
EDITED BY : Angela Mastronuzzi, Luigi Boccuto and Riccardo Masetti

PUBLISHED IN : Frontiers in Pediatrics and Frontiers in Oncology

RECENT ADVANCES IN PEDIATRIC 
CANCER PREDISPOSITION 
SYNDROMES

https://www.frontiersin.org/research-topics/11977/recent-advances-in-pediatric-cancer-predisposition-syndromes
https://www.frontiersin.org/research-topics/11977/recent-advances-in-pediatric-cancer-predisposition-syndromes
https://www.frontiersin.org/research-topics/11977/recent-advances-in-pediatric-cancer-predisposition-syndromes
https://www.frontiersin.org/research-topics/11977/recent-advances-in-pediatric-cancer-predisposition-syndromes
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/journals/oncology


Frontiers in Pediatrics 1 May 2021 | Pediatric Cancer Predisposition Syndromes

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a 

pioneering approach to the world of academia, radically improving the way scholarly 

research is managed. The grand vision of Frontiers is a world where all people have 

an equal opportunity to seek, share and generate knowledge. Frontiers provides 

immediate and permanent online open access to all its publications, but this alone 

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, 

online journals, promising a paradigm shift from the current review, selection and 

dissemination processes in academic publishing. All Frontiers journals are driven 

by researchers for researchers; therefore, they constitute a service to the scholarly 

community. At the same time, the Frontiers Journal Series operates on a revolutionary 

invention, the tiered publishing system, initially addressing specific communities of 

scholars, and gradually climbing up to broader public understanding, thus serving 

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include some 

of the world’s best academicians. Research must be certified by peers before entering 

a stream of knowledge that may eventually reach the public - and shape society; 

therefore, Frontiers only applies the most rigorous and unbiased reviews. 

Frontiers revolutionizes research publishing by freely delivering the most outstanding 

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting 

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals 

Series: they are collections of at least ten articles, all centered on a particular subject. 

With their unique mix of varied contributions from Original Research to Review 

Articles, Frontiers Research Topics unify the most influential researchers, the latest 

key findings and historical advances in a hot research area! Find out more on how 

to host your own Frontiers Research Topic or contribute to one as an author by 

contacting the Frontiers Editorial Office: frontiersin.org/about/contact

Frontiers eBook Copyright Statement

The copyright in the text of 
individual articles in this eBook is the 

property of their respective authors 
or their respective institutions or 

funders. The copyright in graphics 
and images within each article may 

be subject to copyright of other 
parties. In both cases this is subject 

to a license granted to Frontiers.

The compilation of articles 
constituting this eBook is the 

property of Frontiers.

Each article within this eBook, and 
the eBook itself, are published under 

the most recent version of the 
Creative Commons CC-BY licence. 

The version current at the date of 
publication of this eBook is 

CC-BY 4.0. If the CC-BY licence is 
updated, the licence granted by 

Frontiers is automatically updated to 
the new version.

When exercising any right under the 
CC-BY licence, Frontiers must be 

attributed as the original publisher 
of the article or eBook, as 

applicable.

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 

others may be included in the 
CC-BY licence, but this should be 

checked before relying on the 
CC-BY licence to reproduce those 

materials. Any copyright notices 
relating to those materials must be 

complied with.

Copyright and source 
acknowledgement notices may not 
be removed and must be displayed 

in any copy, derivative work or 
partial copy which includes the 

elements in question.

All copyright, and all rights therein, 
are protected by national and 

international copyright laws. The 
above represents a summary only. 

For further information please read 
Frontiers’ Conditions for Website 

Use and Copyright Statement, and 
the applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-88966-714-7 

DOI 10.3389/978-2-88966-714-7

https://www.frontiersin.org/research-topics/11977/recent-advances-in-pediatric-cancer-predisposition-syndromes
https://www.frontiersin.org/journals/pediatrics
http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/about/contact


Frontiers in Pediatrics 2 May 2021 | Pediatric Cancer Predisposition Syndromes

RECENT ADVANCES IN PEDIATRIC 
CANCER PREDISPOSITION 
SYNDROMES

Topic Editors: 
Angela Mastronuzzi, Bambino Gesù Children Hospital (IRCCS), Italy
Luigi Boccuto, Clemson University, United States
Riccardo Masetti, University of Bologna, Italy

We would like to acknowledge Dr. Giada Del Baldo and Dr. Mariachiara Lodi from 
IRCCS Bambino Gesù Children’s Hospital have acted as coordinator and have 
contributed to the preparation of the proposal for this Research Topic.

Citation: Mastronuzzi, A., Boccuto, L., Masetti, R., eds. (2021). Recent Advances in 
Pediatric Cancer Predisposition Syndromes. Lausanne: Frontiers Media SA. 
doi: 10.3389/978-2-88966-714-7

https://www.frontiersin.org/research-topics/11977/recent-advances-in-pediatric-cancer-predisposition-syndromes
https://www.frontiersin.org/journals/pediatrics
http://doi.org/10.3389/978-2-88966-714-7


Frontiers in Pediatrics 3 May 2021 | Pediatric Cancer Predisposition Syndromes

05 Editorial: Recent Advances in Pediatric Cancer Predisposition Syndromes

Angela Mastronuzzi, Luigi Boccuto and Riccardo Masetti

07 Clinical, Genetic, and Prognostic Features of Adrenocortical Tumors in 
Children: A 10-Year Single-Center Experience

Evelina Miele, Angela Di Giannatale, Alessandro Crocoli, Raffaele Cozza, 
Annalisa Serra, Aurora Castellano, Antonella Cacchione, 
Maria Giuseppina Cefalo, Rita Alaggio and Maria Debora De Pasquale

16 Childhood Vascular Tumors

Harriet Bagnal Hinen, Luigi Boccuto, Cameron C. Trenor III and 
Lara Wine Lee

25 Corrigendum: Childhood Vascular Tumors

Harriet Bagnal Hinen, Luigi Boccuto, Cameron C. Trenor III and 
Lara Wine Lee

26 DNA Repair Syndromes and Cancer: Insights Into Genetics and Phenotype 
Patterns

Richa Sharma, Sara Lewis and Marcin W. Wlodarski

43 Genetic Predisposition to Solid Pediatric Cancers

Mario Capasso, Annalaura Montella, Matilde Tirelli, Teresa Maiorino, 
Sueva Cantalupo and Achille Iolascon

65 Cancer Predisposition Syndromes and Medulloblastoma in the Molecular 
Era

Roberto Carta, Giada Del Baldo, Evelina Miele, Agnese Po, 
Zein Mersini Besharat, Francesca Nazio, Giovanna Stefania Colafati, 
Eleonora Piccirilli, Emanuele Agolini, Martina Rinelli, Mariachiara Lodi, 
Antonella Cacchione, Andrea Carai, Luigi Boccuto, Elisabetta Ferretti, 
Franco Locatelli and Angela Mastronuzzi

81 Predictive Testing for Tumor Predisposition Syndromes in Pediatric 
Relatives: An Asian Experience

Jianbang Chiang, Jeanette Yuen, Tarryn Shaw, Hui Xuan Goh, Shao-Tzu Li, 
Eliza Courtney and Joanne Ngeow

89 Cancer Predisposition Syndromes Associated With Pediatric High-Grade 
Gliomas

Giulia Ceglie, Giada Del Baldo, Emanuele Agolini, Martina Rinelli, 
Antonella Cacchione, Francesca Del Bufalo, Maria Vinci, Roberto Carta, 
Luigi Boccuto, Evelina Miele, Angela Mastronuzzi, Franco Locatelli and 
Andrea Carai

99 Characterization and Childhood Tumor Risk Assessment of Genetic and 
Epigenetic Syndromes Associated With Lateralized Overgrowth

Jessica R. Griff, Kelly A. Duffy and Jennifer M. Kalish

Table of Contents

https://www.frontiersin.org/research-topics/11977/recent-advances-in-pediatric-cancer-predisposition-syndromes
https://www.frontiersin.org/journals/pediatrics


Frontiers in Pediatrics 4 May 2021 | Pediatric Cancer Predisposition Syndromes

108 DICER1 Syndrome and Cancer Predisposition: From a Rare Pediatric 
Tumor to Lifetime Risk

Anna Maria Caroleo, Maria Antonietta De Ioris, Luigi Boccuto, Iside Alessi, 
Giada Del Baldo, Antonella Cacchione, Emanuele Agolini, Martina Rinelli, 
Annalisa Serra, Andrea Carai and Angela Mastronuzzi

115 Rhabdoid Tumor Predisposition Syndrome: From Clinical Suspicion to 
General Management

Giada Del Baldo, Roberto Carta, Iside Alessi, Pietro Merli, Emanuele Agolini, 
Martina Rinelli, Luigi Boccuto, Giuseppe Maria Milano, Annalisa Serra, 
Andrea Carai, Franco Locatelli and Angela Mastronuzzi

https://www.frontiersin.org/research-topics/11977/recent-advances-in-pediatric-cancer-predisposition-syndromes
https://www.frontiersin.org/journals/pediatrics


EDITORIAL
published: 08 March 2021

doi: 10.3389/fped.2021.661894

Frontiers in Pediatrics | www.frontiersin.org 1 March 2021 | Volume 9 | Article 661894

Edited and reviewed by:

Rimas J. Orentas,

Seattle Children’s Research Institute,

United States

*Correspondence:

Angela Mastronuzzi

angela.mastronuzzi@opbg.net

Specialty section:

This article was submitted to

Pediatric Oncology,

a section of the journal

Frontiers in Pediatrics

Received: 31 January 2021

Accepted: 12 February 2021

Published: 08 March 2021

Citation:

Mastronuzzi A, Boccuto L and

Masetti R (2021) Editorial: Recent

Advances in Pediatric Cancer

Predisposition Syndromes.

Front. Pediatr. 9:661894.

doi: 10.3389/fped.2021.661894

Editorial: Recent Advances in
Pediatric Cancer Predisposition
Syndromes

Angela Mastronuzzi 1*, Luigi Boccuto 2,3 and Riccardo Masetti 4

1Department of Onco-Hematology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital (IRCCS), Rome, Italy, 2 School

of Nursing, College of Behavioral, Social and Health Sciences Healthcare Genetics Interdisciplinary Doctoral Program,

Clemson University, Clemson, SC, United States, 3 JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC,

United States, 4 Pediatric Oncology and Hematology “Lalla Seràgnoli”, Pediatric Unit, IRCCS Azienda

Ospedaliero-Universitaria di Bologna, Bologna, Italy

Keywords: cancer, predisposition, syndromes, pediatric, oncology, children

Editorial on the Research Topic

Recent Advances in Pediatric Cancer Predisposition Syndromes

Cancer predisposition syndromes (CPSs) are an important cause of tumors in pediatric patients.
Although a significant number of cancer predisposition genes have already been described, there
are many pediatric patients with cancer in whom inherited cancer predisposition syndromes have
yet to be detected.

The prevalence of childhood cancer attributable to genetic predisposition is difficult to be
estimated but recent reports suggest that at least 10% of pediatric cancer patients harbor a germline
mutation in a cancer-predisposition gene.

The advent of large-scale genome sequencing studies has profoundly helped our understanding
of the biology of cancer predisposition, leading to better and earlier identification of individuals
at high risk of cancer, selection of new molecular targets, and, in some cases, development of
tailored approaches.

The Research Topic on “Recent Advances in Pediatric Cancer Predisposition Syndromes”
included original contributions and reviews on different aspects of pediatric cancer
predisposition syndrome.

Central nervous system tumors are the first cause of solid malignancies in children, and the
leading cause of morbidity and mortality in young adults. Cancer predisposition syndromes are
seen in children with brain tumors in much higher frequency than other childhood cancers. These
syndromes predispose the individual and family members to multiple cancers in different sites.
Recent genetic discoveries and careful observation and surveillance resulted in improved survival,
reduced morbidity, and targeted therapies for these children. In some contributions of the present
topic, the authors discuss clinical manifestations, genetic overview, and management of these
complex syndromes in brain cancer.

Ceglie et al. described cancer predisposition syndrome in Pediatric High-Grade Gliomas
(pHGG). In the review, the authors summarize the main pHGG-associated cancer predisposing
disorders, suggesting indicationsfor suspecting these syndromes and referring for genetic
counseling. Better understanding of pHGG-associated syndromes can not only help identify them
more quickly and thus provide families with informative genetic counseling but can also lead to a
broader knowledge of the tumor-specific genetic landscape and thus of the possible target therapies.

Medulloblastoma is the most frequent malignant brain tumor observed in infancy. Carta
et al. presented a detailed overview of CPSs related to medulloblastoma, describing their
clinical, epidemiological, genetic, diagnostic, and therapeutic features. Understanding the
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associations between cancer predisposition syndromes and the
different molecular subgroups of medulloblastoma can guide the
development of novel targeted therapies, helping to elucidate
differences in prognosis and therapeutic vulnerability. This may
also help to further improve surveillance measures, to ensure the
best quality of care for these patients.

Rhabdoid tumor predisposition syndrome (RTPS) is a rare
condition characterized by a high risk of developing rhabdoid
tumors such as atypical teratoid rhabdoid tumors (AT/RT),
mainly aggressive and multifocal cancers that arise mostly
before 1 year of age. RTPS1 is characterized by pathogenic
variants in the SMARCB1 gene, while RTPS2 has variants
in SMARCA4. Del Baldo et al. provided a wide clinical
and genetic description of RTPS types 1 and 2. Moreover,
the authors highlighted the importance of early diagnosis
of RTPS with references to surveillance proposition, genetic
tests, and counseling recommendations to family members.
Further research is needed to increase our understanding of
rhabdoid tumor biology and the role of SMARCB1/SMARCA4
tumor development.

DICER 1 syndrome (DS) is a cancer-predisposing disorder
caused by pathogenic variants in the DICER1 gene that confer
an increased risk to develop a neoplasm in childhood of about
5.3% before 10 years of age. Its pathognomonic feature is the
pleuropulmonary blastoma (PPB), but cancer can arise in many
other sites. Caroleo et al. provided a review on this interesting
topic. According to the authors, screening for DS should always
be performed in patients with PPB and should be considered
in the presence of other specific benign and malignant lesions.
Early identification of DS is essential for planning an adequate
follow-up to manage the risk of cancer occurrence in carriers of
pathogenic DICER1 variants.

About rare conditions, Miele et al. examined clinical
and genetic features of 13 children affected by pediatric
adrenocortical tumors, very rare endocrine neoplasms. They
described an excellent prognosis, with a 5-year overall survival of
100% and 5-year disease-free survival of 84.6%. In 75% of patients
tested the TP53 gene was mutated, supporting the indication for
genetic testing and family counseling in this disease.

The contribution of Chiang et al. offers an overview of
predictive testing for CPSs in pediatric relatives in Asian
countries. They conducted a retrospective analysis including
families with germline pathogenic/likely pathogenic variants
identified in genes associated with pediatric cancer susceptibility
and conclude that the rate of predictive testing in pediatric first-
degree relatives (FDRs) is higher than that of adults in Asia,
albeit below the global average. They hypothesize that factors that
may influence the uptake of predictive testing in pediatric FDRs
include a lack of information about genetics, preoccupations
regarding health insurance, and genetic discrimination.

To note, any cancerous transformation can result from
mutations inherited or acquired throughout life. In this scenario,
DNA repair mechanisms are crucial to preserve genomic
integrity. DNA repair syndromes with a biallelic disorder

of essential DNA damage response pathways generally occur
early in life by exposing to a high susceptibility to develop
hematologic and solid tumors. Sharma et al. described classic
biallelic DNA repair cancer syndromes arising from defective
single- and double-strand DNA break repair, as well as
dysfunctional DNA helicases, providing a historical overview
and discussion about complex biology and heterogeneous
clinical manifestations.

Concerning vascular tumors in pediatric patients, Hinen et
al. described major vascular tumors in the pediatric population
with reference to International Society for the Study of
Vascular Anomalies (ISSVA) classification guidelines for vascular
anomalies (2018). A detailed description of vascular tumors
(benign, locally aggressive/borderline, and malignant) and
vascular malformations highlighted the importance to recognize
high-risk characteristics of each cancer, including anatomic
risks, morphology, potential for the co-occurrence of congenital
defects, coagulopathy, and malignant evolution.

Capasso et al. provided a very detailed description of
genetic variants that predispose to pediatric solid tumors
(neuroblastoma, Wilms tumor, retinoblastoma, ependymoma,
medulloblastoma, astrocytoma, osteosarcoma, Ewing sarcoma,
and rhabdomyosarcoma). They underlined the interactions
between germline and somatic alterations as a determinant of
cancer development and proposed future research directions
focused on this and the importance to develop new molecular
diagnostic tests.

As already known, overgrowth syndromes have been linked to
an enhanced risk of cancer development and share key molecular
pathways involved in cell growth and proliferation with several
pediatric cancers. Griff et al. summarized the present data on
cancer burden among these conditions and their associated
cancer screening guidelines.

Cancer predisposition syndromes remain a challenging
issue in pediatric cancer. The rapidly evolving scenario raises
numerous biological, clinical, and ethical questions. Continuous
efforts should be put into these issues by pediatric oncologists
and hematologists in the near future. We believe that advancing
knowledge in clinical and research fields would be important to
improve the clinical outcome of patients.
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Background and Aims: Pediatric adrenocortical tumors (ACTs) are very rare endocrine

neoplasms in childhood. In this study, we performed a retrospective analysis of children

with ACT treated at our institution by examining clinical and genetic disease features,

treatment strategies, and outcomes.

Methods: We retrospectively analyzed a cohort of 13 children treated at the Bambino

Gesù Children’s Hospital from November 2010 to March 2020.

Results: The median age at diagnosis was 17 months (range = 0–82 months). The

female: male ratio was 3.3/1. Mixed symptomatology (>1 hormone abnormality) was

the most common presentation (46.1%). In three cases, the tumor was detected

during prenatal or perinatal echographic screening. All patients presented with localized

disease at diagnosis and underwent total adrenalectomy. Six patients were identified

as having malignancies according to the Wieneke scoring system, five benign,

and two undetermined. Seven patients underwent mitotane adjuvant therapy for

12 months. There was metastatic disease in three patients, with no correlation

with age or Wieneke score. The most common sites of metastases were the liver

and lungs. Metastatic patients were treated with surgery (n = 2), mitotane (n =

1), chemotherapy (n = 2) associated with anti-EGFR (n = 1), or immunotherapy

with anti-PD1 (pembrolizumab) (n = 1); two patients achieved complete disease

remission. Overall 2- and 5-year survival rates were 100%, with a median follow-up

of 5 years (range = 2–9.5 years). Two- and 5-year disease free survival was 76.9

and 84.6%, respectively (95% confidence interval = −66.78–114.76 months). All

patients are alive, 12 without disease, and one with stable disease. Genetic analyses

showed TP53 germline mutations in six of eight patients analyzed (five inherited, one

de novo). One patient had Beckwith–Wiedemann syndrome, with mosaic paternal

uniparental disomy of chromosome 11, in both neoplastic and healthy adrenal tissue.
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Conclusion: We report the cases of 13 patients treated for ACT, including 12 aged

<4 years at diagnosis, with a relative short time from symptoms onset. Our cohort

experienced an excellent prognosis. TP53 mutation was found in 75% of tested patients

(6/8) confirming the need to perform genetic tests and familial counseling in this disease.

Keywords: adrenocortical tumors, children, Li-Fraumeni Syndrome, Beckwith–Wiedeman syndrome, mitotane,

immunotherapy, targeted therapies, prognosis

INTRODUCTION

Pediatric adrenocortical tumors (ACTs) include both benign
adrenocortical adenomas (ACA) and highly aggressive
adrenocortical carcinomas (ACC). They are very rare neoplasms
of childhood, with a reported incidence of just 0.2–0.3 new
cases per 1 million children per year (1, 2) and accounting for
6% of all adrenal cancers in children (3). ACC incidence rises
of 10–15 times the worldwide rate in Southern Brazil, which is
likely associated with high prevalence of the founder p.R337H
TP53 mutation (4). ACT can occur in the context of several
cancer predisposition syndromes; in fact, most childhood ACC
are linked to genetic susceptibility, although their pathogenesis
is not completely understood (5). Prognosis of pediatric ACT
patients is highly heterogeneous and hardly predictable in
clinical practice. There is considerable variability in clinical
presentation, from tumors with an indolent clinical course to
highly malignant tumors with dismal prognosis. Risk factors for
poor outcomes in patients with ACT include older age, higher
mitotic rate, higher percent of necrosis, and larger tumor size (3).
In some cases, a delayed diagnosis may contribute to advanced
stages and poor prognosis in these patients (3).

Pediatric ACC patients generally have overall 5-year survival
ranging from 30 to 70%, depending on disease presentation
(6–8). Despite multimodal therapeutic approaches, outcomes
remain poor in patients with metastatic disease, with an
estimated 5-year survival <20% (1, 2, 7, 9–11). No effective
therapy is currently available for advanced and metastatic ACC;
the only treatment leading to cure and long-term survival
remains complete surgical resection (6, 7). Adjuvant mitotane,
chemotherapy, and/or radiotherapy may reduce recurrence.
Arterial chemoembolization, radiotherapy, and radiofrequency
ablation are treatment options reported in cases of advanced
disease in adulthood (2, 12, 13). However, because many
children with ACT carry germline TP53 mutations, radiation
therapy in pediatric ACTs has not been studied and should
be avoided (6, 14). On the other hand, ACA histology is
associated with excellent prognosis, but only about 20% of
pediatric ACTs are identified as ACA, and the correct distinction
between adenoma and carcinoma is difficult (15). Indeed,
there are no well-defined pathological malignancy criteria for
pediatric ACT, whereas adult tumors can be classified based
on Weiss or Van Slooten criteria (16, 17). The Wieneke
criteria, considering tumor size, local invasion, and histological
features, are reported useful in discriminating benign from
malignant tumors and predicting the prognosis of pediatric
ACT (11, 18).

In the present study, we performed a retrospective
analysis examining clinical and genetic disease features,
treatment strategies, and outcomes in children with ACT in a
single institution.

METHODS

We retrospectively reviewed medical records of children affected
by ACT and admitted to our hospital between November 2010
and March 2020. All patients included in this study were
<18 years old with ACT confirmed by pathological review.
The following data were collected: general clinical features
(gender, age, clinical symptoms, and signs), imaging, pathological
characteristics, and prognosis.

Given our interest in examining genetic factors in this
disease, TP53 mutations analysis was performed on peripheral
blood DNA samples from the patients and their parents,
by using BigDye direct Sanger sequencing of exons 2–11
and intron–exon boundaries of polymerase chain reaction
products by an ABI automated sequencer (Applied Biosystems,
Foster City, CA). Gene dosage was evaluated by multiplex
ligation-dependent probe amplification (MLPA) using the MRC-
Holland SALSA MLPA PO56 TP53 probe set (MRC-Holland,
Amsterdam, the Netherlands) according to the manufacturer’s
instructions. Chromosomemicroarray analysis was performed in
patients 1 (blood sample) and 9 (blood, saliva, skin fibroblasts,
healthy and neoplastic adrenal samples) by using SNP- array
(single-nucleotide polymorphism array) on platform CytoSNP-
850K BeadChip (Illumina, San Diego, CA) with an average
resolution of 100Kb. Outcomes were reported as alive with no
evidence of disease, alive with evidence of disease, and dead
of disease. The Wieneke index was applied for diagnosis and
prognosis definition.

RESULTS

This retrospective cohort included 13 children. Median age
at pathological diagnosis was 17 months (range = 0–82
months). Female-to-male ratio was 3.3/1 (Table 1). Mixed
symptomatology (>1 hormone abnormality) was the most
common presentation (46.1%, n = 6), (Table 1). In three cases
(patients 5, 7, and 13), diagnosis was performed in asymptomatic
patients via prenatal (patient 13) or perinatal echographic
screening for congenital dysplasia of the hip (patients 5 and
7). All patients presented with localized disease at diagnosis
and underwent total adrenalectomy by laparotomy (n = 12) or
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laparoscopic surgery (n = 1, patient 13; Table 2). The Wieneke
score system was applied for diagnosis and prognosis definition:
six patients were assigned to the malignant category, five to the
benign category, and two had a diagnosis of tumor with uncertain
biological behavior (indeterminate), (Table 3).

Seven patients underwent mitotane-based adjuvant therapy
for 12 months (Table 2). Metastatic disease appeared in three
patients after 3, 18, and 42, months, respectively, in one
case under treatment and in two during follow-up. No
correlation with age or with Wieneke category was observed
in metastatic/relapsed patients (the Fisher exact test was not
significant). The most common sites of metastases were the
liver and lungs. Relapsed and metastatic patients were treated
with surgery (2 patients), mitotane (1 patient), chemotherapy

TABLE 1 | Clinical features at presentation of 13 pediatric patients with

adrenocortical tumors.

Clinical feature All patients (n =

13)

Age <24 months

(n = 8)

Age ≥24 months

(n = 5)

Age at onset of symptoms, months

Median 17 5.5 39

Range 0–82 0–22 24–82

Sex, n

Male 3 2 1

Female 10 6 4

Female:male ratio 3.3:1 3:1 4:1

Type of presentation, n

Virilization onlya 3 (23.1%) 2 1

Cushing syndrome only 0 0 0

Hypertension only 0 0 0

Mixed tumor 6 (46.1%) 3 3

Asymptomatic 3 (23.1%) 3 0

Unknownb 1 (7.7%) 0 1

Duration of symptoms, months

Median 1 0.5 1

Range 0–10 0–10 1–3

a Indicated by clinical and/or laboratory evidence of abnormal production of more than

one hormone, bThe patient was diagnosed at another institution, and the initial medical

records were not available.

(2 patients) associated or not with anti-EGFR (1 patient), or
immunotherapy with anti-PD1 (pembrolizumab) (1 patient);
two patients achieved complete disease remission (Figure 1).
Overall 2- and 5-year survival rates were both 100%, with a
median follow-up of 5 years (range = 2–9.5 years). Two- and 5-
year disease-free survival was 76.9 and 84.6%, respectively (95%
confidence interval = −66.78–114.76 months). At present, 12
patients are alive with no evidence of disease, and one is alive
with evidence of metastatic disease.

Genetic analyses were conducted for eight patients showing
TP53 germline mutations in six (five inherited and one de
novo) (Table 4). The most part of detected mutations were
already recognized as pathogenic. All the carrier parents were
asymptomatic, but family history was positive for cancer in four
patients (Table 4). In two cases, it was strongly suggestive of Li-
Fraumeni syndrome (LFS) for the tumor histotypes (e.g., alveolar
rhabdomyosarcomas, choroid plexus carcinoma) and the very
young age of the affected individuals (Figure 2). One patient
(patient 9) had Beckwith–Wiedemann syndrome (BWS) with
clinical features (macrosomia, hyperinsulinism, hyperglycemia,
and tumor) and paternal uniparental disomy of chromosome
11 on neoplastic and healthy adrenal tissue. Another patient
(patient 1) showed a copy number variation of uncertain
significance, involving a region 1.7Mb on 8q21.3q22.1, not
involving OMIM genes.

DISCUSSION

Pediatric ACTs are very rare endocrine tumors in childhood with
a highly heterogeneous and challenging prognosis. Recognized
independent prognostic factors are older age (3, 10) and
metastasis at the time of diagnosis (3), which in some cases could
be attributed to delayed diagnosis. Our cohort is characterized
by an excellent prognosis on long-term follow-up (media n = 5
years). Indeed, at present 12 patients are alive with no evidence of
disease, and one is alive with evidence of metastatic disease. The
93% of patients were aged <4 years at diagnosis and with relative
short time from symptoms onset (Table 1). Three patients were
diagnosed in the course of other care, one prenatally and the
other two through echographic evaluation for neonatal screening
or urinary tract infection.

TABLE 2 | Therapeutic approach.

Surgery/no. of

patients

Adjuvant mitotane/no. of

patients

Chemotherapy/no.

of patients

Immunotherapy/no.

of patients

Outcome/no. of

patients

LTUA/8 No/6 No/11 No/11 CR/12

LTUA +

linfoadenectomy/3

Yes/7 Yes/2*∧ Yes/2◦ SD/1•

LTUA + bioptic

sampling/1

LUA/1

LTUA, laparotomic unilateral adrenalectomy; LUA, laparoscopic unilateral adrenalectomy. *Patient 9 received cisplatin (40 mg/mq) days 1 and 9, doxorubicin (20 mg/mq) days 1 and

8, etoposide (100 mg/mq) days 5–7; ∧patient 8 received after relapse vincristine/irinotecan/panitumumab and then gemcitabine/oxaliplatin/panitumumab; ◦patients 8 and 11 received

pembrolizumab; •patient 8.
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TABLE 3 | Pathological features in childhood ACT.

# Tumor

size

Growth

pattern

Ki67

(%)

Atypical

mitosis

Nuclear

pleomorphism

Necrosis Capsular

invasion

Vascular

invasion

N+ M+ Other Wieneke

score

1 77 g Diffuse 2–8 No No Yes No Yes No No Reticolinic

pattern

anomalies

Benign

6 × 5.5 × 4 cm –

2 20 g Diffuse 5 Yes Yes No Yes No No No p53 +++

nuclear

Intermediate

2.5 × 2 × 1 cm ++

3 100 g Diffuse 30 Yes Yes Yes No Yes No No p53 + 70% Malignant

8 × 6.5 × 5 cm +++

4 159 g Solid 10–40 Yes Yes Yes Yes Yes No No / Malignant

9 × 7 × 4.5 cm +++

5 40 g Solid 5–10 No +/– No No Yes No No p53 neg Benign

3.2 × 2.5 × 2 cm

6 50 g Solid 2 No Yes No No No No No p53+

nuclear

10%

Benign

2.5 × 2 × 3.5 cm +

7 10 g Diffuse 20–30 Yes Yes Yes Yes No No No p53 + Intermediate

3.5 × 3 × 1.5 cm +++

8 49.3 g Solid 30–40 Yes Yes Yes No Yes No No p53 + Malignant

5.5 × 4.5 × 4 cm +++

9 50 g Diffuse 20–30 Yes Yes Yes Yes Yes Yes No p53 + Malignant

6 × 5 × 4 cm +++

10 33 g Solid 8 No No Yes, focal No No No No p53 neg Benign

5 × 4 × 2.5 cm

11* NA Solid High Yes Yes Yes na No na No / Malignant

+++

12 48 g Solid 15–20 Yes Yes Yes Yes Yes No No p53 –/+ Malignant

5.5 × 4.5 × 4 cm +++

13 18 g Diffuse 5–30 No No No No No No No p53 +/– Benign

5 × 3.7 × 2.5 cm

*Diagnosis formulated in a different center. NA, not available; N+, nodal metastasis; M+, distant metastasis; p53+/–, positivity in <50% but more than 25% of cells; p53–/+, positivity in

<25% of cells.

Routine prenatal ultrasound examinations have increased the
detection of fetal tumors; some specific imaging features together
with magnetic resonance imaging may help in the differential
diagnosis as other common fetal abnormalities can sometimes
mimic fetal tumors (26). This is very important for appropriate
prenatal management of pregnancy and delivery in order to
facilitate prompt postnatal treatment (26). Similarly, ultrasound
screening in pediatric population can be used to reveal lesions
like tumors or other pathologies of developmental age that are
undetectable by clinical examination, before the onset of clinical
symptoms (27, 28). This is particularly appropriate for patients
with cancer predisposition, for example, in children with BWS
(27, 29).

Although adult ACCs are classified following Weiss score,
Ki67 > 10% and European Network for the Study of Adrenal
Tumors for tumor stage (17), there are no clear pathological
malignancy criteria for pediatric patients. Higher mitotic rate,
higher percent of necrosis, and larger tumor size are usually

associated with aggressive behavior (3). The Wieneke criteria,
which include tumor size, local invasion, and histological
features, have been reported useful in pediatric ACT malignancy
definition and prognosis prediction (11, 18, 30). Recently,
Picard and colleagues (31) proposed a pathological scoring
system incorporating the Ki67 index ≥15% in a prognostication
algorithm to guide adjuvant treatment in pediatric ACTs, mostly
for those with incomplete resection. In our cohort, the Wieneke
score could not predict clinical outcomes in patients who
experienced metastatic disease.

Treatment of pediatric ACTs is often based on the results
of adult studies, and the same guidelines are applied (6).
When achievable, radical surgery remains the only successful
treatment strategy. Capsule rupture with consequent tumor
spreading, however, can be a frequent complication due to the
tumor friability, mostly during laparoscopic resection. Thus,
adrenalectomy in laparotomy is considered the standard of care
(6, 32). We were able to perform surgery in all of our patients;
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FIGURE 1 | Lung Computed tomography (CT) images (patient #11) showing multiple metastatic lesions (arrows), before (a,b), after 3 months of pembrolizumab

therapy (c,d), and at last follow-up (e,f) in complete disease remission. Axial (a,c,e), coronal (b,d,f).

open laparotomy was the preferred choice. Laparoscopy was
used in one case by the neonatal surgeon for the antenatal
diagnosed lesion, given the suspicion of a benign adrenal tumor.
Careful follow-up with clinical, radiographic, and endocrine
evaluation is mandatory after surgery to detect recurrence and
metastasis early.

Adjuvant therapies for ACC have not been successful (6). Both
radiation and chemotherapy are poorly effective, and the role of
mitotane is not completely clear. Mitotane is a derivative of the
insecticide dichlorodiphenyltricholorethane and has been used
for treating ACC for more than five decades, also in association
with chemotherapy (18, 33). It is the only drug approved for

ACC by the US Food and Drug Administration, characterized by
low efficacy rate and a narrow therapeutic window, which often
involves serious toxicity (34, 35). Current evidence highlighted
by a comprehensive review indicates that adjuvant mitotane
significantly reduced the recurrence rate and mortality after
surgery in nonmetastatic ACC patients (13, 18, 32). In our
cohort, mitotane-based adjuvant therapy was administered for
12 months in seven patients with an acceptable tolerability and
quality of life.

Despite the known ACC radioresistance, adjuvant
radiotherapy of the tumor bed has been proposed and
recommended in adult patients with microscopically incomplete
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TABLE 4 | Genetic finding: TP53 mutations features in tested patients.

# Exon Codon Nucleotide

mutation

Type of

mutation

Amino acid

change

Germline/Somatic LFS association

(according to

ClinVar)

Family history

#2 6 607 G>A Missense pVal203Met Germline (maternal

segregation)

Uncertain

significance (19)

Negative

Heterozygosis

#3 5 538 G>A Missense pGlu180Lys Germline (maternal

segregation)

Likely pathogenic

(20)

Breast cancer in

maternal grandmotherHeterozygosis

#4 4 358 A>T Nonsense pLys120* Germline Pathogenic

(21, 22)

Negative

Heterozygosis DE NOVO

#7 5 455 C>T Missense pPro152Leu Germline (maternal

segregation)

Pathogenic (23) Brain tumor (NOS) in

maternal grandfather

(50 years-old)Heterozygosis

#8 7 742 C>T Missense p.Arg248Trp Germline (paternal

segregation)

Pathogenic

(23, 24)

Alveolar

rhabdomyosarcoma in

her brother (2 years old)Heterozygosis

#13 5 472 G>A Missense

Heterozygosis

pVal143Met Germline (maternal

segregation)

Pathogenic

(19, 25)

Choroid plexus

carcinoma,

neuroblastoma, soft

tissue sarcoma and

high-grade glioma in

the maternal branch

(see Figure 2)

FIGURE 2 | Pedigree chart of Li-Fraumeni syndrome with TP53 mutation c427G>A (pVal143Met). The arrow indicates the proband (Case #13). Squares represent

males, circles represent females, and black symbols indicate individuals, * indicates individuals carrying the mutation. ACT, adrenocortical tumor; STS, Soft Tissue

Sarcoma; HGG, High Grade Glioma; NBL, Neuroblastoma; CPC, Choroid Plexus Carcinoma; yrs, years.

resection (17, 18, 36). In pediatric population, radiation therapy
has not been investigated for the high probability for patients of
carrying germline TP53mutations and thus should be avoided.

No effective therapy is currently available for advanced and
metastatic ACC; the only treatment allowing cure and long-term
survival remains complete surgical resection (12, 37). Systemic
chemotherapy and mitotane therapy are considered valuable
therapeutic options in the treatment of advanced pediatric ACC
patients (6, 38–40). Duration of mitotane treatment longer
than 6 months and mitotane levels >14 mg/L were found
to be associated with significantly better survival (38). The

FIRM-ACT trial was conducted to determine whether treatment
with etoposide, doxorubicin, cisplatin, and mitotane (EDP/M)
prolonged survival as compared to streptozotocin and mitotane
(Sz/M) in patients with inoperable advanced ACC. Rates of
response and progression-free survival were significantly better
with EDP plus mitotane as first-line therapy, with similar rates
of toxic events [58%), but no significant differences in OS were
observed (12)]. In our experience, one of the three patients who
experienced metastatic disease obtained complete remission with
platinum-based chemotherapy and mitotane. Overexpression of
the IGF2 and IGF1R genes was described in ACT also in the
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pediatric setting (41), but trials testing the utility of insulin like
growth factor receptor 1 inhibitors (e.g., linsitinib) have failed to
provide advantage for adulthood ACC treatment (42).

Immunotherapy approaches have been recently investigated
for this disease. In advanced ACC, pembrolizumab showed a
significant and durable antitumor activity with a manageable
safety profile (43–45). In the recent interim analysis of the
phases 1–2 study, KEYNOTE-051 conducted in the pediatric
setting, two of four patients with ACC showed partial
responses to pembrolizumab therapy (46). In our cohort,
two patients were treated by immunotherapy. Patient 8
showed early progressive disease. Patient 11 obtained durable
complete remission after 24 months of pembrolizumab therapy
(Figure 1). She is alive in not-evident disease after 3 years
of follow-up.

Most childhood ACCs are reported in the context of cancer
predisposition syndromes, in particular the Carney complex
(CNC), the BWS, and the LFS. CNC, mostly due to germline
inactivating mutations of PRKAR1A, is rarely associated with
ACC but is the main cause of primary pigmented nodular
adrenal diseases and usually linked to other tumors (somatotroph
pituitary adenomas, thyroid, breast, and bone tumors, Sertoli
tumors, melanocytic schwannoma, and cardiac and cutaneous
myxomas) (5).

BWS is an overgrowth and tumor predisposition syndrome
caused by genetic or epigenetic changes at the 11p15 locus.
Childhood ACCs, together with embryonal tumors, represent
the standard tumor spectrum of BWS (5). In our case studies,
one patient was first clinically diagnosed with BWS, due to
macrosomia, hyperinsulinism, hypoglycemia, and tumor at
1 month old. Then, the diagnosis of mosaic BWS was genetically
confirmed by the evidence of chromosome 11 trisomy on
healthy and neoplastic adrenal tissue but not on peripheral
lymphocytes. Notably, this patient developed metastatic
disease 3 months after surgery, treated by chemotherapy
and mitotane, obtaining a complete remission with a
7-year follow-up.

LFS is a dramatic cancer predisposition syndrome, caused by
germline inactivating mutations of TP53 that highly expose to
various and precocious cancer risk. Among the most common
tumors in LFS are premenopausal breast cancer, soft-tissue
sarcoma, osteosarcoma, central nervous system tumors, and
ACC, the latter accounting for the 50–80% of pediatric cases. We
found TP53mutation in 75% of tested patients (6/8) underlining
the need to predict carrier and familial disease penetrance
with potentially broad implications for clinical surveillance and
counseling. Of note, the familial history was positive for cancer
in four patients with TP53mutation and highly suggestive of LFS
in two cases for the tumor histotypes and the very young age
of the affected individuals. The most part of detected mutations
were indeed already recognized as pathogenic (Table 3). In
particular, the R248W missense TP53 mutant that we found in
patient 8 has been described to gain novel oncogenic activities
(23, 26, 47). Interestingly, Pinto et al. (48) have investigated
the clinicopathologic characteristics and outcomes of children
with ACT without germline TP53 mutations. They found
overlapping features with those reported for children with

germline TP53 mutations, highlighting the central role of genetic
or epigenetic alterations on chromosome 11p15 in pediatric
ACT (48).

CONCLUSION

Our experience with an ACT patient cohort of very young
patients (12/13 aged <4 years at diagnosis), with relative
short time from symptoms onset and localized disease at
diagnosis, suggests an excellent prognosis with appropriate
and aggressive diagnosis, staging, and surgical treatment.
Our experience confirms age and metastasis as independent
prognostic factors and the importance of early diagnosis,
supported by already recommended echographic screening
in neonates. In our patients, use of the Wieneke index,
which is reported to be most accurate in predicting
clinical outcomes in younger children, could not predict
clinical outcomes.

We were able to treat all patients with surgery. Adjuvant
mitotane was offered to 7 of 13 patients for 12 months
with acceptable tolerance and no disease recurrence during
therapy. In patients who developed metastatic disease, both
immunotherapy and chemotherapy led to disease remission
or control.

TP53mutation was found in 75% of tested patients confirming
the need to perform genetic tests and familial counseling in
this disease.
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Vascular tumors in pediatric patients are an important entity for the clinician to recognize

and correctly diagnose. They may present at birth or develop at any point during

infancy, childhood, or adolescence. Most are benign, but even benign lesions may have

significant morbidity without proper intervention. Malignant vascular tumors are also rarely

seen in the pediatric population, and may be associated with various syndromes.

Keywords: hemangioma, pyogenic granuloma, pediatric vascular tumor, PHACE, angioma

INTRODUCTION

Vascular tumors in pediatric patients are important for the clinician to be able diagnose, classify,
and manage. They may present as a congenital lesion or develop at any point throughout infancy
and childhood, and often follow a predictable clinical course depending on the type of tumor.
The majority of vascular tumors occurring in children are benign, but even benign lesions may be
associated with significant morbidity; it is important to be able to recognize the high-risk features
associated with each type of tumor. The International Society for the Study of Vascular Anomalies
(ISSVA) released updated classification guidelines for vascular anomalies in 2018; these guidelines
divide vascular anomalies into vascular tumors (classified as benign, locally aggressive/borderline,
and malignant) and vascular malformations (1). Vascular tumors will be further discussed in detail
in this article.

DISCUSSION

Infantile Hemangioma
Infantile hemangiomas are themost common benign tumor of childhood with a reported incidence
of 4–5% in children <1 year of age (2). A female preponderance has been observed, with a
female-to-male ratio of 3:1 to 5:1. This ratio is even higher in PHACES syndrome, with a female-
to-male ratio reported up to 7:1 (3). There is also a higher risk associated with prematurity,
multiple gestation pregnancy, and in infants born to mothers who underwent chorionic-villus
sampling (3, 4). These vascular tumors are comprised of a benign proliferation of endothelial
cells. Pathogenesis is unknown and likely multifactorial. The tumor cells stain positive for GLUT-
1 protein throughout all stages of growth, which is not found in other vascular tumors. GLUT-1
is expressed in many tissues that serve as blood-tissue barriers including the placenta, brain, and
retina (5). The tumors are considered benign, but they may exist in critical locations, and therefore
be threatening to form or function. While mostly isolated in occurrence, association with other
findings will be discussed.

Infantile hemangiomas follow a predictable clinical course comprised of a proliferative phase, a
period of plateau or stability, followed by spontaneous regression. Up to 50% of patient’s have a skin
lesion present at birth, though this may be subtle clinically (5). They may present as telangiectases
or erythematous macules and patches, often with a surrounding zone of pallor. The growth phase

16

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://doi.org/10.3389/fped.2020.573023
http://crossmark.crossref.org/dialog/?doi=10.3389/fped.2020.573023&domain=pdf&date_stamp=2020-10-22
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:winelee@musc.edu
https://doi.org/10.3389/fped.2020.573023
https://www.frontiersin.org/articles/10.3389/fped.2020.573023/full


Hinen et al. Childhood Vascular Tumors

typically starts within the first month of life, with 80% of
growth occurring within the first 5 months (6). Growth
usually stops around 9–12 months of age. Most of these late-
growth hemangiomas were classified as deep or mixed type
hemangiomas (6). Growth after 36 months of age is rarely
reported and more common in segmental hemangiomas of the
head and neck and those involving deep and/or subcutaneous
structures (7). Involution usually starts around 12–18 months
of age, and can last for several years. Complete involution is
predicted to occur at a rate of 10 percent per year, with the
majority having completed involution by 5 years of age (5). It
is important to note that complete involution does not imply
normal skin left at the previous tumor site. Residual scarring,
fibrofatty tissue, and telangiectases may persist (5). For this
reason, it is important to determine the need for treatment
early in the proliferative phase to prevent these sequelae in high
risk lesions.

Classification of an infantile hemangioma is based on the
pattern (anatomic configuration) or type of lesion (depth) (1).
Patterns include focal, multifocal, segmental, and indeterminant.
Segmental lesions are determined in embryonic development and
may be associated with various syndromes. Focal hemangiomas
may be an isolated and innocuous finding, or could be
threatening to function or life depending on the location. For
example, the nasal tip/bridge, ear, periorbital, and lip are all
concerning anatomic locations due to risk of impaired function
or disfigurement. Additionally, intertriginous sites and lips are
high risk for ulceration (2, 5). Infantile hemangiomas may also be
classified by depth. Superficial lesions classically appear as bright
red papules or plaques, while deep lesions are blue to violaceous
nodules or tumors, sometimes with overlying telangiectases.
Mixed lesions also exist, which have both superficial and deep
components (Figure 1) (1). Infantile hemangiomas, most often
segmental IH, may fail to fully proliferate and therefore retain the
course telangiectatic appearance of a precursor lesion. These are
termedminimal growth hemangioma or IH-MAG (Figure 2) (8).

Infantile hemangiomas with a segmental morphology must be
given special consideration. Large segmental hemangiomas of the
face and neckmay be seen in PHACE syndrome, most commonly
>22 cm2 (Figure 3) (9). Concomitant congenital anomalies in
PHACE syndrome may include posterior fossa malformations,
hemangiomas, arterial anomalies, coarctation of the aorta and
cardiac defects, eye abnormalities, and sternal clefting or
supraumbilical raphe (1, 10). Further evaluation is needed
in patients suspected of having PHACE syndrome, including
imaging and evaluations by neurology and ophthalmology.
Vascular anomalies are the most common of the PHACE
associations, and all patients with suspected PHACE should
undergo MRI imaging of the cerebral vasculature. Based on these
findings, patients should be risked stratified for risk of acute
ischemic stroke and appropriate surveillance and intervention
considered (11). Endocrinologic dysfunction has also been
reported in PHACE syndrome including hypothyroidism,
growth hormone deficiency, and pituitary dysfunction (12).

Another anatomic area of concern is the cervicofacial or
“beard” distribution. Large or multifocal infantile hemangiomas

FIGURE 1 | Compound infantile hemangioma of the glabella in a 5 month old

infant.

in this area may be associated with airway involvement
that can compromise respiratory function. One retrospective
review found that 63 percent of patients with extensive
infantile hemangiomas in this distribution had associated
symptomatic airway involvement (13). Consideration of further
imaging and referral to specialists should be given to these
patients. Airway hemangiomas may occur in the absence of
cutaneous hemangiomas.

Lumbosacral or extensive lower body segmental infantile
hemangiomas are also lesions that may be associated with
congenital anomalies (14). Multiple acronyms have been
proposed to encompass findings associated with these
hemangiomas including LUMBAR, SACRAL, and PELVIC
syndromes (3). Extensive lower body hemangiomas with a
minimal growth morphology were most commonly associated
with LUMBAR syndrome. Associated findings include
lower body hemangiomas, urogenital anomalies, ulceration,
myelopathy, bony deformities, anorectal malformations, arterial
anomalies, renal anomalies (1). Work-up including imaging
should be guided by location of the hemangioma (14).

The majority of infantile hemangiomas occur in isolation,
however approximately 20% of patients will have more than
1 lesion (4). If a patient has five or more cutaneous
infantile hemangiomas involving any site, screening abdominal
ultrasound should be performed to rule out the presence of
hepatic hemangiomas. Hepatic hemangiomas can occur in three
patterns; focal, diffuse, or multifocal. Focal lesions usually
represent congenital hemangiomas, while diffuse and multifocal
patterns are more classic for infantile hemangiomas (4, 15).
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FIGURE 2 | Extensive minimal growth infantile hemangioma (IH-Mag) of the

lower extremity in an infant with LUMBAR syndrome.

Multifocal hepatic infantile hemangiomas are usually
asymptomatic, but may be associated with high-output cardiac
failure due to vascular shunting. Diffuse hepatic infantile
hemangiomas are higher risk, and may cause hepatomegaly
resulting in abdominal compartment syndrome (4, 15).
Both multifocal and diffuse patterns may also be associated
with consumptive hypothyroidism due to the presence of
intralesional type 3 iodothyronine deiodinase (16). Patients
with symptomatic hepatic hemangiomatosis require prompt
treatment with oral propranolol 2–3 mg/kg per day to avoid
these life-threatening complications.

Several treatment options exist for infantile hemangiomas,
and determination of therapy depends on multiple factors. A
prospective study by Haggstrom et al. found that the most
important predictors of poor outcomes associated with infantile
hemangiomas are large size, segmental morphology, and facial
location (17). Presence of ulceration is the most common
complication, which may lead to scarring and pain.

The most common treatment for infantile hemangiomas is
active observation, given the propensity for these lesions to
completely regress. If a lesion is ulcerated or has high-risk
features, other therapies should be considered. The first-line
treatment for infantile hemangiomas requiring systemic therapy
is oral propranolol 2–3 mg/kg/day, which has replaced systemic
corticosteroids as the gold standard. If indicated, oral propranolol
should be used for lesions throughout the entire proliferative
stage. The medication may be initiated in the outpatient setting
in infants older than 5–8 weeks corrected gestational age, without

FIGURE 3 | Facial infantile hemangioma in a 6 week old infant with PHACE

syndrome.

comorbid conditions. Heart rate and blood pressure should
be monitored for upon initiation and with dose titrations (3).
Extensive counseling with parents is required regarding potential
side effects of propranolol, and they should be made aware of
when to hold doses of the medication if needed. Additionally,
doses should be given after a meal to prevent hypoglycemia
(3). Hemangiomas falling in a high-risk category should have
early referral to a hemangioma specialist for treatment initiation
according to the AAP consensus guidelines (2).

Topical timolol and topical or intralesional corticosteroids
may also be used as treatment for smaller, focal infantile
hemangiomas. For ulcerated lesions, Pulse Dye Laser is a
treatment option, though caution must be taken as this may
induce ulceration of hemangiomas in the proliferative phase
(3). Other therapies that have historically been used to treat
infantile hemangiomas include interferon, vincristine, systemic
corticosteroids, and cyclophosphamide, however these are now
typically only used in rare circumstances for lesions resistant
to treatment with propranolol. Systemic sirolimus has recently
been successfully used to treat refractory hemangiomas, and is a
promising emerging therapy for several vascular tumors (5, 18,
19). Embolization and surgical removal may also be an option,
especially for larger, pedunculated lesions that are likely to heal
with disfigurement. Finally, lasers are useful therapies both for
lesions in the proliferative phase, as well as for treating sequalae
in regressed lesions including telangiectases and scarring (5).

Congenital Hemangiomas
Congenital hemangiomas, unlike infantile hemangiomas, present
fully formed at birth and may be diagnosed in utero. They
are much more rare than infantile hemangiomas. There are
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three defined types; rapidly involuting congenital hemangiomas
(RICH), partially-involuting congenital hemangiomas (PICH),
and non-involuting congenital hemangiomas (NICH) (1). RICHs
often present as exophytic masses that start to involute shortly
after birth, and completely regress by 6–14 months of age
(Figure 4). They may be associated with a localized consumptive
coagulopathy and thrombocytopenia, though less severe than
in Kasabach-Merritt Phenomenon, an entity discussed later in
this article (3, 20). Residual atrophy and scarring is often found
following regression. NICHs are often broad plaques, and less
exophytic. They do not involute, and grow proportionately with
the patient.

These lesions can be differentiated from infantile
hemangiomas by the natural history, histology, and
immunophenotype (21). Congenital hemangiomas are GLUT-1
negative, unlike infantile hemangiomas. Histologically they
are comprised of lobules of proliferating capillaries that are
separated by dense, abnormal fibrotic stroma. The overlying
epidermis is atrophic and there is loss of dermal adnexal
structures. This is unlike infantile hemangiomas, in which the
proliferating lobules of capillaries are separated by normal
connective tissue and overlying epidermis is not atrophic in
non-regressed lesions (21). Somatic activating mutations in
GNAQ and GNA11 have been identified in a subset of congenital
hemangiomas (22).

Treatment of congenital hemangiomas depends upon
multiple factors including the type, size, and location.
Observation is often recommended for initial management,
and the clinician may consider imaging or biopsy to
confirm diagnosis if it is in question. For large exophytic
RICHs, redundant atrophic tissue may persist after
involution that may require surgical excision. Congenital
hemangiomas may be associated with ulceration and
life-threatening hemorrhage and thrombocytopenia. In
addition, large congenital hemangiomas, particularly in the
liver, may induce a high-output cardiac state. Resection
is the only known treatment for complicated congenital
hemangiomas. Surgery may also be required for large
NICHs. Pulse dye laser can be used to treat superficial
telangiectases (3).

FIGURE 4 | Rapidly involuting congenital hemangioma on the thigh of a 2

month old infant.

Pyogenic Granuloma
Pyogenic granulomas (PGs), also known as lobular capillary
hemangiomas, are a common acquired benign vascular tumor.
Clinically, these lesions present as red to brown papules that
may have a collarette of scale and bleed easily when traumatized
(Figure 5). They can occur anywhere, but most commonly occur
on exposed areas of skin in sites of trauma including the hands,
face, and mucous membranes. They are usually solitary, but
may be multiple and agminated, as seen in association with pre-
existing capillary malformations (Figure 6) (23). PGs may occur
more frequently during pregnancy or in association with certain
medications (24).

The treatment of choice for pyogenic granulomas is most
often surgical excision followed by electrodessication or curettage
of the base of the lesion to help prevent recurrence. Small
lesions can also be treated with the Pulse Dye Laser or combined
continuous-wave/pulsed CO2 laser to helpminimize scarring and
other adverse effects (25, 26). Topical imiquimod and topical
or oral beta-blockers have also been successfully used as a non-
invasive treatment option (27).

Tufted Angioma
Tufted angiomas are classified as benign vascular tumors by the
ISSVA, but it is pertinent to distinguish them from infantile
and congenital hemangiomas, as they may be complicated
by Kasabach-Merritt Phenomenon. Tufted angiomas typically
appear within the first 5 years of life and may be present at
birth, though sporadic cases of acquired tufted angiomas in adult

FIGURE 5 | Large pyogenic granuloma on the scalp.

FIGURE 6 | Pyogenic granuloma-like growth arising within a capillary

malformation.
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patients have been reported (28, 29). They are slow-growing,
erythematous to violaceous indurated plaques on the neck or
upper trunk, often poorly-demarcated. Some lesions have been
reported to have overlying hypertrichosis and hyperhidrosis.
Histologically, they demonstrate tufts and lobules of capillaries in
a cannonball pattern (28). Some consider tufted angiomas to be
on a spectrum with kaposiform hemangioendotheliomas, as they
often share similar histologic features and both can be associated
with Kasabach-Merritt Phenomenon.

Kaposiform Hemangioendothelioma
Kaposiform hemangioendotheliomas (KHE) are rare tumors
that present in infancy or early childhood; they are classified
as locally aggressive or borderline vascular tumors (1). KHEs
may present as a rapidly expanding firm violaceous plaque
in the skin, that often infiltrates deep soft tissue and bone
(Figure 7). They may occur in the retroperitoneum as well
as visceral locations, making diagnosis particularly challenging.
Histologically, the lesions demonstrate some features similar
to tufted angiomas, though they can be distinguished by the
presence of lymphangiomatosis and a sheet-like pattern of
growth that may resemble Kaposi’s sarcoma (28). Kaposiform
hemangioendotheliomas are also larger and less well-defined
tumors than tufted angiomas. Prognosis depends on the extent
and location of the tumor. Poor prognosis is associated with
visceral disease and consumptive thrombocytopenia, known
as Kasabach-Merritt Phenomenon (KMP). KMP is associated
with ∼70% of KHEs, and has a propensity to occurs in large
lesions (>8 cm) that are located in the retroperitoneum or
intrathoracic region (30, 31). Treatment of both KHE and
tufted angioma is difficult, but management is primarily medical.
Successful interventions have included systemic corticosteroids,

FIGURE 7 | Kaposiform hemangioendothelioma on the thigh of an infant.

cyclophosphamide, vincristine, and oral sirolimus. Sirolimus in
particular is a promising emerging therapy for the medical
management of these tumors. The first reported successful case of
refractory KHE treated with sirolimus was in 2010 (32). Several
studies published since that time have also showed promising
results. A recent retrospective study by Wang et al. showed
reduction in tumor size and normalization of platelet counts
in 19 of 20 patients with KHE who completed therapy with
oral Sirolimus. This study showed no evidence of recurrence
after a median follow-up time of 32 months, and average
time to response to therapy was 1 week (33). Though medical
management predominates in the treatment of tufted angiomas
and kaposiform hemangioendotheliomas, if a lesion is localized
and well-circumscribed, surgery may be an option. Embolization
can also be used to stabilize very large lesions until medical
therapy can be initiated (34–36).

Kasabach-Merritt Phenomenon is characterized clinically by
a consumptive coagulopathy resulting in thrombocytopenia
and hypofibrinogenemia, that can be seen in patients with
tufted angiomas and kaposiform hemangioendotheliomas (37).
Clinically, it is characterized by rapid enlargement of the
vascular tumor with ecchymosis. KMP shows a variable
response to treatment; both IV vincristine (combined with
antiplatelet therapies) and oral sirolimus have shown promising
results, though they have not been compared in a study.
The conventional standard treatment was previously systemic
corticosteroids which may be used initially, but should not delay
the initiation of sirolimus or vincristine if indicated (35, 37).
Other therapies for these lesions have included embolization,
surgical excision, pulse dye laser, low-dose aspirin, and radiation
therapy. Each of these therapies has limitations, and have shown
mixed results regarding safety and efficacy (28, 38, 39).

Dabska Tumor
Papillary intralymphatic angioendotheliomas (PILA), also
known as Dabska tumors, are rare vascular tumors that are most
commonly found in children. They are categorized by the ISSVA
as locally aggressive or borderline vascular tumors (1). The
Dabska tumor was first described as a low-grade angiosarcoma in
1969 byMaria Dabska, who published a case series of six patients.
Three of the six patients had lymph node involvement, and one
patient had distant metastasis of the tumor resulting in death
(40). Since it was first described, other cases have been reported
that have seemingly behaved in a more benign manner (41).
Histologically, the tumors are characterized by an intravascular
proliferation of hobnail endothelial cells that form characteristic
intraluminal papillary projections. They also have evidence of
lymphatic vessels either histologically or immunophenotypically.
Given the presence of these features histologically, the name
Papillary Intralymphatic Angioendothelioma (PILA) was
proposed by Fanburg-Smith et al. (41). Clinically, the tumor
appears as a slow-growing violaceous to erythematous nodule or
plaque, that over time may become more poorly-defined with
palpable projections or satellite lesions. There is no predilection
for gender or anatomic site (42). Treatment for these lesions is
surgical excision with clear margins and close follow-up, given
the potential for lymph node involvement and distant metastasis.
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Hemangioendothelioma
Epithelioid Hemangioendothelioma
Epithelioid hemangioma (EHE) is a rare malignant vascular
tumor that has overlapping of features of both angiosarcoma
and epithelioid hemangioma. The tumor most commonly results
from a translocation between chromosomes 1 and 3 that
creates a pathopneumonic WWTR1-CAMTA1 fusion protein.
Less often, it may result from a YAP1-TFE3 fusion (43–45).
EHE most often occurs in middle age, however pediatric cases
have been reported. Clinically, EHE has a variable presentation
and has been reported to affect many different organs. Liver
involvement is the most common presenting body site to be
involved (21%), followed by both liver and lung involvement
(18%), then bone alone (14%), and then lung involvement alone
(12%) (43, 44). EHE may also involve the subcutaneous fat,
presenting as subcutaneous nodules. Affected patients may have
systemic symptoms, such as weight loss, fatigue, and fever,
however the malignancy is commonly asymptomatic and often
diagnosed by incidental findings on chest imaging (43, 44, 46).
Prognosis is variable; poor outcomes are associated with systemic
symptoms, metastases at time of diagnosis, and increased
mitoses on pathology (43, 46, 47). Management is variable and
data is limited given the rarity of the malignancy. Treatment
options may include chemotherapeutic agents, immunotherapy,
and targeted therapies (43). Surgical resection is an option
for localized disease, and watchful waiting may be considered
for asymptomatic disease, as spontaneous regression has been
reported (46). Liver transplant for patients with hepatic EHE has
also been reported as a successful treatment option. Interestingly,
the presence of lymph node or extra-heptic involvement did not
impact disease free survival in a series of 59 patients with hepatic
EHE treated with liver transplant (43, 48).

Pseudomyogenic Hemangioendothelioma
Pseudomyogenic hemangioendothelioma (PHE) is a recently
recognized, locally aggressive or borderline vascular tumor
(1). The tumor expresses a fusion gene between FOSB and
either SERPINE1, ACTB, or WWTR1, which results in an
overexpression of FOSB (49). PHE most frequently occurs in
young adult males, and often presents as grouped nodules on
the lower limb. Histologically, the tumor is composed of sheets
and cords of spindled cells with eosinophilic cytoplasm. Despite
the resemblance of myoid cells, the tumor cells stain negative
for desmin and positive for endothelial markers (45, 49, 50).
Treatment of PHE is often determined by the size and location of
the tumor; surgical excision is usually the treatment of choice, but
given the propensity for PHEs to be multifocal, surgery may not
be an option. Additionally, one third of patients have recurrence
after surgical excision (51). In such cases, medical management
with gemcitabine, sirolimus, and everolimus have been used
successfully (50–52). Given the rarity and recent discovery of
PHE, clinical trials have not yet been conducted, so further
research is needed in medical management treatment options.

Other Hemangioendothelioma
There are several other borderline or locally aggressive
vascular tumors that are classified as hemangioendotheliomas.

These include the retiform hemangioendothelioma,
composite hemangioendothelioma, and polymorphous
hemangioendothelioma (1). Each of these tumors has unique
histopathologic findings that aids in diagnosis. Most are low-
grade neoplasms that have the potential to metastasize, though
they rarely do. They vary in aggressiveness, and often recur
after excision. Treatment of hemangioendotheliomas is typically
handled on a case-by-case basis, and depends on histologic
features and clinical aggressiveness (53).

Angiosarcoma
Angiosarcomas are uncommon, highly aggressive vascular
tumors that usually present in the skin or soft tissue on
the head and neck of elderly patients, but can affect any
visceral organ. They are very rarely reported in children,
and account for only 0.3% of pediatric sarcomas (54).
The diagnosis portends a poor prognosis; angiosarcomas are
often aggressive and have a tendency to metastasize (55).
Known risk factors for developing angiosarcoma include long-
standing lymphedema, prior radiation, and inherited familial
syndromes including Neurofibromatosis Type I and Klippel-
Trenaunay syndrome (54). Clinically, the tumor can present
as an expanding bruise-like lesion, or as an erythematous to
violaceous nodule or plaque. Visceral lesions often present as
an expanding mass. Treatment of angiosarcoma is challenging,
and recurrences are common. Successful therapies have included
multi-agent cytotoxic chemotherapy, immunotherapy, tyrosine
kinase inhibitors and propranolol, combined with surgical
resection and radiation (56).

Vascular Syndromes With Malignancy Risk
Beckwith-Wiedemann syndrome (BWS) is a vascular syndrome
associated with other characteristic congenital anomalies, and
affected patients have an increased risk of developing various
malignancies. BWS results from mutations on chromosome
11p15.5 and may present with hemihyperplasia, centrofacial
capillary malformation, macrocephaly, macroglossia,
hypoglycemia, and organomegaly (57, 58). Patients with BWS are
at increased risk of developing several embryonal malignancies
including Wilms tumor, hepatoblastoma, rhabdomyosarcoma,
and neuroblastoma. Risk of tumor development in affected
patients is ∼5–10 percent, with Wilms tumor being the most
frequent tumor observed (58). Nephromegaly is considered to be
a strong risk factor for developing Wilms tumor in these patients
(59). The vast majority of the tumors in BWS occur intra-
abdominally, therefore screening with abdominal ultrasound
three to four times a year can be very useful in early detection
and treatment of malignancies in these patients (58, 60, 61).
Lapunzina et al. also suggests serial screening with physical
examination, urinalysis, various serological tests, chest x-ray,
and urine VMA, HVA, and catecholamines at varying intervals
depending on age. As the majority of tumors are embryonal in
origin, most malignancies occur in infancy or early childhood, so
screening should be more frequent in younger patients.

CLOVES (congenital lipomatous overgrowth, vascular
malformations, epidermal nevi, and skeletal anomalies)
syndrome is another vascular syndrome that has an increased
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risk of malignancy. Affected patients have an increased
risk of Wilms tumor that is reported to be similar to that
seen in Beckwith-Wiedemann syndrome and other isolated
hemihypertrophy disorders (57). CLOVES syndrome is caused
by a postzygotic activating PIK3CA mutation, and is considered
by many to be on a spectrum with other disorders characterized
by PIK3CA somatic mutations. The PIK3CA-related overgrowth
spectrum (PROS) disorders also include macrocephaly-
capillary malformation, Klippel-Trenaunay syndrome (KTS),
macrodactyly, isolated lymphatic malformation and others
(57, 62). Outside of CLOVES syndrome, Wilms tumor has
only been reported in 4 other patients with PIK3CA-related
overgrowth spectrum (PROS) disorders including two cases
seen in macrocephaly-capillary malformation (M-CM) (57, 62–
64). Other PROS disorders, including Klippel-Trenaunay
syndrome (KTS), have not been shown to be associated
with an increased risk of Wilms tumor or other malignancy
compared to the general population (57, 65, 66). Given the
increased risk in patients with CLOVES syndrome and the
benefit of early detection of Wilms tumor, these patients
may benefit from screening ultrasounds. Peterman et al.
proposes abdominal ultrasounds on a screening schedule
similar to that for BWS; every 3 months until 7 years of age,
with most tumors expected to be detected before 3 years of
age (57).

Other syndromes with increased risk of malignancy include
those with mutations in the PTEN tumor suppressor gene.
Also known as PTEN hamartoma tumor syndromes (PHTS),
these disorders include Cowden syndrome and Bannayan-
Riley-Ruvalcaba syndrome. These disorders are allelic to one
another, but have clinically distinct phenotypes (67). Cowden
syndrome is usually diagnosed in adolescence or adulthood,
and is characterized by pathopneumonic dermatologic findings
including trichilimmomas and numerous papillomatous lesions
of the skin and mucosa. Patients with Cowden syndrome have
a significantly increased risk of several malignancies including
breast, endometrial, and thyroid carcinomas (67). Patient’s with

Bannayan-Riley-Ruvalcaba syndrome are usually diagnosed in
childhood. They also have an increased risk of tumors, but
unlike Cowden syndrome, most of these tumors are benign and
include lipomas, angiolipomas, and hamartomatous GI polyps.
Other common clinical findings include penile lentigines and
macrocephaly (58, 67). Vascular tumors can be seen in both
Cowden Syndrome and Bannayan-Riley-Ruvalcaba syndrome;
hemangiomas and arteriovenous malformations have both been
reported (67).

CONCLUSIONS

Infantile hemangioma is a common vascular tumor in infants,
but not all benign vascular tumors are hemangiomas. Other
vascular tumors in children are relatively rare and important to
recognize, given difference in natural history, clinical prognosis,
and treatment options. Though the vast majority of pediatric
vascular tumors are benign and diagnosed clinically, it may
be difficult to determine the diagnosis and predict risk of

a particular lesion, so further imaging or biopsy for tissue
diagnosis may be warranted. Once diagnosed, it is important
for the clinician to recognize high risk features of each
tumor, including anatomic risks, morphology, potential for
co-existing congenital anomalies, coagulopathy, and malignant
potential. Treatment of pediatric vascular tumors is often
multi-disciplinary and is influenced heavily by individual risks
and benefits. The options for medical therapies are actively
evolving through genetic discoveries and compassionate use in
selected patients.

AUTHOR CONTRIBUTIONS

HH, CT, and LW contributed to the writing of the manuscript.
LW and CT supervised the project and provided clinical images.
LB contributed to the conceptualization, design, and editing
of the manuscript. All authors contributed to the article and
approved the submitted version.

REFERENCES

1. ISSVA Classification of Vascular Anomalies ©2018. International Society

for the Study of Vascular Anomalies (2018). Available online at:

issva.org/classification (accessed March 19, 2020).

2. Krowchuk DP, Frieden IJ, Mancini AJ, Darrow DH, Blei F, Greene AK, et al.

clinical practice guideline for the management of infantile hemangiomas.

Pediatrics. (2019) 143:e20183475. doi: 10.1542/peds.2018-3475

3. Liang MG, Frieden IJ. Infantile and congenital hemangiomas. Semin Pediatr

Surg. (2014) 23:1627. doi: 10.1053/j.sempedsurg.2014.06.017

4. Mulliken JB, Fishman SJ, Burrows PE. Vascular anomalies. Curr Probl Surg.

(2000) 37:519–84. doi: 10.1016/S0011-3840(00)80013-1

5. Bruckner AL, Frieden IJ. Hemangiomas of infancy. J Am Acad Dermatol.

(2003) 48:477–93. doi: 10.1067/mjd.2003.200

6. Chang LC, Haggstrom AN, Drolet BA, Baselga E, Chamlin SL, Garzon

MC, et al. Growth characteristics of infantile hemangiomas: implications for

management. Pediatrics. (2008) 122:360–7. doi: 10.1542/peds.2007-2767

7. O’Brien KF, Shah SD, Pope E, Phillips RJ, Blei F, Baselga E, et al. Late growth

of infantile hemangiomas in children >3 years of age: a retrospective study. J

Am Acad Dermatol. (2019) 80:493–99. doi: 10.1016/j.jaad.2018.07.061

8. Suh KY, Frieden IJ. Infantile hemangiomas with minimal or arrested

growth: a retrospective case series. Arch Dermatol. (2010) 146:971–6.

doi: 10.1001/archdermatol.2010.197

9. GarzonMC, Epstein LG,Heyer GL, Frommelt PC, OrbachDB, Baylis AL, et al.

PHACE syndrome: consensus-derived diagnosis and care recommendations.

J Pediatr. (2016) 178:24–33. doi: 10.1016/j.jpeds.2016.07.054

10. Frieden IJ, Reese V, Cohen D. PHACE syndrome: the association of posterior

fossa brain malformations, hemangiomas, arterial anomalies, coarctation of

the aorta and cardiac defects, eye abnormalities. Arch Dermatol. (1996)

132:307–11. doi: 10.1001/archderm.132.3.307

11. Seigel DH, Tefft KA, Kelly T, Johnson C, Metry D, Burrows P,

et al. Stroke in children with posterior fossa brain malformations,

hemangiomas, arterial anomalies, coarctation of the aorta and cardiac

defects, and eye abnormalities (PHACE) syndrome: a systematic review

of the literature. Stroke. (2012) 43:1672–4. doi: 10.1161/STROKEAHA.112.

650952

12. Poindexter G, Metry DW, Barkovich AJ, Frieden IJ. PHACE syndrome

with intracerebral hemangiomas, heterotopia, endocrine dysfunction.

Pediatr Neurol. (2007) 36:402–6. doi: 10.1016/j.pediatrneurol.2007.

01.017

Frontiers in Pediatrics | www.frontiersin.org 7 October 2020 | Volume 8 | Article 57302322

https://issva.org/classification
https://doi.org/10.1542/peds.2018-3475
https://doi.org/10.1053/j.sempedsurg.2014.06.017
https://doi.org/10.1016/S0011-3840(00)80013-1
https://doi.org/10.1067/mjd.2003.200
https://doi.org/10.1542/peds.2007-2767
https://doi.org/10.1016/j.jaad.2018.07.061
https://doi.org/10.1001/archdermatol.2010.197
https://doi.org/10.1016/j.jpeds.2016.07.054
https://doi.org/10.1001/archderm.132.3.307
https://doi.org/10.1161/STROKEAHA.112.650952
https://doi.org/10.1016/j.pediatrneurol.2007.01.017
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Hinen et al. Childhood Vascular Tumors

13. Orlow SJ, Isakoff MS, Blei F. Increased risk of symptomatic hemangiomas

of the airway in association with cutaneous hemangiomas in a “beard”

distribution. J Pediatr. (1997) 131:643–6. doi: 10.1016/S0022-3476(97)

70079-9

14. Iacobus I, Burrows PE, Frieden IJ, Liang MG, Mulliken JB,

Mancini AJ, et al. LUMBAR: association between cutaneous

infantile hemangiomas of the lower body and regional congenital

anomalies. J Pediatr. (2010) 157:795–801.e7. doi: 10.1016/j.jpeds.2010.

05.027

15. Rialon KL, Murillo R, Fevurly RD, Kulungowski AM, Christison-Lagay

ER, Zurakowski D, et al. Risk factors for mortality in patients with

multifocal and diffuse hepatic hemangiomas. J Pediatr Surg. (2015) 50:837–41.

doi: 10.1016/j.jpedsurg.2014.09.056

16. Huang SA, Tu HM, Harney JW, Venihaki M, Butte AJ, Kozakewich

HP, et al. Severe hypothyroidism caused by type 3 iodothyronine

deiodinase in infantile hemangiomas. N Engl J Med. (2000) 343:185–9.

doi: 10.1056/NEJM200007203430305

17. Haggstrom AN, Drolet BA, Baselga E, Chamlin SL, Garzon MC, Horii KA,

et al. Prospective study of infantile hemangiomas: clinical characteristics

predicting complications and treatment. Pediatrics. (2006) 118:882–7.

doi: 10.1542/peds.2006-0413

18. Davila-Osorio VL, Iznardo H, Roe E, Puig L, Baselga E. Propranolol-resistant

infantile hemangioma successfully treated with sirolimus. Pediatr Dermatol.

(2020) 37:684–6. doi: 10.1111/pde.14163

19. Warren D, Diaz L, Levy M. Diffuse hepatic hemangiomas successfully treated

using Sirolimus and high-dose propranolol. Pediatr Dermatol. (2017) 34:e286.

doi: 10.1111/pde.13219

20. Boon LM, Enjolras O, Mulliken JB. Congenital hemangioma:

evidence of accelerated involution. J Pediatr. (1996) 128:329–35.

doi: 10.1016/S0022-3476(96)70276-7

21. North PE, Waner M, James CA, Mizeracki A, Frieden IJ, Mihm

MC. Congenital nonprogressive hemangioma: a distinct clinicopathologic

entity unlike infantile hemangioma. Arch Dermatol. (2001) 137:1607–20.

doi: 10.1001/archderm.137.12.1607

22. Ayturk UM, Couto JA, Hann S, Mulliken JB, Williams KL, Huang

AY, et al. Somatic activating mutations in GNAQ and GNA11 are

associated with congenital hemangioma. Am J Hum Genet. (2016) 98:789–95.

doi: 10.1016/j.ajhg.2016.03.009

23. Baselga E, Wassef M, Lopez S, Hoffman W, Cordisco M, Frieden

IJ. Agminated, eruptive pyogenic granuloma-like lesions developing

over congenital vascular stains. Pediatr Dermatol. (2012) 29:186–90.

doi: 10.1111/j.1525-1470.2011.01565.x

24. Benedetto C, Crasto D, Ettefagh L, Nami N. Development of periungual

pyogenic granuloma with associated paronychia following isotretinoin

therapy: a case report and a review of the literature. J Clin Aesthet Dermatol.

(2019) 12:2–36.

25. Tay YK, Weston WL, Morelli JG. Treatment of pyogenic granuloma in

children with the flashlamp-pumped pulsed dye laser. Pediatrics. (1997)

99:368–70. doi: 10.1542/peds.99.3.368

26. Raulin C, Greve B, Hammes S. The combined continuous-wave/pulsed carbon

dioxide laser for treatment of pyogenic granuloma. Arch Dermatol. (2002)

138:33–7. doi: 10.1001/archderm.138.1.33

27. Tritton SM, Smith S, Wong LC, Zagarella S, Fischer G. Pyogenic granuloma

in ten children treated with topical imiquimod. Pediatr Dermatol. (2009)

26:269–72. doi: 10.1111/j.1525-1470.2008.00864.x

28. Herron MD, Coffin CM, Vanderhooft SL. Tufted angiomas: variability

of the clinical morphology. Pediatr Dermatol. (2002) 19:394–401.

doi: 10.1046/j.1525-1470.2002.00113.x

29. Sabharwal A, Aguirre A, Zahid TM, Jean-Charles G, Hatton MN. Aquired

tufted angioma of upper lip: case report and review of the literature. Head

Neck Pathol. (2013) 7:291–4. doi: 10.1007/s12105-013-0437-0

30. Putra J, Gupta A. Kaposiform hemangioendothelioma: a review with

emphasis on histological differential diagnosis. Pathology. (2017) 49:356–62.

doi: 10.1016/j.pathol.2017.03.001

31. Croteau SE, Liang MG, Kozakewich HP, Alomari AI, Fishman SJ, Mulliken

JB, et al. Kaposiform hemagnioendothelioma: atypical features and risks of

Kasabach-Merritt phenomenon in 107 referrals. J Pediatr. (2013) 162:142–7.

doi: 10.1016/j.jpeds.2012.06.044

32. Wang Z, Yao W, Sun H, Dong K, Ma Y, Chen L, et al. Sirolimus therapy

for kaposiform hemangioendothelioma with long-term follow-up. J Dermatol.

(2019) 46:956–61. doi: 10.1111/1346-8138.15076

33. Schroeder U, LautenM, Stichtenoth G, GebhardMP, BuchholzM, KaiserMM.

Laryngomalacia and complicated, life-threateningmTOR-positive kaposiform

heman- gioendothelioma cured by supraglottoplasty and sirolimus. Klin

Padiatr. (2014) 226:362–8. doi: 10.1055/s-0034-1372587

34. Beaubien ER, Ball NJ, Storwick GS. Kaposiform hemangioendothelioma: a

locally aggressive vascular tumor. J Am Acad Dermatol. (1998) 38:799–802.

doi: 10.1016/S0190-9622(98)70461-X

35. Wang H, Guo X, Duan Y, Zheng B, Gao Y. Sirolimus as initial therapy for

kaposiform hemangioendothelioma and tufted angioma. Pediatr Dermatol.

(2018) 35:635–8. doi: 10.1111/pde.13600

36. Liu XH, Li JY, Qu XH, Yan WL, Zhang L, Yang C, et al. Treatment of

kaposiform hemangioendothelioma and tufted angioma. Int J Cancer. (2016)

139:1658–66. doi: 10.1002/ijc.30216

37. O’Raffery C, O’Regan GM, Irvine AD, Smith OP. Recent advances in

the pathobiology and management of Kasabach-Merritt phenomenon. Br J

Haematol. (2015) 171:38–51. doi: 10.1111/bjh.13557

38. Fahrtash F, McCahon E, Arbuckle S. Successful treatment of kaposiform

hemangioendothelioma and tufted angioma with vincristine. J Pediatr

Hematol Oncol. (2010) 32:506–10. doi: 10.1097/MPH.0b013e3181e001a9

39. Javvaji S, Frieden IJ. Response of tufted angiomas to low-dose aspirin. Pediatr

Dermatol. (2013) 30:124–7. doi: 10.1111/j.1525-1470.2011.01709.x

40. Dabska M. Malignant endovascular papillary angioendothelioma of the skin

in childhood: clinicopathologic study of 6 cases. Cancer. (1969) 24:503–10.

41. Fanburg-Smith JC, Michal M, Partanen TA, Alitalo K, Miettinen M. Papillary

Intralymphatic Angioendothelioma (PILA): a report of twelve cases of a

distinctive vascular tumor with phenotypic features of lymphatic vessels. Am

J Surg Pathol. (1999) 23:1004–10. doi: 10.1097/00000478-199909000-00002

42. Schwartz RA, Dabski C, Dabska M. The Dabska tumor: a 30-year retrospect.

Dermatology. (2000) 201:1–5. doi: 10.1159/000018419

43. Rosenberg A, Agulnik M. epithelioid hemangioendothelioma: update on

diagnosis and treatment. Curr Treat Options in Oncol. (2018) 19:19.

doi: 10.1007/s11864-018-0536-y

44. Sardaro A, Bardoscia L, Petruzzelli MF, Portaluri M. 3. Epithelioid

hemangioendothelioma: an overview and update on a rare vascular tumor.

Oncol Rev. (2014) 8:259. doi: 10.4081/oncol.2014.259

45. Doyle LA. Sarcoma classification: an update based on the 2013. World Health

Organization classification of tumors of soft tissue and bone. Cancer. (2014)

120:1763–74. doi: 10.1002/cncr.28657

46. Kitaichi M, Nagai S, Nishimura K, Itoh H, Asamoto H, Izumi T, et al.

Pulmonary epithelioid haemangioendothelioma in 21 patients, including

three with partial spontaneous regression. Eur Respir J. (1998) 12:89–96.

doi: 10.1183/09031936.98.12010089

47. Deyrup AT, Tighiouart M, Montag AG, Weiss SW. Epithelioid

hemangioendothelioma of soft tissue: a proposal for risk

stratification based on 49 cases. Am J Surg Pathol. (2008) 32:924–7.

doi: 10.1097/PAS.0b013e31815bf8e6

48. Lerut JP, Orlando G, Adam R, Schiavo M, Klempnauer J, Mirza D,

et al. The place of liver transplantation in the treatment of hepatic

epitheloid hemangioendothelioma: report of the European liver transplant

registry. Ann Surg. (2007) 246:949–57. doi: 10.1097/SLA.0b013e3181

5c2a70

49. Panagopoulos I, Lobmaier I, Gorunova L, Heim S. Fusion of the genes

WWTR1 and FOSB in pseudomyogenic hemangioendothelioma. Cancer

Genomics Proteomics. (2019) 16:293–8. doi: 10.21873/cgp.20134

50. Pranteda G, Magri F, Muscianese M, Pigliacelli F, D’Arino Federico

A, Pranteda G, et al. The management of pseudomyogenic

hemangioendothelioma of the foot: a case report and review of the literature.

Dermatol Ther. (2018) 31:e12725. doi: 10.1111/dth.12725

51. Jason J, Wei-lien W, Madhavi P, Naveen R, Robert B, Shreyaskumar

P, et al. Cytotoxic and targeted therapy for treatment of

pseudomyogenic hemangioendothelioma. Clin Sarcoma Res. (2015) 5:22.

doi: 10.1186/s13569-015-0037-8

52. Gabor KM, Sapi Z, Tiszlavicz LG, Fige A, Bereczki C, Bartyik K. Sirolimus

therapy in the treatment of pseudomyogenic hemangioendothelioma. Pediatr

Blood Cancer. (2018) 65:26781. doi: 10.1002/pbc.26781

Frontiers in Pediatrics | www.frontiersin.org 8 October 2020 | Volume 8 | Article 57302323

https://doi.org/10.1016/S0022-3476(97)70079-9
https://doi.org/10.1016/j.jpeds.2010.05.027
https://doi.org/10.1016/j.jpedsurg.2014.09.056
https://doi.org/10.1056/NEJM200007203430305
https://doi.org/10.1542/peds.2006-0413
https://doi.org/10.1111/pde.14163
https://doi.org/10.1111/pde.13219
https://doi.org/10.1016/S0022-3476(96)70276-7
https://doi.org/10.1001/archderm.137.12.1607
https://doi.org/10.1016/j.ajhg.2016.03.009
https://doi.org/10.1111/j.1525-1470.2011.01565.x
https://doi.org/10.1542/peds.99.3.368
https://doi.org/10.1001/archderm.138.1.33
https://doi.org/10.1111/j.1525-1470.2008.00864.x
https://doi.org/10.1046/j.1525-1470.2002.00113.x
https://doi.org/10.1007/s12105-013-0437-0
https://doi.org/10.1016/j.pathol.2017.03.001
https://doi.org/10.1016/j.jpeds.2012.06.044
https://doi.org/10.1111/1346-8138.15076
https://doi.org/10.1055/s-0034-1372587
https://doi.org/10.1016/S0190-9622(98)70461-X
https://doi.org/10.1111/pde.13600
https://doi.org/10.1002/ijc.30216
https://doi.org/10.1111/bjh.13557
https://doi.org/10.1097/MPH.0b013e3181e001a9
https://doi.org/10.1111/j.1525-1470.2011.01709.x
https://doi.org/10.1097/00000478-199909000-00002
https://doi.org/10.1159/000018419
https://doi.org/10.1007/s11864-018-0536-y
https://doi.org/10.4081/oncol.2014.259
https://doi.org/10.1002/cncr.28657
https://doi.org/10.1183/09031936.98.12010089
https://doi.org/10.1097/PAS.0b013e31815bf8e6
https://doi.org/10.1097/SLA.0b013e31815c2a70
https://doi.org/10.21873/cgp.20134
https://doi.org/10.1111/dth.12725
https://doi.org/10.1186/s13569-015-0037-8
https://doi.org/10.1002/pbc.26781
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Hinen et al. Childhood Vascular Tumors

53. Requena L, Kutzner H. Hemangioendothelioma. Semin Diagn Pathol. (2013)

30:22–49. doi: 10.1053/j.semdp.2012.01.003

54. Ferrari A, Casanova M, Bisogno G, Cecchetto G, Meazza C, Gandola L,

et al. Malignant vascular tumors in children and adolescents: a report from

the Italian and German soft tissue sarcoma cooperative group. Med Pediatr

Oncol;. (2002) 39:109–14. doi: 10.1002/mpo.10078

55. Young RJ, Brown NJ, Reed MW, Hughes D, Woll PJ. Angiosarcoma. Lancet

Oncol. (2010) 11:983–91. doi: 10.1016/S1470-2045(10)70023-1

56. Florou V, Wilky BA. Current and future directions for angiosarcoma therapy.

Curr Treat Opt Oncol. (2018) 19:14. doi: 10.1007/s11864-018-0531-3

57. Peterman CM, Fevurly RD, Alomari AI, Trenor CC 3rd, Adams DM,

Vadeboncoeur S, et al. Sonographic screening for Wilms tumor in

children with CLOVES syndrome. Pediatr Blood Cancer. (2017) 64:e26684.

doi: 10.1002/pbc.26684

58. Lapunzina P. Risk of tumorigenesis in overgrowth syndromes: a

comprehensive review. Am J Med Genet C Semin Med Genet. (2005)

137c:53–71. doi: 10.1002/ajmg.c.30064

59. DeBaun MR, Siegel MJ, Choyke PL. Nephromegaly in infancy and early

childhood: a risk factor for Wilms tumor in Beckwith-Wiedemann syndrome.

J Pediatr. (1998) 132:401–4. doi: 10.1016/S0022-3476(98)70009-5

60. Andrews MW, Amparo EG. Wilms’ tumor in a patient with Beckwith-

Wiedemann syndrome: onset detected with 3-month serial sonography. Am

J Roentgenol. (1993) 159:835–6. doi: 10.2214/ajr.160.1.8380110

61. Choyke PL, Siegel MJ, Craft AW. Screening for Wilms tumor in children with

Beckwith-Wiedemann syndrome or idiopathic hemihypertrophy.Med Pediatr

Oncol. (1993) 32:196–200.

62. Peterman CM, Vadeboncoeur S, Mulliken JB, Fishman SJ, Liang MG. Wilms

tumor screening in diffuse capillary malformation with overgrowth and

macrocephalyecapillary malformation: a retrospective study. J Am Acad

Dermatol. (2017) 77:874–8. doi: 10.1016/j.jaad.2017.06.014

63. Wright DR, Frieden IJ, Orlow SJ, Shin HT, Chamlin S, Schaffer JV,

et al. The misnomer “macrocephaly-cutis marmorata telaniectatica

congenita syndrome”: report of 12 new cases and support for

revising the name to macrocephaly-capillary malformations.

Arch Dermatol. (2009) 145:287–93. doi: 10.1001/archdermatol.20

08.545

64. Gripp KW, Baker L, Kandula V, Conard K, Scavina M, Napoli JA,

et al. Nephroblastomatosis or Wilms tumor in a fourth patient with

a somatic PIK3CA mutation. Am J Med Genet A. (2016) 170:2559–69.

doi: 10.1002/ajmg.a.37758

65. Greene AK, Kieran M, Burrows PE, Mulliken JB, Kasser J, Fishman SJ. Wilms

tumor screening is unnecessary in Klippel-Trennaunay syndrome. Pediatrics.

(2004) 113:326–9. doi: 10.1542/peds.113.4.e326

66. Blatt J, Finger M, Price V, Crary SE, Pandya A, Adams DM. Cancer

risk in Klippel-Trenaunay syndrome. Lymphat Res Biol. (2019) 17:630–6.

doi: 10.1089/lrb.2018.0049

67. Pilarkski R. PTEN hamartoma tumor syndrome: a clinical overview. Cancers.

(2019) 11:844. doi: 10.3390/cancers11060844

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Hinen, Boccuto, Trenor and Wine Lee. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Pediatrics | www.frontiersin.org 9 October 2020 | Volume 8 | Article 57302324

https://doi.org/10.1053/j.semdp.2012.01.003
https://doi.org/10.1002/mpo.10078
https://doi.org/10.1016/S1470-2045(10)70023-1
https://doi.org/10.1007/s11864-018-0531-3
https://doi.org/10.1002/pbc.26684
https://doi.org/10.1002/ajmg.c.30064
https://doi.org/10.1016/S0022-3476(98)70009-5
https://doi.org/10.2214/ajr.160.1.8380110
https://doi.org/10.1016/j.jaad.2017.06.014
https://doi.org/10.1001/archdermatol.2008.545
https://doi.org/10.1002/ajmg.a.37758
https://doi.org/10.1542/peds.113.4.e326
https://doi.org/10.1089/lrb.2018.0049
https://doi.org/10.3390/cancers11060844
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


CORRECTION
published: 24 February 2021

doi: 10.3389/fped.2021.649610

Frontiers in Pediatrics | www.frontiersin.org 1 February 2021 | Volume 9 | Article 649610

Approved by:

Frontiers Editorial Office,

Frontiers Media SA, Switzerland

*Correspondence:

Lara Wine Lee

winelee@musc.edu

Specialty section:

This article was submitted to

Pediatric Oncology,

a section of the journal

Frontiers in Pediatrics

Received: 05 January 2021

Accepted: 02 February 2021

Published: 24 February 2021

Citation:

Hinen HB, Boccuto L, Trenor CC III

and Wine Lee L (2021) Corrigendum:

Childhood Vascular Tumors.

Front. Pediatr. 9:649610.

doi: 10.3389/fped.2021.649610

Corrigendum: Childhood Vascular
Tumors

Harriet Bagnal Hinen 1, Luigi Boccuto 2, Cameron C. Trenor III 3 and Lara Wine Lee 1*

1Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC,

United States, 2College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC, United States,
3Division of Hematology/Oncology, Vascular Anomalies Center, Boston Children’s Hospital, Boston, MA, United States

Keywords: hemangioma, pyogenic granuloma, pediatric vascular tumor, PHACE, angioma

A Corrigendum on

Childhood Vascular Tumors

by Hinen, H. B., Boccuto, L., Trenor, C. C. III., and Wine Lee, L. (2020). Front. Pediatr. 8:573023.
doi: 10.3389/fped.2020.573023

Dr. Luigi Boccuto was not included as an author in the published article. The corrected Author
Contributions Statement appears below.

HH, CT, and LW contributed to the writing of the manuscript. LW and CT supervised the
project and provided clinical images. LB contributed to the conceptualization, design, and editing
of the manuscript. All authors contributed to the article and approved the submitted version.

The authors apologize for this error and state that this does not change the scientific conclusions
of the article in any way. The original article has been updated.

Copyright © 2021 Hinen, Boccuto, Trenor andWine Lee. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with

accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

25

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://doi.org/10.3389/fped.2021.649610
http://crossmark.crossref.org/dialog/?doi=10.3389/fped.2021.649610&domain=pdf&date_stamp=2021-02-24
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:winelee@musc.edu
https://doi.org/10.3389/fped.2021.649610
https://www.frontiersin.org/articles/10.3389/fped.2021.649610/full
https://doi.org/10.3389/fped.2020.573023
https://doi.org/10.3389/fped.2020.573023
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


REVIEW
published: 23 October 2020

doi: 10.3389/fped.2020.570084

Frontiers in Pediatrics | www.frontiersin.org 1 October 2020 | Volume 8 | Article 570084

Edited by:

Riccardo Masetti,

University of Bologna, Italy

Reviewed by:

Jean Soulier,

Hôpital Saint-Louis, France

Rachel E. Rau,

Baylor College of Medicine,

United States

Huiming Lu,

University of Texas Southwestern

Medical Center, United States

*Correspondence:

Marcin W. Wlodarski

marcin.wlodarski@stjude.org

Specialty section:

This article was submitted to

Pediatric Oncology,

a section of the journal

Frontiers in Pediatrics

Received: 06 June 2020

Accepted: 18 September 2020

Published: 23 October 2020

Citation:

Sharma R, Lewis S and

Wlodarski MW (2020) DNA Repair

Syndromes and Cancer: Insights Into

Genetics and Phenotype Patterns.

Front. Pediatr. 8:570084.

doi: 10.3389/fped.2020.570084

DNA Repair Syndromes and Cancer:
Insights Into Genetics and Phenotype
Patterns
Richa Sharma 1,2, Sara Lewis 1 and Marcin W. Wlodarski 1,3*

1Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN, United States, 2Department of Oncology,

St. Jude Children’s Research Hospital, Memphis, TN, United States, 3Division of Pediatric Hematology and Oncology,

Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg,

Germany

DNA damage response is essential to human physiology. A broad spectrum of

pathologies are displayed by individuals carrying monoallelic or biallelic loss-of-function

mutations in DNA damage repair genes. DNA repair syndromes with biallelic disturbance

of essential DNA damage response pathways manifest early in life with multi-systemic

involvement and a high propensity for hematologic and solid cancers, as well

as bone marrow failure. In this review, we describe classic biallelic DNA repair

cancer syndromes arising from faulty single- and double-strand DNA break repair,

as well as dysfunctional DNA helicases. These clinical entities include xeroderma

pigmentosum, constitutional mismatch repair deficiency, ataxia telangiectasia, Nijmegen

breakage syndrome, deficiencies of DNA ligase IV, NHEJ/Cernunnos, and ERCC6L2,

as well as Bloom, Werner, and Rothmund-Thompson syndromes. To give an in-depth

understanding of these disorders, we provide historical overview and discuss the

interplay between complex biology and heterogeneous clinical manifestations.

Keywords: DNA repair, cancer predisposition, hematological malignances, hereditary cancer, pediatric cancer

INTRODUCTION

Preservation of genomic DNA is fundamental to maintenance of life. Mammalian DNA can
withstand at least 105 lesions in a single cell per day caused by intrinsic biological processes
and extrinsic genotoxic agents (1). DNA repair mechanisms are highly complex and conserved
pathways that have evolved over time. Their role is to restore genomic damage so that naturally
occurring DNA lesions are rapidly neutralized and transmission of accurate genetic code across
generations can occur (2). In this review, we discuss biological and clinical features of classic
DNA repair disorders that predispose to hematologic and solid cancers early in life. Due to
intricate genetic underpinnings and heterogeneous clinical manifestations, the diagnosis of these
underappreciated syndromes is challenging and typically requires a high index of suspicion.
Insight into specific phenotype spectrum and associated cancers can increase awareness of these
rare syndromes. As a result, a timely diagnosis and multidisciplinary management with focus on
structured surveillance can improve life expectancy in this pediatric population.

Sources of DNA damage are constant, innumerable, and divided into endogenous
and exogenous culprits. Endogenous damage is caused by replication errors, as well as
reactive intermediates secondary to essential cellular chemical reactions (reactive oxygen
species, aldehydes). Exogenous damaging agents include ultraviolet (UV) and ionizing
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radiation, environmental chemicals (polycyclic aromatic
hydrocarbons, benzo[a]pyrene, aromatic compounds),
and chemotherapeutic agents including DNA-alkylators
(temozolomide), DNA crosslinkers (mitomycin C or cisplatin),
topoisomerase inhibitors (etoposide), and radiomimetics
(bleomycin) (2–4). These often unavoidable insults cause toxic
DNA intermediates such as single-nucleotide lesions, helical
distorting adducts and dimers, single-strand breaks (SSBs), and
double-stranded breaks (DSBs), all of which activate the DNA
damage response (Figure 1) (5).

The DNA damage response is a molecular surveillance system

that regulates cell cycle progression at G1-S, intra-S, and G2-M

checkpoints to maintain genomic stability (6). Heritable genetic
mutations in this safeguard infrastructure results in cancer

predisposition syndromes (5). Li-Fraumeni syndrome (LFS) is

the prototypical cancer susceptibility disorder characterized by
early onset of solid and hematological cancers due to germline

monoallelic mutations in p53, a tumor suppressor gene (7)
[excellent reviews can be found elsewhere (8)]. LFS highlights

the central role of p53 as a bona fide genome guardian, which
modulates G1-S and G2-M checkpoints in response to DNA
damage pathways (9, 10). At least eight DNA repair mechanisms
have been described to orchestrate the repair of mammalian
DNA in a cooperative and redundant fashion (2). Importantly,
nucleotide excision repair (NER), mismatch repair (MMR),
homologous recombination (HR), non-homologous end joining
(NHEJ), and inter-strand DNA crosslink repair have been

FIGURE 1 | DNA repair disorders associated with cancer predisposition in pediatric population. Several DNA damage sources cause unique DNA lesions that are

repaired by specific DNA repair pathways. Biallelic mutations in NER, MMR, HR, NHEJ, and FA/HR cause cancer predisposition syndromes of childhood.

associated withMendelian syndromes with cancer predisposition
in children (Figure 1, Table 1).

Although classic DNA repair syndromes affect pediatric
population, their rarity, complex genetics, and heterogeneous
phenotypic features make them underrecognized. In the
following, we highlight other (non-FA) DNA repair pathway
deficiencies and the resulting clinical manifestations in hopes of
minimizing missed opportunities for early diagnosis and risk-
adapted treatment of aggressive cancers that increase morbidity
and mortality in this biologically distinct patient population.

SYNDROMES CAUSED BY FAULTY
SINGLE STRAND BREAK REPAIR

SSBs are the most common type of DNA lesion that represent
discontinuity in one of the two strands of the DNA helix
(11). Single-strand lesions induce replication block and can
progress to lethal DSBs if unrepaired in active replicating cells
(12) while causing cell death in post-mitotic cells (13, 14).
Three repair mechanisms, BER, MMR, and NER, have evolved
to mitigate single-strand breaks. BER ameliorates single base
damage [detailed review available (15)], which when abrogated
can lead to colorectal cancers in adults (16, 17) without evidence
to cause childhood cancers. In contrast, both MMR, which
resolves base mismatch and insertions–deletions (indels), and
NER, which resolves bulky helix distorting lesions, are associated
with pediatric cancer predisposition syndromes (Figure 1).
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TABLE 1 | DNA repair deficiencies in single strand and double strand DNA repair and RECQ helicases result in classic DNA repair syndromes with multisystemic

manifestations and oncogenic predisposition.

DNA repair pathway Associated

syndrome

Expected biallelic

mutations

Clinical testing Clinical features Malignancy

spectrum

SINGLE STRAND BREAK REPAIR DISORDERS

NER# Xeroderma

Pigmentosum

XPA, XPB, XPC, XPD,

XPE, XPF, XPG, XPV

Screening: UV

hypersensitivity

Confirmation:

genetic testing

Skin

Ocular

Neurologic

Major: SCC, BCC,

melanoma

Minor: AML/MDS,

brain/spinal cord

ERCC6L2 deficiency ERCC6L2 Genetic testing Neurologic

Bone marrow failure

MDS, erythroleukemia

MMR Constitutional

mismatch repair

disorder

MLH1, MSH2, MSH6,

PMS2

Screening: IHC, MSI,

hypermutation

(>100/MB)

Confirmation:

genetic testing

Skin Major: brain, GI, T-NHL,

ALL, AML

Minor: sarcomas, GU

DOUBLE STRAND BREAK REPAIR DISORDERS

HR Ataxia telangiectasia ATM Screening: TREC, AFP,

telomere length, t(7;14)

Confirmation:

Genetic testing

Neurologic

Immunologic

Endocrine

Major: B-NHL, HL,

ALL, breast

Minor: gastric, brain

Nijmegen breakage

syndrome

NBN Screening: TREC, AFP,

telomere length, t(7;14)

Confirmation:

Genetic testing

Neurologic

Endocrine

Immunologic

Major: B-NHL, T-LBL

Minor: HL, ALL, AML,

brain tumors, sarcoma

NHEJ DNA Ligase IV

Deficiency syndrome

LIG4 Screening: TREC

Confirmation:

Genetic testing

Endocrine

Immunologic

Bone marrow failure

Major: ALL, B-NHL

Minor: AML, MDS

FA Fanconi anemia 22 FA genes* Screening:

Chromosomal

breakage, AFP,

telomere length

Confirmation:

Genetic testing

Congenital anomalies

Bone marrow failure

Endocrine

Major: SCC

(head/neck), AML,

MDS

Minor: anogenital

RECQ HELICASE DEFICIENT REPAIR DISORDERS

HR Bloom syndrome BLM Screening: SCEs,

telomere length

Confirmation:

Genetic testing

Endocrine

Skin

Immunologic

Major: AML, ALL,

B-NHL, colorectal

Minor: breast, SCC,

BCC, Wilm’s

HR, NHEJ Werner syndrome WRN Screening: telomere

length

Confirmation:

Genetic testing

Aging, premature

Heart

Endocrine

Major: thyroid follicular

carcinoma

Minor: melanoma,

sarcomas, MDS, AML

Rothmund-thompson

syndrome

RECQL4 Confirmation: Genetic

testing

Skin

Ocular

Major: Osteosarcoma,

BCC, SCC, melanoma

Minor: AML,

MDS, lymphoma**

Rapadilino Endocrine

Skeletal anomalies

Major: lymphoma**,

osteosarcoma

Baller-gerold syndrome Skeletal anomalies NK/T cell lymphoma

#Cockayne syndrome and Trichothiodystrophy are important NER deficient syndromes that do not exhibit cancer predisposition risk.

*Includes following 22 genes: FANCA, FANCB, FANCC, FANCD1 (BRCA2), FANCD2, FANCE, FANCF, FANCG, FANCI, FANCJ (BRIP1), FANCL, FANCM, FANCN (PALB2), FANCO

(RAD51C), FANCP (SLX4), FANCQ (ERCC4), FANCR (RAD51), FANCS (BRCA1), FANCT (UBE2T), FANCU (XRCC2), FANCV (REV7).

** = types of lymphomas not reported in literature.

NER, nucleotide excision repair; MMR, mismatch repair; HR, homologous recombination; NHEJ, non-homologous end joining; FA, Fanconi anemia; RAPADILINO, (RAdial RAy defect;

PAtellae hypoplasia or aplasia and cleft or highly arched PAlate; DIarrhea and DIslocated joints; LIttle size and LImb malformation; NOse slender and NOrmal intelligence) syndrome;

XPA-G, xeroderma pigmentosum A-G; XPV, xeroderma pigmentosum V; MLH1, MutL homolog 1; MSH2, MutS homolog. 2; MSH6, MutS homolog 6; PMS2, PMS1 homolog 2; ATM,

Ataxia telangiectasia mutated; NBN, Nibrin; LIG4, DNA ligase 4; BLM, Bloom syndrome RecQ like helicase; WRN, Werner syndrome RecQ like helicase; RECQL4, REQ like helicase

4; UV, ultra-violet; IHC, immunohistochemistry; MSI, microsatellite instability; TREC, T cell receptor excision circles; AFP, Alpha-fetoprotein; SCEs, sister chromatid exchanges; SCC,

squamous cell carcinoma; BCC, basal cell carcinoma; GI, gastrointestinal; GU, genitourinary; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; MDS, myelodysplastic

syndrome; NHL, non-Hodgkin lymphoma; HL, Hodgkin lymphoma; LBL, lymphoblastic lymphoma.
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Xeroderma Pigmentosum (XP)
XP, the first DNA repair disorder described in 1874 by Hebra
and Kaposi (18), is an autosomal recessive syndrome with
dermatological, ocular, and neurological manifestations with
skin cancer predisposition (Table 1). XP is estimated to affect
1 per million in the United States and 2.3 cases per million
in Western Europe (19, 20) with higher prevalence in Japan
(21) and North Africa (22). XP patients are unable to repair
UV radiation-induced DNA damage due to mutations in the
NER pathway. Biallelic mutations in one of the eight XP genes
[XPA-G and XP-variant(V)] of the NER pathway cause classic
XP (23). Mutations in XPA through XPG account for about
80% of XP cases with the remaining attributed to XPV (24).
Patients commonly present by 2 years of age with increased
number of lentigines (freckle-like pigmentation) in sun-exposed
areas, a diagnostic skin finding in XP. Extreme sensitivity to
sunlight resulting in acute severe sunburns is the presenting
feature in 50% of patients. Increased sun exposure and lack of
sun protection correlates with development of telangiectasias,
pigmented seborrheic warty lesions, and atrophic skin (20, 25).
Patients with mutations in XPA, XPB, XPD, XPF, and XPG have
severe photosensitivity at a young age (26). Photophobia is often
present with ocular abnormalities limited to UV-exposed areas
including eyelids, cornea, and conjunctiva (27). XPC patients are
specifically hypersensitive to ocular damage with severe keratitis,
corneal opacification, and vascularization (24). Approximately
one third of patients exhibit progressive neuronal degeneration
with XPA, D, and G groups considered to be the most severely
affected (28). Clinical presentations can be as subtle as loss of
deep tendon reflexes and high-frequency sensorineural hearing
to intellectual disability, motor dysfunction (spasticity, ataxia,
difficulties swallowing), and frank quadriparesis (25, 26, 29, 30).

XP patients have an estimated 10,000-fold greater risk of
developing basal cell and invasive squamous cell carcinomas
compared to the general population, with median onset age
of <10 years (29). The risk of melanoma has been estimated
to be 2,000-fold higher, with median age of onset of 20 years
(29). Interestingly, XPC, XPE, and XPV mutations, which are
classified as mild XP group due to only minor photosensitivity
without neurological abnormalities, show the highest penetrance
for cancers (24, 28). This is thought to be due to rapid
accumulation of UV damage without sun protection in this
patient population who lack overt skin findings resulting in late
diagnosis (24). Mucosal cancers of the tongue, myelodysplastic
syndrome (MDS), acute myeloid leukemia (AML), and tumors of
the brain and spinal cord have also been described in XP patients
(20, 24, 29, 31–33). Importantly, TP53 somatic alterations
are exceptionally common in XP-associated skin tumors and
MDS/AML with high rate of del5q and del7q karyotype
alterations in XP-C patients (33, 34). The broad phenotype
spectrum seen in XP is a direct consequence of NER deficits at the
molecular level. The NER pathway is orchestrated by 30 proteins,
and two subbranches, namely, global genomic repair and
transcription-coupled repair, recognize and remove UV-induced
cyclobutene pyrimidine dimers (CPD) and 6-4 pyrimidine-
primidone (6-4PPs) dimers. Global genomic repair relies on XPC
and XPE to sense DNA adducts while transcription-coupled

repair recognizes damage on the transcribed strand using NER
proteins: Cockayne syndrome A and B (CSA, CSB). Both sub-
pathways converge to recruit XPD and XPB helicase-containing
transcription complex to unwind damaged DNA. This allows
XPA to secure single-strand DNA followed by incision of
damaged DNA portion by endonucleases XPF/ERCC1 and XPG
and gap filling by replication polymerases (35, 36). XPV/POLH
is involved in replicating past unrepaired UV-induced thymine
dimers or AP sites during translesion synthesis (37, 38). Of
note, Cockayne syndrome (39) and Trichothiodystrophy (40) are
important NER-deficient syndromes that do not exhibit cancer
predisposition risk.

ERCC Excision Repair 6 Like 2 (ERCC6L2)
Deficiency
Biallelic loss-of-function mutations in ERCC6 like 2 (ERCC6L2)
have been associated with BMF, MDS, and acute erythroid
leukemia (AML M6). ERCC6L2 is a Snf2 helicase that belongs
to SWI/SNF protein family, which makes chromatin accessible
to transcription machinery (41). Along with its role in RNA
processing, ERCC6L2 plays a role in DNA repair by facilitating
cross talk between transcription-coupled NER and NHEJ DNA
repair pathways. Specifically, ERCC6L2 repairs transcription-
affiliated DNA lesions through its interaction with DNA-PK (42),
a central component of the NHEJ DNA repair complex (43). The
first report linked homozygous truncating ERCC6L2 mutations
to a bone marrow failure (BMF) syndrome manifesting with
neurological and developmental findings in three index cases
(9, 12, and 19 years of age) from consanguineous families
(44). In another study, 7 patients, with median age of 13
years, were described to have hypocellular marrow in the
setting of biallelic ERCC6L2 mutations, 2 of which displayed
dysplastic marrow features with monosomy 7 (45). Of note,
only 1 patient from a consanguineous family had neurological
and developmental delays. Most recently, biallelic germline
mutations were identified in five patients with the unique
phenotype of acute erythroleukemia with median age of
onset at 49 years. Additionally, all ERCC6L2-mutated acute
erythroleukemia cases harbored somatic TP53 mutations at
diagnosis (46). It remains to be answered if ERCC6L2 also
plays a role in solid tumor predisposition and other types of
hematologic malignancies.

Constitutional Mismatch Repair Deficiency
(CMMRD)
CMMRD is a recessively inherited, cancer predisposition
syndrome, which was described initially in 1999 (47, 48) and
affects 1 in 1 million children (49). CMMRD is characterized
by childhood onset of broad-spectrum malignancies secondary
to biallelic (homozygous or compound heterozygous) germline
mutations in theMMR pathway genes, mutL homolog 1 (MLH1),
mutS homolog 2 (MSH2), mutS homolog 6 (MSH6), and
PMS1 homology 2 (PMS2) (50, 51). Parental consanguinity
enriching for a founder mutation is observed in over 50%
of CMMRD cancers (52, 53). However, in Western countries,
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genotypes with compound heterozygous mutations among non-
consanguineous families are more common (54). In adults,
monoallelic (heterozygous) mutations in these MMR genes are
known to cause Lynch syndrome (LS), with predisposition
primarily to colorectal, and endometrial cancers (55, 56).

The biological relevance of the MMR pathway is underscored
in CMMRD patient tumors, which have a hypermutator
phenotype (defined as >10 mutations/Mb), as a result of the
inability for MMR machinery to identify and excise DNA
damage. Specifically, MSH2–MSH6 heterodimer recognizes
base–base mismatch and MSH2–MSH3 heterodimer detects
large indel mismatch followed by mismatch excision by MLH1–
PMS2 (50). Abrogation of the essential MMR genes leaves behind
a trail of incorrect base incorporation and indels, especially
in microsatellite regions resulting in increased mutational
burden and microsatellite instability, diagnostic hallmarks of
CMMRD tumors. Finally, gap filling is accomplished by DNA
polymerases epsilon (POLE) and delta (POLD1), which can
acquire somatic mutations during tumorigenesis resulting in
“ultra-hypermutated” (>100 mutations/Mb) CMMRD tumors
(57, 58). POLE/POLD1 deficiency has been considered as
a cancer susceptibility syndrome since mutation carriers
with colonic and extra-colonic tumors have been reported
(59–62). Importantly, childhood colorectal carcinoma and
medulloblastoma in the setting of biallelic POLE mutations have
been described (63, 64). Of note, heterozygous germline deletion
of EPCAM, which causes epigenetic silencing of MSH2, thereby
conferring an increased risk of colorectal cancer (65), in addition
to biallelic mutation of MSH3, resulting in colorectal cancer
(66), has expanded the spectrum of MMR deficient malignancies
in humans.

CMMRD patients develop devastating malignancies at an
early age with a median onset of 7.5 years (53). The cancer
spectrum includes CNS tumors (estimated prevalence of 50%),
digestive tract tumors (40%), hematological malignancies (33%),
and other solid cancers (67). In a cohort study with 31 patients,
the median age at diagnosis of hematologic malignancies,
brain tumors, and gastrointestinal cancers was 6.6, 10.3, and
16 years, respectively (54). Commonly encountered brain
tumors are high-grade gliomas with few reports of low-
grade gliomas, CNS embryonal tumors, and medulloblastoma
(49, 68, 69). Prevalent hematological malignancies are non-
Hodgkin lymphoma (NHL), particularly T-lymphoblastic NHL
followed by T cell-acute lymphoblastic leukemia (T-ALL) and
AML (49, 53, 70). The affected MMR gene correlates with
the cancer spectrum. MSH6 and/or PMS2 biallelic mutations
“favor” brain tumors while MLH1 or MSH2 mutations are
biased for development of aggressive hematological malignancies
(53, 68). Greater than 40% of PMS2-mutated patients develop
secondary neoplasms. However, MLH1/MSH2 patients have a
secondary malignancy risk of 22% due to poor survival from
the first malignancy (53, 68). Expectedly, colorectal carcinoma,
the most prevalent Lynch syndrome associated cancer, has
higher prevalence in CMMRD patients with biallelic MSH6
or PMS2 mutations (49, 53). Other solid tumors include
osteosarcoma, rhabdomyosarcoma, neuroblastoma, and Wilms
tumor (53).

Outside of cancers, certain features are recurrently found
in patients with CMMRD. Many patients present with
dermatological manifestations such as café-au-lait macules
(CALMs), hyper- and hypopigmented skin alterations, venous
anomalies, and pilomatricomas (benign hair follicle tumor).
At least one CALM or hyperpigmented skin area is found
in more than 60% of patients (53). Agenesis of the corpus
callosum and mild immunodeficiency with decreased levels of
immunoglobulins IgG and IgA were previously described (53).
Collectively, oncologic and non-oncologic clinical criteria are
used in a three-point scoring system established by the European
consortium “Care for CMMRD” (C4CMMRD) for diagnosis of
CMMRD (53).

SYNDROMES CAUSED BY FAULTY
DOUBLE-STRANDED BREAK REPAIR

DSBs are the most destructive DNA lesions, which, when left
unattended, result in cell death. HR and NHEJ are the two
main DSB DNA repair pathways that differ in key aspects. HR
is a high-fidelity repair pathway that dominates during S and
G2 phase to repair DSB damage and relies on the presence of
sister chromatids (71). In addition, it regulates essential cellular
processes like meiotic recombination (72). On the other hand,
an error-prone NHEJ pathway is active throughout the cell cycle
(dominating in G1) and directly ligates two broken ends of a
DSB. Outside of DNA repair, it is involved in T-cell receptor
and immunoglobulin repertoire generation (73). The ability to
resolve high-stake DSBs in a time-sensitive manner makes NHEJ
a ubiquitous DSB repair pathway (74).

Since its first description by the Swiss pediatrician Guido
Fanconi (75), Fanconi Anemia (FA) has been used as the
prototypical example of a DSB repair syndrome associated with
cancer. FA pathway recognizes and repairs toxic DNA inter-
strand crosslinks that induce a replication block followed by
formation and repair of DSBs. The inability to resolve these
crosslinks results in FA, a cancer predisposition syndrome caused
by biallelic mutations in 1 of 22 FA genes (76–81). FA usually
manifests early in life with congenital anomalies involving many
organ systems, progressive BMF and a very high risk for the
development of MDS, AML, head and neck carcinomas, as well
as multiple other cancer types. A number of comprehensive
studies and reviews on FA and FA-associated cancers have been
published elsewhere (82–85).

We will review defects in the DNA repair machinery
proteins of the HR system (ATM, NBN) and the NHEJ
pathway (LIG4, NHEJ1, Artemis) that result in rare cancer
predisposition disorders that exhibit radiosensitivity with
overlapping clinical features including neurological deficits,
cellular immunodeficiency with reduction or loss of T- and
B-cells, hypogammaglobulinemia, and lymphoid cancers.

Ataxia-Telangiectasia (AT)
AT is an autosomal recessive disorder with an incidence of 1 per
40,000–100,000 births worldwide, initially described in 1941 by
Louis-Bar but coined by Boer and Sedgwick in 1957 (86, 87).
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AT is a multisystemic disease characterized by ataxia secondary
to cerebellar degeneration, telangiectasias, immunodeficiency
with recurrent pulmonary infections, premature aging, ionizing
radiation sensitivity, and a high risk of developing cancers
of lymphoid origin (88). AT is a result of biallelic mutations
of Ataxia Telangiectasia Mutated (ATM) (89), a PI3K-related
serine/threonine protein kinase located on chromosome 11q22.3
(90), with a chief function to maintain genomic integrity.
Following damage by ionizing radiation, chemotherapy, and
oxidative stress (91), DSBs are recognized by MRN complex
(MRE11-RAD50-NBS1), which activates ATM (92). Activated
ATM amplifies DNA damage signaling by phosphorylating
several downstream effectors including cell cycle proteins (Chk1,
Chk2) (93), DNA repair proteins (BRCA1) (94), apoptosis (TP53)
pathway, and other collaborative DNA damage nodes, including
DNA-dependent protein kinase and ATM-related (ATR) (95, 96).
Most ATM mutations are truncating and associated with severe
or classic phenotype of AT due to a lack of functional kinase.
Missense and in-frame mutations allow for some residual ATM
activity and are associated with milder clinical course and slow
progression (97, 98).

AT classically presents in early childhood, between 1 and 4
years of age, with ataxia manifesting as abnormal gait pattern in a
child with otherwise previously normal development. Common
neurological symptoms include dysarthria, impaired oculomotor
coordination, loss of fine motor skills, and development of
sensory and motor neuropathy along with extrapyramidal
symptoms. Most patients become wheelchair-bound by the
second decade of life (99–102). Telangiectasias are the second
most common feature with average onset at 5–8 years of
life and occur generally within the bulbar conjunctiva but
can also appear on sun-exposed areas such as face and ears
(103). Ocular telangiectasias should be differentiated from
physiologic ocular vessels due to their constant presence without
changing with environment or time. Immunodeficiency is
another pronounced feature in two thirds of AT patients, which
is demonstrated by a lack of antibody response to vaccines,
reduced B and T cell numbers, and decreased production
of at least one immunoglobulin subclass (IgG, IgA, and
IgM) (104–106). Of note, a minority of AT patients have
elevated IgM concurrently with IgA or IgG deficiency, so care
must be taken to not misdiagnose these patients as hyper-
IgM syndrome (107). Sinopulmonary infections and increased
risk of autoimmune or inflammatory diseases, such as ITP,
cutaneous granulomatous disease, and vitiligo, is a direct result
of immunodeficiency and immune dysregulation (106, 108,
109). Endocrine abnormalities including poor growth, gonadal
atrophy, delayed pubertal development, and insulin-resistant
diabetes are also common (110–112).

AT patients have a 25% lifetime risk of developing a
malignancy, which is the main cause of death in the second or
third decade of life along with respiratory insufficiency (113–
115). The vast majority of these cancers are of lymphoid origin
with B-cell NHL, Hodgkin lymphoma (HL), and ALL occurring
at a higher rate in AT patients <20 years of age (113, 114).
Strikingly, EBV infection was found to be associated with all
HL and half of NHL cases. Other carcinomas including brain,

gastric, and liver cancers have been reported (113, 114). Although
previously debated, breast cancer is now considered as part of
the cancer spectrum with a 30-fold increased risk in AT patients
(113). It has been postulated that cancer risk correlates with gene
dosage, where patients with classic AT and lack of ATM kinase
function are at higher risk of developing lymphoid tumors than
patients with some residual AT activity (113).

Nijmegen Breakage Syndrome (NBS)
NBS is an autosomal recessive disease caused by biallelic
mutations in NBN located at 8q21.3. NBN gene codes for nibrin,
which is one of three proteins that make up the MRN complex
to activate and recruit ATM to DSBs (116). NBS was named after
the Dutch city, Nijmegen, where it was first described in 1981
by Wermaes et al. (117). The prevalence is estimated to be 1 in
100,000 worldwide except in Central and Eastern European Slavic
populations where it is more common due to founder mutation
with a large cohort in Poland (118, 119).

Microcephaly at birth with distinct, “bird-like” craniofacial
features as well as growth retardation and intellectual disability
are early features of NBS (120, 121). Immunodeficiency
is characterized by severe hypogammaglobulinemia in 20%,
IgA deficiency in 50%, and reduced B and T cells in
>80% of NBS patients, resulting in a spectrum from silent
phenotype to recurrent, chronic respiratory tract infections
requiring immunoglobulin replacement (122–124). Malignancy
is a significant cause of mortality in NBS patients. More than
40% of patients develop cancer, predominantly of lymphoid
origin, by 20 years of age (125). Diffuse large B-cell lymphoma
and T cell lymphoblastic lymphoma predominate (126). Other
hematological malignancies including HL, B- and T-cell ALL,
and AML have also been described (125). Solid malignancies
such as medulloblastoma, rhabdomyosarcoma, papillary thyroid
carcinoma, glioma, meningioma, neuroblastoma, and Ewing
sarcoma occur rarely (125, 127, 128).

DNA Ligase IV Deficiency (LIGIV)
LIGIV was clinically described in 1990 by Dr. Plowman et al., and
in 1999, it was attributed to pathogenic mutations in DNA ligase
IV (LIG4), located on 13q33.3 (129, 130). LIG4 mediates the final
ligation step in the NHEJ pathway, a process utilized not only
for NHEJ-mediated DSB repair but also for V(D)J recombination
(131, 132). Approximately 40 cases have been reported with
hypomorphic LIG4mutations that correlate with clinical severity
(133, 134). Patients present at variable ages with common features
including microcephaly, facial dysmorphism, growth failure,
infections, and severe immunodeficiency as well as hematological
manifestations such as BMF and leukemia/lymphoma (134, 135).
The immunologic phenotype can range from a radiosensitive
T-B-NK+ severe combined immunodeficiency (SCID) to mild
hypogammaglobulinemia and lymphopenia with restricted
receptor repertoire (136). Hematological manifestations are
largely due to accumulation of ionizing radiation and other
genotoxic insults, resulting in BMF in 44% (134, 137, 138) and
cancers in 24% of the patient population (134). Cancers of the
hematopoietic system are most common and include lymphoid
leukemia and lymphomas (EBV positive and negative) and AML
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(130, 134, 135, 139, 140). Recently, in a cohort of patients with
BMF/MDS, a novel homozygous mutation in LIG4 (c.2440C>T,
p.R814X) was found in a 10-year-old boy presenting with MDS
and monosomy 7 (141).

Genomic efforts have recently uncovered additional
mutations in NHEJ repair genes, Artemis (DNA Cross-Link
Repair 1C) and Cernunnos (XLF/NHEJ1), to cause hematological
malignancies in anectodal reports. Compound heterozygous
mutations in Artemis (EX1_3del and 1384_1390del), a key
player in V(D)J recombinase machinery, was shown to cause
EBV-associated B-cell lymphoma in a 9-month-old and a 5-
year-old patient (142). In a targeted mutation screen in children
with hematological cytopenias, a novel homozygous NHEJ1
mutation (c.236T>C, p.L79P), involved in the final stage of DSB
NHEJ repair, was identified as the causative genetic defect in a
21-year-old with MDS and monosomy 7 (143).

SYNDROMES CAUSED BY RecQ
HELICASE FAMILY DEFICIENCIES

Helicases allow access to the genome during replication,
recombination, transcription, and repair by unraveling the
double helix and other complex DNA and RNA structures in an
ATP-dependent manner. RecQ helicases all possess three highly
conserved domains: N-terminal ATPase-dependent helicase
domain, RecQ-C middle domain with ability to bind various
DNA structures, and a C-terminal helicase-and-ribonuclease-D-
like (HRDC) domain, which promotes DNA binding stability.
BLM, WRN, RECQL1, RECQL4, and RECQL5 are five human
RecQ helicases that are essential in maintaining genomic stability
during DNA damage repair (144). So far, disease-causing
mutations have been described in BLM, WRN, and RECQL4
to cause cancer predisposition syndromes: Bloom, Werner, and
Rothmund-Thompson syndrome, respectively.

Bloom Syndrome (BS)
BS, initially described by Dr. David Bloom in 1954 (145), is
an autosomal recessive disorder caused by biallelic mutations
in BLM located at 15q26.1 (146). As of 2018, almost 300
cases were known to the Bloom Syndrome Registry (147)
with predominance of individuals of Eastern European descent,
particularly within the Ashkenazi Jewish population who have an
estimated carrier rate of 1 in 100 (148). BLM prevents erroneous
HR during replication and resolves intermediate DNA structures
such as displacement loops and double Holliday junctions (149).
In the absence of BLM, dysfunctional HR results in a 10-
fold increase in the rate of sister chromatid exchanges (SCEs)
compared to healthy individuals (146).

Clinical features of BS include growth failure, sun-sensitive
skin rash, endocrine disturbances, and immunodeficiency
(150). BS neonates are small for gestational age with normal
appearance with some exhibiting feeding difficulties resulting
in failure to thrive (148). Photosensitive cutaneous rashes
are among the most common manifestations that appear
in infancy or early childhood and include telangiectasia
erythema of the face (butterfly rash), hands, and forearms,

as well as café-au-lait spots and hypopigmented macules
(147). Immunodeficiency clinically manifests as frequent upper
respiratory and gastrointestinal infections due to dysregulated
T cells and hypogammaglobulinemia (particularly IgA and IgM
deficiency) (150). Severe chronic lung disease is a common
complication of BS thought to be secondary to repeated
respiratory infections as a consequence of immunodeficiency
(148). In addition to short stature, insulin resistance, type 2
diabetes, dyslipidemia, hypothyroidism, and impaired fertility
are well-known endocrine sequalae that develop with age in
BS patients (151, 152). Neurologically, BS patients have normal
intelligence with very few cases reported with mild intellectual
disability (152).

The distribution of cancers in BS patients is similar to that of
the general population but with a younger age onset with at least
one third of BS patients developing a malignancy by the age of 25
and 80% by the age of 40 years (147). Among 144 BS patients,
223 cancers were reported (147). Hematological cancers were
most prevalent, with AML and ALL occurring most frequently
with a median age of 18 years followed closely by lymphomas,
(predominantly B-cell NHL) with a median age of diagnosis of 20
years (147). Colorectal carcinomas were the next most common
solid tumors found in 28 of 223 cancers, with a median onset
age of 37 years. Other common neoplasms include breast cancer,
non-melanomatous basal and squamous cell skin carcinomas,
and Wilms tumor (147).

Werner Syndrome (WS)
WS, previously known as adult onset progeria with cancer
predisposition, is an autosomal recessive disorder initially
reported by German medical student Otto Werner in 1904.
He described a family of four siblings in their third decade
of life that exhibited signs of premature aging, with graying
of the hair, bilateral cataracts, scleroderma, and short stature
(153), which was later attributed to biallelic mutations in the
Werner (WRN) helicase (154). The prevalence is estimated at
1:380,000–1:1,000,000 (155) and is higher in the Japanese (156)
and Sardinian (157) population with an estimated frequency
of 1:20,000–1:40,000 and 1:50,000, respectively. More than 70
different pathogenic mutations were found in the helicase and
exonuclease domains of WRN located on locus 8p12 (158, 159).
WRN has well-established functions in several DNA repair
pathways, including NHEJ (158), HR (160), BER (161), and
telomere maintenance (162).

The first presenting sign of WS is often short stature in
a pre-adolescent individual failing to undergo a growth spurt.
By the early third decade, ectodermal changes will become
prominent featuring skin atrophy, graying or loss of hair, and
bilateral cataracts (154) with readily discernable bird-like facies.
Skin atrophy and calluses, which can progress to intractable
ulcers, are common along with Achilles tendon calcification, a
highly characteristic of WS in older patients (163). Common
older age-associated endocrine abnormalities appear in the late
30s, including type II diabetes, osteoporosis, and hypogonadism
causing infertility (154, 163). Furthermore, WS patients suffer
from premature and severe forms of atherosclerosis and medial
artery calcification (154, 164). Surprisingly, there is a paucity of
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neurodegenerative changes in these patients in addition to lack
of skeletal anomalies or intellectual disability (154, 165). Heart
attacks and malignancies are the leading cause of morbidity in
WS patients resulting in a low median life expectancy of 54 years
(164). WS patients have a 2–60-fold increased risk for neoplasms,
with thyroid follicular carcinomas as the most common cancer
followed by melanoma, meningioma, sarcomas, leukemia/MDS,
and primary bone tumors (166, 167).

The International Registry of Werner Syndrome has provided
five cardinal signs for WS diagnosis in individuals >10 years of
age: bilateral cataracts, characteristic skin changes, short stature,
parental consanguinity or affected siblings, and premature hair
graying (154). More than 90% of affected individuals had four
cardinal features (154, 164). There is a subgroup of patients
classified as atypical Werner syndrome (AWS), which is used to
describe individuals with a clinical diagnosis of WS but a lack
an identifiable WRN mutation. Of the 71 patients with AWS, a
subset was shown to carry mutations in LMNA, a gene known
to be mutated in the Hutchinson-Gilford Progeria syndrome
(HGPS) (168), or in POLD1, a DNA polymerase involved in
several DNA repair pathways (169). Thus, far, malignancies have
not been reported among these AWS patients (154).

Rothmund Thompson Syndrome (RTS)
RTS was initially described by the German ophthalmologist Dr.
August von Rothmund in 1868 with unique ectodermal features
followed by a similar description by Dr. Sydney Thomson,
British dermatologist, in 1921. It was not until 1957 when
Dr. Taylor coined the syndrome, which now has almost 500
patients described in all ethnicity groups (170). RTS results
from autosomal recessive germline mutations in RECQL4, which
organizes the DNA replication machinery, promotes DNA end
resection with MRN and CtIP complex during HR and promotes
NHEJ in G1 phase of the cell cycle (171, 172).

Cutaneous rash is the hallmark clinical sign in RTS, which
commonly presents in infancy with an erythematous facial
rash that spreads to buttocks and extremities while sparing
the trunk. The rash progresses to poikiloderma (reticulated
hypo- and hyperpigmentation, telangiectasias, and punctate
atrophy) over months to years and persists throughout life.
Hyperkeratotic lesions and café-au-lait spots can manifest later
(170, 173). Skeletal abnormalities and long bone defects were
found in 75% of RTS patients (174). Ocular abnormalities
occur with varying prevalence of 10–50% with rapid-onset
bilateral cataracts being most frequent (175). Other common
features include short stature, sparse or absent hair, dental
anomalies, and feeding difficulties (176, 177). Immunodeficiency
is uncommon, although IgG and IgA deficiencies along with T-
B+NK-combined immunodeficiency have been described (178–
180). The most common malignancy among RTS patients
is osteosarcoma with a prevalence of 30%, occurring at a
younger median age of 11 years compared to the general
population (177). Skin cancers, including melanoma and basal
cell and squamous cell carcinoma, constitute the second most
common cancer affecting 5% of patients (177, 181, 182). Rare
hematological malignancies include MDS, lymphomas (NHL,
HL), and AML (173).

Notably, germline mutations in RECQL4 gene had also
been associated with two other constitutional disorders
with lymphoma risk. First, RAPADILINO (RAdial RAy
defect; PAtellae hypoplasia or aplasia and cleft or highly
arched PAlate; DIarrhea and DIslocated joints; LIttle size and
LImb malformation; NOse slender and NOrmal intelligence)
syndrome. It has been initially described in Finland in 1989
(183) to affect an estimated 1 in 75,000 individuals and manifest
with pre- and post-natal growth failure, cervical spine defects,
failure to thrive, and juvenile diarrhea of unknown cause (184).
Lymphoma was reported in 4 patients and osteosarcoma in 1
patient with RAPADILINO syndrome (185). Second, Baller–
Gerold syndrome (BGS), first reported by Cohen in 1975, was
based on three patients described in 1950 by Baller and 1959 by
Gerold in German literature (186). Fewer than 40 patients have
been described with an unknown prevalence (187). BGS patients
with RECQL4 mutations have craniosynostosis, upper-limb
anomalies, short stature, and poikiloderma (188). Thus, far,
only one case of malignancy (NK/T-cell lymphoma) has been
reported in a 2.5-year-old individual with BGS (189).

CANCER RISK AMONG HETEROZYGOUS
MUTATION CARRIERS

Individuals with germline heterozygous (monoallelic) mutations
in some DNA repair genes have an increased lifetime risk of
cancer, which is often facilitated by the acquisition of a somatic
mutation affecting the remaining wild-type allele. The spectrum
and onset age of cancers in individuals with heterozygous
mutations differ compared to individuals with biallelic mutations
in the same gene. Genetic counseling is recommended for all
patients with, or at risk for having, monoallelic or biallelic DNA
repair disorders due to the complex nature of these conditions
and their associated health risks (190).

Cancer screening guidelines have been established by multiple
organizations to address the need for increased surveillance
and/or prophylactic management for these high-risk individuals
(191–193). Gene-specific cancer screening guidelines have also
been established internationally for individuals with monoallelic
variant for a DNA repair disorder gene with high risk of cancer
development (194–196). Many of these guidelines are region
specific and may differ from recommendations, when available,
in other parts of the world. Continued efforts to harmonize these
recommendations are needed to ensure patients have access to
appropriate management worldwide.

Monoallelic pathogenic mutations in the mismatch repair
genes, MLH1, MSH2, MSH6, PMS2, and EPCAM, are associated
with Lynch syndrome, a cancer predisposition syndrome
characterized by an increased risk of colon cancer, uterine
cancer, ovarian cancer, genitourinary tract cancers, and other
gastrointestinal cancers. Cancer risk varies among the different
MMR genes. Heterozygous mutations in PMS2, for instance, are
associated with a lower risk of colon and endometrial cancers
and are often diagnosed at later ages than in individuals with
heterozygous mutations in MLH1 or MSH2 (197, 198).
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Heterozygous mutations in FA genes involved in DSB repair
predispose to development of breast, ovarian, and other cancers.
These include BRCA1 and BRCA2 mutations that confer a 50–
80% lifetime breast cancer risk, 10–40% lifetime ovarian cancer
risk, and increased risk of male breast, pancreatic, and prostate
cancer, as well as melanoma (199, 200). Heterozygous loss of
PALB2 has also been demonstrated to confer a susceptibility
to breast and pancreatic cancer, as PALB2 interacts directly
with both BRCA1 and BRCA2 during HR. An elevated risk
of later onset serous ovarian cancer has been demonstrated in
individuals with heterozygous loss-of-function BRIP1 mutations
(201). Biallelic mutations in BRCA1, BRCA2, PALB2, and BRIP1
result in FA groups S, D1, N, and J, respectively. Recent meta-
analyses have estimated that the lifetime risk of breast cancer in
ATM heterozygotes is 33–38% (115), although the c.7271T>G
mutation may be associated with a significantly higher breast
cancer risk (202). Heterozygous ATM mutations may also confer
a susceptibility to pancreatic cancer (203). Heterozygous carriers
of the NBN c.657del5 mutation (which is found in homozygous
state in more than 90% of patients with Nijmegen breakage
syndrome) who also carry two copies of the NBN polymorphism
p.E185Q (GG allele) were shown to be at increased risk for
breast and prostate cancers (204, 205). These recent studies are
the first clear example of genetic modifier effect in a germline
cancer syndrome, where the penetrance of a heterozygous
allele is “activated” by the presence of an additional modifying
polymorphism in the same gene.

DIAGNOSTIC CONSIDERATIONS

History and Examination
A thorough patient history, family history, and physical
examination gives the first suspicion or a “red flag” pointing
to an underlying DNA repair disorder (Table 2). Multisystem
history should be obtained along with birth and developmental
history since manifestations can appear at any location during
the lifetime. If the patient has been treated for prior malignancy,
age of diagnosis, type and location of cancer, treatment history,
and hypersensitivity to chemotherapeutic agents should also
be addressed. Family history features suggestive of one of
these conditions include the presence of early-onset cancers
in family members, multiple family members with cancer,
or multiple cancers in one individual. Other concerning
features include the presence of immunodeficiency, neurologic
abnormalities, or deaths in young children from medical
or unknown causes. Familial consanguinity should be noted
because many of the DNA repair disorders are inherited
in an autosomal recessive manner. Consideration should be
given to the family’s ethnic background as some of these
disorders are enriched in specific ethnic populations secondary
to founder mutations. Physical exam findings concerning
DNA repair disorder include facial dysmorphology (particularly
microcephaly, which should be evaluated by measuring head
circumference); absent, sparse, brittle, or prematurely gray hair;
as well as numerous dermatologic findings such as café-au-lait
macules, hypopigmentation, multiple lentigines, telangiectasias,
or rashes, especially if occurring on the face. An accurate height

TABLE 2 | The presence of multiple red flags in the medical and/or family history

increases concern for an underlying DNA repair disorder and should warrant

further evaluation.

“Red flags”

Constitutional features Short stature

Microcephaly

Sparse or premature gray hair

Skin Photosensitivity

Pigmentation changes (hypo/hyperpigmentation)

Poikiloderma

Café-au-lait spots

Teleangiectasias

Pilomatricoma/pilomatrixoma (benign, hair follicle

associated tumor)

Butterfly shaped facial skin rash

Neurologic Intellectual disabilities

Hyporeflexia

Loss of fine or gross motor skills

Ataxia

Immunodeficiency Recurrent sinopulmonary infections

Hypogammaglobulinemia

T and B lymphocytopenia

Hematologic Bone marrow failure

Cancers Pediatric cancers including head and neck, brain,

squamous cell carcinoma, melanoma,

adrenocortical carcinoma, NHL, MDS, AML

Family member with cancer below age 50,

especially if of breast, endometrial, or colorectal

origin

2 or more cancers in one individual/family

Multiple family members with similar or

related cancers

should also be obtained, as many patients with a DNA repair
disorder are of short stature. Suggestive neurologic findings
include loss of deep tendon reflexes, spasticity, ataxia, or other
gait changes. Referral to a clinical geneticist may also be of benefit
to further assess for features of these conditions.

Functional Assays
Functional testing aids in the diagnostic workup of DNA repair
disorders (Table 1). Telomere length is an important diagnostic
tool that is used to diagnose short telomere syndromes such as
dyskeratosis congenita, a BMF syndrome with mucocutaneous
fragility and symptoms of premature aging with an increased
predisposition to malignancies secondary to genetic deficiencies
in telomere-associated genes such as TERT, TERC,DKC1, TINF1,
and RTEL1 to name a few [excellent review provided by (206)].
Importantly, telomere length should be measured in DNA repair
disorders such as FA (207, 208), AT (209, 210), NBS (211),
BS (212), and WS (213) where patients exhibit short telomeres
and chromosome end fusions secondary to dysfunctional DNA
damage response at the telomere.

Chromosome breakage studies are necessary to establish
a diagnosis of FA, as individuals with this condition are
hypersensitive to crosslinking agents such as mitomycin C
(MMC) or diepoxybutane (DEB). When exposed to these agents,
patient cells will have an increased rate of chromosome breaks
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and aberrations such as radial figures and rearrangements.
Rarely, mosaicism can occur in lymphocytes where two distinct
lymphocyte populations are present with one subset having
undergone spontaneous reversion resulting in normal sensitivity
to clastogenic agents while the second population remains with
the underlying genetic defect and retaining hypersensitivity
features to damaging agents. Therefore, if breakage studies on
lymphocytes are normal but there is still clinical suspicion for a
DNA repair disorder, skin fibroblasts should be investigated to
complete the diagnostic evaluation (76).

DNA repair disorders that present with profound
immunodeficiency [AT, NBS, NHEJ deficiencies (Ligase IV,
Artemis, Cernunnos)] can lead to absence or very low T-
lymphocyte receptor excision circles (TRECs), which are
detected on newborn screen (214, 215).

Spontaneous excess of immunoglobulin (Ig)/T-cell receptor
(TCR) abnormal rearrangements of chromosomes 7 and 14 are
common in patients with NBS (10–35%) (216) and AT (5–10%)
(217). Alpha fetoprotein (AFP) is elevated in 95% of AT patients
(218), but interestingly, it can also be increased in FA patients
(219). Sister chromatid exchange (SCE) assay, which assess
for increased SCE in metaphase cells with bromodeoxyuridine
(BrdU) exposure, aids in the diagnosis of BS (148). UV
hypersensitivity assay, where skin fibroblasts are exposed to
UV light, is used for diagnosing NER defect in XP patients,
but this testing is typically completed in a research setting
and may not be available clinically (220). There is a lack of
consensus and uniform availability for a routine radiosensitivity
assay available for patients with HR and NHEJ biallelic genetic
disorders. Radiation-induced lymphocyte apoptosis (RILA) assay
and phospho-ATM assay have some predictive potential (221).
Analysis of radiation-induced γH2AX foci accumulation in T
and NK lymphocytes of LIG4-SCID individuals was recently
implemented as a flow cytometry assay (222).

Genetic Testing
It has become a standard approach to perform genetic studies
as part of the initial diagnostic workup in a patient with a
suspected DNA repair disorder based on clinical features and/or
history of related malignancies. The patient’s clinical phenotype
and results of functional testing can be used to guide the
differential diagnosis and, in turn, the genes requiring further
investigation. Genetic testing of individuals presenting with a
related malignancy but lacking other clinical manifestations of
a DNA repair disorder is unlikely to have a high yield, as these
conditions are thought to be rare. However, the diagnostic pickup
of a DNA repair disorder in individuals with a relatedmalignancy
in an unbiased manner requires further study.

When ordering genetic testing, issues to consider include
sample source, optimal genetic testing type, and technical
challenges limiting mutation identification. First, peripheral
blood or saliva samples are the easiest and most preferred
sample source to obtain. In patients with active hematologic
malignancy, however, skin fibroblasts or hair follicles are
the preferred germline specimen (223). Single gene analysis
may be an appropriate rapid approach in scenarios where a
specific gene is expected based on phenotype. A disease-specific

multigene panel is a cost-effective approach for patients with
clinical features consistent with multiple DNA repair disorders.
Currently, clinical whole exome or genome sequencing represent
the most comprehensive approach, generally used after obtaining
negative results from targeted gene testing. Some genes may
present technical challenges, such as the PMS2 gene, which has
multiple pseudogenes. One of these pseudogenes, PMS2CL, is
part of a 100-kb inverted duplication and has close sequence
homology to the regions of exons 9 and 11–15 in PMS2, making
it difficult to differentiate whether the mutation is located within
PMS2 or the pseudogene (224).

When interpreting variants obtained in genetic studies, it
is widely accepted to use consensus criteria established by the
American College of Medical Genetics and Genomics to classify
variants as pathogenic, likely pathogenic, variant of uncertain
significance (VUS), likely benign, and benign (225). Pathogenic
and likely pathogenic variants will confirm a clinical diagnosis
and thus impact medical management decisions. If a patient
with a suspected autosomal recessive DNA repair disorder is
found to have a heterozygous pathogenic mutation in a gene
consistent with the phenotype, one has to consider that a second
mutation within the same gene was missed. A discussion with
the reporting lab may be helpful to clarify limitations of their
testing strategy and whether additional testing may be warranted
to evaluate for a second gene alteration, which might include
not only a mutation but also an intragenic deletion or intronic
variant. An increasingly growing challenge in the clinical setting
is the finding of a VUS, for which the available genetic and
functional data are either lacking or conflicting and, therefore, at
a given time, they generally should not influence clinical decision
making. However, periodic communication with the testing lab is
encouraged to learn of any changes in variant interpretation that
may occur over time.

TREATMENT STRATEGIES

A unifying feature among most DNA repair disorders is
hypersensitivity to DNA-damaging agents such as radiation
and chemotherapy used to treat malignancies. However, the
underlying genetic deficit of repair pathway genes in patients
with DNA repair syndromes places them at high risk for therapy-
related toxicities. For this reason, unique cancer treatment
regimens are tailored that often employ reduced intensity
doses to balance chemo- or radiotherapy-mediated toxicities
while achieving clinical outcomes comparable to the standard
of care. The high rate of treatment failures and secondary
malignancies is problematic, especially in patients with CMMRD,
NBS, and AT. Common strategies to avoid overt toxicities
include avoiding radiomimetic drugs such as bleomycin and
dactinomycin and being aware of cyclophosphamide- and/or
ifosfamide-related hemorrhagic cystitis developing outside the
normal range in patients with predisposition to telangiectasias.
DSB DNA repair syndromes (AT, NBS, and LIGIV), due to their
shared manifestations of immunodeficiency and increased risk
for malignancies, benefit from reduced intensity conditioning-
based hematopoietic stem cell transplantation (HSCT). However,
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the role of HSCT in improving overall outcome of patients with
AT remains debatable (215). Several clinical trials are aimed at
innovative drugs that target DNA repair genes to provide effective
therapy while minimizing toxicities for patients with DNA repair
disorder-associated cancers (226).

CONCLUSIONS

Cancer can result from mutations that are inherited or
acquired during lifetime. DNA repair mechanisms are essential
to maintenance of genomic integrity and are abrogated in
cancer. Defects in DNA repair pathways result in a chaotic
and unstable genomic environment, which is a hot bed for
oncogenic transformation. This biological phenomenon is well-
recapitulated in classic DNA repair disorders that result from
heritable mutations in genes essential for DNA damage response
and result in early-onset cancers and premature aging. Because
these syndromes are rare, a heightened awareness must be
practiced to provide multidisciplinary care and surveillance
and unique therapeutic considerations for patients with DNA
repair disorders.
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Progresses over the past years have extensively improved our capacity to use

genome-scale analyses—including high-density genotyping and exome and genome

sequencing—to identify the genetic basis of pediatric tumors. In particular, exome

sequencing has contributed to the evidence that about 10% of children and adolescents

with tumors have germline genetic variants associated with cancer predisposition. In

this review, we provide an overview of genetic variations predisposing to solid pediatric

tumors (medulloblastoma, ependymoma, astrocytoma, neuroblastoma, retinoblastoma,

Wilms tumor, osteosarcoma, rhabdomyosarcoma, and Ewing sarcoma) and outline the

biological processes affected by the involved mutated genes. A careful description of

the genetic basis underlying a large number of syndromes associated with an increased

risk of pediatric cancer is also reported. We place particular emphasis on the emerging

view that interactions between germline and somatic alterations are a key determinant

of cancer development. We propose future research directions, which focus on the

biological function of pediatric risk alleles and on the potential links between the germline

genome and somatic changes. Finally, the importance of developing new molecular

diagnostic tests including all the identified risk germline mutations and of considering

the genetic predisposition in screening tests and novel therapies is emphasized.

Keywords: genetic predisposition, germline variants, cancer predisposition genes, pediatric tumors, cancer

susceptibility, germline-somatic interaction, SNP, next generation sequencing

INTRODUCTION

Genomic sequencing studies have highlighted that pediatric cancers typically have few somatic
mutations but a higher prevalence of germline alterations in cancer predisposition genes (1). The
contribution of germline variants in pediatric tumors has been estimated between 8 and 12% (2, 3).
Genetic variants are generally classified on the basis of their clinical effect: pathogenic variantmeans
any sequence change that, differing from the consensus wild-type sequence, directly contributes
to the development of the disease; likely pathogenic variants, instead, are genetic changes with
a high likelihood of being disease-causing, but additional evidence is expected to confirm their
clinical significance. Variant classification can arise from different methodologies and algorithms,
which can assign different weights to collected data. However, studies cited in the present review
generally refer to the American College of Medical Genetics and Genomics (ACMG) guidelines
for variants interpretation (4). In this process, multiple categories of data (such as frequency
in affected and unaffected populations, computational prediction tools, functional studies, and
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gene- or disease-specific information) are taken into account and
combined to determine a variant pathogenicity classification.

It is also important to note that genetic variants can be
detected through different genomic approaches and the type of
identified alteration depends on the nature of the assay used.
Large-scale genomic analyses such as whole-exome sequencing
(WES) or whole-genome sequencing (WGS) can identify
uncommon,moderate penetrant variants. SinceWES investigates
only the coding regions of the genome, it has proved very useful
in detecting most of the causative variants of Mendelian diseases
(5, 6). Furthermore, it has recently been used also to identify
rare and uncommon causative mutations of complex diseases (7).
On the other hand, WGS can capture nearly all known genetic
variations, including those falling in regulatory elements, with
much more uniform coverage of the genome, but it does not
allow to detect mosaic variants with low clonality or variations
causing DNA repetitions (8). Common, low-penetrance genetic
variants, instead, are mostly identified by genome association
study (GWAS), which assesses genotype–phenotype associations
through testing of variants across genomes of many individuals,
based on data obtained using numerous technologies, mostly
WGS or genome-wide single-nucleotide polymorphism (SNP)
arrays. Consequently, GWAS limitations are linked to the
technology on which it is based: e.g., SNP array-based GWAS
rely on pre-existing genetic variant reference panels (9). Finally,
besides SNP array, copy-number variations (CNV) can be
identified also through CGH array. Anyway, array methods

FIGURE 1 | Frequency of pediatric cancers in patients younger than 19 years. The figure shows the prevalence of the main pediatric cancer types among patients

younger than 19 years of age, calculated from Centers for Disease Control and Prevention (CDC) data (United States Cancer Statistics Data, https://wonder.cdc.gov/

cancer.html) and based on incidence in United States for the years 1999–2016. CNS, Central Nervous System. *This frequency is related to Wilms tumor and other

non-epithelial renal tumors.

cannot be used to detect single base pair changes, indels, balanced
chromosome rearrangements, and low-percent mosaicism (10).

Recently, in addition to germline pathogenic and/or likely
pathogenic variants in known cancer-predisposing genes, it
has been estimated that a high percentage (61%) of children,
adolescent and young adult patients with solid tumors carry
germline pathogenic and likely pathogenic variants in new
candidate genes, including PRKN, SMACAL1, SMAD7, and
TMPRSS3 (3). The detection of cancer predisposition can lead
to clinical benefits for patients, both for the molecular diagnosis
and for the presence of specific biological features, as well as to
eventually refine therapeutic choices. We provide an overview of
the most significant knowledge of germline predisposition for the
main pediatric solid tumors, which are central nervous system
tumors (medulloblastoma, ependymoma and astrocytoma),
neuroblastoma, retinoblastoma, Wilms tumor, osteosarcoma,
rhabdomyosarcoma, and Ewing sarcoma, altogether accounting
for 34.8% of all childhood cancers (Figure 1). Each tumor
description is organized into two subsections: “familial cancer”
and “sporadic tumor.” Familial cancer means a form of cancer
that has higher incidence in families than in the general
population due to rare, high-penetrance genetic variants. In this
group, we also included rare genetic syndromes that are not
usually considered as cancer syndromes but that predispose to
the development of solid pediatric tumors. The second group,
sporadic tumor, is referred to cancers which do not run in
families and are intended as multifactorial diseases whose onset
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can be attributed to the combined effect of environmental
and genetic factors. In sporadic cancers, genetic factors can be
categorized into two types: uncommon, moderate-penetrance
genetic variants, which for the studies considered in this review
show a frequency lower than 1–0.001% in the general population
and are not so rare as those associated with familial cancer, and
common, low-penetrance genetic variants.

The knowledge of genetic mutations responsible for
syndromic disorders associated with the risk of developing
pediatric cancer has greatly increased over the past years
(11). Indeed, several tumor predisposing syndromes are the
underlying cause of at least 8.5% of cancers in pediatric patients
(12). Thus, the role of general practitioners and pediatricians
in recognizing the major cancer genetic-associated syndromes,
in making appropriate referrals for genetic counseling and
testing when indicated, is crucial for a specific monitoring and
management of the patient.

Most cancer susceptibility genes are involved in fundamental
biological pathways such as cell-cycle control, chromatin
remodeling, or DNA repair. Therefore, alterations in these genes
compromise the normal control of cell growth and lead to a
substantial increase in the risk of developing cancer. Another

element of great interest discussed here is the presence of
cooperation between germline and somatic alterations, which
can represent an early tool for evaluating the clinical outcome
and for the stratification of patients in risk subgroups. We also
discuss evidence that points to a need for more collaborative
investigations in identifying driver events in pediatric cancers.

CENTRAL NERVOUS SYSTEM TUMORS

Central nervous system (CNS) tumors represent the most
frequent types of cancer in children aged 0–14 years, with a
mortality rate of 0.72 per 100,000 population (13). The threemost
frequent tumors are medulloblastoma (MB), ependymoma (EP),
and astrocytoma (AS) (Figure 2).

Medulloblastoma
MB is an embryonal tumor of cerebellum (14) that affects
children under the age of 14, with an average onset of about 6–8
years (Figure 2) and with a 5-year overall survival for standard-
risk patients of 70–85% (14). It is classified into four genetic and
molecular groups: the first two groups,WNT-activated (MBWNT)
and Sonic Hedgehog activated (MBSHH), are named for the

FIGURE 2 | Global incidence of pediatric cancers in patients younger than 19 years. The graph shows the global age-specific incidence rates (ASR) per million for

individual age groups (0–4 years, 5–9 years, 10–14 years, and 15–19 years) of pediatric cancer types discussed in this review. ASR reported next to the bars are

calculated from International Incidence of Childhood Cancer (IICC, https://iicc.iarc.fr/) data. *These ASR include also less frequent embryonal central nervous system

tumors.
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signaling pathways that play prominent roles in the pathogenesis
of those subgroups, while, since less is known about the biology of
the remaining two subgroups, they are numerically designated as
“Group 3” and “Group 4” (14). Damaging germline mutations in
known cancer-predisposing genes play an important role in two
main subgroups, MBWNT and MBSHH, in which genetic testing
is highly recommended (15). MBWNT is characterized at somatic
level by activating mutations in exon 3 of β-catenin (CTNNB1)
andmonosomy of chromosome 6, while MBSHH by amplification
of GLI2 andMYCN, as well as loss of 17p (16).

Familial Medulloblastoma
To date, only germline mutations in ELP1 have been found in
two independent families with MBSHH (17). Although inherited
or familial MB is extremely rare, there are few rare inherited
syndromes that are associated with increased risk of developing
this tumor (Table 2). Germline mutations of PTCH1 and SUFU,
by causing activation of the SHH signaling pathway, predispose
to MBSHH in Gorlin syndrome, an autosomal dominant disease
caused by mutations in PTCH1 (67, 124). In Turcot syndrome,
a rare disorder characterized by the association of colonic
polyposis and primary brain tumors, germline mutations of APC
predispose to the development of MBWNT (114). In MBWNT,
activation of the WNT pathway is due to somatic mutations
of CTNNB1 in most of tumors but it is also observed in
patients with only germline mutations of APC, stressing the
importance of genetic predisposition in high-risk patients (15,
114). Germline mutations in BRCA2 and PALB2, associated
or not associated with Fanconi anemia, have been found in
MBSHH (58, 125) and are often observed in association with
somatic homologous recombination repair defects (15). The role
of germline mutations in TP53 in MB is still widely debated
today. TP53 germline mutations affect MB prognosis differently
according to the different subgroups: germline mutations in
MBSHH are associated with poor prognosis, while both germline
and somatic mutations in MBWNT are associated with better
prognosis. This may be due to a different origin of the MB
itself (14). Patients with germline TP53 mutations can have
tumors characterized by catastrophic DNA chromothripsis and
are often associated with Li–Fraumeni syndrome (LFS), a cancer
predisposition disorder caused by germline mutations of the
tumor-suppressor p53 (71). Other MB-associated syndromes are
Bloom’s syndrome (31), ataxia telangiectasia (18), and Greig’s
cephalopolysyndactyly syndrome (14, 40, 45, 85, 122) (Table 2).

Sporadic Medulloblastoma
The association between MB and genetic syndromes explains
most of the genetic predisposition to MB. However, sporadic
forms are known in literature and are partially explained through
uncommon, moderate penetrant mutations identified by whole-
exome sequencing (WES) or whole-genome sequencing (WGS),
or common, low-penetrance genetic variants identified by
genome wide association study (GWAS) (Table 1 and Table 3).

Uncommon, Moderate-Penetrance Variants
In a study on 1,022MB patients, novel partial or total APC
deletions were found (15). These mutations were not associated
with any familial syndrome and predisposed to MBWNT. In

TABLE 1 | Rare, high-penetrance, and uncommon, moderate-penetrance

variants in genes predisposing to pediatric tumors and main biological pathways.

Pathways Gene(s) Tumors References

Collagen chain polymerization COL7A1 NB, RMS, WT (3)

Cytoskeletal and adhesion

signaling

GJB2 AS, CNS tumors,

EWS, OS, RMS

(3, 126)

CDH1 WT (3)

DNA base excision repair (BER) ERCC2 AS, OS (127–129)

DNA double-strand break repair

(DSB)

BRCA1 AS, CNS tumors,

EWS, OS, RB

(3, 126, 129,

130)

BRCA2 AS, NB, MB, RMS (2, 3, 15, 58,

125, 126)

CHEK2 CNS tumors,

EWS, NB, OS, RB,

RMS, WT

(3, 129, 131,

132)

BAP1 RB (3)

BLM EWS, MB (15, 130)

BRIP1 EWS, MB, OS (2, 3, 15, 129,

130)

NBN MB (15)

WRN MB (15)

PALB2 MB, OS, WT (3, 15, 129,

131, 132)

DNA mismatch repair system

(MMR)

MSH2 WT, OS (2, 3)

MSH6 RB, RMS, WT (3, 133)

PMS2 AS, CNS tumors,

EWS

(2, 3, 127,

130)

DNA repair FANCA AS, MB (15, 126)

FANCC EWS, MB (2, 15, 130)

FANCI RMS (133)

FANCL OS (2, 129)

FANCM OS (2, 129)

ATR RMS (3)

MUTYH AS, EWS (2, 127)

RAD51D WT (3)

RECQL4 OS (129)

Genome stability and regulation

of cell cycle

ALK Familial/sporadic

NB

(2, 3, 134,

135)

ATM EWS, MB, OS,

RB, RMS

(3, 15, 129,

133)

RB1 OS,

familial/sporadic

RB

(2, 3, 129,

135, 136)

TP53 AS, EWS, MB,

NB, OS, RMS, WT

(2, 3, 15, 127,

129–131,

133, 135,

137–139)

Metabolic pathways HMBS CNS tumors (3)

FAH OS (129)

SDHA NB (3)

Protein interaction at synapsis PTPRD Advanced/metastatic

EWS

(140)

Protein translation and

modification

KIF1Bβ Familial NB (141)

RET signaling and G-protein

signaling, H-RAS regulation

pathway

ERBB4 NB (3)

NF1 AS (126)

RET EWS (2, 130)

(Continued)
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TABLE 1 | Continued

Pathways Gene(s) Tumors References

miRNA processing genes DIS3L2 WT (131, 132,

137)

DROSHA WT (131, 137)

XPO5 WT (131)

DICER1 Familial/sporadic

WT, RMS

(3, 52, 55,

131, 137,

142)

Sonic Hedgehog pathway (SHH) GPR161 MB (143)

PTCH1 MB (15, 67)

SUFU MB (15, 67)

Spindle assembly checkpoint

(SAC)

TRIP13 Familial WT (83)

Transcriptional regulation and

chromatin remodeling

CTR9 Familial WT (144)

ELP1 MB (17)

LZTR1 CNS tumors, EWS (3)

PHOX2B Familial NB (145)

POLE EWS, NB (3, 130)

SMARCA4 NB (3, 146)

REST Familial/sporadic

WT

(147, 148)

TRIM28 Familial/sporadic

WT

(147)

WT1 Familial/sporadic

WT

(147, 149,

150)

WNT signaling pathway APC MB (15)

Other 11p15 Familial/sporadic

WT

(150, 151)

Rare, high-penetrance variants are related to familial forms of tumors, while uncommon,

moderate-penetrance variants refer to sporadic forms. When the tumor form is not

specified we refer to uncommon, moderate-penetrance variants. AS, astrocytoma; CNS,

central nervous system; EP, ependymoma; EWS, Ewing sarcoma; MB, medulloblastoma;

NB, neuroblastoma; OS, osteosarcoma; RB, retinoblastoma; RMS, rhabdomyosarcoma;

WT, Wilms tumor.

the same study, 1% of patients (classified as MBSHH) had
TP53 mutations but only 5/11 patients showed family history
of cancer, emphasizing the role of TP53 germline mutations
in predisposing to sporadic MB. Notably, germline missense,
frameshift, or non-sense mutations in the DNA-binding domain
of TP53 were found to be associated with a series of events
at the somatic level such as rearrangements, chromothripsis,
and loss of heterozygosity in MBSHH patients, whereas germline
mutations in SUFU and PTCH1 co-occurred with somatic loss
of heterozygosity (15) (Table 4). These results further provide
evidence that novel associations between germline variants and
specific somatic events, beyond those reported by Knudson in
1971, can play a role in carcinogenesis. Indeed, recent body of
literature supports the hypothesis that specific germline variants
determine which somatic events andmutations are generated and
selected in cancer cells during tumorigenesis (179).

MB can also arise in patients with germline mutations in other
known cancer genes such as ATM, FANCA, FANCC, NBN,WRN,
BLM, and BRIP1 and in candidate genes like CHEK2, CREBBP,
RAD51, ERCC2, and ERCC4. All of these genes are involved in

cell-cycle regulation and DNA repair (15). Frameshift, protein-
truncating, and missense mutations occurring in GPR161, a
gene never previously associated with MB, were found in 6
MBSHH cases (143) that, at the somatic level, showed loss of
heterozygosity with retention of the mutated allele, confirming
its role as driver gene in MBSHH. GPR161 functions are essential
for embryonic development and for the proliferation of granular
cells (143). Germline mutations in ELP1 have been very recently
found to predispose to MBSHH and to be associated with two
consecutive somatic events: loss of the 9q arm, with consequent
loss of the wild-type copy of PTCH1 and ELP1, and a second
independent mutation event in PTCH1 (17) (Table 4). This
study, importantly, showed that 40% of MBSHH patients carry
disease-predisposing mutations and that genetic predisposition
to proteome instability may be a determinant in the pathogenesis
of pediatric brain cancers (17) (Table 1).

Common, Low-Penetrance Variants
To date, there are no relevant GWAS conducted to identify
common variants associated with MB. Only one study has
been performed in a small sample including 244MB cases and
247 control subjects from Sweden and Denmark, but no locus
reached the significance threshold (154). The most significant
locus was 18p11.23 including PTPRM (154). A different approach
that starts from the most frequently mutated genes in MB
such as CCND2, CTNNB1, DDX3X, GLI2, SMARCA4, MYC,
MYCN, PTCH1, TP53, and KMT2D was proposed to identify
MB-associated common variants (162). Eight variants, located
in CCND2, PTCH1, and GLI2, associated with the risk of
developing MB (162) (Table 3). However, these findings need
further validation in independent cohorts of cases and controls.

Microsatellites are tandem repeats of 1–6 base pairs, and
their variability is associated with numerous tumors, including
MB. In a recent work, starting from WES and WGS data, the
authors developed an algorithm able to identify a signature
of 43 microsatellites that distinguished with high-sensitivity
and specificity MB subjects from controls in two independent
sets of MB cases and controls (180). Interestingly, in silico
analyses revealed that genes harboring these microsatellite loci
had cellular functions important for tumorigenesis (180).

Other Brain Tumors
EP originates from the walls of the ventricular system (79), arises
between 0 and 4 years (Figure 2) (79), and has a 5-year overall
survival of about 60% (181). EP is diagnosed in ∼33–53% of
patients with type 2 neurofibromatosis, with high occurrence
of truncating mutations in NF2 (97). EP has recently been
associated with Kabuki syndrome, with mutations in KMT2D
(70) and rarely occurs in Turcot and MEN1 syndromes with
mutations in MSH2 and MEN1, respectively (79) (Table 2). To
date, large studies on common variants and sporadic forms are
lacking (Table 1). AS is classified into several forms including
pilocytic, anaplastic, diffuse, and glioblastoma (182). Pilocytic
AS is the most common form in children and young adults,
with an average age at onset between 0 and 9 years (13)
(Figure 2) and a 5-year survival of 94.1% (13). Regarding
the genetic predisposition, one large study reported germline
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TABLE 2 | Syndromes associated with pediatric tumors. Frequencies reported refer to the occurrence rate of pediatric cancers in patients with genetic syndromes.

Syndrome/disease Inheritance pattern Gene/s associated Tumor Frequency References

Ataxia telangiectasia AR ATM MB Extremely rare (18)

ATR-X syndrome AR ATR-X OS Extremely rare (19)

Baller–Gerold syndrome AR RECQL4 OS Extremely rare (20, 21)

Beckwith–Wiedemann syndrome Imprinting, AD CDKN1C NB 4–21% (22, 23)

KCNQ1OT1 RMS 7.5% (24–28)

11p15 or H19 loci WT 7–30%/20% (29, 30)

Bloom syndrome AR RECQL3 (BLM) MB Extremely rare (31)

OS 2% (32, 33)

WT <5% (29, 34)

Bohring-Opitz syndrome AD ASXL1 WT 7% (35, 36)

CCHS/hirschsprung syndrome AD PHOX2B NB 10–20% (37–39)

Constitutional mismatch repair deficiency AR MSH2, MSH6, MLH1,

PMS2

MB 11.6% (33, 40)

Costello syndrome AD HRAS NB 17% (41)

RMS 17% (42–44)

Curry–Jones syndrome Unknown GLI3 MB Extremely rare (45, 46)

Diamond–Blackfan anemia AD Unknown OS <1% (33, 47–50)

Denys–Drash syndrome AD WT1 WT 90% (51)

DICER1 syndromes AD DICER1 RMS Rare (52–54)

WT <5% (29, 55)

Familial paraganglioma/pheochromocytoma

syndrome

AD SDHB NB Rare (56)

Fanconi anemia AR BRIP1, BRCA2, PALB2 NB rare (57)

BRCA2, PALB2 MB, 25% (58, 59)

WT >20% (60–62)

Frasier syndrome AD WT1 WT 5–10% (63)

Gorlin syndrome AD PTCH1 RMS Rare (64, 65)

WT <5% (36, 65, 66)

PTCH1 MB <2% (67, 68)

SUFU 30-40%

Hyperparathyroidism-jaw tumor syndrome AD CDC73 (HRPT2) WT <5% (60)

Isolated hemihypertrophy AD 11p15 locus WT 6%/<5% (69)

Kabuki syndrome AD KMT2D EP Extremely rare (70)

Li–Fraumeni syndrome AD TP53 MB 14% (68, 71)

NB rare (72)

OS 12% (73–76)

RMS 80% (75, 77)

WT <5% (29, 78)

MEN1 syndrome AD MEN1 EP Rare (79)

Mosaic variegated aneuploidy syndrome AR BUB1B RMS High (80, 81)

BUB1B, TRIP13 WT >20% (60, 80, 82, 83)

Muliebry nanism syndrome AR TRIM37 WT <5% (29, 84)

Nijmegen breakage syndrome AR NBN MB Extremely rare (85)

NBS1 RMS Rare (86, 87)

Noonan syndrome AD PTPN11, KRAS NB 17% (88)

SOS1 RMS Rare (89–93)

Noonan-like syndrome AD CBL RMS Extremely rare (94)

Neurofibromatosis type I AD NF1 NB Rare (95, 96)

RMS 0.5% (44)

Neurofibromatosis type II AD NF2 EP 3–6% (68, 97)

Paget’s disease of bone AD Unknown OS <1% (98, 99)

(Continued)
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TABLE 2 | Continued

Syndrome/disease Inheritance pattern Gene/s associated Tumor Frequency References

Perlman syndrome AR DIS3L2 WT 50–60% (33, 100)

PIK3CA-related segmental overgrowth Unknown PIK3CA WT <5% (29, 101)

ROHHAD Unknown Unknown NB Rare (39)

Rothmund–Thomson and RAPADILINO

syndrome

AR RECQL4 OS 30–60%, 13.3% (33, 102–108)

Rubinstein–Taybi syndrome AD CREBBP, P300 MB Extremely rare (14)

CREBBP NB Extremely rare (77, 109)

Simpson–Golabi–Behmel syndrome X-linked GPC3 NB 10% (77)

WT 10% (60, 82, 110)

Sotos syndrome AD NSD1 NB Rare (111, 112)

WT <5% (36, 113)

Turcot syndrome AR APC MB <1% (68, 114)

MSH2 EP 53% (68, 79)

WAGR syndrome AD WT1 WT 50% (60, 115)

Weaver syndrome AD EZH2 NB Rare (116, 117)

Werner syndrome AR RECQL2 (WRN) OS 7% (108, 118–120)

Wolf–Hirschhorn syndrome Unknown MSX1 NB Extremely rare (121)

Xeroderma pigmentosum AR DDB2, ERCC1, ERCC2,

ERCC3, ERCC4, ERCC5,

POLH, XPA, XPC

MB Extremely rare (122)

13q deletion syndrome Unknown RB1 RB Variable (123)

AD, autosomal dominant; AR, autosomal recessive; EP, ependymoma; MB, medulloblastoma; NB, neuroblastoma; OS, osteosarcoma; RB, retinoblastoma; RMS, rhabdomyosarcoma;

WT, Wilms tumor.

splicing mutations in the tumor-suppressor genes MUTYH and
ERCC2 and point mutations in TP53 and PMS2 (127) (Table 1).
Pathogenic mutations in NF1, BRCA2, FANCA, and GJB2 have
been also identified in a recent study involving 280 patients with
different forms of AS (126).

NEUROBLASTOMA

Neuroblastoma (NB) originates from neural crest cells and
affects the nervous sympathetic system (183). NB exhibits unique
features, such as early age of onset, high frequency of metastatic
disease at diagnosis in patients over 1 year of age (Figure 2), and
the tendency for spontaneous regression of tumors in infants. In
high-risk cases, the survival rate is only 50% (183). NB tumors,
as well as other pediatric cancers, present few recurrent somatic
mutations but frequent chromosomic aberrations such MYCN
amplification, 17q gain, 1p deletion, and 11q deletion (184).

Familial Neuroblastoma
Familial NB represents 1–2% of cases, with PHOX2B and
ALK as major susceptibility genes (184) (Table 1). The first
identified familial gene is PHOX2B (37, 145), already associated
with congenital central hypoventilation syndrome (CCHS)
(185) and encoding a transcription factor driving neural
crest differentiation (186). NB-exclusive mutations are mainly
missense and frameshift (187). PHOX2B germline mutations
account for ∼10% of familial NB (188), but this gene is also
mutated in 2% of sporadic cases (189). Subsequently, the major
susceptibility gene was identified in ALK. Its gain-of-function

mutations, which account for 75% of familial cases (134, 188),
are mainly located in the kinase domain of the encoded tyrosine
kinase receptor and show incomplete penetrance (190). ALK
somatic mutations are also reported in 10–12% of primary
sporadic NB tumors (134, 191). Additional NB-predisposing
genes have not yet been discovered. Mutations in KIF1Bβ (141)
and GALNT14 (192) and in 16p12–13, 4p16, and 1p loci (193–
195) (Table 1) have been reported in related patients, but further
validations are needed.

Children suffering from specific cancer predisposition
syndromes such as LFS and others (Table 2) show an increased
NB risk (22, 38, 39, 41, 56, 57, 72, 77, 88, 95, 111, 116, 121). Thus,
protocols for NB surveillance need to be established.

Sporadic Neuroblastoma
Only a small subset of sporadic NB cases has an identifiable
somatic oncogenic point mutation (196, 197), suggesting that
predisposing genetic factors found in GWAS studies could
cooperate to increase disease occurrence (198, 199).

Uncommon, Moderate-Penetrance Variants
Recent studies focused on uncommon germline variants, which
presumably have a larger effect on predisposition compared
to common ones. In different studies, pathogenic and likely
pathogenic variants were identified in predisposition genes such
as ALK, CHEK2, BRCA2, SMARCA4, and TP53 (Table 1) but
also in candidate genes like AXIN2, PALB2, BARD1, PINK1,
APC, BRCA1, SDHB, and LZTR1 (2, 135, 146, 196, 197, 200)
Specifically, TP53 variants are strongly associated with NB
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susceptibility (201). All thementioned genes are involved inDNA
repair and maintenance of genomic integrity (Table 1).

Common, Low-Penetrance Variants
GWAS studies identified several NB susceptibility loci (Table 3)
including CASC15 (160), BARD1 (157), LMO1 (175), HACE1,
and LIN28B (155) associated with high-risk NB, whereas
DUSP12, HSD17B12, DDX4, and IL31RA associated with the
low-risk NB group (161, 198). Functional studies of these
loci have highlighted the key role of GWAS in elucidating
NB carcinogenesis. A SNP in the long non-coding RNA
(lcnRNA) CASC15 produces a truncated isoform, whose lower
expression correlates with advanced disease (202). Loss of
another lncRNA, NBAT-1, at the same locus, contributes
to aggressive NB by increasing proliferation and impairing
differentiation of neuronal precursors (203). Diverse functional
studies have elucidated the role of BARD1 and its variants in NB
development (204). Variants in the BARD1 promoter decrease
the expression of the tumor-suppressor form which protects NB
cells from DNA damage (205, 206), whereas variants in introns
increase the expression of an oncogenic isoform, BARD1β ,
which stabilizes the Aurora kinases (207, 208). LMO1 decreased
expression, caused by a variant in a super-enhancer which
disrupts GATA binding (209), reduces NB cell proliferation.
Finally, the activation of LIN28B, due to genetic variants, can
enhance MYCN levels via let-7 microRNA suppression (155, 210,
211). The genetic landscape of sporadic NB has been amplified
with the discovery of additional susceptibility genes including
RSRC1/MLF1 and CPZ (159), SPAG16 (177), NEFL (156), and
CDKN1B (170).

Reanalyses of GWAS data have discovered novel mechanisms
and genetic factors that promote NB development (Table 3). Two
studies clearly demonstrate a cooperation between predisposing
variants and somatic aberrations in NB initiation (Table 4).
Indeed, SNPs in MMP20 (167) and KIF15 (168) increase
NB susceptibility in the presence of 11q deletion and MYCN
amplification, respectively, whereas another study shows that
specific mtDNA haplogroups can influence the risk of NB
(212). We have provided evidence that SNPs in PARP1 and IL6
might be predictive biomarkers of response to chemotherapy
and prognosis (213, 214). Finally, our recent works found that
NB shares risk loci with other complex diseases and tumors.
Indeed, SNPs in 2q35, 3q25.32, and 4p16.2 are cross-associated
with congenital heart disease (CHD) and NB (215), while
1p13.2 showed cross-association with NB and melanoma (216).
Very recently, a cross-match investigation between germline
alterations in pediatric patients with different solid tumors and
CHD-related genes has identified that NB is among the tumors
with the highest enrichment of germline pathogenic and likely
pathogenic variants in these genes (3).

Constitutional Chromosomal Abnormalities
Highly associated with NB are hemizygous deletion in 1q21.1,
disruption in NBPF23 (217), and microdeletion in 16p11.2,
containing SEZ6L2 and PRRT2 (218). Deletion including
SLFN11, duplication of SOX4, and partial deletion of PARK2 have
been identified in three different patients, respectively (219).

TABLE 3 | Common, low-penetrance variants in genes predisposing to pediatric

tumors and main biological pathways.

Pathways Gene(s) Tumors References

Centrosome stabilization KIZ EWS (152)

Cytoskeletal and adhesion

signaling

NHS WT (153)

PTPRM MB (154)

Differentiation NKX2-2 EWS (152)

NEFL, LIN28B NB (155, 156)

DNA double-strand break repair

(DSB)

BARD1 NB, WT (157, 158)

Extracellular matrix remodeling MMP20 NB (159)

Genome stability and regulation

of cell cycle

BMF EWS (152)

CASC15/NBAT-1,

DUSP12

NB (160, 161)

CCND2 MB (162)

MDM2, MDM4 RB (163, 164)

Immunity pathways HACE1, IL31RA NB (155, 161)

Metabolic pathways ACYP2 OS (165, 166)

HSD17B12 NB (161)

PCSK9, TCN2 WT (153)

Protein translation and

modification

CPZ, DDX4, KIF1, NB (159, 161,

167, 168)

DDX3X MB (162)

Replication and telomere

maintenance

TERC, NAF1,

TERT, OBFC1,

CTC1, RTEL1

OS (165, 166)

RET, RAS, and G-proteins

signaling

CDKN1A RB (169)

CDKN1B NB (170)

KRAS WT (171)

RNA biogenesis and processing DDX1 WT (153)

TARDBP EWS (172)

Sonic Hedgehog pathway (SHH) GLI2 MB (162)

Synaptic proteins and

neurotransmitters

DLG2, WT (153)

GRM4 OS (173)

Transcriptional regulation and

chromatin remodeling

EGR2, NR0B1,

RREB1

EWS (152, 172,

174)

KMT2D, MYC,

MYCN, SMARCA4

MB (162)

LMO1,

RSRC1/MLF1

NB (159, 175)

NFIB Metastatic

OS

(176)

WNT signaling pathway CTNNB1 MB (162)

Others 2p25.2 OS (173)

SPAG16 NB (177)

EWS, Ewing sarcoma; MB, medulloblastoma; NB, neuroblastoma; OS, osteosarcoma;

RB, retinoblastoma; WT, Wilms tumor.

RETINOBLASTOMA

Retinoblastoma (RB) is a pediatric malignancy of the neural
retina, commonly initiated by biallelic inactivation of RB1 (220)
and affecting one (unilateral) or both eyes (bilateral). The median
age at diagnosis is 12 months in bilateral tumors and 24 months
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TABLE 4 | Germline–somatic interactions identified in genes predisposing to

pediatric tumors.

Tumors Gene Frequency Somatic interaction References

MB TP53 Rare DNA chromothripsis (71)

ELP1 Rare Loss of the 9q arm and a

second independent

mutation event in PTCH1

(17)

NB KIF15 Common Increased NB risk in

presence of MYCN

amplification

(168)

MMP20 Common Increased NB risk in

presence of 11q deletion

(167)

EWS EGR2 Common EWSR1-FLI1 chimera (178)

NR0B1 Common (174)

EWS, Ewing sarcoma; MB, medulloblastoma; NB, neuroblastoma.

in unilateral ones (220) (Figure 2). Patient survival is >95% in
high-income countries but <30% globally (220). The first studies
on RB unveiled the importance of genetics in cancer; indeed, the
“two-hit hypothesis” formulated by Knudson (221) on RB1 has
been paradigmatic for the understanding of tumor-suppressor
genes and the study of familial cancers.

Familial Retinoblastoma
Hereditary RB encompasses about 40% of all cases with
most having bilateral tumors, 15% unilateral, and 5% trilateral
(associated with midline brain tumor) (220). Familial RB is
distinctly associated with the RB1 tumor-suppressor gene, which
encodes pRB, a crucial regulator of the cell cycle. Germline
mutations in RB1 are inherited in 25% of cases in an autosomal-
dominant manner. A broad spectrum of inactivating RB1
germline mutations have been described, mainly nonsense and
frameshifts affecting the coding region, few large deletions, and
<5% silencing gene promoter (136). Penetrance and expressivity
can vary within families due to partially functional RB1 alleles
(222, 223) or parent-of-origin effect (224). Influence of genetic
modifiers such as MDM2, MDM4 (225, 226), or MED4 (227)
and polymorphisms in p53 (228), CDKN1A (169), and CDKN2A
(229) could also influence RB development. Reduced MDM2
and MDM4 expression may increase the RB1 haploinsufficiency,
whereas variants affecting the activity of p53 pathway effectors
impact cell-cycle arrest. However, studies on larger cohorts of
patients are required to confirm these findings. A small subset
of hereditary RB patients is not carrier of RB1 mutations.
Investigation through a clinical exome gene panel within 3
families proposed FGFR4, NQO1, ACADS, CX3CR1, GBE1,
KRT85, and TYR as possible candidate genes involved in RB
oncogenesis, given their association with the retinoic acid
pathway (230).

RB is generally described as retinoblastoma predisposition
syndrome since germline RB1 mutations lead to a high risk
of second primary malignancies (231). Interestingly, RB onset
is reported in 13q deletion syndrome, caused by deletion of
part of the long arm of chromosome 13, where RB1 is located
(123, 232) (Table 2). Patients with this syndrome show a very

wide phenotypic spectrum depending on the size and the location
of the deletion (123, 232, 233).

Sporadic Retinoblastoma
Sporadic RB is always unilateral. Biallelic loss of RB1 is found
in 98% of cases, whereas 2% show MYCN amplification (234,
235). A significant proportion of sporadic RB exhibits somatic
mosaicism for RB1mutations (236, 237).

Uncommon, Moderate-Penetrance and Common,

Low-Penetrance Variants
Susceptibility variants have been investigated mostly in patients
with hereditary RB. However, given the role of the p53
pathway in RB development, polymorphisms in genes such
as MDM2 (163), MDM4 (164), and CDKN1A (169) could
also influence the development of the sporadic form (Table 3).
Uncommon variants conferring RB risk may be present in
asymptomatic individuals. Indeed, high-throughput analysis
revealed that several low-frequency RB1 variants are present
in the human population, including rare alleles disrupting
splicing (238).

Constitutional Chromosomal Abnormalities
Mosaic and non-mosaic chromosomal deletions of 13q14 region
are causative of RB (123, 239). Additionally, duplication of
1q21.1, containing the oncogene BCL9, has been reported in a
patient with bilateral RB (240).

WILMS TUMOR

Wilms tumor (WT), also known as nephroblastoma, is the
most common renal malignancy of childhood, with a median
age at diagnosis between 2 and 3 years (241) (Figure 2).
It is considered an embryonal tumor as it arises from the
aberrant kidney development, due to genetic anomalies in
genes essential for fetal nephrogenesis (29). WT treatment is
successful with a 5-year overall survival of about 90% and
75% for localized and metastatic disease, respectively (82).
It is estimated that about 10% of WT cases are caused by
genetic predisposition factors, mainly represented by germline
pathogenic variants or epigenetic alterations occurring early
during embryogenesis (147, 242). The number of known
susceptibility loci has significantly increased over the past
years, even if our knowledge is still incomplete and further
predisposition factors remain to be discovered. The landscape
of somatic genetic alterations in WT is quite broad, with
classical genetic changes involving WT1, the IGF2 locus, the
WNT pathway, MYCN and TP53 but also driver mutations in
several additional cancer genes including epigenetic remodelers,
miRNA processing genes and transcription factors essential for
nephrogenesis (29).

Familial Wilms Tumor
Several congenital malformation and cancer predisposition
syndromes are associated with the risk of developing WT
(Table 2). Some of the most known and characterized syndromes
are associated with constitutional alterations in WT1 at 11p13
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(60). WT1 was the first gene identified in WT and encodes a
zinc-finger transcription factor, essential for renal and gonadal
development (243). A syndrome frequently associated with high
risk of developing WT (around 50%) is the Wilms tumor–
aniridia syndrome (WAGR), caused by microdeletions of 11p13
including WT1 and PAX6 (115, 244). The second WT1-related
disorder is Denys–Drash syndrome (DDS), due to missense
variants in WT1 exons 8 or 9, which affect critical residues in
the zinc finger domains (51). The risk of WT in children with
DDS is about 90% (241). Another syndrome, phenotypically
similar to DDS but with a lower risk of WT development, is
Frasier syndrome (FS), caused by splicing variants that result
in an imbalance of WT1 isoforms (63). The second major WT
locus, identified at 11p15 (245), is also characterized by multiple
germline epigenetic and genetic changes causing the overgrowth
disorder Beckwith–Wiedemann syndrome (BWS). High WT
risk is specifically associated with uniparental paternal disomy
at 11p15 and to isolated H19 hyper-methylation that results
in biallelic expression of IGF2 and over-activation of the IGF
signaling pathway (30, 246). Table 2 reports other constitutional
genetic mutations underlying both congenital syndromes and
WT predisposition (34, 35, 61, 66, 69, 78, 80, 84, 100, 101, 110,
113).

WT is primarily a non-familial condition, with only about
2% of affected individuals belonging to familial pedigrees
(29) (Table 1). A small proportion of familial cases are due
to germline WT1 variants (149, 150) and mutations in the
H19 region of 11p15 (151). Two further predisposition loci
at 17q21 (FWT1) and 19q13 (FWT2) were identified by
genetic linkage studies, but the causative genes still remain
not fully characterized (247). Another cause of familial WT
is the presence of inactivating mutations in the DICER1
miRNA processing gene, also causative of cancer susceptibility
in DICER1 syndrome (55). Other recognized familial WT
predisposition genes are CTR9 and REST (144, 148, 248). CTR9
encodes a key component of the PAF1 complex, implicated
in maintenance of stem cell pluripotency (144), while REST
encodes the RE1-silencing transcription repressor, well-known
for its role in repressing neural development and differentiation
(249). Rare biallelic TRIP13 mutations have been found in a
WES study on familial WT pedigrees (83). TRIP13 encodes a
member of the spindle assembly checkpoint complex, whose
inactivation leads to chromosome segregation dysfunction and
aneuploidy (83). Pathogenic inactivating mutations of TRIM28
have been found in about 8% of familial WT in a sequencing
study on 890 patients (147). These mutations have been
found to show a strong parent-of-origin effect and a robust
association with the epithelial subtype of WT (147, 250, 251).
The same study reports constitutional mutations in FBXW7,
NYNRIN, and CDC73 as contributors to a small number of
familial cases, and pathogenic mutations in TRIM28, FBXW7,
and KDM3B as de novo events in children with sporadic
tumors (147).

It is important to note that, to date, germline pathogenic
variants have been identified only in a small proportion of
familial WT cases and so that the underlying causative genetic
events remain still obscure for the majority of individuals.

Sporadic Wilms Tumor
Many genetic causes of familial and syndromic WT also
contribute to sporadic cases, e.g., constitutional WT1 mutations
and germline 11p15 anomalies (150, 151). It is currently
estimated that in sporadic cases the number of predisposition
genes is more than 20 (147). Next-generation sequencing (NGS)
and GWAS approaches have allowed researchers to discover
an ever-growing number of uncommon (Table 1) and common
(Table 3) genetic variants associated with WT susceptibility.

Uncommon, Moderate-Penetrance Variants
Two recent WGS and WES studies have identified new
pathogenic germline variants in CHEK2 and PALB2 in children
with sporadic WT (131, 132). Both PALB2 and CHEK2 are
involved in DNA repair pathways and are associated with breast
cancer predisposition (62, 252). Germlinemutations inREST and
TRIM28, in addition to their role of familial WT predisposition
genes, are also responsible for uncommon sporadic cases (148,
251). Additional pathogenic and likely pathogenic variants were
identified in predisposition genes such as TP53, DIS3L2, and
MLLT1, but also in candidate genes like EP300, HDAC4, HACE1,
ARID1A, NF1, MYCN, and GLI3 (131, 132, 137), that need
to be validated in independent cohorts. Finally, exome and
transcriptome sequencing studies have revealed constitutional
mutations in the miRNA processing genes DROSHA, DGCR8,
DICER1, and XPO5 (131, 137), some of which associated with
the blastemal subtype of WT (137).

Common, Low-Penetrance Variants
The first WT related GWAS study was performed by Turnbull
et al. (153), using a dataset of 757 affected and 1.879 controls from
North America and subsequently validated in two independent
replication series from UK and US populations. They identified
two significant SNPs at 2p24 (rs807624 and rs3755132), in the
promoter of DDX1, and one SNP at 11q14 (rs790356) located
near DLG2. They also identified candidate predisposition loci at
5q14, 22q12, and Xp22, located near the genes PCSK9, TCN2,
and NHS, which need further validation (153). More recently,
the group of Fu and colleagues performed two candidate gene
studies on Southern Chinese populations and found a significant
association between WT risk and BARD1 (158) and KRAS (171)
polymorphisms, respectively. However, both associations need to
be validated in larger cohorts.

Constitutional Chromosomal Abnormalities
Few chromosomal aberrations and copy-number variations
(CNVs) are known to be WT predisposing genetic factors. In
addition to karyotypic abnormalities affecting 11p13 and 11p15
(60), a very small number of WT patients with gain of entire
chromosomes have been reported, specifically with trisomy 18
and trisomy 13 (60). Rare chromosomal aberrations have been
identified at 2q (60, 253, 254) and 7q (255, 256) regions, with
terminal deletions and balanced and unbalanced translocations.
A constitutional de novo balanced translocation was also
identified in a child with bilateral WT, affecting the tumor-
suppressor gene HACE1, also reported as NB susceptibility gene.
HACE1 controls growth and apoptosis and is often somatically
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mutated in WT (257). Moreover, gain of MYCN (2p24), which
is predominantly a somatic event, has been reported as a
rare germline aberration (258). Finally, in 2020, a germline
duplication of SUZ12 has been detected in a WT patient carrying
other germline pathogenic variants in new candidate cancer
predisposition genes (3).

OSTEOSARCOMA

Osteosarcoma (OS) is the most common primary bone cancer.
This tumor has a bimodal distribution with a high peak during
adolescence and a smaller peak in elderly individuals (259)
(Figure 2). Survival rates for children and young adults with
non-metastatic disease have remained at 60–70%; however,
outcome is reduced in patients with metastases (259). Unlike
other childhood sarcomas, which are characterized by specific
chromosome rearrangements and low mutation rate, complex
genomic rearrangements are involved in OS. Indeed, OS exhibits
extensive intra-tumoral heterogeneity and has a higher mutation
rate (259).

Familial Osteosarcoma
OS is a sentinel cancer in many heritable cancer predisposition
syndromes, including autosomal dominant cancer predisposition
syndromes such as LFS (73–75) and Diamond–Blackfan anemia
(47–50) (Table 2). Furthermore, recessive cancer syndromes
associated with OS are Rothmund–Thomson syndrome (102–
105), Baller–Gerold syndrome (20, 21), RAPADILINO syndrome
(106, 107), Werner syndrome (118–120), Bloom syndrome (32),
and ATR-X syndrome (19). OS has also been seen to arise in
Paget’s disease of bone (98, 99).

Sporadic Osteosarcoma
Targeted gene sequencing and WGS and WES studies have
identified uncommon variants in tumor-suppressor and cancer
predisposition genes (Table 1), while candidate gene, pathway
studies, and GWAS have discovered common variants in genes
involved in several key pathways for OS development (259)
(Table 3).

Uncommon, Moderate-Penetrance Variants
In 2015, a sequencing study on 765 germline DNA samples
showed the presence of uncommon TP53 germline variants that
could contribute to OS development; 3.8% of these variants were
associated with LFS, and 5.7%were uncommon exonic variants of
uncertain clinical significance (138). Another sequencing study
on 1120 cases found 7/39 OS patients carrying pathogenic and
likely pathogenic variants in TP53, RB1, APC,MSH2, and PALB2
(2). In 2016, a targeted exon sequencing on 1162 patients with
sarcoma found that >50% of all patients carried pathogenic
variants in TP53, BRCA2, ATM, ATR, and in ERCC2 (128).
Among 11% of patients with OS, one patient showed a probable
pathogenic variant in ERCC2. In the same work, an excess of
functionally pathogenic variants in ERCC2 was found to enhance
cell sensitivity to cisplatin, commonly used in the treatment of OS
(128). Recently, a sequencing study of 1244 OS patients showed
that 28% of patients carried pathogenic and likely pathogenic

variants in OS susceptibility genes, identifying new candidates
(CDKN2A, MEN1, VHL, POT1, and ATRX) that require further
confirmation in independent cohorts (129).

Common, Low-Penetrance Variants
In 2013, the first GWAS study on 941 cases and 3291 controls
of European ancestry, identified two risk loci, one at 6p21.3
(rs1906953) mapping in intron 7 of GRM4, and the other at
2p25.2 (rs7591996) in an intergenic region (173). Subsequently, a
GWAS study on OS metastasis at diagnosis identified rs7034162
at 9p24.1 (in NFIB) associated with metastasis (176). Functional
investigations showed that reduced NFIB expression, due to the
risk allele of the rs7034162 SNP, promoted an increase of OS
cell migration, proliferation, and colony formation (176). In
2016, a case–control study identified that, for SNPs in genes
associated with inter-individual variation in leukocyte telomere
length (LTL) (ACYP2, TERC, NAF1, TERT, OBFC1, CTC1, and
RTEL1), the allele associated with longer LTL increased OS
risk, mainly rs9420907 in OBFC1 (165). These findings were
confirmed in 537 OS cases belonging to California Cancer
Registry (166).

Constitutional Chromosomal Abnormalities
Next to the heterogeneous somatic CNV scenario present in
OS, in a study conducted on 54 patients with childhood tumor,
two large germinal CNVs were identified in 2 OS patients:
dup4q13.33 of 476 kb containing STATH, CSN1S2B, CABS1,
CSN1S1, CSN2, HTN3, HTN1, CSN1S2A, C4orf40, ODAM,
FDCSP, and CSN3; and dup18q21.33 of 600 kb containing
RNF152, CDH20, and PIGN (240). In 2020, a duplication of
DDX10 in an OS patient with a germline variant inGJB2 has been
reported (3).

RHABDOMYOSARCOMA

Rhabdomyosarcoma (RMS) is the most common soft tissue
sarcoma in childhood and represents a high-grade neoplasm of
skeletal myoblast-like cells. Currently, 5-year overall survival of
pediatric RMS exceeds 70% (260). The two major histological
subtypes are embryonal (ERMS, 67%) and alveolar (ARMS,
32%) (261). ARMS is uniformly distributed among the different
age groups (Figure 2) and has a worse prognosis; ERMS has
a bimodal distribution (the first peak in early childhood and
the second one in early adolescence) and has a better outcome
(260, 262) (Figure 2). At somatic level, ARMS is often associated
with fusion of FOXO and PAX3 or PAX7, while ERMS does
not show such translocations, but it is characterized by loss
of heterozygosity at 11p15.5 as well as mutations in TP53,
NRAS, KRAS, HRAS, PIK3CA, CTNNB1, and FGFR4 (263).
Since a small but substantial fraction of ARMS patients do
not harbor one of these translocations, and tumors from those
patients are biologically and clinically similar to ERMS, the
disease classification has been further refined dividing RMS
into “fusion-positive” RMS (FPRMS) and “fusion-negative” RMS
(FNRMS) subtypes.
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Familial Rhabdomyosarcoma
Although RMS is primarily sporadic (264, 265), it arises in several
syndromes. Cancer predisposition syndromes appear to be more
frequent in patients with ERMS than in those with ARMS (260).
Among syndromes commonly associated with RMS and reported
in Table 2 (24–27, 42, 43, 52–54, 64, 75, 80, 81, 86, 87, 89–
92, 94, 96), a high RMS risk is associated with RASopathies-
like type I neurofibromatosis (NF1) (deletions in NF1), Costello
syndrome (HRAS mutations), and Noonan syndrome (germline
variants activating RAS-MAPK pathway), highlighting the tight
dependence of RMS on the RAS pathway, which results to be
activated in 40% of sporadic ERMS (263, 266, 267). In particular,
up to 25% of children affected by Costello syndrome shows high
RMS risk (43, 268). In addition, children who have a first-degree
relative with cancer, particularly if the cancer occurred at a young
age (<30 years), show an increase in RMS risk, especially of
ERMS (269).

Sporadic Rhabdomyosarcoma
Unlike OS and Ewing sarcoma, GWAS studies for RMS have
not been published (260) and few studies identified uncommon
germline variants associated with tumor susceptibility (2, 52, 133,
139, 142, 270) (Table 1).

Many studies have found the presence of DICER1 germline
mutations in sporadic RMS patients for whom DICER syndrome
has been ruled out (52, 142). WES and WGS on 1,120 patients
with pediatric cancers identified germline pathogenic variants in
3/43 RMS patients in TP53 and BRCA2 (2). In a cohort of 66
patients with sarcoma, one patient with ARMS showed a protein-
truncating variant (in ERCC4) co-occurring with predicted
pathogenic mutations (in ATM, FANCI, and MSH6), suggesting
a possible collective impact of these genetic variants on DNA
repair and genomic instability, therefore conferring susceptibility
to tumorigenesis (133).

EWING SARCOMA

Ewing sarcoma (EWS) is the second most frequent primary
skeletal tumor that mainly affects bone and can also arise in
soft tissue. It occurs in children, adolescents, and young adult
(Figure 2). It is highly aggressive, with a survival of 70–80% for
patients with standard-risk and localized disease and 30% for
those with metastasis at diagnosis (20–25% of those resistant to
intensive therapy) (271). EWS is characterized by low somatic
mutation rate (272–274), mainly including fusions between
EWSR1 and members of the ETS gene family, usually EWSR1-
FLI1, that play a key role in its pathogenesis. The chimeric
protein EWSR1-FLI1 leads to the production of an oncogenic
transcription factor that binds GGAAmotifs (174, 271, 275, 276).

Familial Ewing Sarcoma
To date, no susceptibility genes to familial forms of EWS have
been reported, and only case reports about siblings and cousins
affected by this tumor have been documented (277, 278). On
the basis of these isolated clinical cases, the presence of other
cancer types among familial members of EWS patients (279,
280) suggests an important contribution of genetic susceptibility

factors in this tumor. Nowadays, EWS is not considered part of
predisposition syndromes because of its rare occurrence among
these (281).

Sporadic Ewing Sarcoma
WES, WGS, and GWAS studies have led to the identification of
uncommon (Table 1) and common (Table 3) germline variants
associated with the risk of developing EWS. Despite the rarity
and the paucity of information about familial cases, most
of the known genetic scenario on this tumor concerns the
sporadic form.

Uncommon, Moderate-Penetrance Variants
Two WGS and WES studies on EWS revealed an over-
representation of uncommon pathogenic and likely pathogenic
variants in DNA repair and cancer-predisposing syndrome
genes (2, 130). Studies on small cohorts of patients identified
other uncommon germline variants in BRCA2 (146) and in
PTPRD (140).

Common, Low-Penetrance Variants
In 2012, the first GWAS on EWS found 3 susceptibility loci
at 1p36.22, 10q21, and 15q15, identifying a strong association
of EWS risk with rs9430161 (25 kb upstream of TARDBP) and
rs224278 (5 kb upstream of EGR2), and a modest association
with rs4924410 (at 15q15) (172). The second GWAS detected
a tagging variant strongly associated with EWS at 15q.15.1
(rs2412476 near BMF) and new risk loci at 6p25.1, 20p11.22, and
20p11.23 (152). Expression quantitative locus (eQTL) analyses
identified candidate genes at 6p25.1 (RREB1) and 20p11.23 (KIZ)
(152). Independent studies showed that a different number of
germline GGAA repeats in polymorphic enhancer-like GGAA
microsatellites impacts the binding between these regulatory
elements and EWS cancer driver mutations (EWSR1-FLI1),
affecting downstream genes expression (174, 178, 282).

These studies further suggest that cooperation between
regulatory germline variants and somatic mutations can
drive oncogenesis and create a major source of inter-tumor
heterogeneity, determining clinical outcome and drug response
through modulation of a druggable key downstream player.

Constitutional Chromosomal Abnormalities
Only one study reports the presence of germline CNV associated
with EWS, describing a 14-year-old male with EWS carrying
an intragenic deletion in PTPRD (283). Notably, germline and
somatic variants in PTPRD have been already identified in a
limited number of EWS patients (140).

CONCLUSIONS

For a long time, the prevalence of childhood cancer attributed
to genetic predisposition was generally considered very low.
However, to date, WGS, WES, and GWAS studies performed
on pediatric cancers have made it possible to highlight a strong
contribution of germline variants to tumorigenesis, helping us
to better understand the etiology underlying pediatric tumors.
Indeed, an important body of work allows us to highlight that
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the prevalence of hereditable risk variants in pediatric solid
cancers ranges between 6% and 18% (Figure 3). These variants
generally affect the functions of genes belonging to biological
processes linked to tumorigenesis, such as cell-cycle control,
apoptosis, DNA repair, and transcriptional regulatory programs.
The enrichment of genetic alterations in these pathways is often
due to a bias because, since germline variant analysis is a highly
challenging task in general, the vast majority of studies are based
on a “candidate-gene” approach, which means they focus on
specific subsets of genes already known to play a key role in
cancer predisposition and tumorigenesis. For this reason, it may
be useful exploiting a genome-wide scale approach, e.g., exome-
wide association studies, to investigate the presence of genetic
alterations predisposing to cancer also in genes involved in
pathways others than the ones above mentioned. This approach
may contribute in a meaningful way to the current knowledge of
the mechanisms underlying solid pediatric tumors onset.

A very recent study reports a high number of germline
variants in new candidate susceptibility genes, highlighting
that some of them carry druggable alterations (3). It should
be emphasized that the presence of germline variants in
target therapeutic genes could improve current approaches of
personalized therapy, making them more efficient and less toxic

to patients. Furthermore, a more in-depth investigation of the
germline component underlying tumor development should also
be performed on pediatric solid tumors for which there is not
yet a broad knowledge of germline landscape (e.g., thyroid
carcinoma, melanoma) (284–289).

Our literature review reveals that the presence of specific
germline mutations is often associated with increased frequency
of somatically acquired cancer-specific abnormalities (such as
aberrations, rearrangements). The interplay between somatic and
germline mutations may be at the basis of high interindividual
tumor heterogeneity (290). For example, the cooperation
between regulatory germline variants and somatic mutations
underlines the importance of regulatory regions to stratify
patients into risk groups to predict the clinical outcome and
therapeutic approaches (290). In NB, inherited deleterious
variants in genes that code for proteins involved in chromosomal
segregation, centrosome segregation, DNA repair, and spindle
apparatus machinery are thought to be the cause of chromosome
instability at somatic levels (199). A similar germline–somatic
interaction has been proposed for MB; indeed, germline
TP53 mutations are often found in combination with tumors
characterized by catastrophic DNA chromothripsis. Determining
if germline risk alleles predispose to genomic instability in

FIGURE 3 | Prevalence of germline predisposition in pediatric tumors. The percentage of germline predisposition due to uncommon, moderate-penetrance variants,

reported above the bars, has been calculated evaluating the number of patients carrying pathogenic and likely pathogenic variants on the total number of patients

from the cohorts analyzed for each tumor: CNS tumors: (3, 15, 17); neuroblastoma: (2, 3, 135, 146, 196, 197, 200); Wilms tumor: (3, 131, 132, 137, 148, 150, 251);

osteosarcoma: (2, 3, 129, 138); rhabdomyosarcoma: (2, 3, 52, 139); Ewing sarcoma: (2, 3, 130, 146). N, number of patients analyzed in cohorts; CNS, central

nervous system.
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pediatric cancers is an important research objective for biologists
and geneticists. Another interesting research field is related to
the impact of risk alleles on genomic regions that regulate
mutated cancer driver genes. The mechanisms underlying this
type of interaction between germline–somatic variation have
been elegantly elucidated in the EWS (174, 178, 282), and it
is reasonable to think that it is common to other pediatric
tumors as well. No relevant study has investigated the possible
interplay between germline variations and epigenetic somatic
events. For instance, there is an urgent need to find possible
associations between germline risk alleles and DNA methylation
of tumor. Studies integrating information on germline, somatic,
and epigenomic variations using gene expression data as the
intermediate phenotype may unravel the biological mechanisms
underlying oncogenic interactions and cooperation of these
different types of genomic variations.

The low number of recurrent somatic mutations in some
pediatric cancers, compared to adult ones (135), does not explain
the clinical heterogeneity and the resulting need for personalized
therapies in tumors. Confirming a germline contribution to
the clinical heterogeneity, some studies have highlighted that
specific pathogenic variants are much more common in specific
tumor histotypes (137, 147) and these associations could be
used for the management and stratification of patients. Thereby,
implementing screening tests with the introduction of germline
detection would bring clinical benefits. In addition, screening for
germline and somatic components of the tumor could lead to the
identification of new prognostic markers to monitor cancer and
predict clinical outcome. Finally, the use of these information in
screening tests is important in the context of genetic counseling,
to monitor and supervise family members of patients.

It is also important to note that many genetic syndromes such
as Beckwith–Wiedemann, Costello, Fanconi anemia, Gorlin,
Noonan syndrome, Li-Fraumeni, and others (Table 2) are
both characterized by genetic and/or allelic heterogeneity and
associated with the risk to develop different types of pediatric
cancers. Therefore, NGS-based cancer gene panel tests should
be performed in children with a genetic syndrome to ensure the
patient a more precise diagnosis and to be able to assess the
risk of developing a cancer disease. A clinical management that
includes a cancer genetic test not only is useful to indicate a
modification of the surveillance that also integrates periodic and
cancer specific diagnostic tests, but over time it will increase our
knowledge of genetic risk variants and thus will give a clearer
picture of cancer risk in children affected by genetic syndrome.
This surely can have a positive impact on improving patient care
and survival.
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Medulloblastoma is the most common malignant brain tumor in children. In addition to
sporadic cases, medulloblastoma may occur in association with cancer predisposition
syndromes. This review aims to provide a complete description of inherited cancer
syndromes associated with medulloblastoma. We examine their epidemiological,
clinical, genetic, and diagnostic features and therapeutic approaches, including their
correlation with medulloblastoma. Furthermore, according to the most recent molecular
advances, we describe the association between the various molecular subgroups of
medulloblastoma and each cancer predisposition syndrome. Knowledge of the
aforementioned conditions can guide pediatric oncologists in performing adequate
cancer surveillance. This will allow clinicians to promptly diagnose and treat
medulloblastoma in syndromic children, forming a team with all specialists necessary
for the correct management of the other various manifestations/symptoms related to the
inherited cancer syndromes.

Keywords: pediatric brain tumors, cancer predisposition, hereditary neoplastic syndromes, cancer syndromes,
medulloblastoma, cancer genes
INTRODUCTION

Medulloblastoma (MB) is the most frequent malignant tumor of the central nervous system (CNS)
in childhood, representing 15–20% of all CNS neoplasms (1). It mainly affects the pediatric age with
a 10-fold higher frequency than in adults (2). Children are diagnosed generally between 2 and 8
years old (median of 6 years old), with 50% of cases occurring in children under 5 years old and with
a male/female ratio of 2:1 (3).
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Clinical manifestations are initially related to intracranial
hypertension and to the tumor’s mass effect in the posterior fossa,
including headaches, nausea, vomiting, ataxia, other motor deficits,
and visual impairment. MB diagnosis is suspected based on
neuroimaging of the brain and spine. Disease staging is established
onmagnetic resonance imaging (MRI) and cerebrospinal fluid (CSF)
cytology (4),with about 35%of cases beingmetastatic at diagnosis (5).

Histological classification of MB distinguishes four variants:
classic (68–80%); desmoplastic/nodular (7%), with a more
favorable prognosis in children under 5 years old; MB with
extensive nodularity (3%), generally found in young patients and
sometimes associated with nevoid basal cell carcinoma
syndrome; and large cell/anaplastic (10–22%), characterized by
a more aggressive clinical behavior (6).

Treatment of MB is based on surgical resection, chemotherapy,
and cranio-spinal irradiation (CSI). Due to the severe adverse effects
of CSI, such as neurocognitive disability, endocrine dysfunction,
impaired growth, infertility, and increased risk of secondary
malignancies, great effort has been dedicated to reduce, differ, or
omit radiation therapy, especially in children <3–5 years of age.

Among genetic defects, MYC amplification is the most
recurrent and is associated with a worse prognosis (7–9).

A risk stratification based on histopathological subtype, age at
diagnosis, staging, residual disease, MYC status, and molecular
subgrouping allows a distinction of low-, average-, and high-risk
patients (10). For low- and average-risk patients (characterized
by age over three years old, absence of metastatic and/or residual
disease, histotype other than anaplastic, absence of MYC
amplification and/or TP53 mutations), 5-year overall survival
(OS) is between 75% to over 90% (11–14), while high-risk
patients show 5-year OS around 50–75% (11, 15–19).

More recently, four molecular MB subgroups have been
identified and included in the 2016 WHO Classification of
Tumors of the Central Nervous System (20): MBWNT, MBSHH,
Group 3, and Group 4 (21). Molecular subgrouping reflects
developmental aspects of the tumors’ cell of origin and has
been shown to have prognostic significance.

Cancer predisposition syndromes’ importance has increasingly
been recognized in pediatric neuro-oncology. According to
Waszak et al. germline mutations in cancer predisposition genes
account for about 5–6% of medulloblastoma diagnoses (22).
Constitutional genetic defects are expected to result in
deregulation of specific molecular pathways, leading to tumor
development. Despite the significant amount of previous
knowledge on inherited conditions predisposing to MB and the
extensive molecular characterization of these tumors, limited
attention has been given in the literature to their interconnection.

The main purpose of this review is to describe the association
of cancer predisposition syndromes with MB molecular
subgroups, including epidemiological, clinical, genetic,
diagnostic, and therapeutic implications.
METHODS

The authors conducted a literature search describing the issue of
CNS tumors and cancer predisposition syndromes. Research
Frontiers in Oncology | www.frontiersin.org 266
studies were selected based on research topics (“cancer
predisposition syndrome,” “brain tumor genetics,” “brain
tumor cancer predisposition syndrome,” “medulloblastoma
predisposition syndromes,” “medulloblastoma in childhood”)
found in PubMed considering the last 10 years until April
2020. These studies were classified according to their relevance.
In the selected studies the data were carefully evaluated, and they
are described in detail and discussed in the following sections.
The association between the different cancer predisposition
syndromes described below and the related molecular
subgroups of MB is summarized in Figure 1. The main cancer
predisposition syndromes associated to pediatric MB and their
related molecular, pathological, clinical, and prognostic features
are summarized in Table 1.
Medulloblastoma Molecular Subgroups
Main features of MB subgroups are:

• Wingless (WNT) accounts for about 10% of diagnoses and is
foundmainly in girls with a peak between 10 and 12 years of age.
The most common histological variant is classic. Approximately
85–90% of MBWNT harbor somatic mutations in exon 3 of
Catenin beta 1 (CTNNB1), which causes stabilization and
nuclear accumulation of b-catenin leading to uncontrolled
activation of WNT signaling (23, 30). Patients with MBWNT

without CTNNB1 mutations can harbor a mutant APC tumor
suppressor gene, which is involved in the ubiquitination and
consequently degradation of b-catenin (22). MBWNT have a low
tendency to metastasize and patients under 16 years of age have
an excellent prognosis. Therefore, some ongoing clinical trials,
PNET5 and SJMB12, are currently investigating de-escalation of
therapy (19).

• Sonic hedgehog (SHH) accounts for about 30% of all MB
diagnoses and has a bimodal distribution, with peaks in
children <3 years of age and in young adults >16 years of age
(21). This subgroup affects both sexes almost equally with a
slight predominance in males among infants (31). The
histological variant is frequently desmoplastic/nodular. MBs-
SHH harbor germline or somatic mutations in genes involved in
SHH signaling pathway, leading to its constitutive activation,
such as deletions or loss-of-function alterations in Patched 1
(PTCH1) (43% of patients) or Suppressor of fused (SUFU) (10%),
activating mutations in Smoothened (SMO) (9%), amplification
of GLI1/GLI2 (9%) orMYCN (7%) (23, 32). More recently, four
SHH subtypes have been identified (SHHa, SHHb, SHHg,
SHHd) with distinct biological and clinical features (33). Older
children with MBSHH can harbor germline or somatic Tumor
Protein 53 (TP53) mutations, associated with a poor prognosis
(25, 32).

• Group 3 accounts for about 25–28% of all MB diagnoses and
is exclusively found in childhood, with a male sex
predominance. It is associated with metastatic disease at
diagnosis and with large cell/anaplastic histological variant.
About 17% of Group 3 MBs harbor MYC amplification.
Among MB subgroups, Group 3 is characterized by the
October 2020 | Volume 10 | Article 566822
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poorest prognosis, especially in the presence of metastatic
disease, isochromosome 17q, and MYC amplification (19).

• Group 4 is the most common MB molecular subgroup,
accounting for about 35% of diagnoses. It is mostly found in
Frontiers in Oncology | www.frontiersin.org 367
males and more frequently associated to classic histological
variant. It is characterized by an overall intermediate prognosis;
however, a subset of patients with either chromosome 11 loss
or 17 gain have an excellent prognosis (19).
FIGURE 1 | Correlations between cancer predisposition syndromes and MB subtypes. (A) In Gorlin syndrome both PTCH1 and SUFU mutations have been
associated to MB-SHH subgroup. Vismodegib and Sonidegib are selective antagonists of the transmembrane activator Smoothened (SMO). (B) In Li-Fraumeni
syndrome los of TP53 finctions results in increased risk of developing MB-SHH subtype. (C) In Turcot syndrome, twotypes have been distinguished: Type 1
genetically related to the mutationof the mismatch repair genes and Type 2 related to APC mutation that are more commonly associated with MB-WNT subtype.
(D) Pathogenic germline mutations in BRCA2, PALB2, GPR161, and ELP genes have been recently associated to an increased risk of developing different MB
subtypes. (E) In Rubenstein-Taybi syndrome mutations in CREEBP and EP300 genes predispose to MB Group 3 onset.
October 2020 | Volume 10 | Article 566822

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


TABLE 1 | Cancer predisposition syndromes associated to pediatric medulloblastoma and their related molecular, pathological, clinical, and prognostic features.

btype Clinical features 5 year-OS
(%)

References

lar
larity

Palmar or plantar pits, odontogenic keratocysts, basal cell
carcinomas

85* Waszak et al. (23)

lar
larity

Palmar or plantar pits, odontogenic keratocysts, basal cell
carcinomas

85* Waszak et al. (23);
Smith et al (24)

Soft tissue sarcomas, osteosarcomas, glioblastomas/astrocytomas,
choroid plexus carcinomas, breast cancers

27 Waszak et al. (23);
Zhukova et al. (25)

Café-au-lait spots unknown

Gastrointestinal symptoms (diarrhea, constipation), neurological
symptoms (headache, vomiting, visual and/or hearing and/or
sensorimotor deficits)

80-100 Waszak et al. (23);
Surun et al. (26)

tic/
extensive

unknown
Fanconi Anemia phenotype
(biallelic mutations)

25**;100*** Waszak et al. (23)
Present report
Present report

unknown 75 Waszak et al. (23)

unknown unknown Tischkowitz et al. (27)
lar unknown 92 Hwang et al. (28)

Growth retardation, obesity, facial, skeletal and neurological
anomalies, cognitive/psychiatric disorders, pilomatricomas

unknown Carter et al. (29)
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68
Predisposition
genes

Cancer
syndrome

MB
prevalence

(%)

MB median age
at diagnosis

(years)

Molecular
subgroup

MB histologic s

PTCH1 Gorlin <2–4.5 2 SHH Desmoplastic/nodu
with extensive nod

SUFU Gorlin 2–33 2 SHH Desmoplastic/nodu
with extensive nod

TP53 Li
Fraumeni

1 9.8 SHH
WNT

LCA, Classic

MLH1, MSH2,
MSH6, PMS1,
PMS2

Turcot
type1

unknown unknown unknown unknown

APC Turcot
type2

1 9.2 WNT
SHH
(rarely)

Classic

BRCA2 unknown 1 5.7 SHH
WNT
SHH

Classic, desmoplas
nodular, LCA, with
nodularity
Classic

PALB2 unknown <1 SHH
Group3
Group 4

unknown

GPR161 unknown 3.4**** unknown SHH unknown
ELP1 unknown unknown 6.3 SHH Desmoplastic/nodu
CREBBP; EP300 Rubinstein-

Taybi
0.05***** unknown Group3***** unknown

* cumulative PTCH1 and SUFU.
** compound heterozygous BRCA2.
*** heterozygous germline BRCA2.
**** referred to patients with MBSHH subgroup.
***** limited data.
u

u

u

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Carta et al. Cancer Predisposition Syndromes and Medulloblastoma
GORLIN SYNDROME

Gorlin syndrome (GS) (OMIM #109400), also known as Gorlin-
Goltz syndrome, or nevoid basal cell carcinoma syndrome
(NBCCS), or basal cell nevus syndrome (BCNS), was first
described by Gorlin and Goltz in 1960 (34). The incidence of
GS reported is about 1 in 15.000 births (35) and is equal between
males and females (36). The prevalence varies from 1:30,000 to
1:256,000 based on different reports (37–40). Prevalence data
could be even greater since milder cases of GS could remain
undiagnosed (41, 42).

Clinical Phenotype
GS is characterized by the onset of multiple jaw keratocysts, most
frequent in the second decade of life, and/or basal cell
carcinomas (BCCs), generally starting from the third decade.
Sixty percent of all patients have a recognizable phenotype. More
than 100 features have been associated with GS, and the most
representative are listed in Table 2 (39, 40, 43).

Genetic Basis
Heterozygous germline mutations leading to the aberrant
activation of SHH signaling are involved in GS, most frequently
PTCH1, followed by SUFU. PTCH1 and SUFUmutations work at
different levels by disabling SHH pathway signaling, which is
normally active during brain development, thus promoting
proliferation and inhibiting apoptosis (24, 44–47).

Correlation With Medulloblastoma
In 1963 Herzberg and Wiskemann first described the association
between GS and MB that has been also confirmed by various
published studies (48).

In the first large population based study of GS, Evans et al.
investigated the incidence of GS in 173 consecutive cases of MB
in the North-West of England between 1954 and 1989; they
observed a 5% incidence of GS in MB patients with less than
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5 years of age, conversely, the incidence of MB in the GS
population considered in this study was 3.6% (49). The mean
age at MB diagnosis was 2 years in GS patients, earlier than that
described in the general population with sporadic MB (38). The
desmoplastic/nodular and the extensive nodularity subtypes of
MB are the most frequently described (50, 51). The risk of MB in
subjects with germline mutations of PTCH1 reported in a large
series of 115 individuals with related GS-PTCH1 was <2%, while
individuals with GS and SUFU germline mutations presented an
approximately 20 times higher risk (33%) (24).

Diagnosis
Many individuals with GS are only recognized in adulthood.
However, there are clinical signs that could appear early and
guide the diagnosis, such as the presence of odontogenic
keratocysts in children <20 years of age, basal cell carcinomas in
persons <20 years of age, palmar or plantar pits, lamellar
calcification of the falx cerebri, and MB with desmoplastic
histology in combination with other major or minor criteria (52).
Current diagnostic criteria for GS are summarized in Table 3.
Diagnosis can be made if 2 major or 1 major and 2 minor criteria
are fulfilled (36).

Cancer Surveillance
Surveillance protocols for individuals affected by GS have been
proposed by several authors. As suggested in the consensus
statement from the first international colloquium on GS, all
individuals with GS should perform annually an assessment with a
geneticist. A dermatological evaluation is also recommended
annually until the first basal cell carcinoma is found, and then
every 6 months. Baseline digital Panorex of jaw should be performed
starting from the age of 3 years (or as soon as tolerated) and repeated
annually before the detection of a first jaw cyst, and then every 6
months (until no jaw cyst for 2 years or until the age of 21).

A baseline echocardiographic evaluation is recommended to
exclude cardiac fibromas; in females a pelvic ultrasound for
fibromas is also recommended, starting from puberty.

A baseline spine film should be performed at age 1 or at time
of diagnosis, and if a skeletal anomaly is found, it must be
TABLE 2 | Principal clinical features associated with Gorlin Syndrome.

Clinical features Description

Macrocephaly Head circumference increases above 97th percentile until
age 10 to 18 months and then maintains its centile

Facies features Frontal bossing, coarse facial features, and facial milia
in about 60% of individuals with PTCH1 mutation;
more subtle in individuals with SUFU mutation

Jaw keratocysts Can arise early as from five years of age, with a peak in the
teenage years;
usually present with painless swellings and if untreated can
lead to tooth disruption and jaw fracture

Other
congenital
malformations

Cleft lip/palate;
polydactyly;
skeletal anomalies (bifid ribs, wedge-shaped vertebrae, short
4th metacarpal);
various eye anomalies (strabismus, hypertelorism, cataract,
orbital cyst, microphthalmia, retinal epithelium alterations)

Skin anomalies Pits in the palm of the hand
Other anomalies * Ectopic calcifications, frequently in the falx cerebri in more

than 90% of patients by age 20 years
TABLE 3 | Current diagnostic criteria for Gorlin Syndrome.

Major Criteria Multiple basal cell carcinomas (more than five in a lifetime) or
basal cell carcinoma occurring at a young age (<30 years old)
Jaw keratocysts
Two or more palmar/plantar pits
Lamellar calcifications of the falx cerebri or clear evidence of
calcification in an individual younger than age of 20 years
First degree relative with Gorlin Syndrome

Minor Criteria Childhood medulloblastoma
Lympho-mesenteric or pleural cysts
Macrocephaly (>97th percentile)
Cleft lip/palate
Rib anomalies (bifid, splayed, extra ribs) or vertebral anomalies
(bifid vertebrae)
Ocular anomalies (cataract, developmental defects,
pigmentary changes of the retinal epithelium)
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repeated every 6 months, or sooner if necessary. A routine
developmental screening, including an assessment of vision,
hearing, and speech, is recommended annually.

Annual brain MRI with contrast has been recommended until
the age of 8 (52).

However, Smith and colleagues recently described the risk
stratification of MB development between PTCH1 and SUFU
mutation carriers, recommending the performance of brain MRI
only for patients carrying SUFU mutation (24).

Expert consensus recommendations for tumor surveillance of
gene carrier and family members were proposed in 2016 based
on a literature review and discussion in the AACR Childhood
Cancer Predisposition Workshop held in Boston, Massachusetts,
in October 2016 (see Table 4) (53).

Therapeutic Approaches
Vismodegib and Sonidegib are selective antagonists of the SHH
pathway that act by binding to the transmembrane activator
SMO, inhibiting the activation of the downstream SHH pathway.

Vismodegib is the first SHH pathway inhibitor approved by
U.S. Food and Drug Administration (FDA) in 2012 and by
European Medicines Agency in 2013 for the treatment of
advanced or metastatic basal cell carcinomas (54, 55).

Sonidegib is approved by the FDA in adult patients for the
treatment of locally advanced recurrent basal-cell carcinomas
after radiation or surgery or for patients that cannot undergo
surgery or radiotherapy (56).

A systemic review and meta-analysis about phase I and phase
II Sonidegib and Vismodegib clinical trials highlighted that they
are both well tolerated and with anti-tumor activity in MBSHH.
The efficacy of Sonidegib was better than Vismodegib in
pediatric MBSHH; however, this has been observed in 3
pediatric patients and further studies are needed for a reliable
result (57).

Since SHH signaling has a crucial role during development,
along with reports of younger patients treated with SMO
inhibitors that show various growth plate complications, their
use is not recommended in skeletally immature patients (58).
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LI-FRAUMENI SYNDROME

Li-Fraumeni Syndrome (LFS) (OMIM #151623) is one of the
most aggressive cancer predisposition syndromes, first described
in 1969 by Frederick Li and Joseph Fraumeni Jr (59). LFS is a rare
autosomal dominantly inherited disorder caused by germline
mutation of TP53, the “guardian of the genome” (60–62). Loss of
p53 function in affected individuals is responsible for an
increased risk of developing various solid and hematologic
cancers (63). LFS has an estimated prevalence of 1 in 5,000 to
1 in 20,000 (64, 65). However, according to Andrade et al.,
prevalence estimates of the LFS could be higher (1 in 3,555–
5,476), reflecting the complexity linked to a wide phenotype and
a variable penetrance (66).

Genetic Basis
TP53 gene is located at chromosome 17p13.1 and is composed by
14 coding exons: 10 encode TP53 protein, one a non-coding exon,
and three alternative exons (67). TP53 acts as a tumor suppressor
gene: in unstressed cells TP53 is unstable and, after exposure to
genotoxic stressors, it accumulates and induces the expression of
various target genes involved in the regulation of critical cellular
processes (growth suppression, apoptosis, DNA repair). Various
mechanisms have been proposed to explain how the mutated
TP53 protein contributes to tumor formation, including loss of
TP53 tumor suppressor function and consequently the
dysregulation of its target genes, the “dominant negative” effect
in which the mutated TP53 protein inhibits wild-type TP53
protein and the “gain-of-function effect” in which the altered
TP53 protein acquires new oncogenic properties.

Clinical Phenotype
Both children and adults affected by LFS have an increased risk of
developing multiple primary tumors (68). The most frequent six
“core” cancers, their relative prevalence estimates, and other less
frequent types of tumor reported in LFS are summarized in
Table 5 (60, 69, 70). Considering all ages, the most frequent
tumor reported in LFS families is breast cancer, with a median
age at onset of 33 years in females (65, 70–73). Soft tissue
sarcomas and osteosarcoma are the most common tumors in
children and adolescents with LFS (65, 70, 74). The most
common type of CNS tumors is glioblastoma/astrocytoma (65,
71). Choroid plexus carcinomas (CPC) are more tightly
associated with LFS since 45–100% of children with CPC show
a germline TP53 mutation (65, 75–78).

Correlation With Medulloblastoma
Although MB has been described in families with LFS, its
prevalence in TP53 carriers is not well known (79). About 5–
10% of MBs present TP53 mutations; however, most of these are
somatic and only 1% of MBs have been associated with germline
TP53 mutations (22, 23, 80–82).

The correlation between TP53 mutation (both somatic and
germline) and MB molecular subgroup has been investigated. In
2013, Zhukowa et al. analyzed a cohort of 397 individuals affected
by MB (age 1.1 to 45 years) and reported a TP53mutation almost
exclusively in WNT and SHH subgroups while it was virtually
TABLE 4 | Gorlin Syndrome surveillance recommendations.

PTCH1
mutation
carriers

Basal cell carcinoma screening annually by age 10, with increased
frequency after first basal cell carcinoma observed
Baseline echocardiogram in infancy, dental exams with jaw X-ray
every 12 to 18 months beginning at age 8, and an ovarian
ultrasound by age 18
Low risk of medulloblastoma: no radiographic screening unless
concerning neurologic exam, head circumference change, or
other unusual signs or symptoms
If medulloblastoma: radiation-sparing treatment given risk of
radiation-induced skin cancers

SUFU
mutation
carriers

Same as PTCH1 mutation carriers, with the exception of no jaw
X-rays, as keratocysts have not been described
Additional medulloblastoma screening: consider every 4 month
brain MRI through age 3 and then every 6 month brain MRI until
the age of 5a. Radiation-sparing treatments are again
recommended if a brain tumor should occur
aData to support optimal frequency and timing of imaging are not currently available.
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absent in subgroups 3 and 4. They described a high difference in
age distribution between MBSHH/TP53mutated, which are almost
exclusively between ages 5 and 18 years, and MBSHH/TP53 wild-
type, that showed a bimodal distribution with peaks before 9 and
after 18 years of age. Another interesting fact was that all
individuals with TP53 germline mutation, therefore affected by
LFS, had MBSHH, and no germline mutations were observed in
MBWNT/TP53mutated. For individuals with TP53mutant tumors,
a dramatic association between biologic subgroups and survival
was observed. Patients withMBSHH/TP53mutated showed a lower
5-year OS than those MBSHH without TP53 alteration (41% +/- 9%
vs 81% +/- 5% respectively); on the contrary, individuals with
MBWNT/TP53 mutated showed an almost similar 5-year OS than
those MBWNT without TP53 alteration (90% +/- 9% vs 97% +/- 3%
respectively), demonstrating that TP53 mutation status is much
more crucial in the SHH subgroup. Within the limitation of the
small cohort, no significant difference was observed between LFS
children with MBSHH and MBSHH with somatic mutations of
TP53 (25).

Diagnosis
The original definition of LFS requires one individual with a
sarcoma diagnosed under the age of 45 that has at least one first-
degree relative (parent, sibling, or child) with a cancer of any
kind diagnosed under the age of 45 and a third family member
who is either a first- or second-degree relative in the same
parental lineage (grandparent, aunt, uncle, niece, nephew, or
grandchild) with any cancer diagnosed under the age of 45, or a
sarcoma at any age (83, 84). The finding of TP53 mutations that
did not fully respect classical criteria for LFS diagnosis led to the
formulation of revised Chompret criteria. Individuals who meet
classic and/or revised Chompret diagnostic criteria (Appendix
A) should undergo TP53 genetic testing (65, 68, 71, 85).

Cancer Surveillance
Cancer screening in LFS individuals is challenging due to the
wide range of associated tumors. Villani et al. in a prospective
observational follow-up study of a comprehensive clinical
surveillance protocol identified 89 carriers of TP53 pathogenic
variants in 39 unrelated families and divided them in two groups:
carriers who accepted surveillance (45%) and carriers who did
not accept (55%); 21% of patients crossed over from the non-
surveillance to the surveillance group for a total of 66% patients
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undergoing surveillance for a median of 32 months (86). Over an
11-year period, they identified 40 asymptomatic tumors in 32%
of individuals who underwent surveillance and 60 symptomatic
neoplasms in 88% patients who initially declined surveillance.
The authors highlighted a significant survival advantage in
individuals who underwent surveillance reporting 5-year OS of
88.8% in patients with the surveillance group and 59.6% in
patients in the non-surveillance group. The Villani et al. 2016
version of the surveillance protocol for children with germline
TP53 pathogenic variants is summarized in Table 6 (86).
According to Ballinger et al. baseline whole-body magnetic
resonance imaging can be used to identify early tumors in a
highly cancer-prone population such as LFS patients, although
further studies are needed (87).

Therapeutic Approaches
Currently, there is no targetable therapy against tumors of LFS
patients available. Generally, it is recommended to avoid use of
DNA-damaging agents such as ionizing radiation in order to
reduce the risk of secondary tumors with the exception of high
grade CNS tumors. Notably, CNS tumor patients with LFS tend
to show an overall worse outcome when compared to patients
with the same CNS tumors but without TP53 alteration (78, 88,
89). Even though no guidelines exist, LFS patients should be
subjected to physical examination annually with particular
attention to neurologic functions. Radiologic approaches
without ionizing radiation such as whole-body MRI are
currently under investigation (81, 86).
TURCOT SYNDROME

Turcot syndrome (TS) is defined by the association of colorectal
cancer (CRC) and primary brain tumors and is one of the clinical
manifestations of the mismatch repair cancer syndrome (OMIM #
276300). The first clinical report of the association of primary brain
tumor and colorectal polyposis dates back to 1949 by Crail et al.
TABLE 5 | Types of cancer associated with Li-Fraumeni Syndrome.

Cancer types in Li-Fraumeni Syndrome Prevalence
(%)

Most frequent six “core”
cancers

Premenopausal Breast Cancer 27–31
Soft Tissue Sarcomas 17–27
Osteosarcoma 13.4–16
CNS Tumors 9–14
Adrenocortical Carcinoma 6–13
Leukemia 2–4

Other less frequent
cancer types

Myelodysplastic
Syndrome
Lymphoma
Lung
Laryngeal

Thyroid
Gastrointestinal
tract
Kidney
Testicular

Prostate
Ovarian
Skin
Neuroblastoma
TABLE 6 | Villani et al. 2016 version of the surveillance protocol for children
(birth to age 18 years) with germline TP53 pathogenic variants.

Adrenocortical
Carcinoma

Ultrasound of abdomen and pelvis every 3–4 months
Blood tests every 3–4 months: 17-OH-progesterone, total

testosterone, dehydroepiandrosterone sulfate,
androstenedione
24 h urine cortisol, if feasible

Brain tumor Annual brain MRI
Soft tissue and
bone sarcoma

Annual rapid whole-body MRI

Leukemia or
lymphoma

Blood tests every 3–4 months*: complete blood count,
erythrocyte sedimentation rate, lactate dehydrogenase

General
assessment

Complete physical examination every 3–4 months, including
anthropometric measurements plotted on a growth curve
(with particular attention to rapid acceleration in weight or
height), signs of virilization (pubic hair, axillary moisture, adult
body odor, androgenic hair loss, clitoromegaly, or penile
growth) and full neurological assessment
Prompt assessment with primary care physician for any

medical concerns
*Serial specimens obtained at the same time of day and processed in the same laboratory.
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(90). Ten years later Jacques Turcot described two siblings both
affected by adenomatous colorectal polyposis and a malignant
tumor of CNS, suggesting a common origin for this association
(91). Two types of TS are known in literature. Type 1 (TS1) is
characterized by the association between hereditary non-polyposis
colorectal cancer (HNPCC), also called Lynch syndrome (LS),
genetically related to the mutation of the mismatch repair
(MMR) genes and CNS tumor (most frequently glioma). Type 2
(TS2) is characterized by the association of brain tumor and
colorectal cancer due to familial adenomatous polyposis (FAP),
caused by the mutation of the adenomatous polyposis coli (APC)
gene, a suppressor gene in the long arm of chromosome 5 (92). Up
to 10% of all CRC are inherited and among them a small number,
commonly HNPCC or FAP, would be TS (93). Brain tumors in TS
are mainly glioblastomas, associated with MMR genes mutations
(TS1), and MB, associated with APC gene mutations (TS2).

Turcot Syndrome Type 1
Genetic Basis
There is a strong association between TS1 and LS. Lynch
syndrome is caused by heterozygous germline mutations,
inherited in an autosomal-dominant manner, in any of the
MMR genes (MLH1; MSH2, MSH6, PMS1; PMS2), which are
involved in DNA repair pathway. Unlike LS, TS1 is caused by
homozygous mutations in the aforementioned genes (94, 95).

Clinical Phenotype
TS1 can clinically manifest with both gastrointestinal (diarrhea,
constipation, and/or a positive fecal occult blood test) and
neurological symptoms depending on which tumor arises first
(95). Lynch syndrome is characterized by an average age of onset
that is earlier than in sporadic cases (45 vs 63 years) and by CRC
that develops most frequently proximal to splenic flexure and can
often be synchronous and metachronous (94). Regarding the
development of extracolonic cancers the most frequent are
represented by carcinoma of the endometrium, ovary, stomach,
small bowel, pancreas, hepatobiliary tract, brain, upper uroepithelial
tract, sebaceous adenomas and carcinomas, and multiple
keratoacanthomas (94). TS1 patients may have skin signs such as
café-au-lait spots, resembling type 1 neurofibromatosis, which
instead are not reported in TS2 patients (95).

Correlation With Medulloblastoma
MB cases within TS1 are less frequently described than those
reported in the setting of TS2, while gliomas are the most
frequently reported brain tumors in TS1 (96–99).

In 2007, Scott et al. described a 13-year-old girl with two
colonic carcinomas and MB diagnosed at the age of 7 years
caused by constitutional biallelic mutations in the mismatch
repair gene MSH6, the first case of MB reported in literature
that was caused by the aforementioned biallelic alteration
(100). Another report by Lindsay et al. described a 12-year-
old with colonic adenocarcinoma and classic MB due to
biallelic deletion in PMS2 gene (101). To our knowledge, a
correlation between TS1 and various subgroups of MB has not
yet been highlighted.
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Diagnosis
Some aspects should be considered in TS1 diagnosis: individuals
with TS1 are offspring of consanguineous in 20% of cases, with
no family history of brain tumors or colon; in TS1 polyps are
larger and less numerous than in TS2; in TS1 skin lesions are
café-au-lait spots while in TS2 they resemble epidermal
cysts (95).

According to the American College of Gastroenterology all
newly diagnosed CRCs should be studied for MMR deficiency
with immunohistochemical testing for the MLH1, MSH2,
MSH6, PMS2 proteins and/or with testing for microsatellite
instability. Individuals with a history of a tumor that is
suspected to be determined by MMR deficiency, a known
family mutation associated with LS, or a risk ≥5% of LS
obtained with risk prediction models should undergo genetic
testing: discovering LS may sometimes be the first step toward
diagnosing TS1 (102).

Cancer Surveillance
Cancer surveillance guidelines for patients at risk of or affected
by LS have been published while, to our knowledge, no specific
guidelines regarding the brain tumor surveillance in patients
with TS1 have been established (102).

Therapeutic Approaches
Immunotherapeutic agents such as checkpoint inhibitors have
been used in children with biallelic MMR deficiency glioblastoma
multiforme, with encouraging results in some studies (26, 103).
Checkpoint inhibitors seems to be effective in patients whose
tumors harbor a high mutation load, resulting in the expression
of neoantigens that act as a target for immunotherapy.
Checkpoint inhibitors, through different mechanisms, activate
T cells that recognize cancer cells as foreign by destroying them.
Nivolumab is an anti-programmed death-1 (PD-1) directed
checkpoint inhibitor, approved for the treatment of non-small-
cell lung cancer and melanoma, and is being tested in various
adult and pediatric tumors (103). Ipilimumab is an anti-
cytotoxic T lymphocyte-associated protein 4 (CTLA-4)
approved for the treatment of advanced melanoma and renal
cell carcinoma and is also under clinical investigation in multiple
adult and pediatric cancers (26). To our knowledge, there are no
studies that have demonstrated the effectiveness of checkpoint
inhibitors in children with MB, and therefore in those associated
with MMR deficiency. Nivolumab and Ipilimumab are currently
under investigation in a phase II trial of pediatric patients with
high-grade CNS malignancies, including medulloblastoma
(NCT03130959) (104).

Turcot Syndrome Type 2
Genetic Basis
APC mutation is generally inherited with an autosomal
dominant manner for the development of FAP, while TS2
seems to require a biallelic loss of the APC gene (92, 105).
Indeed, in patients with a germ-line alteration of APC,
inactivation of the second copy of the gene seems to be crucial
for brain tumor development.
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Clinical Phenotype
Clinical findings are those typically associated with colorectal
cancer and brain tumors, which can occur at different times.
Patients with TS2 tend to develop a number of polyps, around
thousands, and they frequently manifest gastrointestinal
symptoms (similar to those mentioned for TS1). Either before
or after the polyps are found, various neurological symptoms and
signs can arise, depending on the location of the tumor:
headache, vomiting, visual and/or hearing problems, and
sensorimotor deficits. In TS2 patients brain tumors can occur
without polyposis, and this could be explained by the hypothesis
that affected individuals die before adenomatous polyps have
time to develop. Skin lesions can also occur in patients with TS2
and are most commonly epidermal cysts.

Correlation With Medulloblastoma
About 40% of patients with TS develop MB (95). According to
Hamilton et al., the relative risk of MB in patients with FAP was
92 times higher than in the general population (92). Surun et al.
in their multicentric retrospective review of 12 patients, treated
between 1988 and 2018 for MB with an identified or highly
suspected APC germline pathogenic variant, described some
recurrent features such as a constant classic histopathology, a
frequent lateral location, and a predominant nonmetastatic
status. They highlighted a strong correlation between APC-
mutated MB and WNT subgroup, demonstrating their
excellent outcome, as indeed have wild-type-MBWNT (106). An
international multicenter study by Waszak et al., which included
1022 patients with MB, highlighted a close association between
APC germline mutations and WNT subgroup; in this study
germline APC mutations were found in five (71%) of seven
CTNNB1-wild type MBWNT cases, representing 7.6% of all
MBWNT, which together with the counterpart constituted by
somatic mutations of CTNNB1 (89.4%), account for 97% of all
MBWNT (22).

Diagnosis
A key point in the diagnosis of TS2 patients is represented by
family history. Individuals who have one or both parents with
CRC diagnosed at an early age should be monitored for pre-
cancerous colorectal polyps. According to the American College
of Gastroenterology an individual with a history of ≥ 10
colorectal adenomatous polyps, or suggestive extracolonic
manifestations, without a family history of an underlying
pathogenic mutation, should be referred for genetic testing. In
addition, the referral for genetic testing is also indicated for
relatives of an individual with a known pathogenic mutation in
order to establish the presence or absence of that specific
mutation and to understand whether the relatives should be
considered at-risk subjects (102).

Cancer Surveillance
The identification of family history of FAP and/or APC gene
mutations may allow the clinician to perform surveillance in
order to promptly identify the possible appearance of a brain
tumor. An early diagnosis can allow an earlier treatment.
However, it seems there is no advantage in terms of cost-
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effectiveness since not all individuals who present a CRC at an
early age then develop a brain tumor and inversely (27, 95).
Cancer surveillance guidelines for patients with FAP have been
published, while, to our knowledge, no specific guidelines
regarding brain tumor surveillance in patients with TS2 have
been established (95, 102, 107).

Therapeutic Approaches
There is currently no targeted therapy available against tumors
arising in the setting of TS2.
RECENTLY IDENTIFIED GENETIC
SYNDROMES ASSOCIATED WITH
MEDULLOBLASTOMA PREDISPOSITION

Pathogenic germline mutations in BRCA2, PALB2, GPR161, and
ELP genes have been recently associated with an increased risk of
developing MB.

Germline BRCA2 and PALB2 Mutations
The international multicenter study by Waszak et al. identified
germline BRCA2mutations in 11 (1%) of 1022 patients with MB,
10 children and one adult, with a median age at diagnosis of 5.7
years (22). They observed compound heterozygosity at BRCA2 in
4 (36%) of 11 patients, of which all developed MBSHH and
showed a worse Progression-Free Survival (PFS) and OS (25%
at 5 years, respectively) compared to patients with heterozygous
germline BRCA2 mutations, which instead showed a 100% OS
and PFS, without secondary neoplasms. Germline mutations in
BRCA2, compared with 53105 controls, were associated with
increased risk of MBSHH and MBGroup3/4 (22).

BRCA2 biallelic mutations are known to be responsible for
Fanconi Anemia (FA). The association of FA with MB has been
described in literature (108). FA is a syndrome characterized by a
chromosomal instability associated with congenital anomalies,
bone marrow failure, and an increased risk of developing acute
myeloid leukemia, myelodysplastic syndrome, and a number of
solid tumors. It is a genetically and phenotypically heterogeneous
disorder, inherited with an autosomal recessive pattern (rarely X-
linked).We reported a novel BRCA2mutation (c.2944_2944delA.)
in a 35-month-old female with FA and diagnosis of two distinct
MBs that had been previously treated for a nephroblastoma at the
age of 15 months. Genetic testing on the patient’s DNA extracted
from both peripheral blood and MB cells revealed the presence of
compound heterozygosis for BRCA2 frameshift mutations.
Molecular analysis showed a MBSHH for both the first- and the
second-diagnosed MB. However differences in localization, more
aggressive histology, and distinct gene expression pattern led to
hypothesize a second distinct tumor rather than a distant relapse
from the first one (109). The identification of SHH subgroup in FA
patients may play a crucial role for their treatment with the use of
targeted therapies, especially in these individuals extremely
sensitive to conventional treatments.

In 2016 we described a case report of a 7-year-old girl with a
classic histotype MBWNT and whose family history was negative
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for cancer (28). After six years of complete remission from MB
the patient developed a secondary glioblastoma. Genetic testing
for cancer predisposition syndromes was performed despite a
negative family history for neoplasms, and we identified a
maternal inherited heterozygous germline BRCA2 mutation, an
unusual finding, since cases described in literature were non-
WNT subgroups and, to our knowledge, this was the first case of
BRCA2-mutated MBWNT reported so far.

Waszak et al. also reported pathogenic heterozygous germline
PALB2 mutations in five (<1%) of 1022 patients with MB, of
which there were 3 with MBSHH, 1 with MBGroup3, and 1 with
MBGroup4. Five-year OS and PFS for patients with germline
PALB2 mutations was 75% (22).

Interestingly, a correlation was described between germline
BRCA2 and PALB2 mutations and homologous recombination
repair deficiency (HRD)-like mutation spectrum, specifically for
pediatric MBSHH (89% of cases), revealing HRD as potential
biomarker for cancer predisposition in this subgroup (22).
Furthermore, the association between germline BRCA2 and
PALB2 with HRD-like mutation spectrum can be exploited to
evaluate the susceptibility to combination therapies with
PARP inhibitors.

GPR161 Mutations
Germline G protein-coupled receptor 161 (GPR161) mutations
have recently been described by Begemann et al. as variants
predisposing to pediatric MB (110). GPR161 is located on
chromosome 1q24.2 and is involved in various aspects of
embryonic development, including granule cell proliferation (111,
112). Proliferation of granule cells in cerebellum is regulated by
SHH ligand and becomes abnormal when SHH-signaling pathway
is constitutively activated. GPR161 acts as a SHH-pathway
suppressor and its loss of function causes MB development (113).
The frequency of germline GPR161 mutations in the general
population is about 6 in 10,000 individuals (110). GPR161 biallelic
inactivation, most frequently by copy-neutral loss of heterozygosity
of chromosome 1q in individuals with heterozygous germline
mutation, in the absence of other driver somatic events, has been
associated with early TP53-wild-type-MBSHH development (110).
According to Begemann et al., overall prevalence of germline
GPR161 mutations among pediatric (age<18 years) and infant
(age<4 years) patients with MBSHH was 3.4% and 5.5%,
respectively (110). Copy-neutral loss of heterozygosity of
chromosome 1q was never reported in GPR161 wild-type MBSHH;
therefore, it can be considered a molecular feature (110).

Germline ELP1 Mutations
Germline loss of function (LOF) variants in ELP1 have recently
been identified in strong association with MB in pediatric age
(114). ELP1 is a molecule that is part of the Elongator Complex,
involved in epitranscriptomic tRNA modifications, whose main
function is to modify wobble base uridines in the anticodon loop
of tRNAs in order to ensure a correct translational elongation
(29, 115–117). The loss of even a single subunit causes the
dysregulation of the Elongator Complex with consequent
proteome instability. The cerebellum is described as the site of
greatest ELP1 expression during brain development (118, 119).
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According to Waszak et al., three consecutive mutational events
are probably required for the development of ELP1-associated
MBSHH: a heterozygous germline ELP1LOF variant; somatic
biallelic inactivation of ELP1 with monoallelic inactivation of
PTCH1 via loss of chromosome arm 9q and biallelic inactivation
of the residual PTCH1 allele via a somatic mutation or focal
deletion (114). Interestingly, Waszak et al. found a strong
association between germline LOF variants in ELP1 and
MBSHH subgroup, especially with SHHa subtype (114).
Patients with ELP1-associated MBSHH showed a median age at
diagnosis of 6.3 years, older than patients with MBSHH and
germline SUFU or PTCH1 LOF variants and younger than those
with MBSHH and germline TP53 mutations. These patients most
frequently presented a desmoplastic nodular histotype and
showed a favorable clinical outcome with 92% 5-year OS (114).

Rubinstein-Taybi syndrome (RSTS) is an extremely rare
genetic disease, with an incidence of 1 in 100,000 to 125,000 live
births, characterized by intellectual disability, unusual behavior,
postnatal growth retardation, and multiple congenital anomalies,
most frequently of the face and distal limbs (120, 121). RSTS is
caused by a heterozygous mutation in cyclic-AMP regulated
enhancer binding protein (CREBBP) gene, a transcriptional co-
activator gene on chromosome 16p13.3, in about 60% of affected
individuals (122), a submicroscopic deletion on chromosome
16p13.3 in about 10% of individuals (RSTS1, OMIM #180849)
(123), alteration of E1A binding protein p300 (EP300) on
chromosome 22q13.2 in about 5–10% of individuals (RSTS2,
OMIM #613684) (124, 125). CREBBP gene and EP300 genes act
as transcriptional co-activators and are involved in DNA repair,
cellular growth, differentiation, apoptosis, and tumor suppression
(126). According to Boot et al. that reviewed the literature from
1963 to 2017, a total of 132 tumors have been reported in 115
individuals with RSTS andMB was the second most frequent CNS
neoplasm with 6 reported cases, after meningioma (121).
However, an increased risk for malignant tumors in RSTS could
not be confirmed given the small numbers of affected individuals
reported in literature, and additional studies are warranted.
GENETIC TESTING OF CANCER
PREDISPOSITION SYNDROMES

With the advent of next generation sequencing (NGS) and
implementation of genetic testing for adult cancer predisposition
syndromes into routine clinical practice, cancer genetics research
has extended the use of molecular testing for tumor and germline
analysis in pediatric cancer patients. Molecular diagnosis of cancer
predisposition syndromes can influence cancer screening
initiation or frequency, to either prevent or detect cancer at an
earlier and more treatable stage, and directly impact treatment
decisions. However, even if medulloblastoma can be associated
with rare hereditary cancer predisposition syndromes, screening
guidelines for genetic counseling and testing of pediatric patients
are not available (23). For genetic testing of cancer predisposition
syndromes, different approaches are being used, and, currently,
most molecular diagnostics laboratories that offer NGS are
October 2020 | Volume 10 | Article 566822
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performing targeted gene panel testing or clinical whole exome
sequencing (WES), more rarely whole genome sequencing (WGS).
A multi-gene panel usually includes high and moderate
penetrance genes and, sometimes, some low or of yet unknown
risk genes, offering the advantage of identifying germline
pathogenic variants in genes that would normally not be tested
based on the patient’s diagnosis. However, it is possible that
variants in genes not included in the panels contribute to the
cancer risk andWES or WGS can be used to explore other genetic
basis of familial syndromes in a more extensive way, permitting to
identify new high- and moderate-risk genes of cancer
predisposition. Genome-wide approaches generate huge
amounts of genetic data and it remains a challenge to interpret
the identified variants. Such data interpretation needs close
collaboration among molecular geneticists, bioinformaticians,
and clinicians. However, as sequencing costs are decreasing and
computer and technological resources are expanding, genome-
wide analysis in clinical practice will become more common.
CONCLUSIONS

MB is the most frequent malignant CNS tumor in children, and
additionally to the sporadic form, MB can occur in association
with a cancer predisposition syndrome. Knowledge of the clinical
findings, etiopathogenic basis, and diagnostic criteria of each
syndrome described in this review allow the pediatrician to
make a correct diagnosis, start cancer surveillance, and suspect
precociously a MB on its onset, providing a prompt treatment.
Conversely, when MB is diagnosed, the correct identification/
detection of a cancer predisposition syndrome can allow the
clinician to make a more appropriate and complete
management of treatment involving several medical specialists
in a multidisciplinary team. The molecular studies conducted in
the last years have evidenced an association between the various
cancer predisposition syndromes and the different MB subgroups.
Knowing these relationships can help further clarify the difference
not only from a biological point of view but also in prognostic
terms. Notably, the extremely poor outcome of MBSHH in children
expressing germline TP53 mutations has already been reported.
Based on the findings described byWaszak et al., pediatric MBSHH
development could be explained by a high genetic predisposition
(about 40%); therefore, the effort to carry out genetic testing and
surveillance program for affected patients and families in this
subgroup becomes even more crucial.

According to Waszak et al. we suggest that patients with
MBSHH should be tested for germline TP53 (when older than 3
years), SUFU and PTCH1 mutations (when younger than 3
Frontiers in Oncology | www.frontiersin.org 1175
years), and if negative, also for germline mutations in BRCA2
and PALB2. Furthermore, we suggest that patients with MBSHH

should be tested for germline ELP1 mutations, especially those
presenting outside of infancy, and for germline GPR161
mutations, particularly those presenting in infancy. We
suggest, also, genetic counselling for germline APC mutations
in children with MBWNT.

Considering that only 5–6% of MB are associated with cancer
predisposition syndromes, our current knowledge is probably
still limited. Given the importance that the recognition of a
cancer predisposition syndrome can have in the management of
a child with MB, we suggest to extend genetic testing also in
patients with family history for cancer and/or finding of a
dysmorphic phenotype. Knowledge of the associations between
molecular subgroups and cancer predisposition syndromes can
also be useful in clarifying the differences in terms of therapeutic
vulnerability, guiding the development of new targeted therapies.
Finally, the comprehension of these biological and molecular
differences can help to further improve cancer surveillance
measures, with the aim of guaranteeing the best quality of care
for the patients.
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APPENDIX A. LI-FRAUMENI SYNDROME
CLASSIC DIAGNOSTIC CRITERIA AND
REVISED CHOMPRET CRITERIA
Classic diagnostic criteria
A proband with Sarcoma diagnosed under the age of 45 years
AND
A first degree relative with any cancer under 45 years
AND
Another first or second degree relative with either cancer

under 45 years or a sarcoma at any age
Chompret diagnostic criteria (revised)
A proband with an LFS spectrum tumor (soft tissue sarcoma,

osteosarcoma, brain tumors, pre-menopausal breast cancer,
Frontiers in Oncology | www.frontiersin.org 1680
adrenal cortical carcinoma, leukemia, lung bronchoalveolar
cancer) before 46 years

AND one of the following criteria:
At least one first- or second-degree relative with an LFS tumor

(except breast cancer, if the proband has breast cancer) before 56
years or with multiple primary tumors

OR
A proband with multiple primary tumors (except multiple

breast tumors), two of which belong to the LFS tumor spectrum
and the first of which occurred before 46 years

OR
A proband with adrenal cortical carcinoma or choroid plexus

carcinoma or embryonal anaplastic subtype rhabdomyosarcoma
independent of the family history

OR
Breast cancer before the age of 31 years
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Approximately 10% of pediatric cancer patients possess germline pathogenic/likely

pathogenic variants (PV/LPV) in known tumor predisposition genes. Predictive testing is

the optimal approach to identify asymptomatic at-risk relatives to guide gene-directed

surveillance for early cancer detection and/or risk-reducing strategies. However, the

uptake rate for predictive testing remains low in Asian countries. We aim to evaluate

the uptake rate of predictive testing in a pediatric population (aged under 21-years-old)

in a multi-ethnic Asian cancer center. Our retrospective analysis included families with

PV/LPVs identified in genes associated with pediatric tumor predisposition. Of the

83 pediatric first-degree relatives (FDRs) from 49 unrelated families, 20 FDRs (24.1%)

originating from 13 families (26.6%) underwent predictive testing. Genes tested in

pediatric FDRs were APC, RB1, SBDS, SDHA, SDHB, SDHD, and TP53. All pediatric

FDRs of probands with PV/LPVs in RB1 and biallelic PVs in SBDS underwent predictive

testing, while <45% of pediatric FDRs had predictive testing for familial PV/LPVs

identified in the APC, SDHA, SDHB, SDHD, and TP53 genes. Amongst the 13 families

who underwent pre-test counseling, 80% of pediatric FDRs in these families proceeded

with predictive testing. Malay pediatric FDRs and siblings of probands were more likely to

undergo predictive testing. We conclude that the predictive testing rate in pediatric FDRs

is higher than that of adult FDRs in Asia, but still below the global average. We postulate

factors that may influence predictive testing uptake in pediatric FDRs includes a lack of

genetics awareness, concerns regarding insurance, and genetic discrimination.

Keywords: predictive testing, cascade, hereditary cancer, pediatric, Asia

INTRODUCTION

Approximately 10% of pediatric cancer patients have a hereditary monogenic cause (1–3),
although the true prevalence is likely higher due to unknown syndromes or the limitations
of current DNA sequencing methods (4). Tumor predisposition syndromes, such as familial
adenomatous polyposis (FAP) and hereditary retinoblastoma (RB) can affect children, afflicting
individuals as young as 10 years old with adenomatous polyposis (5) and new-born
infants with retinoblastoma (6), respectively. The majority of pediatric tumor predisposition
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syndromes follow an autosomal dominant inheritance pattern;
first-degree relatives (FDRs) of a proband have a 50% chance
of inheriting the familial pathogenic/likely pathogenic variant
(PV/LPV). Genetic testing allows for the identification of a
PV/LPV in probands, which then sets in motion predictive
testing within the family. High rates of predictive testing are
beneficial to both the proband’s family and the healthcare
system. Predictive testing can reduce public healthcare costs and
increase efficiency compared to genetic testing of symptomatic
probands (7, 8). The uptake rate of predictive testing has a direct
impact on cost-effectiveness of genetic testing programs (7, 8)
and overall health outcomes (9). On a larger scale, this likely
translates to greater cost-savings for the healthcare system as
such a model of preventive medicine aims to reduce the burden
of cancer-related morbidity and mortality (8–10). Predictive
testing is important for pediatric-onset conditions as it provides
potentially actionable information for screening asymptomatic
children. Correspondingly, family members who test negative
can avoid unnecessary screening, medical interventions, and
associated costs. Increased genetic awareness and accessibility has
improved the uptake of germline genetic testing globally (11–14),
providing probands and parents/guardians the opportunity to
ascertain if the personal or family history of cancer is hereditary.
Results from genetic testing can empower decisions that promote
early cancer detection through options, such as intensified
surveillance and/or risk-reducing strategies to mitigate cancer
risk (15–20).

Rates of predictive testing vary globally, however uptake is
consistently lower in Asian countries (7, 21–24). The uptake of
predictive testing is dependent on several factors, such as the
cost of testing with limited coverage by healthcare institutions,
genetic discrimination and reliance on probands to disclose the
identification of a hereditary condition among family members
(25). Cost remains a significant barrier despite reduction over
the past decade with the advent of next-generation sequencing
(7, 25). The cost of genetic testing in most parts of Asia
is paid out-of-pocket, with minimal government or insurance
subsidy. Secondly, there is a lack of legislation to protect
against genetic discrimination, including health insurance. This
plays an even larger role in the pediatric population who
may find that they are unable to obtain insurance coverage
due to their underlying hereditary condition. Thirdly, the
dissemination of genetic testing results relies solely on the
proband (or parents/guardians in cases where the proband is
a minor). This hampers predictive testing uptake as proband -
initiated disclosure is often complicated by several factors on an
individual, familial and cultural basis (21, 23, 26–28). In most
parts of Asia, the diagnosis of cancer is stigmatized and rarely
discussed among family members, creating another barrier to
uptake of genetic testing (28). The proband or parents/guardians
may choose not to share genetic results due to distant family
relations, fear of discrimination, backlash from family members,
as well as perceived burden knowing one has an increased risk of
cancer (22, 23).

The Cancer Genetics Service (CGS) at the National Cancer
Center Singapore (NCCS) follows the American Academy of
Pediatrics (AAP) and the American College of Medical Genetics

and Genomics (ACMG) guidelines (4, 29, 30) and recommends
predictive testing for pediatric patients only in childhood-onset
conditions. To our knowledge, there has been no published
literature on predictive testing in pediatric FDRs to date. This
study evaluated the uptake rate of predictive testing for pediatric
tumor predisposition syndromes in minor FDRs in an Asian
cancer center and explores potential factors that affect the
uptake rate.

METHODS

Probands who were seen at the CGS at NCCS from March
2014 to December 2019 and had an identified PV/LPV following
genetic testing were recruited. Probands were included up
until December 2019 to allow for a follow-up period for any
delay in predictive testing decisions. Demographic, clinical data,
and pedigrees of probands and their pediatric FDRs were
extracted from the CGS database (REDCap Software, version
6.10.3, 2017, Vanderbilt University). The database and pedigrees
were reviewed by two independent study personnel. Pediatric
FDRs of probands who did not attend the CGS clinic were
assumed to have declined predictive testing, in tandem with
their parents/guardians’ decision. Demographic and clinical data
for untested FDRs were obtained from pedigrees provided by
probands. Financial status of untested pediatric FDRs were
assumed to be similar to that of the proband as they are likely
to reside in the same household.

Only probands with a PV/LPV in genes associated with
pediatric-onset tumor predisposition syndromes were included
in the study, in line with AAP and ACMG guidelines. These
included AIP, ALK, APC, ATM, AXIN2, BAP1, BLM, BMPR1A,
CDC73, CDKN1C, CEBPA, DICER1, DIS3L2, EPCAM, EXT1,
EXT2, FH, GATA2, GPC3, HRAS, LZTR1, MAX, MEN1, MLH1,
MSH2, MSH6, NBN, NF1, NF2, PHOX2B, PMS2, PRKAR1A,
PTCH1, PTEN, RB1, RECQL4, REST, RET, RUNX1, SDHA,
SDHAF2, SDHB, SDHC, SDHD, SMAD4, SMARCA4, SMARCB1,
SMARCE1, STK11, SUFU, TERC, TERT, TMEM127, TP53, TSC1,
TSC2, VHL, WRN, and WT1. The mismatch repair genes
and the SBDS gene were tested only if FDRs were at risk
of constitutional mismatch repair deficiency (CMMRD) and
Shwachman-Diamond syndrome, respectively. Probands were
excluded from the study if they were not Singapore residents
as their family members were unlikely to be living in Singapore
and would have been unable to attend the CGS for predictive
testing. A minor, by Singapore law, is defined as an individual
under age 21 years and hence the pediatric population is defined
as individuals below 21 years old. Written informed consent
and assent for medical record research was obtained from all
probands and tested FDRs at the point of genetic testing. The
study was approved by the Singhealth Centralized Institutional
Review Board (CIRB number 2010/826/B).

Genetic counseling services at NCCS are provided by medical
oncologists with specialization in genetics and/orMaster’s trained
genetic counselors. A shared decision-making approach for pre-
test genetic counseling is adopted in the CGS (31). Following
the identification of a PV/LPV in a proband, family notification
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FIGURE 1 | Exclusion criteria of study. FDRs, first-degree relatives.

letters were provided to assist the proband/family members with
dissemination of the result. Family members who were keen
to undergo genetic testing were referred to the CGS where an
appointment for pre-test genetic counseling was scheduled to
facilitate predictive testing.

Tested and untested pediatric FDRs were compared for
potential prognostic factors of predictive testing uptake. Two-
tailed chi-square test and independent samples t-test were
performed for categorical and normally distributed continuous
variables, respectively. For categorical variables with a 2 × 2
distribution, a two-tailed Fisher’s exact test was used when the
expected count was below 5. Statistical significance was set at

P<0.05. All statistical analyses were performed using IBM SPSS
version 25.

RESULTS

Overall, 306 probands who underwent genetic testing between
March 2014 and December 2019 were found to have PV/LPVs
in known tumor predisposition genes. After excluding 29
non-residents, one proband with missing information, 163
probands with adult-onset tumor predisposition syndromes and
64 probands with no FDRs below 21 years old (Figure 1), there
were 83 pediatric FDRs from 49 unrelated probands. A total of
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TABLE 1 | Proportion of FDRs below 21 years old and families who had predictive

testing.

FDRs below 21 years old Source families

Total Tested Not tested Total Tested Not tested

(%) (%) (%) (%)

83 20 (24.1) 63 (75.9) 49 13 (26.6) 36 (73.5)

TABLE 2 | Demographic and clinical factors of probands and tested pediatric

FDR.

Probands (n = 49) Pediatric FDRs (n = 20)

AGE

Mean (range) 35.0 (1–57) 11.3 (3–20)

SEX

Male (%) 18 (36.7) 10 (50.0)

Female (%) 31 (63.3) 10 (50.0)

RACE

Chinese (%) 38 (77.6) 14 (70.0)

Malay (%) 6 (12.2) 6 (30.0)

Indian (%) 2 (4.1) 0 (0.0)

Others (%) 3 (6.1) 0 (0.0)

PERSONAL HISTORY OF CANCER

Yes (%) 45 (91.8) 2 (10.0)

No (%) 4 (8.2) 18 (90.0)

FINANCIAL ASSISTANCE

Yes (%) 16 (32.7) 7 (35.0)

No (%) 33 (67.3) 13 (65.0)

GENETIC RESULT

Positive (%) 49 (100.0) 11 (55.0)

Negative (%) 0 (0.0) 9 (45.0)

20 pediatric FDRs (24.1%), originating from 13 families (26.6%),
underwent predictive testing (Table 1).

Demographic and clinical information of the 49 probands
whom carried an identified PV/LPV in a pediatric-onset tumor
predisposition gene and the 20 pediatric FDRs who had
predictive testing are shown in Table 2. The mean age of
the probands and pediatric FDRs were 35.0 and 11.3 years,
respectively. The majority of probands were female (63.3%),
Chinese (77.6%), and had a personal history of cancer (91.8%).
In comparison, the pediatric FDRs who underwent testing were
similar in terms of gender (female; 50.0%) and ethnicity (Chinese;
70.0%). The ethnic distribution in probands and pediatric FDRs
is representative of the Singaporean population (32). Most of
the pediatric FDRs did not have a personal history of cancer
(90.0%). The need for financial assistance was similar between
probands and pediatric FDRs, at 32.7 and 35.0%, respectively.
Overall, the familial PV/LPV was detected in 11/20 (55.0%) of
tested pediatric FDRs.

Pediatric FDRs underwent predictive testing for familial
PV/LPVs identified in the following genes: APC, RB1, SBDS,

SDHA, SDHB, SDHD, and TP53 (Table 3). Among six unrelated
probands with identified APC PV/LPVs, there were 18 pediatric
FDRs. Eight pediatric FDRs (44.4%) from three families (50.0%)
underwent predictive testing for the familial APC variant. Two
pediatric FDRs from one family had genetic testing for familial
PVs in APC and MUTYH as there were two PVs found in the
proband. There were two unrelated probands with identified
RB1 PV/LPVs with three pediatric FDRs from both families. All
three pediatric FDRs from both families (100.0%) had predictive
testing. One family had a PV in both RB1 and TP53. One
proband with biallelic SBDS PVs had one pediatric FDR who
underwent predictive testing (100.0%). Of 16 pediatric FDRs
from 12 families with SDHx PV/LPVs, seven pediatric FDRs
(43.8%) from six families (50.0%) underwent predictive testing.
Out of nine pediatric FDRs from seven families with TP53
PV/LPVs, three FDRs (33.3%) from two families (28.6%) had
predictive testing for the familial variant. More than half of the
eligible pediatric FDRs did not proceed with predictive testing
for familial PV/LPVs identified inAPC, SDHx, and TP53. Among
the 13 families that presented for predictive testing, 20/25 (80.0%)
pediatric FDRs underwent predictive testing.

We identified two factors that shows significant association
with the uptake of predictive testing in pediatric FDRs—ethnicity
and relationship to proband (Table 4). Malay pediatric FDRs
were more likely to undergo predictive testing as compared to
other ethnic groups (66.7 vs. 23.0%, p = 0.005). In addition,
pediatric siblings of probands were more likely to undergo
predictive testing compared to children of probands (53.3 vs.
17.6%, p = 0.003). We examined other potential factors that
may affect the uptake of predictive testing, although we did not
find any significant associations with gender, age of FDR, age of
parents/guardians, or socioeconomic status.

DISCUSSION

This study reports the predictive testing uptake rate in
pediatric FDRs of probands with PV/LPVs in pediatric tumor
predisposition genes. Concurrently, it provides insight into the
uptake of commonly tested genes among pediatric FDRs of
Asian families.

We observed a 24% uptake rate of predictive testing for
tumor predisposition syndromes in the Singaporean pediatric
population, almost double the predictive testing rate of 13%
in Singaporean adults (25). The lack of predictive testing data
for pediatric-onset tumor predisposition syndromes meant that
there were no available data for comparison. We postulate that
the low predictive testing rate in our Asian pediatric population
may be due to a combination of factors relating to poor genetics
knowledge and awareness, concerns regarding insurance and
genetic discrimination, and Asian familial culture.

There is a general lack of understanding of the clinical utility
of genetic testing in Singapore (23). This could explain the poor
uptake of predictive testing amongst potential pediatric APC,
SDHA, SDHB, SDHD, and TP53 PV/LPV carriers, who may be at
increased risk for a range of different cancer types from a young
age. Our data demonstrates that pediatric FDRs are significantly
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TABLE 3 | Proportion of FDRs who underwent predictive testing by gene.

Gene Genetic Condition FDRs below 21 years old Source families

Eligible for

testing

Tested (%) Not tested

(%)

Eligible for

testing

Tested (%) Not tested

(%)

APC Familial adenomatous polyposis 18 8 (44.4) 10 (55.6) 6 3 (50.0) 3 (50.0)

RB1* Hereditary retinoblastoma 3 3 (100.0) 0 (0.0) 2 2 (100.0) 0 (0.0)

SBDS Shwachman-Diamond syndrome 1 1 (100.0) 0 (0.0) 1 1 (100.0) 0 (0.0)

SDHx (SDHA, SDHB,

SDHD)

Hereditary paraganglioma-pheochromocytoma

syndrome

16 7 (43.8) 9 (56.2) 12 6 (50.0) 6 (50.0)

TP53* Li-Fraumeni Syndrome 9 3 (33.3) 6 (66.7) 7 2 (28.6) 5 (71.4)

*Two FDRs within one family underwent predictive testing for pathogenic variants in TP53 and RB1, both found in the proband.

TABLE 4 | Factors associated with uptake of predictive testing in FDRs below 21

years old.

Tested Not tested P-value

AGE OF FDR

Mean (range) 11.3 (3–20) 9.1 (0–20) 0.141

SEX

Male (%) 10 (25.0) 30 (75.0) 0.853

Female (%) 10 (23.3) 33 (76.7)

RACE

Chinese (%) 14 (23.0) 47 (77.0) 0.006a

Malay (%) 6 (66.7) 3 (33.3)

Indian (%) 0 (0.0) 8 (100.0)

Others (%) 0 (0.0) 5 (100.0)

MEAN AGE OF PARENTS/GUARDIANS

Mean (range) 40.3 (32–56) 42.4 (28–57) 0.251b

RELATIONSHIP TO PROBAND

Child (%) 12 (17.6) 56 (82.4) 0.003

Sibling (%) 8 (53.3) 7 (46.6)

FINANCIAL ASSISTANCE

Yes (%) 7 (25.9) 20 (74.1) 0.787

No (%) 13 (23.2) 43 (76.8)

aFisher’s Exact test.
b Independent sample t-test.

Chi-square test was used, unless otherwise specified.

Bold values indicate statistical significance p <0.05.

less likely to undergo predictive testing if the proband is the
parent. We hypothesize that parents/guardians may want to
minimize invasive procedures, such as blood tests, which cause
the child unnecessary worry. They may also be concerned
that knowledge of a hereditary condition may result in stigma
from the family/community and have an impact on the child’s
psychological well-being, which in turn could impact schooling,
social interaction, and self-esteem. Parents/guardians may also
have difficulty broaching the subject of hereditary conditions and
explaining the risk to their children, possibly stemming from
guilt of passing it on to the next generation (33). Furthermore,
parents/guardiansmay project assumptions onto the child, which
may make for inaccurate assessments of the child’s ability to

understand and/or cope with the implications of undergoing
predictive testing. Such assumptions may be overly paternalistic,
as there are varying levels of cognitivematurity in the two decades
spanning the pediatric age group, where adolescents are known
to be capable of independent thoughts that may be distinct from
their parents/guardians. Parents/guardians may worry that the
child is not mature enough to understand the impact of genetic
information (33, 34). Often in Asia, clinical consultations with
pediatric FDRs comprises of an extended discussion with the
parents/guardians, with minimal interaction with the child. The
CGS at NCCS actively overcomes this by involving the child
in an age-appropriate way throughout the pre-test counseling
process with developmentally-appropriate explanations, child-

friendly assent forms, and engaging them in the final decision-
making, where appropriate. Unfortunately, we are aware of

instances where information has been intentionally withheld by

parents/guardians to protect their at-risk child(ren) from the

knowledge of an increased risk of cancer, despite the provision
of family communication strategies between parents/guardians

and child.
From an ethical point of view, the subject of predictive testing

in pediatric FDRs is keenly debated (35–38). Advocates highlight

the actionability of identifying pediatric PV/LPV carriers to

guide early screening to detect cancer at an earlier and more
manageable stage or risk-reducing interventions, with the aim
of decreasing mortality. This is especially observed in pediatric
patients with familial adenomatous polyposis (FAP), where
colorectal adenomatous polyposis and cancer can develop at a
young age (39, 40). Genetic testing for the purpose of enhancing
medical monitoring, prophylaxis or treatment in pediatric FDRs
may be in the best interest of the child in such conditions (41).
Detractors cite the right to autonomy and self-determination of
the child as a reason to defer germline testing until they are
able to comprehend the spectrum of benefits and limitations
(42), especially as there are often reproductive and insurance
implications following germline genetic testing. The best interests
of the child must be respected at all times and healthcare
providers need to balance the autonomy of the child and medical
need for genetic testing carefully. The balance might come from
testing children only when cancer risk begins in childhood
and where there are evidence-based interventions to mitigate
such risks.
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Interestingly, our service reports a predictive testing rate
in pediatric FDRs that is nearly double that of adult FDRs
(25). Previous studies of adults in Singapore who underwent
genetic testing found several barriers to disclosure of results
by the proband, including cost, concerns regarding insurance,
potential genetic discrimination, as well as perceived burden of
genetic results (27). This barrier of proband-mediated disclosure
is not unique to Asia, with literature demonstrating similar
challenges in other countries (43, 44). In the case of a pediatric
FDR, proband-mediated disclosure is not a relevant factor
as parents/guardians are often involved in the entire genetic
counseling process.

Medical decision making in Asia usually includes significant
input from the family, especially in theMalay community (22, 28,
45). In Asian culture, the concept of illness is familial, rather than
individual, and involvement of the family provides hope, support,
and strength (46). This pattern of familial decision-making can
be seen as entire families often come together for testing if
they choose to do so and vice versa (25). In our dataset, Malay
pediatric FDRs, whom traditionally apply a familial decision-
making approach (28), are more likely to undergo predictive
testing than other ethnic groups. We observed that predictive
testing tends to happen in clusters within families which suggests
the strong influence of the family in decision-making for genetic
testing. Further research on family-based genetic counseling
should be considered in Asia.

Based on our study, RB1 was the most common gene
tested when predictive testing was offered to pediatric FDRs.
Even though all SBDS pediatric FDR had predictive testing,
this should be interpreted with caution as it is based on a
single proband with biallelic SBDS PVs with one pediatric
FDR. Hereditary retinoblastoma is a disease of childhood and
curative intervention can be performed if detected early. The
RB1 gene is highly penetrant with most carriers presenting with
retinoblastoma before age five (6). Parents/guardians may thus
be more likely to opt for early testing to improve detection and
prospects of cure.

Complete data, with minimal missing information, is a
strength of this study. Though numbers are small, our study
addresses a gap in the literature by looking at the issue
of predictive testing uptake in pediatric FDRs and sets a
benchmark for comparison with future studies. Further studies
with larger datasets would be beneficial for comparison. Our
study did not explore the reasons for or against predictive
testing in children, such as the breakdown of age, education, and
socioeconomic status. Future qualitative studies are required to
understand the concerns and needs of pediatric FDRs and their
parents/guardians (47, 48). Additionally, pedigree and family

information was dependent on proband’s recall which may be
subject to recall bias. Our study has limited access to FDRs who
may have undergone predictive testing via other services, which
may have led to an underestimation of predictive testing uptake
rates. Nevertheless, this is unlikely to be a significant number as
our center has funding assistance for testing and the majority of
predictive testing is done at the same center as the proband.

CONCLUSION

This study addresses a question that has not been reviewed
in literature, by demonstrating that a quarter of pediatric
FDRs undergo predictive testing for childhood-onset tumor
predisposition syndromes in Asia. While the rate is higher than
that observed in adult FDRs in Singapore, it is still below
global predictive testing rates. Factors, such as ethnicity and
relationship-to-proband are positive predictors for the uptake
of predictive testing amongst pediatric FDRs. Future directions
for further exploration include facilitators and barriers to
predictive testing unique to a pediatric population, addressing
lack of protective legislature especially for health insurance, the
effectiveness of family-based genetic counseling in improving
pediatric predictive testing uptake, and/or the approach of
directly contacting FDRs for predictive testing without proband-
mediated dissemination.
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Pediatric High-Grade Gliomas (pHGG) are among the deadliest childhood brain tumors

and can be associated with an underlying cancer predisposing syndrome. The thorough

understanding of these syndromes can aid the clinician in their prompt recognition,

leading to an informed genetic counseling for families and to a wider understanding

of a specific genetic landscape of the tumor for target therapies. In this review, we

summarize the main pHGG-associated cancer predisposing conditions, providing a

guide for suspecting these syndromes and referring for genetic counseling.

Keywords: brain tumors, cancer predisposition, genetics of cancer, pediatric neuro- oncology, high grade gliomas

INTRODUCTION

Central Nervous System (CNS) tumors are the most common pediatric solid tumors and represent
the second most frequent neoplasm in pediatric age, second only to leukemias. They count for
1.12–5.14 cases per 100,000 people in individuals aged 0–19 years, with variable incidence rates
across different countries, the highest being in the USA (1). Management of pediatric CNS tumors
is challenging and requires specific oncological training.

Among brain tumors in the pediatric age, gliomas are the most represented. Approximately 21%
of all primary pediatric gliomas are high-grade tumors (2, 3). Even though from a histopathological
point of view pediatric high-grade gliomas (pHGGs) are similar to their adult counterpart, their
genetic and epigenetic features reflect intrinsic differences compared to adult HGGs. Despite an
increased understanding of their biological basis, therapeutic options for these tumors are still very
limited, and the long-term prognosis remains poor, with high levels of bothmorbidity andmortality
(3, 4) and a 5-year survival rate of < 20% (4).

Risk factors for pHGG seem to be mostly genetic in nature, even though some predisposing
environmental factors such as irradiation have been described (5). In contrast to adult population,
where cancer associated mutations are mostly somatic and resulting from external causes, germline
mutations are frequently encountered in children.

Several cancer predisposing syndromes (CPS) associated with an increased risk of developing
to pHGG have been identified so far, including Neurofibromatosis type 1 (NF1), Turcot syndrome
and Li-Fraumeni syndrome. In this review we will address the impact of these syndromes for the
management of pHGG.
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METHODS

The authors conducted a literature search describing CNS
tumors and cancer predisposing syndromes. Selection of studies
were based on research topics (such as cancer predisposition
syndrome AND/OR brain tumor genetics, brain tumor cancer
predisposition syndrome, HGG predisposition syndromes, HGG
in childhood) found in the PubMed. Only papers written in
the English language and those published from the year 2000
up to May 2020 were selected. We included reviews, case series
and research studies that were classified according to their
relevance. No abstracts were included. The information found in
the selected studies was carefully evaluated, which is described
and discussed in the following sections.

LI-FRAUMENI SYNDROME

Li-Fraumeni Syndrome (LFS) (OMIM #151623) was reported
for the first time in 1969 by Frederick Li and Joseph Fraumeni
(6). LFS is an autosomal dominant, highly penetrant cancer
predisposition syndrome associated with germline mutations
in the TP53 gene. It lacks additional clinical features and is
only characterized by the high frequency of malignancies in
multiple organs, making it a difficult syndrome to diagnose in
the absence of a significant family history of multiple cancers
(7). The involved gene encodes the TP53 transcription factor,
tumor protein p53, also known as the “guardian of the genome”
(8). TP53 is involved in cellular growth control by regulating the
expression of several genes causing cell-cycle arrest and apoptosis
in response to DNA damage.

Epidemiology and Cancer Spectrum
LFS prevalence is estimated between 1/5.000 and 1/20.000 of the
population (9, 10), even if the estimated prevalence of pathogenic
and likely pathogenic germline TP53 variants seems to be higher,
as described by Andrade et al. (9).

LFS is characterized by a high lifetime cancer risk and, due
to its extremely high penetrance, by a familiar clustering of
tumors. Cancer types are variable and often present during
childhood. Osteosarcoma, soft-tissue sarcomas, brain tumors,
early-onset breast cancer, leukemia, and adrenocortical tumors
are the most frequently observed tumors (10). It can also
be associated with myelodysplastic syndromes, lymphoma and
other benign and malignant tumors (11, 12). In children with
LFS, brain tumors are the second most common malignancies
following adrenocortical carcinoma. A quarter of childhood
tumors involved CNS compared to only 13% of adult LFS related
tumors (13). In LFS, the median age of onset of brain tumors is
16 years, compared to 57 years in the general population.

CNS tumors related to LFS have a prevalence ranging from
9 to 14% (14) and the most frequent types are glioblastoma
and astrocytoma. Nonetheless, medulloblastoma, ependymoma,
choroid plexus carcinomas, and other embryonal tumors are
also described.

Etiopathology
The main gene disrupted in LSF is TP53, a tumor suppressor
gene encoding the p53 protein, fundamental for the transcription
of target genes involved in cell cycle arrest, DNA repair and
response to DNA damage (15). TP53 gene is located on
chromosome 17p13.1 and more than 250 different germline
alterations have been reported in medical literature to date. In
brain tumors, most mutations reside within the DNA binding
domain, even though all the genotypic-phenotypic correlations
are not fully understood (16). Despite genetic lesions in LFS
have been widely studied, not all the underlying genetic defects
responsible for LFS have been found. In fact, several families
fulfill the definition of classical LFS without the recognition of
any known TP53 defect being found (16). Although few LFS
cases have been reported with germline mutations in the CHK2
gene, no pediatric CNS tumors have been detected in these
patients, suggesting a genotype-phenotype correlation between
such malignancies and TP53 mutations (17, 18). See Figure 1

for details.

Clinical and Therapeutic Considerations
As already mentioned, there are no clinical characteristics
associated with LFS other than an increased cancer risk.
Considering this and the highly penetrance of LFS, clinical
and familial diagnostic criteria are essential for the diagnosis.
Classic diagnostic criteria and revised Chompret criteria for LFS
are reported in Supplementary Table 1 (19). It is essential to
individuate families where LFS might be present as it has been
demonstrated that intense tumor surveillance leads to increased
survival (20).

It has been proven that TP53 mutations are a negative
prognostic factor in several tumor types, including pHGG (21).
Despite the high risk of secondary malignancies after exposure
to ionizing radiation, no specific treatment is available for
LFS pHGG patients. Treatment strategies in these patients can
be challenging, since mutations in the TP53 gene have been
associated with resistance to both chemotherapy and radiation
(22). Also, LFS patients with CNS tumors show an overall worse
outcome if compared to non-affected patients (22).

NEUROFIBROMATOSIS

Neurofibromatosis type 1 (NF1) (OMIM#162200), also known as
von Recklinghausen disease, is a common autosomal dominant
disorder with a prevalence of 1:4.000 individuals due to
mutations of the NF1 gene on chromosome 17q11.2 (23). The
protein product of the NF1 gene, neurofibromin, regulates
several intracellular processes, including the RAS/ERK/MAP
kinase cascade and cytoskeletal assembly. Loss-of-function
mutations of NF1 gene lead to a high risk of tumor development
due to decreased RAS signaling inhibition (24). Clinically,
NF1 is characterized by café au lait macules, skin fold
freckling, optic pathway gliomas, neurofibromas and plexiform
neurofibromas, osseous lesions, and iris hamartomas (Lisch
nodules) (23). The clinical diagnosis requires the fulfillment of
at least two of the criteria as listed in Supplementary Table 2,
however there are other possible manifestations that are not
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FIGURE 1 | Molecular pathways of Li-Fraumeni (LFS) Syndrome. The two known mutation for LFS are represented here (P53 and CHK2) as lighting bolt. A group of

protein kinases such as ATM, ATR, CHK1, CHK2 is implicated in the genome integrity checkpoint, a molecular cascade that detects and responds to several forms of

DNA damage caused by genotoxic stress. Oncogenes also stimulate p53 activation, mediated by the protein ARF. In a normal cell, p53 is inactivated by its negative

regulator, MDM2. Upon oncogene activation, various pathways will lead to the dissociation of the P53 and MDM2 complex. Once activated, p53 will induce a cell

cycle arrest to allow either repair and survival of the cell or apoptosis to discard the damaged cell. Adapted from “P53 Regulation and Signaling,” by BioRender.com

(2020). Available online at: https://app.biorender.com/biorender-templates.

included in the diagnostic criteria but that can be present in
patients harboring the mutation, such as macrocephaly, learning
disabilities, vasculopathies and scoliosis. NF1 is associated with
some CNS neoplasms in infancy, namely optic pathway gliomas
and brainstem gliomas.

Epidemiology and Cancer Spectrum
NF1 (von Recklinghausen disease) is one of the most common
CPS (13). It is an autosomal dominant inherited condition and
about 50% of cases are found de novo with no associated family
history (25).

CNS neoplasms predominantly associated with NF1 are optic
pathway gliomas (15–20%) and brainstem -gliomas (1–2%).
Other malignant tumors can be observed in these patients such as

malignant peripheral nerve sheath tumors (MPNST) and juvenile
myelomonocytic leukemia (JMML) (26).

Etiopathology
The gene involved in the pathogenesis of this syndrome is
NF1, an onco-suppressor located on chromosome 17q11.2. The
protein encoded by this gene is called Neurofibromin and is a
GTPase activating protein that inhibits the product of the RAS
oncogene, mediating the passage from GTP-RAS to GDP-RAS.
RAS, in turn, is an activator of cell-cycle signaling pathways such
as MAPK (RAF-MEK-ERK) and PI3K/AKT/mTOR pathways
(27). NF1 loss-of-function mutations remove this inhibition on
RAS and the downstream pathways, leading to abnormal cell
proliferation and tumorigenesis.
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Clinical and Therapeutic Considerations
NF1 brain tumors are considered more indolent than same
histology counterparts observed in patients without NF1, and
can even regress over time without treatment (28). Histologically,
most of them are low-grade gliomas (LGG), with a smaller
representation of pHGG (81). It is notable that NF1 associated
pHGG exhibit the same genetic alterations found in sporadic
pHGG (such as P53 and CDKN2A alterations) (29). On the other
hand, NF1 alterations are frequently found as somatic genetic
lesions in sporadic HGGs of childhood (30).

Apart from LGG, differential diagnosis of pHGG in NF1
children has to include the frequent finding of Focal Areas
of Signal Intensity (FASI) in these patients. These are benign
lesions, usually multiple and radiologically characterized as non-
enhancing, small areas without mass effect or edema. They can
be found in around 70% of NF1 pediatric cases and must be
differentiated from gliomas (31).

Being pHGGs very uncommon in NF1, surveillance
neuroimaging is controversial and not universally recommended
(24). Regardless, families should be instructed to recognize the
warning signs of brain tumors.

Treatment of pHGG in NF1 is similar to sporadic cases, some
reports suggest that prognosis might be better than sporadic
pHGG (32, 33). As for target specific therapies, MEK inhibitors
have shown promising results in NF1 patients with low grade
gliomas, this result may pose the basis for future treatment
strategies also in NF1-pHGG (34).

Radiotherapy is generally part of the treatment protocol,
despite increased complications, namely secondary malignancies
and stroke (35).

CONSTITUTIONAL MISMATCH-REPAIR

DEFICIENCY SYNDROME

Constitutional mismatch repair deficiency (CMMRD) syndrome
(OMIM #276300) is a childhood autosomal recessive cancer
predisposition syndrome caused by a biallelic germline mutation
in the DNA mismatch repair (MMR) genes, namely mutL
homolog1 (MLH1), mutS homolog1 (MSH2), pms2 c-terminal
like pseudogene (PMS2), or mutS homolog6 (MSH6) (36).
Patients with monoallelic mutations in the MMR genes develop
hereditary non-polyposis colorectal carcinoma (HNPCC),
also known as Lynch syndrome, an autosomal dominant
genetic disorder associated with increased risk of colorectal
cancer, endometrial carcinoma, and other gastrointestinal and
genitourinary malignancies in the fourth and fifth decades of
life (37).

Epidemiology and Cancer Spectrum
CMMRD is a rare disease with roughly 200 cases reported to
date (38, 39). However, its prevalence might be underestimated
and a consistent number of cases might go undiagnosed in
South Asian and Middle Eastern countries where consanguinity
is more prevalent (40). In CMMRD, the tumor spectrum is very
broad including CNS (glioblastoma, oligodendroglioma, low-
grade glioma, medulloblastoma, and other embryonal tumors),

hematological, genitourinary and intestinal tract tumors (41).
Among brain tumors, malignant gliomas are the most frequent
CMMRD-associated tumors, typically presenting within the first
2 decades of life and accounting for 25–40% of CMMRD cancers
(41). Overall, there is a high degree of consanguinity within the
family, indicating that inbreeding is a major risk factor for this
otherwise rare disorder.

Etiopathology
MSH2, MSH6, MLH1, and PMS2 genes are involved in the
mismatch repair mechanisms, one of the most important DNA
repair machinery of the cell (36). Its main role is to correct
errors arising during DNA replication, thus tumors arising in
the context of CMMRD exhibit an extraordinary number of
DNA mutations. The most common type of defects found
in these “hypermutated cancers” are point mutations (single
nucleotide variations) and microsatellite instability (MSI) where
repetitive sequences (microsatellites) are not adequately repaired.
Recently, new genetic alterations affecting this machinery have
been described, such as MSH3 variants (42), deletions of the
EPCAM gene (43), and mutations in DNA polymerases epsilon
and delta 1 (POLE, POLD1) (44). See Figure 2 for details.

Clinical and Therapeutic Considerations
In addition to cancer, CMMRD patients frequently have other
physical features such as cutaneous café-au-lait spots and
hypo- or hyperpigmented spots that may mimic some of the
skin features usually observed in NF1. Also neurofibromas,
Lisch nodules and freckling have been reported, although less
frequently than in NF1 (39, 45). Other findings have occasionally
been described in these patients such as vascular anomalies,
pilomatrixomas, agenesis of the corpus callosum (46), and
decreased levels of immunoglobulins IgG2/4 and IgA (39).
However, none of these features are mandatory to diagnose the
syndrome. The penetrance of the disease is very high, reaching
more than 90% by the first two decades of life. Most patients
will have childhood cancer and more than one tumor, often
presenting synchronously (13).

Initial screenings can be performed by immunohistochemistry
showing loss ofMMRprotein both in normal andmalignant cells.
Diagnosis can be confirmed by genetic testing for the presence
of biallelic mutations in one of the four MMR genes. Evidence
of low grade glial lesions and premalignant, dysplastic polyps
advocates for surveillance protocols to intercept asymptomatic
tumors at early stages, when they are more amenable to complete
resection (47). Current protocols suggest annual whole-body
MRI (WBMRI) from the age of 6 years. In addition, it is
recommended to start colon surveillance by colonoscopy from
6 years of age. Treatment of CMMRD tumors is complicated by
resistance to standard therapies for pHGG such as temozolomide,
since it requires adequate mismatch repair to perform its action.

Interestingly, immunotherapy has proved to be a promising
strategy in these tumors. One of the main mechanisms
through which tumors escape immune recognition and induce
immunosuppression is PD-L1 overexpression of cancers that
acts as a binding site for PD1. The binding of PD1 to PDL1
activates PD1 signaling that inhibits T cells allowing the tumor
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FIGURE 2 | Molecular pathways of Constitutional Mismatch Repair Deficiency Syndrome (CMMRD). MSH2 dimerizes with MSH6 to form the MutSα complex, which

is involved in base mismatch repair and short insertion/deletion loops. The formation of the MSH2-MSH6 heterodimer accommodates a second heterodimer of MLH1

and PMS2. This protein complex formed between the 2 sets of heterodimers enables initiation of repair of the mismatch defect by recruiting PCN/EXO1/RCF. RFC is

(Continued)
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FIGURE 2 | essential for PCNA loading and function in DNA replication. PCNA loads onto double-strand breaks and promotes Exo1 damage association through

direct interaction with Exo1. By tethering Exo1 to the DNA substrate, PCNA confers processivity to Exo1 in resection. This role of PCNA in DNA resection is analogous

to its function in DNA replication where PCNA serves as a processivity co-factor for DNA polymerases such as polymerases δ. DNA Pol δ is an enzyme used for both

leading and lagging strand synthesis by engaging Ligase I and IV. Adapted from “DNA Repair Mechanisms by BioRender.com (2020). Available online at: https://app.

biorender.com/biorender-templates.

to evade immune attack (48). These principles have been used
to develop drugs named checkpoint inhibitors that counteract
the interactions of the PD1 protein. It has been demonstrated
that CMMRD tumors are more responsive to PD1 blockers than
MMR proficient tumors. In particular, in children with CMMRD
with recurrent glioblastoma, shrinking of tumors was observed
on MRI, suggesting these tumors as ideal candidates for such
therapies (49).

OLLIER DISEASE AND MAFFUCCI

SYNDROME

Ollier disease (OD, OMIM 166000) andMaffucci syndrome (MS,
OMIM 6145692) are related conditions characterized by multiple
endochondromas and caused by somatic mutations in the IDH1
and IDH2 genes, respectively (50, 51). The main difference
between the two conditions is the presence of hemangiomata in
MS, moreover, while OD presents with multiple enchondromas,
typically unilateral in distribution with a predilection for the
appendicular skeleton, MS is often characterized by multiple
enchondromas bilaterally distributed (51).

Epidemiology and Cancer Spectrum
Most cases of OD and MS have been reported as sporadic,
with an estimated prevalence of 1 out of 100,000 individuals,
although the description of few familial cases of OD suggests
a possible autosomal dominant pattern of inheritance (51).
About half of the individuals with OD or MS develop a
malignancy, such as chondrosarcoma (with a prevalence of 30%
in both conditions), glioma, and ovarian juvenile granulosa
cell tumor, accompanied by other clinical features, such as
multiple swellings on the extremity, deformity around the joints,
limitations in joint mobility, scoliosis, bone shortening, leg-
length discrepancy, gait disturbances, pain, loss of function, and
pathological fractures (51).

Etiopathology
Mutations in the IDH1 or IDH2 genes have been detected in a
large number of adult diffuse grade II and grade III gliomas; such
high frequency has suggested a possible role for those variants
as the earliest oncogenic event in these malignancies (52). It has
been proven that pathogenic variants in these two genes cause an
abnormal production of 2-hydroxyglutarate (2-HG), a structural
analog of alpha-ketoglutarate, a key intermediate of the Krebs
cycle. 2-HG competitively inhibits the active sites of multiple
alpha-ketoglutarate enzymes, resulting in hypermethylation of
histones and DNA, altered cell differentiation, and activation
of a series of downstream enzymes (53, 54). Some of these

enzymes are involved in the degradation of HIF-1 (hypoxia-
induced factor 1), a key player in the cellular adaptation to
low oxygen and nutrient-deprived environment and in the
progression to malignancy in human solid cancers, and in
the overexpression of platelet-derived growth factor receptor
A (PDGFRA), implicated in the pathogenesis of leukemias,
lymphomas, gastrointestinal stromal tumors, and various types
of brain tumors (53–55).

Clinical and Therapeutic Considerations
The clinical management of individuals with OD and MS
is mostly focused on treating via surgery the complications
arising from the enchondromas, such as fractures, growth
defects, and tumors. The prevailing strategy aims to treat
and remove any extraneous bone tissue preserving the limb
function (51). Although gliomas are not the most frequent
types of malignancies reported in OD and MS, imaging
surveillance is recommended. The gliomas described in
these conditions are similar to the ones caused by sporadic
variants in IDH1 or IDH2 for their frequent location in
the frontal lobe and their prevalent histological type: more
commonly diffuse low-grade or anaplastic gliomas than
glioblastomas (53). However, they present some substantial
differences as compared to the sporadic forms: they are
diagnosed at an earlier age and involve more frequently the
brainstem, hinting toward an earlier origin of gliomas associated
with enchondromatosis.

OTHER SYNDROMES AND pHGG

Some less-known syndromes have been associated with pHGG
with lower frequency than the afore-mentioned syndromes.

One of those is the Familial Melanoma Astrocytoma
Syndrome (56, 57). It is caused by germline inactivating deletion
of the CDKN2A tumor suppressor gene. Affected individuals
have a predisposition to develop melanoma and CNS tumors,
most commonly astrocytoma.

Since familial predisposition to glioma has been consistently
observed within non-syndromic families, an international
consortium named GLIOGENE was formed in order to collect
such non-syndromic glioma families, and possibly identify
new genes involved in the pathogenesis of these tumors.
One of the genomic regions identified by the consortium
lies in chromosome 17q. According to these linkage studies
the MYO19 and KIF18B genes and rare variants in SPAG9
and RUNDC1 have been identified as candidates worthy
of further investigation (58). Also, whole exome sequencing
allowed the identification of mutations in POT1 (p.G95C,
p.E450X), a member of the telomere shelterin complex
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(59). These new findings may not only have a leading
role in identifying new pathogenic pathways in gliomas
but may also contribute to improve targeted treatment of
this disease.

Mutations in BRCA1 and BRCA2, tumor suppressor genes
involved in DNA repair, have been traditionally associated with
an increased risk of breast and ovarian cancer. More recently,
they have been recognized to also play a role in CNS tumors (60).
In particular, germline variants of BRCA2 which is also essential
for normal neurogenesis (61) have been described in individuals
with brain tumors including glial tumors, meningioma and
medulloblastoma (62–64).

There have been some anecdotal reports of pHGG in other
syndromes (65), such as tuberous sclerosis (66), Beckwith-
Wiedemann and Fanconi Anemia (67). However, these case
reports do not prove a real increased risk for pHGG.

MOLECULAR DIAGNOSTICS OF CPSs

Genetic testing in pediatric oncology is of great interest for
the investigation into potentially underlying CPSs. Molecular
diagnosis of a CPS can influence cancer surveillance program
initiation or frequency, and directly impact treatment decisions.
Genetic diagnostic laboratories have introduced next-generation
sequencing (NGS) technologies into their practices. NGS
has specific advantages over traditional Sanger sequencing,
considered the gold standard for mutation analysis for many
years, as multiple genes in several patients can be tested
simultaneously. Different approaches are being used, and
currently, most laboratories that use these technologies are
performing targeted gene panel testing or clinical whole exome
sequencing (WES), more rarely whole genome sequencing
(WGS). These revolutionary technological advances have
drastically reduced sequencing costs and shortened the
turnaround time, increasing the detection rate (68). Multi-
gene panels usually include high and moderate penetrance
genes, and sometimes, some low or unknown risk genes,
that offer the advantage of identifying germline pathogenic
variants in genes that would not normally be tested based on
the patient’s diagnosis (69). Unfortunately, depending on the
disease, between 70 and 92% of the patients remain mutation-
negative or undiagnosed after gene-panel testing (70). It is
possible that variants in genes not included in these panels
contribute to the cancer risk and WES or WGS can explore
the genetic basis of familial syndromes in a more extensive
way, permitting to identify new high- and moderate-risk cancer
predisposition genes. WES of parent-child trios has become
a widely used strategy to identify presumably pathogenetic
genetic variants in children with rare diseases. However, it
has not yet been routinely implemented in pediatric oncology,
with few exceptions (71). Genome-wide approaches generate
huge amounts of genetic data and it remains challenging
to interpret the identified variants. Such data interpretation
needs close collaboration among bioinformaticians, molecular
geneticists and clinicians. However, as sequencing costs are
decreasing and computer and technological resources are

expanding, genome-wide analysis will become more common
in the clinical practice and hopefully help to advance on the
path of personalized medicine, by providing more precise
genetic diagnoses and better molecular information for more
effective treatments.

DNA METHYLATION PROFILING

Recently, a machine learning approach for classification of
CNS tumors based on the analysis of global DNA methylation
profiling has been developed and introduced to reach a
histopathological-molecular integrated diagnosis, discriminating
tumor classes and ameliorating diagnostic precision (72, 73). In
detail, the developed “Classifer” provides a methylation-based
classification assigning a subgroup score for an index tumor
compared to 91 different brain tumor entities. Furthermore,
it also provides a chromosomal copy-number variation
(CNV) analysis.

Interestingly, Capper and colleagues found that a high
proportion of unclassifiable CNS tumors were associated with
various hereditary tumor syndromes, and/or diagnosed in
childhood (73). Additional chromothripsis and unusual complex
chromosomal changes should also be considered as a cue for
Li–Fraumeni syndrome-associated tumors.

CONCLUSIONS

Pediatric HGG cancer predisposition syndromes are rare and
diverse pathological conditions that may be present in children
with CNS tumors and deserve consideration.

Knowing when to suspect one of these predisposing
syndromes is essential for the pediatric oncologist,
not only to make the correct diagnosis, but also to
formulate a more accurate prognostic judgment and
provide an adequate treatment. Moreover, it is mandatory
to refer the family for genetic counseling when such
conditions are suspected. This latter aspect is of particular
relevance since it has been demonstrated that close
surveillance can decrease the morbidity and mortality in
these patients.

The ever-growing knowledge of the genetic mechanisms
underlying cancer is a key tool in the understanding of this
disease, opening new scenarios for the introduction of molecular
target therapy.

Since these conditions are extremely rare, several patients’
associations have been created to help families find the nearest
structure for follow-up and to raise funds and consciousness for
these diseases.
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Lateralized overgrowth (LO), or segmental overgrowth, is defined as an increase in

growth of tissue (bone, muscle, connective tissue, vasculature, etc.) in any region of the

body. Some overgrowth syndromes, characterized by both generalized and lateralized

overgrowth, have been associated with an increased risk of tumor development.

This may be due to the underlying genetic and epigenetic defects that lead to

disrupted cell growth and proliferation pathways resulting in the overgrowth and tumor

phenotypes. This chapter focuses on the four most common syndromes characterized

by LO: Beckwith-Wiedemann spectrum (BWSp), PIK3CA-related overgrowth spectrum

(PROS), Proteus syndrome (PS), and PTEN hamartoma tumor syndrome (PHTS). These

syndromes demonstrate variable risks for tumor development in patients affected by

LO, and we provide a comprehensive literature review of all common tumors reported in

patients diagnosed with an LO-related disorder. This review summarizes the current data

on tumor risk among these disorders and their associated tumor screening guidelines.

Furthermore, this chapter highlights the importance of an accurate diagnosis when a

patient presents with LO as similar phenotypes are associated with different tumor risks,

thereby altering preventative screening protocols.

Keywords: lateralized overgrowth, hemihypertrophy, hemihyperplasia, Beckwith-Wiedemann spectrum,

Beckwith-Wiedemann syndrome (BWS), PIK3CA-related overgrowth spectrum (PROS), Proteus syndrome (PS),

PTEN hamartoma tumor syndrome

INTRODUCTION

Lateralized overgrowth (LO) is defined as any type of segmental overgrowth (1) (Figure 1). The
nomenclature was developed to classify patients who were previously described with overgrowth
due to both hyperplasia (OMIM 235000), a proliferation of cells, and hypertrophy (OMIM 235000),
an increase in cell size. The overgrowth defined by LO is not specific to the type of tissue affected
and can include skeletal, muscular, adipose, and/or vascular tissues. Some patients present with
isolated LO, in which patients are primarily affected by LO. Overgrowth of organs is not required
for the designation of LO, but it can be present and typically occurs in patients with overgrowth
syndromes associated with LO.
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FIGURE 1 | Legs of patients with lateralized overgrowth. (A) 12-month old

patient with Beckwith-Wiedemann syndrome. (B) 3-month old patient with

Beckwith-Wiedemann syndrome. (C) 9-month old patient with

Beckwith-Wiedemann syndrome. (D) 6-month old patient with PIK3CA-related

overgrowth spectrum.

Patients with isolated lateralized overgrowth (ILO), those
affected by LO but lacking other features and patterns of
malformations, dysplasia, and morphologic variants, have been
reported to have an increased development of tumors, primarily
the embryonal tumors Wilms tumor (WT) and hepatoblastoma
(HB) (2, 3), similar to the most common tumor types observed
among patients affected by LO and overgrowth disorders (4).
A prior study of patients with isolated hemihypertrophy, now
referred to as ILO, reported 9 out of 168 developing a tumor (5)
and two cases of HB in patients with isolated hemihyperplasia,
now also termed ILO (6). Retrospectively, it is likely that many
of these patients could be classified with an overgrowth or cancer
predisposition syndrome.

There are several genetic and epigenetic syndromes associated
with LO and ILO. These molecular changes may influence the
tissue type, location of the observed overgrowth, and associated
tumor risk in patients. In this chapter, we review the clinical
characteristics of the most common genetic and epigenetic
syndromes associated with LO. We focus on tumor development
and risks associated within each syndrome and summarize
current screening recommendations.

Common considerations for all suspected LO-related
overgrowth disorder include the underlying molecular cause and
appropriateness for tumor surveillance.

Molecular Considerations
The underlying mechanisms for the disorders described are
complex and beyond the focus of this review. A brief description

of the currently understood mechanisms for each disorder
is summarized and includes both genetic and epigenetic
mechanisms. One consideration for molecular investigation for
these disorders is that some defects can present as mosaic, in
which the proportion of normal cells to cells with the molecular
change varies in any given tissue, leading to patients with somatic
molecular defects. This means that positive molecular detection
may only be found in affected tissue(s), whereas blood sample
analyses may yield negative results. Other patients affected
by LO and overgrowth have the molecular defect change(s)
detectable in blood samples (constitutional defects), with some
patients affected by changes that are inheritable or considered
germline defects.

Tumor Risk and Screening
Specific recommendations and implementation of tumor
surveillance protocols are determined by the risk of tumor
development in a particular syndrome, the uniformity of the
tumors that develop (i.e., can they be screened for in a non-
invasive manner), and the health care environment in which
the screening is occurring (i.e., the threshold of acceptable risk)
(4). In some syndromes with an established tumor risk, tumor
screening has been demonstrated to detect tumors at an early
age. For example, in Beckwith-Wiedemann spectrum (BWSp),
patients who underwent ultrasonographic screening had on
average earlier tumor stages at diagnosis than those who did
not undergo screening (7). Diagnosing tumors in their earlier
stages may allow for less invasive treatment and the prevention
of possible metastasis.

Here, we review the most common syndromes characterized
by LO: BWSp (OMIM 130650), PIK3CA-related overgrowth
spectrum (PROS), Proteus syndrome (PS) (OMIM 176920),
and PTEN hamartoma tumor syndrome (PHTS). Tumor
development in these four syndromes is variable and
discussed below.

BECKWITH-WIEDEMANN SPECTRUM

(OMIM 130650)

Overview
BWSp is the most common and well-characterized overgrowth
and cancer predisposition disorder and is caused by a variety of
molecular defects in the chromosome 11p15 region. The disorder
is estimated to affect 1 in 10,340 live births and disproportionately
affects patients conceived by assisted reproduction techniques,
estimated to affect 1 in 1,100 live births (8, 9). The clinical
manifestations and subsequent phenotype of patients with
BWSp can be highly variable, leading to the reclassification
of the disorder from a syndrome [Beckwith-Wiedemann
syndrome (BWS)] to a spectrum [BW spectrum (BWSp)] by
an international consensus group (10). The consensus group
created a clinical scoring system to guide molecular and clinical
diagnosis. They classified features as those classically associated
with the disorder (cardinal features) and features associated with
the disorder but that can also occur in the general population
(suggestive features). This scoring system was implemented to
determine if genetic testing is necessary (10). Cardinal features
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include macroglossia, omphalocele, muscular LO, bilateral WT,
hyperinsulinism, adrenal cytomegaly, pancreatic adenomatosis,
and placental mesenchymal dysplasia, and suggestive features
include macrosomia, facial nevus simplex, polyhydramnios or
placentomegaly, ear creases or pits, transient hypoglycemia,
embryonal tumors, nephromegaly and/or hepatomegaly, and
umbilical hernia or diastasis recti. Each cardinal feature receives
two points, and each suggestive feature receives one point. A
total clinical score greater or equal to 2 indicates the need for
genetic testing for BWSp. A clinical score greater or equal to
4 (typically including at least one cardinal feature) is sufficient
for a clinical diagnosis of BWSp even if no molecular defect
on chromosome 11p15 is identified. Genetic testing is also
recommended for patients with a family history of BWSp caused
by a heritable alteration.

Molecular Considerations
BWSp is caused by a variety of genetic and epigenetic alterations
in the BWS critical region on chromosome 11p15.5 (10). The
BWS critical region contains two imprinted regions, which
control the normal regulation of fetal and postnatal growth genes
through a process called methylation. The majority of patients
are affected by abnormal methylation in the imprinting control 1
(IC1) and/or imprinting control 2 (IC2) regions, with the most
common cause being loss of methylation at KCNQ1OT1:TSS
DMR (IC2 LOM) (∼50% of patients) (10). Other causes of
BWSp include paternal uniparental isodisomy of chromosome
11p15 (pUPD11), gain ofmethylation at H19/IGF2:IGDMR (IC1
GOM), mutations of CDKN1C, and other genetic aberrations
including deletions, duplications, and translocations that affect
chromosome 11p15 (10).

Tumor Risk in BWSp
The risk for WT, HB, and neuroblastoma in BWSp is well
documented (11–18). A patient’s tumor risk varies based on
the molecular etiology of BWSp. According to the recent
international consensus for BWSp, for patients with IC1 GOM,
the overall risk of tumor development is 28%, and the risk for
WT is 24%. For patients with IC2 LOM, the overall tumor risk is
2.5%. For patients with pUPD11, the overall tumor risk is 16%.
The risk for developing a WT is 8%, and the risk for developing
a HB is 3.5%. Screening guidelines are constantly evolving
based on ongoing research on this topic and are dependent on
geographical location and cultural context of clinical practice.
The European guidelines include abdominal ultrasounds every 3
months until the age of 7 years for patients with BWSp due to IC1
GOM, pUPD11, CDKN1C mutations, and other chromosome
aberrations of the BWS region (10). The United States guidelines
developed by the American Association for Cancer Research
(AACR) Childhood PredispositionWorkshop include abdominal
ultrasounds and alpha-fetoprotein (AFP) screening every 3
months until the 4th birthday and renal ultrasounds every
3 months from the 4th to the 7th birthday for all patients
with BWSp (4). In addition, patients with CDKN1C mutations,
those at the highest risk for developing a neuroblastoma among
patients with BWSp, should receive urine vanillylmandelic acid
(VMA), homovanillic acid (HVA), and chest X-rays screening

every 3 months until the 6th birthday and every 6 months
from the 6th to the 10th birthday (10). Patients with BWSp
caused by genome-wide paternal isodisomy (GWpUPD) have
been reported to have additional tumors and beyond these
screening windows. Patients with this molecular subtype should
be monitored closely (10, 19).

PIK3CA-RELATED OVERGROWTH

SPECTRUM

Overview
The phenotypic variety and overlap of individual syndromes
caused by PIK3CA mutations prompted the establishment of
the term PROS (20). The specific overgrown tissue observed in
patients with PROS is typically adipose or vascular; however,
muscular and skeletal overgrowth has also been observed
(20). Other common clinical characteristics include epidermal
nevus, macrodactyly, hemimegalencephaly (HMEG), seborrheic
keratoses, and benign lichenoid keratoses (20). To determine the
eligibility for genetic testing, clinical characteristics are divided
into two categories: category A, which includes a spectrum
of overgrowth, vascular malformations, and epidermal nevus
phenotypes, and category B, which includes isolated features,
such as lymphatic malformations or macrodactyly. Genetic
testing is warranted if a patient presents with two or more
features from category A, or one feature from category B, that
was/were congenital or developed during early childhood.

A diagnosis of PROS is confirmed with a pathogenic variant
found in the PIK3CA gene; however, if a mutation is not detected,
the patient retains a clinical diagnosis of PROS if the clinical
criteria are met (20, 21). In patients affected by clinical diagnoses
of PROS, it is likely that the negative genetic result(s) observed
are due to the somatic and thereforemosaic nature of the PIK3CA
mutation leading to the phenotype, which may be difficult to
detect from a single sample (such as blood).

Molecular Considerations
PIK3CA is a protein coding gene for p110α that is the α subunit
of a collection of catalytic subunits for phosphatidylinositol 3-
kinase (PI3K) (22). This protein is important for regulating
signals for cell proliferation and survival. Mutations in PIK3CA
have been identified as the driver for many cancers in
asymptomatic patients (those without phenotypes related to
PIK3CA abnormalities), with common cancer types including
breast (>30%), endometrial (>30%), bladder (>20%), colorectal
carcinoma (>17%), and head and neck squamous cell carcinoma
(>15%) (23).

PIK3CA mutations have also been identified in patients with
the following syndromes: fibroadipose overgrowth (FAO) (24),
congenital lipomatous overgrowth, vascular malformations,
epidermal nevi, scoliosis/skeletal and spinal (CLOVES)
syndrome (25, 26), megalencephaly-capillary malformation
(MCAP) syndrome (27), Klippel-Trenaunay syndrome (KTS)
(26, 28), and HMEG (29). Typically, PIK3CA mutations
occur post-fertilization (somatic mutations), but there have
been germline PIK3CA mutations reported (30, 31). Allelic
heterogeneity in PROS (and other overgrowth disorders) and
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the overlap of common variants in the genes responsible may
influence cancer predisposition, but further study is required.

Tumor Risk in PROS
Tumor risk and surveillance for patients with PROS is currently
debated. Gripp et al. suggested similar screening guidelines
for patients affected by PROS to the guidelines for patients
affected by ILO or BWS, which includes abdominal ultrasounds
until the 7th birthday (32). Peterman et al. suggest sonographic
screening for patients with CLOVES, MCAP, and diffuse
capillary malformations only if LO is present (33, 34). To our
knowledge, there have been 12 patients with PROS reported with
malignant or potentially malignant renal findings [includingWT,
nephrogenic rests (NR), and indeterminate WT/NR findings].
NR and nephroblastomatosis (NBL) are capable of transforming
into WT, but they are not tumors themselves (35, 36). Among
the PROS patients with renal findings, eight patients with
findings reported had a molecularly confirmed PROS diagnosis:
four reported with WT development, two with reported
indeterminateWT/NR findings, and two with NR (26, 28, 32, 37–
40). Four additional patients with renal findings and without
molecular PROS confirmation have also been reported (41–
44). Postema et al. estimated the tumor risk between 1 and
2%, suggesting that under European standards, screening is not
warranted (39); however, at that risk level by US guidelines,
screening would be warranted (4).

As the focus of this review is to discuss common syndromes
associated with LO and tumor screening guidelines, determining
the true WT risk in PROS is beyond the scope of this chapter. A
meta-analysis of PROS patients andWTdevelopment is currently
being performed and will be reported separately in the literature
once completed. Based on the current literature, the risk depends
on how the reported cases are classified (for example, true WT
vs. those with indeterminant malignant potential, such as NBL
and NR). The tumor risk in the PROS population appears to
be slightly less than what Postema et al. reported (∼1–2%),
and therefore it is unclear whether screening is warranted. The
AACR tumor screening guidelines suggest screening when the
risk of developing cancer is 1% or greater (4). It is suspected
that the total patients with PIK3CAmutations currently classified
may be higher than reports suggest (due to difficult detection of
low levels of mosaicism). If this is true, the number of patients
affected by PROS with tumors and the associated tumor risk for
this disorder are likely well below the 1% threshold to warrant
screening. Additionally, through our experience and discussions
with colleagues, we are aware of many unreported patients with
molecularly confirmed PROS who have not developed a WT
or NR. We suspect that it is likely that the overall risk falls
below 1%, indicating that screening is not warranted. It is also
possible there are more patients with PROS and NR that have
not been reported, as the NR did not progress to NBL or WT
requiring treatment. There is a clear need for further publication
of known cases and collaboration among institutions, so the
denominator of patients with PROS can be further adjusted to
understand true WT risk in this population. In terms of current
recommendations, tumor screening should be performed at the
discretion of the provider based on the genetic change and

clinical features of the PROS presentation, as well as the family
perspective.

In addition to WT and NR, there are four case reports of
patients with PROS who developed other cancers including
leukemia, vestibular schwannoma, retinoblastoma, and a
meningioma (45–47); however, these do not suggest a specific
predisposition or warrant surveillance.

Additional Considerations
Studies on cell-free DNA of urine of patients with PROS
found PIK3CA mutations in urine samples of patients who
developed renal abnormalities, but not in patients with PROS
who did not have a history of kidney irregularities (48, 49).
As a result, it has been suggested that urine may be useful in
detecting PIK3CA mutations, and those patients with positive
results in urine may represent an increased risk for WT
development (48). There may be other specific circumstances
that could increase tumor risk, such as known PIK3CA-related
changes in proximity to the kidneys or patients affected by
specific germline or somatic mutations, but further study using
larger cohorts is needed to better understand mechanisms and
individual risk.

PROTEUS SYNDROME (OMIM 176920)

Overview
PS is caused by postzygotic de novo activating mutations
in AKT1 (50). Clinical features of the syndrome include
asymmetric skeletal growth, connective tissue nevi, epidermal
nevi, vascular malformations, and dysregulated adipose
tissue (lipomas, lipohyperplasia, fatty overgrowth, and partial
lipohyperplasia) (51). Overlapping disorders, such as CLOVES,
under the umbrella of PROS prompted the creation of a new
diagnostic scoring system for PS (52). Five points are attributed
for cerebriform connective tissue nevus, disproportionate
overgrowth, and organ/visceral overgrowth. Two points
are attributed for bullae or cysts of the lungs, dysregulated
adipose tissue, linear verrucous epidermal nevus, vascular
malformations, deep vein thrombosis/pulmonary embolism, and
certain facial features, such as dolichocephaly and a low nasal
bridge. Single points are attributed for specific tumors including
genital cystadenomas, parotid monomorphic adenoma, and
meningiomas (52). Points are subtracted for features, such as
substantial prenatal extracranial overgrowth and ballooning
overgrowth (52).

A diagnosis is confirmed if a patient has a score of 15 or more
regardless of the presence of an AKT1 variant. A patient with
10 or more points with an identified mosaic AKT1 variant is
considered to have PS. Those with scores between 2 and 9 points
with an AKT1 variant are considered to have AKT1-related
overgrowth spectrum (AROS) (52).

Molecular Considerations
The AKT1 gene located on chromosome 14q.32.33 is involved
in the mTOR pathway that is responsible for regulating cell
proliferation and survival (50). Patients with PS have a somatic,
activating mutation in this gene that causes the observed
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FIGURE 2 | Differential diagnosis flowchart of lateralized overgrowth.

abnormal growth. This mutation is not found in blood cells, and
therefore a biopsy of the affected skin or tissue is required for a
molecular diagnosis.

Tumor Risk in PS
There are currently no tumor screening guidelines for patients
with PS. However, a variety of benign andmalignant tumors have
been reported. Common neoplasms in patients with PS include
lipomas, hamartomas, and vascular malformations (53). There
have been multiple reports of patients with PS who developed
genital cysts as well as meningiomas (52–55). Other case reports
of benign tumors include an optic nerve tumor, pinealoma,
monomorphic parotid adenoma, intraductal papilloma, goiter,
leiomyomas, papillary adenoma of appendix testis, papillary
adenoma of kidney, and epibulbar tumor (53, 54, 56–58).
Malignant tumors in patients with PS have also been reported.
They include papillary thyroid carcinoma, mesothelioma of
tunica vaginalis and peritoneal surface, intraductal carcinoma
of the breast, endometrial cancer, ovarian carcinoma, and
paratesticular ovarian-type papillary serous carcinoma (53, 54,
59–64).

Early mortality in patients with PS is high yet does
not appear to be related to the development of cancer
(65), as pulmonary embolisms, postoperative embolisms, and
pneumonia are responsible for mortality in 20% of patients with
PS (51). It is possible that tumor risk is higher in this population,
especially benign tumors, but due to the high mortality, an
increased tumor risk is not observed.

PTEN HAMARTOMA TUMOR SYNDROME

Overview
PHTS is the umbrella term for genetic syndromes caused
by germline PTEN mutations. Common clinical features
of pediatric patients with PHTS include macrocephaly,
hamartomas, lipomas, cardiac defects, and autism (66). LO
is due to adipose and vascular anomalies. Major and minor
criteria were implemented to aid in diagnosis. Major criteria
include the presence of macrocephaly, macular pigmentation of
the glans penis, and multiple mucocutaneous lesions, and minor
criteria include autism, lipomas, and vascular malformations
(66, 67).

Molecular Considerations
PTEN is a tumor suppressor gene on chromosome 10q23
and is also involved in the mTOR signaling pathway (68).
Germline mutations of PTEN cause PHTS and have been
identified in patients with Cowden syndrome and Bannayan–
Riley–Ruvalcaba syndrome (69). There have also been case
reports of patients with an initial clinical diagnosis of PS, but a
PTEN mutation was identified, leading to the term Proteus-like
syndrome (70–72).

Tumor Risk in PHTS
The tumor risk in patients with PHTS is well-documented
although the syndrome is not typically associated with early
childhood cancer risks. Tumors tend to develop in females more
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TABLE 1 | Summary of tumor risks in genetic and epigenetic syndromes with lateralized overgrowth.

Genetic cause Type of

overgrowth

Malignant tumors Tumor risk Childhood surveillance

recommendation(s)

PROS PIK3CA mutations* Adipose, vascular Wilms tumor ∼1% None (to be determined)

BWSp Genetic and epigenetic

alterations on

chromosome 11p15.5

Muscular Wilms tumor

Hepatoblastoma

(Neuroblastoma)

0.2–24%

0–3.5%

0.5–4.2%

Abdominal ultrasound and

AFP screening every 3

months until the 4th

birthday and renal

ultrasounds from the 4th

until the 7th birthday

PS AKT1 mutations Skeletal, adipose,

vascular

None Unknown None

PHTS PTEN mutations Adipose, vascular Breast

Thyroid

Endometrium

Melanoma

Kidney

Colorectal

25–50%

3–17%

9–27%

1–6%

4–16%

3–13%

Annual thyroid ultrasounds

beginning at the time of

diagnosis

*Majority are somatic mutations, but there have been case reports of patients with germline PIK3CA mutations.

than males. The cumulative cancer risk by age 50 for females is
81% and for males is 48% (73).

Malignant tumors commonly observed in patients with PHTS
include breast (25–50%), thyroid (3–17%), endometrium (9–
27%), melanoma (1–6%), renal (4–16%), and colorectal cancers
(3–13%) (73–82). Lhermitte-Duclos disease (LDD) also known
as gangliocytoma of the cerebellum is common to develop late in
life in patients with germline PTEN mutations (83, 84). Common
benign tumors including hamartomas and lipomas can develop
in patients at any age and require attention (evaluation and
work-up) because of secondary complications that can arise.

There is no international consensus for tumor screening
protocols in PHTS. In pediatric patients with PHTS, annual
thyroid ultrasounds for thyroid cancer surveillance are
recommended although the age to initiate surveillance is
debated. The National Comprehensive Cancer Network (NCCN)
guidelines for pediatric patients with PHTS include annual
thyroid ultrasounds at the time of diagnosis, but Schultz et al.
suggest starting ultrasounds at age 7 since the youngest reported
case of thyroid cancer in a patient with PHTS was 7 years old
(85, 86). In adult patients, colorectal screening beginning at
age 40 is recommended (87), and the NCCN guidelines outline
additional cancer surveillance recommendations in adults
with PHTS.

DISCUSSION

Narrowing the differential diagnosis and attaining confirmatory
molecular testing results are critical for patient care management
related to LO (Figure 2). The most common disorders and
syndromes leading to LO have many overlapping clinical
characteristics, making genetic testing useful for determining the
underlying mechanism for the observed phenotype. For instance,
PHTS is caused by a germline mutation (i.e., the genetic defect is
present in every cell of the body), whereas PROS is mostly due
to somatic alterations of the PIK3CA gene, leading to a mosaic
distribution of the genetic defect throughout the body (i.e., some

positive and negative cells). It is suspected that certain regions
of the body are more likely to develop tumors if that region
contains the genetic defect. If the genetic defect is widespread as
it is in germline mutations and constitutional defects, it is logical
that the tumor risks may be higher; however, further research is
needed to explore this hypothesis.

From this review, it is evident that there are drastic differences
in tumor risks for patients with syndromic LO, some of which
warrant childhood tumor surveillance programs and others that
do not seem to contribute an increased tumor risk as part of
the phenotype (Table 1). It is therefore of utmost importance
to correctly diagnose these patients, so they can receive proper
screenings and care. Patients with ILO due to increased muscle
bulk but without an identifiable genetic cause are now included
under the BWSp umbrella and should undergo routine screening
like other patients with BWS (17). Given that the guidelines
are still being developed for PROS, a discussion with the family
about the risk is recommended. In LO disorders with increased
tumor risks, the effectiveness of tumor screening goes beyond
diagnosing tumors at earlier stages. One study found that parents
of patients with elevated tumor risks prefer screening because
when educated about their child’s risk, it reduced their worry and
psychological stress (88).

Overall, syndromes involving LO are heterogenous both
within a given syndrome and between syndromes. As a result,
tumor risk across the spectrum of LO disorders varies greatly
due to the underlying cause of the syndrome, as well as
personal tumor risk due to specific abnormalities present.
Therefore, following diagnostic criteria to diagnosis, each patient
will aid in assessing his/her individualized tumor risk and
screening program.
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Giada Del Baldo1, Antonella Cacchione1, Emanuele Agolini4, Martina Rinelli 4,
Annalisa Serra1, Andrea Carai5 and Angela Mastronuzzi1
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Behavioral, Social and Health Sciences, Clemson University, Clemson, SC, United States, 4 Laboratory of Medical Genetics,
Bambino Gesù Children Hospital (IRCCS), Rome, Italy, 5 Department of Neuroscience, Bambino Gesù Children Hospital
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DICER1 syndrome is a rare genetic condition predisposing to hereditary cancer and
caused by variants in the DICER1 gene. The risk to present a neoplasm before the age of
10 years is 5.3 and 31.5% before the age of 60. DICER1 variants have been associated
with a syndrome involving familial pleuropulmonary blastoma (PPB), a rare malignant
tumor of the lung, which occurs primarily in children under the age of 6 years and
represents the most common life-threatening manifestation of DICER1 syndrome. Type I,
II, III, and Ir (type I regressed) PPB are reported with a 5-year overall survival ranging from
53 to 100% (for type Ir). DICER1 gene should be screened in all patients with PPB and
considered in other tumors mainly in thyroid neoplasms (multinodular goiter, thyroid
cancer, adenomas), ovarian tumors (Sertoli-Leydig cell tumor, sarcoma, and
gynandroblastoma), and cystic nephroma. A prompt identification of this syndrome is
necessary to plan a correct follow-up and screening during lifetime.

Keywords: DICER1, cancer predisposition, pediatric, PPB, cystic nephroma
INTRODUCTION

DICER1 syndrome is a cancer-predisposing disorder caused by pathogenic variants in the DICER1
gene (OMIM 606241), which are known to confer a lifetime risks for a variety of neoplastic and
dysplastic lesions (1).

GermlineDICER1 variants have beendetected in individuals affectedwith familial pleuropulmonary
blastoma (PPB) (2–5), a raremalignant tumor of the lung, which occurs primarily in children under the
age of 6 years (6). The International PPB Registry collected data from PPB patients and their families,
reporting a variety of tumors in individualswithPPBand/or their relatives (6).A studyon207carriers of
DICER1 pathogenic variants reported that the risk to develop a neoplasm is 5.3% before the age of 10
years and of 31.5% before the age of 60, while in the American general population is estimated to be
respectively0.17 and6.57%(1, 7).DICER1syndromeoccurs in childrenandyoungadults and its clinical
presentation may include, beyond PPB, cystic nephroma, ovarian Sertoli-Leydig cell tumor (SLCT),
January 2021 | Volume 10 | Article 6145411108

https://www.frontiersin.org/articles/10.3389/fonc.2020.614541/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.614541/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.614541/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:annamaria.caroleo@opbg.net
https://doi.org/10.3389/fonc.2020.614541
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.614541
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.614541&domain=pdf&date_stamp=2021-01-21


Caroleo et al. DICER1 Syndrome and Cancer Predisposition
multinodular goiter, cervix embryonal rhabdomyosarcoma,Wilms’
tumor, nasal chondromesenchymal hamartoma, ciliary body
medulloepithelioma, differentiated thyroid carcinoma, pituitary
blastoma, pineoblastoma, and sarcomas of different sites
including, amongst others, the uterine cervix, kidney, and brain (8).

This syndrome shows an autosomal dominant inheritance
pattern with reduced penetrance, which likely decreases the rate
of familial cases. In cases with PPB, about 80% of the DICER1
germline pathogenic variants are inherited by a parent and nearly
20% are de novo (9).

This paper aims to review the clinical and genetic features of
DICER1 syndrome, with particular focus on the description of
the different types of cancer reported in this syndrome, grouped
by systems.
DICER1 SYNDROME GENETICS

The DICER1 gene, located on chromosome 14q32.13, encodes an
RNA endonuclease (Dicer) that is involved in the post-
transcriptional gene expression of over 30% of protein-coding
genes by modulating microRNAs (miRNAs) (10, 11).

miRNAs are transcribed as pri-miRNAs, that are longer
precursor, which are elaborated into pre-miRNAs in the
nucleus. The pre-miRNAs, transported to the cytoplasm, are
processed by Dicer to give a ∼21-bp RNA duplex intermediate.
One strand of this RNA is incorporated into the RNA-induced
silencing complex (RISC), and matched to complementary
mRNA targets to regulate gene expression, inhibiting mRNA
degradation (12).

In most syndrome’s neoplasms a biallelic pathogenic variant
in DICER1 has been detected: usually a germline loss-of-function
pathogenic variant in one allele and a tumor-specific somatic
hotspot variant in the second allele. Several studies have shown
that “monoallelic DICER1 inactivation promotes tumorigenesis,
whereas biallelic loss is inhibitory, and although inactivation of
one DICER1 allele is the initiating event in DICER1 syndrome”,
leading “to dysregulation of miRNA levels, other events must be
required for cancer to occur ” (13, 14). Only one third of DICER1
carriers present a neoplasm during the life, hinting that multiple
additional events are required (13, 14).

This process suggests a predominant haploinsufficient tumor-
suppressor function, where one copy of Dicer, albeit mutated, is
functioning, rather than a more classical “two-hit” tumor
suppressor model, which has been described in association
with earlier diagnosis of DICER1-related conditions, where no
function of the oncosuppressor gene is preserved (5, 15, 16).

Complete loss of Dicer is incompatible with life (4, 17, 18),
while somatic mosaic mutations in the RNase IIIb domain have
been associated with a more serious form of DICER1 syndrome,
named GLOW syndrome from Global developmental delay,
Lung cysts, Overgrowth, and Wilms tumor (19). Functional
evidence links the hotspot mutations in the RNAse IIIb
domain to specific dysregulation of certain miRNAs leading to
activation of the PI3K/AKT/mTOR pathway (20). This
mechanistic link to the PI3K/AKT/mTOR pathway may
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explain the fact that GLOW syndrome shares some clinical
features with other conditions characterized by somatic gain-
of-function mutations of genes of this pathway, such as lung
cysts, reported in Proteus syndrome, and segmental overgrowth,
a prominent feature of PROS (21).

The recurrent involvement of specific organs (lungs, thyroid,
kidneys, ovaries) in presence of DICER1 alterations may lead to
infer that the effects of miRNAs on gene expression are tissue-
specific (19). Nonetheless, the penetrance of each of the DICER1-
associated neoplasms in inherited conditions is not fully
understood. Individuals carrying germline loss-of-function
mutations may present clinical features in few sites (0–2) of
their body, while patients with mosaic “hotspot” mutations are
more prone to manifestations in multiple site (6).
CLINICAL FEATURES OF TUMORS
COMMONLY ASSOCIATED WITH
DICER1 VARIANTS

Different tumors are related to DICER1 syndrome as reported by
Foulkes et al. and by Stewart et al. In Figure 1 we resumed the
principal neoplasms according to the age of onset.

Foulkes et al. in 2014 described the DICER1-associated
features and their characteristics, as reported in Table 1 (5).

Stewart et al. recently published the first quantitative analysis
of site-specific neoplasm risk, analyzing the standardized
incidence ratios of 207 individuals carrying DICER1 variants,
selected combining data from three large cohorts of patients. The
most remarkable rates were noted in PPB, in gynecologic tumors,
especially SLCTs and rhabdomyosarcoma, and in cystic
nephroma (1).

Lung
Pleuropulmonary Blastoma
PPB is a rare tumor that develops during fetal life/infancy and
constitutes the most common life-threatening manifestation of
DICER1 syndrome (22). Type I PPB is typically a purely cystic
mass occurring before age of 2 years, with a 5-year overall survival
(OS) of 89% if it does not progress to type II or III PPB. Type II is a
solid-cystic tumor while type III is purely solid; both types present
from approximately 2 to 6 years of age and aremalignant, although
type III is generally more aggressive. If treated with chemotherapy
and radiotherapy, OS rates may reach up to 74% in type II and 53%
in type III. The fourth type, named type Ir, as “type I regressed”, is a
cystic tumor lacking malignant cells and is supposed to represent
regressed/non-progressed type I PPB. OS for this type of PPB is
100%. Cystic PPB is reported to be common in carriers ofDICER1
variants, and only a limited number of cases had a type II II or III
PPB progression (1).

The PPB begins as a cystic lung lesion, also defined as a Type
I PPB, a well-defined pathology entity with a potential
evolution in a more aggressive tumor. We need to underline
that the imaging findings of Type I PPB is overlapped with
congenital lung cyst; congenital lung cyst with congenital
pulmonary airway malformation (CPAM) are almost
January 2021 | Volume 10 | Article 614541

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Caroleo et al. DICER1 Syndrome and Cancer Predisposition

Frontiers in Oncology | www.frontiersin.org 3110
diagnosed in prenatal period or over the first year and a surgical
approach—with pathology study—was mandatory only in
symptomatic cases. Indeed, in more than 70% of CPAM, a
wait and see strategy is addressed (23); in this cases a DICER1
variants should always be considered in order to identify
promptly with a strict follow-up and genetic screening
patients at risk of more aggressive PBB. The pathology should
always consider PPB evaluating a CPAM.

Shortness of breath and pneumothorax due to cyst rupture
may be the presenting symptoms of PPB.

Thyroid
Multinodular Goiter and Epithelial Differentiated
Thyroid Cancer
Multinodular goiter (MNG) is characterized by the development
of thyroid nodular lesions. MNG is common in individuals with
DICER1 pathogenic variants, as reported by Khan et al. (24).
Germline DICER1 mutations have been reported in children
with both MNG or familial MNG (25). The risk of DTC in
carriers of DICER1 variants is elevated as compared to the
general population and its occurrence is typically related to an
indolent course (26).

Kidney
Cystic Nephroma, Wilms’ Tumor, and Anaplastic
Sarcoma of the Kidney
Cystic nephroma is a benign multicystic kidney tumor that
constitutes the most common neoplasm associated with PPB
FIGURE 1 | Principal DICER1-Syndrome neoplasms according to the age of onset.
TABLE 1 | Key clinical phenotypes (ordered by relative frequency) associated
with germline DICER1 mutations.

Phenotype Age (peak)

PBB
Type I (cystic) PPB 0–24 m (8 m)
Type II (cystic/solid) PPB 12–60 m (31 m)
Type III (solid) PPB 18–72 m (44 m)
Type Ir (cystic) PPB Any age

Multinodular goiter 5–40 y (10–20 y)
Cystic nephroma 0–48 m (undetermined)
Ovarian Sertoli-Leydig cell tumor 2–45 y (10–25 y)
Cervical embryonal rhabdomyosarcomas 4–45 y (10–20 y)
Differentiated thyroid cancer 5–40 y (10–20 y)
Wilms tumor* 3–13 y (undetermined)
Juvenile hamartomatous intestinal polyps* 0–4 y (undetermined
Ciliary body medulloepithelioma 3–10 y (undetermined)
Nasal chondromesenchymal hamartoma 6–18 y (undetermined)
Pituitary blastoma 0–24 m (undetermined)
Pineoblastoma 2–25 y (undetermined)
Anaplastic sarcoma of the kidney Estimated 2–20 y
Medulloblastoma* Undetermined
ERMS bladder* Estimated <5 y
ERMS ovary Undetermined
Neuroblastoma* Estimated <5 y
Congenital phthisis bulbi* Birth
Juvenile granulosa cell tumor* Undetermined
Gynandroblastoma Undetermined
Cervix primitive neuroectodermal tumor Undetermined
*The association of these conditions with DICER1 variants may not be so strong to warrant
testing in the absence of other features suggestive of DICER1 syndrome.
PBB, Pleuropulmonary blastoma; ERMS, embryonal rhabdomyosarcoma; m, months; y,
years.
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(3). It has a bimodal incidence: 65% of cases occur in the
pediatric band, before the age of 4, while 35% of cases appear
in adulthood and are usually seen between the fourth and the
sixth decade (27, 28).

DICER1 syndrome also includes an elevated risk of Wilms’
tumor, an embryonal cancer of the kidney that affects children
before the age of 6, without evidence to be a consequence of a
prior cystic nephroma (29, 30).

Recent reports enumerate anaplastic sarcoma of the kidney in
DICER1 syndrome, correlating the germline DICER1 mutations
with the development of these tumors, and postulate that they
may arise from pre-existing pediatric cystic nephromas (31–33).

Gynecologic Manifestations
The gynecologic tumors most frequently associated to DICER1
syndrome are ovarian SLCTs and embryonal rhabdomyosarcoma
of the cervix. These neoplasms, as well as PPB andMNG, constitute
key features leading toconsideranunderlying cancerpredisposition
syndrome, especially if found in children or adolescents (34).

Ovarian Sertoli-Leydig Cell Tumor
Unlike PPB, the age range of increased risk for genital tract
tumors is wide (2 to 40 years), even if some data suggest that
ovarian SLCTs arising in patients carrying DICER1 variants
occur mostly in the second decade (18, 35). Moderately
differentiated SLCTs are most common, but juvenile granulosa
cell tumor (JGCT), gynandroblastoma, and unclassified sex cord-
stromal tumors have also been described. Most tumors are stage
I, presenting with androgenic symptoms and a pelvic mass, that
rarely may be bilateral (34). The prognosis of ovarian SLCT is
generally favorable, but a recent report indicates that somatic
DICER1 variants SLCTs may be linked to a higher relapse risk
than others (36).

Cervical Embryonal Rhabdomyosarcomas
Even though rhabdomyosarcoma is the most common cervical
sarcoma, it is still very rare (37). Most DICER1 cases are confined
to the cervix at diagnosis, presenting with polypoid appearances
(botryoides) and with vaginal bleeding. Even if ERMS is one of
the more common sarcomas in childhood, approximately a third
of DICER1-related ERMS arises in patients older than 20 years
(38, 39). Studies report a quite favorable prognosis with an EFS
over 50%, and an OS around 90% (34, 38–41).

Other Ovarian Neoplasms
Poorly differentiated ovarian sarcoma (42), retiform SLCT, and
primitive neuroectodermal tumor (PNET) of the cervix (43) have
also been reported in individuals with possible germline
DICER1 variants.

Central Nervous System
Pituitary Blastoma
Pituitary blastoma is an extremely rare tumor of the anterior
pituitary. Genetic tests performed on 14 cases, on a total of 16
described to date, showed that all have at least one pathogenic
variant in DICER1 (44–46). For such reason, pituitary blastoma
may be considered pathognomonic for DICER1 syndrome (46).
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Pineoblastoma
Pineoblastoma is a rare primitive neuroectodermal grade IV
tumor originating in the pineal gland (47). Only a few genes have
been implicated in the pathogenesis of pineoblastomas, for
instance, RB1 in the setting of “trilateral retinoblastoma” (48).

To date, in DICER1-related pineoblastomas loss of
heterozygosity of the wild-type DICER1 allele seems to be the
somatic event, in contrast from the typical missense hotspot
mutations that usually lead to a factual germline heterozygosity
(49–53). Moreover, somatic DROSHA and DGCR8 mutations,
both related to the Dicer miRNA-regulating pathway, have been
recently documented in pineoblastomas, in addition to germline
and somatic DICER1 mutations (50), indicating that
pineoblastoma development is influenced by disturbances of
miRNA processes (46).

Others
Other brain tumors associated to DICER1 alterations have also
been reported but their genetic association has not been clearly
demonstrated. These include medulloblastoma (6, 54),
intracranial medulloepithelioma (55), anaplastic meningeal
sarcoma (53), glioblastoma multiforme (56, 57), and
embryonal tumor with multilayered rosettes (ETMR) (58).

Head and Neck
Ciliary Body Medulloepithelioma
Ciliary body medulloepithelioma is a rare embryonal ocular
tumor, that arises from the eye’s ciliary body, which generally
occurs during infancy and constitutes the second most common
eye tumor of childhood, after retinoblastoma (59–61).

Some cases suspected to be DICER1-related have been
documented but further studies are required to support their
association with the syndrome (6, 15, 62–71).

Nasal Chondromesenchymal Hamartoma
Nasal chondromesenchymal hamartoma is a rare benign tumor
of the sinus and nasal cavities that have been described in
children with PPB. This peculiar association has led to the
assumption that this hamartoma is also a manifestation of
DICER1 syndrome (5, 72).
MOLECULAR DIAGNOSTICS

Molecular genetic testing methods, including single-gene or
multigene panel testing, may be considered when clinical,
imaging, and/or histopathological features evoke a DICER1
syndrome’s diagnosis. Heterozygosis is the most common
condition through DICER1 syndrome’s patients, where
commonly a germline loss‐of‐function gene variant (nonsense,
frameshift, or splice-affected) generates a truncated protein.
These variants can be identified by Sanger sequencing or next-
generation sequencing (NGS). NGS has specific advantages over
traditional Sanger sequencing, considered the gold standard for
mutation analysis for many years, as multiple genes in several
patients can be tested simultaneously. Indeed, when the
phenotype is hard to distinguish from many other cancer
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predisposition syndromes, extensive genetic testing, based on
multigene panels or exome analysis can be useful to identify the
molecular defects underlying the condition.

Besides point mutations, other predisposing DICER1
alterations have also been documented, including deletion of
the entire DICER1 locus (62), or intragenic deletions involving
one or more exons (73). Methods used to detect these kinds of
alterations may include quantitative polymerase chain reaction
(PCR), multiplex ligation-dependent probe amplification
(MLPA) and gene-targeted microarray. Finally, molecular
genetic testing of tumor DNA may be necessary to identify
somatic mosaicism, which is observed in 10% of individuals with
DICER1 syndrome.
SURVEILLANCE

Although risks of malignancy are elevated, most patients with
pathogenic germlineDICER1 variants live healthy lives. Indeed, a
tumor occurs in 19,3% of the patients who carry germline
pathogenic variation by the age of 50 years old and the
neoplastic risk rises with age, especially in females, that are
exposed to the risk to present with gynecologic neoplasms (1).

Schultz et al. have defined the indications for DICER1 genetic
counseling and testing, and they also provided specific screening
strategies tomanage risk in carriers ofDICER1 pathogenic variants
(2). Germline DICER1 genetic testing is to consider in individuals
with onemajor or twominor criteria. “Major criteria are: PPB, lung
cysts in childhood, thoracic embryonal rhabdomyosarcoma, cystic
nephroma, genitourinary sarcomas including undifferentiated
sarcoma, ovarian Sertoli−Leydig cell tumor, gynandroblastoma,
uterine cervical or ovarian embryonal rhabdomyosarcoma,
genitourinary/gynecologic neuroendocrine tumors, multinodular
goiter or thyroid cancer in twoormorefirst-degree relatives or in an
index patient with a family history consistent with DICER1
syndrome, childhood-onset multinodular goiter or differentiated
thyroid cancer, ciliary body medulloepithelioma, nasal
chondromesenchymal hamartoma, pineoblastoma, pituitary
blastoma. Minor criteria are: Lung cysts in adults, renal cysts,
Wilms tumor, multinodular goiter or differentiated thyroid
cancer, embryonal rhabdomyosarcoma other than thoracic or
gynecologic, poorly differentiated neuroendocrine tumor,
undifferentiated sarcoma, macrocephaly” (2).

Surveillance guidelines for individuals with a germline DICER1
pathogenic variant have been established. The current guidelines
include “chest radiograph every 4–6 months until age 8 years, and
every 12months until 12 years; a chest computed tomography scan
should be considered. Baseline chest radiograph or chest CT should
be considered when the diagnosis is performed after age 12 years.
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Thyroid ultrasound is recommended by the age of eight years with
subsequent ultrasounds every three to five years. Individuals with a
history of chemotherapy exposure should begin thyroid ultrasound
within three to five years from treatment. Pelvic ultrasounds for
surveillance for gynecologic tumors in females are recommended
every 6 to 12months by the age of eight years and extending until at
least age 40 years. Screening for cystic nephroma and other renal
tumors includes abdominal ultrasounds every six months until age
eight years and then annually until age 12 years. Visual acuity
measurement and dilated ophthalmology examination for ciliary
bodymedulloepithelioma is recommended annually fromage three
years until at least age ten years. Annual physical examination
should be considered by an expert clinician” (2).
THERAPEUTIC PERSPECTIVES

Some studies explored the use of metformin to upregulate
DICER1 and linked proteins in mice, to counter the DICER1
syndrome’s effects (74–77). Despite patients affected by biallelic
DICER1 mutations may not benefit from this treatment,
metformin will be may proposed to patients with a single allele
alteration, to try to augment DICER1 protein production and
compensate the deficit, preventing the oncogenetic cascade.
CONCLUSIONS

DICER1 syndrome is a rare condition caused by germline
variants of DICER1; the occurrence of a second somatic tissue-
specific mutation leads to different phenotypes ranging from
benign lesions to malignant tumors. Screening for DICER1
variants should be performed in all patients with PPB and
considered in few benign lesions and malignant tumors. A
prompt identification of this syndrome is necessary to plan a
correct follow-up and screening for tumor occurrence during the
patient’s lifetime.
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Rhabdoid tumors are rare aggressive malignancies in infants and young children with a
poor prognosis. Themost common anatomic localizations are the central nervous system,
the kidneys, and other soft tissues. Rhabdoid tumors share germline and somatic
mutations in SMARCB1 or, more rarely, SMARCA4, members of the SWI/SNF
chromatin-remodeling complex. Rhabdoid tumor predisposition syndrome (RTPS) is a
condition characterized by a high risk of developing rhabdoid tumors, among other
features. RTPS1 is characterized by pathogenic variants in the SMARCB1 gene, while
RTPS2 has variants in SMARCA4. Interestingly, germline variants of SMARCB1 and
SMARCA4 have been identified also in patients with Coffin-Siris syndrome. Children with
RTPS typically present with tumors before 1 year of age and in a high percentage of cases
develop synchronous or multifocal tumors with aggressive clinical features. The diagnosis
of RTPS should be considered in patients with rhabdoid tumors, especially if they have
multiple primary tumors and/or in individuals with a family history. Because germline
mutations result in an increased risk of carriers developing rhabdoid tumors, genetic
counseling, and surveillance for all family members with this condition is recommended.

Keywords: rhabdoid tumors, atypical teratoid/rhabdoid tumors, cancer surveillance, genetic test, cancer risk,
cancer predisposition syndromes
INTRODUCTION

Rhabdoid tumor predisposition syndrome (RTPS) is characterized by an elevated risk of developing
malignancies called rhabdoid tumors (RTs). RTs are rare, aggressive tumors, typically diagnosed in
infants (1).

Primary rhabdoid tumor sites can include the central nervous system (65%), kidney (9%) and in
the remaining 26% of cases: head and neck soft tissues, paravertebral muscles, liver, bladder,
mediastinum, retroperitoneum, and pelvis (2).

Immunohistochemical characteristics of these tumors include loss of the BAF47/BRG1 protein
(3). Among newly diagnosed cases, 25%–35% will harbor a germline variant of the SMARCB1 gene
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(OMIM*601607) (4, 5). Recently, pathogenic variants in the
SMARCA4 gene (OMIM*603254) have also been associated
with RT (6); while the involvement of other genes appears to
be exceedingly rare in RTs (7, 8).

The most frequent pediatric tumor associated with RTPS is
atypical teratoid/rhabdoid tumor (AT/RT). AT/RTs are rare,
accounting for 1%–2% of all brain cancers, 90% of cases being
diagnosed in children of less than 3 years of age (9–12), with a slight
male predominance (13). At the time of presentation, 65.4% are in
the posterior fossa, 31% supratentorial and 3.6% multifocal (14).

Histologically, AT/RT shows areas of rhabdoid phenotype
containing rhabdoid cells with eccentric nuclei, prominent
nucleoli, abundant eosinophilic cytoplasm, and a mesenchymal
component with spindle cells. In the last years, molecular
characterization of RT has become increasingly relevant.
SMARCB1 and SMARCA4 are tumor suppressor genes playing
a critical etiologic role in all rhabdoid tumors including AT/RT,
which is linked to somatic and germline mutations of SMARCB1
or, more rarely, SMARCA4.

AT/RTs are biologically heterogeneous. In the last few years,
different authors described transcriptional features of AT/RTs
that can be summarized in three molecular subgroups (12, 15–
17) with different genetic profile, age at onset, prognosis, and
brain localization:

1) AT/RT-TYR tumors are characterized by infratentorial location,
younger age at diagnosis (<1 year) and overexpression of the
melanosomal markers such as DCT, TYR, andMITF andmany
genes involved in ciliogenesis (DNAH11 and SPEF1). Other
pathwaysdescribed includebonemorphogeneticprotein (BMP)
and orthodenticle homeobox 2 (OTX2). Chromosome 22q loss
is the most common cytogenetic anomaly.

2) AT/RT-MYC tumors are generally supratentorial, affected
individuals are older (age 4–5 years), and the cluster genes
MYC, HOTAIR, and HOX are overexpressed. Focal deletions
of SMARCB1 are the most common molecular anomaly.
Supratentorial location is the more frequent site. Spinal
tumors are included in this subgroup.

3) AT/RT-SHH tumors location may be infratentorial or
supratentorial with similar frequency, diagnosis is in the age
interval 2 to 5 years. Genes of the sonic hedgehog pathway
(GLI2, BOC, PTCHD2) and NOTCH signaling (ASLC1, CBL,
HES1) are overexpressed.

Patients outcome for each group is not homogeneous among
the different data published to date and prognosis is still unclear
(12, 15–17).

The most common extra-cerebral site for the primary onset of an
RT is the kidney (48% of cases), followed by head and neck (14%),
liver (13%), and other sites such as trunk and arms (25%) (18, 19).

RTs of the kidney account for about 2% of all pediatric renal
cancers (20). Renal RT is highly aggressive and has a poor
prognosis, with a 12-month survival rate of only 30% (18).
Patients presenting with renal RT in the first year of life tend to
develop brain tumors in 10%–15% of cases (21). These patients
often harbor a germline mutation of SMARCB1 and have a worse
prognosis, as compared to those with sporadic RTs (22).
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RHABDOID TUMOR PREDISPOSITION
SYNDROME

RTPS is an autosomal dominant cancer predisposition
syndrome. When the mutation pathogenic variants occur in
the SMARCB1 gene, the syndrome is called RTPS1, and RTPS2
has variants in the SMARCA4 gene.

BAF47/BRG1 proteins encoded by SMARCB1/SMARCA4
genes are key components of the ATP-dependent chromatin-
remodeling SWI/SNF complex, which is essential for lineage
specification, gene regulation, and maintenance of stem cell
pluripotency (23).

RTs are the most frequent malignancies associated with these
syndromes, but not the only ones. In most cases these arise de
novo but there is a small percentage of familial cases having
RTPS. RTs can present in a familial setting, with up to 35% of
cases due to germline mutations in SMARCB1 (4) or, in 2%–3%
of cases, in SMARCA4 (24, 25).

Children with RTPS typically present with tumors before 12
months of age and in 35% of cases develop synchronous or
multifocal tumors with aggressive clinical features (20, 22, 26).
RTs can be detected in the prenatal period or during childhood
with a median age at onset of 4–7 months (range prenatally – 60
months) (1, 27, 28) versus sporadic RTs that are detected at a
median age of 13–30 months (range: age 1 day–228 months).
Often RTs in RTPS are synchronous, with advanced stage at
diagnosis and clinically aggressive. Progression occurs during
chemotherapy in 58% of individuals with RTPS and RTs (24). In
the EU-RHAB Registry 28% of cases had synchronous RT: eight
individuals AT/RT and extracranial malignant rhabdoid tumors
(eMRT), four had AT/RT and rhabdoid tumor of the kidney
(RTK), and two AT/RT, multiple eMRT and RTK (28).

Furthermore, other conditions are known to be related to
RTPS. Family history of RT or cribriform neuroepithelial tumor
(CRINET) and/or combination of RT with one of the following:
schwannoma, malignant peripheral nerve sheath tumor,
meningioma are highly suggestive for RTPS (29).

The diagnosis of RTPS is established in a proband with a
rhabdoid tumor and/or a family history of RT and/or multiple
SMARCB1/SMARCA4 deficient tumors (synchronous or
metachronous) and identification of a germline pathogenic
variant in SMARCB1 or SMARCA4 by genetic testing (30). In
Figure 1 are summarized the main clinical and genetics features
of RTPS.

Rhabdoid Tumor Predisposition Syndrome 1
Rhabdoid Tumor Predisposition Syndrome 1 (RTPS1, OMIM
#609322) is caused by heterozygous germline mutations in the
SMARCB1 gene, which maps to chromosome 22q11.2 (31). The
protein involved is an SWI/SNF-related matrix-associated actin-
dependent regulator of chromatin subfamily B member 1 (30).
Clinical Features
As described above, the syndrome predisposes to the
development of RTs, including brain tumors, renal and
extrarenal cancers. AT/RT is the most frequent brain cancer in
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FIGURE 1 | RTPS tumors spectrum and related genes involved.
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patients with SMARCB1 mutations, but other CNS tumors are
described (32).

Interestingly, Thomas et al. (33) described a case of RTPS1 in
an infant with AT/RT in which supratentorial and infratentorial
parts of the tumor demonstrated different DNA methylation
profiles suggesting synchronous or metachronous AT/RT with
different molecular subgroup and cell of origin.

Recently, the SMARCB1 gene has been found also in familial
and sporadic schwannomatosis. Hulsebos et al. (34) described two
family members with schwannomatosis and a germline mutation
of SMARCB1, suggesting it as a candidate predisposing gene.
Swensen et al. reported a family with hereditary schwannomatosis
associated with a germline mutation of SMARCB1. Three
members of the family developed RTs and died before 2 years of
age (35). About 40%–50% of familial schwannomatosis and 8%–
10% of sporadic cases harbor a constitutional mutation in
SMARCB1 (25). Interestingly, SMARCB1 and NF2 loci map very
close to each other on the long arm of chromosome 22 (25).

Furthermore, Schmitz et al. found the same somatic mutation
of SMARCB1 in four of 126 meningiomas. The data suggest that
SMARCB1 is a tumor suppressor gene that may be important
also for the oncogenesis in a subset of meningiomas (36).

Moreover, SMARCB1 mutation carriers may be at risk for
developing other tumors such as malignant peripheral nerve
sheath tumors and cribriform neuroepithelial tumors (37).

Genetics
SMARCB1 inactivation can be caused by different mechanisms
like gross chromosomal aberration or loss of heterozygosity of
22q11.2 or loss-of-function mutations including nonsense,
frameshift, splicing and missense mutations (6).

Concerning cytogenetics, the most frequent alteration described
in AT/RT is the monosomy of chromosome 22 (14, 38, 39).
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Biegel et al. described also a rhabdoid tumor with an unbalanced
9;22 translocation (40).

Penetrance. Penetrance may vary according to the mutation
type. Incomplete penetrance has been observed in three of nine
published families with RTPS due to SMARCB1 mutations (6).
Rarely a SMARCB1 pathogenic variant is inherited from an
unaffected parent or a parent with late-onset or undiagnosed RTPS
(41). Germline mosaicism must be taken into account for at least
half of the families with sibs affected by RTPS (30).

Rhabdoid Tumor Predisposition Syndrome 2
Rhabdoid Tumor Predisposition Syndrome 2 (RTPS2, OMIM
#613325) is caused by heterozygous germline mutations in the
SMARCA4 gene, which maps to chromosome 19p13 (6) and
encodes a protein involved in the transcription activator BRG1, a
catalytic component of the ATP-dependent SWI/SNF chromatin
remodeling complex (30).

Clinical Features
The main tumor resulting from germline pathogenic variants in
SMARCA4 is small cell carcinoma of the ovary, hypercalcemic
type (SCCOHT) (37, 42). It seems that up to 40% of females with
SCCOHT may harbor a germline variant in SMARCA4 (43),
therefore the detection of SCCOHT in young women is high
evocative for RTPS2 (44–46).

Although more rarely than SMARCB1 mutations, pathogenic
germline SMARCA4 variants are found in children with AT/RT and
it seems that SMARCA4-mutated AT/RT may be associated with a
worse prognosis (24, 47). The risk of other RTs in SMARCA4
germline heterozygotes is unknown, but probably very low.

Other epithelial cancers, such as lung cancer, have been
reported in some adults with pathogenic germline variants in
SMARCA4, but again, the risks remain unquantified (46).
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Recently, a novel entity designated “SMARCA4-deficient
thoracic sarcoma” (SDTS) was described by Le Loarer et al. in
19 adult individuals, supporting the carcinogenic effect of
SMARCA4 inactivation, with consequences beyond the
pediatric age range (48).

Genetics
Among the different SMARCA4 pathogenic variants reported to
date, nonsense, and intragenic deletions are the prevalent types,
while only a single missense variant has been detected (24).

Penetrance. It appears that SMARCA4 mutations are less
penetrant for AT/RT than SMARCB1 ones (37). In contrast to
SMARCB1, most reported patients with RTs and a SMARCA4
mutation inherited it from an unaffected parent (30).
In SMARCA4-related RTPS, the penetrance for RT in the
preceding generation of seven informative families was zero.
However, in one family, two sibs with a SMARCA4 pathogenic
variant were both affected (6, 24, 30).

Other Rare Manifestations Related to
SMARCB1 and SMARCA4 Mutations
Interestingly, germline variants of SMARCB1 and SMARCA4 have
been identified also in patients with Coffin-Siris syndrome three
(CSS3, OMIM #614608) and four (CSS4, OMIM #614609). CSS is
a congenital malformation syndrome characterized by
developmental delay, intellectual disability, coarse facial features,
feeding difficulties, and hypoplastic or absent fifth fingernails and
fifth distal phalanges (49). Individuals with CSS carrying
SMARCB1 or SMARCA4 mutations seem to show no
predisposition to develop RTs or other forms of tumor. This can
be explained by the fact that mutations resulting in CSS3 are non-
truncating, implying that they exert gain-of-function or
dominant-negative effects (excluding haploinsufficiency as a
cause) (50). Very rare exceptions have been described. To date,
a single CSS individual with schwannomatosis and a SMARCB1
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variant has been reported (51): the SMARCB1 c.1121G>A
(p.Arg374Gln) germline transition in exon 9 lead to the
inactivation of the second allele in the tumor tissue. More
recently, a pediatric patient with mild CSS who concomitantly
developed small‐cell carcinoma of the ovary hypercalcaemic type
has been found to harbor a germline heterozygous nonsense
mutation and a somatic frameshift mutation in SMARCA4 (52).
GENOTYPE-PHENOTYPE CORRELATION

According to Smith et al. and Holsten et al. a clear genotype-
phenotype correlation could be identified (53, 54). Germline
SMARCB1 mutations located in the central portion of the gene,
involving multiple exon deletions or duplications and truncating
mutations, likely responsible for a loss of SMARCB1 protein
product, are most frequently associated with rhabdoid tumors.
Instead, SMARCB1 mutations located at the ends of the gene,
particularly non-truncating alterations, including missense
variants, are most frequently associated with non-oncologic
diseases and low-grade tumors such as the ones reported in CSS,
meningiomas, and schwannomas. Unlike the germline SMARCB1
mutations detected in RT cases, schwannomatosis-associated
alterations determine reduced expression levels or a partial loss
of function of the SMARCB1 protein (53). Moreover, a correlation
was identified between the type of SMARCB1 variant and the time
of onset of the disease: truncating variants are associated with early-
onset disease, non-truncating variants with late-onset disease.
SURVEILLANCE

To date, no universally accepted surveillance recommendations
for RTPS carriers have been established. In Table 1 are
summarized two surveillance propositions suggested by
Foulkes et al. (37) and Teplick et al. (55). Nemes et al. (30)
proposed a protocol of surveillance not only in pre-symptomatic
RTPS carriers but also in individuals affected by RTs.

Foulks et al. (37) give more detailed indications about
monitoring of SMARCB1 or SMARCA4 carriers as opposed to
Teplick et al. (55), even if they failed to stratify cancer monitoring
for age range. They recommended brain MRI in SMARCB1
carriers every 3 months for the first 5 years of life. As known,
AT/RTs in RTPS1 arise generally within the first year of life and
MRI is an expensive examen, and sedation is needed in young
children. After the first year of life, a brain MRI should be
performed every 6 months. About abdominal monitoring, they
recommended ultrasound every 3 months through 5 years and
consider whole-body MRI, with undetermined frequency.
Whole-body MRI will guarantee high diagnostic accuracy as
opposed to ultrasound, but it is an expensive procedure and
requires sedation in little patients.

Regarding SMARCA4 carriers they suggest an abdominal
ultrasound every 6 months with no mention of the beginning
or end of the follow-up. Considering the rarity of the condition
and the very low risk, unfortunately, there is no data available for
monitoring of brain and abdominal RTs in SMARCA4 carriers.
TABLE 1 | Surveillance recommendations for rhabdoid tumor predisposition
syndrome (RTPS) carriers.

Foulkes et al. (37) Teplick et al. (55)

Germline truncating mutations:
SMARCB1

- Brain: MRI every 3 months to age 5 years

- Abdomen: Ultrasound every 3 months through
5 years. Consider WB-MRI, undetermined
frequency

SMARCA4
- Brain: No data available, risks likely very low

- Abdomen: No data available, risk likely low
to very low

- Ovary: No data available, abdominal ultrasound
every 6 months may be justified, role, if any, of
MRI unknown. Preventive oophorectomy may
be justified outside of the pediatric age range

Germline missense mutations:
No screening, generally no/very low risk

- From 0–1 year:
is recommended
abdominal US every 2 to 3
months and head US
monthly
- From 1–4 years:
abdominal US every 6
months. Brain and spine
MRI every 6 months
MRI, magnetic resonance imaging; WB-MRI, whole body magnetic resonance imaging;
US, ultrasound.
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Interestingly, Folkes et al. (37) proposed a separated
surveillance protocol for germline truncating mutations versus
germline missense mutations, underlining that germline
missense mutations need no screening for their very low risk
of RTs. On the other hand, they proposed MRI surveillance for
patients with a germline missense mutation of SMARCB1 to
allow the early detection of schwannomas.

Teplick et al. (55) did not take into account the due separated
conditions RTPS1 and 2 and different germline kinds of
mutations. They suggested the use of ultrasound in the first
year of life to monitor the brain and abdomen every 2–3 months.
Between 1 and 4 years of age, they suggest extending abdominal
ultrasound monitoring every 6 months and using brain and
spine MRI to exclude the onset of brain tumors every 6 months.
In their proposal, there is no mention of whole-body MRI.
GENETIC TEST

Molecular genetic testing for RTPS is appropriate in any
patients with:

- RTs, familial RTs, multifocal or synchronous tumor, congenital
or early-onset disease, other conditions known to be related to
RTPS

- SMARCB1- or SMARCA4-deficient tumors with a positive
family history.

Point variants of SMARCB1 and SMARCA4 can be identified
by Sanger sequencing or next-generation sequencing (NGS).
Besides point mutations, other alterations of SMARCB1 and
SMARCA4 have also been documented, including deletion of
the entire SMARCB1 locus or intragenic deletions involving one
or more exons (5). Methods used to detect this kind of alteration
may include quantitative PCR, multiplex ligation-dependent
probe amplification (MLPA), and a gene-targeted microarray
designed to detect single-exon deletions or duplications.
GENETIC COUNSELING AND RISK TO
FAMILY MEMBERS

Siblings and Parents
When a pathogenic variant of SMARCB1 or SMARCA4 is
detected in a proband, molecular genetic evaluation of parents
and siblings is required.

As mentioned above, carriers of SMARCA4 mutation
inherited a pathogenic variant from an unaffected parent (24),
while the vast majority of individuals with RTPS1 have a de novo
germline SMARCB1 mutation, and only in extremely rare cases,
they inherited a SMARCB1 pathogenic variant from an
unaffected parent.

A healthy parent with a pathogenic germline variant has to
start surveillance as for siblings, but at longer intervals, as the risk
of malignancies is very low.

If the SMARCA4 or SMARCB1 pathogenic variant found in
the proband cannot be detected in either parent, it raises the
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possibility of a de novo pathogenic variant in the proband or
germline mosaicism in a parent. Parental germline mosaicism in
SMARCB1 has been rarely described (5, 27, 32, 56, 57), while the
overall incidence of germline mosaicism in RTPS is unknown.

The cancer risk for the siblings of a proband depends on the
genetic status of the proband’s parents:

- 50% risk of inheriting the variant if the proband harbors a
SMARCA4 or SMARCB1 pathogenic variant, although
penetrance can be incomplete.

- 1% risk of inheriting the variant if the parent is negative for
SMARCA4 or SMARCB1 mutations, considering the
possibility of parental germline mosaicism (5, 27, 56, 57).
Offspring of a Proband
As mentioned above, patients with RTPS1 die at a young age.
Despite it occurs very rarely, it should be considered the cancer
risk in offsprings. If children are affected by a de novo germline
SMARCB1 mutation and survive to adulthood, they can
potentially transmit the mutation to their offspring (25).

The family history of most individuals with RTPS may appear
to be negative for many reasons: failure of detection of the
disorder in family members, reduced penetrance (more evident
in SMARCA4-related RTPS), late onset in the affected parent.
PREVENTION AND PRENATAL
DIAGNOSIS

There is no possibility of preventing cancer development in
patients with RTPS, but in case of detected SMARCB1/
SMARCA4 mutations, the advice of surveillance and follow-up
must be followed. Prophylactic oophorectomy may be discussed
in women with SMARCA4-related RTPS for the high risk to
develop SCCOHT (58).

It would also be important to prevent secondary
complications related to aggressive treatments.

Once SMARCB1 and SMARCA4 pathogenic variants are
detected, prenatal testing for a pregnancy at increased risk and
preimplantation genetic diagnosis are possible. The preferred
tests used to assess if a product of conception carries a known
SMARCB1/SMARCA4 mutation are chorionic villus sampling
and amniocentesis.
CONCLUSION

Germline variants play a role in 8.5%–10% of all pediatric cancer
with the prevalence of certain genes such as TP53, APC, NF1,
PMS2, RB1, and RUNX1. The increasing implementation and
availability of genetic testing lead to the opportunity to identify
the risk of cancer and early detection of tumors with the aim of
reducing mortality and morbidity (21).

RTPS is characterized by a high risk of developing RTs and
other unfrequent conditions. RTs are a rare, aggressive form
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of malignancies typically diagnosed in young infants that can
arise in multiple anatomical sites. About 25%–35% of RTs
carry a germline variant of SMARCB1 (4, 5), or more rarely
SMARCA4. The diagnosis of RTPS should be taken into
account in patients with RTs, especially if early and multiple
primary tumors and/or if a positive family history of RTs is
present (25).

The ongoing new characterization of AT/RTs and RTs (12)
will likely lead to further biological insights that can delineate
molecular subtypes and may lead to novel therapeutic options.
Despite these promising advancements, surveillance for cancer
risk and prevention remains the focus of current management.
Further research is needed to increase our understanding of
Frontiers in Oncology | www.frontiersin.org 6120
RTs biology and gather further knowledge of the role of
SMARCB1/SMARCA4 in RTs development and other
rare manifestations.
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