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Predicting Bacteriophage Enzymes
and Hydrolases by Using Combined
Features
Hong-Fei Li1,2, Xian-Fang Wang2 and Hua Tang1*

1 Department of Pathophysiology, Key Laboratory of Medical Electrophysiology, Ministry of Education, Southwest Medical
University, Luzhou, China, 2 School of Computer and Information Engineering, Henan Normal University, Henan, China

Bacteriophage is a type of virus that could infect the host bacteria. They have
been applied in the treatment of pathogenic bacterial infection. Phage enzymes and
hydrolases play the most important role in the destruction of bacterial cells. Correctly
identifying the hydrolases coded by phage is not only beneficial to their function study,
but also conducive to antibacteria drug discovery. Thus, this work aims to recognize
the enzymes and hydrolases in phage. A combination of different features was used to
represent samples of phage and hydrolase. A feature selection technique called analysis
of variance was developed to optimize features. The classification was performed by
using support vector machine (SVM). The prediction process includes two steps. The
first step is to identify phage enzymes. The second step is to determine whether a
phage enzyme is hydrolase or not. The jackknife cross-validated results showed that
our method could produce overall accuracies of 85.1 and 94.3%, respectively, for the
two predictions, demonstrating that the proposed method is promising.

Keywords: bacteriophage enzymes, hydrolase, analysis of variance, sequence feature, classification

INTRODUCTION

Bacteriophage, as safe agent, can lyse and infect specific bacteria without destroying natural
beneficial microflora (Parmar et al., 2018). Hydrolytic enzymes encoded by phages are key
ingredients of lysis, which is helpful to fighting bacterial pathogens, especially those that cannot be
killed by antibiotics and chemicals. In fact, in some countries, they have been used therapeutically
to treat bacterial infections that do not respond to antibiotics (Thiel, 2004; Parfitt, 2005; Keen,
2012). They have also been used as a food safety tool to reduce bacterial contamination (Pirisi,
2000). Hence, rapid detection of bacteriophage and hydrolase responsible for antibacterial drugs is
a growing necessity for public health.

Because of abuse of antibiotics, certain resistant viruses cannot be effectively controlled. This
problem can be resolved by therapy of phage hydrolytic that disintegrates host viruses during
releasing progeny phage. Therefore, the identification of hydrolases encoded by phages has become
an important research topic. It not only has been studied in chemistry and physics through

Abbreviations: CTD, composition transition and distribution; SVM, support vector machine; RF, random forest; MLP,
multilayer perceptron; KNN, k-nearest neighbors; Sn, sensitivity; Sp, specificity; Ac, accuracy; MCC, matthew correlation
coefficient; PseAAC, pseudo–amino acid composition; GTPC, grouped tripeptide composition; ROC, receiver operating
characteristic; AUC, area under receiver operating characteristic (ROC) curve; GGDC, g-gap dipeptide composition;
ANOVA, analysis of variance; RBF, Radial Basis Function; ORFs, Open Reading Frames.
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experimental methods, but also achieved good results in theory
through recently popular machine learning algorithms. Some
experiments have been performed to study the function of
phage hydrolase (Kimura and Itoh, 2003; Rodriguez-Rubio
et al., 2013). In addition, in the study of host cell lysis by
hydrolytic enzyme activation, Kovalenko et al. (2019) found
that the calcium could regulate phage-induced bacterial lysis.
Although those biochemical-based methods can accurately
recognize phage hydrolases and clearly elucidate the functional
mechanism of the enzyme, it is time-consuming and expensive.
Additionally, biochemical experiments always need rigorous
experimental conditions, which will prevent most of scholars
from doing more in-depth studies. Computational methods
provide another chance to study phage hydrolase without
the disadvantage of biochemical-based methods. Phylogenetic
analysis or similarity search could find relative conservation
of motifs among related species (Lin and Li, 2011; Liu
et al., 2019). However, it is extremely diverse for phage
Open Reading Frames (ORFs), of which more than 70% of
them cannot find out similar genes with annotated functions
in GenBank (Seguritan et al., 2012). Moreover, it is also
time-consuming.

With the accumulation of more and more postgenomic data,
some computational methods have been proposed to study the
function of phage proteins. Riede and his colleagues (Riede
et al., 1987) have proposed a model to predict tail-fiber proteins’
three-dimensional structure of T-even–type phages. The results
are consistent with electron microscopic data. Subsequently,
a computer program was developed to identify DNA-binding
regulatory proteins in bacteriophage T7 (White, 1987; Song et al.,
2014; Zou et al., 2016a; Qu et al., 2019). Recently, the virion
proteins encoded by phages were studied by using naive Bayes
combined with primary sequence information (Feng et al., 2013).
The proposed model could yield the overall accuracy (Ac) of
79.15%. By using feature selection technique, the overall Ac was
improved to 85.02% (Ding et al., 2014). A free webserver called
PVPred (Ding et al., 2014) was constructed for predicting phage
virion proteins.

The success of previous works on the prediction of phage
functional proteins (Feng et al., 2013; Ding et al., 2014) and
enzyme prediction (Zuo et al., 2014; Ding H. et al., 2016)
provided good strategy to discriminate hydrolases encoded by
phages by transforming protein sequences into digital features
and further establishing machine learning-based models. Thus,
this work aims to develop a powerful computational model
to recognize phage hydrolase by combining feature selection
and expression of multiple features. The entire experiment
was divided into two steps. First is to discriminate phage
enzymes from phage nonenzymes and then to identify phage
hydrolases from phage enzymes. In this model, the support
vector machine (SVM) was applied as the algorithm to
perform the classification. Different features were proposed
to formulate protein samples and then inputted into SVM.
The best features that can achieve the maximum accuracies
were discovered by using analysis of variance (ANOVA).
The model’s performance was estimated by using jackknife
cross-validation.

MATERIALS AND METHODS

Benchmark Dataset
Constructing a reliable benchmark dataset could guarantee the
reliability of the proposed computational model (Ma et al.,
2014; Liang et al., 2017; Yang et al., 2017; Wang et al., 2018;
Cheng et al., 2019; Hu et al., 2019; Zheng et al., 2019). In
this work, samples were gained from Ding H. et al. (2016),
which were rigorously screened through the following three
steps: (1) phage proteins have been annotated by standard
operating procedure for UniProt manual curation (Swiss-Prot);
(2) protein sequences samples containing illegal characters
were deleted; (3) sequence identity in the dataset must be
less than 30%, which was implemented by CD-HIT (Fu
et al., 2012) software. Consequently, the definitive benchmark
dataset contains 255 phage proteins, of which 124 proteins
belong to phage enzymes (positive samples of set 1), and the
remaining 131 are phage nonenzymes (negative samples of set 1).
Furthermore, 124 phage enzymes are divided into 69 hydrolases
(positive samples of set 2) and 55 nonhydrolases (negative
samples of set 2), respectively. The following calculations are all
based on these data.

Protein Feature Extraction
The perfect expression of protein sequences by digital features
can dramatically increase the Ac and robust of computing models
(Wang et al., 2008, 2010; Song et al., 2010, 2018; Zuo et al.,
2017; Basith et al., 2018; Chen W. et al., 2018; Wei et al., 2018b;
Boopathi et al., 2019; Ding et al., 2019; Manavalan et al., 2019b;
Shen et al., 2019; Tan et al., 2019; Zhang and Liu, 2019; Zhu
et al., 2019). The specific order of residues in the peptide sequence
dictates the protein to fold up into a special three-dimensional
structure. Thus, the interaction between two residues in a protein
is a main factor to characterize the protein. In the past 20 years,
scholars have developed dipeptide composition to formulate
peptide samples (Tang et al., 2016). However, the feature can only
describe the short-range interaction between two residues. In fact,
there are lots of long-range interaction for a protein in three-
dimensional space. For example, the secondary structures (α helix
and β sheet) were formed by the interaction of two nonadjoining
residues. Hence, it will be more reasonable to investigate the
performance of other kinds of correlations.

Based on the above analysis and other peer works (Ding
and Li, 2015), in this work, the g-gap dipeptide composition
(GGDC), which is extended from general dipeptide composition,
is used as the main feature to denote the residues’ correlation
in the original peptide sequence. For the perfect expression
of the sample, the combination of GGDC, pseudo–amino
acid composition (PseAAC), grouped tripeptide composition
(GTPC), and composition transition and distribution (CTD) is
used as the final feature vector. Pseudo–amino acid composition
provides the correlation of physical and chemical properties
between two residues (Chen et al., 2016; Yang et al., 2016).
Grouped tripeptide composition provides tripeptide information
(Tan et al., 2019). CTD provides distribution patterns of a specific
structural property for residues (Cheng et al., 2018) and indirectly
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contains information about 20 amino acid residues, so PseAAC,
in our work, does not contain amino acid information.

G-Gap Dipeptide Composition
The GGDC proposed by Ding et al. (2014) is the extension of
the proximate dipeptide composition, because proteins contain
deep correlation of residues relating with hydrogen bonding in
secondary structure. For different g, the protein sequence P with
L residues is expressed by a 400-dimensional GGDC as follows:

P = [f g1 , f g2 , ..., f gε , ..., f g400]
T (1)

where T is called the transposing operator, the f gε can be
calculated by:

f gε = ngε/(L− g − 1) (2)

where the ngε denotes the absolute occurrence number of the
GGDC in a protein. Since previous studies (Ding H. et al., 2016)
have shown that g = 2 has the best prediction effect, only 2-gap
was used in our experiments.

Pseudo–Amino Acid Composition
Hydrophobicity, hydrophilicity, and other physicochemical
properties are important characteristics of amino acids. In order
to incorporate these properties with amino acid composition, two
types of PseAAC were used. In our work, motived by PseAAC, the
protein sample, can be expressed as follows:

τ1 =
1

L−1
∑L−1

i=1 H1
k,k+1

τ2 =
1

L−1
∑L−1

i=1 H2
k,k+1

...

τn =
1

L−1
∑L−1

i=1 Hn
k,k+1

τn+1 =
1

L−2
∑L−2

i=1 H1
k,k+2, (l < L)

τn+2 =
1

L−2
∑L−2

i=1 H2
k,k+2

...

τλn =
1

L−λ

∑L−λ
i=1 Hn

k,k+λ

(3)

Hn
k,k+λ

th residue and the (k+λ)-th residue; L is length of sample.
After experimental comparison, we selected 10 physical and
chemical properties containing hydrophobicity, hydrophilicity,
amino acid side chain group mass, -COOH group dissociation
constant, -NH3 group dissociation constant, isoelectric point
at 25◦C, rigidity, flexibility, irreplaceability, and polarity. We
used λ = 15.

GTPC and CTD
iFeature is a comprehensive Python-based toolkit that contains
four major functions: feature representation, dimensionality
reduction algorithms, feature selection algorithms, and feature
clustering algorithms (Chen Z. et al., 2018). In our study, we
have used GTPC and CTD provided by iFeature (Chen Z. et al.,
2018) to extract numerical descriptors from samples. Grouped

tripeptide composition converts protein sequences into 125-
dimensional digital features expressed as follows:

f (r, s, t) =
Nrst

N − 1
, r, s ∈ {g1, g2, g3, g4, g5} (4)

where Nrst denotes the number of tripeptides in groups r, s, and t
(Chen Z. et al., 2018). N is the length of a protein.

CTD converts protein sequences into 39-dimensional digital
features defined as follows:

C(r) =
Nr

N
, r{polar, neutral, hydrophoic} (5)

where N(r) represents the number of residue type r in the peptide
sequence (Chen Z. et al., 2018). Thus, samples are transformed
into 164 -dimensional features.

Support Vector Machine
Support vector machine is a classical machine learning algorithm
and has been widely adopted in computational biology (Jiang
et al., 2013; Zhao et al., 2015, 2017; Ding H. et al., 2016;
Ding et al., 2016a,b; Dao et al., 2018; Feng et al., 2018;
Manavalan et al., 2018a,b; Zhang et al., 2018; Chao et al.,
2019; Chen et al., 2019a; Wang et al., 2019; Basith et al.,
2020). For nonlinear samples, its projects inputted data into
high-dimensional spare by a kernel function. There are four
kernel functions including Sigmoid function, Gaussian function,
line function, and polynomial function, among which Gaussian
function is most commonly used. C and g are the most important
parameters to adjust performance of Gaussian function. The
value of g is related to the partitioning of samples, and the
value of C determines the tolerance of the model. In our work,
SVC functions in Scikit-learn (Swami and Jain, 2012), based
on Python, are used to build models, and Gaussian functions
are used as kernel functions, because the Gaussian function
can efficiently map small samples with fewer features to high-
dimensional space and distinguish positive and negative samples
with high Ac. In addition, the GridSearchCV function in Scikit-
learn was used to optimize the parameters C and g.

Feature Selection Method
Because one type of feature does not fully represent the
characteristics of a protein sequence, the combination of features
is a good approach to perform classifications. The combined
features could also cause a lot of inconvenience, such as noise,
dimension disaster, and so on. Analysis of variance (Feng
et al., 2013; Tang et al., 2017; Xianfang et al., 2019), principal
component analysis (Dong et al., 2015), minimal redundancy
maximal relevance (Ding et al., 2013), maximum relevance
maximum distance (Zou et al., 2016b), and increment of diversity
(Zuo and Li, 2009; Zhao et al., 2010; Fan and Li, 2012) can solve
these problems. In our study, ANOVA is used to screen the best
feature set; the idea is to calculate the ratio of the categories to
sample variance. Obviously, features with larger ratios are more
suitable for classification. The details can be referred from Feng
et al. (2013), Tang et al. (2017) and Xianfang et al. (2019).
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Performance Evaluation
In statistical prediction, the performance of the model needs
to be measured by some methods and parameters (Chen et al.,
2017, 2019b; Ding et al., 2017; Tang et al., 2018; Yang et al.,
2018). The cross-validation test has been widely used to evaluate
methods (Yang et al., 2019; Zhu et al., 2019). To provide a fair
comparison, we used the jackknife test in this study. The four
parameters, namely, sensitivity (Sn), specificity (Sp), Ac, and
Matthew correlation coefficient (MCC), are used to evaluate the
performance of the model (Liu et al., 2018; Manavalan et al.,
2018c, 2019a,c; Basith et al., 2019), which are defined as follows:

Sn = TP
TP+FN

Sp = TP
TP+FN

Ac =
TP+FN

TP+FP+TN+FN

MCC = (TP×TN)+(FP×FN)
(TP+FN)(TN+FP)(TP+FP)(TN+FN)

(6)

where TP and TN are the number of the correctly identified
positive samples and the number of the correctly identified
negative samples; FP indicates the number of negative samples
recognized as positive samples; FN indicates the number
of positive samples recognized as negative samples. Also,
the area under receiver operating characteristic (ROC) curve
(AUC) is often used to evaluate the performance of binary
classification models.

RESULTS

Discriminating Phage Enzymes From
Nonenzymes
For a new sequenced phage protein, we first need to judge
whether the phage protein is an enzyme. Thus, the predictive
performances of three combined vectors were investigated by
using SVM with jackknife test. First, samples are expressed by
three kinds of combinations: GGDC combined with PseAAC,
GTPC combined with CTD, and all features. Prediction results
are listed in Table 1. We observed that all features cannot
achieve the best Ac. The reason is maybe noise or redundant
information. Thus, we performed feature selection for three
feature combinations to discover the best feature subsets. The
results are also shown in Table 1. After feature selection,

TABLE 1 | The results by using different features for phage enzymes prediction.

Combined vector
features

Original feature Optimal features

Accuracy Dimensions Accuracy Dimensions

GGDC + PseAAC 74.5% 550 83.1% 154

GTPC + CTD 67.8% 164 77.6% 35

GGDC + PseAAC
+ GTPC + CTD

72.9% 714 85.1% 191

GGDC, g-gap dipeptide composition; CTD, composition transition and distribution;
PseAAC, pseudo–amino acid composition; GTPC, grouped tripeptide composition.

FIGURE 1 | A plot showing the F-values for (A) discriminating phage enzymes
from nonenzymes and (B) discriminating phage hydrolases from other
enzymes.

TABLE 2 | The comparison of different classifiers for predicting phage enzymes.

Classifier Sn Sp Ac MCC AUC

KNN 0.98 0.16 0.702 0.232 0.664

RF 0.73 0.76 0.752 0.490 0.798

SVM 0.83 0.88 0.851 0.703 0.897

MLP 0.77 0.84 0.812 0.610 0.858

SVM, support vector machine; RF, random forest; MLP, multilayer perceptron;
KNN, k-nearest neighbors; Sn, sensitivity; Sp, specificity; Ac, accuracy; MCC,
Matthew correlation coefficient; AUC, area under receiver operating characteristic
(ROC) curve.

the highest Ac was obtained by using 191 features, which
was based on all features. Figure 1A was drawn to show
the F-value for all features. The above results implied that
the information of phage enzymes requires multiple types of
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TABLE 3 | The results by using different feature for discriminating phage
hydrolases from other enzymes.

Combined vector
features

Original features Optimal features

Accuracy Dimensions Accuracy Dimensions

GGDC + PseAAC 75.8 550 94.3% 61

GTPC + CTD 76.6% 164 86.4% 37

GGDC + PseAAC
+ GTPC + CTD

75.8% 714 92.7% 89

GGDC, g-gap dipeptide composition; CTD, composition transition and distribution;
PseAAC, pseudo–amino acid composition; GTPC, grouped tripeptide composition.

TABLE 4 | The comparison of different classifiers for discriminating phage
hydrolases from other enzymes.

Classifier Sn Sp Ac MCC AUC

KNN 0.70 0.89 0.814 0.588 0.863

RF 0.91 0.80 0.86 0.722 0.898

SVM 0.96 0.93 0.943 0.886 0.961

MLP 0.93 0.91 0.927 0.837 0.948

SVM, support vector machine; RF, random forest; MLP, multilayer perceptron;
KNN, k-nearest neighbors; Sn, sensitivity; Sp, specificity; Ac, accuracy; MCC,
Matthew correlation coefficient; AUC, area under receiver operating characteristic
(ROC) curve.

feature expressions. However, noises or redundant information
may be results in the poor predictive capabilities of other
groups, and the combining vectors of the first and second
groups cannot fully express the peculiarity of the samples,
which lead to its poor prediction effect. Subsequently, we
investigated the performance of four classifiers, including
random forest (RF), multilayer perceptron (MLP), k-nearest
neighbor (KNN), and SVM, whose input features are the
third set of 191-D optimal features. The result parameters
of four classifiers have been exhibited in Table 2. We
found the highest Ac of 85.1% and MCC of 70.3%. The
AUC reaches to 89.3% by using SVM. k-Nearest neighbor
has achieved the highest Sn of 98% with the lowest Sp
of 16%. Moreover, performance of RF has an Sn of 73%,
Sp of 76%, Ac of 75.2%, MCC of 0.490, and AUC of
0.798, respectively. Similarity, MLP obtained 77, 84, 81.2,
0.61, and 0.858%, respectively, for Sn, Sp, Ac, MCC, and
AUC. These data indicate that SVM is the most suitable for
distinguishing phage enzymes.

Discriminating Phage Hydrolases From
Other Enzymes
When a phage protein is predicted as a phage enzyme, it
is necessary to immediately judge whether the enzyme is a
hydrolase. Like phage enzyme prediction, the performances of
three combined vectors on phage hydrolase prediction were
also examined by using SVM with jackknife cross-validation.
As shown in Table 3, the three combined vectors were also
processed by the feature selection algorithm, which not only
improves the Ac but also greatly reduces the dimensions.
Obviously, ANOVA can remove redundant information from
features. It should be noticed that the optimal features (61-D)
obtained from GGDC combined with PseAAC could produce
the maximum Ac of 94.3%. This phenomenon indicates that
features with a large F-value in the second group are not
suitable for expressing hydrolases. The heat map for the
features is also drawn in Figure 1B. Similarly, we compared
the performances of different classifiers. In Table 4, KNN has
yielded Ac of 81.4%, whereas KNN has obtained Ac of 84.64%.
The performance of MLP is 93% Sn, 91% Sp, 92.7% Ac, 0.837
MCC, and 0.948 AUC. Support vector machine with Radial Basis
Function (RBF) as kernel function gained the best prediction
performance (94.3% Ac).

Performance Comparison With Existing
Methods
In order to prove that our proposed model performs better
than the model by Ding H. et al. (2016), who first used
computational methods to predict hydrolases, the performance
indexes of the two models were recorded in Table 5.
In discriminating phage enzymes from nonenzymes, our
model is better in Ac and Sp that are 85.1 and 88.0%,
respectively. In discriminating phage hydrolases from other
enzymes, all the evaluated indexes of our proposed model
are better than those of Ding H. et al. (2016). Indeed,
hydrolyzing enzymes adopt two types of features to encode
samples. Compared with Ding and colleagues’ experiment,
we have selected more kinds of features in the sample
expression, which makes the digital features of the sample
more informative.

DISCUSSION

The purpose of this study is to establish a predictive model
to predict phage enzymes and hydrolases. In fact, similarity
search could be used to perform sequence analysis and function

TABLE 5 | Comparison of predictive performance with exist method.

Ac Sp Sn

Discriminating phage enzymes from nonenzymes (Ding H. et al., 2016) 84.3% 81.7% 87.1%

This study 85.1% 88.0% 83.0%

Discriminating phage hydrolases from other enzymes (Ding H. et al., 2016) 93.5% 92.8% 94.5%

This study 94.3% 93.0% 96.0%

Sn, sensitivity; Sp, specificity; Ac, accuracy.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 March 2020 | Volume 8 | Article 1839

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00183 March 21, 2020 Time: 16:1 # 6

Li et al. Predicting Bacteriophage Enzymes and Hydrolases

prediction. However, the strategy cannot work well on low-
similar sequences. Especially, the phage genes display the extreme
diversity. Protein functions are inextricably linked to correlation
of nucleotides or residues, physicochemical properties, spatial
structure, and other information. Therefore, we used multiple
characteristics to represent phage and hydrolase, but this method
has some problems that multiple features contain too much
redundant information; different types of features are suitable
for different samples. On the basis of the feature selection
technique, promising results for phage enzymes and hydrolases
prediction were achieved. In the future, we will pay more
attention on deep learning, which has solved several protein
prediction problems (Peng et al., 2018; Wei et al., 2018a,
2019; Yu et al., 2018; Lv et al., 2019) and may get well
performance on this topic. Moreover, we will establish a free
webserver that facilitates users to download data and predict
phage hydrolases.
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Watson for Oncology (WFO) is a artificial intelligence clinical decision-support system
with evidence-based treatment options for oncologists. WFO has been gradually used
in China, but limited reports on whether WFO is suitable for Chinese patients. This
study aims to investigate the concordance of treatment options between WFO and
real clinical practice for Cervical cancer patients retrospectively. We retrospectively
enrolled 300 cases of cervical cancer patients. WFO provides treatment options for
246 supported cases. Real clinical practice were defined as concordant if treatment
options were designated “recommended” or “for consideration” by WFO. Concordance
of treatment option between WFO and real clinical practice was analyzed statistically.
The treatment concordance between WFO and real clinical practice occurred in 72.8%
(179/246) of cervical cancer cases. Logistic regression analysis showed that rural
registration residences, advanced age, poor ECOG performance status, stages II-IV
disease have a remarkable impact on consistency. The main reasons attributed to
the 27.2% (67/246) of the discordant cases were the substitution of nedaplatin for
cisplatin, reimbursement plan of bevacizumab, surgical preference, and absence of
neoadjuvant/adjuvant chemotherapy and PD-1/PD-L1 antibodies recommendations.
WFO recommendations were in 72.8% of concordant with real clinical practice for
cervical cancer patients in China. However, several localization and individual factors
limit its wider application. So, WFO could be an essential tool but it cannot currently
replace oncologists. To be rapidly and fully apply to cervical cancer patients in China,
accelerate localization and improvement were needed for WFO.

Keywords: artificial intelligence, Watson for Oncology, cervical cancer, concordance, chian

INTRODUCTION

Artificial intelligence (AI) is the frontier and dominating terrain of Information Technology
which able to simulate human mental status and cognitive function (Jiang et al., 2017). With the
development of AI and medical diagnosis technology, clinical decision-support systems (CDSS)
with intelligent diagnostic function has become one of the important issues of science for medical
information (Meyer et al., 2018). Watson for Oncology (IBM) is a representative AI CDSS that
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developed by IBM Co.Ltd in United States. WFO can provide
a reasonable individualized treatment plan for cancar patients
by obtaining valuable information from medical records. WFO
first officially landed in China in 2016, until now, more than
80 hospitals use WFO as an important medical diagnostic
tool for individualized treatment of tumor (IBM, 2017). WFO
can provide counseling services for almost all cancer patients.
However, whether WFO was fit for Chinese cancer patients,
especially cervical cancer patients.

Cervical cancer is common in the female genital tract
malignant tumors, and the incidence of which is second only to
that of breast cancer among women worldwide, making it the
second-most serious cancer threatening the health and lives of
women (Jassim et al., 2018). Compared to breast cancer, cervical
cancer is more common in developing countries due to poor
health status, and it is the most common in China (Gu X. Y. et al.,
2018). And rural and remote areas are also a prevalent regions
for cervical cancer in China. But the current problem of the
medical service is that the main hospitals hold too many premium
resources, but in the meantime, the primary health agencies are
excessively lack of resources (Bao et al., 2018). Cervical cancer
patients in rural and remote areas can not reach the effective
treatment recommendation, especially at centers where cancer
expert resources are limited. So, WFO is of great significance for
Chinese patients with cervical cancer, especially patients in rural
and remote areas with limited medical resources.

Therefore, we conducted a retrospective and observational
study on cervical cancer at The Second Xiangya Hospital
Cancer Center to explore consistency between WFO and clinical
treatment recommendations supported by an expert panel of
cancer specialists for Cervical cancer patients.

MATERIALS AND METHODS

Study Population
This retrospective study was reviewed and approved by the
Medical Ethics Committee of The Second Xiangya Hospital of
Central south university (approval number was 2017-S104). We
retrospectively and randomly selected 300 cases of cervical cancer
patients from 05/2016 to 08/2018. All patients with cervical
cancer confirmed by pathology at The Second Xiangya Hospital
Cancer Center. Untreated Patients and recurrent tumors, rare
histology that not yet trained to offer treatment options by
WFO system were excluded. A total of 18% (54/300) cases
excluded from our study and 82% (246/300) cases were included
in our study. The detailed patient selection process is shown
in Figure 1.

Watson for Oncology
Watson for Oncology (IBM Corporation, United States, version
18.1R) used in our study were provided by Baheal Intelligent
Technology Co., Ltd1. The clinicopathologic data of supported
cases were extracted from medical records and entered
into the WFO system. Treatment options recommended by

1https://www.bsmartd.com

FIGURE 1 | CONSORT diagram. WFO, Watson for Oncology.

WFO were presented in three categories: Blue represents
“Recommended” with a strong evidence supported, Orange
represents “For consideration” with a potentially suitable
evidence-based alternative considered by oncologists based
on their clinical judgment, and Red represents that is “Not
recommended” that a treatment with contraindications or strong
evidence against its use.

Real Clinical Practice for Cervical Cancer
The Second Xiangya Hospital Cancer Center one of the biggest
and best oncology departments in the Hunan Province of China.
Gynecological Oncology Center is the most important part of
The Second Xiangya Hospital Cancer Center and mainly serves
cervical cancer, ovarian cancer, endometrial cancer, and other
gynecological malignant tumors. Gynecological Oncology Center
has a multidisciplinary team (MDT) composed of oncologists,
gynecologists, radiologists, pathologists, and nutritionists, et al.
MDT forms and implements a comprehensive regimen based
on NCCN guidelines and the patient’s specific conditions. This
comprehensive regimen was considered to be a real clinical
practice for cervical cancer.

Data Acquisition and Concordance
Judgment
The available clinicopathologic data of 246 patients included
a registered residence, age, performance status, pathological
type, differentiation degree, FIGO stage, lymphatic and distant
metastasis, HPV status, and detailed clinical treatment plan
were collected from Second Xiangya Hospital Cancer Center
clinical electronic medical records and inputted into WFO
system by 2 oncologists manually. Treatment options generated
by WFO and recorded through two trained oncologists. It
should be noted that in the data analysis process, real clinical
practice were categorized as concordant if treatment options
were designated “recommended” or “for consideration” by WFO.
And if the real clinical practice was not recommended by WFO
or if WFO did not provide the same treatment options, the
recommendations were considered as discordant. The discordant
cases were reevaluated by two senior oncologists provided their
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FIGURE 2 | Flow diagram of the study design. WFO, Watson for Oncology.

TABLE 1 | Clinicopathological characteristics of cervical cancer patients (N = 246).

Clinicopathological characteristics Total cases Concordant cases

Age, years, n (%)

≤45 29 (11.8) 25 (86.2)

45–65 165 (67.1) 134 (81.2)

≥65 52 (21.1) 20 (38.5)

Median age (range) 53 (35− 78) –

Registered residence, n (%)

Urban registration 81 (33.8) 78 (96.3)

Rural registration 165 (66.2) 101 (61.2)

ECOGa performance status, n (%)

0–1 points 186 (75.6) 145 (77.9)

2 points 47 (19.1) 31 (66.1)

≥3 points 13 (5.3) 3 (23.1)

FIGO stage, n (%)

I 29 (11.8) 12 (41.4)

II 101 (41.1) 87 (86.1)

III 90 (36.6) 78 (86.7)

IV 26 (10.5) 2 (7.96)

Lymphatic metastasis, n (%)

Positive 114 (46.3) 82 (71.9)

Negative 132 (53.7) 97 (73.5)

Distant metastasis, n (%)

Positive 19 (7.7) 10 (52.6)

Negative 227 (92.3) 169 (74.5)

Pathological types, n (%)

Squamous cell carcinoma 219 (89.0) 159 (72.6)

Adenocarcinoma 16 (6.5) 125 (75)

Adenosscale squamous cell carcinoma 10 (4.1) 7 (70)

Small cell carcinoma 1 (0.4) 1 (100)

Differentiation degrees, n (%)

High differentiation 48 (19.5) 35 (72.9)

Middle differentiation 90 (36.6) 64 (71.1)

Poorly differentiation 108 (43.9) 80 (74.1)

aEastern Cooperative Oncology Group, ECOG.

TABLE 2 | Concordance between WFO and real clinical practice (N = 246).

Supported cases Recommendations Availability Total

Concordant cases, n (%) 102 (41.5)a 77 (31.3)b 179 (72.8)

Discordant cases, n (%) 12 (4.8)c 55 (22.4)d 67 (27.2)

aRecommended. bFor consideration. cNot recommended. dNot available.

reasons for choosing the real treatment options. The specific
study design and procedures and are shown in Figure 2.

Statistical Analysis
SPSS20.0 statistics software (SPSS, United States) and Microsoft
Excel (2012) were employed to undergo statistical analysis.
Descriptive statistics of 246 patients were calculated and
presented as means ± standard (x ± s) or median. Differences
between the clinicopathological characteristics of the groups were
analyzed by Pearson’s χ2 test. Correlation between real clinical
practice and WFO recommendations were assessed by the chi-
square test. A logistic regression model was estimated with odds
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FIGURE 3 | Treatment concordance between WFO and real clinical practice, divided by age, registered residence, and ECOG performance status. WFO, Watson for
Oncology.

FIGURE 4 | Treatment concordance between WFO and real clinical practice, divided by FIGO stage, lymphatic and distant metastasis. WFO, Watson for Oncology.

ratios (OR) and 95% confidence intervals (CIs). Thep values were
designated as ∗P < 0.05.

RESULTS

Clinicopathological Characteristics of
Supported Cases
Of the 300 accrued cervical cancer patients, 246 patients were
eligible for WFO analysis. Overall, 82% (246/300) of our
enrolled cases were supported by WFO. Clinicopathological
characteristics of 246 supported cases are detailed in
Table 1. Among the 246 supported cases in our study,
median age was 53 years (range, 35–78 years), and rural

registration patients, stage II/II disease, squamous cell
carcinoma, middle/poorly differentiated accounted for 66.2%
(165/246), 77.7% (101 + 90/246), 89.0% (219/246), and 80.6%
(90+ 108/246), respectively.

Concordance Between WFO and Real
Clinical Practice
After reevaluated by two senior oncologists of discordant
cases, there was no change to the primary concordance.
Overall treatment concordance between WFO and real clinical
practice occurred in 72.8% (179/246) of cervical cancer cases,
among the concordant cases, treatment options that designated
“Recommended” or “For consideration” by WFO accounted for
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FIGURE 5 | Treatment concordance between WFO and real clinical practice, divided by pathological types and differentiation degrees.

41.5% (102/246) and 31.3% (77/246), respectively. Also, there
were 27.2% (67/246) of case cannot consistent with real clinical
practice, among the discordant cases, treatment options that not
recommended by WFO or did not provided by WFO accounted
for 4.8% (12/246) and 22.4% (55/246), respectively. Dates are
shown in Table 2.

Subgroup Analyses
Subgroup analyses of treatment concordance with
clinicopathological characteristics were also carried out. The
result showed that urban registration patients [96.3% (78/84)],
low age group (≤45 years and 45–65 years groups) [86.2%
(25/29), 81.2% (134/165), respectively], good ECOG performance
status (0–1 and 2 points groups) [77.9% (145/186), 66.1% (31/47),
respectively], and stage II/III disease [80.2% (87/101), 86.7%
(78/90), respectively] exhibiting higher concordance than rural
registration patients [61.2% (101/165)], advanced age group
(≥60 years) [38.5% (20/52)], poor ECOG performance status
(≥3 points) [23.1% (3/13)], and stage I/IV disease[41.4% (12/29),
7.96% (2/26), respectively]. While, there were no obvious
difference among lymphatic and distant metastasis disease,
pathological types, differentiation degrees. Dates shown in
Figures 3–5.

Logistic Regression Analysis
The logistic regression analysis showed that, compared with
patients ≤45 years of age, concordance declined significantly in
patients ≥65 years of age and older[0.08 (0.03–0.28), P = 0.032].
And Concordance was particularly low for patients with rural
registration[0.64 (0.427–0.946), P = 0.025],compare with urban
patients. Poor ECOG performance status (≥3 points) patients
exhibiting lower concordance than good ECOG performance
status patients[0.29 (0.083–1.058), P = 0.048]. Odds ratios
of concordance varied by stage, showed that compared with
stage I disease, stages II-III disease were significantly more
likely to be concordant ([2.08 (1.002–4.325), P = 0.046],[2.09

(1.001–4.381), P = 0.047], respectively), whereas, concordance
declined remarkably in stages IV disease [0.19 (0.038–0.91),
P = 0.025]. While, lymphatic and distant metastasis disease,
pathological types, differentiation degrees were not found to
affect concordance. Dates are shown in Table 3.

Analysis of Reasons for Discordant
Cases
There were four critical factors attributed to 27.2% (67/246) of
the discordant cases. Firstly, Cisplatin is the main chemotherapy
drug recommended by WFO, but in our study, of 46.4% (31/67)
cases select nedaplatin due to cannot tolerate gastrointestinal
reactions of cisplatin. Next, bevacizumab as a routine option
recommended by WFO for stage IV stage, but bevacizumab
is not in medical reimbursement plan for cervical cancer in
China, of 26.9% (18/67) patients reject bevacizumab therapy
for the financial burden. Thirdly, for stage Ib2 and IIb disease,
only concomitant radiochemotherapy was recommended by
WFO, in our study, of 19.4% (13/67) patients prefer surgical
therapy instead of concomitant radiochemotherapy. Moreover,
neoadjuvant/adjuvant chemotherapy and programmed death-
1 and ligand antibodies (PD-1/PD-L1 antibodies) drugs
recommendations are not included in the WFO system, in
our study, there were 9.1% (6/67),2.8% (2/67) patients chose
neoadjuvant/adjuvant chemotherapy and pembrolizumab
therapy. Dates are shown in Table 4.

DISCUSSION

From 2013, concordance studies between WFO and physicians
have been performed in various countries and cancer types.
A double-blind study showed that 93% concordance rate
for 638 breast cancer patients (Kaur and Singh Mann,
2018; Somashekhar et al., 2018). A retrospective study from
India for 1000 consecutive cases showed 80% concordance
between multidisciplinary team (MDT) (Baek et al., 2017).

Frontiers in Genetics | www.frontiersin.org 5 March 2020 | Volume 11 | Article 20017

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00200 March 21, 2020 Time: 16:1 # 6

Zou et al. Watson for Oncology for Cervical Cancer Patients in China

A observational study from Korea showed a 73% concordance
rate for colon cancer and a 49% concordance rate for gastric
cancer (Somashekhar et al., 2016; Suwanvecho et al., 2017).
And, a comparative Study from Korea indicated that WFO
without the gene expression assay has limited clinical utility
(Kim et al., 2018). It appears that the concordance results varies
by countries and cancer types (Zhou et al., 2018). For China,
a huge population and regional differences created a different
therapeutic experiences and considerations for cancer patients,

TABLE 3 | Logistic regression model of concordance between Watson for
Oncology and real clinical practice (N = 246).

Clinicopathological
characteristics

ORb (95%CIsc) χ2 P value

Registered residence
(Urban and Rural)

0.64 (0.427–0.946) 5.017 0.025*

Lymphatic metastasis (Pd

and Ne)
1.02 (0.694–1.503) 0.012 0.913

Distant metastasis (Pd and
Ne)

1.41 (0.641–3.12) 0.744 0.388

Age, years

≤45 (Reference) 1.00 – –

45–65 0.94 (0.527–1.685) 0.041 0.841

≥65 0.08 (0.03–0.28) 4.609 0.032*

ECOGa performance status

0–1 points (Reference) 1.00 – –

2 points 0.84 (0.512–1.399) 0.425 0.514

≥3 points 0.29 (0.083–1.058) 3.917 0.048

FIGO stage

I (Reference) 1.00 – –

II 2.08 (1.002–4.325) 3.968 0.046*

III 2.09 (1.001–4.381) 3.958 0.047*

IV 0.19 (0.038–0.91) 5.036 0.025*

Pathological types

Squamous cell carcinoma
(Reference)

1.00 – –

Adenocarcinoma 1.03 (0.476–2.244) 0.007 0.935

Adenosscale squamous
cell carcinoma

0.96 (0.359–2.588) 0.005 0.942

Small cell carcinoma 1.38 (0.086–22.187) 0.051 0.821

Differentiation degrees

High differentiation
(Reference)

1.00 – –

Middle differentiation 0.97 (0.568–1.675) 0.008 0.928

Poorly differentiation 1.01 (0.602–1.714) 0.003 0.953

aEastern Cooperative Oncology Group, ECOG. bOdds ratio,OR. cConfidence
intervals, CIs. dPositive andeNegative. *P < 0.05.

TABLE 4 | Analysis of reasons for discordant cases (N = 67).

Reasons for discordant cases Cases, n (%)

Substitution of nedaplatin for cisplatin 28 (41.8)

Reimbursement plan of bevacizumab 18 (26.9)

Surgical preference 13 (19.4)

Neoadjuvant/adjuvant chemotherapy 6 (9.1)

PD-1/PD-L1 antibodies 2 (2.8)

as well as large differences with Western countries. Also, a
retrospective study (Liu et al., 2018) reported by our center
revealed that treatment concordance between WFO and MDT
occurred in 65.8% (98/149) of lung cancer. Another retrospective
study (Zhou et al., 2019) from China showed that Ovarian cancer,
lung cancer and breast cancer obtained a high concordance,
the concordance of gastric cancer was very low, Incidence
and pharmaceuticals may be the major cause of discordance.
However, limited reports on whether WFO is suitable for Chinese
cervical cancer patients, Zhou et al. reported 14 cervical cancer
patients in this study, but the sample size is too small.

Our retrospective study provides the first evidence that
accelerates localization and improvement were needed for
WFO before comprehensive application in cervical cancer
patients in China. Although treatment options generated by
WFO were mostly concordant with real clinical practice,
there are still unresolved issues. Firstly, as mentioned in
the manual (Gu X. et al., 2018), some clinical settings are
not yet supported by WFO system. In our study, of 73.7%
(28/38) unsupported cases were recurrent tumors patients. But
compare with our center, grass-roots hospitals have a greater
proportion of patients with recurrent tumors. So, the cases
that cannot be supported by WFO system are very large
for cervical cancer patients in China. Secondly, localization
factors such as physical of patients, medical reimbursement
plan, economic condition, and patient preferences of China
were different from western countries, and they ultimately affect
the inconsistency. In our study, of 46.4% (31/67) cases select
nedaplatin due to cannot tolerate gastrointestinal reactions of
cisplatin, of 26.9% (18/67) patients reject bevacizumab therapy
for financial burden. of 19.4% (13/67) patients prefer surgical
therapy instead of concomitant radiochemotherapy. Moreover,
registered residence, age, performance status, FIGO stage have a
remarkable impact on consistency. Urban registration patients,
low age group, good performance status, and stage II/III disease
exhibiting higher concordance than rural registration patients,
advanced age group, poor performance status, and stage I/IV
disease. These personal factors make WFO unable to achieve
individualized treatment and affect the consistency significantly
in China. Finally, neoadjuvant/adjuvant chemotherapy (Sun
et al., 2018). Chemotherapeutic drugs Goffin et al. (2010) such
as gemcitabine, docetaxel, mitomycin, irinotecan, pemetrexed,
vinorelbine, and PD-1/PD-L1 antibodies (Kim et al., 2017) drugs
recommendations that performed in real clinical practice are not
included in the WFO system.

Compared with previous research, our study provides the first
evidence that WFO is not suitable for Chinese cervical cancer
patients currently, and the sample size of this study was the largest
among all cervical cancer studies performed. Also, we not only
reported the consistency between WFO and real clinical practice,
but also analyzed several influence elements and offered certainly
advises for the improvement of WFO to better suit Chinese
patients. But, our study contains some limitations. Firstly, this
was a retrospective and observational study with control groups
lacked, several unmeasured elements may influence the outcome.
Secondly, treatment preferences among different experts also
affect consistency. Thirdly, the distribution of clinicopathological
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characteristics among patients is imbalanced, for example, fewer
patients were stage IV diseases may lead to a large disagreement
for Stage IV tumors. Finally, molecular parameters, such as
mutations, gene expression or protein localization can affect
the treatment decision. But, in China, unlike lung cancer and
breast cancer, gene detection were lacked for cervical cancer.
Although there are some targeted drugs that may be effective for
cervical cancer, such as PARP inhibitors (for BRCA1 or BRCA2
mutations patients), EGFR tyrosine kinase inhibitors (for EGFR
mutations patients), gene detection is still not widely used in
China. So, in our study, Because of the lack of gene detection
datas, we cannot observe the effect of molecular parameters on
treatment decisions.

For WFO, WFO could be an essential tool for clinicians,
provides good references and literature for medical students, or
even give some treatment advice to non-specialist (Malin, 2013;
Werner et al., 2016). However, we believe that human physicians
will not be replaced by AI in the foreseeable future, WFO still
has a long way to go to replace oncologists. Medicine is not
just a science, but also a social and psychological subject. Any
tool and guidelines can only be used as a doctor’s reference,
localization factors and individual elements should considered
for different patients, especially for cancer patients with large
heterogeneous (Kemin et al., 2017). Therefore, WFO must be
significantly improved to adapt the real clinical practice in
different countries. Patient’s physical and mental state, economic
situation, complications, patient’s treatment preference and
medical reimbursement plan in different countries should be
taken into account and not just provide advice based on existing
knowledge. For China, a unique medical database with Chinese
characteristics should be created by WFO to adapt and serve
Chinese cancer patients.

CONCLUSION

In conclusion, WFO recommendations were in 72.8% of
concordant with real clinical practice for cervical cancer patients
in China. However, several localization and individual factors
limit its wider application. So, WFO cannot replace oncologists
for cervical cancer patients in China currently. WFO could
be an effective decision-support tool in cancer therapy for

Chinese physicians, it also helps to standardize the treatment of
cervical cancer. To be rapidly and fully apply to cervical cancer
patients in China, accelerate localization and improvement
were needed for WFO.
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Antifreeze proteins are important antifreeze materials that have been widely used
in industry, including in cryopreservation, de-icing, and food storage applications.
However, the quantity of some commercially produced antifreeze proteins is
insufficient for large-scale industrial applications. Further, many antifreeze proteins have
properties such as cytotoxicity, severely hindering their applications. Understanding
the mechanisms underlying the protein–ice interactions and identifying novel antifreeze
proteins are, therefore, urgently needed. In this study, to uncover the mechanisms
underlying protein–ice interactions and provide an efficient and accurate tool for
identifying antifreeze proteins, we assessed various evolutionary features based
on position-specific scoring matrices (PSSMs) and evaluated their importance for
discriminating of antifreeze and non-antifreeze proteins. We then parsimoniously
selected seven key features with the highest importance. We found that the selected
features showed opposite tendencies (regarding the conservation of certain amino
acids) between antifreeze and non-antifreeze proteins. Five out of the seven features
had relatively high contributions to the discrimination of antifreeze and non-antifreeze
proteins, as revealed by a principal component analysis, i.e., the conservation of the
replacement of Cys, Trp, and Gly in antifreeze proteins by Ala, Met, and Ala, respectively,
in the related proteins, and the conservation of the replacement of Arg in non-antifreeze
proteins by Ser and Arg in the related proteins. Based on the seven parsimoniously
selected key features, we established a classifier using support vector machine, which
outperformed the state-of-the-art tools. These results suggest that understanding
evolutionary information is crucial to designing accurate automated methods for
discriminating antifreeze and non-antifreeze proteins. Our classifier, therefore, is an
efficient tool for annotating new proteins with antifreeze functions based on sequence
information and can facilitate their application in industry.

Keywords: antifreeze proteins, support vector machine, evolution, machine learning, position-specific
scoring matrix

INTRODUCTION

Antifreeze proteins can protect cells and body fluids from freezing by hindering the nucleation,
inhibiting the growth of ice crystals, and impeding the recrystallization of ice (Kandaswamy et al.,
2011) and are thus important natural antifreeze materials that are widely used in food preservation
(Zhan et al., 2018; Provesi et al., 2019; Song et al., 2019), medicine (Lee et al., 2012; Khan et al.,
2019), and biotechnological applications (Naing and Kim, 2019). They were first found in the
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blood of Antarctic fishes about 50 years ago (DeVries
and Wohlschlag, 1969; DeVries et al., 1970). Later studies
revealed their existence in other living organisms that have to
withstand sub-zero temperatures in their lifetimes, including
plants (Griffith et al., 1992; Duman and Olsen, 1993), insects
(Husby and Zachariassen, 1980), fungi (Duman and Olsen,
1993), and bacteria (Duman and Olsen, 1993). However,
despite their superior performance at the molecular level,
the quantity of many proteins that can be commercially
produced is insufficient for large-scale industrial applications
(Nishimiya et al., 2008). Further, some important antifreeze
proteins are cytotoxic, which severely limits their potential
applications (Naing and Kim, 2019). Therefore, developing
tools to identify novel proteins with antifreeze functions is
urgently needed.

However, in spite of similar functions among antifreeze
proteins, traditional tools that search for homologous proteins
based on sequence similarity, such as Basic Local Alignment
Search Tool (BLAST) and Position-Specific Iterative (PSI)-
BLAST, perform poorly when attempting to identify antifreeze
proteins (Kandaswamy et al., 2011; Eslami et al., 2018; Nath
and Subbiah, 2018), because antifreeze proteins exhibit a
great diversity among species in their structures and sequence
properties. For example, the ice-binding sites in fishes are
moderately hydrophobic (Jia and Davies, 2002), while in
plants they are mostly hydrophilic (Ramya, 2017). Distinct
physicochemical and structural properties are also evident
even among phylogenetically related species. Previous research
on teleost fishes identified four unrelated types of antifreeze
proteins, categorized by their differences in sequence and
structural characteristics (Ewart et al., 1999). Type I antifreeze
proteins are alanine-rich α-helical proteins; type II have
C-type lectin folds of mixed α-helices and β-strands and are
composed mainly of Cys, Ala, Asn, Gln, and Thr; type III
are globular proteins with no particular repeated structure;
type IV mainly consist of Glu and Gln and have folded
α-helical bundles (Cheung et al., 2017). In insects, there
are two types of antifreeze proteins that are fundamentally
different in their primary, secondary, and tertiary structures
despite both containing two rows of Thr residues that
form β-helices (Jia and Davies, 2002). Similarly, in plants,
15 antifreeze proteins have been purified and characterized
(Gupta and Deswal, 2014), and they have low homology
and highly diverse properties regarding amino acid sequences
(Atici and Nalbantoglu, 2003). Overall, these results suggest
that antifreeze proteins may have independently evolved
their ice-binding capacities (Cheung et al., 2017) and this
has impeded our understanding of the relationship between
sequence and function.

Despite these challenges, some researchers have attempted to
build classifiers to identify antifreeze proteins based mostly on
sequence-derived properties (Doxey et al., 2006; Kandaswamy
et al., 2011; Zhao et al., 2012; Appels et al., 2018). For
example, Doxey et al. (2006) established an algorithm to
predict antifreeze proteins based on physicochemical surface
features. Their method, unfortunately, is not suitable for the
majority of proteins, as 3D crystallographic structures are

unavailable for most proteins. Later studies on predicting
antifreeze proteins used modern machine learning algorithms,
which have demonstrated their ability in other protein-related
research, such as identifying membrane proteins and their
subcategories (Chou and Shen, 2007), predicting subcellular
localization of multi-label proteins (Javed and Hayat, 2019),
and classifying protein secondary structures (Ge et al., 2019).
Most of these studies focused on amino acid composition-
related features, and various physicochemical properties of
amino acid sequences have been extensively used to identify
antifreeze proteins (Kandaswamy et al., 2011; Yu and Lu,
2011; Mondal and Pai, 2014; Pratiwi et al., 2017). In contrast,
despite the presumed convergent evolution of antifreeze
proteins, Zhao et al. (2012) built a classifier with high
performance solely based on evolutionary features derived
from position-specific scoring matrices (PSSMs), suggesting
that evolutionary information is also important for identifying
antifreeze proteins. He et al. (2015) further compared the
performances of evolutionary features with two amino acid
composition metrics (i.e., amino acid composition and pseudo
amino acid composition), and showed that features derived
from PSSMs achieved higher performance. Similarly, Yang
et al. (2015) reported that among various features pertinent
to identifying antifreeze proteins, features derived from PSSMs
accounted for the largest proportion, though another study
showed that physicochemical properties were more important
(Eslami et al., 2018). Nevertheless, these results suggest
that identifying the evolutionary information underlying the
differentiation between antifreeze and non-antifreeze proteins
is important for increasing our understanding of protein–
ice interactions.

In this study, to uncover the mechanisms of protein–ice
interactions and provide an efficient and accurate automated tool
for identifying antifreeze proteins, we identified key evolutionary
information underlying the differentiation between antifreeze
and non-antifreeze proteins. We first derived evolutionary
features from PSSMs. A problem that was not resolved
in most previous studies on building classifiers based on
machine learning algorithms is that antifreeze proteins are
rare compared to non-antifreeze proteins. This can lead the
models to focusing on non-antifreeze proteins, thus impairing
the training process and the assessment of model accuracy
(ACC) (Yang et al., 2015). Therefore, we created a pre-
processed training data set by using the Majority Weighted
Minority Oversampling TEchnique (MWMOTE) to generate
synthetic antifreeze proteins based on the weighted informative
antifreeze proteins in the raw training data set to remedy
the imbalanced training problem (Barua et al., 2014). This
method uses a clustering approach to ensure that all generated
antifreeze proteins are within some raw antifreeze protein
clusters and has been shown to outperform several other methods
(Barua et al., 2014). Thereafter, we parsimoniously selected
key features to reduce redundant and noisy information based
on a feature selection procedure. A classifier based on the
selected key features was then trained using the support vector
machine (SVM) method to discriminate antifreeze and non-
antifreeze proteins.
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MATERIALS AND METHODS

Data Sets
The benchmark data sets of antifreeze and non-antifreeze
proteins were obtained from Kandaswamy et al. (2011).
Previously, 481 antifreeze and 9439 non-antifreeze proteins with
low similarity (≤40%) were selected in the study by Kandaswamy
et al. (2011), and 221 antifreeze and all the non-antifreeze protein
sequences were retrieved from seed proteins in the Pfam database
(Sonnhammer et al., 1997). In this study, we further removed
sequences containing ambiguous residues, i.e., “X”, “B”, “U”, and
“O”. In total, 479 antifreeze and 9139 non-antifreeze protein
sequences were retained to derive features from PSSMs.

PSI-BLAST was used to assess the PSSM for each sequence
based on sequences in the non-redundant Swiss-PROT database
that share significant similarity, with three iterations and an
e-value threshold of 0.0001 (Bhagwat and Aravind, 2007; Zhu
et al., 2019). The raw PSSMs are n× 20 matrices; n rows indicate
the query protein residues with n being the length of the protein
sequence and 20 columns represent the 20 standard amino acids
that may exist in the related protein sequences. The element in ith
row and jth column assesses the frequencies of a specific amino
acid (X) at position i in the query sequence mutating to the jth
alternative amino acid (Z) in the related protein sequences during
the evolution process. Some amino acids in the rows of each raw
PSSM may appear multiple times. The rows of the same amino
acids were then summed to form a 20 × 20 matrix. Thereafter,
the matrix was transformed into a vector with 400 dimensions
[features; for details see Zhao et al. (2012)]. Thus, each element
in the vector is the occurrence of the replacement of a specific
amino acid (X) in the query protein by an alternative amino acid
(Z) in the related proteins, which indicates the conservation of
amino acid X in each query protein. A negative (low) value of X–
Z, or a positive (high) value of X–X, suggests that the mutation
rate of amino acid X to Z or other amino acids is lower than
expected by chance and thus X is conserved. Some sequences
could not be assessed in the PSSM analysis and were, therefore,
excluded. Finally, vectors based on 398 antifreeze and 7423 non-
antifreeze proteins were combined into a single data set, and
80% of the antifreeze and non-antifreeze proteins were used
as the training data set while the remaining 20% were used as
the test data set.

The training data set was then pre-processed based on
MWMOTE using the “imbalance” R package (Cordn et al., 2018)
with a ratio of 0.78 being achieved between antifreeze and non-
antifreeze proteins.

Feature Selection
Features were first ranked based on the mutual information
using an ensemble minimum redundancy–maximum relevance
(mRMR) approach (De Jay et al., 2013; Wang et al., 2018; Yuan
et al., 2018). The top ranked features were thus both the most
relevant for the discrimination of antifreeze and non-antifreeze
proteins and complementary to each other (Ding and Peng,
2003). Features were then added to the models sequentially
starting with the one with the highest rank and the classifier

was trained and evaluated based on five-fold cross-validation
and the independent test data set using the SVM method
(see below). To parsimoniously select key features to build the
classifier to discriminate antifreeze and non-antifreeze proteins,
the model preceding the one with decreased performance in the
independent test data set was retained.

Model Training and Evaluation
Support vector machine is a popular classifier which has solved
several bioinformatics problems (Li et al., 2016; Chen et al., 2017;
Bu et al., 2018; Zhang et al., 2018; Chao et al., 2019a,b; Sun
et al., 2019; Wang et al., 2019). The “caret” R package was used
to train models and tune the model hyperparameters based on
SVM (Kuhn, 2008). Model performances were assessed based
on ACC, sensitivity (SN), specificity (SP), and the area under
the receiver operating characteristics curve (AUC) using five-fold
cross-validation and the independent test data set (Tan et al.,
2019). ACC is the ratio of the number of correctly discriminated
proteins relative to the total number of proteins, assessing the
model’s overall performance. SN is the ratio of the number of
correctly discriminated antifreeze proteins relative to the number
of all true antifreeze proteins. SP is the ratio of the number
of correctly discriminated non-antifreeze proteins relative to
the number of all true non-antifreeze proteins. In contrast,
AUC considers both SN and SP, evaluating the model’s capacity
to recognize antifreeze proteins among unlabeled antifreeze
proteins, and non-antifreeze proteins among unlabeled non-
antifreeze proteins. It is thus robust to imbalanced data. Higher
AUC values indicate that a model is better at discriminating
antifreeze and non-antifreeze proteins.

Additionally, to compare the performances of classifiers based
on the raw data set with classifiers based on the pre-processed
data set (created using MWMOTE) and the performances of
classifiers based on our parsimoniously selected key features with
classifiers based on all features, classifiers were also trained and
evaluated using the raw data set and the pre-processed data set
with all features. Additionally, principal component (PC) analysis
was used to further reduce the dimensionality in all data sets
and classifiers based on the first two PCs were then trained and
their performances were plotted to visually illustrate the model
performances. To assess the importance of each selected key
feature for the first two PCs, their contributions were assessed
based on the following equation:

Contribution = r2
ij/

∑
r2
ij

where r2
ij is the correlation coefficient between the ith key feature

and the jth PC.

RESULTS

Selection of Key Features for
Discriminating Antifreeze and
Non-antifreeze Proteins
Seven features derived from PSSMs were parsimoniously selected
as key features for discriminating antifreeze and non-antifreeze
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FIGURE 1 | (A) Selection of key features derived from position-specific scoring matrices (PSSMs) for discriminating antifreeze and non-antifreeze proteins. Features
were first ranked based on the mutual information using an ensemble minimum redundancy–maximum relevance (mRMR) approach. Starting with the highest ranked
feature, the top 200 features were then sequentially added to the models. Model performances were assessed using five-fold cross-validation and an independent
test data set based on the AUC, ACC, SN, and SP. The top seven features were parsimoniously selected to build the classifier to discriminate antifreeze and
non-antifreeze proteins, and AUC, ACC, and SN then decreased in the independent test data set. (B) Distribution of antifreeze and non-antifreeze proteins along the
first two principal components (PCs). Arrows indicate the correlations between each of the seven features and PC1 and PC2. (C) Contribution of each of the seven
features to PC1 and PC2. Features are sorted in a descending order based on their contributions. The expected average contribution was 1/7, as there were seven
features and the contribution of each feature was assumed to be uniform (Kassambara and Mundt, 2017).

proteins (Figure 1A). Adding more features resulted in initial
reductions in performances in the independent test data set
regarding AUC, ACC, and SN, although with even more features
being included, the performances increased (Figure 1A). Based
on the seven features, most of the proteins were correctly
discriminated in the training data set, that is 96% and 97%
antifreeze proteins and non-antifreeze proteins were correctly
identified, respectively (Table 1). The overall ACC and AUC were
0.91 and 0.96, respectively (Table 1). In the independent test
data set, a slightly lower proportion (63%) of antifreeze proteins
were successfully identified, and 97% of non-antifreeze proteins
were correctly predicted, which led to an increase in ACC but a
decrease in AUC compared to the training data set (Table 1).

The first two PCs derived from the seven selected key features
accounted for 70% of the variation among features (Figure 1B).
Along PC1, the replacements of Cys and Trp in non-antifreeze
proteins by Ala and Met, respectively, in the related proteins
increased in line with increasing occurrences of non-antifreeze
proteins (Figures 1B,C). Similarly, along PC2, Gly and Arg in
non-antifreeze proteins were more frequently replaced by Ala
and Arg, respectively, in the related proteins. In contrast, there
were fewer replacements of Cys, Trp, and Gly in antifreeze
proteins, but more Arg was replaced by Ser (Figures 1B,C).
With only the first two PCs, relatively high performances
regarding discriminating antifreeze and non-antifreeze proteins
were achieved (Table 1 and Figure 2C). The classifier correctly
identified 94% of antifreeze proteins and 78% of non-antifreeze
proteins in the training data set and 61% of antifreeze proteins
and 95% of non-antifreeze proteins in the independent test
data set (Table 1). The ACC and AUC were 0.87 and 0.90 in
the training data set, respectively, and 0.93 and 0.82 in the
independent test data set, respectively (Table 1).

Performance of MWMOTE Method
Using the MWMOTE method to create the pre-processed data set
greatly enhanced model performances. When using all features,

almost every protein was correctly identified in the training data
set, with SN and SP values of 1.00 and, in the independent test
data set, 70% of the antifreeze proteins and 100% of the non-
antifreeze proteins were correctly discriminated (Table 1 and
Figure 2B). In contrast, although the classifier trained with all
features and the raw data set showed overall high performances
in terms of AUC, ACC, and SP, this was at the expense of correctly
identifying the antifreeze proteins, i.e., a low SN (Table 1). Most
of the proteins were predicted to be non-antifreeze proteins
and only 65% and 67% of the antifreeze proteins were correctly
recognized in the training and independent test data sets,
respectively (Table 1 and Figure 2A).

DISCUSSION

We found that pre-processing based on the MWMOTE method
improved our capacity to discriminate antifreeze and non-
antifreeze proteins. Seven out of 400 features derived from PSSMs
were parsimoniously selected as the key features that led to
relatively high performances. There was still redundant and noisy
information among these features that were minimized using a
PC analysis, with a minor loss of discrimination ability. These
results suggest that antifreeze and non-antifreeze proteins could
be differentiated based on a few features derived from PSSMs and
thus a little evolutionary information.

Differentiation of Antifreeze and
Non-antifreeze Proteins
Antifreeze proteins have been shown to have convergently
evolved from different protein families (Ewart et al., 1999; Nath
et al., 2013; Nath and Subbiah, 2018). Here, we found that
common evolutionary relationships among antifreeze proteins
may exist, i.e., Cys, Trp, and Gly are conservative and their
replacements by Ala, Met, and Ala, respectively, are rare in
antifreeze proteins. This result is surprising because Cys, Trp,
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TABLE 1 | Performances regarding discriminating antifreeze and non-antifreeze proteins based on the support vector machine (SVM) method in different data sets.

Features Five-fold cross-validation Independent test data set

AUC ACC SN SP AUC ACC SN SP

Raw data set 400 features 0.97 0.98 0.65 1.00 0.98 0.98 0.67 1.00

First two PCs 0.97 0.83 0.54 1.00 0.78 0.97 0.47 1.00

Pre-processed data seta 400 features 1.00 0.99 1.00 1.00 0.96 0.98 0.70 1.00

First two PCs 0.88 0.86 0.95 0.75 0.81 0.94 0.61 0.96

Pre-processed data seta Seven key features 0.96 0.91 0.97 0.84 0.89 0.96 0.63 0.97

First two PCs 0.90 0.87 0.94 0.78 0.82 0.93 0.61 0.95

“400 features” refers to all features derived from position-specific scoring matrices (PSSMs), “first two PCs” refers to the corresponding first two principal components
(PCs), and “seven key features” refers to the seven parsimoniously selected key features. aData set based on the Majority Weighted Minority Oversampling
TEchnique (MWMOTE). AUC, area under the receiver operating characteristic curve; ACC, accuracy; SN, sensitivity, SP, specificity.

FIGURE 2 | Performances of models for discriminating antifreeze and non-antifreeze proteins based on the first two principal components (PCs) derived from (A) all
features derived from position-specific scoring matrices (PSSMs) using the raw data set, (B) all features derived from PSSMs using the pre-processed data set
based on the Majority Weighted Minority Oversampling TEchnique (MWMOTE), and (C) the seven selected key features using the pre-processed data set. The upper
figures are based on five-fold cross-validation and the lower figures are based on the independent test data set. See Table 1 for exact performance values.
Additionally, the decision values that were used to predict the antifreeze and non-antifreeze proteins are shown.

Gly, Met, and Ala are the most hydrophobic amino acid residues
(Rose et al., 1985), have been shown to have high similarities
among each other in terms of hydrophobicity (Riek et al., 1995),
and thus the mutation rates or replacements of Cys, Trp, and
Gly by Ala, Met, and Ala, respectively, should be high (Riek
et al., 1995). The conservation of Cys, Trp, and Gly in antifreeze
proteins, therefore, suggests that evolutionary pressure may have
existed to keep these amino acids in antifreeze proteins, and
the conservation of Cys, Trp, and Gly may confer the antifreeze
function on proteins, although the underlying mechanisms are
still unclear. Similarly, Graham and Davies (2005) showed that,
despite the surprising divergency in primary sequences, both
isoforms of a highly effective antifreeze protein found in snow
fleas start with Gly. Gly is thought to be very unique and highly

conformationally flexible and it can occupy positions, such as
tight turns, that are impossible for all other amino acids (Betts
and Russell, 2003). The existence of Gly may be essential for
forming various ice-binding surfaces in antifreeze proteins (Jia
and Davies, 2002; Doxey et al., 2006). Moreover, the disulfide
bonds formed by paired Cys residues are ubiquitous among
antifreeze proteins in various taxa, including insects (Li et al.,
1998; Graether et al., 2000), bacteria (Bar et al., 2006), plants
(Hon et al., 1994; Bar et al., 2006), and fishes (Davies and Hew,
1990), which may enable proteins to resist destruction due to ice
adsorption or denaturation stress during freezing (Li et al., 1998).
Trp is an aromatic amino acid with a hydrophobic side chain, and
it tends to be buried in protein hydrophobic cores, potentially
forming ice-binding sites (Betts and Russell, 2003). Another
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possible explanation for the conservation of Cys, Trp, and Gly
in antifreeze proteins is that these amino acids have higher
propensities to form α-helixes (Koehl and Levitt, 1999), which
is important for inhibiting the growth of ice crystals (Knight
et al., 1991). In contrast to the conservation of Cys, Trp, and
Gly in antifreeze proteins, Arg in antifreeze proteins was more
frequently replaced by Ser and less frequently replaced by itself
in the related proteins, which suggests a lack of conservation of
Arg in antifreeze proteins. Similarly, Nath et al. (2013) compared
the evolutionary differences between three types of antifreeze
proteins in fishes and their corresponding homologous non-
antifreeze proteins, and they found that Arg is commonly avoided
in all types of antifreeze proteins. However, it is important to
note that the PSSMs of our antifreeze proteins were based on
comparing sequence similarities with related proteins but not
necessarily proteins with antifreeze function. Antifreeze proteins
are rare and dissimilar in their sequences, and PSI-BLAST and
BLAST have difficulty using an antifreeze protein as the query
sequence to search for new antifreeze proteins based on similarity
(Kandaswamy et al., 2011; Eslami et al., 2018; Nath and Subbiah,
2018). Thus, some of the sequences that were used to calculate the
PSSMs of our antifreeze proteins may have been non-antifreeze
protein sequences. If this is the case, the high frequency of
the replacement of Arg in antifreeze proteins with Ser in non-
antifreeze proteins (or, in other words, the high frequency of
the replacement of Ser in non-antifreeze proteins with Arg
in antifreeze proteins) may indicate an important mutation
contributing to antifreeze function. More stringent selection of
proteins during the assessment of PSSMs could help to clarify
this. Nevertheless, our results as well as the results from previous
studies indicate that identifying key evolutionary information
is important for understanding protein–ice interactions and for
understanding the development of antifreeze proteins from pre-
existing non-antifreeze proteins.

Comparison of Our Seven Key Features
With State-of-the-Art Tools for
Discriminating Antifreeze and
Non-antifreeze Proteins
With the advancements of genome sequencing, a large number
of sequenced proteins have been accumulated and need to be
functionally annotated. Many auto-annotation tools exist to
identify antifreeze proteins, such as TargetFreeze (He et al., 2015),
AFP_PSSM (Zhao et al., 2012), CryoProtect (Pratiwi et al., 2017),
and afpCOOL (Eslami et al., 2018). However, these tools use
too many features (Table 2), which may often be redundant
and lead to overfitting. We found that high performances
were achieved using only seven key features derived from
PSSMs. Compared with other methods, our method used the
smallest number of features while achieving the highest Matthews
correlation coefficient (MCC), which is the correlation between
predicted and true classifications and is robust to imbalanced data
(Boughorbel et al., 2017), and ACC values, as well as high SN and
SP (Table 2). These results indicate that our model outperforms
the state-of-the-art tools and so could be more appropriate for
discriminating antifreeze and non-antifreeze proteins.

TABLE 2 | Comparison of our seven key features derived from position-specific
scoring matrices (PSSMs) with existing machine learning methods for
discriminating antifreeze and non-antifreeze proteins using independent
test data set(s).

Method Number of features ACC SN SP MCC

Seven key features 7 0.96 0.63 0.97 0.57

iAFPa 13 0.95 0.13 0.97 0.09

AFP-Preda 25 0.77 0.91 0.77 0.23

AFP-PseAACa 30 0.85 0.85 0.85 0.27

TargetFreezea 300 0.91 0.92 0.91 0.04

CryoProtecta 420 0.88 0.87 0.88 0.31

AFP_PSSMb 400 0.93 0.76 0.93 N/A

afpCOOLc 641 0.96 0.72 0.98 N/A

aResults were obtained from a study by Pratiwi et al. (2017). bResults were
obtained from a study by Zhao et al. (2012). cResults were obtained from a
study by Eslami et al. (2018). AUC, area under the receiver operating characteristic
curve; ACC, accuracy; SN, sensitivity; SP, specificity; MCC, Matthews correlation
coefficient. N/A: not available.

CONCLUSION

Understanding the evolution of antifreeze proteins is important
for uncovering the interactions between proteins and ice,
and, more broadly, the adaptation of organisms to their
environments. We found that the conservation of several
key amino acids showed opposite tendencies in antifreeze
and non-antifreeze proteins, suggesting that there has
been strong selection pressure related to these amino acids
leading to the differentiation between antifreeze and non-
antifreeze proteins regarding their ice-binding capacities.
Moreover, we showed that evolutionary information is crucial
for designing accurate automated tools for discriminating
antifreeze and non-antifreeze proteins. Therefore, our model,
which is based on seven key features derived from PSSMs
and outperforms the state-of-the-art tools, is an efficient and
crucial tool to help to identify new antifreeze proteins and
facilitate their use.
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Annotating the functional properties of gene products, i.e., RNAs and proteins, is a

fundamental task in biology. The Gene Ontology database (GO) was developed to

systematically describe the functional properties of gene products across species, and

to facilitate the computational prediction of gene function. As GO is routinely updated, it

serves as the gold standard and main knowledge source in functional genomics. Many

gene function prediction methods making use of GO have been proposed. But no

literature review has summarized these methods and the possibilities for future efforts

from the perspective of GO. To bridge this gap, we review the existing methods with an

emphasis on recent solutions. First, we introduce the conventions of GO and the widely

adopted evaluation metrics for gene function prediction. Next, we summarize current

methods of gene function prediction that apply GO in different ways, such as using

hierarchical or flat inter-relationships betweenGO terms, compressingmassive GO terms

and quantifying semantic similarities. Althoughmany efforts have improved performance

by harnessing GO, we conclude that there remainmany largely overlooked but important

topics for future research.

Keywords: gene ontology, gene function prediction, functional genomics, directed acyclic graph, inter-

relationships, semantic similarity

1. INTRODUCTION

Functional annotations of gene products, i.e., proteins and RNAs, can promote the progress of drug
development (Barabási et al., 2011; Xuan et al., 2019), disease analysis (Kissa et al., 2015; Zeng et al.,
2015; Zhang et al., 2019), gene set enrichment analysis (Zheng andWang, 2008; Mi et al., 2013), and
many other domains (Radivojac et al., 2013; Jiang et al., 2016; Shehu et al., 2016; Zhou et al., 2019).
Advances in bio-technologymake it possible to perform high-throughput experiments, which yield
diverse functional information about gene products, at decreasing costs. The key task has shifted
from collecting such data to analyzing the data with a unified functional description scheme. To
address this problem, some paradigms (Ashburner et al., 2000; Ruepp et al., 2004; Dessimoz and
Škunca, 2017) aim to describe the functional properties of gene products in a formal and species
neutral way, as well as to assist computational gene function prediction. Among these paradigms,
Gene Ontology (GO) (Ashburner et al., 2000) andMIPS Functional Catalog (FunCat) (Ruepp et al.,
2004) are themost often used. Compared with FunCat, GO ismore comprehensive, is continuously
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updated, has more affiliated functional annotations, and is more
widely used. Therefore, we focus on function predictionmethods
using GO.

GO is composed of three ontologies: molecular functional
ontology (MFO), biological process ontology (BPO), and cellular
component ontology (CCO) (Ashburner et al., 2000). MFO
describes the elemental activities of a gene product at the
molecular level (i.e., binding and catalysis); BPO captures the
beginning and end, pertinent to the functioning of integrated
living units: cells, tissues, organs, and organisms; CCO describes
the parts of cells and their extracellular environments. Each
ontology consists of a set of ontological terms (GO terms), which
are organized in a hierarchy, or directed acyclic graph (DAG), as
shown in Figure 1. This DAG can be generated from the ontology
file with moderate scripts (i.e., Matlab, R, and Python). In the
Supplementary Material, we provide some exemplar codes for
generating an association matrix from GO and to visualize the
Ontology. Each GO term is defined by a unique alphanumeric
identifier and can be viewed as a vertex of the graph, and the
function is described using controlled words. The edge encodes
the relationships (is a, part of, and regulate) between GO terms.
For example, “GO:0043473” represents the pigmentation, and
“GO:0048066” describes the developmental pigmentation; the
two terms are connected by a line with “I,” which means that
the developmental pigmentation is a subtype of pigmentation.

GO annotation is another component of GO, and it stores
the currently known functional knowledge of gene products.
Each positive annotation relates a gene with a GO term, and
indicates the gene product carries out the function described
by this term. Similarly, each negative annotation indicates the
gene product does not perform the function described by this
term. The GO consortium (Ashburner et al., 2000) independently
or collaboratively annotate genes with GO terms from model

GO:0005575 GO:0008150 GO:0003674

GO:0043473 GO:0050789

GO:0043474 GO:0048066 GO:0048519 GO:0048518

GO:0043324 GO:0048070 GO:0006856

GO:0048087GO:0048086

GO:0048080 GO:0048074 GO:0048081 GO:0048075

GO:0005575 -> cellular_component

GO:0003674 -> molecular_function

GO:0008150 -> biological_process

GO:0043473 -> pigmentation

GO:0050789 -> regulation of biological process

GO:0043474 -> pigment metabolic process involved in pigmentation

GO:0048066 -> developmental pigmentation

GO:0048519 -> negative regulation of biological process

GO:0048518 -> positive regulation of biological process

GO:0043324 -> pigment metabolic process involved in developmental pigmentation

GO:0048070 -> regulation of developmental pigmentation

GO:0006856 -> eye pigment precursor transport

GO:0048086 -> negative regulation of developmental pigmentation

GO:0048087 -> positive regulation of developmental pigmentation

GO:0048080 -> negative regulation of cuticle pigmentation

GO:0048074 -> negative regulation of eye pigmentation

GO:0048081 -> positive regulation of cuticle pigmentation

GO:0048075 -> positive regulation of eye pigmentation

R
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FIGURE 1 | Snapshot of a directed acyclic graph from Gene Ontology. Each ontological term is represented by an alphanumeric identifier, and its biological function

is described by controlled words. These GO terms are hierarchically connected with different types of directed edges. The level of a GO term in the DAG is determined

by its furthest distance to the root GO term (“GO:0008150” in BPO, “GO:0005575” in CCO, and “GO:0003674” in MFO). For example, “GO:0048087” is a direct child

and also a grandson of “GO:0048066,” and its furthest distance to the root term is 5, while “GO:0006856” is another direct child of “GO:0048066” and its furthest

distance to the root is 4, so “GO:0006856” is plotted at a higher level than “GO:0048087”.

organisms (or species) of wide interest among biologists, such
as Homo sapiens, Mus musculus, Arabidopsis thaliana, and
so on. However, our current knowledge about the functional
taxonomy of gene products is still immature. Therefore, both
the GO hierarchy and annotations are regularly updated with
new knowledge and archived for reference. The collected GO
annotations are still quite incomplete, imbalanced, and rather
shallow (Rhee et al., 2008; Thomas et al., 2012; Dessimoz and
Škunca, 2017). For example, different species have different
distributions of GO annotations; zebrafish is heavily studied in
terms of developmental biology and embryogenesis, while rat
is the standard model for toxicology (Dessimoz and Škunca,
2017). The portion of negative annotations is much smaller than
positive ones, because a negative result may be due to inadequate
experimental conditions and is often deemed as less useful
and publishable than a positive annotation. By December 2019,
GO included more than 45,000 terms, and each gene was only
annotated with several or dozens of these terms. Therefore, it is
rather difficult to accurately infer the associations between the
genes and the many GO terms.

Each GO term can be modeled as a semantic label and, thus,
the gene function prediction task can be treated as a classification
problem to determine whether the label is positive for the gene or
not. Early gene function prediction solutions simply utilized this
annotation information (Schwikowski et al., 2000; Hvidsten et al.,
2001; Raychaudhuri et al., 2002; Schug et al., 2002; Troyanskaya
et al., 2003; Karaoz et al., 2004), and converted the problem
into a plain binary (or multi-class) classification task (Hua and
Sun, 2001; Lanckriet et al., 2003; Leslie et al., 2004). Such
methods ignored the correlations between the GO terms and
the imbalanced characteristics of terms; therefore, their accuracy
was low. Since a gene is often simultaneously annotated with a
set of structurally organized GO terms, some researchers model
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FIGURE 2 | The number of published papers related to GO-based gene

function prediction over 10 years.

gene function prediction as a multi-label or structural output
prediction task (Barutcuoglu et al., 2006; Obozinski et al., 2008;
Zhang and Zhou, 2014; Kahanda and Ben-Hur, 2017). Others
attempted to use the inter-relationships among GO terms, and
introduced a variety of solutions based on multi-label learning.
These generally obtained an improved accuracy (Mostafavi et al.,
2008; Mostafavi and Morris, 2010; Yu et al., 2012a, 2015a).

We utilizedWeb of Science1 to search articles related to gene
function prediction using GO published in the past 10 years
through a keyword search: “gene ontology and gene function
prediction.” The statistic counts are shown in Figure 2. We can
see that research interest in this topic is increasing. As the need
of human knowledge (i.e., GO and its annotations) for artificial
intelligence in biology increases, we believe the study of GO for
gene function prediction and for other biomedical data mining
tasks will be fast growing. Several excellent surveys provide
a comprehensive literature summation of the progress in gene
function prediction (a.k.a. protein function prediction) and the
studies of GO from different perspectives (Pandey et al., 2006;
Tiwari and Srivastava, 2014; Valentini, 2014; Mazandu et al.,
2016; Shehu et al., 2016; Dessimoz and Škunca, 2017). However,
to the best of our knowledge, none of them focus on harnessing
GO for gene function prediction.

Therefore, we give a comprehensive review of GO-based
gene function prediction methods ( categorized in Figure 3). The
three main issues in gene function prediction are summarized
on the left side of Figure 3. Categories of computational
methods that combat one or two of these issues are on the
right side of Figure 3. Each of these methods is detailed in the
following sections.

The rest of this review is organized as follows. We introduce
the workflow of gene function prediction, conventions in GO and
typical evaluation metrics in section 2. In section 3, we categorize
the existing GO-based gene function prediction methods. In
section 4, we summarize remaining issues, as well as some
interesting but less explored topics in gene function prediction.
Section 5 concludes the survey.

1webofknowledge.com

2. RELATED KNOWLEDGE

Gene function prediction methods mainly utilize the structure
of GO and biological features (including nucleotide/amino acids
sequences, gene expression, and interaction data, etc.) of genes.
Therefore, we first review the basic workflow of gene function
prediction, introduce the True Path Rule, and evidence codes
from GO, and then present the widely-used evaluation metrics
for gene function prediction.

2.1. The Workflow of Gene Function
Prediction
The GO file and annotation files are publicly accessible
at http://geneontology.org/. They are regularly updated and
archived. GO can be represented by a DAG (G ∈ R

m×m for
m terms). The GO annotations are usually encoded by a gene-
term association matrix (Y ∈ R

n×m for n genes with respect tom
GO terms). If gene i is annotated with t or t’s descendants, then
Y(i, t) = 1; if this gene is not annotated with t or its ancestor,
then Y(i, t) = −1; otherwise, Y(i, t) = 0. We want to remark
that Y(i, t) = 0 simply indicates that till now there is no evidence
that this gene does or does not carry out the function related
to term t. This specification is based on the incompleteness and
open-world assumption of GO annotations (Schnoes et al., 2013;
Dessimoz and Škunca, 2017). If X ∈ R

n×d stores the numeric
features of these genes, then the function prediction task can be
seen as a classification task that makes use of Y and input pattern
X to train amodel, which can predict the association probabilities
between these (or new) genes and GO terms.

Existing methods of computational gene function prediction
generally focus on the three tasks ( illustrated in Figure 4):
(i) predicting missing (new) annotations, which updates some
entries in Y with value 0 into 1 to identify new functional
annotations of genes; (ii) identifying noisy annotations, which
updates some entries in Y with value 1 into −1 to remove these
false positive annotations; (iii) predicting negative examples,
which updates some entries in Y with value 0 into −1 to state
that the gene clearly does not carry out this function. The first
task has been extensively studied, while the latter two tasks are
attracting research interest.

The evaluation protocol for gene function prediction is
generally performed one of two ways. One way is called history
to recent, which takes advantage of previously archived GO
annotations to train a model and evaluate the model’s predictions
by referring to more recent GO annotations. The second way is
called dataset partition (or cross-validation), which divides the
archived GO annotations into two (or three) sets, the first one (or
two) sets for training (or tuning) the predictor, and the remaining
set for testing the predictor. There are three main differences
between the two ways. First, from the view of selecting training
and testing sets, the history to recent evaluation is affected by the
time span, since GO annotations are regularly updated. A time
span of one or 2 years is often adopted. The dataset partition
evaluation is influenced by the proportion of training and testing
sets; a higher proportion of training sets generally gives better
results. Second, from the prediction results, the history to recent
way evaluates the fixed, recent annotations and, thus, it does
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FIGURE 3 | Three issues in gene function prediction (left), and categorization of existing computational solutions based on GO (right).

FIGURE 4 | Exemplar tasks of gene function prediction, which include predicting missing, negative, and noisy annotations.

not have a variance. In contrast, the dataset partition evaluation
has to repeat multiple, independent runs to avoid the impact
of random partition, and the average results and variances are
both influenced. The results obtained in the history to recent
evaluation are generally better than those obtained by the dataset
partition evaluation. That is because history to recent evaluation
uses all the genes and annotations for training, while dataset
partition only uses genes in the training set and excludes genes
in the testing set. Third, from the application view, the history
to recent evaluation is deemed as more realistic and is more

popular. Since GO annotations are regularly updated, the history
to recent can reflect the potential of the model with up-to-data
annotations. In contrast, the dataset partition may suffer from
a circular prediction caused by the complex inter-connections
between the partitioned training and testing sets.

2.2. Conventions in GO
2.2.1. True Path Rule
The True Path Rule is one of the most important rules in
GO (Blake, 2013), and should be respected in gene function
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prediction. If a gene is annotated with GO term t, then this gene
is also annotated with t’s ancestor terms. Conversely, if this gene
does not have the function described by t, then it should not
be annotated with t’s descendant terms other. From this rule,
we have

p(t|par(t)) ≥ p(t|gpar(t)) (1)

p(t|gpar(t)) ≥ p(t|uncle(t)) (2)

where par(t) denotes the parent term of term t, gpar(t) is the
grandparent term of t, and uncle(t) is the uncle (parent’s sibling)
term of t. p(t|par(t)) is the conditional probability that a gene is
annotated with t given this gene is already annotated with par(t).
These equations imply that if a gene is annotated with GO terms
par(t) [or uncle(t)], then this gene is also annotated with gpar(t)
(if any), but not vice versa.

Given the structural relationships between terms, gene
function prediction can be viewed as a structure output or multi-
label learning problem (Barutcuoglu et al., 2006; Obozinski et al.,
2008; Yu et al., 2012a; Zhang and Zhou, 2014; Kahanda and
Ben-Hur, 2017; Kulmanov et al., 2017). The structure or multi-
label predictions are consistent if they obey the True Path Rule
or satisfy Equations (1, 2). According to this rule, a positive
prediction for a term but a negative prediction for its ancestor
terms with respect to the same gene are inconsistent predictions.
In other words, a positive prediction for a term implies positive
predictions for all the ancestors, and a negative prediction implies
negative associations for all the descendant terms.

2.2.2. Evidence Code
Each GO annotation is tagged with one or more evidence
codes, which state the type of evidence (or source) from which
the annotation is collected. GO adopts 21 evidence codes
and groups them into four categories: (i) Experimental: EXP
(Inferred from Experiment), IDA (Inferred from Direct Assay),
IPI (Inferred from Physical Interaction), IMP (Inferred from
Mutant Phenotype), IGI (Inferred from Genetic Interaction),
and IEP (Inferred from Expression Pattern); (ii) Computational:
ISS (Inferred from Sequence or structural Similarity), ISO
(Inferred from Sequence Orthology), ISA (Inferred from
Sequence Alignment), ISM (Inferred from Sequence Model),
IGC (Inferred from Genomic Context), IBA (Inferred from
Biological aspect of Ancestor), IBD (Inferred from Biological
aspect of Descendant), IKR (Inferred from Key Residues),
IRD (Inferred from Rapid Divergence), RCA (Inferred from
Reviewed Computational Analysis), and IEA (Inferred from
Electronic Annotation); (iii) Author: TAS (Traceable Author
Statement) and NAS (Non-traceable Author Statement);
(iv) Curatorial: IC (Inferred by Curator) and ND (No
biological Data Available) (Consortium et al., 2017). The
specific meanings of these evidence codes can be found at
http://www.geneontology.org/page/guide-go-evidence-codes.

Except IEA, all other evidence codes are curated by curators.
Several studies investigate the quality of GO annotations
from the perspective of evidence codes. Thomas et al. (2007)
proposed to apply evidence codes as indicator for the reliability

of annotations, and found that the annotations achieved by
experimental and author statement are more reliable than others.
Clark and Radivojac (2011) investigated the quality of NAS and
IEA annotations, and found IEA annotations were much more
reliable than NAS ones in MFO branch. Gross et al. (2009)
considered evolutionary changes to evaluate stability and quality
of different evidence codes. Buza (2008) estimated the annotation
quality with respect to terms in BPO via a rank of evidence codes.
Jones et al. (2007) found that a high false positive rate is obtained
when leveraging ISS annotations and sequence data as the basis
for prediction. Yu et al. (2017c) adopted evidence codes to weight
the annotations and to identify the noisy annotations.

2.3. Evaluation Metrics
Multiple evaluation metrics can be adopted to quantify the
results of gene function prediction. Given the complexity of
gene function prediction, these metrics aim to evaluate the
performance from different aspects (Radivojac et al., 2013; Jiang
et al., 2016). For recent gene function prediction,AUC, Fmax, and
Smin are recommended by CAFA (Critical Assessment of protein
Function Annotation algorithms) (Radivojac et al., 2013; Jiang
et al., 2016; Zhou et al., 2019). AUC defines different thresholds
to plot the receiver-operating characteristics curve of each GO
term, and then calculates the average-area value of these terms.

Fmax is the overall maximum harmonic mean of precision
and recall across all possible thresholds on the predicted gene-
term association matrix (Jiang et al., 2016). The formal definition
of Fmax is

Fmax = max
θ

2pre(θ)rec(θ)

pre(θ)+ rec(θ)
(3)

pre(θ) =
1

m(θ)

m(θ)
∑

i=1

TPi

TPi + FPi
(4)

rec(θ) =
1

n

n
∑

i=1

TPi

TPi + FNi
(5)

where m(θ) is the number of genes, which have at least one
predicted score ≥ θ . TPi counts the number of true positive
predictions, FPi is the number of false positive predictions and
FNi counts the number of false negative predictions for gene i.

Smin utilizes information theoretic analogs based on the GO
hierarchy to evaluate the minimum semantic distance between
the predictions and ground-truths across all possible thresholds
(Jiang et al., 2014). The formal definition of Smin is

Smin = min
θ

√

ru(θ)2 +mi(θ)2 (6)

ru(θ) =
1

n

n
∑

i=1

∑

t

IC(t)l(t /∈ pi(θ) ∧ t ∈ Ti) (7)

mi(θ) =
1

n

n
∑

i=1

∑

t

IC(t)l(t ∈ pi(θ) ∧ t /∈ Ti) (8)
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where IC(t) is the information content of the term t, which
estimates a term’s specificity by its frequency of annotation
to genes (Lin, 1998). pi(θ) denotes the set of terms with
predicted scores ≥ θ for gene i, and Ti denotes the set of
terms annotated to that gene. In addition, the area under
the precision-recall curve (AUPRC) is also widely used as an
evaluation metric. Unlike AUC, it accounts for the imbalance
in the GO terms and is also more discriminant than AUC
(Guan et al., 2008; Peña-Castillo et al., 2008).

Gene function prediction can be viewed as a multi-label
classification problem (Yu et al., 2012a; Zhang et al., 2012).
Evaluation metrics for multi-label learning are also used
to quantify the performance of gene function prediction,
such as MicroAvgF1, MacroAvgF1, RankingLoss, Coverage, and
AvgPrecision. MicroAvg-F1 calculates the F1 measure from the
predictions of different GO terms as a whole; it is more affected
by the performance of terms that have more relevant genes.
MacroAvgF1 averages the F1 scores of different GO terms,
and is more affected by the performance of sparse GO terms
with fewer relevant genes. RankingLoss evaluates the average
fraction of GO-term pairs that are incorrectly ranked. Coverage
examines the search steps to cover all relevant annotations from
a predicted gene-term association matrix. AvgPrecision evaluates
the average fraction of GO terms ranked above a particular GO
term. The formal definitions of these multi-label evaluation
metrics can be found elsewhere (Zhang and Zhou, 2014; Gibaja
and Ventura, 2015). Here, we want to highlight that these
metrics quantify the results of gene function prediction from
different perspectives. Any single prediction model generally
cannot consistently outperform all others across each of
these metrics.

3. CATEGORIZATION OF EXISTING
SOLUTIONS

It is difficult to give a pure categorization of GO-based gene
function prediction solutions since there are always overlaps.
In this paper, we classify the existing solutions according to
whether hierarchical inter-relations are used between the GO
terms, and whether the massive GO terms are compressed.

3.1. Gene Function Prediction Using
Inter-Relations Between GO Terms
GO uses a DAG to hierarchically organize the GO terms. This
DAG encodes domain knowledge of biology. Evidence suggests
that using the inter-relations between GO terms can boost the
performance of gene function prediction (Tao et al., 2007; Pandey
et al., 2009; Done et al., 2010). The inter-relations between GO
terms can be measured from different viewpoints (Teng et al.,
2013; Peng et al., 2018), and can be roughly grouped into two
categories, flat and hierarchical. The flat inter-relations simply
consider the occurrence of two GO terms annotated to the same
genes, without explicitly using the hierarchical structure between
the terms. The hierarchical inter-relations additionally account
for the ontology structure. Based on the target tasks, we further
divide those two methods into three subtypes based on whether
they predict missing, noisy or negative annotations of genes, as
listed in Table 1.

3.1.1. Flat Inter-Relations-Based Solutions
Early solutions simply treated gene function prediction as a
binary (or multi-class) classification problem (Hua and Sun,
2001; Lanckriet et al., 2003; Leslie et al., 2004). These solutions

TABLE 1 | Categories of solutions that use different inter-relations between GO terms.

Solutions Inter-relations Basic techniques

Predicting missing annotations

ProWL (Yu et al., 2012b) Flat Weak label learning

ProDM (Yu et al., 2013a) Flat Weak label learning

ProHG (Liu et al., 2016) Flat Random walks

ITSS (Tao et al., 2007) Hierarchical Semantic similarity

NtN (Done et al., 2010) Hierarchical Singular value decomposition

dRW (Yu et al., 2015d) Hierarchical Random walks

PILL (Yu et al., 2015b) Hierarchical Random walks

DeepGO (Kulmanov et al., 2017) Hierarchical Deep learning

NewGOA (Yu et al., 2018a) Hierarchical Bi-random walks

AsyRW (Zhao et al., 2019b) Hierarchical Bi-random walks

Identifying noisy annotations

NoisyGOA (Lu et al., 2016) Hierarchical Semantic-based kNN

NoGOA (Yu et al., 2017c) Hierarchical Sparse representation

NFA (Lu et al., 2018) Hierarchical Sparse representation

Selecting negative annotations

ALBias (Youngs et al., 2013) Flat Bayesian model

ProPN (Fu et al., 2016b) Flat Random walks

SNOB (Youngs et al., 2014) Hierarchical Bayesian model

NETL (Youngs et al., 2014) Hierarchical Topic model

IFDR (Yu et al., 2017b) Hierarchical Semi-supervised linear regression

NegGOA (Fu et al., 2016a) Hierarchical Random walks
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accounted for neither the flat nor the hierarchical inter-relations
between GO terms. As a result, they are generally less accurate
than more advanced solutions (Tao et al., 2007; Pandey et al.,
2009; Done et al., 2010; Liu et al., 2016), which take into account
the various inter-relation among GO terms.

To predict newGO annotations of genes, Elisseeff andWeston
(2002) pioneered a rank-based support vector machine that
ranked relevant annotations of genes ahead of irrelevant ones.
Yu et al. (2012a) and Zhang et al. (2012) used the empirical
co-occurrence of two GO terms annotated to the same genes
to predict new annotations of genes, and Yu et al. (2013b,
2015a) further selectively fused multiple functional networks for
gene function prediction. To replenish the missing annotations
of partially annotated genes, Yu et al. (2012b) proposed a
gene function prediction model based on weak label learning
(ProWL), in which the labels of the annotated training data were
incomplete. ProWL performs the prediction for one GO term
at a time. To solve this problem, Yu et al. (2013a) presented an
algorithm called ProDM, which uses the maximized dependency
between the features and GO annotations of genes to predict
missing (or new) GO annotations of genes. Chicco et al. (2014)
took advantage of the equivalence between a truncated singular
value decomposition and an autoencoder neural network, and
employed an autoencoder on the gene-term association matrix
to predict missing annotations of genes.

To identify negative examples (or negative annotations with
respect to a GO term/gene), some models (Mostafavi andMorris,
2009; Cesa-Bianchi et al., 2012) utilized heuristics to determine
negative examples first and, thus, reduce the impact of an
absence of negative examples in discriminative learning. Next,
these models merged the selected negative examples to make
a prediction. For example, Guan et al. (2008) assumed that
the negative examples of a given term were all genes not
annotated with that term. Mostafavi and Morris (2009) and
Cesa-Bianchi et al. (2012) presumed that negative examples of
a target term came from the genes which were not annotated
with sibling terms of that term. This hypothesis may be often
violated, since a gene may be annotated with one or more of
those sibling terms as more experimental evidence becomes
available. Youngs et al. (2013) introduced a model called
ALBias, which assumed that the negative examples of a gene
should root in the terms with the smallest probability of being
annotated to that gene. The negative examples selected by ALBias
can boost the performance of gene function predictions. To
take advantage of information about features of genes and
the available-but-scanty negative examples, Fu et al. (2016b)
proposed a gene function prediction approach using positive
and negative examples (ProPN). In ProPN, a signed hybrid
directed graph encodes the positive and negative examples, the
interactions between genes and the flat inter-relations between
terms. Then, label propagation on the graph identifies the
negative examples.

Irrespective of the target task, these solutions generally focus
on using the co-occurrence of GO terms annotated to the
same genes. Although some of them also use the annotations
augmented by True Path Rule, they still do not explicitly
include the important hierarchical inter-relations among the
GO terms.

3.1.2. Hierarchical Inter-Relations-Based Solutions
Many models use the hierarchical inter-relations between GO
terms and prove that the appropriate use of inter-relations can
improve the gene function prediction (Tao et al., 2007; Done
et al., 2010; Yu et al., 2015b). For example, Barutcuoglu et al.
(2006) organized the predictions obtained from multiple binary
classifiers for different terms in a Bayesian network derived
from the GO hierarchy. Valentini (2011) and Cesa-Bianchi
et al. (2012) further introduced a bi-directional asymmetric
flow of information based on the GO hierarchy using an
ensemble method , in which the positive predictions for a node
propagated to its ancestors in a recursive way, while the negative
predictions propagated to its offsprings. Obozinski et al. (2008)
focused on calibrating and combining independent predictions
to obtain a set of probabilistic predictions that are consistent
with the topology of the ontology. Kahanda and Ben-Hur (2017)
proposed a structured output solution that adopted a structural
kernel function.

King et al. (2003) directly applied the annotation patterns
of genes to induce a decision tree or Bayesian classifier to
predict gene functions. However, neither classifiers was reliable
for sparse GO terms, which are annotated with too few
(≤10) genes. Tao et al. (2007) quantified the semantic similarity
between genes by combing the hierarchical relationships between
terms and known GO annotations of genes, then using a k
nearest neighbor (kNN) classifier with the semantic similarity
to predict unknown annotations of genes. Pandey et al. (2009)
employed Lin’s similarity (Lin, 1998) to capture the inter-
relations between hierarchically organized terms and to infer
annotations of genes. Done et al. (2010) introduced a method
called NtN, which applies singular value decomposition (SVD)
(Golub and Reinsch, 1971) on the gene-term association matrix,
whose entries are weighted by the term frequency-inverse
document frequency and GO hierarchy; thus, the semantic
relationships between genes and between terms were explored
and the missing associations between genes and terms were
completed. Yu et al. (2015b) utilized the hierarchical and flat
inter-relations among terms to predict additional annotations
of partially annotated genes. However, this solution ignored
GO terms in the GO hierarchy that were not yet annotated
to studied genes. To solve this problem, Yu et al. (2015d)
introduced a downward Random Walks model (dRW), which
performed random walks on the GO hierarchy while taking
the terms annotated to a gene as the initial nodes. Given
the structural difference between the GO terms subgraph and
the genes subgraph, Yu et al. (2018a) proposed a method
called NewGOA, which used a bi-random walk strategy on
a hybrid graph to predict new annotations of genes. Zhao
et al. (2019b) quantified the individual walk-lengths for each
node of a hybrid network composed of genes, GO terms
and their hierarchical relations; then, a random walk with
individual walk-lengths on the network was performed to
achieve cross-species gene function prediction. Kulmanov et al.
(2017) developed a deep learning-based approach that utilized
the GO structure as background information to optimize
the predictions.

To select negative examples, Youngs et al. (2014) proposed
two algorithms: selection of negatives through observed bias
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(SNOB) and negative examples from topic likelihood (NETL).
SNOB approximated the empirical conditional probability
between terms using both direct and GO-hierarchy augmented
annotations. NTEL assumed a gene is a document and all terms
affiliated with that gene are words of that document; then it
used a Latent Dirichlet Allocation topic model (Blei et al.,
2003) to select negative examples. Fu et al. (2016a) proposed
a negative GO annotations selection approach (NegGOA)
that leveraged GO hierarchy, random walks, and co-occurrence
patterns of annotations to select negative examples of a gene.
Experimental study has demonstrated that NegGOA suffered
less from incomplete annotations than NETL or SNOB, and
that the selected negative examples improved the performance
of gene function prediction. Yu et al. (2017b) applied a random
walk on the GO hierarchy and biological network to enrich the
links between nodes, and then factorized the updated relational
matrices of hierarchy and the network into two low-rank
numeric matrices (one for the feature data matrix and the other
for the GO label matrix), and finally imposed a semi-supervised
classification on the two low-rank matrices to infer positive or
negative annotations of genes.

The GO hierarchical structure has also been used to identify
noisy annotations, which is a less-studied but practical topic
of gene function prediction. Since GO annotations of genes
are collected from different sources (like crowdsourcing), these
annotations are inevitably inaccurate (Huntley et al., 2014). Lu
et al. (2016) proposed a novel model (NoisyGOA) that measured
the taxonomic similarity between ontological terms using the
GO hierarchy and the semantic similarity between genes using
annotations. Next, NoisyGOA utilized the GO annotations of a
gene’s neighbors to aggregate annotations of the gene. Then, it
takes the positive annotations with the lowest aggregated scores
as noisy annotations. However, NoisyGOA does not evaluate
the reliability of different annotations, and includes noisy
annotations when quantifying the semantic similarity between
genes. To address that, Lu et al. (2018) preset weights for different
evidence codes and upward-propagated weights to ancestor
annotations via the GO hierarchy. Next, they measured the
semantic similarity between genes by l1-norm regularized sparse
representation on the weighted gene-term association matrix,
and took advantage of annotations of semantic neighbors to
identify noisy annotations of a gene. Further, Yu et al. (2017c)
introduced a more advanced and adaptive approach (NoGOA),
which used evidence codes of annotations to deferentially weight
annotations and sparse representation to quantify the similarity
between genes to identify noisy annotations.

Overall, these solutions each model GO by using the
pattern of GO annotations and/or GO hierarchy. Therefore, they
generally obtain a better performance than counterparts without
such modeling.

3.2. Gene Function Prediction by
Compressing Massive GO Terms
GO now includes more than 45,000 GO terms, and most
GO annotations of genes are sparse and incomplete. As such,
predicting the associations between genes and massive terms is

rather difficult. Some solutions (Emmert-Streib and Dehmer,
2009; Li et al., 2009; Yu et al., 2018a) use different techniques
to utilize the GO hierarchy graph and to boost performance
with respect to sparse GO terms, which are annotated to too
few genes. However, they still have to handle massive GO terms.
In actual fact, the huge number of GO terms also causes a
heavy computation burden for GO-based semantic similarity
studies (Mistry and Pavlidis, 2008; Yu et al., 2015d). To alleviate
this difficulty, researchers have tried to compress massive terms,
and predict gene functions in a compressed label space. Based
on the adopted techniques, existing solutions can be divided
into two types: (i) matrix factorization-based and (ii) hashing
coding-based techniques. These methods are summarized in
Table 2. Obviously, these solutions have some overlaps with the
ones introduced in the previous subsections. These solutions
demonstrate that compressing GO terms improves accuracy and
may even boost efficiency (Wang et al., 2015; Yu et al., 2017e;
Zhao et al., 2019a).

3.2.1. Matrix Factorization-Based Solutions
Some efforts have been made toward applying matrix
factorization-based solutions to compress sparse GO terms
and to infer annotations of genes (Done et al., 2010; Wang
et al., 2015; Yu et al., 2017b). NtN (Done et al., 2010) and IFDR
(Yu et al., 2017b) are methods already mentioned in section
3.1.2. In addition, Yu et al. (2017d) proposed ProCMF to
explore the latent relationships between genes and GO terms
by matrix factorization. ProCMF factorized the gene-term
association matrix into two low-rank matrices, and then defined
two smoothness terms on these two matrices to use multiple
functional association networks of genes and flat inter-relations
between GO terms. These two terms also guide the matrix
factorization and the approximation of the to-be-predicted
gene-term association matrix. Wang et al. (2015) introduced a
method called clusDCA based on Diffusion Component Analysis
(DCA) (Cho et al., 2015). clusDCA individually performed a
random walk on the GO DAG and on the biological networks
to capture information about the underlying structure, then

TABLE 2 | Exemplar solutions based on compressing GO terms.

Solutions Inter-relations

Matrix factorization

ProCMF (Yu et al., 2017d) Flat

clusDCA (Wang et al., 2015) Hierarchical

NtN (Done et al., 2010) Hierarchical

clusDCA (Wang et al., 2015) Hierarchical

ProsNet (Wang et al., 2017) Hierarchical

IFDR (Yu et al., 2017b) Hierarchical

NMFGO (Yu et al., 2020b) Hierarchical

ZOMF (Zhao et al., 2019c) Hierarchical

LSDRs (Makrodimitris et al.,

2019)

Hierarchical

Hash learning
HashGO (Yu et al., 2017e) Hierarchical

HPHash (Zhao et al., 2019a) Hierarchical
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obtained two updated adjacency matrices. To reduce noise, it
applied SVD on the two matrices to compress them into two
low-dimensional matrices. After that, clusDCA optimized a
relational matrix between low-dimensional matrices to explore
the latent relations, and to predict the associations between genes
and GO terms. clusDCA manifested a significantly improved
performance on sparse terms. Yu et al. (2020b) introduced a
method called NMFGO, which combined non-negative matrix
factorization (NMF) (Lee and Seung, 1999) with a GO DAG
regularization term to factorize the gene-term association matrix
into two low-rank matrices. Next, NMFGO used the low-rank
matrices to explicitly calculate the semantic similarity between
genes. After that, NMFGO predicted the low-rank labels of a gene
based on the low-rank labels of its semantic neighbors. Then, it
restored the predictions to the original GO terms. Makrodimitris
et al. (2019) recently experimentally evaluated a series of label-
compression solutions based on matrix factorization and proved
that compressed labels can boost the prediction performance.

However, the matrix factorization-based methods above
lack interpretability of the compressed labels, and suffer from
an inherent problem of thresholding both the relevant and
irrelevant GO annotations from the predicted numeric gene-
term association matrix. This problem is also found in multi-
label learning (Pillai et al., 2013). To solve these problems,
Zhao et al. (2019c) introduced a method based on zero-one
matrix factorization (ZOMF). ZOMF decomposed the gene-
term association matrix into two low-rank matrices with entry
values restricted to one or zero, then explored the inner latent
relationships between the genes and terms. Next, it defined two
smoothness terms on these two low-rank matrices with respect
to the gene-gene interactions and the structural relationships
between terms, thus guiding the optimization of low-rank
matrices. Finally, it reconstructed the association matrix using
the optimized two low-rank matrices to predict gene functions.
ZOMF did not need to threshold the reconstructed association
probability matrix, and the compressed zero-one labels had a
more intuitive explanation than compressed labels.

3.2.2. Hashing-Based Solutions
To achieve low storage and fast retrieval, hashing has been widely
used in big data applications (Wang et al., 2016; Liu et al.,
2019). For example, Tian et al. (2016) used hash tables to store
essential information learned from GO DAG and to efficiently
compute the semantic similarity of genes. Empirical studies show
that hash tables-based solutions can speed up diverse semantic
similarity metrics, e.g., the group-based one (Teng et al., 2013)
and Best Match Average (Pesquita et al., 2008). Researchers also
recently employed hashing learning techniques to convert the
typical one-hot coding of massive GO terms into short binary
hashing codes. For example, Yu et al. (2017e) adopted a hashing
technique that preserved the graph structure from Liu et al.
(2011) to represent a large set of GO terms with compact binary
codes, and then computed semantic similarity between the genes
using the Hamming distance to predict gene functions. However,
this method did not obey the GO hierarchy very well. To solve
this problem, Zhao et al. (2019a) introduced a hashing method
that preserved the ontology hierarchy (HPHash), which sought

a set of hash functions to maintain the GO hierarchy order
and the taxonomic similarity between the terms. Then, HPHash
used the hash functions to compress a high-dimensional gene-
term association matrix into a low-dimensional binary matrix,
and predicted the gene functions therein. HPHash improved the
prediction accuracy, and can be used as a plugin to boost the
BLAST-based gene function prediction (Zhang et al., 1997; You
et al., 2018).

3.3. Cross-Species Solutions
GO is a community-collaborative effort in functional genomics,
and GO terms are generally organized in a species-neutral
way to reflect the broad domain knowledge of biology. Due
to differences in the preferences of biologist and in research
ethics for experiments involving humans, animals, and plants,
the curated annotations of genes for different species are biased,
incomplete, and imbalanced (Schnoes et al., 2013; Dessimoz
and Škunca, 2017; Zhao et al., 2019b). Two species with high
homology have a large number of homologous genes, which
should share similar (or even identical) GO annotations (Schnoes
et al., 2013). Unfortunately, contemporary homologous genes
are associated with different GO terms, due to the bias of
biologists and diverse focuses on different species. Therefore,
it is interesting to leverage the shared GO structure and
complementary annotations of genes for cross-species gene
function prediction.

In the early stages, typical cross-species solutions only
involved the sequence data along with BLAST and PSI-BLAST
(Zhang et al., 1997), but these solutions were unreliable, and
the sequence identification was <25% (Shehu et al., 2016). Eisen
(1998) found that utilizing evolutionary information improved
gene function prediction. Guided by this observation, some
databases based on the phylogenetic trees of animal-gene families
appeared, such as TreeFam (Li et al., 2006). Chikina and
Troyanskaya (2011) leveraged gene sequence and expression data
to identify function analogous genes, and obtained an improved
accuracy. However, these solutions ignored GO. To consider
GO, Mitrofanova et al. (2011) presented a GO chain-graph-
based approach to improve gene function prediction, which
utilized high inter-species sequence homology, the PPIs of two
or more species together and the GO hierarchy to construct
a heterogeneous network. But this inter-species method only
considered a small number of GO terms. Park et al. (2013)
demonstrated that comparing the sequences of just two
genes participating in the same biological processes is somewhat
inaccurate. Using other genomic data, such as gene expression,
can supplement traditional sequence-similarity measures to
boost the performance when evalusting biological-process
functions. Some other solutions attempted more advanced
sequence or physical-chemical similarity metrics to improve the
function prediction (Vidulin et al., 2016; Kulmanov et al., 2017;
You et al., 2018; Kulmanov and Hoehndorf, 2020). For example,
You et al. (2018) recently presented the GOLabeler, which
separately trained five different classifiers from five different
feature descriptors on sequence data, and then combined these
classifiers to make a prediction. These attempts typically assumed
that the annotations of the “well-annotated” species were
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complete, which is not true (Jiang et al., 2014). Moreover, they
neglected the dynamic, mutually supplementary GO annotations
of the close-homology species. Yu et al. (2016b) studied cross-
species gene function prediction based on semantic similarity.
They separately explored the prediction performance for two
species with high or low homology, finding that annotations
of highly-homologous species were complementary, while those
of less homologous species did not complement each other.
Kulmanov et al. (2017) developed a deep learning-based method
(DeepGO) to predict gene function from sequences. In DeepGO,
the deep learning model predicted the GO annotations of genes
based on gene sequences and dependencies between GO terms.
To leverage the GO annotations of different species, Zhao et al.
(2019b) constructed a heterogeneous network including the
GO hierarchy, intra- and inter-species subnetworks. Then, they
introduced an asynchronous random work on the heterogeneous
network to predict gene functions.

3.4. GO-Based Semantic-Similarity
Measures and Applications
The semantic similarity between genes is quantified using GO
annotations and/or GO hierarchy. It is positively correlated with
the feature similarity between them, which is computed from
other biological data (Pesquita et al., 2009; Yu et al., 2015d).
Therefore, semantic-based (and also sequence similarity- or
interaction network-based) gene function prediction has been
popular in recent years (Tao et al., 2007; Yu et al., 2015d, 2016a,
2017c,e).

Semantic similarity-based methods typically use the semantic
similarity to select the neighborhood genes and predict the
annotations of a gene based on annotations of those
neighborhood genes. ITSS (Tao et al., 2007), dRW (Yu et al.,
2015d), HashGO (Yu et al., 2017e), HPHash (Zhao et al., 2019a),
and NMFGO (Yu et al., 2020b) are some representative methods
introduced in sections 3.1.2, 3.2.2. In addition, the semantic
similarity is integrated with other feature similarities for gene
function prediction (Yu et al., 2015c, 2016a). For example, Yu
et al. (2016a) proposed a semantic data fusion method (SimNet),
which optimized the weights of multiple functional association
networks to align with a semantic-similarity kernel matrix
induced from the GO annotations of genes. After that, SimNet
applied these weights to fuse the networks into a composite
network, and then performed random walks on the composite
network to make a prediction.

Measures of the similarity between genes can be extended
from taxonomic similarity measures between GO terms. Existing
similarity measures between genes can be further divided into
two categories (Pesquita et al., 2009), pairwise and groupwise.
Pairwise measures generally employ an average combination
(Lord et al., 2003), maximum combination (Sevilla et al., 2005),
or best match average combination (BMA) to integrate the
proximity between pairwise terms. Among them, BMA provides
a good balance between the maximum and average measure,
since the latter two measures are inherently influenced by
the number of terms being combined (Pesquita et al., 2009).
Groupwise measures directly apply set (Mistry and Pavlidis,

2008), graph (Pesquita et al., 2008; Teng et al., 2013), or vector
operator to compute the similarity between two sets of terms.
For example, Mistry and Pavlidis (2008) introduced a set based
metric called term overlap (TO), which takes into account the
ratio between the number of shared annotations and minimum
number of annotations of two genes. Graph-based measures
organize terms annotated to a gene by a subgraph of DAG and
then use graph comparing techniques to quantify the similarity
between genes, i.e., simGIC (Pesquita et al., 2008) and SORA
(Teng et al., 2013). The associations between a gene and all its
terms can be encoded as a binary vector; vector-based measures
then directly calculate the similarity between genes on the
binary vectors using traditional similarity metrics (i.e., cosine and
Hamming distances). The methods mentioned above use only
the GO annotations and structure, whereas Peng et al. (2018)
presented a similarity measure that integrated information from
gene co-function networks, the GO structure and annotations.

To facilitate effective exploration of these semantic measures,
some online tools or packages have been developed for the
community. Yu et al. (2010) introduced an R package called
GOSemSim to efficiently compute the semantic similarity
between individual GO terms, sets of GO terms, genes or
gene clusters. Peng et al. (2016) developed a web tool called
InteGO2 to select the most appropriate measure from a set of
measures using a voting method, or to integrate measures
via a meta-heuristic search method. Mazandu et al. (2015)
introduced a Python portable application called A-DaGO-Fun,
which assembled diverse semantic measures and biological
applications using these measures.

However, most solutions based on semantic similarity are
still impacted by incomplete GO annotations. For a gene without
any GO annotations, its semantic similarity with other genes is
zero. Another limitation of semantic similarity-based solutions
is that they cannot predict new annotations for a gene without
any annotations. Furthermore, semantic measures are computed
with respect to massive GO terms and, thus, are less reliable with
sparse annotations. To address the last issue, some efforts have
beenmade toward compressing these terms before measuring the
semantic similarity (Done et al., 2010; Yu et al., 2017e, 2020b;
Zhao et al., 2019a); these were reviewed in previous subsections.

4. REMAINING CHALLENGES AND
POTENTIAL TOPICS

Despite much progress, the intrinsic complexity of GO-
based gene function prediction, the evolution of GO and the
importance of reliable GO annotations for various domainsmean
that there are still interesting and challenging research directions,
which deserve further efforts.

First, the GO annotations of genes are still incomplete,
shallow, imbalanced across species and even noisy (Thomas
et al., 2012; Dessimoz and Škunca, 2017). Since the semantic
similarity between genes may not faithfully reflect the actual
similarity between genes or terms with incomplete annotations,
semantic similarity-based solutions can only be applied for
species with sufficient annotations. Although several semantic
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similarity-based solutions make specific use of the GO hierarchy,
GO annotations (Tao et al., 2007; Done et al., 2010; Xu et al.,
2013; Yu et al., 2015b,d) and additional data sources (Peng et al.,
2018; Yu et al., 2020b) to obtain an improved performance, they
are mostly based on the assumption of complete annotations.
In addition, many solutions suffer from an overwhelming
computational load when handling massive GO terms. Hence,
more efficient and effective models are still welcomed.

Second, for massive GO terms, the models based on
compressed GO terms (Done et al., 2010; Wang et al., 2015; Yu
et al., 2017e, 2020b; Zhao et al., 2019a) have attracted increasing
interest. Although the compressed labels allow researchers to
explore and employ potential relationships between terms, more
theoretically sound label-compression solutions, which enable
efficient gene function prediction with improved efficiency and
reliability, are still anticipated.

Third, multi-omics data can reflect gene function from
different aspects and they complement each other. Some
efforts have been made to combine GO and heterogeneous
proteomics/genomics data (Cho et al., 2016; Yu et al., 2016a,
2017d), but they often suffer from a large number of GO terms.
Therefore, they have to project heterogeneous data onto the
common latent feature space, which obscures the intrinsic
structures of the respective data sources. More advanced
integrative solutions must integrate these heterogeneous
biological data and the GO knowledge more effectively.

Fourth, due to the research priorities of biologists and
animal/plant ethics, the collected GO annotations of genes are
imbalanced across different species (Schnoes et al., 2013).
Many species have scarce annotations, and their annotations
must be electronically inferred from those of relatively well-
annotated species. Some studies show that the GO annotations
of homologous genes across species are complementary. One
fruitful direction would be to credibly transfer annotations from
several well-annotated and curated species to less-studied species.

Fifth, most existing solutions focus on predicting the
new annotations of a newly-sequenced gene or the missing
annotations of a gene with sparse annotations. In fact, gene
function prediction relies on the known positive and negative
annotations of a gene, but conventionally only the positive
annotations of genes are reported and, thus, recorded in
GO. Therefore, it lacks negative annotations, which limits the
discriminative ability of function prediction models (Youngs
et al., 2014; Fu et al., 2016a). Noisy annotations are also still
largely overlooked by the community, whichmaymislead wet-lab
experimental verification, GO enrichment analysis, and more.
More efforts can be devoted into identifying noisy annotations
and irrelevant (or negative) annotations of genes.

Last but not least, beside proteins, other gene products like
miRNAs and lncRNAs also play important roles in many life
processes and have associations with different complex diseases
(Lu et al., 2008; Chen et al., 2012; Deng et al., 2019; Zou et al.,
2019). Our preliminary studies (Yu et al., 2017a, 2018b; Fu et al.,
2018; Wang et al., 2019) show that using GO appropriately
can boost the prediction of lncRNA-disease associations, and
GO has some overlaps with Disease Ontology (Schriml et al.,
2011), which also adopts a DAG to hierarchically organize disease

terms. For example, GO has been used to find functional
similarities in genes that are overexpressed or underexpressed in
diseases (Chen et al., 2013), and our empirical results showed
that the exclusion of GO annotations of genes significantly
compromised the precision of an lncRNA-disease association
prediction (Yu et al., 2017a; Fu et al., 2018). Another issue
is that alternative splicing causes a gene to be translated into
different isoforms or protein variants, but GO collectively stores
the associations between GO terms and genes irrespective
these variants. Differentiating the GO annotations of individual
isoforms can provide a deeper analysis of living processes (Li
et al., 2014). Our recent study confirmed that considering the
GO hierarchy also helps to identify the functions of individual
isoforms (Wang et al., 2020; Yu et al., 2020a). The accumulated
experiences of using GO for gene function prediction are
expected to shed light on the predicted functions of other
molecules (i.e., ncRNAs).

5. CONCLUSIONS

Identifying the functional roles of gene products such as proteins
and RNAs is one of the fundamental tasks in the post-genomic
era. Given the incomplete functional knowledge of genes, we
have to admit that existing gene function prediction solutions are
still no substitute for wet-lab experiments. Rather, they are an
important supplementary technique. As more evidence of gene
functions is accumulated from experiments, the gene function
prediction solutions will become more competent.

Our survey reviews the literature of ongoing studies of
gene function prediction using GO, with the aim of expediting
research into reliable gene function prediction. We may
neglect some important work related to GO-based computational
gene function prediction, given multiplicity and diverse
progress in various areas. The main challenges of gene function
prediction are: (i) GO annotations that are incomplete, sparse,
shallow, and imbalanced within and between species; (ii)
massive structurally organized GO terms; and (iii) increasing
relevant and irrelevant multi-type biological data. In summary,
although various computational methods based on GO have been
proposed, there are still promising topics and challenges that
deserve further efforts.
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Single-cell sequencing technologies have emerged to address new and longstanding
biological and biomedical questions. Previous studies focused on the analysis of bulk
tissue samples composed of millions of cells. However, the genomes within the cells of
an individual multicellular organism are not always the same. In this study, we aimed to
identify the crucial and characteristically expressed genes that may play functional roles
in tissue development and organogenesis, by analyzing a single-cell transcriptomic atlas
of mice. We identified the most relevant gene features and decision rules classifying
18 cell categories, providing a list of genes that may perform important functions in
the process of tissue development because of their tissue-specific expression patterns.
These genes may serve as biomarkers to identify the origin of unknown cell subgroups
so as to recognize specific cell stages/states during the dynamic process, and also be
applied as potential therapy targets for developmental disorders.

Keywords: cell type, expression rule, single-cell transcriptomics, tissue development, multi-class classification

INTRODUCTION

The increasing development of next-generation sequencing technologies has prompted great
research progress in the areas of genomics, epigenomics, and transcriptomics (Schuster, 2007).
Numerous notable achievements have been made through macro-scale studies. Nevertheless,
scientists have begun to focus on the subtle differences among individual cells originating
from the same organ or tissue to identify cellular heterogeneity, which plays crucial functional
roles in cancers or other complex diseases (Meacham and Morrison, 2013). Cutting-edge
single-cell sequencing technologies have emerged to address longstanding biological and
biomedical questions.

The human body is composed of approximately 1013 single cells that live harmoniously in
various sites and tissues (Bianconi et al., 2013). Each single cell is the fundamental unit of living
organisms, and it plays a unique role in maintaining normal biological processes. In diseases such
as cancer, the abnormal alteration of one single cell can initiate the progression of tumorigenesis
and the subsequent downfall of the entire organism (Nowell, 1976). Previous studies usually
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focused on the analysis of bulk tissue samples, which are
composed of millions of cells, to elucidate the mechanism and
establish therapeutic strategies for treating diseases. However, the
genomes within the cells of an individual multicellular organism
are not always the same. Hence, identifying the key factors
from averaged data sets is difficult. The recent developments
in single cell sequencing techniques have provided insights into
the detailed and comprehensive research of individual cells
(Grün and van Oudenaarden, 2015).

Identifying cell components and cell types to understand cell
functions is important because many organs comprise cells of
various types and with interdependent functions. In addition, cell
functions vary depending on the cells’ active or inhibited state,
and they cause changes during organ development (Serewko
et al., 2002). These factors cause huge challenges in classifying
and cataloging the various cells in the human body. All adult
diverse cells originate from a single zygote through a series of
cell divisions and fate decisions in which one cell transitions from
one type to another. The changes during embryonic development
are driven by intricate gene expression programming (Maston
et al., 2006), which reveals specific expression patterns in different
types of cells at different development stages. At present, we can
assay the expression profiles of every gene within genomes across
thousands of individual cells in one experiment. Hence, we are
capable of rigorously classifying cell types, defining the potential
function of each cell type, and predicting the behavior of cells
during biological development.

Many important genes play crucial roles in tissue development
or cell differentiation with specific expression patterns. For
instance, laminin can mediate tissue-specific gene expression
in mammary epithelia in the presence of lactogenic hormones
(Streuli et al., 1995). The expression level of transcription
factor from zinc finger family turns out to be stable in
hematopoietic stem cells but they turns out to have quite different
expression patterns in the differentiated cells like erythroid cells,
and megakaryocytes (Orkin, 2004). In various mesoderm- and
endoderm-derived tissues, genes in the GATA family play a
critical role in adjusting tissue-specific gene expression (Kelley
et al., 1993; Laverriere et al., 1994). The expression levels of toll-
like receptors and some related genes, such as CD14, MyD88,
and LY96, vary across different adult human tissues, including
the brain, heart, placenta, prostate, and trachea (Nishimura
and Naito, 2005). These genes and their specific expression
patterns during development and differentiation may be applied
as biomarkers to recognize specific cell stages/states during the
dynamic process.

On the basis of existing single-cell profiling datasets from
a transcriptomic atlas of mice (Tabula Muris Consortium,
2018), we applied our newly presented computational approach
to select crucial and characteristically expressed genes, which
may perform essential functions in tissue development and
organogenesis. We constructed some accurate classifiers that
can group millions of cells into 18 tissue types depending
on their gene expression profiles. We applied the minimum
redundancy maximum relevance (mRMR) (Peng et al., 2005)
and Monto Carlo feature selection (MCFS) (Draminski et al.,
2008) methods to identify the most relevant gene features and

decision rules classifying 18 cell categories and then ranked
the features characterizing gene expression levels (Peng et al.,
2005; Draminski et al., 2008). The selected features provided
a meaningful list of genes that may have important functions
during tissue development because of their specific expression
patterns in distinct tissues. Further research of these genes
may clarify the detailed mechanism of tissue development. In
addition, these genes can be used as biomarkers to identify the
origin of some unknown subgroups of cells. They can also be
applied as potential targets for developmental disorders.

MATERIALS AND METHODS

Datasets
We downloaded the single-cell expression profiles of 53,760
mouse cells in 18 tissues from Gene Expression Omnibus under
accession number GSE109774 (Tabula Muris Consortium, 2018).
The sample sizes of the tissues are listed in Table 1. The
expression levels of 23,433 genes were measured using NovaSeq.
We aimed to investigate the tissue differences at the single-
cell level.

Feature Selection
We designed a rigorous feature selection procedure for evaluating
features. The purpose was to remove unimportant features
for classifying cells from different tissues and rank remaining
features according to their importance. First, each cell was
represented in a vector of expression values of 23,433 genes,
which were reduced to 5,451 by discarding features with low
mutual information (MI) to targets. Second, remaining features
were further reduced to 3,384 by using Boruta feature selection
(BFS) (Kursa and Rudnicki, 2010). Third, these features were
ranked by using mRMR (Peng et al., 2005) and MCFS (Draminski

TABLE 1 | Sample size of each tissue.

Index Tissue Sample size

1 Bladder 1638

2 Brain microglia 4762

3 Brain neurons 5799

4 Colon 4149

5 Fat 5862

6 Heart 7115

7 Kidney 865

8 Liver 981

9 Lung 1923

10 Mammary 2663

11 Marrow 5355

12 Muscle 2102

13 Pancreas 1961

14 Skin 2464

15 Spleen 1718

16 Thymus 1580

17 Tongue 1432

18 Trachea 1391
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et al., 2008), resulting in two feature lists, respectively. Finally, on
the basis of the ranked feature lists, incremental feature selection
(IFS) (Liu and Setiono, 1998) with a supervised classifier was used
to select the optimum features for classifying different cell types.

Evaluating Features by MI
Important criteria should be designed to determine important
features according to meaningful correlations between variables
and outputs. The direct way to measure the importance of
features was to evaluate their correlations to targets. MI is a
widely used and accepted measurement to assess features in this
regard. The MI value for two variables x and y can be calculated by

I(x, y) =
x

p(x, y) log
p(x, y)

p(x)p(y)
dxdy (1)

where p(x) and p(y) stand for marginal probabilistic density,
and p(x, y) stands for joint probabilistic density. Here, for each
feature, we calculated its MI value to targets (class labels) and
selected those with MI values larger than 0.02. Remaining features
would be poured into the following feature selection steps.

Boruta Feature Selection
In this step, features with MI values > 0.02 were analyzed
by BFS (Kursa and Rudnicki, 2010). It is a wrapper feature
selection method based on random forest (RF) (Breiman, 2001)
that evaluates feature importance by comparing the features with
randomized ones. BFS is different from most of the other wrapper
feature selection algorithms that achieve minimal errors for a
supervised classifier on a small subset of features, that is, BFS
selects all features that may be either strongly or weakly relevant
to outcome variables.

BFS mainly creates a shuffled version of original features
and then uses an RF classifier to measure the importance
score of the combined shuffled and original features. Only
those features with importance scores higher than those of
the randomized features are selected, and these significantly
correlated features are considered relevant to the outcome
variables. The difference between the RF and BFS importance
scores lies in the introduction of the statistical significance
of variable importance. A random permutation procedure is
repeated to obtain statistically robust important features. BFS
proceeds as follows by repeating multiple iterations:

1. Randomness is added to the given data set by shuffling
original features.

2. The shuffled data set and original data set are combined.
3. An RF classifier is trained on the combined data set, and

the importance of each feature is evaluated.
4. The Z-scores of the original and shuffled features

are calculated. The Z-scores of individual features are
calculated as the mean of the importance scores divided by
the standard error. Each real feature is evaluated in terms of
whether it has a higher Z-score than the maximum shuffled
feature. If so, this feature is tagged as important; otherwise,
it is unimportant.

5. Finally, the algorithm stops when one of the two following
conditions is met: (1) all features are either tagged as

“unimportant” or “important”; (2) a predefined number of
iterations is reached.

In this study, we used the Python implementation of BFS
from https://github.com/scikit-learn-contrib/boruta_py, along
with the default parameters. Selected features were evaluated by
mRMR and MCFS methods, respectively.

Minimum Redundancy Maximum Relevance
mRMR (Peng et al., 2005; Chen et al., 2017, 2018; Li et al., 2019) is
a feature selection method based on MI. The merit of this method
is that it considers both the relevance between input features
and targets and the redundancy between features themselves.
To indicate the importance of features, they are ranked in a
feature list, named mRMR feature list. The list is generated
by repeatedly selecting features from the feature pool until all
features have been selected. In detail, for any feature in the
feature pool, calculate its MI value to targets and its average MI
value to already-selected features. Then, the difference of above-
mentioned two values is computed. The feature with maximum
difference is selected and appended to the list. In this study, the
mRMR feature list was denoted by Fm.

Monto Carlo Feature Selection
Different from mRMR method, MCFS (Draminski et al., 2008;
Cai et al., 2018; Li et al., 2018; Chen et al., 2019) method evaluates
the importance of features in a completely different way. This
method is based on decision trees. First, it generates m bootstrap
sets and t feature subsets from the original dataset. Then, one tree
is grown for each combination of m bootstrap sets and t feature
subsets. In total, m × t decision trees are grown. On the basis of
these decision trees, we calculated the relative importance (RI)
score for each input feature. The RI score is calculated in terms of
how frequent a feature is involved in growing the decision trees,
which can be computed by:

RIf =

mt∑
τ=1

(wAcc)uIG(nf (τ))

(no.in nf (τ)

no.in τ

)v
(2)

where f stands for a feature, wAcc indicates the weighted accuracy
of the decision tree τ, IG(nf (τ)) is the information gain of node
nf (τ), no.in nf (τ) is the number of samples in nf (τ), (no. in τ)
represents the number of samples in tree τ. u and v are weighted
factors, which is set to 1. Clearly, features with high RI values are
more important than others. Accordingly, features were ranked
in another feature list with the decreasing order of their RI values.
For convenience, this list was denoted as FM .

Incremental Feature Selection
Although, according to the results of mRMR and MCFS methods,
we can obtain two feature lists, it is still difficult to access the
optimum feature subspace for a given classifier. In view of this,
IFS (Liu and Setiono, 1998) integrated with a supervised classifier
was employed to select the optimum number of features for the
classifier, thereby constructing the optimum classifier. On the
basis of the feature list (Fm or FM), a series of feature subsets
with step 5 is generated, that is, the first feature subset has
the top 5 features, the second feature subset has the top 10
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features, and so on. Then, for each feature subset, a supervised
classifier (e.g., RF) is trained on the samples consisting of the
features from this feature subset, and the classifier is evaluated
using 10-fold cross-validation (Kohavi, 1995). The classifier
with the best performance is selected and termed the optimum
classifier, and the features used for this classifier are called the
optimum features.

Random Forest
RF (Breiman, 2001) is a supervised classifier comprising multiple
decision trees, each of which is grown from a bootstrap set and a
feature subset randomly selected from original features. RF has
been widely used for many biological applications (Pan et al.,
2010; Zhao et al., 2018; Zhao R. et al., 2019; Zhao X. et al., 2019;
Zhang et al., 2019). One advantage of RF is that it does not
require much effort in hyperparameter optimization; in general,
only default parameters are necessary.

PART Rule Learning
Contrary to black-box machine learning models, rule learning
methods can learn rules about making a prediction from the data,
and these rules are easy to understand. The most widely used rules
is the if–then rule; IF one condition is met, THEN a prediction
is generated. These simple rules can assist experts in analyzing
learned knowledge so that it is aligned with established facts.

In comparison with another widely used rule learning method
RIPPER, PART (Frank and Witten, 1998) learns a rule at a
time without global optimization, and it is considerably simple.
PART generates multiple partial decision trees and combines the
rules from the decision trees using the separate-and-conquer
technique. A pruned decision tree is built, and then a rule
set is generated. Under this rule set, each rule walks along
each path from the root to a leaf. The separate-and-conquer
technique generates a rule at a time. Then, the instances aligned
with this rule are removed from the training set until all
instances are covered by the learned rules. PART repeatedly grows
partial decision trees instead of a fully explored tree, and each
partial tree is grown as follows: (1) dividing the samples into
subsets; (2) expanding all subsets until each subset is expanded
to a leaf in the same way as C4.5, with the only difference
being the selection of the node with the lowest entropy for
expansion; and (3) backtracking is intrigued when all child nodes
of internal nodes are expanded into a leaf. PART prunes the
trees by checking if an internal node can be replaced with
a leaf. Once a tree is built, a rule can be extracted from its
leaf to the root.

RESULTS

In this study, we used several machine learning algorithms to
analyze the single-cell expression profiles of mouse cells in 18
tissues. The whole procedures are illustrated in Figure 1.

Results of Feature Selection Procedure
There were more than 50,000 features to encode each mouse
cell in 18 tissues. A rigorous feature selection procedure was

TABLE 2 | Performance and optimum number of features of IFS with RF when
using different feature ranking methods.

Feature ranking Number of
optimum features

MCC Overall
accuracy

mRMR 2265 0.882 0.890

MCFS 1170 0.892 0.899

necessary to analyze them. First, we evaluated the importance
of each feature by its MI value to targets. Those with MI values
larger than 0.02 were picked up, resulting in 5,451 features. Then,
the BFS method was applied on the remaining features to further
select relevant features, producing 3,384 features.

Above-obtained features were fed into mRMR and MCFS
methods, respectively. Accordingly, we obtained two feature
lists, which are summarized in Supplementary Tables S1,
S2, respectively.

Results of IFS With RF
The mRMR and MCFS methods provided different rankings of
the remaining 3,384 features. We used IFS with RF to analyze
the ranked features and thereby obtain the optimum features for
classifying different cells with RF.

First, we applied IFS with RF to select the optimum features
on the basis of the mRMR feature list yielded by mRMR method.
Step five was adopted to construct a series of feature subsets. On
each feature subset, one RF classifier was trained and evaluated
on the samples consisting of the features from this feature
subset by using 10-fold cross-validation (Kohavi, 1995; Che et al.,
2019; Cui and Chen, 2019; Zhou et al., 2019). The performance
corresponding to the different numbers of features is given in
Supplementary Table S3. For an easy observation, an IFS curve
was plotted in Figure 2 with Matthew’s correlation coefficient
(MCC) (Matthews, 1975) as Y-axis and number of features as
X-axis. We can see that when the top 2,265 features were used,
the RF classifier yielded a maximum MCC value of 0.882 and
an overall accuracy of 0.890 (Table 2). The performance of such
optimum classifier on 18 tissues is shown in Figure 3. 12 tissues
received accuracies over 0.900, suggesting the good performance
of such classifier.

We also applied IFS with RF to select the optimum features
from the feature list produced by MCFS. The performance
corresponding to the different numbers of features is provided
in Supplementary Table S4. An IFS curve was also plotted in
Figure 2 for clearly displaying the performance of RF classifier
on different numbers of top features. When top 1,170 features
were adopted, the RF classifier generated the highest MCC of
0.892 and overall accuracy of 0.899 (Table 2), which were a litter
better than those of the optimum RF classifier on the feature
list yielded by mRMR method. The detailed performance of
such classifier on 18 tissues is illustrated in Figure 3. 13 tissues
were assigned accuracies exceeding 0.900. These results indicate
that this optimum RF classifier yielded better performance when
using much fewer features from MCFS than from mRMR.

As analyzed above, the optimum features for RF on the list
yielded by mRMR method were top 2,265 features, and they
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FIGURE 1 | The entire procedures for analyzing the single-cell expression profiles of mouse cells in 18 tissues.

FIGURE 2 | IFS curves for IFS with RF on the feature list yielded by mRMR and MCFS methods, respectively. The best MCC for RF on the list yielded by mRMR
method is 0.882 when top 2265 features are used. The highest MCC for RF on the list yielded by MCFS method is 0.892 when top 1170 features are adopted.

were top 1,170 features for RF on the list yielded by MCFS
method. A Venn diagram was plotted in Figure 4A to show
the intersection of two optimum feature sets. There were 957
common feature (genes). We used hypergeometric test to assess
their overlapping significance, obtaining P-value less than 0.05.
Thus, these two feature select methods tend to output the same
important features.

Results of IFS With PART
In addition to the use of the black-box classifier RF as the
supervised classifier, the rule learning classifier PART is also
utilized to select the optimum features for classifying different
cells. Because PART is a rule learning algorithm with low
efficiency, we only tried the top 200 features on the list of
mRMR method. The 10-fold cross-validation results of PART

classifier on different numbers of top features is listed in
Supplementary Table S5. An IFS curve was plotted in Figure 5,
from which we can see that the highest MCC was 0.709
when top 200 features were used. The overall accuracy was
0.730 (Table 3) and the detailed performance on 18 tissues
is displayed in Figure 6. There were four tissues receiving
accuracies higher than 0.900. All these suggest that such classifier
provided an acceptable performance. Thus, the PART used
these 200 features to construct rules based on all mouse cells,
resulting in 7085 classification rules. These rules are listed in
Supplementary Table S6.

Similarly, we performed IFS with PART on the feature
list from MCFS. We tried top 400 features this time. The
performance of PART classifier corresponding to different
numbers of top features is summarized in Supplementary
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FIGURE 3 | Bar chart to show accuracies on 18 tissues yielded by the
optimum RF classifiers on the feature lists of mRMR and MCFS methods.

Table S7. An IFS curve was plotted in Figure 5. It can be observed
that when top 400 features were used, the PART classifier yielded
the best MCC value of 0.781 and an overall accuracy of 0.798
(Table 3), which were higher than those of the PART classifier on
the feature list of mRMR method. The detailed performance of
such classifier on 18 tissues is shown in Figure 6. The accuracies
on six tissues were higher than 0.900, also better than those of
PART classifier generated by mRMR results. Furthermore, PART
used obtained 400 features to build classification rules with all
cells, generating 7,413 classification rules, which are listed in
Supplementary Table S8.

Of the top 200 features in the mRMR feature list and top
400 features in the list of MCFS method, exactly 122 genes were
common (Figure 4B). The overlapping significance on these two
feature sets was at P < 0.05. Therefore, these two methods also
tended to robustly select the same important features for PART.

DISCUSSION

In this study, the single-cell expression profiles of mouse
cells in 18 tissues were analyzed by several machine learning
algorithms. With two feature selection methods, mRMR and
MCFS, two optimum RF classifiers were built and important
genes were listed in two feature lists. However, the optimum RF
classifiers were black-box classifiers, which can not reveal the
different expression patterns of cells in different tissues. Thus,
we further employed the rule learning algorithm, PART. With
different feature selection methods, we obtained two groups of
classification rules, which are provided in Supplementary Tables
S6, S8. The first rule group (Supplementary Table S6) contained
7085 rules, involving 95 crucial features (genes) and the second
group consisted of 7413 rules, using 130 crucial features (genes).
In this section, we focused on some crucial features and decision
rules with classification significance. These characteristics of gene

expressions play key roles in tissue-specific differentiation or
organ specificity.

Analysis of Top Gene Features and
Decision Rules Identified Using mRMR
We identified 7085 decision rules involving 95 features via the
mRMR method to distinguish 18 different types of tissues. Here,
we briefly summarized some experimental evidence for the most
significant features and rules in the classifier to validate the
efficacy and accuracy of our prediction.

The protein coding gene Hexb, which was identified as the
most relevant feature through the mRMR method, produced the
beta subunit of the lysosomal enzyme beta-hexosaminidase that
can degrade various substrates containing N-acetylgalactosamine
residues. Hexb transcripts distribute widespread tissues, thus
playing a housekeeping role in the enzyme. However, the
expression patterns of Hexb exhibit tissue-specific differences
with relatively low levels in the lung, liver, and testis, which
imply its unique biological function in tissue differentiation
(Yamanaka et al., 1994). Similarly, another study analyzed
the tissue distribution of the Hexb mRNA in mice and
revealed remarkable tissue-specific variations, with the kidney
showing the highest gene expression, which are consistent with
past research (Triggs-Raine et al., 1994). These findings are
consistent with our expectation that Hexb displays a restricted
pattern in distinct tissues and is thus an effective feature
in classification.

Lgals7, also known as Galectin7, is a member of beta-
galactoside-binding proteins that are implicated in modulating
cell–cell and cell–matrix interactions. Differential studies indicate
that lectin is specifically expressed in keratinocytes and is mainly
found in stratified squamous epithelium (Magnaldo et al., 1998;
Saussez and Kiss, 2006). This finding confirms our decision rules
that the high expression of Lgals7 leads to the identification of
skin tissues. Meanwhile, the increased expression of Lgals7 plays
a positive role in cell growth and dispersal by inducing MMP9
(Demers et al., 2005). However, the functional effects of Lgals7
vary across different tissue types, and thus, the multiple roles of
Lgals7 may be tissue-type dependent (Shadeo et al., 2007).

Protein coding gene Lgals4 or galection4, as another member
of the beta-galactoside-binding protein family, has a similar
function to galectin7 in protein interactions, but it shows a
differential expression pattern that is restricted to the intestine,
colon, and rectum (Huflejt et al., 1997). It is consistent with our
decision rules, which require a high level of Lgals4 expression
to classify cells into the category of the colon. Galectin4 is
overexpressed mainly in cells with highly differentiated polarized
monolayers but is absent in less differentiated ones, suggesting its
crucial roles in organogenesis and its potential as a tissue-specific
marker (Huflejt and Leffler, 2003).

The protein encoded by Krt5 (keratin 5) is a member of the
keratin gene family, which comprises cytoplasmic intermediate
filament proteins that are usually expressed in epithelial tissues in
a differentiation-dependent manner. Keratins display a complex
expression pattern that is tightly regulated by the differentiation
progress of the tissue in stratified epithelia (Alam et al., 2011).
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FIGURE 4 | Venn diagrams to show the intersection of optimum features for RF and PART based on the feature lists of mRMR and MCFS methods. (A) Venn
diagram to show the intersection of optimum features for RF; (B) Venn diagram to show the intersection of optimum features for PART.

FIGURE 5 | IFS curves for IFS with PART on the feature list yielded by mRMR and MCFS methods, respectively. The best MCC for PART on the list yielded by mRMR
method is 0.709 when top 200 features are used. The highest MCC for PART on the list yielded by MCFS method is 0.781 when top 400 features are adopted.

TABLE 3 | Performance and optimum number of features of IFS with PART when
using different feature ranking methods.

Feature
ranking

Number of
optimum features

Number of
classification rules

MCC Overall
accuracy

mRMR 200 7085 0.709 0.730

MCFS 400 7413 0.781 0.798

Gene ontology annotations related to Krt5 contain structural
molecule activity, and mutations in this gene are associated
with epidermolysis bullosa simplex (Schuilenga-Hut et al., 2003).
KRT5 is one of the basal epithelial cell markers similar to
KRT7 and EGFR, which follow several rules in our prediction
in which Krt5 should have a low expression or even absent
expression in fat tissue.

The purinergic receptor P2Y12 (P2ry12), which belongs to
the family of P2 purinergic receptors, is a specific marker for
microglial cells in the human brain (Sasaki et al., 2003). Microglial

chemotaxis and the extension of microglial foot processes are
significantly inhibited by P2ry12 deficiency and thus perform
unique functions in microglia development (Haynes et al., 2006).
Notably, a highly expressed pattern of P2ry12 contribute to the
identification of brain microglia in our decision rules.

Another protein coding gene, Ctsd (Cathepsin D), produces a
member of the A1 family of peptidases. Cathepsin is a marker
of gastric differentiation, and its expression is significantly
correlated with the originated histological type of gastric cancer
cell line (Konno-Shimizu et al., 2013). This finding supports the
potential role of Ctsd in gastric-related tissue specificity.

P53 apoptosis effector related to PMP22 (Perp) is a
component of intercellular desmosome junctions. It plays a
role in stratified epithelial integrity and cell–cell adhesion by
promoting desmosome assembly (Ihrie et al., 2005; Kiseljak-
Vassiliades et al., 2017). Perp plays an antiapoptotic role, and
the loss of Perp function leads to strong apoptosis in the skin,
indicating that this gene is required for the survival of specific
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FIGURE 6 | Bar chart to show accuracies on 18 tissues yielded by the
optimum PART classifiers on the feature lists of mRMR and MCFS methods.

cell types during development (Nowak et al., 2005). Notably,
in the decision rules identifying heart tissues, several criteria
that involve Perp, which require a relatively high expression
of this gene, have experimental support. According to the
immunohistochemical analysis, the Perp message is present in the
intercalated discs of the cardiac muscle during embryogenesis but
not in tissues containing simple epithelia, such as the lung. These
results highlight the crucial role of Perp and the potential tissue-
specific marker in stratified epithelia (Marques et al., 2006).

Ptprcap, also called Cd45-AP, is a transmembrane
phosphoprotein that is associated with tyrosine phosphatase
PRPRC/CD45, which can regulate T- and B-lymphocyte
activation. It is overexpressed in PBMCs, which can enhance
the phosphate activity of CD45 and increase tumor progression
(Kitamura et al., 1995; Mao et al., 2008). It confirmed our
predicted rules that the highly expressed pattern of Ptprcap is the
indicator of marrow and thymus cell origin.

Legumain, also known as asparaginyl endopeptidase, which
is encoded by the Lgmn gene, plays a role in the regulation of
cell proliferation via its role in EGFR degradation and may be
involved in the processing of proteins for MHC class II antigen
presentation in the endosomal system (Manoury et al., 1998;
Chen et al., 2001; Clerin et al., 2008). Legumain acts by regulating
the differentiation fate of human bone marrow stromal cells,
thereby regulating bone formation, which is independent of its
enzymatic activity (Jafari et al., 2017). Legumain is overexpressed
in bone marrow adipocytes, thereby supporting our decision
rules regarding the classification of marrow, which require a
highly expressed level of Lgmn, thus confirming the reliability
of our predictor.

Analysis of Top Gene Features and
Decision Rules Identified Using MCFS
7413 decision rules, involving 130 crucial features, were
identified by MCFS and PART methods. Among the top

features with the most relevance in terms of classification, some
features had biological evidence of their potential tissue-specific
expression patterns, which can thus be applied as biomarkers for
distinguishing cell origins.

Notably, many of the features mentioned previously,
including P2ry12, Krt5, Lgals7, Lgals4, and Hexb, were
identified by mRMR and MCFS methods and have a remarkable
relevance to our classifiers. These results strongly suggest that
these genes have significant tissue-specific patterns and exert an
important effect on the classification of different tissue cells.

DSC3 (Desmocollin 3), which ranks third among the relevant
features identified by MCFS, may contribute to epidermal
cell positioning by mediating the differential adhesiveness
between cells that express different isoforms (Yue et al.,
1995). In the decision rules for identifying lung and trachea
tissues, Dsc3 should have a high expression level. RT-PCR
results constantly showed that Dsc3 is expressed in the
epithelium of the trachea and upregulated in the squamous
cell in the lung (Nuber et al., 1996; Kettunen et al., 2004).
Furthermore, desmosomal proteins are markers of epithelial
differentiation (Moll et al., 1986). The expression pattern
of Dsc3 changes with epidermal organization during skin
development (Chidgey et al., 1997). Hence, Dsc3 may display
specific expression patterns during cell differentiation and may
thus support the process of distinguishing diverse stages of
tissue development.

Cdx1 is a member of the caudal-related homeobox
transcription factor gene family. The encoded DNA-binding
protein regulates intestine-specific gene expression and
enterocyte differentiation (Park et al., 2009). Homeobox genes
are essential in the control of normal embryonic development.
Recent publications on Cdx1 suggested that early intestinal
development, differentiation, and phenotype modulation are
precisely regulated by effective transcription factors (Silberg
et al., 2000). In addition, Cdx1 is an important molecular
mediator, which induces intestinal metaplasia in mouse stomach
(Mutoh et al., 2004). These findings confirmed that in the criteria
involving the decision rules for identifying colon tissues, highly
expressed Cdx1 indicates that the tissue may derived from
colon associated tissues. In the same rules for identifying colon
tissues, Gpx2, which encodes the protein of the glutathione
peroxidase family, requires a high expression like that of Cdx1.
This gene is predominantly expressed in the gastrointestinal
tract, and the overexpression of Gpx2 is associated with increased
differentiation and proliferation in colorectal cancer (Komatsu
et al., 2001), thus contributing to colon development.

G protein-coupled receptors, such as Gpr34, mediate signals
to the interior of the cell by activating heterotrimeric G proteins.
Ubiquitous expression of Gpr34 is detectable in almost all
human tissues; however the activity of promoters shows tissue-
specific preference, which leads to different transcription patterns
and various expression levels (Schöneberg et al., 1999). This
special characteristic of Gpr34 allows its role in distinguishing
different tissues and confirms that Gpr34 occurs in many
decision rules with different criteria. Similarly, protein coding
gene Cx3cr1, which encodes fractalkine receptor, has diverse
expression patterns in different cell types. The expression of
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Cx3cr1 has been investigated in the mouse central nervous
system, and its expression is elevated on microglia during chronic
inflammation (Hughes et al., 2002). TGF-β1 plays an important
role in regulating Cx3cr1 expression in rat microglia and inhibits
fractalkine-stimulated signaling (Chen et al., 2002). The specific
expression pattern of Cx3cr1 is consistent with our decision rules
in which a high expression level indicates the category of brain
microglia, although the criteria for identifying brain neurons
require a low expression or absence of Cx3cr1.

Paired-like homeodomain 1 (Pitx1) encodes a member
of the PITX homeobox family, which is involved in organ
development and left-right asymmetry. This protein may act
in the development of anterior structures and in specifying
the identity or structure of hindlimbs (Logan and Tabin, 1999;
Klopocki et al., 2012). Pitx1 exhibits the preferential expression in
the hindlimb, and it critically modulates the potential patterning
of specific hindlimb regions (Szeto et al., 1999). Pitx1 is expressed
in lung epithelia cells, but its expression level varies during cancer
development and progression, indicating that homeobox genes
are associated with differentiation and show unique expression
patterns at different development stages (Chen et al., 2007). It
provides the basis for the use of Pitx1 as a potential biomarker.

Considering our single-cell profiling datasets, we carefully
selected the crucial and characteristically expressed genes by
using mRMR and MCFS, respectively, and their expression rules
by using PART. These relevant gene features and decision rules
may play essential roles in tissue development and organogenesis
corresponding to 18 tissue types. Many biological studies about
these may clarify the detailed mechanism of tissue development.
Thus, our identified feature genes can be used as biomarkers
to identify the origin of some unknown subgroups of cells,
which can also be applied as potential therapy targets for
developmental disorders.

CONCLUSION

This study gave an investigation on single-cell expression profiles
of mouse cells in 18 tissues using several machine learning
algorithms. Some essential genes that can be biomarkers for
distinguishing cells of different tissues were extracted by feature
selection methods and two RF classifiers were built to classify cells
with high performance. In addition, two rule groups yielded by

PART were reported to reveal specific expression patterns of cells
in different tissues. The findings reported in this study can give a
clear overview on the expression levels of different tissues.
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The thermostability of proteins is a key factor considered during enzyme engineering,
and finding a method that can identify thermophilic and non-thermophilic proteins will be
helpful for enzyme design. In this study, we established a novel method combining mixed
features and machine learning to achieve this recognition task. In this method, an amino
acid reduction scheme was adopted to recode the amino acid sequence. Then, the
physicochemical characteristics, auto-cross covariance (ACC), and reduced dipeptides
were calculated and integrated to form a mixed feature set, which was processed
using correlation analysis, feature selection, and principal component analysis (PCA)
to remove redundant information. Finally, four machine learning methods and a dataset
containing 500 random observations out of 915 thermophilic proteins and 500 random
samples out of 793 non-thermophilic proteins were used to train and predict the data.
The experimental results showed that 98.2% of thermophilic and non-thermophilic
proteins were correctly identified using 10-fold cross-validation. Moreover, our analysis
of the final reserved features and removed features yielded information about the
crucial, unimportant and insensitive elements, it also provided essential information for
enzyme design.

Keywords: thermophilic protein, reduced amino acids, mixed features, machine learning methods, non-
thermophilic protein

INTRODUCTION

Proteins denature when the environmental temperature increases dramatically (Tang et al., 2017).
However, thermophiles can survive in temperatures ranging from 41◦C to 122◦C (Takai et al., 2008;
Fan et al., 2016) and produce enzymes that react well at higher environmental temperatures, such
as 120◦C (Fan et al., 2016). In enzyme engineering, identifying the functional mechanisms of these
proteins will provide insights into the design and optimization of enzymes (Tang et al., 2017).

Protein thermostability has been shown to be related to hydrophobicity (Gromiha et al.,
2013), hydrogen bonding (Bleicher et al., 2011), hydrophobic free energy (Gromiha et al., 1999;
Saraboji et al., 2005), and residue (Meruelo et al., 2012) and inter-residue contacts (Gromiha,
2001). Moreover, Das and Gerstein (2000) found that salt bridges are essential for maintaining
protein thermostability in thermophilic bacteria. The distribution of amino acids in proteins
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(Fukuchi and Nishikawa, 2001; Zhou et al., 2008) and the
presence of dipeptide (Ding et al., 2004; Zhang and Fang,
2006a,b) also affect protein thermostability. In a study by Vieille,
the composition of Arg is greater in thermophiles than in
mesophiles (Vieille and Zeikus, 2001). Guo also showed that
expurgation of water-accessible thermo-labile residues, such as
Gln and Met, affects the thermostability of enzymes expressed by
thermophiles (Guo et al., 2014). Besides, Chen et al. (2016) found
the pseudo amino acid composition had a big effect on the protein
identification task, and constructed a web server to give a free way
to use their algorithm1.

Sequence-based protein identification provides an alternative
method for studies of protein thermostability (Zhang and Fang,
2007; Wu et al., 2009; Li and Fang, 2010; Liu et al., 2011, 2019;
Zuo et al., 2013; Fu et al., 2018; Wang et al., 2018; Zhang
et al., 2018; Cheng et al., 2019; Yu et al., 2019b). Wang et al.
(2011) introduced a feature selection method to identify vital
features from the pseudo amino acid composition, amino acid
composition, physicochemical features, composition transition,
and distribution features using a support vector machine (SVM)
to detect thermophilic proteins. Additionally, Tang proposed a
two-step discrimination method with 94.44% accuracy using 5-
fold cross-validation. Lin et al. constructed a dataset containing
915 thermophilic proteins and 793 non-thermophilic proteins,
and predicted 93.8% thermophilic proteins and 92.7% non-
thermophilic proteins using SVM. The same conclusion was
also reached by Nakariyakul et al. (2012), who obtained 93.3%
identification accuracy in the same database used by Lin.
In another study, Fan et al. (2016) integrated information
on the amino acid composition, evolution information, and
acid dissociation constant to identify thermophiles by SVM,
yielding an overall accuracy of 93.53%. Modarres et al. (2018)
proposed a new thermophilic protein database, which contained
14 million protein sequences. In this database, all sequences
were categorized according to the thermal stability and protein
family property. Not only the sequences but also structures of
thermophilic proteins were contained in the database. This online
database gave the developers a powerful tool in the thermophilic
protein prediction task.

In this study, we integrated 188 physicochemical characteristic
features, auto-cross covariance (ACC) information, and
dipeptide compositions of reduced amino acids to obtain a
mixed feature set. Redundant features were then removed using
correlation analysis, and dimensions were reduced using the
max-relevance-max-distance (MRMD) method and principal
component analysis (PCA). Finally, the SVM and other three
machine learning methods were used to identify thermostability.

MATERIALS AND METHODS

The main framework of the method used in this study could
be divided into the following four parts: (a) transforming
thermophilic protein sequences to a reduced amino acid form; (b)
extracting useful features; (c) using the SVM to train the extracted

1http://lin-group.cn/server/Lypred/

features; (d) predicting the test data by machine learning (Yu
et al., 2017a,b; Zou et al., 2017a,b; Zhang et al., 2019a). The
framework is shown in Figure 1.

Datasets
We used the dataset constructed by Lin et al. (Lin and Chen,
2011), whose data were chosen from the Universal Protein
Resource (UniProt). The temperature of thermophilic proteins
in this dataset was set to above 60◦C and the temperature
of non-thermophilic proteins was set to be less than 30◦C.
After removing redundancy and homology bias, there were 915
thermophilic and 793 non-thermophilic proteins. These data can
be downloaded from http://www.labio.info/index-1therm.html.

Reduced Amino Acid Composition
(RAAC)
In order to improve phylogenetic estimates, it is possible to
recode the amino acids in the protein sequence (Susko and
Roger, 2007). Furthermore, some reduced amino acid schemes,
including the “Dayhoff classes” (AGPST, DENQ, HKR, ILMV,
FWY, and C), have attracted attention (Susko and Roger, 2007).

In order to maximize the ratio of the expected number of
substitutions within bins under the JTT model, Susko et al.
proposed their reduced amino acid alphabet, which contains 30
schemes. In this study, we chose the final scheme as follows: A, C,
D, E, F, G, H, IV, K, L, M, N, P, Q, R, S, T, W, Y. Thus, the 20 amino
acids were classified into 19 types in the above scheme (Susko and
Roger, 2007), in which Ile (I) and Val (V) were viewed as a single
type, while every one of other categories had only one amino
acid. Under this reduced scheme, we use the webserver of Zuo
(Zheng et al., 2019) to calculate the RAAC of the thermophilic
and non-thermophilic proteins.

Furthermore, dipeptides of proteins, like AA, A∗A (λgap = 1),
and A∗∗A (λgap = 2), AK, A∗K, A∗∗K, etc., were also obtained
using this webserver (Chen et al., 2016; Yang et al., 2019). The
following formula was used to calculate the values of those
features:

f λ361
(
j
)
=

yλ
361(j)∑
j y

λ
361(j)

λ = 0, 1, 2, · · · , 361,

where yλ
361(j) denotes the number of λ-gap dipeptides of type j in

a protein sequence.

Feature Extraction
Physicochemical Characteristics
To quantitatively identify proteins, the physicochemical
characteristics were obtained using a method (temporarily called
188d), which could extract sequence information and amino acid
properties (Song et al., 2014; Xu et al., 2014, 2018; Fu et al., 2019;
Liu, 2019; Zhu et al., 2019). The first 20 elements in the results
of this method denoted the frequency of the 20 original amino
acids (Zhu et al., 2019); the next 24 features reflected the group
proportion corresponding to three groups (Qu et al., 2019); the
following 120 dimensions were the distributions of three groups
in five local positions (Cai et al., 2003); the last 24 features were
the numbers of three types of dipeptides.
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FIGURE 1 | The whole framework of the proposed method in this manuscript.

ACC
Auto covariance (AC) and cross-covariance (CC) calledACC, can
reflect the relationship between amino acids with certain length
features and contains AC and CC (Dong et al., 2009; Liu et al.,
2015). The formula of CC transforms a protein sequence to a
vector form Liu et al. (2016):

P′ = [ϕ1, ϕ2, ϕ3, · · ·, ϕ N ∗ (N − 1) ∗ lg)]T,

where N denotes the number of properties. ϕi can be calculated
as:(Guo et al., 2008)

ϕn = AC
(
i, lg

)
=

1
N − lg

∑L−lg

j=1
(Si,j − Si)(Si,j+lg − Si),

where i is a residue, Ldenotes the length of the whole protein
sequence, Si,j represents the i-th property of the j-th amino acid,
and Si reflects the mean value of the i-th property (Qu et al.,
2019). In our experiment, the value of lg was set to 2.

Correlation Analysis
Some pairs in our feature set were found to be highly
correlative, indicating that the effects of these two features

were similar. Furthermore, this phenomenon denotes redundant
and repeated information were present in the feature set.
However, without the preprocess of discarding redundant
information, machine learning models are associated with a
risk of overfitting (Hua et al., 2009; Mwangi et al., 2014;
Zeng et al., 2019b).

Thus, a correlation analysis-based redundant information
expurgate method was proposed to discard one feature from
each of the highly relevant feature pairs. As a prepare step, all
feature values need to be normalized to [0,1] using the following
equation:

xni =
xi − x̄

xmax − xmin
,

where xi(i = 1, 2, 3, · · · ) denotes the i-th value in the feature set,
x̄represents the mean value of the current feature vector, andxmax,
xmin correspondingly reflect the maximum and minimum values
of the feature vector.

Then, Pearson’s correlation was used to evaluate the
correlations between any two features. Its value was written as
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follows:(Thibeault and Srinivasa, 2013; Jin et al., 2019)

ρ (X,Y) =
1

n− 1

n∑
i=1

(
Xi − X̄
σ(X)

)(
Yi − Ȳ
σ(Y)

),

where X and Y are two given feature vectors, X̄and Ȳ represent
the mean value of X and Y , respectively, and σ(X) and σ(Y)
denote the standard deviations of X and Y , respectively.

In our experiment, for any feature pair X and Y , if the value
of ρ (X,Y) was larger than the threshold T, then X and Y were
considered a highly correlated feature pair. In the next step, we
decided whether to remove one of the features from the feature
set while retaining the other in the feature set. Thus, for the first
feature pair, a removed feature set D and a reserved feature set R
were created and set as an empty set. Then, one feature was set to
belong to D, while the other was set to belong to R randomly. In
the following computation, the rule for assigning features could
be expressed as follows: assuming that X-Y is a highly correlative
feature pair,

• If X /∈ D and X /∈ R : Y /∈ D and Y /∈ R→ Y ∈ D, X ∈ R
• If X /∈ D and X /∈ R : Y ∈ D→ X ∈ R
• If X /∈ D and X /∈ R : Y ∈ R→ X ∈ D
• Elseif X ∈ R : Y /∈ D and Y /∈ R→Y ∈ D
• Elseif X ∈ D : Y /∈ D and Y /∈ R→ Y ∈ D

Let D =
{
f
′

1, f
′

2, f
′

3, · · · , f
′

M

}
denote the final removed feature

set. After all M features in D were removed from the feature set,
the correlation between feature pairs was decreased dramatically.
The threshold T used in our experiment was set as 0.85.

MRMD Feature Selection
Dimensionality reduction is a key process in machine learning
research and application (Bhola and Singh, 2018). The MRMD
method, as presented by Zou et al. (2016), was used to
rank features in descending order and reduce the feature
number. There were two object functions; the first reflected the
relationship between the current feature and the target class,
which could be written as follows (Zou et al., 2016):

PPC
(
−→
Fi ,
−→
Ci

)

=

1
N−1

∑N
k=1

(
fi,k − fi

) (
Ci,k − Ci

)
√

1
N−1

∑N
k=1

(
Ci,k − Ci

)2
√

1
N−1

∑N
k=1

(
fi,k − fi

)2
,

max MRi =
∣∣∣PPC (−→Fi ,−→Ci

)∣∣∣ ,
where fi,k and Ci,k represent the k-th element in the feature vector
Fi and Ci, respectively. The other object function was expressed
in the following form Zou et al. (2016):

ED
(
EX, EY

)
=

√√√√ N∑
k=1

(
xk − yk

)2
,

maxMDi = EDi =
1

M − 1

∑
ED

(
−→
Fi ,
−→
Fk
)

.

Integrating the above two functions, we obtained the final
objective function, which was written as follows:

max(MRi + MDi)

Solving this function, when the function reached the
maximum ACC value, the iteration was stopped automatically,
giving a feature dimension reduced set.

PCA
Principal component analysis (Price et al., 2006) is a widely
used tool that can transform the features of observation into an
uncorrelated feature set (Zeng et al., 2017, 2019a; Xiao et al.,
2018; Zhang et al., 2019b). The main steps of PCA are as
follows: (1) normalize the feature vector value; (2) calculate the
covariance matrix by

∑
=

1
mX · XT ; (3) use the singular value

decomposition method (U, S, VT);= SVD(6); (4) extract the
first k singular vectors from U and (5) calculate the i-th eigenvalue
λi, i = 1, 2, 3, · · ·

We used ρ to evaluate the cumulative contribution value of

the singular vectors; this value was defined as ρ =

∑p
i=1 λi∑m
i=1 λi
≥ T′,

where m denotes the dimension of the transformed features. The
above function denotes there is enough information to serve
as the optimal feature set for the identification 0task when the
cumulative contribution value of singular vectors from the first
one to the λ-th one reaches a value, namely, the threshold T′.
Thus, through the threshold T′, only a part of features were
selected and then formed an optimal feature set, which made the
model simple and fast to run.

Machine Learning Methods
In order to distinguish between thermophilic and non-
thermophilic proteins, SVM (Ding et al., 2016a,b; He et al.,
2018; Qiao et al., 2018; Wei et al., 2018; Fu et al., 2019; Wang
et al., 2019b), random forest [RF, (Ding et al., 2017; Wang et al.,
2019a)], decision tree (Mohasseb et al., 2018; Li et al., 2019),
and naïve Bayes [NB, (Rajaraman and Chokkalingam, 2014)]
methods were used in our experiment. The first two methods
were implemented and optimized in the python 3.7 environment
with our edited code. All four methods were also tested in the
Weka environment, yielding similar results.

Evaluation of Performance
In order to evaluate the model performance, we used a 10-fold
cross-validation scheme in our experiment and adopted three
commonly used accuracy indicators for quantification (Jiang
et al., 2013, 2018; Zeng et al., 2016; Wei et al., 2017a,b; Lu
et al., 2018, 2019; Xiong et al., 2018; Chen et al., 2019; Ding
et al., 2019; Lin et al., 2019; Shan et al., 2019; Shen et al., 2019;
Xu et al., 2019; Yu and Gao, 2019; Yu et al., 2019a). The first
indicator was sensitivity (Sn), which represents the ratio of the
correctly identified thermophilic proteins and could be calculated
as follows:

Sn =
TP

TP + FN
× 100%,

where TP, TN, FP, and FN represent the number of the correctly
identified thermophilic proteins, the number of the correctly
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indemnified non-thermophilic proteins, the number of non-
thermophilic proteins predicted as thermophilic proteins, and
the number of the thermophilic proteins predicted as non-
thermophilic proteins, respectively (Lin and Chen, 2011).

The second indicator was specificity (Sp), which denotes the
percentage of the correctly identified non-thermophilic proteins
among all non-thermophilic observations. Sp was defined as
follows:

Sp =
TN

TN + FP
× 100%.

The last indicator was accuracy (ACC), which reflected
the percentage of correctly recognized thermophilic and non-
thermophilic proteins among all observations, written as follows:

ACC =
TN + TP

TN + FP + FN + FP
× 100%.

RESULTS

Our experiments were performed on the basis of qualitative
evaluation, quantitative analysis, and comparison with other
counterparts, as shown in Figure 2. The data were calculated
using 500 randomly selected thermophilic proteins and 500
randomly selected non-thermophilic proteins, and experiments
were evaluated in 10-fold cross-validation format.

First, we evaluated the proposed method using qualitative
analysis. In this analysis, all feature data were reduced to
12 dimensions through the PCA method. Furthermore, the
t-SNE method (van der Maaten and Hinton, 2012; van der
Maaten, 2014) is one of the powerful visualization tools for
showing the structure of high-dimension data. Thus, we used
the t-SNE method (van der Maaten and Hinton, 2012; van
der Maaten, 2014) to differentiate thermophilic and non-
thermophilic proteins in the figure. Additionally, the t-SNE
method used here was not a part of the proposed model,
but was a display tool of the experiment data. The first two
features of the results using the t-SNE method are plotted in
Figure 2A; from these data, a distinct boundary was observed
for separating thermophilic and non-thermophilic observations.
Moreover, it was easy to distinguish thermophilic proteins from
non-thermophilic proteins.

In order to verify these findings, SVM was used to train
and test the 12-dimensional data, and the results are shown in
Figure 2B. Both types of proteins were separated successfully
using this method. This phenomenon directly demonstrated that
our proposed data had good separation quality and the SVM
method had strong recognition ability for thermophilic proteins
and non-thermophilic data.

Second, the processed data were tested using the other three
machine learning methods, as detailed in Figure 2C. For every
method, we also calculated three accuracy indicators: Sn, Sp,
and ACC. The results showed that the SVM yielded the highest
values for all three indicators, and all values reached at least
98.2%. NB also showed higher accuracy, with values of 96.25%,
97.56%, and 96.89%, respectively. The accuracy of the random
forest model was higher than that of J48, for which the average
value was only 91.48%.

Our method was also compared with the results of Lin (Lin
and Chen, 2011) and the method of using the same dataset (Fan
et al., 2016). The results are shown in Figure 2D. Notably, our
method got the highest accuracy values based on the results
of the MRMD methods, which denotes our proposed method
outperformed the method described by Lin (Lin and Chen, 2011).
Additionally, the performance of the proposed method was better
than the effects described by Fan et al. (2016) too, suggesting
that the proposed method could be a state-of-the-art model in
current research.

Features using the original dipeptides were also tested in
our study. All reduced features in our feature set were replaced
with the original dipeptides. From the accuracy data shown in
Figure 2D, the ability to distinguish thermophilic proteins from
non-thermophilic ones was lower than that using the reduced
amino acid dipeptides. Additionally, the receiver operating
characteristic (ROC) curve was also plotted, which could be seen
in Figure 3A. It is easy to found that the results of the ROC curve
verified the identification efficiency of the proposed method too.

Finally, the newly released thermophilic protein database
(Mohasseb et al., 2018) is also tested through the proposed
method in this manuscript. In the experiment, we selected 106
thermophilic proteins and 101 psychrophilic proteins from the
database. All those data can be downloaded on the website:
http://www.labio.info/index-1therm.html. In the experiment, we
did three experiments using three different thresholds in the
correlation analysis step. The experiments are given in Figure 3B,
from which it was easy to find that the identification accuracy
was bigger than 0.97 in most cases when using the threshold
of 0.95 and 0.90. It also showed that the classification efficiency
was not ideal when using the threshold 0.85. The reason
for this phenomenon may be the calculated features of the
current data have a stronger correlation between each other
than the previous thermophilic protein database. Thus, in this
condition, a big value than 0.85 is needed to identify the
thermophilic proteins accurately. It is worth noting that the
results in this figure verified the perfect identification ability of
the proposed method.

DISCUSSION

Many features are removed from the original feature set during
correlation analysis and MRMD feature selection. Moreover,
these removed features are typically not crucial or redundant
for performing thermophilic protein recognition. However, the
selection of features to remove and retain is essential, and further
studies are needed to evaluate such approaches. Thus, in this
study, we evaluated the removed features, as depicted in Figure 4.

The 10 most critical original features are shown in Figure 4A,
and under our proposed model framework, the feature values
of K∗H, KR, TF, P∗M, F∗∗N, I∗∗Y/V∗∗Y, MW, and WQ
(where ∗ represents a gap in the residues) showed significant
contributions to the recognition of thermophilic proteins.
Additionally, residue K also plays a vital role in enhancing
thermostability. Interestingly, our conclusions regarding residue
K were consistent with the results of Lin (Lin and Chen, 2011).
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FIGURE 2 | The figure of model performance. (A) The first two dimensions of the result of compression characteristics of the TSNE method; (B) the figure of the
ultra-classification surface of SVM method; (C) The accuracy values of four different models; (D) the comparison results with other methods.

FIGURE 3 | The comparison results of experiments. (A) The receiver operation characteristic (ROC) curve of three methods; (B) the results of experiments over the
database (Fan et al., 2016).

For the removed features, the results are shown in Figures 4B–
D. There were four types of components in the final feature
set: ACC features, physicochemical characteristics, amino acid
frequencies (the first 20 features in the 188D feature),
and reduced amino acid dipeptides. Approximately half of

the physicochemical characteristics were deleted from the
original feature set, and there were only a few reserved
physicochemical characteristics in the first 50 crucial features.
Thus, we concluded that the physicochemical characteristics
were essential features, but not the most essential features,
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FIGURE 4 | The critical and removed features in the proposed method: (A) the most important features; (B) the deleted amino acid frequency features; (C) the
deleted reduced-depiptides (I); (D) the deleted reduced-depiptides (II). The symbol “*” means any one of the 20 amino acids, it may be “A”, “C”, “P”, or others.
Besides, “**” has the same meaning; it represents a two-letter combination of 20 amino acids, “AA”, “DC”, “VP”, for example.

for this recognition task. Accordingly, we did not analyze the
details of the removed physicochemical characteristics. We also
showed that only three ACC features were excluded from the
final feature set, and the remaining 15 ACC features were
retained, reflecting the crucial roles of the ACC features in this
recognition task.

The amino acid frequency, which was one of the first 20
features in the 188D feature set, included only four residues
removed from the feature set. These four residues were V
(Ile and Val), A, E, and K, which had little contribution
to recognizing thermophilic protein and non-thermophilic
proteins. Interestingly, the reduced amino acid V, which included
both Ile and Val, was also deleted. It is worth noting that the
amino acid V appeared later in this manuscript denotes the
reduced V, namely, both Ile and Val. This finding indicated that
both Ile and Val were redundant and did not contribute to the
identification task. If we used the original amino acid dipeptide
features, additional useless features, including IA, I∗A, and I∗∗A,
etc., would also be observed in the feature set. The number of
additional redundant features in the original dipeptides could be
as high as 39 if compared with the reduced amino acid dipeptides.
As shown in Figure 2D, the smallest prediction accuracy was
obtained, and represented those many additional useless features
caused the classification model fail in the overfitting state when

using the original dipeptides. Additionally, this observation could
explain why the accuracy increased significantly when using the
reduced amino acid dipeptides.

There were three types of dipeptides, expressed as AA (λ =
0), A∗A (λ = 1), and A∗∗A (λ = 2). The numbers of these
types of removed dipeptides were 60, 61, and 71, respectively.
To conveniently visualize these data, we counted the numbers
of the same dipeptide (omitting the symbols ∗ and ∗∗). If a
dipeptide appeared more than twice, it was drawn in the figure.
Thus, if the dipeptide NV was shown in the figure, there were
at least two types of dipeptides, i.e., NV, N∗V, or N∗∗V, in the
removed feature set.

All discovered dipeptides were classified into two parts, as
shown in Figures 4C,D. The reduced dipeptides in Figure 4C
were dipeptides having relationships with the reduced residue V,
verifying the reduced power of the recognition task in the above
analysis. Moreover, residue V enabled the discovery of seven
related dipeptides in the removed features. This phenomenon
demonstrated that residue V and some dipeptides containing
V were insensitive to the recognition task under our proposed
model framework. Figure 4D also shows another seven removed
dipeptides, including VV, AV, AE, AL, LE, LL, and LR.

These results provide insights into the design of stable mutants
to increase protein thermostability.
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CONCLUSION

In this study, we aimed to develop an approach to distinguish
thermophilic proteins from non-thermophilic proteins; to this
end, a recognition method that combined mixed features of
proteins and a machine learning method was established.
First, an amino acid reduction method was introduced to
reduce the categories of amino acids. Nest, we calculated the
physicochemical characteristics, ACC, and reduced dipeptides of
thermophilic and non-thermophilic proteins. After performing
a dimension reduction step using correlation analysis, the
MRMD method, and PCA, an optimal feature set was
obtained. Finally, machine learning methods were used to
train and predict feature data, and the results revealed that
the proposed model could identify 98.2% of thermophilic
proteins and non-thermophilic proteins if the data were operated
in a 10-fold cross-validation mode. Furthermore, the feature
values of K∗H, KR, TF, P∗M, F∗∗N, V∗∗Y, MW, and WQ
were found to play vital roles in thermostability, and some
residues and dipeptides, including V (Ile and Val), A, E,
K, NV, VG, VA, AE, AL, and LE, were not important for
identifying thermostability. As discussed in previous studies
(Liu and Li, 2019; Liu and Zhu, 2019), the web-server
is very important. In our future work, our research will
focus on developing a free webserver that could provide a

platform to test the currently proposed method using an easily
accessible approach.
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Gene selection algorithm in micro-array data classification problem finds a small set

of genes which are most informative and distinctive. A well-performed gene selection

algorithm should pick a set of genes that achieve high performance and the size of this

gene set should be as small as possible. Many of the existing gene selection algorithms

suffer from either low performance or large size. In this study, we propose a wrapper

gene selection approach, named WERFE, within a recursive feature elimination (RFE)

framework to make the classification more efficient. This WERFE employs an ensemble

strategy, takes advantages of a variety of gene selection methods and assembles the top

selected genes in each approach as the final gene subset. By integrating multiple gene

selection algorithms, the optimal gene subset is determined through prioritizing the more

important genes selected by each gene selection method and a more discriminative and

compact gene subset can be selected. Experimental results show that the proposed

method can achieve state-of-the-art performance.

Keywords: WERFE, gene selection, RFE, ensemble, wrapper

1. INTRODUCTION

Gene expression data contains gene activity information, and it reflects the current physiological
state of the cell, for example, whether the drug is effective on the cell, etc. It plays important roles
in clinical diagnosis and drug efficacy judgment, such as assisting diagnosis and revealing disease
occurrence mechanism (Lambrou et al., 2019). Gene expression data is rather complex, large in
volume and grows fast. Since the dimensionality of gene expression data is often up to tens of
thousands, it often consumes huge amount of time for analysis and it is difficult to make full use
of it. The performance is not satisfied without proper processing. Although the dimensionality of
gene expression data is extremely high, sometimes only a handful of the genes are informative and
discriminative. Therefore, before the analysis of gene expression data, gene selection, which aims
to reduce the dimensionality, is always carried out as the first step.

Gene selection is one special type of feature selection algorithm. It is amethod to find the optimal
gene subset from the original data set according to the actual needs (Su et al., 2019c). Over the years,
many have studied the feature selection from different aspects. Kira et al. proposed a relief algorithm
and defined the feature selection as a way to find the minimum feature subset that is necessary and
sufficient to identify the target in ideal situations (Kira and Rendell, 1992). From the perspective of
improving prediction accuracy, John et al. viewed the feature selection as a calculation procedure,
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which could increase classification accuracy or reduce the feature
dimension without reducing the classification accuracy (John
et al., 1994). In the definition of Koller et al.’s study, feature
selection aims to select the smallest feature subset, and ensure
that the predicted class distribution is similar to the original data
class distribution (Koller and Sahami, 1996). InDash et al.’s study,
they considered the feature selection as a method to select a
feature subset as small as possible, and meet conditions that not
reduce the classification accuracy significantly and not change the
class distribution significantly (Dash and Liu, 1997). Although
the definition varied from study to study, they had the same
goal, that is, to find a smallest feature subset to identify the
target effectively and achieve an accuracy as high as possible.
Their definition of feature selection takes into account both
classification accuracy and class distribution. Based on algorithm
model structure, feature selection method has been divided into
three categories: filter, wrapper, and embedded method. The gene
selection can also be divided into these three categories.

Filter method is an early feature selection method, which
selects the optimal feature subset at the first place and then
using this feature subset to train the model. The two steps are
independent. Another way to think about it is that it measures
the importance of each feature, ranks the features, selects the top
ranked features, or the top ranked percentage of all the features
as the final feature subset. This method has often been used
to pre-process the raw data. Phuong et al. (2005) proposed an
effective method filter-based method for finding tagging SNPs. In
the study of Zhang et al.’s, the filter method is used to pre-process
3D image data (Zhang et al., 2015). Roffo et al. (2016) proposed
a new filter-based feature selection method which achieved state-
of-the-art performance.

Unlike filter method, wrapper method uses the output
of the learning model as the evaluation criterion of each
feature subset. In wrapper method, feature selection algorithm
plays as an integral part of the learning algorithm, and the
classification output is used to evaluate the importance of
the feature subsets (here we focus on classification issues).
By generating different combinations of genes, evaluating each
combination, and then comparing between combinations, this
type of approach eventually becomes an optimization problem
in terms of determination of the finally selected subset. The
wrapper algorithm has been studied extensively. Zhang et al.
(2014) built a spam detection model and used a wrapper-based
feature selection method to extract crucial features. Li Yeh et al.
used the idea of wrapper algorithm, combined the tabu search
and binary particle swarm optimization for feature selection,
and successfully classified the micro-array data (Li Yeh et al.,
2009). Shah et al. developed a new approach for predicting drug
effect, and decision-tree based wrapper method was used in a
global searching mechanism to select significant genes (Shah and
Kusiak, 2004).

Wrapper method integrates feature selection process and
model training process into one entirety (Su et al., 2019b).
That is, the feature selection is carried out automatically
during the learning process. This method is often coupled with
well-performed classification methods such as support vector
machine (SVM) or random forests (RF) in order to improve

the classification accuracy and efficiency. Wrapper method has
shown impressive performance in gene studies. Su et al. proposed
a MinE-RFE gene selection method which conducted the gene
selection inside the RF classification algorithm and achieved
good performance (Su et al., 2019b). They also proposed a gene
selection algorithm combing GeneRank and gene importance to
select gene signatures for Non-small cell lung cancer subtype
classification (Su et al., 2019f). The third class, embeddedmethod,
is similar to wrapper methods. Different from the wrapper
method, an intrinsic model building metric is used during
learning in embedded approach. Duval et al. (2009) presented
a memetic algorithm which was an embedded approach dealing
with gene selection for supervised classification of micro-array
data. Hernandez and Hao (2007) tried a genetic embedded
approach which performed the selection task combining a SVM
classifier and it gave highly competitive results.

Ensemble strategy has been used widely to deal with diverse
types of issues (Wei et al., 2017a,b, 2018a; Wang et al., 2018;
Zhang W. et al., 2018; Su et al., 2019d; Zhang et al., 2019a).
It takes advantages of different algorithms and the optimal
outcome is obtained based on the optimization of the multiple
algorithms. In this study, we propose an wrapper approach for
gene selection, named WERFE, to deal with classification issues
within a recursive feature elimination (RFE) framework. This
WERFE employs an ensemble strategy, takes advantages of a
variety of gene selection methods and assembles the top selected
genes in each approach as the final gene subset. By integrating
multiple gene selection algorithms, the optimal gene subset is
determined through prioritizing the more important genes of
each gene selection method. A more compact and discriminative
gene subset is then selected.

2. METHODOLOGY

2.1. Data Sets and Preprocessing
In our study, we used five data sets to validate the proposed
method, RatinvitroH, Nki70, ZQ_188D, Prostate and Regicor.
RatinvitroH was retrieved from Open TG-GATEs database,
which is a large-scale toxicogenomics database (https://toxico.
nibiohn.go.jp/english/index.html). It stores gene expression
profiles and toxicological data derived from in vivo (rat) and in
vitro (primary rat hepatocytes and primary human hepatocytes)
exposed to 170 compounds at multiple dosages and time
points (Yoshinobu et al., 2015; Su et al., 2018). Here we identified
hepatotoxic compounds based on the toxicogenomics data. We
used the liver toxicogenomics data of rat in vitro and we selected
the data at 24 h as at this time point the gene expression is
higher in the single-dose study (Otava et al., 2014; Su et al.,
2019e). All 31,042 genes of 116 compounds in the database
were picked to build and estimate the gene selection method.
Gene expression levels at three concentrations, low, middle, and
high were recorded and we employed the response at the high
concentration to represent the potency of the drugs. The gene
expression was profiled with Affymetrix GeneChip.

Nki70 is a data set assembling expression of 70
breast cancer-related genes of 144 samples. CPPsite
(http://crdd.osdd.net/raghava/cppsite/) is a manually curated
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TABLE 1 | The details of the five data sets.

Dataset Gene number Sample number

RatinvitroH 31,042 116

Nki70 70 144

ZQ_188D 188 9,024

Prostate 100 50

Regicor 22 300

database of experimentally validated 843 cell-penetrating
peptides (CPPs) (Gautam et al., 2012), and CPPsite3.0 is the
updated version of CPPsite2.0 (Piyush et al., 2015). ZQ_188D is
derived from CPPsite3.0. It picks 188 CPPs of 9,024 samples. The
Prostate data set contained 100 genes and 50 samples and it was
used for cancer classification based on gene expression (Torrente
et al., 2013). Regicor data set contained 22 genes and 300
samples (Subirana et al., 2014). It was used to identify death
using cardiovascular risk factors. Table 1 shows the details of the
five data sets we used in this study.

2.1.1. Support Vector Machine (SVM)
SVM is a widely used classification and regression analysis
method in machine learning. It maps the raw data into high
dimensional space through kernel functions to make the data
linearly separable (Wang et al., 2019; Wei et al., 2019a,b). It
was developed in Vapnik et al.’s study of statistical learning
theory (Cortes and Vapnik, 1995), with the core idea to find
the hyperplane between different categories, so that samples
in different categories can be grouped into different sides
of the separating hyperplane as far as possible. The early
SVM was flat and limited. Then using more complicated
kernel function, the application scope of SVM was greatly
enlarged (Zhang N. et al., 2018).

SVM has the cost function as follows (Su et al., 2019a):

J(θ) =C

M
∑

i=1

[ yicost1(θ
Txi)+ (1− yi)cost0(θ

Txi) ]+
1

2

γ
∑

j=1

θj
2

(1)

where θ is the adjustable parameter of the model and γ is the
number of θ ; M is the number of the samples. yi represents
the category of the i-th sample. Here we considered binary
classification with label 0 and 1. cost1 and cost0 are the objective
function when yi is equal to 1 and 0, respectively. C is the degree
of penalty for controlling mis-classified training samples. It can
only be set as a positive value. Here we used the SVM with
linear kernel.

2.1.2. Random Forest (RF)
Random forest (RF) is another classifier we used to train the
model and obtain the importance of genes. RF is a method of
discriminating and classifying data through voting of different
classification trees (Ho, 1995; Gong et al., 2019; Lv et al., 2019).
It is an ensemble learning method composed of multiple tree
classifiers. It takes a random sample from the sample set with

replacement, and then the samples are fed into the tree classifiers.
Finally the class of the sample is determined by voting with the
principle of majority rule. As it classifies the data, it can also
provide the importance score of each variable (gene) and evaluate
the role of each variable in the classification. In the process
of applying RF, two parameters need to be determined. One is
the number of samples selected each time and the other one
is the number of decision trees in the random forest. The two
parameters are determined according to the size of the data set.

2.2. Gene Selection Based on Recursive
Feature Elimination
Gene selection was widely used in a number of fields (Fajila,
2019; Shahjaman et al., 2019). The most popular methods
include Fisher-based methods (Gu et al., 2011), Relief-based
methods (Robnik-Sikonja and Kononenko, 1997), FSNM
methods (Nie et al., 2010), and mRMR (Peng et al., 2005) etc. All
of these methods firstly rank the genes based on an evaluation
criteria. Then based on the rank of genes, an appropriate gene
subset is determined. However, the relationship between the
number of selected genes and the classification precision cannot
be fully reflected using these gene selection methods. Recently,
Su et al. developed an algorithm balancing performance and gene
number under the framework of recursive feature elimination
(RFE) (Su et al., 2019b). Inspirited by their work, we designed
the WERFE inside the RFE framework.

The RFE is a greedy algorithm which iteratively builds gene
sets and the optimal subset is chosen from them. It was proposed
by Guyon et al. with the intention to detect cancer (Guyon
et al., 2002). The RFE iteratively eliminates the least important
genes and conducts classification based on the new gene subsets.
All the gene subsets are evaluated based on their classification
performance. In our study, the finally selected subset is the one
with the highest accuracy.

2.3. The Proposed Gene Selection
Algorithm WERFE
2.3.1. Gene Ranking Algorithm
In this study, we developed a gene selection algorithm, named
WERFE. Its main idea is to integrate two or more independent
gene selection algorithms and the final decision is made based on
all of these algorithms. TheWERFE can be divided into two parts,
the first is the gene ranking algorithm, and the second part is the
determination of the optimal gene subset. Figure 1 illustrates the
entire process of the gene ranking algorithm. Cross validation is
widely used to evaluate the model (Liu et al., 2017; Zeng et al.,
2017a, 2018). Therefore, the WERFE was performed inside a
ten-fold cross validation procedure. In each fold, different gene
selection algorithms used the training and test data to pick gene
subsets. Then we put all the selected genes which were obtained
from different algorithms into a voting pool (Chen et al., 2018).
We counted the votes of each gene in the voting pool and ranked
the genes based on the votes. In this way, we obtained a list of
genes, GR, ranking from high to low. This ranking would be used
for further gene selection. The pseudo code in Algorithm 1 shows
the process of gene ranking. Here ten-Fold cross validation was
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FIGURE 1 | The entire process of gene ranking algorithm.

used in WERFE, and two gene selection algorithms RF and SVM
are integrated.

2.3.2. Determination of the Optimal Gene Subset
In our study, we generated different gene subsets, gathered all the
genes selected through different gene selection algorithms, and
chose an optimal gene subset according to the votes for each gene.
We assume that Gfinal is the gene subset eventually selected, and
there are p genes in Gfinal. According to the votes we obtained for
each gene, Gfinal is acquired as follows:

Gfinal = Gr :{Gr1, · · · ,Grl} | max(Acc(Gr , t0)),

tf > t0, tf ∈ [1, 10N], t0 ∈ [0, 10N − 1].
(2)

where Gr is the top ranked l genes of GR; Each of these l genes
present vote value tf larger than a threshold t0. Acc() means the
accuracy values of Gr . Assuming we integrated N gene selection

Algorithm 1: Gene ranking of Wrapper Embedded Recursive
Feature Elimination (WERFE)
Input: Input data X : x1, x1...xm and labels Y : y1, y1...ym, where
m is the number of samples. x is n-dimensional gene vector.s is
the step size of RFE.
Output: Ranked genes GR of all the genes.

1: for k = 1 : 10 do
2: The data set was randomly divided into ten equal parts;
3: Keep one part as a test data; The remaining nine parts are

used as training data;
4: while X is not empty do
5: Train a model based on training data of X using SVM;
6: Calculate the prediction accuracy of the model using the

test data;
7: Obtain the weight of each gene produced from SVM;
8: Remove s least weighted genes and update X;
9: end while

10: Obtain the gene subset G1 with the highest prediction
accuracy;

11: while X is not empty do
12: Train a model based on training data of X using RF;
13: Calculate the prediction accuracy of the model using the

test data;
14: Obtain the importance of each gene produced from RF;
15: Remove s least weighted genes and update X;
16: end while

17: Obtain the gene subset G2 with the highest prediction
accuracy;

18: Count the votes for all the genes contained in both G1 and
G2;

19: end for

20: Rank genes based on votes and obtain GR.

algorithms, and thus we would have N ten-fold cross validation,
respectively. Since all the selected subsets would be put into the
voting pool, it made that the number of votes for each gene
ranged from 0 to 10 × N. Therefore, the tf ranges from 1 to
10 × N and the threshold t0 ranged from 0 to 10 × N − 1.
Each time, we selected genes with tf larger than t0 and tested
the performance for the selected genes. As we set various t0
values and each t0 corresponded to a gene subset with l genes,
the performance using this subset could be calculated. Thus, we
obtained a list of accuracy values corresponding to each t0. Then
the subset with the highest accuracy was selected as the final
gene subset.

2.4. Performance Measurements
Classification sensitivity, specificity and accuracy are important
indicators for performance evaluation, which are widely used
in diverse applications (Zeng et al., 2017b; Wei et al.,
2018b, 2019c; Jin et al., 2019; Zhang et al., 2019b). In
this study, we used these three measurements to estimate
the performance of the gene subset. They are formulated
as follows:
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TABLE 2 | Voting and predicted results on RatinvitroH data set using WERFE.

tf tf GNa Acc.RFb Sen.RF Spe.RF Acc.SVM Sen.SVM Spe.SVM

19 20 0 – – – – – –

18 19, 20 2 75.79 74.58 56.19 60.45 100 0

17 18–20 17 77.30 81.10 47.26 57.80 95.42 3.33

16 17–20 685 77.15 81.46 48.10 76.67 90.69 60.48

15 16–20 1,092 77.43 85.82 53.10 75.00 82.27 69.76

14 15–20 6,142 75.70 80.17 43.10 65.53 69.57 65.48

0 1–20 31,042 76.84 81.74 66.62 60.23 49.52 50.71

aGN, gene number.
bAcc.RF, Acc using RF as classifier. Other abbreviations in the first row mean in the same

way.

Sensitivity(Sen) =
TP

TP+ FN
× 100%,

Specificity(Spe) =
TN

TN+ FP
× 100%,

Accuracy(Acc) =
TP+ TN

TP+ FP+ FN+ TN
× 100%.

(3)

The receive operating characteristic (ROC) curves as well as the
area under the ROC, named AUC, were also implemented to
measure the performance.

3. EXPERIMENTAL RESULTS

3.1. Performance Using Different Voting
Threshold
Theoretically, the proposedWERFE can ensemble any number of
gene selection algorithms. Here in order to made the calculation
efficient, we integrated two of the most popular wrapper gene
selection algorithms, the RFRFE and SVMRFE, and performed
the ten-fold cross validation to pick the most informative genes.
In each fold, using the same data splitting strategy, RFRFE
and SVMRFE selected their gene subsets respectively. Then
we obtained 20 gene subsets considering the ten-fold cross
validation. These gene subsets were gathered and put into the
voting pool. Based on votes of each gene, we obtained gene
rank GR, which is in descending order. Then we re-generated
gene subsets by setting different threshold t0. We evaluated the
classification performance of each new gene subset and made
the final decision. Here we used RF and SVM as the classifier
respectively after obtaining the final gene subset. We used
RatinvitroH to validate the WERFE as it is high in dimension.
Table 2 shows part of the intermediate outcome of applying
WERFE method to RatinvitroH data set. Here as the vote of each
gene ranges from 1 to 20, we set the threshold t0 from 0 to 19.

From Table 2, it shows that no gene has 20 votes. It can also
be seen that RF performs significantly better than SVM. Two
genes obtain 19 votes, and the classification using gene subset
composed of these two genes has reached 75.95% of accuracy,
74.58% of sensitivity, and 56.19% of specificity, based on RF.
With the increase of the number of genes in the gene subset, the

TABLE 3 | Comparison with RFRFE.

Dataset WERFE RFRFE

GNa Acc Sen Spe GNa Acc Sen Spe

RatinvitroH 17 77.30 81.10 47.26 11 72.27 68.71 34.95

Nki70 5 82.27 49.75 86.13 43 80.15 35.36 83.92

ZQ_188D 1 93.81 98.43 100.00 41 95.80 17.29 99.98

Prostate 4 98.00 95.00 100.00 3 95.31 90.00 100.00

Regicor 4 76.54 65.34 62.71 5 77.76 68.95 64.70

aGN, gene number.

TABLE 4 | Comparison with SVMRFE.

Dataset WERFE SVMRFE

GNa Acc Sen Spe GNa Acc Sen Spe

RatinvitroH 17 77.30 81.10 47.26 51 70.30 80.86 53.79

Nki70 5 82.27 49.75 86.13 25 77.10 57.42 88.17

ZQ_188D 1 93.81 98.43 100.00 1 93.81 0 100.00

Prostate 4 98.00 95.00 100.00 42 98.00 96.67 100.00

Regicor 4 76.54 65.34 62.71 3 65.33 62.21 72.24

aGN, gene number.

classification accuracy ranges from 75.70 to 77.43%, sensitivity
ranges from 74.58 to 85.82%, and specificity ranges from 43.10
to 66.62%, using RF evaluation method. The accuracy achieves
the highest when the t0 is set to 15. However, a huge number of
genes are obtained, which makes the computation slow down. In
order to balance the gene number and the accuracy, we selected
17 genes as the final gene subset when t0 equals to 17 and tf ranges
from 18 to 20, and obtained an accuracy of 77.30%, sensitivity of
81.10%, and specificity of 47.26%. That means we can obtain a
relatively high classification result with a small number of genes.

3.2. Comparison and Analysis With
Non-ensemble Algorithms
In theory, our ensemble strategy assumes that integrating more
gene selection algorithms is able to give better performance,
yet will lead to large calculation cost. Here we only integrated
two wrapper algorithms, RFRFE and SVMRFE in the proposed
WERFE. We compared WERFE with RFRFE and SVMRFE,
respectively and show the results in Tables 3, 4. The comparison
was made based on the five data sets.

In Table 3, for RatinvitroH, Nki70 and Prostate, it can be
clearly seen that the classification accuracy of WERFE is similar
or higher than the RFRFE method and the gene subset number
is similar or less; while for ZQ_188D and Regicor, although the
performance is slightly lower, the gene number is also smaller.
The overall performance of WERFE is better than the RFRFE.

From Table 4, we can find that the WERFE performs better
on all the five data set than SVMRFE. The accuracy is higher or
similar and gene number is smaller or similar.

Comparing across tables, we find WERFE outperforms the
other two methods. For example, Nki70’s classification accuracy
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FIGURE 2 | ROC curve on RatinvitroH dataset.

FIGURE 3 | ROC curve on Nki70 dataset.

reaches 82.27% using WERFE algorithm. While using RFRFE,
the accuracy is 80.15% (Table 3) and using SVMRFE, the
classification accuracy is 77.10% (Table 4). The number of
selected genes is 5, 43, and 25, respectively. WERFE achieves the
highest accuracy using the least number of genes. It is obvious to
see the similar trend for the other data sets. Even the accuracy is
lower using WERFE, e.g., for data ZD_188D, the accuracy is 2%
lower, the much smaller number of gene subset can compensate
the slight decrease of accuracy.

Figures 2, 3 show the ROC curves of the three methods on
RatinvtroH and Nki70 data set. WERFE stays on the top left
of RFRFE and SVMRFE, which shows it performs better on
RatinvtroH and Nki70 data sets than the other two methods.

TABLE 5 | Performance between lightGBM with WERFE and without WERFE.

Dataset With WERFE Without WERFE

GNa Acc Sen Spe GNa Acc Sen Spe

RatinvitroH 17 77.30 81.10 47.26 31042 59.13 73.90 36.93

Nki70 5 82.27 49.75 86.13 70 63.60 31.25 80.00

ZQ_188D 1 93.81 98.43 100.00 188 96.80 61.50 98.90

Prostate 4 98.00 95.00 100.00 100 89.80 88.00 91.70

Regicor 4 76.54 65.34 62.71 22 59.90 64.00 55.70

aGN, gene number.

3.3. Validation Using Other Classifiers
We have shown the results of WERFE using both RF and
SVM as the classifiers in section 3.1. Besides classification, RF
and SVM also provide gene ranking criteria for WERFE. In
order to provide a fair evaluation of WERFE, we used another
algorithm, LightGBM algorithm to classify the five data sets and
we compared the results with or without WERFE gene selection.
LightGBM, a gradient Boosting framework proposed in recent
years (Ke et al., 2017), is a distributed and efficient machine
learning algorithm based on Gradient Boosting Decision Tree
(GBDT) with two key techniques, Gradient-based One-Side
Sampling (GOSS), and Exclusive Feature Bundling (EFB). It has
been used in gene studies and shown impressive performance (Su
et al., 2019e). We show the results using lightGBM with WERFE
and lighGBM without WERFE in Table 5.

Table 5 shows that, with the exception of the ZQ_188D data
set, the classification accuracy and sensitivity of lightGBM plus
WERFE is much higher than that of using LightGBM alone. And
the WERFE greatly reduces the gene number. This shows that
WERFE algorithm performs well in gene selection of most data
sets and achieves the purpose of using fewer genes to reach higher
classification accuracy.

3.4. Comparison With Other Gene
Selection Algorithms
We also compared the WERFE with some widely used gene
selection approaches including Nie et al.’s method (Nie
et al., 2010), Fisher score-based approach and ReliefF
approach (Kononenko et al., 1997). We denoted them with
FSNM, Fisher, and ReliefF, respectively. These three gene
algorithms were conducted combining an incremental search
method (ISM). Firstly, the genes were ranked (descending
order) using FSNM, Fisher score, and ReliefF, respectively. Then
according to the rank, we assumed the basic gene subset include
the top ranked θ genes. Next, by adding step size genes each
time on top of the basic gene subset, we constructed a group
of gene subsets. In order to be consistent with the evaluation
method of WERFE algorithm, we also used RF and SVM as
the classification methods, and took the subset with the highest
accuracy as the result of gene selection. In our study, we set θ to
10 and the step size to 10. The results are shown in Tables 6, 7
for data RatinvitroH and Nki70, respectively.

Table 6 shows that, in the RF column, FSNM algorithm uses
the gene subset composed of 60 genes to obtain the classification
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TABLE 6 | Comparison with other gene selection algorithms on RatinvitroH.

Algorithms RF SVM

GNa Acc Sen Spe GNa Acc Sen Spe

WERFE 17 77.30 81.10 47.26 685 76.67 90.69 60.48

FSNM 60 77.50 83.65 43.52 100 74.85 83.95 60.02

Fisher 20 73.39 69.60 34.02 10 59.85 93.02 14.83

ReliefF 40 73.21 74.60 40.45 80 62.20 97.46 8.17

aGN, gene number.

TABLE 7 | Comparison with other gene selection algorithms on Nki70.

Algorithms RF SVM

GNa Acc Sen Spe GNa Acc Sen Spe

WERFE 5 82.27 49.75 86.13 5 72.33 33.00 92.17

FSNM 63 80.85 22.93 88.06 28 81.33 61.79 90.86

Fisher 35 81.46 35.33 92.94 35 74.24 46.12 89.14

ReliefF 21 80.31 39.36 82.11 35 75.76 50.62 87.86

aGN, gene number.

accuracy of 77.50%, which is the highest among the four
algorithms, and the classification accuracy obtained by WERFE
algorithm by using the gene subset composed of 17 genes is
77.30%. Through the comparison of FSNM andWERFE, we find
that, although the classification accuracy is similar, the number
of genes selected by WERFE algorithm is 20, while the number
of genes selected by FSNM is 60, which is 40 more than that
of WERFE. Therefore, it is reasonable to choose the WERFE in
real applications considering both performance and computation
consumption. In the SVM column, the WERFE selects more
genes than FSNM but achieved an increase of 2% of accuracy.

Similarly, we applied these gene selection algorithms on the
Nki70 dataset. Table 7 shows a comparison of the results of these
methods. For the RF column, it is easy to find that WERFE
method has the highest classification accuracy 82.27%, when 5
genes were selected as the gene subset. But in the SVM column
the WERFE has the worst performance. This indicates that it is
better to combine WERFE with RF to perform the gene selection
and classification.

4. CONCLUSION

A good gene selection can improve the performance of the
classification and play an important role in further analysis. It
should take both gene number and classification accuracy into
account. In this paper, we proposed an ensemble gene selection
algorithm, WERFE, which belongs to a wrapper method within
a RFE framework, and conducts the gene selection combining
cross validation. The WERFE takes good advantages of multiple
gene selection algorithms. Through evaluating each gene with
different gene selection algorithms, a small set of genes are
selected and the classification accuracy is also improved.

It is expected that better performance can be achieved if
integrating more gene selection algorithms. Our study integrates
two gene selection algorithms in order to reduce the computation
cost. Some of our operations are inspired by the non-ensemble
embedded algorithm that we proposed in previous studies (Chen
et al., 2018). For instance, we also completed the integration
of the algorithm within ten-fold cross-validation. In each fold,
under the same training set and test set, different gene selection
algorithms were used to obtain the optimal gene subsets,
respectively. Then we put the genes contained in each subset of
each fold into a voting pool to obtain the votes for each gene. The
number of votes of each gene in the voting pool is an important
indicator for us to evaluate the gene’s importance and based on
the votes, we obtained a gene ranking. We constructed new gene
subsets according to the ranking and a pre-set threshold was set.
Eventually each gene subset was evaluated and a final gene subset
was selected.

We used five data sets (RatinvitroH, Nki70, ZQ_180D,
Prostate, and Regicor) to validate the proposed method. In order
to verify the effectiveness of the gene selection algorithm, we
designed three groups of comparative experiments. Firstly, we
chose two wrapper algorithms, which are also the two basic
algorithms integrated into our proposed algorithm, to compare
with the WERFE. The results show that the proposed method
outperforms the other two wrapper algorithms. Secondly, we
used another classification algorithm, lightGBM, to evaluate
the proposed method. We compared the performance between
methods using WERFE and not using WERFE. And the results
show that lightGBM performs better when using WERFE.
Finally, we compared theWERFE with three other gene selection
algorithms. It shows from the results that WERFE is best in both
improving classification accuracy and reducing gene number.
However, there are some limitations of the proposed method.
For instance, this method needs to consume more computing
resources if more gene selection algorithms are integrated.
When the number of genes is large, the operation time will be
relatively long.

In the future, we will test this algorithm on more types of
data sets to further improve the algorithm. At the same time, we
will also try to integrate more gene selection methods, aiming to
evaluate the importance of genes in a more objective way, and
meanwhile reduce the calculation time. We target to solve this
through deep learning method.
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Circular RNA (circRNA) abnormal expression and regulation are involved in the
occurrence and development of a variety of tumors. However, the role of circRNAs
still remains unknown in gastrointestinal stromal tumors (GISTs). In the present study,
the differential circRNA expression profile of GISTs was screened by human circRNAs
chip and verified by qRT-PCR. The circRNA–miRNA–mRNA regulatory network was
constructed using the cytoHubba plugin based on the Cytoscape software. Gene
ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses
were performed to explore circRNA functions. Six significantly differential circRNAs
were also verified in 20 pairs of GISTs and adjacent tissues by qRT-PCR. The result
showed that a total of 543 differentially expressed circRNAs were identified in GISTs, of
which 242 were up-regulated and 301 were down-regulated. Additionally, the circRNA–
miRNA–mRNA network contained six circRNAs, 30 miRNAs, and 308 mRNAs, and the
targeted mRNAs were associated with “regulation of biological process,” “intracellular
organelle,” “protein binding,” and enriched in Wnt signaling pathway. Furthermore,
qRT-PCR demonstrated that hsa_circRNA_061346, hsa_circRNA_103114, and
hsa_circRNA_103870 were significantly up-regulated in GISTs (n = 20), and hsa_
circRNA_405324, hsa_circRNA_406821, and hsa_circRNA_000361 were dramatically
down-regulated in GISTs (n = 20). In addition, all of these circRNAs were shown to have
high diagnostic values, and most of them were significantly associated with tumor size,
mitotic figure, and malignant degrees in GISTs (P < 0.05). Therefore, we concluded
that circRNAs were abnormally expressed in GISTs, and the circRNA–miRNA–mRNA
regulatory network plays an important role in the occurrence and development of GISTs.
Also, the identified six candidate circRNAs might be critical circRNAs and may present
as potential diagnostic biomarkers for GISTs.

Keywords: gastrointestinal stromal tumors, circular RNA, miRNA, mRNA, biomarker

Abbreviations: CircRNA, circular RNA; DAVID, Database for Annotation, Visualization and Integrated Discovery; GISTs,
gastrointestinal stromal tumors; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; MiRNAs,
microRNAs; MREs, microRNA response element; ROC curve, receiver operating characteristic curve.
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INTRODUCTION

Gastrointestinal stromal tumors are rarely one of the
gastrointestinal carcinomas that originate from mesenchymal
tissue. GISTs are characterized by expression of CD117
receptor in cells and have variable biological phenotypes
ranging from benign to highly malignant (Gautam, 2020).
As one of the most common non-epithelial neoplasms,
they are mainly located in the stomach (55.6%) and small
intestine (31.8%) (Tao et al., 2020). Radical surgery is
the preferred treatment, and molecular target therapy,
such as imatinib, can improve the survival of advanced
patients with c-kit and/or PDGFRα mutations (Gupta
and Rateria, 2020). However, a few effective tumor
biomarkers are used for GIST diagnosis and prediction
(Etherington and DeMatteo, 2019).

Circular RNA is a novel class of endogenous non-coding
RNA characterized with 3′- and 5′-ends covalently linked
in a closed-loop structure (Mahmoudi et al., 2020), which
makes circRNAs resistant to exonucleases and more stable
than traditional linear RNA, such as lncRNA and miRNA
(Ding et al., 2020). Accordingly, the circRNAs can be divided
into four types according to the source (Meng et al., 2017):
exonic circRNAs (ecircRNA), intronic circRNA (ciRNA), exonic–
intronic circRNA (EIciRNA), and intergenic circRNAs. Among
them, 80% of circRNAs are ecircRNA. circRNAs may act as
microRNA (miRNA/miR) sponges by competitively binding
to miRNA response elements to influence downstream target
gene expression, as well as affecting gene function at a
post-translational level, and the same circRNA can regulate
multiple miRNAs. Also, the same miRNAs can regulate
multiple mRNA genes, thereby forming a large circRNA–
miRNA–mRNA competitive network to affect the development
of tumors (Xu S. et al., 2018). Also, some circRNAs can
exert their activities via interaction with some proteins. Even
then, some ecircRNAs may participate in the assembly and
protein ribosomes translation. It was reported that circRNA
is involved in various biological processes, including signal
transduction and transcription, cell cycle regulation, RNA-
binding protein, responses to stress, protein metabolism, cellular
immunity, and cell structure (Jiang et al., 2018). Recent
studies (Lu et al., 2018; Chaichian et al., 2020) have also
demonstrated that circRNA abnormal expression and regulation
are involved in the occurrence and development of a variety
of tumors. Therefore, circRNAs are of great importance as
a biomarker for cancer diagnosis, cancer prediction, and
treatment feedback, and may even serve as targets for
cancer treatment.

In this study, we first analyzed the circRNA differential
expression profile in GISTs using circRNA chip and identified
six potential key circRNAs by qRT-PCR. Also, the circRNA–
miRNA–mRNA network was constructed, and the GO and
KEGG pathway were performed via bioinformatics analysis. Our
study provides a novel insight into the molecular mechanisms
of GISTs from the circRNA–miRNA–mRNA network view,
and these circRNAs gave new direction for diagnosis and
treatment of GISTs.

TABLE 1 | The clinicopathological features of GISTs patients.

Variables Cases (n)

Total 20

Age (years)

≥60 12

<60 8

Gender

Male 15

Female 5

Tumor size (cm)

≤5 9

>5 11

Mitotic figure (HPF)

≤5/50 13

>5/50 7

Malignant degrees

Low/Moderate risk 12

High risk 8

MATERIALS AND METHODS

Patients and Samples
Twenty pairs of GISTs and adjacent tissues were collected
from The Second Xiangya Hospital of Central South
University. All pathological specimens were experienced
pathologists confirmed, did not accept the pre-operative
radiotherapy, chemotherapy, and imatinib targeted therapy. The
clinicopathological features are shown in Table 1. All tissues
were collected during surgical operation and instantly stored
in liquid nitrogen. The present project was permitted by the
ethics committee of The Second Xiangya Hospital of Central
South University, and informed consents were obtained from all
the participants.

CircRNA Chip Detection
Total RNAs were extracted by RNeasy Mini Kit (Qiagen, Hilden,
Germany). Total RNA from each sample was quantified using the
NanoDrop ND-1000. The sample preparation and microarray
hybridization were performed based on the Arraystar’s standard
protocols. Total RNAs were digested with Rnase R to remove
linear RNAs and enrich CircRNAs. Then, the enriched CircRNAs
were amplified and transcribed into fluorescent cRNA (Arraystar
Super RNA Labeling Kit; Arraystar). The labeled cRNAs were
hybridized onto the Arraystar Human circRNA Array V2
(8 × 15 K; Arraystar). Agilent Feature Extraction software
(version 11.0.1.1) was used to analyze acquired array images.
Quantile normalization and subsequent data processing were
performed using the R software limma package. Differentially
expressed circRNAs with statistical significance between
two groups were identified through volcano plot filtering.
Differentially expressed circRNAs between two samples were
identified through fold change filtering. Hierarchical clustering
was performed to show the distinguishable circRNA expression
pattern among samples.
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FIGURE 1 | Characterization of circRNA expression in GISTs. (A) Hierarchical cluster map. (B) The origin of upregulated and downregulated circRNAs. N, adjacent
normal tissues; C, GIST tissues.

TABLE 2 | Top 20 significantly up-regulated circRNAs.

circRNA P-value FDR FC (abs) Regulation source chrom strand type GeneSymbol

hsa_circRNA_061346 0.049017552 0.541205763 6.9877315 up circBase chr21 − exonic APP

hsa_circRNA_103114 0.027813714 0.541205763 6.8848564 up circBase chr21 − exonic APP

hsa_circRNA_103223 0.040961154 0.541205763 6.5339969 up circBase chr22 − exonic DDX17

hsa_circRNA_100582 0.02164493 0.541205763 4.5762691 up circBase chr10 + exonic ZEB1

hsa_circRNA_001481 0.047719242 0.541205763 4.5058956 up circBase chr5 − sense overlapping EMB

hsa_circRNA_103128 0.03858124 0.541205763 4.1057473 up circBase chr21 + exonic DYRK1A

hsa_circRNA_103870 0.039001555 0.541205763 4.0573338 up circBase chr5 + exonic SMA4

hsa_circRNA_404643 0.041732555 0.541205763 4.0082859 up 25070500 chr1 − exonic PIK3C2B

hsa_circRNA_004182 0.039090826 0.541205763 3.428553 up circBase chr2 + intronic CRIM1

hsa_circRNA_103977 0.03760255 0.541205763 3.426974 up circBase chr5 + exonic ARHGAP26

hsa_circRNA_104076 0.047784401 0.541205763 3.2920026 up circBase chr6 − exonic KIF13A

hsa_circRNA_101504 0.043980697 0.541205763 3.215775 up circBase chr15 + exonic PDIA3

hsa_circRNA_102510 0.029244589 0.541205763 3.1147657 up circBase chr19 + exonic LSM14A

hsa_circRNA_002164 0.048545781 0.541205763 3.082576 up circBase chr18 − exonic SS18

hsa_circRNA_103224 0.006590126 0.541205763 3.0780956 up circBase chr22 − exonic DDX17

hsa_circRNA_100915 0.030601002 0.541205763 3.0777302 up circBase chr11 − exonic PICALM

hsa_circRNA_403471 0.003668259 0.541205763 3.060178 up 25242744 chr5 + exonic ARHGAP26

hsa_circRNA_102248 0.047545686 0.541205763 3.056733 up circBase chr17 + exonic TBCD

hsa_circRNA_404446 0.005776341 0.541205763 3.0361211 up 25070500 chr1 − exonic CAPZB

hsa_circRNA_102378 0.045317666 0.541205763 2.9997955 up circBase chr18 + exonic ZNF532
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TABLE 3 | Top 20 significantly down-regulated circRNAs.

circRNA P-value FDR FC (abs) Regulation source chrom strand type GeneSymbol

hsa_circRNA_405324 0.013412911 0.541205763 4.3231649 down 25070500 chr15 + sense overlapping STARD9

hsa_circRNA_405443 0.028911656 0.541205763 3.3381633 down 25070500 chr16 + intronic NDE1

hsa_circRNA_406309 0.01797211 0.541205763 3.1653952 down 25070500 chr3 + intronic CMSS1

hsa_circRNA_100075 0.029545308 0.541205763 3.1382274 down circBase chr1 − exonic EMC1

hsa_circRNA_406821 0.020949363 0.541205763 3.0380172 down 25070500 chr6 + exonic ARMC2

hsa_circRNA_000361 0.027240076 0.541205763 3.0118108 down circBase chr3 − antisense PLCL2

hsa_circRNA_082335 0.035559522 0.541205763 3.008493 down circBase chr7 + exonic KLHDC10

hsa_circRNA_102207 0.013654637 0.541205763 3.0013356 down circBase chr17 + exonic AFMID

hsa_circRNA_405825 0.015220854 0.541205763 2.522762 down 25070500 chr2 + exonic KLF11

hsa_circRNA_074660 0.017052344 0.541205763 2.4763773 down circBase chr5 − exonic ATOX1

hsa_circRNA_104924 0.01941688 0.541205763 2.4549169 down circBase chr9 + exonic MVB12B

hsa_circRNA_056037 0.027008503 0.541205763 2.4478589 down circBase chr2 − exonic BUB1

hsa_circRNA_406780 0.028354789 0.541205763 2.3707217 down 25070500 chr6 − sense overlapping DNPH1

hsa_circRNA_024371 0.025742814 0.541205763 2.36132 down circBase chr11 + exonic PAFAH1B2

hsa_circRNA_061284 0.026417014 0.541205763 2.30245 down circBase chr21 + exonic USP25

hsa_circRNA_100456 0.009103973 0.541205763 2.2394652 down circBase chr1 + exonic KCNK2

hsa_circRNA_083919 0.037676327 0.541205763 2.213904 down circBase chr8 + exonic UNC5D

hsa_circRNA_406295 0.017374416 0.541205763 2.2027287 down 25070500 chr3 + sense overlapping SUCLG2-AS1

hsa_circRNA_035426 0.040284453 0.541205763 2.2016635 down circBase chr15 + exonic TCF12

hsa_circRNA_405296 0.023543643 0.541205763 2.1972163 down 25070500 chr15 + sense overlapping TUBGCP5

FIGURE 2 | qRT-PCR validation. (A) The cluster heat map of the top eight most up-regulated and down-regulated circRNAs. (B) Comparison of Arraystar human
circRNAs chip data and qRT-PCR results. circRNAs expression levels were normalized to GAPDH. N, adjacent normal tissues; C, GIST tissues.

Quantitative Real-Time PCR
Total RNAs were extracted using RNeasy Mini kit (Qiagen,
Hilden, Germany). Then, RNA was reversed into complementary
DNA (cDNA) by SuperScript III Reverse Transcriptase
(Invitrogen). qRT-PCR was performed with 95.0◦C for 3 min,
and 39 circles of 95.0◦C for 10 s and 60◦C for 30 s using
SYBR Green PCR Master Mix system. The relative expression
levels were calculated using the 22−11Ct method. RNA levels
were normalized to GAPDH expression. The forward (F) and
reverse (R) primer sequences for qRT-PCR were designed and
synthesized by Shanghai Kangcheng Co., Ltd. (Chinese).

CircRNA–miRNA–mRNA Interaction
Prediction
The fundamental structure of circRNAs was predicted
using Cancer-Specific circRNA (CSCD1). circRNA–miRNA
interactions were predicted using TargetScan and miRanda
databases, and miRNA target gene was predicted using
TargetScan, miRanda v5, and miBase prediction databases.
Candidate miRNAs and mRNAs should be overlapped in at least
two databases. Arraystar’s miRNA target prediction software

1http://gb.whu.edu.cn/CSCD
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FIGURE 3 | The fundamental structure modes of the six candidate circRNAs predicted by CSCD. (A) Up-regulated circRNAs: hsa_circRNA_061346,
hsa_circRNA_103114, hsa_circRNA_103870. (B) Down-regulated circRNAs: hsa_circRNA_405324, hsa_ circRNA _406821, hsa_circRNA_000361.

site: miRanda v52, TargetScan3, and mibase4. The circRNA–
miRNA–mRNA competitive network (cirCeNET) was visualized
by Cytoscape software (version 3.6.15).

Gene Ontology (GO) and KEGG Pathway
Analysis
Gene ontology and KEGG pathways analysis was used to
determine the function of candidate mRNAs in circRNA–
miRNA–mRNA competitive network. DAVID6 was used to
predict the enriched functional categories and enriched signaling
pathways. GO term, including BP, CC, MF, and KEGG
pathway with P < 0.05 and FDR < 0.05 were considered as
statistically significant.

Statistical Analysis
All data were analyzed by SPSS17.0 statistics software. Paired
t-test was employed for the comparison of two groups. Chi-
square test was used to investigate the relationship between

2http://www.ebi.ac.uk/enright-srv/microcosiTi/htdo/targets/v5
3http://www.targetscan.org
4http://pictar.bio.nyu.edu
5http://cytoscape.org/
6http://www.david.abcc.ncifcrf.gov/

circRNA expression and clinicopathologic features of GISTs
patients. P < 0.05 was considered as statistically significant.

RESULTS

Differential CicrRNA Expression Profiles
Were Established Successfully
The box plot showed similar distributions of tissues. In the
volcano plots, differentially expressed circRNAs were categorized
using fold change and P values. The scatter plots demonstrated
the variation of differentially expressed circRNAs. Hierarchical
cluster analysis showed differentially expressed circRNAs in
GISTs with fold change >1.5 and P < 0.05 (Figure 1A). After
normalization and data analysis, compared with adjacent tissues,
a total of 543 differentially expressed circRNAs were identified,
including 242 up-regulated circRNAs and 301 down-regulated
circRNAs, of which, exonic circRNAs accounted for 86.8% in
up-regulated circRNAs and 87.4% in down-regulated circRNAs
(Figure 1B). The top 20 significantly up- and down-regulated
circRNAs are listed in Tables 2 and 3.

qRT-PCR Validation
The top eight most upregulated circRNAs with fold change >4
and P < 0.05 and the top eight most downregulated circRNAs
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FIGURE 4 | circRNA–miRNA regulatory network. (A) The top five targeted miRNAs of up-regulated circRNAs. (B) The top five targeted miRNAs of down-regulated
circRNAs.

with fold change >3 and P < 0.05 are shown in the cluster heat
map (Figure 2A). qRT-PCR assay was used to assess the accuracy
of circRNAs chip data. After filtering circRNAs with low raw
intensity, six candidate circRNAs, including three up-regulated
circRNAs (hsa_ circRNA_061346, hsa_circRNA_103114,
hsa_circRNA_103870) and three down-regulated circRNAs
(hsa_circRNA_405324, hsa_circRNA_406821, hsa_circRNA_
000361) were selected for qRT-PCR analysis. The results showed
that qRT-PCR results were consistent with the circRNAs chip
data (Figure 2B), indicating the reliability of circRNAs chip data.

CircRNA–miRNA–mRNA Network
Construction
The fundamental structure modes of the six candidate circRNAs
predicted by CSCD are shown in Figure 3. To estimate
the function of six candidate circRNAs, circRNA–miRNA
interactions were constructed with TargetScan and miRanda
databases. The top five targeted miRNAs of six candidate
circRNAs are exhibited in Figure 4, and the detailed potential
circRNA–miRNA interaction sites of targeted miRNAs with the
highest context score percentile are shown in Figure 5. Then,
the circRNA–miRNA–mRNA competitive network (cirCeNET)
was visualized by Cytoscape software (version 3.6.1) based on
circRNA–miRNA interactions and miRNA–mRNA interactions
(Figure 6). This network contained six circRNAs, 30 miRNAs,
and 308 mRNAs, which provided a comprehensive perspective
into the links between circRNA, miRNA, and mRNAs in GISTs.

GO and KEGG Pathway Analysis
The GO analysis demonstrated that the term with the
highest enrichment score was regulation of biological process
(GO:0050789) for biological process terms (BP), intracellular
organelle (GO:0043229) for cellular component terms (CC), and
protein binding (GO:0005515) for molecular function terms
(MF), respectively. The top 10 enrichment scores are shown in
Figures 7A–C. The KEGG pathway with the highest enrichment
score was the Wnt signaling pathway. The top 10 enriched KEGG
pathways are shown in Figure 7D.

qRT-PCR Validation
Six significantly differential circRNAs were also verified in
20 pairs of GISTs and adjacent tissues by qRT-PCR. The
results showed that circRNA_061346, circRNA_103114, and
circRNA_103870 were significantly up-regulated in GIST tissues
(Figure 8) (P < 0.05), and circRNA_405324, circRNA_ 406821,
and circRNA_000361 were dramatically down-regulated in GIST
tissues (Figure 9) P < 0.05), compared with corresponding
adjacent tissues.

Diagnosis Values of CircRNA
In order to determine the diagnostic value of six candidate
circRNAs in GISTs, the ROC curve was employed. Statistical
analysis demonstrated that all six candidate circRNAs had
high diagnostic efficiency with AUC = 0.9925, AUC = 0.9824,
AUC = 0.9231, AUC = 0.9300, AUC = 0.9463, AUC = 0.9138
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FIGURE 5 | The detailed potential circRNA–miRNA interaction sites of targeted miRNAs with highest context score percentile based on TargetScan and miRanda
data.

for circRNA_061346, circRNA_103114, circRNA_103870
and circRNA_405324, circRNA_406821, circRNA_000361,
respectively (Figure 10) (P < 0.05).

Correlation of CircRNA Expressions With
Clinical Pathologic Features
In order to investigate the correlation of six candidate
circRNA expressions with clinical–pathologic features, the
median circRNA expression was used to divide the 20 pairs
of GISTs tissues into higher and lower circRNA expression
groups. Chi-square assay was employed for statistical analysis.
The results suggested that circRNA_061346 and circRNA_103114
expressions were positively associated with tumor size, mitotic
figure, malignant degrees, and circRNA_103870 expression

was positively associated with tumor size, mitotic figure, but
without relation to malignant degrees (Figure 11). On the
contrary, circRNA_405324 expression was negatively associated
with tumor size, mitotic figure, malignant degrees, and
circRNA_406821 was negatively correlated with mitotic figure,
malignant degrees, but not with tumor size; nevertheless,
circRNA_000361 expression was only negatively related with
mitotic figure (Figure 11B). However, there was no correlation
with age, gender, and tumor location.

DISCUSSION

Gastrointestinal stromal tumors are a rare malignant tumor
that occurs principally in the stomach, small intestine, and
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FIGURE 6 | circRNA–miRNA–mRNA regulatory network. Up-regulated circRNAs, down-regulated circRNAs, miRNA, and mRNA are presented as square, hexagon,
diamond, and circle, respectively.

FIGURE 7 | GO and KEGG pathway analysis. (A–C) GO annotation of targeted mRNAs with the top 10 enrichment scores for biological process, cellular component,
and molecular function, respectively. (D) The top 10 enriched KEGG pathways. GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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FIGURE 8 | The relative expression of up-regulated circRNAs of 20 GIST tissues were detected by qRT-PCR, (A) hsa_circRNA_061346; (B) hsa_circRNA_103114;
(C) hsa_ circRNA_103870. circRNA expression levels were normalized to GAPDH.

FIGURE 9 | The relative expression of down-regulated circRNAs of 20 GIST tissues was detected by qRT-PCR, (A) hsa_circRNA_405324; (B) hsa_circRNA
_406821; (C) hsa_circRNA_000361. circRNA expression levels were normalized to GAPDH.

colon–rectum (Flavahan et al., 2019). K-ras gene mutation
might be correlated with the mechanism of development
and infiltration of GISTs, but the pathogenesis of GISTs is
inadequately understood (Lasota et al., 2019). A growing
body of research (Wang et al., 2018; Cai et al., 2019;
Zaghlool et al., 2020) demonstrates that the development
of cancer is often accompanied by abnormal expression
of circRNA. Also, circRNA is characterized by inherent

stability, highly conservative, and universality. Therefore,
circRNA is of great importance as a biomarker for cancer
screening, cancer diagnosis, cancer prediction, feedback of
treatment, and prognosis. Additionally, circRNA’s abnormal
expression and the circRNA–miRNA–mRNA regulatory
network regulation have been increasingly demonstrated
in a variety of tumors, such as circRNA_CAMK2A–miR-
615-5p–fibronectin 1 network in lung adenocarcinoma
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FIGURE 10 | The diagnostic value of six candidate circRNAs in GISTs. (A) ROC curve for three up-regulated circRNAs. (B) ROC curve for three down- regulated
circRNAs.

FIGURE 11 | Correlation of six candidate circRNAs with clinical pathologic features. (A) Box plots for three up-regulated circRNAs. (B) Box plots for three
down-regulated circRNAs. Tumor size: ≤5 cm, >5 cm; mitotic figure: ≤5/50 HPF, <5/50 HPF; malignant degrees: low risk, moderate risk, high risk.

metastasis (Du et al., 2019), circRNA_0006948–miR-
490-3p–HMGA2 network in esophageal squamous cell
carcinoma (Pan et al., 2019), circRNA_ACAP2–miR-29a/b-
3p–COL5A1 network in breast cancer (Zhao et al., 2019),

circRNA_51217–miRNA-646–TGFβ1/p-Smad2/3 network in
prostate cancer (Xu et al., 2019), etc. At present, there are
few reports about the circRNA–miRNA–mRNA regulatory
network in GISTs.
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In the present study, we illuminate the molecular
mechanisms of circRNAs in the occurrence and development
of GISTs for the first time. We first performed circRNA
chip analysis to assess differential cicrRNA expression
profiles in GIST tissues and corresponding non-cancer
tissues. A totally of 543 differentially expressed circRNAs
were identified, of which 242 were significantly upregulated
and 301 were significantly downregulated in GISTs tissues.
Additionally, in order to fully elucidated the function of the
circRNA-related ceRNA in GISTs, six candidate circRNAs
including three up-regulated circRNAs (hsa_circRNA_061346,
hsa_circRNA_103114, hsa_ circRNA_103870) and three
down-regulated circRNAs (hsa_circRNA_405324, hsa_
circRNA_406821, hsa_circRNA_000361) were identified to be
involved in the ceRNA network. The ceRNA network consists of
six circRNAs, 30 miRNAs, and 308 mRNAs. In this network,
previous studies (Xu Z.H. et al., 2018; Zhang et al., 2019)
show that many miRNAs, such as miR-4778-3p, miR-147b,
miR-1182, and miR-378a-3p, were involved in tumor cell
growth, invasion, and metastasis. Also, many targeted genes,
such as ZEB1, SOX5, AKAP1, CHP1, CNBP, VEGFR, and
MAGT1, play a vital function in the cell shape, movement,
invasion, adhesion, and polarity formation, so as to involve
in many kinds of diseases such as malignant tumors, wound
healing, and so on (Rinaldi et al., 2017; Caramel et al., 2018;
Hu et al., 2018).

Furthermore, 20 GIST tissues and adjacent tissues were
collected to verify the expression of identified six candidate
circRNAs. qRT-PCR results showed that hsa_circRNA_061346,
hsa_circRNA_103114, and hsa_circRNA_103870 were
significantly up-regulated in GISTs, and hsa_ circRNA_405324,
hsa_circRNA _406821, hsa_circRNA_ 000361 were dramatically
down-regulated in GISTs. In addition, all of these circRNAs
were shown to have high diagnostic values, and most
of them were significantly associated with tumor size,
mitotic figure, and malignant degrees in GISTs. The six
candidate circRNAs might be critical circRNAs participating
in the occurrence and development of GISTs and can
serve as novel potential diagnostic biomarkers for GISTs
patients. Through a large literature review, very limited data
are available about these circRNAs’s functions and their
deregulation in cancer.

However, there are several limitations to our study. First,
only 20 patients were enrolled in our study, the sample size
is relatively small, and the result showed an association, rather
than a definite, causal relationship. Also, the relation analysis
of clinical factors and circRNAs needs to be supported by large
samples. Second, in our study, we only conducted a network
based on identified six critical circRNAs, miRNA, and target
mRNA, but a total of 543 circRNAs were identified in GISTs.
Other circRNAs may contribute as well. Third, our paper starts
with a general analysis of circRNAs in GISTs, but the mechanism
is not discussed in detail. Therefore, in our future work, further
studies with larger groups of patients, a network based on
543 circRNAs are needed to confirm these findings, and the
concrete mechanism of circRNAs in GISTs also needs to be
further explored.

CONCLUSION

In the present study, the differential circRNA expression
profile of GISTs was established, and a total of 543
differentially expressed circRNAs were screened. In addition,
the circRNA–miRNA–mRNA regulatory network was
constructed. hsa_circRNA_ 061346, hsa_circRNA_103114,
hsa_circRNA_103870 and hsa_circRNA_405324, hsa_
circRNA_406821, hsa_circRNA_000361 were identified as critical
circRNAs in the occurrence and development of GISTs and may
present as potential diagnostic biomarkers for GISTs. In brief, our
study provides a new insight into the pathogenesis of GISTs from
the circRNA–miRNA–mRNA regulatory network view.
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DNA N6-methyladenine (6mA) is closely involved with various biological processes.

Identifying the distributions of 6mA modifications in genome-scale is of great significance

to in-depth understand the functions. In recent years, various experimental and

computational methods have been proposed for this purpose. Unfortunately, existing

methods cannot provide accurate and fast 6mA prediction. In this study, we present

6mAPred-FO, a bioinformatics tool that enables researchers to make predictions based

on sequences only. To sufficiently capture the characteristics of 6mA sites, we integrate

the sequence-order information with nucleotide positional specificity information for

feature encoding, and further improve the feature representation capacity by analysis

of variance-based feature optimization protocol. The experimental results show that

using this feature protocol, we can significantly improve the predictive performance. Via

further feature analysis, we found that the sequence-order information and positional

specificity information are complementary to each other, contributing to the performance

improvement. On the other hand, the improvement is also due to the use of the feature

optimization protocol, which is capable of effectively capturing the most informative

features from the original feature space. Moreover, benchmarking comparison results

demonstrate that our 6mAPred-FO outperforms several existing predictors. Finally,

we establish a web-server that implements the proposed method for convenience of

researchers’ use, which is currently available at http://server.malab.cn/6mAPred-FO.

Keywords: DNA N6-methyladenine site, machine learning, feature representation, sequence-based predictor,

feature fusion

KEYPOINTS

- In this study, we present 6mAPred-FO, a powerful bioinformatics tool for the prediction of
6mA sites.

- In 6mAPred-FO, we integrate the sequence-order information with nucleotide positional
specificity information for feature encoding, and further improve the feature representation
capacity by feature optimization.
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- Comparative results showed that the proposed 6mAPred-FO
significantly outperforms several existing predictors.

- We have established a webserver implementing the proposed
6mAPred-FO. It is publicly accessible at http://server.malab.
cn/6mAPred-FO.

INTRODUCTION

N6-methyladenine (6mA), as a dynamic DNA epigenetic
modification, has been extensively discovered in the following
three species: bacteria, archaea and eukaryotes (O’Brown and
Greer, 2016). The newly studies have indicated that 6mA
modification participates in a wide spectrum of important
biological processes. In prokaryotes, for example, 6mA has been
found to be closely correlated with a series of DNA activities,
such as replication (Campbell and Kleckner, 1990; Li et al., 2019),
repair (Pukkila et al., 1983), transcription (Robbins-Manke et al.,
2005), and cellular defense (Luria and Human, 1952; Linn and
Arber, 1968; Meselson and Yuan, 1968). In addition, some
studies have demonstrated that 6mA can act as an epigenetic
mark in Phytophthora genomes and there may be a relationship
between patterns of 6mA methylation and adaptive evolution
in these important plant pathogens (Chen H. et al., 2018).
Besides, recent study demonstrated that DNA 6mA modification
plays a significant role in cell fate transition of mammalian
cells as well (Liang et al., 2016; Liao et al., 2016). Therefore,
it is very indispensable to determine the distribution of 6mA
modification sites in genome-scale to systematically interpret its
biological functions.

To solve this problem, experimental efforts have
been proposed, such as ultra-high performance liquid
chromatography coupled with mass spectrometry (UHPLC-
ms/ms) (Greer et al., 2015), capillary electrophoresis and
laser-induced fluorescence (CE-LIF) (Krais et al., 2010),
methylated DNA immunoprecipitation sequencing (MeDIP-
seq) (Pomraning et al., 2009), and single-molecule real-time
sequencing (SMRT-seq) (Flusberg et al., 2010). Notably, using
mass spectrometry together with SMRT-seq, Zhou et al.
obtained the first 6mA profile in rice genome (Zhou et al.,
2018). Currently, there is a publicly available database namely
“MethSMRT” that integrates multiple 6mA datasets derived
from SMRT-seq (Ye et al., 2017). Although considerable progress
has been made, the use of the high-throughput sequencing
techniques is very limited as it is laborious and expensive.

Recently, as the rapid increase of the experimentally validated
6mA sites, more research efforts have been focused on the
development of data-driven computational methods, especially
machine learning based prediction methods. For instance, Chen
et al., proposed the first machine learning based 6mA site
predictor, named “i6mA-Pred,” to predict 6mA sites in rice
genome (Chen et al., 2019). The i6mA-Pred used nucleotide
chemical properties and nucleotide frequency as features to
formulate DNA sequences (Chen et al., 2017) and utilized
support vector machine (SVM) to train the predictive model
(Chen et al., 2019). The i6mA-Pred model achieved 83.13% in
terms of the overall accuracy for identifying 6mA sites (Chen
et al., 2019). More recently, researchers have proposed to use
deep learning to identify 6mA sites, like iDNA6mA (5-step rule)

(Tahir et al., 2019). This model can automatically extract features
from DNA sequences by convolution neural network (CNN).
Although these models have been proven to be effective and
efficient in identifying DNA 6mA sites, the accuracy was not high
enough to perform the genome-wide prediction.

In this study, we propose a new bioinformatics predictor,
namely “6mAPred-FO.” In this predictor, we aim to capture
the discriminative characteristics of 6mA sites by different-
view information integration and optimization. Based on the
sequential features we extracted, we trained an SVM-based
prediction model. Benchmarking comparative results have
shown that under the 10-fold cross-validation, our model
improves the exiting performance to 87.44% in the overall
accuracy. Via further experimental analysis, we found that
our performance improvement contributes mainly to our
feature integration and optimization strategy. In particular, the
nucleotide positional specificity information is complementary to
sequence-order information to effectively distinguish 6mA sites
from non-6mA sites. We anticipate this tool can be useful to
discover new 6mA sites in other species, at least complementary
to the high-throughput techniques.

MATERIALS AND METHODS

Benchmark Dataset
A high-quality benchmark dataset is essential for building
an effective and unbiased supervised learning model. In this
study, we used the same stringent benchmark dataset, which is
originally proposed in Chen’s study (Chen et al., 2019). In the
dataset, the positive samples (sequences with 6mA sites) were
obtained from NCBI Gene Expression Omnibus and the single-
molecule real-time sequencing (Zhou et al., 2018). Afterwards,
they separated out the sites with a modification score of <30
according to the Methylome Analysis Technical Note, and used
the CD-HIT (Fu et al., 2012) software to eliminate sequences with
the similarity of more than 60% (Chen et al., 2019). The negative
samples (sequences without 6mA sites) were obtained from
sub-sequences containing GAGG motifs in coding sequences
(CDSs) of the rice genome (Zhou et al., 2018). Ultimately, 880
6mA sequences (positive samples) and 880 non-6mA sequences
(negative samples) were retained in the dataset.

Framework of the Proposed 6mAPred-FO
Figure 1 illustrates the overall framework of the 6mAPred-
FO method for DNA 6mA site prediction. The predictive
procedure can be concluded as two phases: model training
and prediction. In the training phase, the training samples
are encoded and integrated by two feature representation
algorithms: NPS (Nucleotide Positional Specificity) and PseDNC
(Pseudo Dinucleotide Composition). Afterwards, the features are
optimized to obtain the best feature subset for the training set.
The resulting feature vectors are then fed into the SVM algorithm
to train predictive model. In prediction phase, given the query
sequences that are not characterized, we followed the similar
procedure to encode the sequences, and used the trained model
to predict whether the query sequences are 6mA sites or not.
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FIGURE 1 | Framework of the proposed 6mAPred-FO. The overall framework is divided into two phases: (1) model training phase and (2) prediction phase. In the

model training phase, each DNA sequence is fed to two feature representation algorithms NPS and PseDNC to generate the corresponding features. Afterwards,

through the feature fusion and optimization protocol, we yielded the optimal features for each sequence sample. To this end, we train an SVM model with the resulting

feature set. In the prediction phase, the model predicts whether the sequence in the test dataset contains 6mA site. And then, compare our model with previous

models in terms of ACC, etc. Finally, build a user-friendly web server to provide convenient 6mA site identification and prediction.

Feature Representation Algorithms
To convert DNA sequences into feature vectors that machine
learning methods can handle, two feature representation
algorithms, Nucleotide Positional Specificity (NPS) and Pseudo
Dinucleotide Composition (PseDNC), are introduced for feature
representation. Here is a brief introduction to the two algorithms.

Nucleotide Positional Specificity (NPS)
In this algorithm, two feature representation descriptors are used
to encode the sequences.

The first feature is the positional binary encoding of flanking
nucleotide sequence.We adopt the traditionalmethod of flanking
window to represent the 6mA site. On the premise that the
minimum length 41 can perform well, if the 6mA site is located
at both ends of the sequence, we fill the end of the sequence with
the gap character “N.” Therefore, in the orthogonal binary coding
scheme, we transform nucleotide sequences into numeric vectors
by the following rules: the codes of “A (adenine),” “T (thymine),”
“C (cytosine),” “G (guanine)” and “N” are “(0, 0, 0, 1),” “(0, 0, 1,
0),” “(0, 1, 0, 0),” “(1, 0, 0, 0),” and “(0, 0, 0, 0),” respectively.

The second feature descriptor of NPS was the position-
independent k-mer frequency. We calculated the frequencies of
all possible k-mer nucleotides in a site-centered nearby flanking
window. However, the vector dimension increases rapidly with
the increase of k value, which leads to over-fitting. Thus, we set k
to 2, 3, and 4. Finally, the 41-length DNA sequence is transformed
into a 500-dimensional vector. More details about this method
are available in the Xiang et al. (2016).

Pseudo Dinucleotide Composition (PseDNC)
PseDNC combines local and global pattern information of
sequences. We use a vector to represent the DNA sequence as
given below,

R = [d1 d2 · · · d16 d16+1 · · · d16+λ]
T

where

du =







fu
∑16

i=1 fi+w
∑λ

j=1 θj
(1 ≤ u ≤ 16)

wθu−16
∑16

i=1 fi+w
∑λ

j=1 θj
(16 < u ≤ 16+ λ)
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In the formulation above, fu(u = 1, 2, · · · , 16) is the normalized
occurrence frequency of the u-th non-overlapping dinucleotides
in the sequence. The w is the weight factor for balancing the
component action of pseudo nucleotides. The θj is the j-th tier
correlation factor that reflects the sequence order correlation
between all the j-th most contiguous dinucleotides. What’s more,

θj =
1

L− j− 1

L−j−1
∑

i=1

Ci, i+j (j = 1, 2, · · · , λ; λ < L)

where

Ci,i+j =
1

µ

µ
∑

g=1

[Pg (Di) − Pg(Di+j)]
2

In the above two formulations, L is the length of DNA sequence
and the number λ is an integer to reflect the correlation rank
which is smaller than L. The Ci,i+j is correlation function which
is given above, where Pg (Di) is the numerical value of the g-
th physicochemical property for the dinucleotide sequence Di

in the DNA, and so as Pg(Di+j). The µ is the total number of
correlation functions counted. It should be noticed that these
values of physicochemical property were all subjected into a
standard conversion by the formula below before substituting
into the Pg (Di ),

Pg (Di) =
P0g (Di) − ave(P0g (Di))

SD{ave
(

P0g (Di)

)

}

where the symbol ave() means getting the average of the
values over the 16 different dinucleotides and SD{ } means
the corresponding standard deviation. In the above equation,
P0g (Di) is the original physicochemical property value for the
dinucleotide. In this study, the following three physicochemical
properties, namely enthalpy, entropy and free energy, are used
to calculate the global or long-range sequence-order effects of
the DNA. And their original values are given in Table S1 of
Supplementary material.

Ultimately, using this feature descriptor, we obtained 22
features. More details about these formulas can be found in the
references Chen et al. (2014, 2015a,b), Liu (2019), Liu et al.
(2019b).

Feature Fusion and Optimization Protocol
Feature fusion has been successfully applied into bio-sequence
analysis (Zhang et al., 2017; Tang et al., 2018; Wei et al., 2018a,b;
Liu et al., 2019d) and other bioinformatics tasks (Liang et al.,
2018; Zhang et al., 2018, 2019a,b; Gong et al., 2019; Wang et al.,
2019). It refers to merge different types of feature representations
to more comprehensively capture the characteristics of samples
from different perspectives. In this study, to make better use
of different information, we fused the following two feature
representations. One is 500-dimensional feature vector via NPS
and the other is 22-dimensional feature vector via PseDNC.
Accordingly, we yielded 522-dimensional features.

Generally, the fused feature space probably contains irrelevant
or mutual information, impacting the predictive performance.
Therefore, feature optimization is a necessary step forwards
capturing the most discriminative features from the original
feature space, building the optimal predictive model. It can
help to eliminate irrelevant or redundant features, so as to
reduce feature dimension, improve model accuracy as well as
reduce computational cost. On the other hand, selecting relevant
features can simplify the model and make it easier to understand
the process of data generation. So far, in order to solve these
problems, various effective feature optimization methods have
been proposed, such as analysis of variance (Feng et al., 2019),
binomial distribution (Su et al., 2018), minimal redundancy
maximal relevance (Peng et al., 2005), and maximum relevance
maximum distance (MRMD) (Zou et al., 2016; Chen W. et al.,
2018).

To improve the feature representation ability, we used
variance analysis in the filter method for feature selection.
Its main idea is to calculate the variance of each feature
by function f_classif in sklearn package. By doing so, we
obtained the predictive contribution of each feature according
to the corresponding f-value. The higher the f-value, the
stronger the prediction ability. Afterwards, we selected the
features one by one from high to low according to their f-
values, and trained the SVM model for each feature subset.
Different feature subsets of different dimensions can produce
different models, and thus different prediction results can
be obtained. The feature subset with the highest accuracy
is yielded as the optimal feature subset. The analysis of
feature optimization results is discussed in section “RESULTS
AND DISCUSSION”.

Support Vector Machine (SVM)
SVM is a powerful machine learning method for classification,
regression and other machine learning tasks. It has been
successfully applied in various fields to deal with a series of
supervised learning problems (Zhang et al., 2016; Bu et al.,
2018; Liu and Li, 2019; Manavalan et al., 2019a,b). The main
principle of SVM is to transform the import data into high-
dimensional feature space, and then determine the most suitable
hyperplane for separating the samples in one class from another.
After that, the trained hyperplane can be used to predict the
unknown data. Based on this idea, a package namely LibSVM
(Chih-chung and Chih-jen, 2011) was established to make the
SVM more convenient to use. In this study, we implemented
the SVM algorithm by using the LibSVM package. We chose the
radial basis kernel (RBF) as a learning function, and optimized
the parameters like cost and gamma by grid search to determine
the optimal classification hyperplane of SVM. Given a sequence
sample, the SVM model can calculate its probability score to
be true 6mA sequence. If the probability is more than 50%, it
is considered to be the 6mA sequence; otherwise, it is not the
6mA sequence.

Assessment of Predictive Ability
There are three cross-validation methods namely independent
dataset test, n-fold cross-validation test and jackknife test
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TABLE 1 | Comparison of single feature and fused features.

Features Sn (%) Sp (%) ACC (%) MCC AUC

NPS 84.09 83.86 83.98 0.68 0.908

PseDNC 55.91 72.39 64.15 0.29 0.673

Fused Features 84.43 85.45 84.94 0.70 0.917

FIGURE 2 | ROC curves of single and fused features. This figure shows the

ROC curve results of different features. The green curve characterizes ROC

result of PseDNC and the orange one for NPS. The ROC curve of fused

features is represented by blue.

in statistical prediction to evaluate expected success rate of
predictors (Manavalan and Lee, 2017; Wei et al., 2017a,d; He
et al., 2018; Manavalan et al., 2018; Liu and Zhu, 2019; Liu
et al., 2019a). In this study, we used n-fold cross-validation to
examine the quality of the model. In the n-fold cross-validation,
the dataset was randomly divided into n subsets, of which n-
1 subsets were used as training data and the remaining one
as testing data. This process would be repeated n times, each
time using different testing data in turn. Corresponding accuracy
and other evaluation metrics will be obtained in each test, and
the average value of the evaluation index obtained from n-time
results was used to evaluate the predictor. Generally, multiple n-
fold cross-validation (such as 10 times n-fold cross-validation)
is needed, and then its mean value is calculated to estimate the
accuracy of the predictor.

Four metrics, sensitivity (Sn), specificity (Sp), accuracy (Acc)
and Matthew’s correlation coefficient (MCC), were used to
evaluate the performance of the proposed method. The formulas

FIGURE 3 | The relationship curve of prediction accuracy and dimension of

feature subset. The curve in this figure reflects the change of predictor

accuracy with dimension of feature subset.

of these metrics are given below:



























Sn = TP
TP+FN 0 ≤ Sn ≤ 1

Sp = TN
TN+FP 0 ≤ Sp ≤ 1

ACC = TP+TN
TP+FP+TN+FN 0 ≤ ACC ≤ 1

MCC = TP×TN−FP×FN√
(TN+FN)×(TN+FP)×(TP+FN)×(TP+FP)

−1 ≤ MCC ≤ 1

where, TP (True Positive) represents the number of positive
samples correctly predicted; TN (True Negative) represents
the number of negative samples correctly predicted; FP (False
Positive) represents the number of negative samples incorrectly
predicted to be the positives; FN (False Negative) represents
the number of positive samples incorrectly predicted to be
the negatives.

Moreover, we used the Receiver Operating Characteristic
(ROC) curve to measure the overall performance of the
predictive model. The area under the ROC curve (AUC) is
to quantitively measure the quality of binary classifier. The
closer the ROC curve is to the upper left corner, the better the
performance of the predictor is. When the AUC value is closer to
0.5, it means that this is a random predictor (Hanley and Mcneil,
1982).

RESULTS AND DISCUSSION

Comparison of Single and Fused Features
In this section, we investigated the impact of the feature fusion
protocol on the predictive performance. We compared two
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FIGURE 4 | T-SNE visualization of the feature space before and after feature

optimization. (A) represents the distribution of the positives and negatives in

original feature space. (B) represents the distribution of the positives and

negatives in optimal feature space.

feature representations (NPS and PseDNC) with their fusion.
They are evaluated with 10-fold cross validation on the same
benchmark dataset used in this study. The comparison results
are presented in Table 1. It can be seen that the fused features
improve the performances in all the metrics. To be specific, the
Sn, Sp, ACC, MCC, and AUC is enhanced by 0.34, 1.59, 1, 2, and
0.9%, as compared with the runner-up feature descriptor—NPS.
For intuitive comparison, we further compared the ROC curves
of different features in Figure 2. Similarly, the fused features
show better performance than the single features. From the
specific point of view in the Figure 2, the fused feature curve (the
blue one) is closer to the upper left corner than the single feature
curve. What’s more, the AUC value of the fused feature is 0.917,
which is higher than that of the single feature. This figure and
accurate data can more intuitively support the conclusion above.
Together, the results suggest that the information in different
features is complementary to better capture the characteristics
specificity of 6mA sites.

Feature Optimization Results
In the proposed feature optimization strategy, we firstly
calculated the classification importance score of each feature in

the feature set, and then the features are sorted from high to
low according to their scores. Secondly, the feature in the sorted
feature set is added to the feature subset one by one. Once a new
feature is added to the feature subset, we obtained a new feature
subset and train a new SVM model under its default parameters.
We evaluated the performance of all feature subsets, respectively.
The relationship between prediction accuracy and dimension of
feature subset is illustrated in Figure 3.

As shown in Figure 3, we observed that the accuracy of
the model increased rapidly as the feature number grows.
Afterwards, the accuracy slightly declined as the feature number
increases. When the feature number reached to 131, the model
achieved the highest accuracy of 87.44%. Thus, the 131 features
are considered as the optimal and used to train our predictive
model. Moreover, the feature optimization results evaluated with
other evaluation metrics, like MCC and ROC, can be found in
Table S2 of Supporting Information. To visually see how the
feature space changes using feature optimization, we further
compared the sample distribution between the original feature
space and the optimal feature space, as depicted in Figure 4.
It can be seen that the positives and negatives in the optimal
feature space are more clearly distributed in two clear clusters as
the original feature space. It demonstrates that using the feature
optimization strategy, it helps to remove the irrelevant features
and improve the feature representation ability.

Comparison of Different Kernel Functions
In this section, we compared the impact of RBF kernel function
and other three kernel functions on the performance of our
proposed model. They are Linear, Polynomial and Sigmoid. In
this study, we used the same dataset to evaluate them. At the same
time, they used the best feature subset after our fusion to show the
performance. The 10-fold cross validation results can be found in
Table S3 of Supplementary material. According to the results in
Table S3, we can find easily that SVM model using RBF kernel
function achieves the highest prediction accuracy of 87.44% and
performs better in other prediction factors. Moreover, with the
help of RBF kernel function, AUC of the model is also the
highest among several other kernel functions. In general, these
results show that RBF kernel function is superior to other kernel
functions in this study.

Comparison With Other Classifiers
To measure the superiority of SVM, we selected several other
classifiers to compare with SVM. There are Gradient Boosting
Decision Tree (GBDT) (Liao et al., 2017), K-Nearest Neighbor
(KNN), Logistic Regression (LR), Naive Bayes (NB), and Random
Forest (RF) (Wei et al., 2017b,c; Lv et al., 2019; Ru et al., 2019).
They are evaluated based on the same dataset used in this
study with our fused feature set. The 10-flod cross validation
results of prediction accuracy and AUC value are illustrated
in Figure 5. In Figure 5A represents the comparison results of
prediction accuracy of six classifiers, and Figure 5B represents
the AUC value. As shown in Figure 5, we observed that the
SVM got the highest score among the six classifiers not only in
predictive accuracy but also AUC. The 10-fold cross validation
results of other evaluation factors are illustrated in Table S4 of

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 June 2020 | Volume 8 | Article 50291

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Cai et al. DNA 6mA Predictor

FIGURE 5 | Performance comparison of different classifiers. (A) represents the comparison results of prediction accuracy of six classifiers, and (B) represents the

comparison results of auROC.

Supplementary material, which provide us with more specific
classifier performance information. From Table S4, we can see
that the SVM also performs better than other classifiers in other
performance indicators. For intuitive comparison, we further
compared their ROC curves as illustrated in Figure 6. As seen,
SVM achieved 0.917 in terms of AUC, which is higher than
GBDT and other classifiers. It can be seen from the figure
that the ROC curve corresponding to SVM is at the top,

which means that SVM has better classification performance
than other classifiers. In general, these results demonstrate
that SVM is better than other commonly used classifiers in
this study.

Comparison With Existing Predictors
To measure the effectiveness of our predictive model-
−6mAPred-FO, we compared the model with i6mA-Pred
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FIGURE 6 | ROC curves of different classifiers. This figure shows the ROC

curve results of different classifiers. For example, according to legend, the blue

curve characterizes ROC result of SVM and the orange one for GBDT. The

value of auROC is also calculated after the name in the legend.

TABLE 2 | Comparison of the proposed 6mAPred-FO with existing predictors.

Method Sn (%) Sp (%) ACC (%) MCC AUC

i6mA-Pred 82.95 83.30 83.13 0.66 0.886

iDNA6mA (5-step rule) 86.70 86.59 86.64 0.732 0.931

6mAPred-FO 86.93 87.95 87.44 0.75 0.929

(Chen et al., 2019) and iDNA6mA (5-step rule) on the same
dataset, which are the best two among existing predictors to
identify the 6mA site. The results are presented in Table 2. As
shown in Table 2, i6mA-Pred obtains the accuracy of 83.13%,
sensitivity of 82.95%, specificity of 83.30%, MCC of 0.66 and
AUC of 0.886, while our prediction model obtains the accuracy
of 87.44%, sensitivity of 86.93%, specificity of 87.95%, MCC
of 0.75 and AUC of 0.929. Obviously, our method is superior
to i6mA-Pred in all the metrics. Specifically, as compared to
i6mA-Pred, our model achieved 4.31%, 3.98%, 4.65%, 0.09
and 0.043 higher in terms of ACC, Sn, Sp, MCC, and AUC,
respectively. This demonstrated that our feature representations
are more effective to capture the characteristic specificity of
6mA sites. In the Table 2, we also compared our predictor
model with iDNA6mA (5-step rule). It can be seen that the
accuracy of our 6mAPred-FO is 0.8% higher than iDNA6mA
(5-step rule). All the other performance indicators except AUC
value are slightly higher than those of iDNA6mA (5-step rule).
Generally, it can be concluded that our 6mAPred-FO is better

than existing predictors in distinguishing 6mA sites from
non-6mA sites.

CONCLUSIONS

In this study, we have proposed a new machine learning
based 6mA site predictor namely 6mAPred-FO. To sufficiently
capture the characteristics of 6mA sites, we have combined
the information from two feature representations NPS and
PseDNC, and further optimized the features by feature selection.
Feature analysis results showed that as compared with the
single feature descriptor, the fused features perform better,
demonstrating that different information are complementary to
improve the predictive performance. Moreover, feature selection
is an effective strategy to optimize the feature space and improve
the feature representation ability. We have also compared our
6mAPred-FO with existing predictors on benchmark datasets.
The comparative results showed that our approach improved
the performance significantly in terms of multiple metrics
like SN, SP, MCC, and AUC. This suggests that our feature
fusion and selection scheme is more effective to represent
6mA sites in comparison with existing features. From our
study results, we can make a reasonable inference that the
recognition of 6mA site is closely related to the local and
global pattern information represented by PseDNC. Then, the
position specific information represented by NPS is fused to
make our proposed algorithm more accurate for the recognition
of 6mA sites. In general, our method provides a more
accurate model for biological scientists to identify 6mA site
in rice genome. In the future, we will pay more attention
on deep learning (Liu et al., 2019c; Zou et al., 2019) for the
accuracy improvement.
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Efficiently learning representations of clinical concepts (i. e., symptoms, lab test, etc.)

from unstructured clinical notes of electronic health record (EHR) data remain significant

challenges, since each patient may have multiple visits at different times and each visit

may contain different sequential concepts. Therefore, learning distributed representations

from temporal patterns of clinical notes is an essential step for downstream applications

on EHR data. However, existing methods for EHR representation learning can not

adequately capture either contextual information per-visit or temporal information at

multiple visits. In this study, we developed a new vector embedding method called

EHR2Vec that can learn semantically-meaningful representations of clinical concepts.

EHR2Vec incorporated the self-attention structure and showed its utility in accurately

identifying relevant clinical concept entities considering time sequence information from

multiple visits. Using EHR data from systemic lupus erythematosus (SLE) patients as a

case study, we showed EHR2Vec outperforms in identifying interpretable representations

compared to other well-known methods including Word2Vec and Med2Vec, according

to clinical experts’ evaluations.

Keywords: natural language processing, representation learning, electronic health record, unstructured clinical

notes, word vector

INTRODUCTION

In the field of clinical natural language processing (NLP), deep learning (DL) techniques
outperform other NLP methods in many tasks, such as information extraction, named entity
detection, and relationship assignment, etc. In DL-based NLP approaches, learning representative
features is the critical step for the following analysis, such as classifications, clustering, and more.
According to a recent review byWu et al. (2020), among 1,737 clinical NLP articles, 74.1% of which
used the DL-based Word2Vec method till 2018. Word2Vec is an unsupervised feature extraction
method for representation learning, which converts word to numerical embedding by mapping
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each of the word tokens into high-dimensional vector space
(Mikolov et al., 2013). Words that are closely related in certain
conditions will be clustered together and share short distance in
high-dimensional semantic space.

There are two types of DL architectures in Word2Vec model,
CBOW, and Skip-gram. However, Word2Vec has limitations
in capturing contextual information globally when analyzing
clinical notes of electronic health records (EHR) (Mikolov et al.,
2013). First, it scans the nearby relationship of each center
word by a sliding window with a fixed size, yet considers
each word in the window with equal importance; second, it
does not incorporate temporal relationships of events on the
same patients over time. In real-world EHR data, identifying
representative medical entities is more complicated since the
sequential relationship among entities per visit and temporal
relationship among multiple visits need to be considered. For
example, each patient has multiple visits for different reasons
mapping to different visiting events at different time points;
and the intervals of the patient’s multiple medical events
may vary from a few days to several months. More issues
complicated these problems are that entities from different
medical categories (i.e., diagnosis, medication, and procedures)
often constitute disordered sequential collections and ignored
long-range semantic dependencies.

To overcome the challenges of handling temporal issues,
Med2Vec was proposed by Choi et al. (2016) to learn medical
entity representations for EHR data at the visit level (Choi et al.,
2016). Med2Vec essentially adopted the Word2Vec structure
but has two layers; the first layer is to capture the relations
between medical entities within a visit, and the second layer is to
capture the relations between medical visit sequences. However,
Med2Vec does not overcome the limitations of Word2Vec that
considers the surrounding words within a window to be equally
important, which makes the representative learning less efficient
and inaccurate. In real-world EHR data, the impact of its nearby
terms differs relative to the center word.

In this project, we proposed a new representation learning
method for embedding medical entities for EHR data, called
EHR2Vec. The EHR2Vec model incorporated a self-attention
mechanism to learn important representations by updating
values of the context words as a whole per visiting event.
The self-attention algorithm, which is a DL-based method,
was initially used in image processing (Vaswani et al., 2017).
Instead of considering every part of the entire image equally
important, it focuses on a specific portion while down weighting
other parts of an image, which greatly improves the learning
accuracy for the point of interest. Similar to NLP task in general
documents, each patient’s EHR data from multiple visits can
be considered as a document composed of many sentences,
while each visit can be considered as a sentence composed
of many medical entity tokens. Because of the information
heterogeneity of medical entities, we grouped them into four
categories: medication, diagnosis, symptom, and lab test. Since
time sequence information is an important factor in finding the
most relevant representations at a certain time point, we sorted
the medical events of each patient in the order of time to improve
learning accuracy.

Compared to existing methods, EHR2Vec method has
following characteristics: (1) it applies self-attention algorithm
with multi-headed design to identify important global
representations at visit level, which greatly improves embedding
accuracy compared to previous word embedding methods; (2) it
enables more accurate symptom detections in a temporal order,
which can be used to facilitate predictions of disease progression
trajectories. In the current study, we applied EHR2Vec on
Systemic lupus erythematosus (SLE) data and compared the
results with clinicians’ manual interpretations. The results of
the experiment indicated that EHR2Vec’s high-dimensional
embedding features are interpretable and consistent with
clinician’s opinions.

MATERIALS AND METHODS

Description of Experimental Data
Since SLE is a chronic autoimmune disease which can gradually
develop to multiple comorbidities from mild to serious as time
elapses, we used SLE as a apt disease on which to test our
approach. SLE involves multiple organs and systems throughout
the body, often accompanied by various comorbidities, of which
lupus nephropathy (LN) is one and can cause visceral organ
failures (Almaani et al., 2017). The EHR data used in the
study were from the hospitalization and discharge records of
SLE patients from 13 Grade III Level A hospitals in China
(Supplementary Table 1). The study was performed according
to a protocol approved by the Institutional Committee on Ethics
of Biomedicine. There are 14,439 de-identified SLE patients with
a total of 57,367 Chinese clinical notes, enrolled from October
28, 2001 to May 31st, 2016. Privacy information, such as patients’
name, photo ids, home addresses, and diagnostic dates has been
de-identified and anonymized. These SLE patients’ averaged
diagnosis age is 33.4 years old, including 13,062 females (90.46%).
We performed rigorous data quality control by recruiting
patients whose EHR recorded the related diagnosis and treatment
information corresponding to the time of each admission and
discharge. Patients who missed first diagnosis date and only had
one visit were excluded from further study. Ultimately, the final
data set contains 14,219 patients with 49,752 notes. Among these
patients, 14,039 (98.7%) patients have <10 visits.

Pre-processing to Extract Medical Entities
From Unstructured Clinical Notes
The overview of the EHR2Vec workflow is shown in Figure 1.
Medical entities extracted from Chinese clinical notes follow
standard pipeline, including word segmentation, part-of-
speech tagging, named entity recognition (NER), annotation
and normalization using our in-house customized scripts.
We collected standardized Chinese medical vocabulary
knowledgebase, including thesaurus, grammar, and semantic
database, as the prior information for NER task. Word
segmentation used a string matching method to identify
thesaurus and then used a bi-directional matching method
to parse grammar rules. Part-of-speech tagging used a
dynamic viterbi algorithm for semantic analysis (Klein and
Manning, 2003; Schmid, 2004). Finally, NER task used bi-LSTM
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FIGURE 1 | Overview of project design. Our project has four steps. Firstly, we extract medical concepts (i.e., symptoms, lab test, medication, and diagnosis) from free

clinical notes of SLE patients’ EHR data. Next, we align these medical concepts into structured data format for each note per visit. Then, we sort notes in time series

order for each patient. Finally, we comparatively study the performance of three embedding methods: Word2Vec, Med2Vec, and EHR2Vec.

algorithm to improve the accuracy and recall continuously.
All the medical entities of the patients were tokenized
as the input of Word2Vec, Med2Vec, and EHR2Vec for
performance comparison.

EHR2Vec Method for Representations
Learning
EHR2Vec has two layers, of which the first is to capture the
relations between medical entities within each of the patient’s
medical event, and the second is to capture the global relations
among the different medical visit events. In EHR2Vec, each
medical entity within each visiting event undergoes attention
computation with the goal of learning the dependencies
between medical entity vectors. Assuming each patient P had

multiple visiting events E = {E1, E2, . . . En}. In a particular
visiting event Ei, medical entity j can be represented as eij.
The medical entities were grouped into four categories for
further analysis including symptom, medicine, lab test, and
diagnosis. Supplementary Figure 1 illustrated an example of
information extraction at different time points and intervals for
a patient.

The initialized vector-matrixW, is in vector space Rh
∗c, where

c is the dimension of each entity vector, h is the number of
entities in all visits. Here, we used default value c = 512, which
means each entitymaps to 512-dimensional vector space.We first
input the patient’s initialized vector matrix to the first sublayer
(attention mechanism). Equation (1) is the core formula of the
attention mechanism that is used, in which Q, K, and V represent
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FIGURE 2 | Deep learning architecture of EHR2Vec. EHR2Vec is developed under deep learning framework including two layers of optimizations. The first layer is

based on self-attention structure with multi heads to capture the relationship of different medical concepts within each visit event. The second layer is based on

co-occurrence of visits to capture the relationships among visits of patients.

the query vector, key vector, and value vector, respectively, and
dk represents the dimension of Q, K, or V. The reason for the
division by the square root of dk is to prevent the product ofQK

T

from being too large, which may cause the softmax function to
enter the saturation region so that the gradient would be too small
(Vaswani et al., 2017).

In the model, to extract more features, a multi-head attention
structure is adopted, in which a total of eight attention heads
are used. Each head can capture different layers of dependency
relationships. The eight attention heads are equivalent to eight
subtasks, each subtask generating its own attention. The attention

calculation of the eight attention heads can be performed through
parallel computing to speed up the calculation.

Attention (Q,K, V) = softmax

(

QKT

√

dk

)

V (1)

Model Optimization
As shown in Figure 2, model optimization has two steps. The
first step is the optimization for a multi-head attention structure
within each visit event. The second step is the optimization
of deep feedforward networks for multiple visit events. Vector
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matrix W is obtained through iterative training, and each row
of W represents the vector in the medial entity set. Therefore,
we obtain the final medical entity vectors by continuously
optimizing the vector-matrix W. The log-likelihood function is
used to optimize the obtained medical event vectors as shown in
Equation (2), in which ei and ej represent medical entities in each
medical event and T represents the number of medical events.
By maximizing this function’s value, we obtain the optimized
vector-matrix W.

1

T

T
∑

t=1

∑

i : ei∈Et

∑

j : ej∈Et , j 6=i

log p
(

ej
∣

∣ei
)

where,

p
(

ej
∣

∣ei
)

=
exp

(

W [i, :]TW
[

j, :
])

∑all
k=1 exp

(

W
[

k, :
]T
W [i, :]

) (2)

Intrusion Analysis for Representations
Evaluation
Intrusion analysis is used to test whether the identified
representations agree with human judgment. To evaluate the
accuracy of EHR2Vec, we performed two types of intrusion
analysis (Chang et al., 2009; Murphy et al., 2012; Luo et al., 2015).
The first intrusion experiment is to compare with clinical experts’
opinions. We calculated the cosine correlation values of a given
medical entity’s vector against all other medical entities eij and
then ranked them. We picked the top five medical entities and
randomly chosen one medical entity from the last 50% of the
ranks, consisting of six medical entities. Clinicians were asked to
pick the correct entity set, and the accuracy of the correct choice
was calculated using Equation (3), in which am

k
represents the kth

given medical entity in the mth model, im
k

is the kth intrusive
medical entity in the mth model chosen by the expert, and S is
the total number of medical entities in themth model.

MPmk =
∑

s

1(imk = amk )/S (3)

The second intrusive experiment is based on the assumption
that if a vector accurately captures the relations between the
medical entities and patient’s medical events, then a certain
dimension of the vector will have a certain meaning (Murphy
et al., 2012). In order to verify this assumption, we randomly
chose several dimensions from the vector result of EHR2Vec,
ranked their vector values in descending order and obtained the
medical entities corresponding to the first k values, as indicated in
Equation (4), in which i represents the i-th dimension, and rank
the indices of a vector.

argsort (W[:, i]) [−k :] (4)

Implementation and Training Details
EHR2Vec andMed2Vec were implemented and trained using the
python TensorFlow 1.8.0 deep learning framework (Abadi et al.,
2016). All models were performed on a CentOS server equipped
with two 16G NVIDIA TESLA P100 graphics cards. EHR2Vec
used the Adadelta optimizer to optimize the target function with

a drop rate of 0.1 to achieve model convergence. EHR2Vec used
eight attention heads in the self-attention mechanism, and 512
vector dimensions for each entity. To be consistent, the numbers
of word vector dimensions of Med2Vec andWord2Vec were also
set to 512. The Word2Vec model was implemented by python
genism 3.6.0 package, with a window size of 5 and a minimum
word frequency of 5. Both EHR2Vec and Med2Vec have trained
20 epochs for the best result.

EXPERIMENTAL RESULTS AND
DISCUSSION

Illustration of Extracted Medical Entities
The statistics of the number of identified NERs can be
found in Supplementary Table 2. In details, a total of 10,469
Chinese medical entities, including 1,106 diagnosis entities, 963
medication entities, 8,365 symptom entities, and 35 lab test
entities extracted from 49,752 notes, have been translated into
English standardizedmedical vocabularies for results delivery. As
the data are shown in Supplementary Table 6, the first column
are the de-identified patient IDs, the second column are the
de-identified patients’ visiting ids, and the rest columns are the
example extracted entities.

Experimental Results Comparing Three
Models at a Fixed 512 Vector Dimension
We used LN as the target word in SLE, and calculated its cosine
correlation to other medical entity vectors. Cosine distance
measures the cosine of the angle between two vectors projected
in a high-dimensional space. It is advantageous because even if
the two similar medical entities are far apart by the Euclidean
disease due to the size of the terms, they may still be oriented
closer together. Top 20 medical entities correlated with LN in
SLE patients were calculated withmedical entities from diagnosis,
medication, lab test, and symptom, respectively.

Table 1 showed the comparison of the top 20 medicines
associated with LN using EHR2Vec, Word2Vec, and Med2Vec.
The top 20 drugs using the EHR2Vec method match the
three doctors’ medication preference order. For example, the
top three drugs, such as hydroxychloroquine sulfate, are the
most commonly used hormone prescription for LN treatment.
Other drugs, such as Calcium carbonate and vitamin D3 are
all auxiliary drugs for the treatment of the related target
organ damage and complications, with less relevance. Similarly,
Supplementary Tables 3–5 showed the top 20 entities from
diagnosis, lab test and symptom. Results from the three methods
were also consistent with clinicians’ experiences. For example,
in the diagnosis results from EHR2Vec, SLE ranked on the top
followed by hypertension, lung infection and diabetes, which
match with clinician’s cognitions. As for the association of
pregnancy, one explanation might be that lupus could lead to
abnormal birth during pregnancy (Mok et al., 2014).

However, top rankings from Med2Vec are not consistent
with clinical cognitions. For example, the top three ranks in
diagnosis from Med2Vec, such as chronic viral hepatitis B,
typhoid and fever of unknown origin, were diagnosed poorly
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TABLE 1 | Top 20 medication entities with the highest correlation to LN in the vector results obtained using four models.

Rank Word2Vec Med2Vec EHR2Vec

Correlation Medication Correlation Medication Correlation Medication

1 0.68 Albumen 0.31 Tabellae rhei ET natrii

bicarbonatis

0.93 Hydroxychloroquine sulfate

2 0.67 Lamivudine 0.31 Ranitidine hydrochloride 0.92 Prednisone acetate

3 0.66 Felodipine 0.27 Iron sucrose 0.90 Methylprednisolone

4 0.66 Cefotaxime 0.25 Terazosin hydrochloride 0.89 Cyclophosphamide

5 0.65 Dexamethasone 0.24 Arotinolol hydrochloride 0.86 Calcium carbonate and

vitamin D3

6 0.65 Metoclopramide 0.24 Enalapril maleate 0.82 Omperazole

7 0.65 Dengzhanxixin 0.24 Diammonium glycyrrhizinate 0.79 Calcitriol

8 0.65 Colquhounia root 0.24 Clopidogrel hydrogen sulfate 0.75 Alfacalcidol

9 0.64 Fasudil hydrochloride 0.23 Rabeprazole 0.72 Leflunomide

10 0.63 Salvianolate 0.23 Haloperidol 0.71 Total glucosides of paeony

11 0.63 Thiamazole 0.23 Prednisone 0.70 Aspirin

12 0.62 Cefoperazone Sodium and

Tazobactam Sodium

0.23 Levothyroxine sodium 0.65 Prednisolone acetate

13 0.62 Leigongteng 0.23 Lithium carbonate 0.63 Folic acid

14 0.62 Thyroid 0.23 Urokinase 0.62 Levothyroxine sodium

15 0.62 Prednisone 0.22 Penicillins 0.61 Warfarin Sodium

16 0.62 Fluvoxamine maleate 0.22 Carvedilol 0.60 Mycophenolate mofetil

17 0.62 Sodium valproate 0.22 Mecobalamin 0.60 Pantoprazole

18 0.61 Salvianolate 0.21 Furosemide and spironolactone 0.60 Valsartan

19 0.61 Tacrolimus 0.21 Deslanoside 0.58 Spironolactone

20 0.61 Sanqi Panax Notoginseng 0.21 Cefradine 0.57 Low Molecular Weight

Heparin Calcium

related to LN. The top two results of Word2Vec were similar
to Med2Vec, but not for the rest. For example, hyperlipemia,
hypothyroidism, and fatty liver were considered poorly related
to LN. Figure 3 showed a summary comparison of the three
models for the four categories. Particularly, EHR2Vec showed
over 40% improvement in detecting LN relevant medications in
the medicine category.

Interpretability Evaluation of EHR2Vec
Representations at Three Random
Dimensions
The results in Table 2 showed the top 10 medical entities at
three arbitrarily selected vector dimensions: 180, 274, and 480.
Identified entities in the dimension of 180 represented a class of
women with a history of pregnancy who suffered from LN, tested
positive on the anti-nuclear antibody (ANA)-B and abnormalities
on Complement 3-B and Complement 4-B, and used hormone
drugs, such as prednisone acetate and methylprednisolone
sodium succinate, as well as hydroxychloroquine sulfate.
Correlations between these diagnoses, lab tests, and medications
are highly consistent with clinical observations. Results from
dimension 274 indicated patients who suffered from LN, tested
positive on the anti-nuclear antibody (ANA)-B lab test and
took commonly used drugs for patients with SLE, such as
prednisone acetate and prednisolone sodium succinate while

using calcium-supplementary drugs, such as Calcium carbonate
and vitamin D3 and gastrointestinal agents, such as omeprazole
and aspirin. Dimension 480 represents a number of highly
relevant symptoms that often manifest in patients with SLE,
including rash, telangiectasia, muscle pain, etc.

To show the robustness of our interpretable model, we
performed another independent experiment by arbitrarily
selecting the extra three sets of dimensions: 360, 440, 457. We
can see the results in Supplementary Table 7, dimension 360
is more related to manifestations of the mucous membrane
of the skin, such as subcutaneous bleeding, facial rash, palm
erythema, and oral ulcer; dimension 457 is more related to
appearance symptoms, such as phenotypes in face, skin, ulcers,
etc.; dimension 440 is more associated with vasculitis, such as
hypertension, edema, rash, and erythema. All the above evidence
indicated the interpretability of our model by showing that the
top medical entities in each dimension are highly relevant.

SLE Disease Comorbidity Prevalence and
Progression Over Time
Figure 4 showed a summary of the prevalence of SLE
comorbidity changes over time diagnosed by clinicians. The
comorbidities of SLE diagnosed by clinicians are correlated with
medical entities, such as symptoms and diagnosis ranked by
EHR2Vec. For example, skinmucousmembrane lesions (SMML)
is the most prevalent comorbidity than any others. The number
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FIGURE 3 | Performance comparison by Intrusion analysis. We perform intrusion analysis to evaluate model performance by comparing clinicians’ opinion with our

identified medical concepts from four groups. The EHR2Vec shows higher accuracy than the other two models, Word2vec and Med2vec.

TABLE 2 | Top 10 medical entities in terms of vector value rank in three different

dimensions.

Dimension 180 Dimension 274 Dimension 480

[Lab Test] Complement

3-B

[Medication]

Omperazole

[Symptom] Widespread

facial red rash

[Diagnosis] Pregnancy [Lab Test] Urine

protein qualitative

test-U

[Symptom]Migratory double

joint and shoulder pain

[Lab Test] Complement

4-B

[Medication]

Calcium carbonate

and vitamin D3

[Symptom] Systemic

diffusive and red rash

[Drug] Calcium

carbonate and vitamin

D3

[Medication]Aspirin [Symptom]Slightly swollen

left-hand fingers

[Medication]

Methylprednisolone

[Symptom] Cough [Symptom]Scattered

bleeding points on hands

[Medication]

Methylprednisolone

sodium succinate

[Medication]

Methylprednisolone

sodium succinate

[Symptom] Facial rash relief

[Lab Test]Anti-nuclear

antibody (ANA)-B

[Medication]Prednisone

acetate

[Symptom]Capillary and

facial capillary expansion

[Medication]

Prednisone acetate

[Lab

Test]Anti-nuclear

antibody (ANA)-B

[Symptom] Muscle and

body tenderness

[Diagnosis] LN [Diagnosis] LN [Symptom] Scattered red

rash

[Medication]

Hydroxychloroquine

[Medication]

Hydroxychloroquine

[Symptom] Left chest pain

of this group of patients is gradually progression year by year.
Some skin related symptoms, such as rash are also ranked by top
candidate entities related to LN from EHR2Vec analysis, which

has a high agreement with clinician’s diagnosis. While some of
the comorbidities, such as blood system, are more complex in
disease progression. For example, no or little progression in the
first 5 years, but dramatically increased after 5 years. These types
of comorbidities’ symptoms may have challenges to be detected
by EHR2Vec, which requires further validation by clinicians.
Nevertheless, existing evidence showed that EHR2Vec is able to
rank the most relevant disease-related phenotypic information
from raw EHR data automatically through key word query.

DISCUSSION

EHR data with sequential visiting records provides opportunities
for disease early detection. Automatically extracting medical
concepts from EHR data and converting them into embedding
vectors can contribute significantly to monitor the conditions
change for chronic disease. In this project, we developed a new
embedding method, EHR2Vec, to learn representative medical
concepts from EHR data. EHR2Vec incorporated self-attention
algorithm with multi-layer deep learning optimizations at both
medical codes and visits level. EHR2Vec overcomes existing
embedding methods that ignored contextual information at visit
level or missed multi-visit information to capture temporal
patterns from clinical notes. In the experiments of SLE data,
one of a chronic disease, EHR2Vec has displayed its significant
improvement in key medical applications, while providing
clinically meaningful interpretations. Using EHR2Vec to learn
representations will improve the accuracy for detecting disease
prevalence and progression in precision medicine.

Traditional NLP word embedding approaches, such as
Word2Vec published in 2013, are unable to capture long-distant
dependency relations for words in a sentence, here medical
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FIGURE 4 | SLE affects more patients’ body organs and systems over time. SLE is a chronic disease with many comorbid conditions. This figure shows that more

SLE patients are affected by comorbidities as the time accumulated. For example, in the initial year (Year 0), 829 patients manifested kidney diseases, and in Year 9,

the number increased to 1,232.

entities in a visiting event. Later, improved architectures RNN-
based Bi-LSTM method, such as ElMo (Peters et al., 2018),
were developed to capture contextualized information in time
order, however its computational efficiency is less optimal in
identifying long-range dependency since it has to remember all
the state of words sequence by sequence and disallowance of the
parallel computing in a long sequence. Recently, self-attention
based algorithms overcome those limitations and has become
the leading architecture in NLP tasks since 2018. It is the key
component utilized in many state-of-art transformer learning
methods, such as BERT (Devlin et al., 2018), GTP-2 (Radford
et al., 2019), and XLnet (Yang et al., 2019), allowing to identify
long-range relationships that are far away through parallel
computation. By applying self-attention structure in real-world
EHR data, our EHR2Vec optimized both sequential information
from different visits and different types of medical entity relations
within each visit, which greatly improves traditional methods
in representation learning for relevant comorbidity detection in
chronic disease.

EHR2Vec showed great performance in comparison with
the other two most popular representation learning methods
in EHR data. We queried a medical term, LN, which is a
common comorbidity in SLE patients. The experimental results
of EHR2Vec from medication category indicated that the
medication preference has the highest correlation with LN.While
the logical sequence was chaotic and the frequencies of the
features were small with no representativeness in Word2Vec or
Med2Vec method. In the Word2Vec method, the vector of the
center word is obtained by simply summing the vector values of
the context words, so the generated vector has an indistinctive
boundary, causing heterogeneous medical concept ambiguities.
The Med2Vec model also has a fixed window size, leading to
poor word vector discriminations. EHR2Vec solves the problem
by self-attention structure to capture global information, thus the
concept representation vector calculated is more accurate while

allowing further optimization on the medical event sequence of
each patient, thereby leading to higher discrimination of the final
medical entity vector.

We also recognize that there are some areas that can be further
improved in EHR2Vec in the future. First, although we optimized
the visiting events at the time orders for each patient’s EHR data,
some of the time sequence information within each visit might
be poorly extracted and captured. Second, a more comprehensive
propagation networking algorithm could be combined with self-
attention structure to quickly target information of importance
for each event. Nevertheless, these tasks are the most challenging
part for the clinical NLP in every EHR data and more accurate
models can be developed according to specific scenarios in the
real-world situation. Finally, we only evaluated a large-scale SLE
dataset in the current study, but we plan to expand to other
disease areas where clinical symptoms and comorbidity change
over time, such as autism spectrum disorders, to assess the
generalizability of the proposed approach in the future.

CONCLUSION

In this study, we proposed the EHR2Vec model, a new deep
learning model that generates medical entity vectors based on
the attention mechanism. Compared with other widely used
word vector generation models (e.g., Word2Vec and Med2Vec),
EHR2Vec can correct target medical entity more accurately using
self-attention structure to capture relations from surrounding
medical entities. We compared and tested the performance
of EHR2Vec through clinical expert assessments and an
intrusion experiment using the SLE dataset, an actual clinical
disease dataset, and found that EHR2Vec could generate more
accurate vectors. In the future, we will integrate more medical
knowledge (e.g., doctors’ prior knowledge and patient image
data) into the EHR2Vec model and apply the resulting vector
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to more scenarios, e.g., SLE complication and hospitalization
length predictions.
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Background: Mycobacterium tuberculosis is one of the deadliest pathogens in
humans. Co-infection of M. tuberculosis with HIV and the emergence of multi-drug-
resistant tuberculosis (TB) constitute a serious global threat. However, no effective
anti-TB drugs are available, with the exception of first-line drugs such as isoniazid. The
cell wall of M. tuberculosis, which is primarily responsible for the lack of effective anti-
TB drugs and the escape of the bacteria from host immunity, is an important drug
target. The core components of the cell wall of M. tuberculosis are peptidoglycan,
arabinogalactan, and mycotic acid. However, the functional genome and metabolic
regulation pathways for the M. tuberculosis cell wall are still unknown. In this study,
we used the biclustering algorithm integrated into cMonkey, sequence alignment,
Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and other
bioinformatics methods to scan the whole genome of M. tuberculosis as well as to
identify and statistically analyze the genes related to the synthesis of the M. tuberculosis
cell wall.

Method: We performed high-throughput genome-wide screening for M. tuberculosis
using Biocarta, KEGG, National Cancer Institute Pathway Interaction Database (NCI-
PID), HumanCyc, and Reactome. We then used the Database of Origin and Registration
(DOOR) established in our laboratory to classify the collection of operons for
M. tuberculosis cell wall synthetic genes. We used the cMonkey double clustering
algorithm to perform clustering analysis on the gene expression profile of M. tuberculosis
for cell wall synthesis. Finally, we visualized the results using Cytoscape.

Result and Conclusion: Through bioinformatics and statistical analyses, we identified
893 M. tuberculosis H37Rv cell wall synthesis genes, distributed in 20 pathways,
involved in 46 different functions related to cell wall synthesis, and clustered in 386
modules. We identified important pivotal genes and proteins in the cell wall synthesis
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pathway such as murA, a class of operons containing genes involved in cell wall
synthesis such as ID6951, and a class of operons indispensable for the survival of the
bacteria. In addition, we found 41 co-regulatory modules for cell wall synthesis and five
co-expression networks of molecular complexes involved in peptidoglycan biosynthesis,
membrane transporter synthesis, and other cell wall processes.

Keywords: Mycobacterium tuberculosis, cell wall, module, regulatory networks, enrichment analysis

INTRODUCTION

Mycobacterium tuberculosis is considered one of the world’s
most successful pathogens. The disease caused by it has been a
major global health challenge (Sher et al., 2020). Since the 1950s,
the discovery of first-line anti-tuberculosis (TB) drugs such as
isoniazid, rifampicin, and ethambutol has effectively improved
the cure rate and survival rate of TB patients. However, the
emergence of multiple forms of drug-resistant strains, including
a single isoniazid-resistant strain, a multi-drug-resistant strain,
and a widely drug-resistant strain, has again made M. tuberculosis
one of the leading causes of death worldwide, with a mortality
of 1.5 million people in 2018 (Merker et al., 2020). Co-infection
of HIV and M. tuberculosis increases the burden of curing TB;
therefore, the development of new and effective anti-TB drugs is
critical (Turner et al., 2020).

The cell wall structure of M. tuberculosis is unique
and is extremely important for the invasion, survival, and
reproduction of the bacterium in a host. The main reason
for the difficulty in developing drugs for M. tuberculosis
is that the bacterium has a hard cell wall and very low
permeability. The development of M. tuberculosis resistance is
also associated with the cell wall. Howard et al. (2018) found
that M. tuberculosis carrying a rifampicin-resistance mutation
reprograms macrophage metabolism through cell wall lipid
changes. Maitra et al. (2019) described M. tuberculosis cell
wall peptidoglycan as its fatal weakness. Thus, the cell wall of
M. tuberculosis is an important target for the development of
new anti-TB drugs.

In this study, we performed high-throughput screening of
M. tuberculosis cell wall synthesis genes and screened key genes
using bioinformatics and statistical methods to obtain new key
targets for the development of anti-TB drugs.

MATERIALS AND METHODS

Synthetic Gene Data for M. tuberculosis
H37Rv Cell Wall
The relevant data forM. tuberculosis cell wall synthesis genes used
in this study were obtained from the screening and integration
of the following databases: TubercuList (Lew et al., 2011), TBDB
(Galagan et al., 2010), PATRIC (Gillespie et al., 2011), MycoDB
(Chaudhuri, 2009), GenoMycDB (Catanho et al., 2006), MyBASE
(Zhu et al., 2009), MabsBase (Heydari et al., 2013), and MGDD
(Vishnoi et al., 2008).

Sequence Alignment
We used online software1 to compare the amino acid
sequence of M. tuberculosis H37Rv with the amino acid
sequence of Mycobacterium smegmatis, Mycobacterium leprae,
Mycobacterium bovis, and M. tuberculosis H37Ra. Genes with
homology greater than 60% were selected (Kuroda et al., 2001;
Hellweger et al., 2014).

Screening Essential Genes
The whole genome information for M. tuberculosis H37Rv
was obtained from the National Center for Biotechnology
Information (NCBI) and annotated using the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
with KEGG Orthology (KO) in accordance with the “binary
relationships” provided by the KEGG Brite database. The types
and functions of cell wall synthesis genes were determined using
Clusters of Orthologous Groups with KO (KO COG) and the
P-Score and E-Score for each KO were calculated. The E-Score
was calculated with KO using the same path annotation and the
P-Score was determined from the e-score. The P-Score-KEGG
and P-Score-COG were also calculated based on the KEGG and
COG annotations (Kong et al., 2019). These two values were in
the range of 0 to 1, with 0 indicating a lack of necessity and 1
indicating necessity.

Screening Operon Set
We applied the operon Database of Origin and Registration
(DOOR) (Cao et al., 2019) established in our laboratory to
classify the operon collection of cell wall genes. The DOOR
database uses two prediction procedures. For operon genomes
with a large number of experimental verifications, we used a
non-linear classifier to train the known operon subsets based on
the general characteristics of the genome and the characteristics
of specific genomes. For genomes without experimental data,
we used linear classification to predict operons for the general
characteristics of the genome.

Screening Co-regulatory Gene Modules
We selected all M. tuberculosis H37Rv gene chips in NCBI
after filtering out irrelevant chip data and performed min-
max normalization on each chip. We used the cMonkey
double clustering algorithm to establish seed clusters (Waltman
et al., 2010). We calculated the P-values of three such model
components based on the amount of co-expressed genes,
upstream sequences, and association networks. We optimized

1www.ncbi.nlm.nih.gov/blast/
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seed clusters by adding or removing related genes and proceeded
to build new clusters. We used the Monte Carlo procedure
to calculate the probability of each gene or condition sampled
as a dual cluster gene with the conditional probability at each
stage. Through these procedures, the genomic co-regulation
network was identified.

Functional Enrichment Analysis
We performed a Gene Ontology (GO) analysis of the target
genes using the comprehensive database Davide2 for enrichment
analysis, annotation, and visualization. We used the Biocarta,
KEGG, National Cancer Institute Pathway Interaction Database
(NCI-PID), HumanCyc, and Reactome pathway databases for
pathway enrichment of the target genes. P < 0.05 was considered
statistically significant when the threshold was ≥ two genes. We
used R software and the Perl language to visualize the enrichment
results. We also installed “Rcpp,” “ggplot2,” and other related
software packages (Postma and Goedhart, 2019).

Construction of Gene Regulatory
Network
The protein–protein interaction (PPI) network was constructed
using a gene interaction search tool database (STRING) and
Cytoscape 3.6.1 was used for visualization. The Minimal
Common Oncology Data Elements (MCODE), a Cytoscape
network analysis plug-in for molecular complex detection, was
used to deeply mine the existing modules in the network structure
to find the core gene clustering modules with the highest
levels of interaction.

RESULTS

Statistical Analysis of Cell Wall-Related
Genes in Mycobacteria
Through database annotation and sequence alignment, we
screened the cell wall synthesis genes for mycobacteria. As
shown in Table 1, there were 892 cell wall synthesis genes for
M. tuberculosis H37Rv, 888 for M. tuberculosis H37Ra, 780 for
M. bovis, 508 for M. smegmatis, and 454 for M. leprae.

We used the operon database DOOR to assess the module
distribution of cell wall synthesis genes. In M. tuberculosis H37Rv,
893 genes related to cell wall synthesis were located in 684

2https://david.ncifcrf.gov/

TABLE 1 | Cell wall synthesis network module in mycobacteria.

Strain Cell wall-related
genes

Essential genes
in cell wall

Operon Pathway

H37Rv 892 236 684 20

H37Ra 888 323 689 15

M. leprae 454 149 455 6

M. bovis 780 160 636 7

M. smegmatis 508 92 394 11

operons and 37 operons contained three or more cell wall-related
genes. Multiple genes located in an operon are usually regulated
by the same control region and constitute a transcription unit.
The 149 genes contained in these 37 operons may be key genes
that play an important role in the synthesis of the M. tuberculosis
cell wall. There are four sets of operons, which contain more
than seven genes related to the cell wall, including operons
with ID numbers 7375, 7760, 6927, and 7590 displayed in the
DOOR database. The ID number of the operon with the largest
number of genes is 7558, up to 9. The genes yrbE1A and yrbE1B
encode cell wall membrane proteins (Pasricha et al., 2011). The
proteins encoded by mce3A and mce3B are not only present
in the cell wall, but are also important for the virulence of
M. tuberculosis during host invasion (Ahmad et al., 2005); 37
pairs of operons in this pathway and their details are shown in
Supplementary Table S1.

The main cause of infection of the host with M. tuberculosis
is the virulence factor. We obtained all coding genes related to
virulence of TB from the VFDB database, of which 115 genes
are cell wall synthesis genes. The cell wall genes that belong
to virulence included the mmpl family which encoded cell wall
lipid transporters, the cell wall mycolic acid synthase mmA4,
and Rv2224c with little research and unknown specific function.
Genes related to cell walls and virulence factors are shown in
Supplementary Table S2.

Function Analysis of Cell Wall-Related
Genes
Essential genes are often critical for sustaining the activities of
living organisms. As shown in Table 1, there are 236 essential
genes related to cell wall synthesis in the whole genome of
M. tuberculosis H37Rv. These genes are located in 161 operons,
among which there are 10 operons containing more than three
essential genes and five operons with more than four essential
genes. Three or more operons have five or more essential genes.
The six genes controlled by the operon ID6951 are all required
genes that play key roles in cell wall synthesis. The six required
genes include eccA3-E3, a member of the ESAT6 secretory system
(ESX), and membrane-anchored mycosin mycP3. ESX secretion
systems mediate various functions, participate in the metabolism
of zinc and iron, and play an important role in cell wall integrity
(Gaur et al., 2017).

We used KEGG, BioCyc, and Reactome pathway data
to analyze cell wall synthetic genes (Figures 1A,B). The
892 cell wall synthesis genes in the H37Rv strain were
distributed in 39 signaling pathways. The essential gene
murA participates in the metabolic pathway (KEGG mtu01100),
peptidoglycan biosynthesis (KEGG mtu00550), and UDP-
N-acetylmuramoyl-pentapeptide biosynthesis I (BioCyc
pwy6387). AftB is involved in the super pathways of mycolyl-
arabinogalactan-peptidoglycan complex biosynthesis (BioCyc
pwy6404) and Lipoarabinomannan biosynthesis (KEGG
mtu00571). MurA and aftB are thought to be key node
genes in the cell wall biosynthesis pathway. In addition, we
identified some genes whose functions are currently unknown
but which are located in important pathways such as the
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mycolyl-arabinogalactan-peptidoglycan complex biosynthesis
(BioCyc PWY-6397) pathway.

We annotated the gene functions using GO and identified
46 GO items in the 892 cell wall synthesis genes. As shown in
Figure 2, there were 19 items related to biological processes (BPs),
nine items related to cell components (CCs), and 18 items related

to molecular function (MF). The most significant BP terms were
related to cell wall organization (GO:0071555), regulation of
cell shape (GO:0008360), and peptidoglycan biosynthetic process
(GO:0009252), as shown in Figure 2A.

We also visualized and clustered the enriched GO and KEGG
terms using the cluego in Cytoscape (Figure 3). We found

FIGURE 1 | Enrichment of cell wall-related gene pathways in the standard strain of M. tuberculosis H37Rv. (A) The top 20 pathways with the lowest p-values
(<0.05) for KEGG were selected and a histogram was created. (B) The top 20 pathways with the lowest p-values (<0.05) for Biocarta, KEGG, NCI-PID, HumanCyc,
and Reactome are shown in a bubble chart.

FIGURE 2 | Functional significance analysis of cell wall-related genes in the standard strain of M. tuberculosis H37Rv. (A) Histogram showing the top 20 pathways
identified in function analysis of cell wall-related genes. (B–D) Bubble charts showing the top 20 pathways in BP, CC, and MF.
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that most genes are enriched in important cell wall-related
pathways, such as lipid biosynthetic process, peptidoglycan-base
cell wall synthesis, lipid synthesis, and 3-oxoacyl-acyl-carrier-
protein sythase activity. In addition, it is closely related to
the pathogenicity of the host, symbiosis of the host, secretion,
and pathogenesis.

Analysis of the M. tuberculosis Cell
Wall-Related Modules
By screening the M. tuberculosis cell wall modules using
gene chips and the cMonkey double clustering algorithm,
we found that the total number of M. tuberculosis modules
was 600, among which 386 contained the target genes for
cell wall synthesis.

Among the modules containing the target genes, 41 modules
contained more than four target genes. Among these 41 modules,
16 were related to the synthesis of sugar in the cell wall,
such as bicluster_0098 for the mannosyl transfer process and

bicluster_0329 for the peptidoglycosyl transfer process. Fifteen
modules were related to the synthesis of lipids. The modules
bicluster_0068 and bicluster_0012 were related to the synthesis
of mycobacterial acid (Saelens et al., 2018). There were 10
modules related to cell wall surface proteins and virulence.
Among them, bicluster_0384 contained the largest number of
target genes for cell wall synthesis in a single module. The
nine genes contained in this module are all involved in the
biosynthetic process for arabinose. For example, the Rv0129c
coding protein plays a role in the addition of mycosyl residues
in the cell wall arabinose (Jiang et al., 2020) and Rv3806c
plays a role in the synthesis of decenyl phosphate D-arabinose
(Safi et al., 2013).

In the process of gene transcription, transcription factors
complete the binding of proteins to DNA by identifying specific
sequences of the double helix structure (motif). The motif
is short and conservative, consisting of about 20 base pairs.
Many key regulatory pathways in the cell are usually recruited
by a motif (Ivarsson and Jemth, 2019). Genes located in a

FIGURE 3 | The enrichment map of GO annotation and KEGG pathway. Node size represents the number of cell wall genes expressed in specific terms. The edge
thickness represents the number of genes shared by the two items connected by the edge.
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module are regulated by a transcription factor and have the
same motif. We mapped the motif base distribution for the four
modules with the largest number of cell wall genes, as shown
in Figures 4A–D.

Establishment of PPI Network and
Screening of Key Genes
We enriched the function of cell wall synthesis gene and
constructed the network between cell wall synthesis gene and
gene function. As shown in Figure 5, the cell wall genes
screened are mainly related to 18 functions, including fatty
acid biosynthesis process, DIM cell wall layer assembly, and
plasma membrane.

Using the STRING database, we analyzed the interaction
relationships between the cell wall synthesis genes of
M. tuberculosis and constructed a PPI network of cell wall-
related genes after deleting unconnected nodes. As shown in
Figure 6A, in order to identify the key genes in the network
diagram, we used MCODE to screen out five important subnets
and several related genes under the condition of k-score = 2.

As shown in Figure 6B, Subnet 1 contains 14 key genes in
the cell wall peptidoglycan synthesis process. Alr, the ddla coding
protein, plays a role in the synthesis of alanine peptidoglycan
(Bhat et al., 2017; Meng et al., 2019). Ftsw, ftsz, and pbp3-
encoded proteins can form a ternary complex to potentially

regulate peptidoglycan biogenesis. Roda glycosyltransferase is
also involved in peptidoglycan synthesis (Wu et al., 2016).
Figure 6C shows that Subnet 2 contains 13 ESX-1 secretory
system-related genes. The ESX-1 secretory system is not only
an important determinant of M. tuberculosis virulence, but is
also closely related to cell wall synthesis (Wong, 2017). After
elimination of the espa gene encoding the ESX-1 substrate,
M. tuberculosis bacteria lose the ability to synthesize a complete
cell wall structure (Chen et al., 2013). ESX-A is an early secreted
antigen target that promotes the synthesis of the ESX-1 substrate
and interacts with the cell membrane and cell wall of bacteria.
Subnet 3 (Figure 6D) contains membrane lipid transporters.
In Subnet 4 (Figure 6E), ddrA-C is not only the key gene in
cell wall synthesis, but also the key gene for drug resistance
in M. tuberculosis bacteria (Selvam et al., 2013). The other
eight genes are related to the synthesis of lipid phthiocerol
dimycocerosates (PDIM) in the cell wall. Among them, ppsA-E
encodes the PDIM catecholic dipolyoleate (Gopal et al., 2016).
All seven genes in Subnet 5 (Figure 6F) are regulated by the
mymA operon and play a role in cell wall fatty acid modification
(Singh et al., 2005).

Through PPI, we identified some node genes that are crucial in
cell wall biosynthesis of important sugars and lipids. In Figure 7,
the petal diagram shows the genes contained in the top five
annotations in BP, MF, and CC and the genes contained in the
first five paths in KEGG BioCyc and Reactome. We selected the

FIGURE 4 | Motif analysis results with the largest number of cell wall genes in a single module cluster. (A–D) The motif base distribution of the four modules with the
largest number of cell wall genes. In each BP base distribution in the motif, the size of the base is proportional to the corresponding frequency.
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FIGURE 5 | Cell wall synthesis gene and gene function regulatory network. Diamond-shaped nodes and rectangular nodes, respectively, represent gene functions
and genes related to cell wall synthesis.

top five groups with the lowest P-values in all enrichments. This
is to intuitively demonstrate the functional enrichment pathway
for the co-regulation of key genes. The key genes for this pathway
are shown in Supplementary Table S3.

DISCUSSION

As an important target for the development of new anti-TB
drugs, the M. tuberculosis cell wall has attracted increasing
attention. Maan and Kaur (2019) discovered Rv2223c in the
cell wall of M. tuberculosis, which is a carboxyl transferase.
Bothra et al. knocked out mmpl11 and the resulting mutant
strain exhibited a change in the biological activity related to
mycolate wax and long-chain triacylglycerol. The knockout
strain was also damaged compared to the wild strain in vitro
granuloma model, thus demonstrating the important role of

mmpl11 in cell wall and biofilm syntheses (Bothra et al., 2018).
Quigley et al. (2017) found that the expression of lipid PDIM
in the cell wall of M. tuberculosis was negatively regulated by
a novel transcription repressor, Rv3167c. Although extensive
M. tuberculosis cell wall-related research has been conducted,
there is still no comprehensive summary of the key genes
involved in the process of cell wall synthesis.

In this study, we first screened the genes related to cell
wall anabolism using multiple M. tuberculosis gene annotation
databases. Next, we screened the essential genes for cell wall
synthesis by GO functional annotation. We then evaluated the
distribution of cell wall synthesis genes in the whole genome
using the DOOR database established in our laboratory. Using
the above methods, we obtained a lot of valuable information.
For example, we identified the entire operon containing genes
involved in cell wall synthesis, which is necessary for the
survival of the bacterium. We employed module analysis and
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FIGURE 6 | PPI network of cell wall-related genes of M. tuberculosis. (A) Protein interaction networks visualized with Cytoscape. (B) Molecular complex detection
(MCODE) with deep excavation of the core subnet. A modular gene involved in peptidoglycan synthesis in Subnet 1. (C) The gene cluster for the ESX-1 secretory
system. (D) Gene clusters encoding membrane lipid transporters. (E) Key gene clusters for cell wall resistance. (F) Fatty acids modify gene clusters.
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FIGURE 7 | The key genes with multifunctional correlation intermingle through multiple pathways screened for the cell wall-related genes of M. tuberculosis.
Intersecting genes in the five pathways with the most significant differences in KEGG (A), BP (B), CC (C), and MF (D) are displayed in a petal diagram.

the cMonkey double clustering algorithm to cluster the cell wall
synthesis genes. We also identified key genes by screening co-
regulatory clustering modules. Through functional analysis of cell
wall synthesis genes by GO and KEGG, we screened the key genes
for the synthesis of important components of the cell wall, such as
mycotic acid and peptidoglycan, and the key hub genes involved
in multi-pathway synthesis. Finally, we created a PPI network and
identified five important subnets through MCODE analysis. The
intrinsic relationship between proteins in the network was used
to deeply explore the genes. Molecular complexes containing key
genes were extracted based on closely related regions in the PPI.
Finally, we obtained the five most valuable subnets. Using Subnet
3 as an example, all genes contained in this subnet are part of
the mammalian cell entry (MCE) operon (Gioffre et al., 2005).

The MCE operon is present in all genera of mycobacteria
and actinomycetes. However, the number of MCE operons in
different strains varies, with MCE 4 in M. tuberculosis, MCE 3 in
M. smegmatis, and MCE 1, 2, and 4 inM. bovis. It is unknown why
the MCE 3 operon is absent from M. bovis (Kumar et al., 2005).
The MCE operons help M. tuberculosis ingest cholesterol in the
host to keep the bacteria alive. Lack of the MCE operon causes
a serious imbalance of lipid content in the M. tuberculosis cell
wall. Sally et al. reported free mycolic acid accumulation in the
cell wall of the MCE 1 operon mutant strain of M. tuberculosis
(Singh et al., 2018). However, the genes contained in Subnet 4,
such as ppsa and ppsb, were significantly altered in drug-resistant
bacteria (Cantrell et al., 2013). We believe that ppsa changes the
expression of PDIM in the cell wall by changing the approach

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 9 June 2020 | Volume 8 | Article 607113

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00607 June 27, 2020 Time: 20:5 # 10

Luo et al. Screening Cell Wall Synthesis Network

of the multi-subunit non-iterated polyketide synthase system
(Vergnolle et al., 2015). This makes the bacterial cell wall
thicker and causes bacterial drug efflux. We used bioinformatics
and statistical methods to comprehensively scan all the genes
synthesized in the M. tuberculosis cell wall and to screen out
new targets that can be used as new anti-M. tuberculous cell wall
targeting drugs.
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With the development of medical technology, image semantic segmentation is of great

significance for morphological analysis, quantification, and diagnosis of human tissues.

However, manual detection and segmentation is a time-consuming task. Especially for

biomedical image, only experts are able to identify tissues and mark their contours. In

recent years, the development of deep learning has greatly improved the accuracy of

computer automatic segmentation. This paper proposes a deep learning image semantic

segmentation network named Spatial-Channel Attention U-Net (SCAU-Net) based on

current research status of medical image. SCAU-Net has an encoder-decoder-style

symmetrical structure integrated with spatial and channel attention as plug-and-play

modules. The main idea is to enhance local related features and restrain irrelevant

features at the spatial and channel levels. Experiments on the gland dataset GlaS and

CRAG show that the proposed SCAU-Net model is superior to the classic U-Net model

in image segmentation task, with 1% improvement on Dice score and 1.5% improvement

on Jaccard score.

Keywords: deep learning, semantic segmentation, attention mechanism, medical image, gland

1. INTRODUCTION

In clinical practice, biomedical image analysis (Litjens et al., 2017) provides doctors with digital and
quantitative medical information, and helps doctors make objective and accurate diagnosis. Image
segmentation is a basic problem in medical image analysis. In short, it is to identify the target
area in an image and distinguish the research object from the background. For instance, glands
are important tissues of the human body that secrete special proteins and hormones. Malignant
tumors caused by glandular differentiation, i.e., adenocarcinoma, is a common form of cancer.
Different grades of differentiated glands have various morphological structures. In pathological
examination, pathologists usually use Hematoxylin and Eosin (H&E) to stain glandular tissues,
then evaluate the malignancy of adenocarcinoma and determine the grade of cancer (Niazi et al.,
2019). Early detection of glandular differentiation can greatly improve the cure rate of patients,
and these treatment methods often require detailed gland information, such as the size, shape and
location of the glands before and after treatment, in order to propose a suitable treatment plan. At
present, this work is mainly performed by expert pathologists. However, the morphology of glands
in different histological differentiation grads is quite complex, and the texture and size vary from
patient to patient. It is still a very challenging task.

Manually detecting and segmenting medical images consumes a lot of energy and time of
doctors. In recent years, with the deepening cooperation between artificial intelligence and medical
image analysis, the research of computer-aided medical image segmentation have exploded.
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Computer automatic segmentation enables doctors to quickly
and easily obtain image markers related to the disease treatment
process, detect malignant tumors early in time. Especially for the
automatic segmentation of H&E gland images, pathologists can
quickly extract important morphological features from massive
histological images. This work helps pathologists to provide
services to more patients while ensuring diagnostic accuracy. To
some extent, it can solve the problem of imbalanced distribution
of medical resources and lack of expert pathologists.

In this paper, we propose a deep learning network named
Spatial-Channel Attention U-Net (SCAU-Net) for gland
segmentation. The contributions of this paper are as follows:

1. Our model has a symmetrical structure. It exploits skip
connections to concatenate outputs of encoder to the decoder
in corresponding level. Multi-level features are fused to
improve segmentation results.

2. We introduce spatial attention and channel attention as plug-
and-play modules for the basic encoder-decoder structure.
The module exploits hidden layer neural network to
capture the non-linear relationship between spatial-wise
and channel-wise feature, and essentially introduces a self-
attention mechanism. The attention module performs feature
recalibration to enhance local related features and restrain
irrelevant features at the spatial and channel levels.

2. RELATED WORK

2.1. Biomedical Image Segmentation
Computer automatic image segmentation algorithms are
categorized as traditional algorithms based on manual features
and deep learning algorithms based on Convolutional Neural
Networks (CNNs) (Krizhevsky et al., 2012).

The main idea of traditional image segmentation algorithms
is to segment the image into regions with similar properties, such
as color and texture (Sharma and Aggarwal, 2010). Divided in
principle, including the following types of methods: (1) Edge
based segmentation. Algorithm exploits discontinuity principle
such as grayscale and color to detect boundaries between regions
(Hancock and Kittler, 1990; Liow, 1991). Fuzzy boundaries and
noise can easily affect the performance of the method. (2) Region
based segmentation. Pixels with similar properties are aggregated
to form a complete object regions. Wu et al. (2005) proposed a
intestinal gland images segmentation based on iterative region
growing. The segmentation results of this method are sensitive
to the number of clusters and regions initialization. (3) Textural
feature based segmentation. This method divides the image
regions according to texture properties (Sirinukunwattana et al.,
2015).

In recent years, deep learning has become the main research
method inmany fields, and CNN is widely used inmany different
computer vision tasks. Unlike previous traditional methods,
CNN is a data-driven method that can automatically learn
advanced features from image without the need for artificial
feature design and prior knowledge. In the medical field, CNN
has also achieved good results in the detection and segmentation
of cells (Raza et al., 2017), pancreas (Roth et al., 2015), liver

tumors (Dou et al., 2016; Christ et al., 2017), glands (Chen et al.,
2016; Xu et al., 2016; Yang et al., 2017; Graham et al., 2019), and
other human tissues.

The full convolutional network (FCN) (Long et al., 2015) is
the first method for image semantic segmentation using end-
to-end deep neural networks. The innovation is that the fully
connected layer is replaced by fully convolutional layer. This
important innovation enables the network to adapt to the input
of any resolution.

Datasets containing large amounts of labeled images have
been established in other fields, such as ImageNet, COCO,
etc. However, in the field of medical images, due to the high
annotation cost, it is almost impossible to provide such a large
dataset. Therefore, how to train a good model in the case of
small datasets is a difficult research point. U-Net (Ronneberger
et al., 2015) is based on the FCN structure, and exploits skip
connections to transfer and fuse the output of feature maps
with different resolutions to obtain more accurate outputs. It
is firstly used for segmentation of neuron and cell images and
has excellent performance on many medical image datasets. In
the last few years of medical image segmentation, many works
have been developed and improved on the basis of the U-Net
(Çiçek et al., 2016; Milletari et al., 2016; Gordienko et al., 2018;
Zhou et al., 2018). Unlike many recent studies focus on instance
segmentation (Xu et al., 2016; Graham et al., 2019; Yu et al.,
2020), SCAU-Net proposed in this paper extends U-Net as basic
model in order to improve the accuracy of segmentation while
retaining the original advantages. In addition, our method can
be easily extended to other medical image segmentation such as
liver, cell, etc.

2.2. Vision Attention
When looking at a scene, we often firstly scan the whole scene
quickly and focus on the region of interest (ROI). This selective
attention mechanism that mimics the Human Visual System
(HVS) has been widely used in computer vision (Itti and Koch,
2001; Wang and Shen, 2017). There is no strict mathematical
definition of the attention mechanism. Oktay et al. (2018)
proposed a network of encoder-decoder-style called Attention U-
Net, which exploits a Attention Gates control. Another modular
attention mechanism is called self-attention. The computation
and parameter overhead of the feature map’s attention generation
process is much smaller, which can be used as a plug-and-play
module of the existing basic CNN architecture. This method
introduces additional neural network modules, which can assign
different weights to spatial-wise or channel-wise.

Spatial attention learns to focus on spatial location (where),
and weights are assigned to each pixel. Therefore, the form of
weights is aH×W 2D matrix. Jaderberg et al. (2015) introduced
a learnable Spatial Transformer module, which can learn the
location of object regions by the input feature map.

Channel attention learns to select important feature
dimensions (what), and weights are assigned to each channel.
Therefore, the form of weights is a 1D vector. Hu et al. (2018)
proposed the Squeeze-and-excitation (SE) module, which learns
the non-linear relationship between channels and performs
dynamic channel-wise feature recalibration.
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In addition, spatial and channel attention modules can
be combined in a parallel or sequential manner. e.g., Dual
Attention Network (Fu et al., 2019) parallels spatial and channel
attention and fuses output features of attention module. Woo
et al. (2018) proposed Convolutional Block Attention Module
(CBAM), which sequentially builds the channel and spatial
attention modules. Non-Local attention (Wang et al., 2018)
computes the response at a position by capturing long-range
dependencies at all positions. Bottleneck attention module (Park
et al., 2018) generates a 3D attention map in two streams, i.e.,
spatial stream and channel stream.

3. METHOD

Inspired by U-Net network structure and attention mechanism,
we propose a deep learning network named SCAU-Net. The
entire structure is shown in Figure 1.

We define “Block(x)” which executes a 3×3 convolution
followed by a batch normalization and ReLU activation, two
times. x refers to the output channel number. The role of the
encoder part is to extract features from the image and obtain
compressed expression of the image features at multi-level.
Down-sampling is performed by 2 × 2 max-pooling operation.
During each down-sampling, the image size is reduced and the
number of feature channels is doubled. The role of the decoder
part is to gradually restore the details and spatial dimensions of
the image according to the image features, and obtain the result of
image segmentation mask. Up-sampling is performed by bilinear
interpolation. Finally, a 1 × 1 convolutional layer is applied to
predict the class of each pixel, denoted as Conv(1 × 1, C), where
C is the number of classes. For image semantic segmentation, C
is set to 2. The decoder part has a symmetrical structure to the
encoder part. The copy operation links the corresponding down-
sampling and up-sampling feature maps. The feature map is a
combination of high-level and low-level features, and multi-level
features are fused.

The medical image structure is simpler and more fixed than
other images. For gland slices, the shooting angle and position
are fixed, and the glands of approximate differentiation degree
are often similar in shape. Inspired by the work of SE (Hu et al.,
2018) and CBAM (Woo et al., 2018), we propose spatial attention
module and channel attention module, which are used as plug-
and-play modules in the network. Attention will focus on the
objects and ignore the cluttered background. Especially, model
will pay more attention on the edges of the glands because the
fuzzy edge is the most worthy of the segmentation task.

3.1. Spatial Attention
Attention in the spatial-wise ignores the information of the
channel, and treats the features of different channels equally. We
add the spatial attention module to the low-level feature map
since the low-level feature map mainly extracts the spatial feature
such as contour, edge, with fewer channels. The module self-
learns the interaction of spatial points, enhance key areas, and
restrain irrelevant areas. The structure of the spatial attention
module is shown in Figure 2. Firstly we pass the feature map
U ∈ R

C×H×W to the aggregation operation, which generates a

spatial descriptor p ∈ R
H×W by aggregating the feature map in

its channel dimension (C). It generates a global distribution of
spatial features:

phw = Fac(uhw) =
1

C

C
∑

i=1

uhw(i) (1)

where uhw ∈ R
C refers to the local feature at spatial position

(h,w). The aggregate function Fac uses global average pooling for
channel dimension.

This is followed by a weight self-learning operation. It is
implemented by convolutional layers. The function Fl(p, f ) aims
to fully capture the spatial correlation and adaptively generates
the spatial weights map t ∈ R

H×W . The calculation formula is
as follows:

t = Fl(p, f ) = σ (g(p, f )) = σ (f2δ(f1p)) (2)

where f1 refers to 3 × 3 convolution, denoted as Conv(3×3,
m), and f2 refers to 3 × 3 convolution, denoted as Conv(3
× 3, 1). m refers to the channel number of hidden feature
map. δ refers to activation function ReLU, and σ is a sigmoid
activation function used to generate spatial weight thw ∈ (0, 1),
at position (h,w). In essence, the convolution operation that
takes the original spatial descriptor as input can be considered
as a spatial-wise self-attention function, and it can capture the
non-linear inter-spatial relationship.

The weights calculated in the previous step are applied to
the feature map U . By spatial-wise recalibration Fre(uhw, thw),
the feature values of different position in U are multiplied by
different weights to generate the output U ′ of the SA module:

u′hw = Fre(uhw, thw) = uhw · thw (3)

3.2. Channel Attention
Similarly, we add the channel attention module at the last
layer of the encoder, since the hight-level feature map mainly
expresses complex feature with large receptive field and more
channels. This mechanism allows the network to perform feature
recalibration, through learning to exploit global information to
selectively enhance useful features and restrain useless features.
The structure of the channel attention module is shown in
Figure 3. Firstly we pass the feature map U ∈ R

C×H×W to
the aggregation operation, which generates a channel descriptor
q ∈ R

C by aggregating the feature map in its spatial dimension
(H ×W). It generates a global distribution of channel features:

qc = Fas(uc) =
1

H ×W

H
∑

i=1

W
∑

i=j

uc(i, j) (4)

where uc ∈ R
H×W refers to the local feature of channel

c. The aggregate function Fas uses global average pooling for
spatial dimension.

This is followed by a weight self-learning operation. It is
implemented by fully connected layers. The function Fl(q,w)
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FIGURE 1 | The structure of SCAU-Net. The entire structure is divided into four parts: encoder, decoder, spatial attention module, channel attention module. Given an

input feature map of size D×H×W, the output size of Block(x) is x×H×W. W, width; H, height of feature map; D, input channel number; x, output channel number.

FIGURE 2 | The structure of Spatial Attention (SA) module. The aggregate function Fac generates a spatial descriptor p ∈ R
H×W . Self-learning function Fl implemented

by two convolutional layers generates the spatial weights map t ∈ R
H×W . Finally, function Fre uses t to generate the output of the SA module.

aims to fully capture the dependencies between channels and
adaptively generates the channel weights map v ∈ R

C. The
calculation formula is as follows:

v = Fl(q,w) = σ (g(q,w)) = σ (w2δ(w1q)) (5)

where w1 ∈ R
K×C, w2 ∈ R

C×K . K refers to number of
hidden neurons. σ is a sigmoid activation function used to
generate channel weights vc ∈ (0, 1), at channel c. With fully-
connected hidden layers, it can capture the non-linear interaction
between channels.
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FIGURE 3 | The structure of Channel Attention (CA) module. The aggregate function Fas generates a channel descriptor q ∈ R
C. Self-learning function Fl implemented

by two fully connected layers generates the channel weights map v ∈ R
C. Finally, function Fre uses v to generate the output of the CA module.

The weight calculated in the previous step is applied to
the feature map U . By channel-wise recalibration Fre(uc, vc),
the feature values of different channels in U are multiplied by
different weights to generate the output U ′ of the CA module:

u′c = Fre(uc, vc) = uc · vc (6)

4. EXPERIMENTS AND RESULTS

4.1. Dataset
The two gland datasets used in the experiments are provided by
a team of pathologists at the University Hospitals Coventry and
Warwickshire, UK. (1) Gland Segmentation Challenge Contest
(GlaS) (Sirinukunwattana et al., 2015) in MICCAI 2015. (2)
The colorectal adenocarcinoma gland (CRAG) (Graham et al.,
2019) dataset. The images are Haematoxylin and Eosin (H&E)
stained slides of a variety of histologic grades. The GlaS dataset
is split into 85 training images (benign/malignant = 37/48) and
80 testing images (benign/malignant = 37/43). We random split
from 165 images using 80% images as the training set and the
remaining 20% for testing. Images are mostly of size 780 × 520
pixels. The CRAG dataset is split into 173 training images and
40 test images. Images are mostly of size 1,510 × 1,510 pixels.
And the ground truth annotations of the glands are provided by
expert pathologists.

All the images processed by the network have fixed size
of 512×512 pixels. Since the dataset is small, the training
data is extended by using the data augmentation method in
our experiments, i.e., a series of random changes such as
rotation, scaling, cropping, etc., to increase the robustness and
reduce overfitting.

4.2. Experimental Setting
The proposed network was implemented using Pytorch (Paszke
et al., 2019) deep learning framework. Experiments are carried

out on Ubuntu 16.04 operating system, NVIDIA Tesla K80 GPU,
CUDA 10.1.

4.3. Training Process
The loss function defined in experiment is a combination of
cross-entropy loss and dice loss:

CELoss = −
1

n

∑

y ∗ log(y′)+ (1− y) ∗ log(1− y′) (7)

DiceLoss =
2
∑

(y′ ∗ y)
∑

y′ +
∑

y
(8)

Loss = λ ∗ CELoss+ (1− λ) ∗ DiceLoss (9)

where y is the ground truth of each pixel, and y′ is model
prediction. Dice loss function (Milletari et al., 2016) is based on
dice coefficient and helps to establish the loss balance between
foreground and background pixels. The loss function allocates
the cross-entropy loss function and the dice loss function with λ.
We set λ to 0.5 in the experiment. We use the Adam optimization
(Kingma and Ba, 2014) and set initial learning rate to 0.0001. The
input mini-batch size is 4. The total epoch is set to 100 with the
learning rate decay strategy. Every 30 epochs, the learning rate
is reduced to 1/10 of the previous value. For spatial attention
module, we set the channel number of hidden feature map to
16. For channel attention module, we set the number of hidden
neurons to 32.

4.4. Quality Measures
In order to evaluate the performance of the proposed method, we
use the quality metrics commonly used in the field of medical
image. Metric applies to the semantic segmentation of binary
values which only considers glands as foreground, and everything
else as background. Given A a set of pixels annotated as a ground
truth object and B a set of pixels segmented as a gland object.
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TABLE 1 | Our method’s segmentation results compare with U-Net on dataset GlaS and CRAG.

GlaS CRAG

Method Dice Jaccard RVD Dice Jaccard RVD

U-Net 0.8963 0.8175 0.0079 0.9003 0.8243 −0.0042

SCAU-Net(CA) 0.9004 0.8242 0.0190 0.9069 0.8333 −0.0072

SCAU-Net(SA) 0.9054 0.8322 −0.0166 0.9067 0.8330 −0.0033

SCAU-Net(SA+CA) 0.9063 0.8332 0.0197 0.9100 0.8381 −0.0074

DeepLabv3+ 0.8866 0.7994 −0.0203 0.8672 0.7691 −0.0492

SegNet 0.7930 0.6643 −0.0582 0.8990 0.8209 −0.0030

U-Net++ 0.8952 0.8166 0.0256 0.8870 0.8010 −0.0182

CA refers to channel attention module, SA refers to spatial attention module. We also compare with the network SegNet, U-Net++, DeepLabv3+. Significant results are highlighted in

bold font.

Dice Similarity Coefficient (Dice):

2(A ∩ B)

A+ B
(10)

Jaccard Coefficient (Jaccard):

A ∩ B

A ∪ B
(11)

Relative Volume Difference (RVD):

|B| − |A|

|A|
(12)

In order to save the best model parameters during the training
process, we use the Dice coefficient as themain evaluationmetric.
The larger the coefficient, the better the method performance.
When the coefficient is 1, the predict result is consistent with the
ground truth.

4.5. Results and Discussions
The experimental results are shown in Table 1. We compare our
method with the baseline model U-Net. When our network using
the channel attention (CA) alone, in the dataset GlaS, Dice score
has a 0.4% improvement, and the dataset CRAG has a 0.6%
improvement.When our network using the spatial attention (SA)
alone, in the dataset GlaS, Dice score has a 0.9% improvement,
and the dataset CRAG has a 0.6% improvement. Combining
spatial and channel attention (SA+CA), there is 1% improvement
on Dice score and 1.6% improvement on Jasccard score in the
dataset GlaS. There is 1% improvement on Dice score and 1.4%
improvement on Jasccard score in the dataset CRAG. Besides,
compared with the network SegNet (Badrinarayanan et al., 2017),
U-Net++ (Zhou et al., 2018), DeepLabv3+ (Chen et al., 2018),
the overall performance of SCAU-Net is excellent, and it is more
robust to different datasets.

As shown in Figure 4, we compare the training process
between the U-Net and SCAU-Net. It can be observed that the
SCAU-Net with spatial and channel attention (SA+CA) achieves
the highest accuracy on validation sets. For the dataset GlaS, the
SCAU-Net slightly over-fits after about the 60th epoch, while

FIGURE 4 | The training process of different model. Figure shows dice curve

of the U-Net and SCAU-Net with different settings (CA, SA, CA+SA) on

validation sets. CA, channel attention module; SA, spatial attention module.

dataset CRAG doesn’t. We analyze the results and believe that
the added attention mechanism makes the model parameters
increase, and the model is more likely to over-fit with less
data amount.

Figure 5 shows the visualization results of the method. As
shown in Figures 5A,B, for some gland objects, the U-Net
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FIGURE 5 | Comparison of segmentation results. Examples (A,B) are from the GlaS dataset, and examples (C,D) are from the CRAG dataset. The red boxes indicate

areas with poor segmentation results.

network misclassifies the white area inside the gland as the
background, while SCAU-Net performs better. It shows that
our method has better object connectivity. For some complex
scenes, SCAU-Net can accurately distinguish background noise,
as shown in Figure 5C, and can distinguish the edges of
multiple gland objects well to prevent “sticking,” as shown in
Figure 5D. On the whole, SCAU-Net outperforms U-Net in the
segmentation of glands.

In order to explore how the attention mechanism works,
we visualize the effect of the model with the spatial attention
mechanism added. For visual display, we extract the encoder
output feature map of Block(64). Compared with the basic
U-Net network, SCAU-Net exploits spatial attention weights
to recalibrate the feature map. As shown in Figure 6, the
feature maps extracted show the differences between the two
methods. The contrast of the feature map by SCAU-Net

is more prominent, indicating the wider range of values.
The spatial attention weights map learned by SCAU-Net has
different weight assignments in different regions, as shown
in weights map. Spatial attention assigns lower weights
on easily distinguishable backgrounds, non-glandular noise
tissue areas, obvious contours, etc. The fuzzy boundaries of
the indistinguishable contours are assigned higher weights,
indicating that the network pays more attention to these difficult-
to-classify regions.

5. CONCLUSION

In this paper, we extend the U-Net encoder-decoder framework,
propose a new network named Spatial-Channel Attention U-Net
(SCAU-Net) for image semantic segmentation. We perform
the segmentation tasks on GlaS and CRAG gland dataset. The
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FIGURE 6 | Visualization the output feature activations after Block(64). Compared with the basic U-Net network, SCAU-Net exploits spatial attention weights to

recalibrate the feature map. Weights map by SCAU-Net is shown in the last column. Examples (A,B) are from the GlaS dataset.

experiment results and comparisons with classic U-Net model
demonstrate that our proposed model can achieve a better
segmentation performance, with 1% improvement on Dice score
and 1.5% improvement on Jaccard score. We also visualize the
effect of attention mechanism on feature extraction to explain
how the mechanism works.

In the future, the spatial and channel attention modules
proposed in this paper need further exploration for
the number of convolutional layers, the number of
fully connected layers, and the location settings of the
module embedding.
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It is increasingly appreciated that long non-coding RNAs (lncRNAs) associated with
alternative splicing (AS) could be involved in aggressive hepatocellular carcinoma.
Although many recent studies show the alteration of RNA alternative splicing by
deregulated lncRNAs in cancer, the extent to which and how lncRNAs impact alternative
splicing at the genome scale remains largely elusive. We analyzed RNA-seq data
obtained from 369 hepatocellular carcinomas (HCCs) and 160 normal liver tissues,
quantified 198,619 isoform transcripts, and identified a total of 1,375 significant AS
events in liver cancer. In order to predict novel AS-associated lncRNAs, we performed an
integration of co-expression, protein-protein interaction (PPI) and epigenetic interaction
networks that links lncRNA modulators (such as splicing factors, transcript factors, and
miRNAs) along with their targeted AS genes in HCC. We developed a random walk-
based multi-graphic (RWMG) model algorithm that prioritizes functional lncRNAs with
their associated AS targets to computationally model the heterogeneous networks in
HCC. RWMG shows a good performance evaluated by the ROC curve based on cross-
validation and bootstrapping strategies. As a conclusion, our robust network-based
framework has derived 31 AS-related lncRNAs that not only validates known cancer-
associated cases MALAT1 and HOXA11-AS, but also reveals new players such as
DNM1P35 and DLX6-AS1with potential functional implications. Survival analysis further
provides insights into the clinical significance of identified lncRNAs.

Keywords: long non-coding RNAs (lncRNA), alternative splicing, multi-graphic random walk, gene-regulatory
network analysis, random walk, hepatocellular carcinoma, integrative network analysis

INTRODUCTION

Alternative splicing (AS) events are frequently observed in tumorigenesis and serve as cancer-
driving genes. AS can originate from somatic mutations that disrupt splicing regulatory
mechanisms or influence the expression levels of splicing factors or transcription factors (Climente-
Gonzalez et al., 2017). Hence, AS-associated genes are recognized as important signatures for
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tumorigenesis and are of significance in developing therapeutic
targets for cancer clinical trial. For example, the SF3B1-targeting
compound spliceosome inhibitor E7107 has been implemented
in advanced tumor treatment (Eskens et al., 2013).

Studies from Zhang et al. (2016) and Romero-Barrios
et al. (2018) showed that long non-coding RNAs [generally
more than >200 nucleotides (nt) in length] are associated
with a variety of AS mechanisms. lncRNAs may interact
with specific alternative splicing factors (ASF) or with other
intermediate molecules that affect chromatin remodeling to
fine tune the splicing of target genes (Romero-Barrios et al.,
2018). For instance, our previous experimental study showed
that MALAT1 regulated the ASF, SRSF1 (SF2) in gastric cancer
cells (Wang et al., 2014; West et al., 2014). In addition, Ji
et al. (2014) reported that MALAT1 promoted tumor growth
and metastasis in colorectal cancer through the binding of
SFPQ in order to release the oncogene PTBP2. On the other
hand, LINC01133 has been reported to interact with splice
factor SRSF6 in patients suffering from colorectal cancer
(Kong et al., 2016) and non-small cell lung cancer (NSCLC)
(Zang et al., 2016).

Proteins that have multiple splicing regulators and that
promote the transformation of target genes generally get
triggered by transcriptional factors (TFs). For example, the
transcription regulator MYC, induces upregulation of hnRNP
A1/2, that, in turn, regulates alternative splicing events in
expressing the cancer-associated pyruvate kinase M2 (PKM2)
isoform (David et al., 2010; Koh et al., 2015). Since lncRNAs occur
specifically during pre-transcriptional or post-transcriptional
modifications, effectors (such as miRNAs, TFs, or ASFs) that
are away from their targets, act as cofactors or guides to alter
TF-promoter interactions.

Although studies have identified the correlation of
lncRNAs and AS to be important in cancer prognosis,
there still remains gaps within current studies as only a
few cancer-related AS events are known to be regulated by
lncRNAs. In addition, it was not clear how the lncRNAs
were linked to specific AS sites, hence, providing no evidence
to correlate clinical outcomes. Next-generation sequencing
technologies have helped identify ∼40K novel lncRNAs
cancer, whose regulatory functions in AS remain unknown
in tumorigenesis. Hence, computationally predicting novel
lncRNAs and associated alternative splicing events may help
in the comprehensive understanding of the HCC disease at
a systems level.

In this study, we established an innovative technology
for propagating molecular networks called the random walk-
based multi-graphic (RWMG) model. The RWMG model
simultaneously integrates sophisticated biological connections
among lncRNA targets [such as transcription factors (TF),
alternative splice factors (ASF), and microRNAs] based on
both biophysical interaction networks and their co-expression
profiles within a single analytical framework. When comparing
conventional random walk algorithms that considers equal
proportion of all input genes, our flexible and scalable method
can be formulated to rank a subset of lncRNAs based on
literature survey. In addition, the method we propose has better

accuracy than other previously defined “shortest path” network-
based algorithms, with advantages of overcoming “noise” and
“incomplete” dimensional heterogenicity from the data.

In addition, previous published reports on comparing tumor
and normal tissues are generally limited to normal adjacent
tissues (NAT). However, these tissues are not truly “normal” as
they are usually surrounded by tumor contaminations. Therefore,
many potential cancer biomarkers involved in AS may be
missed. Hence, to increase the performance of such analysis,
we combined healthy liver tissue samples that were downloaded
from GTEx along with expression data from TCGA.

MATERIALS AND METHODS

Data Description and Project Design
The framework of the underlying biological hypothesis and
model assumption for this project is described in Supplementary
Figures S1A,B. The analysis in this manuscript relied on using
multi-omics data. We downloaded gene expression data for 110
normal liver samples from the GTEx and TCGA along with
clinical information for 369 liver tumors and 50 normal samples
from the UCSC Xena database1. The sequencing platform
for obtaining gene expression was Illumina HiSeq 2000, and
pre-processing of raw data was done following the UCSC’s
Xena Toil (Vivian et al., 2017) method in order to quantify
gene and transcript isoform expression. Annotation of coding
and non-coding genes was obtained using GENCODE v23
(Harrow et al., 2012).

Identification of HCC Tumor Non-coding
Genes (lncRNAs or Pseudogenes) From
TCGA and GTEx RNA-seq Data
We performed a method of trimmed mean of M-values (TMM)
normalization for RNAseq data (Robinson and Oshlack, 2010)
so that the expression level for lncRNAs and pseudogenes
are comparable. The TMM normalized data was further
transformed to log2-counts per million for our linear model.
HCC differentially expressed (DE) lncRNAs and pseudogenes
between tumor and normal samples (T/N) were analyzed by R
package limma (Smyth, 2005) with a statistical cutoff (p< 1.0E-04
and fold-change > 2). The identification of DE miRNAs had been
reported in our previous work (Wang et al., 2018). The identified
HCC-specific expressed features (lncRNAs, pseudogenes, and
miRNAs) are expected to represent potential key mechanisms
in liver neoplasm.

Analysis of Alternative Splicing Isoforms
and Functional Consequence
In order to analyze alternative splice isoforms, we first
discarded those isoforms that contained nil values on
abundance levels across all the samples. We used R package
“IsoformSwitchAnalyzeR” to analyze individual isoform switches

1http://xena.ucsc.edu/
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from T/N comparison and their biological processes (Vitting-
Seerup and Sandelin, 2017, 2018). Differentially switched
isoforms between T/N were determined by the following criteria:
difference in isoform fraction (dIF) > 0.1 and FDR-corrected
q-value < 0.05. The functional consequences of switched
isoforms were further analyzed for protein-coding potential
(CPAT) (Wang et al., 2013), Nonsense-mediated decay (NMD)
status, protein domains (Pfam) (Finn et al., 2015; Potter et al.,
2018), and open reading frames (ORF). We used the cutoff 0.364
as suggested to distinguish coding and non-coding isoforms
in CPAT analysis. On the other hand, NMD is a process that
recognizes mRNAs carrying a premature termination codon
(PTC) and that triggers their degradation in order to prevent the
synthesis of dysfunctional proteins. AS that controls expression
of genes is an important process facilitating mRNA degradation
in specific isoforms and could lead to NMD (Cuccurese et al.,
2005). Since exon structure of all isoforms in a given gene are with
isoform switching capabilities, we obtained their corresponding
spliced nucleotide sequence and corresponding coding sequence
from ORF positions (Weischenfeldt et al., 2012). The alternative
splicing (AS) patterns of switching isoforms were predicted by
spliceR (Vitting-Seerup et al., 2014) to include alternative 3′
acceptor sites (A3), alternative 5′ donor sites (A5), exon skipping
(ES), mutually exclusive exons (MEE), AS at TF start sites
(ATSS), AS at termination site (ATTS), and intron retention (IR).
Gene enrichment analysis of features that compared normal vs.
tumor samples were performed by following the statistical testing
of Fisher’s exact-test. P-values were corrected for multiple testing
using the Benjamin–Hochberg scheme with an FDR < 0.05.

Construction of AS-Associated lncRNA
Epigenetic Regulatory Interaction
Subnetworks in HCC
We collected physical interaction information of lncRNAs
and associated targeted genes through database searching
and text mining. These interactions were evidenced from
experimental validations, neighboring gene pairs, gene fusions,
and co-occurrence of lncRNAs that connect with miRNA-,
TF-, ASF-, and switched genes. Furthermore, HCC lncRNA-
target networks were compiled from the following resources:
Chiu et al. (2018), miWalker2.0 (Dweep and Gretz, 2015),
STARBASE v2 (Li et al., 2013), and lncRNA-disease (Bao et al.,
2018) that were analyzed from several high-throughput assays,
including ENCODE enhanced version of the crosslinking
and immunoprecipitation assay (eCLIP) and chromatin
immunoprecipitation sequencing (ChIP-seq) data (Consortium,
2004). HCC-specific miRNA-target networks have been
described in our previous published results (Wang et al., 2018);
TF-target predicted interaction networks were manually curated
from the following databases and publications: Chiu et al. (2018)
(Supplementary Table S5), HTRIdb (Bovolenta et al., 2012),
Whitfield (Whitfield et al., 2012), and TRANSFAC (Matys et al.,
2006) that were based on combined evidence from ENCODE
ChIP-Seq assays and positioned weighted matrix (PWM) for
TF motif analysis.

Features that were enriched in AS regulatory pathways
were collected from pathCards (Belinky et al., 2015), KEGG
spliceosome (Kanehisa and Goto, 2000), NCBI Biosystems
mRNA processing (Geer et al., 2009), REATOME mRNA
splicing pathway, and processing of capped intron-containing
pre-mRNA pathway (Croft et al., 2010). These features were
involved in an essential component of splicing factors or non-
snRNA spliceosome required for the second catalytic step
of pre-mRNA splicing. Among these collected 335 splicing
regulator genes, 86 were experimentally validated as alternative
splicing factors (ASF). ASF and target gene interactions
were manually confirmed from SpliceAid 2 (Giulietti et al.,
2012), ASF motif analysis from SFmap (Paz et al., 2010),
a subset of RNA-binding protein network by Chiu et al.
(2018) (Supplementary Table S6), and STRING database
(Franceschini et al., 2012).

Finally, identified HCC-DE lncRNAs, pseudogenes, and
miRNAs were mapped to the global regulatory networks to
construct HCC-specific sub-networks that contain switched
genes as the targets or TF/ASF as the co-effectors of non-
coding RNA regulators.

Construction of HCC lncRNA-AS
Regulatory Networks at Isoform Level
Pearson correlation was used to estimate the lncRNA co-
expression relationships at isoform level. We only included
connections for the pairs of lncRNA and protein-coding
genes, with absolute correlation coefficient greater than 0.75
and FDR p < 0.05. The types of protein were either TFs,
ASFs, or genes with isoform switches. lncRNAs that were
negatively correlated with their targeted protein-coding genes
were predicted to be inhibitors, while positive correlation
indicated activators.

Random Walk Multi-Graphic Model for
the Integration of Heterogeneous
Interaction Networks
Random walk multi-graphic (RWMG) model is an integrative
application of random walk with restart (RWR) algorithm on
multiple layers of heterogeneous network. Our framework is
encoded with data sets for the same cohort of patients including:

(1) Co-expression network, which is a bipartite graph
containing the association between n lncRNA and
l AS genes.

(2) Epigenetic regulatory network, which is also a bipartite
graph containing the association between n lncRNA and k
AS genes (p6= l). Note: the Epigenetic regulatory network
and Co-expression network share the same set of n
lncRNA nodes, but the AS genes of the two networks are
partially distinct.

(3) Splicing pathway PPI networks, which is an m × m AS
gene–AS gene interaction network with m nodes. The node
set is the union of distinct AS genes from the Co-expression
and Epigenetic regulatory networks with size m. There is no
information about interaction between lncRNA.
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We first create an extended graph G(V, Ek) with N nodes
for each given network, where V is the union of n lncRNA
and m AS gene nodes and N = n + m, k = 1,2,3, which
represent co-expression, epigenetic, and splicing pathway PPI
networks, respectively. In addition, these were merged into one
undirected association network MG(V, E), E = UEk. Multiple
edges are allowed to connect between any two nodes based
on the relationship defined from networks. Merged network
with the overlapped node features and the union of edges will
augment each individual network with missing connections. We
let A denote the adjacency matrix of a (weighted) molecular
interaction multi-graph network MG(V, E). Edge

(
i, j
)
∈ E, 1 ≤

i, j ≤ N is weighted by the connectivity score between these

vertices. The connectivity score

Ei,j =
∑3

k=1[Ek]ij
3

is the average of all included edge scores connecting nodes i,j. It
is the edge weight to shape the adjacent matrix A.

Each entry Bij in the transition probability matrix B, which
stores the probability of a transition from node j to node i, is
computed as

Bij =
Aij∑N
k=1 Akj

FIGURE 1 | Hepatocellular carcinoma (HCC)-specific long non-coding RNAs (lncRNAs) (A) and pseudogenes (B) that are differentially expressed in tumor and
normal samples.
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FIGURE 2 | Genome-wide transcript analysis for switched isoforms between tumor vs. normal comparison HCC. (A) Global distribution of whole genome
transcriptions based on GENCODE annotation. The percentage of coding and non-coding genes is about half and half. (B) Distribution of the HCC-switched
isoforms in coding and non-coding region. About 95% of switched isoforms are from protein-coding genes. (C) Distribution of differential isoform fraction (dIF)
stratified by coding or non-coding isoform types. The most significantly switched isoforms (dIF > 0.2) are highlighted. (D) Illustration of alternative splicing event types
for the switched isoforms and distribution of isoform gain (increased dIF) or loss (decreased dIF) in each types. (E) Enrichment analysis for alternative splicing types in
isoform fraction gain or loss. Intron retention (IR) and alternative splicing at termination site (ATSS) categories are enriched in loss switches, while A5 and A3 are
significantly enriched in gain. (F) Distribution of dIF changes with or without IR and A3 events. Isoforms showed less usages in IR type and more usage in A3 type.
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Therefore, we can write the RWMG model on a multi- and
heterogeneous- graph MG(V, E) as:

pt+1
= (1− α)Bpt + αps

where vectors pt+1 and pt are N-dimensional column vectors
where pt[i] denotes the probability of being at node i and t
iteration, and α is the probability of restart (we set α = 0.5 in
this paper). ps is an N-dimensional column vector with n lncRNA
and m AS gene with ps (seed) = 1 and others are 0. After a restart
step, the particle can go back either to a seed lncRNA feature or
to a seed AS gene. We implemented the RWR algorithm on the

final multi-graphic network by R package dnet and igraph (Csardi
and Nepusz, 2006; Fang and Gough, 2014). Network visualization
was performed by R package visNetwork (Guerrieri, 2015). Those
genes with known roles in regulating AS network will be set
as the “seed” nodes in advance to predict the “new” lncRNAs,
based on move probabilities from the current node to any of their
randomly selected neighbors.

To evaluate our approach’s sensitivity, we simulated different
random walk strategies for optimization. We created a list of
experimentally validated AS-associated genes as “gold-standard”
true positive genes (TPG) curated from the careful literature

FIGURE 3 | (A) Overview of the number of switched isoforms predicted to have functional consequences. (B) Visualization of switched isoform structure. Taking a
splicing factor gene, SNRPF, for example, its isoform ENST00000553192.5.1 showed opposite switching pattern compared to others. In addition, three out of five
isoforms showed differential isoform expressions, although no difference for the overall gene expression.
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review and randomly selected genes as the “gold-standard” true
negative (TNG). We chose the “best” model that has the most
candidates significantly enriched in the “gold-standard” gene list.
In reality, the number of TPG is much smaller compared to TNG.
To avoid bias from highly imbalanced data between these two
sets, we performed a bootstrap resampling technique by selecting
an equal number of data as TNG. This process was repeated 10
times, and the overall performances were calculated by the mean
value of these performances.

Survival Analysis for Prognostic
Confirmation of Identified Pathogenic
lncRNAs and Pseudogenes
To confirm the pathogenic characteristics of identified lncRNAs
and pseudogenes, univariate Cox proportional model was used
to evaluate the association of selected genes with overall survival
outcomes. Kaplan–Meier plots and log-rank test statistics were
used to visualize the high- and low-risk groups. The cutoff of the
high- and low-risk group was determined by the median value of
the normalized count of selected genes.

RESULTS

Differentially Expressed lncRNAs and
Pseudogenes in HCC
We identified 369 DE lncRNA genes and 171 DE pseudogenes
from T/N comparison (Supplementary Table S1). The
visualizations of DE lncRNAs and pseudogenes were shown
in volcano plots (Figure 1). According to literature survey,
many DE lncRNAs, such as MALAT1, CDKN2B-AS1, and
HOTTIP, have been reported to be associated with liver cancers
(Kunej et al., 2014; Quagliata et al., 2014; Guerrieri, 2015). In
addition, we highlighted several important pseudogenes, such
as HNRNPA1P4 and HNRNPA1P21, which are heterogeneous
nuclear ribonucleoproteins A1 (hnRNPs) that play key roles in
the regulation of alternative splicing. Furthermore, we performed
DE analysis as an initial screen step to narrow the focus of the
HCC-specific non-coding genes associated with AS for the
downstream network analysis.

Identification of Significant Switched
Isoforms and Prediction of Alternative
Splicing Patterns
From the expression levels of isoform when comparing tumor
and normal samples, we identified 1,375 isoforms that had
switching properties and that mapped to 1,078 unique genes.
Among these switched isoforms, 1,251 were protein-coding
isoforms, and 124 were non-coding isoforms that included
antisense, lncRNA and pseudogenes (Supplementary Table S2).
We found that the proportion of switching rate for coding genes
was much higher than that for non-coding genes (Fisher’s exact
test, p = 8.4e-08) (Figures 2A,B). In order to visualize the splicing
composition of these switched isoforms, we broke down the
dIF distribution according to isoform types such as lncRNA,

antisense, and pseudogenes with the most significant switched
isoforms (dIF > 0.2 or dIF < -0.2) highlighted in Figure 2C.

Figure 2D shows the eight splicing patterns for switched
isoforms stratified by isoform usage gain or loss in the tumor.
Some of the switched isoforms are predicted to have multiple
AS events in HCC (Supplementary Table S3). Interestingly,
we observed a global phenomenon that the AS events are not
equally used—most prominently illustrated by the use of ATSS
in HCC, where there was more losses than the gain of amino
acid coding exons. It should be taken into consideration that
IR and ATSS were enriched in significant low isoform usage in
tumor, but A5 and A3 were significantly enriched in the gain
isoform (Figure 2E). Here, IR events were of particular functional
interest since they represented the largest changes in isoforms.
As we show in the violin plots, the enriched IR and A3 splicing
groups reported significant opposite directions of isoform usages
between T/N samples (Figure 2F).

Analysis of Functional Consequences for
Switched Isoforms
The overview of switched isoforms impacting the biological
function alterations in HCC is shown in Figure 3A. The number
of protein domain gains was comparable to domain loss, but
is significantly more than domain “switch.” Here, the “switch”
term indicates both a gain and a loss occurrence. Also, switching
resulting in ORF gain was significantly more than ORF loss. For
the Gene Ontology analysis, both gain and loss switched isoforms
were associated with different types of metabolic processes.

TABLE 1 | Statistic summary of splicing factor genes with alternative
switched isoforms.

Isoform_id Gene_id Gene_name dIF q_value

ENST00000555295.1 ENSG00000100836.10 PABPN1 0.182 1.10E–32

ENST00000459687.5 ENSG00000100410.7 PHF5A 0.172 6.07E–18

ENST00000411938.1 ENSG00000128534.7 LSM8 0.169 2.49E–19

ENST00000553192.5 ENSG00000139343.10 SNRPF 0.152 6.22E–21

ENST00000297157.7 ENSG00000164610.8 RP9 0.145 2.68E–19

ENST00000491106.1 ENSG00000060688.12 SNRNP40 0.128 4.28E–19

ENST00000560313.2 ENSG00000090470.14 PDCD7 0.124 2.17E–06

ENST00000301785.5 ENSG00000214753.2 HNRNPUL2 0.116 1.19E–28

ENST00000402849.5 ENSG00000100028.11 SNRPD3 0.113 1.67E–11

ENST00000535326.1 ENSG00000110107.8 PRPF19 0.103 1.79E–07

ENST00000597776.1 ENSG00000130520.10 LSM4 0.102 2.31E–34

ENST00000472237.5 ENSG00000132792.18 CTNNBL1 0.102 5.80E–13

ENST00000548994.1 ENSG00000075188.8 NUP37 0.101 1.68E–11

ENST00000564651.5 ENSG00000102978.12 POLR2C 0.1 3.01E–14

ENST00000505885.1 ENSG00000096063.14 SRPK1 −0.108 1.94E–11

ENST00000404603.5 ENSG00000100028.11 SNRPD3 −0.109 2.30E–15

ENST00000540127.1 ENSG00000214753.2 HNRNPUL2 −0.116 2.99E–48

ENST00000367208.1 ENSG00000182004.12 SNRPE −0.13 1.79E–31

ENST00000527554.2 ENSG00000100697.14 DICER1 −0.139 2.98E–21

ENST00000595761.1 ENSG00000213024.10 NUP62 −0.157 3.62E–31

ENST00000488937.1 ENSG00000136875.12 PRPF4 −0.159 6.94E–12

ENST00000559051.1 ENSG00000090470.14 PDCD7 −0.163 9.60E–15

ENST00000216252.3 ENSG00000100410.7 PHF5A −0.216 4.30E–21
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KEGG analysis showed that the isoform loss in tumor tissue was
associated with virus infection, hepatitis C, etc, while isoform gain
in the tumor is associated with base excision repair, apoptosis, etc.
(Supplementary Table S2).

Importantly, we confirmed 20 genes with switched isoforms
that were involved in AS regulatory functions (Table 1).
Figure 3B shows one example of AS factor, SNRPF and its
isoform structures, gene expression, and isoform usage when

FIGURE 4 | (A) Visualization of lncRNA–AS co-expression network integrated by AS event types (i.e., A3, IR, ES) at the isoform expression level. (B) Illustration of
lncRNA–AS comprehensive network derived from gene level co-expression network and regulatory network involved with co-effectors miRNA, TF, and alternative
splicing factors (ASF) interactions.
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FIGURE 5 | (A) ROC curve for the predictive model evaluation. pPerf1 [area under curve (AUC) = 0.923] with the “seed” genes showed a better performance than
pPerf2 (AUC = 0.751) without the “seed” genes. (B) Trade-off between the sensitivity and specificity with the number of top n genes. We can see that the best cutoff
is n = 150, as the 1TPR/1FPR value decreases very fast in the beginning and approaches smaller changes for n around 150.

comparing tumor vs normal. SNRPF is a core component of
U small nuclear ribonucleoproteins that are key components of
the pre-mRNA processing spliceosome. We found no significant
difference for SNRPF gene expression; on the contrary, it
had opposite directions in expression pattern for transcript
ENST00000553192. The above evidences showed that genes
with switched isoforms were often functionally important in
tumorigenesis and had been ignored from previous reports.

Prediction of AS-Correlated Non-coding
RNAs at Both Transcript and Gene Level
In order to identify which lncRNAs were associated to switched
isoforms at the transcript level, we constructed a co-expression
network that comprised lncRNA and genes with switched
isoforms. Different from traditional gene level co-expression
network, the connections between lncRNA and genes with
multiple splicing isoforms could be singular or multiple when
interacting between molecules. The lncRNAs-switched isoform
connections are summarized in Supplementary Table S3. The
relationships between lncRNAs and genes with enriched AS
patterns is illustrated in Figure 4A.

However, since the lncRNA regulation mechanism involved in
AS events was comprehensive, AS regulation may not directly
be reflected from expression abundance, but through physical
interaction or DNA/RNA binding sites. LncRNAs could influence
gene-splicing patterns by inhibiting and activating the expression
of ASFs, or through transcription factors that indirectly interact
with splicing factors and ultimately cause changes in AS factor-
targeted gene expression. Hence, constructing a comprehensive
gene regulatory network that includes TF, AS regulators, and
lncRNAs could allow better understanding of the mechanism
of AS in cancers.

Figure 4B illustrates the HCC lncRNAs–AS network with
interactors such as TFs, ASFs, and miRNAs based on evidence
from publicly available resource and gene-level co-expression
analysis. Only lncRNAs that directly altered AS gene expression

or indirectly altered AS genes through TF, ASF, or miRNAs
were included for downstream RWMG analysis. Supplementary
Table S4 provides the prediction of all AS-related genes ranked by
RWMG-predicted score. Supplementary Table S6 provides the
total number of nodes and edges for the three types of networks.

Computational and Clinical Validation for
Predicted Pathogenic lncRNAs Involved
in AS Regulation
The ROC curve shown in Figure 5A contains an optimized
averaged area under curve (AUC) value from 0.751 to 0.923 based
on bootstrapping algorithm. In order to select the best number of
top n ranked genes that corresponded to a fair tradeoff between
sensitivity and specificity, we selected a cutoff based on the trend
of the changes at 1TPR/1FPR that exhibited a sudden drop
(Figure 5B). We also see from the figure that n = 150 is the best
number for selecting genes. The top ranked lncRNAs associated
with AS functions are described in Table 2.

Among the top predicted lncRNAs that were involved in AS,
we further confirmed their clinical significance. As a result of
univariate survival analysis screening, a total of 51 lncRNAs
and 24 pseudogenes were found to be associated with HCC
overall 5-year survival, respectively (Supplementary Table S5).
Figures 6A,B show the top 10 significant genes based on the Cox
proportional regression model. Figures 6C,D show the survival
curve and distribution of CDKN2B-AS1 and UBE2SP1.

DISCUSSION

In the last decade, studies have investigated the association of
splicing isoforms and lncRNA profiles from deep sequencing
technologies. For instance, it has been known that some small
nuclear uridine (U)-rich RNAs (snRNPs) are core components
of the pre-mRNA processing spliceosome and can collaborate
with some splicing factors that are encoded by heterogeneous
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TABLE 2 | Statistic summary of predicted top-ranked non-coding RNAs
associated with alternative splicing (AS) ranking by random walk-based
multi-graphic (RWMG) score.

Gene. symbol Ranking Score Types

LINC00675 1 0.00368174 LincRNA

CTD-2171N6.1 2 0.002824633 LincRNA

HOTTIP 3 0.002677841 Antisense

DNM1P35 4 0.002483954 Antisense

LEF1-AS1 5 0.002397948 Antisense

AP006285.7 6 0.002123275 LincRNA

WARS2-IT1 7 0.002081091 Antisense

LINC00355 8 0.002063983 LincRNA

RP11-81H3.2 9 0.002032482 LincRNA

HOXA11-AS 10 0.002028198 Antisense

RP11-261N11.8 11 0.002005615 Antisense

RP3-355L5.4 12 0.001938399 Antisense

RP11-138J23.1 13 0.001929433 LincRNA

RP11-525K10.3 14 0.001923733 Antisense

RP11-495P10.7 15 0.001917542 LincRNA

DLX6-AS1 16 0.00188837 Antisense

RP11-356C4.5 17 0.001861006 LincRNA

CDKN2B-AS1 18 0.001856714 Antisense

RP11-495P10.5 19 0.001834267 LincRNA

SFTA1P 20 0.001751498 LincRNA

PRSS51 21 0.001750058 Antisense

MALAT1 22 0.001672339 LincRNA

FEZF1-AS1 23 0.001669135 Antisense

RP4-530I15.9 24 0.001619806 Antisense

RP11-158M2.5 25 0.001618054 Antisense

CTD-2374C24.1 26 0.001617345 LincRNA

PWRN1 27 0.001605646 LincRNA

CTC-573N18.1 28 0.001534221 LincRNA

RP11-284F21.9 29 0.001527715 LincRNA

RP11-3J1.1 30 0.001523171 LincRNA

FENDRR 31 0.001509286 LincRNA

nuclear ribonucleoprotein complex subunits (hnRNPs) in order
to fine tune complex splicing regulations (Romero-Barrios et al.,
2018). Impressively, we found a number of core snRNP isoforms
including SNRPE, SNRPD3, SNRPD3, SNRPF, and SNRNP40
that were switched even though their expression was not
necessarily DE when comparing tumor vs. normal specific to
HCC progression. SNRNP40 catalyzes the removal of introns
from pre-messenger RNAs. Similarly, an hnRNP U like protein
HNRNPUL2 that also has a scaffold attachment factor, plays an
important role in the formation of a “transcriptional” complex
binding through the scaffold attachment region and causes
chromatin remodeling.

The primary mechanisms involving lncRNAs in AS
modulation can be classified into three ways that include:
(i) lncRNAs that directly influence isoform expression through
activation or inhibition mechanism; (ii) lncRNAs that form
RNA–RNA duplexes with pre-mRNA molecules, and (iii)
lncRNAs that affect target AS genes through indirectly inhibiting
or promoting the expression of splicing factors or through

transcript factors. However, most previous studies only focus on
individual genes and/or isoform switches regulated by lncRNAs.
More comprehensive interactions can be detected at the isoform
level besides the gene level. Our predictions identified several
candidates that were either oncogenes or tumor suppressors
and lncRNAs whose somatic alterations were associated with AS
at both isoform and gene level in addition to showing clinical
significance in HCC patients.

At the transcriptional level correlation network, we found that
majority of lncRNA isoforms were correlated with more than one
AS event, among which some were showing opposite roles in
the AS regulations. In addition, we can see that many lncRNAs
may partially compete with the same AS event. For example,
the pseudogenes of UBE2S, which are UBE2SP1, UBE2SP2,
and UBE2MP1, are significantly correlated with FEN1’s intron
retention and Alternative 5′ donor site mechanisms (Figure 4A).
The FEN1 gene plays an important role in removing 5’
overhanging flaps and the 5–3 exonuclease activities involved
in DNA replication and repair (Wang et al., 2017), while the
UBE2S is involved in ubiquitination and subsequent degradation
of VHL, which results in an accumulation of HIF1A (Jung et al.,
2006). However, the reason for pseudogenes being associated
with FEN1 is not yet clear. Further research in regard to perform
experimental validation for predicted mechanisms from our
analysis is necessary. Taken together, these results confirmed
that the identified lncRNAs need to be better investigated in
experimental settings. Our results provided a better resolution of
AS-correlated lncRNAs at the isoform level.

AS events are mainly regulated by splicing factors, which
bind to pre-mRNAs and influence exon selection and splicing
site choice. Moreover, TFs activate or suppress the expression
of ASF. Importantly, we found ASF that may have switched
isoforms. A switched ASF RP9, which can be bound by the proto-
oncogene PIM1 product, a serine/threonine protein kinase, also
can cause its target PIM1 to get switched. Although TFs were
usually thought for a long time to encode a single protein that
changes the expression of their target genes, more and more TFs
are now found to be alternatively spliced (Marcel and Hainaut,
2009). Here, we also found a group of TFs in the ETS family
(E26 transformation-specific), which are ETS1, ETS2, ETV3,
ELF4, which were switched simultaneously. These ETS genes
have been confirmed to be associated with cancer through gene
fusion (Tomlins et al., 2005) and are involved in a wide variety
of regulatory functions such as cell migration, proliferation,
and cancer progression (Sharrocks, 2001; Lee et al., 2005).
Interestingly, the ETS1 targets splicing factor QKI, and ETV3
targets splicing factor CELF1. Furthermore, lncRNA FAM99B
is predicted to be associated within the ETS family genes,
and their low expression is associated with HCC patients that
had poor prognosis.

The association of CDKN2B-AS1, also known as ANRIL,
with HCC has been reported in several studies (Hua et al.,
2015; Chiu et al., 2018; Ma et al., 2018). CDKN2B-AS1 has
both linear and circular isoforms, and their functions are
different. For example, its linear isoform can regulate the
c-myc-enhancer-binding factor RBMS1 (Hubberten et al., 2018),
while its circular isoform is confirmed to be an important AS
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FIGURE 6 | Survival analysis for the identified lncRNA and pseudogenes involved in AS mechanisms. Hazard ratio plots from Cox regression analysis for top 10
lncRNAs (A) and top 10 pseudogenes (B) associated with overall survival. K–M curves for a lncRNA, CDKN2B-AS1 (C), and a pseudogene, UBE2SP1 (D) using the
median value as the cutoff. High expressions of both genes are significantly associated with poor prognosis.

regulator that causes skipping of exons (Holdt et al., 2016)
and are mainly found in cardiovascular disease (Burd et al.,
2010; Sarkar et al., 2017). However, this is the first time
we found that ANRIL can activate alternative splicing genes
in liver cancer. A potential explanation could be because of
being functionally related to lipid metabolism and a majority
of liver cancer subtypes. In addition, the prognostic value of
CDKN2B-AS1 was revealed in our project. However, how exactly
CDKN2B-AS1 controls this gene splicing is not yet clear. Further
experimental validation is warranted. We identified HAND2-
AS1 gene to show consistent alternative splicing pattern at the
start sites and termination site for METTL7B especially at the
isoform level. METTL7B is a membrane-associated protein that
resides in hepatic lipid droplets. An explanation for this is
that HAND2-AS1 activates the METTL7B spliced isoform lipid
disordered and is associated with HCC, which was not reported
before. Gene-level RWMG network analysis further revealed
that both CDKN2B-AS1 and HAND2-AS1 can influence AS
either through TFs and ASFs some of which include HAND2-
AS1 TFs (i.e., ETS1, SP1, E2F7) or ASFs (i.e., SRSF7, SFRP1,
HNRNPK); and CDKN2B-AS1-associated TFs (SP4, E2F7) and
ASF (SRSF1, SRSF2).

In this project, we extended a previous existing algorithm
into multiplex and heterogeneous networks. The research
community can explore different layers of the epigenetic
regulatory network, expression correlation network, and protein
interaction network. A recent Nature Review paper by Cowen
et al. (2017) also suggested that the “network-propagation”

method was a “powerful” and “accurate” refined approach
in the network biology, since it is capable of dealing
with “noise” and “incomplete” observations by simultaneously
considering all possible paths among vertices. Analyzing these
heterogeneous data together will significantly improve the
prediction accuracy of our method. By using this gene-
ranking strategy, potentially spurious predictions (false positives)
that are supported by a single (shortest) path are down-
weighted, and true high-ranked genes that are potentially missed,
even though they are well connected to the prior list (false
negatives), are promoted.

To our best knowledge, this is the first attempt to predict
lncRNA regulations on AS using a rigorous, multi-graphic
approach by the integration of large-scale and complex networks.
Of interest for potentially limiting the accuracy of random walk
and network propagation methods are an incomplete collection
of known lncRNAs, especially pseudogenes, used to supervise
prediction of new candidates. As such, we addressed several
unique challenges associated with these dataset complexities
in each step. For example, in the data preprocessing steps,
we carefully address the challenges by collecting as many as
experimentally verified and predicted lncRNAs that were taking
account of AS. In our statistical modeling steps, we specifically
addressed the robustness of complex data integration, especially
for non-informative or noisy datasets. Also, we investigated
several random walk strategies by trying different groups of
vertices such as lncRNAs, ASFs, and TFs as a starting point to
optimize our models.
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However, the lncRNA regulatory mechanism is complicated,
as its mechanism differs with different stages, such as the pre-
mRNA or post-mRNA stage. Therefore, the major limitation of
this article is we were not able to consider other comprehensive
mechanisms at different stages, such as recognition of the
splicing site can be modulated by cis-regulatory sequences,
known as splicing enhancers or silencers, which contribute to
the generation of two or more alternatively spliced mRNAs
from the same pre-mRNA. Also, lncRNA determines AS patterns
through chromatin remodeling mechanism and shapes the three-
dimensional genome organization. We will focus on interpreting
these molecular mechanisms of lncRNA and associated AS at
different stages of HCC in the near future.
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Protein is one of the most significant components of all living creatures. All

significant and essential biological structures and functions relies on proteins and

their respective biological functions. However, proteins cannot perform their unique

biological significance independently. They have to interact with each other to realize

the complicated biological processes in all living creatures including human beings. In

other words, proteins depend on interactions (protein-protein interactions) to realize their

significant effects. Thus, the significance comparison and quantitative contribution of

candidate PPI features must be determined urgently. According to previous studies, 258

physical and chemical characteristics of proteins have been reported and confirmed

to definitively affect the interaction efficiency of the related proteins. Among such

features, essential physiochemical features of proteins like stoichiometric balance, protein

abundance, molecular weight and charge distribution have been validated to be quite

significant and irreplaceable for protein-protein interactions (PPIs). Therefore, in this

study, we, on one hand, presented a novel computational framework to identify the key

factors affecting PPIs with Boruta feature selection (BFS), Monte Carlo feature selection

(MCFS), incremental feature selection (IFS), and on the other hand, built a quantitative

decision-rule system to evaluate the potential PPIs under real conditions with random

forest (RF) and RIPPER algorithms, thereby supplying several new insights into the

detailed biological mechanisms of complicated PPIs. The main datasets and codes can

be downloaded at https://github.com/xypan1232/Mass-PPI.

Keywords: decision tree, human interactome, prediction, protein–protein interaction, quantitative feature

INTRODUCTION

Protein–protein interactions (PPI) are core biochemical events that directly execute biological
functions in all living creatures (Qian et al., 2014; Wang et al., 2014). As the major executor
of various biological processes, proteins rarely act alone, and protein interactions guarantee the
continuity and controllability of ordinary biological processes (De Las Rivas and Fontanillo, 2010).
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On one hand, PPIs based on functional classification have
multiple types, including signal transduction (Vinayagam et al.,
2011), trans-membrane transport (Fairweather et al., 2015),
cell metabolism (Gonzalez, 2012), and muscle contraction
(Beqollari et al., 2015); these PPIs cover every detailed functional
aspect in living cells. On the other hand, on the basis of
chemical structure and stability, PPIs can be described as
homo/hetero-oligomers, stable/transient interactions, and
covalent/non-covalent interactions, thereby revealing the
complicated chemical nature of common biochemical reactions
that support protein interactions in all living cells (De Las Rivas
and Fontanillo, 2010).

The complicated organization of PPIs can be clustered in
multiple ways. Given the complexity and core regulatory role of
protein interactions underlying biochemical processes in living
cells, for a long time, many scientists have aimed to analyze and
extract the key regulatory factors in the PPIs and describe their
functional relationships and biological significance. According
to previous studies, biochemical features of PPIs (e.g., protein
concentration, protein binding ligands, presence of adaptors,
and covalent modifications) have been recognized as candidate
factors that may affect PPIs (Pan et al., 2010; Raj et al., 2013;
Modell et al., 2016). However, most of such extracted features
are ambiguous qualitative characteristics. These features may
be directly or indirectly related to PPIs, but whether PPIs with
optimal biological features may be determined in certain cell
types is difficult. These features are not detailed differentiating
indicators for the occurrence possibility of PPIs, rather than
existence. Therefore, accurate and quantitative/semi-quantitative
characteristics of PPIs must be identified through continuous
studies and exploration.

In recent years, with the development of mass spectrometry
and related analysis techniques, various omics features have
been presented to describe the characteristics of PPIs and have
been applied to evaluate the possibility and certain biological
functions of cell-specific PPIs. In 2015, using high-throughput
affinity-purification mass spectrometry, Huttlin et al. (2015)
built a PPI network (BioPlex) and extracted various functional
characteristics describing PPIs, thus providing us with a blueprint
of quantitative human interactome in all living cells. In the same
year, another study presented by Wan et al. focused on the
macromolecular complexes’ contribution to PPIs; these authors
extracted the co-complex interactions using an integrative
approach (Wan et al., 2015), thereby revealing the fundamental
mechanistic significance of reconstructed interactomes. This
study also extracted a group of parameters/features that can
be used for a detailed quantitative description of PPI. In
2015, another study by Hein et al. (2015) further proposed
nine features, such as NWD, Z, and Plate Z scores, which
may quantitatively describe PPIs. Combining the datasets of
the three studies, a systemic analysis of all reported human
protein complexes based on mass spectrometry techniques
has been recently presented (Drew et al., 2017). Such study
summarized the identified features associated with PPIs (i.e., PPI
features) and built a global map of all reported human protein
complexes. It provided us with a database, namely hu.MAP

(http://proteincomplexes.org/), as a new resource of a follow-
up study on the core physical and pathological functions of
human PPIs in normal and disease cells. Such features captured
the specificity of real PPIs and were screened out by three
independent studies (Hein et al., 2015; Huttlin et al., 2015; Wan
et al., 2015). According to such studies (Hein et al., 2015; Huttlin
et al., 2015; Wan et al., 2015), all candidate features are validated
by large scale mass spectrometry and have been identified to
contribute to the regulation and description of certain PPIs.

However, the original and combination studies of three
datasets have not identified the key factors that may contribute
to and appropriately describe the occurrence possibility of
PPIs. Previous studies have merely identified and summarized
potential PPI features, but the significance comparison and
quantitative contribution of candidate PPI features remain to
be identified. Thus, in this study, the PPI data obtained from
multiple mass spectrometry experiments (Drew et al., 2017)
is summarized by our newly presented decision tree-centered
computational framework. Such PPI data contained one training
dataset and one testing dataset, each of which consisted of
proteins that can interact with each other, namely positive
PPIs, and proteins that cannot interact with each other, namely
negative PPIs. The core parameters of PPI features that may
describe and judge the possibility of potential PPIs are accurately
identified. The decision tree-based model with extracted core PPI
features yielded better performance than the models with other
classification algorithms, including nearest neighbor algorithm
(NNA) (Cover and Hart, 1967) and recurrent neural network
(RNN). Furthermore, a quantitative decision-rule system based
on PPI features is built to supply several new insights into
the detailed biological mechanisms of complicated PPIs. These
quantified outcomes not only reveal the core regulatory factors in
PPIs but also provide a new computational tool for investigating
and predicting the potential of PPIs under different physical and
pathological conditions.

MATERIALS AND METHODS

Datasets
The training and testing human PPI datasets were obtained
fromDrew et al. (2017) (http://proteincomplexes.org/download).
The training dataset has 68,651 PPIs, in which 9,318 are actual
positive PPIs (i.e., proteins that can interact with each other),
and 59,333 are negative PPIs (i.e., proteins that cannot interact
with each other). These PPIs cover 1,253 proteins. The testing
dataset has 77,884 PPIs, in which 4,579 are actual positive PPIs,
and 73,305 are negative PPIs. One thousand one hundred thirty-
two proteins occur in the testing dataset, where 606 are also used
in the training dataset. Each PPI was encoded with 258 features,
which were downloaded from Drew et al. (2017) too. They were
defined in three previous studies (Hein et al., 2015; Huttlin
et al., 2015; Wan et al., 2015) and represented various biological
characteristics of PPI. Only human proteins were included and
the PPIs were literature-curated.

To describe the PPIs, we summarized the features described
in three publications: Wan et al. (2015), BioPlex (Huttlin
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et al., 2015), and Hein et al. (2015). There were 241 features
from Wan et al. (2015), 11 features from BioPlex (Huttlin
et al., 2015) and 6 features from Hein et al. (2015). These
co-fractionation and physiochemical features described all the
properties that may affect the potential interactions between the
target protein either partially or as an entity. These features
had been refined with mass spectrum results (Hein et al., 2015).
The redundant and unimportant features had been removed to
establish an effective framework for PPIs description using co-
fractionation and physiochemical features. For instance, there
is a specific feature named as spatiotemporal overlap (Hein
et al., 2015), describing the temporal spatial interactions between
two participators of PPIs. Interactions with either too high
spatiotemporal overlap or too low overlap may indicate the
interaction will not actually happen (Hein et al., 2015). All the
features used in this study are summarized from existed datasets
and derived from experimental results.

Feature Selection
In this study, a three-stage feature selection scheme was designed
to identify important features for characterizing PPIs. In the first
stage, all features were analyzed by the Boruta feature selection
(BFS) (Kursa and Rudnicki, 2010) method, excluding irrelated
features; then, the rest features were analyzed by the Monte
Carlo feature selection (MCFS) (Draminski et al., 2008) method,
producing a feature list; finally, the feature list was adopted in
the incremental feature selection (IFS) (Liu and Setiono, 1998)
method, incorporating a supervised classifier, to extract optimal
features and build an optimal classifier.

Boruta Feature Selection Method
BFS method (Kursa and Rudnicki, 2010) is a wrapper method for
selecting relevant features, which is based on random forest (RF)
(Breiman, 2001). It evaluates feature importance by comparing
with randomized features. Such method is different from most
of the other wrapper feature selection methods that achieve a
minimal error for a supervised classifier on a small subset of
features, BFS selects all features either strongly or weakly relevant
to the outcome variable.

The core idea of BFS is that it creates a shuffled version
of original features, then uses a RF classifier to measure the
importance score of the combined shuffled and original features.
Only those features with importance score higher than that of
the randomized features are selected. These selected features
are considered significantly relevant to target variables. The
difference between RF importance score and BFS importance
score is that the statistical significance of the variable importance
is introduced. Random permutation procedure is repeated to get
statistically robust important features. BFS proceeds as follows by
repeating multiple iterations:

1. Add randomness to the given dataset by shuffling
original features.

2. Combine the shuffled dataset and original dataset.
3. Train a RF classifier on the combined dataset and evaluate the

importance of each feature.

4. Calculate Z-scores of both original and shuffled features.
The Z-scores of individual features are calculated as mean of
importance scores divided by the standard error. For each
real feature, evaluate whether it has a higher Z-score than the
maximum of its shuffled feature. If yes, this feature is tagged as
important, otherwise unimportant.

5. Finally, the algorithm stops until one of the two following
condition is satisfied: (I) All features are either tagged
“unimportant” or “important”; (II) Reach a predefined
number of iterations.

In this study, we used the python implementation of BFS
from https://github.com/scikit-learn-contrib/boruta_py, and the
defaulted parameters are used.

Monte Carlo Feature Selection Method
As mentioned in section Boruta Feature Selection Method,
features selected by BFS method are highly related to target
variables. These features are further analyzed by the MCFS
method (Draminski et al., 2008). MCFS is a powerful and widely
used feature selection method (Chen L. et al., 2018a, 2019b;
Pan et al., 2018, 2019; Wang et al., 2018), which consists of
multiple decision trees, and constructs multiple bootstrap sets
and randomly selects feature subsets. For each feature subset, new
training samples are re-represented by using the features in this
subset, andM decision trees are grown by using the bootstrap sets
sampled from the new training samples. This process is repeated
T times, thereby resulting inM × T trees. A relative importance
(RI) score is calculated in accordance with the involvement of a
feature in constructingM × T trees. Its equation is as follow:

RIg =

MT
∑

τ=1

(wAcc)uIG(ng(τ ))(
no.in ng(τ )

no.in τ
)
v

, (1)

where g stands for a feature, wAcc denotes the weighted accuracy
of the decision tree τ , ng(τ ) represents the node involving g in τ ,
IG(ng(τ )) represents the information gain of ng(τ ), no.in τ and
no.in ng(τ ) denotes the number of samples in decision tree τ and
node ng(τ ), respectively. u and v are weighting factors. Evidently,
a high RI score indicates that one feature will be more frequently
involved in learning these decision trees. Thus, this feature will
have ranked relevance in characterizing PPIs. Based on the RI
scores of features, a feature list, denoted as F = [f1, f2, . . . , fN],
can be built by the decreasing order of features’ RI scores.

The MCFS program was downloaded from http://www.
ipipan.eu/staff/m.draminski/files/dmLab_2.1.1.zip. We used the
default parameters to execute such program, where u and v were
set to 1,M and T were 2,000 and 5, respectively.

Incremental Feature Selection Method
A feature list can be generated according to the results of MCFS
method, based on which incremental feature selection (IFS) (Liu
and Setiono, 1998; Li et al., 2015, 2016, 2019; Chen et al., 2017b;
Chen L. et al., 2018b, 2019a;Wang and Huang, 2018; Zhang et al.,
2018), combining with a supervised classifier (i.e., RF), is adopted
to further detect discriminative features for indicating PPIs. A
series of feature subsets is generated from the ranked features
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F from the MCFS. The first feature subset has feature f 1, the
second feature subset has features [f1, f2], and so on. RF is run
to test these feature subsets with 10-fold cross validation. Finally,
an RF classifier with the optimal classification performance is
generated, such classifier was termed as the optimal classifier.
And the features in the corresponding feature subset are called
optimal features (i.e., PPI features).

SMOTE

It is easy to see that the negative PPIs were much more than
positive PPIs in both training and testing datasets. In detail, in the
training dataset, negative PPIs were about 6.37 times as many as
positive PPIs, while such proportion was about 16 for the testing
dataset. Thus, the investigated datasets were greatly imbalanced.
For such type of dataset, it is not easy to build a perfect classifier.
In this study, we employed Synthetic Minority Over-sampling
Technique (SMOTE) (Chawla et al., 2002) to tackle such datasets.

SMOTE is a classic and widely used oversampling method. It
generates predefined numbers of samples and pours them into
the minority class. In detail, it first randomly selects a sample
in one minority class, say x. Then, find k samples in such class,
which have smallest distances to x. Randomly select a sample
from these k samples, say y, and generate a new sample z,
which is the linear combination of x and y. The generated new
sample z is put into the minority class. Above procedures execute
multiple times until predefined number of new samples have
been produced.

In this study, we directly adopted the tool “SMOTE” in Weka
(Version 3.6) (Witten and Frank, 2005), which implement above-
mentioned SMOTE. For the training dataset, we used “SMOTE”
generated lots of new samples and termed them as positive PPIs.
Finally, the numbers of positive and negative PPIs were almost
equal. We used the default value of parameter k, which was 3. As
suggested in Blagus and Lusa (2013), feature selection should be
performed before using SMOTE. Thus, in this study, the SMOTE
was only adopted in IFS method. Samples yielded by SMOTE
were not used in the BFS and MCFS methods.

Classifier
In IFS method, supervised classifiers are indispensable. Here,
two classic classifiers were adopted. They were RF (Breiman,
2001) and RIPPER algorithm (Cohen, 1995). The first one was
to build an efficient classifier. However, it cannot bring lots
of information to uncover the essential differences between
positive and negative PPIs. Thus, we further employed the
second classifier, RIPPER algorithm, which is a rule learning
algorithm. It can provide several rules to clearly display the
classification procedures and differences between positive and
negative PPIs.

Random Forest
As a supervised classifier, RF consists of multiple decision trees,
and each decision tree is grown from a bootstrap set and a
randomly selected feature subset. We assume a training set with
N samples and M features. For each decision tree, the same
number of samples is first randomly selected from the original
training set with replacement and a feature subset withm features

(m << M) is also randomly constructed. Each tree is grown
from these selected samples with the selected feature subset. This
process is repeated T times, and T decision trees comprising the
RF are yielded. RF has much fewer parameters to tune; thus, this
technique is extensively used in many biological problems with
favorable performance (Pan et al., 2010, 2014; Zhao et al., 2018,
2019; Zhang et al., 2019). The RF classifier implemented by a
tool “RandomForest” inWeka (Witten and Frank, 2005) software
is used. Clearly, the number of decision trees is an important
parameter of RF. Here, we tried four values: 10, 20, 50, and 100.

Repeated Incremental Pruning to Produce Error

Reduction Algorithm
RIPPER algorithm (Cohen, 1995) is a classic rough set based
rule learning algorithm. In fact, it is a generalized version
of the Incremental Reduced Error Pruning (IREP) algorithm
(Johannes and Widmer, 1994). The procedures of rule learning
with RIPPER can be found in our previous study (Figure 1;
Wang et al., 2018). Rules generated by RIPPER algorithm are
represented by IF-THEN clauses. For example, IF (Feature 1
≥2.333 and Feature 2 ≤1.234) THEN Positive PPI. Likewise,
RIPPER algorithm is also implemented by a tool “JRip” in Weka
(Witten and Frank, 2005). We directly used it and executed it
with its default parameters.

Performance Measurement
The performance of the classifiers is evaluated using 10-fold
cross validation. Several evaluation metrics, such as sensitivity
(SN), specificity (SP), two types of accuracy (ACC1 and ACC2),
Matthew correlation coefficient (MCC) (Matthews, 1975; Chen
et al., 2017a; Chen Z. et al., 2018, 2019; Li et al., 2018; Song et al.,
2018; Cui and Chen, 2019), recall, precision, and F-measure are
calculated and formulated as follows:

SN =
TP

TP + FN
, (2)

SP =
TN

TN + FP
, (3)

ACC1 =
TP + TN

TP + TN + FP + FN
, (4)

ACC2 = (SN + SP)/2 (5)

MCC=
TP×TN−FP×FN

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

, (6)

Recall =
TP

TP + FN
, (7)

Precision =
TP

TP + FP
, (8)

F −measure =
2× Precision× Recall

Precision+ Recall
, (9)

where TP/TN are the numbers of true positives/negatives, and
FP/FN are the numbers of false positives/negatives. Clearly,
ACC1, ACC2, MCC, and F-measure can fully evaluate the
performance of a classifier. This study selected F-measure as the
key measurement.

In addition to above-mentioned measurements, we also
employed ROC and PR curves to fully evaluate the performance
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FIGURE 1 | The entire procedures to analyze PPI features with a three-stage feature selection scheme. The PPI samples comprise one training dataset and one

testing dataset. For the training samples, they were represented by 258 features, which are processed by Boruta feature selection method. One hundred sixty-seven

relevant features remain, which are further analyzed by the Monte Carlo feature selection method. A feature list is produced. The incremental feature selection uses

such feature list to construct several feature subsets. On each subset, one random forest (RF) classifier and one RIPPER classifier are constructed, which are

assessed by 10-fold cross-validation. With RF, the best RF classifier and top features are obtained; whereas with RIPPER, the best RIPPER classifier together with its

rules is generated. The best RF and RIPPER classifiers are further evaluated on the testing dataset.

of different classifiers. The areas under these two curves are also
important measurements to assess classifiers. They were called
AUROC and AUPR, respectively, in this study.

RESULTS

In this study, the prior extracted 258 features were analyzed by
a three-stage feature selection scheme. The entire procedures are
illustrated in Figure 1.

Analysis of the Identity Between PPIs in
the Training and Testing Datasets
Before performing the feature selection scheme, it is necessary
to count the identity between PPIs in the training and testing
datasets because PPIs with high identities will make the
classification easily. Here, the identity between two PPIs was
defined as the direction cosine of their 258-D feature vectors.
We used 0.1 as the step to count the distribution of the obtained
identities on the training and testing datasets, which is shown
in Figure 2. It can be observed that the training and testing
datasets gave the similar distribution on identities. The interval
[−0.1,0] contained the most identities and between −1 and 0.6,
the distribution was quite similar to the normal distribution. It

is also surprised that several identities were with high values
(interval [0.9, 1]). However, more than 80% identities were
<0.5, indicating that most PPIs were with low identities. The
investigation on such datasets was quite reliable.

Results of Boruta Feature Selection (BFS)
Method
In the training dataset, all PPIs were represented by 258 features.
These features were analyzed by BFS method. As a result, 167
features were selected, as listed in Table S1.

Results of Monte Carlo Feature Selection
(MCFS) Method
According to the three-stage feature selection scheme, remaining
167 features were analyzed by the powerful MCFS method.
Each feature was assigned a RI score, which is also provided in
Table S1. Accordingly, a feature list F was built, in which features
were sorted by the decreasing order of their RI scores. This list is
available in Table S1.
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FIGURE 2 | Distribution of identities between PPIs in two datasets. The identify of two PPIs is defined as the direction cosine of their feature vectors. (A) Distribution

on the training dataset; (B) Distribution on the testing dataset.

FIGURE 3 | IFS curves based on the IFS method with RF and RIPPER. The X-axis shows the number of features, and Y-axis shows the F-measure values. The

numbers following RF indicate the number of decision trees of RF.

Results of Incremental Feature Selection
(IFS) With Random Forest (RF)
The feature list only told us the importance of each feature.
To extract optimal features for RF, IFS method was employed.
For each feature subset constructed from F, RF classifiers with
different number of decision trees (10, 20, 50, and 100) were
built on the training dataset and evaluated through 10-fold cross
validation. The results are provided in Tables S2–S5. To clearly
display these RF classifiers on different feature subsets, four IFS-
curves are plotted in Figure 3. It can be seen that the optimal F-
measure value was 0.691 when the top 166 features in F were used
and the number of decision trees was 100. Accordingly, the RF
classifier containing 100 decision trees was built on the training
dataset, in which PPIs were represented by top 166 features

in F. Such classifier was called the optimal RF classifier. Other
measurements yielded by such RF classifier are listed in Table 1.
The SN, SP, ACC1, ACC2, MCC, and Precision were 0.794, 0.921,
0.903, 0.858, 0.642, and 0.611, respectively, suggesting the good
performance of such classifier. Besides, we also used ROC curve
and PR curve to evaluate the performance of such RF classifier,
which are shown in Figures 4A,B. The AUROC and AUPR was
0.920 and 0.745, respectively.

To indicate the improvement of the RF with top 166 features,
we conducted 10-fold cross-validation on this classifier 50 times.
Also, the RF classifier with all 258 features were evaluated by 10-
fold cross-validation 50 times. Obtained F-measures are shown
in Figure 5, from which we can see that F-measures yielded by
the RF classifier with top 166 features were evidently higher than
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TABLE 1 | Performance of the RF and RIPPER classifiers on the training dataset evaluated by 10-fold cross-validation.

Classifier Number of

features

SN SP ACC1 ACC2 MCC Precision F-measure

RF 166 0.794 0.921 0.903 0.858 0.642 0.611 0.691

90 0.786 0.918 0.900 0.852 0.630 0.600 0.680

RIPPER 135 0.701 0.818 0.802 0.760 0.409 0.377 0.490

92 0.689 0.815 0.798 0.752 0.397 0.370 0.481

NNA 101 0.851 0.881 0.877 0.866 0.607 0.529 0.652

RNN 133 0.824 0.890 0.881 0.857 0.605 0.542 0.654

FIGURE 4 | ROC and PR curves of the RF classifiers with top 166 and 90 features on the training and testing datasets. (A) ROC curves of two RF classifiers on the

training dataset; (B) PR curves of two RF classifiers on the training dataset; (C) ROC curves of two RF classifiers on the testing dataset; (D) PR curves of two RF

classifiers on the testing dataset.

those produced by the RF classifier with all features. To confirm
this result, a paired sample t-test was conducted, yielding the p-
value of 1.309E-15, suggesting that the performance of the RF
classifier was improved with statistical significance.

Above-constructed RF classifier was also applied to the testing
dataset. The predicted results are listed in Table 2, from which we
can see that the F-measure was 0.371. Its SN, SP, ACC1, ACC2,
MCC and Precision were 0.674, 0.877, 0.865, 0.776, 0.358, and
0.256, respectively. The ROC and PR curves of the constructed RF
classifier on the testing dataset are shown in Figures 4C,D. The
AUROC and AUPR was 0.822 and 0.287, respectively. Although
they were lower than those on training dataset, the ACC1 was still
over 0.850.

As mentioned above, for RF with 100 decision trees, when
top 166 features in F was used, it provided the best F-measure.
However, after carefully checking the IFS results (Table S2), when
top 90 features were used, RF can yield the F-measure of 0.680,
which was a little lower than that yielded by the optimal RF
classifier. Considering the efficiency of classifiers, we suggested

the RF constructed on top 90 features as the proposed classifier.
The detailed performance of this classifier, evaluated by 10-fold
cross-validation, is provided in Table 1 and the ROC and PR
curves are shown in Figures 4A,B. Clearly, the performance of
this classifier was almost equal to that of the optimal RF classifier.
Besides, the proposed classifier was also performed on the testing
dataset, obtained measurements are listed in Table 2 and ROC
and PR curves are shown in Figures 4C,D. Clearly, they all
approximated to those of the optimal RF classifier. All of these
indicated that the proposed RF classifier can provide similar
results, however, it had high efficiency because much less features
were involved.

Comparison of IFS With NNA and RNN
As mentioned above, the optimal RF classifier gave good
performance. However, is the RF a proper choice? In fact, we
also tried other two classification algorithms: NNA and RNN.
NNA is a classic and simple classification algorithm, which
makes prediction for a given sample according to its nearest
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neighbor, while RNN is a kind of neural network with loop inside
for sequential data. For each of these two algorithms, an IFS
procedure was performed on the training dataset. Two IFS curves
were obtained, as shown in Figure 6. The highest F-measure
for NNA was 0.652 when top 101 features in F were used. For
RNN, the highest F-measure was 0.654 when top 133 features
were adopted. These F-measure values were all lower than that
of the optimal RF classifier. The detailed performance of the best
NNA and RNN classifiers is listed in Table 1. It can be observed
that the optimal RF classifier produced higher values on most
measurements, suggesting that RF is a more proper choice than
NNA and RNN.

Results of IFS With RIPPER
In section Results of incremental feature selection (IFS) with
random forest (RF), a RF classifier was built to identify PPIs.
However, it is a black box. It is difficult to capture the
classification principle. Thus, it provided limited biology insights
for understanding PPIs. In view of this, we further employed
a rule learning method, RIPPER algorithm, trying to partly
uncover the differences between positive and negative PPIs.

Like RF, the RIPPER algorithm was also employed in the
IFS method. The performance of the RIPPER algorithm on
different feature subsets is available in Table S6. Also, an IFS-
curve was plotted, as shown in Figure 3. The highest F-measure
was 0.490 when top 135 features were used. Thus, the RIPPER

FIGURE 5 | Box plot to show F-measures yielded by RF classifiers with top

166 features and all features using 50 10-fold cross-validation. The

F-measures obtained by RF classifier with top 166 features are evidently

higher than those of the RF classifier with all features.

classifier based on top 135 features was called the optimal RIPPER
classifier. The detailed performance of such classifier, evaluated
by 10-fold cross-validation, was provided in Table 1. Clearly,
it was much inferior to the optimal RF classifier. In addition,
the optimal RIPPER classifier was also executed on the testing
dataset. The predicted results were listed in Table 2. The F-
measure was 0.348, which was also much lower than that on
the training dataset. Compared with the performance of the
optimal RF classifier on the testing dataset, the performance of
the optimal RIPPER classifier was only a little lower.

Likewise, the RIPPER classifier can yield the F-measure 0.481
on the training dataset when top 92 features were used after
checking the predicted results listed in Table S6. It is a little
lower than that generated by the optimal RIPPER classifier.
Considering the efficiency of classifiers, we termed the RIPPER
classifier with top 92 features as the proposed RIPPER classifier.
The detailed performance of such classifier on the training dataset
is listed in Table 1. All measurements were almost equal to
those yielded by the optimal RIPPER classifier. Furthermore,
the proposed RIPPER classifier was executed on the testing
dataset. Predicted results are listed in Table 2. Obviously, the
performances of the optimal and proposed classifiers were at the
same level.

As mentioned above, the proposed RIPPER classifier adopted
top 92 features to represent PPIs. Six rules were produced by the
RIPPER algorithm when such algorithm was applied on all PPIs
in the training dataset, which are listed in Table 3. These rules
would be discussed in section Analysis of Optimal PPI Rules.

DISCUSSION

All PPI-associated features have been summarized in the three
previously described datasets (Hein et al., 2015; Huttlin et al.,
2015; Wan et al., 2015). In this study, we deeply analyzed
these features. Based on some key features, a RF classifier was
constructed and some classification rules were built. This section
gave detailed analysis on some top features and classification
rules. Several top features and all rules were supported by recent
publications (Mitterhuber, 2008; Swiatkowska et al., 2008; Levin
et al., 2013; Pinton et al., 2015).

Analysis of Optimal PPI Features
In the proposed RF classifier, top 90 features were used to
represent PPIs. However, it is impossible to analyze them one by
one due to our limited human resources. In fact, among these
90 features, some were more important than others. We did the

TABLE 2 | Performance of the RF and RIPPER classifiers on the testing dataset.

Classifier Number of

features

SN SP ACC1 ACC2 MCC Precision F-measure

RF 166 0.674 0.877 0.865 0.776 0.358 0.256 0.371

90 0.677 0.874 0.863 0.776 0.356 0.252 0.367

RIPPER 135 0.797 0.826 0.825 0.812 0.360 0.223 0.348

92 0.800 0.822 0.821 0.811 0.357 0.219 0.344
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FIGURE 6 | IFS curves based on the IFS method with NNA and RNN. The X-axis shows the number of features, and Y-axis shows the F-measure values. The orange

curve and blue curve were NNA and RNN, respectively.

TABLE 3 | Classification rules for predicting protein-protein interactions.

Rules Criteria Positive/Negative

Rule1 (neg_ln_pval ≤3.622) and

(hein_neg_ln_pval ≤3.328)

Negative

(non-interaction) PPI

Rule2 (hein_neg_ln_pval ≤6.955) and

(Hs_G166_1104_pq_euc ≤0)

and (neg_ln_pval ≤3.994)

Negative

(non-interaction) PPI

Rule3 (hein_neg_ln_pval ≤6.960) and

(neg_ln_pval ≤5.780) and

(Hs_G166_1104_pq_euc ≤0)

and (pair_count ≥2)

Negative

(non-interaction) PPI

Rule4 (hein_neg_ln_pval ≤3.033) and

(Hs_G166_1104_pq_euc ≤0)

and (pair_count ≤3) and

(neg_ln_pval ≤7.272)

Negative

(non-interaction) PPI

Rule5 (hein_neg_ln_pval ≤0) and

(Hs_G166_1104_pq_euc ≤0)

and (pair_count ≤3) and

(neg_ln_pval ≤8.611)

Negative

(non-interaction) PPI

Rule6 Other conditions Positive (interaction)

PPI

following test to extract most important features. Firstly, 100
feature lists were randomly built, in which 167 features were
randomly sorted. According to each feature list, we did the IFS
method with RF (consisting of 100 decision trees) procedures.
As a result, 100 IFS-curves were plotted, as shown in Figure 7A,
in which the IFS-curve produced on the actual feature list F is
also listed. It can be observed that when the number of used
features was small, the F-measure on the actual feature list F was
much higher than those on the randomly generated feature lists,
indicating that some top features in F were related to identify
PPIs with high statistical significance. Thus, given a feature
number, we counted the mean values of 100 F-measures that

were produced on 100 randomly generated feature lists. Then,
an IFS-curve was plotted, as shown in Figure 7B. Furthermore,
we also counted the critical values on 95% confidence interval
for each feature number and plotted two IFS-curves on them,
as shown in Figure 7B. It can be observed that top 14 features
in F can produce the F-measure that was higher than the upper
critical value on 95% confidence interval, indicating that these 14
features were highly related to identify PPIs. Furthermore, top 11
features in F can yield the F-measure that was higher than the
upper critical value on 99% confidence interval. In the following
text, we extensively analyzed top 14 features in F.

The first four features are “hein_neg_In_pval,” “neg_In_pval,”
“hein_pair_count,” and “pair count,” reflecting the regulatory
contribution of protein stoichiometric and abundant features.
In accordance with a reference dataset presented by Hein et al.
(2015), these features were confirmed to participate in and may
affect the content of interactome. According to the stoichiometric
and abundant levels, a stable protein complex denotes a probable
involvement of such protein complex in functional PPIs. Two
detailed features, namely, stoichiometric balance and protein
abundance, might generally evaluate the stability of a protein
complex and participate in describing PPIs. The stable PPIs
formed by stoichiometric balance might be further shaped by the
abundance of each protein that participates in such interactions.

To clearly describe what are stoichiometric and abundant
features, here, we took two typical PPIs as effective examples
to confirm the potential contribution of such two features on
the PPIs.

Firstly, we took the effective PPIs during cell adhesion
regulation and functioning as an example. The adhesive
properties of endothelial cells have been confirmed to be
regulated by various proteins and their potential interactions
(Swiatkowska et al., 2008). According to recent publications
(Swiatkowska et al., 2008; Levin et al., 2013), actually among
such interactions, the abundance and stoichiometric balance
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FIGURE 7 | The results of the IFS method with RF based on 100 randomly produced feature lists. (A) IFS curves on the actual feature list and 100 randomly produced

feature lists; (B) the statistical analysis based on the results of randomly produced feature lists. The black curve indicates the average performance of RF on randomly

produced feature lists. The red curve is the IFS curve of the actual feature list. Two dotted curves indicate the upper and low critical value on 95% confidence interval.

of disulfide isomerases and integrin may directly affect
their PPIs and further interfere endothelial cell adhesion.
Different abundance of disulfide isomerases caused different
stoichiometric balance patterns between disulfide isomerases
-integration interactions and therefore, induced different
binding affinity, resulting in differential biological functions
and regulatory effects (Swiatkowska et al., 2008). Therefore,
stoichiometric balance is quite significant for PPIs.

Secondly, in addition to such PPI participants, the interactions
between LamB and Odpq as another two effective proteins have
also been influenced by the abundance of each protein and
such abundance induced influences may further affect their
potential biological functions, the antibiotic resistance in
chlortetracycline-resistant Escherichia coli strain (Lin et al.,
2014). Different abundance of such two participants may have
totally opposite biological effects on such interactions: the
interactions of lower concentration may improve the antibiotic
sensitivity of E. coli, while the interactions at high concentration
on the contrary directly induce the chlortetracycline-resistance.
Therefore, the abundance of participants may be quite essential
for PPIs. Similarly, another two features in the optimal
feature list named as “Ce_CRF_wan_60_1209_poisson”
and “Hs_helaC_mar_SGF_poisson” also contribute to the
description of stoichiometric balance and protein abundance,

validating their effective roles in the identification of
actual PPIs.

Apart from such stoichiometric balance and protein
abundance associated features, the following ten features can be
further divided into two groups describing the molecular weight
(“Ce_CRF_wan_60_1209_wcc,” “Ce_BNF_wan_60_1209_wcc”)
and charge distribution (“Ce_CRF_wan_60_1209_pq_euc,”
“Ce_BNF_wan_60_1209_pq_euc,” “Ce_beadsflow_1206
_pq_euc,” “Ce_1111_pq_euc,” “Ce_beadsL_1206_pq_euc,”
“Ce_6mg_1203_pq_euc”) of related proteins, respectively. The
features that possibly affect the PPIs might be the molecular
weight and the charge distribution of each PPI participant. These
features have been validated by recent publications.

For instance, a study on SG2NA protein variants confirmed
that the molecular weight and structure of such protein may
directly affect its binding affinity against its ligands (Mitterhuber,
2008; Soni et al., 2014; Pinton et al., 2015). Therefore, molecular
weight induced by different amino acid substitution may affect
PPIs. The associations among different proteins were reported
to be possibly strongly affected by long-range electrostatic
interactions, and similar proteins with different surface charges
may have different interaction patterns (Twomey et al., 2013;
Raut and Kalonia, 2015). Therefore, the charge distribution of
PPI participants affected the interactions between proteins.
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Analysis of Optimal PPI Rules
Based on the detailed parameter that corresponds to each
optimal PPI feature extracted from the three datasets, the
relatively quantitative rules to recognize potential PPIs were
inferred (Table 3). The features that describe sensitivity gain
factor confirmed that the PPI features and their parameters
extracted from different datasets should be comparable, and the
detailed analysis of each optimal PPI rule could be derived in the
following discussions.

The literature confirmed rules with proper parameters may
contribute to identifying potential PPIs and such predicted rules
may act as reference for the prediction and screening of novel
PPIs. In terms of the detailed quantitative features, two specific
parameters, namely, “neg_ln_pval” and “hein_neg_ln_pval,”
were identified in Rule1-Rule5. High relative (parameter) value
of such two features indicate the interactionmay actually happen.
Although the detailed parameter (threshold) cannot be validated
through wet-experiments at present, proper stoichiometric
balance and protein abundance indicated by the parameters
were discussed previously and already confirmed to promote
the PPIs according to recent publications (Vinayagam et al.,
2011; Fairweather et al., 2015). These rules could also be
grouped in accordance with their new insights into the detailed
biological mechanisms:

Apart from such two features, another two features have also
been screened out to contribute to the quantitative identification
of actual PPIs: “Hs_G166_1104_pq_euc” (used in Rule2-Rule5)
and “pair_count” (used in Rule3-Rule5). In all the top rules
apart from the first one which only involves “neg_ln_pval”
and “hein_neg_ln_pval” as we have mentioned above, the value
of “Hs_G166_1104_pq_euc” turns out to be lower than zero
according to our quantitative rules.

According to the analyses above, such parameter contributes
to the description of the charge distribution of certain
PPI participants. Although no accurate description of such
parameter, it has been confirmed that the higher the value is, the
lower surface charging the participants of potential PPIs carries.
Considering that it has been reported that charge interactions
play an irreplaceable role for actual PPIs, therefore, potential
interactions with such parameter lower than zero may not be
actual PPIs. As for another parameter named as “pair_count,”
in Rule3-Rule5, such parameter has a value >2, 3, and 3. It has
been reported that the higher the value of such parameter may be,
the less possible such interaction may actual happens (Hein et al.,
2015). Therefore, interactions breaking such top five rules turns
out to be actual PPIs, corresponding with our analyses above.

CONCLUSION

Protein is the basic molecule of life. Through protein-protein
interactions, complex biological processes are carried out. Predict
PPI is a fundamental problem in bioinformatics. In this study,
we encoded protein with various physical and chemical features,
such as stoichiometric balance, protein abundance, molecular
weight, and charge distribution. Then with advanced feature
selection methods, we identified the key factors affecting PPIs
and built a quantitative decision-rule system to evaluate the
potential of PPIs under real conditions. Our results provided
novel insights of the molecular mechanisms of PPIs. The model
can be extended to explore other molecular interaction questions.
The main datasets and codes can be downloaded at https://
github.com/xypan1232/Mass-PPI.
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Hepatocellular carcinoma (HCC) accounts for approximately 85–90% of all liver cancer
cases and has poor relapse-free survival. There are many gene expression studies
that have been performed to elucidate the genetic landscape and driver pathways
leading to HCC. However, existing studies have been limited by the sample size and
thus the pathogenesis of HCC is still unclear. In this study, we performed an integrated
characterization using four independent datasets including 320 HCC samples and 270
normal liver tissues to identify the candidate genes and pathways in the progression of
HCC. A total of 89 consistent differentially expression genes (DEGs) were identified.
Gene-set enrichment analysis revealed that these genes were significantly enriched
for cellular response to zinc ion in biological process group, collagen trimer in the
cellular component group, extracellular matrix (ECM) structural constituent conferring
tensile strength in the molecular function group, protein digestion and absorption,
mineral absorption and ECM-receptor interaction. Network system biology based on
the protein–protein interaction (PPI) network was also performed to identify the most
connected and important genes based on our DEGs. The top five hub genes including
osteopontin (SPP1), Collagen alpha-2(I) chain (COL1A2), Insulin-like growth factor I
(IGF1), lipoprotein A (LPA), and Galectin-3 (LGALS3) were identified. Western blot
and immunohistochemistry analysis were employed to verify the differential protein
expression of hub genes in HCC patients. More importantly, we identified that these
five hub genes were significantly associated with poor disease-free survival and overall
survival. In summary, we have identified a potential clinical significance of these genes
as prognostic biomarkers for HCC patients who would benefit from experimental
approaches to obtain optimal outcome.

Keywords: hepatocellular carcinoma, differentially expression genes, enrichment analysis, survival
analysis, prognosis
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INTRODUCTION

Liver cancer is the fourth leading cause of cancer-related death
worldwide and ranks sixth in terms of incidence (Bray et al.,
2018; Villanueva, 2019). Among all types of primary malignant
liver tumors, hepatocellular carcinoma (HCC) accounts for
approximately 85–90% of all cases. The major risk factors
including chronic infections by hepatitis B virus (HBV) and
hepatitis C virus (HCV), aflatoxin exposure, smoking, type 2
diabetes, obesity, and so on (Marengo et al., 2016; Bray et al.,
2018; Phukan et al., 2018). As a highly heterogeneous cancer
disease, localized HCC patients often have poor prognosis with
5-year overall survival (OS) rate of 30%, and this rate drops
below 5% for those with distant metastases (Oweira et al.,
2017). For patients at early disease stages, liver resection is
the most effective treatment option, however, only less than
30% of HCC patients are eligible surgery, and among those
around 70% eventually relapse within 5 years after treatment
(Waghray et al., 2015). Over the past few decades, despite
advances in chemotherapy, targeted therapy, radiation therapy,
and immunotherapy in the clinical arena, the survival of
HCC patients has not significantly increased, and translational
studies to understand the mechanisms and prognosis remain
underwhelming to design novel therapeutic strategies (Visvader,
2011; Aravalli et al., 2013; Llovet et al., 2018).

Data, information, knowledge and wisdom (DIKW)
model has been widely used in life in all aspects including
medicine (Song et al., 2018, 2020; Duan, 2019a,b; Duan
et al., 2019a,b). In recent years, genome-wide profiling has
substantially advanced our understanding of the genetic
landscape and driver pathways leading to HCC (Totoki et al.,
2014; Schulze et al., 2015; Zucman-Rossi et al., 2015; Ally
et al., 2017; Villanueva, 2019), revealing Cellular tumor antigen
p53 (TP53), Catenin beta-1 (CTNNB1), Axin-1 (AXIN1),
Telomerase reverse transcriptase (TERT) promoter and other
key genes as driver mutations, and WNT/β-catenin, p53
cell cycle pathway, oxidative stress, PI3K/AKT/MTOR, and
RAS/RAF/MAPK pathways as key signaling pathways involved
in liver carcinogenesis. However, existing studies have been of
limited sample size that failed to create molecular prognostic
indices and also the inconsistent computational methods may
have restricted the power to identify potential meaningful
molecular biomarkers and new therapeutic targets. Therefore,
an integrated bioinformatics study combining the most updated
genomic data thus providing novel insight into the mechanisms
underlying therapeutic resistance and disease progression is
highly warranted.

Microarray technology has become an indispensable tool to
monitor genome wide expression levels of genes in a given
organism and has been successfully used to classify different
types of cancer and predict clinical outcomes (Trevino et al.,
2007). These microarray technologies have also been applied
in many studies to define global gene expression patterns
in primary human HCC in an attempt to gain insight into
the mechanisms of hepatocarcinogenesis (Crawley and Furge,
2002; Woo et al., 2008; Hoshida et al., 2009; Villanueva et al.,
2012; Jin et al., 2015). In the present study, we selected four

independent datasets consisting a total of 320 HCC cases
and 270 cases of normal liver tissues in the Gene Expression
Omnibus (GEO) database to identify reliable markers and
pathway alterations linked with the pathogenesis of HCC cases
(Wurmbach et al., 2007; Mas et al., 2009; Roessler et al.,
2010). We identified 89 differential expression genes (DEGs)
including 31 up-regulated genes and 58 down-regulated genes.
Gene ontology (GO) analysis revealed cellular response to zinc
ion in biological process (BP) group, collagen trimer in the
cellular component (CC) group, and extracellular matrix (ECM)
structural constituent conferring tensile strength in the molecular
function (MF) group. Further pathway enrichment analysis
revealed that enrichment in protein digestion and absorption,
mineral absorption, propanoate metabolism, and ECM-receptor
interaction. Finally, the top five hub genes osteopontin (SPP1),
Collagen alpha-2(I) chain (COL1A2), Insulin-like growth factor
I (IGF1), lipoprotein A (LPA), and Galectin-3 (LGALS3) were
identified from the protein–protein interaction (PPI) network
and those highly altered genes were validated by western blot
assay and Immunohistochemistry (IHC) analysis and found to be
associated with clinical outcome of HCC patients.

MATERIALS AND METHODS

Data Source and Identification of DEGs
Microarrays data were obtained from the Oncomine 4.5
database1 contains 715 datasets and 86,733 samples. Of which,
we filtered four datasets comprising Mas liver (GSE14323,
containing 19 liver tissues and 38 HCCs), Roessler liver
(GSE14520 based on GPL571 platform, containing 21 liver
tissues and 22 HCCs), Roessler liver 2 (GSE14520 based on
GPL3921 platform, containing 220 liver tissues and 225 HCCs),
and Wurmbach liver (GSE6764, containing 10 liver tissues
and 35 HCCs) after using the following criteria: (a) Analysis
type: cancer vs. normal analysis; (b) Cancer type: hepatocellular
carcinoma; (c) Data type: mRNA; (d) Sample type: clinical
specimen; (e) Microarray platform: Human Genome U133A,
U133A 2.0, or U133 Plus 2.0. A total of 270 cases of normal liver
tissues and 320 cases of HCCs were included in the integrated
analysis. To analyze the DEGs between HCC and normal liver
tissues, the data were then processed on GEO2R website2. The
differentially expressed genes were identified using limma R
package at a cutoff | logFC| > 1 and adjusted p value < 0.05
(Benjamini & Hochberg).

GO and Pathways Enrichment Analysis
The annotation function of GO analysis is comprised of three
categories: BP, CC, and MF. Kyoto Encyclopedia of Genes and
Genomes (KEGG) is a database resource for understanding
high-level functions and utilities of the genes or proteins
(Kanehisa and Goto, 2000; Kanehisa et al., 2012, 2016). GO
analysis and KEGG pathway enrichment analysis of candidate
DEGs were performed using the R package “clusterProfiler.”

1https://www.oncomine.org/
2https://www.ncbi.nlm.nih.gov/geo/geo2r/
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FIGURE 1 | The DEGs screened from four independent datasets. Up-regulated DEGs (red-colored dots) and down-regulated (blue-colored dots) DEGs are selected
with [logFC] > 1 and adjust p-value < 0.05 from the mRNA expression profiling sets (A) Mas liver, (B) Wurmbach liver, (C) Roessler liver, and (D) Roessler liver 2.
Venn diagram showed (E) 31 consistently up-regulated DEGs and (F) 58 consistently down-regulated DEGs in four datasets.

TABLE 1 | Details of the four HCC datasets.

Datasets GSE Tumor Normal References

Mas liver GSE14323 38 19 Mas et al., 2009

Roessler liver GSE14520(GPL571 platform) 22 21 Roessler et al., 2010

Roessler liver 2 GSE14520(GPL3921 platform) 225 220 Roessler et al., 2010

Wurmbach liver GSE6764 35 10 Wurmbach et al., 2007

HCC, Hepatocellular carcinoma.
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FIGURE 2 | GO and KEGG pathway enrichment analysis (A) GO analysis of all DEGs. The most enriched GO terms are listed in the diagram. (B) KEGG pathway
analysis of all DEGs. The most enriched KEGG pathways are shown in the picture.

Reactome3 was also used for pathway enrichment analysis
(Fabregat et al., 2018). Adjusted p-value less than 0.05 was
considered as the cut-off criterion for both GO analysis and
pathway enrichment analysis.

PPI Network and Modular Analysis
Protein–protein interaction network was constructed to
determine the importance of these DEGs by comparing the
interactions between different DEGs. STRING database4 and
Cytoscape software (3.7.2 version) were applied to construct
and visualize the PPI networks (Szklarczyk et al., 2017),
followed by Molecular Complex Detection (MCODE) plug-in
in Cytoscape for selecting significant modules of hub genes
from the PPI network (Bader and Hogue, 2003), with the
following criteria: degree cutoff (number of connections with
other nodes) ≥ 2, node score cutoff (the most influential
parameter for cluster size) ≥ 2, K-core (This parameter
filters out clusters that do not contain a maximally inter-
connected sub-cluster of at least k degrees. For example, a
triangle including three nodes and three edges is a two-core
representing two connections per node. Two nodes with two
edges between them meet the two-core rule as well) ≥ 2
and max depth (this parameter limits the distance from
the seed node within which MCODE can search for cluster
members) = 100. KEGG pathway enrichment analysis of the

3https://reactome.org/
4https://string-db.org/

modules was carried out using the online DAVID database5

(Huang da et al., 2009).

Hub Gene Selection and Prognostic
Analysis
Hub genes were selected based on comparison of top 10
genes ranked by degree and betweenness centrality Network of
hub genes. Their co-expressed genes were then analyzed using
cBioPortal online platform6 (Gao et al., 2013). Genetic alterations
of these hub genes were explored and compared using the
cBioPortal database. Biological process analysis of hub genes was
then performed and visualized using plug-in Biological Networks
Gene Oncology tool (BiNGO) app in Cytoscape software (Maere
et al., 2005). Stage-related information analysis based on gene
expression was performed in UALCAN7, a comprehensive web
resource for analyzing omics data (Chandrashekar et al., 2017).
Disease-free survival (DFS) is a concept used to describe the
period after a successful treatment of cancer. OS means the
length of time from either the date of diagnosis or the start of
treatment for HCC. DFS and OS are both measured to see how
well a new treatment works. DFS and OS analysis associated with
these hub genes were performed using the Kaplan–Meier Plotter
online database8.

5https://david.ncifcrf.gov/
6https://www.cbioportal.org/
7http://ualcan.path.uab.edu/analysis.html
8http://www.kmplot.com/
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TABLE 2 | Significantly enriched GO terms of DEGs associated with HCC with adjust p-value < 0.01.

Expression Category Term Count p-value Adj p-value

Up-regulated CC GO:0062023∼collagen-containing extracellular matrix 9 <0.001 <0.001

CC GO:0044420∼extracellular matrix component 5 <0.001 <0.001

CC GO:0098644∼complex of collagen trimers 4 <0.001 <0.001

CC GO:0031012∼extracellular matrix 9 <0.001 <0.001

CC GO:0005581∼collagen trimer 5 <0.001 <0.001

CC GO:0005788∼endoplasmic reticulum lumen 7 <0.001 <0.001

CC GO:0005604∼basement membrane 4 <0.001 <0.001

CC GO:0042470∼melanosome 4 <0.001 <0.001

CC GO:0048770∼pigment granule 4 <0.001 <0.001

CC GO:0005583∼fibrillar collagen trimer 2 <0.001 0.001

CC GO:0098643∼banded collagen fibril 2 <0.001 0.001

MF GO:0030020∼extracellular matrix structural constituent conferring tensile strength 5 <0.001 <0.001

MF GO:0005201∼extracellular matrix structural constituent 5 <0.001 0.001

MF GO:0048407∼platelet-derived growth factor binding 2 <0.001 0.008

Down-regulated BP GO:0071294∼cellular response to zinc ion 5 <0.001 <0.001

BP GO:0010043∼response to zinc ion 6 <0.001 <0.001

BP GO:0006956∼complement activation 7 <0.001 <0.001

BP GO:0072376∼protein activation cascade 7 <0.001 <0.001

BP GO:0071276∼cellular response to cadmium ion 4 <0.001 0.001

BP GO:0001867∼complement activation, lectin pathway 3 <0.001 0.001

BP GO:0006959∼humoral immune response 7 <0.001 0.003

BP GO:0046686∼response to cadmium ion 4 <0.001 0.004

BP GO:0010460∼positive regulation of heart rate 3 <0.001 0.008

BP GO:0010038∼response to metal ion 7 <0.001 0.008

CC GO:0072562∼blood microparticle 5 <0.001 0.008

MF GO:0001871∼pattern binding 3 <0.001 0.004

MF GO:0030247∼polysaccharide binding 3 <0.001 0.004

MF GO:1901681∼sulfur compound binding 6 <0.001 0.005

MF GO:0050662∼coenzyme binding 6 <0.001 0.008

BP, biological process; CC, cellular component; MF, molecular function.

TABLE 3 | KEGG pathway enrichment analysis of DEGs in HCC.

Expression KEGG Term Count p-value Adj p-value

Up-regulated hsa04974∼Protein digestion and absorption 6 <0.001 <0.001

hsa04512∼ECM-receptor interaction 4 <0.001 0.003

hsa04964∼Proximal tubule bicarbonate reclamation 2 0.002 0.028

hsa04510∼Focal adhesion 4 0.002 0.028

hsa04151∼PI3K/Akt signaling pathway 5 0.002 0.028

hsa04933∼AGE-RAGE signaling pathway in diabetic complications 3 0.003 0.028

hsa05146∼Amoebiasis 3 0.003 0.028

hsa04926∼Relaxin signaling pathway 3 0.005 0.048

Down-regulated hsa04978∼Mineral absorption 5 <0.001 0.001

hsa00640∼Propanoate metabolism 3 0.001 0.025

Cell Lines and Cell Culture
Hepatocellular carcinoma cell lines Hep3B and HepG2 and
human normal liver cell line L02 were obtained from Shanghai
Institute of Biochemistry and Cell Biology, Chinese Academy
of Sciences. All of these cell lines were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) (catalog number 10569010,
Gibco) containing 10% (v/v) fetal bovine serum (FBS) (catalog
number 10091148, Gibco) supplemented with 1% (v/v) penicillin

streptomycin solution (catalog number SV30010, Hyclone)
(containing 100 U/ml penicillin and 100 µg/ml streptomycin) in
a humidified incubator at 37◦C with 5% CO2.

Protein Preparation and Western Blot
Analysis
Briefly, HCC cells were lysed with cold M-PER lysate buffer
(catalog number 78501, Roche) [containing 1 × protease
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TABLE 4 | Pathways enriched in Reactome analysis of DEGs in HCC (Adj p-value < 0.01).

Expression Pathway name Count p-value Adj p-value

Up-regulated R-HSA-8948216∼Collagen chain trimerization 5 <0.001 <0.001

R-HSA-2022090∼Assembly of collagen fibrils and other multimeric structures 5 <0.001 <0.001

R-HSA-1442490∼Collagen degradation 5 <0.001 <0.001

R-HSA-1650814∼Collagen biosynthesis and modifying enzymes 5 <0.001 <0.001

R-HSA-216083∼Integrin cell surface interactions 6 <0.001 <0.001

R-HSA-1474228∼Degradation of the extracellular matrix 6 <0.001 <0.001

R-HSA-1474290∼Collagen formation 5 <0.001 <0.001

R-HSA-3000171∼Non-integrin membrane-ECM interactions 4 <0.001 <0.001

R-HSA-1474244∼Extracellular matrix organization 6 <0.001 <0.001

R-HSA-2214320∼Anchoring fibril formation 3 <0.001 0.001

R-HSA-422475∼Axon guidance 8 <0.001 0.002

R-HSA-8985801∼Regulation of cortical dendrite branching 1 <0.001 0.002

R-HSA-2243919∼Crosslinking of collagen fibrils 3 <0.001 0.002

R-HSA-186797∼Signaling by PDGF 4 <0.001 0.003

R-HSA-8941333∼RUNX2 regulates genes involved in differentiation of myeloid cells 1 <0.001 0.004

R-HSA-3000178∼ECM proteoglycans 4 <0.001 0.004

R-HSA-69205∼G1/S-Specific Transcription 2 0.001 0.009

R-HSA-3769402∼Deactivation of the beta-catenin transactivating complex 3 0.001 0.009

R-HSA-419037∼NCAM1 interactions 3 0.001 0.009

R-HSA-8949275∼RUNX3 Regulates Immune Response and Cell Migration 1 0.001 0.009

R-HSA-8939246∼RUNX1 regulates transcription of genes involved in differentiation of myeloid cells 1 0.001 0.010

R-HSA-3000480∼Scavenging by Class A Receptors 3 0.001 0.010

Down-regulated R-HSA-5661231∼Metallothioneins bind metals 5 <0.001 <0.001

R-HSA-5660526∼Response to metal ions 5 <0.001 <0.001

R-HSA-2855086∼Ficolins bind to repetitive carbohydrate structures on the target cell surface 3 <0.001 <0.001

R-HSA-166662∼Lectin pathway of complement activation 3 <0.001 <0.001

R-HSA-166658∼Complement cascade 6 <0.001 0.003

inhibitors (catalog number 11836153001, Roche) and
phosphatase inhibitor cocktail (catalog number 78420, Roche)]
and centrifuged at 4◦C for 10 min. The protein concentrations
of collected supernatants were determined by the BCA protein
assay kit (catalog number P0011, Beyotime). Equal amounts
of total proteins were separated in 10 or 12% SDS-PAGE and
transblotted onto the 0.45 µm PVDF membranes (catalog
number 1620177, BIO-RAD). The membranes were blocked
in 5% fat-free milk in TBST (150 mM NaCl, 50 mM Tris, pH
7.2) for 1 h at room temperature and subsequently incubated
with corresponding primary antibodies as following: anti-
SPP1 (catalog number ab8448, Abcam, 1:1000), anti-COL1A2
(catalog number 66761-1-lg, Proteintech, 1:1000), anti-IGF1
(catalog number ab9572, Abcam, 1:1000), anti-LGALS3 (catalog
number ab209344, Abcam, 1:1000), anti-GADPH (catalog
number 10494-1-AP, Proteintech, 1:10000), and anti-β-Tubulin
(catalog number T0023, Affinity, 1:20000) at 4◦C overnight,
followed by incubation with a donkey anti-mouse (catalog
number C61116-02, LI-COR) or goat anti-rabbit (catalog
number C80118-05, LI-COR) secondary antibody for 1 h at
room temperature. Then membranes were scanned using the
Odyssey infrared imaging system (LI-COR) and the images were
captured. The gray levels of the bands were determined by Image
J software. The expression of proteins was normalized using the
GADPH or β-Tubulin values. The assay was performed three
independent times.

Patient Samples
This study was approved by Cancer Hospital of the University
of Chinese Academy of Sciences; Zhejiang Cancer Hospital.
Twenty formalin-fixed, paraffin-embedded (FFPE) HCC tissues
and corresponding adjacent non-cancerous tissues were collected
from the Department of Abdominal Surgery, Zhejiang Cancer
Hospital. All FFPE HCC tissues were screened by two
pathologists independently to confirm the diagnosis of HCC.
The most representative tumor and non-cancerous tissues were
selected for immunohistochemistry analysis.

IHC Analysis
Neutral 10% buffered formalin-fixed tissue specimens were
embedded in paraffin wax and then sliced to 4-micron thick
sections by a microtome. In brief, the tissue slices were firstly
deparaffinized, followed by rehydration and a 10-min boiling in
10 mmol/L citrate buffer (pH = 6.4) for antigen retrieval. Then,
the sections were treated in methanol containing 3% H2O2 for
20 min to inhibit the endogenous tissue peroxidase activity. After
being blocked with 1% bovine serum albumin (BSA) at 37◦C for
30 min, IHC staining was carried out for the protein expression
of SPP1, COL1A2, IGF1, and LGALS3 using specific primary
antibodies at 4◦C overnight, followed by staining with species-
specific secondary antibodies labeled with horseradish peroxidase
(HRP). The slides were developed in diaminobenzidine (DAB)
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FIGURE 3 | The protein–protein interaction (PPI) of DEGs exported from STRING is visualized using Cytoscape software. Up-regulated DEGs are shown in red while
down-regulated DEGs are shown in green dots. (A) 63 nodes and 78 edges are displayed. Larger node sizes correspond to higher degrees of DEGs. Label font
sizes are shown in black from small to large according to the Betweenness centrality (from low to high). The hub genes we selected are emphasized and shown in
the shape of round rectangles. (B,C) Module 1, module 2 and their related specifications determined by MCODE plug-in app in Cytoscape software. Circles
represent genes and the lines between genes indicate the gene-encoded PPIs.

TABLE 5 | Top 10 most degree values and betweenness centrality hub genes between HCC and normal samples.

Genes Expression Betweenness centrality Genes Expression Degree

CYP2C19 Down 1 SPP1 Up 8

STEAP3 Down 1 COL1A2 Up 8

TYMS Up 0.83333333 IGF1 Down 6

SPP1 Up 0.50873984 SOX9 Up 5

GMNN Up 0.5 COL4A2 Up 5

LPA Down 0.30264228 LPA Down 4

IGF1 Down 0.29329268 LGALS3 Up 4

LGALS3 Up 0.24573171 C9 Down 4

COL1A2 Up 0.19756098 SERPINA10 Down 4

MDK Up 0.1804878 ROBO1 Up 4

Genes were ranked by betweenness centrality and degree, respectively. The genes in red are the shared genes with the two analysis methods.

and counter-stained with hematoxylin. Then images of the
sections were photographed using an Olympus microscope
(Olympus Life Science). The clinical specimen data of LPA were
obtained from The Human Protein Atlas database9.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism
software (version 8.0.1) and R software (version 3.4.210).

9https://www.proteinatlas.org/
10https://www.r-project.org/

p-value < 0.05 was considered statistically significant. The
column diagram was graphed with GraphPad Prism software
(version 8.0.1).

RESULTS

Data Source and Analysis
A total of 603, 1,238, 1,095, and 1,722 DEGs have been
extracted from the four independent expression datasets Mas
liver, Roessler liver, Roessler liver 2, and Wurmbach liver,
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FIGURE 4 | Analysis of hub genes. (A) Hub genes and their co-expressed genes are analyzed using cBioPortal. Hub genes are represented with a thick border.
Darker red indicates increased frequency of alteration in HCC. The blue connection indicates that the first protein controlled a reaction that changes the state of the
second protein; the red connection suggests that the proteins belongs to members of the same complex. The green arrows represent “Controls expression of.” The
gray arrows represent “In complex with.” (B) Genetic alteration analysis toward these five genes, overall survivals are also shown.

respectively (Figures 1A–D, Table 1, and Supplementary
Tables S1, S2). The comparison of all genes from these
datasets identified 89 consistently and significantly dysregulated
genes, including 31 up-regulated genes and 58 down-regulated
genes in HCC compared to normal liver tissues (Figures 1E,F
and Supplementary Table S3). Notably, several genes such
as Glypican-3 (GPC3) (Wurmbach et al., 2007) and SPP1

(Roessler et al., 2010) have been reported previously, proving the
feasibility of the method.

GO Analysis of DEGs in HCC
The functional characteristics of these 89 DEGs were explored
using GO analysis and were grouped into BP, cell component and
MF (Figure 2A). Overall, cellular response to zinc ion covering
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FIGURE 5 | Expression of hub genes in different HCC stages in TGCA database: (A) SPP1, (B) COL1A2, (C) IGF1, (D) LGALS3, and (E) LPA. SPP1, COL1A2, and
LGAlS3 are overexpressed in HCC tissues while IGF1 and LPA are downregulated in HCC tissues compared to the control.

five genes was found to be the dominant BP. Collagen trimer
covering seven genes was found to be the top CC. ECM structural
constituent conferring tensile strength covering five genes was
the top MF. As shown in Table 2, in the BP group, up-regulated
genes were mainly enriched in ECM organization, epithelial tube
morphogenesis, and positive regulation of leukocyte migration
while down-regulated genes were mainly enriched in cellular
response to zinc ion and humoral immune response. In the CC
group, up-regulated genes were mainly enriched in collagen-
containing ECM and ECM components while down-regulated
genes mainly enriched in blood microparticle. In the MF group,
up-regulated genes were mainly enriched in ECM structural
constituents while down-regulated genes were mainly enriched
in pattern binding. Taken together, these data suggest that those
identified DEGs are mainly enriched in ECM-related items
affecting the BP of negative regulation of growth, humoral
immune response and so on.

Signaling Pathway Enrichment Analysis
To understand the biological changes during HCC pathogenesis,
we performed pathway enrichment analysis using KEGG and
Reactome. KEGG pathways enrichment analysis showed that
those candidate DEGs were primarily enriched in protein
digestion and absorption, mineral absorption, and ECM-receptor
interaction (Figure 2B). Among them, up-regulated genes
were mainly enriched in protein digestion and absorption
and ECM-receptor interaction while down-regulated genes
were mainly enriched in mineral absorption and metabolic
pathways (Table 3). Furthermore, Reactome pathway enrichment
analysis showed that the DEGs were enriched in collagen
chain trimerization, collagen degradation, metallothioneins bind
metals, and response to metal ions (Supplementary Table S4).
Among them, up-regulated genes were primarily enriched in
collagen chain trimerization, assembly of collagen fibrils and

other multimeric structures and collagen degradation, while
down-regulated genes were enriched in metallothioneins bind
metals, response to metal ions and ficolins bind to repetitive
carbohydrate structures on the target cell surface (Table 4).

Key Candidate Genes and Pathways
Identified by DEGs PPI and Modular
Analysis
In order to identify key candidate genes, 63 DEGs (24 up-
regulated genes and 39 down-regulated genes) were filtered
into the PPI network complex, including 63 nodes and 78
edges. Among the 63 nodes, only genes ranking in top 10 of
both degrees (the number of interactions of each node) and
betweenness centrality (degree of impact on interactions between
other nodes in the network) parameters were recognized as hub
genes. Finally, five genes SPP1, COL1A2, IGF1, LGALS3, and
LPA were selected (Figure 3A and Table 5). Utilizing MCODE
plug-in app in cytoscape, two modules were applied for further
KEGG pathway enrichment analysis. Module 1 consisted of 5
nodes and 10 edges with genes enriched in protein digestion
and absorption, ECM-receptor interaction, amoebiasis and focal
adhesion. Module 2 consisted of five nodes and nine edges with
the genes mainly enriched in mineral absorption (Figures 3B,C
and Supplementary Table S5).

Hub Genes and Associations With
Clinical Outcome
The network of hub genes constructed by cBioPortal contained
55 nodes, including five query genes (five hub genes) and
the 50 most frequently altered neighbor genes (Figure 4A).
After visualizing BP using BiNGO in Cytoscape software
(Supplementary Figure S1), genetic alteration analysis of five
hub genes in TCGA HCC patients was performed in the
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FIGURE 6 | Protein expression levels of these hub genes in normal liver cell line L02 and HCC cell lines Hep3B and HepG2 were examined by western blot analysis.
The bands were analyzed and normalized using the GADPH or β-Tubulin values and processed by Image J software. (A) The representative cases of HCC patient
tissues were detected by (B) Immunohistochemistry. The western blot and Immunohistochemistry results showed that SPP1, COL1A2, and LGALS3 are
overexpressed in HCC samples while IGF1 is downregulated in HCC samples.
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FIGURE 7 | Disease-free survival (DFS) analysis of (A) SPP1, (B) COL1A2, (C) IGF1, (D) LGALS3, and (E) LPA in HCC patients. HCC patients with high expressions
of COL1A2, IGF1, and LPA as well as low expression of SPP1 were found to be associated with the improved DFS (p = 0.0017, p = 0.0021, p = 0.0058, and
p = 7e−04, respectively).

FIGURE 8 | Overall survival (OS) analysis of (A) SPP1, (B) COL1A2, (C) IGF1, (D) LGALS3, and (E) LPA in HCC patients. High expression of SPP1 and LGALS3
were linked with the disfavored OS (p = 3.5e−06 and p = 0.014, respectively) (A,D), while high expression of IGF1 and LPA were associated with improved OS
(p = 0.0013 and p = 0.00038, respectively).
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cBioPortal database. The hub genes SPP1, IGF1, LGALS3, LPA,
and COL1A2 were altered in 4, 5, 5, 7, and 8% in a total population
of HCC patients respectively, without significantly discrepancy
in both sexes (Figure 4B). TCGA data analysis showed that
SPP1, COL1A2, and LGALS3 are more highly expressed in
HCC regardless of stages compared with normal tissues, while
IGF1 and LPA were low expressed (Figure 5). Further western
blot analysis showed that the protein expression levels of SPP1,
COL1A2, and LGALS3 were highly expressed in HCC cell lines
while IGF1 was down-regulated in HCC cell lines (Figure 6A).
IHC analysis of HCC patient tissues showed similar results as
western blot analysis (Figure 6B). The online human protein atlas
showed the LPA protein expression was higher in normal liver
tissues than in HCC tissues. For the identified five top hub genes,
HCC patients with high expressions of COL1A2, IGF1, and LPA
as well as low expression of SPP1 were found to be associated
with the improved DFS (p = 0.0017, p = 0.0021, p = 0.0058, and
p = 7e−04, respectively) (Figure 7). High expression of SPP1 and
LGALS3 were linked with the disfavored OS (p = 3.5e−06 and
p = 0.014, respectively) (Figures 8A,D), while high expression of
IGF1 and LPA were associated with improved OS (p = 0.0013 and
p = 0.00038, respectively) (Figures 8C,E). However, expression
of COL1A2 didn’t show a significant correlation with clinical
outcome (p = 0.21) (Figure 8B).

DISCUSSION

Hepatocellular carcinoma remains an aggressive form of cancer
worldwide with high incidence and morbidity. Therefore,
substantial efforts have been made to unveil mutational processes,
pathogenesis and possible mechanisms underlying treatment
resistance in order to expand the therapeutic landscape of this
disease (Llovet et al., 2018; Cheng et al., 2019). However, most
of these studies were based on single institutions with limited
sample size, restricting the power to identify potential meaningful
therapeutic targets (Zhang C. et al., 2017; Li et al., 2019; Zhang
et al., 2019). Different HCC studies showed different results
for different datasets chosen. In previous studies, some only
chose one dataset and others chose datasets without performing
explicit infiltration, leading to totally different outcome (Zhang
C. et al., 2017; Li et al., 2019; Zhang et al., 2019). Here, we
conducted an integrative analysis from four microarray datasets
of HCC screened in Oncomine database and downloaded in GEO
database to describe key candidate genes and pathways associated
with clinical outcome in HCC patients.

In the present study, a total of 89 DEGs were identified
between HCC and normal tissues, including 31 up-regulated
genes and 58 down-regulated genes. Up-regulated DEGs of
HCC were found to be enriched in GO categories such as
epithelial tube morphogenesis, ECM organization, and positive
regulation of leukocyte migration, and dysregulation of these
processes have been found to contribute to several pathological
conditions including cancer and may lead to disfavored clinical
outcomes (Payne and Huang, 2013; Bonnans et al., 2014).
While down-regulated genes were associated with GO categories
such as cellular response to zinc ion where members of
metallothionein family (MT1M, MT1H, MT1X, MT1G, and

MT1F) play important roles in carcinogenesis of various cancer
types (Si and Lang, 2018). KEGG pathway enrichment analysis
demonstrated that up-regulated genes were significantly enriched
in protein digestion and absorption, ECM-receptor interaction
and PI3K/Akt signaling pathway while down-regulated genes
were enriched in mineral absorption and metabolic pathways,
and all those are significant pathways in various cancer types
been reported previously (Boroughs and DeBerardinis, 2015;
Dimitrova and Arcaro, 2015; Wang S.S. et al., 2017; Slattery et al.,
2018). Intriguingly, a host of altered genes were found to be
associated with ECM related pathways. The ECM, an extensive
part of the microenvironment in all tissues, providing a physical
scaffold for its surrounding cells, bind growth factors and regulate
cell behavior, plays a vital part in tumor progression (Kalluri,
2016; Nissen et al., 2019).

We also constructed PPI network and identified five hub
genes SPP1, COL1A2, IGF1, LPA, and LGALS3 as key candidate
genes potentially linked with pathogenesis of HCC. Their co-
expressed genes were then analyzed using cBioPortal online
platform. The results contained five query genes and the 50
most frequently altered neighbor genes. Among the five hub
genes, SPP1, COL1A2, IGF1, and LGALS3 and their co-expressed
genes constructed a network. LPA and its co-expressed genes
were isolated from the main network and didn’t have directly
interaction with it. That’s why only four out of five hub genes
contained in Figure 4A. Both SPP1 and COL1A2 are members
belonging to PI3K/Akt signaling pathway and ECM-receptor
interaction pathway regulating cell growth (Fang et al., 2017)
and drug resistance (Zhang et al., 2016). SPP1, also known
as osteopontin, has been reported to have the capability of
regulating cell behaviors (Rowe et al., 2014). Previous data
also showed that targeting SPP1 could inhibit gastric cancer
cell epithelial–mesenchymal transition through inhibition of
the PI3K/AKT signaling pathway (Song et al., 2019). In lung
adenocarcinoma, SPP1 was found to up-regulate PD-L1 and
subsequently facilitated the escape of immunity (Zhang Y.
et al., 2017). These studies demonstrated that SPP1 was highly
associated with the cancer invasion and progression, suggesting
its potential to serve as a biomarker and target for the diagnosis
and treatment of HCC. COL1A2, a member of group I collagen
family, has once been reported as a target of Let-7g thus inhibiting
cell migration in HCC (Ji et al., 2010) and gastric cancer cell
proliferation (Ao et al., 2018). In 2018, a study found that the
silencing of COL1A2 could inhibit the proliferation, migration,
and invasion of gastric cancer through regulating PI3K/AKT
signaling pathway, revealing the potency of COL1A2 in HCC (Ao
et al., 2018). IGF1, insulin-like growth factor 1, has the capability
of maintaining the stemness in HCC, and its role of serving
as an anticancer target has been confirmed by several studies
(Kaseb et al., 2011, 2014; Chen and Sharon, 2013; Bu et al., 2014).
IGF1 and IGF2 comprise of the IGF family, contributing largely
to the activation of the PI3K/Akt signaling pathway, which was
also found dysregulated by the KEGG analysis, thus enhancing
the cancerogenesis of HCC (Kasprzak et al., 2017). LPA is
lipoprotein A, a special kind of low-density lipoprotein, has
shown the evidence of causing inflammation and regulating HCC
cell proliferation (Pirro et al., 2017; Xu et al., 2017). Patients with
HCC showed a statistically significant serum LPA level higher
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than the healthy subjects, indicating its important role in HCC
patients (Malaguarnera et al., 2017). LGALS3, which encodes
the Galectin-3 protein, is regarded as a guardian of the tumor
microenvironment (Ruvolo, 2016). Recent studies have shown
that LGALS3 is tightly associated with several malignancies
such as Hodgkin’s lymphoma (Koh et al., 2014), acute myeloid
leukemia (Cheng et al., 2013), and HCC (Song et al., 2014). More
importantly, LGALS3 could increase the metastatic potential of
breast cancer, might accounting for the metastatic potential of
HCC (Pereira et al., 2019). Through validation in western blot
and IHC assays, we found that the protein expression of these
five hub genes was in accordance with their mRNA expression
in HCC patient tissues. Strikingly, LPA has not been tested by
western blot and IHC assays due to its large molecular weight
of 501 kDa, exerting huge difficulty in performing these assays.
Previous studies have shown that these genes are implicated in
the tumorigenesis and transformation (Oates et al., 1997; Orsó
and Schmitz, 2017; Wang Y.A. et al., 2017; Diao et al., 2018;
Ma et al., 2019). In our study, correlations of SPP1, COL1A2,
IGF1, LPA, and LGALS3 with patient prognosis highlight the
importance of these five genes as potential biomarkers to stratify
HCC patients as well as potential therapeutic targets, but concrete
roles of these genes need further investigation. In the future
studies, we will develop knockdown and overexpression HCC cell
lines and mouse models of these five hub genes to demonstrate
their importance in the progression of HCC in vitro and in vivo.

Taken together, this study integrated four datasets to screen
for reliable and accurate biomarkers of HCC and demonstrated
that several pathways are altered. Several hub genes with
the expression levels have significantly associated with clinical
outcome in HCC patients. Further functional study on the
mechanisms of those genes leading to HCC is under way.
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As cancer remains one of the main threats of human life, developing efficient cancer

treatments is urgent. Anticancer peptides, which could overcome the significant side

effects and poor results of traditional cancer treatments, have become a new potential

alternative these years. However, identifying anticancer peptides by experimental

methods is time consuming and resource consuming, it is of great significance to develop

effective computational tools to quickly and accurately identify potential anticancer

peptides from amino acid sequences. For most current computational methods, feature

representation plays a key role in their final successes. This study proposes a novel

fast and accurate approach to identify anticancer peptides using diversified feature

representations and ensemble learning method. For the feature representations, the

information is encoded from multidimensional feature spaces, including sequence

composition, sequence-order, physicochemical properties, etc. In order to better model

the potential relationships of peptides, multiple ensemble classifiers, LightGBMs, are

applied to detect the different feature sets at first. Then the obtained multiple outputs

are used as inputs of the support vector machine classifier, which effectively identifies

anticancer peptides. Experimental results on cross validation and independent test sets

demonstrate that our method can achieve better or comparable performances compared

with other state-of-the-art methods.

Keywords: anticancer peptides, feature representation, ensemble learning, pseudo amino acid composition,

system biology

INTRODUCTION

Cancer has become a common disease in humans, and it often leads to a higher mortality rate,
especially in developing and developed countries (Ortega-Garcia et al., 2020). The complexity and
heterogeneity of cancer are major obstacles for anticancer therapy development (Kasak and Laan,
2020; Umbreit et al., 2020). Traditional cancer treatments, such as radiation therapy, targeted
therapy and chemotherapy, often fail to distinguish cancer cells from normal cells. Traditional
surgery could not guarantee the precise removal of the diseased part, which is seriously harmful
to the patient’s body (An et al., 2019). At the same time, the risk of recurrence after surgery is
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high. In addition, cancer cells have developed resistance to
traditional anticancer drugs due to their overuse. Overall,
traditional treatment methods have obvious side effects and poor
results. In view of these problems, there is an urgent to discover
and design novel cancer treatments and anticancer agents to fight
against this deadly disease (Esfandiari Mazandaran et al., 2019;
Sima et al., 2019; Bahuguna et al., 2020).

In recent years, peptide-based therapy has become a potential
method of cancer treatments. This method can target and kill
cancer cells while do not impair the normal cells (Harris, 2020).
Anticancer peptides (ACPs) with short amino acid sequences
can avoid the disadvantages of traditional cancer treatments.
They generally have the characteristics of high specificity, high
tissue penetration, low production cost, toxic under normal
physiological functions, ease of synthesis and modification, etc.
And natural ACPs are safer than synthetic drugs (Feng and
Wang, 2019). The electrostatic interactions between ACPs and
cancer cell membranes are considered to be one of the main
factors for the selective killing of cancer cells (Lin et al., 2018;
Naguib et al., 2018). They are believed to play a vital role in the
selective toxicity of ACPs to cancer. Currently, many approved
peptide-based drugs are being evaluated in various stages of
clinical trials (Tesauro et al., 2019; Brunetti et al., 2020). As more
and more ACPs are identified and verified by experiments, it is
found that most ACPs are derived from protein sequences (Tyagi
et al., 2013). However, the discovery of novel ACPs from wet-
lab experimentation is laborious, time-consuming and expensive.
So, it is essential to develop efficient computational methods to
rapidly identify potential ACPs from the peptide sequences.

In the past decade, the accurate identification of ACPs from
peptide sequences remains an open research topic in the field
of bioinformatics and immunoinformatic. Machine learning
methods have been widely used to identify ACPs in many
researches. It mainly includes two key techniques which are
feature representation and classifier. For feature representation,
if the features of peptide sequences are well-extracted, it will be
easier to precisely predict the ACPs (Jing et al., 2019). At present,
some tools in the prediction of ACPs have been developed.
The first computational tool is called Anti-CP (Tyagi et al.,
2013), which encoded peptides with sequence-based features
and binary profiles to predict ACPs based on Support Vector
Machine (SVM). In another work, Hajisharifi et al. considered
two kinds features from the local correlation and Chou’s pseudo
acid amino composition (PseAAC) to improve the prediction
of ACPs (Hajisharifi et al., 2014). ACPP used an improved
feature encoding method via three type of protein relatedness
measure, integrating compositional information, centroidal and
distributional information of amino acids (Vijayakumar and
Lakshmi, 2015). iACP has referred that membrane interactions
are related to their conformation or the order of amino acids.
And, it can get better results through cross validation and
optimizing the g-gap dipeptide componentsmethod compared to
the previous predictors (Chen W. et al., 2016). Li et al. indicated
that the different types of feature combinations can improve the
prediction for ACPs (Chen W. et al., 2016). MLACP constructed
features using amino acid composition, atomic composition,
dipeptide composition, and physicochemical properties and

developed SVM and random forest (RF) methods to predict
ACPs (Manavalan et al., 2017). SAP employed 400D features
with g-gap dipeptide information and feature selection to identify
ACPs (Xu et al., 2018). ACPred-FL can orderly extract effective
features from sequence-based feature and a group of SVM
models (Wei et al., 2018). mACPpred explored seven feature
encodings and a two-step feature selection method to exclude
irrelevant features (Ge et al., 2016; Boopathi et al., 2019). Then,
the obtained features are input into SVM classifier to gain
the predicted result. In addition, a special repository named
CancerPPD was collected and created with the manually verified
ACPs from the published literature, patents and other databases
(Tyagi et al., 2015). It provides a wealth of information related
to the peptide for research and experimental personnel to use
for reference such as its origin, the nature of the peptide,
anticancer activity, terminal modification, conformation, etc.
The information is helpful to understand the comprehensive
properties of ACPs. And it also provides a reference for the design
and identification of ACPs (Lin et al., 2015).

In this paper, we propose a novel two-step prediction
model EnACP to accurately identify the ACPs. At first, feature
representation is composed of four categories: amino acid
composition, autocorrelation, pseudo amino acid composition
and profile-based features (Chen et al., 2018). Each type includes
a few modes. Finally, 19 kinds of feature patterns are generated.
For each feature pattern, LightGBM (Light Gradient Boosting
Machine) classifier is employed to generate the initial prediction
(Ke et al., 2017). The former predicted results as the new
features are input to SVM classifier to get the final prediction.
Cross validation results showed that the proposed EnACP model
performed better than the previous methods. Furthermore,
EnACP achieved comparable performances compared with the
existing methods on a new independent dataset. EnACP is
available at https://github.com/greyspring/EnACP.

MATERIALS AND METHODS

Dataset
In this study, we use two groups of ACP datasets from the
existed literatures to evaluate the performance of the proposed
method. For them, one dataset is used to test the cross-validation
performance compared with the existing models (Hajisharifi
et al., 2014). The other with an independent test dataset can better
measure the generalization capability of the model (Boopathi
et al., 2019).

For the two datasets, one is called ZH dataset including
138 ACPs and 206 non-ACPs for the 5-fold cross-validation
test. The other is from mACPpred for the independent test.
In mACPpred dataset, the training dataset consists of 266
ACPs and 266 non-ACPs, and the independent dataset consists
of 157 ACPs and 157 non-ACPs. The two group datasets
have the low redundancy which were processed to prevent
homology bias and high similarity in the related literatures.
Amino acid frequency distribution of ACP and non-ACP in the
two datasets are shown in Figure 1. The sequences containing
not 20 natural amino acids are eliminated. From Figure 2, most
of the peptide sequences are between 5 and 50 in length in the
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FIGURE 1 | Amino acid frequency distribution on cross-validation and

independent datasets. The number of 20 amino acids are counted in

mACPpred and ZH datasets. The horizontal axis represents the abbreviation of

20 amino acids. The ordinate represents the number of amino acids.

two datasets especially in mACPpred-ACP and ZH-non-ACP.
For mACPpred-non-ACP and ZH-ACP, their ratio is 94.6 and
96.4%, respectively.

Features Representation
There are 19 kinds of features in total used in this study, three of
which belong to amino acid composition, four of which belong to
autocorrelation features, four of which belong to pseudo amino
acid composition, and eight of which belong to profile-based
features (Liu et al., 2015, 2017; Liu, 2019).

Amino Acid Composition
Basic kmer (Kmer) (Liu et al., 2008) is a very simple feature
extraction method that represents any peptide sequence as a
vector consisted of occurrence frequencies of k neighboring
amino acids. Distance-based Residue (DR) (Liu et al., 2014b)
extracts features from sequence by counting the occurrence
frequencies of all possible residue pairs within a certain distance.
Just like the DR method, the method of Distance-Pairs and
reduced alphabet scheme (Distance Pair) (Liu et al., 2014a)
also extracts features from sequence by counting the occurrence
frequencies of residue pairs within a certain distance, except that
the residue types are reduced by clustering.

FIGURE 2 | Peptide length distribution of ACP and non-ACP on mACPpred

and ZH datasets. The horizontal axis represents the number of statistics. The

ordinate represents the length of the peptide sequence.

Autocorrelation Features
A peptide sequence P is often formulated in the following format,
with the N-terminus at the left, and the C-terminus at the right.

P = R1R2R3···RL

where R1 represents the 1st amino acid, R2 represents the 2nd
amino acid, and so forth.

Given a physicochemical index of amino acids, The Auto
covariance (AC) (Cao et al., 2013) approach measures the
correlation between two residues separated by distance d, which
can be calculated as:

AC(u, d) =
L−d
∑

i=1

(

Iu(Ri)− Iu
) (

Iu(Ri+d)− Iu
)

/
(

L− d
)

where u indicates the physicochemical index, Iu(Ri) means the
index value of Ri, and Iu is the average index value along the
whole sequence:

Iu =

L
∑

i=1

Iu(Ri)/L

The Cross covariance (CC) (Cao et al., 2013) approach measures
the correlation between two residues separated by distance d
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based on two different physicochemical indices, which can be
calculated by:

CC(u, v, d) =
L−d
∑

i=1

(

Iu(Ri)− Iu
) (

Iv(Ri+d)− Iv
)

/
(

L− d
)

where u and v indicate two different indices, Iu(Ri)(Iv(Ri)) means
the index value of Ri, and Iu(Iv) is the average index value along
the whole sequence.

Auto-cross covariance (ACC) (Cao et al., 2013) is the
combination of AC and CC. Physicochemical distance
transformation (PDT) (Liu et al., 2012) is a sequence-based
method, in which any peptide sequence is firstly encoded as a
series of numbers by amino acid index (AAindex) (Kawashima
et al., 2008), and then a fixed length vector is extracted through
distance transformation.

Pseudo Amino Acid Composition
Parallel correlation pseudo amino acid composition (PC-
PseAAC) (Chou, 2001) is an approach that takes the sequence-
order information into account and represents any peptide
sequence as:

P = [x1 x2 x3 · · · x20 x20+1 · · · x20+λ]

where

xu =























fu
20
∑

i=1
fi+w

λ
∑

j=1
θj

(1 ≤ u ≤ 20)

wθu−20
20
∑

i=1
fi+w

λ
∑

j=1
θj

(20+ 1 ≤ u ≤ 20+ λ)

where fi(i = 1,2,. . . ,20) is the occurrence frequency of the 20
native amino acids in the peptide; the integer λ represents the
highest tier of correlation along the sequence; w is the weight
factor ranging from 0 to 1; θj(j=1, 2, . . . , λ) is the j-tier correlation
factor that is defined as:

θj =
1

L− j

L−j
∑

i=1

2
(

Ri,Ri+j

) (

1 ≤ j ≤ λ
)

Where the correlation function is given by

2
(

Ri,Rj
)

=
1

3

{

[

H1(Ri)−H1(Rj)
]2

+
[

H2(Ri)−H2(Rj)
]2

+
[

M(Ri)−M(Rj)
]2

}

where H1(Ri), H2(Ri), and M(Ri) are the standardized
hydrophobicity value, hydrophilicity value, and side-chain
mass of Ri, respectively.

Series correlation pseudo amino acid composition (SC-
PseAAC) (Chou, 2005) is a variant of PC-PseAAC that represents
any peptide sequence as:

P = [x1 · · · x20 x20+1 · · · x20+λ x20+λ+1 · · · x20+2λ]

where

xu =























fu
20
∑

i=1
fi+w

2λ
∑

j=1
θj

(1 ≤ u ≤ 20)

wθu−20
20
∑

i=1
fi+w

2λ
∑

j=1
θj

(20+ 1 ≤ u ≤ 20+ 2λ)

where fi(i=1,2,. . . ,20) is the occurrence frequency of the 20 native
amino acids in the peptide; the integer λ represents the highest
tier of correlation along the sequence; w is the weight factor
ranging from 0 to 1; θj(j=1, 2, . . . , 2λ) is the j-tier correlation
factor that is defined as:



























































θ1 =
1

L−1

L−1
∑

i=1
H1
i,i+1

θ2 =
1

L−1

L−1
∑

i=1
H2
i,i+1

· · ·

θ2λ−1 =
1

L−λ

L−λ
∑

i=1
H1
i,i+λ

θ2λ = 1
L−λ

L−λ
∑

i=1
H2
i,i+λ

where the correlation functions are given by

{

H1
i,j = h1 (Ri) · h

1
(

Rj
)

H2
i,j = h2 (Ri) · h

2
(

Rj
)

where h1(Ri) and h2(Ri) are the standardized hydrophobicity and
hydrophilicity values of Ri, respectively.

General parallel correlation pseudo amino acid composition
(PC-PseAAC-General) is an enhanced version of PC-PseAAC,
in which both the built-in indices extracted from AAindex and
the indices provided by users can be incorporated. General
series correlation pseudo amino acid composition (SC-PseAAC-
General) is an enhanced version of SC-PseAAC, in which both
the built-in indices extracted from AAindex and the indices
provided by users can be incorporated.

Profile-Based Features
The Top-n-gram (Liu et al., 2014b) approach extracts
evolutionary information from the frequency profiles calculated
from the multiple sequence alignments outputted by PSI-BLAST
(Altschul et al., 1997), and any peptide sequence is represented
as a fixed dimension feature vector by counting the occurrence
times of each Top-n-gram. Profile-based physicochemical
distance transformation (PDT-Profile) is similar with PDT
except that the features are extracted from frequency profiles.
Distance-based Top-n-gram (DT) extends the original Top-n-
gram approach by considering the relative position information
of Top-n-gram pairs in peptide sequences, and the feature
vector of peptide sequence was calculated by counting the
occurrences of all possible Top-n-gram pairs within a certain
distance threshold.

Profile-based Auto covariance (AC-PSSM) (Dong et al., 2009)
transforms the PSSM of a peptide into fixed-length vector,
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in which the AC variable measures the correlation of the
same property between two residues separated by a distance.
Profile-based Cross covariance (CC-PSSM) (Dong et al., 2009)
transforms the PSSM of a peptide into fixed-length vector, in
which the CC variables measure the correlation of two different
properties between two residues separated by a distance. Profile-
based Auto-cross covariance (ACC-PSSM) (Dong et al., 2009)
represents any peptide sequence as a feature vector consisting
of ACC variables that are the combination of AC variables and
CC variables. PSSM distance transformation (PSSM-DT) (Xu
et al., 2015) extracts features from the PSSM of a peptide which
measure the occurrence probabilities of any amino acid pairs
separated by a distance. PSSM relation transformation (PSSM-
RT) (Zhou et al., 2017) extracts features from the PSSM of a
peptide by utilizing the relationships of evolutionary information
between residues.

Support Vector Machine and LightGBM
In this study, the dataset has exactly two class labels: anticancer
peptides (positive) and non-anticancer peptides (negative).
Support vector machines (SVMs) are very suitable for binary
classification, and because of the strong generalization ability
for small datasets, they are used extensively in biomedical data
mining (Chen et al., 2019; Jiang et al., 2020). SVM classifies data
by finding the best hyperplane to separate all data points of one
class from these of another class. The best hyperplane of SVM
is the hyperplane with the largest margin between two classes.
SVM is firstly proposed for linearly separable data, and when the
data are non-separable, the kernel functions such as radial basis
function can be used.

LightGBM (Light Gradient Boosting Machine) is a distributed
gradient lifting framework based on decision tree algorithm
proposed by Microsoft in 2017 (Ke et al., 2017). In order to
shorten the computation time, LightGBM as a good ensemble
learning algorithm was designed for two main reasons (Xia
et al., 2017). For one thing, it can reduce the use of memory
and the communication cost, improves the efficiency when
multiple machines are parallel. For another thing, it designs and
implements a good strategy for feature selection.

Methodology
To develop an accurate predictor of ACPs, we present a two-
step ensemble learning method called EnACP. The framework
of the model is shown in Figure 3. In the first step, 19
feature encodings of the peptide sequences are extracted in
terms of amino acid composition, autocorrelation, pseudo amino
acid composition and profile-based features as descripted in
section Features Representation. For each group of feature
encodings, the initial prediction is obtained separately using an
ensemble learning classifier LightGBM. In this way, the complex
higher-dimensional features are dispersed to lower dimensions.
Then, the outputs of all LightGBMs as combinative nineteen-
dimensional feature vector are input into an optimized SVM
classifier to capture the hidden relationships. At last, the peptide
sequence is identified whether it is ACP or non-ACP.

For a given binary classification problem about a set of
sequences Q(s), the class labels C={C1, C2, . . . , Cs}, Ciǫ{0, 1}, and

FIGURE 3 | The flow diagram of identifying anticancer peptides. Peptide

sequences are represented by 19 feature extraction methods. According to

the features obtained by each extraction method, LightGBM is employed to

classify the peptide sequences. Then, the outputs of all LightGBMs are input

into SVM classifier to predict the peptide sequence as ACP or non-ACP. Kmer:

subsequences of length K contained within a peptide sequence; DT,

Distance-based Top-n-gram; AC, Auto Covariance; PDT, Physicochemical

Distance Transformation; SVM, Support Vector Machine.

each sample qi has k group features <F1(qi), F2(qi),... Fk(qi)>,
where Fj is the jth group features. Each group has several related
features. Firstly, all the features are generated by the 19 kinds
of feature representation algorithm for all the sequences. For
the train dataset, LightGBM is employed to classify each group
features, respectively. The LightGBM classification results of k
group features are input SVM to train the model. For the test
dataset, the inputs are generated according to the first layermodel
of the train data set. Finally, ACPs or non-ACPs are identified for
the test peptide sequences. The algorithm flow is described in the
following pseudocode.

As shown from the pseudocode, there are three factors that
affect the time complexity of the model EnACP, such as feature
extraction, LightGBM and SVM algorithms. Let p and n be
the numbers of the most features Fi(qi) and train samples Qt ,
respectively. And the length of the longest sequence is l. Different
feature extraction methods are relatively independent, and they
can be generated in parallel. So, the most complex feature
extraction method determines the time complexity of the feature
extraction stage. For the 19 groups of feature extraction methods,
the profile-based method with the highest complexity is O(n∗l3).
LightGBM is implemented using three technologies to improve
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Algorithm: EnACP

Input: a sequences set Q: (qi ,Ci ), k groups of feature types, class

label Ci={0, 1}, qi is a peptide sequence, Qt is train dataset, Qv is test

dataset.

Begin

1. for each sequence qi in Q:

// Initialize all features of qi , each Fi (qi ) represent one group

of features

2. F(qi )=<F1(qi ), F2(qi ),..., Fk (qi )>={}

// Initialize second level features

3. L2FK(qi )[1..k] ={}

// Feature extract

4. for j = 1 to k

5. Generate features Fj (qi ) according to feature representation

algorithm Fj

6. endfor

7. endfor

8. for train dataset Qt: (qt,Ct)

9. for m = 1 to k

// Classify the sequences Qt in the first level

10. L1Modelm = LightGBM(F(qt), Ct)

11. L2FK(qt)[m]= L1Modelm(F(qt)-)

12. endfor

// Train the model in the second level

13. L2Model=SVM (L2FK(qt) [1..k], Ct)

14. endfor

15. for test dataset Qv: (qv,Cv )

16. for n = 1 to k

// Classify the sequences Qv in the first level

17. L2FK(qv ) [n]= L1Modeln(F(qv )-)

18. endfor

// Predict the peptide sequence qv: ACP or non-ACP

19. FinalPredict(qv )= L2Model(L2FK(qv ) [1..k])

20. endfor

End

the model efficiency: gradient-based one-side sampling, exclusive
feature bundling, and histogram algorithm. These techniques
have resulted in more or less a reduction in the number of
samples and features. Moreover, it also supports feature parallel
and data parallel processing. So, its worst time complexity will not
exceed O(p∗ n). And the computational complexity of an SVM is
O(n3) for the training dataset. So the worst-case time complexity
of EnACP is max(O(n∗l3), O(p∗n), O(n3)-). But most of the
features will usually be excluded in the first layer. Then the SVM
algorithm in the second layer will be significantly speeded up. So
the actual calculation time will not reach the upper-bound in the
train stage. For the test dataset, the time is mainly consumed in
the feature extraction stage after the parameters of LightGBM and
SVM are optimized.

Evaluation
The metrics for performance evaluation used in our experiments
include Receiver Operating Characteristic curve (ROC), Area
Under a ROC Curve (AUC), Sensitivity (Sn), Specificity (Sp),
Accuracy (Acc), and the Matthews correlation coefficient (MCC)
(Plyusnin et al., 2019). Suppose TP, FP, TN and FN are the
abbreviations for true positives, false positives, true negatives, and

false negatives respectively, then the evaluation metrics can be
calculated as:

Sp =
TN

TN + FP

Sn =
TP

TP + FN

Acc =
TP + TN

TP + TN + FP + FN

MCC =
TP · TN − FP · FN

√
(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)

RESULTS

Performance on Different Feature
Representations
In order to find the effective feature coding representation
of the peptide sequence, four kinds of feature representation
methods including 19 feature encodings were extracted in terms
of amino acid composition, autocorrelation, pseudo amino acid
composition and profile-based features. Referring to the first
step of the model, the ACPs were identified by LightGBM
classifier using various feature codes, respectively. From the
overall results in Figure 4, they were ranked by pseudo amino
acid composition, amino acid composition, profile-based features
and autocorrelation. In terms of the various feature codes, pseudo
amino acid composition worked best according to the value of
the performance indexes Acc, AUC, Sp, Sn, and MCC. Its MCC
was nearly 14 percentage points higher than the second place.
And, its Acc, Sn, and Sp were about 7 percentage points higher
than the second-place method from amino acid composition.
Among them, autocorrelation encoding was the worst, and its
performance indexes were all below 80%.

Performance Comparison on
Cross-Validation Dataset
To verify the effect of our model, we compared the results of a
few popular methods such as Li method (Li andWang, 2016), ZH
method (Hajisharifi et al., 2014) and iACP (Chen W. et al., 2016)
on ZH dataset with 5-fold cross-validation. In order to compare
the predictive capability, the predicted results of the fourmethods
were showed in Table 1. Judging from the result, our predictor
EnACP performed better than other three methods and reached
the first place in the evaluation indexes on Sn, Acc, and MCC. In
all the evaluation indexes, EnACP only lost to iACP in Sp index.
Acc, Sn, and MCC of our method were about 0.6 to 5.7%, 2.2
to 7.6%, and 1.7 to 12.6% higher than the predictive results of
other methods, respectively. In terms of Sp index, our method
was only 0.9% lower than iACP method, but also much higher
than other methods. From the discussion above, it can be seen
that our method may automatically learn representative features
from the numerous feature codes. The two step combined
classifiers with LightGBM and SVM may improve the accuracy
of prediction and achieve better identification efficiency between
ACPs and non-ACPs.

Furthermore, for the stability of the model, 5-fold cross
validation experiment was executed 30 times randomly.
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FIGURE 4 | Performance of four kinds of feature encodings on independent dataset in AUC, Sn, Sp, Acc, and MCC. (A) Performance of feature encodings based on

amino acid composition, (B) Performance of feature encodings based on autocorrelation, (C) Performance of feature encodings based on pseudo amino acid

composition, (D) Performance of feature encodings based on profile.

According to the statistical results of various evaluation metrics
shown in Figure 5, several indicators fluctuate little. And
the standard deviation of Acc, MCC, Sn, and Sp is 0.0005,
0.0012,0.0012, and 0.0011, respectively. Therefore, the cross-
validation analysis showed the stability and robustness of our
model EnACP.

Performance Comparison on Independent
Test Datasets
To further verify the power of the current predictor, three
independent datasets are analyzed from mACPpred (Boopathi
et al., 2019), ACPP (Vijayakumar and Lakshmi, 2015), and
Tyagi’s paper (Tyagi et al., 2013) named mACP_Ind, ACPP_Ind,
and Tyagi_Ind, respectively. For the independent test dataset
mACPpred_Ind, SVMACP and RFACP belong to MLACP
algorithm based on RF and SVM method, respectively. For this
dataset, we refer to the experimental results from the literature
mACPpred (Table 2). And for the independent test datasets

TABLE 1 | Performance comparison of different methods on 5-fold

cross-validation dataset.

Methods Acc Sn Sp MCC

EnACP 0.954 0.928 0.981 0.910

Li method 0.942 0.906 0.967 0.879

ZH method 0.897 0.852 0.927 0.784

iACP 0.948 0.884 0.990 0.893

ACPP_Ind and Tyagi_Ind, we compare our algorithms EnACP
with mACPpred and iACP (Table 3). Experimental results on
independent tests show that this proposed EnACP predictor is
quite more effective and promising for identification of ACPs
compared with the previous methods.

Compared with mACPpred method, our model EnACP had
achieved excellent results, among which, MCC, Acc, Sn, and Sp
were all about 2, 1, 0.7, and 1.2% higher, respectively, AUC was
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FIGURE 5 | Stability of the EnACP model on 5-fold cross-validation dataset.

Five-fold cross validation experiment was executed 30 times randomly. And

the metrics of Acc, MCC, Sn and Sp were plotted and analyzed.

TABLE 2 | Performance comparison of different methods on the independent test

dataset mACPpred_Ind.

Methods Acc Sn Sp MCC AUC

EnACP 0.924 0.892 0.955 0.849 0.968

mACPpred 0.914 0.885 0.943 0.829 0.967

SVMACP 0.768 0.554 0.981 0.592 0.896

RFACP 0.707 0.414 1.000 0.511 0.891

iACP 0.667 0.580 0.753 0.338 0.747

TABLE 3 | Performance comparison of different methods on the independent test

datasets ACPP_Ind and Tyagi_Ind.

Datasets Methods Acc Sn Sp MCC AUC

EnACP 0.948 1 0.9 0.901 0.992

ACPP_Ind mACPpred 0.948 0.973 0.925 0.898 0.989

iACP 0.74 0.919 0.575 0.558 0.875

EnACP 0.853 1 0.708 0.739 0.996

Tyagi_Ind mACPpred 0.884 0.957 0.813 0.777 0.948

iACP 0.8 0.894 0.708 0.612 0.905

basically flat. MCC, Acc, Sn, and AUC obtained from our model
EnACPwere about 25.7 to 51.1%, 15.6 to 25.7%, 31.2 to 47.8%, 7.2
to 22.1% higher, respectively, compared with SVMACP, RFACP,
and iACP. Additionally, it can also be seen from the results of
Figure 4 and Table 2 that the EnACP method has an advantage
over the pseudo amino acid composition method with one step
prediction. Sn is only slightly lower less than a percentage point.
And, MCC, Sp, Acc, and AUC obtained from EnACPmodel were

TABLE 4 | Pairwise comparison of ROC curves in three datasets.

Datasets P(A, B) EnACP mACPpred iACP

mACP_Ind EnACP — 0.9705 <0.0001

mACPpred — — <0.0001

iACP — — —

ACPP_Ind EnACP — 0.6612 0.0036

mACPpred — — 0.0076

iACP — — —

Tyagi_Ind EnACP — 0.0384 0.0015

mACPpred — — 0.2381

iACP — — —

The comparison P(A, B) is defined the statistical significance P-value of ROC curves

between algorithm A and algorithm B.

TABLE 5 | The comparison triplets between algorithm pairs from EnACP,

mACPpred and iACP.

T(A,B) EnACP mACPpred iACP

EnACP — 1/2/0 3/0/0

mACPpred 0/2/1 — 2/1/0

iACP 0/0/3 0/1/2 —

The comparison triplet T(A, B) is defined to be the numbers of the three datasets where

algorithm A performs better, equally well and worse, compared with algorithm B in terms

of P-value.

about 4, 4, 2, 2% higher than the pseudo amino acid composition
method with one step prediction. For ACPP_Ind and Tyagi_Ind
datasets, EnACP achieves the similar performance advantages on
AUC and Sn.

The statistical significance is evaluated using rank-based ROC
curves comparison to determine whether EnACP performs better
than, similarly to or worse than the other algorithms (DeLong
et al., 1988; Hanley and Hajian-Tilaki, 1997). The results are
shown in the following Table 4. For a confidence level of 0.95,
EnACP perform statistically significantly better than iACP on
all datasets. EnACP performs similarly or slightly better than
mACPperd algorithms on mACP_Ind and ACPP_Ind. And
mACPpred performs better than iACP on the previous two
datasets. The algorithms EnACP and mACPperd perform better
than iACP with statistical significance. The comparison triplets
are also statistically tabulated between algorithm pairs from
EnACP, mACPpred and iACP which show that one algorithm
performs better, equally well and worse, compared with another
algorithm in Table 5.

Comparison of Different Classification
Methods
Based on many previous studies, using SVM classifier for task
of peptide classification outperforms most of other classical
classifiers such as AdaBoost, decision tree (DT), logistic
regression (LR), Naïve Bayes (NB), random forest (RF) (Becker
et al., 2011). We also conducted a comparative study on the two
datasets and obtained the similar conclusion in the second step of
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FIGURE 6 | Comparison of SVM with other classifiers on 5-fold

cross-validation dataset. Four performance indicators which are Sn, Sp, Acc,

and MCC are compared using six classifiers that are AdaBoost, decision tree

(DT), logistic regression (LR), Naïve Bayes (NB), random forest (RF), and

Support Vector Machine (SVM), respectively.

the model EnACP. Experimental results on both the 5-fold cross-
validation and independent test showed that SVM, NB and LR
were relatively stable, and SVM has the best overall effect.

In order to verify the performance of SVM classifier, we
randomly selected scrambled data before 5-fold cross-validation.
Finally, the average result of six classifiers were obtained after
30 times of 5-fold cross validation, as shown in Figure 6. Each
classifier performed well, but in the comprehensive comparison,
SVM, LR, and NB classifiers were better. On the whole, SVM
classifier worked best. SVM achieved the first place in the three
indexes of Acc, MCC, and Sp. For the Sn index, it was only about
1 and 2% lower than the classifier of NB and LR, respectively.

In addition, independent test dataset mACPpred_Ind was
used to measure the performance and categorization capabilities
of the optimal model in Figure 7. Compared with the cross-
validation experiment, the AUC evaluationmetric was added into
this experiment except Acc, Sn, Sp, andMCC. Except for Sn, SVM
classifier ranked the first place in Acc, AUC, Sp, and MCC, which
was similar to the cross-validation result. But, SVM had better
performance relative to cross validation tests. For example, for
AUC index, SVMwas more than 13 points higher than AdaBoost
and DT. For Sp index, SVM is more than 5 points higher than
AdaBoost, LR and DT. For MCC, SVM was 16% higher than RF
and DT.

DISCUSSION

Even to this day, it is difficult to trace the cause of cancer
because of its complex mechanisms. In spite of various treatment

FIGURE 7 | Comparison of SVM with other classifiers on independent test

dataset mACPpred_Ind. Five performance indicators which are AUC, Sn, Sp,

Acc, and the Matthews correlation coefficient (MCC) are compared using six

classifiers that are AdaBoost, decision tree (DT), logistic regression (LR), Naïve

Bayes (NB), random forest (RF), and Support Vector Machine (SVM),

respectively.

strategies, the effect was not ideal. Peptide-based therapy has
become a research field of precision medicine. The rapid and
accurate identification of ACPs from peptide sequences based on
machine learning methods can be better applied to anticancer
drug development and other biomedical experiments (Diller
et al., 2018).

From the experimental results of the independent test
datasets, our model EnACP performs well overall especially the
high AUC and sensitivity. The higher the sensitivity is, the
better the predicted model of ACPs is. The highly sensitive
discovery of anticancer peptides plays an important role in
the design of anticancer and anti-tumor synthetic drugs. The
innovation of our model mainly includes the following points.
The model EnACP is robust and easy to extend. Multi-group
feature encodings contain abundant information. For each group
of feature encoding, LightGBM as the first layer of EnACP
can auto pre-learning and select the key features, respectively.
Actually, for the higher-dimensional features, the computation
is not very large. Meanwhile, the model implements the multi-
layer feature learning strategy. Moreover, the second layer has
fewer features and the model is more efficient to identify the
ACPs and non-ACPs. The proposed EnACP performs better in
identifying whether the peptide sequence is ACP compared with
the existing methods. Its accuracy and stability may be attributed
to the following reasons.

At first, how to effectively extract the valuable information
of ACPs is a major challenge for all the predicted methods. It
has been proved that the membrane interaction and insertion of
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membrane-active peptides could be related to the order of amino
acids. Systematic analysis revealed that some physiochemical
properties of peptides are not clearly sufficient to predict their
selectivity for example net positive charge, hydrophobicity, and
hydrophobic moments (Chen W. et al., 2016). Some methods
also are developed using amino acid composition and binary
profiles as input features (Lin et al., 2015). Therefore, in order
to find a suitable feature representation, EnACP extracts 19 kinds
of features from four aspects, including amino acid composition,
auto correlation, pseudo amino acid composition and profile-
based features.

Then, in purpose to accurately identify the ACPs quickly,
LightGBM classifier is applied to detect the peptide sequences
with the 19 kinds of features. As an ensemble learning method,
LightGBM can automatically optimize to achieve dimension
reduction and effectively prevent overfitting. On the other hand,
it can better discover the relationship of peptides and select the
representative feature description from the integrating multiple
groups features (Huang et al., 2010). In addition, the secondary
structure and tertiary structure prediction characteristics of
peptides can be added into this model as a part of basis feature
description, which may further improve the performance of the
model (Ma et al., 2015). Furthermore, neural network method
can also be explored for the identification of ACPs with the
increase of datasets (Hashemifar et al., 2018).

Finally, in terms of the used classifiers, many prediction tools
have demonstrated the effectiveness of the SVM method. As a
two-step prediction model, SVM finally outputs the identified
results with grid search to optimize its parameters. Besides,
in order to expedite the identification of ACPs, we called
LightGBMwith the default parameters in the scikit-learn package
library. Better model parameters may be obtained by modern
optimization methods to improve the prediction performance.

CONCLUSION

In order to effectively identify ACPs from amino acid
sequences, a novel hybrid predicted model EnACP is proposed
in this paper. EnACP involves two-step strategy based on
ensemble learning method. Firstly, multi-type and multi-group
feature descriptions were constructed based on amino acid
composition, autocorrelation, pseudo amino acid composition
and profile-based features. In purpose to find a suitable feature

representation and accurately classify quickly, the ensemble
classifier LightGBM was applied to detect the peptide sequences.
Secondly, multiple groups of results from the output of
LightGBMs were integrated as the input of SVM model to
enhance the final prediction accuracy of ACP as well as non-ACP.
To validate the performance of EnACP, two group experiments
were performed on cross validate dataset and independent
dataset. The experimental results indicated that the proposed
EnACP model achieved competitive performance on some
performance metrics. On the other hand, our model can be used
to solve other protein sequence problems, such as homologous
detection of proteins (Chen J. et al., 2016), prediction of various
sites (Chou and Shen, 2008, 2010), prediction of protein-protein
interaction (Wang et al., 2019), etc.
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Most eukaryotic genes are interrupted by one or more introns, and only prokaryotic
genomes are composed of mainly single-exon genes without introns. Due to the
absence of introns, intronless genes in eukaryotes have become important materials for
comparative genomics and evolutionary biology. There is currently no cohesive database
that collects intronless genes in plants into a single database, although many databases
on exons and introns exist. In this study, we constructed the Rosaceae Intronless
Genes Database (RIGD), a user-friendly web interface to explore and collect information
on intronless genes from different plants. Six Rosaceae species, Pyrus bretschneideri,
Pyrus communis, Malus domestica, Prunus persica, Prunus mume, and Fragaria vesca,
are included in the current release of the RIGD. Sequence data and gene annotation
were collected from different databases and integrated. The main purpose of this study
is to provide gene sequence data. In addition, attribute analysis, functional annotations,
subcellular localization prediction, and GO analysis are reported. The RIGD allows users
to browse, search, and download data with ease. Blast and comparative analyses are
also provided through this online database, which is available at http://www.rigdb.cn/.

Keywords: intronless genes, gene annotations, platform, database, Rosaceae

BACKGROUND

Genes in eukaryotes are generally composed of exons and introns, and according to the
presence and absence of introns, they can be divided into intron-containing genes and intronless
genes. It is generally believed that intron number is closely related to the complexity of the
eukaryotic genome. If an organism is complex, it has more introns (Sakharkar et al., 2004).
Most eukaryotic genes have two or more introns, while prokaryotes have a large number of
intronless genes (Rogozin et al., 2005). Intronless genes are not interspaced by introns and
can be sequentially encoded into proteins. Intronless genes can serve as focal point in analyses
of gene function and evolution. For example, compared with intron-containing homologs,
intronless genes can be used as a model to study the important role of introns, which are
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only found in eukaryotes (Tine et al., 2011). Furthermore,
studies on intronless genes help to solve some evolutionary
issues, including (1) the main factors leading to the emergence
of intronless genes (gene duplication, inheritance from ancient
prokaryotes, retroposition or other mechanisms), (2) the
evolutionary significance of retroposition (retrogenes are
considered to be intronless), and (3) the biological origins of
introns (is the introns-early hypothesis or introns-late hypothesis
more correct) (Sakharkar and Kangueane, 2004).

In eukaryotes, the proportion of intronless genes varies from
2.7 to 97.7% of the genome (Louhichi et al., 2011). Currently,
researchers have identified intronless genes in some species of
mammals, hindmouths, bony fish, and plants (Agarwal and
Gupta, 2005; Sakharkar et al., 2006; Jain et al., 2008; Zou et al.,
2011). In Jain et al. (2006) studied the early auxin response SAUR
(small auxin-up RNA) gene family in rice and found that all
58 members of the gene family were intronless genes. In the
process of studying the functions of gene families in Arabidopsis,
researchers also found a large number of intronless genes in
the f-box protein family, DEAD box RNA helicase family, and
PPR (pentatricopeptide repeat) gene family (Aubourg et al., 1999;
Lecharny et al., 2003; Lurin et al., 2004). In addition, some of the
largest families, such as the G-protein receptor family and the
olfactory receptor family, are also composed of intronless genes
(Gentles and Karlin, 1999; Takeda et al., 2002). Currently, the
most studied intronless gene is the histone gene in the human
genome. Researchers aim to explore the role of intronless genes
in life processes by studying these gene families.

Since researching intronless genes in eukaryotes can help
researchers better understand the evolutionary mechanism of
related genes and genomes, the study of intronless genes
has attracted more and more attention. In recent years,
the construction of intronless gene databases has attracted
great attention as the research on intronless genes. Relevant
databases can provide important data resources for functional
and evolutionary studies, facilitate researchers to carry out
relevant research. So far, there are mainly databases on intronless
genes: GENOME SEGE (Sakharkar and Kangueane, 2004), IGD
(Louhichi et al., 2011), PIGD (Yan et al., 2014), and IGDD (Yan
et al., 2016). GENOME SEGE contains NCBI data regarding the
intronless genes of eukaryotes, however, the database website has
stopped updating the data, and users are unable to access it. The
IGD database, which includes 687 human intronless genes, was
published in 2011. PIGD provides a platform for the collection,
integration, and analysis of intronless genes in Poaceae. IGDD
provides a comprehensive platform for researchers to explore
intronless genes in dicot plants.

To build a centralized platform, we present the Rosaceae
Intronless Genes Database (RIGD)1. This database, with a user-
friendly web interface, covers a collection of intronless genes from
six genome-sequenced Rosaceae species. The RIGD integrates
functional and evolutionary annotations, making it easy for
researchers to find content of interest and download detailed
information. The RIGD provides a comparative analysis of
genome data from six species in conjunction with the Blast

1http://www.rigdb.cn/

TABLE 1 | The sources of six species in RIGD.

Species Sources

Pyrus
bretschneideri

GDR (ftp://ftp.bioinfo.wsu.edu/www.rosaceae.org/Pyrus_x_
bretschneideri/Pbretschneideri-genome.v1.1)

Pyrus
communis

GDR (ftp://ftp.bioinfo.wsu.edu/species/Pyrus_communis/
Pcommunis_DH_genome.v2.0)

Malus
domestica

NCBI (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/002/114/
115/GCF_002114115.1_ASM211411v1)

Prunus persica GDR (ftp://ftp.bioinfo.wsu.edu/species/Prunus_persica/
Prunus_persica-genome.v2.0.a1)

Prunus mume NCBI (ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/346/
735/GCF_000346735.1_P.mume_V1.0)

Fragaria vesca GDR (ftp://ftp.bioinfo.wsu.edu/species/Fragaria_vesca/Fvesca-
genome.v4.0.a1)

program. Compared to the databases specifically for individual
organisms, we expect the RIGD to be a useful resource for the
research community, especially for studies on molecular function
and the evolution of intronless genes.

CONSTRUCTION AND CONTENT

Data Sources
Currently, the RIGD includes the following six Rosaceae species:
Pyrus bretschneideri, Pyrus communis, Malus domestica, Prunus
persica, Prunus mume, and Fragaria vesca. Genome data of Malus
domestica and Prunus mume were downloaded via FTP from the
NCBI genomes database2. Genome data of the other species were
downloaded from the GDR database (Jung et al., 2019)3 (Table 1).

Identification of Rosaceae Intronless
Genes
A set of strict standards was used to identify Rosaceae intronless
genes. First, we used a Perl script to extract genes containing
only one line of "exon" from each genome information in
the genome annotation files (GFF/GFF3 format files) and then
used them as candidate intronless genes for further screening.
The basis for the screening was: if there was only one row of
"exons" in the genome information, indicating that the coding
sequence is not disrupted by an intron, then the gene is an
intronless gene. Since the mitochondrial genes and chloroplast
DNA do not contain introns, the genes annotated as "Mt"
(mitochondria) and "Pt" (chloroplast) were rejected. In addition,
genes that are not mapped to the chromosome were removed.
Genes defined as "pseudogene" or "transposable element" in the
annotation files were deleted because a pseudogene cannot be
transcribed or translated, it is usually not functional. Through
the above steps, we obtained no redundant intronless genes in
six Rosaceae species. Using the identified intronless gene number,
we used a Perl script to extract the protein sequence and CDS
sequence of the intronless genes and renumber them according
to certain criteria.

2ftp://ftp.ncbi.nlm.nih.gov/genomes/all/
3https://www.rosaceae.org/
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FIGURE 1 | The flowchart describing the analysis of RIGD. After the identification of intronless genes, attribute analysis, functional annotations, subcellular
localization prediction, and GO analysis were accomplished.

FIGURE 2 | The Flowchart of RIGD Sitemap. All the data is stored in MySQL database, the control of the platform is implemented by PHP and Perl scripts.

Intronless Gene Annotation
We established the following procedure to analyze each intronless
gene stored in RIGD: (Figure 1). (1) A Perl script was
used to extract the position information for intronless genes
on corresponding chromosomes, and calculate the length of
protein sequences. (2) Chromosome ideograms were plotted by
using the chromosomeplot tool in MATLAB software4 (Snijders

4https://www.mathworks.com/help/bioinfo/ref/chromosomeplot.html

et al., 2001). (3) The protein sequences were compared to the
NCBI non-redundant protein sequences database (nr)5 by using
Diamond with default parameters6 (Buchfink et al., 2015). The
GI numbers were obtained, and then the bioperl module7 was
used to submit GI numbers to NCBI for the corresponding

5ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz
6https://github.com/bbuchfink/diamond
7https://bioperl.org/
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FIGURE 3 | An overview of the website page in the RIGD. (A) Home interface show photographs of six species, the RIGD’s project description, author information
and contact information. (B) In Species interface, the description of species, the download links of relevant analysis data and the analysis results are presented.
(C) In Search interface, researchers can use different types of keywords to obtain the required data. (D) Blast interface can be used for Blast comparison of
intronless genes in RIGD. (E) Statistics interface show the result of comparative analysis between Rosaceae species. (F) Tools interface support a tool that can batch
submit sequences to ExPASy for pI/Mw prediction. (G) Upload&Download interface is designed to download and upload data. (H) Contact us interface. Researchers
can contact us by email and link to some tools we used in our work.
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FIGURE 4 | The website page of Species. In addition to the download links to
the data, five statistical charts show the results of the number and proportion
of intronless genes on each chromosome, the statistics of subcellular
localization prediction, the chromosome ideogram, and the statistics of GO
classifications.

annotation information. (4) A Python script was used to submit
the protein sequences to ExPASy8 (Artimo et al., 2012) to
predict the isoelectric point (pI) and protein molecular weight
(Mw). (5) Subcellular localization was predicted with MultiLoc29

(Blum et al., 2009). (The parameters are set as follows: -
origin = plant, -predictor = HighRes, -output = advanced)
(6) Protein domains were analyzed by using InterProScan
(Jones et al., 2014) with default parameters and searched the
Pfam database (El-Gebali et al., 2019). (7) Protein function
was predicted based on sequences and structural templates
from DeepGOPlus (Kulmanov and Hoehndorf, 2019), I-TASSER
(Iterative Threading ASSEmbly Refinement) (Roy et al., 2010;
Yang and Zhang, 2015; Yang et al., 2015) and InterProScan
with default parameters. Finally, (8) eggNOG mapper (Huerta-
Cepas et al., 2017, 2019) was used to implement Gene
Ontology (GO) annotation analysis. (The parameters are set
as follows: -m diamond –tax_scope auto –go_evidence non-
electronic –target_orthologs all –seed_ortholog_evalue 0.001 –
seed_ortholog_score 60 –query-cover 20 –subject-cover 0).
Visualization of GO categories was performed by using the
WEGO online tool (Ye et al., 2006, 2018).

Comparisons Between Rosaceae
Species
In addition to analyzing the intronless genes of six Rosaceae
species, we conducted the following comparative analysis of the
intronless genes among species: (1) the number and percentage
of intronless genes in each chromosome, (2) the distribution of
protein length, (3) the distribution of pI, (4) the distribution
of Mw, (5) the statistics of subcellular localization, and (6) the
statistics of GO classifications.

The RIGD Implementation and Web
Interface
As a web-based platform, the RIGD is constructed in a Tencent
cloud server, and the operating system is Ubuntu Server 16.04.1
LTS 64-bit. The RIGD combines the MySQL (version 8.0.17)
database management system with a dynamic web interface based
on PHP (version 7.3.9-1), Laravel (version 5.8), Nginx (version
1.10.3), and Perl (version 5.22.1) scripts (Figure 2).

UTILITY AND DISCUSSION

Web Interface
The web interface of the RIGD is designed to comprise the
following seven components: Home, Species, Search, Blast,
Statistics, Upload&Download, and Contact Us. The RIGD
provides a user-friendly interaction experience (Figure 3).

Home
The RIGD has seven navigation bars at the top. Scrolling through
the home page reveals large photos of six species of Rosaceae.

8https://web.expasy.org/compute_pi/
9https://github.com/KohlbacherLab/MultiLoc2
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FIGURE 5 | The website page of Search. Researchers can search the RIGD database by species name, chromosome number, classification of subcellular location
prediction, GO number, Pfam ID, the value of pI or Mw and NCBI GI ID.

There is a “detail” button on each photo that can be clicked to link
to the "species" interface for each species. In addition, the RIGD’s
project description, author information and contact information
are also available on the home page.

Species
The bar opens a drop-down menu with the names of the six
Rosaceae species covered in the RIGD. Clicking to enter, you can
then see a detailed description of the species and the picture on
the page. There is also a table with download links, where much
of data is available, including the CDS and protein sequence of
intronless genes, the prediction of isoelectric point and protein
molecular weight, the results of the sequence compared with the
nr database, the results of protein domain analysis, the results of
subcellular localization prediction, the results of protein function
prediction, and the results of GO analysis. Some statistical charts
are also shown on the page, such as the number and proportion of
intronless genes on each chromosome, the statistics of subcellular
localization prediction, the distribution of pI and Mw, and the
statistics of GO classifications (Figure 4).

Search
In the search interface, users can search by species name,
chromosome number, classification of subcellular location
prediction, and even GO number. The program in the RIGD will

search the database for eligible intronless genes and list them, and
then users can click to view the detailed information. In addition,
the RIGD will renumber the intronless genes after processing,
and the rule is the abbreviation of the species name + "IG" +
chromosome number + the order number of the gene (starting
from 1). The gene number in the original data is still retained,
and either the RIGD number or the gene number of the original
data can be used for searching (Figure 5).

Blast
The RIGD has Blast software installed on the server, moreover,
the intronless gene CDS and protein sequences of the six
Rosaceae species stored in the RIGD were formatted into the
Blast local database. In the Blast interface, users can paste
a sequence or upload a fasta-format file to match with the
RIGD’s local Blast database and find the putative homologous
sequences of these intronless genes in different species. The
databases can be compared (CDS/protein), and Blast programs
(Blastn/Blastp) and e-values can all be selected or entered into
the interface (Figure 6).

Statistics
The results of comparative analysis among the six species
are shown on the Statistics interface with statistical charts.
Four pictures investigate the general trends in protein length
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FIGURE 6 | The website page of Blast. The interface can be used for Blast comparison of intronless genes in RIGD, researchers can use blastp/blastn to analyze,
and the E- value can be set.

distribution, show us the distribution of pI, the distribution of
Mw and the statistics of subcellular localization.

Upload and Download
In the interface, according to the species name and the
chromosome number in each species, users can download the
following data in the "Download" section, namely, the CDS and
protein sequence of intronless genes, the prediction of pI and
Mw, the results of the sequence compared with the nr database,
the results of protein domain analysis, the results of subcellular
localization prediction, the results of protein function prediction,
and the result of GO analysis, according to the species name
and the chromosome number in each species. In the "Upload"
section, users can upload intronless gene sequence files of other

species or analysis result files to the RIGD server to expand the
RIGD in the future.

Tools
We designed the Tools interface to collect some tools for
intronless gene analysis or other practical bioinformatics analysis
that will be developed in the future. The tool now available on this
interface is a program that can batch submit sequences to ExPASy
for pI/Mw prediction.

Contact Us
The Contact us interface is divided into "Contact us" and "Links."
Users can email the RIGD’s administrator in the "Contact us"
interface to ask any questions or provide valuable suggestions.
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TABLE 2 | The number of intronless genes reported for each species.

Species Chromosome Amount Species Chromosome Amount Species Chromosome Amount

Pyrus bretschneideri Chr1 99 Pyrus communis Chr1 298 Malus domestica Chr1 191

Chr2 107 Chr2 384 Chr2 246

Chr3 147 Chr3 345 Chr3 260

Chr4 118 Chr4 303 Chr4 195

Chr5 138 Chr5 493 Chr5 292

Chr6 104 Chr6 324 Chr6 185

Chr7 151 Chr7 431 Chr7 247

Chr8 76 Chr8 302 Chr8 185

Chr9 105 Chr9 273 Chr9 243

Chr10 150 Chr10 451 Chr10 300

Chr11 107 Chr11 435 Chr11 270

Chr12 91 Chr12 340 Chr12 210

Chr13 96 Chr13 383 Chr13 254

Chr14 99 Chr14 291 Chr14 224

Chr15 179 Chr15 558 Chr15 345

Chr16 75 Chr16 350 Chr16 245

Chr17 124 Chr17 427 Chr17 251

Total 1966 Total 6388 Total 4143

Prunus persica Chr1 1272 Prunus mume Chr1 399

Chr2 727 Chr2 570 Fragaria vesca Chr1 523

Chr3 709 Chr3 371 Chr2 708

Chr4 643 Chr4 364 Chr3 811

Chr5 517 Chr5 338 Chr4 640

Chr6 855 Chr6 338 Chr5 672

Chr7 577 Chr7 259 Chr6 997

Chr8 651 Chr8 243 Chr7 579

Total 5951 Total 2882 Total 4930

The "Links" interface contains links to external databases and
analysis tools that the RIGD references.

CASE STUDY

The Results of Comparative Analysis
Among the Six Species in Rosaceae
Twenty-six thousand two hundred sixty intronless genes were
identified from six Rosaceae species. Pyrus bretschneideri,
Pyrus communis, Malus domestica, Prunus persica, Prunus
mume, and Fragaria vesca consist of 5.44% (1966), 17.79%
(6388), 10.38% (4143), 22.20% (5951), 12.97% (2882), and
17.35% (4930) intronless genes, respectively (Table 2). The
distribution of intronless genes on chromosomes was uneven
in different species (Supplementary Figures 1–6). Although the
number of intronless genes varied greatly from chromosome
to chromosome, the proportion of intronless genes on each
chromosome did not vary much among species (Supplementary
Figure 7). The average protein length was ∼333.4 amino acids
(aa) in Pyrus bretschneideri, 258.7 aa in Pyrus communis, 321.4
aa in Malus domestica, 277.5 aa in Prunus persica, 351.5 aa
in Prunus mume, and 275.0 aa in Fragaria vesca (Figure 7A).
The distribution of pI had three peaks (Figure 7B), and the
distribution of Mw gathered at the front of the diagram, most

predicted protein molecular weights were less than 100000
Da (Figure 7C). The largest number of intronless genes were
categorized as cytoplasmic in their cellular role (Figure 8).
The largest number of intronless genes in six species were
predicted for pentatricopeptide repeat in their protein function.
The second largest number of intronless genes were predicted for
AP2/ERF domain in Pyrus bretschneideri, Leucine-rich repeat in
Pyrus communis, Zinc finger (RING-type) in Malus domestica,
Prunus persica and Fragaria vesca, and protein kinase domain
in Prunus mume. Top 10 largest number of intronless genes in
protein function were shown in Figure 9. The largest number
of intronless genes were classified as biological process in
GO categories. The largest proportion of intronless genes in
six species were classified as cell and cell part (Table 3 and
Supplementary Figures 8–13).

Analysis of Intronless Pentatricopeptide
Repeat Gene Family in Pyrus
bretschneideri
In Pyrus bretschneideri, the largest intronless gene family is the
Pentatricopeptide Repeat gene family. Meanwhile, PPR gene
family is also one of the largest families found in most plants,
which plays a wide and crucial role in plant growth and
development. We searched RIGD database by using Pfam ID
of Pentatricopeptide Repeat gene family (PF01535, PF13041,
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FIGURE 7 | (A) The length of protein (number of amino acids). Most proteins were less than 500 aa in length. (B) The distribution of pI. The graphic shows three
peaks, their pI close to 0.6 and 8. (C) The distribution of Mw. Most predicted protein molecular weights were less than 100000 Da.

and PF13812), the predicted protein function was used to
determine whether it belonged to PPR gene. The analysis results
of isoelectric point, protein molecular weight and subcellular
localization were obtained from RIGD by using the search
interface. We downloaded the protein sequence, used the MEME
SUITE (Bailey et al., 2009) and TBtools (Chen et al., 2020) to
analysis the motif of intronless PPR gene in Pyrus bretschneideri.

We identified 120 intronless PPR genes in Pyrus
bretschneideri. The relative molecular weight of each protein was
between 11.5 and 113.7 kD. The molecular weight of gene named

LOC103927494 was the smallest, while the molecular weight of
LOC103947845 was far higher than that of other genes, 10 times
the minimum molecular weight, and more than twice the average
molecular weight of 120 amino acid sequences. In addition, the
predicted results of theoretical isoelectric points were shown
between 5.2 and 9.47. The isoelectric point of 46.3% members was
less than 7 and belonged to acidic protein, while the other 53.7%
were all basic proteins (Supplementary Table 1). The results of
subcellular localization prediction showed that most genes were
located in chloroplasts, some genes were in mitochondria and
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FIGURE 8 | The statistics of subcellular localization prediction. The largest number of intronless genes were categorized as cytoplasmic, extracellular also accounted
for a large proportion. (A) Pyrus bretschneideri. (B) Pyrus Communis. (C) Malus domestica. (D) Prunus persica. (E) Prunus mume. (F) Fragaria vesca.

cytoplasm, a few genes were in nucleus, plastids, endoplasmic
reticulum and extracellular regions. The above results showed
that intronless PPR genes still has the characteristic of
typical localization in semi-autonomous organelles, which
was consistent with the localization of PPR protein in other
plants (Figure 10). We identified three sequence motif: Motif1
(GIKPDVEHYGCMVDLLGRAGRLEEAEELIKEMPFK), Motif2
(IRVVKNLRVCGDCHSAIKLISKVVGREIIVRDANRFHHFKD
GSCSCGDYW), and Motif3 (FVGNALIDMYAKCGSLEEARKV
FDEMPERNVVSWNAMISGYAQ). Motif1 was covered in 120
intronless PPR genes, and was highly conserved. Thirty-three
genes contained only Motif1 (27.5%), 58 genes contained Motif1
and Motif3 (48.3%) and 28 genes contained all three motif
(23.3%). It is worth noting that Motif3 only existed at the end
of amino acid sequence. In addition, LOC103956483 contained
Motif1 and Motif2, which was the only one of the 120 intronless
PPR genes contained only Motif1 and Motif2 (Figure 11).

DISCUSSION

In eukaryotes, there are intronless genes because
there is no special structure of introns in genes, so

studying the functions and evolutionary characteristics
of these genes can help us to understand the evolution
rules of related genes and genomes. Meanwhile, the
exploration of intronless genes can help researchers
to explore the effects of introns and selective splicing
mechanisms on eukaryotes from the perspective of
reverse thinking.

Because of the importance of intronless genes in comparative
genomics and evolutionary biology, research on intronless
genes in eukaryotes has been the focus of researchers for
a long time. It is necessary to establish a centralized data
platform for the integration, comparison, and analysis of
the function and evolution of intronless genes on a larger
scale. Little work has been done, as only a few databases
exist, while Genome SEGE and IGDD have stopped providing
services. IGD was limited to human intronless genes, which
were annotated in different databases. PIGD focused on the
intronless genes of Poaceae species and conducted a systematic
comparative analysis from the perspective of comparative
genomics, but the database has been damaged for providing
retrieval services. As a result, users can only download the
original data of the intronless gene sequences and the results
of the analysis.
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FIGURE 9 | Top 10 largest number of intronless genes in protein function. The largest number of intronless genes were predicted for pentatricopeptide repeat.
AP2/ERF domain in Pyrus bretschneideri, Leucine-rich repeat in Pyrus communis, Zinc finger (RING-type) in Malus domestica, Prunus persica and Fragaria vesca,
and protein kinase domain in Prunus mume accounted for a large proportion. (A) Pyrus bretschneideri. (B) Pyrus communis. (C) Malus domestica. (D) Prunus
persica. (E) Prunus mume. (F) Fragaria vesca.
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TABLE 3 | The number of intronless genes in GO categories.

Species Annotated
Genes

GO Terms

Biological Cellular Function Total

Pyrus bretschneideri 780 666 630 539 1835

Pyrus communis 2550 2249 2140 1907 6296

Malus domestica 1720 1474 1385 1219 4078

Prunus persica 1805 1548 1479 1272 1299

Prunus mume 1151 983 941 840 2764

Fragaria vesca 1638 1429 1348 1203 3980

The RIGD, as the latest intronless gene database, integrates
the intronless gene data of six species of Rosaceae and provides
a systematic comparative analysis. The RIGD was designed as
a simple, easy-to-use, and esthetically pleasing website interface
that provides a feature-rich, user-friendly integrated data and
analytics tool. The Species interface provides a download
of the original data classified by chromosome number and
analysis methods. The Statistics interface presents the results
of systematic comparative genomics analysis of six species
in the form of graphs. The Search interface allows users to
search for data on intronless genes of interest. In addition,

NCBI Blast, a common bioinformatics tool, is embedded in
the RIGD to help researchers annotate new sequences and
predict homology with genes in the RIGD. The RIGD also
provides multiple interactive platforms, including Up&Down,
Contact us and Links. Through these platforms, users can
learn about the RIGD’s analytical methods, download data
of interest, and upload their important scientific findings to
facilitate communication and data sharing among researchers in
the same research field.

The RIGD is built on a Tencent cloud server with stable service
and convenience for long-term maintenance and updating.
In the future, we hope to update and expand the RIGD
by communicating with researchers. The number of species
collected is expected to increase, and more detailed annotation
information on intronless genes, such as spatio-temporal
expression data of intronless genes in different growth stages and
tissues of plants, homologous genes in the genome, metabolic
pathways of genes, and more, are expected to be added. This
information will allow researchers to further explore the function
and evolutionary mechanisms of intronless genes. Moreover, we
are also committed to developing powerful comparative analysis
tools to make the RIGD a centralized platform for intronless gene
information and analysis, enabling researchers to use the database
for data mining and analysis in various aspects.

FIGURE 10 | Subcellular localization prediction of intronless PPR genes in Pyrus bretschneideri. Most proportion of genes were located in chloroplasts.
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FIGURE 11 | Motif analysis and visualization. Motif1 is the most covered. Motif3 only existed at the end of amino acid sequence. LOC103956483 was the only one
of the 120 intronless PPR genes contained only Motif1 and Motif2.

CONCLUSION

With the development of sequencing technology, an increasing
number of plant genomes are sequenced and annotated, and
there will be increasing data regarding intronless genes in the
future. It is feasible to integrate, compare and analyze the
function and evolution of intronless genes in a wide range.
We developed the RIGD platform, collected and systematically
analyzed the data from intronless genes in six species of Rosaceae,
and provided a series of tools for users to search the data of
intronless genes of interest and communicate with us. With
the support of researchers, we eventually hope to develop a
platform for integrating data from eukaryotic intronless genes
with tools for comparative genomics analysis, which can greatly
promote the research of intronless genes in plants, thus mining
valuable genomic resources and helping researchers find more
interesting discoveries.
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International Classification of Diseases (ICD) is an authoritative health care classification

system of different diseases. It is widely used for disease and health records, assisted

medical reimbursement decisions, and collecting morbidity and mortality statistics.

The most existing ICD coding models only translate the simple diagnosis descriptions

into ICD codes. And it obscures the reasons and details behind specific diagnoses.

Besides, the label (code) distribution is uneven. And there is a dependency between

labels. Based on the above considerations, the knowledge graph and attention

mechanism were expanded into medical code prediction to improve interpretability.

In this study, a new method called G_Coder was presented, which mainly consists

of Multi-CNN, graph presentation, attentional matching, and adversarial learning. The

medical knowledge graph was constructed by extracting entities related to ICD-9 from

freebase. Ontology contains 5 entity classes, which are disease, symptom, medicine,

surgery, and examination. The result of G_Coder on the MIMIC-III dataset showed that

the micro-F1 score is 69.2% surpassing the state of art. The following conclusions can

be obtained through the experiment: G_Coder integrates information across medical

records using Multi-CNN and embeds knowledge into ICD codes. Adversarial learning is

used to generate the adversarial samples to reconcile the writing styles of doctor. With the

knowledge graph and attention mechanism, most relevant segments of medical codes

can be explained. This suggests that the knowledge graph significantly improves the

precision of code prediction and reduces the working pressure of the human coders.

Keywords: automated ICD coding, knowledge graphs, explainable, medical records, natural language processing

INTRODUCTION

The International Classification of Diseases (ICD) is a standard classification system according to
the characteristics of diseases and the rules maintained by the World Health Organization. Each
code represents a specific disease, symptom, or surgery. And a set of codes in the medical record
represents uniquely diagnostic and procedural information during patient visits. As a significant
part of the hospital information system, it is widely used for medical insurance payments, health
reports, andmortality calculations. Therefore, the ICD coding task is an essential job in the medical
record information department. While ICD codes are important for making clinical and financial
decisions, ICD coding is time-consuming, error-prone, and expensive. In most cases, the human
coders assign ICD codes to medical records according to the clinical diagnosis record of physician.
It is difficult because the code assignment should consider overall the health condition in the long
text-free medical records, including symptoms, signs, surgery, medication, body, etc.
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Automatic coding uses medical records as input to predict the
final ICD codes based on text content. But the automatic ICD
coding task usually has the following difficulties: (1) The clinical
records of patients are not always structured in the same way.
And the vital information in the text is distributed in various
segments. For the above two reasons, it is very difficult to extract
important and relevant knowledge from various kinds of medical
records effectively. (2) Most importantly, the medical field has
a lot of terminologies, which is difficult for non-professionals
to understand the meaning of these terminologies. Even for the
same disease, there are many ways to describe it differently from
ICD description. (3) Datasets in the medical field are often small,
and doctors have different writing styles. Each physician usually
has his way to describe medical terminologies.

In this paper, we proposed a new end-to-end method
called G_Coder (Graph-based Coder) for automatic ICD code
assignment using clinical records. The contributions of this paper
are summarized as follows: (1) We utilize Multi-CNN (multiple
convolutional neural networks) to capture local correlation,
which extracts key features from the irregular text. (2) We
build a knowledge graph, which enriches the meaning of
terminologies through integrated related knowledge points. It
is combined with the attention mechanism to help understand
the meaning of related terminologies, making the coding results
interpretable. (3) The adversarial learning is used to generate
adversarial samples to increase samples and reconcile the
different writing styles.

Our model has outperformed other models in micro-
AUC and micro-F1 on MIMIC-III (Multi-parameter Intelligent
Monitoring in Intensive Care) datasets with 46K distinct hospital
admissions and top 50 common ICD-9 codes.

RELATED WORKS

Automatic ICD Coding
It was 20 years ago that many researchers have explored how
to automatically assign ICD codes based on clinical records.
There are two major categories of approaches for automatically
assigning ICD-9 codes using medical records. One category is
rule-based and the other category is learning-based. Rule-based
systems are manually extracted statistical features by humans.
Chen et al. (2017) and Ning et al. (2016) presented an improved
approach based on the Longest Common Subsequence (LCS) and
semantic similarity for performing ICD-10 code assignment to
Chinese diagnoses. But such approaches only consider the simple
matching of strings, which is not a medical problem. Beyond
that, researchers applied automatic and semi-automatic (Medori
and Fairon, 2010) machine learning methods to automatically
assign ICD codes. Automatic ICD-9-CM encoding consisted
of support vector machines (SVM) (Yan et al., 2010; Adler
et al., 2011; Ferrão et al., 2013; Wang et al., 2017), k-nearest
neighbors (Ruch et al., 2008; Erraguntla et al., 2012), Naive Bayes
(Pakhomov et al., 2006; Medori and Fairon, 2010), and other
methods such as topic model (Ping et al., 2010; Perotte et al.,
2013). Semi-automatic methods generally require more manual
participation and may require manual data processing, feature
selection, data verification, etc. Automatic methods generally use

a series of operations in an end-to-end manner. Nevertheless, the
development of automatic coding technology is not yet mature,
and manual verification is inevitable. All the above methods
only utilize the statistical characteristics of words and ignore the
contextual meaning.

In recent years, many new methods are emerging with
the development of deep neural network. Li et al. (2018)
combined the convolutional neural network (CNN) and the
“Document to Vector” technique to extract textual features. It
solves the characteristics of CNN’s indistinguishable word order
while taking all the words into account. Baumel et al. (2017)
applied a hierarchical approach which is Hierarchical Attention
bidirectional Gated Recurrent Unit (HA-GRU) to tag a discharge
summary by identifying the relevant sentences. It utilizes the
Gated Recurrent Unit to encode text, which experimental effect
is similar to long short-term memory networks (LSTM), but
it is easier to calculate. Yu Y. et al. (2019) explored character
features and word features based on bidirectional LSTM with
attentionmechanism and Xie and Xing (2018) applied tree LSTM
with ICD hierarchy information for automatic ICD coding.
Compared with ordinary LSTM, bidirectional LSTMs tend to
have higher accuracy, and tree LSTM is more suitable for
data that is a tree-like hierarchical structure. Mullenbach et al.
(2018) proposed to extract per-code textual features across the
document using a convolutional neural network and used an
attention mechanism to select the most relevant segments for
each possible code. Based on that, Li and Yu (2019) combined
multi-filter convolutional layers and residual convolutional layers
to enlarge the receptive field.

Deep learning methods improved the ability to capture
semantic information but ignored the importance of medical
knowledge and experience. In practical work, the human coders
fully utilize the basic medical knowledge to provide decision
support for the work. However, all the methods just mentioned
are data-driven approaches or simple mapping, which lack
of the theoretical support and suffer from the complicated
preprocessing of the noisy text. To build a more explainable ICD
coding system, we utilize the knowledge graph as supplementary
knowledge to add to the model, which is equivalent to
combining a data-driven approach with medical knowledge.
What is more, we successively perform text preprocessing
and Multi-CNN algorithm to extract text features to reduce
text noise. Adversarial learning generates adversarial samples
for training to reconcile the different writing styles. The
attention mechanism selects the most relevant segments for each
possible code.

Graph Embedding
Graph embedding technology expresses nodes in the form of
low-dimensional dense vectors, which require similar nodes
in the original graph to be similar in the low-dimensional
expression space. The representative work of Graph Embedding
is DeepWalk (Perozzi et al., 2014), LINE (Tang et al., 2015),
Node2Vec (Grover and Leskovec, 2016), SDNE (Wang et al.,
2016), and Struc2Vec (Ribeiro et al., 2017). The obtained
expression vectors can be used for downstream tasks, such as
node classification (Ye et al., 2018; Gong and Ai, 2019), link
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prediction (Li et al., 2019a), or visualization (Liu et al., 2020). In
the field of biomedicine, graphs are often used to predict drug
interactions and predict drug target proteins. The knowledge
graph embedding is used to calculate several similarity measures
between all drugs in the scalable and distributed framework to
obtain the interaction of drugs (Ibrahim et al., 2017). Mohamed
et al. (2020) used knowledge graph embeddings to learn the
vector representation of all drugs and targets to discover protein
drug targets.

Attention Mechanism
The attention mechanism was first used for machine translation
(Dzmitry et al., 2014). It calculates the attention weight of each
word in the encoder sequence to each word in the decoder
sequence to focus more on the most relevant part of the current
word. The attention mechanism improves the effect and also
increases the interpretability of the neural network. After adding
attention, the weight of the data can be visualized to confirm
the correctness of the method. Besides, attention mechanism has
the ability to capture global features in long texts. The attention
mechanismmimics the internal process of biological observation
behavior, which is a mechanism that aligns internal experience
and external sensation to increase the observation precision of
some areas. It has been successfully used in medical tasks. Such
as medical imaging (Ozan et al., 2018), clinical text information
extraction (Li et al., 2019b; Xu et al., 2019), andDNA-related tasks
(Yu W. et al., 2019; Hong et al., 2020).

Adversarial Learning
Adversarial learning is tomake the two networks compete against
each other. The generator network continuously captures the
probability distribution of the real data in the training set and
transforms the input random perturbation into new samples.
The discriminator network observes both real and fake data
to determine the authenticity of this data. Through repeated
confrontation, the capabilities of the generator and discriminator
will continue to increase until a balance is reached. Goodfellow
et al. (2015) developed a method named FSGM that can
effectively calculate the perturbation. They set the perturbation
to the maximum value of the loss function along the direction
of the gradient. FSGM takes the same step in each direction,
and Goodfellow’s subsequent FGM (Miyato et al., 2017) is
scaled according to specific gradients to obtain better adversarial
samples. Adversarial learning improves the robustness of the
model through the idea of games. It randomly adds perturbation
factors to the input to simulate unknown data to ensure that the
model can work stably in any situation. Adversarial learning has
been used for privacy protection (Max et al., 2019) of medical
records and named entity recognition (Zhao et al., 2019) in
clinical texts.

MATERIALS AND METHODS

As can be seen from Figure 1, this section will detail
all the processes by combining data materials with the
proposed methods.

Dataset and Preprocessing
We utilize the transfer knowledge graph to improve the
interpretability and performance of automatic ICD coding. In
the study, we select Multi-parameter Intelligent Monitoring in
Intensive Care-III (MIMIC-III) dataset (Johnson et al., 2016) as
an experimental dataset and Freebase dataset as a source of the
knowledge graph. A brief introduction to these two data sets and
related preprocessing techniques are as follows.

MIMIC-III Dataset
MIMIC-III dataset is the only public database for learning
automated ICD-9 coding, which allows fair comparisons with
different methods. It contains reliable and comprehensive 58,976
hospital admissions collected between 2001 and 2012 in the
Beth Israel Deaconess Medical Center. Each medical record
usually includes discharge summaries, survival data, diagnostic
codes, vital signs, laboratory measurements, etc. Besides, the
discharge summary always contains multiple information,
such as “discharge diagnosis,” “past medical history,” physical
examination,” and “chief complaint,” etc. Table 1 shows a sample
of a medical record in the dataset. The “HADMID” uniquely
identifies each medical record. Each hospital admission has a
group of ICD-9 codes given by the medical coders. For each
medical record, codes distribute unevenly in numbers which
varies from one to 39. The number of codes is usually not equal
to the number of diagnosis descriptions. It invalidates the one-to-
one method of allocating codes. The entire dataset contains 6,984
distinct codes and 943 categories. Each code has a short phrase or
a sentence, articulating a disease, symptom, or condition.

We adopt a series of standard text pre-processing techniques,
which contain regular expression matching and tokenization to
reduce the noise in raw note texts. Firstly, we extract relevant
data from MIMIC-III as input text, which contains “physical
examination,” “chief complaint,” “final diagnosis,” “history,”
“medication,” “course,” and “procedure.” Secondly, we remove
stop words from the input text and transform each token
into its lowercase. Simultaneously removing words <3 and
replacing unknown words with “UNK.” Thirdly, medical records
with associated labels that do not contain the top 50 code
are discarded.

Freebase
With the rapid development of the knowledge graph in
recent years, research-based on knowledge graphs has attracted
widespread attention in the medical field. Freebase mainly
extracts structured data from wikis and publishes them as RDF.
It is fully structured, but the data source is not limited to wikis. It
also imports a large number of professional data sets and provides
data query and entry mechanisms.

We fuse ICD-9 description information with medical
knowledge extracted from freebase to build the final knowledge
graph. Freebase Medicine originate from Wikipedia and other
datasets such as U.S. National Medical Data. One study has
reported that 70% of junior doctors used Wikipedia for health
knowledge every week (Trevena, 2011). Because the freebase
is reliable, the information provided in Freebase is generally
considered to be reliable. The matching method is used for
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FIGURE 1 | The overall process of this method.

TABLE 1 | An example of a medical record.

Medical record (partially shown)

HADMID:105501

Admission Date: [**2172-7-6**] Discharge Date: [**2172-7-10**]

Date of Birth: [**2096-4-25**] Sex: M

Service: Cardiothoracic Surgery Service

HISTORY OF PRESENT ILLNESS: The patient is a 75-year-old gentleman who is

a patient of Dr. [**First Name4 (NamePattern1) **] [**Last Name (NamePattern1)

47696**] whowas transferred in from [**Hospital3 3583**] status post amyocardial

infarction for cardiac catheterization……

PAST MEDICAL HISTORY:

1. Hypertension.

2. Myocardial infarction.

3. Hypercholesterolemia.

4. Myocardial infarction in [**2158**].

……

ICD-9 codes and description

88.56 Coronary arteriography using two catheters

39.61 Extracorporeal circulation auxiliary to open heart surgery

88.72 Diagnostic ultrasound of heart

36.15 Single internal mammary-coronary artery bypass

584.9 Acute renal failure, unspecified

37.22 Left heart cardiac catheterization

410.71 Acute myocardial infarction, subendocardial infarction, initial episode of

care

414.01 Coronary atherosclerosis of native coronary artery

428.0 Congestive heart failure, unspecified

39.95 Hemodialysis

knowledge fusion. Since some diagnosis terms from ICD-9
description imperfectly match Freebase content, we use the ICD
description text as the search terms to find the most relevant

Freebase content by the Freebase API (http://freebase.gstore-
pku.com/). The ontology that was constructed contains 5 entity
classes, which are disease, symptom, medicine, surgery, and
examination. The constructed ontology is shown in Figure 2,
which contains the relationships (disease manifests as symptoms,
medicine treats disease, surgery treats disease, and commonly
used disease test data, etc.) and attribute types, such as id, name,
ICD, etc. In the final knowledge graph, there are 1,560 nodes and
more than 20,000 sets of relationships.

Methods
Overview
The modular method adopted in this study differs from
the researchers used earlier. Figure 3 shows an overview
of our approach named G_Coder. The proposed approach
mainly consists of four modules, which mainly contain
Multi-CNN, Graph Presentation, Attentional Matching, and
Adversarial Learning.

Input Layer
Considering that the pre-trained word vectors in the medical
field are not yet perfect and the experimental data in this
study are very long texts, the word embeddings were initialized
randomly. Leveraging a token sequence x = {x1, x2, x3 . . . , xn}
as input, where n denotes the sequence length. Assuming that
the matrix W denotes the word embedding matrix, and W =

{w1, w2, w3, . . . ,wv}∈ R
v×d, where v represents the size of

total vocabulary and d represents the token dimension. The
vocabulary is obtained by pre-processing the MIMIC-III clinical
text. A token xi will correspond to a vector wj by looking up W.

The final input of the model is a matrix X ∈ R
n× d.
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FIGURE 2 | The ontology of medical knowledge graph.

Multi-CNN
As can be seen from Figure 3, the structure of Multi-CNN is
used to encode the input matrix X. Multi-CNN is a combination
of multiple CNNs and MaxPooling. CNN is a kind of neural
network algorithm that has successfully been applied to computer
vision. MaxPooling reduces the dimension of the feature map,
and effectively reduces the parameters required for subsequent
layers. Besides, it magnifies the receptive field.

Multiple kernels of different sizes are used to extract key
information in the sentence, which inspired by Kim (2014) who
applied Text-CNN to the text classification task. Multi-CNN is
used to better capture the local correlations. Assuming we have
filters f1, f2, . . . , fm where m denotes the filter number. Each
kernel size of filters denotes as k1, k2, ..., km. The convolutional
procedure can be formalized as formula (1),

H1= g(Wc1
∗xi:i+k−1+bc1)

Hm= g(Wcm
∗xi:i+k−1+bcm) (1)

where ∗ denotes the convolution operator, g is an element-wise
non-linear transformation, Wcm is weight parameter and bcm is
the bias. Assuming that Hm = {h1, h2, h3, . . . , hn−k+1} is the
output of m-th CNN andHm′ is the output of m-th MaxPooling.
The result of Multi-CNN is H′ = [H1′ ⊕ H2′ ⊕ . . . ⊕ Hm′] ∈

R

∑m
1 dt , where⊕ denotes concatenation operator and dt denotes

the dimension of Ht′.

Graph Presentation
In this study, we mainly adopt SDNE (Structural Deep Network
Embedding) for medical knowledge graph node embedding.
First-order proximity and second-order proximity are two crucial

definitions in SDNE. The first-order proximity is used to describe
the local similarity between paired nodes in the graph. If there are
no directly connected edges, the first-order proximity is 0. The
second-order proximity measures the similarity of their neighbor
sets between two nodes. The optimization goal of SDNE is shown
in formulas (2–4):

L1st=

nd
∑

i,j=1

si,j||ri−rj||
2
2 (2)

Each si contains the neighbor structure information of the i-th
node. The letter r denotes the vector representation of each node.
Where nd denotes the number of neighbors at nodes i.

L2st=

nd
∑

i=1

||ŝi−si||
2
2 (3)

L=L1st+αL2st+βLreg (4)

L1st makes the embedding vectors corresponding to the two
adjacent nodes in the graph close in the hidden space. Lreg is
a regularization constraint, α is a parameter that controls the
first- proximity loss, and β is a parameter that controls the
regularization constraint. After SDNE, each node gets its own
vector representation in the hidden space. Assuming that the
matrix yg is the result linked to ICD-9 of SDNE, which ∈ R

lg×dg .
Where lg denotes the number of ICD-9 and dg denotes the
dimensions of each node.
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FIGURE 3 | The overview of G_Coder.

Attentional Matching
Human coders usually look for the most critical part of the
medical record (Such as symptoms, complications, etc.) to
determine the final coding result. In this task, we need to
refine the text that most relevant to the ICD information
and give higher weight. For the above reasons, we apply
the attention mechanism. A benefit is that it selects the
segments from the text that are most relevant to each
predicted label. The specific algorithm details are shown in
Table 2. It obtained the clinical text representation vector
H′ through preprocessing and Multi-CNN, and at the same
time obtained the ICD coded representation yg using the
knowledge graph embedding results. A linear transformation
was performed on the code representation to obtain the final
code representation D, which has the same dimensions as
the number of codes. The text representation H′ and label
representation D are used to calculate the weight ai of the
relationship between each label and each segment of the text.
Finally, the text H′ and weight ai are used to weight the

TABLE 2 | The algorithm details of attentional matching.

Algorithm1: Attentional matching

For each H′ from Multi-CNN:

1. Calculate label representation vector D;

D= (Wgyg+b)

2.The ai Measures how informative each n-gram is for the i-th label.;

ai=SoftMax
(

H′TDi

)

,i=1,2,3 . . .,lg

3. Calculate the weighted average vi of the rows in H′ forming a vector

representation of the clinic text for the i-th label;

vi= aiH
′

average of each part of the text to obtain the final clinical text
representation vi.

The results in Table 2 can be summarized as follows:

A=SoftMax
(

H
′T
Wgyg

)

,A = [a1,a2,. . .,alg] (5)

V=AH
′

,A= [v1,v2,. . .,vlg] (6)
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TABLE 3 | The algorithm details of Adversarial Learning.

Algorithm 2: Adversarial learning

For each X in training samples:

1. Calculate the forward loss of X and get the gradient g by back propagation;

g=∇XL(θ ,X,Y )

2. Calculate radv according to the gradient of the embedding matrix X and add it

to the current embedding, which is equivalent to X+radv ;

radv=ǫ•g/| |g| |2

Xadv=X+radv

3. Calculate the forward loss of Xadv , backpropagate to obtain the gradient of the

confrontation, and add to the gradient of step 1;

4. Restore embedding to the value at step 1;

5. Update the parameters according to the gradient of step 3.

Where SoftMax (x) =
exp(xi)

∑

i exp(xi)
, and exp is an exponential

function with natural constant e as a base. The matrix Wg ∈

R
dg×lg is the weight parameter. And A denotes attention weights

for each pair of an ICD code and the text. The letter V ∈ R
lg×lg

denotes the output of the attention. The concrete example can be
found in Table 7.

Adversarial Learning
We apply FGM (fast gradient method) to reconcile the different
writing styles of doctors and increase training samples (Miyato
et al., 2017). The basic idea is: The writing of medical records
follows the writing standards, but also contains different writing
styles. Adversarial learning weakens the influence of writing style.
The purpose of adversarial training is that the model will work
steadily even if there are large differences in doctor writing
styles. FGM uses a first-order Taylor expansion on the adversarial
objective function to approximate to maximize the error output
by the model, which is equivalent to using a single-step gradient
descent method with a step size of ǫ to find the adversarial
samples. The specific algorithm details are shown in Table 3. It
calculates the gradient g of the clinic text embedding X after
forward propagation and then back propagation. The gradient is
used to calculate the perturbation radv added to X. After such a
process, Xadv is an automatically generated adversarial sample. It
uses the adversarial samples to calculate together with the original
samples, increasing the number of samples, while mimicking the
writing style of different doctors.

The goals of adversarial learning are as follows:

min
θ

E (X,Y)∼D[ max
radvεR

(L(θ ,Xadv,Y))] (7)

The formula (7) is divided into two parts, one is the
maximization of the internal loss function, and the other is the
minimization of the external risk. In the internal max, L is the
defined loss function, D is the perturbation of input samples,
and R is the space for a perturbation. The goal of adversarial
learning is to find the amount of perturbation that makes the
most judgment errors. For the above attacks, the most robust
model parameters are found. After further optimizing the model
parameters, the expected value of the entire data distribution is
still minimal.

TABLE 4 | The hyperparameter settings of the experiment.

Hyperparameter Value

d 100

dg 128

df 50

lr 0.001

dp 0.4

λ 0.00001

Filters size {4,5,6}

Output Layer
We compute a probability for label vector Ŷ ∈ R

lg using full
connection layer and a sigmoid transformation by the output of
attention representation V :

Ŷ=σ (WoV) (8)

Where Wo ∈ R
lg×lg is learnable weights of output layer and

σ (x) = 1
1+exp(−x) . The whole learning process minimizes the

binary cross-entropy loss (9) of prediction probability Ŷi and the
target Yi ∈ (0, 1). The label i is selected when Ŷi is >0.5.

L(θ ,X,Y) =−

lg
∑

i=1

Yi log
(

Ŷi

)

+ (1−Yi) log
(

1−Ŷi

)

+λ||γ ||22 (9)

Where X denotes the input word sequence, λ is the L2
regularization hyperparameter. And θ denotes all the parameters.
We utilize the back-propagation algorithm and Adam optimizer
(Kingma and Ba, 2014) to train the model.

EXPERIMENTS

Experimental Settings
Amajority of codes are only assigned to too few medical records.
Since the top 50 common ICD-9 codes covered 93.6% of the
all dataset, we pick 50 most frequent codes to carry out the
experiment while considering that our method can readily be
extended to more codes as long as sufficient training data is
available. The experimental dataset using top-50 codes has a
total of 46,552 discharge summaries, which has 43,000 discharge
summaries for training, 1,800 for validation, and 1,752 for the
test. In this experiment, the settings are shown in Table 4. The
token dimension d is 100; the knowledge graph embedding size
dg is 128; the out-channel size df of a filter in the Multi-CNN
layer is 50; the learning rate lr is 0.001; the L2 regularization
hyperparameter λ is 0.00001; the max length of each medical
record is 1,800; the mini-batch size is 16 and the dropout rate dp
is 0.4. We used three filters and the kernel size of filters is 4,5,6.

Evaluation Metrics
This task can be regarded as a multi-label classification problem.
Therefore, we evaluate the method by micro − F1 and AUC
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TABLE 5 | The experimental results of the top-50 codes.

Method micro-F1 micro-AUC P@5

CNN-Att 0.625 0.907 0.620

C-LSTM-Att Shi et al. (2017) 0.532 0.900 -

CAML Mullenbach et al. (2018) 0.614 0.909 0.609

DR-CAML Mullenbach et al. (2018) 0.633 0.916 0.618

MultiResCNN Li and Yu (2019) 0.673 0.928 0.641

No-knowledge-graph 0.670 0.923 0.637

No-adversarial-learning 0.681 0.929 0.647

G_Coder 0.692 0.933 0.653

Bold represent the current model result.

(Area under the curve). The micro − F1 is harmonic mean that
calculated from Precision and Recall. All evaluation matrixes are
calculated as follows:

Precision=

∑n
i=1 TPi

∑n
i=1 TPi+

∑n
i=1 FPi

(10)

Recall=

∑n
i=1 TPi

∑n
i=1 TPi+

∑n
i=1 FNi

(11)

micro−F1=
2× Recall× Precision

Precision+Recall
(12)

In these formulas, TPi is the set of ground truth labels of each
class, n is the number of samples, FNi is the number of positive
classes predicted as negative classes and FPi is the number of
negative classes predicted as positive classes. AUC is mainly used
to evaluate the ranking ability of the current model. The higher
the AUC, the better the ranking ability of the model. When the
prediction probability values of all positive samples are higher
than the negative samples, the AUC of the model is 1.

Results
Model Comparison
This section illustrates the performance of our approach. The
experimental results of the top-50 codes show in Table 5, which
show that our work has improved on previous work. CNN-
Att is the baseline model for this experiment, which uses
CNN to encode text. MultiResCNN has achieved the state-of-
the-art results on the MIMIC-III datasets using unstructured
text. Besides, their work is based on CAML and the model is
improved. It mainly consists of a multi-filter convolutional layer
and residual convolutional layer for multi-label classification.
C-LSTM-Att applied LSTM-based language models to encode
clinical notes and ICD codes and applied an attention method
to solve the mismatch between clinical notes and codes.
They focused on predicting the 50 codes that have the top
frequencies for the medical records in the MIMIC-III dataset just
like us.

Comparing our model with existing work for automatic ICD
coding. As shown in Table 5, the conclusions are as follow:

TABLE 6 | The result of universality study.

Method micro-F1 micro-AUC P@5

CNN-Att 0.625 0.907 0.620

CNN-Att- graph 0.651 0.920 0.619

Bold represent the best results.

1) G_Coder obtains better results in the micro-AUC, micro-
F1, and P@5. Compared with the state-of-the-art model
MultiResCNN, G_Coder improves the micro-AUC by 0.005,
the micro-F1 by 0.019, the P@5 by 0.012. P@5 measures the
ability of the method to return the top 5 high-confidence
subsets of codes. Our approach achieves relatively high
precision of the five most confident predictions, on average
3.3 are correct.

2) CNN-based models are more suitable for this task. LSTM
pay more attention to capture long sequence features,
and cannot extract important local features from noise
text. Simultaneously, the length of the medical record text
makes the recurrent neural network have extremely high
requirements for machine performance in this task. In
contrast, it can be seen from the model construction that
CNN can better extract long text features, and multilayer
CNN with different convolution kernels can better capture
local correlation.

3) The attention mechanism is essential. Each model utilizes
the attention mechanism, which shows that the mechanism
accurately highlights the information related to ICD in the
text. The following content will prove the value of the
knowledge graph and adversarial learning in this task.

Ablation Study
To gain more insight, the ablation study applied to verify
the effectiveness of the adversarial learning and knowledge
graph. To evaluate each module, we perform single variable
experiments. The comparisons of the No-one module
with the full model are given in Table 6. We remove
one module from the full model without changing other
modules and denote such a baseline by No-X. To evaluate
them, we compared with the two configurations: (1) No-
knowledge-graph, which removes the graph presentations
and directly uses a randomly initialized vector as final
representations of codes information; (2) No- adversarial-
learning, which removes the adversarial learning form
full model.

It can see from Table 6 that our full model obtains better
results in all evaluation matrix. Compared with the full model,
No-knowledge-graph dropped the micro-AUC from 0.933 to
0.923, the micro-F1 from 0.692 to 0.670, the P@5 from
0.653 to 0.637. At the same time, No-adversarial-learning
dropped the micro-AUC from 0.933 to 0.929, the micro-
F1 from 0.692 to 0.681, the P@5 from 0.653 to 0.647. The
above results show that the knowledge graph-based method
can add clinical experience to make the results better. And
adversarial learning generates adversarial samples through
perturbation factors to enhance the generalization ability
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TABLE 7 | Presentation of clinical text fragments and their corresponding ICD

codes (The bold part indicates the highest weight).

ICD-9 codes and description The highest weighted part

584.9 Acute renal failure, unspecified …support with acute renal failure

secondary to the prolong hypertension…

410.71 Acute myocardial infarction,

subendocardial infarction, initial

episode of care

…the patient experienced right

ventricular failure and went back on

bypass with drug manipulations…

414.01 Coronary atherosclerosis of

native coronary artery

…with a right heart bypass cannulation in

place. The patient was profoundly

hypoxic and acidotic. …

428.0 Congestive heart failure,

unspecified

…He also had lactic acidosis and

congestive heart failure. The

hypernatremia. …

TABLE 8 | The result of the evaluation of interpretability.

Type Total Correct Accuracy

High weight (weight ≥ 0.8) 16 10 0.625

Others (weight < 0.8) 84 60 0.714

of the model on the test set. From the results we have
obtained, one can conclude that the combination of data-driven
and medical knowledge can enhance the precision of ICD
automatic coding.

Universality Study
To prove that the knowledge graph is universal in this task. We
design the experiment, which is to add a knowledge graph to the
basic baseline model and compare it with the baseline model.

According to the experimental results inTable 6, it can be seen
that the knowledge graph not only performs well in G_Coder but
also can be extended to other model structures. The knowledge
graph improves the micro-F1 of the baseline model by 2.6%. This
shows that the knowledge graph is universal and can be flexibly
grafted into other model structures.

Evaluation of Interpretability
We use two methods to verify the interpretability. The first is an
intuitive method that attention extracts keywords and displays
the correlation between the code and the evidence. Examples can
be found in Table 7. It can be seen from which words the basis
of coding comes from. Taking 584.9 as an example, there is an
information overlap between “acute renewal failure, unspecified”
and “with acute renewal failure secondary” in clinical texts.

The second is a quantitative method where doctors judge
the results of attention distribution. A clinical medical record
was randomly selected, and segments were extracted based on
the results of its attention. We select 5-words in this setting
to emulate a span of attention over words likely to be given
by a human reader. Since the segment may overlap, the most
important 5-words were extracted according to attention weight.
As can be seen from Table 8, the score is divided into two stages,
one is high weight, that is >0.8, and the other is <0.8. In a total
of 100 segments, there are 16 with a weight >0.8 and 84 with

a weight <0.8. According to the evaluation results of human
coders, 10 of the high weights are correct, and the remaining
correct number is 60.

CONCLUSIONS AND DISCUSSIONS

Conclusions
Inspired by the structure of graphs that can model the
relationships and knowledge between all things in the world,
we think the graph structure can connect the parts of the
data in this task and create a knowledge graph using medical-
related data from the Freebase database. At the same time,
the development of deep learning has also allowed further
development of natural language processing such as automatic
coding and text classification. In this paper, we propose a new
explainable method for automatic ICD coding. The result of
the micro-F1 score of 50 most frequent codes is 69.2%, which
outperforms all the other models especially when raw clinical text
data is used as input features to the prediction models.

The experimental evaluation of the MIMIC-III dataset shows
the following points. First, we combined deep learning with
knowledge graphs in ICD coding tasks. The medical knowledge
graph supervises the coding process as a teacher. At the same
time, we apply the SDNE algorithm to encode each entity of
the knowledge graph and link it to the ICD-9 code. The Multi-
CNN algorithm is utilized to encode long text information
of MIMIC-III data. In the attention mechanism, we combine
the two mentioned above to identify the segments of text that
are most relevant to each ICD-9 code. Finally, we generate
adversarial samples through adversarial training and send the
samples to the training along with the original samples. It can
weaken the influence of writing style and make model more
stable. Moreover, in the ablation study and universality study,
we use the single variable rule to verify the importance of
adversarial learning and knowledge graph. The results prove
that the knowledge graph can be flexibly grafted into the model
structure to help understand the terminology. Two methods
are used to verify the interpretability of the method. It is
confirmed that this method is based on the important basis
in the clinical text for ICD coding. G_Coder has a higher
accuracy rate than the othermethod. And before the coder works,
G_Coder can perform ICD pre-selection to save time for whole
encoding work.

Discussions
The major limitation of this work is that it does not perform
well on infrequent codes. To achieve fully automatic coding,
infrequent coding has to be considered. And we hold that
the method can readily be extended to more codes as long
as sufficient training data is available. In addition, the new
ICD version should also be considered, such as ICD10, ICD11,
etc. ICD classification is a disease classification directory with
hierarchical relationship. The structure of ICD is also a direction
worth considering.
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Companion planting is one of the most common and effective planting methods in modern
agriculture. White clover (Trifolium repens L.) and orchard grass (Dactylis glomerata L.) are
two typical pastures planted together to promote each other’s growth. However, the
detailed biological foundations of companion planting remain unclear. In this study, we
screened typical microbiome profiles under separate and combination planting conditions
using 16s RNA gene sequencing techniques. We identified the typical distinctive
microorganism subtypes based on the microbiome profiles and recognized the
enriched functions of top abundant microorganisms in soil using different planting
strategies with the help of Kyoto Encyclopedia of Genes and Genomes and Clusters of
Orthologous Groups annotation. This analysis confirmed that the optimal microorganisms
and screened functional annotations are correlated with nitrogen fixation; thus,
companion planting may improve the yield and efficacy of plants by improving the
efficiency of nitrogen fixation.

Keywords: companion planting, 16s RNA gene sequencing, microbiome, Clusters of Orthologous Groups (COGs),
operational taxonomic unit classification, multiple variables analysis, machine learning models
INTRODUCTION

Companion planting is another typical agricultural pattern partially associated with organisms
(Finch et al., 2003; Parker et al., 2013). Companion planting is a method of planting different kinds
of plants at the same time in proximity (Finch et al., 2003; Szafirowska and Kolosowski, 2008).
Companion planting can help in pest control (Parker et al., 2013), pollination (Hagiwara et al., 1995;
Moeller, 2004), nutrition supply optimization (Mengel, 2001; George et al., 2013), and the
maximization of the use of space (Bomford, 2004). For instance, soybeans can provide nitrogen
with the help of certain microorganisms in soil (Oyekanmi et al., 2007; Chen et al., 2012). Soybeans
can remodel soil microbiome and provide more nitrogen nutrition in proximity for plant growth
(Chen et al., 2012). Therefore, the companion planting of soybean and Medicago sativa may help
.org September 2020 | Volume 11 | Article 5383111204
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improve the production of both plants through the modification
of soil microorganisms (Plaza et al., 2003).

White clover (Trifolium repens L.) is a typical agricultural plant
from the bean family Fabaceae (Davidson, 1969). The companion
planting of white clover and grain crops or pasture grasses has been
widely applied in poor soils to provide green cover (Sood et al.,
2018). Orchard grass (Dactylis glomerata L.) also known as cat
grass is a famous kind of pasture with high yield and great drought
tolerance (Bybee-Finley and Ryan, 2018).White clover and orchard
grass are two typical and traditional model plants for companion
planting, which greatly improve their efficacy and yield rate. Early
in 1962, a Canadian journal has reported the effects of companion
planting on oats and confirmed that clover has equal to or greater
yields when planted with the crop and orchard grass (Davis, 1962).
However, the detailed mechanisms of the interactions between
white clover and orchard grass still remain unclear. More
progressions have been made in companion planting with the
development of modern culture and sequencing technologies in the
last 5 years. The improved yields can be attributed to the enhanced
efficiency of nitrogen fixation induced by companion planting
(Bybee-Finley and Ryan, 2018; Chalk, 2018; Payne, 2019). The
improved nitrogen formulation efficiency is induced by the
remodeling of microorganisms in proximity (Moore et al., 2019).
Frontiers in Plant Science | www.frontiersin.org 2205
However, the detailed mechanisms of the biological basis of
companion planting are still unclear and require further studies.

In this study, we focused on the companion planting of white
clover and orchard grass using 16S rRNA gene sequencing
techniques (Pitombo et al., 2016; Smets et al., 2016). We
monitored microbiome remodeling patterns in separate and
companion planting conditions. The differential and altered
microbiome distribution patterns confirmed the contribution of
microbiome in the companion planting of the two plants and
partially revealed the potential biological foundations for
companion planting at least at the microbiome level. In this
study, we revealed the biological foundation of the companion
planting of white clover and orchard grass at the microbiome
level, constructed a general workflow to study the contributions of
microbiome on companion planting, and provided a new
perspective on the biological foundations of companion planting.
MATERIALS AND METHODS

Experiment Site and Soil
Experiments were performed at the Dayangdian Experimental
Station of Anhui Agricultural University (31°58′N, 117°24′E),
FIGURE 1 | Microbiome composition of the microorganisms with the top 30 abundances at the class level. We calculated the relative abundances (%) of the top 30
most abundant microorganisms at the class level. The proportion of top classes, such as Alphaproteobacteria, Actinobacteria, Betaproteobacteria,
Gemmatimonadetes, was great in most samples regardless of groups and reflects the background microbiome pattern in the proximity. (Note: W2, W4–9 are WC
samples; O2–5, O7–9 are OG samples; M1–5, M7–8 are Mixed samples).
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Hefei City, Anhui Province, Southeast China. The study site is
located between the Yangtze River and Huaihe River. The study
area belongs to the transitional zone between the warm temperate
zone and subtropical zone and has subtropical humid monsoon
climate. Its annual temperature is cold in winter (8–17°C), hot in
summer (21–29°C), and mild in spring and autumn, and its annual
precipitation is 992mm. The soil had the following physicochemical
properties on a dry weight basis: 0.89% organic matter, 81.1 mg kg−1

available N, 16.3 mg kg−1 available P, and 100.5 mg kg−1 available K.
In May 2019, 0.25 kg soil samples were collected in the rhizospheres
of the white clover (WC) and orchard grass (OG) groups and soil
samples of the companion planting of both plants (Mixed). All soil
samples were preserved under the same conditions, and some fresh
soil samples were further processed.

Treatments and Field Management
To explore the effects of white clover and orchard grass on the
soil microorganisms, we established research sites in October
2018 where we applied three treatments: white clover, orchard
grass, and the companion planting of both plants. The area of the
land used in the experiment measured 4 × 4 m2 in each plot. The
amounts of white clover and orchard grass sowed were 10 and
20 kg ha−1, respectively, and the Mixed group had 7.5 kg ha−1

white clove and 5 kg ha−1 orchard grass. The soil was watered
when precipitation was insufficient.
Frontiers in Plant Science | www.frontiersin.org 3206
DNA Extraction and Library Construction
Total genomic DNA was extracted using DNA Extraction Kit
following the manufacturer’s instructions. The quality and
quantity of DNA were verified through spectrophotometry
using NanoDrop spectrophotometer and via agarose gel
electrophoresis. The extracted DNA was diluted to a concentration
of 1 ng/ml and stored at −20°C until further processing. The diluted
DNA was used as template for the polymerase chain reaction (PCR)
amplification of bacterial 16S rRNA genes using barcoded primers
and TaKaRa Ex Taq. The V3–V4 variable regions of 16S rRNA genes
were amplified with universal primers 343F and 798R for bacterial
diversity analysis.

Amplicon quality was visualized through gel electrophoresis,
purified with AMPure XP beads (Agencourt), amplified for
another round of PCR, and purified with AMPure XP beads
again. The final amplicon was quantified using Qubit dsDNA
assay kit. Equal amounts of purified amplicon were pooled for
subsequent sequencing.

16S rRNA Gene Sequencing
Result Analysis
Quality Control for Raw Sequencing Data
The raw image data obtained from high-throughput sequencing
data was transformed into the original rRNA sequence in
FASTQ file format by base calling analysis (Kao et al., 2009).
FIGURE 2 | Ternary plot of the contribution and relationship of different species in different groups. The ternary plot shows the unique species distribution patterns
and abundances of the three groups.
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The data in FASTQ format were further processed to remove the
sequences with low quality and abnormal length using
Trimmomatic software (Bolger et al., 2014). We also used
UCHIME software to remove chimera in the raw FASTQ file
to provide clean data for further analyses (Rognes et al., 2016).
The distribution of sequence length after data cleaning is shown
in the histogram and density map in Figure S1. Nearly all the
reads distributed were within the length range of 400–450 bp
with quite high quality; thus, our quality control procedure was
efficient, and the clean data were eligible for further analysis.

Operational Taxonomic Unit Classification
We used Vsearch software to classify the high-quality sequence
of the valid tags obtained by quality control according to 97%
similarity. The most abundant sequence in each OTU was chosen
as the representative sequence. We applied the Ribosomal
Database Project classifier, the Naive Bayesian classification
algorithm (Wang et al., 2007), to further align and annotate the
representative sequences against the annotation database for the
species information of each OTU. We further summarized the
distribution of OTUs in different samples and the annotations of
tags and OTUs based on the species results to show the general
species distribution pattern of different samples. We used flower
plot to show the numbers of shared and unique OTUs among
different samples (Figure S2). Standardized the original data in
Frontiers in Plant Science | www.frontiersin.org 4207
OTU table file (the form of biom), and then the predicted
functional (KEGG/COG) results were obtained by mapping the
standardized data with the species functional genes from the
online sequenced genome.

Analysis of Biome Structure From Soil in Proximity
Community structure or “biological community” refers to all the
organisms that have a direct or indirect relationship with each
other. Various groups in a microbial community interact with
each other and can coexist in a regular manner but have their
own distinct types of nutrition and metabolism. In this study, we
summarized the composition of microbiome communities. We
performed ternary plot analysis (Graffelman and Camarena,
2008) to compare and analyze the species composition of the
three groups according to the classification results.

Alpha Diversity Analysis
Alpha diversity, which reflects the diversity of species in shared
habitats, was calculated to present the species diversity in each
sample (Huttenhower et al., 2012). Microhabitats have been tested
for differences in estimated abundances with the Kruskal–Wallis
significance test for all pairwise combinations. We measured the
number of species and the uniformity of species abundance used the
indexes of Shannon and Chao based on a rarefied (18,860 reads)
dataset (Figure S1) to quantitatively evaluate species diversity.
FIGURE 3 | PCoA analysis of the OTU composition differences of the three groups. The microbiome distribution and diversity of three groups were separated into
different parts.
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Beta Diversity Analysis
Beta diversity is the diversity of the relationships between
organisms and environment in proximity (Kurilshikov et al.,
2017). Similar with the alpha diversity analysis, we also used
some quantitative parameters to evaluate the differential beta
diversity patterns in different groups. In this study, we used
principal co-ordinate analysis (PCoA) based on Bray Curtis to
reveal the beta diversity among different groups.

Multiple Variable Analysis of Soil Microbiome
We used OTU and species data to identify the specific species
that have statistically significant difference in abundances. We
used ANOVA to identify the most substantial differentially
existing species among the three groups (Rojewski et al., 2012).
Frontiers in Plant Science | www.frontiersin.org 5208
Correlation Analysis and Prediction Using Machine
Learning Models
We analyzed the correlations of different species and their
contribution on the distinction of different groups using
correlation analysis and machine learning methods. We also
applied random forest apart from direct correlation analysis for
further analysis. Random forest is the machine learning
algorithm first proposed by Leo Breiman and Adele Cutler in
2001 (Breiman, 2001). Random forest is regarded as an
integrated learning method with multiple decision trees. The
output classification result is the result of “voting” by each
decision tree. The classification results of random forests have
high accuracy and do not need to “cut branches” to reduce
overfitting because each tree uses random variables and random
FIGURE 4 | Correlation plot of the top 30 genera with the highest abundance. The plot shows the inner correlation between different species (FDR < 0.1). Red
indicates negative correlations, and blue indicates positive correlations at the abundance level. Size of the circle indicates absolute strength of correlation.
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sampling methods in the construction process (Breiman, 2001;
Segal, 2004). We used the proper R package (random forest) to
perform the random forest algorithm (Segal, 2004).

Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States Analysis
PICRUSt functional predictive analysis is based on 16S rRNA
gene sequencing data and annotated by Greengenes database
(DeSantis et al., 2006). The PICRUSt software (Langille et al., 2013)
is widely used to analyze the functional genetic composition of
identified microorganism to reveal the functional diversity between
different samples or groups. In this study, we applied PICRUSt
analysis workflow (Langille et al., 2013) to reveal the functional
distribution patterns of the different samples and groups.
RESULTS

Effect of Companion Planting on
Microbiome Community Structure
and Abundance
We summarized the composition of the microbiome community
at the class level according to the microorganisms with the top
30 abundances (Figure 1, Table S1). According to the result,
specific classes, such as Alphaproteobacteria, Actinobacteria,
Betaproteobacteria, Gemmatimonadetes, had top abundances
in nearly every sample and reflected the background microbiome
Frontiers in Plant Science | www.frontiersin.org 6209
distribution pattern in proximity. However, some specific classes,
such as Gemmatimonadetes, had relatively higher abundance in the
Mixed group compared with the OG group and indicated the
potential microbiome remodeling effects of companion planting.
However, the differential distribution patterns of the microbiomes
of the three different groups were not clear. Therefore, we also used
the ternary plot to reveal the contribution and relationship of
different Phylum in different groups (Figure 2). According to
Figure 2, Tenericutes and Spirochaetae were found in the specific
distribution pattern of the OG group. This result indicated that
these two microbiomes may be unique under the OG planting
pattern and verified that companion planting affects the
microbiome distribution pattern in proximity.

Effect of Companion Planting on
Alpha Diversity
We used the boxplot to show the alpha diversity using Shannon and
Chao1 parameters (Figures S4, S5). Results showed that the OG and
Mixed groups had remarkably higher Chao1 (community richness)
index values compared with theWC group (P = 0.0103; P = 0.0029).
However, no significant difference was shown in Shannon index
among there groups (P = 0.0545). Chao1 index describes and
evaluates the number of species. A higher Chao1 index indicates a
higher number of species in the sample. The Mixed group had the
most diverse microbiome among the groups and had similar species
abundance as the OG group (P = 0.713). The OG andMixed groups
had higher Chao1 index than the WC group. The differences of the
FIGURE 5 | Random forest evaluation of the top 30 genera for the distinction of different groups. We used random forest method and evaluated the importance of
these features using the mean decrease grid. The point map of genus importance (variable) is shown. The abscissa is the measure of importance, and the ordinate is
the name of the genus sorted by importance. Standardized importance values are used by default.
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three groups in Chao1 index indicated that their microbial diversity
and microbiome abundance are quite different from each other.

Effect of Companion Planting on
Beta Diversity
We used Bray Curtis distance to evaluate the relationships
between different samples and groups. The results were similar
to those of the alpha diversity analysis. The three groups were
divided into different parts. The mixed groups were distributed
between WC and OG. However, the mixed groups were closer
OG than WC, which indicated that the microbial community of
OG played the main function in companion planting. Similar
results were also shown by the PCoA results (Figure 3).

Effect of Correlation Analysis on Specific
Contribution on Genus Level
We presented the correlation analysis results using a correlation
plot (Figure 4) to show the inner relationship among the top 30
genera with the highest abundance. We also showed the specific
contribution of each genus through a random forest in Figure 5
Frontiers in Plant Science | www.frontiersin.org 7210
based on the classification of the three subgroups. We ranked the
contribution of each genus according to the mean decrease grid
parameter and showed the top genera that contributed to the
distinction of the three groups. Unique genera, such as
Gemmatimonas and Sphinomonas, are quite important for the
distinction of the three groups.

Effect of Companion Planting on
Functional Differential Enrichment
We used Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa et al., 2002; Aoki and Kanehisa, 2005) and Clusters of
Orthologous Groups (COGs) (Galperin et al., 2017) functional
annotation and prediction to show the distribution of functional
clusters among different samples and groups. We could not
distinguish the samples from the three groups using KEGG
enrichment analysis (Figure 6). By contrast, we were able to
distinguish the WC group from the OG and Mixed groups using
COG annotation and enrichment analysis (Figure 7). This
finding is similar with previous functional analysis, which
indicated that the effect of planting only white clover on the
FIGURE 6 | KEGG functional annotation and differential enrichment analysis of the three groups. The functional annotation and clustering of the top KEGG terms
were performed using the KEGG database. The samples from different groups are difficult to distinguish using KEGG terms.
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microbiome is quite different from those of planting only
orchard grass and companion planting.
DISCUSSION

Effect of Companion Planting on Soil
Bacteria Community Structure
and Diversity
The samples from different groups have different biome
structures. Figure 1 demonstrates that most of the samples
from three groups have similar microbiome compositions, but
relatively abundance differ among three groups at the OTU level
(Table S1). Similar results have been reported in previous studies
on soil microbiome (Gołębiewski et al., 2014; Samad et al., 2017).
These results confirmed the complexity of soil at the microbiome
level. We also identified some unique distribution patterns at the
class level. Alphaproteobacteria, Actinobacteria, Betaproteobacteria,
Gemmatimonadetes were detected in almost all the samples and
reflect the general soil background in the proximity. Alphaproteobacteria,
Actinobacteria, Betaproteobacteria, Gemmatimonadetes are
widely detected in farmlands and pastures all over the world
(Aguilar et al., 2004; Rosenblueth and Martıńez-Romero, 2004;
Reina-Bueno et al., 2012).

We identified two unique species from Tenericutes and
Spirochaetae that contributed to distinguishing the OG group
Frontiers in Plant Science | www.frontiersin.org 8211
from the other two groups. Tenericutes has been identified in
regions with various kinds of grass orchards worldwide (Liu et al.,
2017; Deakin et al., 2018). Spirochaetae has also been identified in
regions planted with grass orchards (Brown, 1943). Here we can’t
find Tenericutes and Spirochaetae in soil ofWC andMixed group.
These findings may imply that some root exudates in WC inhibit
the specific distribution of these microorganisms.
Effect of Companion Planting on
Bacteria Groups
Genus Gemmatimonas contributed the most to the distinction of
the groups (Figure 4).Gemmatimonasmay participate in nitrogen
fixation processes and inhibit plant pathogens in the soil (Abed
et al., 2010; Peng et al., 2019). Therefore, the identification of this
genus may indicate differential nitrogen fixation process efficacy
among different groups and indicates that improving nitrogen
fixation efficacy may be one of the biological foundations of
companion planting. Other bacterial genera also participate in
nitrogen fixation, such as Sphingomonas (Xie and Yokota, 2006),
Ramlibacter (Thanh and Diep, 2014), andNocardioides (Lim et al.,
2014). Differential abundance analysis showed that the nitrogen
fixation-associated bacteria of the different groups were different.
Therefore, nitrogen fixation is of the biological bases and
microbiome effects of improving the efficacy of planting by
companion planting.
FIGURE 7 | COG functional annotation and differential enrichment analysis of the three groups. The samples were screened for the top enrichment functions using
their annotation from the COG database (FDR = 0.0907). The samples from the WC group can be easily distinguished from the OG and Mixed groups. The different
functional distributions of the different groups are shown.
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Effect of Companion on Functional
Differential Enrichment
According to the COG annotation and clustering results, some COG
terms have different enrichment patterns in the different groups,
especially in the Mixed group. For instance, COG1713 and
COG5574 were enriched in the Mixed group, and COG1713 had a
high enrichment pattern in the Mixed group. According to the
EggNog database (Powell et al., 2014), COG1713 describes the co-
enzyme transport and metabolism processes in bacteria, such as
Treponema azotonutricium ZAS-9. According to an independent
study on the symbiotic nitrogen fixation in New Zealand (Reid and
Lloyd-Jones, 2009), bacteria plays an effective role in nitrogen fixation
in pasture regions. Therefore, the activation of these biological
processes may contribute to the improvement of nitrogen fixation.

The other COG term, COG5574, has been supported by
Wani et al. (2007). COG5574 describes the post-translational
modification, protein turnover, and chaperones involved in
various ion binding processes. In 2007, a systematic analysis
(Wani et al., 2007) on the molecular genetics of white clover
confirmed that the binding of cadmium, chromium, and copper
ion is functionally related to nitrogen fixation in this plant.
Therefore, the identified biological process is also functionally
related to nitrogen fixation processes.
CONCLUSION

We compared themicrobiome distribution patterns of planting white
clover and orchard grass under single planting and companion
planting conditions using 16S rRNA gene sequencing techniques.
The analysis results confirmed that the companion planting of white
clover and orchard grass can remodel soil microbiome in proximity,
especially when compared with the single planting of white clover.
We identified a group of differentially distributed microorganisms,
such as Gemmatimonadetes. We also identified a group of biological
processes, namely, COG1713 and COG5574, using functional
annotation and clustering. The screened microorganisms and
functional enrichment patterns indicate the specific role of nitrogen
fixation effects during companion planting. Therefore, we were able
to screen the specific microbiome distribution patterns at the species
and functional levels and confirm that nitrogen fixation is one of the
most important biological mechanisms for companion planting.
DATA AVAILABILITY STATEMENT

The datasets generated for this study can be found in NCBI
(https://www.ncbi.nlm.nih.gov/sra/PRJNA625872).
Frontiers in Plant Science | www.frontiersin.org 9212
AUTHOR CONTRIBUTIONS

All authors contributed to the article and approved the submitted
version. LC and YZ designed the study. LC and DL performed
the experiments. YS, HW, and YL analyzed the results. LC wrote
the manuscript.
FUNDING

This work was supported by grants from the National Natural
Science Foundation of China (31872418), the Natural Science
Foundation of Anhui Province (1808085MC60), the Science and
Technology Research Projects of Anhui Province (201904b11020043,
201904e01020014), and the National Key Research and
Development Program of China (2018YFD1100104).
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fpls.2020.538311/
full#supplementary-material

SUPPLEMENTARY FIGURE 1 | The rarefaction plots for chao1.

SUPPLEMENTARY FIGURE 2 | Histogram and density map for clean tags
length after data cleaning. It’s easy to figure out that after data cleaning, all the high-
quality reads locate in the range between 400 bp and 450 bp, indicating that the
quality control procedure is effective and such clean data is eligible for the
downstream analyses.

SUPPLEMENTARY FIGURE 3 | Flower plot for the OTU number distribution
pattern among different groups. The numbers in core represent the common OTUs
in all samples (i.e., core OTUs), and the numbers on the petals represent the total
OTUs of each sample minus the number of common OTUs.

SUPPLEMENTARY FIGURE 4 | Box plot for the Shannon index to evaluate the
alpha diversity of different groups. Here, we compared the Shannon index of all the
three groups (the mixed for white clover, the OG for orchard grass and the WC for
companion planting). Planting only white clover may have lower species diversity
comparing to only planting orchard grass and companion planting.

SUPPLEMENTARY FIGURE 5 | Box plot for the Chao (community richness)
index to evaluate the alpha diversity of different groups. Here, we further compared
the Chao index of all the three groups (the mixed for white clover, the OG for orchard
grass and the WC for companion planting). Planting only white clover may have
lower species abundancy comparing to only planting orchard grass and companion
planting.

SUPPLEMENTARY TABLE 1 | The relative abundance of dominant community
to each group on class level (%).Values with different lowercase superscript letters in
the same row indicate the existence of a significant difference (P < 0.05); values with
the same letters indicate no significant difference (P > 0.05).
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(2014). 16S rDNA pyrosequencing analysis of bacterial community in heavy
metals polluted soils. Microbial Ecol. 67 (3), 635–647. doi: 10.1007/s00248-
013-0344-7

Graffelman, J., and Camarena, J. M. (2008). Graphical tests for Hardy-Weinberg
equilibrium based on the ternary plot.Hum. Hered. 65 (2), 77–84. doi: 10.1159/
000108939

Hagiwara, M., Yoshida, T., and Matano, T. (1995). Effects of companion planting
of two common buckwheat varieties on yield and yield concerning characters.
Curr. Adv. Buckwheat Res. 1, 469–473.

Huttenhower, C., Geversm, D., Knight, R., Abubucker, S., and Badger, J. (2012).
Structure, function and diversity of the healthy human microbiome. Nature
486 (7402), 207. doi: 10.1038/nature11234

Kanehisa, M. (2002). The KEGG database. Found. Symp. 247, 91–101. doi:
10.1002/0470857897.ch8

Kao, W.-C., Stevens, K., and Song, Y. (2009). BayesCall: A model-based base-
calling algorithm for high-throughput short-read sequencing. Genome Res. 19
(10), 1884–1895. doi: 10.1101/gr.095299.109

Kurilshikov, A., Wijmenga, C., Fu, J., and Zhernakova, A. (2017). Host genetics
and gut microbiome: challenges and perspectives. Trends Immunol. 8 (9), 633–
647. doi: 10.1016/j.it.2017.06.003

Langille, M. G., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes,
J. A., et al. (2013). Predictive functional profiling of microbial communities
using 16S rRNA marker gene sequences. Nat. Biotechnol. 31 (9), 814. doi:
10.1038/nbt.2676

Lim, J. M., Kim, S., Hanmada, M., Ahn, J., Weon, H., Suzuki, K., et al. (2014).
Nocardioides daecheongensis sp. nov., isolated from soil. Int. J. Syst. Evolution.
Microbiol. 64 (12), 4109–4114. doi: 10.1099/ijs.0.063610-0
Frontiers in Plant Science | www.frontiersin.org 10213
Liu, K., Xu, Q., Wang, L., Wang, J., Guo, W., and Zhou, M. (2017). The impact of
diet on the composition and relative abundance of rumen microbes in goat.
Asian-Australasian J. Anim. Sci. 30 (4), 531. doi: 10.5713/ajas.16.0353

Mengel, K. (2001). Alternative or complementary role of foliar supply in mineral
nutrition. International Symposium on Foliar Nutrition of Perennial Fruit
Plants. Acta. Sci. Pol-Hortoru. 594, 33–47. doi: 10.17660/ActaHortic.2002.594.1

Moeller, D. A. (2004). Facilitative interactions among plants via shared pollinators.
Ecology 85 (12), 3289–3301. doi: 10.1890/03-0810

Moore, K. J., Anex, R. P., Elobeid, A. E., Fei, S., Flora, C., Goggi, A., et al. (2019).
Regenerating agricultural landscapes with perennial groundcover for intensive
crop production. Agronomy 9 (8), 458. doi: 10.3390/agronomy9080458

Oyekanmia, E. O., Coyne, D. L., Fagadea, O. E., and Osonubia, O. (2007).
Improving root-knot nematode management on two soybean genotypes
through the application of Bradyrhizobium japonicum, Trichoderma
pseudokoningii and Glomus mosseae in full factorial combinations. Crop
Prot. 26 (7), 1006–1012. doi: 10.1016/j.cropro.2006.09.009

Parker, J. E., Snyder, W. E., Hamilton, G. C., and Rodriguez-Saona, C. (2013).
Companion planting and insect pest control. Weed and Pest Control-
Conventional and New Challenges (IntechOpen).

Payne, K. M. (2019). Enhanced Efficiency Nitrogen Formulation Effect on Grass-
legume Pasture Productivity. [dissertation/master’s thesis]. Lexington
(Kentucky): University of Kentucky.

Peng, C., Gao, Y., Fan, X., Peng, P., Huang, H., and Zhang, X. (2019). Enhanced
biofilm formation and denitrification in biofilters for advanced nitrogen
removal by rhamnolipid addition. Biores. Technol. 287, 121387. doi: 10.1016/
j.biortech.2019.121387

Pitombo, L. M., Carmo, J., Hollander, M., Rossetto, R., Maryeimy, V., and
Cantarella, H. (2016). Exploring soil microbial 16S rRNA sequence data to
increase carbon yield and nitrogen efficiency of a bioenergy crop. Gcb
Bioenergy 8 (5), 867–879. doi: 10.1111/gcbb.12284

Plaza, L., Ancos, B., and Cano, P. (2003). Nutritional and health-related
compounds in sprouts and seeds of soybean (Glycine max), wheat (Triticum
aestivum. L) and alfalfa (Medicago sativa) treated by a new drying method.
Eur. Food Res. Technol. 216 (2), 138–144. doi: 10.1007/s00217-002-0640-9

Powell, S., Forslund, K., Szklarczyk, D., Trachana, K., Roth, A., Huerta-Cepas, J.,
et al. (2014). eggNOG v4. 0: nested orthology inference across 3686 organisms.
Nucleic Acids Res. 42 (D1), D231–D239. doi: 10.1093/nar/gkt1253

Reid, N. M., and Lloyd-Jones, G. (2009). Symbiotic nitrogen fixation in the New
Zealand dampwood termite (Stolotermes ruficeps). New Z. J. Ecol. 33 (1), 90.
doi: 10.1128/AEM.05609-11

Reina-Bueno, M., Argandoña, M., Nie, J., Hidalgo-Garcıá, A., Iglesias-Guerra, F.,
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Biological resources are multifarious encompassing organisms, genetic materials,
populations, or any other biotic components of ecosystems, and fine-grained
data management and processing of these diverse types of resources proposes
a tremendous challenge for both researchers and practitioners. Before the
conceptualization of data lakes, former big data management platforms in the research
fields of computational biology and biomedicine could not deal with many practical data
management tasks very well. As an effective complement to those previous systems,
data lakes were devised to store voluminous, varied, and diversely structured or
unstructured data in their native formats, for the sake of various analyses like reporting,
modeling, data exploration, knowledge discovery, data visualization, advanced analysis,
and machine learning. Due to their intrinsic traits, data lakes are thought to be
ideal technologies for processing of hybrid biological resources in the format of text,
image, audio, video, and structured tabular data. This paper proposes a method
for constructing a practical data lake system for processing multimodal biological
data using a prototype system named ProtoDLS, especially from the explainability
point of view, which is indispensable to the rigor, transparency, persuasiveness, and
trustworthiness of the applications in the field. ProtoDLS adopts a horizontal pipeline
to ensure the intra-component explainability factors from data acquisition to data
presentation, and a vertical pipeline to ensure the inner-component explainability factors
including mathematics, algorithm, execution time, memory consumption, network
latency, security, and sampling size. The dual mechanism can ensure the explainability
guarantees on the entirety of the data lake system. ProtoDLS proves that a single point
of explainability cannot thoroughly expound the cause and effect of the matter from an
overall perspective, and adopting a systematic, dynamic, and multisided way of thinking
and a system-oriented analysis method is critical when designing a data processing
system for biological resources.

Keywords: data lake, DIKW, biological resources, unstructured data, XAI, explainability, interpretability

Abbreviations: AGI, Artificial general intelligence; AI, Artificial intelligence; AM, Algorithm metadata; AV, Algorithm
visualization; BioBPX, Biological Pathway Exchange; DG, Data governance; DI, Data ingestion; DIKW, Data–information–
knowledge–wisdom; DL, Data lake; DM, DIKW metadata; DP, Data pond; DPV, DIKW provenance visualization; DS,
Dialogue system; EI, Explainable infrastructure; ELM, Extreme learning machine; EML, Explainable machine learning;
HCLS, Health care and life sciences; IM, Infrastructure metadata; IV, Infrastructure visualization; JS, Job scheduler; KG,
Knowledge graph; LIME, Local Interpretable Model-agnostic Explanations; MC, Metadata catalog; ML, Machine learning;
MM, Mathematics metadata; NA, Narrator; PCA, Principal component analysis; ProtoDLS, Prototypical Data Lake System;
SMV, Software Metrics Visualization; SP, Security and privacy; SRM, Software runtime metrics; ST, Sandbox training; SVD,
Singular value decomposition; TA, Twin agent; TDW, Traditional data warehouse; VI, Visualization; XAI, Explainable
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INTRODUCTION

Biological resources encompass a vast range of organisms (and
parts thereof), the genetic materials they contain (known more
specifically as genetic resources), and any other biological
components of a population or ecosystem that has an actual
or potential use or value for human beings. The digitization of
biological resources has created a large volume of biological big
data; however, those data are possibly coming from multiple
sources and are heterogeneous, and in order to make an
actionable decision, there needs to be a trustful data integration
and an integrated analytical solution. Research scientists in
bioinformatics around the world have pulled all out of their
efforts to collaboratively solve the challenging problems (Afgan
et al., 2016; da Veiga Leprevost et al., 2017; Bussery et al., 2018).
A data lake is claimed to be capable of fulfilling descriptive
analytics, exploratory analytics, and confirmatory factor analytics
requirements in other application fields, yet it has not been
introduced in bioinformatics or genetics to store large quantities
of biological resource data or experimental data in a massive way.

As a newly emerging paradigm of modern data architectures,
the data lake radically simplifies the enterprise-wide data
infrastructure, and it is expected to accelerate technological
innovation alongside with the deep penetration of artificial
intelligence and machine learning capabilities into every
industrial and social sector. In the past, almost all of the
data involved in the operational products and the decision-
making products come from structured data stored in the back-
end databases or data warehouses, or semi- or unstructured
data crawled from the Web, and nowadays, many innovative
products are embedding AI in the unstructured data format of
computer vision, speech recognition, and text mining. These new
requirements differ a great deal from the requirements emerging
in the era of data warehouses, which need a structured, subject-
oriented, and relational database claiming to hold a single view of
data without data silos (Stein and Morrison, 2014). For example,
over the years, Irvine Medical Center, University of California,
had accumulated a pile of patient health records owned by
one million inpatients and outpatients. These different types of
data included online spreadsheet data, semi-structured medical
reports, unstructured prescriptions, and radiology images from
its radio department. The medical center had to store, integrate,
and access the big data, so they chose to use a Hadoop distribution
as their initial data lake infrastructure, for the benefit of Hadoop
open-source software stacks and low-price commodity hardware
clusters (Stein and Morrison, 2014). When it comes to the
processing of biological resources, as research institutions, labs,
and pharmaceutical plants increasingly use mobile apps and
cloud services, the application scenarios will be somewhat similar
to what they have experienced at the UC Irvine Medical Center.

Due to their intrinsic traits, data lakes are thought to be
ideal technologies for processing of hybrid biological resources
in the format of text, image, audio, video, and structured
tabular data. Unfortunately, facing with these voluminous and
heterogeneous data, current data lake proposals cannot afford
the system complexity and high tolerance for human errors,
due mostly to their incipient design and low explainability.

However, some research directions and application scenarios
have received special attention on the explainability due to
their specialties and critical states, especially those in medicine
and pharmacy pertaining to human lives where decisions are
literally a matter of life or death. Biology as a discipline also
concerns much on the explainability of biological phenomena
and effects. Thus, the data management of biological resources
urgently needs to solve the following two problems: (i) efficient
and effective management of heterogeneous data from multiple
sources and (ii) reasonable explanation of applications running
on the platform in terms of the overall system design.
Usually, explainability cares more about the Explainable Artificial
Intelligence and Machine Learning (XAI and ML) algorithm
(Samek et al., 2017) and recommender systems (Schafer
et al., 1999; Zhang et al., 2014). However, we consider that
explainability is a very broad term that still includes engineering-
related aspects like the data/information/knowledge/wisdom
spectrum, or DIKW (Duan et al., 2019), network architecture,
and development language, human-related aspects like human
faults, and cognitive psychology, not just algorithm and
mathematics-related aspects. A single point of explainability
cannot thoroughly expound the cause and effect of the matter
from an overall perspective; we must adopt a systematic view and
system-oriented analysis method.

Also, the data lake approaches may learn lessons and
experiences from other similar approaches, which are possibly
coming from different application domains, for example, the
virtual research environment approaches (Assante et al., 2019;
Houze-Cerfon et al., 2019; Remy et al., 2019; Albani et al., 2020).
As is known to all, the integration of domain knowledge from
different application domains will bring different perspectives to
the data lake solutions.

Consequently, we propose in this paper the following:

1. to construct a practical data lake system for processing
multimodal biological data using a prototype system
named ProtoDLS;

2. to adopt a horizontal pipeline to ensure the intra-
component explainability factors from data acquisition
to data presentation, and a vertical pipeline to ensure
the inner-component explainability factors including
mathematics, algorithm, execution time, memory
consumption, network latency, and sampling size.

In order to better understand the meaning of explainability
from the outset, in here we give a brief definition of
explainability and interpretability (Adadi and Berrada, 2018;
Arrieta et al., 2020).

Definition 1 Explainability denotes an account of the system,
its workings, and the implicit and explicit knowledge it uses
to arrive at conclusions in general and the specific decision at
hand, which is sensitive to the end-user’s understanding, context,
and current needs.

Definition 2 Interpretability denotes the extent to which a
cause and effect can be observed within a system. Or, to put
it in another way, it is the extent to which you are able to
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predict what is going to happen, given a change in input or
algorithmic parameters.

In the context of this article, explainability and interpretability
are used interchangeably.

The reminder of this paper is organized as follows. Section
“Related Work” briefly surveys the current status quo of data
lakes and XAI, as well as the research development of data
management approaches in the field of bioinformatics, genetics,
and phenomics. Section “The Prototype Architecture” presents
the overall architecture of our prototype system, i.e., ProtoDLS
and describes the specific features of each key component.
Sections “Horizontal Pipeline” and “Vertical Pipeline” elucidate
the detailed design especially from the point view of explainability
in a horizontal and vertical pipeline, respectively. Section
“Project Progress and Discussion” discusses the current project
progress and makes a contrast between ProtoDLS and emerging
data lake systems. In closing, Section “Conclusion and Future
Work” comes to a conclusion of the paper and outlines future
development directions about ProtoDLS.

RELATED WORK

In 2010, James Dixon, CTO of Pentaho (2020), firstly proposed
the concept of data lake in one blog post, as a way trying to store
voluminous and diversely structured data in their native formats,
in an evolutionary storage place allowing later detailed analyses
(Dixon, 2010). Although the concept was first coined in early
2010, academia adopted it a couple of years later. Until now, there
has been no well-accepted definition of what a data lake is, and
the corresponding underlying features vary differently according
to the real-world contexts. Some early research advancements
on data lakes for a time were ever bound up with on-demand
data models, or widely called schema-on-read models (also
known as late binding models) (Fang, 2015; Miloslavskaya and
Tolstoy, 2016). The key reason for adopting the schema-on-
read model in data lakes lies in the bulk workloads of manual
schema extraction, which is inoperable in the face of machine
learning tasks, especially deep learning tasks. At the same time,
Suriarachchi and Plale (2016) found that with the continuing
growth of data in top gear, a data swamp will soon appear
from a meant-to-be data lake without the guidance of a clear-
cut schema. Thus, to ensure data accessibility, exploration, and
exploitation, an efficient and effective metadata system becomes
an indispensible component in data lakes (Quix et al., 2016).
Yet, most of the research work on data lakes still concentrate on
structured data, or semi-structured data only (Farid et al., 2016;
Farrugia et al., 2016; Madera and Laurent, 2016; Quix et al., 2016;
Klettke et al., 2017). So far, unstructured data have not received
enough consideration in the relevant research literature, while
more often than not unstructured heterogeneous data occur
frequently (Miloslavskaya and Tolstoy, 2016). Multimodality in
data lake systems is estimated to come under the spotlight in the
next research wave.

Almost at the same time, with the development of big data
and deep learning, especially since the totemic year of 2012,
AI algorithms have attained or surpassed the limits of human

beings in many areas like chess games and drug discovery,
which were computationally unimaginable in early years (Lecun
et al., 2015). However, some black-box models like random forest
(Breiman, 2001), GBDT (Friedman, 2001), and deep learning
(Lecun et al., 2015) have extraordinarily complex inner working
mechanisms and inexplicable outer input–output mappings.
Even for a senior graduate student, to fully understand the
rationale of a black-box model will cost him several days and
make him go through a painful process of a conscientious
manual formula derivation and a time-consuming experimental
verification. The problem with these models is that they are
devoid of transparency and explainability, although they will
nearly gain superior performance after careful fine-tuning. In the
healthcare and medical field, that would become a big problem
since applications in these demanding fields require a full-fledged
explanation of model rationales. Thus, research efforts in these
fields have witnessed a burst of articles and papers in explainable
artificial intelligence (XAI) (Došilović et al., 2018). Since XAI
methods have extensive application scenarios, a full survey of XAI
research and development is a difficult task to accomplish. On
a large scale, the related research topics in XAI can be roughly
divided into two major categories: integrated approaches and
post-hoc approaches.

The integrated approaches usually keep an eye on the
transparency factors, and transparency is a required means
for the protection of human rights from unfairness and
discrimination (Edwards and Veale, 2017). Similar to the idea,
transparent models are expected to be both explainable and
interpretable. As one of its subbranches, pure transparent
approaches restrict the model choices to the model families
that are considered transparent. For example, Himabindu et al.
(2016) ever proposed a method to use separate if-then rules
to effectively interpret decision-making sets. Based on region-
specific predictive models, Wang et al. (2015) proposed an
oblique treed sparse additive model, which exchanges a modest
measure of interpretability for accuracy, but in SVM and
some other non-linear models, it gains a satisfying degree of
accuracy. As another subbranch, hybrid approaches combine
pure transparent models and black-box models to get a
balance between interpretability and performance. To develop
internal rating models for banks, Gestel et al. (2005) used a
progressive method balancing the requirements of predictability
and interpretability.

Post-hoc approaches will not impact the model performance
since it extracts information from the already learned model.
Usually, post-hoc approaches are used in cases where model
mechanisms are too complex to explain. For example, as
for explainable recommendation, two diverse models generate
recommendations and explanations, respectively. After the
genuine recommendations have been performed, an explanation
model independent of the recommendation algorithms will
provide explanations for the recommendation model carried
out just a while ago (so it is called as “post-hoc”). Likewise,
to provide a post-hoc explainability for recommendations,
Peake and Wang also presented a data mining method with
several association rules (Peake and Wang, 2018). In addition
to recommendation, post-hoc approaches were also used in
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image recognition and text classification. To find out model
defects in these fields, with the aid of several elastic nets,
Guo et al. (2018) augmented a Bayesian regression mixture
model and extracted explanations for a target model through
global approximation.

XAI has received relatively little attention in the field
of bioinformatics and biology, but ontology-based data
management in this line has gleaned quite a few studies. In
phenomics research, aiming to support adequate collaboration
between teamworkers, Li Y.F. et al. (2010) presented PODD, a
data reservoir based on ontology. Like its big brother, genomics,
phenomics research uses imaging devices and measurement
apparatuses to acquire vast amounts of generated data, which
are subsequently used for analysis. Thus, in phenomics research,
there are key challenges for data management of large amounts
of raw data (image, video, raw text). Meanwhile, in genomics,
Ashburner et al. (2000) constructed the famous Gene Ontology
(Gene Ontology, 2020), a well-established and structured
tool to represent gene ontology categories and terms, which
has been successfully used for many years by researchers.
The Gene Ontology includes three independent ontologies,
molecular function ontology, cellular component ontology,
and biological process, and can be used for all eukaryotes,
even as we are gaining more knowledge of protein and gene
functions in cells (Ashburner et al., 2000). The Bio2RDF (2020)
project declares to transform silos of life science data into
a globally distributed network of linked data for biomedical
knowledge translation and discovery. Up until now, Bio2RDF
has accumulated 378 datasets, including Bio2RDF:Drugbank
and Bio2RDF:Pubmed. The EBI RDF platform (Ebi Rdf, 2020)
claims to bring together a number of EMBL-EBI resources that
provide access to their data using Semantic Web technologies.
As a well-accepted exchange language, BioPAX (Biological
Pathway Exchange) aims to enable integration, exchange,
visualization, and analysis of biological pathway data (Demir
et al., 2010). OntoLingua provides a distributed collaborative
environment to browse, create, edit, modify, and use ontologies
(OntoLingua Server, 2020). The BioSchemas project develops
different types of schemas for the exchange of biological data
and aims to reuse existing standards and reach consensus
among a wide number of life science organizations (BioSchemas,
2020). Although closed, W3C’s HCLS (Health Care and Life
Sciences) group has done a great deal of work to use Semantic
Web technologies across health care, life sciences, clinical
research, and translational medicine. Amid questions about its
feasibility and availability, IBM Watson brings to customers a
cognitive computing platform which can understand, reason,
and learn from a magnitude of unstructured medical literature,
patents, genomics, and chemical and pharmacological data
(Ying et al., 2016).

Apart from ontology research in biology, at different
times, a collection of databases such as scientific publications
(PubMed, 2020), genes (Ensembl, 2020), proteins (UniProt,
2020), and gene expression data (Ebi ArrayExpress, 2020; Gene
Expression Atlas, 2020; GEO, 2020) have ever been created
in order to store big quantities of bio-data for the purpose
of refining and for systematic scientific research work. These

data storage platforms have seldom based on data lakes since
data lakes are not as mature as commercial databases and data
warehouses; neither are open-source data management solutions
like Hadoop software stack.

At the intersection of data lakes and explainability, research
on explainable data lakes still remains unexplored. Also,
for now, barely little literature in the field of data lakes
has discussed explainability systematically. This paper tries
to fill the gap between data lakes and explainability from
a systematic view, not just a XAI view, and to borrow
knowledge and experience from the research development on
XAI and data lakes.

THE PROTOTYPE ARCHITECTURE

In this section, we will present the overall architecture
of ProtoDLS (Prototypical Data Lake System for Biological
Resources) we have designed. In the field of bioinformatics and
genetics, ProtoDLS intends to answer the explainability problem
in a systematic, dynamic, and multisided view instead of an
isolated, static, and one-sided view. In order to explain certain
questions about data, metrics, rules, and business objectives,
ProtoDLS insists that only every component and module is
self-explanatory itself, the unhindered explainability can be
thoroughly implemented in the system level as a whole, and
only after that, explainability can take real effect and solve real-
world problems. ProtoDLS also disbelieves a single point of
explainability such as XAI for that XAI also has input into, output
out of, and interactions with other components, modules, or even
machine learning algorithms in a data lake system as in Figure 1.

As in Figure 2, the overall architecture of ProtoDLS can
be roughly divided into two major components: Data Lake
(DL, A in Figure 2) and Traditional Data Warehouse (TDW,
B in Figure 2). Initially debuted as a substitute for data
marts in the topmost tier of data warehouses, data lakes have
exhibited a relationship of complement to data warehouses
rather than a competitive relationship with data warehouses.
The complementary strengths and challenges between them in
recent years also suggest the urgent needs to exchange ideas
on opportunities, challenges, and cutting-edge techniques within
them. In ProtoDLS, TDW is usually used to cleanse, integrate,
store, and analyze the processed, trusted, and well-structured data
or semi-structured data like website logs. Raw data is always
discarded or stored in a NAS/SAN/Cloud storage area. TDW and
DL transfers data back and forth; sometimes, DL can serve as a
staging area for TDW, and vice versa. DL stores raw data in any
format and outputs the deeply analyzed results in a schematic
format to TDW for visualization, reporting, and ad hoc query.
TDW also outputs some structured data to DL as its metadata
and elementary elements. The detailed data flow between them is
stored in Metadata Catalog (MC, A-6 in Figure 2) of DL for later
explanation and traceability.

The Data Ingestion (DI, A-1 in Figure 2) component of
ProtoDLS provides an appropriate data extraction, integration,
transformation, and load mode for multiple heterogeneous data
sources. DI has the following features:
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FIGURE 1 | Explainability is a comprehensive concept and XAI is just an aspect of explainability.
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FIGURE 2 | The overall architecture of ProtoDLS.

1. Data source configuration: to support multiple data
sources, including but not limited to TDW, databases, flat
files, message queues, and protocol datagrams.

2. Data collection: to support the collection actions of
the corresponding data source, and complete data
structure analysis, data cleaning, data transforming, data
normalization, data format standardization, etc.

3. Data synchronization: to support data synchronization
to other data sources, including necessary cleaning,
processing, and transforming.

4. Data distribution: to support data sharing and
distribution, and publish data in various forms (object
stores, APIs, etc.).

5. Data preprocessing: to support data encryption,
desensitization, standardization, and other particular
processing logic.

The Explainable Infrastructure (EI, A-4 in Figure 2)
component of ProtoDLS is slightly different from the traditional
infrastructure layer. EI is also composed of network unit, storage
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unit, and computing unit. The generated data are all collected in
these units, such as memory consumption by second, network
latency by second, storage capacity by hour/day. The warning,
alert, or other important system admin event will be triggered
and displayed in an intuitive way, like using NLG (Natural
Language Generation).

The Visualization (VI, A-5 in Figure 2) component of
ProtoDLS empowers other components with visualization
capabilities. With visualization, horizontal components and
vertical modules can enhance explainability of DIKW flow (see
below), statistical algorithms, and deep learning algorithms.

In one respect, the design of a data lake platform
is fundamentally metadata driven, especially in terms of
explainability. The MC component of ProtoDLS is very critical to
explainability, since it globally stores all of the metadata generated
locally in every component, of which type includes technical
metadata, business metadata, and operational metadata. MC
stores every and each data change and schema change. MC can
represent metadata in tabular forms or human understandable
sentences supported by the Explainable Machine Learning
(EML, A-3 in Figure 2) component. MC provides a system-wide
single point of truth for all kinds of users in ProtoDLS.

The Knowledge Graph (KG, A-7 in Figure 2) component
of ProtoDLS visualizes knowledge entities and the relationships
between the entities in a graph model. With the help of
KG, EML, or any other component in ProtoDLS can extract
named entity, relationship, and attributes from it. Knowledge
representation, knowledge fusion, entity disambiguation, and
knowledge/ontology reasoning in KG can enhance explainability
in other components. The question and answer feature is critical
to explainability, and KG can provide accurate and concise
natural language abilities to aid it.

The Job Scheduler (JS, A-8 in Figure 2) component of
ProtoDLS schedules jobs for execution (start, stop, terminate,
invocate, replay, or sleep) at a specific time/date, or triggers
jobs upon receiving some certain event, or records the execution
orders of jobs and running status within jobs in DC. JS
orchestrates the running jobs in ProtoDLS in a sequential or
concurrent order, and its scheduling trigger scheme includes
time-based, interval-based, and event-based.

In contrast to TDW, the biological data maintained in DL
are more scattered, disordered, and schema-less, so it is more
necessary to govern the data usability, availability, integrity,
security, and flows in DL through the work of Data Governance
(DG, A-9 in Figure 2), otherwise DL will gradually become
corrupted and finally transforms into a data swamp. To efficiently
and effectively drive data intelligence, DG is crucial and it is
also one of the biggest challenges during the construction of
DL. The core task of DG lies in improving the multimodal
data quality by the aid of metadata management, data standard
conformance, data lifecycle management, data security and
privacy management, and data stewardship. Without the aid of
DG, low-quality data will greatly lower the precision and recall
of machine learning algorithms and thus will further restrict the
interpretability and explainability of ProtoDLS as a whole.

The Security and Privacy (SP, A-10 in Figure 2) component of
ProtoDLS deals with security and privacy issues since ProtoDLS

will be flooded by the influx of numerous raw and unprocessed
data, which will be very dangerous without some appropriate
supervision, audit, and access control methods. Privacy
preserving data mining can protect personal privacy data from
leakage and damage, improve explainability, and reduce bias.

The Data Pond (DP, A-2 in Figure 2) component of ProtoDLS
subdivides and processes the data exported by DI according to
the incoming data format. ProtoDLS needs to provide a variety
of data analysis engines to meet the needs of data computing.
It needs to meet batch, real-time, streaming, and other specific
computing scenarios. In addition, it also needs to provide access
to massive data to meet the demand of high concurrency and
improve the efficiency of real-time analysis. Heterogeneous data
enters into DP according to the dispatch of JS. Initially, text data
enter into text DP, and image data enter into image DP, and so on.
When multimodality analysis is set, different types of data may
enter into a hybrid DP, for example, text data and image data may
enter into text-image DP for later coordinated processing. The
partition of DP over data formats ensures the explainability and
traceability in DP.

The EML component of ProtoDLS is responsible for
executing NLP, image classification, video classification, audio
recognition, and conventional machine learning and deep
learning algorithms in an explainable way. The methods
for explainability may include example illustration, analogy,
visualization, model-agnostic, local approximation, or even
human intervention.

Potentially, ProtoDLS has a wide range of platform
users including system administrators, data scientists,
statisticians, analysts, and ordinary end users, who have
different explainability demands for ProtoDLS. For discovery
and ideation, data scientists will currently focus more on
the explainability of the black-box deep learning algorithms.
Statisticians will pull all out to explore data patterns and
identify data rules through tests, summaries, and higher-order
statistics under some hypothesis. Data analysts may cost their
efforts to explain the business intelligence metrics in their
everyday life. System administrators will pay attention to the
normal operation of ProtoDLS. When the system is down
or a performance degradation occurs, EI in ProtoDLS will
give system administrators an easy-to-understand explanation
and system administrators will rephrase the explanation in
less technical terms to other users of ProtoDLS, in order
to mitigate the user anxieties and confusion. Ordinary end
users usually are not technical experts in the abovementioned
areas, and all they want is an easy-to-understand explanation.
According to the explanation, they will make decisions and
enact policies and rules. However, the requirement creates
the most difficult part of explainability in ProtoDLS, since
the generated explanation by the platform must be presented
in an intuitive way prone to human understanding, without
many technical terms or nomenclatures. ProtoDLS accumulates
all the explanations in every component and module and
ranks them in an important or critical order, and ProtoDLS
will synthesize them into a paragraph that human can easily
understand and accept. The training procedures will absorb
insights and suggestions from experts in bioinformatics, genetics,
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and phenomics, in algorithms, in computer architecture, or even
in cognitive psychology.

ProtoDLS aims to help researchers and practitioners in
bioinformatics, genetics, and phenomics finish the following
tasks in an explainable way:

1. Multimodality data governance over datasets collected
from biological resources, including data standard
conformance, data security enforcement, metadata
management, data quality improvement, data stewardship,
and data lifecycle management, with an aim to reduce the
difficulties of data analytics without data lakes.

2. Multimodality data exploration and exploitation
using cutting-edge machine learning, deep learning,
and artificial intelligence techniques, on the basis of
ingesting, aggregating, cleaning, and managing datasets
maintained in ProtoDLS.

3. To generate new data dimensions based on the analysis of
previous usage histories.

4. To create a centralized multimodality data repository for
data scientists and data analysts, etc., which is conducive
to the realization of a data service optimized for data
transmission.

HORIZONTAL PIPELINE

In ProtoDLS, the horizontal pipeline mainly concerns about
when, where, how, by who, and to what degree the large amounts
of instantly collected raw data are being transformed into
meaningful information, useful knowledge, even insightful
wisdom for all kinds of end users. In the horizontal direction,
ProtoDLS is divided into several components according to
specific functional requirements. Thus, ProtoDLS adopts
a horizontal pipeline to ensure the intra-component (or
subsystem-level) explainability across the horizontal landscape,
from data acquisition, to data storage, all the way up to data
processing, and finally to data presentation.

Data, Information, Knowledge, Wisdom
ProtoDLS observes and manages the data flow between
horizontal units in light of the conceptual framework of
DIKW (Duan et al., 2019). As seen in Figure 3, the DIKW
model integrates data, information, knowledge, and wisdom in
a set of related layers, each extending the ones underneath
itself. The original observation and measurement activities
obtain the raw data, in the format of image/text/video/audio,
and the relationships between the raw data are analyzed
accordingly to obtain the information, which in ProtoDLS is the
integrated and formatted data from the raw data according to
some ETL processing rules. The application of information in
action produces knowledge, which in ProtoDLS is information
applied to bioinformatics, genetics, and phenomics. Wisdom is
concerned about the future, and it tries to understand things that
have not been understood in the past, things that have not been
done in the past.

Finding out how data, information, knowledge, and wisdom
flow between components should act as the first step toward

the complete explainability of a specific question posed toward
ProtoDLS, since quick location of the need-to-explain points will
be realized in terms of clear-and-cut DIKW flows.

ProtoDLS records any DIKW flow between every two
components in MC in the following format: <Task_Name,
Source_Component_Name | External_Source_Name, DIKW,
Sink_Component_Name | External_Source_Name, Last
Execution Time, Duration, Executed By >, i.e., DIKW flows from
a source component or an external source into a sink component
or flows out into an external source. MC can give back the
DIKW flow path for any request from other components. System
administrators can monitor and retrieve the DIKW flow in a
single operational console. When incidents occur, DIKW flow
monitoring capabilities can give admin teams a quick start and a
good explanation for other platform users.

DIKW Provenance
Provenance was a concept originated from the database
community decades ago (Buneman et al., 2001). The emergence
of data provenance, or data lineage, is that database or data
warehouse users need to find out the data origin and the data
evolution process, where they are coming from, where they
are going, and what is happening to them; also, they need
to frequently execute impact analyses in order to make sure
that certain actions to be performed will affect the system in
a controlled way and within a controlled range, or trace back
data quality issues and errors till to their root causes as fast as
they can. Or, on the other hand, many senior technical users
like data scientists and data analysts tend to use datasets in
isolation or in a team, which may quickly create some explicit or
implicit upstream and downstream dependencies and chaining
of dependent data processing. In this regard, the system or the
platform need to cover a broad spectrum of workload scenarios
like batch jobs, streaming jobs, mini-batch queries, ad hoc
queries, deep learning training tasks, and support programming
languages like R, Python, and Scala, and even new programming
languages like Julia. To perform provenance on the data lake,
we need DIKW provenance as an upgraded version in place of
data provenance. With DIKW provenance, the ProtoDLS users
can track and understand how DIKW flows across the platform
at every stage, where DIKW resources are sourced from, and how
they are being consumed, thus allowing users to develop trust and
confidence in the platform, algorithms, infrastructure, and other
inner working mechanisms of ProtoDLS.

Basically, DIKW provenance has the following categories:

1. What—provenance answers the question: what does this
do?

2. Who—provenance answers the question: who did this?
3. When—provenance answers the question: when did this

happen?
4. Where—provenance answers the question: where did this

happen?
5. How—provenance answers the question: how the

knowledge is worked out?
6. Why—provenance answers the question: why the result is

working?
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7. Why Not—provenance answers the question: why the
result is not achieved?

With DIKW provenance, many questions related to the
horizontal pipeline can be answered and thus explainability on
a horizontal level will be achieved to some extent in ProtoDLS.
As seen in Figure 4, the DIKW provenance flows can be
recorded in a module named DIKW Metadata (DM) in MC,
and the DIKW Provenance Visualization (DPV) module in VI
is responsible for replaying the provenance flows in a reverse
direction using animation.

VERTICAL PIPELINE

In ProtoDLS, the vertical pipeline concerns more about the
explainability in every component rather than the intra-
component explainability. For example, the fusion algorithm
implemented in DP may require an explanation mainly in the
scope of DP, rather than an explanation of the DIKW flows
between DI and DP which has been explained and can be queried
in the horizontal pipeline.

Mathematics
For certain users, mathematics can be annoyingly inevitable when
they conduct data analytics; however, mathematics is central to
the area of computational biology and biomedical research. Some
mathematical equations are relatively straightforward and easy to
explain to the ordinary users, just like the famous SVD (Singular
Value Decomposition) theorem:

M = U6VT

Although the formula is simple in its form, the meaning behind
it is quite wide and deep. That is, a seemingly simple formula also
needs thorough explanation for ordinary end users. Furthermore,

when stepping into the territory of machine learning, we will
find that this area is glutted with so many cranky mathematical
equations and formulas in all sorts of complex and profound
algorithms, for example, convex optimization algorithms (Boyd
et al., 2006) and the ELM (Extreme Learning Machine) algorithm
(Huang et al., 2006), just like the following one excerpted from
ELM:

min LRELM =
1
2
||β||2 +

C
2
||Y −Hβ||2

Some mathematical formulas are very hard to comprehend even
by seasoned machine learning experts. Therefore, it is necessary
to explain different mathematical formulas, even those seemingly
ones in the system. To understand mathematical formulas is
fundamental to understanding how a complex algorithm works
as a whole. ProtoDLS thinks about the problem in three aspects:

1. to explain the interpretation of each symbol in the
mathematical formula.

2. to explain the denotation of the entire mathematical
formula including its user, context, etc.

3. to explain the connotation lying behind the entire
mathematical formula.

Thus, in ProtoDLS, MC also records all of the bits and
pieces about every mathematical formula and the associated
formula derivation process in a particular region of it, namely,
the Mathematics Metadata (MM) region, as seen in Figure 5.

With MM in MC, all the components and users of ProtoDLS
can easily query, retrieve, and check in mathematics-related
problems. At the same time, with the aid of VI, ProtoDLS can
offer its users with an intuitive visualization presentation for
better explainability.

Algorithms
Likewise, algorithms, especially black-box deep learning
algorithms are also hard to comprehend. There roughly exist two
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different cases when we are dealing with algorithms in practical
applications:

1. Algorithms cannot be thoroughly understood by
ordinary end users.

2. Algorithms cannot be clearly explained by current
technical advancements, like black-box series of deep
learning algorithms.

The first case can be somewhat eased by technical measures,
like visualization and narrative storytelling. When it comes to the
second case, explainability will soon become the bottlenecks of

the whole platform. The methods we could adopt are reproducing
algorithms and methods in the latest literature in ProtoDLS.

As you can see in Figure 6, there is a module named
Algorithm Metadata (AM) in MC. AM preserves all the
information related to algorithms. The Algorithm Visualization
(AV) module in VI plays a very special role in the algorithmic
framework of ProtoDLS, since visualization is very critical to
the explainability of algorithms, especially the deep learning
algorithms. In the algorithmic framework, four modules exist
in EML, i.e., Sandbox Training (ST), Dialogue System (DS),
Narrator (NA), and Twin Agent (TA). At the same time,
EML opens up a sandbox region in DP, specifically for model
training, which has the following benefits: (i) algorithms can
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be trained and tested with real data sets in the production
environment, and training the algorithm with the same data
distribution will enhance the explainability; (ii) deployment from
the sandbox region to the production environment is relatively
straightforward; and (iii) the sandbox is isolated from the
production environment and thus faults or halts of sandbox will
not affect the production environment. The events that occurred
in ST will go into the AM and be stored for later explanation.
The dialogue bots behind DS interact with algorithm users with
multiround natural language dialogues, with the help of KG. NA
tells users how the algorithms work in a narrative storytelling
mode. For example, it is well-known that beginners to NLP
usually find it very hard to understand the concept of embedding.
Embedding is a technique of mapping an object onto a vector.
Without any explanation, this definition cannot be thoroughly
understood by beginners. However, we may use a narrative of the
algorithm to exchange for understandability, as seen in Figure 7.
The idea of TA in EML is imitated by a reinforcement framework
proposed by Wang et al. (2018). Sometimes, the machine learning
algorithm is too complex to be thoroughly grasped. In such
cases, we usually choose an explanation model to give post-hoc
explanations about the real algorithm model. Based on this basic
idea, the twin agents go further and select the best explanations
about the algorithm model according to some reinforcement
learning and adversarial learning rules. Drawing inspiration from
this idea, TA simulates a reinforcement learning framework to
enhance the explainability of some hard black-box algorithms.

Engineering Explainability
In ProtoDLS, engineering factors of explainability consist of two
major categories: the infrastructure (storage, memory, network,
and computation) explainability and the software development
explainability (programming language, process, thread, software
methodology). The infrastructure explainability concentrates on
the explanation of the running status of the infrastructure,

like for example the question: how much memory do the
underlying cluster nodes consume now? Meanwhile, the software
development explainability concentrates on the explanation of
program-related problems and questions.

EI uses a simple audit log to record all file access requests of the
file system, intended to be easily written and non-intrusive. The
log details include operation status (success, halted, failed, etc.),
user name, client address, operation command, and operation
directory. Through the audit log, system admins can view all
kinds of operation status of EI in real time, track all kinds of
warnings, errors, alerts, and incorrect operations, and execute
some metric monitoring.

At the same time, EI daemons will generate a series of
monitoring logs. The monitoring log monitors and collects the
measurable information of EI according to some predefined
rules. For example, the following metrics will be collected by EI:
the number of bytes written, the number of file blocks copied,
and the number of requests from the client. EI daemons also
monitor the network latency, memory consumption, and storage
consumption. The X-Storage, X-Memory, X-Computation, and
X-Network modules of EI continuously monitor their metrics
and output the monitored metrics to the Infrastructure
Metadata (IM) module of MC, respectively, as their names
indicate. IM in MC transfers metrics to the Infrastructure
Visualization (IV) module of VI to monitor the running
status of EI on a visual interface for system administrators in
real time on one side. On the other side, the DS module in
EMI can asynchronously request metrics from IM to finish
multiround natural language dialogue with users, as seen in
Figure 8.

Programming languages used for the computations also would
affect our correct understanding of runtime contexts, algorithms,
and running results. The runtime context of a process is
composed of its program code, data structure, and hardware
environment needed for program running. To collect the runtime
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FIGURE 7 | A narrative of the concept of word embedding.

context of programs, the JS component in ProtoDLS will start a
job to monitor in real time, and it will store the monitored metrics
in MC, as seen in Figure 9. Similarly, the collected metrics will
store in a module named Software Runtime Metrics (SRM) in
MC. SRM transfers the processed metrics to the Software Metrics
Visualization (SMV) module of VI to monitor the running status
of software contexts on a visual interface for software users or
developers in real time on one side. On the other side, the
DS module in EMI can request metrics from SRM to finish
multiround natural language dialogue with software users or
developers, as seen in Figure 9.

Modality Explainability
ProtoDLS is created to support multimodality in the first place
since it was chartered and initially designed for multimodal
bioinformation processing for research purposes. Multimodality
itself is a hard problem both in techniques and in applications,
which causes several aspects of explainability needs. The
explainability of multimodality lies in multimodal fusion.
Multimodal fusion refers to the synthesis of information from
two or more modalities for preprocessing. Multimodal fusion can
be roughly divided into three types of fusion: early fusion, late
fusion, and intermediate fusion.
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FIGURE 10 | Software development process of ProtoDLS.

The early fusion or data-level fusion combines multiple
independent data sets into a single feature vector and then inputs
it into a machine learning classifier. Because the early fusion of
multimodal data often cannot fully utilize the complementarity of
multimodal data, the original data of early fusion usually contain
a great deal of redundant information. Therefore, early fusion
methods are often combined with feature extraction methods to
eliminate redundant information, such as principal component
analysis (PCA) (Jolliffe, 2005), mRMR (Peng et al., 2005), and
autoencoders (Vincent et al., 2008). In this regard, feature-level
explainability largely determines the overall explainability of
the fusion model.

The late fusion or decision-level fusion fuses the output
scores of classifiers for decision-making trained by different
modal data. The advantage of this method lies in that the
errors of the fusion model come from different classifiers,
while the errors from different classifiers are often separate
and independent, which will not cause further accumulation of
errors. Common late fusion methods include max fusion, average
fusion, Bayes-based fusion, and ensemble learning fusion. As
a typical representative of late fusion, ensemble learning is
widely used in communication, computer recognition, speech
recognition, and many other research fields. As a classical model-
agnostic method, LIME (Local Interpretable Model-agnostic
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Explanations) will help to explain the late fusion of multimodality
data (Ribeiro et al., 2018).

Intermediate fusion refers to the transformation of different
modal data into high-dimensional feature expression, and
then fusion in the middle layer of the model. Taking the
neural networks as an example, the intermediate fusion first
uses the neural network to transform the original data into
high-dimensional feature representation and then obtains the
commonalities of different modal data in high-dimensional
space. One of the advantages of the intermediate fusion method
is that it can flexibly choose the location where fusion happens.

The location where multimodal data fusion happens directly
relates to the explainability. The late fusion method is a little
bit easier to explain than the intermediate fusion and the early
fusion. Moreover, the explainability also relates to the classifiers
and is constrained by the explainability of the participated
classifiers, which engenders new difficulties. In ProtoDLS, we
treat modality explainability in a quite straightforward way, so
we view the modality explainability independently and explain
the participated algorithms or classifiers irrelevantly at first. In
terms of its complexities and the current technical limitations,
we leave the modality explainability as an open problem to be
tackled in the future.

PROJECT PROGRESS AND DISCUSSION

ProtoDLS started from an initial intent to build a platform
supporting multimodal bioinformation processing for research
and experiment purposes, with explainability in the heart of its
design goals. In addition, some other minor design goals might
include performance, robustness, security, privacy-preserving,
and extensibility. However, meeting these design goals at the
same time will greatly increase the complexity of system
construction. Thus, we focus completely on the explainability of
ProtoDLS in the first stage.

As seen in Figure 10, the whole software development
process roughly includes the following phases: concept initiation,
logical design, physical design, implementation, and deployment.
Currently, we have just finished the logical system design and
entered into the physical system design phase. During the phase,
we will determine the physical structure of TDW and DL and
subsequently evaluate the performance of the physical design.
In order to guarantee the explainability design goal, we should
observe the following steps during the implementation phase:

1. Finish the implementation tasks in the horizontal pipeline
in the first place, then switch to finish the tasks in the
vertical pipeline.

2. In the horizontal pipeline, DIKW provenance is among
the top priorities to implement since DIKW provenance
acts as a backbone for the explainability of ProtoDLS, and
meanwhile the technologies behind it are relatively mature
and engineering oriented.

3. In the vertical pipeline, mathematical formulas and
algorithms are the first two implementation factors before
we start implementing engineering-related factors.

TABLE 1 | Feature comparison with some popular data lake
systems on the market.

Delta
Lake

Apache
Iceberg

Apache
Hudi

Apache
Kudu

AWS
Data
Lake

(Dremio)

ProtoDLS

Hadoop
support

√ √ √
– –

√

Metadata
management

√ √ √ √ √ √

Workload
management

– – – –
√ √

Data
governance

– – – –
√ √

Streaming
√ √ √ √ √ √

Versioning
√

–
√

–
√

–

Spark SQL
√

–
√ √

– –

Index –
√ √ √ √ √

Row-level
update

√ √ √ √ √
–

ACID
transactions

√ √ √ √ √
–

Standard
compliance

– – – –
√

–

Security – – –
√ √ √

S3 support
√ √

– –
√

–

Explainability – – – – –
√

4. In the last step, finish the implementation tasks for
multimodality explainability.

ProtoDLS is an ambitious and challenging project with
uncertain risks, which requires a continuous investment of
capital and human resources. Only after a process of thoughtful
and considerable design and implementation, it is estimated
that ProtoDLS will reach a preliminary stage in 10 months
and implement a primary overall explainability. At that stage,
compared with some popular data lake systems on the market,
such as Apache Hudi (2020), Apache Iceberg (2020), Apache
Kudu (2020), Aws Data Lake (2020), and Delta Lake (2020)
ProtoDLS will gain some competitive advantages, as illustrated
in Table 1.

CONCLUSION AND FUTURE WORK

The large amounts of data continuously generated from
heterogeneous types of biological resources cause great challenges
for advancing biological research and development; accordingly,
these challenges will further incur great difficulties for biological
data processing subsequently. To attack these challenges, this
paper presents a design scheme for constructing a practical data
lake platform for processing multimodal biological data using
a prototype system named ProtoDLS. Explainability is a major
concern when we deploy and use such a platform oriented
for processing of biological resources, ProtoDLS adopts a dual
mechanism to ensure explainability across the platform. On the
horizontal landscape, ProtoDLS ensures the intra-component

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 13 September 2020 | Volume 8 | Article 553904227

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-553904 September 29, 2020 Time: 10:39 # 14

Che and Duan Logical Design of a Prototypical DL System

explainability from data acquisition to data presentation. On the
other hand, on the vertical axis, ProtoDLS ensures the inner-
component explainability including mathematics, algorithm,
execution time, memory consumption, network latency, security,
and sampling size.

The explainability is a rather broad concept, with multiple
meanings in diverse scenarios, in a degree, to realize a full
spectrum of explainability is somewhat close to the realization
of artificial general intelligence (AGI), which will cost substantial
human resources and capital investment. Also, the design of
ProtoDLS is only a little step toward this. So many aspects need
to be considered for ProtoDLS. For example, to design a typed
DIKW resource framework will stand on a more abstract level
to explain DIKW provenance, which will enhance the degrees
of explainability on the horizontal axis in ProtoDLS. Every
vertical module of each component leaves a huge gap for further
fine-tuning that will require considerable research efforts and
sometimes need several times of practical experiments. Finally,
we should start from the logical prototype design given by this
paper and begin implementing some subsets of ProtoDLS. For
example, with the help of NLP techniques, an extensible and
highly concurrent metadata management component can be
designed and implemented, with a dialogue module supporting
human understandable sentences. Upon the submission of this
paper, the physical design of ProtoDLS has already started off,
and implementation also has initiated simultaneously to prepare
some initial verification.

To the best of our knowledge, this may be the first time
that a logical design of a prototypical data lake is proposed
in terms of the explainability around the data processing in
a data lake. Although this paper is relatively elementary, we
also hope to provide a starting point and a stepping stone
for any academic researchers and industrial practitioners in
bioinformatics, genetics, and phenomics, or people interested in
data lake research and deployment in any other fields. For people

who are doing research on the data lake explainability, this paper
also may be beneficial and helpful.
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Došilović, F. K., Brcic, M., and Hlupic, N. (2018). “Explainable Artificial
Intelligence: A Survey,” in proceedings of the MIPRO 2018 - 41st International
Convention Proceedings, (Opatija: MIPRO), 210–215.

Duan, Y., Sun, X., Che, H., Cao, C., Li, Z., and Yang, X. (2019). Modeling data.
information and knowledge for security protection of hybrid iot and edge
resources. IEEE Access. 7, 99161–99176. doi: 10.1109/access.2019.2931365

Ebi ArrayExpress (2020). https:// www.ebi.ac.uk/arrayexpress/. (accessed July 17,
2020).

Ebi Rdf (2020). https://www.ebi.ac.uk/rdf/. (accessed July 13, 2020).
Edwards, L., and Veale, M. (2017). Slave to the algorithm? why a ’right to an

explanation’ is probably not the remedy you are looking for. Duke Law Technol.
Rev. 16, 1–65.

Ensembl (2020). http://www.ensembl.org/. (accessed July 19, 2020).
Fang, H. (2015). “Managing data lakes in big data era: what’s a data lake and why

has it became popular in data management ecosystem,” in Proceedings of the
5th Annual IEEE International Conference on Cyber Technology in Automation,
Control and Intelligent Systems (CYBER 2015), (Shenyang: IEEE), 820–824.

Farid, M., Roatis, A., Ilyas, I. F., Hoffmann, H.-F., and Chu, X. (2016). “CLAMS:
bringing quality to data lakes,” in Proceedings of the 2016 International
Conference on Management of Data (SIGMOD 2016), (San Francisco, CA:
ACM), 2089–2092.

Farrugia, A., Claxton, R., and Thompson, S. (2016). “Towards social network
analytics for understanding and managing enterprise data lakes,” in Advances
in Social Networks Analysis and Mining (ASONAM 2016), (San Francisco, CA:
IEEE), 1213–1220.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting
machine. Annals of Statistics 29, 1189–1232.

Gene Expression Atlas (2020). http://www.ebi.ac.uk/gxa. (accessed July 30, 2020).
Gene Ontology (2020). http://www.geneontology.org/. (accessed July 30, 2020).
GEO (2020). http://www.ncbi.nih.gov/geo/. (accessed July 19, 2020).
Gestel, T. V., Baesens, B., Dijcke, P. V., Suykens, J. A. K., and Garcia, J. (2005).

Linear and non-linear credit scoring by combining logistic regression and
support vector machines. J. Credit Risk 1, 31–60. doi: 10.21314/jcr.2005.025

Guo, W., Huang, S., Tao, Y., Xing, X., and Lin, L. (2018). Explaining deep learning
models - a bayesian non-parametric approach. NeurIPS 2018, 4519–4529.

Himabindu, L., Bach, S. H., and Leskovec, J. (2016). “Interpretable decision sets: a
joint framework for description and prediction,” in Proceedings of ACM SigKDD
International Conference, (New York, NY: ACM).

Houze-Cerfon, C.-H., Vaissié, C., Gout, L., Bastiani, B., Charpentier, S., and
Lauque, D. (2019). Development and evaluation of a virtual research
environment to improve quality of care in overcrowded emergency
departments: observational study. J. Med. Internet Res. 21:e13993.
doi: 10.2196/13993

Huang, G. B., Zhu, Q. Y., and Siew, C. K. (2006). Extreme learning machine: theory
and applications. Neurocomputing 70, 489–501. doi: 10.1016/j.neucom.2005.
12.126

Jolliffe, I. T. (2005). Principal Component Analysis. Berlin: Springer-Verlag.
Klettke, M., Awolin, H., Sturl, U., Müller, D., and Scherzinger, S. (2017).

“Uncovering the evolution history of data lakes,” in Proceedings of the 2017 IEEE
International Conference on Big Data (BIGDATA 2017), (Boston, MA: IEEE),
2462–2471.

Lecun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444.
Li, Y. F., Kennedy, G., Davies, F., and Hunter, J. (2010). “podd: an ontology-driven

data repository for collaborative phenomics research,” in The Role of Digital
Libraries in a Time of Global Change. Proceedings of ICADL 2010. Lecture Notes
in Computer Science, Vol. 6102, eds G. Chowdhury, C. Koo, and J. Hunter
(Berlin: Springer).

Madera, C., and Laurent, A. (2016). “The next information architecture evolution:
the data lake wave,” in Proceedings of the 8th International Conference on
Management of Digital EcoSystems (MEDES 2016), (Biarritz: ACM), 174–180.

Miloslavskaya, N., and Tolstoy, A. (2016). Big data. fast data and data lake concepts.
Procedia Comp. Sci. 88, 300–305. doi: 10.1016/j.procs.2016.07.439

OntoLingua Server (2020). http://www.ksl.standford.edu/software/ontolingua/.
(accessed July 13, 2020).

Peake, G., and Wang, J. (2018). “Explanation Mining: Post Hoc Interpretability
of Latent Factor Models for Recommendation Systems,” in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, (New York, NY: ACM), 2060–2069.

Peng, H., Long, F., and Ding, C. (2005). Feature selection based on mutual
information criteria of max-dependency, max-relevance, and min-redundancy.
IEEE Transact. Pattern Anal. Mach. Intell. 27, 1226–1238. doi: 10.1109/tpami.
2005.159

Pentaho (2020). https://www.hitachivantara.com/en-us/products/data-
management-analytics/pentaho-platform.html. (accessed July 19, 2020).

PubMed (2020). http://www.ncbi.nih.gov/pubmed/. (accessed July 19, 2020).
Quix, C., Hai, R., and Vatov, I. (2016). Metadata extraction and management in

data lakes with GEMMS. Compl. Sys. Inform. Model. Q. 9, 67–83. doi: 10.7250/
csimq.2016-9.04

Remy, L., Ivanoviæ, D., Theodoridou, M., Kritsotaki, A., Martin, P., Bailo, D.,
et al. (2019). Building an integrated enhanced virtual research environment
metadata catalogue. Electronic Library 37, 929–951. doi: 10.1108/el-09-2018-
0183

Ribeiro, M. T., Singh, S., and Guestrin, C. (2018). Anchors: high-precision model-
agnostic explanations. AAAI 2018, 1527–1535.

Samek, W., Wiegand, T., and Müller, K.-R. (2017). Explainable artificial
intelligence: understanding, visualizing and interpreting deep learning models.
ITU J. ICT Discov. -Spec. Issue 1 – Impact Artif. Intell. AI Commun. Netw.
Serv. 1, 1–10. doi: 10.21037/jmai.2018.07.01

Schafer, J. B., Konstan, J., and Riedl, J. (1999). “Recommender systems in
e-commerce,” in Proceedings of the 1st ACM conference on Electronic
commerce, (New York, NY: ACM), 158–166.

Stein, B., and Morrison, A. (2014). The enterprise data lake: Better integration and
deeper analytics. Technol. Forecast: Rethink. Integrat. 2014, 1–9. doi: 10.1007/
978-1-4842-3522-5_1

Suriarachchi, I., and Plale, B. (2016). “Crossing analytics systems: a case
for integrated provenance in data lakes,” in Proceedings of the 12th IEEE
International Conference on eScience (e-Science 2016), (Baltimore, MD: IEEE),
349–354.

UniProt (2020). http://www.uniprot.org/. (accessed July 19, 2020).
Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P. A. (2008). “Extracting

and composing robust features with denoising autoencoders,” in Proceedings
of the 25th International Conference on Machine Learning (ICML 2008),
(Helsinki).

Wang, J., Fujimaki, R., and Motohashi, Y. (2015). “Trading interpretability for
accuracy: oblique treed sparse additive models,” in Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
(New York, NY: ACM).

Wang, X., Chen, Y., Yang, J., Wu, L., Wu, Z., and Xie, X. (2018). “A reinforcement
learning framework for explainable recommendation,” in Proceedings of the
2018 IEEE International Conference on Data Mining (ICDM), (Piscataway, NJ:
IEEE), 587–596.

Ying, C., Argentinis, E., and Weber, G. (2016). IBM watson: how cognitive
computing can be applied to big data challenges in life sciences
research. Clin. Ther. 38, 688–701. doi: 10.1016/j.clinthera.2015.
12.001

Zhang, Y., Lai, G., Zhang, M., Zhang, Y., Liu, Y., and Ma, S. (2014). “Explicit
factor models for explainable recommendation based on phrase-level sentiment
analysis,” in Proceedings of the 37th international ACM SIGIR conference on
Research & development in information retrieval, (New York. NY: Association
for Computing Machinery), 83–92.

Conflict of Interest: HC was employed by Great Wall Motors company at the
time of the study. The company was not involved in the study design, collection,
analysis, interpretation of data, the writing of this article or the decision to submit
it for publication.

The remaining author declares that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2020 Che and Duan. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 15 September 2020 | Volume 8 | Article 553904229

https://doi.org/10.1109/access.2019.2931365
https://
http://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/rdf/
http://www.ensembl.org/
http://www.ebi.ac.uk/gxa
http://www.geneontology.org/
http://www.ncbi.nih.gov/geo/
https://doi.org/10.21314/jcr.2005.025
https://doi.org/10.2196/13993
https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.1016/j.procs.2016.07.439
http://www.ksl.standford.edu/software/ontolingua/
https://doi.org/10.1109/tpami.2005.159
https://doi.org/10.1109/tpami.2005.159
https://www.hitachivantara.com/en-us/products/data-management-analytics/pentaho-platform.html
https://www.hitachivantara.com/en-us/products/data-management-analytics/pentaho-platform.html
http://www.ncbi.nih.gov/pubmed/
https://doi.org/10.7250/csimq.2016-9.04
https://doi.org/10.7250/csimq.2016-9.04
https://doi.org/10.1108/el-09-2018-0183
https://doi.org/10.1108/el-09-2018-0183
https://doi.org/10.21037/jmai.2018.07.01
https://doi.org/10.1007/978-1-4842-3522-5_1
https://doi.org/10.1007/978-1-4842-3522-5_1
http://www.uniprot.org/
https://doi.org/10.1016/j.clinthera.2015.12.001
https://doi.org/10.1016/j.clinthera.2015.12.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


METHODS
published: 03 November 2020

doi: 10.3389/fbioe.2020.553847

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 1 November 2020 | Volume 8 | Article 553847

Edited by:

Madhuchhanda Bhattacharjee,

University of Hyderabad, India

Reviewed by:

Jianzhen Xu,

Shantou University, China

Xinguo Lu,

Hunan University, China

*Correspondence:

Naoto Nojiri

ri0005ri0724@gmail.com

Lin Meng

menglin@fc.ritsumei.ac.jp

Specialty section:

This article was submitted to

Computational Genomics,

a section of the journal

Frontiers in Bioengineering and

Biotechnology

Received: 29 April 2020

Accepted: 30 September 2020

Published: 03 November 2020

Citation:

Nojiri N, Meng Z, Saho K, Duan Y,

Uemura K, Aravinda CV, Prabhu GA,

Shimakawa H and Meng L (2020)

Apathy Classification Based on

Doppler Radar Image for the Elderly

Person.

Front. Bioeng. Biotechnol. 8:553847.

doi: 10.3389/fbioe.2020.553847

Apathy Classification Based on
Doppler Radar Image for the Elderly
Person
Naoto Nojiri 1*, Zelin Meng 2, Kenshi Saho 3, Yucong Duan 4, Kazuki Uemura 3,

C. V. Aravinda 5, G. Amar Prabhu 5, Hiromitsu Shimakawa 1 and Lin Meng 2*

1College of Information Science and Engineering, Ritsumeikan University, Kusatsu, Japan, 2College of Science and

Engineering, Ritsumeikan University, Kusatsu, Japan, 3 Faculty of Engineering, Toyama Prefectural University, Imizu, Japan,
4Data Science and Technology Department, Hainan University, Haikou, China, 5Department of Computer Science and

Engineering, NMAM Institute of Technology, NITTE, Karkala, India

Apathy is a disease characterized by diminished motivation not attributable to a

diminished level of consciousness, cognitive impairment, or emotional distress. It is a

serious problem facing the elderly in today’s society. The diagnosis of apathy needs to

be done at a clinic, which is particularly inconvenient and difficult for elderly patients. In

this work, we examine the possibility of using doppler radar imaging for the classification

of apathy in the elderly. We recruited 178 elderly participants to help create a dataset by

having them fill out a questionnaire and submit to doppler radar imaging while performing

a walking action. We selected walking because it is one of the most common actions

in daily life and potentially contains a variety of useful health information. We used radar

imaging rather than an RGB camera due to the greater privacy protection it affords. Seven

machine learningmodels, including our proposed one, which uses a neural network, were

applied to apathy classification using the walking doppler radar images of the elderly.

Before classification, we perform a simple image pre-processing for feature extraction.

This pre-processing separates every walking doppler radar image into four parts on the

vertical and horizontal axes and the number of feature points is then counted in every

separated part after binarization to create eight features. In this binarization, the optimized

threshold is obtained by experimentally sliding the threshold. We found that our proposed

neural network achieved an accuracy of more than 75% in apathy classification. This

accuracy is not as high as that of other object classificationmethods in current use, but as

an initial research in this area, it demonstrates the potential of apathy classification using

doppler radar images for the elderly. We will examine ways of increasing the accuracy in

future work.

Keywords: apathy classification, doppler radar image, the elderly person, machine learning, deep learning

1. INTRODUCTION

Apathy is a disease characterized by diminished motivation not attributable to a diminished level
of consciousness, cognitive impairment, or emotional distress (Marin, 1990, 1991; Marin et al.,
1991). It has a relationship with others diseases such as Parkinson’s, Alzheimer’s, and stroke, all of
which tend to befall elderly people and threaten their health and well-being (Landes et al., 2001;
Fuh et al., 2005; Caeiro et al., 2013; Pagonabarraga et al., 2015). Studies have shown that roughly
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47% of patients with Alzheimer’s disease also suffer from apathy
(Fuh et al., 2005). However, to get an apathy diagnosis, elderly
patients need to go to a clinic, which is both inconvenient
for them and sometimes physically difficult. A computer vision
system for assistance with apathy diagnosis in remote operation
has been developed (Happy et al., 2019), but since it uses images
of the patient’s face, problems related to privacy protection
arise. Another issue is that patients typically need to exhibit
subjective symptoms before seeking a doctor, but apathy rarely
has subjective symptoms, particularly among the elderly who
often live in solitude. Hence, elderly people may delay getting
diagnoses and miss out on the best treatment period.

Society is currently facing a rapid increase in the aging
population—especially in Japan, where the percentage of the
population aged 65 and over (elderly) is 28.1%. As of 2018,
the population aged between 65 and 74 years was 13.9% and
aged 75 years and over was 14.2%. By 2065, these numbers
are expected to increase to 38.4% for ages 65+ and 25.6% for
ages 75+ (CabinetOfficeJapan, 2019). Hence, developing a more
convenient apathy assessment is becoming an important issue.

In this work, we examine the use of Doppler radar imaging
for the classification of apathy in the elderly. Our objective
is to encourage earlier access to apathy assessment. Doppler
radar imaging is advantageous because it does not use face
images, which helps with protecting privacy, and the equipment
it uses is simple enough to set up that apathy checks can be
performed routinely without any special preparation. Besides,
because the Doppler radar directly measures the velocities, the
accuracy of velocity measurement is better than other optical
sensor techniques that mainly measures position information
(Li et al., 2019). Furthermore, with its applicability to low-
light conditions and to persons wearing ordinary clothes as its
advantages, the Doppler radar has been investigated for using in
home and hospital health monitoring applications in recent years
(Seifert et al., 2019).

Unfortunately, as little research has been done in this area, it
is not clear which action is best suited for apathy classification.
Hence, we select one of the most normal actions in daily life:
walking. Walking has a deep relationship with health condition
and has been used since 1984 for clinical gait assessment in the
neurologically impaired (Holden et al., 1984). It is easy to see how
the action of walking relates to health condition; for example,
stroke victims often have difficulty controlling their body when
walking. Recently, researchers found that the action of walking
can reveal a lot of a person’s health information, including age
(Handri et al., 2009; Makihara et al., 2011) and chronic illness
(Pitta et al., 2005; Jehn et al., 2009; Rabinovich et al., 2013).

In this study, we created the Elderly Person Apathy Doppler
Radar Image Dataset (EPADRI Dataset) with the help of elderly
people aged 65 years or more. We had each participant fill out
a questionnaire to determine if they had apathy or non-apathy
and then perform a walking action under doppler radar to obtain
experimental images. We then combined image processing and
machine learning to perform apathy classification using the
EPADRI Dataset.

As pre-processing, we utilize a simple image processing for
extracting the features from the radar images. In this processing,

a walking doppler radar image is separated into four parts by the
vertical and horizontal axes and then binarization is applied to
count the features of the eight parts for training and classification
by machine learning. We apply four patterns for binarization—
red channel, green channel, blue channel, and YUV—and slide
the threshold of binarization from 50 to 220 to determine the
optimized value. Finally, the number of feature points is used for
the apathy classification.

As we know, machine learning models and Numerical
Analysis methods are widely used in the Biology and
Bioinformatics (Lu et al., 2015, 2019; Saho et al., 2020). In
this work, we applied seven machine-learning models to a
classification task: a support vector machine (SVM) (Vapnik,
1998), K-nearest neighbor (KNN) (Naomi, 1992), naive Bayes,
decision tree (Quinlan, 1886), random forest (Breiman, 2001),
an ensemble model (Opitz and Maclin, 1999), and our proposed
neural network model (Homma et al., 1998).

This is the first paper to tackle apathy classification by
using doppler radar images of walking action for the elderly.
Our experimental results demonstrate the effectiveness of
this approach.

The contributions of this work are as follows.

• We constructed the Elderly Person Apathy Doppler Radar
Image Dataset (EPADRI Dataset), which is the first dataset for
apathy classification of the elderly by walking action.

• We demonstrate the effectiveness of using doppler radar
images of walking actions for apathy classification and show
that it both ensures privacy protection and is convenient
to use.

• We propose image processing and machine learning for
apathy classification of the elderly and describe the optimized
threshold of binarization, color channel, and machine
learning models.

Section 2 discusses related work on apathy classification
and health care research on walking and doppler radar
imaging. We present our dataset in Section 3. Section 4
introduces our approach, featuring the machine learning used
in the experiments. The experimentation results on the apathy
classification task are shown in section 5. Section 6 discusses the
contributions of this work as well as the limitations. We conclude
in section 7 with a brief summary and mention of future work.

2. RELATED WORK

2.1. Research on Apathy Classification
Apathy, which is derived from the Greek pathos, or passion,
is conventionally defined as the absence or lack of feeling,
emotions, interest, or concern (Marin, 1990). Robert et al. define
apathy in clinical terms as including diminished motivation not
attributable to a diminished level of consciousness, cognitive
impairment, or emotional distress (Marin, 1990, 1991). Apathy
occurs in several neurological and psychiatric disorders and
seems to have a relationship with Parkinson’s disease, Alzheimer’s
disease, stroke, etc., which often appear in the elderly (Landes
et al., 2001; Caeiro et al., 2013; Pagonabarraga et al., 2015). Hence,
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the assessment and early diagnosis of apathy is quite important,
especially among the elderly.

Currently, patients need to go to a clinic for an apathy
diagnosis, which usually entails medical personnel administering
time-consuming clinical interviews and questionnaires. Such
interviews, and getting to the clinic itself, are sometimes
inconvenient and can be very hard on the elderly. This is
unfortunate because if diagnosis is delayed, an elderly person will
miss out on the best treatment period. Several researchers have
examined the use of computer science-based methods such as
computer vision and machine learning for apathy classification.
Happy et al. classified apathetic and non-apathetic patients by
machine learning in which the analysis target was facial dynamics
entailing both emotion and facial movement (Happy et al.,
2019). They administered apathy assessment interviews to 45
participants, which included short video clips with wide face
pose variations, very low-intensity expressions, and insignificant
inter-class variations, and reported the accuracy of 84%.

Liu et al. designed a system called ECOCAPTURE that
assesses apathy in a quantitative and objective manner. It
consists of observation of a patient’s behavior in a multi-
step scenario reproducing a brief, real-life situation by using
a single 3D accelerometer under an ecological condition. An
evaluation with 30 patients and 30 healthy individuals showed
that ECOCAPTURE is a promising technique for more precise
assessment of apathy (Liu et al., 2018).

2.2. Research on Walking in the Filed of
Healthcare
Walking is one of the most common actions in daily life and
can reveal abundant health information such as age and chronic
illness. In 1984, walking ability was utilized for clinical gait
assessment in the neurologically impaired (Holden et al., 1984).
It is easy to see that the action of walking has some relationship
with health condition; for example, stroke victims often have
difficulty controlling their body when walking. More recently,
researchers have found that measuring a patient’s ability to walk
is important in the diagnosis of chronic illness (Pitta et al., 2005;
Jehn et al., 2009; Rabinovich et al., 2013). This has led to research
into devices that protect patients by monitoring walking, such
as a natural walking monitor for pulmonary patients used in
conjunction with a mobile phone (Juen et al., 2015).

Researchers have also found that the walking action can be
linked to an individual’s age (Handri et al., 2009; Makihara
et al., 2011). This has led to the development of devices like the
walking-age analyzer for healthcare applications (Jin et al., 2014).

2.3. Research on Doppler Radar Imaging in
Health Care Industry
Doppler radar imaging is a promising method in the e-health
industry due to its assurance of privacy protection and the fact
that it is non-wearable. Li et al. designed e-health applications
by using passive doppler radar as a non-contact sensing method
to capture human body movements, recognize respiration,
and measure physical activities. Techniques related to health
monitoring include micro doppler extraction for breathing

detection and a support vector machine classifier utilized for
physical activity recognition. Non-contact passive doppler radar
has proven to be a complementary technology to meet the
challenges of future healthcare applications (Li et al., 2018).

Chen et al. also applied radar imaging for classifying the six
key activities of interest in the e-health area and found that it is
effective for activity recognition (Chen et al., 2016).

Our motivation in the present study is to use radar images
of walking action for apathy classification in the elderly. Our
approach circumvents the issues in previous research because
walking action is a normal daily action, which makes it simple to
assess, and radar imaging protects privacy and is non-wearable.
As such, we hope to make apathy assessment for the elderly
simpler and more convenient. In this work, we examined seven
machine-learning models for classification and a simple image
processing method for feature extraction.

3. CREATION OF THE ELDERLY PERSON
APATHY DOPPLER RADAR IMAGE
DATASET (EPADRI DATASET)

We created the Elderly Person Apathy Doppler Radar Image
Dataset (EPADRI Dataset) for training the machine-learning
model and testing the accuracy of apathy classification.

We recruited 178 elderly people to help create the EPADRI
Dataset. These individuals had previously filled out a Japanese
version of a questionnaire known as Apathy Scale (Starkstein
et al., 1992; Okada et al., 1997) we administered for apathy
classification. The Apathy Scale is one of the generally used
test to classify the Apathy in the field of physiotherapy and
epidemiology and its effectiveness is validated in numerous
studies (den Brok et al., 2015). Of the participants, 81 were
between 65 and 75 years old and 98 were between 76 and 94
years old. All participants were Japanese and the questionnaire
and answers were in Japanese.

The experimental protocol was approved by the local ethics
committee (Toyama Prefectural University, approval no. H29-1).
Participants were provided with written and verbal instructions
of the testing procedures, and written consent was obtained from
each participant prior to testing.

3.1. Questionnaire for Apathy Classification
Table 1 lists the apathy questionnaire items in the Apathy Scale
(Starkstein et al., 1992). Table 2 lists the responses and points.
Points were tallied to judge the apathy situation. Participants
with a score of 16 or more were judged to be apathetic people
for the Japanese version of the Apathy Scale as verified in
Okada et al. (1997).

3.2. Doppler Radar Image Creation
Figure 1 shows the creation of a radar image, where Figure 1A
is an example of a doppler radar image with walking action and
Figure 1B shows the walk process that is taken. Figure 1C shows
the experimental environment, where the radar size is about 53
cm, the height is 62 cm, the start point is about 70 cm from the
radar, and the walking distance is 100 cm.
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TABLE 1 | Questionnaire items.

Questions

Q1 Do you want to study something new?

Q2 Do you have any interests?

Q3 Are you interested in your health?

Q4 Can you focus on things?

Q5 Do you always want to do something?

Q6 Do you have plans or goals for the future?

Q7 Are you willing to try doing something new?

Q8 Do you spend time doing something every day?

Q9 Does someone have to tell you to do something every day?

Q10 Are you indifferent to anything?

Q11 Is there anything that interests you?

Q12 Do you do nothing unless someone tells you?

Q13 Do you ever feel not happy, not sad, but somewhere in the middle?

Q14 Do you think you are motivated?

TABLE 2 | Questionnaire responses and points.

Selection Points

No 0

A little 1

Yes 2

Very 3

4. APATHY CLASSIFICATION BY MACHINE
LEARNING

In this section, we propose our method for apathy classification
that combines image processing with machine learning.
Figure 2A shows the classification flow, which consists of feature
extraction and classification.

We propose a simple image processing to extract the features
from the walking radar image. Next, we apply seven machine-
learning models, including an NN model we developed, to
perform classification by using the extracted features.

Our objectives are two-fold. First, we want to demonstrate the
possibility of performing apathy classification for the elderly by
machine learning. Second, we want to determine the best model
and best parameters by means of experimentation.

4.1. Feature Extraction
The feature extraction consists of binarization, image separation,
and feature pixel counting, as shown in Figure 2A.

As discussed earlier, it is not clear which channel in an image
is most suitable for apathy classification. We therefore focus on
pixel configuration for the binarization and apply four kinds
binarization: red channel, green channel, blue channel, and the Y
of YUV. YUV is a color encoding system which encodes a color
image taking human perception. The Y is defined as

Y = 0.299 ∗ r[i][j]+ 0.587 ∗ g[i][j]+ 0.114 ∗ b[i][j]

(Charles, 2003), where the r, g, and b is the red, green and blue
channel, i and j describe the coordinates of pixel.

Threshold is a key parameter in binarization as it may
influence the classification accuracy. In our threshold decision,
when a pixel (Pi,j) is more than the threshold, the pixel value is set
to 255 (white pixel), and otherwise is set to 0. We set the pixel as
one of four kinds (red channel, green channel, blue channel, and
Y of YUV) and slide the threshold from 50 to 220 to determine
the best value.

Bi,j =

{

255 (Pi,j >= threshold)

0 (otherwise)

After the binarization, every image is separated into four parts
by the vertical and horizontal axes. An example of a separated
image is shown in Figure 2, which includes lists items from a to h.
The white pixel numbers of eight parts in the binarized image are
counted. Finally, the eight numbers are decided as the features for
apathy classification by the following machine-learning models.

4.2. Classification of Machine-Learning
Models
This subsection introduces the seven machine-learning models
we examined to determine which one was most suitable for
apathy classification: a support vector machine (SVM) (Vapnik,
1998), k-nearest neighbor (KNN), naive Bayes, decision tree,
random forest, an ensemble model, and our proposed neural
network (NN).

4.2.1. SVM
An SVM is a supervised learning model for the boundary
decision and classification of data by maximum-margin
hyperplane. The most basic idea is classification using linear
separability. Data are defined as Data = {X,Y}, where
X = {X1, . . .XN} is the feature of the input data and
Y = {y1, . . . yN} is the class label of each input data. The
boundary decision is defined as wTX + b = 0, where w is
the normal vector to a hyperplane and b is the intercept. The
constraint condition is yi(wtXi + b) >= 1, which is used for the
boundary decision and classification.

4.2.2. KNN
k-nearest neighbor is a basic classifier that calculates the k closest
training in the feature space (Naomi, 1992). Data are usually
defined as X = {x1, . . . , xN} and Y = {y1, . . . , yN}. Absolute
distancemeasuring, Euclidean distancemeasuring, or some other
distance function is used for calculating the minimum distance.
In this study, we define two k: one for the classification of apathy
and the other for non-apathy.

4.2.3. Naive Bayes
Naive Bayes is a simple technique for constructing classifiers. In
abstract terms, naive Bayes is a conditional probability model:
when given a problem instance to be classified, represented by a
vector x = {x1, . . . , xn} representing some n features, it assigns
to this instance probabilities p(Ck | x1, . . . , xn) for each of K
possible outcomes or classes Ck.
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FIGURE 1 | Doppler radar image and experimental environment. (A) Original image, (B) Walk process, (C) Experimental environment.

The problem with the above formulation is that if the number
of features n is large or if a feature can take on a large
number of values, basing such a model on probability tables is
infeasible. We therefore reformulate the model to make it more
tractable. Using Bayes’ theorem, the conditional probability can
be decomposed as

p(Ck | x) = p(Ck)p(x | C,)÷ P(x).

It can also be

posterior = prior × likelihood ÷ evidence.

4.2.4. Decision Tree
Decision tree is a decision support tool that uses a tree-like model
of decisions and their possible consequences, including chance
event outcomes, resource costs, and utility. It is typically used
to display an algorithm that only contains conditional control
statements (Quinlan, 1886).

In the decision tree (two-class)model, the correct decision tree
for class Data = X,Y , number of classes P is p, and the number
of the another class N is n. Any correct decision tree for Data
will classify objects in the same proportion as their representation
in Data. An arbitrary object will be determined to belong to the
class P with probability p(p+ n) and the class N with probability
n÷ (p+ n).

To classify an object, the expected information is generated by

I(p, n) = −p÷ (p+ N)log2p÷ (p+ n)

−n÷ (p+ n)log2n÷ (p+ n).

The expected information required for the tree with A as a root is
then obtained as the weighted average

E(A) =
v

∑

i=1

(Pi + ni)÷ (p− n)I(Pi, ni),

where the weight for the ith branch is the proportion of the
objects in C that belong to Xi. The information gained by
branching on A is therefore gain(A) = I(p, n)− E(A).

4.2.5. Random Forest
Random forest is a combination of tree predictors in which
each tree depends on the values of a random vector sampled
independently and where all trees in the forest have the same
distribution (Breiman, 2001).

The point is to create a group of decision trees with
low correlation by using randomly sampled training data and
randomly selected explanatory variables.

First, m training sets are generated by a bootstrap model.
Then, for each training set, a decision tree is constructed. When
a node searches for a feature and splits it, this is not to find
the feature that can maximize the index (such as information
gain) but to randomly extract various features and find the
optimal solution among them, which is then applied to the
node and split again. The random forest model uses the idea of
bagging, that is, integrating, so is actually equivalent to sampling
samples and features, which means it can avoid overfitting. The
prediction stage includes the bagging strategy, classified voting,
and regression of mean value.
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FIGURE 2 | Overview of proposed method. (A) Classification flow, (B) Doppler radar image separation, (C) Classification by NN.

4.2.6. Neural Network (NN)
An NN is a mathematical model that mimics the network
structure of nerve cells (neurons) in the brain (Cun, 1989;
Homma et al., 1998). It builds multiple layers of interconnected
nodes for training data and is typically used for pattern
recognition, data classification, and future prediction.

In this work, we propose an NN model that consists of five
layers, as follows.

• Input layer: 8-node, activation is relu.
• Second layer: 16-node, activation is relu.
• Third layer: 32-node, activation is relu.
• Fourth layer: 64-node, activation is relu.

• Output layer: 1-output, activation is sigmoid

The training epoch is set to 50. The confidence is set to 0.5,
which means when the confidence of the apathy classification
is >0.5, the prediction result is judged as apathy, and otherwise
as non-apathy.

4.2.7. Ensemble Model
The ensemble model performs predictions by means of a
combination of several basic prediction models. The key idea
is to generate a final prediction result based on the principle of
majority voting with respect to the prediction results of all the
models (Opitz and Maclin, 1999; Polikar, 2006).
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In this method, SVM, random forest, NN, and KNN are
used as the basic models. apVote and noapVote are calculated
by counting the number of apathy and non-apathy prediction
results, respectively. The final result is then predicted by

Finalresult =

{

Apathy (apVote >= noapVote)

NonaApathy (otherwise)

5. EXPERIMENTATION

5.1. Experimental Conditions
We used 178 walking radar images of 178 elderly participants in
our experiment. A total of 150 images were used for training (48
apathy, 102 non-apathy), and the remaining 28 images were used
for testing (eight apathy, 20 non-apathy). Each participant had
one doppler radar image of a walking action.

Python 3.7 was used for programming the feature exaction
andmachine learning design. Anaconda was used as the standard
platform. The hardware environment was a CPU (core i7 8th
Gen, memory: 32GB).

5.2. Overview of Accuracy
Figures 3–6 show the apathy classification accuracy when using
only red channel, blue channel, green channel, and Y of
YUV, respectively.

In these figures, the horizontal axis shows the threshold of
binarization and the vertical axis shows the accuracy. Apathy-
C denotes the correct classification rate of Apathy, Apathy-M
the incorrect classification rate of apathy, Non-Apathy-C the
correct classification rate of Non-Apathy, and Non-Apathy-M
the incorrect classification rate of Non-Apathy. We should point
out that this dataset was somewhat limited, as about 28.5% of the
testing data was apathy data.

The seven sub-figures in each figure depict the respective
apathy classification accuracy of each of the seven machine-
learning models.

5.2.1. Red Channel
Figure 3 shows the apathy classification accuracy of using only
the red channel. We found that SVM, decision tree, random
forest, and ensemble performed poorly in Apathy-C. Naive Bayes
achieved a good accuracy in Apathy-C, but its accuracy in Non-
Apathy-C was very low. On the other hand, Naive Bayes achieved
slight improvement in Non-Apathy-C during the threshold is
70 to 50. However, accuracy in Apathy-C is very low in these
thresholds. Hence, its total accuracy (Non-Apathy-C + Apathy-
C) was low.

In KNN, the total accuracy (Non-Apathy-C + Apathy-C) was
more than 64% in the case of the threshold from 140 to 220, and
in NN, the total accuracy was more than 75% in the case of the
threshold from 150 to 220.

5.2.2. Green Channel
Figure 4 shows the apathy classification accuracy of using
only the green channel. As with the experiment using the
red channel, SVM, decision tree, random forest, and ensemble

performed poorly in Apathy-C, and naive Bayes performed
poorly in Non-Apathy-C.

In contrast to the results for the red channel, here KNN had
a total accuracy (Non-Apathy-C + Apathy-C) of more than 65%
in the case of the threshold from 130 to 170, and from 50 to 70.
NN achieved a total accuracy of more than 75% in the case of the
threshold from 160 to 200.

5.2.3. Blue Channel
Figure 5 shows the apathy classification accuracy of using only
the blue channel. The same as when using the red and green
channels, SVM, decision tree, random forest, and ensemble
performed poorly in Apathy-C, and naive Bayes performed
poorly in Non-Apathy-C.

NN also performed poorly here, and missed almost all of the
apathy images. KNN did not achieve an accuracy of more than
71% in total. These results demonstrate that using only the blue
channel degrades the accuracy.

5.2.4. Y of YUV
Figure 6 shows the apathy classification accuracy of using only
the Y of YUV. As with the experiments with the red, green, and
blue channels, SVM, decision tree, random forest, and ensemble
performed poorly in Apathy-C, and naive Bayes performed
poorly in Non-Apathy-C.

In addition, as in the experiment with the blue channel, KNN
did not achieve an accuracy of more than 71% in total. As for NN,
the total accuracy was more than 75% in the case of the threshold
from 150 to 190.

5.3. Conclusion on Experimental Results
The results of the above experiments demonstrate that SVM,
decision tree, random forest, and ensemble are not appropriate
for use as machine-learning models for apathy classification of
the elderly using doppler radar imaging. We conclude that KNN
and NN are better models.

In terms of color channel, we found that the blue channel is
not effective. Also, the Y of YUV is no better than the red or green
channels, as Y is calculated using the blue channel. The accuracy
of using Y is also just as bad as when using the blue channel, as
only the slightest coefficient (0.114) is used for calculating Y.

When comparing all of the models and all of the thresholds,
the proposed NN performed the best, with a total accuracy of
more than 75%. The optimal threshold is from 150 to 190 when
using red channel, green channel, and Y of YUV.

For giving more accurate analysis about NN, we list the
experimental results about the accuracy of red channel, green
channel, and Y of YUV during the threshold from 150 to 190
in Figure 7. The experimental results show the three channels
achieve the same accuracy in NN, especially in the threshold from
160 to 180. (Note: Almost all of the Apathy can not be recognized
correctly in blue channel by NN which was shown in Figure 5.)

We performed additional experiments to see if we could
further improve the performance of NN by changing the
number of layers, activation functions, and epochs, but no
improvements were observed. Hence, we consider the optimal
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FIGURE 3 | Experimental results: using red channel. (A) SVM, (B) KNN, (C) Naive Bayes, (D) decision tree, (E) random forest, (F) neural network, (G) ensemble.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 8 November 2020 | Volume 8 | Article 553847237

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Nojiri et al. Apathy Classification for the Elderly Person

FIGURE 4 | Experimental results: using green channel. (A) SVM, (B) KNN, (C) Naive Bayes, (D) decision tree, (E) random forest, (F) neural network, (G) ensemble.
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FIGURE 5 | Experimental results: using blue channel. (A) SVM, (B) KNN, (C) Naive Bayes, (D) decision tree, (E) random forest, (F) neural network, (G) ensemble.
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FIGURE 6 | Experimental results: using Y of YUV. (A) SVM, (B) KNN, (C) Naive Bayes, (D) decision tree, (E) random forest, (F) neural network, (G) ensemble.
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FIGURE 7 | Channels discussion about NN.

FIGURE 8 | Discussion about Ensemble model.

FIGURE 9 | Discussion on experimental results of NN (validation = 0.2).

model to be the proposed five-layer NN model (described
in section 4).

Furthermore, for considering that Naive Bayes achieved better
accuracy in Apathy-C and Neural Network achieved better
accuracy in Non-Apathy-C. We only combines Naive Bayes and
NN method in ensemble model for ensuring better accuracy. In
term of the color channel and threshold, the red channel, green
channel, and Y of YUV during the threshold from 150 to 190, are
decided as the experimental condition. In these conditions, Naive
Bayes achieved better accuracy in Apathy-C and Neural Network
achieved better accuracy in Non-Apathy-C, by using the single
model, respectively. The experimental results of Naive Bayes and
NN combined ensemble model are listed in Figure 8, show that
almost all of the cases only achieved 71% accuracy and were not
better than NN.

In conclusion, five-layer slight Neural Network achieved
better apathy classification accuracy based on Doppler Radar
Image by using the red channel, green channel, and Y of YUV
during the threshold from 160 to 180. For proving credibility
of the conclusion, we separated 20% of training data as the
validation data, and trained the NN again. The experimental

results are shown in Figure 9, and achieved the similar results as
without validation data.

5.4. Optimization in Image Separation
The 4 × 4 image separation presented in Figure 2 considers
the physical features of walking expressed on the radar images.
Each separated image (Figure 2D) in [a]–[d] corresponds to the
motion of each one step. The image [e] expresses the legs’ motion
in the stance phase of walking, [f] corresponds to body motion,
and [g] expresses the legs’ motion in the swing phase. The image
[h] includes slight information on relatively large velocities of
motions of toes or arms.

For proving the optimization of 4 × 4 image separation, we
also added two separated method experimentation, including
4 × 5 and 5 × 5. The results of accuracy of 5 × 5 is shown in
Figure 10, and 4 × 5 is shown in Figure 11. The experimental
results show that the additional experimentation can not achieve
better accuracy than the 4× 4 image separation.

Hence, the 4 × 4 image separation is an optimized method
which can be proved by the characters of image and the
experimentation results.
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FIGURE 10 | Experimental results of the 5 × 5 image separation.

FIGURE 11 | Experimental results of the 4 × 5 image separation.

5.5. Experiment Using Deep-Learning
Models
As various deep-learning models are proposed and used in the
field of classification such as animal classification, characters
classification etc. (Meng et al., 2018a,b, 2019), which achieved
good accuracy. These models include LeNet (Lecun et al.,
1998), AlexNet (Krizhevsky et al., 2012), GoogLeNet (Szegedy
et al., 2015), VGG16, VGG19 (Simonyan and Zisserman, 2015),
ResNet152V2 (He et al., 2015), Inception (Szegedy et al., 2016b),
InceptionResNetV2 (Szegedy et al., 2016a), Xception (Chollet,
2017), and MobilNet (Howard et al., 2017) etc.

We also applied these models for measuring the accuracy of
Apathy classification. Figure 12 shows the experimental results of
11 state-of-the-art deep learningmodels for Apathy classification.
The accuracy and the loss are listed. The results show that
few of these models converged well such as ResNet, Inception,
InceptionResNet, Mobile Net, VGG. Furthermore, the other
models do not achieve better accuracy than the Machine learning
models. Hence, the results demonstrate the difficulty of applying
current deep-learning models to apathy classification using
walking doppler radar images.

6. DISCUSSION

6.1. Effectiveness and Significance of
Research
In terms of feature extraction, we applied binarization using only
the red channel, green channel, blue channel, and Y of YUV,

and slid the threshold from 50 to 220. We found that all of
the machine learning models could not achieve high accuracy
when using only the blue channel. We discussed seven machine-
learning models for apathy classification and showed that in
the red channel, green channel, and Y of YUV, the threshold
from 150 to 190 resulted in the accuracy of more than 75%.
This result demonstrates the effectiveness and significance of
this research.

We feel this accuracy should be improved in the
future, but even so, our findings here demonstrate the
possibility of achieving an apathy classification method
for the elderly that is both convenient and protects
their privacy.

6.2. Limitations
The limitation of this research is that the dataset is small, only 178
elderly person are participants help for creating the dataset. Even
if it is very hard to realizing the current dataset, and the some
current research only uses Dozens of participants such as paper
(Happy et al., 2019) has 45 participants, and paper (Liu et al.,
2018) has 30 patients. For improving the accuracy and realizing
the Practical, the dataset set should be increased.

Another limitation is the set place of the drop radar and
the walking action. As this is an initial study, we kept things
simple by setting the drop radar in front of the participants
and having them perform the walking action on command. For
practical use in production and diagnosis, these limitations need
to be considered.
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FIGURE 12 | Experimental results of deep learning models.

7. CONCLUSION

In this paper, we have examined using a walking action doppler
radar image for the classification of apathy in the elderly.
Walking is a common action in daily life and radar imaging is a
good method in terms of privacy protection, so using a walking
action doppler radar image may help us to achieve a diagnostic
method that is both convenient and protects privacy. For the
apathy classification, we proposed a method that combines
image processing with machine learning. We had 168 elderly
people help create a dataset by filling out a questionnaire to
determine if they exhibited apathy or non-apathy and then used
the results to train and test seven machine-learning models. The
image processing consists of binarization, image separation, and
feature pixel counting to extract features. We focused on pixel
configuration for the binarization and slid the threshold from
50 to 220 to determine the optimized value. We then applied
seven machine-learning models including our proposed NN
model to a classification task by using the extracted features. We
found that, in the red channel, green channel, and Y of YUV,
the threshold from 150 to 190 resulted in an accuracy of more
than 75%. This demonstrates the effectiveness of our approach
and suggests its potential for achieving an apathy classification
method for the elderly that is both convenient and protects their
privacy. Further the EPADRI Dataset and the classification code
are opened in our Lab website for reproducible study [http://
www.ihpc.se.ritsumei.ac.jp/Publication.html: Apathy Dataset
and Classification Code(2020)]. In future work, we will improve
the accuracy further by increasing the size of the dataset.
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