic acid; PHEA,

poly(hydroxyethyl)-aspartamide; PLGA, poly-lactic-co-glycolic acid; TLR, Toll-

like receptor; VLP, virus-like particles; RAO, recurrent airway obstruction;

IBH, insect bite hypersensitivity; PBMC, peripheral blood mononuclear cells;

WGA, wheat germ agglutinin; SLP, S-layer protein; LT, heat-labile toxin; SHAS,

Strontium-doped hydroxyapatite porous spheres; TADM, Triacedimannose.

allergens were able of protecting CD1 mice against severe
anaphylaxis induced by a peanut challenge (18). Similarly, in
CD1 mice presensitized to peanut, AIT with nanoparticle-
encapsulated peanut allergen was associated with significantly
lower concentrations of mMCPT-1, and an increased survival
rate after challenge, compared to AIT with free peanut extract
(20). Similar results were seen with allergens of L. perenne
combined with Gantrez nanoparticles and LPS of Brucella ovis
(22). Oral administration of cashew nut-loaded nanoparticles to
BALB/c mice led to a decrease in splenic Th2 cytokines, and
an enhancement of pro-Th1 and regulatory cytokines with an
increased expansion of T regulatory cells compared to mice
immunized with free allergens (21). Despite promising results
in these murine models, no published studies in human or
veterinary patients exist.

Evidence thus indicates that formulations protecting
the allergens are beneficial, and show Th1- and
Treg-inducing capacity.

ALLERGENS ADMINISTERED WITH NOVEL

ADJUVANTS

A different approach incorporates adjuvants along with
the allergen, with the goal of enhancing a desirable, non-
allergic immune response, optimally counteracting an
allergy-immune milieu.

Monophosphoryl Lipid A (MPLA)
Monophosphoryl lipid A (MPLA) is a compound derived from
Gram-negative bacteria and effectively applied in human allergic
patients since 1975 (23). In vitro studies indicate that it may
also induce the secretion of Th1 cytokines from equine cells,
thus making it a candidate for the treatment of insect bite
hypersensitivity (IBH) (24). Twelve healthy Icelandic horses were
immunized with Culicoides nubeculosus allergens adjuvanted
with MPLA plus alum, or alum alone (25). When their
peripheral blood mononuclear cells (PBMCs) were stimulated,
the MPLA/alum-immunized horses produced more IFN-gamma
and IL-10, both preferable in allergy.

Gelatin-CpG-ODN
Gelatin particles combined with CpG-ODN (GbpCpG) are
among the few preparations already studied in veterinary allergy
patients, including canine atopic dermatitis (26, 27) and equine
recurrent airway obstruction (RAO, an analog of human asthma)
(28–30). Uptake of these particles by canine PBMCs could
be demonstrated with confocal laser scanning microscopy,
and an increase of IL-10 secretion could be shown when
cells were incubated with GbpCpG compared to CpG-ODN
alone (27). Atopic dogs improved clinically after subcutaneous
administration of GbpCpG, while their IL-4 expression decreased
(26). Bronchoalveolar lavage cells from RAO horses were
incubated with different CpG-ODN sequences; IL-10 and
IFN-gamma release was increased, while IL-4 decreased (30).
When nebulized with a gelatin nanoparticle-based CpG-ODN
formulation, horses with RAO improved clinically and the IL-
10 concentration increased in their bronchoalveolar lavage fluid
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(28). In a subsequent placebo-controlled trial, this treatment
caused a persistent decrease of allergic clinical variables in horses
treated with nebulized GbpCpG (29). A later study described
lyophylisation of GbpCpG facilitating its storage and use (31).

Triacedimannose (TADM)
Incubation of the synthetic trivalent glycocluster TADM with
birch-stimulated PBMC of allergic rhinitis patients suppressed
the production of all Th2-type cytokines (32). TADM suppressed
IgE production and enhanced IFN-gamma production in a
mouse model of OVA-induced allergic asthma (32). Intranasal
application of TADM and timothy grass pollen extract to
sensitized BALB/c mice led to a much greater decrease in
lymphocyte and eosinophil counts in blood, BALF, and lung
biopsies compared to CpG-ODN and MPLA, and (in contrast to
CpG-ODN alone) did not increase neutrophil counts (33).

Polysaccharide Polymers
Carbohydrate-based particles complexed with Phl p 5 grass
pollen allergen or cat allergen Fel d 1 were successfully used in
several studies of AIT in mice (34–37).

The polyaminosaccharide chitosan (poly-D-glucosamine) is
approved for use in human wound healing, but is not yet
evaluated for AIT. Chitosan particles were used with ovalbumin
as a mucoadhesive to promote uptake by oromucosal dendritic
cells in vitro (38), and also with allergens from HDM and peanut
in mouse models to augment AIT (39–41).

Other polysaccharides used for preparation of particulate
delivery systems are dextran, alginate, starch, and cellulose
derivates. Amylopectin-based microparticles were formulated
with Bet v 1 from birch pollen for sublingual treatment of allergic
mice (42). Mannan-dextran-maltodextrin covalently attached to
OVA and papain were intradermally injected into BALB/c mice,
leading to elevated humoral immune responses, and an IgE-
to-IgG-shift (43). Another potentially useful polysaccharide is
pullulan, a polysaccharide which, coupled to HDM allergen
Der p 2, and administered to dogs, effectively reduced clinical
signs of atopic dermatitis (44). Carbohydrate-modified ultrafine
ceramic-core based nanoparticles, so-called aquasomes, are not
biodegradable, and have been applied in the mouse model with
ovalbumin (OVA) as model allergen preparation for intradermal
application (45).

Heat-Labile Toxin (LT) From E. coli
A patch delivery system for birch pollen allergen rBet v 1
with and without heat-labile toxin (LT) from Escherichia coli
was compared to subcutaneus alum-adsorbed rBet v 1 in a
guinea pig model (46). Only the rBet v 1-LT was able to
induce allergen-specific blocking IgG antibodies comparable to
subcutaneous immunization.

Miscellaneous Particulate Formulations
Strontium-doped hydroxyapatite porous spheres (SHAS) have
been used with OVA subcutaneously in a mouse model and led
to a sustained stimulation of both CD4+ and CD8+ T cells (47).
AIT with SHAS-OVA showed a higher efficacy as assessed by

symptom scores compared to soluble OVA. This approach was
not tested clinically in human or veterinary patients.

Poly(epsilon-caprolactone; PCL) is a biocompatible adjuvant,
and in mice sensitized to OVA led to lower IgE, fewer
anaphylactic reactions, and higher survival rate compared to
alum-adjuvant treated animals (48). Studies in human and
veterinary patients are lacking.

Modified difunctional water-soluble PEG dimethacrylate
(PEG-acetal-DMA) macromonomers have cleavable acetal units
(49), and when those were filled with allergen (OVA, grass pollen
allergen, HDM allergen) and encapsulated into liposomes, they
could avoid IgE-dependent activation of basophils in vitro, but
were taken up by dendritic cells (50).

Poly-glutamic acid particles (PGA) were used with Phleum
pretense pollen extract in vitro and increased allergen-specific IL-
10 production and proliferation of autologous CD4+ memory
T cells (51). Other investigators have shown that PGA per se is
an allergen in fermented soybeans, which causes hypersensitivity
reactions and even late-onset anaphylaxis (52–54). To the
authors’ knowledge, there are no studies evaluating PGA
in animals.

Protamine-based nanoparticles are biodegradable and
biocompatible arginine-rich peptides. When complexed with
Ara h 2 from peanut and CpG-ODN, they could counteract a
Th2-dominated allergen-induced immune response in mice (55).
A combination of liposomes with protamine and DNA was also
proven effective in combating Chenopodium album allergy in a
mouse model (56). At this point, there are no published clinical
studies with protamine-based nanoparticles.

Mesoporous silica nanoparticles were successfully used in
allergy models (57) with HDM allergen Der f 2 for subcutaneous
prophylactic treatment of mice (58). However, when applied
epicutaneously with mite extract in the form of agglomerates,
they induced AD-like skin lesions and promoted IgE-responses
(59). Studies in human and veterinary patients are lacking.

Taken together, many of novel adjuvants have shown Th1-
promoting capacity in vitro and in vivo in murine models and
even veterinary patient studies for horses and dogs. They were
capable of counter-acting IgE, inducing preferentially IFN-γ,
and/or IL-10 and also resulting in reduced symptom scores, being
more effective than their non-adjuvanted controls.

ALLERGENS COUPLED TO

IMMUNOMODULATORS

Efforts have also been made to enhance an overall shift in
the immune response away from Th2, while at the same time
presenting the offending allergen. Some approaches incorporate
elements that can redirect the overall immune response
from an allergy-prone Th2-IgE-milieu to a more Th1-IgG-
dominated reponse.

Modified Adenine Conjugates
Der p 2 allergen bound to 8-OH-modified adenine (nDer p2-
Conj) forms an allergen-TLR7 agonist conjugate. When injected
subcutaneously, it reduces allergen challenge-induced murine
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airway inflammation (60–62), triggers TLR7, redirects allergen-
specific Th2 responses, and promotes a Th1 response as well as
an increase in IL-10 with prolonged effects.

Mannan-Modified Allergens and Allergoids
Mannan preparations, alone or allergen-conjugated, appear
capable of downregulating IgE responses. Konjac glucomannan
(Amorphophallus konjac) fed to BALB/c mice suppressed IgE
class switching in B cells and inhibited Th1 and Th2 responses
(63). It also suppressed IgE production and clinical signs in
a mouse model of allergic rhinitis (64). Administration of
neoglycocomplexes of mannan with ovalbumin and papain to
sensitized mice led to a class switch from IgE to IgG, and to a
decrease in basophil degranulation in vitro (43).

Polymerized allergoids have been coupled to non-oxidized
mannan from Saccharomyces cerevisae (PM-allergoids); this is
one of the few modified allergen preparations that has been
studied in dogs (65). Dendritic cells capture PM-allergoids
better than native allergens and enhance Th1/Treg cell responses
upon subcutaneous or sublingual administration (66, 67).
Interestingly, the addition of alum may impair their tolerogenic
properties (68).

DNA Engineered Hybrids With Copolymers
Hybrid allergen molecules are obtained by combining the
epitopes of several allergens. Subsequently, their immunogenicity
can be enhanced by coupling with copolymers. Engineered
hybrids expressing the major allergens from Parietaria pollen
allergens Par j 1 and Par j 2 were prepared as nanoaggregated
copolymers with poly (hydroxyethyl)-aspartamide (PHEA). They
are biodegradable, water-soluble and showed low cytotoxicity, no
effect on hemolysis, and no non-specific activation of basophils.
Basophil activation properties were, however, maintained in
cells from Parietaria-allergic subjects, indicating preserved
crosslinking capability of the hybrid allergen (69). No in vivo
studies have been reported with this preparation.

Allergen Linked to CpG

Oligodeoxynucleotides (CpG-ODN)
CpG-ODN are short, single-stranded synthetic DNA molecules
with immunostimulatory properties that induce a Th1-
based immune response (70), which prevents Th2-mediated
hypersensitivity in mouse models of allergic diseases such
as allergic rhinitis (71), asthma (72), conjunctivitis (73), and
anaphylactic shock (74). Purified Amb a 1 from Ambrosia
artemisiifolia pollen linked to CpG-ODN was successfully tested
subcutaneously in humans and resulted in a shift from Th2 to
Th1 with an increase of IFN-γ and a decrease in IL-5, proving
suitable as an agent for immune redirection in immediate
hypersensitivity diseases (75).

Siderophore-Bound Iron or Retinoic Acid

as Immunomodulatory Ligands
Bos d 5 cow milk allergen is capable of binding iron via
siderophores. The immunomodulatory properties of iron-bound
allergen were tested in vitro with human PBMC (76). The empty

apo-form of Bos d 5 increased CD4+ cells, IL-13, and IFN-
gamma, whereas the complexed holo-form decreased CD4+ cells
and induced apopotosis. Similarly, only the apo-form of birch
pollen allergen Bet v 1 led to an increase in IL-13, while IFN-
gamma was increased with both formulations when incubated
with human PBMC (77). Accordingly, spiking of Bet v 1 or Bos d
5 with iron may be an effective approach to improve the efficacy
of AIT against birch pollen and cow milk allergy, respectively
(76, 77).

The major allergen Bos d 5 was also complexed with the
vitamin A metabolite retinoic acid (78). IgE binding was not
influenced, but PBMCs from healthy people stimulated with the
complex led to a decrease of CD4+ T cells as well as IFN-gamma,
IL-13 and IL-10, although induction of CD4+CD25+Foxp3+
regulatory T cells was not seen (79). In contrast to apo-Bos d
5, a highly allergenic molecule, holo-Bos d 5 thus seems to have
reduced immunogenicity.

Expression of Allergens by Bacterial

Vectors
Streptococcus thermophilus (ST) expressing rBet v 1 was evaluated
in a mouse model (80). BALB/c mice were sensitized with rBet v
1 and then treated orally with either ST, ST and rBet v 1, or ST
expressing rBet v 1. After aerosol challenge, T regulatory cells, IL-
10, and IFN-gamma were increased with the expressed-allergen
preparation; bronchial eosinophilia, allergen-induced IL-4, and
the rBet v 1-specific IgE/IgG2 ratio were decreased, indicating a
shift from Th2 to Th1 and Treg immune responses (80).

Profilin (Che a 2), the major allergen of C. album, was
expressed in Lactobacillus lactis, and was bound by human
anti-profilin IgE (81). However, bacterial survival was greatly
reduced with low pH and simluated gastric and intestinal juices.
Oral vaccination with recombinant Lactobacillus plantarum
expressing the Japanese Cedar pollen allergen Cry j 1 led to a
suppressed allergen-specific IgE response and decreased nasal
symptoms in a murine model of allergic rhinitis (82).

Allergens Conjugated to Bacterial

Products
Bacterial surface S-layer proteins (SLPs) are two-dimensional
crystalline arrays of glycoprotein subunits present on the
outermost layer of many bacteria, and have strong adjuvant
properties. Conjugating recombinant allergens with SLPs leads
to strongly reduced IgE-binding activity and promotes the
induction of allergen-specific Th0/1 cells and regulatory T cells.
This type of allergen modification has been attempted with
inhalant allergens (83). Subsequently, bacterial S-layers have
been studied as carriers for peanut allergen-derived peptides
(84, 85). A fusion protein of an Ara h 2-derived protein and
an S-layer protein was recognized by Ara h 2-specific IgE of
human patients but was not able to degranulate sensitized rat
basophils in vitro (84). The A20, tumor necrosis factor-induced
protein 3 (TNFAIP3), is a ubiquitin-modifying protein playing
a defensive role in the pathogenesis of allergic diseases. A DNA
vaccine coexpressing Der p 2 and ubiquitin A20 encapsulated
into nanoparticles used intranasally in a murine model of allergic
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rhinitis was able to inhibit allergen-specific IgE, IL-4, IL-10, and
IL-17 secretion and to increase IgG1, IgG2a, and IFN-γ (86, 87).

A genetically engineered inhalative cholera toxin B
subunit/allergen fusion molecule, CTB-Bet v 1, was shown
to improve the immunomodulatory capacity of the mucosal
delivery system better than chemically coupled products (88).

Overall, the concept of redirecting the immune response from
a Th2 to a Th1-bias as part of AIT has promise. However, most
immunomodulatory components—except for CpG-ODN—have
been tested in murine models only, and need to be further tested
in human and veterinary patients.

COMBINATION AND MISCELLANEOUS

APPROACHES

Several formulations combine the enhancing and modulating
effect on the immune response, in parallel to protecting the
antigen from degradation or digestion, and further releasing it
in a delayed manner. Different particulate formulations together
with immune-cell targeting substances have been used for
these attempts.

Liposomes
Liposomes are bilayers of phospholipids, forming vesicles which
can transport aqueous substances inside. They are biocompatible,
biodegradable, and can be co-formulated with oligomannose
coats, a preparation that was tested in human HDM-allergic
asthma patients (89). Mouse models were used to study the
efficacy of liposomes in treating allergy against Japanese cedar
pollen (90), HDM (91), cat (92), OVA (93), or cockroach (94).
Lipid nanoparticles together with Parietaria allergen Par j 2 were
characterized biochemically and biophysically (95). Liposome
complexes with CpG-DNA and individual allergen extracts were
used intradermally for treatment of canine atopic dermatitis after
failure of conventional AIT (96). Pruritus improved and IL-4
production decreased with treatment (96). Chronic rhinitis in
adult cats could be treated with feline IL-2-filled liposomes plus
DNA, although a Th2 bias could not be identified in those cats
(97). Liposomes with HDM allergens Der p 1 or Der p 2 reduced
clinical and medication scores, skin test responses, and bronchial
challenge responses in asthmatic patients (89).

Poly-Lactic-Co-Glycolic Acid Particles

(PLGA, PLG, PLA)
These polyesters are approved for use in people as absorbable
surgical suture. In mouse models for birch allergy, they were
successfully administered subcutaneously with Bet v 1 (98,
99). In addition, PLGA-microparticles were used orally with
different plant lectins e.g., Aleura aurantia lectin, wheat-germ
agglutinin or Ulex europaeus-I, or Vibrio cholerae neuraminidase
to target mucosal cells for enhanced uptake (100–103). Other
allergens used with PLGA-particles in animal models via different
routes are the Chenopodium allergen rChe a 3, as sublingual
immunotherapy in a mouse model of allergic rhinitis (104, 105),
Ole e 1 from olive pollen or T cell epitopes thereof for intranasal
prevention (106, 107), bee venom allergen PLA2 (108), pollen-
profilin from palm Caryota mitis (109), Der p 2 from HDM

(110), peanut extract (111), or beta-lactoglobulin frommilk whey
(112). PLGA locally induced a regulatory T cell response via the
incorporated mediator substances TGF-beta-1, rapamycin, and
IL-2 to prevent a subsequent contact dermatitis reaction (113).
In addition to complexing PLGA-particles with allergens, PLGA
were complexed with immune-modulating substances such as
CpG-ODN for allergy and asthma prevention (114) and with Der
p 2-A20 DNA in allergic rhinitis (87) in mouse models. There are
no studies in companion animals with PLGA.

Virus-Like Particles (VLP)
Virus-like particles are used as carriers for allergens, or without
antigen for antigen-independent immunomodulation (115).
Particles consisting of bacteriophage coat proteins and a TLR-9
agonist, but without allergen, were injected into HDM-allergic
patients and led to lower symptom-medication scores, higher
quality of life and better allergen tolerance (116). A second
study with A-type CpG-ODN and HDM-extract showed similar
results; allergen-specific IgG increased as well (117). Recently,
equine IBH was safely treated with IL-5-linked VLP made from
cucumber mosaic virus to induce auto-antibodies against IL-
5 (118–121). Clinical signs of treated horses improved and
their eosinophilia was decreased compared to controls. The
same principle was used successfully with IL-31-linked VLP for
treatment of IBH in horses and for atopic dermatitis in dogs
(122, 123). A very interesting approach is the immunization of
cats with Fel d 1-VLPs (HypoCatTM) to induce a neutralizing
antibody response in the animal against its own Fel d 1-protein
for protection of humans against cat allergy (124, 125). In BALB/c
mice, adeno-associated VLP were also tested with an OVA-
derived B cell epitope (126), with Art v 1 from mugwort (127)
and with peanut allergens Ara h 1 and Ara h 2 (128). Fel d 1
displayed on VLPs failed to induce human mast cell activation
in vitro (129). The peptide HDM allergen Der p 1 was coupled to
a virus-like particle derived from a bacteriophage and injected in
healthy volunteers. Significant IgG responses against the allergen
were observed and the vaccine was well-tolerated (130).

Aleuria Aurantia Lectin (AAL)
AAL is derived from the edible orange peel mushroom A.
aurantia. When birch pollen-sensitized BALB/c mice were fed
with birch pollen-AAL-microspheres, the birch pollen-specific
IgG2a, but not IgG1 or IgE increased, as well as IFN-gamma, IL-
10, and IL-4 (101). Oral administration of birch pollen-AAL-MS
led to an IgG2 antibody response in naive BALB/c mice (102).
AAL microspheres may have the potential to serve as a vehicle
and adjuvant for oral immunotherapy, potentially stimulating
specific mucosal immune responses via M-cell targeting (100).

Wheat Germ Agglutinin (WGA)
Birch-pollen allergens were entrapped in poly(D,L-lactic-co-
glycolic acid) microspheres, further coated with WGA to target
enterocytes used for oral immunotherapy of type I allergy to
protect allergens from digestion and to support intestinal uptake
(131). The antigenicity of the birch pollen was maintained at
∼60% even after 2 h of simulated gastric digestion, and allergen-
specific IgG serum concentrations increased in BALB/c mice fed
with the WGA-birch pollen-microspheres (131).
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With these approaches, VLP, liposomes, and PLGA particles
seem to have promise, and are already tested in human, canine,
feline, and equine patients.

SUMMARY

Allergen immunotherapy is the only treatment for allergic
diseases that is truly causal and modifies the course of the
ongoing disease. As this review discusses, many dozens attempts
have been made to identify adjuvants, immunomodulators,
physical packaging, conjugates, and combinations of the above
to modify allergenic proteins, making them safer, and more
efficacious in AIT. Many of the formulations have scarcely
progressed beyond in vitro studies, though some show great
promise in rodent models. Our task is now to select the most
promising candidates, and carry them forward into preclinical
studies that can more carefully predict which will translate
into clinical benefit. Because many human allergic diseases are
found nearly identically in animals, veterinary studies could
serve as an elegant precursor to the same investigations in
human patients.
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Food allergy is an atopic disease that is caused by the immune system targeting

harmless food antigens that can result in life-threatening anaphylaxis. As humans and

microbes have co-evolved, inevitably commensal microbes have a tremendous impact

on our health. As such, the gut with its enormous microbial richness reflects a highly

tolerogenic environment at steady state, in which immune cells are educated to react

in a well-calibrated manner to food and microbial antigens. Recent evidence indicates

that the susceptibility to food allergy is critically linked to microbial dysbiosis and can

be transmitted by microbial transfer from humans to mice. Experimental work and

epidemiological studies further point toward a critical time window in early childhood

during which the immune system is imprinted by microbial colonization. Particularly,

Foxp3-expressing regulatory T cells turn out to be key players, acting as rheostats for

controlling the magnitude of food allergic reactions. An increasing number of bacterial

metabolites has recently been shown to regulate directly or indirectly the differentiation

of peripherally induced Tregs, most of which co-express the RAR-related orphan

receptor gamma t (RORγt). Genetic ablation provided additional direct evidence for

the importance of RORγt+ Tregs in food allergy. Future strategies for the stratification

of food allergic patients with the aim to manipulate the intestinal microbiota by

means of fecal transplantation efforts, pre- or probiotic regimens or for boosting oral

immunotherapy may improve diagnosis and therapy. In this review some of the key

underlying mechanisms are summarized and future directions for potential microbial

therapy are explored.

Keywords: intestinal microbiota, food allergy, regulatory T cells, Foxp3, oral tolerance, anaphylaxis, bacterial

metabolites

INTRODUCTION

The enormous collection of microorganisms living in and on us is collectively referred to as
microbiota. Bacteria, archaea, eukaryotes, and their associated viruses compose a highly complex
microbial ecosystem (1). The microbiota has co-evolved during the evolution of all multicellular
organisms and has become a de facto and even necessary “organ” in all modern vertebrates,
fulfilling basic functions like the provision of nutrients and essential vitamins (2, 3). Today, there is
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strong evidence that correct physiological functioning of
this organ is dependent on a harmonious host-microbiota
relationship (4).

On the other hand, vertebrates have evolved complex innate
and adaptive immune functions, responsible for detecting,
containing, and eliminating a large array of microbial pathogens
(5, 6). Even some of the simplest forms of multicellular
organisms, such as hydrozoans, exhibit innate immune pathways
responsible for the recognition, and maintenance of certain
bacterial associations (7). The discrimination between beneficial
and pathogenic microorganisms poses a major challenge for the
immune system that we are only beginning to understand.

Humans are no different in this respect: we have been
surrounded by a great number of microorganisms for the
majority of human history co-evolving with our microbiota
(1). Today, abundant evidence indicates that the microbiota is
essential for the correct functioning of human physiology (8).
However, recent human development has shifted our relationship
with microorganisms in a short time period, evolutionarily
speaking, and these rapid changes were not accompanied by the
necessary adaptations to our changing microbiota (Figure 1).
Improvements in our way of life have extended our life
spans, through medicine, sanitation, and industrialization of our

FIGURE 1 | Illustration of changes in life style factors having an impact on the intestinal microbiome. Humans have shifted very quickly from an ancestral to a modern

way of living, evolutionarily speaking. These changes have impacted the balance between the intestinal microbiota and the immune system.

food production system. With these changes, a large array of
microbial infections is no longer a death sentence for humanity.
Simultaneously, there was a marked increase in prevalence
of several immune-related disorders, such as Crohn’s disease,
asthma, and food allergies (9). This relationship was already
noticed in the late 1980’s and early 1990’s, eventually being
named the Hygiene Hypothesis: we removed the infections,
but in the process, the immune system lost something as
well (10).

Today, we understand that not the removal of pathogens itself,
as initially proposed, has an effect on our immune responses,
but the processes that eliminated dangerous pathogens have also
eliminated other microbial and fungal bystanders and eventually
multicellular parasites such as helminths (e.g., Ascaris, Trichuris,
or Schistosomes) from our microbiota, breaking a beneficial
relationship selected over eons of evolution (11). Eventually,
modern humans and particularly those living in developed
countries have irretrievably lost certain ancient microorganisms
that have been instrumental to set up a healthy host-microbial
homeostasis (12). If this homeostasis cannot adequately be
reached during colonization in childhood, an enhanced risk
of atopic diseases including food allergy may be one long-
term consequence.
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ALTERATION OF THE GUT MICROBIOTA IN
FOOD ALLERGIC PATIENTS

Some studies have directly related food allergies and the gut
microbiome in patients (13, 14). Still, the current understanding
for the implication of the microbiota in human allergies is
mostly based on epidemiological studies including birth cohorts.
The current use of bacterial 16S rRNA sequencing, as well
as metagenomic sequencing, allows the characterization of
the microbial composition of both the environment and the
intestinal microbiome. Several large cohort studies conducted in
children raised in a traditional farming environment revealed
a protective effect of this environment and this has been
positively correlated to bacterial and fungal diversities found in
these environments (15–19). Similarly, distinct communities of
bacteria have been found in stool samples of neonates which
preceded later signs of allergic asthma (20). Importantly, such
communities led to an enhanced allergic lung inflammation
after transplantation into germfree mice that provided direct
evidence for the underlying causality. In another study,
analysis of stool samples from neonates revealed three different
microbial patterns one of which being associated with multiple
sensitizations to various allergens: such microbiomes showed
lower relative abundance of Bifidobacterium, Akkermansia, and
Faecalibacterium and increased levels of the metabolite 12,13-
dihydroxy-9Z-octadecenoic acid (12,13-DiHome), which has
been confirmed to aggravate allergic lung inflammation in
murine models (21, 22).

In prior studies, the amount of exposure to conserved
bacterial products such as Lipopolysaccharide (LPS) from the
environment has already been negatively correlated to atopic
sensitization and this was associated with reduced production
of cytokines by peripheral blood leukocytes (16). Another more
recent large cohort study tracked the intestinal microbiome
composition within the first years of life. Although initially
intended for observing the microbiome’s influence on the
incidence of diabetes, the cohort provided the opportunity
to show HLA matched class risks in geographically distinct
locations (23). Despite the initial non-allergic focus of the study,
it found that growing up with a comparatively modern lifestyle
is associated with an increased risk of atopy and autoimmune
manifestations. Children from Finland showed a relatively high
sensitization rate toward typical allergens such as milk and
egg, Russian children only showed a relatively low frequency
of sensitization and Estonian children were intermediate.
Fecal samples of Finish and Estonian children showed a
relative high abundance of Bacteroides, while Russian children
had a higher abundance of Bifidobacterium. Interestingly,
metagenomic analysis revealed that LPS synthesizing gene
clusters were among the most differentially expressed pathways
between the three groups. The authors then demonstrated
that the origin of the LPS (Bacteroides spp. vs. E. coli)
leads to a structural difference with a strong effect on the
immunostimulatory capacity of these variants on primary
human peripheral blood monocytes (23). This revealed how
the structural variation of a single component sensed by
pattern recognition receptors (PRRs) due to differences of

microbial compositions early in life may contribute to enhanced
sensitization rates and thus risk of food allergy in children. It is
possible that much more structural variations of such microbial
determinants sensed by the PRRs of the immune system exist and
educate the microbiota-host homeostasis in children.

MECHANISTIC INSIGHTS FROM MURINE
MODELS

While human studies are often limited due to being correlative,
murine models provide a defined system for the determination
of the mechanistic basis of the microbiota’s impact on health
and disease in the host. However, it has to be acknowledged that
there are profound differences between the digestive system and
microbiota of humans and mice as reviewed in (24).

Experimental evidence from murine models has shown
that the intestinal microbiota protects the host from allergic
inflammation by: (I) contributing to the establishment of
antigen-specific oral tolerance, (II) preventing excessive
inflammation, (III) impacting on various aspects of host
physiology, such as intestinal barrier function, degradation
of xenobiotics, production of metabolites, and, (IV) directly
contributing to the development of both the innate and adaptive
immune system, such as basophil hematopoiesis (25).

Mice housed under germ-free conditions or treated with
broad-spectrum antibiotics gave the first direct hints that the
microbiota is essential to maintain a balanced (and thus a non-
type 2 immunity prone) immune system. Such mice typically
show elevated serum Immunoglobulin E (IgE) levels while
all other immunoglobulins are downregulated (25–27). The
microbiota maintains IgE at basal levels which requires microbial
exposure during early live (28). In the absence of microbial
colonization during this time window, Th2-skewed follicular
helper T cells (Tfh) may develop that support class-switching
to IgE in B cells which is directed against food antigens (29).
A recent study has identified a special subset of allergen-
specific Tfh cells that secrete IL-4 and particularly IL-13 which
are instrumental to induce anaphylactic IgE (30). Interestingly,
another study found expression of RAG proteins in B cells within
the intestinal lamina propria exclusively around the time of
weaning (31). As the positive and negative selection of B cells is
thought to occur primarily in the bonemarrow these results point
toward another step of B cell education in response to microbial
colonization. This could be particularly important in the case of
food allergy as IgE specific for both bacteria and food antigens
has been found in patients and mice with food allergy (32).

Antibiotic treatment in mice can also result in exaggerated
basophil-mediated Th2 cell responses and allergic inflammation,
indicating that the microbiota directly restrains the size of
circulating basophil populations by limiting the proliferation
of bone marrow resident precursor populations (25).
Recolonization of germfree mice with specific bacterial strains
(such as Clostridia mixtures) leads to decreased allergen-specific
IgE and reduced susceptibility to anaphylactic reactions in a
model of peanut allergy (33). Recolonization with Clostridia in
this model also reduced the uptake of the allergen by affecting
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the intestinal barrier permeability. This effect can be mimicked
by genetically limiting intestinal barrier integrity, e.g., through
knockout of the transcription factor retinoic acid receptor-
related orphan receptor gamma t (RORγt). RORγt is a major
regulator of intestinal IL-22-producing immune cells such as
ILC3s or γδ T cell subsets known to enforce the intestinal
barrier (33, 34). Still, permeability in the intestinal tract is most
likely not the only decisive factor as exposure to intestinal
microbes generally leads rather to a Th1- and Th17-dominated
immune response.

Furthermore, transplantation of gut microbiota samples from
children with food allergy into germfree animals led to more
severe anaphylactic reactions when such xenotransplanted mice
were challenged with allergen in a food allergy model (32, 35).
This provides direct evidence that a human intestinal microbiota
from allergic children can confer this susceptibility to another
species, representing a key step in understanding the underlying
causality. Other barrier sites apart from the intestine also show
exaggerated allergic reactions in the absence of microorganisms.
For example, germfree mice or very young mice with incomplete
colonization show an increased Th2 immunity and worsened
allergic lung inflammation, supporting the beneficial role of the
microbiota also in the lung (27, 36).

THE MICROBIOTA AND TREGS

Regulatory T cells (Tregs), characterized by the expression of
the transcription factor Foxp3, and Tr1 cells, characterized by
the expression of immunoregulatory cytokines such as IL-10
in the absence of Foxp3, are critical for regulating immune
responses, dampening inflammation and for general homeostasis
of barrier surfaces (37, 38). The microbiota can directly impact
on the frequency of Tregs, as oral administration of murine
and human Clostridia strains transferred into germfree mice
leads to a drastic increase in Treg frequencies within the colon
(39, 40). Surprisingly, germfree mice do not harbor less Tregs
in the small intestine which may be due to an altered de-
differentiation process of Tregs at this site (41). Similar to the
intestinal microbiota, colonization of the skin was shown to
recruit Tregs during a specific time window and these Tregs are
most likely specific for such commensal microbes (42).

Two types of Tregs can be distinguished according to the
origin of differentiation: Thymic-derived Tregs (tTregs) that
are selected within the thymus probably due to recognition
of self-antigens, and peripherally induced Tregs (pTregs) that
differentiate in peripheral organs from naïve T cells. In the
intestine, microbial colonization is responsible for inducing the
differentiation of pTregs (43). Preventing pTreg differentiation
by knocking out the CNS1 (conserved non-coding sequence 1)
region next to the Foxp3 promotor revealed that these immune
cells prevent a spontaneous type 2 immune bias at mucosal
sites (44). Dietary antigens from solid foods are also tolerized
by inducing a population of short-lived pTregs in the small
intestine where uptake of nutrients including food allergens most
likely takes place (45). Interestingly, germfree animals raised in
the absence of macronutrients revealed that in the absence of

both dietary and microbial antigens (and therefore the majority
of intestinal pTregs), the adaptive intestinal T cell response
is heavily skewed toward a Th1-dominated response whereas
the absence of microbes alone heavily skews the intestinal T
cell responses toward a Th2-dominated and therefore pro-
food allergy immune response (45). Therefore, immunological
tolerance of dietary antigens is of pivotal importance but the
intestinal microbiomemost likely is a key driver in preventing the
Th2-skewing after recognition of dietary antigens and limiting
the susceptibility toward food allergy. We and others have
demonstrated that microbiota-induced pTregs share features
with intestinal Th17 cells, such as the expression of the
transcription factor RORγt (46, 47). Their induction can be
mediated by a diverse range of bacterial species and the lack of
RORγt+ Tregs leads to exacerbated Th2 and Th17 pathology in
the intestine (46, 47). Noteworthy, RORγt+ Tregs have also been
detected upon oral exposure to food antigens using transgenic
T cells recognizing an epitope from chicken ovalbumin (45, 46).
Due to the highly artificial nature of such T cell receptor (TCR)
transgenic T cell transfer approaches and the observation that
germfree mice raised in the presence of solid food and thus food
antigens still show a dramatic reduction in RORγt+ Tregs, the
relevance of this observation remains to be investigated in more
physiological conditions.

In order to exploit the induction of pTregs by the microbiota
for therapeutic purposes, the underlying mechanisms for this
induction needs to be understood on a molecular level. Recent
evidence indicates that bacterial metabolites, such as short-chain
fatty acids (SCFAs) (48, 49) and cell surface polysaccharides from
typical commensals, such as Bifidobacterium bifidum, are capable
of inducing pTregs (50), further confirming the impact of the
microbiota on this cell population. More recently, secondary bile
acids were shown to induce Foxp3 expression in naïve T cells
either directly or in a dendritic cell-dependent manner (51–53).
In particular, Isodeoxycholic acid producing bacteria increased
colonic RORγt+ Tregs in vivo, which was not observed when
transplanting bacteria unable to generate this secondary bile
acid (53).

Furthermore, RORγt+ Tregs have been shown to have a
protective role in a model of food allergy, and the expression
of RORγt is indispensable for this function (32). The same
group reported that RORγt-expression in Tregs can also be
detrimental for allergic inflammation of the lung, as it may
drive the expression of pro-inflammatory cytokines in different
conditions (54). These studies relied on an elegant murine model
of enhanced signaling via the interleukin 4 receptor (IL-4R). It
is based on a point mutation within the intracellular domain
of the IL-4R that has also been found in a subset of patients
with food allergy (55). As a consequence, intestinal Tregs start
to (over-)express the transcription factor Gata3 and secrete the
cytokine IL-4, making this Treg population rather a pathogenic
driver of food allergy than an immune regulator (56). Such type 2
prone Tregs are less stable but most likely their differentiation
is independent from microbiota effects, as Gata3+ Tregs can
be found in germfree animals and Gata3 and RORγt expression
are usually mutually exclusive (46, 57). Still, transplantation of
fecal samples from IL-4R mutated mice subjected to food allergy

Frontiers in Immunology | www.frontiersin.org 4 August 2020 | Volume 11 | Article 185337

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Kreft et al. Intestinal Microbiome and Food Allergy

FIGURE 2 | Basic principles of host-microbiota interaction relevant for food allergy. The scheme indicates major bacterial molecules from various bacterial sources

that have been linked to (RORγt+) Treg induction and protection from sensitization and/or food allergy. Protective microbial factors may include but are not limited to

variants of lipopolysaccharide (LPS) from different bacterial species, cell surface polysaccharides from typical commensals such as Bifidobacterium bifidum (CSGG,

Cell-surface β-glucan/galactan polysaccharides), short chain fatty acids (SCFA) and secondary bile acids that all act directly on T cells or on accessory cells such as

dendritic cells (DC). Microbiota-dependent RORγt+ Tregs are thought to protect against excessive accumulation of T cells secreting type 2 cytokines such as

interleukin 4 (IL-4) and interleukin 13 (IL-13). Ultimately, a tight restriction of B cells secreting IgE specific for food and bacterial derived antigens, which is thought to be

mediated by T follicular helper cells (Tfh), must be achieved to prevent systemic reactions, such as anaphylaxis. Regulation of the intestinal microbiota may be

accomplished through bacterial coating by host or maternally-derived luminal IgA and controlled barrier function.

can confer the enhanced Th2 skewing and allergic reactions to
wildtype animals suggesting that excessive IL-4R signaling also
has a strong impact on the microbiota (58). In other contexts,
Gata3 expression in Tregs has been proposed as a general
hallmark of Tregs residing within different tissues as compared
to secondary lymphoid organs making it questionable whether
Gata3+ Tregs can generally be considered pathogenic in patients
without mutations in the IL-4R pathway (59).

Altogether, the discovery of different Tregs subsets with
unique functions offers a cellular and molecular link to how
microbial compositions may modulate the risk for allergic

inflammation (Figure 2). Whether these microbial effects act
directly on T cells, and how much other cellular players known
to regulate T cell fate, such as dendritic cells, contribute
to microbiota-mediated effects remains a matter of current
investigation (53, 60).

DISCUSSION

Current treatment for food allergies mainly comprises rescue
medication treatment after exposure and allergen avoidance.
Desensitization can only be achieved with specific oral
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immunotherapy (OIT), however it is a lengthy process of
several years and full remission only occurs in up to 50% of the
subjects who have undergone OIT for milk, egg and peanut and
adverse reactions are common (61). Treatment options utilizing
a preventive effect of the microbiota have been few and limited
to probiotics and fecal microbial transplantations (FMTs) with
no clear overall effective results (62). The integration of RORγt+
Treg frequencies for patient stratification and assessment of
OIT and FMT effectiveness could lead to better success rates
in the future. As more and more bacterial strains and bacterial
metabolites have been identified to regulate RORγt+ Treg
homeostasis, more patient-tailored treatment options may be
developed. For instance, colonization of mice and humans with
certain Clostridiales taxa has already been linked to protection
from food allergy, yet the efficacy of a therapeutic application
in humans remains to be investigated (32, 35). Furthermore,
the clinical application of microbe-based therapeutics may be
complicated by several factors including the variability of the host
microbiome composition in FMTs, stably imprinted intestinal
microbial ecosystems, unforeseen side effects on host physiology
and the impossibility to reprogram existing long-lived immune
cells (e.g. T-and plasma B cell populations). However, not only
microbe- but also parasite-derived molecules may be used in the
future for the treatment of food allergies as particularly helminth
parasites have been part of our intestinal microbiota over
long periods of human evolution. Currently, such treatments
are already tested for therapeutic purposes in allergic airway
inflammation models and it has already been established that
they can act on several cell types, including myeloid cells, and on
the differentiation/proliferation of Tregs (63–65).

In general, RORγt+ Tregs may serve as an indicator for
the patient’s microbiota in a “dysbiotic” state and the respective
patient being at elevated risk of allergic or other inflammatory
diseases (66). Still, the assessment of this cellular parameter is
currently not possible in clinical settings and exemplifies the
medical need for the identification of surrogate measurements.
As long as the microbiota host interaction and the metabolic
pathways of certain species remain only partially understood,
the interventions to manipulate the microbiota will remain
largely unspecific, and the potential of such microbiota-based
therapies are limited. Ultimately, the exploitation of metabolic
pathways and other RORγt+ Treg-stimulating agents by
changing microbial compositions to enhance oral tolerance and
protect from sensitization and food allergy is nevertheless highly
attractive. Many questions in this regard remain unanswered,

for example, how the generic induction of (RORγt+) Tregs by
microbial consortia or their products can induce an antigen- or
allergen-specific tolerogenic B and T cell response. Alternatively,
a polyclonal and/or unspecific TCR repertoire within the Treg
population may be sufficient to suppress allergen specific Th2
cells in a bystander suppression or by acting on accessory
cells, e.g., dendritic cells. One may ask why evolution did not
select for a general higher level of (RORγt+) Tregs to avoid
overt intestinal inflammation and the risk of food allergy. It is
perhaps because generalized suppression of adaptive immunity
at mucosal sites through excessive pTreg generation could be
dangerous, as contact with facultative pathogens are frequent
and risk of infections are high. Setting the correct bar for
RORγt+ Tregs and homeostasis with the developing microbiota
needs to occur in childhood, and seems to also be imprinted
from the mother to the next generation by a double-negative
loop involving maternally transmitted IgA (67, 68). While this
mechanism ensures that the next generation benefits from a
maternal experience on the correct bar for a beneficial host-
microbiota equilibrium, microbial adaptations are still able to
fine-tune the level of RORγt+ Tregs throughout life and offer
therapeutic options. Thus, a well-calibrated balance between pro-
and anti-inflammatory signals needs to be integrated by accessory
cells such as dendritic cells, or even directly by activated T cells
at the right time point of colonization. One long-term goal is
therefore to better understand this complex integration in order
to combine this knowledge with OIT regimens or for diagnostic
purposes to determine food allergic risk patterns ideally already
early in life.
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For some years now the basophil activation test (BAT) using flow cytometry has emerged

as a powerful tool and sensitive marker that can be used to detect clinically relevant

allergies, provide information on the severity of an allergic reaction, andmonitor therapies.

Compared to other in vitro diagnostic tests, BAT seems to have a better informative value

in terms of clinical relevance. In general, the BAT can be used for the diagnosis of themost

common forms of IgE-mediated allergy such as hymenoptera venom allergy, inhalant

allergy, food allergy, and drug allergy. Various basophil markers and parameters have

been established which, depending on the trigger of the respective allergy, can provide

information on the clinical relevance of sensitization, on the development of natural

tolerance, on trigger thresholds, and on the severity of the allergic reaction. The BAT also

serves as a suitable follow-up instrument for various therapeutic approaches such as

specific immunotherapy, desensitization protocols, or use of anti-IgE-antibodies for the

various diseases. Quality controls for routine use, standardization, and automatization

are expected to expand the range of applications for the above-mentioned indications.

Keywords: basophil activation test, basophil parameters, food allergy, hymenoptera venom allergy, inhalant

allergy, drug allergy, immunotherapy, anti-IgE-treatment

INTRODUCTION

Cellular in vitro tests can be used for the allergy diagnosis of type I allergies and serve for the
detection of indirect sensitization on basophils (due to their easier availability compared to mast
cells). In recent years the basophil activation test (BAT) which measures activation markers after
incubation with allergens or other triggers by flowcytometry has emerged as the most widely used
test for this purpose.

In most studies the activation marker CD63 was favored, occasionally also CD203c. CD63,
a membrane component of the basophil granules, is not a basophil-specific marker and is also
expressed on other blood cells. Therefore, further labeling is necessary for the identification of
basophils. Possible markers include anti-CCR3, anti-IgE, anti-CRTH2, CD203c, or anti-CD123.
CD203c, an ectoenzyme located both on the plasma membrane and in the cytoplasmic
compartment of basophils, is a basophil-specificmarker and is expressed constitutively. The test can
be performed with full blood, washed basophils, or donor basophils. This and various protocols are
the main differences between the BATs used in different laboratories. CD203c and CD63 markers
are upregulated after IgE receptor aggregation but have partially different metabolic pathways and
follow different kinetics. Interleukin-3 potentiates the allergen-induced CD63 expression without
upregulating CD63 itself, whereas it increases CD203c expression even without allergen.
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Results of the BATs are usually expressed as percentages of
activated basophils (% CD63+ cells), sometimes also as MFI
(mean fluorescent intensity). This basophil reactivity measures
the number of basophils that respond to a given stimulus.
Maximal basophils reactivity is the maximal activity induced by
a given stimulus. Additionally, further parameters such as results
of the determination of the half-maximal concentration (EC50,
CD-sens, basophil sensitivity), the calculation of a ratio (CD63
ratio), of allergen-induced CD63 activation in comparison to an
IgE-dependent positive control (anti-IgE of anti-FcεRI), or of the
area under the curve (AUC) in dose-response curves turned out
to be of value for the assessment of clinically relevant allergies
and therapy outcomes (1–4). Details can be found in an EAACI
position paper (1).

ELUCIDATION OF CLINICALLY RELEVANT
ALLERGY

Food Allergy
For food allergies, the sensitivity of the BAT varies between 62
and 90% and the specificity between 80 and 100% depending
on the allergen. In general, cellular tests are useful to detect
the trigger of an IgE-mediated reaction to food if conventional
diagnostics is negative or not available and a provocation test is
expected to be potentially life-threatening. In recent years, more
and more studies have been published which see the basophil
activation test as a diagnostic tool prior to oral provocation being
only necessary in remaining unclear cases (1).

In 2014, Santos et al. could show that the BAT discriminates
between allergy and tolerance in peanut-sensitized children.
Receiver operator curves (ROC) showed that the BAT with a
peanut extract was better than skin prick test (SPT) and sIgE to
Ara h 2 and peanut for this purpose. The application of BAT
as a second or third step in the diagnostic workup dramatically
reduced the need for oral provocation tests. It was recommended
to perform oral food challenges in cases with equivocal BAT as
well as in BAT-negative patients (5). Other authors showed that
a negative CD-sens to peanut of Ara h 2 excluded an allergy (6).
Certain parameters of the BAT using a peanut extract correlated
with the severity of the reaction (CD63 ratio) and with the
amount of eliciting allergen (CD-sens) (2, 7). Interestingly, only
the use of a peanut extract and not of Ara h 2 in the BAT was
associated to the eliciting dose of peanut in allergic patients (8).

In milk allergic children BAT helped in deciding when to
reintroduce cow’s milk in their diet showing that CD63 ratio
reflected the severity of reaction to oral challenge (9). This
parameter was also significantly higher among patients with
milk allergy who reacted to baked milk than among those who
tolerated it (10). As a consequence, the BAT reduced the need for
a food challenge in children suspected of IgE-mediated cow’smilk
allergy (11).

Baked egg-reactive children had significantly increased
basophil activation in response to intermediated stimulation
levels of egg white protein compared to tolerant children, but
there was a great overlap in basophil activation between these
groups, which made it difficult to use it in clinical practice (12).

CD63 and CD203c expression at several allergen
concentrations differed between individuals allergic or sensitized
to hazelnut, too. In this study, EC50 of allergen-induced CD203c
expression displayed a better discrimination compared to CD63,
but there was no significant difference between patients with oral
allergy syndrome and systemic reactions (13).

Similarly, basophil activation with peach extract was higher in
mugwort pollen-related peach allergic patients than in tolerant
subjects, but the BAT results were comparable in patients with
oral allergy syndrome and systemic reactions, limiting its utility
in predicting severity. In contrast, the basophil activation with
Pru p 3 correlated not only with clinical allergy but also with
the severity of symptoms having the best diagnostic performance
compared to determination of sIgE (14).

Also for rare food allergies, e.g., the alpha-gal syndrome, it
could be shown that the BAT differentiates between patients
with a clinically relevant allergy and asymptomatic alpha-gal
sensitization. Especially the parameter CD63 ratio for low
concentrations of alpha-gal turned out to be a reliable basophil
parameter and was better than sIgE to alpha-gal (4).

In another study it was shown that the BAT using
hydrolyzed wheat protein and ω-5 gliadin was highly useful
for diagnosing the subtypes of hydrolyzed wheat protein
WDEIA (wheat-dependent exercise-induced anaphylaxis) and
conventional WDEIA indicating an IgE-response to different
protein components (15). Despite a tendency to higher wheat
CD-sens values, only the combination of CD-sens and sIgE to
wheat or wheat components was useful in the prediction of wheat
challenge outcome (16).

Due to good results of CD203c sesame-induced basophil
expression joint utilization of BAT and skin prick test with a
high protein concentration sesame extract, this approach may
also obviate the need for oral food challenge in most patients with
sesame food allergy (17).

Hymenoptera Venom Allergy
For hymenoptera venom allergies, the sensitivity for the BAT
varies between 85 and 100% and the specificity between 83 to
100% (1). There is no correlation between basophil activation and
the clinical severity of the sting reaction reported by patients (18).

Because diagnostic sting challenges for insect venom allergies
are not performed routinely for ethical reasons, this cellular test
can be used in diagnostics for the detection of an IgE mediated
reaction, especially if skin tests and specific IgE antibodies to
insect venom extracts are negative (19). Although the component
resolved diagnosis has made significant progress in specific IgE
determination for insect venom allergic patients, there are still
individuals in which only the BAT showed positive results (20).
The use of recombinantly produced CCD-free hymenoptera
venom allergens also lead to an improvement of the BAT results
compared to the total hymenoptera venom extracts, both in terms
of the number of positive results and the level of activation (21).

The BAT turned out to be helpful also in cases of double
sensitization to bee and vespid venom and a clinical reaction to
only one insect species or in cases of insect stings that cannot
be clearly assigned to a particular insect species from the clinical
history. In about one third of the patients information about
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the clinically relevant insect could be obtained by the BAT
incubating the cells with bee and wasp venom extracts and, if
necessary, by calculating the half-maximum concentration of the
dose-response curves and forming a ratio (22–24). The clinical
relevance of such BAT results could be confirmed in patients
with double sensitization (skin test and specific IgE antibodies)
and exclusive monosensitization to vespid venom in the BAT:
92% of the patients tolerated a sting challenge test with the
bee (BAT negative) without systemic reaction, and 7% suffered
from a mild systemic reaction (25). Thus, unnecessary specific
immunotherapy can be avoided.

Inhalant Allergy
The sensitivity of the BAT for house dust mites, pollen, latex,
or cat hair is 91–100% for both extracts and recombinant major
allergens, and the specificity is between 96 and 100% (1).

Due to the good sensitivity of conventional diagnostics,
cellular tests are used less for diagnostic purposes in routine,
but the usefulness of the BAT and component-resolved diagnosis
in distinguishing between symptomatic allergic rhinitis patients
and asymptomatic sensitization to house dust mite could be
demonstrated. Symptomatic patients showed a lower threshold
for in vitro basophil activation and a higher AUC. There was also
a positive correlation between the number of recognized house
dust mite allergens and the AUC of basophil activation (26).

BAT seems to be advantageous in the diagnosis of local allergic
rhinitis (LAR) because it was able to diagnose at least 50% of these
cases allergic to house dust mite extracts and was more sensitive
than detection of nasal specific IgE and less time-consuming than
nasal provocation tests (27, 28). Similar results were shown for
LAR patients with olive tree pollen (29). Based on these studies
BAT has been shown to have a sensitivity of 50.0–66.6% and
a specificity of 90.0–91.7% in LAR. These results reinforce the
usefulness of BAT, a rational step of a diagnostic approach in LAR
before nasal provocation tests.

Drug Allergy
In general, sensitivity of the BAT for most drugs is significantly
lower than the sensitivity of the allergens mentioned above. The
sensitivity of the BAT for beta-lactam antibiotics is about 50%
with a positive predictive value of about 90%. In order to obtain
relevant information about the sensitization of a patient by this
test, the BAT should be carried out within half a year after
the clinical reaction, since the cells’ reactivity to the antibiotics
decreases thereafter. Sensitivity for quinolones is slightly better
(about 64%) with a positive predictive value of about 90% (30).

The sensitivity of BAT in hypersensitivity reactions to NSAIDs
being independent of IgE-/FcεRI cross-linking is very low (20–
40%) with specificities of 40–100%; only BAT with pyrazolones
showed better results (sensitivity about 54%, specificity about
95%) (30, 31).

For radio contrast media the sensitivity is about 60% with
positive predictive values of about 97%. The sensitivity for muscle
relaxants varies between 54 and 92% for BAT (specificity: 100%)
with a positive predictive value of about 96% (30). Algorithms
for allergy workup in perioperative hypersensitivity reactions
include the BAT before considering drug provocation tests:

Negative skin testing and BAT results might increase confidence
in performing drug provocation tests (32–34).

The studies to date show that cellular tests with drugs should
only be used as a supplement to existing diagnostics, and they are
not a substitute for provocation tests (30).

THERAPY OUTCOME

Over the last few years, it has become apparent that the
BAT can serve as a suitable follow-up instrument for various
therapeutic approaches such as specific immunotherapy,
desensitization protocols, or use of anti-IgE-antibodies for
various allergic diseases.

Immunotherapy in Food Allergy
During a 12-months sublingual immunotherapy (SLIT) for
peanut allergy in children a significantly decreased basophil
activity after stimulation with the two lowest concentrations
of a crude peanut extract could be demonstrated (35). Others
showed that 2-years responders of a SLIT had significantly lower
percent CD63+ basophils than non-responders for the lower
peanut stimulant levels, but there are also studies demonstrating
that peanut-induced basophil response was most reduced in the
immune tolerant group after 24 months of oral immunotherapy
(OIT), although differences between immune tolerant and non-
tolerant participants did not achieve statistical significance (36,
37). Using the CD63 ratio with a crude peanut extract, a
significant decrease of this parameter at all concentrations after
3 to 5 years of peanut SLIT was observed (38).

In a pilot study the utility of BAT for monitoring the
acquisition of clinical tolerance after oral desensitization to cow’s
milk over 12months was shown (39). Furthermore, milk-induced
%CD63 and %CD203c expression was significantly lower in
patients >24 months of oral immunotherapy vs. in patients <24
months of treatment (40).

Also, a decrease in antigen-specific CD63 basophil expression
(egg white, ovomucoid, ovalbumin) was associated with the
development of tolerance to egg by specific oral tolerance
induction after 15 days and 1 month, respectively, of the buildup
phase (41, 42).

In contrast, a 6 month or 12 month SLIT with a peach extract
lead to an increase in basophil activation following stimulation
with rPru p3 (43, 44).

Immunotherapy With Hymenoptera
Venoms
A basophil activation decrease using mostly submaximal
concentrations of insect venoms was only observed in part
of the studies up to 18 months after beginning of venom
immunotherapy (VIT), but was found throughout all studies
after 2 years of treatment, and maintained until the completion
of a 3–5-years immunotherapy period (45–50). A significant
difference was also shown for submaximal concentrations of
bee venom in patients reacting to a sting challenge compared
to patients not reacting at the end (mean 4.4. years) of VIT
(51). The depression of allergen-specific basophil response also
lasted 1 year after completing 4–6.5 years of immunotherapy (47).
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In a BAT inhibition assay incubating blood of donor patients
with insect venom allergy with sera from patients undergoing
VIT for at least 1 year, the basophil response was almost
completely inhibited at submaximal allergen concentrations (52).
It was shown that patients who reacted after discontinuation
of immunotherapy in field re-stings had a persistence of high
basophil activation at submaximal concentrations in contrast to
protected patients (53).

Immunotherpy With Inhalant Allergens
First indications of the benefit of BAT for the monitoring
of specific immunotherapy (SIT) with pollen were shown in
patients with Japanese cedar pollinosis. Significant reductions
in the allergen-induced CD203c response in basophils were
observed in part of the subjects already 1 month after beginning
of a rush immunotherapy (54). CD-sens dropped significantly
after reaching the maintenance dose of SIT for birch or
grass allergy compared to before (55). Similarly, a decrease

in allergen-induced basophil activation at submaximal allergen
concentrations was demonstrated at the end of a short-term
preseasonal immunotherapy over 7 weeks and additionally at the
peak of the grass pollen season after immunotherapy (56). CD63
expression decreased also 8 months after an immunotherapy
with an olive pollen allergoid compared to baseline values (57).
Basophil sensitivity was significantly lower after 1 month of
treatment with subcutaneous immunotherapy (SCIT) to grass
pollen when compared to SLIT-tablet treatment, and although
the differences diminished towards the end of the study (15
months), they remained significant (58). Interestingly, a decrease
in basophil sensitivity after 3 weeks of treatment predicted
long-term improvement in seasonal combined symptom and
medication scores during 3 years of treatment in grass pollen
allergic patients (59). Grass pollen immunotherapy induced
sustained suppression of the allergen-specific basophil response
during initiation and after 1–2 years after completion of
treatment (60). In contrast to these studies, a significant decrease

TABLE 1 | Overview over possible current applications of BAT for discrimination between clinically relevant allergy and tolerance, monitoring immunotherapy, and

follow-up of anti-IgE treatment for food, hymenoptera, and inhalant allergies according to the literature.

Allergy Allergen Discrimination

between allergy

and

tolerance/sensitization

Monitoring

immunotherapy

(IT)

Follow-up of

anti-IgE

treatment

Comments References

Food

Peanut Yes Yes (1–5 years IT) Yes (5, 6, 35–38, 74, 75)

Milk (baked) Yes Yes (1–2 years IT) Yes (9–11, 39, 40, 76)

Egg, baked Partiallya Yes (15 days to 1

month IT)

aGreat overlap between

groups

(12, 41, 42)

Hazelnut Yesb bNo discrimination

between OAS and

systemic reaction

(13)

Peach Yesc No cNo discrimination

between OAS and

systemic reaction

(14, 43, 44)

Alpha-Gal Yes (4)

Sesame Yes (together with

SPT)

(17)

Wheat Yes (together with

sIgE)

Discrimination between

subtypes of WDEIA

possible

(15, 16)

Hymenoptera

Bee and wasp

venom

Yes (in terms of

IgE-mediated

reaction and of

double sensitization)

Yes (1.5–5 years IT

and > 1 years after

the end of IT)

(20–25, 45–53)

Inhalant

Pollen (Japanese

cedar, grass,

olive pollen

allergoid)

Yesd Yes, in most

studiese,f
Yes dEspecially for LAR

eSCIT better than SLIT
fNot for a five-grass

pollen tablet

(27–29, 54–61, 77)

House dust mite Yes Yes, in most studies (26, 62–64)

Cat Yes (78)

Latex Yes (66)

IT, immunotherapy; LAR, local allergic rhinitis; OAS, oral allergy syndrome; SCIT, subcutaneous immunotherapy; SLIT, sublingual immunotherapy; WDEIA, wheat dependent exercise

induced anaphylaxis.
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in the basophil activation to various grass allergens was not found
after 2 or 4 months of a SLIT with a five-grass-pollen tablet vs.
placebo using a defined allergen challenge chamber (61).

For house dust mite (HDM) allergy a significant decrease
in BAT results in the course of specific immunotherapy with
HDM allergens in children was shown. CD-sens seemed to be
a better monitoring parameter than the plain percentage of
CD63-expressing basophils (62). Another study demonstrated
that after the first and second year of HDM immunotherapy,
CD63 expression was lower in atopic dermatitis active group than
in the atopic dermatitis control group (63), but others did not
find a significant change of basophil reactivity to HDM during 24
months of immunotherapy nor a significant association between
the change in clinical symptoms and a change in basophil
reactivity (64). A phase I study with timothy grass and dust mite
dual-SLIT for pollen allergy showed that basophil activation for
these two allergens decreased after 24 months of SLIT compared
to baseline (65).

During a latex sublingual immunotherapy in children BAT
determinations showed significant decreases in recombinant and
natural latex allergens in the active group at 6 months, but not at
12 months (66).

Desensitization of Drugs
It was shown in single cases that desensitization protocols can be
monitored by the decrease of basophil sensitivity to the eliciting
drug. This was published for insulin, pertuzumab, adalimumab,
and brentuximab (67–70). For other drugs, e.g., etanercept and
platinum compounds, this could not be constantly demonstrated
(71, 72).

Anti-IgE Treatment
In patients with chronic urticaria in whom omalizumab is
licensed there was no significant difference in activation of donor
basophils incubated with patients’ serum before and after 3
months of treatment (73).

In contrast, in patients with peanut allergy, individually
dosed omalizumab in vivo could be monitored by CD-sens
based on peanut induced basophil activation in vitro and
facilitated peanut oral immunotherapy (74, 75). In severe
cow’s milk allergy, CD-sens monitoring during omalizumab
treatment helped in the decision for performing food
challenge (76).

Timothy allergic patients who received omalizumab for 3
months had a decline in CD-sens during the treatment and
stayed below the starting value for at least 3 months after the
treatment (77). A decrease of CD-sens after a 4-months treatment
with omalizumab was also seen in cat allergic patients (78).
Furthermore, 12–14 months after closing of 6-years omalizumab
treatment, a downregulation of basophil reactivity was still
seen (79).

CONCLUSION AND PERSPECTIVES

This overview showed that the flowcytometric measurement
of allergen-induced basophil activation and the calculation of
basophil parameters from the dose-response curves could help
to gain better estimates of in vivo reactions in a number, but
not all type-I allergic diseases in comparison to conventional
diagnostics (Table 1). Especially the consideration of results in
the submaximal allergen range proved to be particularly relevant
and should be pursued further. A thorough characterization of
the patients which were not completely transparent in all studies
is a prerequisite. Furthermore, quality controls for routine use,
standardization, and automatization are expected to expand the
range of applications for the above-mentioned indications.
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The immune response to antigens is a key aspect of immunology, as it provides

opportunities for therapeutic intervention. However, the induction of immunological

tolerance is an evolving area that is still not sufficiently understood. Allergen

immunotherapy (AIT) is a disease-modulating therapy available for immunoglobulin

E (IgE)-mediated airway diseases such as allergic rhinitis or allergic asthma. This

disease-modifying effect is not only antigen driven but also antigen specific. The

specificity and also the long-lasting, often life-long symptom reduction make the therapy

attractive for patients. Additionally, the chance to prevent the onset of asthma by

treating allergic rhinitis with AIT is important. The mechanism and, in consequence,

therapy guiding biomarker are still in its infancy. Recent studies demonstrated that

the interaction of T, B, dendritic, and epithelial cells and macrophages are individually

contributing to clinical tolerance and therefore underline the need for a system to monitor

the progress and success of AIT. As clinical improvement is often accompanied by

decreases in numbers of effector cells in the tissue, analyses of cellular responses and

cytokine pattern provide a good insight into the mechanisms of AIT. The suppression

of type-2 immunity is accompanied by decreased levels of type-2 mediators such as

epithelial CCL-26 and interleukin (IL)-4, IL-13 produced by T cells that are constituting

the immune memory and are increasingly controlled by regulatory T and B cells following

AIT. Immune tolerance is also associated with increased production of type-1 mediators

like interferon-gamma, tissue-homeostating factors like indoleamine 2,3-dioxygenase

(IDO) expressed by macrophages and dendritic cells. Although these individual genes

were convincingly demonstrated to play a role immune tolerance, they do not predict

therapy outcomes of AIT on an individual level. Therefore, combinations or ratios of

gene expression levels are a promising way to achieve predictive value and definition

of helpful biomarker.

Keywords: allergen-specific immunotherapy, tolerance, biomarker, immune cells, epithelial cells, tissue

homeostasis, rhinitis, asthma

INTRODUCTION

Allergen-specific immunotherapy (AIT) is practiced for more than 100 years now, but the
understanding of the cellular and molecular mechanisms just evolved in the last 20 years. Good
news is that several studies convincingly demonstrated clinical efficacy of injection as well as
of sublingual treatment designs. While quite a few improvements in dosing, adjuvants, allergen
extraction, allergen expression, and allergen modification were explored, the main treatment
principle is the administration of the antigen into the host. In contrast to conventional vaccination
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against pathogens, the main target in allergen vaccination is to
inhibit an already ongoing immune response. Thus, although the
exact opposite reaction is intended, the applied intervention is the
same: inject the antigen/allergen into the organism. In order to
induce tolerance by the allergen vaccination, several adjustments
have been used to obtain a tolerogenic effect such as the route of
administration, extended vaccination schemes for several years,
antigen doses, antigen modifications, tolerogenic adjuvants,
and use of tolerogenic cell populations (1–5). Biomarker that
monitor the antigen-specific induction of an immune response
are available for conventional vaccination such as antigen-
specific immunoglobulins (Ig’s). In contrast, markers of tolerance
induction are more difficult to identify, since the absence of
inflammation and thus measurable markers are lacking. Ideal
would be a marker that predicts whether a patient benefits
from AIT before it evens starts. While the identification of such
a marker is very difficult, research has taken smaller steps to
approach this predictive biomarker that can be used to decide
whether to apply ASIT or not. The smaller steps include marker
that indicate whether allergen has been successfully administered
(1.1), monitoring of anti-inflammatory effects (1.2), induction
of immunosuppressive mechanisms (1.3), and prediction of
treatment success following initiation of the treatment (1.4).

Tracking Allergen Vaccination
Key diagnostic marker for any antigen-specific immune response
is the Ig response and the conversion of initial IgM to high affinity
maturated IgGs that demarcates the successful vaccination
process. Exposure to environmental antigens as well as allergen-
specific immunotherapy results in the induction of IgG4. This
Ig isotype is distinguished from other Ig’s by its constant region
that it is not bound by complement factors and is bound only
by low affinity to Fc receptors (6) and therefore not trigger
proinflammatory responses. IgG4 is very efficiently induced even
against those epitopes that were not recognized by patients’
IgE (7). For this reason, IgG4 is currently the only generally
accepted biomarker of AIT that demonstrates that the patient
has received the therapeutic antigen (8). In context of allergy,
it was demonstrated that IgG4 can block IgE binding sites and
thereby mediates a welcome anti-inflammatory effect. This effect
is particularly welcome in insect venom immunotherapy, where
the prevention of IgE-mediated anaphylaxis is of particular value.
Therefore, the potential of IgG4 in relation to IgE to bind
to an allergen has been investigated intensively as a tolerance
biomarker; however, its relationship to clinical symptoms is
only visible in larger cohorts. Resolution of IgG4 responses to
distinct epitopes revealed differential patterns in the recognition
of allergens for insect venoms but did not show clinical
outcomes (9). In addition, the ratio of IgG4 and IgE only
correlates marginally to clinical symptoms (10). The inclusion
of the IgG4 avidity demonstrated by serum-inhibition assays
(facilitated antigen binding FAB) provides an improved view on
the competition of IgE and IgG4. In this assay, it can be visualized
that the ability to bind and compete with IgE is improving in AIT.
A minor but significant correlation of facilitated allergen binding
with combined daily symptom and medication scores was shown
over a 3-week peak season at the first maintenance dose (week

8 of treatment); however, placebo samples were included in this
analysis as well (11).

Due to differences in the components of the allergens, the
picture can be very complex (12). In substitution therapies (e.g.,
hemophilia), the therapeutic recombinant protein (in this case
factor VIII) is neutralized by antibodies of the IgG4 isotype (13)
and destroys its catalytic activity. It is therefore the “bad guy” in
this therapy as it inactivates the therapeutic agent. This example
outside of AIT highlights the need for administration schemes
that do not generate an immune response or at least promote
tolerogenic recognition of the therapeutic antigen. Development
in this direction could also be relevant for AIT and in particular
for immunotherapies that use peptides rather than proteins.
Peptide-specific immunotherapy does not induce IgG4, as it lacks
three-dimensional epitopes for Ig binding and yet gives rise to
a regulatory T cell response (14, 15). The clinical sustainability
of peptide-induced tolerance could yet not be demonstrated
convincingly, as high placebo signals prevented a successful
conclusion of these trials.

Another interesting immunoglobulin isotype is IgA2, which is
selectively transported through the epithelial surfaces. Allergen-
specific IgA2 is increased by AIT, but in contrast to IgG4, these
differences become only apparent 2 years after initiation of the
treatment (16). IgA together with IgE and IgG4 is also present in
salivary fluids and could be particularly interesting for sublingual
immunotherapy (17).

Detecting Decreasing Inflammation
Allergen-specific immunotherapy decreases local inflammatory,
particularly type-2 cytokines such as IL-4, IL-5, or IL-13 following
AIT; however. initial therapy even increases a broad spectrum
of inflammatory responses including IL-36G, IL-8, CXCL-1,
CXCL-2, and IL-1α, which was shown in nasal brushings
(18). In contrast, interferon-gamma (IFN-γ) was found to be
increased by AIT following 3 years of therapy (19). Clinical
symptoms (FEV1, FVC, and FEF25–75%) correlate partially
with bronchial lavage levels of IL-4 as well as IL-8 and most
favorable with eosinophil counts (20). Several studies reported
an initial increase in allergen-specific IgE. In particular, the
initial increase in IL-4 may be counterproductive and act against
tolerance induction. Inflammatory cytokines and transcription
factors, specifically IL-4-induced GATA3, can bind and block
the activation of the FOXP3 promoter and thereby prevent the
differentiation of AIT-induced regulatory T cells (Tregs) (21,
22). Cytokines induced in the vaccination phase can therefore
be envisionaged as negative biomarker in AIT, which was
also the basis for a clinical trial, where anti-IL-4 was used in
the up-dosing phase to prevent antitolerogenic effects of IL-4
and thereby promote tolerogenic vaccination. In fact, the rise
in allergen-specific Th2 cells in the up-dosing phase of AIT
could be successfully reduced (5, 23). In addition to IL-4, also
other inflammatory cytokines such as TNF family members,
IL-1 or IFNs, may prevent tolerance induction (24–27). In
order to limit these mediators as well, inhibitors could be
imagined that block the activity and signal transduction of
these mediators and thereby provide “tolerogenic adjuvants”
for the vaccination. One idea is to use already clinically
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approved immune suppressors that temporarily block signal
transduction of these cytokines. As these proinflammatory
mediators, such as IL-4, often trigger the Janus kinase (JAK)
pathway, the JAK inhibitor Tofacitinib represents one potential
candidate for this approach. This was the background of
an experimental immunotherapy where a JAK inhibitor was
improving experimental tolerance induction, when it was used
to cover the vaccination phase (1, 28). However, also other
clinically used immunosuppressants such as glucocorticoid were
suggested to support Treg cells at least in in vitro models (29),
while cyclosporine A is counteracting the induction of these
cells (30).

Indicators of Immune Tolerance
Clinical unresponsiveness is often not identical with
immunological tolerance; however, in other diseases, a
relationship of induction of regulatory B cells (Bregs) in
spontaneous clinical tolerance against kidney transplants was
demonstrated (31). Bregs are able to suppress cells of the
immune system by secretion of IL-10 (18, 32), IL-35 (33) and
transforming growth factor beta (TGF-β) (32). IL-10+ B cells
are a heterogenous group that can be separated to different
subsets that demarcate distinct maturation phenotypes such
as CD1dhiCD5+ (34, 35), CD24hiCD27+ (36), CD24hiCD38hi

B cell subsets (37), and CD25+CD71+CD73− (38). The latter

FIGURE 1 | The scheme is illustrating distinct cellular mediators that have been shown to be involved in the immune regulation in allergen-specific immune tolerance.

In green are shown genes that appear in the process of tolerance induction, in red are those that indicate a proallergic, inflammatory direction.
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subset has been shown to be induced following AIT inhibiting
antigen-specific CD4+ T cell proliferation and production of
anti-inflammatory IgG4 antibodies. Induction of IL-10+ B cells
is an early event in AIT, observed most abundantly within weeks
of the up-dosing period (18). In the same study, FOXP3+ Tregs
increased only after 3 years of therapy, and also the decrease
in Th2 cells took as long thus much later as the induction of
Bregs. At this time point, Bregs are back to baseline levels.
In contrast, Th17 cells appeared also relatively early but are
mainly considered as proinflammatory cells, despite the fact
that they require the presence of the rather anti-inflammatory
cytokine TGF-β (39, 40). Depending on certain circumstances
and anatomic locations, T cells are described, which express
FOXP3 and IL-17 at the same time and inversely correlated
with Th2 cells (41). These cells or cells of a similar phenotype
(FOXP3+IL-17+) also occur transiently in the first year of AIT
(18). It may represent a transitory “Tr17” population, which
possibly originates from Th17 cells and may further differentiate
into fully regulatory T cells.

Predicting Therapy Success: Hopeful or

Helpful?
The prediction of therapy success, and in particular to support
the physician to manage AIT to make it successful, is a major
aim in biomarker research. The difficulty is that multiple
proinflammatory players are in balance with those that act anti-
inflammatory (Figure 1). As a consequence, a reliable biomarker
will not be based on a single molecule, but rather need
to cover multiple analytes that better represent the balance
of the players contributing to tolerance. The first blood-
borne biomarker that fulfills this idea is a ratio of Bregs
and Th17 cells taken after the up-dosing phase, thus in the
early phase of the therapy (18). This ratio correlates with the
therapy success [Retrospective Assessment of Seasonal Allergic
Symptoms (RAAS)] after 3 years and embraces the idea to
include regulatory and inflammatory elements into account.
The Bregs in the equation showed a high spread as well
as the proinflammatory Th17 cells that were previously not
considered in context of other AIT studies. Th17 cells are
known to be very “plastic,” which means that they may not be
fully differentiated and may have enough stemness to further
differentiate even into regulatory T cells. This biomarker is
awaiting to be validated in larger cohorts to be able to answer
the question whether this marker is not only hopeful, but
also helpful.

Discussion and Outlook
The role of the tissue and tissue biomarker in the regulation
of tolerance is still insufficiently investigated in AIT, while
increasingly recognized as key factor in transplantation tolerance
via mechanisms of amino acid consumption [auxotrophy; (42)].
The tissue interacts with the specific immune system either
directly or indirectly via tissue-resident macrophages or dendritic
cells. Differentiation of tissue-resident macrophages may provide
important information and biomarker of how effective the
allergen tolerance has been corrected by allergen-specific

immunotherapy (43). Dendritic cells are key orchestrators of
both the innate and the adaptive immune responses and are
essential for the regulation of CD4+ T cell responses. When
triggered by an allergen, immature DCs polarize into DC1s,
DC2s, DC17s, or DCregs, which in turn can differentiate T cells
into Th1 cells (DC1s), Th2 cells (DC2s), Th17 cells (DC17s),
or regulatory T cells [DCregs; (44)]. Changes in expression of
five combined DCreg/DC2-associated markers (CD141, C1Q,
GATA3, FcγRIIIa, RIPK4) in peripheral blood mononuclear
cells (PBMCs) correlated with clinical efficacy of sublingual
immunotherapy (SLIT) at 2 and 4 months (44). The link
between tissue cells, T cells, and macrophages or dendritic
cells is regulated by CD8+ T cells, which recognize specific
antigens on any cell via major histocompatibility complex class
I (MHCI), while CD4+ T cells recognize allergen peptides only
on MHCII expressed by dendritic cells. Consequently, CD8 cell
may also play an important in direct tolerance induction (45),
by interacting between tissue cells and antigen-presenting cells.
Both CD4+ and CD8+ T cell cells produce interleukins that
selectively act on tissue and epithelial cells that can mediate
specific epithelial responses and can thereby contribute to clinical
tolerance (46, 47). In turn, epithelial cells interact with all these
cell types and innate lymphoid cells. Epithelial cells are directly
responding to environmental influences and can therefore
influence immune tolerance and immune homeostasis (48).
Specifically, epithelial tissues respond to allergic inflammation
or viral infections with distinct differentiation processes and
commit toward E2 and E1 cells, respectively (49). These
phenotypes can be detected in allergen-specific immunotherapy
and are noninvasively detectable in secretions of the upper and
lower airways (50). The important role of epithelial cells in
tolerance regulation was also demonstrated in studies showing
that airway epithelial cells can break immunotolerance upon
recognition of bacteria and FcγRIII-mediated activation of the
cells (51).

In conclusion, AIT induces clinical allergen tolerance that
depends on multiple mechanisms across different immune and
tissue cells. Therefore, an effective biomarker will consist of
multiple analytes that cover different cellular processes. Whether
multiple biomarkers as opposed to a single marker are helpful
depends on simple devices that need to be developed and convert
the hopeful experimental results into an helpful clinical routine.
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The incidence of allergic diseases continues to rise. Cross-sectional and longitudinal

studies have indicated that allergic diseases occur in a time-based order: from atopic

dermatitis and food allergy in infancy to gradual development into allergic asthma

and allergic rhinitis in childhood. This phenomenon is defined as the “atopic march”.

Some scholars have suggested that the atopic march does not progress completely

in a temporal pattern with genetic and environmental factors. Also, the mechanisms

underlying the atopic march are incompletely understood. Nevertheless, the concept

of the atopic march provides a new perspective for the mechanistic research, prediction,

prevention, and treatment of atopic diseases. Here, we review the epidemiology, related

diseases, mechanistic studies, and treatment strategies for the atopic march.

Keywords: atopic dermatitis, asthma, food allergy, allergic rhinitis, atopic march

INTRODUCTION

In recent decades, the incidence of allergic diseases has continued to increase, affecting ∼20%
of the worldwide population, especially children (1). Cross-sectional and longitudinal studies
have suggested that allergic diseases occur following a time-based order: from atopic dermatitis
(AD) and food allergy in infancy to gradual development into allergic asthma (AA) and allergic
rhinitis (AR) in childhood. In terms of anatomic structure, it follows the spatial evolution of skin–
gastrointestinal tract–respiratory tract, and this phenomenon is defined as the “atopic march” (2).

Among the allergic diseases mentioned above, some resolve gradually to disappear with age,
whereas others continue for many years (3). Some studies have shown that the atopic march does
not progress completely in a temporal pattern with genes and the environment (4). Nevertheless,
the concept of the atopicmarch provides a new perspective for themechanistic research, prediction,
prevention, and treatment of allergic diseases.

Here, we review the epidemiology, related diseases, mechanism of action, and treatment
strategies of the atopic march.

EPIDEMIOLOGY OF THE ATOPIC MARCH

AD: The First Manifestation of the Atopic March
AD is a chronic recurrent skin disease. Its clinical manifestations are chronic inflammation of the
skin, itching, and an impaired skin barrier. AD affects 3% of adults and ∼30% of children, and its
prevalence tends to increase with age (5). AD occurs in the early years of life. Some epidemiology
studies have shown that 45% of affected children had the condition before 6 months of age, 60%
before 1 year of age, and up to 85% before 5 years of age (6, 7).
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AD etiology is a combination of various factors involving
genes and the environment (8). Once external allergens contact
a damaged skin barrier, keratinocytes are stimulated to secrete
thymic stromal lymphopoietin (TSLP) and other factors in
conjunction with Langerhans cells (LCs) to stimulate T-helper
type 2 (Th2) immune responses. Then, the body is stimulated
to produce non-specific immunoglobulin (Ig)E (if children are
exposed to allergens such as mites for a long time, specific IgE
may appear). Subsequently, T cells, eosinophils, macrophages,
mast cells, and type 2 innate lymphoid cells (ILC2s) infiltrate to
secrete cytokines, resulting in local inflammation of the skin (9).
AD patients can be classified into two types based on whether
the IgE level is increased: intrinsic (normal IgE and non-allergic)
and extrinsic (high IgE level associated with increased disease
severity). Studies have shown that extrinsic AD increases the risk
of developing the atopic march (10, 11).

AA and AR: The End Progression of the
Atopic March
AA is a common chronic airway disease characterized by
the inflammation, hyperresponsiveness, and remodeling of
airways (12–15). With modernization and industrialization, AA
incidence has increased year by year. This may be because
of lifestyle alterations, changes in environmental factors (e.g.,
increase in indoor dust mites and outdoor pollution), changes in
dietary habits, andmany other factors. AR involves inflammation
of the nasal mucosa (16) and diminishes the quality of life of
sufferers (17).

Epidemiologic evidence has revealed a link between AA and
AR. A retrospective follow-up study reported the incidence of
AR to be higher in AA patients than in non-AA persons (18). In
another cohort study, Leynaert et al. demonstrated that 74–81%
of AA patients reported AR. Also, they found that AA occurred
in 2% of non-AR persons, but in 18.8% of AR patients upon
exposure to pollen or animal dander (19).

AR may lead to changes in the function of the lower airways
through three main mechanisms. Firstly, stimulation of the
nasal mucosa contracts bronchial smooth muscle through the
nasal–tracheal reflex. Secondly, various chemical mediators and
cytokines released by antigenic stimulation causing nasal mucosa
allergy are absorbed into blood, are transported to the lung
through circulation, and then act on the trachea and bronchi,
causing smooth muscle spasm. Thirdly, nasal inflammatory
mediators and secretions are discharged through the nasal
passage to the lower airways, resulting in a reduced β-adrenergic
receptor functional response (20).

Epidemiology of the Atopic March: Linking
AD With AA or AR
Dharmage et al. found, in infants who have AD within 2 years
of age, that the incidence of AA and AR increased significantly
during age 6–7 years. In particular, early-onset, persistent, and
IgE-positive AD led to a higher risk of developing AA and AR (9).
A longitudinal study on a Canadian birth cohort (2,311 children)
has shown that AD with sensitization at 1 year of age increased
the prevalence of AA and AR at 3 years of age more than 11- and

7-fold, respectively (21). In a recent report from Thailand, 102
children with AD (diagnosed at 1.5 years of age) were reviewed,
and subsequently, AR and AA were diagnosed in 61.8 and 29.4%,
respectively. Concomitantly, 67% of the AA patients also suffered
AR (22). A prospective cohort study (3,124 children aged 1–2
years) reported that, compared with children with no history
of AD, those once having AD, particularly moderate-to-severe,
early, and persistent AD, were more inclined to develop AA and
AR (23).

The discoveries mentioned above strongly support the natural
process of the atopic march.

Roles of Food Allergy
IgE-positive food allergy commonly coexists with AD in early
childhood as the earliest manifestation of the atopic march. In
2011, Japanese scholars conducted a retrospective questionnaire
survey on freshmen, and they found that AD occurred earlier
in those with accompanying food allergy. Also, having food
allergy was regarded as the biggest risk factor for the atopic
march (24). A family-based cohort study from Chicago revealed
that symptomatic food allergy, especially severe or multiple food
allergies, was closely related to AA in children aged ≥6 years.
Children with food allergy developed AA earlier than those
without food allergy (25). A survey of 2,222 infants with AD
aged 11.5–25.5 months showed that 64% of children diagnosed
with AD within 3 months of birth exhibited an IgE-mediated
sensitivity to milk, peanuts, or eggs. Also, in infants <12 months
of age, the proportion of infants with sensitivity to eggs, milk,
or peanuts increased with AD severity, but this phenomenon
was not manifested in children with AD after 1 year of age
(26). Among adults with AD, food allergy is relatively rare
(27–31). In addition, studies have shown that children sensitive
to milk in infancy subsequently exhibited aggravated airway
inflammation and increased airway responsiveness to histamine
(32, 33). Remarkably, food allergy commonly exists together with
AD in infants. Therefore, it is worth exploring whether the link
between food allergy and AA or AR is related to AD or is a direct
consequence of the food allergy itself.

EoE: A New Manifestation of the Atopic
March?
Eosinophilic esophagitis (EoE) is a chronic esophageal
inflammatory disease induced by pollens or food allergens
(34). EoE patients are sensitive to allergen avoidance and
glucocorticoid therapy. Genome-wide association study
(GWAS) data have indicated that EoE shares some susceptible
genetic loci with other manifestations of the atopic march,
including polymorphisms in the signal transducer and activator
of transcription 6 gene (STAT6) and TSLP (35). In addition,
epidemiology studies have demonstrated EoE to be associated
with other allergic diseases. For example, Mohammad et al.
found that, of 449 EoE patients, the prevalence rates of AR, AA,
and AD were 61.9, 39, and 46.1%, respectively, and that up to
21.6% of EoE patients developed these three atopic diseases (36).
Another study involving 35,528 people reported that those with
IgE-positive food allergy were at a higher risk of EoE (37). A birth
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cohort study involving 130,435 children determined a positive
association between EoE and other allergic manifestations (34).

The studies mentioned above suggest the potential of EoE as
the fifth “member” of the atopic march, but this hypothesis is
controversial. For example, EoE occurs not only in childhood but
also after childhood. In addition, EoE can occur in individuals
without a history of atopy. Therefore, larger cohorts are
needed to study the epidemiologic relationship of EoE with
other manifestations of the atopic march and the mechanisms
involved (38).

POSSIBLE MECHANISMS UNDERLYING
THE ATOPIC MARCH

Dysfunction of the Skin Barrier
The skin is the foremost barrier for defense against external
stimuli, such as pathogens, environmental pollutants, and
ultraviolet light. As a component of the innate immune
system, the skin has several defensive functions, including
microbial, chemical, physical, and immune barrier. These
different functions of the skin barrier coordinate with each other
to resist external stimuli and maintain skin homeostasis.

Allergens can enter the body through damaged skin
to cause sensitization, which is defined as “transcutaneous
sensitization” (39). Transcutaneous sensitization can cause AD
and, subsequently, AA and AR (5). Studies have shown that
epicutaneous disruption induces sensitization after exposure to
peanut and egg allergens (40, 41). Spergel et al. demonstrated that
repeated cutaneous exposure to egg allergens induced AD-like
skin inflammation and AA-like bronchial hyper-responsiveness
in a mouse model (41). Emerging studies now suggest that the
skin barrier protein filaggrin and epithelial cell-derived cytokines
such as TSLP, IL-25, and IL-33might be related to the progression
of the atopic march.

Filaggrin
Filaggrin, a barrier protein, has important roles in the integrity
of the stratum corneum in terms of structure and composition.
Mutations in the filaggrin gene (FLG) can impair the barrier
function of the skin and induce an allergic response (42, 43).
Several studies have shown patients with impaired or reduced
levels of filaggrin to be more susceptible to food sensitization
(44–46). Moreover, FLG mutations increase the risk of early and
severe AD and of AA in individuals who have had AD (47–49).

Thymic Stromal Lymphopoietin
TSLP is an interleukin (IL)-7-like epithelial cell-derived cytokine
which regulates the Th2 response (50). Zhang et al. found
that TSLP overexpression in keratinocytes aggravated AA-like
airway inflammation in mice subjected to ovalbumin (OVA)
sensitization intraperitoneally and OVA challenge intranasally
(51). Another in vivo study demonstrated that keratinocytic TSLP
was essential to induce a Th2 response in the skin and to trigger
aeroallergen-challenged AA phenotypes (52). In addition, Noti
et al. found that the effect of TSLP was enough to develop
experimental EoE-like phenotypes in mice (53). Also, they found
that TSLP in skin facilitated food allergy (54).

Interleukin-33
IL-33 is derived from epithelial cells and acts on macrophages,
ILC2s, Th2 cells, mast cells, and basophils through the
suppression of tumorigenicity 2/IL-1 receptor accessory protein
heterodimer (ST2/IL1RL1) (55–60). Several studies have explored
the roles of IL-33 in allergic diseases and found high expressions
of IL-33 in the skin or airway epithelial cells in AD or airway
inflammation (61–63). Blockade of ST2 expression can alleviate
food allergy in peanut- and OVA-challenged models (64, 65).

Interleukin-25
IL-25 is also an epithelial cell-derived cytokine (66–68). Kim
et al. found that IL-25 inhibited filaggrin expression in the skin
and aggravated skin inflammation by coordinating with Th2
cytokines (69). Lee et al. reported OVA/alum-sensitized allergic
diarrhea to be inhibited in mice lacking IL-17RB, the receptor of
IL-25, whereas IL-25 overexpression in the intestine accelerated
the development of allergic diarrhea (70). Kang et al. found that
the mRNA expression of IL-25 was upregulated in rat lungs in a
TiO2-induced model of airway inflammation (71).

In conclusion, allergens (including food and aeroallergens)
enter the skin through the damaged skin barrier. Then, they
stimulate skin epithelial cells to release TSLP, IL-25, and IL-
33. This action activates some immune cells in the dermis [e.g.,
basophils, mast cells, dendritic cells (DCs), eosinophils, ILC2]
to secrete cytokines, and subsequently, Th2 cells are generated
and IgE production in local lymph nodes occurs. Th2 cells can
secrete more type 2 cytokines (e.g., IL-4) to activate more ILC2
and eosinophils, and IgE can act on mast cells and basophils.
This positive feedback causes skin inflammation and AD (72).
Furthermore, IgE, Th2, TSLP, IL-25, and IL-33 might enter
the digestive and respiratory tracts through blood circulation
to facilitate the development of AA, AR, and food allergy if
allergens are re-encountered (73, 74) (Figure 1). Therefore, skin
barrier dysfunction might be a potential mechanism underlying
the atopic march.

Microbiome Alteration
Many microorganisms are colonized in the intestine, skin, and
respiratory tract (75) and influence health and disease. Several
studies have suggested that microbiome alteration plays roles in
atopic diseases locally or peripherally.

Kennedy et al. observed the skin microbiome dysbiosis in
early life of AD patients, and they also found that colonization
with commensal Staphylococci at 2 months was related to a lower
risk of AD at 1 year of age (76). Forno et al. and Abrahamsson
et al. reported that children who had AD at 6 months (77) and 2
years (78) of age had decreased intestinal microbial diversity at 1
month of life. A study of the KOALA birth cohort demonstrated
that infants with Clostridium difficile colonization in the gut at
1 month of life were inclined to develop AD and other atopic
diseases (79). Azad et al. demonstrated that infants who had a
positive skin prick test for food sensitization at 1 year had lower
gut microbial richness at 3 months (80). Abrahamsson et al.
reported that infants with low diversity in intestinal flora at 1
month of age were inclined to develop AA at school age (81).
In addition, Teo et al. determined that microbiome alteration
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FIGURE 1 | A possible model of the contribution of skin barrier dysfunction to the atopic march. Allergens (including food allergens and aeroallergens) enter the skin

through the damaged skin barrier. Then, they stimulate epithelial cells in the skin to release thymic stromal lymphopoietin (TSLP), interleukin (IL)-25, and IL-33. This

action activates some immune cells in the dermis (e.g., basophils, mast cells, DCs, eosinophils, and ILC2) to secrete cytokines, followed by the generation of T-helper

type 2 (Th2) cells and immunoglobulin E (IgE) production in local lymph nodes. Th2 cells can secrete more type 2 cytokines (e.g., IL-4) to activate more ILC2 and

eosinophils, and IgE can act on mast cells and basophils. This positive feedback causes skin inflammation and atopic dermatitis (AD). Furthermore, IgE, Th2 cells,

TSLP, IL-25, and IL-33 might enter the digestive tract and respiratory tract through blood circulation to facilitate the development of allergic asthma (AA), allergic

rhinitis (AR), and food allergy if allergens are re-encountered.

following respiratory infections during infancy might contribute
to the development of AA (82).

Moreover, some studies have shown that microbes regulate
atopic diseases by secreting metabolites. Furusawa et al. reported
that the short-chain fatty acids produced by several intestinal
microorganisms induced the proliferation of colonic regulatory
T cells (Tregs) and further ameliorated colitis and allergic
responses (83). Dysbiosis of Faecalibacterium prausnitzii, as
observed in AD, was found to reduce the production of butyrate
and propionate and further destroyed the intestinal mucosa.
Then, some toxins permeated into the circulation and induced
a Th2 immune response to facilitate skin inflammation and AD
development (84). Johnson et al. found that the polysaccharides
derived from Bacteroides fragilis induced CD4+Foxp3− T cell
activation and further prevented AA onset (85).

The studies mentioned above strongly suggest that
microbiome alteration may be involved in the atopic march.
However, further studies are needed to determine whether
microbiome shifts are a cause or a consequence of the
atopic march.

Epigenetic Factors
Epigenetic mechanisms can regulate gene expression and
constitute the cause of diseases. Several epigenome-wide
studies have revealed DNA methylation in blood to be
related to food allergy (86, 87) and AA (88). Recently, Peng
et al. undertook DNA methylation analyses on the cohorts
of the Generation R Study (343 at mid-childhood and
839 newborns) in the Netherlands and Project Viva (396
at mid-childhood and 232 newborns) in the USA. Meta-
analyses linked the differential methylation profiles of the
peripheral blood of mid-childhood children with food allergens,
environmental/inhalant allergens, and atopic sensitization.
Multiple methylation site-related genes were enriched to
AA pathways, including eosinophil peroxidase (EPX), IL4,
interleukin 5 receptor A (IL5RA), and proteoglycan 2 (PRG2).
Furthermore, Peng et al. identified several methylation sites of
cord blood to be related to allergic phenotypes in mid-childhood
and that some methylation sites of cord blood were also
present in mid-childhood (89), which suggested a longitudinal
time trend.
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The findings mentioned above suggest that epigenetics may
have roles in allergic diseases. However, these studies show only a
correlation between epigenetics and the atopic march. Whether
epigenetic change is a cause or a result of the atopic march
warrants large and detailed longitudinal studies.

“Social” Dysfunction of Cells and
Molecules
Allergic reactions occur not only in the regions where allergens
are in contact directly but also in long-distance, non-contact
sites. This may be a systemic reaction of the body, and the
mechanisms are incompletely understood. Through literature
search, Luo et al. proposed a model of “social events” of cells
and molecules to explain the atopic march (90). Epithelial cells,
such as epidermal keratinocytes and airway epithelial cells, are
the first line of defense against allergen exposure and initiate the
inflammatory response by releasing proinflammatory cytokines.
Thus, epithelial cells are considered to be key participants in
allergic diseases. In this model, Luo and colleagues considered
that it is the atopic factors produced by epithelial cells locally,
not in the circulation, that drive allergy at different sites and
that certain allergens are the irritants that trigger the release of
atopic factors at different sites. Zhang et al. reported that TSLP
overexpression in keratinocytes induced AD-like symptoms
and also aggravated OVA-induced AA manifestations in mice.
However, they also found that increased TSLP expression in the
skin and, subsequently, peripheral blood was not sufficient to
induce lung inflammation (51). The atopic reaction in the lung
might be induced by the TSLP derived from the lung epithelia
themselves. Therefore, the atopic reaction in the skin and the
lung might be the consequence of the “social dysfunction” of
homologous epithelia and molecules such as TSLP. Despite its
rationality and interpretability, the theory of social events needs
sufficient evidence from in vivo and in vitro studies.

Interference of Other Predicted Genes
Marenholz et al. performed GWAS on 2,428 cases with AD
in infancy and AA in childhood and on 17,034 controls. They
identified seven susceptible sites associated with the atopic
march: FLG [1q21.3], AP5B1/OVOL1 [11q13.1], IL4/KIF3A
[5q31.1], IKZF3 [17q21], C11orf30/LRRC329, EFHC1 [6p12.3],
and rs99322 [12q21.3] (91).

Bioinformatics analyses by Gupta et al. revealed that the
atopic march involved 16 common pathogenic genes: IL4, IL5,
TSLP, RNASE3, IL13, IL10, IGHG4, IFNG, CCL11, FCER2,
RNASE2, FOXP3, KCNE4, CD4, IL4R, and CCL26 (92). These
genes were predicted through large-scale and high-throughput
bioinformatics analyses, and their roles in the atopic march need
to be determined through further experimentation.

Summarily, Paller et al. have reviewed the multifactorial
etiology of the atopic march, including skin barrier damage,
microbiome alteration, and epigenetic factors (93), and we
consider that “social” dysfunction of cells and molecules, and the
interference of other predicted genes, may also contribute to the
atopic march (Figure 2). However, further studies are required to
detail the relevant mechanisms.

ANIMAL MODELS FOR STUDIES ON THE
ATOPIC MARCH

The modeling process of Leyva-Castillo et al. consisted of two
phases. In the first phase, wild-type (WT) BALB/c mice were
treated with calcipotriol MC903 plus OVA through epicutaneous
sensitization. This led to increased levels of Th2 cytokines,
Th17 cytokines, and OVA-specific IgE and IgG1 in serum. In
the second phase, MC903-treated (epicutaneous) OVA-sensitized
mice underwent intranasal challenge with OVA. These mice
exhibited AA-like symptoms with increased mucus secretion,
eosinophil infiltration, and expression of Th2 cytokines (52).

In a model established by Han et al., WT BALB/c mice
were first treated with OVA plus TSLP via the intradermal
route (four times within 2 weeks). After 9 days, the mice were
challenged by OVA via the intranasal route for four consecutive
days. Consequently, the mice exhibited increased OVA-specific
IgE in serum as well as cellular and eosinophil infiltration in
the bronchoalveolar lavage fluid. Histopathology showed severe
inflammatory infiltrates in mouse lungs. In addition, periodic
acid–Schiff staining showed excessive goblet cell metaplasia and
mucus secretion (94).

Moreover, one study showed that epicutaneous exposure
to Aspergillus fumigates aeroallergens followed by intranasal
challenge with A. fumigates induced an allergic nasal response in
BALB/c mice (95).

In conclusion, the models mentioned above have one
similarity: the skin is used as a sensitization site, consistent
with the feature that AD is the initial manifestation during the
atopic march. These animal models facilitate the studies of the
mechanisms underlying the atopic march.

REFUTATIONS OF THE ATOPIC MARCH

Despite substantial epidemiologic and experimental evidence,
some scholars argued that the prevalence of the atopicmarchmay
be overemphasized (96).

First, the methods of the data collection and disease
identification initiate one main concern. Considering the cost
and time required to make physician diagnoses, allergic disease
identification was often based on “yes” or “no” questions. In
existing epidemiologic surveys, the diagnosis of AD, AA, and
AR simply used “yes” or “no” questionnaires, and some even
lacked further physician identification (97–99). In addition,
deviations and over-reporting in questionnaire surveys from
some individuals led to an overestimation of the disease
prevalence (100). Another rebutted criticism of the atopic march
is the failure to consider disease heterogeneity or variations.
Martinez et al. found that AD patients were at a higher risk
of developing transient early AA and persistent AA, not late-
onset AA (97). This indicates that the association between
AD and AA may be restricted to specific AA subpopulations,
not universal. Moreover, some individual-level analyses did
not support the typical temporal pattern. At an individual
level rather than a large-scale population level, Belgrave et al.
demonstrated that only 3.1% of children followed the classical
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FIGURE 2 | The temporal pattern and the possible mechanisms of the atopic march. The temporal pattern of the atopic march is, in general, from atopic dermatitis

(AD) and food allergy in infancy to gradual development into allergic asthma (AA) and allergic rhinitis (AR) in childhood. Several mechanisms could underlie the atopic

march: skin barrier damage, microbiome alteration, “social” dysfunction of cells and molecules, epigenetic factors, and interference of other predicted genes.

atopic march procession (AD first, followed by AA and then
AR) and more than 90% of children with atopic manifestations
did not (101).

Unusually, a study from Italy found an evidence of a
“reverse” atopic march. The study included 745 children aged
6–9 years with AA only, without a history of food allergy or
AD. After a 9-years follow-up, 20% of the children were found
to have developed AD (102). In addition, the prevalence of the
atopic march differed in distinct countries. Colombian scholars
followed up 326 mother–infant pairs in a birth cohort study,
and they found that AA was the most common manifestation
by 24 months. The prevalence of recurrent AA was 7.1%
at 12 months and reached 14.2% at 24 months. However,
allergic symptoms induced by milk, egg, or other food allergens
were scarce, only 1.8%, and AD was not observed in any
cases (103).

Although these studies refute the concept of atopic march
to a certain extent, we cannot deny the contribution of the
theory of atopic march to the early prevention, diagnosis,
and treatment of allergic diseases. Future research on the
atopic march should improve the current data collection and
disease identification methods, not only relying on “yes” or
“no” questionnaires, take disease subtypes into account, and
perform the study in an individual level rather than only in a
group level.

PREVENTION AND TREATMENT
STRATEGIES FOR THE ATOPIC MARCH

Several measures used to prevent and treat allergic diseases are
expected to interfere with, delay, and block the natural process of
the atopic march.

Food Interventions
In most studies, breastfeeding for > 6 months has been
recommended because it reduces not only the incidence of AD
but also of other allergic diseases (104). A 15-years follow-up
study of the German Infant Nutritional Intervention (GINI)
cohort has shown that, if breastfeeding is not possible, compared
with standard cow’s milk formula (CMF), the interventional
use of partial whey hydrolyzate (pHF-W) formula and extensive
casein hydrolyzate (eHF-C) formula in the first 4 months of
life has significant preventive effects on AD, and the eHF-
C formula also reduced the prevalence of AA and AR (105).
However, the mechanisms underlying the preventative effects of
hydrolyzed formulas are unknown. In addition, the assessment of
the effects of hydrolyzed formulas was based on parental reports
of physicians’ diagnosis, not on the clinical examinations. These
are the criticisms against the use of hydrolyzed formulas for the
prevention of allergic conditions.

Moreover, Wickens et al. found that supplementation with
Lactobacillus rhamnosus for the first 2 years of life reduced the
prevalence of AD by about half (106). However, further studies
are required to handle the uncertainties about whether other
probiotics are equally effective and how probiotics exert their
effects on allergic diseases.

Furthermore, the Learning Early About Peanut Allergy
(LEAP) trial demonstrated that, compared with children who
avoided peanut, sustained peanut consumption, beginning in the
first 11 months of life, significantly decreased the prevalence of
peanut allergy at 60 months of age in infants with high atopic
risk (107). In addition, a large-scale population-based prospective
study showed that early introduction of cow’s milk protein
as a supplement to breastfeeding might promote tolerance,
reducing the incidence of IgE-mediated cow’s milk protein
allergy (108).
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Environmental Prevention
Exposure to several environmental factors is closely related to
having allergic diseases. Studies have shown that smoke in the
environment increases children’s risk of allergic sensitization and
AA (109). Therefore, it is strongly recommended that all parents
should stop smoking tobacco. Dust mites, pollen, cockroaches,
pet fur, and fungi are common allergens, and avoiding exposure
to these allergens can reduce the sensitization of children at
high risk. However, it has also been proposed that there was
no correlation between house dust mite (HDM) exposure and
AA (110), and keeping pets (cats or dogs) in the home in the
first year after birth reduced the risk of sensitization to multiple
allergens during childhood, but it impaired lung function once
cat or dog sensitization has occurred, particularly in children
with a family history of AA (111). These controversial views are
initiating further research to evaluate their relevance.

Medical Treatment
Symptomatic Treatment
Antihistamines are used to relieve itching in AD patients and to
prevent skin damage aggravated by scratching. Ketotifen, an H1
antihistamine, significantly lowered AA risk in infants with AD
or other pre-asthmatic conditions (112, 113). A double-blind,
randomized, placebo-controlled trial showed that compared to
placebo, cetirizine significantly reduced the incidence of AA in
AD patients sensitized to grass pollen or toHDM (114). However,
considering the side effects of antihistamines, a large number of
clinical trials are needed to evaluate the security of antihistamines
and the effectiveness of interventions in the natural course of
allergic diseases.

Glucocorticoid is also an effective anti-inflammatory
treatment for allergic diseases, and inhaled glucocorticoids has
now become the first-line treatment for AA (115). Although
the symptoms of AD and AA can be significantly improved
by glucocorticoids, it is prone to relapse after withdrawal. In
addition, there are many side effects. Therefore, glucocorticoids
should be prescribed with caution by the physicians.

Allergen-Specific Immunotherapy
Allergen-specific immunotherapy (ASIT), also known as
“desensitization therapy,” can alleviate allergy symptoms for a
long time and change the natural course of allergic diseases (116).
Several ASIT routes have been documented in preclinical studies,
including subcutaneous immunotherapy (SCIT), sublingual
immunotherapy (SLIT), epicutaneous immunotherapy (EPIT),
and oral immunotherapy (OIT). The recognized mechanism of
specific immunotherapy is stimulation of the secretion of IL-10
and transforming growth factor-β from Tregs, promotion of
the balance of Th1 cells/Th2 cells, and conversion of IgE to IgG
to block the IgE-mediated immune cascade (117, 118). Zhong
et al. found that the clinical symptoms and quality of life of AD
patients with HDM sensitization could be improved after 2 years
of ASIT (119). Besh et al. demonstrated that combining basic
therapy with SCIT acquired significantly better results in AA
patients compared to basic therapy only (120). Karakoc-Aydiner
et al. found that the nasal symptom scores of children with AR
were significantly reduced after receiving dust mite allergen

vaccine through SCIT or SLIT (121). However, the lack of
security greatly limits the development of ASIT. For example,
the adverse reactions of SLIT mainly focus on local reactions,
such as oromucosal pruritus and gastrointestinal reaction
(122). In addition, almost all clinical trials related to OIT are
accompanied by one or several serious adverse reactions, such
as severe gastrointestinal reactions, systemic allergic reactions,
etc. (123). Long-term follow-up of milk OIT patients showed
that the complete immune tolerance rate after OIT treatment
was only 31% (124, 125). Therefore, further research on ASIT
should be directed at the improvement of not only its efficacy but
also security.

Targeted Therapy
Omalizumab is a human monoclonal antibody against IgE.
In 2003, it was approved for the treatment of severe AA
in adolescents and adults. Esquivel et al. demonstrated that
omalizumab inhibited rhinovirus infections, illnesses, and
exacerbations of AA through specific binding to IgE (126).
Dupilumab is a human IgG4 monoclonal antibody against IL-4
receptor subunit alpha (IL-4Rα), and it can inhibit IL-4 and IL-13
signaling pathways by interacting with IL-4Rα (127). Dupilumab
has been approved by the US Food and Drug Administration
to treat infants with moderate-to-severe AD with poor results
from conventional treatment (128). Tezepelumab (AMG 157)
is a monoclonal antibody (G2λ) against TSLP. In one clinical
trial, tezepelumab treatment for 5–12 weeks blunted inhaled
allergen-induced AA attacks (129). Of note is that these targeted
therapy medicines are only licensed for use in certain allergic
diseases. Although the off-label uses or adjunct to treatment
for numerous allergic conditions have acquired encouraging
results, their potential efficacy still needs to be evaluated through
clinical trials.

BIOMARKERS OF THE ATOPIC MARCH

Although there are no reliable biomarkers to identify subjects
with high risk of atopic march, Davidson et al. have proposed
some recommendations recently for future research to explore
biomarkers, which would provide some possibilities to examine
the atopic march.

The relevant proposals are as follows: (1) to look at the
protein, RNA, and lipid signatures in infants before and after AD
using multi-omics approaches; (2) to analyze transcriptomics,
proteomics, metabolomics, and the cell types of infant blood
sequentially; (3) to perform sequential immune profiling of the
blood, including serology, cytokine profiles, and the evolution of
specific B and T cells; (4) to investigate the microbiomes in the
skin and gut from birth; and (5) to consider potential maternal
delivery effects for atopy (130).

CONCLUSION

The global increase of atopic diseases greatly lowers the quality
of life. The theory of atopic march facilitates our understandings
of the pathophysiology of atopic diseases and further promotes
the early detection, prevention, and treatment of children at
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risk of allergic diseases. Future studies on atopic march would
be directed at the following points. Firstly, the methods for
data collection should be improved and disease heterogeneity
or variations should be considered when performing substantial
epidemiologic surveys. Secondly, more detailed and logical
mechanisms, including genetic and environmental aspects,
should be explored to account for the temporal pattern, which
would pave the way for novel approaches for the prevention and
timely early treatment of the clinical manifestations, ultimately
reducing the allergy burden.
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The development of allergic disease involves the production of IgE antibodies upon

allergen exposure in a process called sensitization. IgE binds to receptors on the

surface of mast cells and basophils, and subsequent allergen exposure leads to

cross-linking of IgE antibodies and release of cell mediators that cause allergy symptoms.

Although this process is quite well-understood, very little is known about the epitopes

on the allergen recognized by IgE, despite the importance of the allergen-antibody

interaction for the allergic response to occur. This review discusses efforts to analyze

allergen-antibody interactions, from the original epitope mapping studies using linear

peptides or recombinant allergen fragments, to more sophisticated technologies,

such as X-ray crystallography and nuclear magnetic resonance. These state-of-the-art

approaches, combined with site-directed mutagenesis, have led to the identification of

conformational IgE epitopes. The first structures of an allergen (egg lysozyme) in complex

with Fab fragments from IgG antibodies were determined in the 1980s. Since then, IgG

has been used as surrogate for IgE, due to the difficulty of obtaining monoclonal IgE

antibodies. Technical developments including phage display libraries have contributed

to progress in epitope mapping thanks to the isolation of IgE antibody constructs

from combinatorial libraries made from peripheral blood mononuclear cells of allergic

donors. Most recently, single B cell antibody sequencing and human hybridomas are new

breakthrough technologies for finally obtaining human IgE monoclonal antibodies, ideal

for epitopemapping. The information on antigenic determinants will facilitate the design of

hypoallergens for immunotherapy and the investigation of the fundamental mechanisms

of the IgE response.

Keywords: allergy, allergen, IgE antibody, structure, X-ray crystallography, nuclear magnetic resonance, cryo-

electron microscopy, mass spectrometry

INTRODUCTION

The interaction between allergens and IgE antibodies is at the core of the allergic response.
Epitopes could potentially be located on any part of the allergen surface. However, evidence shows
that antibodies are very specific about the epitopes that they recognize and certain areas on the
allergen seem to be preferential for antibody binding. The identification of epitopes recognized by
IgE is valuable for the design of hypoallergens or other therapeutics. However, allergen-epitope
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information has been difficult to obtain. This review will discuss
various methods to probe epitopes and the knowledge that has
been gained from available studies on allergens.

HISTORICAL PERSPECTIVE TO IgE
EPITOPE MAPPING

Since the 1980s, efforts to identify antigenic determinants on
allergens have been pursued, but progress in the area has been
slow due to technical limitations. Original epitope mapping
studies were based on the synthesis of overlapping peptides
covering the full sequence of the allergen, and the selection
of the peptides that bound IgE (1, 2). This approach led to
the identification of linear epitopes that comprise a sequential
or continuous set of amino acids. However, allergens are
proteins or glycoproteins with a defined three-dimensional
structure that determines the molecular surface and epitopes
recognized by antibodies. Therefore, most allergenic epitopes
are conformational, involving amino acids that are close in
space due to the protein folding, but non-contiguous in the
allergen sequence (3). Technologies that consider the three-
dimensional structure of the allergens were necessary to analyze
conformational epitopes.

In the absence of complete structural information, most of
the original approaches to epitope mapping were indirect, based
on the reduction of IgE antibody binding to modified allergen
molecules in dot blots or enzyme-linked immunosorbent assays
(ELISA) (4). They were possible thanks to peptide synthesis or
to the development of recombinant technology, with in vitro
expression of either allergen fragments, mutants, or allergen
chimeras, and their subsequent testing for IgE antibody binding.
The development of microarrays or bead-based epitope assays
facilitated the investigation of the relevance of linear epitopes,
using large sets of linear peptides (5, 6). Microarrays have been
especially useful for food allergens because they have mainly
linear epitopes due to food processing and/or digestion (6–
9). Several IgE/IgG4-binding peptide epitopes were suggested
as biomarkers for predicting clinical reactivity and severity to
certain foods (10, 11). Another approach uses information from
the allergen structure, and hybrid or chimeric allergens are
designed by combining the sequences of homologous allergens
from different species (12–14). Patches on the allergen surface
associated with binding of IgE (from sera of subjects allergic
to one of the allergens in the chimera) indicate the presence
of epitopes (most likely conformational) on those regions.
Another approach to epitope mapping is the identification of
mimotopes, which mimic the structure of an epitope (15). It is
based on the use of phage display libraries for the selection of
peptides that, in combination with a computational algorithm,
allow the identification of patches on the allergen surface that
mimic conformational epitopes (16, 17). A knowledge of the
allergen structure is needed, but the mimotope resulting from
the analysis is not necessarily the same as the real epitope.
Each of these technologies has provided valuable information on
epitope mapping.

X-ray crystallography and nuclear magnetic resonance have
determined the three-dimensional structure of many allergens,
which helps immensely in interpreting epitopes. Allergens have a
wide variety of three-dimensional structures, despite belonging
to a limited number of protein families (18–20). Only 1.3%
of the total Pfam domains are present in allergens (http://
www.meduniwien.ac.at/allfam/). Once the allergen molecular
surface is defined, certain amino acids can be selected for site-
directed mutagenesis to analyze allergen-antibody interactions
(21). Experimental IgE binding and cross-reactivity data can
be compared for homologous allergens in conjunction with
the molecular structure to understand the approximate location
of IgE-binding epitopes (22, 23). Ultimately, the structures
of allergen-antibody complexes provide the most detailed
information of the epitope-paratope interaction. These precise
technologies, although more laborious, directly identify the
residues involved in allergen-antibody interactions. This review
primarily covers X-ray crystallography and NMR approaches
to epitope mapping (Table 1). Additional technologies that also
consider the three-dimensional structure of proteins for epitope
mapping are cryo-electron microscopy (cryo-EM) and chemical
protection assays combined with mass spectrometry (MS). These
will also be briefly discussed.

STATE-OF-THE-ART TECHNOLOGIES FOR
EPITOPE MAPPING

X-Ray Crystallography
Over 88% of experimental models of macromolecules that are
deposited in the Protein Data Bank (PDB) were determined
using X-ray crystallography (Table 1). This technique is often
used to generate experimental models of antigen-antibody
complexes, and allows for a detailed description of epitopes,
paratopes and their chemical interactions. Structural analysis
by X-ray crystallography provides the most detailed description
of interactions between allergens and antibodies, but is not
always easy to perform (24, 25). This approach requires the
generation of: (1) significant quantities (mg amounts) of pure
and homogeneous protein preparations, specifically the allergen-
antibody complex, and (2) a well-diffracting crystal to perform
an X-ray diffraction experiment. An additional difficulty in
studying epitopes is that highly flexiblemolecules, like antibodies,
are typically recalcitrant to the process of crystallization. To
our knowledge, there is not currently a single structure of
an antigen in complex with an intact antibody. Fragments
derived from monoclonal antibodies (Fab, Fab′) or antibody
constructs (single-chain variable fragment -scFv-, scFab, rFab)
are used for crystallization because they have significantly
reduced conformational flexibility in comparison with intact
immunoglobulins. Success in obtaining well-diffracting crystals
is not guaranteed, even when sufficient quantities of pure
and homogeneous allergen-antibody complexes are available.
As crystallization conditions cannot be predicted, hundreds
or thousands of trials using different solvent conditions are
tested, as well as modifications to the allergen and antibody
(26). Once a well-diffracting crystal is obtained, the process of
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TABLE 1 | Comparison of four epitope mapping techniques that consider the three-dimensional structure of the allergen: X-ray crystallography, NMR, cryo-EM and mass

spectrometry.

X-ray crystallography Nuclear magnetic resonance

• Crystalline state, however, the crystals contain ∼30–70% of disordered solvent • Solution conditions (requires weeks of stability for data collection).

• Theoretically no structure size limit

• Proteins purified from natural sources can be used

• High resolution structures up to ∼30 kDa.

• Expression with isotope is typically not required for proteins or DNA.

Sometimes selenomethionine is incorporated instead of Met.

• Protein/DNA samples usually require 13C and 15N labeling (stable isotopes). Cost of

expression is prohibitive except in prokaryotes.

• X-rays diffraction data are recorded, and the diffraction patterns are used to

calculate initial electron density maps. The maps are used to trace a model of

the macromolecule, that is later refined and validated

• Data is nuclear resonance frequencies of primarily 1H, 13C, and 15N. Distances

between 1H atoms are used to build ensembles of possible structures.

• Highly flexible/disordered regions of proteins cannot be modeled and are

absent in the final models

• Motion and disorder can be directly measured on many time scales.

Mass spectrometry Cryo-electron microscopy

• Typically used in protection assays for epitope mapping.

• High sensitivity/low sample requirements.

• Atomic resolution identifies specific residues for protection from modification.

• Residues that are convenient to modify in protection assays are not always

useful for epitope mapping.

• Chemistry of modification procedures can have off target effects.

• Can determine atomic resolution structures frozen from solution in vitreous ice.

• Low sample requirements.

• Resolution occasionally as good as X-ray crystallography.

• Performs better on very large samples with high symmetry, typically 100’s of kDa,

so it is currently not easily or generally applicable to allergen epitope mapping.

structure determination can be very fast, as currently available
software allows to determine initial models very quickly after
collection of diffraction data. Therefore, taking into account
the many advances in molecular biology, instrumentation, and
software development, it is not surprising that the number of
experimental structures deposited to the PDB and determined
by X-ray crystallography continuously increases. Currently,
145,000 models have been determined using this technique.
However, very few are structures of allergen-antibody complexes
(see section Structures of Allergen-Antibody Complexes by X-
Ray Crystallography).

Nuclear Magnetic Resonance (NMR)
NMR approaches to observe antibody complexes utilize
molecules in solution as opposed to crystallization that attempts
to coax molecules out of solution and into a crystal lattice. NMR
detects the resonant frequencies of atoms in a magnetic field.
These frequencies are primarily influenced by the type of atom
(1H, 13C, or 15N) and secondarily by the chemical environment
of particular atoms. These data provide a rich source of atomic
structure when the resonant frequencies can be specifically
attributed to individual atoms (Table 1).

The primary struggle with NMR is sensitivity, which is
why large powerful magnets are required. An additional
difficulty in observing macromolecules is that the signals
become exponentially more difficult to observe as molecular
weight increases. NMR methods can determine macromolecular
structures but are typically limited to molecules of <20 kDa for
high resolution structures. All of the atoms in small allergens
(approximately <20 kDa) can be readily observed, while much
larger complexes (such as IgE, 190 kDa, combined with two
allergens) require specific labeling of certain chemical groups
that provide high sensitivity. It is important to realize that, in
contrast to crystallography that directly determines the structure

of the complex, the NMR data on epitopes requires a careful
comparison of the atomic frequencies or intensities in the
allergen before and after complexation. Therefore, the NMR
results are potentially subject to interpretation in the context of
previously known structures or epitope mapping data.

Cryo-Electron Microscopy (Cryo-EM)
Another emerging methodology that may become applicable
to epitope mapping is cryo-electron microscopy (Cryo-EM)
(Table 1). Due to technical improvements in the detectors, and
secondarily computational methods, cryo-EM has demonstrated
the ability to determine macromolecular structures at resolutions
occasionally as good as X-ray crystallography, but frequently
reasonable for epitope mapping (27). In July 2020 there were
63 Cryo-EM structures with <2 Å reconstruction resolution
out of more than 5,000 reported in the PDB. Some attractive
advantages of Cryo-EM include that samples are flash frozen,
so they don’t require crystallization and much less sample is
typically required, frequently less than a mg. However, in the
sample, the molecules still need to be relatively homogeneous in
purity and conformation so the inherent flexibility of antibodies
may preclude high resolution analysis. Cryo-EM is the opposite
of NMR, regarding its preference of larger molecules for higher
resolution information, whereas NMR yields more detailed
information on smaller molecules. Although smaller antibody
constructs such as Fv or scFv are presently too small for structural
analysis by Cryo-EM, this techniquemay improve to facilitate the
use of smaller proteins (28, 29).

There have been several papers on epitopes mapped by
Cryo-EM, which are worth noting. For example, Fab fragments
from monoclonal antibodies were localized on the spike
protein of SARS-CoV-2, and on Zika virus particles (30, 31).
More intriguing was the characterization of multiple epitopes
simultaneously using polyclonal Fab from sera in a study of
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neutralizing antibodies of the HIV envelope trimer (32). The
study was able to characterize several epitope sites from a small
blood volume derived from an immunized animal. Notice that
the antigens in all three cases were very large proteins or particles,
which is favorable for Cryo-EM characterization but is not typical
of allergens which are usually small proteins. However, in this
rapidly developing field, studies like these may be feasible in the
future for allergens.

Protection Assays Combined With Mass
Spectrometry (MS)
Alternative methods for epitope mapping that rely on mass
spectrometry are described in this section (Table 1). They
differ from the methods described above that are traditionally
associated with structural biology and determination of
experimental models of macromolecules. One of the MS
approaches is called paratope or epitope “excision” (33). The
excision procedure includes enzymatic proteolysis that allows
for generation of peptides forming epitopes or paratopes,
which later are identified using, for example, a combination
of MALDI (matrix-assisted laser desorption/ionization) and
ESI (electrospray ionization) mass spectrometry (33–35). This
approach requires a small sample that does not need to be
labeled. However, as most often the epitopes of interest are
discontinuous/conformational in nature, excision is usually
combined with chemical modification of the studied complexes.
The most common method of the chemical modification
involves hydrogen-deuterium exchange (HDX). During this
modification the antigen-antibody complex is placed in heavy
water and protein backbone amide hydrogen atoms (1H) can be
exchanged for deuterium (2H). The rate of the 1H-2H exchange
(HDX) depends on solvent accessibility and dynamics of a
particular protein fragment. Generally, hydrogens that are
buried within the protein core or shielded from the solvent,
such as hydrogens buried in an antigen-antibody interface will
have a low rate of 1H-2H exchange. After the incubation in
heavy water the complex undergoes enzymatic cleavage and
the resulting peptides are identified by the change in mass,
using MS. It is expected that surface residues forming epitopes
and paratopes will have a relatively low level of incorporated
2H. This information combined with the molecular models
of the antigen and the antibody allows for mapping of the
interacting molecular surfaces. Therefore, HDX-MS became a
very successful technique that not only has found application in
analysis of antigen-antibody complexes, but also in mapping of
other protein-ligand interactions (36, 37). Moreover, HDX-MS
can be used for studies of protein conformational dynamics,
and was successfully used in characterization of the dynamic
behavior of antibodies (38, 39).

1H-2H exchange is not the only chemical modification
that can be applied in protection assays combined with mass
spectrometry. For example, various surface exposed amino acids
can be oxidized by H2O2 or modified by photochemically
induced reactions (40, 41). The modifications to the allergen
before and after complexation with the antibody can be
compared for epitope information.

STRUCTURES OF ALLERGEN-ANTIBODY
COMPLEXES BY X-RAY
CRYSTALLOGRAPHY

The X-ray crystallographic structures of allergen-antibody
complexes were first determined for egg lysozyme with
fragments of murine IgG monoclonal antibodies (mAb) (42–47).
Subsequently, other structures were reported for other allergens,
where murine IgG mAb were selected as surrogates for human
IgE, due to their capacity to inhibit binding of human IgE
antibody to the allergen (Table 2) (48–53, 56, 58, 60–64). These
studies involved the purification of an allergen either from the
natural source or from in vitro cultures expressing recombinant
allergens. The IgG mAb were cleaved using pepsin or papain,
which resulted in F(ab′)2 -that was reduced to F(ab′)- or Fab,
respectively. These antibody fragments contain the paratope and
were purified and combined with the allergen to form a complex,
which was purified for crystallography.

Although there are <20 different allergens that have their
structures determined in complexes with antibodies (Table 2)
their analysis provides interesting insights into epitopes and
paratopes. Chicken lysozyme (Gal d 4) is often used as a test
molecule and there is a vast amount of literature on the use of
this protein to study interactions with antibodies. Therefore, to
avoid bias that a large number of lysozyme-antibody complex
may cause we selected for analyses only some representative
structures. While allergens have a wide variety of structures,
antibodies of the same isotype have the same structure, formed
by immunoglobulin-fold domains of about 100 amino acids.
Light chains have an N-terminal variable domain (VL) followed
by a constant domain. Similarly, heavy chains have a variable
N-terminal domain (VH), but it is followed by either 3 (in
IgG) or 4 (in IgE) constant domains. The central part of these
domains is made of anti-parallel β-sheets, in which β-strands
are linked to form the so-called Greek-key motifs. For example,
IgG VH domain is made of anti-parallel β-sheets composed of
nine β-strands that are linked by eight loops (Figure 1) (65). Of
the four apical loops, only loops 1, 2, and 4 interact with the
antigen, and contain the complementary determining regions
(CDRs): CDR1, CDR2, and CDR3, respectively. The loops 1, 2,

and 4 are between beta-sheets B-C, C′-C
′′

, and F-G, respectively
(Figure 1). A similar β-sheet configuration occurs in the light
chain. The 6 loops involved in paratope formation form the
following CDRs: H CDR1, H CDR2, H CDR3 in the heavy chain,
and L CDR1, L CDR2, and L CDR3 in the light chain. The
CDRs contain the amino acids that form the paratope. The H
CDR3 is sufficient for most antibody specificities (66), although
exceptions have been found (67). In a few cases, additional
residues outside the CDR, located in the “framework” of the
antibody, can also contribute to antibody binding.While epitopes
can be located on different parts of the allergen surface, paratopes
are always at the apical region of the variable domain of the
antibody, formed by the 6 CDRs. The CDR boundaries have been
historically defined in different ways (68–70), and currently the
ImmunoGenetics website (www.imgt.org) utilizes a consensus
for their estimation.
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TABLE 2 | Structures of allergen-antibody complexes by X-ray crystallography.

Allergen in complex with IgG antibody construct

Allergen Allergen source Allergen expression

system

Antibody Antibody

expression system

PDB code

Api m 2 Honeybee Insect cells (high five) Fab; mIgG1 mAb 21E11 Mus musculus

hybridoma cells

2J88 (48)*

Bet v 1 Birch E. coli Fab′; mIgG1 mAb BV16 Mus musculus

hybridoma cells

1FSK (49)*

Bla g 2 German cockroach P. pastoris Fab′, mIgG1 mAb 7C11 Mus musculus

hybridoma cells

2NR6

(50) (51)*

Bla g 2 German cockroach P. pastoris Fab, mIgG1 mAb 4C3 Mus musculus

hybridoma cells

3LIZ (52)*

Der f 1 House dust mite D. farinae mite culture Fab; mIgG1 mAb 4C1 Mus musculus

hybridoma cells

5VPL

(53) (54)*

Der p 1 House dust mite D. pteronyssinus mite culture Fab; mIgG1 mAb 4C1 Mus musculus

hybridoma cells

1) 3RVW (53)

2) 3RVX

(53) (55)*

Der p 1 House dust mite D. pteronyssinus mite culture Fab; mIgG1 mAb 5H8 Mus musculus

hybridoma cells

4PP1

(56) (57)*

Der p 1 House dust mite D. pteronyssinus mite culture Fab; mIgG1 mAb 10B9 Mus musculus

hybridoma cells

4PP2

(56) (57)* (55)*

Der p 2 House dust mite P. pastoris Fab; mIgG1 mAb 7A1 Mus musculus

hybridoma cells

6OY4 (58)*

(59)*

Fel d 1 Cat CHO Fab; IgG4 mAb REGN1909 CHOc 5VYF (60)

Gal d 4

(lysozyme)

Chicken Not specified (most likely

Gallus gallus)

E. coli (1FDL) or Mus

musculus hybridoma

cells

(1) (42) (2) (43)

(3) 3HFM (44)

(4) 1FDL (45)

(5) 1MLC (46)

(6) 1YQV (47)

Gal d 4

(lysozyme)#

Chicken Not specified Human VH domain; VH H04 Phage displayed E. coli BL21 Gold (1) 4PGJ (61)

(2) 4U3X (61)

Phl p 7 Timothy grass E. coli BL21 star DE3 Fab; hIgG1 mAb 102.1F10 was expressed

based on a hIgG4 that was generated from

matched heavy- and light-chain sequences by

single B cell cloning from allergic individuals

FreeStyle 293F 5OTJ (62)

Allergen in complex with IgG antibody constructs containing human IgE variable regions

Bos d 5 Cow E. coli Fab; hIgG1 mAb D1: Cκ and CH1 of IgG1

cloned with IgE VH/VL isolated from human IgE

derived from a combinatorial library

E. coli RV308 2R56 (63)

Phl p 2 Timothy grass E. coli BL21 Fab; hIgG1 mAb huMab2: Cκ and CH1 of IgG1

cloned with IgE VH/VL isolated from human IgE

derived from a combinatorial library

CHO-K1 2VXQ (64)*

*Manuscripts that report inhibition of IgE antibody binding by the antibody used in the X-ray crystal structure (or viceversa).
#Only selected complexes with lysozyme are listed. For example, complexes of human VH domains with lysozyme were chosen to compare them with complexes formed by Fabs.

A significant fraction of the available allergen-antibody
structures corresponds to complexes of Group 1—the best
studied—and Group 2 house dust mite allergens, and the
cockroach allergen Bla g 2 (Figure 2). Groups 1 and 2 comprise
the most important major allergens from house dust mites. A
major allergen is one to which >50% of subjects allergic to the
allergen source are sensitized. Group 1 includes Der p 1, Der
f 1, Blo t 1, and others, and are cysteine proteases. Group 2
includes Der p 2, Der f 2, Blo t 2, and others with anMD-2-related
lipid-recognition (ML) domain (www.allergen.org). Three X-ray
crystal structures of Der p 1 have been determined in complexes

with three different murine IgG mAb (4C1, 5H8, and 10B9),
from which mAb 4C1 is a cross-reacting antibody that also
binds to Der f 1 (53, 56). Comparison of Der f 1 and Der p 1
structures with 4C1 revealed that the cross-reactive mAb binds to
a conserved surface patch that is present on both allergens (53).
Unexpectedly, this patch is not a part of the largest conserved
surface area in common for both Der f 1 and Der p 1, and
which includes the active site of the enzymes. The majority
of the amino acids forming the central part of the epitope
are conserved, and in very similar conformations. Interestingly,
the epitopes for 10B9 and 4C1 partially overlap, but 10B9 is
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FIGURE 1 | (A) A topological diagram of IgG VH. β-strands are shown as arrows that indicate direction of the peptide. N- and C-termini, as well as individual β-strands

are labeled. Loops corresponding to three CDRs are highlighted using different colors. The figure was prepared based on a diagram presented by Bodelón et al. (65).

(B) Complex between 7A1 and Der p 2.0103. Only variable domains of the 7A1 antibody are shown. CDRs are marked using the same colors as used for the

topological diagram. Der p 2.0103 is shown in surface representation.

FIGURE 2 | Cartoon representations of complexes between antibody Fab fragments and allergens Der p 1 (A) and Bla g 2 (B). Structures of complexes with

antibodies were superposed to compare location of epitopes. Epitopes on Der p 1 for mAb 4C1 and 10B9 partially overlap, but they both are far from the epitope

recognized by 5H8. Epitope on Bla g 2 that is recognized by antibody 4C3 included a carbohydrate (shown here as orange spheres). Fab fragments of the antibodies

are shown in space-filling models, and allergens are shown using ribbon representations. Light chains are marked using lighter colors.

not able to bind to Der f 1. The epitope for 4C1 is “rotated
counterclockwise” by ∼90◦ in relation to the position of the
10B9 epitope on Der p 1. On the other hand, the 5H8 binding

epitope is located at a significant distance from both 4C1 and
10B9 epitopes. The image of the structure of three Der p 1-
antibody complexes clearly illustrates that mAb 5H8 and 4C1
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or 10B9 can simultaneously bind to the same allergen molecule
(Figure 2) (56). Bla g 2 has a bilobal structure typical of aspartic
proteases, but it is enzymatically inactive due to substitutions in
the catalytic site (71, 72). Two structures of Bla g 2 with mAb
7C11 and 4C3 have been determined, showing their binding
to opposite lobes of the molecule (50, 52). The complex with
mAb 4C3 was unique because it showed that carbohydrates
contributed to the interactions with Bla g 2 (Figure 2). The
murine IgG mAbs used in these crystallographic studies were
chosen as surrogate IgE antibodies, because they inhibit binding
of IgE to the allergen. Once the IgG epitope was identified,
site-directed mutagenesis of the allergen residues involved in
antibody recognition was performed, followed by IgE antibody
binding analysis of the mutants, to identify IgE antibody binding
sites. This approach resulted in the design and production of
allergen mutants with decreased capacity to bind IgE, which
are being investigated as future candidates for immunotherapy
(51, 58, 67, 73).

The antibodies in the majority of allergen-antibody complexes
that have their structures determined are IgG1. However, three
of the structures reported in Table 2 are different from the
IgG1 isotype: 1) IgG4 (in complex with Fel d 1), 2) an IgG1
construct engineered to combine the constant domains of human
IgG1 heavy and kappa light chains with variable regions of
a human IgE construct derived from an scFv combinatorial
library (in complex with Bos d 5), or 3) an Fab isolated from a
combinatorial library, which is a hybrid of the variable domain
of the IgE Fab and the constant domain of human IgG1 (in
complex with Phl p 2) (60, 63, 64). The IgG4 (REGN1909)
binding Fel d 1 is a fully humanized antibody that was derived
from mice immunized with recombinant dimeric Fel d 1 (60).
REGN1909 is able to partially block IgE binding to natural Fel
d 1, with a maximum inhibition of 51%. REGN1909 together
with another IgG4 (REGN1908), which binds to a different non-
overlapping epitope, was able to block up to 83% of IgE binding
to natural Fel d 1. A combination of X-ray crystallography and
HDX-MS was used to elucidate information on the antibody
binding epitopes for REGN1908 and REGN1909. Only the
crystal structure of Fel d 1 in complex with REGN1908 was
obtained (60).

While most often the antibodies that are used in studies of
allergens are composed of light and heavy chains with six total
CDRs, there are also examples of heavy chain only antibodies.
These can contain two heavy chains only (and therefore have
3CDRs for recognition per chain) or single domain antibodies,
which have a single antigen binding domain (74–76). Heavy
chain only antibodies are present in nature and are produced
by camelids and sharks. The paratopes formed by the single
chain antibodies have a very similar amino acid composition
to that observed in conventional antibodies (77, 78). The heavy
chain only antibodies, and especially their VH domains, are
relatively easy to produce and their biophysical, as well as
structural properties, allow for easy application in biotechnology
and therapeutics (77, 79). Single domain antibodies (specific for
lysozyme) were isolated years before discovery of heavy chain
antibodies in camelids (76), and were proposed as alternative
to conventional monoclonal antibodies. Later on, camelids’ VH

domains also became a model for the generation of their human
equivalents. Fully human VH single domains were used to
generate complexes with Gal d 4 (Table 2) (61).

A new type of allergen-antibody interaction was recently
reported thanks to the determination of a Phl p 7-antibody crystal
structure (Figure 3) (62). An IgG4 originally generated from
single B cell cloning was converted into an IgG1 for structure
determination of the allergen-antibody complex. The structure
revealed that two antibodies bind simultaneously to Phl p 7 in
two different ways: (1) the classical mode that involves both
heavy and light chains of the antibody, and (2) an unusual
non-standard way, involving only binding of the light chain to
the allergen to a separate Phl p 7. This resulted in trapping
two monomeric allergen molecules between two molecules of
the same antibody (62). While Phl p 7 was not a dimer, the
stoichiometry of the complex still required two Phl p 7molecules.
Therefore, this Phl p 7-antibody structure has changed the prior
view that one antibody is able to recognize only a single epitope
on an allergen/antigen.

The allergens that we have described are proteins, and
their interactions with antibodies are the same as for other
proteinaceous antigens. It also has to be stressed that X-
ray crystallography provides generally a static picture of the
interacting molecules. However, both antigens and specifically
antibodies display a great level of conformational flexibility
(80, 81). It was shown that conformational flexibility and
local structural dynamics of antibodies play a very important
role in recognition and binding (82, 83). A higher level of
conformational flexibility usually is attributed to antibodies that
are not matured, and the flexibility allows them to recognize
more antigens and/or altered antigens (84). During an antibody’s
maturation the increase of specificity is often achieved at the
cost of the conformational flexibility, and a more rigid antibody
binds better to one antigen (85, 86). Therefore, studies of the
CDR conformations are critical for understanding the process of
recognition and binding of antigens by antibodies (87–90), and
these studies are most often performed using NMR, HDX-MS
and various computational methods.

LESSONS LEARNED ABOUT
ALLERGEN-ANTIBODY INTERACTIONS
USING X-RAY CRYSTALLOGRAPHY

An analysis of 16 allergen-antibody structures selected from
Table 2 revealed a detailed description of the interface formed by
epitopes and paratopes (45–50, 52, 53, 56, 58, 60–64). Typically,
the interface area falls in the 650–920 Å2 range (an average of
813 Å2; Figure 4A) (91). In the complex with Phl p 7 mentioned
above, the interface area is larger, and can be divided between
a “classic” interface (∼820 Å2) with one antibody, and an
additional interface (∼380 Å2) responsible for the non-standard
interaction with the light chain from the second antibody (62).
In most cases, the antibody heavy chain provides the largest
contribution toward the total area of the interface, but this
contribution is not always significantly bigger than the light chain
share (Figure 4A). The light chain provides between 23 and
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FIGURE 3 | Superantigen Phl p 7 interactions with Fab. Cartoon representation of a complex between two Fab fragments of a human antibody and two molecules of

timothy grass pollen allergen Phl p 7 (PDB code: 5OTJ). The crystal structure revealed an unusual binding of two molecules of the monomeric allergen and two

molecules of the antibody. Phl p 7 molecules are shown in gray. Light chains of the antibody are shown in blue and heavy chains in purple. Calcium ions bound by the

allergen are presented as red spheres.

53% of the interface area. In the Api m 2 and Bla g 2 (2NR6)
complexes, the light and heavy chains contribute almost equally
to the interface area (48, 50). However, it is worthwhile to note
that in two complexes of antibody VH domains with Gal d 4 (PDB
codes: 4PGJ and 4U3X), the allergen-antibody interface areas are
quite large (810 and 826 Å2, respectively), perhaps to compensate
that the paratope is formed only by the heavy chain.

Analysis of the allergen-antibody interfaces at the amino
acid level shows that paratopes are formed by 18–28 residues
that interact with epitopes composed of a similar number
of amino acids (12–25 in the set of 16 complexes analyzed
here) (Figure 4B, Table 2) (45–50, 52, 53, 56, 58, 60–64). In
addition, it is possible to examine the distribution of various
amino acids in the epitope and paratope areas. While the
amino acid composition of epitopes is barely different from the
overall composition of the allergen surface residues (93), there
is a significant bias in amino acid composition of paratopes
(Figures 5–7). Namely, the paratopes have a very high content of
tyrosine, serine, and glycine residues, with relatively low content
of isoleucine, leucine, lysine, methionine, and proline (94–97).
The paratopes also tend to have a relatively high content of
aromatic residues (Tyr, Trp, Phe, and His). Unfortunately, the
relatively small number of determined structures of allergen-
antibody complexes does not allow for generalizations on the
compositional bias of allergen epitopes, especially when among
the 16 structures analyzed here, three contain Der p 1, three
contain Gal d 4, and two contain Bla g 2. However, in

large datasets of protein-protein interactions, aromatic residues
are also generally favored (98, 99). No obvious differences
were observed between allergen-antibody interactions and the
antibody recognition of other non-allergen proteins.

The chemical interactions that drive allergen-antibody
formation include covalent (H-bonds) as well as non-covalent
binding interactions (e.g., hydrophobic, van der Waals,
charge-charge, and cation-π interactions). Hydrophobic and
electrostatic interactions are most important for a primary
contact between antigens and antibodies (100). However, once
the distance between antigen and antibody is shortened, van
der Waals interactions and H-bonds start to play a significant
role. H-bonds are especially important, as they quite often
are associated with specificity of the binding. The analysis
of 16 structures in Table 2 indicates that there are between
7 and 16 H-bonds that mediate contacts within the epitope-
paratope interface (Figure 8). Heavy chains of the antibodies
are responsible for the majority of the hydrogen bonds that are
formed. While most often atoms that are hydrogen donors or
acceptors in the H-bonds belong to the side chains of amino
acids forming paratopes or epitopes, there are also hydrogen
bonds formed by main chain atoms (Figure 8).

Amino acids with charged side chains also play an important
role in mediation of epitope-paratope interactions (101). For
example, salt bridges in the interfaces are formed between
positively charged amino acids (Arg or Lys) and negatively
charged side chains of Asp or Glu. Enrichment of epitopes in such
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FIGURE 4 | (A) Allergen-antibody interface areas. Dark blue color corresponds to the area of the interface that corresponds to heavy chain and light blue color

indicates the area of interaction with light chain. In the case of Phl p 7 (PDB code: 5OTJ) the only area corresponding to the standard mode of binding is reported. (B)

Number of residues from heavy chain (blue) and light chain (light blue) that participate in interactions with allergens. Only residues that contribute at least 2.0 Å2 to the

interface area (as calculated with PDBePISA) (92) are counted.

amino acids is illustrated in Figures 5–7. It has been shown that
electrostatic interactions increase the binding specificity between
antigens and antibodies (102, 103). In addition, positively
charged side chains may participate in cation-π interactions
(50, 104, 105). This type of interaction is relatively common in
antigen-antibody interfaces, as it is formed by aromatic residues
(e.g., Phe, Tyr, Trp) and side chains of Arg or Lys, which are

over-represented in epitopes and paratopes. For example, cation-
π interactions were observed in interfaces formed between Bla g
2 and mAb 7C11, Der p 1 and 5H8, as well as between Der p 2
and mAb 7A1 (50, 56, 58). Side chains of aromatic residues may
be also involved in various π-π interactions (56, 105).

Besides protein-protein contacts at the allergen-antibody
interface, other chemical moieties can form contacts between
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FIGURE 5 | Number of amino acids in epitopes (A) and paratopes (B). Data for paratopes is shown for heavy chains (blue) and light chains (light blue). In the case of

the Phl p 7 (PDB code: 5OTJ) only residues participating in the standard mode of binding are counted.

FIGURE 6 | Distribution of amino acids on the surface of allergens listed in Table 2 (A), in epitopes (B) and paratopes (C).

the two molecules. One of them is carbohydrates. An epitope
on Bla g 2 that is recognized by mAb 4C3 includes a glycan
(Figure 2) (52). The role of this glycan as part of the epitope has
also been demonstrated in relation to IgE binding and basophil
histamine release (106). This observation stresses the potential
importance of post-translational modifications of the allergens
for their interactions with antibodies (107, 108). Production of
recombinant proteins in some systems, such as E. coli, which
do not add carbohydrates to expressed proteins, may lead to a
lack of proper recognition by antibodies from allergic individuals
raised against the glycosylated natural allergen. Nevertheless, the
allergen recognition might still occur, if the antibody recognizes
the protein part of the epitope.

During the process of antigen-antibody recognition many
water molecules that were on the surface of the interreacting
molecules are displaced. However, this process does not
always lead to their complete displacement. In fact, water
molecules can play an important role in allergen-antibody
interactions, in purely protein-protein complexes, and the
aforementioned protein-carbohydrate complex (52). Very often,
the water molecules are buried between the allergen and the
antibody and mediate the contact between the macromolecules
through hydrogen bonds (52, 58, 109). In some cases, the
presence of buried water molecules significantly improves the
fit between allergen and antibody surfaces, allowing for stronger
binding (75).
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FIGURE 7 | Ratio of amino acid frequencies (AA freq.) in the epitopes to the amino acid frequencies on allergen surfaces. A ratio value above 1 indicates that a

particular amino acid is observed more often in the epitopes in comparison with the allergen surfaces.

FIGURE 8 | (A) Number of H-bonds between paratopes and epitopes. H-bonds formed by residues from heavy chains are indicated in blue and H-bonds formed by

residues from light chains are in light blue. (B) Number of hydrogen bonds formed by side chain (green) or main chain atoms (orange) of the antibodies. Calculations

were made with PDBePISA (92), and only H-bonds for which distances between donor and acceptors were below 3.3 Å are taken into consideration.

IDENTIFICATION OF IgE ANTIBODY
BINDING EPITOPES

The most interesting complexes for allergy research are with
human IgE, but they are also the most challenging to obtain.
One of the main limitations to defining epitopes for human
IgE has been the difficulty of obtaining human IgE monoclonal
antibodies in the amounts required for crystallography or NMR.
IgE is polyclonal and present in low concentrations in blood
(ng/mL). B cells expressing IgE circulate in low frequency
in peripheral blood (3 × 10−7 to 7 × 10−6) (110), which
makes it difficult to isolate and grow them in primary cultures.
Historically, several alternative methods were developed.

One approach to study the human IgE repertoire is to
isolate IgE antibody constructs from phage display combinatorial
libraries prepared using peripheral blood mononuclear cells
(PBMC) of allergic subjects (111–113). Basically, antibody heavy
chains are combined with light chains from the same or a
different subject, to form IgE antibody constructs that are
displayed by phagemids. These constructs are then isolated based
on their allergen specificity in a selection process called panning.
Such technology relies on the fact that antibody specificity
largely resides in the heavy chain variable domain and its third
hypervariable loop (H CDR3) (66). Phage display technology led
to the isolation of IgG1 antibody constructs with IgE variable
domains against Bos d 5 from cow and Phl p 2 from timothy

Frontiers in Immunology | www.frontiersin.org 11 September 2020 | Volume 11 | Article 206777

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Pomés et al. Structure of Allergen-Antibody Recognition

grass pollen, and the allergen-antibody Fab complexes were
determined by X-ray crystallography (Table 2) (63, 64). Since the
antibodies were isolated using IgE combinatorial libraries, it is
not known whether light and heavy chain pairing corresponds
to that observed in antibodies produced by allergic individuals.
Both structures are useful, as they currently provide the closest
picture of the interactions between allergens and IgE that take
place in humans.

The structure of the Bos d 5-antibody complex illustrates an
additional important phenomenon, namely the importance of
the oligomerization state or quaternary structure of the allergen.
Bos d 5 is a dimer in the reported structure (114). Dimerization
of an allergen allows for cross-linking of IgE receptors with the
same antibody. Localization of IgE epitopes clearly illustrates
why, for allergens forming homo-oligomers, only one epitope per
protein chain is sufficient for the allergic reaction to be triggered
(115, 116). For example, a cockroach Bla g 2 mutant with
amino acid substitutions that prevented dimerization induced
less β-hexosaminidase release from mast cells than the dimeric
wild-type Bla g 2, suggesting a functional role of dimerization
in allergenicity (50). Dimerization of an allergen also provides
an opportunity to use a single mAb binding for capture and
detection in a “sandwich” ELISA (115, 117).

Other studies addressed allergen epitope mapping using
indirect approaches. A cluster of several IgE antibody binding
epitopes was located on the C-terminal domain of Phl p
1 using human IgE obtained by phage display technology.
In combination with site-directed mutagenesis, the authors
designed a hypoallergenic group 1 grass pollen allergen fragment
(118). Two other studies used IgE constructs from phage display
libraries to map epitopes on Phl p 5 and Bet v 1 (119, 120).
Four independent epitope clusters on Phl p 5.0101 and two on
Phl p 5.0201 were identified (119). Four Bet v 1-specific IgE (for
one of which the structure was determined) were identified that
targeted two non-overlapping epitopes in Bet v 1, as assessed by
immunological assays (120).

Recently, a house dust mite Der p 2-specific IgG mAb
overlapping with IgE was mapped by X-ray crystallography
and site-directed mutagenesis analysis. A Der p 2-specific IgE
construct isolated from a single-chain variable fragment (scFv)-
encoding phagemid library recognized the same main residues
as the IgG, further confirming the relevance of this epitope to
human health (58). These studies underline the utility of using
constructs derived from phage display technology to investigate
the antigenic determinants relevant to allergy.

Alternative approaches to isolate antibodies are based on
sorting single B cells for amplification of mRNA that encodes
for the antibody. They have proven effective for identifying the
exact pairing of IgG heavy and light chains, but not for B cells
expressing IgE due to their low frequency in blood (121). A
study used single B cell RT-PCR to obtain allergen-specific IgG
antibody pairings (122). In addition, heavy chain variable gene
sequences of IgE antibodies were obtained by deep sequencing
PBMCs, but this study did not lead to the production of allergen-
specific native pairs for IgE. One recent publication reports single
B cell sorting combined with RNAseq as an approach to obtain
human IgE mAb against peanut allergens (123). However, large

amounts of sequencing (currently at very high cost) would be
required to obtain sequences of the full IgE repertoire using
this technology.

A new approach to isolate human IgE monoclonal antibodies
has emerged using hybridoma technology (124). Individuals are
selected according to their specific IgE sensitization, and their B
cells are screened for allergen-specific IgE reactivity before fusion
with myeloma cells to create hybridomas. This is an advantage
versus the RT-PCR approach, in which the allergen-specificity is
not known until recombinant antibodies are expressed based on
the sequences obtained. Using this technology, several allergen-
specific antibodies were isolated and are being used for IgE
epitope mapping by X-ray crystallography and NMR (125–127).
It should be noted that this method is still labor intensive, but
compared to the other approaches, the clones contain the natural
pairing of the heavy and light chains increasing the relevance of
this technology.

EPITOPES DEFINED BY NUCLEAR
MAGNETIC RESONANCE (NMR)

Because of the limitations in the size of proteins for which
NMR can determine structures, NMR experiments to determine
allergen epitopes necessarily involve clever experimental design
and accurate interpretation. In well-designed experiments, the
data provides atom-specific information on the epitope region,
which can be readily understood in the context of the allergen
structure. The following section describes the design and range
of applicability of various NMR designed experiments.

NMR Protection Assays
The earliest NMR epitope mapping experiments designed by
Yvonne Paterson and co-workers were protection assays that
measured the exchange rate of amide protons for deuterons in
an antigen with and without the antibody present, similar to
the HDX-MS (128). Instead of measuring a change in mass,
the approach takes advantage of the fact that protons and
deuterons resonate at very different frequencies. The exchange of
protons for deuterons leads to a disappearance of observable 1H
frequencies in the antigen. In the Paterson design, the antibody
was covalently linked to beads to make an affinity column.
Subsequently, the antigen in solution was added to the column
and allowed to bind the antibody. The buffer was then easily
changed from 1H2O to 2H2O, so the 1H-amide protons on the
antigen surface could be exchanged for deuterons, except in the
epitope that was protected by the antibody. Finally, the antigen
was eluted at low pH to quench or stop further amide exchange.
The cleverness of this design is that the antigen (smaller than
the antibody, and therefore with better NMR properties) retains
information about the protection. Paterson applied this method
to the model antigen cytochrome c, and it was subsequently
adapted for the allergens hen-egg lysozyme (Gal d 4) and Der p 2
(59, 129).

Each of these protection studies provided useful epitope
mapping information for the antibodies analyzed. Paterson
showed that one antibody protected from amide exchange 11

Frontiers in Immunology | www.frontiersin.org 12 September 2020 | Volume 11 | Article 206778

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Pomés et al. Structure of Allergen-Antibody Recognition

residues that were derived from 3 discontinuous peptides (128).
The 3 peptides were all in close proximity on the crystal structure.
The Der p 2 studies probed the epitopes of 3 murine mAb,
one of which (epitope for mAb 7A1) was recently corroborated
with a crystal structure, and further NMR data (see below)
(58). However, only the protection assays for mAb 7A1 gave
discontinuous epitope information. The absence of protection
information for the other two antibodies does not imply that
the other epitopes are linear. Instead, it was probably due to
unfortunate circumstances where the exchange rate for protected
versus non-protected was too fast to measure using the antibody
column technology.

Additionally, in the lysozyme studies, it became apparent that
not only could amides in the epitope be protected from exchange,
but more distal atoms could show differences in exchange rate
(129). This is understood to be due to conformational changes
in the antigen, or changes in the folding-unfolding rate of the
protein due to the formation of the complex with the antibody,
which was also noticed by Paterson et al. (130). Interestingly,
similar distal changes in exchange rate were observed for binding
of the Fv fragment of the lysozyme antibody and the mAb 7A1
(58, 131). This is an important lesson for all NMR studies:
proximal and distal changes in antigen conformation upon
antibody binding can similarly influence the data, and it might
be difficult to differentiate a priori which changes occur within
the epitope. Therefore, it is frequently important to support the
observed changes in the NMR data with additional information.
This additional data could be proximity in the structure of atoms
that experience NMR spectral changes, or data from mutant
proteins and complimentary immunoassays to prove or disprove
antibody binding.

The HDX-NMR protection assays were successful but have
fallen out of favor for several reasons. First, creating an antibody
column with enough capacity for an NMR experiment, typically
5–10mg of antibody, can be cost prohibitive. Second, not all
antigens survive the low pH required to quench the exchange.
Third, NMR instrumentation improved and labeling techniques
(132) with newer experiments [called TROSY (133, 134)] were
developed to better observe larger complexes directly, obviating
the need of using the antibody column and the measurement of
exchange rates.

NMR Direct Observation of Complexes
The “antibody”-allergen complex can now be directly observed
with careful choices of the labeling scheme. Complete 15N
backbone labeling of the allergen or antibody fragment such as
Fab (∼50 kDa) or scFv (∼25 kDa) is sometimes possible. These
amide detection techniques using antibody fragments have been
successfully applied to the allergen Blo t 5 in complex with a Fab.
A discontinuous epitope was identified by comparing the 1H-
15N chemical shift perturbations of the bound and free allergen
(135, 136). This epitope was shown to overlap with binding sites
of patient polyclonal IgE. However, in our experience, the use of
smaller forms of the whole antibody, such as Fab or scFv, in an
attempt to increase NMR signals, has not always been successful.
Some of these smaller antibody constructs are hard to produce,

and surprisingly, do not always maintain the high affinity of
the full antibody for the antigen. Therefore, other techniques
such as those below have been explored for NMR detection of
allergen-antibody complexes.

A similar labeling scheme, but in a subtly different experiment,
was used to map the Der f 2 epitopes of two full length murine
IgG (150 kDa) (137). The authors again utilized 1H-15N labeled
allergen, which would typically not be detectable at this large
size when bound to antibody, assuming tight binding to the
IgG. In this case, detergent was added to the sample to reduce
the antibody affinity. As a result, in the NMR experiment the
researchers were observing the allergen 1H-15N chemical shift
perturbations between bound and free, with the smaller molecule
in the free state being the one that was detected. The ratio of
bound to free was tuned with the concentration of detergent
so that there was a differential reduction or broadening in the
NMR signals of those residues in proximity to the antibody
compared to the free protein. The broadening is due to increased
relaxation of the NMR signal due to the large fully 1H labeled
antibody binding to the antigen (138). This same effect is noted
below in other experiments. In the Der f 2 study, the differential
exchange broadening data provided results that mapped the
epitopes to two disparate regions of the protein, consistent with
the simultaneous binding of the two antibodies. A potential
disadvantage of this technique is that it requires empirical tuning
of the solvent conditions, which may or may not be applicable to
all systems.

Instead of looking at fragments of the antibody-allergen
complex, or the free allergen in exchange with complex, it
is also possible to utilize whole antibodies, but this requires
another compromise in the labeling scheme. At the very high
molecular weights of allergen-antibody complexes, usually only
methyl groups are still observable in a background of otherwise
2H labeled proteins (132). Focusing on only labeling methyl
groups in the allergen restricts the number of probes available
for epitope mapping to the methyl groups of Val, Leu and Ile.
The effectiveness of this was demonstrated for [U-2H, 1H,13C-
methyl Val, Leu, Ile] Der p 2 bound to an scFv fragment of
mAb 7A1 (58). The data showed relaxation broadening for
Ile-97 in the allergen, which was directly in contact with the
scFv, and chemical shift perturbations for V63 and L61, which
were adjacent to the epitope as described in a crystal structure
(Figure 9). This is again consistent with previous observations
that close proximity to the 1H antibody causes broadening or a
disappearance of signal, and distal residues can also experience
chemical shift perturbations (138).

Methyl labeled Der p 2 as described above was successfully
applied to study 4 human IgE mAb epitopes and 3 murine IgG
mAb epitopes (127). Similar data observations of broadening and
chemical shift perturbations were analyzed to map the epitope
regions. Since the epitope data is sparse, being only derived from
a few methyl probes, it needs to be interpreted with caution.
For each antibody, the data indicated that few residues in close
proximity were broadened or perturbed, and this was consistent
with previous mutagenesis studies or data fromDer p 2 isoforms.
The NMR data were in agreement with the relative epitope

Frontiers in Immunology | www.frontiersin.org 13 September 2020 | Volume 11 | Article 206779

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Pomés et al. Structure of Allergen-Antibody Recognition

FIGURE 9 | Residues both near and far from the epitope can be affected by antibody binding. The crystal structure of Der p 2 in complex with the murine IgG mAb

7A1 is shown with Der p 2 rendered in green with specific methyl residues highlighted in orange. The mAb 7A1 heavy and light chains are rendered as blue and

lavender surfaces, respectively. The shift of methyl resonances of the orange residues upon complex formation were measured by NMR. The figure shows that

residues proximal and distal from the epitope can be affected by binding to an antibody.

mapping obtained using competitive and direct antibody binding
immunoassays, which demonstrated which epitopes did or did
not overlap.

While these data are an impressive first mapping of human
IgE epitopes, three important drawbacks of the technique need to
be mentioned. First, it requires monoclonal antibodies, of which
human IgE are very difficult to clone from patients. Although
this technique may be applicable to polyclonal antibodies, its
effectiveness remains to be demonstrated in this case. 1H-15N
labeling of Art v 1 and Bet v 1 was combined with either
pooled allergic sera, or individual allergic sera, respectively,
but the NMR results were nebulous (139–141). Second, the
methyl labeling is expensive, typically $1,000 per liter of bacterial
expression culture. Thus, high expression levels of the protein
are needed to be cost effective. And third, as mentioned above,
the distribution of sparse methyl groups may not be ideal
for all allergens to get good epitope data. The paucity of
data also requires a rather generous interpretation of which
residues might be directly involved in the epitope. Hence, the
epitopes proposed from these NMR data likely include more
residues than the ones that are directly observed contacting the
antibody in a crystal structure and should be further tested for
functional importance.

In summary, a variety of NMR techniques and labeling
schemes have been applied for allergen epitope mapping. In
each case, atoms or residues specific to the epitope were
successfully identified.

FUTURE DIRECTIONS

Experimental epitope mapping of IgE antibodies on allergens
originated ∼30 years ago with the identification of mostly linear
epitopes. Several breakthroughs have allowed the identification
of conformational epitopes. These epitopes are themost common
on allergens, especially on allergens for which exposure occurs by
inhalation. Techniques such as recombinant technology, X-ray
crystallography and nuclear magnetic resonance were developed
and used for the determination of structures of allergen-antibody
complexes. These advances required preparation of pure and
homogeneous allergens and monoclonal antibodies. Initially,
mostly IgG antibodies that inhibit IgE antibody binding were
used as surrogates of IgE and fragmented for epitope mapping.
Another approach led to the isolation of IgE antibody constructs
using phage display technology. Only more recently, single
cell antibody sequencing and human hybridoma technology
are opening a new era of epitope mapping that will allow
direct visualization of allergen-IgE antibody interactions in
detail. Other technologies such as cryo-electron microscopy and
labeling with mass spectrometry will also contribute to epitope
mapping with less demanding protein amounts. Moreover, the
experimental results allow for a significant development of many
computational approaches to identify and/or analyze paratopes
and epitopes (142). For example, approaches used in image
recognition, like Zernike moments, were shown to be very
promising in predicting B-cell epitopes (143–145). Therefore,
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we expect that computational methods will start to play a more
important role in studies of interactions between antibodies
and allergens. Ultimately, identification of IgE antibody binding
epitopes associated with the human IgE repertoire will contribute
to understanding the immune response to allergens and will lead
to the design of modified recombinant allergens for safer and
more effective immunotherapy.
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Allergic sensitization to the major allergen Bet v 1 represents the dominating factor
inducing a vast variety of allergic symptoms in birch pollen allergic patients worldwide,
including the pollen food allergy syndrome. In order to overcome the huge socio-
economic burden associated with allergic diseases, allergen-specific immunotherapy
(AIT) as a curative strategy to manage the disease was introduced. Still, many hurdles
related to this treatment exist making AIT not the patients’ first choice. To improve the
current situation, the development of hypoallergen-based drug products has raised
attention in the last decade. Herein, we investigated the efficacy of the novel AIT
candidate BM4, a hypoallergenic variant of Bet v 1, to induce treatment-relevant cross-
reactive Bet v 1-specific IgG antibodies in two different mammals, Wistar rats and
New Zealand White rabbits. We further analyzed the cross-reactivity of BM4-induced
Wistar rat antibodies with the birch pollen-associated food allergens Mal d 1 and Cor
a 1, and the functional capability of the induced antibodies to act as IgE-blocking IgG
antibodies. Enzyme-linked immunosorbent assay (ELISA) was used to determine the
titers of rat IgG1, IgG2a, IgG2b, and IgE, as well as rabbit IgG and IgE antibodies.
To address the functional relevance of the induced IgG antibodies, the capacity of
rat sera to suppress binding of human IgE to Bet v 1 was investigated by using
an inhibition ELISA and an IgE-facilitated allergen-binding inhibition assay. We found
that the treatment with BM4 induced elevated Bet v 1-specific IgG antibody titers in
both mammalian species. In Wistar rats, high BM4-specific IgG1, IgG2a, and IgG2b
titers (104 to 106) were induced, which cross-reacted with wild-type Bet v 1, and
the homologous allergens Mal d 1 and Cor a 1. Rat allergen-specific IgG antibodies
sustained upon treatment discontinuation. Sera of rats immunized with BM4 were
able to significantly suppress binding of human IgE to the wild-type allergens and
CD23-mediated human IgE-facilitated Bet v 1 binding on B cells. By contrast, treatment-
induced IgE antibody levels were low or undetectable. In summary, BM4 induced a
robust IgG immune response that efficiently blocked human IgE-binding to wild-type
allergens, underscoring its potential therapeutic value in AIT.
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INTRODUCTION

Birch pollen (Betula verrucosa) represents the major elicitor
of tree pollen-associated allergic symptoms in Europe, with
sensitization patterns ranging from 54 up to 92% among
patients allergic to tree pollen (1–3). The peculiarity that
the IgE-mediated pathology is dominantly triggered by the
recognition of the allergen Bet v 1 – reactivity rates around
95% – prompted researchers world-wide to develop therapeutic
approaches targeting this protein (4). Besides seasonal occurring
symptoms, such as rhinoconjunctivitis and allergic asthma,
birch pollen allergic patients frequently report oral and food
allergy symptoms, creating a complex disease endotype. These
symptoms are elicited by plant food sources including fruits,
vegetables and nuts, and occur due to the recognition of
similar structural motifs shared between food allergens and the
primary sensitizing pollen allergen. The estimated prevalence of
symptoms triggered by such food allergens ranges between 50
and 90% among birch pollen allergic patients (5–9). This clinical
manifestation is described as the pollen food allergy syndrome
(PFAS) (5). Apples and hazelnuts belong to the most common
allergenic sources amongst plant foods eliciting birch pollen-
associated PFAS symptoms (8, 10, 11). Here, the culprit allergens
responsible for triggering PFAS are the Bet v 1-homologous
pathogenesis-related protein-10 (PR-10) class proteins Mal d 1
(apple,Malus domestica) and Cor a 1 (hazelnut,Corylus avellana).
Although the adverse health effects caused by birch pollen are
efficiently treatable by allergen-specific immunotherapy (AIT),
the concomitant treatment of PFAS symptoms induced by Bet
v 1-associated food sources remains debatable, highlighting
strengths, and possibilities for therapeutic improvements (12–
16). Other disadvantages of AIT are long treatment duration, the
risk of side-effects and, in case of subcutaneously applied AIT,
repeated injections into the patient’s skin, resulting in a poor
treatment compliance (17).

In order to address these challenges in AIT, we have developed
a hypoallergenic variant of Bet v 1, termed BM4, possessing
beneficial characteristics including decreased allergenicity
(reduced binding by Bet v 1-specific IgE) and ameliorated
immunogenicity (enhanced T cell-activating capacity and
proliferation) (18–20). BM4 was genetically engineered through
the substitution of five amino acids in the wild-type Bet v 1
sequence by corresponding residues in the Mal d 1 sequence,
resulting in a general collapse of the otherwise globular PR-10
fold. In turn, these structural changes altered conformation-
dependent IgE epitopes (18). The EU-funded project “BM4SIT –
Innovations for Allergy” aimed to evaluate the efficacy of BM4
as an AIT vaccine candidate in a first-in-men clinical trial. Drug
toxicity studies, preceding human clinical trials, are used to

Abbreviations: AIT, allergen-specific immunotherapy; BSA, bovine serum
albumin; CD, circular dichroism; ELISA, enzyme-linked immunosorbent assay;
EBV, Epstein–Barr virus; FSC, forward scatter; FTIR, Fourier transform infrared;
HRP, horseradish peroxidase; hS, human serum; inhibition FAB, inhibition IgE-
facilitated allergen binding; L/D, live/dead; LOQ, limit of quantification; NZW
rabbits, New Zealand White rabbits; PR-10, pathogenesis-related protein-10;
PFAS, pollen food allergy syndrome; SCIT, subcutaneous immunotherapy; SSC,
side scatter; SFP, specific pathogen-free; SEM, standard error of the mean; s.c.,
subcutaneous.

investigate the safety profile of vaccine candidates in various
mammalian species in order to estimate patients’ tolerability,
and, thus, are a mandatory step toward drug approval. In the
course of the BM4 toxicity studies, conducted in Wistar rats and
New Zealand White (NZW) rabbits, we undertook a detailed
profiling of the BM4-induced humoral immune response in
a naïve setting. It is well established that the reduction of
symptoms in AIT, and consequently the improvement of the
patient’s quality of life, are mainly accomplished by the induction
of immunotolerance, which is maintained by allergen-specific
blocking IgG4 and partially by IgG1 antibodies able to neutralize
IgE-mediated allergen binding (21–24). Therefore, the objective
of the present study was to perform a pre-clinical evaluation of
the Bet v 1-specific IgG as well as IgE immune response induced
by immunizations with BM4 in both Wistar rats and NZW
rabbits. We further analyzed the functionality of the induced
IgG antibodies regarding their capability to inhibit human
IgE-facilitated binding of Bet v 1-IgE complexes to B cells, a
confirmed biomarker for AIT efficacy (25, 26). Additionally, we
investigated the cross-reactivity of the serum antibodies toward
the Bet v 1-associated food allergens Mal d 1 and Cor a 1.

Herein, we show that immunizations of Wistar rats and NZW
rabbits with BM4 resulted in high levels of IgG antibodies cross-
reactive to wild-type Bet v 1. In Wistar rats, functional Mal d 1-
and Cor a 1-cross-reactive IgG antibodies were induced, however,
to a lesser extent compared to the Bet v 1. In rats receiving
repeated immunizations with BM4, sustained IgG antibody titers
remained even upon treatment discontinuation. In addition,
BM4-induced IgG antibodies displayed a functional inhibitory
activity toward the binding of human IgE to the wild-type
pollen allergen (Bet v 1) and the associated food allergens (Mal
d 1 and Cor a 1).

MATERIALS AND METHODS

Recombinant Proteins
BM4 (designated BM41 by the manufacturer Biomay
AG, Vienna, Austria) was produced recombinantly and
endotoxin-free under GMP conditions based on the described
protocol (18). Both BM4 and placebo were formulated using
aluminum hydroxide (Alu-Gel-S, Serva, Heidelberg, Germany).
Expression, purification, physicochemical characterization, and
determination of endotoxin contamination (<0.3 ng/mL) of
recombinant Bet v 1.0101, Mal d 1.0108, and Cor a 1.0401 (called
Bet v 1, Mal d 1, and Cor a 1 in the following) were performed
as previously described (27, 28). A representative SDS-PAGE
image showing the different recombinant proteins can be found
in Supplementary Figure S1.

Analysis of Secondary Structural
Elements
The structural composition of the recombinant proteins was
determined using circular dichroism (CD) and Fourier transform
infrared (FTIR) spectroscopy. The CD spectra were recorded
at 20◦C between 190 and 260 nm using a JASCO J-815
spectropolarimeter (Jasco, Tokyo, Japan). All proteins were
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diluted in a 10 mM potassium phosphate buffer to a final
concentration of 0.1 mg/ml. For the structural analysis using
FTIR, the spectra in the range of the amide 1 and amide 2 peaks
(1500–1700 cm−1) were recorded at a constant temperature
(25◦C) for each protein at concentrations of 1.5–2.0 mg/ml
using an AquaSpec transmission cell adapted to a Tensor II
FTIR system (Bruker Optics Inc., Billerica, MA, United States).
The data were analyzed using the OPUS spectroscopy software
6.0 (Bruker Optics Inc., Billerica, MA, United States). The
second derivative of the amide 1 spectra was calculated after
vector-normalization (25 smoothing points) using the Savitzky–
Golay algorithm.

Animal Immunization Model(s)
Both species, NZW rabbits (Lidköpings kaninfarm, Lidköping,
Sweden) and Wistar rats (RjHAN:WI, Janvier Labs, France),
received a single subcutaneous (s.c.) injection (hereinafter “single
immunization model”) of either 320 µg of BM4, formulated as
320 µg BM4/2 mg aluminum hydroxide/0.9% NaCl/ml, or the
respective amount of adjuvant without antigen, termed “placebo”
in the following (n = 5 male and n = 5 female per group). Since
in human allergen-specific subcutaneous immunotherapy (SCIT)
AIT vaccine is administered via the s.c. route of administration,
BM4 was administered likewise. Treated animals were daily
monitored in a specific pathogen-free (SPF) environment on a
frequent basis for 14 days post-injection for clinical signs of test
item effects, such as changes in skin and fur, respiration, eyes and
mucous membranes, circulation and behavior patterns, and then
sacrificed. Blood samples were collected pre- and 14 days post-
injection and stored at −20◦C until analysis. Sera of the single
immunization model were only used for an initial screening of
BM4-specific and Bet v 1-cross-reactive antibodies, whereas a
further functional characterization of these sera was not pursued.

According to the OECD Guidelines for the testing of
chemicals no 420, the rat is the preferred species. Therefore,
the repeated toxicity study analyzing potential toxic effects of
the hypoallergen was only conducted in Wistar rats (Charles
River, Sulzfeld, Germany). Injections containing either 160, 80,
40, or 20 µg of BM4 (formulated as xx µg BM4/1 mg alum/0.9%
NaCl/500 µl) were administered s.c. on a bi-weekly schedule
over a period of 6 months (12 injections/animal in total); termed
“repeated immunization model” in the following. This model was
conducted in order to provide a immunization schedule relatable
to a human AIT protocol. The animals of the main group (n = 10
per gender per treatment group) were sacrificed 1 week after
the last injection and those in the recovery group (5 per gender
per treatment group) 6 weeks after the last injection. The dose
level used in the study was based on the doses employed in
human AIT protocols.

All animal studies were conducted in compliance with
the “OECD Principles of Good Laboratory Practice”
(ENV/MC/CHEM(98)17) and the standard operating procedures
(SOPs) of UTUCAL. All procedures and protocols were approved
by the National Animal Experiment Board of Finland in
accordance with the EU Directive 2010/63/EU on the protection
of animals used for scientific purposes under the license numbers
ESAVI/7217/04.10.03/2012, and ESAVI/8528/04.10.07/2015.

UTUCAL animal facilities operate in compliance with the
OECD Principles of Good Laboratory Practice (GLP) and
have Animal Welfare Assurance by the Office of Laboratory
Animal Welfare (OLAW), PHS, NIH. Assurance identification
number is A5040-01.

Enzyme-Linked Immunosorbent Assay
Endpoint titer of BM4-, Bet v 1-, Mal d 1-, or Cor a 1-specific
IgE, IgG1, IgG2a, and IgG2b levels in rat sera were determined
by enzyme-linked immunosorbent assay (ELISA). Either BM4,
Bet v 1, Mal d 1, or Cor a 1 were coated in a concentration
of 2 µg/ml diluted in 1× phosphate-buffered saline on Nunc
MaxiSorp R© flat-bottom 96 well plates (Thermo Fisher Scientific,
United States). Serial dilutions of rat sera were incubated with
the respective antigen overnight at 4◦C. Horseradish peroxidase
(HRP)-conjugated mouse anti-rat IgG1, IgG2a, IgG2b (clones
G1 7E7, 2a 8F4, and 2B 10A8, respectively, purchased from
SouthernBiotech, Birmingham, United Kingdom), and IgE (clone
MARE-1, Thermo Fisher Scientific, Rockford, IL, United States)
antibodies diluted 1:5000 were used as detection antibodies.
The SureBlue TMB (3,3′,5,5′-Tetramethylbenzidine) Microwell
peroxidase substrate (KPL, Gaithersburg, MD, United States)
was used for detection. Since NZW rabbits only possess a single
IgG subclass, the BM4- and Bet v 1-specific rabbit IgG ELISAs
were performed using a HRP-conjugated goat anti-rabbit IgG
antibody, Fc Fragment (Jackson ImmunoResearch Inc., Suffolk,
United Kingdom) for detection (29). Plates were measured at
a wavelength of 450 nm using an ELISA Reader Infinite 200
PRO (Tecan, Switzerland). The limit of quantification (LOQ),
defined as the sum of the mean plus the 10-fold standard
deviation of the detection antibody controls, was used as cut-off
for endpoint titer determination. The final antibody titers were
calculated by plotting the experimental absorbance values against
the dilution of a serum as previously described (30). For the
determination of rabbit total IgE, an ELISA kit from BlueGene
Biotech (Putuo District, Shanghai, China) was used according to
the manufacturer’s instructions.

Inhibition ELISA
For the inhibition ELISA, 2 µg/ml of either Bet v 1, Mal d
1, or Cor a 1 were coated on Nunc MaxiSorp R© flat-bottom 96
half-area well plates (Thermo Fisher Scientific, United States).
After blocking with 0.5% BSA, the immobilized antigen was
incubated with rat sera in dilutions of either 1:32 for Bet v 1
or 1:2 for Mal d 1, and Cor a 1 for 2h at room temperature.
To exclude any potential interference of IgE antibodies, the
rat sera were heat-inactivated at 56◦C for 1h prior to the
experimental procedure. After the inhibition step, the samples
were incubated with different human reference serum pools
per antigen (derived from birch allergic patients suffering from
PFAS caused by apples and/or hazelnuts), diluted 1:2 for Bet
v 1 and Mal d 1, and 1:8 for Cor a 1 (depending on the
presence of specific IgE in the serum pools), overnight at
4◦C. An alkaline phosphatase-conjugated mouse anti-human
IgE antibody (clone B3102E8, SouthernBiotech, Birmingham,
AL, United States), diluted 1:1000, and the alkaline phosphatase
substrate p-nitrophenyl phosphate (Sigma-Aldrich, St. Luis, MI,
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United States) were used for detection. The absorbance was
recorded at 405 nm after 3h of incubation at room temperature.
The data were normalized to the uninhibited control (100%).
The percentage of inhibitory activity of each individual serum
was calculated by inverting the normalized absorbance value
(100 minus normalized absorbance value) after background
subtraction (detection antibody control).

Inhibition IgE-Facilitated Allergen
Binding (Inhibition FAB) Assay
We performed inhibition FAB assays to determine the capacity
of BM4-induced rat antibodies to prevent the formation of Bet
v 1-IgE complexes using a defined human indicator serum pool
obtained from six individual birch pollen allergic patients. The
indicator serum pool contained high levels of Bet v 1-specific IgE
antibodies, as determined by ImmunoCAP assays (31). For this
purpose, we used an adapted version of the protocol published
by Shamji et al. (32). In short, IgE of rat sera was inactivated
by heat treatment at 56◦C for 1h prior to the experimental
procedure. For the inhibition FAB assay, sera of animals receiving
repeated immunizations of either 0 (placebo), 20, or 40 µg
BM4 were used (main group: n = 20, recovery group: n = 10).
A total of 15 µl of each rat serum was incubated with 10 ng/ml
Bet v 1 for 1h at 37◦C, followed by the addition of 1 µl of
the human serum pool and further incubation for 1h at 37◦C.
Subsequently, 1 × 105 Epstein–Barr virus (EBV)-transformed
B cells expressing CD23, the low IgE-binding receptor (also
called FcεRII), were added to the antibody allergen reaction mix.
The cells were stained using a PE-labeled anti-human CD23
(BD Biosciences, San Jose, CA, United States) and a FITC-
labeled anti-human IgE (KPL/medac GmbH, Wedel, Germany)
in the dilutions 1:40 and 1:100, respectively. The experimental
conditions, including antigen concentration, amount of human
reference serum and the dilution of the FITC-labeled anti-
human IgE antibody, were defined prior to the experiment
(Supplementary Figure S3). To avoid false-negative results by
dead cells, SYTOXTM Red Dead Cell Stain (Thermo Fisher
Scientific, Waltham, MA, United States) in a dilution 1:100 was
used for live/dead (L/D) discrimination. As positive control, the
uninhibited human serum pool (no rat serum, only Bet v 1 and
human serum) was used for IgE-Bet v 1 complex formation. The
cells were analyzed using a Cytoflex S (Beckman Coulter, Brea,
CA, United States) and FlowJo v 10 (FlowJo, LLC, Ashland, OR,
United States). Doublet discrimination was performed by gating
the side scatter area (SSC-A) versus the SSC height (SSC-H).
Only living EBV-transformed B cells were considered for the data
analysis. The detailed gating strategy is shown in Supplementary
Figure S4. The data were normalized to the mean of the
uninhibited control (100%). The percentage of inhibitory activity
of the sera was calculated by inverting the percentage obtained
for the IgE-Bet v 1 complex formation (100 minus complex
formation value) after baseline subtraction (mean of untreated
cells). Compensation was performed and isotype as well as single
stained controls were included in the experimental set-up. Ethical
approval for using human serum of allergic patients was obtained
by the Dutch ethical committee (number: NL65758.018.18).

Statistical Analysis
Data in the text are presented as mean ± standard error of
the mean (SEM). Statistics were calculated on transformed data
[Y = Log(Y)]. A paired t-test was used to compare pre- and post-
immunization sera (Figures 1, 3A–B) and BM4-specific with Bet
v 1-specific titers (Figure 3C), whereas an unpaired t-test was
performed for the comparison of Mal d 1- and Cor a 1-specific
antibody titers of the 80 µg BM4 treatment group with the 160 µg
group (Figure 5). For comparing more than two sample groups,
a one-way ANOVA was performed (Figures 2, 4, 6, 7). For the
correlation of the inhibition ELISA and inhibition FAB assay data
with the transformed Wistar rat IgG titers a Pearson correlation
test was performed. All statistical analyses were performed using
the GraphPad Prism 8.0 software (GraphPad Software, San
Diego, CA, United States). The p-values were reported in the
following way; ns > 0.05; ∗p ≤ 0.05; ∗∗p ≤ 0.01; ∗∗∗p ≤ 0.001;
∗∗∗∗p ≤ 0.0001.

RESULTS

A Single Immunization With BM4 Induces
High Levels of Antigen-Specific IgG
Antibodies in Wistar Rats and NZW
Rabbits
To investigate in course of an initial screening the ability of the
hypoallergenic molecule to induce an efficient antigen-specific
IgG immune response in two different mammalian species, we
determined the IgG antibody titers 2 weeks post-immunization
with 320 µg BM4 (Figure 1A). In NZW rabbits, BM4 induced a
44.5-fold increase (p < 0.0001) of the mean antigen-specific IgG
level post-immunization compared to the levels of the placebo
control that remained unaltered (Figure 1B, mean titer: 8,828.7
pre-immunization and 393,177.8 post-immunization). In Wistar
rats, we determined the antigen-specific IgG1, IgG2a, and IgG2b
antibody titers in the pre- and post-immunization sera and
compared them to the placebo control receiving only the adjuvant
without antigen (Figure 1C). In the BM4 treatment group,
the titers of the rat IgG antibody subclasses were significantly
elevated following injection with the hypoallergen (p < 0.0001).
The mean titers increased 24,721-fold for IgG1, 1,560-fold for
IgG2a, and 402-fold for IgG2b (mean post-immunization titers:
271,932, 107,199, and 27,264, respectively). In comparison, the
IgG titers of the placebo group, pre- and post-immunization,
showed no change. Additionally to the IgG antibody titers,
we sought to monitor the antigen-specific IgE levels in order
to evaluate possible IgE-mediated side effects caused by the
treatment. The treatment did not affect the total IgE level within
rabbit sera (Figure 1B). In Wistar rats, the treatment with BM4
did not induce BM4-specific IgE (Figure 1C).

Elevated Specific IgG Titers Persist in the
Sera of Wistar Rats After Discontinuation
of Repeated Immunizations With BM4
In order to mimic a standard AIT protocol using BM4 and to
evaluate its consequences on the humoral immune response, we
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FIGURE 1 | Immunization schedule of the single immunization model (A). Wistar rats or NZW rabbits (each n = 10 per group) were immunized subcutaneously either
with 320 µg BM4 or a corresponding adjuvant control (placebo). Rabbit BM4-specific IgG antibody titers and total IgE pre- and post-immunization were determined
(B). Rat BM4-specific IgG1, IgG2a, IgG2b, and IgE endpoint titers pre- and post-immunization (C). A paired t-test was performed to compare the pre- versus
post-immunization values of each group.

immunized naïve Wistar rats with BM4 bi-weekly over a period
of 6 months (Figure 2A, main group). To assess the levels of
IgG antibodies after treatment discontinuation, we analyzed the
BM4-induced IgG antibody titers 6 weeks after the last injection
(recovery group). The animals were immunized with either 0
(placebo), 20, 40, 80, or 160 µg BM4. In contrast to the placebo
group, all individual animals of the main group receiving the
hypoallergen showed a dose-independent increase of IgG titers
comparable to the single application of 320 µg presented in
Figure 1C (Figure 2B, p < 0.0001). In contrast to the single
immunization model, the highest doses of BM4 (80 and 160 µg)

in the repeated immunization model also caused a slight elevation
of BM4-specific IgE antibodies compared to the placebo group
(mean IgE titer: 389 and 169, respectively, p < 0.0001). On
average, IgG1 and IgG2a levels were still 500 to 1,000-fold higher
than IgE. Even the IgG2b titers, which increased less compared to
IgG1 and IgG2a, were still 63.4-fold higher than the IgE levels.
Interestingly, it appears that there are two types of responses
among animals, one with increased IgE and the other with no
alterations in the IgE levels.

Regarding the recovery group, the mean of BM4-specific IgE
levels of each treatment group dropped below 1.5 resembling
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FIGURE 2 | Immunization schedule of the repeated immunization model (A). Wistar rats received bi-weekly s.c. immunizations with either 0 (placebo), 20, 40, 80, or
160 µg BM4 over a period of 6 weeks. Animals of the main group (n = 20 per treatment) were sacrificed 1 week after the last application, whereas animals of the
recovery group (n = 10 per group) were sacrificed after a 6-week recovery period. Determination of BM4-specific IgG1, IgG2a, IgG2b, and IgE levels within rat sera of
the main (B) and the recovery group (C) by ELISA. The single immunization of 320 µg BM4 (of the single immunization model) was only used for comparative
purposes. The scatter plot depicts the mean of each treatment group and the SEM. Statistics were calculated on transformed data [Y = Log(Y)] using a one-way
ANOVA. A Tuckey multiple comparison test was used to compare all groups with each other. ns >0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001.

the placebo group. Of note, the 40 µg BM4 group was
even significantly lower than the placebo group (p = 0.0069,
Figure 2C). By contrast, all IgG levels of each BM4 treatment
group remained significantly increased compared to placebo. The
mean IgG1 titers ranged from 29,713 for 40 µg up to 59,722
for 160 µg BM4, and exceeded the placebo titer (2.1) by 14,149-
fold to 28,439-fold (p < 0.0001). The determined mean IgG2a
antibody titers were 17,969, 24,764, 40,608, and 28,456 for 20,
40, 80, and 160 µg BM4, respectively, and, thus, exceeded the
placebo group (16.8) on average 1,663-fold. The IgG2b levels
induced by the treatment with BM4 were approximately 30-times
lower than the corresponding IgG1 and IgG2a titers. The highest
antigen-specific mean IgG2b titer compared to placebo (11.6) was
observed for the 40 µg BM4 (1,725, p = 0.0006) treatment group,
followed by 20 µg (879, p = 0.0022), 160 µg (559, p = 0.0064),
and 80 µg (446, p = 0.0019). A statistical comparison of the main

and the recovery group of BM4-specific antibody titers, as well
as of the following Bet v 1-, Mal d 1-, and Cor a 1-cross-reactive
antibodies can be found in Supplementary Table S1.

IgG Antibodies Induced by Immunization
With BM4 Are Cross-Reactive With
Wild-Type Bet v 1
For a potential application of the hypoallergen as an AIT vaccine
in humans a functional confirmation of BM4-induced IgG
antibodies recognizing the wild-type allergen is mandatory. In
this respect, we first determined the Bet v 1-specific IgG antibody
titers of sera derived from the single immunization (Figure 1A)
as well as the repeated immunization model (Figure 2A).
The IgG antibodies induced by a single immunization with
BM4 were cross-reactive with Bet v 1 in both mammalian
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FIGURE 3 | Rabbit Bet v 1-cross-reactive IgG antibody titers pre- and post-immunization (A, left) and direct comparison of rabbit BM4-specific and Bet v
1-cross-reactive IgG titers (A, right). Rat Bet v 1-cross-reactive IgG1, IgG2a, IgG2b, and IgE endpoint titers pre- and post-immunization (B) and pairwise comparison
of BM4-specific and Bet v 1-cross-reactive IgG1, IgG2a, IgG2b, and IgE levels (C). For statistical analysis, a paired t-test was performed. ns >0.05; *p ≤ 0.05;
**p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001.

species (Figures 3A,B). The induction of Bet v 1-cross-reactive
antibodies in the post-sera was significantly different for NZW
rabbit IgG and Wistar rat IgG1, IgG2a, and IgG2b compared
to the sera before immunization (all p < 0.0001). Side-by-side
comparison of BM4-specific and Bet v 1-cross-reactive titers
of the post-immunization sera revealed that the Bet v 1-cross-
reactive IgG1, IgG2a, and IgG2b levels were marginally but
significantly lower than the corresponding BM4-specific values
(Figure 3C, p = 0.0022, p = 0.0003, and p = 0.0101, respectively).
In contrast, no difference was observed in NZW rabbit post-sera
(Figure 3A). In Wistar rats, a more ambiguous pattern was found
for the Bet v 1-specific titers. Again, the Bet v 1-cross-reactive
antibody titers for all three IgG subclasses of the main group
were significantly increased compared to placebo (Figures 4A, 6),
but in contrast to the single immunization model, the Bet v 1-
specific IgG1 titers of the repeated immunization model, using
20 (p = 0.0011), 40 (p < 0.0001), and 160 µg BM4 (p = 0.0271),
were actually significantly higher than the corresponding BM4-
specific titers. In all three investigated IgG subclasses the repeated
immunizations with 40 µg BM4 resulted in the highest mean
Bet v 1-cross-reactive titers (IgG1: 5937,601.5, IgG2a: 1104,869.1,

and IgG2b: 78,436.6), followed by 20 µg BM4 (IgG1: 1355,412.6,
IgG2a: 139,285.0, and IgG2b: 9,798.1). The mean titers induced
by 80 and 160 µg BM4 were comparatively lower. A similar
pattern was observed for IgG1 and IgG2a titers of the recovery
group (Figures 4B, 6). In contrast to the main group, Bet
v 1-cross-reactive IgG2b titers of animals receiving repeated
immunizations with BM4 did not differ from the placebo group.
Compared to the induction of slight BM4-specific IgE levels,
neither in the single immunization model (Figure 3B) nor the
repeated immunization model (Figures 4A,B) elevated Bet v
1-cross-reactive IgE titers were observed.

Wistar Rat IgG Antibodies Induced by
Repeated Immunization With BM4 Are
Cross-Reactive With the Bet v
1-Homologous Food Allergens Mal d 1
(Apple) and Cor a 1 (Hazelnut)
To investigate if treatment-induced antibodies bind to other
allergens of the PR-10 family, we determined the titers of Mal
d 1- and Cor a 1-cross-reactive IgG and IgE in rat sera derived
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FIGURE 4 | Combined data of Bet v 1-cross-reactive IgG1, IgG2a, IgG2b, and IgE titers of rat sera of the main (A) and the recovery group (B) of the repeated
immunization model evaluated by ELISA. The mean and SEM is shown in each scatter plot. Statistics were calculated on transformed data [Y = Log(Y)] using a
one-way ANOVA and a Tuckey multiple comparison test. The single immunization of 320 µg BM4 (of the single immunization model) was used for comparative
reasons. ns >0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001.

from the repeated immunization model receiving the two highest
BM4 dosages (80 and 160 µg). These food allergens share a
sequence similarity of 56.6% (Mal d 1) and 67.3% (Cor a 1)
with Bet v 1 and exhibit the common PR-10 fold. The structural
integrity and similarity of the recombinant proteins used in
this study with wild-type Bet v 1 was assessed by determining
the secondary structural elements of each protein by CD and
FTIR (Supplementary Figure S2). A high structural similarity
between Bet v 1 and its homologous food allergens was observed.
In contrast, BM4 exhibited a rather unfolded state using CD,
whereas some structural features of the hypoallergenic molecule
were still detectable when using FTIR for the analysis.

In direct comparison with the induced mean Bet v 1-specific
IgG titers, it was apparent that all investigated Cor a 1- as
well as Mal d 1-specific IgG subclasses were markedly lower
(Figures 5A,C, 6 and Supplementary Table S2). Depending on
the BM4 immunization dose, Mal d 1-specific IgG1 was either
18.6- to 28.9-fold lower than its Bet v 1-specific counterpart, and
Mal d 1-specific IgG2a and IgG2b titers were 10.8- to 16.3-fold
reduced. Notably, the induced Cor a 1-specific IgG titers were
higher compared to their Mal d 1-specific corresponding values.
Cor a 1-specific IgG1 was only 3.6- to 5.1-fold lower than the Bet
v 1-specific IgG1 titers, IgG2a 5.8- to 10.5-fold, and IgG2b 4.1-

to 12.9-fold. In the recovery group, except for Mal d 1-specific
IgG2b, all Mal d 1-, and Cor a 1-specific mean titers of the
investigated IgG subclasses dropped compared to the main group
(Figures 5B,D, 6 and Supplementary Table S2). Still, compared
to the Bet v 1-specific IgG titers of the recovery group, all mean
titers of the Mal d 1- and Cor a 1-specific IgG subclasses were
in a similar range; except for Mal d 1-specific IgG1 and IgG2a,
which were 5.7- to 10.3- and 8.0- to 12.1-fold lower, respectively.
Both, Mal d 1- and Cor a 1-specific IgE titers of the main and the
recovery group were in a comparable range to Bet v 1-specific IgE,
and thus hardly induced by the treatment with BM4.

Summarizing the specificity of the BM4-induced antibodies
of the repeated immunization model, we can conclude that the
highest IgG antibody levels were induced toward the wild-type
Bet v 1 allergen rather than its hypoallergenic variant (Figure 6).
IgG antibodies against the Bet v 1-homologous food allergens Cor
a 1 and Mal d 1 were also induced but comparably at a lower
extent. The highest IgE antibody levels were induced by 80 and
160 µg of BM4, and the specificity of these antibodies was also
mostly directed toward BM4. However, in course of the toxicity
study it became evident that the higher BM4 dosages (80 and
160 µg) exceeded the no-observed-adverse-effects level (NOAEL,
data not shown), whereas the lower concentrations (20 and
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FIGURE 5 | Analysis of Mal d 1- (A,B) and Cor a 1-cross-reactive (C,D) IgG1, IgG2a, IgG2b, and IgE titers of sera derived from Wistar rats receiving repeated
immunization of either 80 or 160 µg BM4 (A,C: main group; B,D: recovery group). The dotted line represents a sera pool of animals receiving placebo. For statistical
analysis, an unpaired t-test was performed on transformed [Y = log(Y)] data. ns >0.05; **p ≤ 0.01.

40 µg) were considered “safe,” enabling the further investigation
of the hypoallergen in a first-in-men human clinical trial. In this
respect, only sera of rats immunized with 20 and 40 µg BM4 were
subjected to further functional characterization.

BM4-Induced Wistar Rat IgG Antibodies
Inhibit Specific Binding of Human IgE to
Bet v 1, Cor a 1, and Mal d 1
The induction of blocking antibodies (IgG4/IgG1) is a hallmark
of successful AIT, thus, a sole characterization of the antibody
pattern as well as of their specificity is not sufficient enough
to draw conclusions of the functional relevance of the induced
antibodies regarding the IgE-blocking activity of IgG antibodies.

Therefore, we decided to investigate to which extent rat sera of the
repeated immunization model (20 and 40 µg BM4) containing
BM4-induced antibodies are able to compete with human IgE
antibodies for binding of wild-type Bet v 1, Mal d 1, and Cor
a 1. For this purpose, we used an inhibition ELISA (Figure 7A
and Supplementary Table S3). In rat sera of the main group,
immunization with BM4 (20 and 40 µg) induced a pronounced
mean inhibition of human IgE binding to Bet v 1 (70.8 and
84.1%), a moderate mean inhibition to Cor a 1 (43.9 and 58%),
and a low mean inhibition to Mal d 1 (27.6 and 37.6%). Whereas,
placebo induced a mean inhibition of 15.6, 20.1 and 17.6% to Bet
v 1, Cor a 1, and Mal d 1, respectively. Overall, the inhibitory
capacity remained in sera of the recovery group (Bet v 1: 90.5%;
Cor a 1: 42 and 49.5%; Mal d 1: 34.7 and 38.6%). However, for
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FIGURE 6 | Comparative heat map showing the mean BM4-specific, and Bet v 1-, Mal d 1-, and Cor a 1-cross-reactive titers of each treatment group (either 0, 20,
40, 80, or 160 µg BM4) of Wistar rat sera of the repeated immunization model for each IgG subclass as well as for IgE. Red squares were used to highlight values
that exceeded the titer range shown in the heat map.

Mal d 1, immunization of 20 µg BM4 were not significantly
different compared to placebo. For the placebo recovery group,
an inhibition of 24% (Bet v 1), 13.4% (Cor a 1), and 25% (Mal d
1) was observed.

In summary, a mean difference of 61.8% (Bet v 1), 30.8%
(Cor a 1), 15% (Mal d 1), and 66.4% (Bet v 1), 32.3% (Cor a 1),
11.65% (Mal d 1) was observable in the main and recovery group,
respectively, compared to placebo. For Bet v 1, the inhibition
results positively correlated with the respective cross-reactive
IgG1 and IgG2a titers (r = 0.8153, p < 0.0001, and r = 0.6972,
p < 0.0001, respectively), whereas the IgG2b titers showed a
relatively low correlation with the inhibition of human IgE
binding (r = 0.3507, p < 0.0008, Figure 7B).

BM4-Induced Wistar Rat IgG Antibodies
Are Able to Effectively Inhibit
CD23-Mediated Human IgE-Facilitated
Bet v 1 Binding
In addition to the inhibition ELISA data, we sought to investigate
whether the BM4-induced antibodies are able to interfere with

the CD23-mediated binding of Bet v 1 facilitated by human IgE.
Therefore, the inhibition facilitated antigen-binding (inhibition
FAB) assay protocol by Shamji et al. (26) was adapted accordingly.
Sera of Wistar rats receiving repeated immunizations with BM4
(20 and 40 µg) caused a significant reduction of Bet v 1-IgE
complexes binding to B cells (p < 0.0001) compared to placebo
in the main as well as in the recovery group (Figure 8A).
A mean decrease of 86% of Bet v 1-IgE complexes was observed
for sera of the main group, whereas for the recovery group
a treatment with both dosages of BM4 resulted in a lowered
reduction of 66% (40 µg) and 74% (20 µg). Although the
IgE of rat sera were heat-inactivated in order to solely assess
the capability of human IgE antibodies to provoke allergen-
IgE complex formation, we screened the rat sera toward their
insufficiency to cause the formation of complexes in the absence
of human IgE (controls without human serum). None of the
heat-inactivated rat sera was per se able to form allergen-IgE
complexes. To determine the percentage of inhibitory activity of
the BM4-induced IgG antibodies we converted the experimental
values after baseline subtraction (untreated cells) by inverting
the percentage of allergen-IgE complexes (mean of uninhibited
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FIGURE 7 | Inhibition of human IgE binding to Bet v 1, Cor a 1, and Mal d 1 by sera derived from Wistar rats receiving repeated immunizations of either 0 (placebo),
20, or 40 µg BM4 (A). The column bar charts depict the mean and standard deviation of each data set. Statistics were calculated using a one-way ANOVA and a
Dunnett’s multiple comparisons test comparing the individual main or the recovery groups among each other. Correlation of log-transformed Bet v 1 cross-reactive
IgG1, IgG2a, and IgG2b titers with inhibition ELISA data using the Pearson correlation test (B). ns >0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001.

controls minus the IgE-Bet v 1 complex formation values). An
efficient mean inhibitory activity of 95% was found for sera of
rats receiving BM4 of the main group (p < 0.0001), and 74%
(40 µg, p < 0.0001) to 82% (20 µg, p < 0.0001) for those
of the recovery group (Figure 8B). A positive correlation was
observed between the FAB inhibition results and the Bet v 1-
cross-reactive IgG1 and IgG2a titers (r = 0.8395, p < 0.0001,
and r = 0.7102, p < 0.0001, respectively), whereas there was a
relatively low correlation with the Bet v 1-cross-reactive IgG2b
titers (r = 0.2947, p < 0.0053, Figure 8C).

DISCUSSION

Allergen-specific immunotherapy is the only curative approach
modulating the causative cellular and molecular origin of
allergic diseases by skewing the Th2-biased IgE-mediated
inflammatory response toward an anti-inflammatory immune
response resulting eventually in allergen immunotolerance
(22, 23). The underlying protective mechanisms involve the
induction of antigen-specific regulatory T and B cells, and
the secretion of immunosuppressive cytokines, such as IL-10
(23, 33, 34). Another key regulatory molecular event in the
induction of immunotolerance by AIT and, consequently, the
reduction of allergic symptoms, is the increased production
of allergen-specific IgG4 antibodies. These antibodies are able

to prevent antigen recognition by IgE and the consecutively
occurring effector functions, including degranulation of mast
cells and basophils, histamine release, and the recruitment of
various inflammatory cells (25, 35). This allergen-neutralizing
functional aspect of serum IgG4 has been reported as a
sufficient predictive biomarker for AIT efficacy (25, 26, 32).
Following this idea, we aimed to monitor the IgG antibody levels
induced by a hypoallergenic variant of Bet v 1 in two different
naïve mammalian animal models (i), and to characterize their
specificity toward wild-type Bet v 1 (ii) as well as to the Bet
v 1-associated food allergens Mal d 1 and Cor a 1 (iii). We
further analyzed the functionality of the IgG antibodies regarding
their activity to prevent human IgE-allergen binding (iv). We
found that the treatment with BM4 induced elevated Bet v
1-specific IgG antibody titers in both mammalian species. In
Wistar rats, high BM4- and Bet v 1-specific IgG1, IgG2a and
IgG2b levels (104 to 106) were induced even upon receiving
just a single immunization. Since neither Wistar rats nor
NZW rabbits possess the IgG4 subclass, we sought to cover
the complete IgG repertoire among these species, except for
rat IgG2c that is primarily recognizing carbohydrate epitopes
(36–38). While rats have four IgG subclasses (IgG1, IgG2a,
IgG2b, and IgG2c), NZW rabbits only possess a single IgG
subclass (29). Although an interspecies comparison of IgG
subclasses is difficult, the general consensus is that rat IgG1
and IgG2a functionally resemble human IgG4/murine IgG1.
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FIGURE 8 | BM4-induced rat IgG antibodies are able to sufficiently inhibit CD23-mediated complex formation of Bet v 1 and human IgE antibodies on B cells. The
inhibition FAB assay was performed with sera of rats of the repeated immunization model receiving either 0 (placebo), 20, or 40 µg BM4. The percentage of IgE-Bet
v 1 complex formation (A) was normalized toward the mean of the uninhibited control (100%). Untreated cells were used as negative controls. For the evaluation of
unspecific rat IgE-Bet v 1 complex formation, controls without human serum (w/o hS) were included; w hS, with human serum. The percentage inhibitory activity was
calculated by subtracting the baseline activation of untreated cells followed by subtraction of the normalized IgE-Bet v 1 complex formation values from 100 (B). The
column bar charts depict the mean and standard deviation of each data set. Statistics were calculated using a one-way ANOVA and a Dunnett’s multiple
comparisons test comparing each treatment group with the uninhibited reference. Statistics of the controls (w/o hS) were excluded due to simplicity reasons but
significantly lower than the uninhibited control (positive control, p = 0.0001). A Pearson correlation test was performed to analyze if the determined Bet v
1-cross-reactive IgG1, IgG2a, and IgG2b titers were correlating with the inhibition of IgE-Bet v 1 complex formation (C). ns >0.05; **p ≤ 0.01; ****p ≤ 0.0001.

Conversely, rat IgG2b corresponds to human IgG1/murine
IgG2a/2b (36–41).

In mice, immunizations with BM4 resulted in a boosted
Bet v 1-specific IgG1 and IgG2a antibody secretion and were
associated with a Th1-skewing effect (18). Immunizations with
Bet v 1, on the other hand, hardly induced an upregulated
secretion of these antibodies, which is in line with our findings
of the repeated immunization model showing increased Bet v
1-specific titers compared to BM4-specific antibodies. Since the
structure of BM4 differs fundamentally from wild-type Bet v 1, we
hypothesize that this treatment-induced antibody cross-reactivity
mainly occurs due to the recognition of sequential epitopes by
the IgG antibodies. However, in contrast to our findings, where
BM4 did hardly affect Bet v 1-specific IgE antibody levels, BM4
also resulted in a quick elevation of Bet v 1-specific IgE in a
Balb/c immunization model (18). Especially in the case of Bet v

1, the dominant IgE epitopes mostly possess a conformational
nature, which would explain why elevated BM4-specific IgE
titers derived from our repeated immunization (80 and 160 µg
BM4) hardly recognized Bet v 1, Mal d 1, and Cor a 1 (42). In
the recovery group, no BM4-specific IgE was detectable, most
likely due to the short-lived nature of IgE. Due to the non-
existence of IgE memory cells, the production of IgE antibodies
depends on a constantly active Th2-biased inflammatory milieu
promoting the class switching of B cells to IgE-secretory plasma
cells (43). In immunization models such an inflammatory milieu
is provided by the co-administration of an adjuvant. Therefore,
treatment discontinuation resulted in a drop of IgE titers in the
recovery group. The reduced reactivity of Mal d 1 and Cor a
1 by BM4-induced antibodies compared to Bet v 1 most likely
results from the differences in sequence identity between the
recombinant wild-type and the mutant proteins (BM4:Bet v 1
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96.86%; BM4:Mal d 1 59.75%; BM4:Cor a 1 64.78%). This explains
why Mal d 1 is even less recognized than Cor a 1 in both, the
main as well as the recovery group of the repeated immunization
model, and why human IgE binding to Mal d 1 is also less
efficiently inhibited.

By using the inhibition ELISA and inhibition FAB assay,
we were able to address the functional relevance of the BM4-
induced antibodies and found that sera of BM4-imunized rats
were able to significantly neutralize the binding of Bet v 1
to human IgE. The inhibitory activity induced by BM4 even
remained after treatment discontinuation. This and the fact that
the results obtained for both assays positively correlated with the
Bet v 1-cross-reactive IgG1 and IgG2a titers corroborates to our
assumption that this blocking activity occurs due to the increased
Bet v 1-specific IgG levels. However, further experiments are
needed in order to clearly state, which rat IgG subclass is
responsible for the IgE blocking activity. Also, additional in vitro
approaches addressing the functionality of the induced IgG
antibodies in other functions of effector cells, such as the basophil
activation test or mediator release assays, would provide further
insights on the inhibitory capacity of the BM4-induced IgG
antibodies (27, 44). In a therapeutic in vivo model, increased Bet
v 1-specific IgG1 levels induced by intraperitoneal injections of
BM4 were associated with a downregulation in Bet v 1-triggered
mediator release using rat basophilic leukemia cells, as well as
a general decrease of Th2-mediated inflammation as judged by
BALF IL5 cytokine secretion and lung infiltrating cells (20).

In general, treatment with recombinant Bet v 1 was proven
successful providing a potential alternative to extract-based AIT
vaccines (45, 46). By providing an efficient hypoallergen-based
drug product to the market that, ideally, tackles the negative
aspects of AIT (long treatment duration and treatment-induced
side effects), would certainly increase the popularity of AIT
and demonstrate as well as magnify its to date unexploited
potential. Other hypoallergenic Bet v 1 derivatives were lacking
statistical difference regarding their efficacy compared to current
birch pollen extract-based AIT protocols (47). Our data, showing
that BM4 induces high and sustainable IgG levels in two
different mammalian species, highlight the suitability of BM4 as
a hypoallergenic drug candidate for birch pollen AIT, with the
potential of reducing birch-associated PFAS symptoms.
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FIGURE S1 | SDS-PAGE gel of the recombinantly produced proteins used in this
study. M, Pierce Unstained Protein Molecular Weight Marker (Thermo Fisher
Scientific, Waltham, MA, United States).

FIGURE S2 | CD spectra of BM4, Bet v 1, Mal d 1, and Cor a 1 recorded at 20◦C
between 190 and 260 nm (A). Amide I and II and second derivative of amide I
IR-spectra of the recombinant proteins recorded at 25◦C (B). The percentage of
α-helical and β-strand-like content of secondary structural elements was
calculated from the IR-spectra, and a comparison of the experimentally collected
data for Bet v 1 and Mal d 1 with the respective theoretical values deposited on
PDB is shown (code: 4A88 and 5MMU, respectively).

FIGURE S3 | Definition of experimental conditions for the FAB assay. A titration of
Bet v 1 concentration (A), amount of human reference serum and anti-IgE
antibody (B) was performed. Black arrows indicate the conditions used for the
final inhibition FAB assay; w hS, with human serum (10 µl).

FIGURE S4 | Inhibition FAB assay gating strategy for the analysis of Bet v 1-IgE
complex immobilized on CD23-expressing EBV-transformed B cells. Cells were
gated based on scatter light (FSC, SSC) characteristics, followed by doublet
discrimination (SSC area versus SSC height). Living B cells were gated and
analyzed toward anti-IgE binding (FITC, histogram, A) and/or CD23 (PE)
expression (dot blot, B,C). Only the anti-IgE+ gated cells were considered for the
analysis in Figure 7. The same gates were used for each sample. Results for
positive control (uninhibited reference) and untreated cells (negative control)
are shown.
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Clinical decision support systems (CDSS) aid health care professionals (HCP) in
evaluating large sets of information and taking informed decisions during their clinical
routine. CDSS are becoming particularly important in the perspective of precision
medicine, when HCP need to consider growing amounts of data to create precise
patient profiles for personalized diagnosis, treatment and outcome monitoring. In
allergy care, several CDSS are being developed and investigated, mainly for respiratory
allergic diseases. Although the proposed solutions address different stakeholders, the
majority aims at facilitating evidence-based and shared decision-making, incorporating
guidelines, and real-time clinical data. We offer here an overview on existing tools, new
developments and novel concepts and discuss the potential of digital CDSS in improving
prevention, diagnosis and monitoring of allergic diseases.

Keywords: CDSS, digital health, allergy, clinical decision support systems, prevention

THE EVOLUTION OF CLINICAL DECISION SUPPORT SYSTEMS
IN THE CONTEXT OF PRECISION MEDICINE

Origins of Digital Clinical Decision Support
Researchers and engineering technologists have been developing and exploring computerized
decision support systems (DSS) for approximately 50 years (1). In their early stages, DSS were
categorized according to their methodology, ranging from data-oriented approaches, whose
systems merely extracted information, to model-oriented concepts, mostly focused on decision
processes. Alongside technological advances, this kind of computerized tool became increasingly
powerful and elaborated, offering solutions for the processing of complex data sets and their
integration in decision algorithms providing data-driven suggestions to the user (2). The ability
to capture expert knowledge, guidelines and reasoning techniques, together with the automation of
rules via identification of key attributes led to the development of new digital support opportunities
for healthcare providers in their clinical routine (3).

Abbreviations: AH, antihistamines; AIT, allergen-specific immunotherapy; AMA, American medical association; AMSS,
allergy management support system; AR, allergic rhinitis; ARIA, allergic rhinitis and its impact on asthma; CDSS, clinical
decision support system; COPD, chronic obstructive pulmonary disease; DSS, decision support system; eAMS, electronic
Asthma Management System; EHR, electronic health record; GP, general practitioner; HCP, health care professionals; INCS,
intranasal corticosteroids; PDSS, pharmacy decision support system; VAS, Visual Analogue Scale.
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Methodologies
The development of computerized clinical support tools can
be grouped according to the following main methodologies:
(a) information retrieval tools to answer clinical questions and
manage medical information (4); (b) logical models for the
assignment of categories for medical standard measurements (5),
characterized alerts and reminder systems (6); (c) probabilistic
and data-driven prediction algorithms to improve patient
outcomes (7); and (d) a modeled combination of formal and
heuristic algorithms supporting physicians in their decision on
the individual deployment of evidence-based solutions (8, 9).
Today, these methodologies carry the potential of becoming an
innovative resource for digital augmentation of clinical care, once
scientifically and clinically validated. To ensure patient safety,
technologies with a potential impact on medical decisions need
to undergo the registration and certification process for medical
devices at the respective regulatory authorities (10, 11).

Advantages of Digital Decision Support
Due to the growing amount of health data, delivering
personalized precision medicine has become a challenging
task (12). Large sets of information are not only derived
from complex diagnostic test systems, genetic analyses and –
omics approaches, but also patient-generated monitoring data,
exposure information and/or the surveillance of physiological
parameters via smart devices and sensors (13). In parallel,
electronic health records (EHR) have become a common
platform to bundle patient data and clinical decision support
systems (CDSS) are frequently connected to these critical
information hubs (6). This is where trained algorithms and
validated computerized tools can assist health care professionals
(HCP) in efficiently interpreting complex data sets and keeping
the overview on the individual health status of a patient (14).
Automated monitoring and alerts systems further enable a
continuous personalized treatment follow-up and allow an early
intervention in the case of side effects or insufficient success.

Challenges and Limitations of Clinical
Decision Support
Although digital decision support tools can be potentially
useful in optimizing clinical workflows, it is important to
mention that they are by no means able to replace a trained
healthcare professional. In addition, several challenges need to
be considered. Clinical work often includes hectic situations
and a broad spectrum of patients with different conditions,
comorbidities, and treatment plans being treated by one doctor.
Therefore, a support tool needs to be extraordinarily user-
friendly, ideally adaptable to individual settings with a high
level of interoperability and include a solid risk management
as any medical device. Apart from technical challenges like an
optimal human-computer interface there are particular aspects
to be addressed within different methodologies (1). To give an
example: alert systems with an high alert frequency (e.g., for
potential drug interactions) may cause a alert fatigue in the user,
who may decide more frequently to disregard the suggestions.
As the user is a trained professional, this may not seem crucial
at first sight. However, a negative impression of fatigue may

lead to an adverse predisposition toward other, potentially more
user-friendly, technologies. This example reflects the diversity of
challenges, which need to be considered in the development of
decision support tools. They are not only of technical nature but
also related to adoption by different stakeholders and integration
into a broad spectrum of pre-existing settings.

Adoption of Decision Support
Technologies by Health Care
Professionals
The prospective collection of clinical and diagnostic data
provides valuable insights into disease endo- and phenotypes
and has the potential to offer distinct advantages in the field
of chronic diseases such as allergy and asthma (15). Digital
technologies potentially allow continuous disease monitoring
with agile adaptation strategies decided on by the physician to
improve patient outcomes and quality of life, especially as part
of a chronic disease management process. However, physicians
are core to the medical decision process and accountable for
their choices. If computer algorithms are aiding these, reliability
and accountability are key elements to be addressed prior to a
widespread adoption of any digital solution. This challenge may
be one of the reasons for low adoption rates for new digital
tools in clinical routine (16), although recent data from the
American Medical Association show an increased interest among
physicians in digital support tools (from 28% in 2016 to 37%
in 2019) (17). The category CDSS in this assessment included
any modules and integrated mobile applications in conjunction
with EHR, also enabling the remote monitoring of patient-
related parameters and automated integration of the results in the
central data set. Interestingly, the adoption rates for monitoring
tools alone, without integration in a CDSS, increased from 12%
(2016) to 16% (2019) for remote efficiency monitoring and from
13% (2016) to 22% (2019) for remote management tools for
chronically ill patients (17) (Figure 1). It has to be stated, though,
that reported use does not necessarily reflect any improvement
of patient outcomes (18). In order to enable a critical evaluation
and smooth implementation of new tools in healthcare systems,
it is important to ensure that professionals are adequately trained
on the benefits and challenges of CDSS before applying them in
clinical practice (9).

CLINICAL DECISION SUPPORT FOR
ALLERGIC DISEASES

Allergic diseases are clinically and immunologically multifaceted,
as well as pathogenetically heterogenous (15), which makes an
evidence-based clinical diagnosis rather challenging. Moreover,
the ratio of allergists per allergic patient is in general rather
low and highly heterogenous in different countries (19, 20). As
a first point of contact, most allergic patients see a primary
care doctor, who frequently lacks the knowledge, confidence or
resources to meet their specific needs due to insufficient training
(21). Independently from the individual level of specific training,
clinicians are confronted with a broad spectrum of clinical
manifestations, such as allergic rhinitis (AR), asthma, atopic
eczema, food allergies, anaphylaxis, drug allergies or occupational
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FIGURE 1 | The use of digital health tools among United States physicians in 2016 and 2019. The survey has been performed by the American Medical Association
(AMA) among 1300 (1359 respectively) physicians working in different clinical settings. © 2020 American Medical Association. Reprinted with Permission [17].
https://www.ama-assn.org/.

allergies, whose pathogenesis is heterogeneous. In addition, the
nomenclature and classification of these allergic diseases is being
challenged (22, 23) and the guidelines for diagnostic work-ups
change over time (24, 25) or differ between different regions
(26, 27).

In this context, computerized decision support concepts are
becoming a potentially valuable tool to support clinicians in
evaluating large data sets and taking into account complex
guidelines. Electronic health (eHealth) technologies, especially
mobile health (mHealth) tools, have become more and more
popular and provide valuable clinical information on patients.
However, tools merely providing information without concrete
suggestions for diagnostic and therapeutic decisions should not
be considered a CDSS. The software tools and mobile solutions
discussed here have the potential to enhance medical decisions at
the point-of-care mainly with (A) targeted patient information,
(B) guideline- and evidence-based clinical knowledge, and
(C) prospectively collected data (patient-/sensor-generated).
A positive effect of clinical decision support on the practitioner’s
performance has already been shown for several chronic health
conditions (28–31). However, more studies are needed to assess
the impact on short, medium-, and long-term patient outcomes.
In allergy care, several concepts for CDSS have been created,
addressing different diseases and settings with the aim of
improving detection, diagnosis and diseases management (32,
33). In most cases, the main target is to empower not only
the allergist, but also the general practitioners (GPs) and even
the patient, at public contact points such as pharmacies. The
following paragraphs will give an overview on existing solutions,
concepts and potentials for future developments.

DECISION SUPPORT SYSTEMS FOR THE
MANAGEMENT OF ALLERGIC RHINITIS

Developments of the Allergy and Its
Impact on Asthma (ARIA) Consortium
Several expert groups have elaborated algorithms and support
tools to facilitate screening, diagnostic precision, early
optimization of therapy and user-friendly monitoring of

chronic respiratory allergic diseases. Among these, the ARIA
consortium elaborated a detailed decision algorithm based on
clinical scenarios for AR patients treated with symptomatic
drugs. The development process involved a key opinion leader
consensus on specific treatment recommendations, which has
been published transparently (34). The authors count on a
broad experience on the collection of symptom data via mobile
health technology (35–37) in which the CDSS is planned to be
integrated. However, the system is not yet publicly available
online and publications on its implementation are expected to
be published soon.

DSS in the Pharmacy
Another ARIA initiative to provide front-line decision support
has been proposed to implement integrated care pathways
for AR at the level of community pharmacies (37). Patients
suffering from AR often self-medicate with over-the-counter-
drugs with correspondingly poor results (38); hence, pharmacists
assume an important role in the care pathway for patients
suffering from respiratory allergies (39). An open intervention
study among German pharmacists revealed that pharmacists
failed to ask several questions essential to make a diagnosis,
confirm the appropriateness of self-medication and the drug
choice (40). When implementing a pharmacist decision support
system (PDSS), the pharmacists asked seven (78%; IQR 5.25–
9) instead of two (22%; IQR 1–3) of the nine required
questions. The use of the PDSS resulted in a significant
improvement of patient evaluation and required only 1.5 min
(40). Notwithstanding its limitations, this study pioneers the
implementation of a DSS for AR symptomatic treatment
at pharmacy level. The ARIA consortium also underlined
the importance of pharmacists for integrated care pathways
of respiratory allergic diseases (41). The authors recently
proposed a CDSS supporting pharmacists in monitoring
the patient’s symptom control and adjusting symptomatic
treatment accordingly (42) (Figure 2). This comprehensive
approach to supporting pharmacists in their front-line role
in allergy care is a promising concept. The evaluation or
validation of the system in a real-life setting is therefore a
research priority.
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FIGURE 2 | Decision algorithm for treatment of allergic rhinitis in the pharmacy. AH, antihistamine; INAH, intranasal antihistamine; INCS, intranasal corticosteroid;
IOAH, intraocular antihistamine. *INCS if coexisting asthma. Visual Analogue Scale (VAS) nose/eye: “How much are your nose/eye symptoms bothering you today?”
(0 = not at all bothersome, 10 = extremely bothersome). Adapted from Tan et al. (38).

CDSS for Allergen Immunotherapy
A different concept has been followed in the development
of a support system facilitating the precise prescription of
allergen-specific immunotherapy (AIT), i.e., the only disease-
modifying treatment for AR (33). Decision support for AIT
prescription is particularly valuable in geographic areas with high
rates of poly-sensitization and overlapping flowering periods of
many allergenic plants; in these areas the distinction between
genuine and cross-reactive sensitization is extremely difficult
and the precise identification of the pollen causing allergic
symptoms is crucial for AIT efficacy (43, 44). The traditional
diagnostic approach, based on a retrospective clinical history
and extract-based skin prick or IgE testing, is suboptimal due
to several reasons. On one hand, the clinical history can be
unreliable due to a recall bias, especially when seasonal symptoms
occurred several months before the patient’s interview. On
the other hand, extract-based diagnostic tests are unable to
distinguish a genuine sensitization from cross-reactivity due to
poor standardization and high sequence homology. Component-
resolved diagnostics (45, 46) and prospective symptom recording
via eDiary application were proposed as potential solutions to
support the clinician in the detection of genuine sensitizations
and confirmation of their clinical relevance (47). However,
both tools generate rather large data sets which are difficult
to work with in a busy clinical setting, providing an optimal
opportunity for digitally facilitated and guideline-oriented
decision support. The strength of this particular approach
lies in a blended care approach combining the expertise
and experience of the doctor in personal visits with digital
monitoring support. Further, a looped design, facilitates a

continuous re-evaluation based on real-time patient-recorded
symptom data and information on the respective allergen
exposure. The physician plays a strong role in this CDSS
(named @IT-DSS) as it is customizable with regard to thresholds
for test positivity according to personal experience and local
environmental and epidemiological conditions (Figure 3). The
@IT-DSS has been tested in a clinical pilot and multicenter
study where the combination of face-to-face visits with
symptom monitoring via eDiary showed promising results in
terms of patient adherence, a common challenge for most
monitoring apps. Although the daily use of the app for
symptom and medication monitoring declined slowly over
time, the observed drop in adherence was significantly lower
than in other studies based on the spontaneous download
of apps from the respective app stores (47). Further results,
especially on the efficacy of the CDSS are expected to be
published soon.

DIGITAL DECISION SUPPORT FOR
ASTHMA CARE

A multitude of tools for asthma care have been developed,
ranging from reminder systems (48), monitoring apps (49,
50), smart devices (51, 52) up to comprehensive digital
care platforms (53). Although many of these technologies
deliver valuable information for clinical decision-making, not
all classify as a CDSS. Like for AR, also for asthma care
there is a great heterogeneity in concepts, user groups and
outcome assessments of digital health tools and CDSS (54).

Frontiers in Immunology | www.frontiersin.org 4 September 2020 | Volume 11 | Article 2116104

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-02116 September 8, 2020 Time: 18:14 # 5

Dramburg et al. CDSS for Allergy Care

FIGURE 3 | General concept of a guideline-based, looped and customizable clinical decision support system. Thresholds can be adapted by the clinician according
to his/her clinical experience and local characteristics in a blended care setting. Patient and environmental data are continuously collected, and updated reports
created. Adapted from Matricardi et al. (33).

Interestingly, the impact of these systems seems to depend
on the targeted user group. A systematic review on CDSS
impact, when used by healthcare professionals with expertise
in asthma management, reported a low effect on asthma
control, mainly due to very low usage rates. The usability
and user-centered design of CDSS are essential to achieve
a sufficient adoption and high impact of the technologies
(55). Similarly, a systematic review showed that CDSS are
effective in improving care of patients with asthma and
chronic obstructive pulmonary disease (COPD) when used in
primary health care settings (56). The authors further underline
that despite the positive impacts assessed in the randomized,
controlled trials, the effects of the CDSS on user workload
and efficiency, safety, costs of care, provider, and patient
satisfaction remain understudied (56). Recently, the use of
an electronic Asthma Management System (eAMS) improved
the quality of asthma care for adult patients in a 2-year
interrupted time-series study of usual care (year 1) vs. eAMS
(year 2) at three Canadian primary care sites (34). However,
further work on the identification of facilitators and barriers for
uptake by clinicians is being done and randomized controlled
trials assessing patients’ outcomes are still needed (34). Other
promising concepts, such as the myAirCoach system (53),
combine the use of a smart adapter for inhalers, with an
indoor air-quality monitor, a physical activity tracker, a portable
spirometer, a fraction exhaled nitric oxide device, and an app in
one platform. Although these tools have only been tested in a
small number of patients and not yet been included in a CDSS,
they collect valuable information for personalized decision-
making and it remains to be tested whether this concept can
potentially be scaled up for a broader adoption. In addition,
diagnostic approaches, such as serological multiplex tests for

allergen- and virus-triggered asthma (57) could deliver important
information for personalized asthma management, potentially
supported by a CDSS.

DIGITAL SUPPORT TOOLS FOR OTHER
ALLERGIC DISEASES

Several other tools have been developed to digitally augment
allergy care namely supporting diagnosis and management in
a primary care setting (58) or among junior clinicians (59), as
well as for specific allergic diseases such as drug hypersensitivity
(60–63), food allergies (64) and urticaria (65).

Allergy Management Support for Primary
Care
Based on literature review, focused interviews and testing in
primary as well as secondary care patients, a group of allergists,
dermatologists, GP and researchers from the Netherlands
developed a guideline-based allergy management support system
(AMSS) for allergy diagnosis and management in primary care
settings (58). The AMSS interprets data from a 12-item multiple
choice questionnaire with test results for allergen-specific IgE
antibodies. After applying the algorithm to data from 118
patients, the authors identified 150 different diagnostic categories
of AR, asthma, atopic dermatitis, anaphylaxis, food allergy,
hymenoptera allergy, and other allergies. When comparing
the AMSS outcomes with specialists’ recommendations as
gold standard, an agreement of 69.2% (CI 67.2–71.2) was
observed. In a clinical study on the implementation of the
system, GPs showed a significant improvement in allergy
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diagnosis and reported a positive impact of the system
on their clinical routine. However, the decision-making on
medication and referral has not been affected by the use of the
AMSS (66).

Diagnostic Interpretation Support
With the aim of supporting the diagnostic decisions on
AR among junior clinicians, a group of developers and
researchers from India established a CDSS based on the
clinical history and intradermal test results for 40 locally
relevant allergens. The authors developed and validated the
algorithm with data from 857 allergic patients and found
that the CDSS differentiated the presence or absence of AR
with an accuracy of 88.31% compared to the opinion of
allergy experts (gold standard). Further, the study assessed the
preferred CDSS model among junior clinicians who indicated
to prefer a rule-based approach for its intelligible knowledge
model (59).

Drug Hypersensitivities
Several mobile applications have been created to assist doctors
in the assessment of the causality, severity and preventability
of adverse drug reactions (60). The use of a clinical decision
support tool for non-allergists evaluating inpatients reporting
penicillin allergy led to a twofold increase in penicillin or
cephalosporin prescription compared to standard care (61).
Similarly, a significant number of children could be de-labeled
from penicillin allergy by primary care physicians following an
algorithm for risk stratification and further work-up, including
a telemedicine screening and single dose oral challenge (62).
A systematic review has been conducted to assess the potential
of computerized physician order entry systems with built-in
clinical decision support for an improved management of drug
hypersensitivity. The authors concluded, that the heterogeneity
in recording of adverse events represents a considerable challenge
for a unified interpretation of recorded data (63, 67). Further,
an alert fatigue has been described in several studies due to a
lack of alert specificity (67). As the alert systems are built to
point out any potentially dangerous drug interaction of allergenic
threat for patient safety, these alerts can become very numerous
considering the large variety of drugs and potential interactions.
Of course, clinical considerations of the individual patient need
to be considered as well and studies showed that clinicians
tend to ignore alerts in many cases. The frequent signaling of
potential hazards may cause a certain fatigue among users which
limits the possible impact of the system. Again, user-centered
design seems to be essential, considering a balance between
safety and alert frequency. This challenging task will need to
be addressed in future developments and studies, recognizing
particular needs, such as the support of primary care physicians
in the management of chronic diseases where polypharmacy is
the norm (68).

Food Allergies
An initiative to support pediatricians in the work-up of patients
reporting allergic symptoms related to foods has been created
consolidating complex guidelines for the management of food

allergies into five key steps. The development of the Food Allergy
Support Tool further involved rapid-cycle improvement methods
to create a CDSS facilitating food allergy management in a
primary care setting. Interestingly a pilot evaluation showed that
physicians were uncertain about the benefits of the system. The
authors name the necessary active user initiation as a potential
barrier for implementation (64).

IMPROVING MONITORING AND
PREVENTION BY CONNECTING
STAKEHOLDERS: COMMUNITY
ALLERGOLOGY

The strategy of making large data sets easily intelligible for
specialized but also non-specialized healthcare providers, opens
new opportunities for an efficient use of medical resources.
In several countries, the numbers of specialized allergists are
declining while there is a continuous increase of patients needing
allergy care. This gap raises the pressure on primary health care
workers and digital technologies represent a valuable tool for an
intelligent distribution of work force and knowledge. This should
ideally be supported by a digitally enabled availability of context-
specific decision support, as guidelines may vary according to
the clinical setting (primary care vs. specialist vs. tertiary care).
By raising awareness at important community healthcare points
such as pharmacies, an early identification of patients eligible
for AIT can be fostered, always keeping in mind, that several
significant barriers for the implementation of AIT still need to be
overcome (69). Early interventions such as allergen avoidance can
be efficiently implemented already at first contact with a primary
health care physician and advice from specialists can be facilitated
via remote consultations. But even beyond the purely medical
field, a concept of community medicine can be revitalized via
the use of comprehensive digital platforms. Patients can manage
the access rights to their data and decide to share or donate
them for research purposes or community projects, collaborating
with environmental monitoring and public health institutions, a
broad network of information is available for exploitation with
the respective decision support tools.

Several of the above-mentioned support systems include
the retrieval and storage of patient- and/or sensor-generated
monitoring data. This provides the attending physician with
comprehensive data sets for the evaluation of disease control
during regular follow-up visits. Prospectively collected data on
treatment adherence, quality of life, disease-specific symptoms
and objective parameters such as sensor-recorded heart rate
or sleep quality can be easily assessed in visual summaries
or standardized scores (e.g., symptom and medication scores)
which are generated in an automated fashion. At first sight,
these digital platforms seem to clearly outperform traditional
approaches. However, the impact of their use on diagnostic
precision, treatment efficacy, safety, quality of life and treatment
costs needs to be objectivized and studied in more detail with
regard to allergic diseases as it has been already done in other
specialties and areas of medical care (70–73).

Frontiers in Immunology | www.frontiersin.org 6 September 2020 | Volume 11 | Article 2116106

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-02116 September 8, 2020 Time: 18:14 # 7

Dramburg et al. CDSS for Allergy Care

PERSPECTIVES

In summary, digital technologies offer a vast potential to support
clinicians in their actions for prevention, diagnosis, treatment,
and monitoring of allergic diseases. Many different concepts
are under development and in different validation stages, which
opens a promising perspective for the next years. However,
no tools are currently commercially available yet and time-
consuming evaluations are necessary to enable the registration
as a medical product. As CDSS may have a significant impact
on key decisions for patient care, they need to be rigorously
tested for applicability and usability in order to support clinicians
in making the best choices for their patients. In addition, the
interoperability with existing software systems and a smooth
integration in clinical routine are significant challenges for
a successful implementation. More real-life experiences and
clinical studies will need to be conducted in order to extend our

knowledge and foster a solid adoption in of digital support tools
in the clinical routine.
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The same mechanisms that enable host defense against helminths also drive allergic
inflammation. This suggests that pathomechanisms of allergic diseases represent
evolutionary old responses against helminth parasites and that studying antihelminth
immunity may provide insights into pathomechanisms of asthma. However, helminths
have developed an intricate array of immunoregulatory mechanisms to modulate type 2
immune mechanisms. This has led to the hypothesis that the lack of helminth infection
may contribute to the rise in allergic sensitization in modern societies. Indeed, the anti-
inflammatory potential of helminth (worm) parasites and their products in allergy and
asthma has been recognized for decades. As helminth infections bring about multiple
undesired effects including an increased susceptibility to other infections, intended
helminth infection is not a feasible approach to broadly prevent or treat allergic asthma.
Thus, the development of new helminth-based biopharmaceutics may represent a safer
approach of harnessing type 2–suppressive effects of helminths. However, progress
regarding the mechanisms and molecules that are employed by helminths to modulate
allergic inflammation has been relatively recent. The scavenging of alarmins and the
modulation of lipid mediator pathways and macrophage function by helminth proteins
have been identified as important immunoregulatory mechanisms targeting innate
immunity in asthma and allergy. In addition, by regulating the activation of dendritic cells
and by promoting regulatory T-cell responses, helminth proteins can counterregulate
the adaptive T helper 2 cell response that drives allergic inflammation. Despite these
insights, important open questions remain to be addressed before helminth molecules
can be used for the prevention and treatment of asthma and other allergic diseases.

Keywords: helminths, inflammation, macrophage, asthma, immune regulation, allergy, helminth molecules, type
2 immunity

INTRODUCTION

Helminth infections affect about 2 billion people worldwide, and children in developing countries
are particularly susceptible (1). Depending on parasite burden, helminth infections can be
asymptomatic or induce pathology in the host, with malnutrition, anemia, educational loss, and
cognitive deficits as major consequences (2–4).

Helminths usually infest their host as tissue-migratory larvae, which establish niches in the
lung, skin, liver, or intestine, where they develop, mate, and release new infectious offspring.
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The host plays a critical role in this life cycle and represents a
vehicle for the spread of the parasite. During evolution, helminths
have learned to suppress host defense and establish chronic
infections that can endure up to 20 years (5). Helminths typically
induce a host protective type 2 cell–mediated immunity, which
limits type 1 inflammation, reduces host tissue damage, and
ensures parasite survival (6). Helminth-induced type 2 immune
responses are initiated by the damaged epithelium, which secretes
alarmins [interleukin 25 (IL-25), IL-33, and thymic stromal
lymphopoietin] that activate and recruit type 2 innate lymphoid
cells (ILCs2) and CD4+ T helper 2 (TH2) lymphocytes. The
production of type 2 cytokines (IL-4, IL-5, IL-10, and IL-13),
as well as granulocyte-macrophage colony-stimulating factor
(GM-CSF), by these cells induces eosinophilia, M2 macrophage
polarization, and the secretion of immunoglobulin G1 (IgG1),
IgG4, and IgE (7–11).

A type 2 immune response is also a hallmark of asthma and
allergy, suggesting that host defense and repair mechanisms of
antihelminth immunity have implications for the pathogenesis
and treatment of these inflammatory diseases. Epidemiological
evidence on the reciprocity between helminthiases and chronic
inflammatory diseases has implicated helminth infections in
the prevention of allergy and asthma [see previous reviews
(12–14)]. Helminths produce molecules with powerful
immunomodulatory activities such as the anti-inflammatory
protein-2 (AIP-2) in hookworms, the transforming growth factor
β (TGF-β) mimic (Hp-TGM), the alarmin release inhibitor
(Hp-ARI), or the enzyme glutamate dehydrogenase (Hpb-GDH)
in the nematode Heligmosomoides polygyrus (15–18). The
anti-inflammatory effects of helminth products observed in
experimental models of asthma prompt a better investigation of
helminth-(product)–driven regulation of type 2 inflammation
and its underlying mechanisms of action in human settings.
Current research aims to translate promising findings from
rodent models to human disease and to ultimately develop
helminth-based biotherapeutics for the prevention and therapy
of allergy and asthma.

EPIDEMIOLOGICAL EVIDENCE FOR
PROTECTIVE ROLES OF HELMINTHS IN
ALLERGY AND ASTHMA
Helminths exert diverse effects on asthma and allergies
depending on the species, parasite load, and time of infection
(19, 20). Some parasites trigger or worsen asthma and allergic
symptoms, whereas others tend to reduce the risk of these
diseases (21).

Ascaris lumbricoides is a gastrointestinal parasite that passages
through the lung. Studies in several countries have shown an
association between Ascaris infection, asthma, and aeroallergen
sensitization (22–24), which also correlated with Ascaris-specific
IgE (sIgE) (25–27). A high prevalence of asthma and wheezing
was particularly observed among Ascaris-infected children (28,
29). Similarly, infection with Strongyloides and Toxocara species
correlates positively with allergic airway disorders. Infection with
the intestinal parasite Strongyloides stercoralis was associated with
an increased risk of asthma and its exacerbation (21, 30, 31)
and Toxocara species infection resulted in increased allergy

and asthma prevalence in children, which positively correlated
with serum IgE levels (32–34). Thus, some helminth species
trigger mechanisms such as the production of cross-reactive IgE
or inflammatory mediators that promote allergic sensitization
and/or asthma symptoms. A detailed understanding of how
parasites drive allergic inflammation may provide important
insights into pathomechanisms and therapeutic targets of
allergy and asthma.

However, other epidemiological studies have shown a lower
prevalence of asthma and allergic disorders during chronic
intestinal helminth infections (35–37). Hookworm infection
appears to be particularly protective (21), whereas the results for
other parasites vary, depending on study design and the assessed
outcomes. In several studies, deworming of chronically infected
people increased allergic reactions and overall responsiveness of
patients’ immune cells (38–41), and long-term antihelminthic
treatment increased skin prick test reactivity to mite in Ascaris
species and Trichuris species–infected children, as well as in
allergic rhinitis patients (38–40). However, effects on asthma
or rhinitis symptoms were not assessed in these studies. Direct
evidence for helminth-driven modulation of allergic diseases in
humans came from a multitude of studies on Schistosoma species
infection. Children infected with Schistosoma haematobium
displayed reduced skin prick test reactivity to house dust
mite (HDM) and other aeroallergens (42) and lower allergic
responses to mite were observed in Schistosoma mansoni–
infected individuals (43). Allergy-protective effects of helminths
were related to the intensity and chronicity of the infection,
as well as parasite burden (36, 44, 45). Furthermore, in the
presence of S. mansoni, peripheral blood mononuclear cells from
asthmatic patients released a lower amount of inflammatory type
2 cytokines and higher levels of anti-inflammatory IL-10 (46).
A lower hospitalization rate was observed for asthmatic patients
infected with S. mansoni, suggesting that infection may reduce
asthma morbidity (47).

In summary, the detrimental or protective effects of
helminthiases on asthma and allergy depend on the parasite
species, the duration of the infection, and the immunological
context. These diverse effects may be due to different antigen
or mediator repertoires, which affect hallmark type 2 responses
such as eosinophil recruitment, the activation of allergen-specific
TH2 cells, or IgE class switching. Worm molecules may also
exert a different propensity for uptake by antigen-presenting cells
and thus differentially regulate the induction of T cell responses.
Finally, environmental factors, the presence of coinfections, and
microbiota composition influence the immune response toward
helminth parasites, resulting in different outcomes in helminth-
infected individuals from different locations (48–50).

IMMUNOMODULATION OF ASTHMA
AND ALLERGIC DISEASES BY
HELMINTH MOLECULES
As helminth infection has been implicated in the prevention of
allergy and asthma, experimental infection with helminths has
been used in humans and animals to test potential therapeutic
effects. Although rodent studies have demonstrated that helminth
infection ameliorates allergic inflammation, clinical trials have
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not found the same benefits (51–54). Encouraging results
regarding the modulation of the immune response during asthma
were observed in experimental infections with Schistosoma
species, H. polygyrus, and Nippostrongylus brasiliensis. S. mansoni
and Schistosoma japonicum are natural human parasites that
showed anti-inflammatory effects in models of ovalbumin (OVA)
and HDM allergy (45, 55–57). Protection against allergic airway
inflammation (AAI) in Schistosoma-infected mice was associated
with the upregulation of IL-10, downregulation of IL-5, and
induction of regulatory T cells (Tregs), which together induce a
modified type 2 immune response (58–60). Induction of Tregs
and IL-10 production is also implicated in allergy-suppressive
actions of the gastrointestinal mouse parasite H. polygyrus (61–
64). Infection with H. polygyrus suppressed airway inflammation,
by reducing eosinophil recruitment, and this effect was associated
with Treg and Breg expansion and the upregulation of anti-
inflammatory IL-10 (63, 65). IL-10–dependent prevention of
allergy has also been observed with the parasiteN. brasiliensis, in a
model of OVA-induced airway hyperresponsiveness in rats. These
studies suggest shared allergy-suppressive mechanisms among
different parasite species (66).

Although animal models of helminth infection have
contributed to the understanding of parasite-driven immune
regulation in asthma and allergy, deeper insights into
immunomodulatory effects of helminths have been provided
by studying active molecules produced by parasites. The
systematic analysis of parasite products by the help of proteomics
and genomics has identified a comprehensive collection

of helminth-derived molecules with immunomodulatory
effects on asthma and allergic diseases (Figure 1). One of
the best characterized helminth-derived immunomodulators
is ES-62, a phosphorylcholine (PC)–containing glycoprotein
secreted by the parasitic filarial nematode Acanthocheilonema
viteae. ES-62 has shown protective effects in mouse models
of asthma, lung fibrosis, and rheumatoid arthritis (67–70),
with its immunomodulatory capacity depending on the
PC moiety (71). Through PC modification, ES-62 can act
on a variety of cells of the immune system, ranging from
mast cells (MCs), macrophages, dendritic cells (DCs) to B
cells, to affect intracellular pathways associated with antigen
receptor and TLR signaling (67, 72–75). In MCs, ES-62 inhibits
high-affinity IgE receptor (FcεRI)–induced degranulation,
resulting in reduced ear swelling and hypersensitivity in a
mouse model of oxazolone-induced skin inflammation. The
suppression of MC activity by ES-62 further diminished airway
hyperresponsiveness, lung pathology, and eosinophilia during
OVA-induced AAI (67). The regulatory effects of ES-62 were
mediated by the suppression of OVA-specific CD4+ T cell
proliferation, concomitant with decreased production of IL-4,
IL-13, and interferon γ (IFN-γ) (76). The regulatory potential of
ES-62 on MCs depended on the inhibition of MyD88-mediated
signaling downstream of TLR4 and FcεRI3, which was partially
dependent on IL-33/ST2 signaling (75, 77). The suppression
of IL-33 signaling was also described as a key mechanism
underlying the H. polygyrus–driven modulation of type 2
immune responses. This effect is mediated by the secretion

FIGURE 1 | Overview of immune regulatory helminth molecules and their mechanisms of action in mouse models of allergic airway inflammation and in human
in vitro models. Immunomodulators from different helminths can act on a variety of cells ranging from innate to adaptive and effector immune cells. Blocking of
signaling is shown by red arrows, induction by green, and modulation by spaced, gray arrows. AAI, allergic airway inflammation; AIP-2, anti-inflammatory protein 2;
As, A. simplex; Av, A. vitae; Cys, cystatin; DC, dendritic cell; Ev, Extracellular vesicles; GDH, glutamate dehydrogenase; HDM, house dust mite; HpARI, H. polygyrus
Alarmin Release Inhibitor; HpBARI, H. polygyrus Binds Alarmin Receptor and Inhibits; HpbE, H. polygyrus extract; Mϕ, macrophage; MIF, macrophage migration
inhibitory factor; Nb, N. brasiliensis; OVA, ovalbumin; PC, phosphocholine; SEA, schistosome soluble egg antigen; Sm, S. mansoni.
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of an Alarmin Release Inhibitor (HpARI), which binds and
blocks IL-33, and by the recently discovered Binds Alarmin
Receptor and Inhibits (HpBARI) protein, which blocks the
IL-33 ST2 receptor in mice and human cells (18, 78). HpARI
was shown to hamper IL-33 release in human lung explants
and in a human IL-33 transgenic mouse model after Alternaria
allergen administration (18), whereas HpBARI inhibited
eosinophil recruitment after Alternaria allergen administration
(78). Another undefined H. polygyrus product was able to
downregulate IL-33 production through the induction of IL-1β,
thus promoting parasite chronicity (79). In Alternaria-induced
AAI, H. polygyrus downregulated the IL-33 receptor via releasing
extracellular vesicles containing microRNAs, resulting in reduced
eosinophilia and improved lung function (18, 80, 81). These
results indicate that vesicle release represents an efficient way
to deliver immunomodulatory molecules to host immune cells.
Similar to scavenging of IL-33 by HpARI, the recently identified
protein p43 from Trichuris muris can bind IL-13 and thereby
inhibit parasite expulsion (82), raising the question if this
molecule can also modulate IL-13–driven airway inflammation.

Another conserved mechanism of helminth-driven immune
regulation is the use of cysteine protease inhibitors (cystatins).
Mammalian cysteine proteases are required for proteolytic
processing of antigens, enabling presentation on MHC class II
molecules and effective T cell responses. Cystatins from A. viteae,
Brugia malayi, N. brasiliensis, Onchocerca volvulus, Clonorchis
sinensis, A. lumbricoides, H. polygyrus, and Litomosoides
sigmodontis have been shown to interfere with this process to
evade antigen-induced immunity (83–94). AvCystatin from
A. viteae mitigated airway inflammation and colitis in mice
through the induction of IL-10–producing macrophages (93)
and reduced pollen-specific responses in lymphocytes from
allergic patients (94). Cystatin from N. brasiliensis (NbCys)
dampened OVA-specific splenocyte proliferation, as well as
IgE and cytokine production by inhibiting cathepsins L and
B (89). Similar effects were observed for cystatin (rAl-CPI)
from A. lumbricoides, which decreased TH2 cytokine and IgE
production in a mouse model of HDM-induced AAI (92).

A large repertoire of immunomodulatory molecules is also
present in the egg stage of some parasites. Schistosome soluble
egg antigen (SEA) from S. japonicum showed inhibitory effects
on the development of airway inflammation in a CD4+ CD25+

T cell–dependent manner during OVA-induced asthma in mice
(95). In the same model, antigens from S. mansoni (Sm22.6,
Sm29, and PIII) reduced airway inflammation, eosinophilia,
OVA-specific IgE levels, and TH2 cytokine production in the BAL.
The beneficial effects of Sm22.6 were due to the induction of IL-
10, similar to the S. mansoni egg glycoprotein IPSE/α-1, which
induced IL-10–producing Bregs (96). In contrast, SM22.6 and
PIII triggered the expansion of CD4+Foxp3+ T cells suggesting
that both Treg and Breg cells are involved in the modulation of
type 2 inflammation by SEA (97).

Helminth molecules can also mimic host-derived mediators.
H. polygyrus or administration of its excretory–secretory
products (HES) induces Treg cells, suppressing effector cell
proliferation in vitro and AAI in vivo. This regulatory
response was mediated by Hp-TGM, a protein with TGF-β–
like activity (15, 64). TGH-2 from B. malayi similarly activated

TGF-β pathways, suggesting TGF-β signaling as a shared
immunomodulatory mechanism among parasite species (98).
B. malayi, Ancylostoma ceylanicum, Trichinella spiralis, and
Anisakis simplex also produce homologs of the mammalian
cytokine macrophage migration inhibitory factor (MIF) (99–
103). MIF homologs from B. malayi (99) and T. spiralis (100)
functionally reflect host MIF proteins, e.g., regarding chemotactic
effects on monocytes, whereas the MIF homolog from A. simplex
(As-MIF) showed direct anti-inflammatory activity on OVA-
induced AAI, where it suppressed the production of TH2
cytokines (IL-4, IL-5, and IL-13), as well as eosinophilia and
goblet cell hyperplasia in the airways. These effects were again
associated with the recruitment of CD4+CD25+Foxp3+ T cells
and the upregulation of IL-10 and TGF-β (102, 103).

Treg cell induction in vivo was also observed for an
excretory/secretory protein of Ascaris suum (PAS-1), which
inhibited airway inflammation in a murine model of OVA-
induced AAI by decreasing eosinophilia and TH2 cytokines
in the BAL, as well as OVA-specific serum IgE (104). PAS-1
also abrogated airway inflammation and airway hyperreactivity
induced by the proinflammatory A. suum molecule APAS-3
by reducing the production of proinflammatory cytokines
in the airways and IgG1 and IgE levels in the serum (105).
The amelioration of OVA-induced asthma by PAS-1 was
mediated by IL-10/TGF-β–producing Treg cells (CD4+CD25+)
and IFN-γ–producing CD8+ T cells (104, 106). Thus,
many helminth molecules target IL-10, TGF-β, and IFN-
γ, which efficiently suppress type 2 cytokine and antibody
responses involved in antihelminth immunity and allergic
inflammation (107).

Recently, a metalloprotease (TIMP)–like protein from Necator
americanus (AIP-2) with Treg-mediated anti-inflammatory
effects on AAI was identified. AIP-2 did not suppress matrix
metalloprotease catalytic activity, but modulated the activity
of CD103+ DCs that reduced the expression of costimulatory
markers and expanded Treg cells. Thus, administration of AIP-
2 reduced eosinophil recruitment, type 2 cytokine (IL-5, IL-13)
production in the airways, and OVA-specific IgE in the serum.
Importantly, AIP-2 also inhibited the proliferation of T effector
cells from the blood of human HDM allergic patients (17).

Another recent study showed that in addition to products
of the adult L5 stage of H. polygyrus (e.g., HES, HpARI),
a preparation of the infective larval (L3) stage could protect
mice against the development of AAI. The H. polygyrus larval
extract (HpbE) and its active protein component, Hpb GDH,
efficiently suppressed HDM-induced AAI in vivo. In particular,
HpbE and recombinant Hpb GDH modulated the arachidonic
acid metabolism of macrophages, inducing an anti-inflammatory,
type 2 suppressive eicosanoid profile (16). HpbE-/GDH-treated
macrophages exhibited high IL-10 and prostaglandin E2 (PGE2)
production, but low production of proinflammatory leukotrienes,
which are key mediators of AAI (16, 108). Macrophage-derived
PGE2 was particularly important for the HpbE-driven regulation
of AAI in this study, and another study found that also helminths
themselves can produce this immunomodulatory mediator (109).
The HpbE-induced eicosanoid switch was largely mediated
through nuclear factor κB, p38 mitogen-activated protein kinase,
hypoxia-inducible factor 1α, and the cyclooxygenase-2 pathway.
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Finally, HpbE reduced the chemotaxis of granulocytes from
patients suffering from type 2 airway inflammation (16).

Together, these studies reveal that helminth molecules
are efficient modulators of the innate and adaptive immune
responses that drive AAI.

DISCUSSION

Helminths have unique immune regulatory potential, and
understanding the complex array of immune responses triggered
by these parasites may be instrumental for the diagnosis,
prevention, and treatment of type 2 inflammatory diseases, such
as allergic asthma. Identifying the molecules and mechanisms
that determine whether a parasite will promote or suppress
allergic inflammation may foster both the definition and targeting
of pathomechanisms of chronic type 2 inflammation. Parasitic
infections influence immunity and inflammation by a variety
of molecular and cellular mechanisms, including the induction
of Treg cells and regulatory macrophages, producing anti-
inflammatory mediators, such as TGF-β, IL-10, and PGE2, with
beneficial effects in experimental models of asthma. However,
the translation of these results from rodents to humans is
not trivial. For instance, little is known about the correct
dose or duration of parasite infection required for protective
effects in humans. Safety concerns about detrimental effects of
parasite infection limit clinical trials, and high immunological
variation, e.g., due to different genetic background, complicates
the interpretation of data from experimental helminth infection
in humans. Indeed, not all studies show an impact of helminth
infection or deworming on allergic inflammation (110, 111),
which is in line with the lack of a therapeutic effect of
intended helminth infection on AAI in humans (51–53) [for a
comprehensive review, see Evans and Mitre (112)]. It is important
to note that epidemiological studies commonly assess effects of
helminth infection on skin prick test reactivity (e.g., atopy) rather
than asthma symptoms, which may explain disparities between
different studies.

Safety concerns regarding live helminth infections may
be overcome by the identification and characterization of
helminth-derived anti-inflammatory molecules, which may be
developed as biotherapeutics. Therapeutic approaches exploiting
the immunomodulatory potential of helminths, while avoiding
infection-related side effects, represent an attractive treatment
option for major chronic airway diseases. The identification

of the cellular and molecular pathways targeted by helminth
molecules (e.g., T cells, DCs, TLR-/IL-33 signaling) should aid
the discovery of new worm-based drugs. Such drugs will have
to be delivered preferentially locally, i.e., to the inflamed tissue
at an optimal dose, route, and frequency of administration,
which remains to be determined for each molecule. The recent
identification of immune regulatory molecules that reduce AAI
upon local delivery and simultaneously act on key human
cells involved in asthma (e.g., epithelial cells, macrophages,
eosinophils) (16–18) justifies the hope that effective topical
helminth-based biotherapeutics can be developed. Formulation
for local delivery into the airways represents a vital alternative
to current biologics or oral corticosteroids that today represent
the standard treatment for more severe forms of type 2 airway
inflammation. However, before helminth-derived molecules can
reach the clinics, there are several hurdles to be cleared. This
particularly includes the immunogenicity of helminth molecules,
potential proinflammatory side effects, as well as their half-
life in the human organism. Reducing the immunogenicity
of foreign helminth molecules represents a major challenge
that may, e.g., be tackled by packaging immune regulatory
proteins into nanocarriers for targeted delivery to a specific cell
type or by designing non-immunogenic (humanized) mutants.
Despite these challenges, significant scientific progress has
been made to turn worm molecules into drug candidates.
The unique and diverse modes of action of helminth-derived
molecules make them promising candidates to become the
next generation of biotherapeutics for the treatment of type 2
inflammatory disorders.
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In the last decade single domain antibodies (nanobodies, VHH) qualified through their
unique characteristics have emerged as accepted and even advantageous alternative to
conventional antibodies and have shown great potential as diagnostic and therapeutic
tools. Currently nanobodies find their main medical application area in the fields of
oncology and neurodegenerative diseases. According to late-breaking information,
nanobodies specific for coronavirus spikes have been generated these days to test
their suitability as useful therapeutics for future outbreaks. Their superior properties such
as chemical stability, high affinity to a broad spectrum of epitopes, low immunogenicity,
ease of their generation, selection and production proved nanobodies also to be
remarkable to investigate their efficacy for passive treatment of type I allergy, an
exaggerated immune reaction to foreign antigens with increasing global prevalence.

Keywords: allergy, allergen, nanobody, VHH, blocking antibody, allergy treatment
INTRODUCTION

Type I allergy, an IgE antibody mediated hypersensitivity disease, represents a common health
problem affecting almost 30% of the population worldwide (1). The recognition of allergens by
specific IgE antibodies that are generated after sensitization is a key event for the initiation of allergic
inflammation (2). Allergic patients suffer from a variety of allergic symptoms including
rhinoconjunctivitis and asthma (3) but also food allergy and skin inflammation (4). These
clinical manifestations cause a major burden by reducing the quality of life of affected persons
(5). While anti-inflammatory treatment based on pharmacotherapy reduces allergic symptoms and
is the most commonly prescribed medication for treatment of allergic patients (6), only allergen-
specific immunotherapy (AIT) represents a causative treatment of type I allergy. In fact, AIT
induces a protective immunity in allergic patients based on the modification of cellular and humoral
responses to the disease causing allergen (7). Besides the inhibition of IgE binding to their specific
allergen, the immune deviation from a TH2 to TH1 response, and the decreases in numbers of
effector cells in target organs, the generation and maintenance of allergen-specific regulatory T
and B cells and the involvement of their suppressive cytokines are essential for the induction of
allergen tolerance (8–10). Beyond doubt the improvement of allergic symptoms is further caused by
Abbreviations: AIT, Allergen-specific ImmunoTherapy; EBV, Epstein-Barr Virus; Fab, antigen-binding Fragment of
antibodies; HCAb, Heavy Chain-only Antibody; HumAb mice, transgenic mice that produce fully human antibodies; PCA,
Passive Cutaneous Anaphylaxis; scFv, single chain Fragment variable (recombinant derivative of a classical antibody); VHH,
Variable domain of Heavy chain of Heavy chain-only antibodies.
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AIT-induced IgG antibodies found in serum and nasal secretions
(8, 11–14). For many years AIT was conducted with aqueous
natural allergen extracts and patients experienced considerable
side effects due to the unpredictable composition and poor
quality of the injected extracts (1). Recent developments like
next-generation forms of AIT based on molecular approaches
may overcome the limitations of current forms of AIT (15, 16).
The last generation of improved vaccines, i.e. peptide carrier
vaccines, induces an IgG response that targets IgE binding sites
on allergens. Induced IgG antibodies effectively block IgE
binding and are termed blocking antibodies (1, 17).

However, the efficacy of such blocking antibodies was long
questioned because it revealed to be cumbersome to isolate
reproducible defined, i.e. monoclonal allergen-specific
antibodies comprising the capacity to inhibit allergen-induced
allergic reactions.

A recent proof of concept study re-stimulated the idea to
generate monoclonal allergen-specific antibodies and to evaluate
their feasibility for allergy treatment. The authors could show that
a single subcutaneous injection of a mixture of two human
monoclonal allergen-specific IgG4 antibodies significantly
reduced allergic symptoms in allergic patients (18, 19).
Moreover, validated in a PCA mouse model, the mixture of
these two monoclonal antibodies proved to be more potent in
inhibiting mast cell degranulation than IgG antibodies purified
from patients’ sera who underwent successful AIT (18).
Furthermore, these human monoclonal IgG4 antibodies recently
completed the phase II clinical trial in treatment of cat allergic
patients (https://clinicaltrials.gov/ct2/show/NCT03838731). These
results proved for the first time that allergy treatment with
monoclonal allergen-specific antibodies is a well-tolerated, rapid,
and effective approach to reduce allergic inflammation and
rekindled the blocking antibody concept (11, 20, 21).

Nevertheless, the generation and identification of blocking
conventional human or humanized antibodies is connected with
high costs for production, validation and application (22, 23).
Therefore, cost-effective alternatives are currently sought.

The nanobody technology represents such an alternative
implying a significant improvement to the laborious methods
to obtain monoclonal blocking conventional antibodies. Due to
their beneficial properties of small molecules and monoclonal
antibodies, nanobodies in general are an attractive agent for
development of novel therapeutic strategies (24, 25). The ease of
their generation and production, the single domain organization,
their beneficial biochemical properties and their feature to
recognize small cavities on the surface of antigens and hence
bind to epitopes inaccessible for conventional antibodies (26)
have raised the particular interest of allergologists recently.

Can the nanobody technology provide enhanced opportunity
to generate a panel of antigen-binding molecules with various
epitope specificities for certain allergens different to conventional
antibodies? Will these identified allergen-specific nanobodies be
more efficient in blocking than conventional IgG antibodies due
to their pronounced cleft recognition? Will it be possible with
this technology to find single nanobodies that are able to
abrogate IgE-mediated allergic inflammation? These questions
Frontiers in Immunology | www.frontiersin.org 2119
and our wish to answer these questions attracted our attention.
Within this review, we focus on the powerful nanobody
technology to generate allergen-specific nanobodies and report
on their evaluation for prospective application for passive
allergy treatment.
THE COMPLEX AND LABORIOUS
APPROACH TO IDENTIFY EFFECTIVE,
PROTECTIVE ALLERGEN-SPECIFIC
MONOCLONAL ANTIBODIES

If allergologists are asked why the search for effective protective
allergen-specific monoclonal antibodies is complex and
laborious, they will describe this issue by the typical quest for a
needle in a haystack. Through intense and precise molecular and
immunological exploration of available allergen-specific
monoclonal antibodies in the past it was proven that epitope
specificity and affinity are decisive for their inhibitory potential
to block IgE binding and thus IgE-mediated reactions (21, 27–
29). The commitment to find and isolate monoclonal antibodies
with specificity and high affinity for certain allergens and
even more for certain epitopes always started with several
fundamental decisions. Amongst them the choice for the
perfect source to gain DNA coding for antibodies and the
applied technology to generate allergen-specific antibodies are
two of the most critical ones. Regarding the DNA source both
animals, mainly mice, and humans served as blood, spleen,
tonsils and even bone marrow donors in the last decades to
isolate B cells or plasma cells and thus DNA coding for
antibodies (30–32). For the proof of principle, murine IgG
antibodies overlapping with human IgE binding sites are
valuable tools to investigate the effects to inhibit IgE
epitope recognition on allergens and consequently to
contribute to the design of hypoallergenic derivatives suitable
for AIT (33). However, the direct therapeutic use of these murine
monoclones in humans is limited by the high incidence
of harmful immune responses against these administered
foreign proteins (34). To mitigate this limitation numerous
murine monoclonal antibodies have been re-engineered by
chimerization and humanization technologies. These expensive
procedures are justified for fatal diseases like different forms of
cancer but were barely applied for allergen-specific murine
antibodies so far with a few exceptions (35, 36). This was one
of the main reasons why allergologists in the recent past
endeavour to focus on human donors including allergic
patients, AIT-treated patients and even healthy individuals
depending on the research question (28, 37, 38).

Various methods were utilized to generate allergen-specific
genuine, i.e. native antibodies with the preservation of the natural
VH and VL pairing including hybridoma technology, Epstein-
Barr-Virus (EBV) transformation, single B cell sorting and cloning
and HumAb mice (transgenic mice that produce fully human
antibodies) (18, 39–49). In parallel, versatile approaches were
developed to generate non-genuine antibodies by random
September 2020 | Volume 11 | Article 576255
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combination of VH and VL chains, i.e., combinatorial Fab/ScFv
libraries or (semi-) synthetic libraries (37, 38, 50–60). Based on
PCR amplification as strong tool to depict large antibody
repertoires and phage display to screen these large repertoires,
many recombinant allergen-specific antibody fragments (Fabs or
ScFvs) were isolated (37, 38, 50–56, 58–64).

All mentioned technologies have definitely contributed to the
isolation and evaluation of monoclonal allergen-specific IgG, IgE
antibodies and fragments thereof and furthermore to assess their
feasibility for allergy treatment. Nevertheless, all mentioned
technologies are also reported to have some limitations.
While the hybridoma technology and EBV transformation are
generally unsuitable for a comprehensive screening of large
antibody repertoires because of their inefficient fusion and
transformation events, the single B cell sorting was long
hampered by inadequate staining technologies to clearly
identify allergen-specific antibody producing cells (32, 39). The
main drawback of combinatorial libraries is that they usually rely
on random combination and thus most likely unnatural VH and
VL antibody pairings. Additionally, it turned out independent of
the applied technology to be very difficult to isolate monoclonal
IgG and IgE antibodies with a broad epitope spectrum for each
allergen. It also revealed that besides several blocking antibodies
also many non-blocking or even enhancing antibodies were
isolated (44, 63–65). While all three types of monoclonal
antibodies were unambiguously supportive to study the
structural requirements for efficient effector cell activation and
hence contribute to elucidate the underlying mechanisms of type
I allergy, non-blocking and enhancing antibodies were fully
useless for the prospective application as protective antibodies.

These insights forced allergologists to look beyond the
conventional antibody horizon.
THE POWERFUL NANOBODY
TECHNOLOGY TO ISOLATE ALLERGEN-
SPECIFIC NANOBODIES—A WELCOME
ALTERNATIVE TO CONVENTIONAL
ANTIBODY GENERATION

About 30 years ago, a group of Belgian scientists made an
unexpected discovery, which was patented and later presented
to the scientific community in the form of the well-known
discovery publication in the journal Nature in 1993 (66). They
found that a significant amount of non-canonical types of
antibodies is naturally present in blood of Camelidae in
addition to conventional antibodies. This exceptional type of
antibody called Heavy Chain-only Antibody (HCAb) lacks light
chains and consists of a homodimer of shortened (without CH1
domain) heavy chains. The antigen-recognition region in HCAbs
is formed by only one variable domain (VHH) that is directly
linked via a hinge region to the Fc-domain (66). Later on, similar
non-canonical HCAbs were found in some cartilaginous fishes
such as sharks and ratfish (67–69). The antigen-binding variable
domain of these antibodies was named VNAR as opposed to
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VHH in camelids. A recombinant protein version of the VHH-or
VNAR-domain is usually called “single domain antibody” or
“nanobody”. The very popular term “nanobody” is the
commercial name given by the Belgian biopharmaceutical
company Ablynx, a pioneer in HCAb-based therapeutic
applications that was acquired by Sanofi in 2018.

The nanobody generation technology was proven to be a very
efficient machinery to generate nanobodies with required
properties and offered crucial advantages compared to
traditional techniques utilized to produce murine or human
conventional antibodies. After the typical initial immunization
(of camelids) step, the full repertoire of cDNA coding for
functional nanobodies can be efficiently cloned from peripheral
blood lymphocytes of immunized animals using PCR
amplification and then a panel of nanobodies of required
specificity can be easily selected using phage (or other type of)
display-based methods (66, 70–72). In addition, there are different
in vitro affinity maturation approaches to improve features of
initially selected nanobodies (71, 73, 74). In some cases, especially
if the antigen of interest is toxic, unstable, non-immunogenic or
not available in sufficient quantity, other types of libraries (naive,
semisynthetic or fully synthetic libraries) can be efficiently used
instead of immune libraries for generation of nanobodies (75–79).
Synthetic libraries can be made using special predesigned scaffolds
such as humanized scaffolds optimized for intracellular stability
(77) or optimized for bacterial expression (80). Non-immune
libraries are typically much larger than immune libraries and a
ribosome display was suggested for the initial selection round of
such large libraries to work with higher concentrations of
nanobody variants than in case of phage display (79, 80).
Synthetic libraries combined with different selection procedures
were successfully used to obtain conformationally selective
nanobodies against G protein-coupled receptors (78), sybodies
against very challenging targets such as the heterodimeric bacterial
ABC exporterTM287/288 (81) or the intracellular KDEL receptor
(82) to name a few examples from many others.

Nanobodies comprise unique features that distinguish them
from classical antibodies. Nanobodies are the smallest known
antibody fragments (4 × 2.5 x 3 nm, 12–15 kDa) of natural origin
that are able to specifically bind their cognate antigens. Due to
their often extended CDR3 loop they can form unusual
paratopes, i.e. finger-like extensions and thus recognize special
native antigenic epitopes (small cavities, concave surfaces,
conformational epitopes, active sites of enzymes) that are
hidden for conventional antibodies (Figure 1). Indeed,
nanobodies have proven to be useful tools for modulating the
activity of enzymes (26, 83, 84). It could be therefore speculated
that allergen-specific nanobodies that modulate or inhibit the
proteolytic activity of certain allergens (e.g., Phl p 1, Der p 1)
might reduce their penetration capacity through mucosal
surfaces. Furthermore, nanobodies are able to bind small
peptides with high affinity (85–89). Their high affinity,
solubility and stability over a wide range of temperatures and
pH, ease of producing in bacteria or other expression systems
make them convenient molecules for different applications, as
well as for all possible engineering modifications e.g.,
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development of complex constructs and conjugates. Nanobody-
based tools are therefore increasingly used for research,
molecular visualization, diagnostics and development of new
treatment options for various pathologies, including cancer and
other socially significant diseases (71, 72, 90–94).

So far, only one allergen-specific nanobody is described in the
literature. This nanobody is reported to be specific for the major
peanut allergen, Ara h 3 and was isolated from a synthetic library
of humanized nanobodies via phage display (95). The interaction
between Ara h 3 and the Ara h 3-specific nanobody resulted in
a dissociation constant of 400 nM representing medium
affinity binding and was further investigated by the structural
determination of formed co-crystals (95). The authors
acknowledged that additional work is needed to improve the
affinity of the isolated nanobody to make it an attractive tool for
the development of biosensors for peanut allergen detection.
This finding clarifies that the selection procedure is only one part
of the successful discovery of potent IgE-blocking nanobodies,
thus the evaluation of selected nanobodies is critical as well.

Nevertheless, we are confident that soon more allergen-
specific nanobodies will arise to be studied for their potential
to abrogate IgE-mediated allergic inflammation.
EVALUATION OF THE SUITABILITY OF
ALLERGEN-SPECIFIC NANOBODIES FOR
ALLERGY TREATMENT

Similar to the evaluation of conventional antibodies with the
focus to identify effective protective monoclones, generated
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nanobodies have to be assessed first for their allergen
specificity, epitope recognition, cross-reactivity to homologous
allergens present in related species, for their affinity to their
corresponding allergens and most importantly for their ability to
inhibit patients´ IgE binding to these allergens (Figures 2A–C).
After the allergen specificity of isolated nanobodies is confirmed,
the proof for cross-reactivity (Figure 2A) is of great importance
because IgE antibodies from allergic patients often displayed
cross-reactivity to allergens from other allergen sources (28, 96).
High affinity and slow dissociation of formed nanobody/allergen
complexes will be critical prerequisites for allergen-specific
nanobodies to be chosen as suitable candidate (Figure 2B).
However, the pivotal characteristics for an allergen-specific
nanobody to be attractive for further processing will be the
determination of its potential to block patients’ IgE binding and
hence IgE-mediated effector cell activation (Figure 2C).
Additionally, specific nanobodies have to be tested as well for
their cross-protectivity to homologous allergens. All these
properties are crucial requirements for allergen-specific
nanobodies to be selected for further essential investigations
concerning half-life, clearance and safety.

Nanobodies are considered as proteins of weak immunogenicity
due to the shared similarities with variable VH domains of
human immunoglobulins (IgG3 subclass), and they can be
further improved by a humanization approach (97) (Figure
2D). Consequently, no immune response against applied
nanobodies was raised in mice or humans that were injected
with nanobody-containing constructs (98–100). Safety of
nanobody-based drugs is confirmed by several completed
Phase 1 and Phase 2 clinical trials (101) and recent approval
by the US Food and Drug Administration (FDA) and the
A B

FIGURE 1 | Conventional antibodies such as IgG or IgE (A) and nanobodies (VHH) (B) can be generated against different epitopes of targeted antigens, a particular
allergen. Nanobodies overlapping with IgE binding sites on allergens prevent IgE-mediated allergic reactions.
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European medicines agency (EMA) of the first therapeutic
nanobody, Caplacizumab, a bivalent nanobody designed for
the treatment of thrombotic thrombocytopenic purpura and
thrombosis (102).

Though advantageous for in vivo imaging, the small size of
nanobodies could be seen as a disadvantage for passive treatment
of allergy due to a quick renal clearance of nanobodies from
blood (approx. 30 min). Many different strategies to extend the in
vivo half-life of nanobody-based construct have been developed
(103). They include increasing the hydrodynamic radius of a
protein by attaching highly flexible and hydrophilic molecules
such as polyethylene glycol (PEG) and carbohydrates or by
genetic fusion with polypeptide chains mimicking the
biochemical properties of PEG, fusion of VHH to the Fc region
of IgG, fusion or non-covalent binding to albumin (104) (Figure
2D). Nanobodies can also be used as modules to engineer larger
molecules with several valencies and/or specificities, such as
multivalent (105–108), bispecific (105, 109), and other (110,
111) constructs that may acquire considerably higher
specificity, binding efficiency and biological activity (106, 107,
111). Nanobodies were also considered as possible ligands to
design new highly specific immunosorbents (112–114).

Different types of nanobody-based tools/approaches can be
envisaged to be potentially profitable for an allergy treatment: a)
bispecific nanobodies for topical application to capture allergens
before they penetrate epithelial mucosa in airways, b) very stable
nanobodies to capture food allergen in gastrointestinal tract, c)
anti-idiotypic nanobodies mimicking allergenic epitopes as a
Frontiers in Immunology | www.frontiersin.org 5122
possible replacement for a complex natural allergen for a new
kind of AIT vaccine development, d) multivalent nanobody-based
constructs for systemical administration to efficiently block
allergen interaction with IgE on mast or basophil cells, e)
efficient immunosorbents to remove IgE from the blood by
immune apheresis. Correspondingly, different administration
approaches for nanobody-based constructs can be developed:
aerosol or topical applications, oral route or subcutaneous
administrations. Temporary blocking of allergen-IgE interaction
(i.e. by topical or systemic administration of specific nanobodies)
or a subtraction of IgE from the periphery blood (i.e. apheresis)
may give a short-term treatment effect. For a long-term treatment
effect we could hypothesize the use of anti-idiotypic nanobodies to
IgE. Such nanobodies may represent “internal images” of an
allergen and mimick hypoallergenic B cell epitopes. To efficiently
induce IgG response that targets IgE binding sites on allergens,
these nanobodies should be fused to a viral coat protein as it was
described for next-generation forms of AIT (15).
CONCLUSION AND PERSPECTIVE

The generation of allergen-specific nanobodies unambiguously
represents a reasonable progress in the field of allergy. With their
well-documented qualities including their ability to recognize
unusual “hidden” epitopes, high affinity binding, solubility,
extreme stability and low immunogenicity, nanobodies
attracted the interest of allergologists to study their suitability
FIGURE 2 | Overview of the evaluation process of the suitability of allergen-specific nanobodies for allergy treatment. (A) Evaluating cross-reactivity to related
allergens. (B) Measuring affinities of selected candidates to the allergen. (C) Investigating the potential to block allergen-specific IgE from binding to the allergen.
(D) Adjusting the half-life of a suitable nanobody by e.g.: a) linking to IgG Fc region; b) oligomerization to homomers or heteromers to facilitate linking to other
proteins like human serum albumin (HSA); c) PEGylation. Increasing safety by humanization of the framework and performing safety studies in vivo.
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for passive allergy treatment. The chance to find allergen-specific
nanobodies with this powerful technology that ideally comprise
high affinity and bind to epitopes partly or fully overlap with IgE
binding sites on allergens is tempting. However, so far no
allergen-specific nanobody fulfilling these criteria was reported
indicating that it might be rather difficult to raise allergen-
specific nanobodies of sufficient affinities. Whether the current
lack of such nanobodies is owed to some inherent structural or
functional properties of nanobodies and/or the camelid immune
system or the simple reason that the current research focus in the
allergy field is on AIT and its improvement has to be resolved. If
allergen-specific nanobodies are identified that competitively
block allergen binding to IgE and thus abrogate IgE-mediated
allergic inflammation, we assume that they will represent
appropriate tools for future allergy treatment. Their economic
properties, i.e. low production costs encouraged researchers to
elaborate antibody engineering of these single-domain antibodies
for diverse applications in biotechnology and medicine. This
gathered knowledge will facilitate the implementation of
modified allergen-specific nanobodies tailored to the needs of
allergy treatment. Nanobodies can be easily formatted for a
particular application e.g., modified as recognition modules
Frontiers in Immunology | www.frontiersin.org 6123
in large constructs or as bi- or oligo-specific, bi- or oligo-
valent derivatives.

With the availability of allergen-specific nanobodies or
their derivatives with inhibitory potential, it should be possible
to examine engineered candidates in proof of concept testings
for efficacy and safety in experimental animal models to
identify promising nanobody-based drugs for clinically
relevant allergens.
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Immunoglobulin E (IgE) is pivotal for manifestation and persistence of most immediate-
type allergies and some asthma phenotypes. Consequently, IgE represents a crucial
target for both, diagnostic purposes as well as therapeutic approaches. In fact, allergen-
specific immunotherapy – aiming to re-route an IgE-based inflammatory response into
an innocuous immune reaction against the allergen – is the only curative approach
for IgE-mediated allergic diseases known so far. However, this requires the cognate
allergen to be known. Unfortunately, even in well-characterized allergics or asthmatics,
often just a small fraction of total IgE can be assigned to specific target allergens. To
overcome this knowledge gap, we have devised an analytical platform for unbiased
IgE target epitope detection. The system relies on chemically produced random
peptide libraries immobilized on polystyrene beads (“one-bead-one-compound (OBOC)
libraries”) capable to present millions of different peptide motifs simultaneously to
immunoglobulins from biological samples. Beads binding IgE are highlighted with
a fluorophore-labeled anti-IgE antibody allowing fluorescence-based detection and
isolation of positives, which then can be characterized by peptide sequencing. Setting-
up this platform required an elaborate optimization process including proper choice
of background suppressants, secondary antibody and fluorophore label as well as
incubation conditions. For optimal performance our procedure involves a sophisticated
pre-adsorption step to eliminate beads that react nonspecifically with anti-IgE secondary
antibodies. This step turned out to be important for minimizing detection of “false
positive” motifs that otherwise would erroneously be classified as IgE epitopes. In
validation studies we were able to retrieve artificial test-peptide beads spiked into our
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library by using IgE directed against those test-peptides at physiological concentrations
(≤20 IU/ml of specific IgE), and disease-relevant bead-bound epitopes of the major
peanut allergen Ara h 2 by screening with sera from peanut allergics. Thus, we
established a platform with which one can find and validate new immunoglobulin targets
using patient material which displays a largely unknown immunoglobulin repertoire.

Keywords: immunoglobulin E (IgE), allergy diagnosis, allergy therapy, epitope detection, combinatory peptide
library, one-bead-one-compound library

INTRODUCTION

Selectively recognizing foreign matter that has entered the
body is a key feature of humoral adaptive immunity. Yet, not
always it is clear against which foreign matter an antibody
response is directed or with which antigen an antibody will
react. A substantial number of asthmatics, for instance, display
high total serum immunoglobulin E (IgE) levels but do not
react with the common allergens the patients usually are tested
for in commercially available routine allergy diagnostic tests
(1–3). In the past, those patients were assigned to suffer from
“nonallergic asthma” (intrinsic asthma) (4) but recent evidence
suggests that those individuals are simply underdiagnosed in
terms of allergen reactivity. After all, asthmatics with regular
total serum IgE account for less than 6% of asthmatic patients
(5). The vast majority of asthmatics display higher total serum
IgE. Consequently, including a broader panel of allergens in
the testing reveals more cases of “allergic asthma” (extrinsic
asthma) among asthmatics (6). So far, many patients with asthma
lack proper allergy diagnosis due to the fact that in vitro
routine allergy diagnostic tests are missing clinically relevant
allergen sources, and where allergen sources are included as
raw extract allergens, these often lack clinically relevant single
allergenic components and, therefore, appropriate sensitivity.
Still, allergy diagnostic testing has been vastly improved in
the past decades due to molecular allergology providing
single allergen molecules, either naturally purified from the
source or obtained by recombinant DNA technology (7). The
availability of single allergens for singleplex and multiplex
assays (component-resolved diagnosis) has already provided the
investigators with increased sensitivity, specificity, and diagnostic
accuracy of the tests (8, 9). Multiplex assays in microarray
format can analyze dozens of potential allergen-specific IgE
reactivities in parallel (10–13), thereby allowing fine-profiling
of a patient’s sensitization and – together with the clinical
history – his/her allergy phenotype. Molecular allergology offers
further improvements to diagnostics, pinpointing sensitizations
to individual allergen components on the molecular level
and providing the basis for refined allergy classifications, risk
predictions and personalized treatment regimens (14, 15). Yet,
all these diagnostic procedures require the knowledge of at least
the primary allergen source. But even nowadays, it often remains
an enigma against which allergens the IgE-high-asthmatics
actually are sensitized or whether all relevant allergens have been
identified as yet.

Therefore, smart approaches are needed in order to determine
unknown antibody reactivities and to identify the interaction

sites – the so-called epitopes – on the target antigens/allergens.
In most cases, these epitopes are protein-derived entities, either
linear chains or three-dimensional structures composed of amino
acids. A promising line of action consists in offering a broad
variety of peptidic targets to the antibody (mixture) in question,
and to check for reactivity.

One common approach for identifying peptidic/proteinaceous
binding partners for a ligand is the use of phage display libraries
(16). Here a pool of DNA sequence motifs is cloned into a
permissive site of a phage surface protein. By screening the
phage library with the desired ligand(s) potential binders can
be isolated, propagated and sequenced in order to reveal the
introduced amino acid sequence motif which interacted with
the ligand(s). In allergology this technique has been used to
study IgE-allergen interaction, either by cloning single chain
antibody genes into the phage (17–19) and offering the gene
products to a given allergen, or vice versa by offering a defined
IgE reactivity to a pool of peptide-presenting phages created
by cloning random oligonucleotides into the permissive site
of the scaffold protein gene (20–23). The latter variant –
defined IgE reactivity versus a broad peptide landscape – is
more common as it may yield information about the epitope
recognized by the IgE in question. Yet, quite often it is
necessary to present purified immunoglobulin to the phage
library in order to obtain meaningful results (24). This is a
clear drawback of this technology as it not only increases the
workload but also may cause losses in IgE reactivity due to the
purification step.

As an alternative to phage libraries the use of so-called “one-
bead-one-compound” (OBOC) libraries constitutes a promising
approach. The OBOC technology based on the “split-and-mix”
synthesis was invented by Furka et al. (25, 26) and yields a
unique peptide species on each bead of the synthesis resin in
pico- to nanomolar amounts per bead. Subsequent amino acid
sequencing of the bead-bound peptide directly leads to the
respective epitope motif. For IgE analysis, an OBOC library has
been used once so far, in a study where a known IgE reactivity
against shrimp tropomyosin was investigated by screening a
broad peptide landscape with sera from shrimp allergics to detect
IgE epitopes on tropomyosin (24).

Neither the phage display nor the OBOC technique have
been used to reveal epitopes of unknown serum IgE reactivities.
We therefore wanted to address this question via the OBOC
strategy. In the study presented here, we have developed the
methodology for the identification of hitherto unknown IgE
reactivities toward unknown allergens via detection of bead-
bound linear peptide epitopes.
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MATERIALS AND METHODS

Materials
TentaGel S NH2 resin was custom-made by Rapp Polymers
(Rapp Polymere GmbH, Tübingen, Germany), with the following
specifications: approximately 7.1 million polystyrene beads per
gram dry powder, 0.36 mmol amino functions/g, bead diameter
60–70 µm under dry conditions, approximately 50 picomoles
of functional amino groups per bead. These beads were used
as resin material for the on-bead peptide synthesis applying the
fmoc solid phase peptide synthesis technique with an automated
multiple peptide synthesizer (MultiPep RS, Intavis Bioanalytical
Instruments AG, Cologne, Germany).

Monoclonal, humanized IgE antibodies directed against the
c-myc epitope as well as anti-human IgE antibodies with
different fluorophore labels were obtained from various sources
as summarized in Table 1. Human serum was donated by peanut
allergic patients in the Allergy Outpatient Clinic of the Medical
Clinic Borstel and the Interdisciplinary Allergy Outpatient
Clinic, University of Lübeck. Total IgE content and specific IgE
reactivity against the peanut allergen Ara h 2 were determined by
ImmunoCAP assays (ThermoFisher Scientific/Phadia, Freiburg,
Germany). Recognition of linear Ara h 2 epitopes by IgE from
patient sera was resolved by in-house epitope mapping analysis
as described before (27–30). Use of patient material for this
study was approved by the ethics committee of the University
of Luebeck (approval number 10-126). All patients gave written
informed consent.

Preparation of Polystyrene Beads With
Peptides of Defined Sequence
Peptide sequences to be synthesized onto the beads were chosen
according to known target structures recognized by human IgE
antibodies. As negative control, a scrambled version of each
specific peptide was produced with an online tool at http://www.
mimotopes.com.

200 mg of the TentaGel S NH2 resin (corresponding to
approximately 1.5 × 106 beads) were swollen in 5 ml of a
7:3 mixture of dichloromethane (Roth, Karlsruhe, Germany)
and dimethylformamide (DMF; Merck Chemicals, Darmstadt,
Germany) and transferred in portions of approximately 2.2 × 105

beads (corresponding to 10 µmol amino functions) to 2 ml filter
bottom reaction columns (Intavis). In the following, all reagent
amounts are given per reaction column. All reaction steps were
performed at room temperature. The resin was prepared for
synthesis by washing three times with 800 µl of DMF. Fmoc
deprotection was achieved by treating the resin two times for
8 min with 400 µl of a mixture of 20% (v/v) piperidine (Sigma-
Aldrich, Steinheim, Germany) in DMF and subsequent washing
seven times with 750 µl of DMF. Coupling was done by reacting
a 10-fold excess of fmoc-protected amino acid building blocks
(Merck or IRIS Biotech, Marktredwitz, Germany) with the resin.
For this, the resin was incubated two times for 25 min each with
a mixture of 77 µl of a 0.6 M fmoc amino acid building block
solution in DMF, 25 µl of a 4 M solution of 4-methylmorpholine
(Sigma-Aldrich) in DMF and 75 µl of a 0.6 M solution of

TABLE 1 | Commercially available antibodies used in this study.

Target Antibody Label Source

c-myc monoclonal IgE, clone
9E10, humanized

– Absolute Antibody
#AB00100-14.0

Human IgE polyclonal (goat) DyLight488 Agrisera #AS10758

polyclonal (goat) FITC Nordic-MUBio
#GAHu/IgE(FC)/FITC

polyclonal (swine) FITC Nordic-MUBio
#SwAHu/IgE(FC)/FITC

monoclonal, clone BE5 FITC ExBio #1F-324

monoclonal, clone
4H10

FITC ExBio #1F-326

polyclonal (goat) DyLight550 Agrisera #AS121901

monoclonal, clone
B3102E8

AlexaFluor555 Southern Biotech
#9160-32

rabbit/human chimeric,
Omalizumab

phycoerythrin Absolute Antibody
#Ab00717-23.0

monoclonal, clone BE5 phycoerythrin ExBio #1P-324

polyclonal (goat) DyLight633 Agrisera #AS122147

polyclonal (goat) DyLight650 Agrisera #AS122270

polyclonal (goat) DyLight680 Agrisera #AS163319

2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexa-
fluorophosphate (IRIS Biotech) in DMF. After washing three
times with 750 µl of DMF, unreacted amino termini were
capped for 5 min with 400 µl of a 5% (v/v) mixture of acetic
anhydride (Merck) in DMF. Subsequently the resin was washed
and extracted additional six times with 750 µl of DMF.

After synthesis the resin was treated three times for 8 min with
400 µl of a mixture of 20% (v/v) piperidine in DMF, washed seven
times with 750 µl of DMF and five times with dichloromethane
and dried in vacuo. Side chain protecting groups were cleaved
off by treatment with 2 ml of cleavage cocktail [92.5% of
trifluoroacetic acid (TFA; Roth), 5% of triisobutyl silane (Sigma-
Aldrich) and 2.5% of water (all v/v)] for 3 h at room temperature.
After incubation, the cleavage cocktail was discarded and the
resin beads were washed five times with 10 ml of DMF, five
times with 10 ml of pure ethanol (Brüggemann Alcohol GmbH,
Heilbronn, Germany), five times with 10 ml of dichloromethane
and again five times with 10 ml of DMF. Beads were treated
with 30% (v/v) of H2O/DMF, 60% (v/v) of H2O/DMF and with
neat H2O for 5 min each at room temperature. Subsequently,
the resin beads were washed ten times with 10 ml of phosphate
buffered saline (PBS; 2.7 mM KCl, 1.5 mM KH2PO4, 136 mM
NaCl, 8.1 mM Na2HPO4, pH 7.4), resuspended in 2 ml of PBS
containing 0.05% (w/v) of NaN3 (final concentration calculated
approximately 1.1 × 105 beads/ml) and stored at 4◦C. The
migration of the beads from organic solvents to an aqueous buffer
system results in the swelling of the beads and a final diameter
ranging from 90 to 110 µm.

Synthesis of a Combinatorial/One-Bead-
One-Compound (OBOC) Peptide Library
via a Manual Split-and-Mix Procedure
OBOC peptides were synthesized based on the procedure
published by Lam et al. (31), with some modification to adapt
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the protocol to our needs. For that, 1.46 g (corresponding to
approximately 10 × 106 beads and 0.5 mmol amino functions)
of the TentaGel S NH2 resin were swollen in 20 ml of a 1:1
mixture of dichloromethane and DMF for 1 h. The resin was
distributed equally into 19 polypropylene vials (approximately
0.028 mmol/vial), beads were allowed to settle and the
supernatants were removed carefully. To each vial, 433 µl of a
0.6 M solution of one of 19 different fmoc amino acid building
blocks in DMF, 433 µl of a 0.6 M solution of 2-(1H-benzotriazol-
1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate in DMF
and 47 µl of N-ethyldiisopropylamine (Sigma-Aldrich) were
added. Vials were incubated on an end-over-end mixer at room
temperature for 2 h. This way, every proteinogenic amino acid,
except cysteine, was coupled to one portion of resin beads.
After that, all 19 resin portions were combined in a 20 ml
reaction column equipped with a 35-µm filter bottom (Intavis),
mixed well, and the supernatant was removed. The resin was
washed five times for 2 min at room temperature with 10 ml
of DMF each. 10 ml of a solution of 20% (v/v) piperidine
in DMF were added and incubated two times for 15 min at
room temperature. After that, the resin beads were washed
six times for 2 min with 10 ml of DMF, and the resin was
again distributed equally to 19 polypropylene vials. This cycle
of splitting and mixing the resin beads was repeated eight
times to create different random 8mer peptides on the resin
beads (Figure 1).

Amino acid side chain de-protection after the last cycle of
peptide synthesis, as well as migration of the beads from organic
into an aqueous PBS buffer system, were performed as described
above for the synthesis of beads with defined peptide sequence.
The total OBOC library was suspended in 10 ml of PBS (final
concentration calculated 1 × 106 beads/ml) and stored at 4◦C
after addition of NaN3 to a final concentration of 0.05% (w/v),
in order to prevent growth of microorganisms.

All bead numbers given in the following protocols are
“calculated,” referring to the starting number of beads employed
in the respective synthesis. Possible losses occurring during
synthesis, washing and handling steps are disregarded.

Screening of “Artificial” Libraries
Consisting of Defined Peptide
Sequences
Defined amounts of polystyrene beads carrying specific IgE target
peptides (c-myc or Ara h 2, see below) were mixed with the
respective scrambled version as irrelevant bead matrix. Ratios of
“relevant” to “irrelevant” beads ranged from 1:10 to 1:100.

For screening experiments, mixtures of these beads
(corresponding to approximately 10,000 beads in total per
assay) were transferred into 2 ml reaction columns (identical
to the standard columns used for peptide synthesis; Intavis)
with a filter on the bottom of the vessel and a luer outlet. The
reaction columns were closed with a luer sealing plug during the
incubation of the beads with different reaction solutions. For
washing purposes, the sealing plug was removed and the washing
buffer was pressed through the beads with a fitting stamp.
Contact between the tip of the stamp and the bead-covered filter

FIGURE 1 | Schematic illustration of the split-and-mix procedure for the
generation of OBOC-libraries. For peptide libraries, each of n individual amino
acids (X1 – Xn) is coupled to a portion of synthesis resin, then all beads are
combined and mixed, distributed again in n portions, and the next coupling
step with one individual amino acid per portion is performed. The number of
repeated rounds of the procedure corresponds to the peptide length on each
individual bead.

was carefully avoided to prevent the loss of beads sticking to
the stamp’s tip.

The beads were first washed with 2 ml of PBS containing
0.1% (v/v) Tween-20 (Sigma-Aldrich) (PBST) followed by two
times washing with the same amount of PBS. After washing,
free areas on the polystyrene bead surface were blocked by
incubating the beads in 2 ml of blocking solution (0.05% (w/v)
fish gelatin (Norland Products Inc., Cranbury, NJ, United States)
in PBS) for 1 h at room temperature. Constant mixing of beads
in blocking solution was achieved by mounting the tube onto an
overhead shaker (Intelli Mixer RM-2L, LTF Labortechnik GmbH)
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performing a semicircle movement at 10 rpm. This was followed
by thorough washing (six times with 2 ml of PBST and two
times with 2 ml of PBS). After that, beads were ready for the
incubation with the respective IgE antibody preparation used in
the specific screening experiment (Table 1). Incubation was done
overnight at 4◦C on an overhead shaker (semicircle movement
at 10 rpm), with IgE concentrations ranging from 1 µg/ml to
1 ng/ml in blocking solution. On the next day, unbound primary
antibody was removed by three times washing with 2 ml of
PBST and two times washing with 2 ml of PBS. Beads were then
incubated with a secondary antibody directed against IgE and
labeled with fluorophore (Table 1). Dilutions of the secondary
antibodies normally ranged from 1:100 to 1:1,000. In some cases,
higher or lower dilutions were used for special experimental
purposes. Incubation with the secondary antibody was done at
room temperature for 3 h in the dark with 10 rpm of semicircle
mixing. Unbound antibodies were subsequently removed from
the beads by thorough washing (four times with 2 ml of PBST and
four times with 2 ml of PBS). Next, beads were re-suspended in
the capped reaction columns using 1 ml of PBS and transferred in
portions into 24- or 12-well polystyrene plates (Costar Corning,
Corning, NY, United States). PBST was added (usually 5–10%
of the total bead suspension volume) to decrease the surface
tension of the solution and allow the beads to settle to the
bottom of the well.

The beads were examined visually on a standard inverted
fluorescence microscope (Nikon ECLIPSE TE2000-U; Nikon,
Tokyo, Japan) equipped with a UV light source and filter
systems compatible with the fluorophores used. In addition,
bead fluorescence intensity and distribution was documented
with a MORE life cell imaging microscope (Thermo-Fisher
Scientific, Waltham, MA, United States, formerly Till Photonics,
Gräfelfing, Germany) equipped with a Clara CCD camera
system (Andor Technology, Belfast, United Kingdom),
using appropriate filter sets to capture green, red and far
red fluorescence signals (FITC-channel: detection filter
wavelength: 535 ± 50 nm/rhodamine-channel: detection
filter wavelength: 630 ± 75 nm/Cy5-channel: detection filter
wavelength: 700 ± 75 nm). Analysis of the respective pictures
(including measurement of fluorescence intensities) and
image processing was conducted using the software ImageJ
v1.52p (NIH, Bethesda, VA, United States) (for details, see
Supplementary Material). Visualization of fluorescent beads
for photographic documentation and publication was done
by converting the 16-bit gray-scale pictures obtained with the
respective filters into RGB color space using ImageJ’s built-in
look-up tables (LTUs) after fluorescence intensity measurements.

Separation of IgG and IgE
To separate IgE from IgG, human serum was treated with
protein G-sepharose (Ab SpinTrap, GE Healthcare, Chicago, IL,
United States) according to the manufacturer’s instructions, with
minor modifications. 300 µl of serum from an allergic donor was
loaded onto a protein G-sepharose column. The flow-through of
the column was collected as IgG-negative/IgE-positive fraction.
IgG bound to the sepharose was eluted with 400 µl of acidic
elution buffer into a tube containing 30 µl of basic neutralizing
buffer, resulting in functional IgG in a buffer of neutral pH.

Screening of “Artificial” Libraries With
Different Human Immunoglobulin
Classes
Untreated serum from an allergic donor and the corresponding
IgE-fraction obtained as flow through of the protein G-sepharose
column were adjusted to the dilution of the eluted IgG-fraction
by adding PBS. This results in an approximate 1.4-fold dilution
and in an antibody concentration of 70% compared to the
original serum. 180 µl of each of these diluted immunoglobulin
preparations (total serum, IgE fraction and IgG fraction) were
mixed with 20 µl 0.5% (w/v) fish gelatin in PBS, resulting in
a final antibody concentration of approximately 65% compared
to the untreated serum. These dilutions were then used for the
incubation with pre-blocked peptide-bearing polystyrene beads
as described above, using a 1:1,000 dilution of the secondary,
anti-IgE antibody.

Screening of OBOC Peptide Libraries
Spiked With Defined Peptide Beads
Combinatorial OBOC libraries (either untreated or depleted
of anti-IgE cross-reactive beads (pre-cleaned, see below)) were
spiked with beads bearing defined peptide sequences (c-myc
or Ara h 2; see “Results” section for more information). The
ratio “defined peptide bead to OBOC library bead” was between
1:500 and 1:1,000, some preliminary testing was done with
ratios of 1:10 to 1:15. The beads were mixed as described above
for the “artificial” peptide libraries, and a total of 2 × 104

to 2 × 105 beads were transferred into the reaction column
used for screening. The screening protocol was identical to the
procedure described for the “artificial” peptide libraries, except
for the use of 400 µl of diluted serum/primary antibody and
secondary antibody solution (due to higher bead numbers).
Antibody concentrations and types of secondary antibodies were
varied to identify optimal conditions. After the last washing
step, beads in the reaction column were resuspended in 2 ml of
PBS, transferred in portions into 12-well or 24-well plates and
examined as described above.

Pre-cleaning of OBOC Peptide Libraries
by Pre-adsorption With
Fluorophore-Labeled Anti-IgE Antibody
and Separation With a Large Particle
Sorter
To minimize false-positive results due to binding of secondary,
anti-IgE antibody directly to individual beads in the OBOC
population, such anti-IgE-cross-reactive beads were identified
in a pre-adsorption step and removed from the OBOC library
before screening with the actual IgE samples. For this, 1 × 106

beads of an OBOC peptide library were incubated in a reaction
column of 20 ml capacity (Intavis) with 15 ml of blocking
solution over night at 4◦C with semicircle mixing at 10 rpm.
Washing steps (before and after blocking) with PBST and PBS
were performed as described above, with 15 ml of washing
solution per washing step. This was followed by 3 h incubation
at room temperature with 3 ml of phycoerythrin-labeled anti-IgE
antibody at a concentration of 500 ng/ml and another washing
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two times with 15 ml of PBST and two times with 15 ml of
PBS. Beads were resuspended in a total of 5 ml of PBS and
transferred in portions into a 15-ml polystyrene tube. A small
sample of the bead suspension was analyzed in the fluorescence
microscope to verify successful staining. Afterward, the beads
were stored in the 15-ml tube at 4◦C in the dark, until separation
of fluorescence positive and negative beads was performed, which
should be done within 2 weeks after the staining procedure
(personal recommendation). This separation was performed on
a BioSorter (Union Biometrica, Holliston, MA, United States)
equipped with a Fluidics and Optics Core Assembly (FOCA) of
500 µm, using PBS as sheath fluid. Beads were re-suspended in
PBS, and concentration was adjusted until a stable event rate of
10–20 events/second was achieved. An unstained bead sample
was run as control to set gating conditions. Non-fluorescent, i.e.,
non-IgE cross-reactive beads (“phycoerythrin-negative”) were
sorted with the coincidence mode set to “Pure.” Data graphs
were generated in FlowJo software v.10.7.1 (Becton Dickinson,
Franklin Lakes, NJ, United States). The fluorescent beads were
discarded, the non-fluorescent beads were stored at 4◦C until use
in screening experiments.

Pre-adsorption of OBOC Peptide
Libraries With Fluorophore-Labeled
Anti-IgE Antibody and Screening of
Pre-adsorbed Libraries Spiked With
Defined Peptide Beads
As an alternative approach to the pre-cleaning step, i.e., the
removal of pre-adsorbed anti-IgE-cross-reactive beads from
the OBOC-library via BioSorter separation before the actual
screening process, the pre-adsorption step was performed using
anti-IgE labeled with a different fluorophore than the one used in
screening. Afterward, anti-IgE-cross-reactivity was determined
in the eventual fluorescence readout.

For this, 2 × 105 beads of an OBOC peptide library, spiked
with beads bearing defined peptide sequences (c-myc or Ara h 2)
in a ratio of 1:1,000, were incubated in a 3-ml reaction column
with 2 ml of blocking solution for 3 h at room temperature under
constant mixing. After removal of the blocking solution, 400 µl
of fluorescein isothiocyanate (FITC)-labeled anti-IgE (clone BE5;
1:100 in blocking solution) was added, and the incubation was
continued for another 3 h. Beads were washed (four times with
2 ml of PBST, two times with 2 ml of PBS) and incubated with
400 µl of anti-c-myc IgE (200 ng/ml) or human serum (160 ng
IgE/ml) in blocking solution over night at 4◦C under constant
mixing. Beads were washed again (three times with 2 ml of
PBST, two times with 2 ml of PBS), incubated with 400 µl of
phycoerythrin-labeled anti-IgE (clone BE 5; 1:1,000 in blocking
solution) for 3 h at room temperature, washed and processed for
microscopy as described above.

Selection and Manual Isolation of Beads
For bead selection and isolation, the standard fluorescence
microscope was used. Fractions of the bead mixture which had
been examined before in 24- or 12-well plates were transferred
into a 6-well plate (Costar Corning) containing 1.8 ml of PBS

plus 200 µl of PBST per well. The dimensions of the wells of
this plate and the sample dilution allowed access to selected
single beads with minimal contact to neighboring beads. This
facilitated manual bead manipulation by use of a micropipette.
Beads were re-evaluated and adequate beads were chosen for
isolation according to their fluorescence properties (for details
see section “Results”). Each single chosen bead was removed
by using a standard 10 µl pipette with low retention pipette
tip. Non-relevant beads were pushed aside and the chosen bead
was aspired together with ≤5 µl of the surrounding liquid
and transferred into a separate well until further processing for
peptide sequencing.

Peptide Sequencing
After manual isolation of a fluorescence positive bead, the bead
was placed onto a trifluoroacetic acid-treated glass fiber disc
(Fujifilm WAKO Chemicals Europe GmbH, Neuss, Germany).
Location of the bead on the filter was verified via microscopic
observation. The filter was loaded into the reaction chamber
of an automated peptide sequencing system (PPSQ-53A
peptide sequencer, Shimadzu, Kyoto, Japan). Peptide sequences
were determined by direct on-bead Edman degradation
followed by HPLC separation of the step-wise cleaved-off
phenylthiohydantoin-derivatized amino acids. Identification
of the individual amino acids was done by reference to a
phenylthiohydantoin (PTH) amino acid standard (Fujifilm
WAKO Chemicals).

RESULTS

Establishing an Assay System to Detect
Specific IgE-Binding With Defined
Peptides Immobilized on Polystyrene
Beads
One-bead-one-compound libraries have the advantage to test
millions of peptides in parallel for binding of a defined target
molecule. To adapt and optimize this system for the detection
of new IgE epitopes, we had to establish an assay format where
IgE binding to a specific peptide immobilized on polystyrene
beads can be reliably detected. To achieve this, we started with
an unambiguous system of a defined IgE antibody – peptide
epitope pair in an “artificial peptide library” based on a matrix of
irrelevant peptide-carrying beads. We decided on a commercially
available, recombinant human IgE antibody directed against the
Myc-protein derived peptide c-myc (peptide sequence E-Q-K-
L-I-S-E-E-D-L). Beads carrying the c-myc peptide, as well as
“irrelevant” matrix beads carrying a scrambled version of the
c-myc epitope (sequence E-I-E-D-K-L-S-L-Q-E), were produced
by classical fmoc solid phase-based peptide synthesis. These beads
were used to optimize assay conditions, especially in terms of
anti-IgE antibody employed (type, concentration, fluorophore
label), first in order to achieve highest possible sensitivity, and
second to take into consideration that the structure of the
fluorescent dye coupled to the anti-IgE antibody has an influence
on the screening of OBOC libraries (32).
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The first experimental set-up encompassed a 1:10 mixture
of c-myc beads and scrambled c-myc beads and an incubation
with anti-c-myc IgE antibody in a defined blocking buffer.
By successively testing a variety of monoclonal and polyclonal
anti-human-IgE antibodies with different green fluorophores
(either DyLight 488 or FITC, see Table 1) we were able to
improve the assay sensitivity to a detection limit of 20 ng IgE/ml
(8.3 IU/ml). Microscopic examination of the results showed that
in addition to the intensity, fluorescence distribution can be
taken as a criterion for a positive bead, manifested by a distinct
fluorescent “corona” at the edge of the bead (Figures 2A,B
and Supplementary Figure 2). This is particularly helpful for
distinguishing a positive signal from the auto-fluorescence in the
green channel which is an imminent drawback of polystyrene
beads (33, 34), especially when they bear peptides. In general,
this auto-fluorescence is equally distributed across the whole bead
area – in contrast to the antibody-derived, specific signal with a
fluorescent corona. However, at relatively low signal intensities,
the corona is fading and may become invisible over the green
auto-fluorescence. In a next step, we therefore wanted to analyze
fluorescence-based detection systems with excitation/emission
at longer wavelengths, where the auto-fluorescence should be
less pronounced.

We used the antibody showing best results in comparative
testing (Figure 2B), but equipped with the red fluorophore
DyLight 550 (Figure 2C), to detect bead-bound IgE. In this
set-up, anti-c-myc IgE at a concentration of ≤10 ng/ml could
be shown to specifically label peptide-bearing beads. This was
verified by isolation of the fluorescence corona-positive beads
followed by peptide sequencing. When the fluorescence was
moved even further into the far red range by using (polyclonal)
anti-IgE antibodies labeled with DyLight 633, DyLight 650 or
DyLight 680 fluorophore, the auto-fluorescence background at
the respective far red emission wavelengths was considerably
reduced. This improved signal-to-noise ratio allowed us to detect
anti-c-myc IgE concentrations as low as 2 ng/ml (0.83 IU/ml)
(Figure 2D), which is well in the physiological range of
specific IgE in human blood (35, 36). Unfortunately, the far-red
fluorescence is barely detectable for the human eye, limiting its
application for the manual detection and isolation of fluorescent
beads with a standard fluorescence microscope. To facilitate the
manual isolation of the fluorescence positive beads, which is an
integral part of this platform, we are confident that an optimal
trade-off between high microscopic detectability and low auto-
fluorescence background may be obtained by using a secondary
anti-IgE antibody labeled with a red fluorophore such as DyLight
550 or phycoerythrin.

Detection of Specific IgE-Epitopes
Within a Bead-Bound “Artificial” Library
of Defined Peptides Using Serum From
Allergic Patients
In addition to establishing our peptide-beads screening assay
with the defined recombinant anti-c-myc IgE antibody, we
wanted to capture and detect allergen-specific IgE from serum
from allergic patients with our bead system. These experiments

were in part conducted in parallel to the c-myc experiments
described above, hence here too, different secondary antibodies
and fluorophores were used.

We employed serum from peanut-allergic patients which had
been shown beforehand to have a high specific IgE reactivity
against the major peanut allergen Ara h 2 (Table 2). Applying
a microarray-based epitope mapping technique (27, 28) we
could identify several linear epitopes on Ara h 2 which are
recognized by these IgE (data not shown). Based on these
mapping experiments, we chose the 8mer R-D-P-Y-S-P-S-P as
typical Ara h 2 epitope, which also encompasses two of the three
immunodominant Ara h 2 epitopes previously described (37) and
which reacted with all sera used by us (three different peanut-
allergic donors, Table 2). This 8mer epitope was synthesized on
polystyrene beads and “irrelevant” matrix beads again carried a
scrambled version of the peptide (P-P-D-R-S-Y-P-S).

Both bead species were mixed in defined ratios and binding
of IgE from human serum from Ara h 2-sensitized peanut-
allergic donors was investigated. Even with 1:2, 1:4 and 1:8 diluted
serum from one anti-Ara h 2 IgE-positive peanut-allergic donor,
Ara h 2 peptide beads could be detected with a green- or red-
labeled anti-IgE antibody (Figures 3A,B), and their identity could
be verified by manual isolation of the beads and subsequent
peptide sequencing.

Improved Binding of IgE to Its Target
Epitope With IgG-Depleted Serum From
Allergic Donors
When comparing the sera from different Ara h 2-sensitized
peanut-allergic donors in our bead screening assay, we found
considerable differences in the fluorescence intensities of the
corona-positive Ara h 2 peptide-bearing beads. This is certainly
due to the different Ara h 2-specific IgE content of these samples
(varying from 50 to ≥240 ng/ml), and to different reactivities
against our chosen epitope peptide. A further reason for low IgE
detectability may be the presence of IgG with identical epitope
recognition in the sample. Along that line, we had realized already
from our epitope mapping experiments that we could improve
the IgE signals by depleting the serum samples of IgG. Hence, we
wanted to port these findings to our bead-based IgE detection, in
order to further improve the system.

We therefore compared the bead-based IgE detection of
untreated serum with serum which had been depleted of IgG
by a protein G-sepharose matrix. We used a serum containing
approximately 50 ng/ml of Ara h 2-specific IgE (patient 2),
which had shown a specific, albeit not very strong, epitope
reactivity in our previous mapping experiments. Yet, the total,
untreated serum could not detect any signals above background
in our artificial library of Ara h 2/scrambled Ara h 2 peptide
beads in combination with a monoclonal, phycoerythrin-labeled
anti-IgE antibody (Figures 3C,D). Fluorescence intensities of
randomly chosen areas, documented with the MORE life cell
imaging microscope and analyzed with ImageJ software, were
not different between serum-incubated beads and control beads
incubated with only the phycoerythrin-labeled anti-IgE antibody.
However, after removal of IgG from this serum, IgE binding
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FIGURE 2 | Detection of c-myc-beads, diluted 1:10, in an artificial peptide library of scrambled c-myc beads. Different concentrations of anti-c-myc IgE were used
and IgE-binding was detected with various fluorophore-labeled anti-IgE antibodies. Phase contrast images are shown on the left, corresponding fluorescence
images of the appropriate channel on the right side of the panel. (A) 100 ng/ml anti-c-myc IgE detected with FITC-labeled monoclonal anti-human IgE
(FITC-channel); (B) 20 ng/ml anti-c-myc IgE detected with polyclonal anti-human IgE labeled with DyLight488 (FITC-channel); (C) 20 ng/ml anti c-myc IgE detected
with polyclonal anti-human IgE labeled with DyLight550 (rhodamine-channel); (D) 2 ng/ml anti c-myc and polyclonal anti-human IgE labeled with DyLight650,
(Cy5-channel). High autofluorescence background is predominant in the green channel (B), but true positives can be distinguished by presence of a more brilliant
“corona.” Autofluorescence decreases at higher wavelength (C,D). Quantitation of fluorescence intensities can be found in the Supplementary Figure 2.
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TABLE 2 | Characteristics of patient sera.

Patient ID Total IgE Anti-Ara h 2 IgE

ng/ml U/ml ng/ml U/ml

P1 3,040 1,267 182 75.8

P2 624 260 53 22

P3 3,880 1,616 >240 >100

to the Ara h 2 peptide positive beads could clearly be detected
with this anti-IgE antibody (Figure 3E). This also resulted in
a more than threefold increase in the fluorescence intensity
measured (see Supplementary Figure 3). Even a serum with
a very high anti-Ara h 2 IgE concentration (≥240 ng/ml;
patient 3), whose binding to the Ara h 2 peptide beads can
be detected by the phycoerythrin-labeled anti-IgE antibody
without serum pretreatment, profits from prior removal of
the IgG. Here, too, a strong increase in the signal and in
the total fluorescence intensity values is observed when the
IgE-only fraction is used (data not shown). For both donors
the red corona fluorescence-positive beads were verified to
be the relevant Ara h 2 peptide beads, via isolation and
peptide sequencing.

In addition to enhancing the specific IgE binding, removal of
IgG from the serum enabled us to test the anti-IgE antibodies
for potential cross-reactivity with IgG. We used the IgG fraction
separated from serum of a donor where IgG reactivity with the
Ara h 2 epitope had been demonstrated before in our epitope
mapping experiments. We incubated these IgG with the artificial
Ara h 2 bead library, followed by the monoclonal, phycoerythrin-
labeled anti-IgE antibody. Although one can presume, due to our
previous data, that IgG-binding to the Ara h 2 beads occurred,
no corona-positive red fluorescence was detected, and total
fluorescence values were not different from background values.
This demonstrates that IgG-cross-reactivity of the monoclonal
anti-IgE antibody was negligible.

In total, these experiments show that serum depleted of IgG
may improve the detection of target-specific IgE, especially when
IgE with only low/medium abundance are analyzed.

Detection of Specific IgE-Epitopes in
One-Bead-One-Compound
Combinatorial Peptide Libraries
Having established the IgE screening assay with artificial
peptide libraries consisting of mixtures of defined peptides,
we next moved to the detection of IgE epitopes within a
true combinatorial one-bead-one-compound library. An OBOC-
library of 8mer peptides was synthesized using the split-and-mix
procedure (Figure 1). Portions of the library were spiked with
specific c-myc or Ara h 2 beads in defined ratios and screened
with anti-c-myc IgE or serum from a peanut-allergic donor.
Using a rather small library of several thousands of OBOC beads
and a comparatively high number of specific beads (3–5%), we
could identify the respective target beads and verify the c-myc
respectively the Ara h 2 identity by peptide sequencing (data not
shown). However, when increasing the library size and reducing

the fraction of specific beads (1:1,000), beads visually identified
as being “positive” due to a corona-positive fluorescence were
by majority not bearing the specific IgE target peptide when
analyzed via peptide sequencing. We suppose that this is due
to the presence of peptide sequences within the library that
directly cross-react with the secondary (anti-IgE) antibody, even
without an IgE bound to the beads. In fact, when we incubated
the OBOC beads with anti-IgE antibodies alone, without prior
addition of IgE or serum, corona-positive fluorescent beads were
detectable. This effect was seen – albeit to a varying degree –
with all the different anti-IgE antibodies we tested, polyclonal
as well as monoclonal, and irrespective of the fluorophore
used (Figure 4).

We attempted to suppress this cross-reactivity by variations
in the blocking conditions as well as in the secondary anti-IgE
antibody concentrations that were used during the screening
procedure. Neither of these approaches was successful.

We then tried to block the cross-reactivity by incubating
the OBOC library – spiked with specific c-myc or Ara h
2 beads at a ratio of 1:1,000 – with a FITC-labeled anti-
IgE antibody at 10-fold the usual concentration. This pre-
adsorbed library was then submitted to the standard screening
procedure, using anti-c-myc IgE or anti-Ara h 2 IgE-containing
serum as primary antibody and a phycoerythrin-labeled anti-IgE
antibody for detection. To warrant maximum blocking of cross-
reactivity, both secondary antibodies used were derived from the
same monoclonal antibody (clone BE5), differing only in their
fluorophore label.

This strategy proved successful in essence, but the parallel use
of two fluorophores, and the inherent bead auto-fluorescence
problem associated with the green channel, brought about
difficulties in the visual inspection and identification of true
positive beads. As exemplified in Figure 5, a variety of
staining patterns was observed which required interpretation
and verification. Basically, fluorescent beads fell into three
categories: (1) cross-reactive beads of bright green fluorescence,
carrying a corona, which were negative in the red channel
(open arrowheads in Figure 5), (2) true positive beads with
distinct fluorescence and corona in the red channel and
no or only weak (auto-) fluorescence in the green channel
(arrows in Figure 5), and (3) questionable beads, where the
fluorescence and/or the corona was equally strong in both,
the red and green channel (filled arrowheads in Figure 5).
The discrimination between the three categories became more
difficult if the beads were diluted for manual bead selection.
Nevertheless, we were able to isolate single beads from each
category and, after sequencing, could verify that beads which had
been classified as true positives by their bright red fluorescence
were carrying the specific peptides as expected. Questionable
beads, on the other hand, which were either less bright in
the red channel or also showed up strongly in the green
channel, turned out to be of irrelevant sequence. These results
demonstrate that the strategy of pre-adsorbing the anti-IgE-
cross-reactivities in the OBOC-library before the actual screening
process is a feasible approach given the final selection of positive
beads is restricted to candidates of strong red and negligible
green fluorescence.

Frontiers in Immunology | www.frontiersin.org 9 September 2020 | Volume 11 | Article 565243135

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-565243 September 29, 2020 Time: 14:21 # 10

Krause et al. OBOC-Library Screening With IgE

FIGURE 3 | Detection of Ara h 2-beads, diluted 1:10, in an artificial peptide library of scrambled Ara h 2 beads. Beads were incubated with serum from two different
peanut-allergic patients, and IgE-binding was detected with fluorophore-labeled anti-IgE antibodies. Phase contrast images are shown on the left, corresponding
fluorescence images of the appropriate channel on the right side of the panel. (A) Beads incubated with serum from patient 1, diluted to approximately 90 ng Ara h
2-specific IgE/ml; IgE-binding detected with phycoerythrin-labeled monoclonal anti-IgE antibody; (B) Beads incubated with serum from patient 1, diluted to
approximately 23 ng Ara h 2-specific IgE/ml; IgE-binding detected with DyLight488-labeled polyclonal anti-IgE antibody; (C) Beads incubated with total serum from
patient 2, diluted to approximately 33 ng Ara h 2-specific IgE/ml; IgE-binding detected with phycoerythrin-labeled monoclonal anti-IgE antibody; (D) Beads
incubated only with phycoerythrin-labeled monoclonal anti-IgE antibody; (E) Beads incubated with IgG-depleted serum from patient 2, diluted to approximately
33 ng Ara h 2-specific IgE/ml; IgE-binding detected with phycoerythrin-labeled monoclonal anti-IgE antibody. Quantitation of fluorescence intensities can be found in
the Supplementary Figure 3.
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FIGURE 4 | Sporadic cross-reactivity of anti-IgE antibodies with bead-bound random peptides in an OBOC-library. (A) DyLight550-labeled, polyclonal anti-IgE
antibody; (B) phycoerythrin-labeled, monoclonal anti-IgE antibody. Phase contrast images are shown on the left, corresponding fluorescence images on the right
side of the panel.

Removal of Anti-IgE Cross-Reactive
Beads From an OBOC-Library
Although our approach to pre-adsorb anti-IgE cross-reactive
sequences in an OBOC library before the screening process
worked reasonably well, we decided to evaluate another, different
strategy to solve the cross-reactivity problem. In this approach,
rather than leaving the pre-adsorbed beads within the library
and having the green (auto) fluorescence interfere with the
subsequent bead isolation process, we wanted to remove the
cross-reactive beads from the library pool before the actual
screening procedure. To do so, beads of the peptide library were
again pre-incubated with high concentrations of a fluorophore-
labeled secondary, anti-IgE antibody. Afterward the fluorescence-
positive, anti-IgE cross-reactive beads were separated from the
fluorescence negative beads (with no intrinsic affinity to the
secondary antibody) by sorting with a BioSorter (Figure 6).
This procedure resulted in the loss of a fair part of library
beads and their potential IgE target sequences (from 2%
up to 20%, depending on the individual OBOC library, the

secondary antibody used and the exact gating conditions). As a
consequence, however, the pre-cleaned library ought not to
produce false positive signals due to anti-IgE cross-reactivity, and
it does not necessitate the use of a green fluorophore, thereby
avoiding the associated auto-fluorescence problems.

Detection of Specific IgE-Epitopes in
OBOC Libraries After Removal of
Anti-IgE Cross-Reactive Beads
For our final screening experiments, we used an OBOC peptide
library where the anti-IgE cross-reactive beads had been removed
via BioSorter separation after treatment with a phycoerythrin-
labeled monoclonal anti-IgE antibody. One portion of this pre-
cleaned OBOC library was spiked with c-myc beads (ratio
c-myc to OBOC = 1:500) and incubated with anti-c-myc IgE
(100 ng/ml). A second portion of the pre-cleaned OBOC library
was mixed with Ara h 2 beads (ratio Ara h 2 to OBOC = 1:1,000)
and incubated with serum from a peanut-allergic donor (specific
anti-Ara h 2 IgE = 90 ng/ml). IgE-binding to the beads was
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FIGURE 5 | Identification of specific epitope-carrying beads in a pre-adsorbed OBOC library. Specific c-myc- (A,B) or Ara h 2- (C) beads were mixed 1:1,000 with
an OBOC library. Beads were incubated with a FITC-labeled monoclonal anti-IgE antibody to block cross-reactive sequences and subsequently screened with
anti-c-myc IgE (A,B) or serum from a peanut-allergic patient (C) followed by detection of IgE-binding with a phycoerythrin-labeled monoclonal anti-IgE antibody.
Phase contrast images are shown on the left, corresponding fluorescence images of the green and the red channel are in the middle and on the right side of the
panel. “True positive” beads carrying the specific epitope sequence are recognizable by strong fluorescence only in the red channel (arrows) and only slight
autofluorescence in the green channel; pre-adsorbed “cross-reactive” beads show a strong fluorescence with corona in the green channel (open arrowheads), and
no signal in the red channel. A number of fluorescent beads cannot be clearly assigned to either “positive” or “cross-reactive,” exhibiting similar fluorescence
intensities and/or coronas in both, the red and the green channel (closed arrowheads).

detected with the same phycoerythrin-labeled monoclonal anti-
IgE antibody that had been used for the pre-cleaning process.

Under microscopic examination, both screening set-ups
showed a small number of red fluorescent beads, in line with
the low abundance of beads in the library that were carrying
specific epitopes. Due to the brightness of the fluorescence, and
the low background in the red channel, the individual positive
beads could easily be detected and singularized. For each of both
set-ups, 10 red-fluorescent beads were isolated and their peptides
were sequenced. The correct c-myc sequence could be confirmed
for 9 out of the 10 c-myc candidates, and for the Ara h 2 screening
set-up, also 9 out of 10 isolated beads could be confirmed to
carry the Ara h 2 peptide. Moreover, after repeating the Ara h 2
screening experiment in an identical set-up, but using a different
batch of the same monoclonal anti-IgE antibody for detection, 10
of 10 isolated beads carried the Ara h 2 epitope sequence.

In conclusion, we demonstrate here that we have established
a method of pre-cleaning and screening an OBOC library that
can be used to identify specific IgE-epitope bearing beads within
a library of ≥100,000 different peptides.

DISCUSSION

A considerable number of asthmatics display high total serum IgE
levels along with the respective airway pathology but do not react
with the typical aeroallergens they are tested for. Although some
disorders such as parasite infections or hyper-IgE-syndrome
promote the formation of IgE, and atopic predisposition may
support class-switch of natural antibodies to class E, it is unlikely
that those afflictions account for the high total serum IgE
levels that are often associated with asthmatic airway pathology.

Frontiers in Immunology | www.frontiersin.org 12 September 2020 | Volume 11 | Article 565243138

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


fimmu-11-565243 September 29, 2020 Time: 14:21 # 13

Krause et al. OBOC-Library Screening With IgE

FIGURE 6 | Sorting of OBOC beads after pre-adsorption with the phycoerythrin (PE)-labeled anti-IgE antibody. Representative dot plots with full gating of (A) the
total pre-adsorbed OBOC library showing the anti-IgE cross-reactive beads in the upper PE+ gate and the non-cross-reactive beads in the lower PE- gate, and (B)
re-analysis of the pre-cleaned non-cross-reactive bead fraction (PE-) after sorting.

Parasite infections were shown to protect against asthma (38),
cases of hyper-IgE-syndrome are extremely rare (39) and natural
antibodies are usually of low affinity (40, 41). However, high
affinity seems to be necessary for the pathology that accompanies
high IgE levels in allergy and asthma (42). It is thus probable
that the high total serum IgE levels in asthmatics are largely

composed of IgE which underwent affinity maturation against
some specific antigen even if they are negative for the typical
aeroallergens. The shortfall of proper allergy diagnosis in such
cases is mostly due to the fact that in vitro routine allergy
diagnostic tests include only a limited number of clinically
relevant allergen sources and often lack relevant single allergenic
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components. In-vivo allergy diagnostic tests (skin prick tests)
represent the main approach to confirm clinical suspicion of
allergic sensitization, but they are mainly based on the application
of crude allergen extracts, and standardization remains difficult
(43). In this respect, the Global Allergy and Asthma European
Network (GA2LEN) has established a protocol for a standard
prick test panel with a total of just 18 inhalant allergens (43),
which they propose to be sufficient for general respiratory allergy
testing in Europe. However, considering the more than 3,200
different allergenic molecules identified to date (44) and the often
unsatisfactory outcome of allergy testing in high-IgE asthmatics,
this test panel appears to be all too limited for a personalized
diagnostic approach.

Anyhow, as soon as an allergy could be proven to be
the initiator of asthma, and the corresponding allergen could
be identified, causative treatment strategies (like allergen-
specific immunotherapy) can be introduced to the respective
patients. Thereby a specific anti-inflammatory treatment can be
provided and – if necessary – can be combined with treatment
of disease-relevant target molecules (target treatments), like
the application of biologicals against certain cytokines (45).
In any case, the patients will profit considerably from an
improved molecular allergy diagnostic test based on specifically
recognized epitopes.

In principle, the specificity of high affinity IgE can be deduced
from their selective recognition of cognate allergen or allergen
epitope upon its being offered for binding. Unfortunately, most
bioinformatical approaches to predict an epitope on the basis
of the paratope/CDR sequence (46, 47) did not meet up to the
expectations as yet. Hence, a procedure where an abundance
of potential epitopes can be offered to an IgE population with
unknown specificities appears to be more promising. Although
phage display libraries may be an apparent choice in this
context, the presentation of an epitope in a permissive scaffold
phage protein may be futile. An epitope’s presentation in the
original topology of its parent allergen is usually indispensable
for recognition, and restricted epitope flexibility may prevent
induced-fit-binding. On the other hand, the structural constraints
and rigid presentation of the peptide insert as part of the scaffold
protein render phage display libraries more suited to identify
mimotopes that imitate the structure of a conformational epitope
(48). In such a case, the amino acid sequence of the peptide
insert does not necessarily have any resemblance to that of
the natural IgE epitope, and deductions as to the respective
antigen/allergen recognized are not feasible. Thus, a display
system such as chemically synthesized peptides flexibly linked to
the surface of microparticles, where an epitope is free to adopt
any conformation, may be more advantageous to identify a linear
epitope or the linear core motifs of conformational epitopes.
We therefore decided to adapt the OBOC technology for our
scientific research question.

Any library, OBOC as well as phage display, is limited by the
number of peptides which can be presented. A comprehensive
8mer motif library will contain 1.7 × 1010 different permutations
when 19 amino acids are used. This translates into about 2
times 10 billion different phages or 240 kg of OBOC beads. Such
huge numbers of phages and amounts of beads are impossible

to handle and to screen. Yet, typical epitopes contain a core
region of 4–7 amino acids (mean 5.5) (49, 50) which translates
into roughly 10 million possible permutations. In view of this,
in our OBOC-library of 10 million beads all relevant core motifs
should theoretically be contained in the carboxy terminal part
(that is the first 5–6 amino acids) of all peptides as a whole. The
closer to the amino terminus we get, the more permutations are
not represented. We nevertheless decided to extend the OBOC
library toward being “non-representative” by using 8mer peptides
in order to further increase our chances to identify epitopes
which require more than the minimal core region for recognition.
We consider this length a good compromise between being
representative with the number of beads that can be handled,
and the chances of displaying epitopes sufficiently long to be
specifically recognized.

In order to establish a robust screening procedure that
uses OBOC-libraries for epitope discovery, we decided for a
stepwise, systematic approach to solve any intrinsic and extrinsic
problems. The main problem to be overcome turned out to be
the necessity for high sensitivity of the assay system in order to
enable us to detect a specific reactivity with IgE at physiological
concentrations. In healthy people the total serum IgE level is
usually below 100 IU per ml. A total serum IgE value ≥100 IU/ml
(corresponding to 240 ng/ml) is considered indicative of
allergy/atopy, and in some allergic patients serum IgE against
one specific target may reach 1,000 IU/ml (2,400 ng/ml) and
above. Still, these immunoglobulin concentrations are in a range
where detecting their specific reactivities on a one-bead-level
may become a problem. Addressing the sensitivity issue, we
tested a variety of different reporter systems attached to anti-
IgE antibodies to visualize binding of IgE to the beads. Initial
attempts with enzymatic reporters that produce insoluble dyes
failed to provide the desired sensitivity and/or specificity, even
when tyramide signal amplification (51) or fluorescent substrates
such as Amplex Red (52) were used. We therefore switched
to fluorophore labels directly conjugated to the secondary
antibody, additionally providing the possibility to detect, (pre-)
sort and isolate specific beads automatically via fluorescence
properties with cell sorter techniques. While this system proved
more sensitive, we encountered another difficulty associated
specifically with fluorescence detection. The polystyrene-based
OBOC bead matrix, in particular when covered with peptide,
is not optically inert (33, 34). It tends to display a considerable
auto-fluorescence at green emission wavelength (535 ± 50 nm),
which obscures the specific signal when e.g., FITC is used as
label. We therefore decided to move to reporter fluorophores
with higher emission wavelength. Here bead auto-fluorescence
was considerably lower and detection sensitivity higher. The
sensitivity benefit of migrating toward near infrared was,
however, limited by the capacity of the human eye to detect far
red light since the beads are being picked manually under visual
inspection. For the future, we envisage that the whole screening
and bead-isolation process might be automated in a microfluidic
system. If this is equipped with an infrared camera the use of
near infrared dyes such as DyLight755 or DyLight800 becomes
feasible and detection limits can be extended beyond the limits
reported in this study.
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A further problem which we had not initially anticipated
was the capacity of certain beads in the OBOC library to
directly acquire secondary antibody. Although the extent of
direct binding to the beads varied with the secondary antibody(-
conjugate) used, it appears likely that the main determining
factor for this cross-reactivity resides in the peptide sequence
motifs presented on specific beads. This includes peptides which
by chance resemble part of the IgE heavy chain or motifs
that have affinity to some region of the secondary antibody
or of the fluorophore. Analysis of such undesired binders
revealed that they mostly contain aromatic amino acids and
proline. Similar results were reported in another study, where
OBOC beads were screened with a probe equipped with the
fluorophores ATTO590 and TexasRed. Here, the amino acids
leucine/isoleucine, histidine, phenylalanine and tyrosine were
enriched in false positives reacting with the dye (32). These
data are intriguing. Yet, when considering that in an OBOC
library where all amino acids are used in equal amounts during
synthesis, the three aromatic amino acids as well as histidine
are overrepresented as compared to their natural frequency
observed in proteins (53), the undesired binders may at least be
explainable. Unfortunately, little information is available about
amino acid distributions in IgE binding sequences. So far only
one study (54) addressed this question and reported a preference
for Ala, Ser, Asn, Gly and especially Lys in IgE epitopes. In
light of this, it may be advisable to create “natural amino acid
frequency-representing” OBOC libraries where the occurrence
of certain amino acids reflects the natural occurrence of those
building blocks. Further restrictions, on the other hand, such
as overweighing the amino acids preferentially found in IgE
epitopes (54) may limit the diversity of the OBOC library offered.

In order to reduce undesired direct secondary antibody
labeling of beads without tampering with library composition
we followed two avenues of resolution for the problem, both of
which proved practicable. In the first approach, the complete
OBOC-library was pre-incubated with an excess of secondary
antibody equipped with a green fluorescent dye, then incubated
with the IgE pool and finally exposed to the same secondary
antibody labeled with a red fluorophore. In this case the decision
between false and true positives has to be made by comparing
green and red fluorescence of individual beads upon microscopic
inspection. In practice, this turned out to be a rather time-
consuming process with a certain operator variability. Focusing
on beads with a strong corona in the red fluorescence channel and
negligible green fluorescence yielded an excellent true-positive
rate – as verified by sequencing – in our experimental set-up.
However, it must be surmised that the same strategy decreases
the sensitivity of the procedure and reduces the probability
to positively identify epitopes of rare IgE species. It therefore
seemed reasonable to remove any cross-reactive beads from the
OBOC library before the actual screening process. This was
achieved by sorting the fluorescently pre-adsorbed OBOC library
with a large particle sorter (BioSorter). While this approach led
to satisfactory results in our set-up, it must be conceded that
the limited availability of suitable sorting devices renders this
procedure not highly practicable for general use. Here certainly
remains room to improve the protocol, either by adaption of

more accessible sorting devices (e.g., FACS) to the specific particle
size used in the libraries, or by refining the back-up protocol
employing two differently labeled anti-IgE antibodies with the
use of fluorophores less sensitive to the interfering bead auto-
fluorescence.

The final step to validate our OBOC library screening
procedure was the verification of the true positives after bead
isolation by peptide sequencing. First attempts using mass
spectrometric analysis (MALDI-TOF-MS) of fragments after
ammonolysis with aqueous or neat ammonia, however, were not
successful. Although some studies report mass spectrometrical
sequencing of peptides released from beads upon ammonolysis
(32, 55–57), in our hands OBOC beads did not liberate equal
amounts of cleavage product upon ammonia exposure which
caused difficulties to reconstruct the synthesized motif in silico.
Even known peptide sequences on defined c-myc or Ara h 2
beads could not be resolved by MALDI-TOF-MS. We therefore
switched to Edman degradation-based peptide sequencing on an
automated protein sequencer. Single isolated beads were directly
subjected to the sequencing process, without the necessity of
first removing bound antibodies or cleaving the peptide off the
bead. Although the low amount of peptide present for sequencing
(maximum theoretical capacity per bead 50 pmoles) is close to
the sensitivity limit of the sequencer, the peptide sequence on the
isolated beads could be successfully resolved in the great majority
of cases. Furthermore, beads with higher peptide capacity (e.g.,
100 pmoles) are available. All procedures described here could
be adapted without much effort to those beads, in case of
ambiguous results in terms of peptide sequencing during OBOC
library screening.

Taken together, we here present a detection system to
identify unknown IgE reactivities by using chemically synthesized
one-bead-one-compound libraries. We are confident that this
technology will aid in the identification of novel allergens for
asthmatic individuals with high total serum IgE and with no
specific allergic reaction detectable to date.
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Asthma is a heterogeneous disease with increasing prevalence worldwide

characterized by chronic airway inflammation, increased mucus secretion and bronchial

hyperresponsiveness. The phenotypic heterogeneity among asthmatic patients is

accompanied by different endotypes, mainly Type 2 or non-Type 2. To investigate the

pathomechanism of this complex disease many animal models have been developed,

each trying to mimic specific aspects of the human disease. Rodents have classically

been employed in animal models of asthma. The present review provides an overview of

currently used Type 2 vs. non-Type 2 rodent asthma models, both acute and chronic. It

further assesses the methods used to simulate disease development and exacerbations

as well as to quantify allergic airway inflammation, including lung physiologic, cellular and

molecular immunologic responses. Furthermore, the employment of genetically modified

animals, which provide an in-depth understanding of the role of a variety of molecules,

signaling pathways and receptors implicated in the development of this disease as well

as humanized models of allergic inflammation, which have been recently developed to

overcome differences between the rodent and human immune systems, are discussed.

Nevertheless, differences between mice and humans should be carefully considered and

limits of extrapolation should be wisely taken into account when translating experimental

results into clinical use.

Keywords: mouse model, asthma, T2 airway inflammation, non-T2 airway inflammation, endotypes

INTRODUCTION

Asthma is a heterogeneous disease which affects around 300 million individuals of all age groups

and its prevalence is increasing worldwide. Its impact is considered similar to other major chronic
diseases such as diabetes or Alzheimer disease (1, 2). Asthma is defined by a history of respiratory
symptoms such a wheeze, shortness of breath, chest tightness, cough and variable expiratory airflow
limitation (3). A chronic airway inflammation leads to airway remodeling with hyperplasia of goblet
cells and mucus hypersecretion, hypertrophy and hyperplasia of smooth muscle cells and lung
fibrosis. Different asthma phenotypes have been described, which drove the development of the
concept of asthma endotypes, where each endotype is a subtype of a disease condition and defined
by a distinct pathophysiological mechanism, in contrast to the disease phenotype, which comprises
the observable characteristics of the disease (4, 5). Generally, asthma can be separated in two
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main endotypes, a so-called Type 2 endotype, characterized
by T-helper Type 2-high inflammatory response and a non-
Type 2 endotype, whereby also mixed endotypes are not rare
(6, 7). While asthmatic reactions can also be induced without
exogenous triggers (8, 9), only antigen-driven asthmamodels will
be discussed here.

Airway Type 2 immune responses are mainly mediated by
eosinophils, mast cells, basophils, T2 cells, group 2 innate
lymphoid cells (ILC2s) and IgE-producing B cells (10, 11).
The whole inflammatory process starts with the activation of
epithelial cells and release of cytokines such as IL-25, IL-31,
IL-33, and TSLP which contribute to downstream T cells-
and innate lymphoid cells-mediated T2 immune responses.
These are characterized by the release of cytokines such as IL-
4, IL-5, IL-9, and IL-13, consequent production of allergen-
specific IgE, recruitment of eosinophils and other inflammatory
cells, production of mucus and smooth muscle hyperreactivity
(12). Non-Type 2 asthma, instead, is characterized by airway
inflammation in the absence of eosinophils and is often
associated with environmental and/or host hazards, such as
cigarette smoke, pollution, work-related agents, infections, and
obesity. These risk factors, alone or in conjunction, can activate
specific cellular and molecular pathways leading to non-type 2
pulmonary inflammation (13). Growing evidence supports two
major characteristic features of non-Type 2 asthma, namely a
neutrophilic-driven inflammation and an IL-6-driven activation
of the IL-17-dependent pathway (14, 15). To allow for a detailed
investigation of molecular pathways critical for this complex
disease or for a specific endotype in a functioning immune and
respiratory system, many animal models of asthma have been
developed, each of them trying to reproduce specific aspects of
the human disease. Because of their low cost, high breeding
efficiency and the large availability of transgenic models, rodents,
and especially mice have classically been employed in asthma
research, although considerations have been made regarding
their limitations in mimicking human asthma (16, 17). In this
review we will focus on antigen-driven asthma models and
methods used for the elicitation and quantification of allergic
airway inflammation, including lung physiologic, cellular and
molecular immunologic responses. Furthermore, approaches
to study exacerbations, chronicity and non-allergic airway
inflammation as well as the value of humanized models will be
discussed. Nevertheless, differences between mice and humans
should be carefully considered and limits of extrapolation should
be wisely taken into account when translating experimental
results into clinical use.

ELICITING ALLERGIC AIRWAY

INFLAMMATION

Historically, experimental asthma research was performed
sensitizing rodents intraperitoneally with chicken ovalbumin
(OVA) in combination with the pro-T2 adjuvant aluminum
hydroxide (alum), followed by repetitive OVA exposures
via the airways in order to elicit a Th-2 skewed adaptive
immune response leading to eosinophilia, goblet cell hyperplasia

and airway hyperresposiveness (18–20). Alum plays an
important role in boosting the adaptive immune system via the
inflammasome (21). The benefits of OVA lie on the fact that this
substance is efficient, inexpensive and has well-characterized
MHCI and MHCII epitopes and moreover OT1 and OT2 T-cell
receptor transgenic mice are available, which allowmonitoring of
OVA-specific immune responses in the airways (22, 23), making
OVA a very good option for unraveling underlying mechanisms
of the disease. However, OVA is not allergenic upon inhalation,
therefore it has been more and more replaced by naturally
occurring allergens which possess higher clinical relevance.

Allergens frequently used in sensitization protocols include
the house dust mites (HDM) Dermatopagoides pteronyssinus and
farinae, the fungus Alternaria alternata, cockroach and pollen
extracts. The principle of sensitization and challenge remained
the same as it was for OVA, but here the use of the adjuvant
became dispensable. Adjuvant-free models have been established
using several intranasal instillations of these allergens, mimicking
the natural exposure to airborne allergens via the nasal mucosa
and airway tract (24–27). Some of these allergen complexes like
HDM are characterized by an intrinsic protease activity which
favors the initiation of the allergic response, stimulating the
production of interleukin-25 (IL-25), IL-33, and thymic stromal
lymphopoietin (TSLP) from airway epithelial cells, which in turn
activate both dendritic cells, promoting T2 responses (28), and
local ILC2, leading to the increased release of IL-5, IL-9, IL-
13, and amphiregulin (26). Some others, like birch, grass or
ragweed pollen grains, do not only release allergens, but also
proinflammatory and immunomodulatory lipids and adenosine,
which act as critical co-factors in the development of lung allergic
inflammation (24, 29).

Whereas models using allergen sensitization/provocation via
the airways is reminiscent of the standard route of sensitization
in asthma and hay fever, there is also compelling data on
the relevance of cutaneous exposure in the development of
pulmonary allergy along the lines of the so-called “atopic march”
in which eczema precedes food allergies, asthma or hay fever
(30). Mouse models have confirmed that repeated epicutaneous
sensitization to protein (aero)-allergens leads to phenotypes
of atopic dermatitis and to increased risk of allergic rhinitis,
lung inflammation and airway hyperresponsiveness, where skin
barrier dysfunction and TSLP expression from keratinocytes play
essential roles (31–35).

Besides the pulmonary inflammation upon allergen exposure,
exacerbations induced by other factors like viral and bacterial
infections are a characteristic feature in the course of disease (36,
37). Here murine models of asthma have been especially useful
to identify possible effects of infections with the development of
the pathology. Particularly, influenza (38–40), rhinovirus (41, 42)
and respiratory syncytial virus (38, 43) are important pathogens
in the childhood that have been associated with exacerbations
in asthma.

Haptens are also broadly used in rodent models to
investigate exacerbation in airway inflammation. Studies
with toluene diisocyanate (TDI), trimellitic anhydride (TMA),
dinitrofluorobenzene (DNFB), and picryl chloride (PCL),
allowed dissecting the hapten-induced allergy as well as the
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similarities and differences between the different compounds
(44–47). Rodent models of DNFB, a powerful sensitizer of
non-atopic asthma (47), have recently shown increased numbers
of macrophages in bronchoalveolar lavage fluid (BALF),
tracheal hyper-reactivity and a strong neutrophilic-based
lung inflammation that could reflect characteristic features of
non-atopic asthma in humans (46, 48).

QUANTIFYING ALLERGIC AIRWAY

INFLAMMATION

The physiological characteristics of asthma are mediated
by a complex interaction between multiple effector cells
and mediators.

The increased infiltration of inflammatory cells is determined
by total and differential cell counts as well as measurement
of inflammatory mediator content in the BALF or lung tissue
(24, 49, 50). Upon allergen provocation, especially the role of
eosinophils is shown to be indispensable for the development of
allergic airway inflammation by mediating influx of T cell subsets
[reviewed in (51)] into the lung (52, 53). For their release of pro-
inflammatory mediators these cells are important contributors
to pathophysiological changes, including airway epithelial cell
damage, mucus hypersecretion and goblet cell hyperplasia which
can be observed and quantified in histological staining of lung
tissue (20, 54). In this context, eosinophils can be quantified by
cell surface markers and by direct counting of stained cells in
histological specimen (55).

Regarding the measurement of inflammatory mediators,
tissue-based ex vivo cultures are another way to examine
which cytokines are regulated in the development of airway
inflammation and asthma and which cell type plays a decisive
role in the concerned organs [reviewed in (56)]. As an alternative
to the determination of cytokines in the supernatant of lung
homogenates, stimulation of cells isolated from lung tissue or
draining lymph nodes, by adding e.g., the allergen is used
to evaluate the distinct cytokine patterns and to examine cell
type specific responses more precisely (57, 58), allowing initial
mechanistic conclusions about the observed phenotype.

As a hallmark of T2-driven allergic asthma, allergen-specific
IgE responses are quantified in murine sera e.g., by means
of ELISA (enzyme-linked immunosorbent assay) or functional
cellular assays (59). Another factor to be taken into account in
this context is IgG (and its subclasses), which are known to
modulate inflammation via its receptors (FcγR) (60, 61). For
example, antigen-specific IgG has been shown to improve allergic
airway inflammation when signaling via FcγRIIB on DCs (62)
and triggering different FcgR via certain IgG subclasses engage
different pathways in murine IgE-independent anaphylaxis (63).
Interestingly, similar mechanisms are discussed to take place in
humans as well (64).

Airway hyperresponsiveness (AHR), defined as the
predisposition of the airways to react excessively to
bronchoconstrictor agents or to noxious stimuli, is an
essential component of the asthma phenotype. The degree
of AHR usually correlates with disease severity (65), and can

be employed clinically for therapy management (66). AHR
may not replace measurements of lung function such as FEV1,
however it has been proposed to be included with other
indices of lung function for asthma control (67). Similarly
to spirometry in cooperative humans, lung function testing
has been developed for rodents. Analysis of AHR in animal
models is usually performed using one cholinergic agonist
(methacholine, carbachol, histamine, serotonine), which act
on the muscarinic receptor transduction pathway coupling
to airway smooth muscle contraction (68). Measurement of
AHR is usually performed shortly (24–48 h) after allergen
challenge either in whole body chambers in conscious animals
(body plethysmography) or in tracheostomized animals,
using systems such as the Buxco R© or the Flexivent R©, with
the agonist being either injected or aerosolized (24, 50, 69).
Whilst the measurement of Penh (enhanced pause) using body
plethysmography has lost acceptance in the scientific community
(70), measurement of respiratory system resistance (RL) and
dynamic compliance (DC) together with other physiologic
parameters under mechanical ventilation in tracheostomized
animals is often employed in asthma research (50, 71, 72).
An increase in RL reflects both narrowing of the conducting
airways and alterations in the lung periphery (distal airways
and parenchyma). On the contrary, decreases in DC reflect
only events occurring in the lung periphery. Therefore, if the
response to an intervention is limited largely to RL, then a
relatively proximal location is implicated for the effect, whereas
a distinctive effect on DC is indicative of a more distal site of
action. (73).

The limitation of this technique is based on the fact that it is
only applicable in terminal experiments. This has been overcome
by the use of oro-tracheal intubation technique, allowing for
repetitive measurements in the same animals, which can be of
advantage in longitudinal studies (74, 75).

NON-ALLERGIC ASTHMA MODELS

Since the non-allergic asthmatic phenotype occurs also in
patients with severe, steroid resistant asthma andmanagement of
asthma evolves into precision medicine with therapies directed
toward specific phenotypes/endotypes (76–78), proper models of
these conditions are needed to facilitate research on adequate
therapeutic options (79). In this regard, it was shown that a
Th17-driven non-eosinophilic lung inflammation is insensitive
to several treatment options including steroids, by using adoptive
transfer of in vitro polarized antigen specific Th17 cells with
subsequent pulmonary allergen application (80, 81). Manni et
al. could create a mixed phenotype by adoptive transfer of
T2 and Th17 cells enabling them to dissect contributions of
the different cytokine pathways to distinct features of airway
disease like mucus metaplasia or tissue inflammation (82).
Microbial components like bacterial lipopolysaccharides (LPS)
used as adjuvants in airway application of allergen have been
proven to elicit a non-eosinophilic airway inflammation by
triggering pathogen recognition receptors (PRR). Kim et al.
could demonstrate that in such models the dose of LPS during
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sensitization plays a decisive role in shaping the resulting lung
inflammation either toward eosinophilic (low dose LPS) or
neutrophilic (high dose LPS) inflammation (83). Comparing
this airway sensitization model to intraperitoneal allergen
application (with alum) Wilson et al. could illustrate how
different sensitization regimes lead to different molecular and
phenotypical pattern in the resulting airway disease identifying
a prominent role for Th17 in neutrophilic airway inflammation
and AHR (84). Hadebe et al. demonstrated the importance of
microbial triggers in airway immune responses via initiation
of a non-allergic steroid-refractory airway inflammation by
combining two different agents (LPS and beta-glucan) (85).
A more sophisticated approach uses biolistic transfection of a
plasmid containing the genetic information of the allergen via
gene-gun, with targeted expression in dendritic cells ensured by
a specific promotor, leading to a Th1/Tc1 driven inflammation
depending on IFNγ that is sensitive to steroid treatment (86).
Application of Poly I/C, a dsRNA analog mimicking a viral
infection, in combination with an allergen results in a Th1-driven
airway inflammation as well, offering the possibility to study the
pathomechanism underlying virus-induced airway inflammation
(87). Taking advantage of the possibility to shape the resulting
airway inflammation by means of different sensitization regimes
(using the same allergen: house dust mite), Tan et al. were able
to directly compare transcriptomic lung profiles of eosinophilic,
neutrophilic and mixed phenotypes enabling identification of
molecular pattern that are linked to distinct inflammatory
phenotypes (88).

Aspirin-exacerbated respiratory disease (AERD) is a
common, severe variant of asthma, which affects 7–10% of all
asthmatics and is associated with overproduction of cysteinyl
leukotrienes (cysLTs) and respiratory reactions to drugs that
block cyclooxygenase 1 (89). The pathophysiology has not been
fully solved yet, but in order to model this disease deficiency or
overexpression genetic animal models have been used presenting
severe eosinophilic respiratory mucosal inflammation (90, 91).

CHRONICITY AND REMODELING

Most of the above-mentioned models focus on the development
of symptoms after a short period of antigen exposure. While
this has provided a broad range of information on causal
and mechanistic effects on asthma, it usually cannot mimic
characteristics like chronic inflammation of the airway wall,
mucus production and remodeling (92–95).

To compensate that limitation, several methods applying
allergen for a longer period of time have been established. This
causes a protracted experimental window up to several months
and in some cases, due to the continuous exposure to the
allergen, leads to tolerance in the mice (96–101). The transgenic
technology allowed the generation of mice with characteristics of
chronic asthma and airway remodeling (102, 103). Furthermore,
transgenic models allowed the identification of an important
migration factor of DCs to the lung (104) and the role of IL-33
receptor suppressor of tumorigenicity 2 (ST2) in development
of chronic asthma in mice by regulating ILC2s, mast cells,

IL9 and IL-13 in the lungs (105). In addition, recent gene
modification in mice allowed to identify for example the role of
the potassium channels Kca3.1 in airway remodeling (106), and
the regulatory role of semaphorin 3E (Sema3E) in inflammatory
and remodeling responses in chronic asthma (107).

Recently, CRISPR/Cas 9, a gene disruption technology,
allowed to knock-out/down several genes in associated with
exacerbation, inflammation and remodeling in asthmatic
diseases, identifying roles for these molecules in some
pathophysiological features of asthma. For example, using
the CRISPR/Cas 9 technology the transient receptor potential
(TRP) 1, an ion channel was successfully knocked-out by Reese et
al. They could demonstrate its role in the protection from airway
inflammation in rats as well as in mice, suggesting TRP1A as a
therapeutic target in asthma (108). In another study depletion of
long non-coding RNAs (lncRNAs), particularly AK085865, led
to reduction of the inflammatory response in a murine model of
asthma, by modulating differentiation of innate lymphoid cells
progenitor (ILCP) into ILC2s (109). CRISPR/Cas 9, because of its
high target specificity, is a tool that could be of high importance
in the understanding of the pathomechanisms of asthma and
identification of novel therapeutic targets.

HUMANIZED MOUSE MODELS

Despite the widespread use of mouse models for the evaluation
of asthmatic diseases, there are restrictions when comparing
components of the murine biology (e.g., the immune system)
with those of the human biology (110). Humanized mouse
models, that are immunodeficient mice engrafted with functional
human (immune) cells, help to overcome some of these
discrepancies. They have become an important pre-clinical tool
for biomedical research, but to date only a small number of
humanized mouse models are available in the research field
of asthma.

Currently immunodeficient mouse strains for this purpose are
often based on IL2rgnull mice, which lack a functional common
gamma chain (γc) of the IL-2 receptor. This chain is not only part
of the receptor complex for IL-2, but assembles with other chains
to form receptors for IL-4, IL-7, IL-9, IL-15, and IL-21 as well,
which are expressed on several cells of the immune system and
signaling via these receptors is essential for homeostasis of these
immune cells [reviewed in (111)]. Thus, the lack of γc results in
absence of functional T, B, and NK cells.

The three most commonly used strains in humanized models
are: the NSG mouse, the NOG mouse and the BRG or
BALB/c-Rag2null IL2rgnull mouse. BRG and NSG mice have no
gamma chain while NOG mice have a truncated cytoplasmic
domain of the gamma chain, preventing signal transmission
(112, 113). All three models allow for efficient engraftment
with human immune cells, due to a severe impairment in
development of T and B as well as NK cells. These new
models have enabled a multitude of new findings in the
field of asthma research such as the interaction of allergen
immunotherapy, clinical tolerance and cellular response, as well
as new therapeutic options through the induction of peripheral
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TABLE 1 | Advantages and disadvantages of T2-driven asthma mouse models.

Mouse model Advantages Disadvantages

OVA models High efficiency, reproducibility, low cost

Well-characterized MHCI and MHCII epitopes

OT1 and OT2 T-cell receptor transgenic mice can be used to study

OVA-specific immune responses in the airways

Adjuvants are needed for sensitization

Provides good mechanistic insights, but no clinical relevance

Aeroallergen models Do not need adjuvants

Mimic natural exposure to airborne allergens via nasal mucosa and

airway tract

Need several consecutive applications of allergens

Amount of allergen exposure might not reflect natural exposure

of patients

Epicutaneous

sensitization models

Allow studies on atopic march

Mimics physiologic condition of repeated skin exposures to allergens

Needs intradermal applications of allergen or damaged skin

barrier

Chronic models of

asthma

Allows the study of a chronic phenotype as frequently observed in asthma

patients

Allows to investigate lung tissue remodeling

Longer duration of experiments

with frequent allergen applications

Risk of tolerance induction

Transgenic models Allows evaluating the role of particular cells, receptors or mediators in

asthma pathophysiology

Helps evaluating disease development/progression

The genetic modification can affect other phenotypes in the

model

Challenges in translating murine biology in human biology

Humanized models Help to mitigate the inherent differences between mouse and humans that

limit translation of the findings

Paucity of humanized mouse models for asthma research

Anatomical discrepancies between mice and humans (e.g., lung

anatomy, cell composition in the airways)

tolerance by sGARP (glycoprotein A repetitions predominant)
(114, 115). New mechanistic relationships were also clarified,
such as the influence of the IL-33/IL-13 axis on the asthmatic
airway inflammation or the anti-inflammatory effect of IL-35 in
asthmatic diseases (116). Based on the immunodeficient IL2rgnull

mouse, further mouse models emerged, including the Hu-SRC-
SCID mouse and the BLT mouse as well as the Hu-PBL-SCID
mouse providing further insight into our understanding of the
development of AHR as a characteristic feature of allergic asthma
(117) and discovery of new therapeutics, such as the use of TIM-1
antagonists as a possible treatment strategy for asthma (118).

LIMITS OF EXTRAPOLATION

Taken together, recent developments in asthma research led to a
shift from solely applying allergic T2-driven eosinophilic airway
inflammationmodels to a broader variety of airway inflammation
models following the demand for precision medicine based
on phenotype/endotypes in asthma management. However, it
is important to be aware that, while the main hallmarks
of asthmatic airway inflammation can be mimicked in such
models, there are certain differences between mice and men
which are reviewed in detail elsewhere (119, 120), that might
limit translational impact of results obtained in mouse models.
Some of these differences include immunological features (121,
122), which might be overcome by using humanized models,
whereas others like anatomical discrepancies [e.g., lung anatomy,
cell composition in the airways (123, 124)] will still differ in
humanized mice. Moreover, the course of disease and treatment
can often not be mimicked: asthma often begins in childhood

when the lung is not fully developed yet, whereas experiments
are mostly done in mice which do not spontaneously develop
asthma, using adult animals with fully developed lung structure.
Since the immunological response is shaped not only by the
route, but also the amount and frequency of allergen exposure
(23, 125, 126), a model that efficiently results in allergic airway
inflammation might not necessarily mimic allergen exposure
as it is experienced by the patients. Direct extrapolation of
efficacy for therapeutic interventions obtained in mouse models
is hampered by the fact that mouse models are conducted under
highly controlled conditions (e.g., under specific pathogen-free
conditions) which substantially affects the diversity of intrinsic
and acquired immune responsiveness and may cause substantial
immunological differences between these models and human
(127, 128). Moreover, experiments are usually performed in
genetically similar animals, which do not reflect the heterogeneity
of asthmatic patients. To sum this up there is not the “one
asthma model” mimicking human disease, but there is a huge
variety of different approaches that allow to closely reproduce
certain aspects of this complex syndrome with certain advantages
and disadvantages (Table 1), enabling researchers to examine
a scientific question from several different angels in order to
contribute mosaic pieces for better understanding asthma.
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Although first described decades ago, the relevance of carbohydrate specific antibodies

as mediators of type I allergy had not been recognized until recently. Previously,

allergen specific IgE antibodies binding to carbohydrate epitopes were considered

to demonstrate a clinically irrelevant cross-reactivity. However, this changed following

the discovery of type I allergies specifically mediated by oligosaccharide structures.

Especially the emerging understanding of red meat allergy characterized by IgE directed

to the oligosaccharide alpha-gal showed that carbohydrate-mediated reactions can

result in life threatening systemic anaphylaxis which in contrast to former assumptions

proves a high clinical relevance of some carbohydrate allergens. Within the scope of this

review article, we illustrate the historical development of carbohydrate-allergen-research,

reaching from only diagnostically relevant crossreactive-carbohydrate-determinants

to clinically important antigens mediating type I allergy. Focusing on clinical and

immunological features of the alpha-gal syndrome, we highlight the discovery of

oligosaccharides as potentially highly immunogenic antigens and mediators of type I

allergy, report what is known about the route of sensitization and the immunological

mechanisms involved in sensitization and elicitation phase of allergic responses as

well as currently available diagnostic and therapeutic tools. Finally, we briefly report on

carbohydrates being involved in type I allergies different from alpha-gal.

Keywords: alpha-gal, carbohydrate, allergen, crossreactive carbohydrate determinants, glycolipid, glycoprotein,

IgE, type I allergy

INTRODUCTION

A key function of the immune system is to distinguish self from altered-self and non-self in order to
subsequently induce tolerance or a specific immune response, respectively. Environmental factors
like pollen or food are potential allergic substances which are normally tolerated by the immune
system. However, in some individuals, the immune system mounts a type-2 biased reaction in
response to such factors. Type 2 immune responses comprise, among others, Th2 cells, type 2
innate lymphoid cells (ILC2) and basophils. As hallmark type 2 cytokine, IL-4 drives the switch in
B cells to the production of allergen-specific IgE antibodies which are bound by the high affinity
FcεRI on mast cells and basophils allowing the elicitation of immediate allergic reactions that
are called type I in contrast to e.g., directly cell-mediated type IV allergic reactions. Subsequent
exposure to the allergen results in cross-linking of these FcεRI-bound IgE followed by the release
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of vasoactive substances such as histamine by the mast cells
and basophils which in turn mediate typical type I allergy-
associated local and systemic symptoms, at worst, anaphylaxis.
While, in the past, mainly proteins have been described as
allergy-eliciting components within pollen, venom or food,
carbohydrates have been considered as non-immunogenic and
thus negligible in the promotion of allergic responses. However,
recent observations clearly show that carbohydrates as well as
glycolipids are involved in sensitisation as well as elicitation of
hypersensitivity reactions. Especially the identification of alpha-
gal as the epitope responsible for triggering anaphylaxis in
response to red meat, innards and therapeutical monoclonal
antibodies such as cetuximab, drastically changed the accepted
view of carbohydrates as allergens [for an overview see also (1–
4)]. How the role of glycans as allergens changed over time and
the immunological mechanisms involved in sensitisation to as
well as elicitation of allergic responses by carbohydrate allergens
will be discussed in this review.

CARBOHYDRATE FUNCTION AND

STRUCTURE

Carbohydrates are organic biomolecules consisting of one or
more simple sugars. These so-called monosaccharides like
glucose, fructose, mannose or galactose are built according to
the very basic formula CnH2nOn. By N-, C-, or O-glycosidic
linkage, monosaccharides can be coupled to form disaccharides,
oligo- and polysaccharides or complex biomolecules with non-
sugar constituents (5). At a first glance the most important
function of carbohydrates seems to be the storage of energy
and assembly of structural components like cellulose in the cell
walls of plants (6). However, as independent molecules but even
more as side chains of peptides, proteins or lipids, so called
glycopeptides, glycoproteins and glycolipids, carbohydrates have
crucial functions in e.g., development, immune regulation,
blood clotting and many other vital physiologic processes.
Accordingly, changes in glycosylation patterns have severe and
systemic consequences resulting in disease (7). Peptides and
proteins exhibit so-called glycosylation sites provided by, if
accessible in the final tertiary structure, certain amino acids. In
principle, carbohydrates can be bound N-linked to a nitrogen
of the amino acids arginine or asparagine, O-linked to a
hydroxyl group of tyrosine, serine, threonine or hydroxyproline
or, much less common, C-linked to a carbon of tryptophan
(8). Therefore, most larger proteins potentially qualifying as
allergens possess one or more glycosylations. In addition, it
is well-known that especially carbohydrate determinants are
potent immunogens with a broad clinical relevance e.g., as
vaccination antigens like bacterial polysaccharides being part
of the Haemophilus influenza type b vaccine or as blood
group antigens (9). Strikingly, it could also be shown that
especially carbohydrate antigens might serve as triggers of Th2
immunity (10, 11). Consequently, a glycan-related IgE-reactivity
has been demonstrated in most allergen sources (12). Likewise,
carbohydrates and their possible role in allergy became an early
focus of allergy research (for an overview, see Figure 1).

FIGURE 1 | Timeline showing relevant milestones in understanding the role of

carbohydrates in allergology.

THE HISTORIC VIEW OF CARBOHYDRATE

ALLERGENS

In the 1940’s a series of articles reported an important role of
corn starch and sugars from cereals as food allergens (13, 14).
Because of hearings at the US Food and Drug Administration in
1949, where the advisability of labeling foods was discussed from
the perspective of allergy research, these publications received
a lot of attention. However, some of these reports referred to
quite unspecific symptoms for diagnosing allergy to starches,
syrups and sugar from cereals and could not be confirmed
by most contemporary specialists. Interestingly, the controversy
about the relevance of the reported observations resulted in
the development of the most objective diagnostic procedure for
food allergy, the blinded provocation test. This even led to the
appeal to introduce such controlled, objective methods to study
food allergy. Using the new established method, by the way, an
important role of corn starches or sugars as allergens could not
be confirmed (15). At the same time Coulson et al. reported
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evidence that carbohydrates associated with allergenic proteins
(they investigated cottonseed allergens) do a) not determine the
antigenic specificity and b) not influence the “shocking capacity”
of the allergenic protein (16). Both findings together indicated
that carbohydrates do not play a major role as allergens.

CROSS REACTIVE CARBOHYDRATE

DETERMINANTS

In the 1960’s, scientists increasingly hypothesized that allergens
must be characterized by a common feature defining an allergen
as an allergen (17). Several groups systematically investigated
the clinical reactivity of allergic patients to different allergen
extracts in cutaneous tests and, according to the calculated
correlation coefficients, proposed that allergens can be grouped
into clusters or families of closely related allergenic potential
(18). Based on these results, others hypothesized that the crucial
chemical properties of allergens are N-glycosidically linked
sugars (19). Although this did not turn out to be the key to
understand the allergic potential of certain antigens in general,
it proved to be correct: Many allergens, especially those from
the plant kingdom, possess common N-glycosidically linked
immunogenic carbohydrate determinants with IgE binding
properties. In 1979, a Japanese group described the complete
structure of the carbohydrate moiety of stem bromelain, which
is generally seen as the starting point of identifying cross
reactive carbohydrate determinants and their relevance (20).
In the same year, Baur et al. described a mutual inhibition
of Radio-Allergo-Sorbent-Test (RAST) to papain, bromelain,
wheat flour, rye flour, grass pollen, and birch pollen (21).
However, the relevant cross-reactive structures were difficult
to identify with radioimmunoelectrophoresis, which was the
standard method at the time. In the early 1980’s, Aalberse
and his colleagues identified IgE antibodies that crossreact with
vegetable foods, pollen, and Hymenoptera venom with the
new and preferred procedure “immunoblotting” (22). Especially
two findings allowed to establish the concept of ‘cross reactive
carbohydrate determinants’, shortly CCDs: Their results showing
that the cross-reactive inhibitory effect of grass pollen in RAST
could be destroyed by periodate pretreatment, a procedure
resulting in breakdown of carbohydrates, and observations,
that lectin containing gums like tragacanth gum - lectins very
specifically bind certain carbohydrates - can inhibit RAST levels
to buckwheat or potato. The findings of Aalberse et al. were
supported by following publications showing that IgE from
patients allergic to honeybee venom binding to phospholipase
A 2 (PLA 2; Api m 1) reacts with the same CCD which
is also present on plant glycoproteins (23, 24). Later, these
findings were proven by showing that glycopeptides made from
pineapple stem Bromelain can inhibit IgE binding to Api m 1.
Immunogenicity of CCDs is caused by differences in the cascade
of synthetisation. The initial steps of protein N-glycosylation
are essentially conserved in all eukaryotic organisms (9, 25),
however, the following steps differ between ‘higher animals’, i.e.,
the deuterostomia on the one hand and the protostomia (e.g.,
insects), the acoelomata (e.g., many parasitic worms) and the

plants on the other hand (9). Therefore, the prototypic N-glycan
CCD structures MMXF 3 and MUXF 3 (Figures 2A,B) exhibited
by horse radish peroxidase (HRP) or bromelain, respectively,
show non-human linkage: Fucose alpha 1,3 is linked to the
core region of glycoprotein N-glycans. In humans, the N-glycan
core fucose is linked to position 6 of the first GlcNAc unit.
The non-human monosaccharide β-(1,2) xylose is bound to
the first mannose in the N-glycan core region (26, 27). These
immunogenic fucose and xylose moieties have been identified
responsible for IgE binding and IgE cross-reactivity. It is expected
that about 15–30% of atopic patients mounting IgE responses
have anti-CCD IgE (24, 28–30). In principle, binding to anti-
CCD IgE is able to cross-link FceRI and activate human mast
cells and basophils (29, 31, 32). However, in comparison to
protein antigens usually much higher concentrations, up to 10-
fold, are necessary demonstrating low potency (31, 33, 34). Thus,
there is broad consensus that anti-CCD IgE generally does not
cause clinical symptoms when crosslinked by CCDs even though
single cases remain, in which a clinical relevant anaphylactic
potential is still debated. Interestingly, recent publications also
discuss the possibility that CCDs might have a clinical relevance
by rather being disease protective (35, 36). Nkurunungi et al.
could show, that in ugandan schoolchildren the presence of
IgE to a subset of core α-1,3-fucose substituted N-glycans was
lower in the asthmatic population. However, those are initial
observations which at first should be corroborated by more
mechanistic studies.

CARBOHYDRATES AS IMPORTANT

EPITOPES IN TYPE I ALLERGY

Understanding the role of IgE recognizing CCDs and its
structures allowed to crucially improve allergy diagnostics.
However, it might have delayed the understanding of a possible
role of carbohydrates as clinically relevant allergens (9). This has
changed drastically since in 2009 Commins et al. reported that
the carbohydrate allergen galactose-α-1,3-galactose (Figure 2C)
can induce severe anaphylaxis. Specifically, IgE antibodies to the
carbohydrate galactose-α-1,3-galactose (alpha-gal) were found to
elicit serious, even fatal, reactions to the monoclonal antibody
cetuximab (37). Alpha-gal is a carbohydrate broadly expressed,
even by bacteria, and can be found in high density in red meat
and especially in innards like kidney and patients with alpha-gal
allergy were increasingly recognized (38–41). However, alpha-
gal has been recognized as a relevant antigen much earlier.
By investigating the cross reactivity between human sera and
animal blood, Landsteiner and Miller (42) discovered that ‘in
twelve species of seven genera of Platyrrhina (New World
monkeys) [. . . ] a factor similar to the human isoagglutinogen B
was present; in 18n species of four genera of Cercopithecidae
(Old World monkeys) it was absent, although the latter are
more closely related to man than the former’ (42). Indeed,
the alpha-gal epitope is highly similar to the human blood
group B antigen (Figure 2D). Roughly at the same time as the
role of carbohydrate antigens as CCDs in 1983. Galili et al.

Frontiers in Immunology | www.frontiersin.org 3 October 2020 | Volume 11 | Article 586924155

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Hils et al. Carbohydrates as Allergens

FIGURE 2 | Structure of the most relevant carbohydrate allergenic structures. (A,B) Structure of the CCDs MMXF and MUXF. (C) Structure of the allergen alpha-gal

and (D) shows in comparison the difference to the blood group B antigen.

observed a high number of IgG antibodies directed to alpha-
gal, initially in thalassemia patients, representing up to 1% of
all IgG (43). Further investigations showed that these antibodies
very specifically recognize only the alpha-gal epitope showing no
cross reactivity with most similar carbohydrate epitopes (44, 45).
The development of anti-alpha-gal antibodies is the result of
an evolutionary loss of alpha-gal epitopes due to frameshift
mutations in the α-1,3-galactosyltransferase gene in humans and
old world apes between 25 and 40 million years ago (46). As
a consequence, alpha-gal is recognized by the human immune
system as a non-self and potentially harmful molecule capable
of triggering an immune reaction. It is not totally understood
why this mutation could prevail, but it must have provided
an evolutionary survival advantage. Indeed, anti-alpha-gal IgG
antibodies significantly improve the immune defense against
pathogens expressing the epitope like Plasmodium species and

Trypanosoma cruzi (47–49). Accordingly, human anti-alpha-gal
IgG were also shown to bind to a number of Gram-positive
and Gram-negative bacterial pathogens (41). After its discovery,
potential clinical implications of the alpha-gal epitope remained
elusive for many years. While a role in immune reaction to
cancer cells has been suspected early and is still discussed, alpha-
gal initially became most prominent as a relevant xenoantigen
impairing efforts to establish xenotransplanation from pig to
human (50). Thanks to the extensive research in this field,
precious knowledge about the biology of alpha-gal, especially
organ and species specific expression patterns and specificity
of antibodies, had been gathered even before the discovery of
alpha-gal allergy. Xenotransplantation research also led to the
generation of α-1,3-galactosyltransferase and consequently also
alpha-gal deficient mice and pigs (51–53). It was a surprise
when in 2008, Chung et al. observed that in some patients
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who developed a severe anaphylaxis following even the very
first administration of the new epidermal growth factor receptor
(EGFR)-antibody cetuximab, the relevant epitope turned out
to be alpha-gal and that affected patients seemed to have
preformed IgE directed to it (37). Further research, inspired
by the observation that ‘the geographical distribution of cases
matched the reported distribution of a tick-borne disease called
Rocky Mountain spotted fever’ which is transmitted by bites
of Amblyomma americanum (the lone star tick), revealed that
indeed tick bites seem to have the potential to induce IgE
production to alpha-gal. In 2011, Commins et al. could show
that the serum concentration of IgE directed to alpha-gal and
IgE reacting with extract of the lone star tick significantly
correlate (54). In addition, it could be shown that alpha-gal
is present in the gut and in the salivary glands of the ticks
Amblyomma americanum and Ixodes ricinus, the latter being
endemic in Europe (55–58). Finally, repeated tick bites can
booster the immune reaction to alpha-gal and vice versa subjects
living in areas void of ticks do not develop IgE to alpha-gal.
Because allergy to alpha-gal means not just red meat allergy
but also allergy to other alpha-gal residue carrying substances
like gelatin or recombinant pharmaceuticals from mammalian
cells and sometimes also comprises allergic reactions to tick
bites, it is also called “alpha-gal syndrome” (59, 60) (summarized
in Figure 3). Next to the induction by repeated tick bites,
clinical hallmarks are a typically relative high age of about
50–60 years confirmed in most cohorts and an often delayed
onset following meat consumption of at least 2 h. Interestingly,
after consumption of pork kidney allergic reactions can occur
within < 1 h (61–63). These differences in latency might be
caused by the required digestion, absorption and conversion
of alpha-gal containing glycoproteins and / or -lipids crucially
preceding their recognition by FcεRI-bound IgE on mast cells
and basophils. While most ingested proteins are transported
to the bloodstream within 1–2 h after ingestion, the majority
of lipids enters the blood as part of chylomicrons around
4 h postmeal (64). Indeed, using proteins and lipids extracted
from grilled beef, Roman-Carrasco et al. demonstrated that
alpha-gal containing glycolipids but not -proteins were able to
cross a monolayer of intestinal cells as part of chylomicrons
(65). As relevant alpha-gal carrying allergens in pork kidney,
angiotensin-I-converting enzyme (ACE I) and aminopeptidase
N (AP-N) have been identified (66). The clinical diagnosis is
based on a case history with occurrence of systemic symptoms
of type I allergy after consumption of red meat or offal and the
presence of specific IgE to alpha-gal. The most commonly used
commercially available reagent for detecting alpha-gal specific
IgE is native bovine thyroglobulin. Prick test solutions authorized
and available to confirm meat allergy show a low sensitivity
in alpha-gal allergic patients and are usually not suitable to
prove allergy to alpha-gal (61). In contrast, prick-to-prick tests,
especially those using fresh pork or beef kidney lysate or red
meat, as well as intradermal test with Cetuximab or 4 % gelatin
polysuccinate have shown to provide a higher sensitivity and can
be helpful to diagnose alpha-gal syndrome (61). Importantly, a
relevant portion of individuals with IgE to alpha-gal remains
clinically tolerant with no symptoms of alpha-gal syndrome upon

exposure. In a cohort of German forest workers, the prevalence
of IgE to alpha-gal was 35% but only 8.6% of the participants
with alpha-gal-sIgE levels≥0.35 kUA /L had a manifest allergy to
alpha-gal (67). Therefore, as established in the early 1950’s, oral
provocation tests are the tool to establish the clinical relevance of
IgE sensitization to alpha-gal. As elicitation of clinical symptoms
depends on the presence of additional augmentation or cofactors
like exercise, alcohol consumption or intake of non-steroidal
anti-inflammatory drugs in some alpha-gal allergic patients,
titrated exposure to such cofactors should be included in the
test procedure (61, 68, 69). Interestingly, it might be possible
to distinguish patients with a relevant sensitization from those
with IgE to alpha-gal but persistent tolerance by performing
basophil activation test (BAT). Mehlich et al. reported that alpha-
gal allergic patients showed a significantly higher%CD63/anti-
FcεRI ratio using either alpha-gal-HSA, pork kidney extract or
bovine thyroglobulin than alpha-gal tolerant patients also having
IgE to alpha-gal (70).

Regarding basic research, data on allergy to alpha-gal in
animal models allowing a better understanding of underlying
immune mechanisms is still sparse. However, as a proof of
concept Araujo et al. could show that effective sensitization of
α-1,3-galactosyltransferase deficient mice to alpha-gal can be
achieved by either subcutaneous injection of alpha-gal carrying
virus like particles, each displaying 540 copies of alpha-gal on its
surface or by injection of tick saliva or by feeding ticks on the back
of a mouse for 9 days using a feeding chamber. An Elisa specific
for anti-alpha-gal antibodies showed a strong induction of alpha-
gal specific IgE in mouse serum after tick feeding but a clearly less
effective induction following subcutaneous sensitization using
virus like particles or tick saliva (71). Our own unpublished
results confirm that a percutaneous sensitization to alpha-gal in
mice is effective and induces clinically relevant allergy in mice,
however, further research is necessary to understand how allergy
to alpha-gal is induced and how it might be prevented or more
efficiently treated.

Interestingly, clinically relevant type I allergy to carbohydrates
other than alpha-gal has also been reported but this is much
less well-understood than the alpha-gal syndrome (72). Initially,
in the 1980’s in workers on Japanese oyster farms, a noticeable
increase of occupational asthma has been observed. Analyzing
these cases, Ohta et al. could identify a number of different
oligosaccharides isolated from the H-antigen of the sea squirt as
the relevant allergens (73, 74). Some of these oyster farm workers
later on also suffered from anaphylactic reactions after drinking
a lactic acid beverage especially popular in Japan. In these
patients 1–3 or 1–6 linked so called galacto-oligosaccharides
(GOS) consisting of four saccharides elicited positive results if
used in skin-scratch tests and in a histamine release assay. GOS
consist of 2-6 mostly galactose molecules and a terminal glucose
but can significantly vary in length and type of linkage between
the monomers (75). Most interestingly, IgE antibodies directed
to these GOS also cross-react to the sea squirt antigens (76).
In addition, allergic reactions to other GOS used as probiotic
supplements in beverages, infant milk products or commercially
available milk drinks even outside of Japan have been reported
(77, 78). Taken together, these observations demonstrate that
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FIGURE 3 | The alpha-gal syndrome. All individuals initially develop tolerance to alpha-gal mediated by constant exposure through bacterial colonization of the

intestine and potentially also to food, associated with alpha-gal specific IgG and IgM antibodies (1). However, in some individuals, repetitive tick bites can result in a

break of tolerance by induction of alpha-gal specific IgE (2). Upon consumption of red meat and innards as well as administration of alpha-gal containing drugs such

as the therapeutic monoclonal antibody cetuximab, these individuals experience symptoms up to fatal anaphylaxis. While symptoms in response to cetuximab occur

immediately after administration, anaphylaxis in response to red meat or innards occurs in a delayed fashion 3–6 h after consumption (3).

other type I allergies to carbohydrates than that to alpha-gal exist.
Indeed, it seems likely that the increasing understanding about
the immune mechanisms underlying allergy to carbohydrates
results in identification of additional and clinically relevant
carbohydrate allergens.

TODAY’S VIEW OF CARBOHYDRATE

ALLERGENS

Immune responses associated with allergy are in most cases
elicited by binding of the allergenic substance to specific IgE
antibodies coupled to the high affinity IgE receptor FcεRI on
mast cells and basophils, leading to the release of mediators
such as histamine. Thus, an induction of a type 2-dominated
immune response and the associated polarization of CD4+
T cells to become Th2 cells and the production of type 2
cytokines, among them IL-4, can be anticipated to be underlying
the class switching of allergen-specific B cells to produce
IgE antibodies. To allow the Th2 cell development, IL-4 as
dominant education factor is crucial. One possible initial cellular
source of IL-4 are the basophils which are well-known for
their substantial role in allergic inflammation as well as in
parasitic infections (79–82). Basophils have even been described
to function as non-professional antigen presenting cells able to

take up, process and present allergen on MHCII and induce
Th2 responses in mouse models of papain immunization and
ovalbumin-induced food allergy, however, their role in “real
life” Th2 responses is still a matter of debate (83, 84). Of
note, most allergens are proteins, however, the majority of
allergens from sources such as pollen, food and insect venom
also carry carbohydrates and (glyco-)lipids. While the cascade
of events leading to adaptive immune responses to protein
antigens are increasingly well-understood (85), the mechanisms
underlying carbohydrate-specific humoral and cellular immune
reactions are less well-defined (summarized in Figure 4). Innate
immune cells recognize so-called pathogen associated molecular
patterns (PAMPs) on pathogens leading to their activation
and subsequent initiation of the adaptive immune response.
Pathogens are taken-up and processed by activated antigen
presenting cells (APCs), of which the dendritic cells are the most
specialized, which in turn present pathogen-derived peptides
on MHCII molecules. Dendritic cells subsequently migrate to
draining lymph nodes where they initiate the adaptive immune
response by activating antigen-specific naïve T cells which
specifically recognize the presented peptide-MHCII complex.
T cells in turn differentiate into specialized effector T cell
subtypes, depending on the cytokine milieu in the cellular
environment. Antigen-specific B cells in the lymph node are
subsequently activated by a specialized subset of T helper cells,
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the follicular helper cells, which provide both cytokines and co-
stimulatory molecules leading to B cell activation, proliferation,
plasma cell differentiation, antibody secretion and memory
formation (85).

CARBOHYDRATE SPECIFIC ANTIBODY

RESPONSES – REQUIREMENT FOR T

CELLS?

While efficient antibody responses to protein antigens in
general require T cell help and thus presentation of antigenic
peptides via MHCII, B cell activation mediated by carbohydrate
antigens, according to traditional views, has been suggested to
occur independent of T cells due to extensive cross-linking
of B cell receptors by repetitive glycan epitopes (Figure 4C)
(85, 86). Consequently, antibody responses to carbohydrate
antigens differ strongly from those to protein antigens. First,
carbohydrate-specific antibodies use a restricted panel of variable
gene pairs as well as confined antibody isotypes, with an
overrepresentation of IgM and defined IgG isotypes, namely
IgG2 (human) and IgG3 (mouse) (87–89). Due to their
capability to form antibody multimers, the overrepresentation
of IgM and IgG2 or IgG3 isotypes provides carbohydrate-
specific antibodies with the capability to efficiently bind to
multivalent glycan structures on the surface of microbes, cells
and glycoproteins. Second, mainly due to the seemingly limited
contribution of carbohydrate antigens to memory responses
and the resulting limited affinity maturation, carbohydrate-
specific antibodies primarily exhibit only low affinity compared
to antibodies recognizing protein antigens. These characteristics
are the main reason for the usage of thymus-dependent
forms of vaccines to capsular bacteria such as Haemophilus
influenzae type b, where carbohydrate-protein conjugates are
used to facilitate higher antibody affinities as well as memory
responses (90, 91). However, more recent studies described a
similar affinity of carbohydrate-specific antibodies of IgE and
IgG isotypes for the CCDs α1,3-fucose and xylose as well as
high affinity binding of anti-alpha-gal and anti-LPS antibodies
(92–94). T cell-independent natural antibodies are primarily
produced by B1 cells in response to damage-associated molecular
patterns (DAMPs). Interestingly, glycoproteins and glycolipids
in vertebrates primarily terminate with sialylic acid residues,
which are recognized as normal self by various receptors such
as Siglecs (95) while asialylated glycoproteins e.g., with terminal
galactose are recognized as altered self or DAMPs. Indeed, anti-
alpha-gal IgG and IgM are highly abundant antibodies, originally
sorted into the pool of natural antibodies, and are present in
all humans with up to 1% of B lymphocytes specific for alpha-
gal (44, 96). Of note, it has been described that B1 cells can
enter germinal center reactions under certain circumstances,
particularly in autoimmune conditions like systemic lupus
erythematosus (SLE), allowing class switch recombination and
somatic hypermutation, leading to high affinity IgG or IgA
responses (97). Thus, B1 cells are likely involved in antibody
responses to carbohydrate allergens, especially in those to alpha-
gal. In contrast to these observations, using Ggta1 Tcrβ double

deficient mice, Cretin et al. showed that antibody responses to
alpha-gal are depending on T cells. They observed an increase
in alpha-gal -specific IgM titers with age in T cell carrying but
not T cell deficient Ggta1 ko mice. Additionally, immunization
with pig cells boosted the alpha-gal-specific antibody response
only in mice carrying T cells and blocking CD40-dependend co-
stimulation abolished the increase in IgM titers in Ggta1 ko mice,
indicating that antibody responses to alpha-gal require T cell help
(98). Indeed, some carbohydrate antigens, especially zwitterionic
polysaccharides from the capsules of some bacteria, have been
shown to be presented by MHCII molecules to activate CD4T
cells (99–101), indicating that at least some carbohydrates can
be presented by MHCII molecules in certain conditions. Cobb et
al. showed that polysaccharide A from B. fragilis, a zwitterionic
polysaccharide, can be taken up, processed and presented on
MHCII by human as well as murine B cells. Confocal microscopy
of splenocytes from PS-A treated mice confirmed the formation
of an immunological synapse between polysaccharide-MHCII
complexes on professional antigen-presenting cells (APCs)
and the corresponding T cell receptors (αβTCRs). Specific
glycoproteins and glycoconjugates can also be presented via the
classical MHCII pathway and in turn activate specific T cells,
whereby the glycan group can either be preserved, converted
or removed from the presented peptide fragment (102–105).
Most interestingly, carbohydrate-dependent proliferation of T
cells from bee venom allergic patients in response to the allergen
phospholipase A2 derived of bee venom has been demonstrated
(102). Thus, carbohydrates with certain molecular characteristics
as well as glycopeptides can indeed be presented by the classical
MHCII pathway to activate CD4T cells. A need for T cells for
the production of carbohydrate allergen-specific IgE antibodies
is also in line with the T cell dependency of the majority of high
affinity antibody responses. During the course of the antibody
response, both the effector functions of an antibody and the
affinity for its cognate antigen are specifically adapted in so-
called germinal center reactions, which are crucially depending
on co-stimulatory signals as well as cytokines expressed by T
helper cells. The affinity of the antibody is increased by somatic
hypermutation of the variable regions and the subsequent
selection of B cells with high affinity for their cognate antigen,
a process called affinity maturation. The effector function of an
antibody is mediated by its constant region, which determines
the isotype of the antibody. All mature B cells initially express
antibodies of IgM isotype, which can be modified by the process
of class switch recombination initiated by co-stimulation as well
as a defined cytokine milieu. In the case of high affinity IgE
antibody responses, a possible sequential class switching of IgG1
to IgE has been proposed, in accordance with the limited and
transient participation of IgE positive B cells in germinal center
reactions and memory responses (85, 106–108).

GLYCOLIPID ALLERGEN SENSING – NKT

CELLS DO THE JOB

While glycoproteins can be presented via the classical MHCII
pathway, glycolipids are uniquely presented by the MHC Class I
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FIGURE 4 | Immune response to carbohydrate antigens. (A) Dendritic cells sense carbohydrate constituents on allergens via pathogen recognition receptors (PRR)

such as C-type lectin receptors, leading to their activation. Allergens are taken up by receptor mediated endocytosis or phagocytosis, processed and presented on

MHCII (glycoproteins, defined polysaccharides) or CD1 (glycolipids) to specifically activate CD4+ T cells or NKT cells, respectively. Activated dendritic cells additionally

secrete different cytokines and chemokines and express co-stimulatory molecules which initiate and modulate the adaptive immune response. (B) Activated CD4+ T

cells in turn activate naïve B cells recognizing and presenting the same allergen on MHCII via co-stimulatory signals and secretion of specific cytokines resulting in

affinity maturation, class switch recombination, memory B cell and plasma cell differentiation and antibody secretion. (C) Specific B cell subsets, mainly B1 cells, can

be activated in a T cell independent fashion via extensive cross-linking of the B cell receptors by repetitive epitopes, resulting in the secretion of so-called natural

antibodies characterized by only low antigen affinity and mainly IgM isotype.

like molecule CD1mainly expressed by B cells, dendritic cells and
thymic T cells (109). Self and non-self lipids are in turn sensed by
a separate T cell lineage, the NKT cells. NKT cells co-expressing
natural killer (NK) cell markers and carry semi-invariant CD1-
restricted αβTCRs on their surface (110). While humans express
five different CD1 molecules which are organized into two
classes based on sequence homologies (class I: CD1a, b, c;
class II: CD1d), mice lack expression of the class I genes
and thus solely express CD1d (111, 112). Upon ligand-CD1d
recognition, NKT cells exhibit cytotoxicity mediated by Fas-Fas
ligand interaction and rapidly secrete large amounts of cytokines
including IFNγ, GM-CSF and the Type-2 cytokines IL-4, IL-5
and IL-13 (113, 114). The glycolipid alpha-galactosylceramide
(α-GalCer), first identified in a marine sponge, is a well-
known high affinity NKT antigen (115). Indeed, CD1d-α-GalCer
tetramers stained up to 95% of human and mouse NKT cell
clones (116). Additional CD1 ligands include microbial lipids
such as glycosphingolipids and α-galactosyldiacylglycerols from
the Gram-negative, LPS-negative bacteria Sphingomonas and
Borrelia burgdorferi, respectively (117, 118), as well as self-lipids

like the lysosomal glycosphingolipid isoglobotrihexosylceramide
(iGb3) (119). Interestingly, while mice showed an increase in
IFNγ as well as IL-4 and IL-10 after a single immunization with α-
GalCer, repetitive immunisations resulted in a Th2 polarization
of the immune response, with a dramatic reduction in IFNγ

and an increase in IL-4 and IL-10 secretion, accompanied by an
increase in serum IgE levels (120). Indeed, lipids from pollen,
insects and food allergens have been described to play a role
in allergic sensitization by direct recognition of these lipids
via NKT cells. Agea et al. showed that phospholipids isolated
from cypress pollen grains induced proliferation and secretion
of both IFNγ and IL-4 in T cells isolated from allergic patients.
Pollen grains directly interacted with dendritic cells and this
interaction was blocked by anti-CD1d as well as anti-CD1a
antibody treatment. Finally, NKT cell clones from cypress allergic
individuals efficiently induced IgE production by autologous B
cells in vitro and phospholipid-specific IgE antibodies could be
detected in the serum of allergic but not control individuals
(121). Another work by Abos-Gracia et al. showed that different
lipids from olive pollen induce maturation of immature dendritic
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cells, accompanied by CD1d upregulation and IFNγ as well
as IL-4 production, which in turn activated iNKT cells (122).
By investigating PBMCs from food-allergic children, Jyonouchi
et al. demonstrated that iNKT cells from allergic individuals
produced higher amounts of the Th2 cytokines IL-4 and IL-
13 in response to α-GalCer stimulation compared to iNKT
cells from non-food allergic individuals. Stimulation of iNKT
cells from milk-allergic individuals with milk sphingolipid- as
well as α-GalCer-loaded CD1d tetramers specifically induced
iNKT cell activation and proliferation, while egg ceramide-
loaded CD1d tetramers did not. Interestingly, stimulation with
milk sphingolipid- but not α-GalCer-CD1d tetramers resulted in
clear IL-4 secretion by iNKT cells. When cultured in presence of
milk sphingolipid, iNKT cells from allergic but not non-allergic
children showed a clear Th2 response (123). Bourgeois et al.
could show that phospholipase A2 from bee and wasp venom
indirectly mediated a CD1a-restricted T cell response by cleaving
cellular phospholipids which in turn served as neoantigens for
CD1a-restricted T cell activation by antigen presenting cells
(124). In a follow-up study, an increase in bee and wasp venom-
reactive CD1a-restricted T cells with increased IFNγ, GM-CSF
and IL-13 production in response to venom or venom-derived
phospholipase was observed in venom-allergic individuals (125).
Taken together, CD1-mediated presentation of lipids to NKT
cells plays a crucial role in sensitization to allergens whereby the
allergenic compound is either itself the lipid ligand presented on
CD1 or is involved in lipid ligand processing.

SENSING OF CARBOHYDRATE

ALLERGENS

In order to present allergens to T cells, APCs have to sense,
take-up and process the allergen. Carbohydrate antigens are
specifically recognized by a subset of glycan-binding proteins,
containing carbohydrate recognition domains with specific
binding grooves for certain self and non-self carbohydrate
structures, the so-called lectins (126, 127). Among those, C-
type lectin receptors (CLRs) essentially contribute to the pattern
recognition ability of myeloid cells and mediate dendritic
cell activation, antigen uptake and presentation to T cells.
Interestingly, the allergy-promoting effects of some allergens
such as the major peanut allergen Ara h 1 and the house dust
mite allergen Der p 1 have been shown to clearly depend on
their glycosylation and interaction with glycan-binding receptors
on dendritic cells (128, 129). Shreffler et al. investigated the
sensing, uptake and subsequent presentation of glycosylated vs.
deglycosylated peanut allergen by dendritic cells and could show
that recognition, uptake and subsequent activation of T cells
was depending on the glycosylation status of peanut allergen
and mediated by interaction of Ara h 1 with the C-type lectin
receptor DC-SIGN on dendritic cells (128). Al-Ghouleh et al.
investigated the capability of immature dendritic cells to take up
Der p 1 and showed a carbohydrate-dependent uptake as well as
interaction of Der p 1 with the CLRmannose receptor, which was
increased when the allergen was hyperglycosylated but abolished
after periodate treatment. Additionally, treatment of human lung

epithelial cells with glycosylated but not periodate-treated Der
p 1 resulted in increased secretion of the type-2 cytokine TSLP
(129). Interestingly, beside their role in antigen recognition and
uptake, CLRs can influence the polarization of T cell responses by
inducing signaling cascades resulting in the expression of specific
cytokines and chemokines as well as the modulation of signaling
pathways induced by other (pattern recognition) receptors.
Concerning DC-SIGN, it has been shown that distinct signaling
circuits are induced depending on the recognized PAMP-
associated carbohydrate. Thus, in response to fucose-expressing
Schistosoma mansoni and Heliobacter pylori, DC-SIGN signaling
via LSP1 induces a Th2-dominated response while inhibiting
TLR4-induced pro-inflammatory cytokine responses such as
IL-6 and IL-12. In contrast, sensing of mannose-expressing
Mycobacterium tuberculosis or HIV-1 resulted in an enhanced
pro-inflammatory response (130, 131). Moreover, major peanut
allergen Ara h 1-mediated T cell activation by dendritic cells
resulted in a Th2-skewed response in a carbohydrate depending
manner (128). Taken together, CLRs function as self and non-
self carbohydrate-specific pattern recognition receptors involved
in antigen uptake and presentation, activation of dendritic cells
as well as the orchestration of individual immune responses,
including the skewing of type 2 responses in the context of
parasitic infections and allergies.

TOLERANCE AND ALLERGY TO

CARBOHYDRATES – THE ALPHA-GAL

STORY

While eliciting Th2 immune responses in a few individuals,
potential allergenic substances such as from pollen, food and
mites are in general tolerated by the immune system. In the
case of alpha-gal, clinical tolerance is the main finding in
humans and exposure to alpha-gal from the environment is
manifold through food and bacterial colonization of the surface
organs, resulting in abundant levels of natural IgM and IgG
antibodies directed against alpha-gal in human serum (38). These
so-called natural alpha-gal specific antibodies are beneficial in
the protection against pathogens carrying alpha-gal on their
surface, suggesting that the frameshift mutation in the Ggta1
gene and the associated loss in α-galactosyltransferase function
in apes and humans provided an evolutionary advantage with
respect to infections with alpha-gal carrying pathogens (132–
134). Indeed, Yilmaz et al. showed that colonization of germfree
mice with the alpha-gal-expressing E.coli strain O86 resulted in
induction of alpha-gal-specific IgM and IgG antibodies which
provided protection against malaria infection (47). However, in
some individuals, repetitive tick bites can break this immune
tolerance to alpha-gal by the induction of alpha-gal specific IgE
(54, 67, 135). To date, the origin of the tick-transmitted alpha-gal
carrying glycoproteins and glycolipids as well as the mechanisms
inducing the IgE response remain elusive. Concerning the source
of alpha-gal, tick saliva-derived proteins, mammalian proteins
and glycolipids ingested by the tick during a previous blood
meal as well as alpha-gal expressing bacteria, viruses or parasites
potentially transmitted by the tick have been proposed (56, 57, 71,
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136). Beside the transmission of alpha-gal carrying components
to the host skin, tick bites induce a variety of host immune
mechanisms which likely contribute to the induction of a type
2-dominated response in the case of alpha-gal allergy (137, 138).
Tick saliva contains a variety of immunomodulatory molecules
such as PGE2 and evasins which are involved in the suppression
of pro-inflammatory immune responses, thereby favoring a Th2
polarization. Indeed, mice infested by ticks showed increased
levels of both IL-10 and IL-4 which progressively increased
with subsequent tick infestations, while IFNγ and IL-12 levels
were reduced (139). Interestingly, PGE2 has been shown to
be involved in the regulation of IgE class switching thereby
enhancing IgE production by B cells (140). Thus, in the special
case of alpha-gal and potentially other tick bite-mediated allergic
responses, the tick bite itself may be critical for the induction
of the type 2-dominated immune response resulting in the
expression of allergen-specific IgE antibodies. After penetration
of the skin barrier, carbohydrate allergens are likely phagocytosed
by dendritic cells which in turn activate T cells in skin-draining
lymph nodes. Although the exact mechanism of alpha-gal uptake
by APCs remains unknown, Ristivojevic et al. showed that bovine
serum albumin (BSA) uptake by human immature dendritic
cells was significantly higher when the protein was decorated
with alpha-gal while protein degradation was reduced, suggesting
that the carbohydrate is specifically recognized by the dendritic
cell inducing uptake and processing, possibly involving lectin-
mediated recognition (141). As described above, T cell help was
described to be crucial for the induction of alpha-gal-specific
antibody responses (98). Thus, dendritic cells may migrate to
the skin-draining lymph node to activate antigen-specific T
cells which in turn activate their cognate B cells, resulting in
production of allergy-eliciting alpha-gal-specific IgE antibodies.
Class switching to IgE as well as differentiation of type 2 helper
T cells crucially requires the presence of the cytokine IL-4 and
thus an initial cellular source of this Th2-associated cytokine,
potentially basophils. Indeed, basophils have been shown to be
recruited to the site of tick bites in an IL-3 and CD4T cell
dependent manner (142) and basophil numbers were enriched in
the skin of alpha-gal-allergic patients at the site of tick bites (143).
Taken together, allergic responses to carbohydrate allergens likely
rely, similar to protein allergens, on antigen presentation by
APCs, either via the classical MHCII pathway or, in the case of
glycolipids, via CD1 molecules to T cells, and the subsequent
T cell-dependent induction of B cell responses. However, for a
fundamental andmore general understanding of themechanisms

and cell types involved in immunity to carbohydrate allergens
including alpha-gal, further studies are urgently needed.

CONCLUDING REMARKS

In this review, we described how the role of carbohydrates
as mediators of allergic diseases changed over time, from
crossreactive carbohydrate determinant to specific allergens
eliciting anaphylactic responses. Especially the recent
identification of alpha-gal as the allergen responsible for
elicitation of allergic responses to red meat, innards and
therapeutic monoclonal antibodies such as cetuximab
changed researchers’ view on carbohydrate allergens
dramatically. However, the exact mechanisms involved
in the break of tolerance as well as the elicitation of
the allergic response to carbohydrate allergens are still
elusive. Since the prevalence for allergic diseases is still
increasing in developed and developing countries and
specific therapies for allergic diseases are limited to the
treatment of symptoms and the avoidance of the allergenic
substance, new therapeutic tools are urgently needed. The
development of such therapies in turn requires in-depth
understanding of the immunological mechanisms behind
recognition, presentation and initiation of the adaptive immune
response to carbohydrate allergens, finally resulting in the
production of allergy-eliciting IgE antibodies by allergen-specific
B cells.
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Allergic reactions to stings of Hymenoptera species may be severe and are potentially fatal
deviations of the immunological response observed in healthy individuals. However,
venom-specific immunotherapy (VIT) is an immunomodulatory approach able to cure
venom allergy in the majority of affected patients. An appropriate therapeutic intervention
and the efficacy of VIT not only depend on a conclusive diagnosis, but might also be
influenced by the patient-specific manifestation of the disease. As with other diseases, it
should be borne in mind that there are different endotypes and phenotypes of venom
allergy, each of which require a patient-tailored disease management and treatment
scheme. Reviewed here are different endotypes of sting reactions such as IgE-mediated
allergy, asymptomatic sensitization or a simultaneous presence of venom allergy and mast
cell disorders including particular considerations for diagnosis and therapy. Additionally,
phenotypical manifestations of venom allergy, as e.g. differences in age of onset and
disease severity, multiple sensitization or patients unsusceptible to therapy, are described.
Moreover, biomarkers and diagnostic strategies that might reflect the immunological
status of the patient and their value for therapeutic guidance are discussed. Taken
together, the increasing knowledge of different disease manifestations in venom
hypersensitivity and the growing availability of diagnostic tools open new options for the
classification of venom allergy and, hence, for personalized medical approaches and
precision medicine in Hymenoptera venom allergy.

Keywords: allergy diagnosis, biomarkers, immune tolerance, molecular allergology, precision medicine, venom
allergen, venom-specific immunotherapy, Hymenoptera venom allergy
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INTRODUCTION

Hymenoptera venom allergy (HVA) is one of the most serious
IgE-mediated hypersensitivity reactions due to the high risk of
severe and even fatal anaphylaxis. In the majority of patients,
venom allergy can be effectively treated by venom-specific
immunotherapy (VIT), the only available immunomodulatory
and curative approach. However, a comprehensive diagnostic
work-up, including the identification of the allergy-relevant
venom, with different biomarkers and diagnostic tools is a
prerequisite for proving clinically relevant sensitization and
ensuring therapeutic success.

HVA is caused by insects of the order Hymenoptera, which
inject the venom as a defense mechanism. In Northern and
Central Europe, the most common elicitors of venom allergy are
honeybees (Apis mellifera) and yellow jackets (Vespula spp.).
Venom allergy to hornets (Vespa spp.) is less common and it has
been demonstrated that the vast majority of patients with
anaphylactic reactions to hornet venom appear to be primarily
sensitized to yellow jacket venom (YJV) (1). As bumblebees
(Bombus spp.) are increasingly used for pollination in
greenhouses, allergy to their venom has become more
important but is still considered rare (2). In addition to
honeybees and yellow jackets, paper wasp (Polistes spp.)
venom allergy is of relevance in Southern Europe and
Northern America. Allergy to the venom of other Polistinae
such as Polybia paulista is prevalent in South America (3).
Whereas allergies to stinging ants are rare in Europe, they are
of great importance in Australia (jumper ant, Myrmecia
pilosula), Asia (Asian needle ant, Pachycondyla chinensis) and
America (fire ant, Solenopsis invicta). The taxonomy of allergy-
relevant Hymenoptera is depicted in Figure 1.

The frequency of stings and, thus, of allergic reactions,
depends on geographical, environmental, and ecological factors
(4) which can rapidly change. For instance, Polistes dominula,
domestic in Southern Europe, has invaded the United States (5),
South Africa (6), and central Europe (7). Therefore, allergy to
Polistes dominula venom (PDV) will probably become more
Frontiers in Immunology | www.frontiersin.org 2168
important in the future. A second highly invasive Hymenoptera
species, Vespa velutina nigrithorax (yellow-legged or Asian
hornet), is gaining ground in Europe, although its natural
habitat is tropical areas in Southeast Asia. Starting from
France, it has spread rapidly across Europe, facilitated by
suitable climatic conditions (8). Vespa velutina nigrithorax has
become a common cause for Hymenoptera anaphylaxis in areas
of Europe where it has become endemic (9).

In adults (> 18 years), 48.2% of cases of severe anaphylaxis are
caused by insect stings (20.2% in children) (10). The prevalence
of systemic sting reactions (SRs) in the adult population ranges
between 0.3% and 8.9% and is lower in children (11). The
estimated number of annual mortalities due to insect sting-
induced anaphylaxis ranges from 0.03 to 0.45 per one million
inhabitants (12). However, this number could be underestimated
as many fatal reactions following insect stings may remain
undetected (13). Large local reactions (LLRs) at the site of the
sting that are characterized by a swelling with a diameter
exceeding 10 cm and lasting for more than 24 h, occur in 2.4%
to 26.4% of the general population (14).

The classification of allergic reactions to Hymenoptera
venoms into different endotypes and phenotypes, which can be
assigned through various biomarkers and diagnostic strategies
(Figure 2), enables individual risk stratification for the patients
and personalized therapeutic strategies.
ENDOTYPES AND CLINICAL
MANIFESTATIONS OF HYMENOPTERA
VENOM ALLERGY

Like other diseases, reactions to Hymenoptera stings can be
divided into different endotypes, such as the physiological sting
reaction in healthy individuals, IgE- and T cell-mediated allergic
reactions, venom allergy in patients with mast cell disorders,
asymptomatic sensitization and toxic or unusual reactions
(Figure 2).
FIGURE 1 | Taxonomy of allergy-relevant Hymenoptera. As the taxonomy of the order Hymenoptera is highly complex, only a selection of allergy-relevant taxa is
shown. Displayed are exemplary species with particular relevance for Hymenoptera venom allergy.
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Sting Reaction in Healthy Individuals /
Toxic Venom Effects
Between 56.6% and 94.5% of the general population state to be
stung by an insect of the order Hymenoptera at least once in their
lifetime (12). The normal sting reaction consists of pain and
inflammation (swelling, redness and itching) and is not
dangerous. However, massive attacks with numerous sting
events, for instance by Africanized honeybees, can be life-
threatening to humans due to the toxicity of the venom (15–
17). On rare occasions, single oropharyngeal stings can induce
critical airway obstruction in non-allergic individuals by local
swelling (18). If this reaction can be considered as LLR in the
oropharynx is unknown so far.

IgE-Mediated Systemic Reactions
In allergic individuals, already a single sting can lead to severe
and fatal reactions (19). These IgE mediated reactions depend on
an initial step of sensitization. During the encounter with a
venom via stings, venom allergens enter the body. Antigen-
presenting cells, such as dendritic cells, B cells or macrophages,
incorporate, process and subsequently present the allergens to
naive CD4+ T cells. These T cells either differentiate into Th1,
Th2, or Th17 effector cells or take on a regulatory function as
regulatory T cells (Treg). B cell class-switch and differentiation
into IgE-producing plasma cells is induced by the cytokines IL-4
and IL-13 which are secreted by mature Th2 cells. After
sensitization, the actual allergic reaction can occur if Fc epsilon
receptors I (FcϵRI) on the surface of mast cells and basophils
loaded with allergen-specific IgE antibodies are cross-linked
during a further encounter with the allergens. This in turn
leads to the degranulation of mast cells and basophils and the
secretion of pro-inflammatory compounds such as histamine,
proteases, cytokines, and lipid mediators. This mix of
immunological active compounds leads to the induction of
allergic symptoms in susceptible patients [for further
information see Rindsjö and Scheynius 2010 (20)].

SRs can be mild (generalized skin symptoms such as urticaria
or angioedema), moderate (e.g. dyspnea, gastrointestinal
Frontiers in Immunology | www.frontiersin.org 3169
symptoms or dizziness) or severe (e.g. unconsciousness,
anaphylactic shock, respiratory or cardiac arrest) (21). Of note,
there is no necessary correlation between the severity of sting
reactions at two different times (22). The worst-case scenario,
anaphylaxis, is characterized by the involvement of at least two
organ systems (23). The most frequently affected organs are the
skin and mucosa, followed by the cardiovascular system.
Gastrointestinal symptoms occur in one third of the patients
(10). It has been reported that 0.7% to 2% of all cases of
anaphylaxis are lethal (24) and anaphylactic deaths to insect
stings occur in most cases within 15–20 min after exposure (25).
SRs usually begin 10 to 30 min after the sting but can also arise
faster (e.g. in individuals suffering from mast cell disorders) or
slower (1–4 h), although being less life-threatening in the latter
case (4). The severity of symptoms can be boosted by different
risk and co-factors such as suffering from mast cell disorders,
physical exertion, male sex or older age (26).

IgE-Mediated Reactions in Patients With
Concomitant Mast Cell Disorders
Mast cell disorders, such as mastocytosis, are common cofactors
for severe allergic reactions to Hymenoptera venoms.
Mastocytosis is a clonal, neoplastic and heterogeneous
(cutaneous, systemic and rare subtypes) disorder characterized
by proliferation and accumulation of mast cells in the skin, bone
marrow and other tissues (27). Mastocytosis frequently involves
the somatic c-kit D816V mutation and elevated baseline levels of
serum tryptase (27). The prevalence of mastocytosis may be as
high as 7.9% in patients suffering from HVA which is
significantly higher than that of the general population (28).
Similarly, HVA causes anaphylaxis in nearly 30% of patients with
mastocytosis (29). In addition to higher incidence, there is also
convincing evidence of a strong association of mast cell disorders
with an increased severity of sting‐induced anaphylaxis (30). The
anaphylactic reactions in patients with systemic mastocytosis are
characterized in the majority of cases by the absence of
angioedema and erythema and the predominance of
cardiovascular symptoms, such as hypotension, leading to loss
FIGURE 2 | Endotypes und Phenotypes of reactions to Hymenoptera stings. Depicted are proposed endotypes of reactions to Hymenoptera venoms as well as of
proposed phenotypes of IgE-mediated systemic allergic reactions. Additionally, available diagnostic tools and biomarkers for the assessment of the reaction are
shown. SRs, systemic reactions.
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of consciousness (31). The Spanish Network on Mastocytosis
(REMA) has built and validated a simple clinical score associated
with both a high sensitivity and specificity to predict systemic
mastocytosis among patients who present with mast cell
activation symptoms in the absence of skin lesions (32). Of
note, anaphylactic sting reactions in mastocytosis patients have
previously been thought to also occur in the absence of specific
IgE (sIgE) (33) due to potential pharmacological mechanisms of
mast cell degranulation. However, with the introduction of new
methods and parameters of evaluation in the diagnostic work-
up, this historic diagnostic gap has been closed and sIgE can be
detected in the vast majority of patients (34, 35). Importantly,
negative sIgE and negative skin tests have been reported in up to
15% of patients with systemic mastocytosis and history of a
systemic reaction to insect stings (36), thus, restricting them
from VIT. A recent study demonstrated that in mastocytosis
patients suffering from YJV-allergy diagnostic sensitivity can be
improved by lowering the cut-off for positive sIgE detection
without marked changes in specificity (34). Here, a cutoff of 0.17
kUA/l gave an acceptable sensitivity and specificity (83.6 and
85.0%, respectively). Indeed, sIgE levels between 0.1 and 0.35
kUA/l should be considered relevant in patients with a clear
clinical history, irrespective of the presence of mast cell diseases
(35, 37, 38). VIT may be less protective in patients with severe
initial SRs and mastocytosis and/or elevated serum tryptase
(>11.4 ng/ml). Therefore, for safety reasons, it should be
prolonged in those patients; it remains unclear whether it
should be given lifelong or after which duration of treatment it
should be stopped (21).
Asymptomatic Sensitization
Interestingly, the presence of sIgE does not necessarily imply
clinically relevant venom allergy. Between 9% and 29% of the
population are sensitized to Hymenoptera venoms without
previous clinical history of a sting reaction (39, 40). For most
of these patients it is likely that the sensitization is asymptomatic
and, thus, of no clinical relevance (41). However, the possibility
of a reaction to a future sting cannot be fully excluded. To date,
no indications are available on how to effectively manage these
cases (42).
Large Local Reactions
LLRs are defined by edema, erythema and pruritus and supposed
to be an IgE-dependent late-phase allergic reaction that follows
the local recruitment and activation of Th2 cells, eosinophils,
basophils and other leukocytes (43, 44). Most studies find
positive skin tests for venoms or venom-sIgE in 70%–80% of
patients with LLRs (45). It was demonstrated that only very few
patients suffering from LLRs develop more severe reactions when
re-stung by the same insect (46). However, a recent study showed
that SRs occur more frequently after a previous LLR than
reported by previous literature (47). Here, 24% out of 225
patients with a previous LLR developed a SR after the first field
re-sting. Among the 35 patients clearly re‐stung by the same
insect, according to their history, 11% reported a SR. A
Frontiers in Immunology | www.frontiersin.org 4170
conclusive statement on the connection of LLRs and SRs
is challenging.

Unusual Reactions
In addition to the well described allergic reactions to
Hymenoptera stings, a variety of extremely rare and unusual
reactions may occur. Examples are serum sickness-like
manifestations, thrombocytopenic purpura, hemolytic anemia,
Schönlein-Henoch purpura, Guillain-Barré syndrome, vasculitis,
glomerulonephritis and demyelinization-related neurological
complications (48, 49). The pathogenesis of most of these
unusual reactions remains unclear but might involve toxic,
autoimmune and type II and III hypersensitivity reactions.
PHENOTYPES IN HYMENOPTERA VENOM
ALLERGY

Different phenotypes of IgE-mediated HVA can be described by
the age of onset, the course and severity of the disease,
sensitization profiles and the response to therapy (Figure 2).

Age of Onset
Systemic insect sting reactions seem to be rare in children,
ranging between 0.9%–3.4% for mild systemic and 0.5%–0.9%
for severe SRs (50, 51). However, according to the European
Anaphylaxis Registry, HVA is the second most frequent cause of
severe reactions in children (20.2%) after food allergy (10). Most
studies on the pediatric group reveal the predominance of skin
symptoms (60% of cases) and dyspnea (52, 53) in the course of
anaphylaxis in children as compared to adults where
cardiovascular symptoms more frequently occur (39, 52, 53).
Elderly patients develop severe SRs more often and the fatality
rate is higher than in children and young adults (39). This might
be due to the fact that the cardiovascular system in children is
more efficient compared to adults, hence, even the possibility of
self-limitation of anaphylactic reactions exists.

Spontaneous Resolution of the Disease
Despite the high prevalence of asymptomatic sensitization (up to
29%), the prevalence of sting-induced SRs is low (41). Why some
sensitized patients do not react to a future sting is still unknown,
but it is probably due to loss of sensitization over time and, thus,
spontaneous resolution (11). On the other hand, the risk for
adults who experienced a first anaphylactic reaction to suffer
from a SR to a further sting is not 100% but between 40% and
60%. In the remainder, symptoms may be less severe or even
completely absent (54). The natural history of insect sting allergy
differs between children and adults. Early studies found that
children have a favorable prognosis regarding re-stings, both, in
studies based on sting challenge (55) and field stings (56, 57). In
particular, children with mild SR outgrow their HVA in the
majority of cases (58, 59). However, in children not treated with
VIT and who have a history of moderate to severe SRs, the risk of
future SRs remains as high as 40% after 1 to 9 years, and as high
as 30% in years 10–20 after anaphylaxis (58).
October 2020 | Volume 11 | Article 579409
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Severity of the Disease
Allergic SRs may involve one or more organ systems (i.e.
cutaneous, respiratory, gastrointestinal, neurologic and
cardiovascular systems), while the simultaneous involvement of
two or more organ systems during an acute allergic event is a
prerequisite for the diagnosis of anaphylaxis (23, 60). Several
classifications were proposed to assess the degree of severity of
anaphylaxis, each of which has limitations (61–64). The reason
why some sensitized subjects develop mild systemic symptoms
while others experience severe, even fatal SRs is not completely
understood, even though several risk factors are known. The
combination of several concomitant factors, which include
environmental, genetic and individual factors, may account for
the occurrence of SRs in individual patients (11). Patient-related
risk factors for severe SRs in the adult population are older age,
clonal mast cell disorders and/or elevated basal serum tryptase
and accompanying respiratory or heart diseases (30, 65, 66).
Available data regarding potential effects of beta‐blockers and/or
angiotensin-converting enzyme (ACE) inhibitors in coexisting
venom allergy are inconclusive; further studies are required to
assess the impact of specific cardiovascular comorbidities (30).
Risk factors and co-factors for severe SRs after Hymenoptera
stings in children were identified in atopy (asthma, allergic
rhinitis, and atopic eczema) (50, 53, 67, 68) and exercise (69).
Moreover, the severity of the reaction was also associated with
the severity of asthma (67). However, these findings should be
confirmed in larger pediatric populations. Taken together, the
aforementioned data hints to the existence of several subgroups
of phenotypes in relation to the severity of SRs.

Mono- and Multi-Sensitization
Patients with a history of SRs might show positive test results with
one, two, or multiple venoms in the following diagnostic work-up
(42, 70, 71). Particularly when the allergy-eliciting insect could not
be identified by the patient, these double or multiple sensitizations
challenge decisions concerning the proper therapeutic strategy as
they might be a result of true primary allergy to more than one
venom, cross-reactivity between venoms or asymptomatic
sensitization (42). Only in the first case is VIT with all relevant
venoms recommended, while for other scenarios VIT with the
primary sensitizing venom only is sufficient. Fortunately,
diagnostic tools, which in many cases allow the differentiation
between primary allergy and cross-reactivity, exist.

Patients Refractory to VIT
Although VIT is an effective curative treatment in the majority of
Hymenoptera venom-allergic patients, in some cases it is not
able to induce immunologic tolerance. To date, the reasons for
treatment failures during VIT remain unclear. Risk factors for
VIT failure are HBV allergy, very severe sting reactions, SRs
induced by VIT, clonal mast cell disorders and/or elevated
baseline levels of serum tryptase and perhaps the use of ACE
inhibitors (72). A recent retrospective multicenter study of HBV-
allergic patients demonstrated that a dominant sensitization to
Api m 10 (>50% of sIgE to HBV) is a relevant risk factor for
treatment failure with an odds ratio of 8.44 (73). Furthermore, all
Frontiers in Immunology | www.frontiersin.org 5171
patients who showed sIgE to Api m 10 that was higher than 60%
of HBV sIgE were therapy non-responder. Nevertheless, in most
cases in which standard VIT fails, increasing the dosage
successfully induces tolerance (74). Risk factors associated with
a loss of protection after discontinuation of VIT include those
mentioned above and failure to achieve protection during VIT
(72). As longer treatment periods are associated with a lower risk
of relapse (75), prolonging treatment or even maintaining it
lifelong can be a reasonable option to achieve or retain tolerance,
especially for high-risk patients (21).

Patients Refractory to Medication
Refractory anaphylaxis (unresponsive to treatment with at least
two doses of minimum 300 mg adrenaline) is a rare form of a life-
threatening hypersensitivity reaction with high mortality.
Comprehensive data on its definition, prevalence and risk
factors is missing. Using the data from the European
Anaphylaxis Registry (11,596 cases in total), 42 cases of
refractory anaphylaxis of different origin were identified and
compared to a control group of severe anaphylaxis cases (n =
4820). Cases elicited by insects were very few (n = 8) and often
due to bee stings (76). Specific risk factors were not identified in
Hymenoptera venom-allergic patients. Rudders et al. reported
that among 153 emergency department patients with systemic
insect sting reactions who received adrenaline, 16% received a
second dose, without evaluating their characteristics (77).
Although studies have demonstrated an association between
beta-blocker use (or multiple antihypertensive drugs) and
increased anaphylaxis severity (regardless of the trigger), as
evidenced by increased organ system involvement and hospital
admission (78–80), it is not yet established whether taking beta-
blockers influences the number of adrenaline doses needed, thus,
identifying a particular phenotype unresponsive to adrenaline
therapy in case of anaphylaxis is not possible, including venom
anaphylaxis. A recent case control study in adults did not find a
significant link between beta-blocker use and the need for
increased adrenaline dosing among emergency department
patients with anaphylaxis (81). This suggests that the effects of
beta-blockers may not be as significant in the clinical routine as
previously thought. The lack of response to initial adrenaline
may be due to insufficient drug delivery secondary to reduced
venous return (82). A very recent study advocated for rapid
escalation with early intravenous fluid therapy in patients where
anaphylaxis is refractory to initial intramuscular adrenaline, even
in patients without obvious hemodynamic instability (83).
Patients suffering from mast cell disorders and venom allergy
may need more doses of adrenaline because of the increased
severity of anaphylaxis (84, 85) due to massive mast cell
activation. Therefore, they can be identified as a specific
patient phenotype, also in regards to the refractoriness to
pharmacological treatment.

Patients Prone to Adverse
Reactions During VIT
VIT may induce adverse reactions. In large multicenter studies,
the frequency of SRs reactions during VIT ranges from 8% to
October 2020 | Volume 11 | Article 579409
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20% (86–88). A slightly elevated risk for SRs during VIT is
observed in vespid venom-allergic patients with elevated baseline
serum tryptase levels, while this association was not found for
treatment with HBV (88). Nevertheless, the most important risk
factor for systemic adverse events with VIT (3.1- to 6-fold
increased risk) is treatment with HBV (88–90). Although only
shown in small patient populations, Api m 4 sensitization might
be a risk factor for SRs during the up-dosing phase of VIT with
HBV (91, 92). In a prospective study it was demonstrated that
patients who had sIgE to Api m 4 >0.98 kUA/L show higher rates
of SRs during the VIT induction phase (91).

According to the recent guidelines of the European Academy
of Allergy and Clinical Immunology (EAACI) (21), in the case of
systemic adverse events during the build-up phase of VIT, in
addition to initially reducing the dosage, premedication with H1
antihistamines should be established. In case of repeated
systemic adverse events during up-dosing, pretreatment with
Omalizumab may be recommended (21). Currently, case reports
and a case series have documented the usefulness of Omalizumab
for the pre-treatment of patients who experienced systemic
reactions to VIT, including patients with systemic mastocytosis
(93–99). Most of these patients were able to tolerate VIT after
Omalizumab pre-treatment. However, treatment regimens
varied greatly. In some cases a single or a few injections before
initiation of VIT were used (94, 98), while in other cases
Omalizumab therapy and VIT were combined for several
months (93, 97) or pre-treatment before every maintenance
dose was administered (96). This suggests that the optimal
treatment schedule with Omalizumab depends on the
individual response to VIT.
ALLERGENS OF HYMENOPTERA
VENOMS

Hymenoptera venoms are complex mixtures of a variety of
substances which mediate the toxic effects. These include
numerous proteins that represent potential allergens. In recent
years, biochemical and molecular biological methods have made a
significant contribution to the identification and characterization
of new allergens of Hymenoptera venoms, shifting the focus from
the whole venom to individual allergenic molecules (100).

To date, honeybee venom (HBV) is the best characterized
Hymenoptera venom. In the last years, proteomic approaches
have contributed to the identification of a variety of potential
new allergens, including those of very low abundance (101, 102).
Moreover, recombinant production strategies together with
detailed immunologic analyses have enabled the identification
of five major allergens in HBV (103): Api m 1 (phospholipase
A2), Api m 2 (hyaluronidase), Api m 3 (acid phosphatase), Api
m 5 (dipeptidylpeptidase IV), and Api m 10 (icarapin) with sIgE
sensitization rates in HBV-allergic patient populations in the
range of 57%–97%, 47.9%–52.2%, 49.6%–50%, 58.3%–61.7%,
and 61.8%–72.2%, respectively (73, 103–109). Less information
concerning sensitization rates is available for other HBV
allergens and most of them appear to be of minor importance,
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not excluding that they might be of particular relevance for some
patients. Bumblebee venom closely resembles HBV and both
exhibit extensive cross-reactivity (110).

Similarly, the venoms of Vespoidea species are mostly alike
(110). Shared between almost all of them is the highly abundant
major allergen of unknown function named antigen 5. Moreover,
most of the Vepoidea venoms contain phospholipases A1 as
prominent and relevant allergens. The sensitization rates of YJV-
and PDV-allergic patients to the phospholipases A1 (Ves v 1 and
Pol d 1) and antigens 5 (Ves v 5 and Pol d 5) are 33.3%–54% and
87% and 84.5%–100% and 69%–72%, respectively (105, 108,
111–116).

HBV and Vespoidea venoms contain homologous allergens
that can lead to cross-reactivity between the venoms. For
instance, in addition to HBV, YJV and PDV contain
dipeptitylpeptidases IV (Ves v 3 and Pol d 3) as major allergen
(117, 118). Furthermore, hyaluronidases were identified in
different Vespoidea venoms. However, in contrast to HBV Api
m 2, their relevance as allergens in YJV (Ves v 2.0101 and Ves v
2.0201) seems to be limited (119).
DIAGNOSTICS AND BIOMARKERS IN
HYMENOPTERA VENOM ALLERGY

Diagnosis of HVA comprises the clinical history of a systemic
sting reaction and the proof of sensitization to the relevant
venom by in vivo or in vitro testing (21, 39, 120). For
successful VIT, the correct venom for treatment is of major
importance. Due to the pronounced cross-reactivity between
venoms, choosing the right venom for therapy is a challenging
task if the patient was not able to identify the allergy-eliciting
insect. Nevertheless, several advanced diagnostic tools and
biomarkers exist (Figure 2) that facilitate accurate diagnosis
and contribute to personalized risk stratification in HVA.
Diagnostic algorithms to discriminate between HBV and
vespid venom and YJV and PDV allergy are given in Figures
3A, B, respectively.

Clinical History
The verification of a previous SR by clinical history should build
the basis for a subsequent diagnostic work-up (Figure 3) since
asymptomatic sensitization to Hymenoptera venoms is observed
frequently (39, 40). A thorough clinical history includes
information on number and date of sting reactions, symptoms,
severity and time course of the reaction as well as the applied
treatment. Additionally, individual risk factors for anaphylaxis
such as mast cell disorders, medication, cardiovascular risks and
other diseases as well as frequent exposition to relevant insects
should be considered.

A special focus during the assessment of the patients’ history
lies on the identification of the culprit insect. However, as many
patients (and even allergy specialists) are not able to discriminate
different Hymenoptera species (123, 124), all information has to
be used with care and verification of the responsible insect with
additional diagnostic tests is necessary.
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A

B

FIGURE 3 | Diagnostic algorithms for the discrimination of (A) HBV and YJV allergy and (B) YJV and PDV allergy. The diagnostic algorithm presented in (A) can also
be used to discriminate between HBV and PDV allergy using the Polistes dominula homologues of Ves v 1 and Ves v 5, Pol d 1 and Pol d 5, respectively. A plus
indicates a positive and a minus a negative test result. 1In the majority of cases, positive PCR results proving the presence of the c-kit D816V mutation in peripheral
blood mononuclear cells can confirm systemic mastocytosis (121). 2These allergens are only available for selected multiplex sIgE platforms. 3The HBV allergens Api
m 2 and Api m 5 show potential cross-reactivity to not commercially available homologous allergens of YJV and PDV so that a positive test result does not
necessarily preclude YJV or PDV allergy. 4BAT proved to be an effective tool for the assessment of double-positivity in HBV and YJV allergy (122). However,
currently, no studies have analyzed its usefulness for the discrimination of PDV and YJV allergy. BAT, basophil activation test; HBV, honeybee venom; PDV, Polistes
dominula venom; REMA score, score of the Spanish Network on Mastocytosis for predicting mast cell clonality and systemic mastocytosis in patients who
experience anaphylaxis without cutaneous mastocytosis; VIT, venom-specific immunotherapy; YJV, yellow jacket venom.
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Skin Tests
Both, skin testing with venom extracts and sIgE measurements,
should be performed in patients with a history of a SR (72). Skin
testing with venom extracts can be done either as skin prick or
intradermal testing following different protocols (125). Skin
prick tests are performed at a concentration between 1 and 100
mg/ml, while an initial concentration in the range of 0.001–0.01
µg/ml is sufficient for intradermal tests. It should then be
increased tenfold per step to a maximum concentration of
1 mg/ml (126). The sensitivity of skin prick test alone is around
64%, while the combination of prick test and intradermal test
reaches a sensitivity of 94% (72). Despite a low risk of SRs (127),
many institutions recommend to perform a graduated approach
for skin testing (126). The simultaneous intradermal testing with
different venoms is safe and efficient (127). Since the intradermal
test is more sensitive, it should be used to confirm negative skin
prick test results. Skin tests should be done at least 2 weeks after
the sting reaction to avoid false-negative results during the
refractory period (128). In case of negative tests despite a
convincing history of a SR, skin tests should be repeated after
1–2 months. Of note, there is no correlation between the severity
of a sting reaction and reactivity in skin testing (129).

Baseline Serum Tryptase
It is recommended to determine the baseline tryptase level in the
serum of all patients with a history of systemic sting reactions to
identify patients at higher risk of developing severe reactions due
to undiagnosed clonal mast cell disorders. High baseline levels in
repeated measurements (particularly above 25 µg/ml) suggest
mast cells disorders which need a further diagnostic work-up
(e.g. by testing for somatic c-kit mutation or bone marrow
analysis) (72). Adult patients with mast cell disorders and/or
elevated baseline tryptase are not only at higher risk of more
severe sting reactions but in some studies are also considered a
risk population during VIT (28, 66, 130).

Genetic Markers
Due to the increasing implementation of genome-wide
association studies since the early 2000s, a multitude of
different candidate genes with marker properties have been
described. Most of these candidate genes have little or no
clinical value and only a small fraction of the initial pool is
being further investigated and implemented into the clinical
routine. Nevertheless, genetic markers are an up-and-coming
field in allergy research. One prominent example is the somatic
c-kit D816V mutation which is used as minimally invasive
secondary diagnostic criterion to confirm systemic
mastocytosis, since >80% of patients with systemic
mastocytosis are tested positive for this single nucleotide
polymorphism (SNP) (131–133). As described earlier, systemic
mastocytosis in combination with sensitization to Hymenoptera
venom allergens is considered a risk factor for severe SRs.
Therefore, c-kit D816V mutation is no direct genetic marker
for venom allergy or increased risk of systemic allergic reactions
but can offer added value to a thorough diagnosis and assessment
of the individual risk.
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A more straightforward marker is the polymorphism in the
angiotensinogen AGT p.M235T gene which might be associated
with more severe SR in patients with Hymenoptera venom
allergy. Patients allergic to insect venoms have a higher
prevalence of carrying this mutation and suffer more often,
with an odds ratio of 2.5, from grade IV reactions (134).

Furthermore, a variety of studies focusing on the connection
of HLA class I and class II genotypes and (venom) allergy have
been published. For instance, HLA-B*18 and HLA-Cw*07 were
significantly more frequent among Turkish bee- and/or wasp
venom-allergic patients (135). Among HLA class II genotypes,
DRB1*0101, DRB1*0103, DQA1*0101, and DQB1*0501 were
found to be associated with an increased risk of being sensitized
to Api m 1 (136). Still, to our knowledge, no conclusive statement
regarding HLA class I and II frequencies and venom allergy or
risk of SR is possible.

An elevated basal serum tryptase level might be caused by
alfa-tryptasemia, a hereditary trait that was reported by Lyon
et al. in 2014 (137). Affected persons carry additional copies of
TPSAB1, the gene encoding for alpha-tryptase. Alpha-
tryptasemia is discussed as one of the main sources for
elevated serum tryptase and is associated with a 2–4 fold
increased risk of systemic reactions (138, 139). The link
between alpha-tryptasemia and mast cell activation disorder is
part of ongoing research and not easy to assess (140).

Total IgE
The measurement of the total IgE (tIgE) levels in combination
with sIgE test results can be useful to improve and simplify
interpretation. This is particularly important in connection with
very low sIgE levels, since each sIgE level has a different relevance
if produced in an environment with high or low tIgE values
(141). Moreover, sIgE to Hymenoptera venoms is frequently
observed in asymptomatic individuals with high tIgE (40, 142).
Hence, the measurement of tIgE can provide guidance in the
context of the ratio sIgE/tIgE, although it is not generally
recommended in the guidelines.

Specific IgE to Venom Extracts
Besides skin testing, the detection of sIgE to whole venom
extracts is the most established diagnostic method to detect
sensitization to Hymenoptera venoms. However, the diagnosis
of clinically relevant allergy can only be made in combination
with a corresponding clinical history. This also holds true for
skin testing and other diagnostic approaches.

Although 0.35 kUA/L is commonly used as the lower
threshold for sIgE detection, sIgE concentrations can be
measured with high accuracy on the major singleplex sIgE
immunoassay platforms with the lower end threshold of 0.1
kUA/L. Hence, sIgE levels between 0.1 and 0.35 kUA/L can be
considered in the context of a clear clinical history (37, 143, 144).
Ideally, sIgE measurements should be performed one to 6 weeks
after the sting event. It should be kept in mind that negative sIgE
test results in patients with convincing history of anaphylaxis can
be caused by very low levels of sIgE or too long latency between
the last sting and the diagnostic measurement (14, 35, 145).
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Using the cut-off of 0.35 kUA/L, 90%–100% of HBV-allergic
patients are tested positive for sIgE to HBV. The sensitivity of
sIgE detection to YJV for YJV-allergic patients ranges between
83% and 97% (108, 116, 146). Nevertheless, sIgE testing of
allergic patients with venom extracts in clinical routine
frequently leads to multiple positive test results with different
venoms. Intriguingly, for many of these patients only one venom
is allergy-relevant. The clinical relevance of positive test results
with other venoms with regard to systemic symptoms is limited
(41, 147). However, as many patients are not able to identify the
allergy-eliciting insect, clinically relevant allergy cannot be
excluded. In addition to primary allergy to more than one
venom, multiple positive test results with limited or no clinical
relevance can be caused by: i) IgE antibodies directed to protein
epitopes on homologous allergens present in the venoms, ii) sIgE
to clinically irrelevant cross-reactive carbohydrate determinants
(CCDs), and iii) asymptomatic sensitization (42). Hence, this
often leads to unnecessary VIT with more than one venom,
resulting in higher costs, potentially increased risk of side-effects
and the possibility of de novo sensitization.

Overall, venom extract-based diagnostics has some pitfalls
that complicate the differentiation of true primary allergy and
cross-reactivity and, thus, the identification of the allergy-
relevant venom and selection of the optimal therapeutic strategy.

IgE-inhibition tests with whole venom extracts can be used in
particular cases to detect the primary sensitizing venom in
patients double-positive to venoms without marker allergens,
e.g. YJV and PDV (Figure 3B) (148–150). However, IgE-
inhibition tests are costly, time-consuming and results
occasionally difficult to interpret (149).

After an initial rise during the first months of treatment, sIgE
levels to the respective venom decrease during VIT and usually
remain low after discontinuation of VIT (151, 152). However,
there is no evidence that they can be used as biomarker to predict
success of therapy (21).

Specific IgE to Individual Venom Allergens
In the recent past, the identification of relevant venom allergens
has led to the development of molecular or component-resolved
diagnosis (CRD) in HVA (42, 70, 153, 154). In CRD, sIgE against
single allergens of venoms is determined. Thus, CRD not only
provides information on whether a patient has sIgE against the
whole venom, but also on exactly which allergens are relevant for
a patient.

Due to the number of commercially available allergens, CRD
has particularly increased diagnostic accuracy for the
discrimination between HBV and YJV allergy. Diagnostic
sensitivity of a combination of the two commercially available
YJV allergens Ves v 1 and Ves v 5 ranges between 92% and 100%
(35, 112, 113, 116, 155–158). CRD of HBV allergy is more
complex in terms of diagnostic sensitivity. The first
commercially available HBV allergen Api m 1 yielded a
diagnostic sensitivity of 58% to 97% depending on the
inclusion criteria of the patient population, geographical
differences and sensitivity of the immunoassay platform used
(103, 105–109). Hence, missing sensitization to Api m 1 does not
Frontiers in Immunology | www.frontiersin.org 9175
exclude a genuine allergy to HBV. After the relevance of
additional HBV allergens was demonstrated, these became
available for routine diagnosis and it was shown that a
combination of the allergens Api m 1, Api m 2, Api m 3, Api
m 4, Api m 5, and Api m 10 leads to a diagnostic sensitivity of
94.4% in a population of HBV-allergic patients (103). However,
this sensitivity might be lower in patients with sensitization to
HBV only compared to those sensitized to both, HBV and YJV
(159). Nevertheless, the extension of the panel of commercially
available HBV allergens added clinical benefit as two-thirds of
patients with negative sIgE to Api m 1 can be diagnosed using
Api m 3 and Api m 10. In patients double-sensitized to HBV and
YJV who were not able to identify the allergy-relevant insect, the
combination of Api m 1, Api m 3, and Api m 10 increased the
sensitivity of HBV allergy verification to 78.6% compared to 54%
using Api m 1 only (104).

Recombinant allergens can be produced with the full protein
epitope spectrum of the native allergens but without CCDs (160).
Hence, positive sIgE test results indicate sensitization to protein
epitopes only and not to CCDs, thereby excluding many
clinically irrelevant sensitizations (106).

In addition to CCDs, cross-reactivity between different
venoms can be caused by homologous allergens that share
common IgE epitopes. The potential of CRD is evident from
the fact that HBV and vespid venoms contain species-specific
marker allergens (Api m 1, Api m 3, Api m 4, and Api m 10 for
HBV and phopholipases A1 and antigens 5 for vespid venoms)
in addition to homologous allergens. For many patients, the
measurement of sIgE directed against these marker allergens
allows the identification of the allergy-relevant venom and the
discrimination between cross-reactivity and primary allergy
(Figure 3A) (104). However, a clear limitation of the currently
available CRD is the unavailability of potentially cross-reactive
allergens of vespid venoms such as hyaluronidases and
dipeptidylpeptidases IV as marketed allergens for sIgE
detection, as they might be of relevance for particular patients.

While CRD is able to adequately distinguish allergies to HBV
and vespid venom (particularly YJV), this is not the case when a
differentiation between allergies to various vespid venoms is
required. For instance, in Southern Europe, double-sensitization
to YJV and PDV is much more frequent than to YJV/PDV and
HBV (161–163). Although Polistes venom is devoid of CCDs (164),
a definite discrimination is rarely possible due to the high degree of
cross-reactivity between the major allergens of these venoms (110,
165). Moreover, only the PDV allergen Pol d 5 is available for CRD
on the most common sIgE assay platform. Nevertheless, a previous
study demonstrated that the measurement of relative levels of sIgE
to the phospholipases A1 (Ves v 1 and Pol d 1) and antigens 5 (Ves
v 5 and Pol d 5) of YJV and PDV allows the identification of the
primary sensitizing venom in many cases (115). Therefore, the
additional availability of these and other (e.g. dipeptidylpeptidases
IV) cross-reactive allergens from vespid venoms for CRD would
represent an added value for advanced precision diagnostics
in HVA.

Additionally, some allergens may act as biomarkers for
personalized risk stratification in patients undergoing VIT. As
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discussed in section Patients Refractory to VIT, dominant Api m
10 sensitization is a relevant risk factor for honeybee VIT (73).
Thus, the knowledge of patient sensitization profiles allows
choosing a therapeutic venom preparation for VIT that
contains the highest amount of Api m 10 in a patient-tailored
manner (73, 166, 167). Moreover, Api m 4 sensitization might be
a marker to identify HBV-allergic patients with increased risk of
SRs during the up-dosing phase of VIT (section Patients Prone to
Adverse Reactions During VIT) (91, 92).

sIgG4
With less than 5% of total IgG, IgG4 is the least abundant IgG
subclass in human serum. However, IgG4 levels increase with
chronic antigen exposure and are believed to induce immune
tolerance and weaken inflammatory responses (168–171). IgE
mediated hypersensitivity reactions are dampened by IgG4 by
inhibiting IgE activity (172–174). Two different mechanisms
have been proposed: i) IgG4 scavenges immunogenic epitopes
on antigens and acts as a blocking antibody that prevents the
downstream crosslinking of FcϵRI (175, 176). ii) IgG4 co-
stimulates the inhibitory FcɣRIIb. This IgG receptor regulates
signal transduction and inhibits the activation of effector
cells (177).

VIT is associated with a significant increase in sIgG4 antibodies
(178). However, after stopping VIT, sIgG4 levels start to decrease
(179). In grass pollen allergy it was demonstrated that IgE-
blocking capacity persisted for several years and correlated with
clinical efficacy, although IgG4 levels rapidly decreased after
stopping allergen-specific immunotherapy (172). This suggests
that not the levels of sIgG4 but rather their functional activity
might correlate with clinical efficacy and long term protection
(180). Therefore, no evidence for the use of levels of venom-sIgG4
as biomarker for prediction of therapy success in VIT is given (21).
Nevertheless, although IgG4 induction per se is no marker for
therapeutic success, lack of IgG4 induction might be a marker for
immunological unresponsiveness.

Basophil Activation Test
The basophil activation test (BAT) mimics the activation of
effector cells (basophils) responsible for IgE mediated allergic
reactions ex vivo. Basophils in fresh patient blood are stimulated
with allergens and the (up-)regulation of basophil specific
markers, such as CD63 or CD203c, is observed.

Although BAT is not part of the routine diagnostics of venom
allergy in all patients, it is well established and can be used in
cases of unclear or negative skin and sIgE test results or when
clinical history and diagnosis are contradictory. Studies
demonstrated that BAT is able to detect sensitization in 81% of
venom-allergic patients with negative sIgE and in 60% of patients
that additionally exhibit negative intradermal skin tests (181,
182). Moreover, BAT is useful to correctly diagnose double-
positive patients with inconclusive skin test or sIgE test results,
particularly when the patient reacted only to one insect (122).
Perhaps, the basophil response can also be used as biomarker for
successful tolerance induction after VIT. It was demonstrated
that, although unchanged after the first year of treatment, a
significant and approximately fourfold decrease of basophil
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activation was observed in all tolerant subjects in response to
submaximal allergen concentration after VIT (183).

BAT can further be used as biomarker to monitor ongoing
VIT and to assess the success. Here, discrimination between BAT
sensitivity and reactivity is needed. While the reactivity of
basophils corresponds to the quantity of allergen needed to
induce CD63 on the cell surface, the sensitivity is linked to the
change of cell marker (e.g. CD63) amount (184). A successful
VIT, which necessarily induces long term tolerance, decreases
BAT sensitivity without changing the reactivity (183, 185, 186).
Furthermore, a high sensitivity in BAT during the initial VIT
phase is also associated with a higher risk of side-effects
(186, 187).

Sting Challenge Test
Due to the risk of severe reactions or de novo sensitization, sting
challenge tests using living insects should not be used as diagnostic
tool in untreated patients (188). However, apart from a well-
documented field sting, the sting challenge test is the only
recommended diagnostic method for the prediction of success of
VIT (21). Moreover, a patient’s quality of life can be significantly
improved by experiencing a tolerated sting challenge (189).
THERAPY OF HYMENOPTERA VENOM
ALLERGY

Due to the high risk of very severe and even fatal reactions in
venom-allergic patients, a careful patient management and proper
therapeutic intervention is of major importance. Although some
behavioral rules that might contribute to minimize the risk exist,
avoiding stings completely is challenging. Therefore, patients with
venom allergy should carry an emergency kit for self-administration
including an adrenaline autoinjector as well as orally administered
H1-antihistamine and corticosteroids. It is still a matter of debate, if
the emergency kit should be carried during and after VIT as most
patients are protected after reaching the maintenance dose (190).

VIT is the only disease-modifying and curative treatment of
venom allergy that is able to efficiently protect patients against
future severe sting reactions. VIT is recommended in adults and
children with detectable sensitization and SRs exceeding
generalized skin symptoms as well as in adults with generalized
skin symptoms if quality of life is impaired (21). Although VIT is
one of the most effective treatments in the field of clinical
allergology, choosing the correct venom based on a
comprehensive diagnostic work-up represents a crucial
prerequisite for effective protection. Nevertheless, different
biomarkers and diagnostic strategies are available that allow
the classification into endotypes and phenotypes in HVA.
Hence, they facilitate the correct implementation of VIT, the
identification of patients at high risk for severe sting reactions
and the adjustment of treatment protocols and times.

The detailed mechanisms of tolerance induction during VIT
are not completely understood. Nevertheless, several
immunological changes, which are associated with the success
of therapy, are well described. Venom-specific regulatory T cells
(Treg) and Th1 cells are thought to be induced during VIT and
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are able to suppress pro-allergic Th2 cells. Further, the Th2
suppression leads to reduction of the levels of cytokines such as
IL-4, IL-5, IL-9, and IL-13 resulting in a desensitization of mast
cells and basophils (191). Moreover, an induction of specific
IgG4 antibodies might be of relevance as blocking antibodies are
supposed to have a protective anti-inflammatory role (192).
Additionally, the induction of B cells with a regulatory
phenotype (Breg) was shown to be an important event during
VIT (193). Bregs are able to suppress venom-specific T cell
proliferation (194) and to induce Tregs (195, 196), thus, boosting
the shift towards a tolerogenic phenotype.

VIT is performed by subcutaneous injections of whole venom
extracts. The suggested maintenance dose of 100 µg can be
reached using different protocols. In conventional protocols,
maintenance dose is reached in several weeks to month,
whereas in rush and ultra-rush protocols that use several
injections per day on consecutive days, maintenance dose is
reached within a few days or hours, respectively. In cluster
protocols, patients receive several injections per day in
intervals of 1–2 weeks. Intervals between maintenance
injections can be gradually increased from 4 weeks (first year)
to 6 (second year) and 8 weeks (in case of a 5-year treatment
from year 3–5) without loss of clinical protection (21, 197).

Several studies showed that in most patients clinical
protection is achieved as soon as the maintenance dose is
reached (190, 198). Most of the patients who are still reacting
to a sting while receiving the conventional maintenance dose of
100 µg will be protected by increased venom dosages during VIT
(74, 199). VIT is reportedly effective in preventing future SRs in
77%–84% of patients treated with HBV, 91%–96% of patients
receiving vespid venom (200, 201), and 97%–98% of patients
treated with ant venom (202, 203). The reasons for the lower
efficacy of VIT with HBV are still unclear. Potential explanations
might be the much larger and consistent venom amount
delivered by a honeybee sting (204) or the broad sensitization
profiles of HBV-allergic patient with different major HBV
allergens (103), including those that might be underrepresented
in certain therapeutic venom preparations (73, 166).

VIT should be performed for 3–5 years, whereby most experts
recommend 5 years (120). Of note, stopping VIT after 3 years
might only be feasible for patients with mild to moderate reactions
and should not be done when sting challenge during therapy
cannot be performed (205, 206). VIT with a minimum duration of
5 years is superior for long-term effectiveness and protects the
majority of patients (207, 208). A recent study on the outcome of
re-stings on a long follow-up period after VIT discontinuation (up
to 26 years) showed a very low risk of relapse (3.4%) in patients
treated on average for about 10 years (209).

According to some studies, risk factors that are associated
with a loss of protection after discontinuation of VIT include
very severe initial SRs, systemic adverse events during VIT
(injection or sting), treatment of less than 5 years, elevated
basal serum tryptase and/or mastocytosis, HBV allergy,
cardiovascular disease and others (21, 197). However, all
patients continue to have a 10% chance of having a reaction to
a future sting (210) and the only way to keep the risk down to 2%
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is to remain on maintenance VIT (205). Lifelong therapy should
be particularly considered in high-risk patients such as those
suffering from mastocytosis as well as in patients at high risk for
future stings such as beekeepers. A recent study on the outcome
of re-stings on a long follow-up period after VIT discontinuation
(up to 26 years) showed a very low risk of relapse (3.4%) in
patients treated on average for about 10 years (209).
CONCLUSIONS

In the first placebo-controlled trial in 1978, allergen-specific
immunotherapy with insect venoms has proven to be superior
over therapy with whole body extracts of the insects (211) and
since then demonstrated to be a highly effective curative treatment
of venom allergy. Nevertheless, the growing knowledge of different
disease manifestations of HVA and of disease-influencing
comorbidities has increasingly improved adequate diagnostics
and patient management. For instance, the availability of CRD
has facilitated the differentiation of primary allergy and cross-
reactivity and, thus, therapeutic decisions in multiple-sensitized
patients. Moreover, biomarkers such as the c-kit D816V mutation
or elevated baseline tryptase levels that allow to identify patients at
risk for very severe sting reactions were identified and allow a
personalized patient management. Nevertheless, there is a need for
additional biomarkers which reliably allow therapy monitoring,
the identification of potential VIT non-responders and patients at
risk for severe side effects as well as to monitor immunological
tolerance after discontinuation of VIT. There is some evidence
that the analysis of patients’ sensitization profile might help to
predict the outcome of VIT in the future, to better adjust treatment
strategies and to select the most suitable venom preparation in a
personalized manner (73, 167).

To further classify endotypes and phenotypes in HVA might
be a promising approach to better understand the disease, to
strengthen personalized treatment strategies and, thus, precision
medicine in HVA. Moreover, detailed molecular analyzes of the
immunological processes occurring during VIT might contribute
to a deeper understanding of immune tolerance to allergens. This in
turn can support the development of novel immunomodulatory
strategies that might enhance tolerance induction as well as the
identification of new biomarkers that indicate therapeutic success in
an early state of treatment.
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The concept of adjuvants or adjuvant systems, used in vaccines, exploit evolutionary
relationships associated with how the immune system may initially respond to a foreign
antigen or pathogen, thus mimicking natural exposure. This is particularly relevant during
the non-specific innate stage of the immune response; as such, the quality of this
response may dictate specific adaptive responses and conferred memory/protection to
that specific antigen or pathogen. Therefore, adjuvants may optimise this response in the
most appropriate way for a specific disease. The most commonly used traditional
adjuvants are aluminium salts; however, a biodegradable adjuvant, MCT®, was
developed for application in the niche area of allergy immunotherapy (AIT), also in
combination with a TLR-4 adjuvant—Monophosphoryl Lipid A (MPL®)—producing the
first adjuvant system approach for AIT in the clinic. In the last decade, the use and
effectiveness of MCT® across a variety of disease models in the preclinical setting highlight
it as a promising platform for adjuvant systems, to help overcome the challenges of
modern vaccines. A consequence of bringing together, for the first time, a unified view of
MCT® mode-of-action from multiple experiments and adjuvant systems will help facilitate
future rational design of vaccines while shaping their success.

Keywords: adjuvants, virus-like particles, MicroCrystalline Tyrosine (MCT®), allergy, disease, immunization,
Monophosphoryl Lipid A (MPL®), vaccines
INTRODUCTION

The Evolution of Vaccines and Adjuvants
The concept of variolation (human inoculation/insertion of pathogens) dates back to the 10th

century in China, here, immunization against small pox used the live virus itself. Edward Jenner
practised variolation in the UK and moved the field to the next level in the last decade of the 18th

century by using a cowpox virus for immunization which eventually led to the first vaccine (derived
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from vaccinia virus from vacca, the Latin word for cow), and the
eradication of small pox in the 20th century (1–3). Again, during
the early 1900’s the pioneering work of Louis Pasteur, Alexandre
Yersin, and others was associated with the development of
attenuated and inactivated vaccines which progressed for a
variety of pathogens such as cholera, tetanus, polio,
tuberculosis, and a severe pneumonia-form of plague (Yersinia
pestis) (4–10).
Fronti
“Discoveries [made] by accidents and sagacity, of
things [the observers] were not in quest of” (1754,
quoted in Merton and Barber 2004, p. 2) (11).
In the 1920’s, both Alexander Glenny and Gaston Ramon were
working with diphtheria toxins (12, 13). Production of bacterial
toxins became very efficient (14). It was not long before Glenny
referred to the use of a toxoid in humans for the first time in 1923
(13). Serendipity has led to some of the greatest discoveries and
breakthroughs in science and medicine over the past century.
Indeed, the story of adjuvants begins with a French veterinarian
who unlocked a secret weapon, at an intersection of chance and
wisdom. Gaston Ramon’s (1886–1963) crucial discovery, whilst at
the Pasteur Institute in Paris in the 1920’s, made the observation
that “local infection” (or abscesses at the injection site) was in some
way enhancing antibody (Ab) production (15). As such, a series of
experiments were set out and by adding a variety of substances (e.g.,
agar and starch oil) to an inoculation—substances he referred to as
adjuvants (from the Latin adiuvare, meaning to help or aid) -
resulted in enhanced tetanus and diphtheria anti-serum production
(15, 16). When Gaston Ramon discovered the immune potentiating
effect of such adjuvants, the human population was reeling from the
aftermath of the Spanish flu and faced burgeoning health risks from
pathogens. Moreover, vaccination against viruses, for example,
represented more of a challenge than vaccination against bacteria,
mostly because it was more difficult to grow them.

As part of Glenny’s work dealing with bacterial toxins, metal
salts (precipitates thereof) were employed during the purification
process, the adsorbed toxoid was subject to the wisdom of
Glenny to perform comparative immunological studies, which
indicated greatly enhanced immunological effects (14, 17),
illuminating the serendipitous points of discovery that have
shaped the modern world. Today, optimized versions of
“alum” salt precipitates [e.g., aluminium oxyhydroxide; AlO
(OH), aluminium phosphate; AlPO4)] have been the mainstay
of adjuvants in clinical vaccines for more than 70 years (16).

For most of this time, the scientific community considered the
principle or “dogma” of explaining the effectiveness of
aluminium adjuvants in the context of the “depot” effect -
immune stimulation through prolonged exposure of the
antigen (18, 19). However, more research devoted to this
question has revealed evidence that better explains adjuvancy
in the context of alums physicochemical attributes and biological
properties than a depot effect alone (20–26).

Tools to study the genome or cellular systems have developed
rapidly. This has inspired new strategies from empirical to
rational approaches to vaccine design and antigen carrier
(nano)-systems, for targeting both innate and adaptive
ers in Immunology | www.frontiersin.org 2185
immune responses in tackling more challenging or emerging
diseases or improvements in safety and efficacy of others (27–
29). Vaccines are disruptive technologies and one of the most
cost-saving medical applications ever developed, and in the last
decades, their application in non-infectious diseases such as
allergy, cancer, diabetes, and even smoking cessation continue
to be developed (30–34).

While recombinant vaccines have generally improved safety
profiles compared with live-attenuated and whole-pathogen
vaccines, they are also often less immunogenic due to the
removal of their inherent pathogenic features and patterns.
Modern vaccine development focusses on bridging or
substituting this gap in order to improve their effectiveness
without compromising safety. As a consequence, the
development of new and sophisticated rational technologies
such as antigen (nano)-carrier systems [e.g., virus-like particles
(VLPs)] or combination of adjuvants (adjuvant systems) are
being employed to help overcome these challenges (29, 35).

Adjuvant Systems
Adjuvant Systems may comprise of a variety of classical
adjuvants or immunomodulators that are combined and
tailored for the specific antigen and target application. The
immune system has evolved to recognise repetitive surface
features like pathogen-associated molecular patterns (PAMPs),
which forms the basic principles in how they are able to activate
the innate immune system, which, in turn, leads to orchestration
of a specific adaptive response.

The benefits of vaccines and immunization against
pathogenic threats demonstrate a convincing positive benefit-
risk ratio over many decades, with the scope to eradicate disease.
The existing and evolving threats have been brought to light
recently with the spread of SARS-Cov-2, which some have
described as natures wake-up call to complacent civilisation;
threatening our era of peak globalisation, which has grown under
a safety net of medical and scientific advances. The consideration
of adjuvants in new vaccine development can be the difference to
what makes a vaccine effective or not. Particularly, so where
pathogens with more complex life cycles with intracellular habits
or pathogens with genetic variability exist. Optimizing vaccines
for this purpose has been historically slow and cumbersome (e.g.,
influenza, HIV, and malaria) and often requires a more robust
adaptive response. For billions of years, microbes have evolved in
this way, and this complexity has only just begun to be better
understood by scientists.

Immunology, Immunization, and
Immunotherapy
The innate and adaptive responses cover two broad phases of the
body’s response to a pathogen or vaccine. Pattern recognition
receptors (PRRs) on innate and adaptive immune cells [i.e.,
macrophages, dendritic cells (DCs), monocytes, neutrophils,
and B cells] have evolved to recognise conserved features that
are typical of pathogenic surface patterns [pathogen-associated
molecular patterns (PAMPs)], thus being able to signal an
incoming agent as a threat, that is distinguishable from “self”
(16, 36, 37). PRRs will trigger intracellular signaling cascades,
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resulting in the production of pro-inflammatory cytokines. This
early inflammatory response to infection or immunization is
diverse and tightly regulated, its early orchestration shaping the
quality in adaptive immunity. A key mediator in shaping the
quality of this adaptive response are antigen-presenting cells
(such as DCs, macrophages, and B cells), particularly where
vaccines are concerned (16).

How effectively a pathogen is removed will depend on the
interplay between the innate and adaptive response and the quality
that sits behind this immune reaction. In essence, the immune
response to infection involves innate immune activation and
antigen-specific responses of B and T cells, with the ideal vaccine
typically able to induce Th1/Th17 immune responses that can direct
this toward inactivation and removal of the threat, followed by
development of immune memory (Figure 1) (16).

Allergy or parasitic infections are somewhat distinct, inducing
strong type-2 immune responses. While Th2/IgE responses
control parasitic infections, robust response to parasitic
infections is also associated with allergic phenomena (38).
Type 1 allergy is mediated by specific IgE, which results in an
exaggerated immune response against an otherwise harmless
substance. However, growing evidence of a negative association
between parasitic infections and allergy at an ecological level
highlights the complex inter-relationship between the two (39).
Allergic disease is considered a new epidemic of the 21st century,
a burgeoning disease particularly in urban areas (40). The most
effective way to treat IgE-mediated allergies is through allergen-
specific immunotherapy (AIT), which entails repeated
administration of specific allergens to patients resulting in
protection against the allergic and inflammatory reactions (41).
Despite its success, subcutaneous immunotherapy is generally
slow and cumbersome for the patient. However, the advances in
vaccinology may be exploited here too with the advent of new
Frontiers in Immunology | www.frontiersin.org 3186
antigen nano-carriers, modified ways in presenting the allergen
and next-generation adjuvants that may advance treatment for
chronic diseases and emerging/re-emerging diseases into the
modern world (42).

Tailoring Adjuvant Systems
The combination of adjuvants (adjuvant systems) have been
pioneered for the last few decades and has resulted in significant
advancements in vaccine design and treatments. However, only
few alternative adjuvants (other than alum) have been approved
for human use (Table 1).

Antigen carrier systems such as VLPs can be engineered to
optimise antigen presentation and harbour intrinsic adjuvanticity,
as these can be packaged with immunomodulators/adjuvants or
combined with depot adjuvants to further tailor and optimise the
immune response appropriately (29, 30, 50). The most commonly
used traditional adjuvants are aluminium salts; however, for
decades, a biodegradable adjuvant based on the crystalline form
of the non-essential amino acid L-Tyrosine, MCT®, has been
utilized in the niche area of allergy immunotherapy (43, 45). It is
only in the last decade that its use and effectiveness across a variety
of challenging disease models in the preclinical setting highlights it
as a promising platform for adjuvant systems to help overcome the
challenges associated with modern vaccines and challenging
diseases (29).

The application of MCT® as an adjuvant has more recently
been extended across a broader vaccine scope with and without
VLP antigen carrier systems; one such VLP system uses the
cucumber mosaic VLP (CuMVTT), which includes intrinsic
adjuvant features such as an engineered universal T helper cell
epitope (CD4+, based on the tetanus toxin) and encapsulated
RNA (TLR7/8 agonists) (51). The disease challenge models
which have screened MCT® -adjuvanted vaccines consist of
FIGURE 1 | Innate and adaptive immunity time course. The non-specific early inflammatory response is characterized by cells of the innate immune system (e.g.,
Macrophages) which will recognise conserved repetitive features from bacteria or viruses. If recognized as a threat, the adaptive immune responses develops with
the activation of lymphocytes.
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largely murine data (malaria and cancer melanoma models), and
one Ferret model (H1N1 Influenza) (50, 52–54). It is important
to note that the proof of concept disease models capture
biomarker measurements indicative of protection (efficacy)
compared to control groups, with performance of the vaccine
assessed against groups formulated with alum. Extended
pharmacokinetic experiments featured in the Melanoma model
(VLP-MCT®)provides unique insights into the importance of
the depot effect of MCT® when combined with nanoparticles in
orchestrating a robust adaptive cytotoxic T cell response (50).
MCT® AND MONOPHOSPHORYL LIPID-A
IN ALLERGY IMMUNOTHERAPY

MCT® is a biodegradable depot adjuvant developed primarily for
use in short-course subcutaneous allergy immunotherapy (AIT),
in combination with native allergens or modified allergens
(allergoids) with or without Monophosphoryl Lipid A®

(MPL®, a Toll-like receptor 4 agonist) (48). Allergoid MCT®-
MPL® formulations are referred to as Pollinex Quattro®. Clinical
evidence for the use of allergoid-MCT®-MPL® adjuvant systems
in allergy immunotherapy is well documented (55, 56).
Combining an allergoid with an adjuvant system pays tribute
to the short-course posology of the vaccine, which is
administered in four to six injections within a year pre-
seasonally, as opposed to longer-treatment courses (>30
injections) that are commonly applied in AIT and which are
typically combined with alum depots (57).

The most recent phase II studies (including the optimal dose
levels planned for Phase III) have recently been published for a
six-injection presentation of Pollinex Quattro (PQ) Birch and
PQ Grass (49, 55). These products are subject to further clinical
Frontiers in Immunology | www.frontiersin.org 4187
development, and a phase III trial for both PQ Birch and PQ
Grass are currently planned. Furthermore, a combined
transcriptomic and proteomic biomarker analysis is pending in
a phase III study for PQ Grass, while a smaller preliminary data
set is available from an earlier trial, establishing some initial
hypotheses related to mode-of-action/predictive efficacy
biomarkers (46). Furthermore, Pollinex Quattro is listed in the
current European Academy of Allergy and Clinical Immunology
(EAACI) AIT guidelines with grade IA recommendation (56).

The PQ products employing the MCT® and MPL® adjuvant
system are designed to desensitise allergic individuals by
modulating the inherent Th1/Th2 imbalance of atopic disease.
The mechanism involved in MCT® -MPL® adjuvancy has not
been fully elucidated, but the synergistic attenuation of IgG may
prolong protective immunity, which is a further benefited by
combining the two adjuvants. The added benefit of MPL® has
been demonstrated in the clinic too (58). Several possible
mechanisms might account for Toll-like receptor 4 (TLR-4)
mediated effects in atopy and asthma. For instance, signaling
through the TLRs is generally associated with production of Th1
cytokines by DCs via IL-12, leading to increased IFN-g
production (59).

For the PQ product portfolio, in total, 26 Phase I-III clinical
trials have been conducted using various allergoids, with
different formulations and dosing posologies, including 4695
patients in total (Table 2).

The combination of MCT® and MPL® has been shown to be
safe and well tolerated in these Phase I-III studies and based on
post-marketing data, i.e., >150,000 individuals have received PQ
treatment (2004–2019) and an estimated >450,000 treatment
courses have been dispensed (Data on file, Allergy Therapeutics
plc). Moreover, the safety of MPL® has been demonstrated in
several products using MPL® as an adjuvant (60). MPL® is
currently used as an adjuvant in the licensed product Cervarix
TABLE 1 | Adjuvants used in licensed vaccines and immunotherapy [adapted from Di Pasquale et al. (16)].

Adjuvant Composition Immunomodulation Product Indications

Aluminium (alum) Aluminium salts mixed with antigens
aluminium oxyhydroxide; AlO(OH),
aluminium phosphate; AlPO4

Th2-biased, prolonged immune exposure (DC uptake),
DAMP, Inflammasome activation, potent innate/Ab and
inflammatory responses

Diphtheria, tetanus, pertussis,
poliomyelitis, hepatitis A, hepatitis B,
meningococcal, pneumococcal

Virosomes Phospholipid membrane (either a mono-
or bi-layer) vesicle incorporating virus
derived proteins

Target antigen-presenting cells (APCs) and B cells Hepatitis and influenza

AS03/
Oil-in-water/
MF59

Squalene-based Increase antigen uptake by APCs, Ab B cell responses, Influenza pandemic and seasonal.

AS04 • Aluminium salt; AlO(OH)
• 3-deacyl-monophosphoryl lipid A

Increase antigen uptake by APCs, TLR-4 agonist, Th1 –

biased Ab responses
Hepatitis B and Human Papillomavirus

AS01 Liposome-based
• 3-deacyl-monophosphoryl lipid A
• Purified saponin; QS-21

Th1-immunity
Early innate inflammasome activation,
Antigen-specific CD4+ T cells in addition to antigen-specific
Abs, robust IFN-g response.

Recombinant zoster vaccine (Shingrix,
RZV).
Mosquirix (Plasmodium falciparum; RTS,
S’).

Montanide ISA51 Mineral oil Increase antigen uptake by APCs, Ab B cell responses Non-small cell lung cancer
MCT® Crystalline form of L-Tyrosine

(MicroCrystalline Tyrosine); MCT®
Biodegradable depot (43, 44), Th1-biased, Increase antigen
uptake by APCs, highly immunogenic B and T cell responses
(45).

Pollinex® short-course allergy
immunotherapy.

MCT®-MPL® Crystalline form of L-Tyrosine
(MicroCrystalline Tyrosine); MCT®

3-deacyl-monophosphoryl lipid A

Th1-biased, Increase antigen uptake by APCs, highly
immunogenic B and T cell responses. TLR-4 agonist, Th1 –

biased Ab responses (46, 47),

Pollinex Quattro® short-course allergy
immunotherapy (48, 49).
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(human papilloma virus vaccine), Fendrix (hepatitis B vaccine),
and Shingrix [herpes zoster (shingles)] (60). Since first being
licensed in 2006, over 200 million doses of HPV vaccines have
been distributed globally, no significant safety issues have been
observed (WHO, 2016).

In relation to MCT®, 1575 patients have received MCT® alone
as placebo group in placebo controlled GCP studies (including 9
million injections of all MCT® platforms) (Data on file, Allergy
Therapeutics plc). MCT® as an adjuvant alone has been shown to
be safe and well tolerated, without any treatment related serious
adverse events (SAEs) being reported and no relevant effects
observed in safety laboratory and vital signs. In a recent position
paper, authored by an independent taskforce of EAACI members, a
review of adjuvants and formulations currently used in marketed
allergy immunotherapies discussed, stating, “Since its introduction
into AIT in 1970, there are no specific safety concerns known for
MCT®. It can be anticipated that this fully biodegradable adjuvant
will also in future studies not reveal side effects” (61).
MCT® MODE OF ACTION

In depth comparative adjuvant studies are, in general, limited in
number, which may in part be due to the proprietary nature of
investigational adjuvants. Since alum is the adjuvant of choice
and most broadly studied, it is a useful comparator to use when
studying vaccine mode-of-action.

MCT® and alum have been compared head-to-head in a
number of preclinical mouse models. In one such study, MCT®

combined with Ovalbumin stimulated striking and comparable B
cell responses (antigen-specific IgG1, IgG2a, IgG2b, and IgG3)
(45). The relevant induction of IgE was of interest, since IgE
antibodies (Abs) are the key mediator of the allergic response
and an “unwanted” reaction. Here, MCT® triggered less IgE
production than alum. This is an observation that has been
consistently described in other studies, highlighting a key benefit
in using a Th1-biased depot adjuvant in AIT and its reported
synergy when combined with MPL® as an adjuvant system (45,
52–54). The specific T cell (CD4+) cytokine response may, in
part, explain this since MCT® induced a more Th1-biased
response. Of note, IL-4 is required for the Ig switch to IgE, and
the lower propensity to induce IL-4, compared to alum, supports
this notion (45). Both Alum and MCT® were found to activate
the inflammasome but this activation was not essential for the
stimulation of B and T cell responses, nor early inflammatory
markers (i.e., eosinophils and neutrophils) which were induced
by MCT® and alum adjuvants, when assessed by peritoneal
lavage (45). Similar results have been reported for alum in mice
Frontiers in Immunology | www.frontiersin.org 5188
deficient in IL-1R or NLRP3 (26, 62). Hence, although alum and
MCT® may activate the inflammasome in vitro, this does not
affect the adaptive immune response needed for Ab production
in AIT. Furthermore, increased B and T cell responses induced
with alum or MCT® -based vaccines did not depend on signaling
through toll-like receptors, which is distinct from the TLR
agonist MPL® (45).

MCT® ‘s half-life at the injection site was modelled in
preclinical models, with an estimated half-life of 48 hours (44).
MCT® has a broad adsorption capacity with model allergens and
carriers such as VLPs (63). The depot effect has been
characterized with VLP nanoparticles, and this prolonged
immune exposure was attributed to play an important role in
priming T cells and, in particular, stimulating cytotoxic T cells—
a response in which other adjuvants struggle to confer (50).

Shardlow and Exley have further characterized the
physicochemical properties of MCT®, which describes needle-like
crystalline structures, some of which stack together, to produce a
high degree of structural order (64). The resultant crystals combined
to form extensive rod-like features the majority of which exceeded
10 µm in length under physiological conditions (median size ca. 21
µm). MCT® also appeared to lack a water decomposition phase by
Thermogravimetric analysis, which indicated the lack of physically
adsorbed moisture at the surface interface. A decrease in hydroxyl
display/surface functionality has been associated with the reduced
reactivity of aluminium salts in vitro in terms of proinflammatory
cytokine production, reactive oxygen species (ROS) generation and
inflammasome activation. The size of MCT® may influence its
recognition and uptake by THP-1 macrophages in vitro (64). In
general, adjuvant particles between 1 and 3 µm in size have been
considered optimal for recognition and engulfment bymacrophages
(65). The large hydrodynamic length of MCT® crystals in biological
medium (>ca. 10 µm) appeared to partially stymie the scavenging
capacity of THP-1 macrophages in vitro (64). This may contribute
to the safety profile ofMCT®, since limitedmacrophage uptakemay
prohibit transport via barriers such as blood-brain and rapid
transport to lymph nodes. The lower propensity to induce IgE/
Th2-polarized responses and early inflammatory responses
compared to alum, as described in Leuthard et al., 2018, may be
partly attributed to the size and distribution of larger and more
ordered crystalline structures of L-Tyrosine (45). This is in stark
contrast to results obtained using a crystalline aluminium adjuvant
where its optimal particle size (median size, 1.4 µm) appeared to
more readily facilitate cytoplasmic loading (64).

Both adjuvants were characterized by immediate infiltration
of neutrophils and eosinophils (MCT® to a lesser degree) (45).
This was the only study, to our knowledge, to characterize such
inflammatory responses for MCT®. Although many innate
reactions are important for the onset of adaptive immunity,
the role of inflammasome activation in immunization and AIT
has not been precisely defined. Indeed, MCT® harbors different
physicochemical properties, such as particle size, morphology,
adsorption characteristics, and local pharmacokinetics compared
to alum, which undoubtedly plays a pivotal role in shaping the
quality of the Th1/Th2 biological response. MCT®’s roles in the
innate and adaptive response are outlined in Figure 2.
TABLE 2 | Overview of clinical studies performed with Pollinex Quattro (PQ)
products (Data on file, Allergy Therapeutics Plc).

Phase I Phase II Phase III Total

PQ Ragweed 1 3 1 5
PQ Grass 4 8 1 13
PQ Tree 1 3 1 5
PQ Birch 0 2 1 3
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MCT® -MPL® “Synergy”
The physical association ofMPL® forMCT® has been characterized
using fluorescently labeled LPS (Lipopolysaccharide) as a substitute
for MPL® (Figure 2). The LPS was labeled with fluorescein
isothiocyanate (FITC). Through confocal microscopy, it was
possible to see that the labelled LPS is associated with the MCT®

depot. Furthermore, in Bell et al., 2015 allergoid and MPL®

adsorption to MCT® in PQ allergy AIT formulations was
determined in vitro using specific allergen IgE allergenicity and
MPL® content methods (63). The predominant mode (i.e., force)
of adsorption between MPL® and MCT® was investigated by
competition inhibitor binding experiments. This was
predominantly inferred as C–H⋯p interactions between the 2-
deoxy-2-aminoglucose backbone on MPL® and aromatic ring of
L-tyrosine in MCT® (63) (Figure 3B). Furthermore, the physical
association ofMPL® across the needle-like crystalline structure of 20
Frontiers in Immunology | www.frontiersin.org 6189
mg/mlMCT®has been characterized usingfluorescently labeledLPS
as a substitute for MPL® via confocal microscopy (Figure 3A).

Immunological synergy has been documented in allergoid
formulations with or without MPL®, highlighting a synergistic
relationship in IgG induction (47, 58). Formulation science is
often an overlooked or under-appreciated discipline and often
adjuvants may be included into formulations without having an
extended level of characterisation of their interactions and
compatibility with active substances and/or other adjuvants.
Indeed, adsorption characteristics of adjuvants may shape bio-
availability and in turn vaccine effectiveness (ratio of free versus
adjuvants bound antigen may determine antigen draining
kinetics) (28). MCT® demonstrates consistent adsorption
characteristics, when combined with antigens and allergoids
(63). As such, quality attributes may be controlled for over the
course of the products shelf life and investigated in preclinical
A

B C

FIGURE 2 | An overview of the immune response after vaccination with an MCT® depot. (A) The early innate response is characterized by immediate exudation of
neutrophils and eosinophils in vivo. The role of inflammasome/DAMP-associated mechanisms have not been precisely defined. The innate response has recorded an
increase in dendritic cells (DCs), observed 24 h post-injection (45). MCT® is biodegradable/biocompatible with an estimated half-life of 48 h at the injection site (44).
As a result, it is cleared within 7 days with a return to a local steady state. The biodegradable depot properties of MCT® are thought to be key in orchestrating the
subsequent adaptive response. (B) The infiltrating antigen presenting cells to the draining lymph node, induce sustained and robust B cell response, via MHC class II
antigen presentation (45, 52–44, 54), with sustained IgG antibody titers. The prolonged immune exposure of antigen is thought to further DC uptake and initiate CD4
T helper cell (Tfh) clonal expansion and differentiation (45). Furthermore, immune complexes may form with follicular dendritic cells (FDCs) via Fcg receptors (Cd16
and CD32) and complement receptors (CD35). (C) The depot properties of MCT® have been shown to be key in generating a more robust cytotoxic T cell response,
thus the priming of T cells combined with optimal antigen delivery, such as when combined with VLPs, are key drivers in orchestrating this arm of the adaptive
response (50).
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immunogenicity models of the disease to further tailor and
optimise properties of vaccines.

MCT® Combined With Poorly
Immunogenic Antigens
It is important to note that the combination of MCT® with
poorly immunogenic antigens such as Ovalbumin (45), CSP (53),
and H1N1 (54) produce consistent results in generating a robust
B cell response and protective efficacy in preclinical models.
MCT® was found to possess high protein-binding capacity
(adsorption compatibility with the antigens) (54, 63). In the
influenza study, a close correlation of haemagglutination
inhibition and neutralization titres in groups formulated with
MCT® or alum suggests that the two adjuvants were inducing
functionally equivalent influenza-specific Abs. Leuthard et al.,
2018 using Ovalbumin, highlighted similar findings (45).
However, key differences related to MCT®’s physicochemical
properties (particulate structure), depot function and biased Th1
specificity highlights some key distinctions of the platform that
should be considered when assessing other adjuvants to
Frontiers in Immunology | www.frontiersin.org 7190
combined, tailor and optimise the immune response
appropriately for specific disease applications.
MCT® IN VIRUS-LIKE PARTICLE
FORMULATIONS: HELPING OVERCOME
THE CHALLENGES OF MODERN
VACCINES

VLPs can be engineered a specific way to modulate the immune
response. In pathogen-specific prophylactic applications, they
have proven to be well tolerated and highly immunogenic. The
21st century sees further advancements of the technology
harnessing state-of-the-art techniques in leveraging the
platform to tackle complex diseases. Mohsen et al., 2020 pay
tribute to these advancements in the context of the design,
delivery and draining dynamics of VLPs (29) and their
respective stages of clinical development and success (30).
Table 3 summarizes immunological mechanisms of VLP-based
A

B

FIGURE 3 | (A) The physical association of MPL® across the needle-like crystalline structure of 20 mg/ml MCT® has been characterized using fluorescently labeled
LPS (100 µg; Lipopolysaccharide) as a substitute for MPL® via confocal microscopy. (B) Proposed C–H⋯p interactions between the 2-deoxy-2-aminoglucose on
MPL® and the aromatic ring on L-tyrosine, based on inhibitor studies with Naphthalene (Adapted from Bell et al., 2015).
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vaccines in the context of tailoring VLP-platforms with MCT® as
an adjuvant system.

In regards to targeting B cells and Abs, a major factor here
relates to the size and ability of VLPs to display antigens in
optimal fashion [repetitive antigen display, Pathogen Associated
Structural Patterns (PASPs)], resulting in very robust induction
in Ab responses. In an elegant study by Link and colleagues, 2012
the importance of size and repetitive structure as critical factors
for efficient Ag presentation to B cells was demonstrated. In this
case, IgM Abs which VLPs are recognized by, recruit the
complement component C1q followed by activation of C3,
resulting in persistent deposition of antigen on follicular
dendritic cells (FDCs) via complement receptor CD35 (29, 69).
Furthermore, the physical association of a repetitive antigen
display distanced by 5–10 nm permit optimal B cell receptor
crosslinking. The size of VLPs (20–200 nm) enable efficient fast
and transient trafficking of native antigen to the lymph nodes
highlighting pharmacokinetic advantages of the platform and
their ability to target APCs to orchestrate a robust adaptive
response (66).

Vaccines targeting pathogens that are more complex will need to
induce both B and effector T cells, which is where adjuvant design
may come into playmore deeply. If our understanding related to the
mode-of-action of depot adjuvants/immunomodulators, continue
to grow and become more well established, effective rational
approaches in VLP vaccine design may be taken in tailoring
dynamic responses of desired specificity.

Adjuvants physically associated with VLPs (e.g., TLR ligands)
may enhance B cell responses. Prokaryotic RNA is known to be
more effective and superior in this regard and, most importantly,
is the ability of this adjuvant-effect to help differentiate a memory
B cell pool into secondary plasma cells, which produce very high
levels of Abs. This may allow for more efficient and rapid control
of an evolving pathogen (67, 70, 71). The CuMVTT VLP is an
example of this, based on an ssRNA plant virus, engineered to
harbour a universal T cell epitope derived from the tetanus
toxoid, to optimise T cell help for B cells (51). The CuMVTT

encapsulates pRNA, which acts as a TLR 7/8 ligand. This
particular platform has been remarkably effective in generating
proof of concept data in different veterinary vaccines for insect-
bite hypersensitivity in horses (IL-5), atopic dermatitis in dogs
(IL-31), and preclinical PoC in allergy (peanut and cat), pain in
osteoarthritis (NGF), Zika virus infection (ED-III), psoriasis (IL-
17a), and malaria (PvTRAP and PvCSP) (51–53, 72–78).
Frontiers in Immunology | www.frontiersin.org 8191
CuMVTT in a Peanut Allergy Model
Where allergic disease is concerned, VLPs have achieved
preclinical proof of concept and are subject to further clinical
development, notably for peanut allergy (32, 74). Here, targeting
B cells using CuMVTT combined with a single major allergen, was
able to protect against a complex peanut extract in a murine
anaphylaxis model (74). In this study mice were immunized with
one of three vaccines containing either a mixture of allergens
found in whole extract of roasted peanut or with just one single,
purified peanut allergen (“Ara h 1” or “Ara h 2”). Regardless of
which vaccine was used, immunization strongly reduced
systemic and local allergic symptoms in vaccinated subjects
and protected against anaphylaxis upon subsequent challenge
with a whole peanut allergen mixture. The fact that one injection
against a single allergen was sufficient to induce protection
against a whole peanut allergen mixture has never been
described before and could be applied in different relevant
allergies. In addition, the vaccine proved hypoallergenic as
previously described (79), which in peanut allergy is a vital
characteristic to avoid anaphylactic reactions upon dosing and
to improve patient uptake.
CuMVTT-MCT® in a Malaria Disease Model
The inclusion of the depot adjuvant MCT® has highlighted the
effectiveness of prolonged physical release of VLP nanoparticles,
which have been shown to be particularly effective at priming
effector T cell responses. In a number of different comparative
adjuvant studies in disease challenge models for Malaria (P. vivax)
and Cancer (Melanoma), a step-wise improvement in biomarkers/
disease progression, with the addition of MCT®, has been
consistently demonstrated (50, 52, 53). In these studies, the
CuMVTT VLPs was screened in a comparative adjuvant study
with alum. Table 4 summarizes the findings from a comparative
adjuvant study using CuMVTT in the Malaria disease model, which
highlights the effectiveness in combining nanoparticles with MCT®

as an optimal way to formulate VLP-vaccines, taking advantage of
the physiological properties of the lymphatic system.

In this study, the vaccine efficacy in the malaria survival
challenge models were significantly improved if the vaccines
were formulated with MCT®, compared to alum. This was
explained, in part, due to the high and sustained Ab titres
induced in a step-wise improvement by adding MCT®

(compared to non-adjuvanted groups) which indicated a more
TABLE 3 | Immunological mechanisms of VLP-based vaccines complement other adjuvants like MCT® and may provide added benefit (29, 43, 45, 47–66–68).

VLP scaffold MCT®

Repetitive and native antigen display - optimal BCR-crosslinking (PAMP; Pathogen Associated Molecular Pattern) Local inflammation (early innate responses)
Complement activation Inflammasome activation
Recognition by natural Abs and other innate humoral factors DC activation

Particulate for APC targeting
B cell activation
T cell activation

Fast – transient migration to draining lymph nodes Depot – prolong immune-exposure

Co-delivered adjuvant (e.g., TLR-ligands)
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polarized Th1 biomarker specificity compared to alum as
indicated by the IgG subset data (see Table 4).

CuMVTT-MCT® in a Cancer (melanoma)
Model
Combining CuMVTTTT- VLPs displaying T cell epitopes with
MCT® as an adjuvant has been tested in an aggressive
transplanted melanoma murine model B16F10. The results
showed improved anti-tumor efficacy when formulating the
nano-vaccine with the micro-sized adjuvant MCT® (Figure 4).
This hybrid system facilitated an optimal delivery of the vaccine
to efficiently prime the adaptive immune system. Furthermore,
the MCT® adjuvant was as potent as B type CpGs in a direct
comparative assessment of efficacy. These findings highlight the
translational potential for application for any solid tumor.
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CONCLUSIONS

• MCT® is the crystalline formulation of the non-essential
amino acid L-Tyrosine, biodegradable, with an estimated
half-life of 48 h at the site of injection (44, 80).

• Formulated as a depot for controlled release from injection
site - immunomodulation with allergens, antigens, whole
cells, polysaccharides, and lipids.

• Characterized adsorption capacity and stability (broad vaccine
scope) facilitating Th1-specific immunological augmentation.

• MCT® and Alum [AlO(OH)] are both distinct crystalline
depot adjuvant formulations and induced broadly
comparable B- and T-cell responses in mice (45).

• MCT® induced less Th2 polarisation than Alum (less IL-4
and IgE). A higher ratio of IgG/IgE (i.e., relatively higher
FIGURE 4 | Confocal microscopy imaging of fluorescent dye AF488 CuMVTT-p33 nano-vaccine following formulation with the MCT® (20 mg/ml) adjuvant.
TABLE 4 | Summary of vaccine efficacy with MCT® and Alum –depot adjuvants. The respective studies conjugated CuMVTT with TRAP or a CSP antigen from P. vivax
(independent of CuMVTT). Formulations were compared against vaccines formulated with Alum.

Protection against Plasmodium berghei/vivax

Formulations screened Humoral response Cellular response (CD8+ T cells) Vaccine efficacy in survival challenge Reference

CMVtt-PvTRAP + MCT® ** (PvTRAP + MCT®)
IgG2b > IgG2a > IgG1

** (PvTRAP + MCT®) *** (PvTRAP + MCT®) (52)

CSP + MCT®

** (CSP + MCT®)
IgG2a > IgG2b > IgG1

N.D
* (CSP + MCT®)

(53)
November 2020 | Volume 1
1 | Article 59491
***p = 0.0001 **p = 0.001; *p = 0.01 (one week after second boost); N.D; not determined.
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IgG to IgE) which has been reported to be a surrogate marker
indicative of efficacy of AIT in humans (81).

• MCT® facilitates induction of CD8 T-cell responses (45, 50).
• AIT with MCT® adjuvanted allergens induce protection in a

mouse model of anaphylaxis (45) and is formulated (adsorbed)
withMPL®asanadjuvant systemtoprovide short-courseAIT in
humans.

• MCT® induces IL-1b secretion in vitro, but inflammasome
activation does not affect B- and T-cell responses in vivo (45).

• MCT® acts independent of TLR activation (45).
• The combination of MCT® with poorly immunogenic antigens

such as Ovalbumin (45), CSP (53) and H1N1 (54) produce
consistent results in generating a robust B cell response and
protective efficacy in preclinical challenge models.

• The adsorption of MCT with CuMVTT virus-like-particles
demonstrates significant added benefit in enhancing
immunological (B and T cells) responses in Malaria and
Cancer (Melanoma) preclinical disease models (50, 52).
Frontiers in Immunology | www.frontiersin.org 10193
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Food allergy is a collective term for several immune-mediated responses to food. IgE-
mediated food allergy is the best-known subtype. The patients present with a marked
diversity of clinical profiles including symptomatic manifestations, threshold reactivity and
reaction kinetics. In-vitro predictors of these clinical phenotypes are evasive and
considered as knowledge gaps in food allergy diagnosis and risk management. Peanut
allergy is a relevant disease model where pioneer discoveries were made in diagnosis,
immunotherapy and prevention. This review provides an overview on the immune basis for
phenotype variations in peanut-allergic individuals, in the light of future patient stratification
along emerging omic-areas. Beyond specific IgE-signatures and basophil reactivity
profiles with established correlation to clinical outcome, allergenomics, mass
spectrometric resolution of peripheral allergen tracing, might be a fundamental
approach to understand disease pathophysiology underlying biomarker discovery.
Deep immune phenotyping is thought to reveal differential cell responses but also, gene
expression and gene methylation profiles (eg, peanut severity genes) are promising areas
for biomarker research. Finally, the study of microbiome-host interactions with a focus on
the immune system modulation might hold the key to understand tissue-specific
responses and symptoms. The immune mechanism underlying acute food-allergic
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events remains elusive until today. Deciphering this immunological response shall enable
to identify novel biomarker for stratification of patients into reaction endotypes. The
availability of powerful multi-omics technologies, together with integrated data analysis,
network-based approaches and unbiased machine learning holds out the prospect of
providing clinically useful biomarkers or biomarker signatures being predictive for
reaction phenotypes.
Keywords: endotypes, food allergy, peanut allergy, phenotypes, predictive biomarker
TYPE-I HYPERSENSITIVITY TO FOOD

Food allergies (FA) are considered as an important public health
concern (1, 2). FA can be classified into IgE-mediated, non-IgE-
mediated and mixed types (3). This review focuses on IgE-
mediated food allergy which is the best-known type among
those food-adverse events.

Epidemiology
There is a general perception that FA prevalence increased
during the last twenty years. FA prevalence has been estimated
up to 8% in the pediatric and 11% in the adult population based
on a number of surveys (2, 4, 5). Beyond the sheer patient
numbers, FA entails an important socioeconomic impact,
causing fear of accidental exposure in patients and their
families, reduced quality of life and relevant healthcare costs
nearly double the amount compared to non-allergic individuals
(6, 7).

Pathophysiological Basis
IgE-mediated FA is considered as an epithelial barrier disease,
resulting from food protein uptake via disrupted barriers
(gastrointestinal tract, skin, lung) which in turn, leads to an
immune dysregulation, and finally, food proteins being
recognized as hostile invaders in a T helper type 2 (Th2)-
skewed immune response (3, 8). During sensitization,
epithelium-derived danger signals and pro-inflammatory
cytokines, including interleukin 25 (IL-25) and IL-33,
orchestrate the activation and expansion of type 2 innate
lymphoid cells (ILC2) and dendritic cells (DCs) (9–11). Those
activated DCs promote again the differentiation of naive T cells
into a Th2 phenotype cells. Th2 cells and ILC2 foster the
recruitment of basophils and eosinophils into the tissue
beneath the epithelium (mucosa, lamina propria) through the
secretion of pro-inflammatory cytokines (eg, IL-4, IL-5, IL-13)
(3). Th9 cells, another effector T helper subset maturating under
the influence of IL-4 and transforming growth factor beta (TGF-
b), release IL-9, a cytokine which promotes the tissue
accumulation of mast cells. B cell class switching to plasma
cells producing food antigen-specific IgE is also fostered through
IL-4 secretion by Th2 cells. Specific IgE-antibodies bind to the
high-affinity IgE receptor (FceRI) on effector cells, basophil
granulocytes and mast cells (11–14). In the elicitation phase,
food antigens undergo molecular interactions with cell-bound
IgE-antibodies via specific epitopes, leading to cell activation and
mediator release via crosslinking of FceRI-bound IgE.
org 2197
Subsequently released inflammatory mediators, including
histamine, prostaglandins, tryptase, and platelet-activating
factor (PAF), contribute to the clinical symptoms.

Clinical Features
Food-allergic patients present with a marked diversity by
reactivity profiles (15). Clinical symptoms range from mild to
severe (severity score) as does eliciting doses (sensitivity score)
and time to reaction onset are highly variable (16, 17). The
estimated dose likely to trigger reactions in 10% of a study
population (ED10) vary also for specific foods (eg, peanut 11 mg;
shrimp 12.8 g protein) (18). The organ involvement may relate to
the skin and/or gastrointestinal tract, but also respiratory/
cardiovascular symptoms in the case of potentially life-
threatening anaphylaxis. Although most patients suffer from
stereotypic symptoms, threshold doses depend on multiple
factors under real-life conditions (atopic comorbidities;
cofactors eg, exercise, alcohol, nonsteroidal anti-inflammatory
drugs) (19–21). Disease prognosis and progression may also vary
depending on the food allergy, such as in milk or egg allergy,
which is commonly outgrown, compared to peanut allergy,
which often persists lifelong (22).

Food Allergens
A large variety of foods can cause allergic reactions and
constantly, new allergenic foods are reported (23–25). The most
allergenic foods include plant (peanuts, tree nuts, wheat, soy) and
animal sources (milk, eggs, fish, shellfish) (13). Food allergens, the
molecular drivers of allergen-specific Th2-immune responses,
share molecular properties and belong to few structural protein
superfamilies (26). Commonly, food allergens involved in food
anaphylaxis exhibit a higher stability from digestion/processing
as compared to low-allergenic homologs (27–29). Intrinsic
characteristics contributing to Th2-immune modulation, such
as the house dust mite allergen Der p 2 acting with auto-adjuvant
properties via Toll-like receptor (TLR)4 signaling, are less known
for food allergens (30). In-vitro models suggest that matrix effects
might contribute to facilitate cross-barrier allergen uptake (eg,
peanut lipids inhibiting immune-suppressive IL-10) (31). Class I
food allergens are primary food allergens (eg, peanut Ara h 2).
The “pollen-fruit syndrome” is mediated by specific IgE to
pathogenesis-related protein-10 (PR-10; eg, birch Bet v 1) and/
or profilins (eg, birch Bet v 2) as well as antibody cross-
recognition of homolog class II food allergens (eg, PR-10:
peanut Ara h 8). Those patients experience usually mild FA
symptoms (32).
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Food Allergy Diagnosis
Usually a detailed anamnesis and IgE-tests are combined (33). In
single cases, oral food challenges (OFC) are necessary, time-
consuming procedures entailing a significant health risk (34). IgE
(skin prick test, SPT; serum specific IgE/sIgE) is an important
biomarker. Though, there is a clear trend to overdiagnosing FA
as specificity of the testing is low at diagnostic cut-offs (skin
wheal size diameter 3 mm, serum sIgE 0.1 kUA/L). Combining
medical data, SPT and sIgE (extract, component-resolved sIgE)
increase the diagnosis performance and might approximate OFC
outcome (26, 35–37). There is the general notion that multiple
IgE epitope recognition patterns correlate to FA severity and
unfavorable disease progression (38, 39). Other serological
parameters (e.g., total IgE, food-specific IgG4, sIgE/IgG4) are
reported as discordant data. Functional assays using living cells,
basophils (blood-/cell line-based) or mast cells (cell lines) feature
an important added value in FA-diagnosis, although not yet
being implemented into routine (29). Serum mediator levels,
including histamine, tryptase and prostaglandin D2 metabolite
levels, provided less consistent data like in venom- and drug-
induced anaphylaxis (40). Overall, usable, reliable and affordable
in-vitro predictors of clinical presentation (eg, severity,
sensitivity) and risk stratification are evasive and considered
still as important knowledge gaps (41). Such predictors may vary
depending on the eliciting food, and therefore need to be
evaluated for each food allergy.
EMERGING OMIC-AREAS FOR CLINICAL
ENDOTYPING

Peanut allergy (PA) is the focus of many research studies, due to
its high prevalence, spectrum of clinical phenotypes, severity and
lifelong duration, therefore it will be used as an example
throughout. Here, we will give an overview of the immune basis
for phenotype variations. We span from non-omics to omic-
areas, with a focus on studies using cutting edge-technologies and
studies based on patient reactivity stratification. A complete
overview on biomarker approaches in peanut allergy can be
found in Table 1.

Molecular Endotyping
The deep analysis of allergens by proteomic technologies
(allergenomics), based on mass spectrometry (MS), pushed the
boarders of knowledge around allergenic peanut proteins
including basic aspects of primary structures and post-
translational modifications (95–97).

Non-Omics
A total of 18 unique peanut iso/allergen are reported (with Ara h 4
now being considered an isoallergen of Ara h 3) (98). Serum IgE-
reactivity to seed storage proteins, including 2S albumins (Ara h 2,
Ara h 6) and cupins (Ara h 1, Ara h 3) relates to primary PA.
Cross-reactivity markers are the PR-10 protein Ara h 8 (birch
allergy) and the non-specific lipid transfer proteins (nsLTP) Ara h
9 (peach-related fruit allergy). The diagnostic relevance of
Frontiers in Immunology | www.frontiersin.org 3198
molecular vs extract-based IgE-signatures seems to vary for
patient groups from different geographic origins (42, 99–101).
However, a recent meta-analysis summarized the overall high
diagnostic accuracy of sIgE to Ara h 2 in terms of sensitivity and
specificity (95% CI 75.6, 88.9 and 95% CI 77.4, 88.4, respectively)
at a cut-off of 0.35 kUA/L (37). Patients are often IgE-positive
for both Ara h 2 and Ara h 6. Recently, Ara h 2 was described
as the immunodominant molecule among the two allergens,
with higher capacity to activate in-vitro effector cells (basophils,
mast cells), pointing to a greater role of Ara h 2 in both disease
pathophysiology and as diagnostic severity marker (Figure 1) (43).
Even allergen peptides can be beneficial. Indeed, systematic
peptide-based scanning approaches (epitope mapping) revealed
that increasing IgE-epitope diversity correlated with a more severe
phenotype (38, 67). In-vitro basophil activation tests (BAT), using
basophils from peanut-allergic patients challenged with peanut
protein, revealed dose-dependent activation (%-CD63+ basophils).
High performance to identify clinical PA (98.7% specificity, 74.7%
sensitivity) and high precision to identify individuals with severe
outcome (97% specificity, 100% sensitivity) has been recently
reported for large UK study populations (Table 1) (65). Here,
the best prediction of low threshold reactivity was determined in a
multivariate statistical tool combining various parameters, SPT,
sIgE (Ara h 2, peanut extract), peanut extract-sIgG4/IgE quotient
and BAT. In a similar integrated approach, a predictive algorithm
based on the CD63 ratio (BAT with peanut protein) and clinical
parameters (eg, exercise-induced asthma), had been proposed to
predict severe reactions (66).

Allergenomics
As an extension to allergenomics as an analysis of the allergen
repertoire of an allergen source, a new research axis applied
proteomic approaches to study in-vitro degradation patterns of
peanut digests by simulating gastric or small intestine milieus
(102, 103). The pronounced digestion stability of Ara h 2, 6, and
specific peptides was linked to IgE-recognition and suggested as
triggers of the immune response in-vivo. Those peptide
structures might be novel candidates for serological assays, be
it as antigens in immunoassays or as references for peptide
identification in patient blood. In fact, upon ingestion, peanut
allergens are degraded, followed by absorption across biological
barriers and distribution via the bloodstream (20, 60, 104–106).
The analysis of allergen residues in human samples after peanut
ingestion has been recognized as an important challenge (60, 61).
Recent antibody-based studies, combined with removal of
interfering endogenous immunoglobulins, succeeded to detect
peanut allergens in a reliable fashion (62). Proteomic analyses of
such peripheral allergen peptides, together with MS-based
analyses of serological metabolomics signatures (68), might be
promising avenues toward molecular endotyping of peanut-
allergic patients, and toward marker discovery for phenotype
prediction (Figure 1).

Immunological Endotyping
Non-Omics
Deep immunological endotyping, including aspects of the
genome, epigenome, transcriptome and proteome provided
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TABLE 1 | Summary of the main approaches (non-/omics) toward phenotypic biomarkers in peanut allergy based on molecular, immunological and commensal endotyping.

Method Biomarker research area Interpretation in peanut allergy C E* References**

Molecular endotyping
Non-omics
Immunoassays Serum IgE to Ara h 2, Ara h 6 (less

Ara h 1 and Ara h 3)
Primary peanut allergy; often, presence of sIgE and high titers (cut-off titers
unequivocal) along with severity

# (37, 38, 42–
47)

Serum IgE to Ara h 10, Ara h 11, Ara
h 14, Ara h 15

Primary peanut allergy; often, presence of sIgE related to severity # (48)

Serum IgE to Ara h 8 Primary sensitization to pollen (eg, birch, alder); mostly, mild reactions to peanut # (49–52)
Serum IgE to Ara h 9 Primary sensitization to nsLTP (eg, peach Pru p 3); severe reactions to peanut in Ara h

1-7 negative patients
# (53–55)

Serum IgE to peanut epitopes High diversity of sequential IgE-epitopes (Ara h 1, Ara h 2, Ara h 3) along with more
severity

# (38, 56–59)

Serum peanut peptides upon in-vivo
ingestion

Digestion-stable Ara h 6-peptides as candidate markers for in-vivo reactivity and
serological proteomics

(60–63)

Serum IgE-bound soluble FcϵRI Soluble FcϵRI levels together with correlating IgE-titer as putative markers for in-vivo
reactivity and severity

(64)

Integrated
algorithms

Serum IgE to Ara h 2 and peanut
extract, BAT together with clinical
variables (eg, skin test, asthma)

Prediction of risk to experience severe events (symptoms scoring, threshold reactivity) # (65, 66)

Allergenomics
Proteomics Simulated digest-derived peanut

peptides
Digestion-stable Ara h 2/Ara h 6-peptides as candidate markers for in-vivo reactivity
and serological assays

(38, 67)

Serum metabolomic signatures Metabolites (eg, from dysreguated tryptophan metabolism) as candidate markers for
phenotypic severity

(68)

Immunological endotyping
Non-omics
Immunoassays PBMC peanut-stimulated CD4+ T cells Increased Th2 cytokine expression (IL-4, IL-5, IL-9, IL-13) correlating with elevated

peanut-specific IgE-titers and low threshold reactivity
# (69) ((70))

Mass
cytometry

Blood peanut-stimulated CD45+ cells,
basophils (CD63, FceRI, CD23)

Basophil-platelet complexes (CD61, CD141, CD42b) with potential to contributing to
severity and PAF-related anaphylaxis

(71) ((72, 73))

PBMC un-/peanut-stimulated CD45+

cells, 11 cell types within CD4 T-cells,
CD8 T-cells, B-cells, myeloid cells

Increased prevalence of activated B cells (CD19hiHLDRhi) and peanut-specific CD4 T
cells (CD40L+CD69+, memory CD45RA-CCR7+/-) correlating with in-vivo reactivity

(74)

Flow cytometry Blood peanut-/anti-IgE–induced
CD63high basophils (%)

Reduced basophil response and FcϵR-expression, together with low sIgE, as putative
markers for severity

(52) ((75–77)
(78, 79))

PBMC peanut-stimulated CD154+ T
cells

Increased cytokine-positive CD4+ T cell counts (CD154+CD4+IL-4+ or IL-13+)
correlating with increased sIgE-titers and clinical threshold reactivity

# (69, 70, 80)

Increase of CD4+ T cell homing populations (CCR4: skin, lung; CCR6: mucosa;
CXCR5: B cell follicle) correlating with clinical reactivity

# (69, 81), ((82,
83))

Increase of IL-2-dependent CD154+ Treg cells with regulatory
(CD3+CD4+CD25hiCD127lowFoxP3+) and memory markers (CD45RO) correlating with
clinical threshold reactivity

# (69)

Increased coefficient of Teff/Treg (CD25+CD127+/-) correlating with clinical threshold
reactivity

# (70) ((83))

PBMC peanut/peptide-stimulated T
cells

Phenotype Th2 shift (expression gut-homing factor Integrin b7¯, CRTh2) relating to
clinical reactivity

(84)

Multimodal omics
Genomics PBMC-derived peanut-activated

CD154+ Teff/Treg (CD25+CD127+/-)
Increased diversity of the peanut-specific TCRb repertoire (CDR3 sequences) and
enrichment in the Teff compartment, in correlation with low threshold reactivity

# (70)

Salivary DNA-based HLA gene SNPs With the HLA-DQB1 region confirmed as a risk factor for clinical allergy, increased
odds ratios for SNPs in HLA (rs17612852, rs9275596, and rs1612904) correlate with
low reaction severity

# (85) ((86) (87,
88))

Transcriptomics PBMC-derived peanut-activated
CD154+ T cells

Differential gene expression patterns according to clinical phenotypes stratified by
threshold reactivity, pronounced gene expression associated to Th2 and Th17 cells in
individuals with low threshold reactivity

# (69) ((70))

Whole blood cells during food
challenge

Leucocyte compositional changes (naive B cells/CD4+ T cells¯, neutrophils) associated
with severity, upregulated “peanut severity genes” (eg, neutrophil-related function,
leucocyte function) correlating with severity scores

# (89) ((90))

Epigenetics Whole blood CD4+ lymphocytes “Peanut severity CpG” methylation associated with “peanut severity genes” (eg,
immune response, chemotaxis, macroautophagy regulation; moderator genes NFKBIA
and ARG1) and clinical reactivity scores

# (90)

(Continued)
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insights in the immune landscape of PA phenotypes, with
prospect of future multimodal omics, meaning the integration
of heterogeneous data from those sources.

Tordesillas et al. studied the in-vitro activation of
granulocytes (basophils, eosinophils, neutrophils), monocytes,
dendritic cells, T cells, B cells and NK cells in whole blood using
single-cell mass cytometry (71). More B cells and eosinophils but
less neutrophils were found in resting CD45+ cells from peanut-
allergic vs healthy individuals. After stimulation with peanut
protein, the highest response was observed for basophils (CD16,
CD23, CD63), but also monocytes, dendritic cells and
neutrophils became activated, pointing to an emerging role of
these myeloid cells related to clinical PA. Elevated plasma PAF
levels had been associated with increased severity of PA earlier
(72, 73). Basophils were found to form physical complexes with
platelets (CD61, CD141, CD42b) upon peanut activation,
suggesting a novel way of PAF-related anaphylaxis (Figure 1)
(71). Neeland et al. applied mass cytometry to study peripheral
immune signatures associated with clinical PA, using peripheral
blood mononuclear cells (PBMC) from peanut-allergic and controls
(74). Allergic infants distinguished from sensitized infants by
increased prevalence of a B cell cluster (CD19hiHLDRhi). Upon
in-vitro stimulation with peanut protein, increased levels of CD4 T
cells (CD40L+CD69+, memory CD45RA-CCR7+/-) discriminated
peanut-allergic from controls.

Other studies focused on analyzing the T cell compartment in
PA (81, 107–109). Chiang et al. compared peanut-allergic (OFC
positive at <1g cumulative peanut dose), high-threshold (OFC
negative at ≤1g cumulative peanut dose but sIgE to peanut and
clinical PA history), and healthy individuals (69). In-vitro PBMC
stimulation induced a significant increase in peanut-responsive T
cells (CD154+CD4+) and significant cytokine increases (mainly IL-
4, IL-13) in peanut-allergic patients only. Cytokine-positive T cell
counts (CD154+CD4+IL-4+ or IL-13+) correlated with sIgE-titers.
Peanut-allergic patients had higher shares of peanut-activated Th2
cells with homing markers (CCR4: skin, lung; CCR6: mucosa;
Frontiers in Immunology | www.frontiersin.org 5200
CXCR5: B cell follicle) as compared to controls. Peanut-
responsive T cells presented with surface marker heterogeneity as
well as enrichment for effector memory T cells (CD45RO) and
regulatory marker expression (CD3+CD4+CD25hiCD127lowFoxP3+,
delayed IL-2-dependent activation). RNA sequencing of peanut-
activated T cells confirmed proinflammatory Th2-polarization with
multicytokine expression. This study pointed to the heterogeneous
nature of the peanut-specific Th2 response in presence of functional
Treg cells. The lack of T cell reactivity (peanut-specific Th2, Treg) in
high-threshold individuals discriminated those from peanut-allergic
individuals. In a similar approach, Ruiter et al. investigated the T cell
response to peanut protein comparing peanut-allergic (OFC
positive at <0.5g cumulative peanut dose) and hyporeactive (OFC
negative at ≤0.5g cumulative peanut dose but clinical PA history)
individuals (70). Compared to hyporeactive patients, stimulated
PBMC from peanut-allergic patients showed a higher CD154+CD4+

T cells response and stimulation index correlating with elevated
peanut-specific CD4+ T cell and complementarity determining
region 3 (CRD3; T cell receptor domain identified by RNA
sequencing) counts. Indeed, CDR3 constitutes the most critical
region responsible for recognizing processed antigens (110, 111).
Some peanut-specific CRD3 (17%) were found exclusively in
CD154+CD4+ T cells from peanut-allergic individuals (70). CRD3
were also more variable in effector T cells (CD25+CD127+) than
Treg cells (CD25++CD127-), suggesting skewing toward a
compartment with expanded effector T cell repertoire in allergic
but not in hyporeactive patients. The ratio of peanut-specific effector
T cell vs Treg discriminated individuals stratified by threshold
doses. The pronounced clinical reactivity of peanut-allergic
patients was concluded to correlate to peanut-specific effector
T cells characteristics (frequency, proportion, reactivity), rather
than a defective Treg response (Figure 1).

Multimodal Omics
Gene sequencing studies provided insights into FA immune
regulation and epithelial barrier function (112, 113). Genome-
TABLE 1 | Continued

Method Biomarker research area Interpretation in peanut allergy C E* References**

Commensal endotyping
Non-omics
Flow cytometry Fecal microbiome Increased IgE-binding to fecal microbes suggesting an anti-commensal Th2 response

contributing to the clinical reactivity and phenotype outcome
(91)

Microbiomics and gut issue typing
Genomics Fecal microbiome Decreased microbial richness associated with PA (92)

Increased alpha-diversity in low responsive individuals (93)
Bacteroidales, especially Bacteroides fragili increased in PA, Clostridium sp increased
in low threshold; high Oscillosiraceae sp, Lachnospiraceae sp, Ruminococcaceae sp,
Frimicutes sp and Bacteroides sp correlating with low threshold reactivity

(92, 93)

Clostridiales abundance decreased in PA, potentially leading to a decrease in
protective ROR-gt+ iTreg cell populations

(91, 92)

Transcriptomics Gut tissue-derived peanut-specific
IgE+ plasma cells

Local class switch resulting in IgE+ B cell counts correlating with serum sIgE-titers; at
the gut microbiome interface, local IgE-reservoir for mast cell FcϵRI-coating and thus,
candidate factors triggering clinical reactivity profiles

(94)
January 2021 | Volum
e 11 |
BAT, basophil activation test; CDR3, complementarity-determining region 3; FceRI, high-affinity IgE receptor; HLA, human leucocyte antigen; nsLTP, non-specific lipid transfer protein;
PBMC, peripheral blood mononuclear cell; sIgE, specific IgE; SNP, single nucleotide polymorphism; TCR, T cell receptor; Teff, effector T cell; Treg, regulatory T cell.
*Clinical evaluation (CE), as defined here by a patient-based study design with participant severity stratification (eg, symptoms, threshold dose); #, results reported in severity stratification
approach. **References in double-brackets, additional background literature based on different study design but supporting the relevance of the respective biomarker/biomarker
approach.
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wide association studies reported on loci correlated to specific FAs
(Table 1) (85–87, 114). Beyond aspects of disease susceptibility,
recent studies focused on genes involved in acute inflammation in
PA patients. Watson et al. analyzed the time-resolved
transcriptome in peripheral blood sampled from peanut-allergic
individuals during OFC (at baseline, 2 h/4 h later), comparing
peanut vs placebo (89). Indeed, specific gene expression changes
were induced by peanut intake. Gene upregulation was commonly
found (1,411/2,168 genes) correlating with evolving peanut-
induced inflammation. In leucocyte cell subsets after
deconvolution, resting macrophages (M0) and neutrophilic
granulocytes increased while naive CD4+ T cells decreased
during OFC. Genes associated with peanut-allergic reactions
were mostly found in a co-expression module with upregulated
genes related to inflammatory processes. Six key driver genes
were identified (3/6 with established role in inflammation)
as modulators of the peanut-reactive co-expression module.
The data-driven approach on genes involved in peanut-allergic
reactions was further developed by Do et al. using transcriptome
analysis during OFC (at baseline, 2 h/4 h later), in combination
Frontiers in Immunology | www.frontiersin.org 6201
with baseline epigenomic profiling (90). The participants’ clinical
reactivity was stratified by threshold-weighted severity grades.
More than 300 genes (“peanut severity genes”) had significant
expression changes during OFC and were found to be associated
with reaction severity. Biological processes related to upregulated
peanut severity genes clustered by function, mostly around
neutrophils (activation, degranulation, neutrophil-mediated
immunity). With pronounced reaction severity, neutrophilic
granulocytes increased also in number while naive CD4+ T cells
and naive B cells decreased significantly during the course of
OFC. Most peanut severity genes clustered together by co-
expression. Gene interaction network analysis indicated the
central role of two genes, NFKBIA (NF-kappa-B-inhibitor
alpha, a regulator protein) and ARG1 (arginase, a catabolic
enzyme and immune regulator), on reaction severity. Epigenetic
modification correlating with reaction severity, as measured
by methylation signatures of CpG dinucleotides in CD4+

lymphocytes, was found for more than 200 CpGs (“peanut
severity CpG”). A causal relationship between methylation and
peanut severity genes gene expression was established, pointing
FIGURE 1 | Endotyping of peanut-allergic patients: from selected, established to newly discovered approaches. The association of IgE-signatures (IgG-profiles not
shown/reviewed in text) and basophil reactivity profiles with clinical phenotypes is widely established. Research fields on peripheral allergen tracing, deep immune
typing (eg, T cells), gene expression/modification as well as local gut immune responses and gut microbiome-host interactions represent putative endotyping axes
which require further investigations and finally, systems-level integration in future studies. Incr., increased; PA, peanut allergy.
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further to the relevance of epigenetic modifications in the context
reaction severity.

Commensal Endotyping
The gut represents the largest interface for the interaction
between the human body and food allergens. There is a
constant regulatory interaction between the immune system
and the intestinal microbiome (115). The microbiome might
promote Th2-immunity to food by regulating eosinophils
(frequency, function) in the gut (116).

Non-Omics
More recently, sIgE-binding to commensal bacteria was
discovered in food-allergic children, suggesting structural
similarities between food allergens and microbial structures
(91). Molecular mimicry of the microbiome plays a role in a
number of inflammatory diseases, such as celiac disease.
Here, structures on P. fluorescens, a commensal which is
overrepresented in celiac disease, have been found to mimic
human leukocyte antigen (HLA) locus HLA-DQ2.5- and activate
mucosal T cells, suggesting a pathological dysfunction of the gut
barrier (117). First studies comparing amino-acid sequence
similarities between known food allergens and microbiome
data revealed conserved regions of T-cell immune recognition
on commensal bacteria (118). Carrasco Pro et al. further showed
similarities between human microbiome sequences and
inhalation allergens (119).

Microbiomics and Gut Tissue Typing
The adaptive immune response is influenced by microbial
interactions with secreted IgA (120), together with lower
richness and lower local species diversity (alpha diversity),
accompanied by a dysbiosis of commensal strains (92, 93). A
previous study demonstrated that peanut allergy is marked by
higher Bacteroidales, especially Bacteroides fragilis and reduced
Clostridiales abundance (92). Low threshold reactivity to peanut
has been connected to an increase in Clostridium sp,
Oscillosiraceae sp, Lachnospiraceae sp, Ruminococcaceae sp,
Frimicutes sp, and Bacteroides sp (91–93).

At which gastrointestinal sites immune dysregulation and
allergic sensitization might develop is unexplored. Recently, large
numbers of allergen-specific B cells were described in the gut
(stomach, duodenum) of peanut-allergic patients (94). These
IgE+ cells are rarely found in the blood (121, 122). Gut IgE+B
cells counts were found to correlate with serum IgE-titer
concentrations. Importantly, inter-individual variations in this
local IgE+B but also variable mast cell IgE-loading by different
IgE+B clones might explain differential reaction phenotypes in
peanut-allergic patients’ reservoir (Figure 1). The high number
of IgE+ B cells in the gut combined with increased intestinal
permeability might explain the high sIgE-levels found in fecal
samples of food-allergic patients (123).

These findings give an idea of a new mechanism in which the
microbiome may initiate, trigger and influence allergic reactions.
This in turn may lead to novel ways to stratify patients, due to
their metaproteomic profile, as has been shown for other
inflammatory diseases (124, 125).
Frontiers in Immunology | www.frontiersin.org 7202
CONCLUSION: PERSPECTIVE TOWARD
NEW INTEGRATIVE APPROACHES

Deciphering the immunological response to food proteins shall
enable the stratification of patients into reaction endotypes, for
advanced understanding of their phenotypic heterogeneity. The
ambitious but ultimate goal will be to identify clinically useful
predictors for allergic reactions to food, with emphasis on
predicting clinical outcome, severity and threshold dose, upon
allergen exposure in order to adapt avoidance protocols and
symptomatic medication (15, 126). Recent PA-studies
demonstrated the complexity of the immune mechanism, as
investigated during simulated allergen-specific stimulations or
during the course of clinical reactions (71, 74, 89, 90). Several
studies did even compare immune targets in individuals with
variable clinical reactions, based on severity or sensitivity (69, 70,
90). To explain clinical manifestations of reaction phenotypes,
various aspects are considered of fundamental relevance,
including the molecular IgE-signature/-repertoire, the potency/
repertoire of effector cells, the kinetics of allergen degradation/
absorption, allergen-specific T cell reactivity profiles, genes/
methylations and aspects of the gut microbiome including
composition and host interaction (Figure 1). The availability
of multiple omics technologies, proteomics, high-dimensional
mass cytometry, transcriptomics and epigenomics, allowed
identifying promising molecular and immunological targets for
future human studies. Taken individually, each omics-approach
has assets and drawbacks (reviewed by (127, 128) but together
they might unfold their full potential. Unbiased machine-
learning, integrated data analysis of heterogeneous datasets as
well as network-based approaches will be required to establish
algorithms for providing insights in disease pathophysiology and
for inferring biomarkers or biomarker signatures being
predictive for reaction phenotypes (33, 127, 129, 130). Finally,
those insights shall advance the stratification of individuals prior
to selection for oral immunotherapy or early food introduction
for prevention, both pioneer areas research in PA (131, 132).
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1 Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology,
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More than 30% of the world population suffers from allergy. Allergic individuals are
characterized by the production of immunoglobulin E (IgE) antibodies against
innocuous environmental allergens. Upon allergen recognition IgE mediates allergen-
specific immediate and late-phase allergic inflammation in different organs. The
identification of the disease-causing allergens by demonstrating the presence of
allergen-specific IgE is the key to precision medicine in allergy because it allows
tailoring different forms of prevention and treatment according to the sensitization
profiles of individual allergic patients. More than 30 years ago molecular cloning started
to accelerate the identification of the disease-causing allergen molecules and enabled their
production as recombinant molecules. Based on recombinant allergen molecules,
molecular allergy diagnosis was introduced into clinical practice and allowed dissecting
the molecular sensitization profiles of allergic patients. In 2002 it was demonstrated that
microarray technology allows assembling large numbers of allergen molecules on chips
for the rapid serological testing of IgE sensitizations with small volumes of serum. Since
then microarrayed allergens have revolutionized research and diagnosis in allergy, but
several unmet needs remain. Here we show that detection of IgE- and IgG-reactivity to a
panel of respiratory allergens microarrayed onto silicon elements is more sensitive than
glass-based chips. We discuss the advantages of silicon-based allergen microarrays and
how this technology will allow addressing hitherto unmet needs in microarray-based
allergy diagnosis. Importantly, it described how the assembly of silicon microarray
elements may create different microarray formats for suiting different diagnostic
applications such as quick testing of single patients, medium scale testing and fully
automated large scale testing.
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BACKGROUND

The major difference between allergic patients and healthy,
non-allergic subjects is that allergic patients produce IgE
antibodies against certain environmental antigens, termed
allergens, whereas non-allergic subjects produce IgG antibodies
(1, 2). IgE antibodies bind specifically to high (FceRI) and low
affinity receptors (FceRII) for IgE present on inflammatory cells
which become activated by IgE-allergen immune complexes
to release inflammatory mediators, cytokines, and proteases
and/or to activate allergen-specific T cells (3, 4). Therefore,
allergen contact induces in allergic patients containing
specific IgE, allergic inflammation in different tissues and
organs leading to a variety of allergic symptoms comprising
rhinoconjunctivitis (hay fever), asthma, skin inflammation,
gastrointestinal symptoms, and systemic symptoms such as
anaphylactic shock (5). By contrast, IgG recognition of allergens
does not trigger allergic inflammation because allergen-IgG
immune complexes cannot bind to Fce receptors and thus fail
to trigger allergic inflammation. IgE antibodies occur in very
small concentrations in the blood and therefore were identified
only in 1966 (6). Due to their importance for triggering allergic
reactions already in 1967 the first serological test for measuring
allergen-specific IgE in the blood of allergic patients was
developed and termed radioallergosorbent test (RAST) (7).
Before the discovery of IgE antibodies, allergic sensitization was
diagnosed by exposing subjects with suspected allergic
sensitization to extracts made from the disease-causing allergen
sources in order to study if this would induce immediate allergic
inflammation. One of the first descriptions of controlled allergen
provocation dates back to a study performed by Charles Blackley
in 1873 (8). Since the induction of allergic inflammation resulting
from the activation of mast cells by IgE-allergen immune
complexes occurs within few minutes, IgE-associated allergy
was also termed immediate type hypersensitivity in the classical
description of the four types of immunological hypersensitivity of
the immune system published by Coombs & Gell (9). Accordingly
the diagnosis of allergy has been based on three elements, one is
the case history trying to relate the occurrence of allergic
symptoms in a patient to exposure to certain allergen sources;
the second element is trying to induce allergic reactions in the
patient by exposing the person to the allergen source and
recording of subsequent allergic symptoms; and the third by
confirming IgE sensitization by demonstrating the presence of
IgE antibodies specific for the allergen source in the blood or
tissue fluids of the patient (10). Traditionally, testing is performed
exactly in the described order by starting with the anamnesis
followed by provocation testing and final confirmation of
sensitization by measuring specific IgE antibodies.
Abbreviations: IgE, Immunoglobulin E; IgG, Immunoglobulin G; Ab, antibody;
AIT, allergen-specific immunotherapy; Ig, immunoglobulin; RAST,
radioallergosorbent test; GP, general practitioner; OAS, oral allergy syndrome;
RV, rhinovirus; HDM, house dust mite; Der p, Dermatophagoides pteronyssinus;
Blo t, Blomia tropicalis; Fel d, Felis domesticus; PR10, pathogen-related protein 10;
Bet v, Betula verrucosa; Gly m, Glycine max; Ara h, Arachis hypogaea; Pru p,
Prunus persica.
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TRADITIONAL FORMS OF ALLERGY
DIAGNOSIS

Traditional allergy diagnosis always starts with a detailed
anamnesis trying to identify the presence or absence of allergic
symptoms. The next step is to try associating the occurrence of
symptoms with contact to certain allergen sources and to verify
that controlled exposure to allergen extracts prepared from the
allergen source will elicit an allergic reaction. For this purpose,
allergen extracts are prepared from the natural allergen sources.
These allergen extracts represent mixtures of allergenic and non-
allergenic, potentially also irritating substances which may elicit
an inflammatory reaction without underlying IgE sensitization.
Some examples are the presence of histamine in fish or adverse
reactions to milk due to lactose intolerance (11). Accordingly the
next step for confirming the condition of an IgE-associated
allergy is to verify that the patient serum contains IgE
antibodies which react specifically with the allergen extract.
However, the demonstration of the presence of allergen-
specific IgE with allergen extracts is problematic. First of all,
the disease-causing allergen molecules cannot be identified with
allergen extracts because they represent mixtures of different
allergen molecules and non-allergenic materials. Furthermore,
the quality of allergen extracts may strongly vary and depend on
various factors which are out of the control of the manufacturer.
For example, certain allergens may be lacking in certain extracts
(12) and there may be contaminations with allergens from other
sources just to name a few problems. It also seems that allergen
extracts for in vivo provocation testing are becoming less
available because they do not meet current standards for
medical products (13). Accordingly the use of allergen extracts
has several disadvantages which are reviewed in (14). In order to
address the urgent needs and bottlenecks of diagnostic allergens
the European Academy of Allergy and Clinical Immunology
(EAACI) has founded a task force which has set up an action
plan to maintain the supply of diagnostic allergen extracts (15).
This action plan comprises i.) a simplification of authorization,
ii.) specific regulations for special types of extracts, iii.) new
models beyond the current model of homologous allergens, iv.)
simplification of pharmacovigilance reporting, v.) reduction of
regulation fees and vi.) reimbursement for diagnostic allergen
extracts. Nevertheless, the practice of traditional allergy diagnosis
becomes now challenged with the appearance of molecular
allergy diagnosis.
MOLECULAR ALLERGY DIAGNOSIS

Shortly after the first allergen-encoding DNAs had been isolated
(16–18), the first two studies were published showing that one
can replace complex allergen extracts such as birch pollen or
grass pollen extract with a few defined recombinant allergen
molecules for IgE-based serological diagnosis without losing
sensitivity or specificity (19, 20). These results were quite
surprising because at that time it was thought that allergen
molecules may exist in different isoforms with variable IgE
reactivity and that it may be impossible to find one isoform
February 2021 | Volume 11 | Article 594978
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which would be suitable for the diagnosis in all patients (21, 22).
Furthermore, it was not clear if a few allergen molecules would be
sufficient to cover the IgE epitopes of whole allergen extracts.
The early studies performed with recombinant allergens for
diagnosis also indicated that patients who are sensitized to a
certain allergen source may react with different molecules in this
source and accordingly show different clinical phenotypes that
need “patient-tailored treatment concepts” (19). Subsequently,
an increasing number of allergen molecules from different
sources were produced and recombinant allergens became
available for the first time in the most commonly used fully
automated in vitro allergy diagnosis system, the ImmunoCAP
system (23). However, the principle of ImmunoCAP testing was
that one test provided only one information so that for each
allergen source several allergen molecule-based tests would be
needed to cover the spectrum of the allergens of the allergen
source. Thus molecular testing with single allergen molecules
would have increased the costs for testing considerably. It was
therefore, clear that using this test one would always start
testing for allergen-specific IgE with allergen extracts and only
if deemed necessary and affordable, one would continue with
molecular testing.

In order to utilize the increasing numbers of allergen
molecules which were developed by time for diagnostic testing,
new test platforms were needed. It was a co-incidence that
microarray technology became available for printing nucleic
acids onto chips leading at that time. The first DNA chips
Frontiers in Immunology | www.frontiersin.org 3209
were manufactured by the company Affymetrix which was
based in Santa Clara, California, and a similar technology was
applied by the Vienna start-up company VBC Genomics headed
by Manfred Müller from Vienna, Austria which had the
instruments for printing microarrays. In a collaboration
between Manfred Müller and Rudolf Valenta, which was the
first to develop chips containing microarrayed allergen molecules
were then developed (24). which were not only one of the first
protein arrays for diagnostic purposes but also represented the
first microarrays for in vitro allergy diagnosis (24). These micro-
arrays contained more than 90 different allergen molecules from
different allergen sources provided by researchers from all over
the world. The exciting thing with allergen microarrays was that
one could test IgE reactivity simultaneously to a large number of
different allergen molecules with a few microliters of serum or
other body fluids. Compared to other existing allergy test systems
the allergen chip thus represented a breakthrough which may be
also considered a “disruptive technology” because it had the
potential to change allergy diagnosis completely. One year after
the appearance of the study describing the first allergen chip, the
concept of microarray-aided allergy diagnosis was considered the
first time (25).

Figure 1 provides a comparison of traditional allergy
diagnosis, which in principle is an approach driven by the
hypothesis developed by the physician based on the anamnesis.
According to the information collected by the anamnesis the
physician selects certain allergen sources for a first round of in
FIGURE 1 | Comparison of traditional allergy diagnosis and microarray-aided allergy diagnosis. In traditional allergy diagnosis (left part) an anamnesis of allergic
symptoms is recorded which serves as the basis for targeted provocation testing, usually skin testing with a limited number of allergen extracts selected according to
the anamnesis and eventually collection of a serum sample for measuring IgE specific for the suspected allergen sources. In the best case, the patient receives first
treatment suggestions according to skin test results. Usually at least one, but often several additional visits are necessary to adjust the treatment to the IgE test
results and/or to conduct further targeted testing to determine more precisely the patients sensitization profile and to further adjust treatment. Regarding microarray-
aided allergy diagnosis (right part), it can be envisioned that the first visit can be conducted even in a virtual, telemedicine-like form because no provocation testing is
required. The anamnesis and complete molecular IgE reactivity profile would be available to the specialist online who could then prescribe precise treatment taking
clinical information and the complete sensitization profile into consideration.
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vivo provocation testing which is usually conducted by skin
testing, and eventually the confirmation of IgE sensitization by
serology is performed. According to the in vivo provocation
results which can be evaluated during the first visit, the physician
may already make first preliminary treatment recommendations.
Results from serology are usually not available on the same day,
and often it may turn out that the original hypothesis, what the
culprit allergens might have been, may need refinement through
additional anamnesis and repeated testing (Figure 1, left).
Therefore traditional allergy diagnosis requires usually multiple
visits until a more or less complete picture of the sensitization
profile of the patient has been obtained. It is needless to say that
the traditional allergy testing path may become challenging
because it may require repeated consultations and thus long
time to reach a final diagnosis, and this may reduce patients’
compliance (Figure 1).

By contrast, microarray-aided allergy diagnosis has the
potential to reduce the time to reach the final diagnosis and to
select the correct treatment albeit itmaybe initiallymore expensive
because it would place the assessment of the complete sensitization
profile of the patient already at the beginning of the first
consultation. One could imagine that based on validated allergy
questionnaires such as the ISAAC questionnaire (26) already the
general practitioner (GP) initiates microarray-based allergy
screening in subjects with suspected allergy. The patient could
then have a first consultation with a specialist presenting already
the anamnesis and the complete molecular IgE reactivity profile so
that the specialist can immediately determine the best treatment
practice. In contrast to the traditional “hypothesis-driven
approach”, this pathway is reminiscent of a “discovery approach”
because the comprehensive IgE test result might stimulate the
specialist to refine the anamnesis according to the IgE sensitization
profile. Obviously the microarray-aided diagnosis would need in
vivo provocation testing only in certain cases for confirmatory
purposes, if at all and hence the consultation could be performed
also in a telemedicine-based format. The advantage of such a
telemedicine-based approach is that it reduces the number of
visits, avoids eventual long travelling, and remote areas in a
country can easily benefit from specialist knowledge (Figure 1,
right). In this context the possibilities of mobile health (mHealth)
technology using mobile communication devices to support and
improve health-related services, data flow, patient management,
surveillance, and disease management should be mentioned. A
task force of EAACI has reviewed all these possibilities, discussed
advantages, limitations, and risks such as data protection, and
provided recommendations (27). In the context of precision
medicine, the potential of changing the practice from clinician-
to patient-centered health care is highlighted.

Some recent reports underline the potential of molecular
diagnosis in the field of health economics and suggest that it
can help to save costs for the diagnosis of respiratory allergies
(28) and food allergies (29).

Currently, allergy diagnosis is still dominated by the
traditional approach of diagnosis as indicated in Figure 1, but
more and more specialists in allergy start to use molecular allergy
diagnosis, and already quite a few prefer microarray-aided
Frontiers in Immunology | www.frontiersin.org 4210
diagnosis as shown also in Figure 1. There are many different
reasons for the different preferences. For example, traditional
allergy diagnosis is often preferred because it is currently
reimbursed by the health care system, whereas serological
diagnosis and, in particular microarray diagnosis, requires
laboratory facilities and a different mode of reimbursement
shared between specialists and diagnostic laboratories. Factors
limiting the increased use of microarray-guided diagnosis are
that practitioners must be skilled in interpreting complex
molecular test results and/or have well-trained algorithms for
clinical decision making (i.e., clinical decision support systems)
available. Information on sensitizations not linked to symptoms
require appropriate and time-consuming information of
patients, and certain allergen molecules for obtaining complete
results may still need to be discovered and included in the micro-
arrays. Finally, it will be necessary to reduce the costs of micro-
arrays, which are often driven not only by costs of goods for
manufacturing but also by costs due to quality control,
validation, and registration. However, once the latter issues are
resolved one may expect that microarray-based allergy diagnosis
will become a highly cost-effective diagnostic tool. One must
consider that microarray-based allergy diagnostic approaches
can provide more than hundred individual test results from one
sample and present the comprehensive picture of allergen
sensitization, which can be used for precision medicine
treatment. In fact, unrecognized and untreated allergy is a
major cost factor for the management of allergic diseases. With
the adherence to proper treatment and the precise diagnosis and
proper management of allergic diseases, it has been estimated
that high costs can be saved (30, 31).
MEASUREMENT OF ALLERGEN-SPECIFIC
IGE AND IGG RESPONSES WITH
MICROARRAYED ALLERGENS

Microarrayed allergens can be used for measuring simultaneously
IgE reactivity to a large number of different allergenmolecules with
very small volumesof serum. In this context, it shouldbementioned
that it has been shown that allergen-specific IgE can be also
measured in plasma and other body fluids such as nasal
secretions and in milk samples (32–35). Moreover, it has been
shown that dried blood spots on paper can be recovered for specific
IgE and IgGmeasurementswhich allows sending serum samples as
paper dried blood spots in simple envelops without requiring
expensive packaging, cooling, and sophisticated transportation
(36). Several recent studies have confirmed the importance of
allergen-specific IgG antibodies for the protective effects of AIT,
and the measurement of allergen-specific IgG antibodies which
block allergic patients IgE binding to allergens is therefore
considered as an important biomarker for the clinical efficacy of
AIT (37). Accordingly, certain commercial allergen arrays allow
measuring specific IgE and IgG antibodies (e.g. Thermo Fisher
ImmunoCAP ISAC Immuno-solid-phase Allergen Chip, which
contains 112 allergens from 51 allergen sources) (38); however,
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this has not been shown for all available allergen arrays (e.g.,MADx
Allergen ExplorerALEX; containing 282 allergens: 156 extracts and
126 components) (39). The measurement of allergen-specific IgG
antibodies in cohorts has provided new insights in beneficial
functions of IgG. For example it has been suggested that allergen-
specific IgG transmitted from the mother to the child via the
placenta during pregnancy may protect the off-spring from
allergic sensitization (40). Likewise, evidence has been provided
that the production of allergen-specific IgG antibodies follows
different pathways and mechanisms than those involved in the
production of allergen-specific IgE antibodies (2, 41–43).
EXAMPLES FOR THE USE OF
MICROARRAYED ALLERGENS IN
ALLERGY RESEARCH

Microarrayed allergens have been used in research to address
several questions. For example, it has been shown that adult
allergic patients do not change their IgE sensitization profiles for
a decade demonstrating that there is no acquisition or loss of IgE
sensitizations in adult allergic patients (44). Furthermore,
information was obtained about the characteristics of IgE
sensitization profiles in different populations. For example, it
was found that sensitization to clinically relevant grass pollen
allergens is rare in tropical climates and that most of the grass
pollen-specific IgE is directed to non-allergenic carbohydrate
epitopes (45). In another study it was observed that man-made
changes of the environment as for example obtained by
replanting of certain plants can alter the allergic sensitization
profiles towards plant-derived allergens in populations within
two generations (46).

However, without any doubt, the most exciting results were
obtained when microarrayed allergen molecules were used to
study the development of the allergic sensitization profiles in
longitudinal birth cohorts allowing to analyze the evolution of
IgE sensitization profiles from birth to early adolescence (47, 48).
Importantly it was found that allergy frequently starts with early
asymptomatic IgE sensitization and that early assessment of IgE
sensitization profiles and IgE-levels allow predicting the
development of allergy later in life (49–52). This finding suggests
that for allergy similar as for other diseases such as cancer,
cardiovascular diseases, and metabolic disease, early screening in
the form of a preventive medical examination by determination of
IgE sensitization profiles early in life might allow initiating
preventive measures (e.g., allergen avoidance, early allergen-
specific immunotherapy) (53–55) to prevent the development of
allergic symptoms (i.e., secondary prevention) later in life.
PRECISION MEDICINE BY CHIP-BASED
ALLERGY DIAGNOSIS

In allergy, like in other important diseases, it has become clear
that it is necessary to transform healthcare towards the principles
Frontiers in Immunology | www.frontiersin.org 5211
of “P4 Medicine” for predictive, preventive, personalized
(precision), and participatory medicine by developing new
diagnostic and predictive tests as well as therapies and
preventive strategies which affect the course of disease or
prevent the development of disease (56). Allergy is ideally
suitable for a precision medicine approach because patients are
sensitized to different allergens and allergen combinations and
suffer from a wide variety of symptoms which may change
during the course of disease. Furthermore, there are several
different strategies for the treatment of allergy available which
require the identification of the disease allergens. It is also clear
that early preventive measures should be more effective than late
mending of severe disease (5, 57). Accordingly, it has been
suggested that molecular allergy diagnosis improves treatment
especially in pediatric allergy (58). In this context, examples of
how molecular diagnosis helped in the diagnosis of children
suffering from complex allergic sensitizations and tailoring the
treatment according to the needs of the children should be
mentioned (59). Furthermore, evidence accumulates that
allergic phenotypes and symptoms are associated with certain
patterns and/or levels of allergen-specific IgE in children and
adult allergic patients suggesting that serological surrogate
parameters for diagnosis can be developed (60–63).

Microarrayed Allergens in Food
and Respiratory Allergy
The diagnosis of food allergy is often challenging because the
frequency of IgE-associated food allergy is often considered
higher than it is in reality. For example, adverse reactions to
cow’s milk due to lactose intolerance are much more common
than IgE-mediated allergy (11). Although many clinicians
consider only the double-blind, placebo-controlled food
challenge as gold standard for the diagnosis of food allergy,
this test is cumbersome, and there may be severe and even life-
threatening side effects. Accordingly, alternative diagnostic tests
are needed. So far a considerable number of food allergen
molecules have been identified which are associated with
severe, mild, or even no reactions allowing for serological
testing of food allergy also by microarray-based IgE testing (64).

In this context a study demonstrating different IgE
sensitization profiles in children suffering from severe peanut
allergy and in peanut-sensitized but asymptomatic children
should be mentioned (65). Screening for IgE sensitizations
using a large panel of food allergen molecules is useful for
several reasons. First, it allows testing simultaneously for IgE
sensitization to a large panel of allergen molecules with high
anaphylactic capacity to predict the risk of food allergy, and thus
it may help to reduce hazardous food challenge testing (29, 66,
67). Second, and importantly, negative test results to a large
panel of food allergen molecules are helpful in searching for other
reasons of food intolerance beyond IgE-mediated allergy. Besides
IgE testing to food allergen molecules, it has turned out that
measuring IgE sensitizations to food allergen-derived peptides
may be useful to discriminate patients with no or mild symptoms
from those suffering from severe symptoms (68, 69).
Microarrayed peanut allergen molecules were also used to
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investigate the course of peanut sensitization in childhood and to
predict symptomatic peanut allergy in a birth cohort (70). Very
recently it was found that oral allergy syndrome (OAS) to Bet v
1-related food allergen molecules of the pathogen-related protein
10 (PR10) family was associated with the levels of Bet v 1-specific
IgE and the numbers of recognized PR10 molecules (61).

Microarrayed allergen molecules are not only useful for the
diagnosis of IgE-mediated food allergies but are also considered
for the diagnosis of asthma triggered by allergens in sensitized
allergic patients (71). The two major trigger factors for asthma
are allergens for patients with IgE sensitizations and infections
with respiratory viruses, in particular with rhinoviruses (RVs)
(72). For example, it has been shown for house dust mite allergy
that children suffering from allergic asthma differ regarding their
IgE reactivity profiles and ability to produce allergen-specific IgG
antibodies (60). Children with asthma showed higher IgE levels
to certain allergens, reacted with a larger number of molecules,
and produced less allergen-specific IgG as compared to children
suffering only from rhinitis (60). Furthermore, machine learning
approaches have been suggested to identify pairwise interactions
of IgE antibodies and their association with asthma based on
microarray results (73). Allergen molecules from cat and dog,
which are important for the development of respiratory allergy in
childhood, have been identified in the Swedish BAMSE birth
cohort (74).

For the diagnosis of RV-induced asthma, a chip containing
peptides derived from the N-terminus of VP1 proteins from a
representative number of RV strains covering RV-A, RV-B and
RV-C species has been produced (75). This chip allowed
measuring species-specific increases of RV-specific IgG
antibodies in children who had experienced RV-induced
asthma exacerbations, and cumulative IgG responses were
higher in children with RV-induced exacerbations of
respiratory illnesses (76, 77). Accordingly, it has been proposed
to use microarrayed allergens and respiratory virus-derived
peptides for diagnosis of allergen and/or RV-induced asthma
and personalized treatment according to the test results (77).

Microarrayed Allergens for Prescription
and Monitoring of Allergen-Specific AIT
AIT is an allergen-specific form of therapeutic vaccination which
is based on the administration of the disease-causing allergens or
modifications thereof with the goal to induce allergen-specific
protective IgG antibodies and alterations of the cellular immune
response to reduce symptoms of allergy upon allergen contact.
Accordingly, the accurate prescription of AIT requires that the
culprit allergens are identified. Since allergen sources often
contain cross-reactive allergens the identification of the culprit
allergen source can be challenging. It has therefore been
suggested to use marker allergen molecules which are specific
for given allergen sources as diagnostic marker allergens for
improving the prescription of AIT (78). The marker allergen
concept can be applied to almost all allergen sources and
accordingly has been suggested for several common respiratory
allergen sources (79–81). The use of marker allergen molecules
was suggested not only for refining the prescription of AIT but
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also for the monitoring of treatment response by measuring the
development of allergen-specific IgG antibodies which are
considered as biomarkers for the success of AIT (37, 82). In
this context an interesting discovery was made which suggested
that the ImmunoCAP ISAC microarray platform which utilizes
small amounts of immobilized allergens is very useful for AIT
monitoring. In fact, when small amounts of allergens are
immobilized on the solid phase of immunological tests for
detecting allergen-specific IgE, IgG antibodies can compete
with IgE for allergen binding when they block epitopes
recognized by patients IgE (83, 84).

When patients develop such blocking IgG antibodies in the
course of AIT, these IgG antibodies will then compete with IgE
antibodies which then causes a reduction of IgE binding similar
as it is observed by skin testing when allergen-specific IgG
antibodies block IgE-mediated mast cell activation thus leading
to a reduction of skin responses. The reduction of allergen-
specific IgE binding by blocking IgG antibodies can only be
measured with IgE binding assays containing small amounts of
immobilized allergens such as the ImmunoCAP ISAC chip but
not by the traditional ImmunoCAP test which contains larger
amounts of immobilized allergens (83–85). No other diagnostic
platform with similar properties has been identified so far. In
fact, two independent studies have shown the reduction of IgE
binding to allergens by AIT-induced IgG antibodies on the
ImmunoCAP ISAC platform and suggested it as a possible
biomarker for AIT (86, 87).

Several studies support the concept of using molecular testing
for the refined prescription of AIT (88), and the cost-
effectiveness of molecular diagnosis as compared to traditional
allergy diagnosis has been shown (89). Two more recent studies
should be mentioned which have shown that it may be possible
to enhance the success of AIT by selection of patients whose IgE
reactivity profiles match the immunogenic components present
in the AIT vaccines (90, 91). Accordingly, microarray-based
molecular diagnosis seems to be well suited as companion
diagnostic tool for the selection of patients for AIT and for the
monitoring of treatment success.
UNMET NEEDS IN MICROARRAY
TECHNOLOGY

Since the first description of the use of microarrayed allergens in
2002 for allergy diagnosis the technology has become available
world-wide and has been used extensively in research. However,
several unmet needs remain which are summarized in Figure 2
and discussed below.

The Library of Allergen Molecules
and Peptides
The allergen molecules and allergen derived peptides and their
quality can be considered the heart of any allergen microarray
because it determines what application can be addressed with the
allergen chip. For example, it is important to cover the most
common respiratory, food, venom, and other allergen sources by
February 2021 | Volume 11 | Article 594978
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a representative collection of allergen molecules. In this context
it should be noted that there are different opinions regarding
the inclusion of certain allergen molecules in screening assays.
For example, some argue that the inclusion of venom allergens
may create ethical and legal issues because in case of a positive
or negative test result one cannot predict or exclude a sting
reaction. However, this is in principle applicable for every IgE
test result which needs to be considered in the context of clinical
information and/or results from provocation testing. Therefore
others think that the inclusion of venom allergens in screening
tests is not a problem provided the patients are adequately
informed about the relevance of the IgE test results.

The addition of allergen-derived peptidesmay be interesting for
example in the diagnosis of food allergy where sequential IgE
epitopes play a role and for the monitoring of AIT-induced IgG
responses. Since only small amounts of allergen are immobilized on
microarrays it is important to use highly pure allergens of high
quality to detect also low specific IgE responses. Natural allergen
preparation containing impurities in terms of unrelated allergens or
cross-reactive carbohydrates may give rise to unclear, false-positive
test results. Although carbohydrates are highly cross-reactive, it
seems that patientsmount quite specific and selective IgE to certain
carbohydrates which cannot be completely inhibited by pre-
incubation of sera with a single carbohydrate (92) so that unclear
background reactivity may remain. This is of particular relevance
because IgE-reactive carbohydrates have been shown to have little
or no clinical relevance. Accordingly it is important to establish a
library of high quality allergenmolecules and peptideswhich can be
reproduced according to defined protocols. The allergen molecules
should be preferentially made as recombinant, non-glycosylated
allergens to avoid unclear results due to carbohydrate-specific IgE.

This allergen library should be as complete as possible to pick
up every relevant IgE sensitization in a given population. For
example it has been shown, that the MeDALL allergen chip, a
Frontiers in Immunology | www.frontiersin.org 7213
customized allergen array based on the ImmunoCAP ISAC
platform containing more than 170 allergen molecules (83),
was more sensitive in picking up IgE sensitizations than
traditional allergy tests based on comprehensive panels of
allergen extracts for skin testing or IgE serology (93). In order
to refine the panel of allergen molecules on a chip it will be
necessary to investigate molecular IgE sensitization profiles in
different populations in different countries and continents to
define the allergen repertoire of a microarray suitable for allergy
diagnosis in the whole world. Such a complete representation of
allergen molecules seems very important because due to the high
mobility of the world population allergen arrays representing
only a local allergen repertoire will not be sufficient for diagnosis.
The production of microarrays containing subsets of allergen
molecules does not seem to have any advantages because the
microarray technology does not set limitations regarding the
numbers of molecules which can be immobilized, and the costs
of goods for production are low due to the low amounts of
allergen needed. However, one must consider that costs for
quality control, validation, and registration of complex assays
may increase costs considerably.

New Materials May Increase the Quality
and Versatility of Microarrays
There are basically two types of multiplex diagnostic platforms
available. One contains allergen molecules adsorbed to
microbeads, whereas the other platform is based on allergens
which are immobilized on chips by micro-spotting. Microbead-
based multiplex assay usually can accommodate only a limited
number of less than 50 different allergen molecules in a single test
and require quite expensive instruments such as Luminex
readers or FACS-based technology for read out (94, 95). By
contrast, microarrays allow measuring specific antibody
reactivity to more than hundred different allergen molecules at
FIGURE 2 | Unmet needs in microarray-based allergy diagnosis.
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the same time. There are currently two major types of allergen
arrays available, the ImmunoCAP ISAC platform, using allergen
molecules immobilized onto glass (Thermo Fisher ImmunoCAP
ISAC Immuno-solid-phase Allergen Chip which contains 112
allergens from 51 allergen sources) (38) and an allergen macro-
array prepared on the basis of a nitrocellulose membrane (e.g.,
MADx Allergen Explorer ALEX; containing 282 allergens: 156
extracts and 126 components) (39). Both systems allow
reasonable detection of allergen-specific IgE but one may
consider increasing the quality of the arrays by selecting
different materials for allergen immobilization. Already in the
original patent application made for the ImmunoCAP ISAC
technology, silicon-based surfaces have been considered as
alternative to glass (96).

In fact, the high sensitivity of protein assays on microarray
silicon slides has then been demonstrated (97, 98). The latter
studies demonstrated optimized layers of thermally grown
silicon oxide with highly reproducible thickness, low
roughness, and fluorescence background which yielded
fluorescence intensification due to the constructive interference
between the incident and reflected waves of the fluorescence
radiation. Furthermore, the studies suggested that by combining
an optimized reflective substrate with a high performance surface
chemistry may strongly improve the quality of diagnostic protein
array by obtaining a 5–10 fold enhancement of the fluorescence
signals when compared to glass surfaces. The favorable features
of silicon slides have been further demonstrated for peptide
arrays (99) and for the field of food allergy diagnosis (100).

Below, we have evaluated allergen microarrays based on
silicon oxide surfaces and compared them with glass slides
currently used in the ImmunoCAP ISAC platform confirming
the higher sensitivity of the silicon technology. We are then also
discussing advantages of this technology for the versatile
production of different formats of allergen microarrays.

Affordability of Microarray-Based
Diagnosis
Currently available microarray-based allergy tests are relatively
expensive although one has to consider that a single microarray
test result provides more than hundred individual test results.
For example costs for one array may range between 60 and 100
Euro depending on prices requested by different manufacturers
in different countries, and additional costs for the processing of
one sample may vary considerably 50–300 Euro depending on
costs of laboratory facilities and personnel. Therefore, it will be
necessary to decrease the costs of production for the micro-
arrays and the costs for the test procedure which is currently
performed by hand pipetting.

Different Formats of Microarrays for
Different Needs
As mentioned above currently available microarrays are made
for manual operation and thus individual testing requires wet
laboratory facilities and relatively expensive scanning equipment
for the analysis of results. The available formats thus can be used
for manual analysis of relatively limited numbers of samples and
Frontiers in Immunology | www.frontiersin.org 8214
require trained personnel. Unfortunately, no automatization
for the processing of the available allergen arrays is available
which would allow large scale and fully automated analysis of
large numbers of patients. Therefore, there is still an unmet need
for different formats of allergen arrays allowing different
applications such as the occasional analysis of few or single
serum samples yielding fast results with a minimum of
equipment, the medium scale analysis of several serum samples
and the fully automated analysis of large numbers of sera
(Figure 2).

Furthermore, allergen arrays should allow the analysis not
only of allergen-specific IgE but also of other immunoglobulin
isotypes as well as the visualization of the competitive activity of
allergen-specific IgG on IgE binding for the monitoring of AIT.

Interpretation, Reporting and Clinical
Decision Making
Since allergen microarrays deliver test results for more than 100
different allergen molecules it is important that doctors who see
allergic patients and wish to correctly interpret the sometimes
complex test results keep themselves updated by continuous
medical education. The transition of allergy diagnosis from the
use of allergen extracts to allergen molecules requires knowledge
regarding the characteristics of the individual allergen molecules.
Thus molecular allergy diagnosis may be compared a bit with the
switching from previous old telephones to mobile phones which
offer many different additional applications that need to be
explored by the user. The challenges of interpreting allergen
microarray results may be met by machine learning approaches
and other diagnostic algorithms in addition to continuous
medical education (10, 101).
A COMPARISON OF DIFFERENT
SURFACES FOR MICROARRAYS: GLASS
VERSUS SILICON

In order to compare the glass surface which currently is used for
ImmunoCAP ISAC with silicon slides (97–100) a panel of
important respiratory allergens was spotted on the two surfaces
and allergic patients’ IgE and IgG reactivity was assessed. A set of
24 allergens containing mite allergens (Der p 1, Der p 2, Der p 4,
Der p 5, Der p 7, Der p 10, Der p 15, Der p 18, Der p 20, Der p 21,
Der p 23, Der p 37, Blo t 5, Blo t 12 and Blot 21), cat allergens (Fel
d 1, Fel d 2, Fel d 3, Fel d 4 and Fel d 6), and PR10 allergens (Bet v
1, Gly m 4, Ara h 8 and Pru p 4) were spotted in triplicates on
glass and silicon wafers in the order described (Figure 3)
(Supplementary Materials and Methods). In the first
experiment we determined the sensitivity of IgE reactivity to
Bet v 1 immobilized to glass and silicon chips using a human
monoclonal chimeric IgE antibody (IgEmoAb) (102) (Figure 4).
A two-fold serial dilution of IgEmoAb corresponding to 208–
0.025 ISU/ml was used to detect Bet v 1. Silicon microarrays
showed a five-fold higher fluorescence intensity of IgE reactivity
of IgEmoAb in the range of 52–0.025 ISU/ml to Bet v 1 than the
glass surface (Figure 4). The silicon surface allowed measuring
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the Bet v 1-specific IgE down to 0.025 ISU/ml which is much
lower than the cut-off used in currently available microarray tests
(0.3 ISU/ml) and the detection limit 0.1 ISU/ml used for certain
research purposes.

Figure 5 shows the comparison of IgE and IgG reactivity to
allergens spotted on glass and silicon microarrayed chips
determined with a serum pool from allergic patients with IgE
reactivity against the tested allergen panel that was diluted 3- to
729-fold for IgE detection (Figure 5A) and 27- to 19,683-fold for
IgG detection (Figure 5B). Figure 5A shows that the silicon
surface yielded an approximately 10-fold higher IgE binding
according to fluorescence intensity to all but one (i.e., Der p 20)
allergen compared to the glass surface. Figure 5B demonstrates
that silicon was superior to glass also regarding IgG detection
showing approximately five-fold higher IgG signals, and specific
binding was detectable even at a dilution of 1:19,683 of the serum
pool on silicon microarrays.
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Next, we tested sera from HDM and mite- (Figure 6A), cat-
(Figure 6B), birch pollen allergic patients (Figure 6C) and non-
allergic subjects (Figure 6D) for IgE and IgG reactivity to
allergens microarrayed on silicon and glass. This experiment
confirmed for almost all tested sera and allergens that allergens
immobilized on silicon have higher IgE and IgG detection
signals. Importantly, IgE detection was highly specific for glass
and silicon because none of the non-allergic subjects showed
detectable allergen-specific IgE reactivity (Figure 6D). Our
results thus indicate that allergen microarrays based on silicon
are superior to glass for IgE and IgG detection of allergens. It
should be also noted that another advantage of silicon arrays is
that spotting can be performed on small, precut silicon elements
which can be assembled in different formats (Figure 7, right
upper part).
MANUFACTURING OF MICROARRAY
ELEMENTS AND SUBSEQUENT
ASSEMBLY MEETS DIFFERENT NEEDS
IN ALLERGY DIAGNOSIS

In Figure 7 we try to provide an overview of how microarrays
based on silicon elements may contribute to innovation in allergy
testing as compared to currently available chips and arrays used
for IgE serology. Currently available allergen arrays are
manufactured in one predetermined format which is a chip,
containing one or several identically prepared allergen arrays
(Figure 7, left part) which then need to be processed in the
laboratory by hand pipetting.

Disadvantages of chips containing more than one array are that
the spotting of the microarrays is performed directly on chips which
are relatively large in comparison to a single silicon element.
However, the single silicon elements can be arranged in much
shorter distance close to each other for the spotting than preformed
chips. Accordingly the spotting machine (microarray printer)
FIGURE 4 | Sensitivity of the reactivity of a human monoclonal Bet v 1-
specific IgE antibody to Bet v 1 printed on glass versus silicon. Shown are the
fluorescence light intensities (y-axis) corresponding to different concentrations
(x-axis) of the monoclonal human Bet v 1-specific IgE antibody (IgEmoAb).
Der p 1 

Der p 2 

Der p 23 

Der p 5

Der p 7

Der p 21 

Der p 4

Der p 10

Der p 15

Der p 18

Der p 20

Der p 37

Blo t 5

Blo t 12

Blo t 21

Fel d 6

Fel d 1

Fel d 2

Fel d 3

Fel d 4

Bet v 1

Gly m 4

Ara h 8

Pru p 1

FIGURE 3 | Outlay of prototype allergen microarrays made by printing on glass slides and assembled silicon elements. Order of house dust mite, mite, cat, and
PR10 allergens microarrayed in triplicates on glass slides (left) and precut and assembled silicon chips-derived elements.
February 2021 | Volume 11 | Article 594978

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Huang et al. Future of Microarray-Based Allergy Diagnosis
makes much shorter movements when spotting closely assembled
silicon elements as compared to premade chips which should speed
up the production by shortening the production time. Another
disadvantage of chips containing several microarrays is that one
array of bad quality will lead to the discarding of a complete chip
although the other arrays may meet the quality criteria. By contrast,
when single silicon elements are used only the few poor quality
elements will be discarded keeping the loss of material low.
However, the most important advantage of microarrays based on
single silicon elements is that after spotting, the single elements can
be assembled in different formats for different uses. This allows
producing chips containing only one microarray for fast testing of
single serum samples. Furthermore, chips containing several silicon
elements for testing of several sera can be assembled. Importantly,
silicon elements can be also assembled in plates (e.g., ELISA plate
format) for automated processing of samples which can be
incubated with samples, washed, developed, and read in machines
without requiring hand pipetting. Thus microarrays printed on
silicon elements allow assembling of different devices for testing
based on one standardized element. Furthermore, silicon surfaces
Frontiers in Immunology | www.frontiersin.org 10216
give 5–10-fold higher sensitivity as compared to glass which should
allow detecting also low allergen-specific IgE levels with high
precision, and the measurement can be done with very simple
and inexpensive detection devices.
CONCLUSION

Since the first description of allergen microarrays for allergy
diagnosis almost 20 years ago, these multi-allergen tests have
been successfully used to answer many research questions and
have proved highly valuable for allergy diagnosis in multiple
applications. However, several needs for improvement have
remained unmet until today limiting the broad application of
microarray-aided allergy diagnosis. We introduce here a novel
concept for improving allergen microarray technology by
showing that microarrays prepared on silicon offer higher
sensitivity for the detection of specific IgE than the currently
used glass surfaces and other surfaces with similar sensitivity as
Glass
SiO2
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FIGURE 5 | Comparison of IgE and IgG reactivity to HDM/mite, cat, and PR10 allergens which had been microarrayed on glass and silicon. A serum pool
containing IgE and IgG antibodies against each of the tested allergens was tested for (A) IgE and (B) IgG reactivity to the individual allergens in different dilutions
(x-axes). Fluorescence intensities corresponding to bound antibodies are shown on the y-axes.
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glass. Instead of spotting allergen arrays on preformed, inflexible
devices we propose manufacturing of flexible silicon elements
containing microarrays which then can be assembled in different
formats. This allows addressing the different needs of allergy
diagnosis ranging from manual testing of single or few sera to
fully automated processing of large numbers of sera. Microarrays
based on silicon elements are versatile arrays that can be easily
produced. Using this technology it should be possible to decrease
the costs of microarray testing to make the technology affordable
to the health care systems. The heart of the allergen array is a
library of high-quality allergen molecules. Microarrays utilizing
low amounts of immobilized allergens allowing visualizing the
interplay of allergen-specific IgE and IgG mimicking the in vivo
situation and thus should deliver serological test results
resembling the clinical sensitivity. Our vision for microarray-
Frontiers in Immunology | www.frontiersin.org 11217
aided allergy diagnosis is to make available to the doctor the
complete IgE reactivity profile of the patient already at the initial
visit or during teleconsultation to achieve a complete diagnosis
and personalized treatment without need for multiple time-
consuming visits for the benefit of the patient and to reduce
the costs for health care in allergy.
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Prevalence and incidence of IgE-mediated allergic diseases have increased over the past
years in developed and developing countries. Allergen-specific immunotherapy (AIT) is
currently the only curative treatment available for allergic diseases that has long-term
efficacy. Although AIT has been proven successful as an immunomodulatory therapy
since its beginnings, it still faces several unmet needs and challenges today. For instance,
some patients can experience severe side effects, others are non-responders, and
prolonged treatment schedules can lead to lack of patient adherence and therapy
discontinuation. A common strategy to improve AIT relies on the use of adjuvants and
immune modulators to boost its effects and improve its safety. Among the adjuvants
tested for their clinical efficacy, CpG oligodeoxynucleotide (CpG-ODN) was investigated
with limited success and without reaching phase III trials for clinical allergy treatment.
However, recently discovered immune tolerance-promoting properties of CpG-ODN
place this adjuvant again in a prominent position as an immune modulator for the
treatment of allergic diseases. Indeed, it has been shown that the CpG-ODN dose and
concentration are crucial in promoting immune regulation through the recruitment of
pDCs. While low doses induce an inflammatory response, high doses of CpG-ODN trigger
a tolerogenic response that can reverse a pre-established allergic milieu. Consistently,
CpG-ODN has also been found to stimulate IL-10 producing B cells, so-called B
regulatory cells (Bregs). Accordingly, CpG-ODN has shown its capacity to prevent and
revert allergic reactions in several animal models showing its potential as both preventive
and active treatment for IgE-mediated allergy. In this review, we describe how CpG-ODN-
based therapies for allergic diseases, despite having shown limited success in the past,
can still be exploited further as an adjuvant or immune modulator in the context of AIT and
deserves additional attention. Here, we discuss the past and current knowledge, which
highlights CpG-ODN as a potential adjuvant to be reevaluated for the enhancement of AIT
when used in appropriate conditions and formulations.
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INTRODUCTION

Allergy as a Global Health Issue
The main role of the immune system is to protect the host against
external pathogens such as bacteria, viruses, fungi, or parasites.
Immune cells are able to discriminate pathogens from self- and
harmless external antigens, thus inducing protective immunity to
pathogens and tolerance toward self- and harmless non-self-
antigens (1–3). Dysregulation of immune tolerance may lead to
immune-mediated diseases such as autoimmunity, cancer and
various immediate-type allergic disorders (4, 5). Allergic diseases
are characterized by diverse clinical disease phenotypes and
symptoms, ranging from airway disorders such as allergic rhinitis
and asthma (6) to systemic anaphylaxis as in the case of food and
insect venom allergy (7, 8), or skin eczema/atopic dermatitis (9).
Although some allergic diseases aremild and can be controlledwith
symptomatic medication, a considerable number of patients are at
risk of life-threatening episodes (10). For instance, allergic asthma
can become chronic and dramatically dampen respiratory function
for life. Despite the disparity of allergic manifestations and
symptoms, allergic diseases share underlying molecular and
cellular mechanisms characterized by a T helper cell type 2 (Th2)
response and theproductionof allergen-specific immunoglobulinE
(IgE) by plasma cells (11). In recent decades, allergy has become a
major health issue (12). Prevalence and incidence of IgE-mediated
allergic diseases have been increasing over the past years in both
developed and developing countries (13), thus impacting on the
well-being of millions of patients worldwide and causing high
socioeconomic costs (14, 15).

Treatment of Allergic Diseases
Allergic diseases have been treated with a wide range of drugs for
systemic or topical application. The main strategy used for many
years has been the reduction of allergic symptoms by antagonizing
the activity of main allergic mediators through inhibition of
their receptors, such as the histamine type-1 (H1) receptor or
Abbreviation: AIT, allergen-specific immunotherapy; Al(OH)3, aluminum
hydroxide; AP1, activator protein 1; APC, antigen presenting cell; Breg, B
regulatory cell; cDC2a, type 2a classical dendritic cell; cDCs, classical dendritic
cell; CpG-ODN, CpG oligodeoxynucleotide; CTLA4, cytotoxic T-lymphocyte-
associated protein 4; DC, dendritic cells; dsDNA, double stranded DNA; EPI,
epicutaneous; FoxP3, forkhead box P3; Gata3, GATA Binding Protein 3; GM-CSF,
granulocyte-macrophage colony-stimulating factor; HBsAg, hepatitis B major
surface antigen; IBD, intestinal bowel disease; ICOS-L, inducible costimulatory
ligand; ID, intradermal; IDO, indoleamine 2,3-dioxygenase; IFN, interferon; Ig,
immunoglobulin; IKK, IkB kinases; IL, interleukin; IM, intramuscular; IP,
intraperitoneal; IRAKs, IL-1R-ssociated kinase; IRF, interferon regulatory factor;
LAG3, lymphocyte-activation gene 3; LPS, lipopolysaccharide; MAPK, mitogen-
activated protein kinase; mDC, myeloid dendritic cell; MLP, monophosphoryl
lipid A; MyD88, myeloid differentiation factor 88; NF-kB, nuclear factor kappa-
light-chain-enhancer of activated B cells; NI, nasal instillation; OG, oral gavage;
PAMP, pathogen associated molecules pattern; pDC, plasmacytoid dendritic cell;
PD-L1, programmed death ligand 1; PD-L2, programmed death ligand 2; PLGA,
poly-(lactic-co-glycolic acid); PRR, pattern recognition receptor; SC,
subcutaneous; SLE, systemic lupus erythematosus; SLIT, sublingual
immunotherapy; TGF-b, transforming growth factor beta; Th1 cells, T helper
cell type 1; Th2 cells, T helper cell type 2; TIR, toll/IL-1 receptor domain; TLR, toll-
like receptor; TNFR2, tumor necrosis factor receptor 2; TNF-a, tumor necrosis
factor alpha; TRAF, tumor necrosis factor receptor-associated factor 6; Treg,
T regulatory cell; TRIF, TIR-domain-containing adapter-inducing interferon-b.
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the cysteinyl-leukotriene receptor type-1 (CysLTR1), by H1-
antihistamines or CysLTR1 antagonists. Particularly for allergic
rhinitis, nasal sprays containing antihistamines are a preferable
option for patients to achieve quick and fast symptom relief (16).
When allergic rhinitis becomes chronic and unresponsive to
systemic or topical antihistamines, intranasal glucocorticoids are
added in addition to antihistamines to target T cells and thus reduce
the Th2-mediated allergic airway inflammation. Inhaled
corticosteroids are also the most common therapeutic option
recommended for the treatment of chronic and persistent allergic
asthma. However, when the disease is refractory to this treatment,
more targeted approaches are recommended such as the use of
biologics. Indeed, anti-IgEmonoclonal antibodies like omalizumab
have shown beneficial effects in uncontrolled allergic asthma (16).
Other disease-modifying biologics in asthma treatment target Th2
cytokines or their receptors (17), showing good results in the clinic
(18). Although symptomatic therapies are the first line of action
for patients with allergic diseases, their benefit comes with
several downsides. Patients have to be treated continuously and
upon treatment discontinuation, symptoms commonly relapse
(19). Some of the symptomatic anti-allergic drugs have
undesirable side effects such as somnolence in the case of first
generation antihistamines (20). In the past years, a variety of new
symptomatic medications, which show less side effects and a more
targeted activity, have been developed. Among them are new
generations of H1-antihistamines (21) and disease-modifying
biologic monoclonal antibody therapies that interfere with the
mediators and effectors of the Th2 response (17, 18, 22).
However, the higher costs of such novel therapeutic options are
quite often prohibitive for many patients as healthcare systems are
restrictive regarding the reimbursement of advanced but more
expensive treatments (23).

Allergen-Specific Immunotherapy
AIT consists in delivering increasing doses of the allergen over
time with the aim of reaching immune tolerance and clinical
non-reactivity to the allergen. By activating long lasting
immunomodulatory mechanisms, AIT has long-term effects such
as providing sustained relief of symptoms and reducing the need for
symptomatic medication (24, 25). Although AIT is a successful
therapeutic strategy with dozens of licensed products worldwide, it
has some unmet needs to overcome (26), since not all patients
experience a significant symptom relief after therapy (27) and AIT
imposes a long course with multiple doses (up to 3-5 years), which
can lead to lack of patient adherence and thus treatment
discontinuation (28). In addition, some patients may experience
side effects during the course of AIT, ranging from mild rashes to
severe anaphylaxis (29, 30). For these central reasons, AIT needs to
be optimized, to make it safer, shorter in time and more successful
for a maximum number of allergic patients. Another significant
advantage that argues in favor of AIT is its long-term cost-
effectiveness compared to symptomatic treatments.

Mechanisms of Allergen
Specific Immunotherapy
The establishment of immune tolerance by AIT implies
modifications of the immune response such as induction
February 2021 | Volume 12 | Article 590054
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of Tregs and B regulatory cells (Bregs), strengthened by
immunological memory (31). The induction of Tregs and their
essential role in the regression of the disease have been observed in
humans and in mice (32). Tregs exert their immune modulatory
properties through several synergistic mechanisms such as IL-10,
IL-35 and TGF-b secretion (33, 34), as well as through cell surface
receptors such as cytotoxic T-lymphocyte-associated protein 4
(CTLA-4), lymphocyte-activation gene 3 (LAG3), programmed
cell death protein 1 (PD-1) and T cell immunoglobulin and ITIM
domain (TIGIT) (35–37). Tregs might not be sufficient to reduce
allergic inflammation under some circumstances (4). Indeed, Tregs
have been shown to act in synergy with Bregs to promote immune
tolerance. Bregs compose a specific B cell subtype that produces the
anti-inflammatory cytokines IL-10 and/or IL-35 (38–41). They
have been found to synthesize allergen-specific IgG4 in AIT
treated patients (42, 43). Blocking antibodies that prevent specific
IgE binding to the allergen are also crucial for mediating clinical
non-responsiveness as it has been shown in a recent clinical trial.
Blocking the major cat allergen Fel d 1 through passive
immunotherapy by injecting a single dose of two monoclonal
IgG4 antibodies successfully mitigated acute symptoms in cat-
allergic patients (44). IgG4 is absent in mice, but IgG1, IgG2a and
IgG3 have been associated with protective effects in murine AIT
models (45). IgA has also been shown to be protective by
neutralizing the allergen on mucosal surfaces in the context of
AIT (46). The innate immune system is mainly engaged at early
stages of AIT. Dendritic cells (DCs) and especially pDCs have been
described as the main cellular mediators in tolerance induction
during AIT by leading to the generation of Tregs (32). DCs utilize
several factors to promote Treg differentiation, which include
soluble factors such as IL-10, TGF-b, or IDO (47–49), as well as
cellular ligands like the inducible costimulatory ligand (ICOS-L) or
the programmed death ligands 1 (PD-L1) and 2 (PD-L2) (50–52).

Improving Allergen-Specific
Immunotherapy
Several strategies have been investigated to improve AIT since its
first application back in 1911 by Leonard Noon (53), among which
are bypassing IgE binding, use of modified allergens or chimeric
proteins, delivery of recombinant hypoallergenic proteins,
new routes of administration, allergen-derived peptide
immunotherapy, combination with biologics and adjuvants/
immune modulators to enhance tolerance effects (4, 27). Immune
adjuvanticity in the context of AIT relates to the addition of one or
more compound(s) to an allergen formulation in order to improve
its tolerance-inducing immunogenicity, thereby overcoming some
of the unsolved needs described above. Several adjuvants have been
tested over the years in the context of AIT (Table 1). Historically,
aluminum hydroxide (Al[OH]3) has been the adjuvant used in
manyAIT formulations for its properties to formadepot (27).More
recently, new adjuvants have been studied and tested for their
potential to improve AIT effects and reduce its potential pitfalls.
These new adjuvants are biological or synthetic compounds with a
broad range of effects on the immune system such as induction of T
helper cell type 1 (Th1) or regulatory T cell (Treg) responses,
recruitment of dendritic cells (DCs) and other antigen presenting
Frontiers in Immunology | www.frontiersin.org 3224
cells (APCs), improvement of APC uptake and signaling, or
protection of the active compounds from rapid degradation (92).
Adjuvants can interactwith the host immune system inmanyways.
In the case of aluminum hydroxide, it mainly activates the
inflammasome, leading to high production of the active forms of
IL-1b and IL-18 (54, 55). Interestingly, aluminum hydroxide is
well known to trigger a Th2 response in mice (93). Besides
aluminum derivatives, toll-like receptor (TLR) ligands such as
monophosphoryl lipid A (MPL), a lipopolysaccharide (LPS)
derivative with TLR4 ligand properties (68), LP40, a TLR2 ligand
(61), imidazoquinolines, TLR7/8 ligands (73) and CpG
oligodeoxynucleotides (CpG-ODN), a TLR-9 agonist (94), have
been used in AIT (Table 1). MPL was tested as AIT adjuvant in
phase II and III clinical trials and was approved for subcutaneous
immunotherapy (SCIT) of allergic rhinitis (Pollinex Quattro®)
(95). Regarding CpG-ODN, a series of pre-clinical studies (86, 96,
97) (Table 2), as well as clinical trials (92, 110) (Table 3) were
performedusing this adjuvant forAIT. In2006, datawerepublished
on a 2001 completed clinical trial using a CpG-ODN-based
formulation for AIT in a randomized, double-blind, placebo-
controlled phase II clinical trial for the treatment of allergic
rhinitis (111). Although this novel AIT treatment appeared to
have long-term clinical efficacy in patients with allergic rhinitis
due to ragweed allergy (111), the formulation failed later in phase III
clinical studies (26). A very low ragweed pollen exposure in the first
pollen season of the phase III trial, which made it impossible to see
anymeasurable disease in any study participant, was announced as
the main reason for discontinuing the development of this novel
AIT approach (122). Other possible reasons for the failure of the
drug were not further discussed in the scientific literature, such as
the possible presence of LPS in the purified allergen (Amb a 1),
which could have interfered with TLR9 signaling (Figure 1), or the
low concentration of CpG-ODN used. A decade later, CpG-ODN
was tested as immune modulator without allergen to treat allergic
rhinitis in a randomized placebo-controlled phase IIb clinical trial
(113). Although the drug was proven to be successful in previous
clinical trials (92, 110, 112) (Table 3), it did not show clinical
improvement compared to placebo control (113).

Thus, despite the fact that CpG-ODN-based therapies for
allergic diseases have shown early clinical promise, they were not
pursued further for the treatment of allergic diseases after
experiencing a lack of success in later phases of controlled clinical
trials (Table 3). Nevertheless, experimental and clinical research on
CpG-ODN continued in other biomedical areas, which led to the
successful FDA approval of CpG-ODN as immune adjuvant in
hepatitis B vaccination in 2018 (120) and tomultiple recent clinical
studies, where CpG-ODN has been used as immune modulator in
cancer immunotherapy (Table 3). In this review, we describe and
discuss the current knowledge and latest results on CpG-ODN as
immune adjuvant for AIT and asthma treatment. Indeed, although
other adjuvants, especially TLR ligands, have shown immune-
regulatory properties (123), CpG-ODN has been predominantly
described for its capacity to induce immune tolerance in
comparison to other adjuvants that are also used in the context of
AIT (Table 1). Our review of the literature, which is based on
searches in PubMed “(CpGODNORCpG oligodeoxynucleotides)
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AND (allergy OR allergic disease)”, “(CpG ODN OR CpG
oligodeoxynucleotides) AND (immune tolerance OR tolerance
induction)” and “(CpG ODN OR CpG oligodeoxynucleotides)
AND (safety)” points to CpG-ODN as an adjuvant with
previously unrecognized potential for AIT that is able to
effectively induce immune tolerance to allergens when used at
appropriate higher concentrations, which are still safe in humans.
This review delineates that, based on more recent evidence, a
reevaluation of CpG-ODN as immune adjuvant for AIT seems to
be warranted.
CPG OLIGODEOXYNUCLEOTIDES
(CPG-ODN)

CpG-ODN as a TLR9 Ligand
To distinguish pathogen structures from self-antigens the
immune system has tailored specific systems detecting danger
Frontiers in Immunology | www.frontiersin.org 4225
signals or pathogen associated molecules patterns (PAMPs).
PAMPs comprise a variety of pathogen structures such as LPS,
proteins like flagellin, glycan structures, genetic material (DNA
and RNA) among others (124). Immune cells can specifically
identify PAMPs through pattern recognition receptors (PRRs).
Bacterial genetic material, unlike vertebrate DNA, is enriched
of unmethylated deoxycytidyl-deoxyguanosine (CpG)
dinucleotides (125). These PAMPs of unmethylated bacterial
CG motifs are recognized by the Toll-like receptor 9 (TLR9)
(126). Experimentally, short synthetic oligodeoxynucleotide
(ODN) sequences containing unmethylated CpG dinucleotides
(CpG-ODN), mimicking bacterial DNA signatures, are used to
agonize TLR9, thereby avoiding any other TLR co-activation by
bacterial contaminants (127).

Different Classes of CpG-ODN
So far, at least four types of CpG-ODN have been identified,
which induce different effects on the immune system (Table 4).
Thus, it is crucial to know the immunomodulatory properties of
TABLE 1 | Comparison of adjuvants in the context of AIT.

Adjuvant name Receptor or
mechanism of action

Drug development
phase

Effect on the immune system

Aluminum
hydroxide (Al[OH]3)

Depot effect and
inflammasome activation
through NLRP3.

Approved for SCIT in
many formulations, e.g.
Alutard®.

Immune tolerance induction: No.
Inflammatory response: Yes, general activation of immune cells and production of IL-1b
and IL-18 (54, 55)§#. Induction of Th1 responses in PBMCs (56)§.
Antibody response: yes, IgG isotypes (57)§#.

Tyrosine crystals Depot effect, recognition
by APC due to specific
crystal size.

Approved for SCIT
(MCT®, Acarovac

Plus™) (58, 59).

Immune tolerance induction: Yes, increased IL-10 production by re-stimulated
splenocytes (60)#. Higher levels of IL-10 after 1 year patient follow up (59)§.
Inflammatory response: Yes, increase production of IFN-g by both CD4+ and CD8+

antigen specific T cells (60)#.
Antibody response: yes, IgG1, IgG2a, IgG2b, IgG3 isotypes (60)#.

LP40 TLR2 Pre-clinical Immune tolerance induction: Yes, increased IL-10 production by PBMCs (61)§.
Inflammatory response: Yes, increased IFN-g, IL-6 and IL-12 production by stimulated
PBMCs and splenocytes (61)§#.
Antibody response: yes, IgG2a (4)#.

Poly I:C TLR3 Pre-clinical Immune tolerance induction: Yes, induction of IL-10 by re-stimulated splenocytes (62)#.
Inflammatory response: Yes, increased production of IL-12 from DCs (63)#. Increased
production of INF-g by CD8+ antigen-specific cells (62, 63)#.
Antibody response: yes, IgG1 and IgE (64)#.

Flagellin TLR5 Pre-clinical Immune tolerance induction: Yes, induction of IL-10 by DCs, and generation of Tregs
(65)§#. Increased production of IL-10 by bone marrow-derived DCs (66)#.
Inflammatory response: Yes, increased production of IL-6, IL-1b by bone marrow derived
DCs (66)#. Induction of IL-4, IL-5, IL-13 and IL-17 in the lungs, as well as Th2 cell induction
after airway challenge (67)#.
Antibody response: yes, IgG2a (66) and IgE (67)#.

Monophosphoryl
lipid A (MPL)

TLR4 Approved for SCIT to
treat allergic rhinitis
(Pollinex Quattro®)

Immune tolerance induction: No.
Inflammatory response: Yes, increased production of IFN-g (68)§. Induction of Th1
responses (69, 70)#.
Antibody response: yes, IgG1 and IgG4 (71)§. IgG2a (70)#.

Imidazoquinolines TLR7/8 Phase II (AZD8848) to
treat allergic asthma
(72).

Immune tolerance induction: Yes, increased IL-10 production by monocytes (73)§.
Induction of tolerogenic DCs and Treg promotion (74)#.
Inflammatory response: Yes, increased production of IFN-g by allergen-specific T cells
from allergic donors. Increased production of IL-12, IL-18, TNF-a, and IL-15 by monocytes
derived (73)§.
Antibody response: lack of IgG induction in vitro (75)#.

CpG-ODN TLR9 Phase IIb to treat
allergic rhinitis (low
dose)
Pre-clinical (high dose)

Immune tolerance induction: Yes (in high doses), increased production of IL-10 by
alveolar macrophages (76)#, production of TGF-b and IDO by pDCs (76)#§, induction of Treg
cells (77–81)§#, induction of Bregs (82)§ (Table 4).
Inflammatory response: Yes (at low doses), increased IL-12, IFN-g, IL-6 (83, 84)§.
Induction of Th1 responses (85)§. (Table 4).
Antibody response: yes, IgG1, IgG2a, IgG2c IgG3, and IgA (79, 84, 86–91)#§.
NLRP3, NLR family pyrin domain containing 3; BALF, bronchoalveolar lavage fluids. #In mouse, §In human.
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TABLE 2 | Summary of pre-clinical studies using CpG oligodeoxynucleotides (CpG-ODN) for allergic diseases.

Outcome Reference

Reduction of allergy burden in co-
administration and preventive treatment.
Eosinophilia, Th2 cytokines reduction and
IgE reduction. IFN-g and IL-12 increase.

Kline et al. (97)

t).
Reduction of allergy burden in co-
administration, preventive and active
treatment. Eosinophilia, Th2 cytokines, and
IgE reduction. IgG2a and IgA increase.

Jahn-Schmid
et al. (86)

. Reduction of allergy burden in preventive
treatment. Eosinophilia, IgE and IL-4
reduction. IFN-g, IFN-g/IL-4 ratio and IgG2a
increase IFN-g dependent.

Sur et al. (98)

n Reduction of Th2 reaction in co-
administration and preventive treatment.
IgE and Th2 cytokines reduction. IL-12 and
IgG2a increase. Delayed-type
hypersensitivity reactions in CpG-ODN
treated mice.

Peng et al. (99)

er Reduction of Th2 reaction in preventive
and active treatment. IgG1 reduction.
IgG2a and CTL activity increase.

Weeratna et al.
(88)

Reduction of allergy burden response in
active treatment. Airway
hyperresponsiveness, eosinophilia, IgE and
Th2 cytokines reduction. IgG2 and IL-10
increase.

Jain et al. (100)

ion, Reduction of allergy burden in active
treatment. Airway hyperresponsiveness,
eosinophilia, mast cell number and tissue
remodeling reduced.

Fanucchi et al.
(101)

me

on,

Reduction of allergy burden in active and
preventive treatment. Eosinophilia, IgG1,
IgE and Th2 cytokines reduction. IgG2c
increase.

Kitagaki et al.
(91)

Reduction of Th2 reaction in co-
administration treatment. IgE and Th2
cytokines reduction. IgG2a increase.

Takahashi et al.
(102)
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Model/disease Drug features Drug design CpG-ODN dose* Administration scheme

Mouse model of
asthma to schistosome
eggs.

CpG-ODN,
B-class. LPS level:
undetectable

CpG-ODN +
allergen

1 dose: 30 µg per injection.
(1.5 mg/kg)

1 IP injection 7 days before challenge
(preventing treatment). 1 IP injection
together with allergen (co-administration
treatment).

Mouse model of
asthma to rBet v 1.

CpG-ODN, B-class.
LPS level: <0.1 EU/
6 µg of DNA

CpG-ODN +
allergen

1 dose 61.23 µg (10nmol) per
injection. (3 mg/kg)

3 IP, SC or NI administrations 2 weeks
before sensitization (preventive treatmen
3 IP, SC or NI administrations 2 weeks
after challenge (active treatment). 3 IP
injections (co-administration with allerge
and Al[OH]3).

Mouse model of
asthma to ragweed
extract.

CpG-ODN, B-class.
LPS level: <0.02 U/kg

CpG-ODN +
extract

1 dose: 35 µg per administration.
(1.75 mg/kg)

1 IT administration 48h before challenge

Mouse model of
immune response to
mosquito salivary
antigen (rAed a 2).

CpG-ODN, B-class.
LPS level:
undetectable

CpG-ODN +
allergen

10 µg, 30 µg and 90 µg per
injection in the preventive
treatment. (0.5 mg/kg, 1.5 mg/kg
and 4.5 mg/kg respectively) 30 µg
per injection in the active
treatment. (1.5 mg/kg)

1 ID injection 24h before first sensitizatio
(preventive treatment). 2 ID injections
during sensitization (co-administration
treatment), 1 injection every 4 weeks.

Mouse model of
immune response to
hepatitis B major
surface antigen
(HBsAg)

CpG-ODN 1826,
B-class. LPS level:
no mention

CpG-ODN +
antigen

10 µg per injection. (0.5 mg/kg) 1 IM injection 2 or 4 weeks before or af
sensitization.

Mouse model of
asthma to OVA

CpG-ODN, B-class.
LPS level:
undetectable

CpG-ODN +
allergen

1 µg per administration.
(0.05 mg/kg)

3 NI administrations: 2 weeks after
sensitization, 1 administration every
2 weeks.

Rhesus monkey model
ofexperimentally
induced allergic
asthma to HDM.

CpG-ODN, A-class.
LPS level: ND

CpG-ODN solely 12.5 mg per administration.
(1.9 mg/kg)

3 NI administrations: 24h after sensitiza
1 administration every
2 weeks.

Mouse model of
asthma to OVA

CpG-ODN 1826,
B-class. LPS level:
undetectable

CpG-ODN solely
and CpG-ODN +
allergen

100 µg per administration.
(5 mg/kg)

3 OG administrations: 3 days before, sa
day of and 7 days after sensitization
(preventive treatment). 6 OG
administrations: 2 weeks after sensitizat
1 administration every week (active
treatment).

Mouse model of
immune response to
OVA

CpG-ODN BL07S from
Bifidobacterium
longum. B-class. LPS
level: undetectable

CpG-ODN +
antigen

10 µg per injection. (0.5 mg/kg) 2 SC injections: 2 weeks interval co-
injected with sensitization.
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TABLE 2 | Continued

Outcome Reference

on of allergy burden in active
nt. Eosinophilia, mucus hyper-
ion, Th2 cytokines and cell
n to the lung reduction. Type I IFN
ent.

Ashino et al.
(103)

on of allergy burden in active
nt. Airway hyperresponsiveness,
hilia, Th2 cytokines, cell migration
ng reduction. IgG2a and IFN-g
d.

Chang et al.
(104)

on of allergy burden in active
nt. Airway hyperresponsiveness,
hilia, IgE, IgG1 and Th2 cytokines
n. IgG2a increase.

Fonseca et al.
(105)

on of allergy burden in preventive
nt. IgE and Th2 cytokines
n. IL-12, IFN-g and IgG2a increase.

Kaburaki et al.
(106)

on of allergy burden in active
nt. IgE and Th2 cytokines
n. IL-12, IFN-g and IgG2a increase.

Volpi et al. (84)

on of allergy burden in active
nt. Eosinophilia, IgE and Th2
s reduction. IFN-g increase. IFN-g
ent.

Cambell et al.
(107)

on of allergy burden in preventive
ive treatment. Eosinophilia, IgE,
production and Th2 cytokines
n. INF-g increase.

Ballester et al.
(108)

on of allergy burden in preventive
ive treatment. Airway
sponsiveness, eosinophilia, IgE,
ell hyperplasia and Th2 cytokines
n. IL-10 and CD4+ Foxp3+

ry T cells increase.

Kim et al. (80)

on of allergy burden in active
nt. Anaphylaxis, histamine levels,
1 levels, and Th2 cytokines
n. IgG2a and INF-g increase.

Srivastava et al.
(109)

on of allergy burden in preventive
ive treatment. Airway
sponsiveness, eosinophilia, goblet
erplasia and Th2 cytokines
n. IL-10 increase. IL-10 dependent.

Sabatel et al.
(76)

(Continued)
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Reducti
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hyperre
cell hyp
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Model/disease Drug features Drug design CpG-ODN dose* Administration scheme

Murine model of
asthma to OVA

CpG-ODN B-class.
LPS level: ND

CpG-ODN +
allergen

50 µg per injection. (2.5 mg/kg) 1 SC injection: 24h after Th2 cell adaptive
transfer.

Mouse model of
asthma to OVA

CpG-ODN B-class.
LPS level: no mention

CpG-ODN solely 100 µg per injection. (5 mg/kg) 4 IP injections: 6 days after sensitization,
1 injection every 24h.

Mouse model of
asthma to OVA

CpG-ODN (sensitized
using custom primers).
LPS level:
undetectable

CpG-ODN solely 50 µg/per injection. (2.5 mg/kg) 3 SC injections: 3 days after sensitization,
1 injection every week.

Mouse model of
asthma to the
Japanese cedar pollen
allergen (Cry j 1).

CpG-ODN 1018, B-
class. LPS level: <0.03
endotoxin unit/µg

CpG-ODN coupled
to Cry j 1

5 µg per injection. (0.25 mg/kg) 3 SC injections: 3 days before sensitization
1 injection every 24h.

Mouse model of
asthma to Aspergillus
fumigatus extract.

CpG-ODN 1826, B-
class. LPS level:
endotoxin free

CpG-ODN solely 30 µg per injection. (1.5 mg/kg) 2 IP injections: 7 days after sensitization,
1 injection every week.

Mouse model of
asthma to ragweed
extract

CpG-ODN 1018, B-
class. LPS level: <5
endotoxin units/mg

CpG-ODN solely 20 µg per administration.
(1 mg/kg)

5 to 12 NI administrations: 14 days after
sensitization, 1 administration every week.

Mouse model of
asthma to HDM

CpG-ODN 1826, B-
class. LPS level: <0.1
EU per dose

Nanoparticle-
conjugated CpG-
ODN

2 µg per administration.
(0.1 mg/kg)

4 NI administrations: 3 days before
sensitization, 1 administration every 2 days
(preventive therapy). 4 NI administrations:
3 days after sensitization, 1 administration
every 2 days (active therapy).

Mouse model of
asthma to cockroach
extract

CpG-ODN 1826, B-
class. LPS level: ND.
HLPC purified

CpG-ODN solely 3 µg per administration.
(0.15 mg/kg)

1 NI administration: 3 days before
sensitization (preventive therapy). 1 NI
administration: 3 days after sensitization
(active therapy).

Mouse model of food
allergy to peanut
extract

CpG-ODN 1826, B-
class. LPS level: ND

Nanoparticle-
conjugated CpG-
ODN

1.8 µg per administration.
(0.09 mg/kg)

4 OG administrations: 3 weeks after
sensitization, 1 administration every week.

Mouse model of
asthma to HDM

CpG-ODN, A-class.
LPS level: <24 EU/mg

CpG-ODN solely 50 µg per administration.
(2.5 mg/kg)

1 NI administration: 7 days before
sensitization (preventive therapy). 1 NI
administration: 7 days after sensitization
(active therapy).
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each CpG-ODN type when formulating CpG-ODN-based
treatments. A-class CpG-ODN has a phosphodiester/
phosphorothioate backbone containing a single CpG motif
which is flanked by palindromic sequences, plus a poly-G
string located at the 3’ end. B-class CpG-ODN harbors multiple
CG doublets within a phosphorothioate backbone (136), the latter
providing resistance to nuclease digestion increasing its lifetime by
6-fold compared to the phosphodiester backbone of A-class (83).
C-class was reportedmore recently as a newCpG-ODN. C-class is
a combination of both afore-mentioned CpG-ODN classes. As B-
class, it is built entirely on phosphorothioate nucleotides but it
resembles theA-class by its palindromicCpGmotifs (133).The last
and more recent CpG-ODN group that was described is the P-
class, which, unlike the other CpG-ODN types, contains two
palindromic sequences that facilitate the formation of higher-
ordered structures (135).

TLR9 Downstream Signaling and Its
Modulation by CpG-ODN Concentration
TLR9 is located intracellularly, with the binding site for CpG-
ODN pointing to the endosomal compartment. This specific
orientation requires the internalization and endosomal uptake of
CpG-ODN to agonize TLR9 and trigger its signaling cascade
(129) (Figure 1). Once TLR9 is activated by CpG-ODN binding,
its cytosolic domains, known as Toll/IL-1 receptor (TIR)
domains, are stimulated and signaling is transmitted further.
TIR domains interact with the common TLR adaptor protein
myeloid differentiation factor 88 (MyD88) (137), the classical
adaptor protein attributed to many TLRs. Subsequently, IL-1R-
associated kinases 1, 2 and 4 (IRAKs) and tumor necrosis factor
receptor-associated factor 6 (TRAF6) are phosphorylated (124).
From this point, several mitogen-activated protein kinases
(MAPK) and other kinases such as IkB kinases (IKK) are
sequentia l ly recruited. Those kinases faci l i tate the
translocation to the nucleus of various transcription factors
such as the nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-kB), the activator protein-1 (AP-1) or the
interferon regulatory factor 7 (IRF7) (138–140). These
transcription factors activate the transcription of pro-
inflammatory genes such as TNF, IL-1B, IL-1A and interferon
type 1 (IFNA and IFNB) genes (129, 141). Indeed, type 1 IFN
production by plasmacytoid dendritic cells (pDC) in response to
TLR9 activation has been demonstrated to be dependent on the
MyD88-IRF7 signaling cascade (129). The kinetics of the gene
expression signature induced by CpG-ODN are complex. It has
been shown that only 30 min after injection of CpG-ODN in vivo
a panel of genes is upregulated, with a peak of expression around
3 h after administration. Interestingly, a second delayed peak is
observed 5 days post administration (141), demonstrating that
CpG-ODN can have short-, mid- and long-term effects. This fact
is not to be neglected when using CpG-ODN for therapeutic
purposes. A few years ago, the TIR domain containing adaptor
inducing IFN-b (TRIF) was demonstrated to signal upon TLR3
and TLR4 activation (142–144). More recently, Volpi et al (84).
showed that TLR9 can also signal through TRIF besides the
classic MyD88 pathway (Figure 1). In fact, this group
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TABLE 3 | Summary of CpG oligodeoxynucleotides (CpG-ODN) clinical studies for allergy and other diseases.

ome and safety Completion
date

Reference

clinical efficacy.
well tolerated with
injection-site

Aug 2001 Creticos et al. (111)

chieved practically
alleviation of allergy
s. Drug was well
with mild local
ite reactions.

Nov 2005 Senti et al. (110)

accompanying the Mar 2008 Not published

accompanying the Mar 2009 Not published

accompanying the Mar 2009 Not published

se of the drug
disease symptoms
ed medication use
individuals. Drug
tolerated with mild
tion-site reactions.

Nov 2010 Klimek et al. (92)

contribute to
ontrol during steroid
in patients. Drug
tolerated with mild
tion-site reactions.

Nov 2010 Beeh et al. (112)

wed no additional
patients. Drug was
ted with mild local
ite reactions.

May 2014 Casale et al. (113)

well tolerated with
effects such
alaise, and fevers.

Jun 2011 Zent et al. (114)

well tolerated and
adverse events

erved.

Oct 2019 Babiker et al. (115)
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Disease Study phase Identifier Drug information CpG-ODN dose* Administration
scheme

Outc

IgE-MEDIATED ALLERGY
Allergic rhinitis to
ragweed-pollen

Randomized double-
blind placebo-
controlled phase 2

NCT00346086 CpG-ODN 1018
conjugated to Amb a 1

6 increasing doses: 0.06µg, 0.3 µg,
1.2 µg, 3 µg, 6 µg and 12 µg.
(0.00004 mg/kg, 0.00008 mg/kg,
0.000016 mg/kg, 0.0002 mg/kg,
0.0004 mg/kg, 0.0008 mg/kg and
0.00016 mg/kg respectively)

6 SC injections,
1 injection every
week.

Long-term
Drug was
mild loca
reactions

Perennial allergic
rhinoconjunctivitis with
asthma to HDM

Single center open-
label phase 1/2a

NCT00652223 CYT005-AllQbG10
(combination of HDM
allergen extract with
CYT003-QbG10)

§1 dose: 60 µg per injection.
(0.0008 mg/kg)

6 SC injections,
1 injection every
week.

Patients a
complete
symptom
tolerated
injection-

Perennial allergic
rhinoconjunctivitis to
HDM

Randomized double-
blind placebo-
controlled phase 2

NCT00574704 CYT005-AllQbG10
(combination of HDM
allergen extract with
CYT003-QbG10)

Not identified 6 SC injections,
no schedule
found.

No result
study

Perennial allergic
rhinoconjunctivitis to
HDM

Randomized double-
blind placebo-
controlled phase 2

NCT00574223 CYT005-AllQbG10
(combination of HDM
allergen extract with
CYT003-QbG10)

Not identified 8 SC injections
no schedule
found.

No result
study

Perennial allergy to
HDM and/or Cat

Randomized double-
blind placebo-
controlled phase 2

NCT00575003 CYT003-QbG10 (VLP
filled with an CpG-
ODN G10)

Not identified 6 SC injections
no schedule
found.

No result
study

Perennial allergic
rhinoconjunctivitis to
HDM

Randomized double-
blind placebo-
controlled dose-
finding phase 2b

NCT00800332 CYT003-QbG10 (VLP
filled with an CpG-
ODN G10)

§2 doses: 0.1 mg and 0.2 mg per
injection. (0.00134 mg/kg and
0.0026 mg/kg respectively)

6 SC injections,
1 injection every
week.

Higher do
improved
and redu
in allergic
was well
local injec

Allergic asthma
requiring long-term
treatment with inhaled
corticosteroids

Randomized double-
blind placebo-
controlled phase 2

NCT00890734 CYT003-QbG10 (VLP
filled with an CpG-
ODN G10)

§1 dose: 0.18 mg of per injection.
(0.0024 mg/kg)

7 SC injections.
3 first injections
every week, and
4 next injections
every 2 weeks.

Drug may
asthma c
reduction
was well
local injec

Uncontrolled moderate
to severe allergic
asthma on standard
inhaled corticosteroids

Randomized double-
blind placebo-
controlled dose-
finding phase 2b

NCT01673672 CYT003-QbG10 (VLP
filled with an CpG-
ODN G10)

§3 doses: 0.06 mg, 0.2 mg and
0.4 mg per injection. (0.0008 mg/
kg, 0.00266 mg/kg and 0.0054
mg/kg respectively)

7 SC injections,
1 injection every
1 or 2 weeks.

Drug sho
benefit in
well tolera
injection-

CANCER
Chronic lymphocytic
leukemia

Randomized open
label phase 1

NCT00233506 CpG-ODN 7909 2 doses: (0.15 mg/kg 1.05 mg/kg) 4 to 8 IV and
SC injections, 1
injection every
week.

Drug was
mild side
myalgia, m

Refractory solid tumors Randomized open
label phase 1b

NCT03052205 CpG-ODN IMO-2125
(Tilsotolimod)

Maximum dose: 32 mg/injection.
(0.43 mg/kg)

6 IT injections
on weeks 1, 2,
3, 5, 8, and 11.

Drug was
no related
were obs
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TABLE 3 | Continued

Administration
scheme

Outcome and safety Completion
date

Reference

8 mg
0.027
1 mg/

11 IT injections
in escalating
doses. 4 first
injections every
week, and
7 next injections
every 3 weeks.

Drug was well tolerated with
injection-site reactions and
transient, mild to moderate
“flu like” symptoms.

Feb 2020 Ribas et al. (116)

, 1.5
5 mg

g/kg,
.034
g/kg
ly)

7 SC injections
into accessible
lesion(s),
1 injection every
week.

Drug in combination with
Pembrolizumab was well
tolerated with mild toxicities
such as fever and headache.

May 2021 Milhem et al. (117)

. 3 IM injections,
1 injection every
4 weeks.

Drug was well tolerated with
mild reactions such as local
and systemic adverse events.

Jan 2007 Mullen et al. (118)

. 2 IM injections,
1 injection every
2 weeks.

Drug was well tolerated with
mild injection-site reactions.

Jun 2012 Hopkins et al. (119)

2 IM injections,
1 injection every
4 weeks.

Drug was well tolerated with
non-reported side-effects.

Oct 2015 Jackson et al. (120)

150
/kg,
kg

2 SC injections,
1 injection every
2 months.

Drug was well tolerated with
mild injection-site reactions.

Dec 2017 Vasina et al. (121)

0 represents 20% of the CYT003-QbG10. *75kg mean body weight was considered to calculate the dose.
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Disease Study phase Identifier Drug information CpG-ODN dose*

Metastatic melanoma
or recurrent or
metastatic head and
neck squamous cell
carcinoma

Randomized open
labelPhase 1b/2

NCT02521870 CpG-ODN SD-101 in
combination with
Pembrolizumab (anti-
PD1)

4 doses: 1 mg, 2 mg, 4 mg
per injection. (0.013 mg/kg,
mg/kg, 0.053 mg/kg and 0.
kg respectively)

Malignant melanoma Non-randomized
open label phase 1

NCT03084640 CMP-001b (CYT003-
QbG10) in combination
with Pembrolizumab
(anti-PD1)

§7 escalating doses: 0.2 mg
mg. 2 mg, 2.5 mg, 3 mg, 3.
and
4 mg per injection. (0.0134
0.02 mg/kg, 0.026 mg/kg, 0
mg/kg, 0.04 mg/kg, 0.046 m
and 0.054 mg/kg respective

INFECTIOUS DISEASES
Plasmodium falciparum
(Malaria) infection

Randomized phase 1 NCT00344539 CpG-ODN 7909 in
combination with
AMA1-C1/Alhydrogel®

(experimental malaria
vaccine)

1 dose: 564 µg per injection
(0.0075 mg/kg)

Bacillus anthracis
(Anthrax) Infection

Randomized Double-
blind placebo-
controlled phase 1

NCT01263691 CpG-ODN 7909 in
combination with
BioThrax (FDA-licensed
anthrax vaccine)

1 dose: 0.5 mg per injection
(0.0067 mg/kg)

Hepatitis B Virus (HBV)
infection

Randomizedobserver–
blindedactive–
controlledphase 3

NCT02117934 HBsAg-1018 (CpG-
ODN 1018 in
combination with
epatitis B surface
antigen (HBsAg))

1 dose: 3 mg per injection.
(0.04 mg/kg)

Mycobacterium
tuberculosis
(Tuberculosis) infection

Randomized placebo-
controlled phase 1

NCT03255278 GamTBvac: CpG-ODN
2216 in combination
with Ag85a and
ESAT6-CFP10 M.
tuberculosis antigens

3 doses: 37.5 µg, 75 µg and
µg per injection. (0.0005 mg
0.001 mg/kg and 0.002 mg
respectively)

VPL, virus-like particles; HDM, house dust mite; SC, subcutaneous; IV, intravenous; IM, intramuscular; IT, intratumoral; §CpG-ODN G1
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demonstrated that TLR9 signals through TRIF when a high
concentration of CpG-ODN is applied to pDCs, while the
classical MyD88 adaptor is engaged by TLR9 when a lower
concentration of CpG-ODN is used (84) (Figure 1). Interestingly,
the divergence in TLR9 downstream signaling implies a differential
gene expression signature. On the one hand, the MyD88
transduction pathway triggered both the canonical NF-kB (IKKb-
dependent) and non-canonical NF-kB (IKKa-dependent)
pathways, leading to the expression of pro-inflammatory
cytokines such as tumor necrosis factor alpha (TNF-a), IL-1b, IL-
12, IL-6 and IL-23. On the other hand, TRIF downstream signaling
activated exclusively the non-canonical NF-kB pathway and IRF3,
leading to the expression of anti-inflammatory mediators such as
transforming growth factor beta (TGF-b) and indoleamine 2,3-
dioxygenase (IDO) (145) (Figure 1). This research reveals a new
Frontiers in Immunology | www.frontiersin.org 10231
concept, inwhichTLR9canbedifferentially activateddependingon
the ligand concentration. The distribution of TLRs on human
peripheral blood mononuclear cells is variable. While TLR9 is not
expressed in some human immune cells such as neutrophils and
monocytes, it has a high expression in pDCs and B cells, and it is
found to a lesser extent in NK cells and T cells (146). In the mouse,
TLR9 exhibits similar expression and activation patterns as in
humans (146–148) with subtle differences. For instance, and
according with their lack of TLR9 expression, monocytes from
peripheral human blood are not activated by CpG-ODN (149).
However, mouse monocytes express TLR9 and respond to CpG-
ODN stimulation by engaging the NF-kB pathway and the
subsequent production of cytokines such as TNF-a (148, 150).
With regard to the organs relevant for allergic airway disease,
human and mouse alveolar macrophages express TLR9 (151).
FIGURE 1 | Toll-like receptor 9 (TLR9) signaling pathway(s) upon CpG oligodeoxynucleotides (CpG-ODN) stimulation: CpG-ODN is internalized through endosomes
where it interacts with the endosomic domain of TLR9. In the subsequent signaling cascade, the cytosolic domain of TLR9 interacts with the adaptor proteins MyD88 or
TRIF in the cytosol. Depending on the adapter engaged, a different signaling cascade occurs. MyD88 signaling (red) is triggered when TLR9 is agonized by a low CpG-
ODN concentration. This cascade leads to the induction of the canonical and non-canonical NF-kB pathways, AP1 and IRF7 transcription factors, inducing inflammatory
mediators such as TNF-a, IL-12, IL-1b, IL-6, and IL-23. TRIF signaling (green) is triggered when TLR9 is agonized by a high concentration of CpG-ODN. In contrast to
the MyD88 signaling pathway, the TRIF cascade leads to the activation of the non-canonical NF-kB and IRF3. These transcription factors will induce the production of
type 1 IFN and anti-inflammatory molecules such as TGF-b and IDO. When LPS is present (orange), TLR4 and TLR9 signals are combined to engage MyD88 leading to
an enhanced inflammatory reaction by the increased production of IL-12 and TNF-a.
February 2021 | Volume 12 | Article 590054
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However, onlyhumanbutnotmouse resident lungDCs showTLR9
expression (152, 153).

Given all these indications, CpG-ODN may induce slightly
different immune responses between mice and humans (151,
154). Moreover, optimal CpG-ODN sequences that agonize
TLR9 differ among species (127, 131, 155). However, the effect
of TLR9 activation remains essentially unchanged between
species since the afore-mentioned downstream transduction
elements are well conserved. Nonetheless, inter-species
differences should be considered when applying CpG-ODN-
based treatments in animal models, aiming at translation to
humans (Tables 4 and 5).

CpG-ODN Effect on Immune Cells
CpG-ODN influences many immune cell types, especially APCs
such as DCs and macrophages. Dendritic cell precursors express
various TLRs, among which is TLR9 (149), thus enabling their
activation by CpG-ODN (159). As pDCs express high levels of
TLR9, their response to CpG-ODN has been studied in detail.
CpG-ODN enhances pDC migration to lymph nodes and
stimulates their production of cytokines such as IL-6, TNF-a,
type 1 interferons and granulocyte-macrophage colony-
stimulating factor (GM-CSF) (160). Moreover, CpG-ODN
induces pDCs to express several co-stimulatory surface
molecules such as CD40, CD54, CD80, CD86 (85, 161–163).
Very interestingly, unmethylated CG motifs have also been
shown to promote an anti-inflammatory phenotype in pDCs.
CpG-ODN-treated pDCs can induce CD8+ Tregs that express
immune inhibitory molecules such as LAG3 and CTLA4 (164).
Similarly, pDCs stimulated with CpG-ODN can prime naïve T
cells to differentiate into CD4+ CD25+ Tregs that produce IL-10
and TGF-b (77) (145). Langerhans cells express TLR9 and
migrate upon CpG-ODN intradermal injection in mice (165).
Finally, a subpopulation of splenic DCs was capable of producing
a potent IDO signal upon CpG-ODN IV injection, thereby
Frontiers in Immunology | www.frontiersin.org 11232
acquiring a suppressive capacity similar to Tregs (166).
Interestingly, it has also been shown that pDCs stimulated
with C class CpG-ODN, can directly license human B cells
into plasma cell differentiation and antibody production in a T
cell independent way (167). B cells are also greatly influenced by
CpG-ODN. Indeed, CpG-ODN is a strong B cell mitogen,
induces them to produce IL-6 and IgM (127, 168), and boosts
their activation and differentiation during Ig production (169).
Along the same line, B cells stimulated with CpG-ODN change
their Ig profile and produce different antibodies, an effect being
dependent on TRL9 and MyD88 signaling (87). NK cells can
react through direct or indirect signals upon CpG-ODN
stimulation. Certain studies showed that NK cells cannot
respond to CpG-ODN directly, but are rather triggered
indirectly through soluble factors produced by CpG-ODN-
activated pDCs (146). By contrast, other studies support the
fact that CpG-ODN can directly induce NK cells to produce IFN-
g and increase their activity (128, 170, 171). Since T cells express
very low levels of TLR9, CpG-ODN is assumed not to stimulate
these cells directly. Similarly to NK cells, T cells are rather
engaged via signals transmitted by CpG-ODN-activated pDCs
(146). However, although it seems rather evident that there is no
direct effect of CpG-ODN on T cells, some research points out
that CpG-ODN could stimulate T cells without any intermediate,
but in a TLR9 and MyD88 independent fashion (172). This was
supported by another study, showing that purified human T and
NK cells produce IFN-g upon direct CpG stimulation (173). In
addition, one study has shown MyD88 to be essential for direct
CpG-ODN stimulation in CD4+ T cells (174).

In summary, each CpG-ODN type has a wide range of effects
on various immune cells, among which pDCs and B cells are the
most relevant ones. With regard to the use of CpG-ODN as an
adjuvant for AIT, B-class CpG-ODN stands out for its capacity
to induce a tolerogenic phenotype in pDCs that can further
educate Tregs and protective antibody responses (Table 4).
TABLE 4 | CpG classes: sequences, structure, interaction with Toll-like receptor 9 (TLR9), and response induced in immune cells.

CpG-ODN
type

Sequence example Structure Effect on Immune cells

A-class
(D-type)

GGTGCPuPyCGPuPyGCAGGGGGG Single CpG motif flanked by a palindromic
sequence, plus a 3’ Poly-G end.
Mixed phosphodiester/phosphorothioate backbone.

• IFNg production by NK cells (83)§

• Lytic activity by NK cells (128)§#

• Type 1 IFN production by pDC (85, 129, 130)§#

B-class
(K-type)

ATCGACTCTCGAGCGTTCTC Multiple CpG motifs. No palindromic sequences.
Phosphorothioate only backbone.

• IgM, IL-6 production byB cells andB cell proliferation (83, 131)§

• Type 1 IFNproduction by pDC (85)§

• pDCmaturation (130)§

• Th1 response induction (85)§

• NKcells activation (85)§

• Production of TGF-b and IDO by pDC (84, 132)§#

• Tolerance induction by pDC (77, 84, 132)§#

C-class TCGTCGTTCGAACGACGTTGAT Multiple CpG motifs and one palindromic sequence.
Phosphorothioate only backbone

• IL-6 production by B cells (131, 133)§

• B cell activation and proliferation (134)§

• Type I IFN in pDC (130)§

• pDC maturation (130)§

P-class TCGTCGACGAT-CGGCGCGCGCCG Multiple CpG motifs flanked and two palindromic
sequences.
Phosphorothioate only backbone.

• Type I IFN by PBMCs (135)§

• Increased plasma levels of type 1 IFN and IL-6 in vivo (135)§
Pu, purine nucleotide; Py, pyrimidine nucleotide; Bold, CpG motifs; Underlined, palindrome sequences; PBMCs, peripheral blood mononuclear cells. #In mouse, §In human.
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CPG-ODN AS A TOLERANCE INDUCER IN
ALLERGEN-SPECIFIC IMMUNOTHERAPY

CpG-ODN Induces Allergen-Specific
Immune Regulation Through DCs
Asdiscussed above,DCs and especially pDCs, produce IL-10, TGF-b
and IDO upon CpG-ODN stimulation (47, 77), which makes them
extremely efficient Treg inducers (Figure 2). As innate immunity is
crucial to inducea tolerance responseof theadaptive immunesystem,
themodulationofAPCssuchaspDCsandof early-activatedadaptive
immune cells, such as B cells, is consequently a promising tool for
improving AIT. Indeed, Volpi and collaborators (84) showed that
CpG-ODN has a dual impact on the immune system. While low
CpG-ODN concentrations induced inflammation, high
concentrations induced immune regulation and tolerance. Their
work suggests the new concept that the same TLR ligand can
instruct two distinctive measurable effects on the immune system
depending on its concentration/dose (Figure 1). Indeed, whenCpG-
ODN has been used as an adjuvant in vaccination, where a cytotoxic
or inflammatory response is needed, the doses used have been low
(Figure 3 andTable 3). However, whenCpG-ODNhas been proven
successful in inducing tolerance and treating allergy in animal
models, the doses employed have been high (Figure 3 and Table
2). Thepivotal immune cells in the researchofVolpi et al.werepDCs.
The classical role attributed to pDCs in the immune system is the
promotion of viral defense through the production of type 1 IFN as a
result of TLR danger signal activation by viral genetic material (160).
As aforementioned, pDCs have been shown to promote tolerance
through several soluble factors and membrane signaling proteins.
Frontiers in Immunology | www.frontiersin.org 12233
Although itmight seemcontradictory atfirst, several lines of research
clearly showed that the stimulationof pDC throughCpG-ODN leads
to the inductionof tolerance (Figure2 andTable4).This couldbe the
result of a differential type 1 IFN response triggered by a full-fledged
viral infection versus the sole activation of TLR9 through high doses
of CpG-ODN. To make a further distinction between pDC-derived
type 1 IFN effects from these differential stimulation sources would
require additional research. Further evidence in line with their
potential for tolerance induction, human pDCs show minimal
NLRP1 and NLRP3 expression, demonstrating their low capacity
for inflammasome activation (175). Accordingly, they can hardly
induce adverse inflammatory responses, but are rather programmed
to induce tolerance. Indeed, aCD5+CD81+pDCsubsetwas shown to
produce no type 1-IFNuponCpG-ODNstimulation, but to induce a
strong Treg differentiation (78). Similarly, it has been shown that
pDCs primed with CpG-ODN require direct cell contact to induce
CD4+CD25+Tregcells (77).Classicaldendritic cells (cDCs)havealso
been shown to promote tolerance through Treg induction in both
mice and humans (Figure 2). In more detail, a subset of type 2
classical dendritic cells (cDC2a) displays a higher expression of TLR9
and has been shown to induce Treg cell differentiation upon CpG-
ODNstimulation(176). Indeed,DCshavebeenproposedandused to
reverse immune-based diseases toward immune homeostasis
through tolerance induction (177, 178). Similar to allergy,
inflammatory bowel disease (IBD) lacks appropriate immune
regulation (179). Studies have shown that CpG-ODN ameliorates
IBD hallmarks by inducing tolerance through DCs (180, 181). In
accordancewithVolpi et al (84)., itwas recently shownthatAITusing
themajor cat allergen Fel d 1 together with high doses of CpG-ODN
TABLE 5 | Sequence and type of CpG oligodeoxynucleotides (CpG-ODN) used in pre-clinical studies (Table 2) and clinical trials (Table 3).

CpG-ODN name or study Species
used

Sequence CpG-ODN type/structure

A-Class
G10 (156) Human 5′-GGGGGGGGGGGACGATCGTCGGGGGGGGGG-3′ A-class
CpG-ODN 2216 Human 5′-GGGGGACGATCGTCGGGGGG-3′ A-class
Fanucchi et al. (101) Mouse 5′TGACTGTGAACGTTCGAGATGA-3′ A-class
Sabatel et al., 2017 (76) Mouse 5′-TCCATGACGTTCCTGATGCT-3′ A-class
B-Class
1018 ISS (CpG-ODN 1018) Human and

mouse
5′-TGACTGTGAACGTTCGAGATGA-3′ B-class

CpG-ODN 7909 = CpG-ODN 2006 Human 5′- TCGTCGTTTTGTCGTTTTGTCGTT -3′ B-class
Kline et al. (97), Jain et al. (100) Mouse 5′-TCCATGACGTTCCTGACGTT-3′ B-class
Jahn-Schmid et al. (86) Mouse 5′-ATCGACTCTCGAGCGTTCTC-3′ B-class
Sur et al., 1999 (98) Mouse 5′-GCTAGACGTTAGCGT-3′ B-class
Peng et al. (99) Mouse 5′-TCCATGACGTTCCTGACGTT-3′ B-class
CpG-ODN 1826 Mouse 5′-TCCATGACGTTCCTGACGTT-3′ B-class
CpG-ODN BL07S Mouse 5′-GCGTCGGTTTCGGTGCTCAC-3′ B-class
CpG-ODN 1668 (79) Mouse 5′-TCCATGACGTTCCTGATGCT-3′ B-class
Chang et al. (104) Mouse 5′-TCCATGACGTTCCTGACGTT-3′ B-class
C-Class
IMO-2125 (Tilsotolimod) Human 5′-TCG*AACG*TTCG*-X-G*CTTG*CAAG*CT-3′ C-class
SD-101 Human Not described. C-class
CpG-ODN 2395 Mouse 5′-TCGTCGTTTTCGGCGCGCGCCG-3′ C-class
Others
MGN1703 (Lefitolimod) Human CTAGGGGTTACCACCTTCATTGGAAAACGTTCTTCGGGGC

GTTCTTAGGTGGTAACCC by dimer-circularization
Double-stem loop
immunomodulators (dSLIM) (157,
158)

Fonseca et al. (105) Mouse Not described. Not described.
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reduces all disease hallmarks in a mouse model of allergic asthma.
This was accompanied by an expansion of pDCs and theirmigration
from the injection site to the periphery at early stages of the
treatment (79).

CpG-ODN Induces T and B
Regulatory Cells
Withregard to immune tolerance induction,CpG-ODNwasshown
to reduce theTh2 response triggered by aluminumhydroxidewhen
these two adjuvants were co-injected, an effect that was dependent
on the activity of MyD88 and IL-10 (182). In agreement with this
study, several other studies have pointed out that CpG-ODN is able
to induce immune regulatory responses. Already in 1997, bacterial
DNAcontaining unmethylatedCGmotifs was shown to induce IL-
10production in adherentmouse splenocytes (183).CpG-ODNhas
also been shown to promote other regulatory cytokines such as
Frontiers in Immunology | www.frontiersin.org 13234
TGF-b 3 days after in vivo injection in a vertebrate species
phylogenetically distant from humans, the fish gilthead seabream
(184). TGF-b is crucial for immune regulation and it is one of the
three key signals that induce Treg cell differentiation. Furthermore,
it is known for its role in tissue repair after inflammation (185).
Several research groups have tested different administration routes
forCpG-ODN.Kimet al. (80) andSabatel et al. (76) investigated the
nasal installation (NI) route for CpG-ODN application in mice, a
proxy for bronchial inhalation in humans. In the first study, the
authors showedhowpre-treatmentwithCpG-ODN(medium-high
dose: 0.15 mg/kg, Figure 3) prevented cockroach-induced allergic
asthma in amousemodel (169). The authors found increased levels
of IL-10 in lung lysates which was attributed to an increase in the
CD4+ FoxP3+ Treg population. In the second study, Sabatel and
colleagues showed as well that NI of CpG-ODN (high dose: 2.5mg/
kg, Figure 3) drastically reduced allergic airway inflammation
FIGURE 2 | Effects of CpG oligodeoxynucleotides (CpG-ODN) on the immune system and inhibition mechanisms of the Th2 response: In an allergic immune
environment (orange and red), allergens skew APCs toward the production of cytokines such as IL-4, prompting naïve T cells into Th2 cells. Th2 cells produce Th2
cytokines (IL-4, IL-5, IL-13) and induce B cells to produce immunoglobulin E (IgE), causing the hallmarks of the allergic disease such as increased epithelial
permeability, effector cell activation, anaphylaxis, smooth muscle contraction, mucus hypersecretion etc. CpG-ODN can have different effects on APCs. On one side,
it can promote a Th1-like response (blue) by skewing APC to produce IL-12 and then derive naïve T cells to IFN-g producing Th1 cells. Th1 cells induce B cells to
produce neutralizing antibodies such as IgG2a and IgG3. On the other side, CpG-ODN can skew APCs classical dendritic cells (cDCs) and plasmacytoid dendritic
cells (pDCs) toward a tolerogenic phenotype (green). Tolerogenic APCs, cDCs and pDCs produce immune regulatory soluble factors such as TGF-b and indoleamine
2,3-dioxygenase (IDO), and express immune modulatory surface molecules like programmed death ligands 1 (PD-L1) and PD-L2. Tolerogenic APCscDCs and pDCs
derive naïve T cells to Tregs, initiating an immune regulatory response. CpG-ODN can also engage directly B cells and skew them into a regulatory phenotype
(Bregs). Bregs secrete the regulatory cytokines IL-10 and IL-35, as well as neutralizing IgG isotypes. The Th1 response can inhibit Th2 and allergy responses through
the production of interferon-g (IFN-g) and neutralizing antibodies. However, Treg and Breg cells utilize a wide range of regulatory molecules from soluble IL-10 and
IL-35, to the immune checkpoints CTLA-4 and PD-1 to suppress both Th2 and Th1 responses. Solid lines indicate induction, dotted lines indicate inhibition. *IgG4
refers to humans only.
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through the secretion of IL-10 (76). In this case, Tregs were not the
source of IL-10, but the anti-inflammatory cytokinewas secreted by
regulatory macrophages recruited after CpG-ODN NI treatment.
Both results are not mutually exclusive and could be explained by
an initial IL-10 production by regulatory macrophages followed
by a successive differentiation of Tregs and production of IL-10.
Moreover, after completion of CpG-ODN-basedAIT, differentially
regulated and de-novo-expressed Tregs were found in the spleen of
CpG/AIT-treated mice (79), including Treg subtypes which are
known to specifically suppress Th2 responses (186, 187). In
addition to Tregs, Bregs are also of crucial importance in the
success of AIT (40). As B cells express higher levels of TLR9
compared to other immune cells, they are strongly activated by
CpG-ODN. Adoptive transfer of splenocytes from mice treated
with CpG-ODN conferred resistance to allergic inflammation in a
mouse model (188). The authors found that the reduction of the
allergic response was dependent on IL-10 producing follicular B
cells (B220+ CD19+ CD23+ IgM+ CD40+MHCIIhi), indicating that
CpG-ODN-stimulated B cells have a role in promoting immune
tolerance in the context of allergy. Furthermore, it has been shown
by Ticha et al. that IL-10 producing B cells induced by CpG-ODN
have a distinct expression of tumor necrosis factor receptor 2
(TNFR2) (82), which could also be confirmed in the murine
CpG-ODN-based AIT model where B cells expressed higher
levels of TNFR2 at the injection site (79).

CpG-ODN Induces Protective
Immunoglobulins and Improves Epithelial
Integrity
As explained above, one of the important mechanisms of AIT in
reducing allergic symptoms is the production of protective
immunoglobulins by B cells such as IgGs and IgA (46). Indeed,
B cell stimulation with CpG-ODN induces the production of
Frontiers in Immunology | www.frontiersin.org 14235
neutralizing immunoglobulins such as IgG2a, IgG2b, IgG3 and
IgA in mice (87–89, 102). Furthermore, CpG-ODN inhibits IgE
production in vivo (89, 90). CpG-ODN has also been shown to
enhance protection from allergic diseases through co-activation
of non-immune cells. For instance, CpG-ODN improves tight
junctions in airway epithelial cells, a cell type playing a crucial
role in the homeostasis of lungs and the prevention of airway
sensitization by allergens (189–191).

CpG-ODN Induces Th1 Responses
As introduced in the previous section, CpG-ODN has been used as
an adjuvant in AIT formulations to target the innate immune
system and therefore increase therapeutic effects of AIT. Among
others, CpG-ODN has been described to induce a Th1 immune
response. Indeed, thefirst assayswhereCpG-ODNwasused in vitro
reported production of IFN-g and IL-12, the canonical cytokines
produced in Th1 environments (170, 173, 192). Interestingly, in
vivo preventive allergy treatment with CpG-ODN has been shown
to induce an immutable IFN-g-dependent Th1 response, which
prevented the establishment of a subsequent Th2 allergic response
(98).Comparably, whenmice are primedwith the hepatitis Bmajor
surface antigen (HBsAg) using aluminum hydroxide as adjuvant, a
Th2 response is induced, but when the samemice are subsequently
treatedwithCpG-ODNandHBsAg, the CpG-ODNboost is able to
induce a Th1 response, overwriting the pre-established Th2
response (88). Accordingly, the induction of Th1 responses has
beenproposed in the past as a possible cellular immunemechanism
to treat allergic diseases (193, 194).

CpG-ODN-Based Allergen Specific
Immunotherapy Considerations
As depicted above, different routes of administration of CpG-
ODN such as intraperitoneal (IP), subcutaneous (SC),
FIGURE 3 | Dual dose effect of CpG oligodeoxynucleotides (CpG-ODN) in AIT: CpG-ODN at low doses triggers immune activation and inflammation, while at high
doses it induces immune regulation and tolerance. Clinical (downward-pointing triangles) and pre-clinical studies (upward-pointing triangles) are placed on the X axis
(CpG dose in mg/kg body weight, Log10 scale) according to the CpG-ODN dose equivalent used in each study. Unsuccessful or suspended clinical trials and drugs
(red triangles) fall under the immune activation/inflammation range of CpG-ODN dosage, whereas most of the successful (green triangles) pre-clinical research
studies fall under the regulation/tolerance range. The orange dotted line (Jackson et al., 2018) indicates the dose of B-class CpG-ODN employed to boost the
immune response in an FDA-approved vaccine for hepatitis B virus infection. The purple dotted line (Zent et al., 2012) indicates the maximum dose of B-class CpG-
ODN that was well-tolerated in humans. Open triangles indicate non-type B CpG-ODN. The table on the right indicates the approximate dose equivalent of CpG-
ODN used in each study. *For clinical trials, an average body weight of 75 kg was considered to calculate the CpG-ODN dose. For pre-clinical murine studies, an
average body weight of 20 g was considered. IP, Intraperitoneal; NI, Nasal instillation; IT, Intratracheal instillation; ID, intradermal; IM, intramuscular; OG, oral gavage.
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epicutaneous (EPI) or NI have been applied to ameliorate allergic
disease phenotypes in murine models and humans (Tables 2 and
3). Because of this disparity in the approaches with varying
outcomes, additional studies are needed to find the optimal route
of administration to be used in combination with the most
effective dose of CpG-ODN and the most advantageous AIT
treatment regimen. In common clinical practice, the
subcutaneous route of injection is preferred. However, non-
invasive delivery routes are not to be neglected, since AIT has
been proven to be successful using a sublingual approach via
sublingual immunotherapy (SLIT) (195). SLIT has been shown
to engage potential tolerance inducing immune cells such as DCs
and pDCs or Tregs in the oral mucosa (196, 197). Hence, the
usage of a CpG-ODN-based AIT via other administration routes
such as SLIT would increase its therapeutic value. Although both,
Th1 and Tregs are known to suppress allergy (186) (Figure 2), it
is undoubtedly preferable to induce a Treg/Breg reaction than a
Th1 response since Th1 cells have been associated with
undesirable side effects such as inflammation or even with
autoimmunity (198). Because of these considerations, immune
tolerance induction should be preferred to treat allergic diseases
over induction of Th1 cells to replace the existing Th2 response
(Figure 2). Some of the CpG-ODN-based treatment strategies
presented in this review use CpG-ODN as an immunomodulator
in an allergen-free formulation. This creates an unspecific
tolerance induction which is usually not long-lasting due to the
lack of immune memory. On the contrary, when CpG-ODN is
used together with the allergen, the resulting tolerance induction
is allergen-specific and long-lasting, as it is supported by immune
memory (31, 40). Accordingly, although treatments for allergic
diseases using only CpG-ODN seem to confer a certain level of
short-term immune tolerance (76, 104, 105) (Table 2), CpG-
ODN-based AIT formulations should be preferred in order to
induce specific and durable tolerance to the allergen(s). An
overview of the literature would also be strongly in favor of
using CpG-ODN with allergen as a prophylactic vaccination-like
treatment for allergic diseases by inducing either a Th1 or a Treg
response (199), thus preventing the subsequent development of a
pro-allergic Th2 environment. However, this does not reflect the
situation in the clinic, where allergic patients, who are already
sensitized and present with a pre-established symptomatic
disease, consult the clinicians. Therefore, a prophylactic
treatment for allergic diseases represents a future scenario for
those in the general population, who are at high risk of
developing allergic disease. Based on all current data, CpG-
ODN-based therapies for allergy have the potential to be
successful as active treatment in AIT when used in a novel
formulation. Therefore, this should be the immediate next step to
follow when designing novel therapeutic strategies for allergic
diseases using CpG-ODN. Interestingly, it has been shown that
when pDCs and B cells are stimulated with CpG-ODN, their
TLR9 expression is downregulated within 12 h (167), probably
due to negative feedback. Consequently, repeated CpG-ODN
injections in a short period of time would trigger a much lower
effect. Similarly, key cells such as B cells, DCs and macrophages
change their TLR9 expression according to the circadian rhythm
Frontiers in Immunology | www.frontiersin.org 15236
in mice, showing a higher expression coinciding with the mouse
active phase (200). According to this knowledge, a timely spaced
injection schedule during the active human phase would be
preferable to maximize TLR9 signaling in critical immune
cells, thus enabling the desired effect of the adjuvant.

The analysis of the literature discussed above, which is
graphically summarized in Figures 2 and 3, encouraged us to
propose that CpG-ODN used in the adequate conditions and
concentrations might be a strong inducer of a tolerogenic
immune response for allergy and other inflammatory
disorders, acting by modulation of various layers of the
immune system (Figure 2). Other licensed adjuvants such as
Al(OH)3 or MPL have been used and tested in the context of
AIT. However, they induce pro-inflammatory responses such as
inflammasome activation and Th1 responses (Table 1) that can
revert the underlying Th2 immune phenotype but lack the
tolerance promoting properties of CpG-ODN.
CPG-ODN AS AN ADJUVANT FOR
ALLERGEN SPECIFIC IMMUNOTHERAPY

Reconsidering CpG-ODN for
Allergen-Specific Immunotherapy
According to the studies discussed in the previous sections, CpG-
ODN used in the appropriate conditions induces tolerance in the
immune system through various cells and molecular
mechanisms. With this systematic review, we intend to support
the reconsideration of CpG-ODN as an adjuvant for AIT
formulations with the purpose to enhance its therapeutic
effects and overcome the aforementioned challenges of AIT
such as side effects and burdensome treatment schedules.
Indeed, CpG-ODN has shown potential to alleviate the burden
of allergic diseases through various immune processes. Multiple
lines of evidence have shown that CpG-ODN exerts its immune
modulating effects mainly through two complementary
mechanisms in many pre-clinical studies (Table 2). On the
one hand, the induction of an immune regulatory response in
the form of tolerogenic pDCs, Breg and Treg cells. On the other
hand, the generation of allergen-specific neutralizing antibodies
that block allergen binding by specific IgE (sIgE) and thus inhibit
allergy effector cells such as eosinophils, basophils or mast cells
(Figure 2). These immune-modulatory properties of CpG-ODN
would ultimately promote immunological and clinical tolerance
to the allergen.

TLR-Ligand Interference as a
Consideration in the Design of CpG-ODN-
Based Allergen-Specific Immunotherapy
Acrucial aspect in thedesignofCpG-ODN-basedAITformulations
is the possible interference with other immunostimulatory
PAMPs, especially with other TLR ligands such as LPS. Indeed,
the immune system is a complex network of receptor-ligand
interactions and connected intracellular signaling pathways. Many
TLR downstream signaling molecules, particularly kinases, are
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shared between the TLR familymembers (125, 143). Consequently,
a secondary TLR-stimulation, in parallel to TLR9 activation by
CpG-ODN, could alter the outcome and quality of TLR9 signaling.
In the case of CpG-ODN employment as an adjuvant for AIT, the
desired result is the induction of immune tolerance without
inducing an inflammatory response. The presence of residual LPS
would activate the TLR4 signaling pathway, which competes with
concurrent TLR9 signaling for downstream signaling molecules,
thus biasing and deviating the tolerogenic pathway induced by
CpG-ODN. Indeed, it has been shown that co-activation of TLR9
and TLR4 induces a strong inflammatory signal in form of TNF-a
and IL-12 secretion (201) (Figure 1). Amongother reasons, such an
interference by low amounts of residual LPS (Figure 1) in the
natural ragweed allergen Amb a 1 could explain why previous AIT
clinical trials using CpG-ODN were unsuccessful (26, 111).
However, with the appropriate knowledge from preclinical
studies, one has the ability to influence and activate only specific
immune cel ls and pathways to achieve the desired
immunotherapeutic precision yield.

High Doses of CpG-ODN Induce
Immune Regulation
Another essential factor in CpG-ODN formulations is the dose.
As outlined before, to achieve tolerance induction, high CpG-
ODN concentrations and doses are needed (84). Indeed, a
principal pattern can be extracted when systematically
analyzing the numerous clinical trials (Table 3) and pre-
clinical studies (Table 2) in which CpG-ODN has been used in
the context of allergic diseases (Figure 3). On the clinical side,
the maximum CpG-ODN dose used for allergy treatment in
humans equals to approximately 0.0054 mg/kg per injection,
repeated over 7 injections (113). However, this clinical trial
showed no benefit in patients, and was prematurely terminated
with no further follow-up. Other clinical trials in humans used
even lower dose equivalents of CpG-ODN adjuvant (111, 112).
In contrast to human studies in the allergy field, CpG-ODN
doses used in preclinical allergy studies were markedly higher
and more successful. Indeed, many of the animal research studies
with positive findings used at least a 10-fold higher CpG-ODN
dose per injection compared to the less successful clinical trials
(Table 3 and Figure 3). The fact that lower CpG-ODN doses
were employed in human clinical trials could explain the lack of
CpG-ODN activity as AIT adjuvant. The only marketed
pharmaceutical product currently using CpG-ODN is a
subunit vaccine for HBV that has recently received approval by
the FDA (120). Vaccines necessitate firm and sustained immune
activation, sometimes also referred to as inflammation, to induce
protection against pathogens. Interestingly, the new HBV
vaccine utilizes a low dose of CpG-ODN to induce an
enhanced immune response against HBV. However, this
relatively low dose of 0.04 mg/kg CpG-ODN per injection,
which was shown by Jackson et al. (120) to display superior
vaccination adjuvant activity over aluminum hydroxide for HBV
prevention, is still higher than the CpG-ODN dose equivalents
previously applied in clinical trials to treat allergy (Figure 3). In
contrast, CpG-ODN has been successful in reducing allergy
Frontiers in Immunology | www.frontiersin.org 16237
burden in animal models when used at higher doses (Table 2).
Based on the analysis presented (Figure 3), we suggest to
reconsider CpG-ODN as an AIT adjuvant, but at higher doses
than previously applied in humans, to treat Th2-/IgE-mediated
allergic diseases. Intriguingly, the maximum dose of well-
tolerated B-type CpG-ODN after intravenous injections in
humans as shown by Zent et al. is in the range of tolerance-
inducing CpG concentrations reported by others (79, 84, 114)
(Figure 3).

CpG-ODN to Treat Other Non–IgE-Mediated
Immune Diseases
Furthermore, one could think of applying the immune
regulatory properties of CpG-ODN not only in allergy
therapy, but also to treat other diseases in which the immune
system is dysregulated such as multiple sclerosis (MS), where the
induction of antigen-specific immune tolerance would be
needed. As similar or even identical immune tolerance
checkpoint mechanisms have been identified across immune-
mediated diseases (202, 203), the co-administration of the self-
antigen myelin oligodendrocyte glycoprotein (MOG) together
with high doses of CpG-ODN could potentially reduce
the autoimmune reaction observed in the experimental
autoimmune encephalomyelitis (EAE) mouse model, setting
the basis for an antigen-specific tolerance induction therapy in
MS and other autoimmune diseases.

Route of Administration for CpG-ODN-
Based AIT
As aforementioned, CpG-ODN-based AIT has been applied to
animal disease models using a wide variety of routes of
administration, such as IP, NI, subcutaneous (SC), intradermal
(ID), intramuscular (IM) and oral gavage (OG) routes (Table 2).
While the dosage appears to be key in order to achieve immune
tolerance in the context of CpG-ODN-based AIT, the role of the
administration procedure is less clear. The application of the
therapy via a particular method of delivery to treat a tissue-
specific allergy phenotypes, for example intranasal or
intrabronchial administration to treat airborne allergies, is an
interesting point to consider. Indeed, some animal studies
successfully treat airway allergy using intranasal application of
CpG-ODN-based AIT (76, 80, 108) (Table 2). However, a
comprehensive analysis of the pre-clinical studies (Table 2)
suggests that the route of administration does not always have
to target the tissue or organ affected by the allergy in order to
achieve its therapeutic effect. Indeed, many of the animal
studies described in Table 2 treat respiratory allergies through
an IP, SC or ID administration (79, 103–106). Furthermore, in
clinical practice the SC route has proven its efficacy to treat
airway allergies, indicating that the administration method
can be independent of the allergy phenotype to be
cured. Nevertheless, novel delivery methods such as sublingual
or intrabronchial therapies can result in improved efficacy
and ease of application in clinical studies (23, 26, 91, 96, 196),
suggesting that an optimized route of application could
also improve CpG-ODN-based AIT. However, since the
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dose of CpG-ODN is the primary determinant for treatment
efficacy, studies would need to be fine-tuned regarding the
dosage for each novel route of administration without
compromising safety.
CPG-ODN – SAFETY CONSIDERATIONS
AND OTHER APPLICATIONS

CpG-ODN as an Adjuvant for Pathogen
and Cancer Vaccination
Besides its role as immunomodulatory agent in the treatment of
asthma or allergic rhinitis and as adjuvant in AIT, CpG-ODN
has been applied in other sectors of pharmaceutical research,
mainly as adjuvant for vaccines against pathogens, and as
immune-enhancing drug for cancer treatment (204). CpG-
ODN has been used to confer protection through vaccination
against a wide variety of pathogens (205), including bacteria
(199). Indeed, CpG-ODN can induce pathogen-specific IgM
enhancing phagocytic activity against S. aureus (206).
Furthermore, it has been tested with success in a phase I
clinical trial of a BCG multi-subunit vaccine against M.
tuberculosis (121) (Table 3), where relatively low CpG-ODN
dose equivalents of 0.001 mg/kg (75 mg per injection) and 0.02
mg/kg (150 mg per injection) induced robust IFN-g and IgG
responses. As mentioned above, CpG-ODN can activate and
enhance NK cell function, a characteristic that some authors
have associated with enhanced anti-viral properties. For instance,
CpG-ODN has been shown to effectively fight alphavirus
encephalitis in neonatal mice (162). Moreover, CpG-ODN has
also been shown to be efficacious as an adjuvant in vaccines
against viruses, for example, by generating a humoral protective
response to the HBV surface antigen HBsAg (88), which
subsequently lead to the development of an FDA-approved
vaccine against HBV that was superior compared to an
established aluminum hydroxide-based HBV vaccine (120).
Similarly, pre-clinical models of vaccination against viruses
have also used CpG-ODN as adjuvant in their formulations,
such as in vaccination studies targeting the influenza virus strain
H1N1 (140). With regard to cancer treatment, CpG-ODN has
been extensively used for its immune enhancing properties (136).
The first reported case where bacteria were used against cancer
was published in 1893 by Dr. William Coley using live bacteria
injected directly into tumor tissue (207). Later, Dr. Coley utilized
heat-killed bacteria with similar effects (208). These observations
sparked the research on bacterial compounds such as CpG-ODN
for cancer treatment (209). It has been shown that CpG-ODN
potentiates both innate and adaptive anti-tumor immunity,
mainly by enhancing NK cell and CD8 T cell cytotoxic activity
(81, 210). Among other successful applications in the cancer field
(Table 3), CpG-ODN was used as prophylactic treatment for
reducing brain metastasis through microglia activation (211),
or in combination with M362, a TLR6 ligand, with which
it potentiates CD8 T cell response against breast cancer
cells (212).
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Safety Considerations Regarding
CpG-ODN
Although CpG-ODN showed a good safety profile, there have
been some concerns regarding the potential triggering of
autoimmune diseases by this TLR9 agonist (136, 213). For
instance, CpG-ODN has been associated with the induction of
arthritis in vivo when injected into animal joints (214, 215).
Similarly, when bacterial DNA containing CG motifs is injected
interstitially into the meninges of rats, signs of meningeal
inflammation appear on the histopathologic level (216).
However, the injection of CpG-ODN directly into articulations
or meninges is by no means foreseen in a CpG-ODN-based AIT.
Furthermore, neither of these effects have been observed in
clinical trials using CpG-ODN (Table 3) nor in the individuals
that received the approved CpG-ODN-adjuvanted HBV vaccine.
Another possible safety concern is that CpG-ODN could activate
autoreactive B cells to produce double stranded DNA (dsDNA)
autoantibodies and cause autoimmune diseases similar to
systemic lupus erythematosus (SLE). However, only very few
cases of anti-dsDNA antibodies or other signs of autoimmune
disease have been reported in subjects receiving CpG-ODN (136)
with no clear link to the adjuvant administration. Similarly, and
although CpG-ODN was suspected to exacerbate and maintain
dextran sulfate-induced colitis in a mouse model of IBD (217,
218), a later publication found CpG-ODN to be protective for
IBD (180).

Safety Considerations Regarding High
Dose CpG-ODN
Like many other drugs and compounds, CpG-ODN used in very
high doses (>2.4mg/kg) and repetitive injection schemes (daily
injections) showed toxicity in mice (219). However, in lower and
more conventional dosages, CpG-ODN has been recognized to
be a safe compound in humans with relatively benign effects in
terms of toxicity (Table 3). Consequently, it has been recently
approved by the FDA as adjuvant for a HBV vaccine (120). Some
of the CpG-ODN-derived side effects described in clinical trials
(Table 3) are probably caused by its rapid systemic distribution
upon injection. Furthermore, all the clinical trials using CpG-
ODN for allergy treatment rely on subcutaneous administration
(Table 3), a route known for its systemic distribution of the
compounds through capillaries and lymphatic vessels (220). This
presents a challenge regarding possible mild, but tolerable side-
effects, which needs to be addressed, since the tolerogenic
effects of CpG-ODN are only observed at relatively high doses
(Table 2, Figure 3). However, a high concentration of CpG-
ODN does not necessarily have to be systemic and can also act
locally to promote immune tolerance. According to in vitro
experiments (84, 132), a local but high concentration of CpG-
ODN should have the same effect on key immune cells such as
pDCs and B cells, without causing systemic toxicity. Several
pharmacological strategies can be employed to achieve a high
local concentration, thus preventing a rapid systemic distribution
of compounds. One solution is the usage of drug delivery
matrices forming a depot and assuring a slow substance
release, like hydrogels, nanoparticles or liposomes (221, 222).
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When injected subcutaneously, these substances form a depot
that encloses all the compounds of the AIT formulation. In case
of a CpG-ODN-based AIT, such an approach would allow for a
high local concentration of CpG-ODN, avoiding its rapid
systemic release, thereby minimizing side effects, while
allergens are also progressively released. Moreover, these drug
delivery systems are composed of biocompatible and
biodegradable compounds, which makes them safe and
suitable as part of pharmaceutical products (223, 224).

Altogether, these data indicate that CpG-ODN can be used as
an adjuvant in a variety of therapeutic strategies. Based on
current knowledge, CpG-ODN-based AIT using high doses of
CpG-ODN to induce tolerance would be a safe and potentially
beneficial therapy for patients suffering from moderate or severe
allergic diseases.
CONCLUSION

AIT has been used for almost 110 years and remains to this date
the only disease-modifying treatment for allergic diseases that
can provide allergy cure. It presents several advantages over
symptomatic therapies such as its cost-effectiveness and long
term tolerogenic effects. Despite being a successful therapy in
many aspects, AIT still has unmet needs to be faced and solved.
One of the most affordable, suitable, practical and promising
strategies relies on the use of optimized adjuvants to boost the
therapeutic effects of AIT. CpG-ODN has been used in the past
as an adjuvant for AIT with limited success that could be
explained by the use of rather low doses of CpG-ODN at that
time, probably due to caution and safety concerns when applying
it in humans. Based on newer evidence, CpG-ODN induces
tolerance in high doses. Therefore, we argue for its reevaluation
as a potentially beneficial adjuvant in AIT. We propose that
doses between 0.5 and 1.5mg/kg, dependent on the
administration route, should induce the desired immune
tolerance toward the allergen with a minimal risk of adverse
Frontiers in Immunology | www.frontiersin.org 18239
effects. Specifically, B-class CpG-ODN is capable to induce
tolerance with very low unwanted reactogenicity, making it a
strong candidate for further translation into the clinic. Indeed, by
combining CpG-AIT and novel drug delivery systems, even
higher doses of CpG-ODN could be tailored to be well
tolerated, thus aiding to further improve the safety of CpG-
ODN-based AIT. The route of administration is another
important factor to be considered. Pairing the route of
administration with the organ-specific allergy phenotype could
be a promising strategy to enhance the tolerance-promoting
capacity of CpG-AIT. Further research will help to unveil the
regulatory immune mechanisms of CpG-ODN-based AIT and
design better strategies to specifically target key immune cells
such as pDCs and other APCs. Overall, CpG-ODN used in AIT
has the potential to greatly benefit allergic patients as it
represents a safe, effective and possibly curative approach for
allergic diseases.
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