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Editorial on the Research Topic

Enterobacteriaceae Antimicrobial Agents and Resistance: Relationship With the
Therapeutic Approach

In the field of infectious diseases multidrug-resistant (MDR) Gram-negative bacteria such as
Enterobacterales, Acinetobacter baumannii, Pseudomonas aeruginosa, and Aeromonas hydrophila
constitute an important issue for establishing correct and appropriate therapies in patients admitted
to both Intensive Care Units and General Medicine centers including respiratory care wards.
Carbapenem-resistant Enterobacterales (CRE) have undergone extensive dissemination worldwide,
resulting in increased mortality and a global threat to public health. Additionally, the predominant
production of Klebsiella pneumoniae carbapenemase (KPC) contributed to the most important
mechanism of carbapenem resistance in K. pneumoniae (Nordmann et al., 2009).

To deal with this situation it is necessary to understand the infection epidemiology and the
resistance patterns other than those that comply with guidelines for treatment (Kaye and Pogue,
2015). The development of new drugs capable of eradicating multidrug-resistant Gram-negative
pathogens is highly recommended as is combination therapy (which is more effective than
monotherapy) or the research into other alternatives (Figure 1) (Morris and Cerceo, 2020).

The topics covered by this Research Topic include contributions on the dissemination and
characteristics of carbapenemases such as KPC, NDM, OXA 48, IMP, and VIM among CRE, which
are crucial for detecting resistance in adult or child patients. These concepts are well analyzed by the
Antimicrobial Surveillance Network (CHINET) Study Group in China (Han et al.).

In this large study, carbapenemases were found in 97.4% of CRE strains, including KPC-2
(51.6%), NDM (35.7%), and OXA-48-like carbapenemases (7.3%). The most prevalent
carbapenemase genes were blaKPC-2 among K. pneumoniae isolates from adult patients, and
blaNDM among E. coli isolates from children. All the CRE strains were highly resistant to
cephalosporins and carbapenems. The risk factors and the epidemiology for the establishment of
Abbreviations: KPC, Klebsiella pneumoniae carbapenemase producing; NDM, New Delhi metallo-beta-lactamase; VIM,
Verona Integron-encoded Metallo-b-lactamase.
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carbapenem-resistant Klebsiella pneumoniae (CRKP) are issues
widely reported in literature on this subject (Pitout et al., 2015;
Logan and Weinstein, 2017; Pin et al., 2018).

These concepts are highlighted in other studies performed in
China (Fang et al.). Here, the colonization and the incidence of
infections were reported to be 2.7 per 100,000 patient days, and
the presence of CRKP KPC-2 was found predominantly. The
MALDI-TOF of MS system was shown to be useful for detecting
this prevailing serotype with the same performance as the PFGE
(Pulsed-Field Gel Electrophoresis) system. The mainstream gene
of CRKP in the geographic areas of China was blaKPC−2.

Another paper also found that there was a predominance of
KPC-2. In this case, the mobile elements such as plasmids were
detected and accurately studied. CRKP strains co-harboring
blaKPC-2-carrying plasmid and pLVPK-like virulence plasmid
are mostly involved in bacterial multidrug resistance, enhanced
virulence, and above all, in the transfer of these mobile elements
to other bacteria such as E. coli and other isolates (Du et al.).

A very interesting article concentrates on the presence of
plasmids and concerns a new unusual non–carbapenemase-
producing CRKP carrying a rare plasmid-borne inducible
AmpC gene, blaDHA-1 from an isolate belonging to blood
culture. This strain showed complex susceptibility patterns.
The genetic method Whole Genome Sequencing was able to
detect this peculiar plasmid bearing the resistance genes of the
third generation cephalosporins (Realegeno et al.).

The early detection of the third generation cephalosporins
resistant Enterobacterales directly from positive blood cultures is
very important in identifying antimicrobial resistance before the
culture, strongly shortening the time for the establishment of a
correct and appropriate antibiotic therapy (Durand et al.). For
this purpose, two methods (electrochemical and chromogenic)
were proposed by Hospital in Nimes (France) and are discussed
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 26
in comparison with the traditional technology, which
consequently allows for a rapid adaptation of therapy, with
great benefits for patient outcome.

The production of bacterial biofilm is another big
inconvenience (Figure 1). The microorganisms universally
attach to surfaces and produce extracellular polysaccharides,
resulting in biofilm formation (Donlan, 2001). This process
especially occurs on medical devices (Oliva et al., 2013). The
presence of biofilm together with other factors related to
virulence is a significant risk factor, especially in oncological
patients, as demonstrated in a study performed in a hospital in
Rome (Italy). The detection of the biofilm in these high-risk
patients may be of help in the management of oncological
individuals (Di Domenico et al.).

Other than Enterobacterales, other microorganisms such as
Aeromonas hydrophila, which lives in an aquatic environment
and rarely infects individuals, are found to own chromosomally
encoded carbapenem resistant genes, such as blacphA7 (metallo-
beta-lactamase). Consequently, the emerging MDR Aeromonas
should also be taken into account. The first case of
CphA-mediated carbapenem resistant A. hydrophila was
reported in the U.S. (Hilt et al.).

Different ST (Sequence Types) have been found among
resistant Enterobacterales, especially CRKP. Even though the
mortality rate was detected and shown to be no different
because of the diverse ST, other factors affected mortality, such
as the treatment strategies following source control and bacterial
eradication (Lim et al.). Furthermore, the mortality resulted as
being increased in long-term facilities such as residences for the
elderly or hospices, which achieved a rate of up to 75%
(Chen et al.).

Besides phagotherapy (Principi et al., 2019) and possible
antimicrobial combinations, including non-antibiotic compounds
FIGURE 1 | Overview of different features of Carbapenem-Resistant Enterobacterales (CRE) management.
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such as N-acetylcysteine (MacNair et al., 2018: Oliva et al., 2021),
there are two crucial tools for overcoming microbial multidrug
resistance and consequently decreasing the great menace of this
issue to public health (Figure 1). Bacteriophages are expected to
become a potentially effective therapeutic agent for difficult-to-treat
infections. In this case, a specific bacteriophage against a particular
microorganism could be used to lyse and kill the bacterium infected
by the phage. Unlike antibiotics, in this situation, no resistance
occurs. The limit of phage therapy, inherent to bacteriophage, lies in
a narrow spectrum of action. In fact, in the case reported in this
Special Issue concerning a mixed infection, a failure of three
consecutive phage therapies was reported. However, a set of
different bacteriophages were selected against the single bacterial
strains involved in the infection, leading to a successful patient
outcome (Qin et al.).

Interestingly, combination therapy seems to be more beneficial
than monotherapy as far as mortality rates are concerned. Many
antibiotics are used in association against CRE, such as colistin-
based regimens whereas data on ceftazidime/avibactam used in
combination or alone are still conflicting.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 37
Even the association of old antibiotics such as nitrofurantoin
and amikacin appears to be effective against 12 clinical MDR
uropathogenic E. coli in vitro, as shown by an article in this
Research Topic (Zhong et al.).

In conclusion, the multi-resistance in Enterobacterales and
other Gram-negative bacteria is an increasing problem that
requires a drastic intervention for limiting the further spread
of resistant bacteria. Alternative therapeutic programs other than
antibiotics could be proposed, such as medicinal oils, antibodies,
common biocides, killing factors, and phage therapy.
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Renru Han 1,2, Qingyu Shi 1,2, Shi Wu 1,2, Dandan Yin 1,2, Mingjia Peng 1,2, Dong Dong 1,2,

Yonggui Zheng 1,2, Yan Guo 1,2, Rong Zhang 3, Fupin Hu 1,2* and the China

Antimicrobial Surveillance Network (CHINET) Study Group 1

1 Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China, 2 Key Laboratory of Clinical Pharmacology of

Antibiotics, Ministry of Health, Shanghai, China, 3Department of Clinical Laboratory, School of Medicine, Second Affiliated
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This study aimed to investigate the dissemination and characteristics of blaKPC, blaNDM,

blaOXA-48-like, blaIMP, and blaVIM among the carbapenem-resistant Enterobacteriaceae

(CRE) strains isolated from adult and children patients. A total of 935 non-duplicate CRE

strains were collected from 36 hospitals in 24 provinces or cities across China from

2016 to 2018. Antimicrobial susceptibility testing was performed by broth microdilution

method and carbapenemase genes blaKPC, blaNDM, blaOXA-48-like, blaIMP, and blaVIM

were screened by PCR and confirmed by DNA sequencing. Overall, carbapenemases

were produced in 97.4% (911/935) of CRE strains, including KPC-2 (51.6%, 482/935),

NDM (35.7%, 334/935), and OXA-48-like carbapenemases (7.3%, 68/935). Overall,

the most prevalent carbapenemase gene was blaKPC-2 among Klebsiella pneumoniae

(64.6%, 457/709) and the CRE strains isolated from adult patients (70.3%, 307/437),

and blaNDM among Escherichia coli (96.0%, 143/149) and the CRE strains from children

(49.0%, 247/498). The blaOXA-232-positive carbapenem-resistant K. pneumoniae (9.3%,

66/709) were all isolated from children. Sixteen strains were positive for blaIMP and 9

strains produced multiple carbapenemases. No strain was positive for blaVIM. Most of the

CRE strains (>90%) were resistant to cephalosporins and carbapenems, more than half

(>50%) were resistant to aminoglycosides and fluoroquinolones, but the majority (95.8

and 98.4%) were susceptible to polymyxin B and tigecycline. Ceftazidime-avibactam

showed excellent in vitro activity against blaKPC-2 and blaOXA-48-like positive strains

(100% susceptible). In China, KPC-2, NDM, and OXA-48-like carbapenemases were

predominant among CRE clinical isolates. The most prevalent carbapenemase gene was

blaKPC-2 among K. pneumoniae isolates from adult patients, and blaNDM among E. coli

isolates from children.

Keywords: carbapenem-resistant Enterobacteriaceae, blaKPC-2, blaNDM, blaOXA-48-like, blaIMP
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INTRODUCTION

Enterobacteriaceae are opportunistic pathogens causing
severe hospital-acquired infections (Feil, 2016). The spread
of carbapenemase-producing Enterobacteriaceae (CPE) has
been a global threat to public health. Carbapenems have
conventionally been used for treating infections caused by
extended-spectrum β-lactamase-producing Escherichia coli and
Klebsiella pneumoniae, and are still considered as last resort
antibiotics to date (van Duin and Doi, 2016). According to the
data from China Antimicrobial Surveillance Network (CHINET,
www.chinets.com), the resistance rate of K. pneumoniae to
meropenem and imipenem rapidly increased from 2.9 and
3.0% in 2005 to 26.3 and 25% in 2018, respectively. In Europe,
carbapenem-resistant K. pneumoniae are most widespread in
the Mediterranean and Balkan countries with a prevalence of
60% in Greece and 40% in Italy, respectively (Perez and Villegas,
2015; Feil, 2016). The production of carbapenemases including
KPC, NDM, and OXA-48-like is the most common resistance
mechanism among carbapenem-resistant Enterobacteriaceae
clinical isolates (Nordmann et al., 2012; Goodman et al., 2016).
The blaKPC-positive Enterobacteriaceae were widespread in the
United States, Latin America, Italy, Greece, the Middle East,
and China (Albiger et al., 2015; Feil, 2016; Villegas et al., 2016;
Iovleva and Doi, 2017). The blaNDM-positive Enterobacteriaceae
were widespread in India, Pakistan, Bangladesh, Italy, Poland,
Denmark, Latin America, and African countries (Yong et al.,
2009; Albiger et al., 2015; van Duin and Doi, 2016). The
blaOXA−48−like-positive strains remained rare in the US, in
contrast to the prevalence in Turkey, Spain, France, Belgium,
Romania, Middle East, Africa, Asia, and South America as well
(Albiger et al., 2015). These infections are usually associated with
very poor prognosis and high mortality, especially in neonates
or high-risk immunocompromised patients (Falagas et al., 2014;
Feil, 2016). In China, the presence of blaKPC and blaNDM is
responsible for phenotypic resistance in most of the CRE strains
(Zhang et al., 2017; Wang et al., 2018). Most researches currently
focus on the dissemination of carbapenemases among CRE
strains isolated from adult patients, while only a few are available
to investigate the distribution of carbapenemases among CRE
strains isolated from children. To obtain the comprehensive
characteristic of carbapenemases among CRE isolated from
both adults and children patients in China, we conducted this
study to characterize the dissemination and characteristics of
carbapenemases (including KPC, NDM OXA-48, IMP, and
VIM) among CRE clinical isolates and the susceptibility to
antimicrobial agents.

MATERIALS AND METHODS

Clinical Strains
From January 2016 to December 2018, a total of 935 non-
duplicate sequential CRE strains were collected from 36 hospitals
in 24 provinces or cities across China (Figure 1), including
K. pneumoniae (n = 709, 75.8%), E. coli (n = 149, 15.9%),
Enterobacter cloacae (n = 36, 3.9%), Citrobacter freundii (n
= 14, 1.5%), Serratia marcescens (n = 8, 0.9%), Enterobacter

aerogenes (n = 7, 0.7%), Klebsiella oxytoca (n = 7, 0.7%),
Morganella morganii (n = 3, 0.3%), Proteus vulgaris (n =

1, 0.1%), Providencia rettgeri (n = 1, 0.1%). In this study,
46.7% (437/935) of CRE strains were collected from adult
patients and 53.3% (498/935) from children patients. The
Enterobacteriaceae strains resistant to at least one of the
carbapenem antibiotics (ertapenem, meropenem, doripenem,
or imipenem) or producing a carbapenemase (an enzyme
that can make them resistant to carbapenem antibiotics) were
defined as CRE by Centers for Disease Control and Prevention
of USA (https://www.cdc.gov/hai/organisms/cre/technical-info.
html#Definition). These CRE strains were isolated from sputum
(27.5%), blood (27.1%), urine (17.0%), secreta (6.9%), bile (5.0%),
ascites (3.2%), catheter (2.8%), drainage (2.8%), pus (1.4%)
and other aseptic body fluid (6.4%). Species identification was
confirmed by MALDI-TOF/MS system (bioMérieux, France). E.
coli ATCC 25922, E. coli ATCC 35218, and K. pneumoniae ATCC
700603 were tested as the quality control strains for antimicrobial
susceptibility testing.

Antimicrobial Susceptibility Testing (AST)
AST was performed by the broth microdilution method
recommended by the Clinical and Laboratory Standards
Institute. Minimum inhibitory concentrations (MICs) of
piperacillin, cefoperazone-sulbactam, piperacillin-tazobactam,
cefazolin, cefuroxime, ceftazidime, ceftriaxone, ceftazidime-
avibactam, cefepime, cefmetazole, aztreonam, ertapenem,
imipenem, meropenem, amikacin, gentamicin, ciprofloxacin,
levofloxacin, trimethoprim-sulfamethoxazole, polymyxin
B, nitrofurantoin, tigecycline were determined. The MIC
breakpoints for Enterobacteriaceae (susceptible, ≤2 mg/L;
resistant,≥8 mg/L) issued by the Food and Drug Administration
were used as the breakpoints for tigecycline.

Detection of Carbapenemase and mcr-1

Genes
All the CRE strains were tested for the presence of the most
common carbapenemase genes (blaKPC, blaNDM, blaOXA-48-like,
blaIMP, and blaVIM) by polymerase chain reaction (PCR) with
specific primers and conditions as described previously (Poirel
et al., 2011; Liu et al., 2016). The colistin resistance gene
mcr-1 was also detected by PCR, as previously described (Liu
et al., 2016). The positive PCR amplicons were sequenced
and compared with the reported sequences from GenBank by
Blast (www.ncbi.nlm.nih.gov/blast/).

Statistical Analysis
Descriptive statistics were used to summarize the epidemiologic
characteristics of CRE strains. For categorical variables, the
percentage of CRE strains in each category was calculated. All
analyses were performed using WHONET (version 5.6) and the
IBM SPSS Statistics (version 21).
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FIGURE 1 | The map of CRE clinical strains collected from 24 provinces or cities in China.

RESULTS

In vitro Antimicrobial Susceptibility
Most of the CRE strains (>90%) were resistant to cephalosporins,
piperacillin, cefoperazone-sulbactam, piperacillin-tazobactam,
aztreonam, and carbapenems. Overall, 61.4, 50.1, and 45.2% of
the strains were susceptible to ceftazidime-avibactam, amikacin,
and trimethoprim-sulfamethoxazole, respectively, followed
by gentamicin (31.8%), levofloxacin (22.9%), ciprofloxacin
(19%), and nitrofurantoin (18.8%). Polymyxin B and tigecycline
showed excellent antibacterial activity against CRE strains (95.8
and 98.4% susceptible, respectively) (Table 1). Ceftazidime-
avibactam had potent activity against both KPC-2-producing and
OXA-48-like producing Enterobacteriaceae (100% susceptible)
and inhibited all of blaKPC-2-positive and blaOXA-48-like-
positive strains at 8 mg/L. However, all NDM-producing
Enterobacteriaceae were resistant to ceftazidime-avibactam
(MIC90 > 32 mg/L). The MICs of ceftazidime-avibactam were
higher than 32 mg/L against IMP- and multi-carbapenemase
producing Enterobacteriaceae (KPC and NDM co-producers,
NDM and OXA-48 co-producer). Most of the blaNDM-positive
strains were susceptible to amikacin (86.2% susceptible)
(Table 1).

Prevalence of blaKPC, blaNDM, blaOXA-48,

blaIMP, and blaVIM Carbapenemase and
mcr-1 Genes
Carbapenemase gene was positive in 97.4% (911/935) of the
CRE strains, including blaKPC-2 in 51.6% (482/935), blaNDM
in 35.7% (334/935), blaOXA-48-like in 7.3% (68/935), blaIMP in

1.7% (16/935), blaKPC and blaNDM in 1.0% (9/935), blaNDM-24

and blaOXA-48 in 0.1% (1/935), blaNDM-1 and blaIMP-4 in 0.1%
(1/935) of the strains (Table 2). KPC-2 was the most prevalent
carbapenemase among K. pneumoniae (64.5%, 457/709) and S.
marcescens (100%, 8/8) strains. NDM-5 was the predominant
type carbapenemase among E. coli (74.5%, 111/149), E. cloacae
(66.7%, 24/36) and C. freundii (64.3%, 9/14). Among all OXA-48-
like producing K. pneumoniae, PCR and DNA sequencing results
showed the presence of blaOXA-232 (97.1%, 66/68) and blaOXA-48
(2.9%, 2/68) (Table 2).

Of the CRE strains isolated from adult patients, 70.3%
(307/437) were KPC-2-producers; 20.6% (90/437) were NDM-
producers (including 12.1% of NDM-1-producers, 8.2% of
NDM-5-producers, and 0.2% of NDM-3-producer); and 0.5%
(2/437) were OXA-48-producers (Table 3, Figure 2) (P < 0.01).
However, of the CRE strains isolated from children, 49.0%
(244/498) were NDM-producers (including 32.9% of NDM-5-
producers, 15.9% of NDM-1-producers and 0.2% of NDM-3-
producer); 35.1% (175/498) were KPC-2-producers and 13.3%
(66/498) were OXA-232-producers (Table 3, Figure 2) (P <

0.01). The blaOXA-232-positive K. pneumoniae were only isolated
from children patients while blaOXA-48-positive K. pneumoniae
were isolated from adults. One polymyxin B resistant E. coli was
positive formcr-1 with co-producing blaNDM-5.

DISCUSSION

Previous studies have proved that the presence of carbapenemase
genes, including blaKPC-2 and blaNDM, was the major mechanism
of carbapenem resistance among CRE strains in China, which
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TABLE 1 | Antimicrobial susceptibility testing results of clinical CRE strains (MICs, mg/L).

Antimicrobial agent All CRE (n = 935) KPC-producers (n = 482) NDM-producers (n = 334) OXA-48-like producers (n = 68)

MIC MIC50 MIC90 %R %S MIC50 MIC90 %R %S MIC50 MIC90 %R %S MIC50 MIC90 %R %S

range

Piperacillin 4->256 >256 >256 98.9 0.9 >256 >256 99.4 0.2 >256 >256 99.7 0.3 >256 >256 100 0

Cefoperazone-sulbactam 1->128 >128 >128 98.3 1.2 >128 >128 98.1 1.2 >128 >128 99.4 0 >128 >128 100 0

Piperacillin-tazobactam 2->256 >256 >256 97.2 1.5 >256 >256 98.8 0.6 >256 >256 99.4 0 >256 >256 100 0

Cefazolin 32->32 >32 >32 100 0 >32 >32 100 0 >32 >32 100 0 >32 >32 100 0

Cefuroxime 2->64 >64 >64 99.9 0.1 >64 >64 100 0 >64 >64 100 0 >64 >64 100 0

Ceftazidime 0.5->32 >32 >32 98.6 0.7 >32 >32 98.1 0.8 >32 >32 99.7 0 >32 >32 100 0

Ceftriaxone 0.12-64 >32 >32 99.4 0.6 >32 >32 99.4 0.6 >32 >32 99.7 0.3 >32 >32 100 0

Ceftazidime-avibactam 0.25->32 2 >32 38.6 61.4 2 4 0 100 >32 >32 100 0 0.5 4 0 100

Cefepime 0.25->32 >32 >32 98.1 0.9 >32 >32 97.9 1 >32 >32 99.4 0 >32 >32 100 0

Cefmetazole 1->64 >64 >64 92.7 4.5 >64 >64 92.3 5.6 >64 >64 97.6 1.2 64 >64 73.5 13.2

Aztreonam 0.25->128 >128 >128 93.2 4.2 >128 >128 99 0.8 >128 >128 85.3 7.8 >128 >128 100 0

Ertapenem 0.25->32 >32 >32 98.9 1 >32 >32 99 1 >32 >32 99.7 0.3 >32 >32 100 0

Imipenem 0.12->16 >16 >16 96.1 2.1 >16 >16 99.2 0.6 16 >16 99.4 0.3 >16 >16 73.5 17.6

Meropenem 0.12->16 >16 >16 97 1.9 >16 >16 98.1 1.5 >16 >16 99.7 0.3 >16 >16 85.3 4.4

Amikacin 1->128 16 >128 49.6 50.1 >128 >128 69.7 29.9 1 >128 13.8 86.2 >128 >128 100 0

Gentamicin 1->128 128 >128 67.9 31.8 >128 >128 83.8 16 1 128 40.4 59.3 >128 >128 100 0

Ciprofloxacin 0.06->8 >8 >8 78.4 19 >8 >8 95.6 3.7 8 >8 53.6 41.3 >8 >8 100 0

Levofloxacin 0.06->16 >16 >16 76.3 22.9 >16 >16 94.6 4.8 4 >16 49.4 49.7 >16 >16 100 0

Trimethoprim- Sulfamethoxazole 0.25->32 32 >32 54.8 45.2 1 >32 47.9 52.1 >32 >32 54.5 45.5 >32 >32 100 0

Polymyxin B 0.125->16 0.25 1 4 95.8 0.25 1 4.4 95.4 0.25 1 3.6 96.1 0.5 0.5 1.5 98.5

Nitrofurantoin 4->128 >128 >128 64.1 18.8 >128 >128 92.9 4.6 64 >128 22.8 41.9 128 >128 64.7 8.8

Tigecycline 0.12–8 0.5 2 0.3 98.4 0.5 2 0.4 97.7 0.5 1 0.3 99.1 1 2 0 100

CRE, carbapenem-resistant Enterobacteriaceae; MIC50/90, 50%/90% minimum inhibitory concentration; %R, % of isolates resistant; %S, % of isolates susceptible.

F
ro
n
tie
rs

in
C
e
llu
la
r
a
n
d
In
fe
c
tio

n
M
ic
ro
b
io
lo
g
y
|w

w
w
.fro

n
tie
rsin

.o
rg

4
Ju

ly
2
0
2
0
|V

o
lu
m
e
1
0
|
A
rtic

le
3
1
4

11

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Han et al. Dissemination of Carbapenemases Among CRE

TABLE 2 | Prevalence of different carbapenemase genes among 935 CRE strains.

Species Strains tested, N blaKPC-2, n (%) blaNDM, n (%) blaOXA-48-like, n (%) blaIMP, n (%) Two genes, n (%) Any gene, n (%)

K. pneumoniae 709 457 (64.5) blaNDM-1, 64 (9.0) blaOXA-48, 2 (0.3) blaIMP-4, 6 (0.8) blaKPC-2+blaNDM-1, 6 (0.8) 693 (97.7)

blaNDM-5, 85 (12.0) blaOXA-232, 66 (9.3) blaIMP-69, 3 (0.4) blaKPC-2+blaNDM-5, 1 (0.1)

blaNDM-3, 1 (0.1) blaNDM-1+blaIMP-4, 1 (0.1)

blaNDM-24+blaOXA-48, 1 (0.1)

E. coli 149 4 (2.7) blaNDM-1, 31 (20.8) 147 (98.7)

blaNDM-5, 111 (74.5)

blaNDM-3, 1 (0.7)

E. cloacae 36 3 (8.3) blaNDM-1, 24 (66.7) blaIMP-4, 4 (11.1) blaKPC-2+blaNDM-1, 1 (2.8) 36 (100)

blaNDM-5, 3 (8.3) blaIMP-6, 1 (2.8)

C. freundii 14 3 (21.4) blaNDM-1, 9 (64.3) 12 (85.7)

S. marcescens 8 8 (100) 8 (100)

E. aerogenes 7 1 (14.3) blaNDM-1, 1 (14.3) 3 (42.9)

blaNDM-5, 1 (14.3)

K. oxytoca 7 3 (42.9) blaNDM-1, 2 (28.6) blaIMP-4, 1 (14.3) blaKPC-2+blaNDM-1, 1 (14.3) 7 (100)

M. morganii 3 2 (66.7) blaNDM-1, 1 (33.3) 3 (100)

P. vulgaris 1 1 (100) 1 (100)

P. rettgeri 1 blaIMP-4, 1 (100) 1 (100)

Total 935 482 (51.6) 334 (35.7) 68 (7.3) 16 (1.7) 11 (1.2) 911 (97.4)

CRE, carbapenem-resistant Enterobacteriaceae.

TABLE 3 | Distribution of different carbapenemase genes in 935 CRE strains isolated from adults and children patients.

Carbapenemase genes All CRE, n (%) E. coli, n (%) K. pneumoniae, n (%)

From children From adults From children From adults From children From adults

blaKPC-2 175 (35.1) 307 (70.3) 3 (2.8) 1 (2.3) 169 (44.7) 288 (87.0)

blaNDM-1 79 (15.9) 53 (12.1) 21 (19.8) 10 (23.3) 50 (13.2) 14 (4.2)

blaNDM-5 164 (32.9) 36 (8.2) 82 (77.4) 29 (67.4) 81 (21.4) 4 (1.2)

blaNDM-3 1 (0.2) 1 (0.2) 1 (2.3) 1 (0.3)

blaOXA-48 2 (0.5) 2 (0.6)

blaOXA-232 66 (13.3) 66 (17.5)

blaIMP-4 3 (0.6) 9 (2.1) 2 (0.5) 4 (1.2)

blaIMP-6 1 (0.2)

blaIMP-69 2 (0.4) 1 (0.2) 2 (0.5) 1 (0.3)

blaKPC-2+blaNDM-1 2 (0.4) 6 (1.4) 1 (0.3) 5 (1.5)

blaKPC-2+blaNDM-5 1 (0.2) 1 (0.3)

blaNDM-1+ blaIMP-4 1 (0.2) 1 (0.3)

blaNDM-24+ blaOXA-48 1 (0.2) 1 (0.3)

Others 5 (1.0) 19 (4.3) 2 (4.7) 5 (1.3) 11 (3.3)

Total 498 437 106 43 378 331

CRE, carbapenem-resistant Enterobacteriaceae.

were themost prevalent inK. pneumoniae and E. coli, respectively
(Zhang et al., 2017; Wang et al., 2018). However, the researches
on CRE strains isolated from children patients are limited
in China. This study provided a comprehensive and updated
carbapenemase profile of 935 CRE strains isolated from both
adult and children patients. We found that blaKPC-2 (51.6%) and
blaNDM (35.7%) were the most common carbapenemase genes
among CRE strains, while the emergence of blaOXA-232, blaIMP,
and other multi-carbapenemase genes have been increasing
in recent years. KPC-2 was the most frequently detected

carbapenemase gene in K. pneumoniae, while NDMwas the most
prevalent one in E. coli. This pattern in China is significantly
different from that in Europe. In Europe, the prevalence of
OXA-48-like producing Enterobacteriaceae was 38% (333/927),
next to KPC- (42%, 393/927), but higher than NDM-producing
Enterobacteriaceae (12%, 113/927) (Grundmann et al., 2017).
The distribution of carbapenemase-producers also varied with
bacterial species. In K. pneumoniae, KPC-producers were
the most prevalent, followed by OXA-48-like (37%, 310/850)
and NDM-producers (11%, 93/850). In E. coli, OXA-48-like
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FIGURE 2 | Carbapenemase distribution among the carbapenem-resistant Enterobacteriaceae strains isolated from adult and children patients.

producers were the most prevalent (56%, 43/77), followed
by NDM- (26%, 20/77) and KPC-producers (18%, 14/77). K.
pneumoniae and E. coli were the two main species in China with
a ratio of 5:1 (4:1 in children, 8:1 in adults) in this study, which
differed from the prevalence trends (ratio of 11:1) in EuSCAPE
(Grundmann et al., 2017).

Notably, KPC-2-producers were widespread in adult patients,
followed by NDM-producers, while NDM-producers were
prevalent in children patients, followed by KPC-2- and OXA-48-
like producers. These findings described the different patterns of
carbapenemases among CRE strains from adults and children.
In contrast to the previous finding that NDM-1 was the most
common carbapenemase among children patients, we have found
that NDM-5-producers (32.9%) were most frequently detected
CRE strains from children (Tian et al., 2018; Yin et al., 2018;
Zhang et al., 2018). The outbreak of NDM-5-producing ST48 K.
pneumoniaewas first reported in Shanghai (Tian et al., 2018). We
speculated that outbreak of NDM-5-producers accounted for the
spread of NDM-5 among children patients in this study (Tian
et al., 2018; Li et al., 2020). Further study is needed to track the
type of plasmids harboring these carbapenemase genes.

Unlike the previous report that few OXA-48-like producing
Enterobacteriaceae (0.1%, 2/1801) were detected in China from
2012 to 2016 (Wang et al., 2018), we found 7.3% (68/935)
OXA-48-like producing K. pneumoniae between 2016 and 2018.
Since the first OXA-232-producing K. pneumoniae isolated
from neonate in 2017, the outbreaks of OXA-232-producing
Enterobacteriaceae have been successively reported in children

patients (Yin et al., 2017; Tian et al., 2018). Subsequently, 10
strains of OXA-232-producing K. pneumoniae were isolated
from elderly patients in the intensive care unit in 2019 and the
blaOXA-232 was located in a 6.1-kb ColKP3-type non-conjugative
plasmid, which was highly similar to the pkNICU5 first reported
(similarity about 99%) in 2017 (Yin et al., 2017; Shu et al.,
2019). We speculated that the presence of blaOXA-232 on a
mobile element and its spread among different strains were
responsible for the recent dissemination of OXA-232-producing
Enterobacteriaceae, which would make it possible to become the
“third epidemic” carbapenemase after KPC-2 and NDM in China
(Yin et al., 2017; Tian et al., 2018).

All of the CRE strains were highly resistant to cephalosporins,
carbapenems, aminoglycosides, and fluoroquinolones but
susceptible to polymyxin B and tigecycline. Ceftazidime-
avibactam, launched last year in China, showed excellent in
vitro antibacterial activity against both KPC-2- and OXA-48-
like producers, but not active against metallo-β-lactamases
producers. Most (86.2%) of NDM-producers were susceptible
to amikacin. In addition, we found a blaNDM-5 and mcr-1
co-harboring E. coli resistant to polymyxin B. These findings
limited the utility of ceftazidime-avibactam and polymyxin
B and prompted the development of novel or combinational
therapies to combat CRE strains. For example, aztreonam plus
meropenem-vaborbactam and aztreonam plus ceftazidime-
avibactam showed good antibacterial activity against NDM-
and non-OXA-48-like producing Enterobacteriaceae (Biagi
et al., 2019). The combination of colistin and amikacin showed
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consistently bactericidal against NDM-5-bearing mcr-1-positive
E. coli, which might be an alternative therapeutic option for the
treatment of lethal infections (Zhou et al., 2017).

CONCLUSIONS

In conclusion, KPC-2, NDM, and OXA-48-like enzymes were
the most prevalent carbapenemases among CRE clinical isolates
in China. The most prevalent carbapenemase gene was blaKPC-2
among K. pneumoniae isolated from adult patients, and blaNDM
among E. coli isolates from both children and adult patients.
The blaOXA-232 was only detected among K. pneumoniae isolates
from children.
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Due to the importance of a rapid determination of patients infected by multidrug resistant

bacteria, we evaluated two rapid diagnostic tests for the detection of third-generation

cephalosporins (3GC)-resistant Enterobacterales directly from positive blood cultures

within 1 h: BL-REDTM (electrochemical method) and β-LACTATM test (chromogenic

method). A panel of 150 clinical strains characterized for their resistance profiles

(e.g., penicillinases, extended-spectrum beta-lactamases (ESBLs), overproduction of

cephalosporinase, carbapenemases, impermeability) was tested. Approximately 100

CFU of each isolate was spiked into sterile blood culture bottles and incubated in a

BD BACTECTM FX automated system (Becton Dickinson, USA). Positive blood cultures

were examined to parallel testing using the BL-REDTM and β-LACTATM tests and

conventional susceptibility method (disc diffusion following EUCAST recommendations).

For all phenotypes combined, the sensitivity, specificity, positive predictive value, and

negative predictive value in the detection of 3GC resistance were, respectively (i)

with BL-REDTM: 45.7, 100, 100, and 54.2% and (ii) with β-LACTATM test: 52.2,

100, 100, and 56.9%. The positivity of tests allows to adapt antibiotic treatment

whereas the negative result requires other tests. Moreover, these tests detect most

Ambler class A-producing Enterobacterales (KPC, ESBL, extended-spectrum OXY) with

sensitivities and specificities of 87.5 and 99% for BL-REDTM, respectively and both

100% for β-LACTATM test (47/47 isolates). These two rapid tests failed to detect AmpC

overexpressed (sensitivities of 2.7% for BL-REDTM and 0% for β-LACTATM test) and

Ambler class B-producing Enterobacterales (sensitivities of 40% for both tests) notably

strains without ESBLs associated (sensitivities of 0% for both tests). BL-REDTM and

β-LACTATM tests are easy-to-use and mainly attractive when a positive result is obtained

notably to detect most of the Ambler class A-producing Enterobacterales in <1 h after

the positivity of the blood culture, allowing a rapid adaptation of the antibiotic therapy

in patients.

Keywords: bacteremia, BL-REDTM test, β-LACTATM test, blood cultures, extended-spectrum beta-lactamases,

multidrug resistance, third-generation cephalosporins
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INTRODUCTION

The spread of multidrug resistant (MDR) Enterobacterales is
a major public health problem notably related to the misuse
and overuse of antibiotics (Laxminarayan et al., 2013; World
Health Organisation, 2014). Extended-spectrum cephalosporins
and carbapenems are currently become the first line to
treat community-acquired and nosocomial infections (Coque
et al., 2008), involving a growing problem of the expansion
of non-susceptibility of Enterobacterales to third-generation
cephalosporins (3GC) and carbapenems. This increase is largely
due to the importance of extended-spectrum β-lactamases
(ESBL), but also to the overproduced chromosomal or plasmid-
mediated AmpC cephalosporinases and to the emergence
of carbapenemases (Peirano and Pitout, 2019). The rapid
optimization of antibiotic therapy, according to the organism
and its resistance profile, is a major goal both for individual
patients and for public health (Roca et al., 2015). Bloodstream
infections (BSI) are 30% of admissions in ICU and is responsible
for an increase in length of stay and a leading cause of mortality
(close to 40%) (Kang et al., 2005). The importance of the early
appropriate treatment is crucial in these pathologies, given the
linear increase in the risk of mortality with each hour for
which administration is delayed (Ibrahim et al., 2000; Ferrer
et al., 2014). However, conventional microbiological methods
are time consuming requiring 12–48 h to identify the causal
microorganism and provide an antimicrobial susceptibility
testing (AST). Over the last couple of years, the improvement
of available rapid diagnostic tests directly from positive blood
cultures has changed approaches for identification and AST
(Maugeri et al., 2019). These tests have the advantage of providing
fast results, optimizing antibiotic therapy, improving survival,
and reducing the length of hospitalization (Perez et al., 2013).
These new techniques promote the proper use of antibiotics
by limiting the antimicrobial resistance and decreasing the
medico-economic impact by (de)-escalation of the antibiotic
therapy and reduction of hospital stay (Farfour et al., 2019).
They include molecular biology tests identifying the MDR
encoding genes (pathogen-specific real-time or multiplex PCR),
spectrometry assays detecting β-lactamase hydrolytic activity
(MALDI TOF-MS), biochemical tests, β-lactamases inhibitor-
based tests, chromogenic tests and electrochemical test (Buchan
et al., 2013; Renvoise et al., 2013; Bogaerts et al., 2016; Salimnia
et al., 2016; Faron et al., 2017; Pantel et al., 2018).

The aim of the present study was to evaluate the performance
of: (i) a new electrochemical test, BL-REDTM (Beta-Lactamase
Rapid Electrochemical Detection, CORIS BioConcept, Belgium);
and (ii) a colorimetric test, β-LACTATM test (Bio-Rad, Marnes
la Coquette, France), for the detection of 3GC-resistance on a
panel of Enterobacterales directly from positive blood cultures
within 1 h.

MATERIALS AND METHODS

Bacterial Panel
A panel of 150 Enterobacterales isolates from our regional MDR
Gram-negative Bacilli Reference Lab (CARB-LR group) in the

Occitanie region was tested (Pantel et al., 2014; Robert et al.,
2014). The isolates were included with the following distribution:
Escherichia coli (n = 62), Klebsiella pneumoniae (n = 29),
Enterobacter cloacae (n = 20), Klebsiella aerogenes (n = 9),
Proteus mirabilis (n= 7),Morganella morganii (n= 6), Klebsiella
oxytoca (n = 5), Citrobacter freundii (n = 5), Citrobacter koseri
(n= 2), Providencia rettgeri (n= 2), Serratia marcescens (n= 2),
and Hafnia alvei (n= 1).

Different β-lactam resistance profiles were selected: (i) 3GC-
susceptible isolates (n = 50), (ii) ESBL producers (n =

41, including three which also overproduced AmpC), (iii)
chromosomal-hyperproduced (n = 36) or plasmid-mediated (n
= 10) AmpC producers, (iv) extended-spectrum OXY (n =

3), and (v) carbapenemase producers (n = 30, including 12
ESBL, 4 chromosomal AmpC, and 1 plasmid-mediated AmpC).
Twenty-two isolates producing ESBL, high level AmpC or
OXY were resistant to ertapenem by membrane permeability
alteration. The presence of ESBLs, plasmid mediated AmpC, and
carbapenemases genes was previously confirmed by specific PCR
and sequence analysis (Perez-Perez and Hanson, 2002; Pitout
et al., 2004, 2007; Poirel et al., 2011). All characteristics of the
strains are summarized in Table 1.

Sample Preparation
For each isolate, ∼100 CFU was spiked into sterile blood
cultures [BD BACTECTM Plus Aerobic/F and BD BACTECTM

Lytic/10 Anaerobic/F (BDDiagnostics, Le Pont de Claix, France)]
containing 10mL of fresh blood. Blood cultures were incubated
in a BACTECTM FX automated blood culture device until they
flagged positive for microbial growth. All positive blood cultures
were divided into three samples: 1mL for the conventional
comparator methods, 1mL for the β-LACTATM test (Bio-Rad,
Marnes-la-Coquette, France) and 0.5mL for the BL-REDTM test
(Coris BioConcept, Gembloux, Belgium).

Conventional Comparator Method
The positive blood cultures were subcultured on blood agar
(bioMérieux, Marcy l’Etoile, France) for 18–24 h at 37 ±

2◦C. Species-level identification was performed on isolated
colonies on blood agar by the mass spectrometry (Vitek R© MS,
bioMérieux). AST was determined by the agar disc-diffusion
method according to the EUCAST-SFM 2019 recommendations
(www.eucast.org). The results of disc diffusion were used as the
comparator for the 3GC resistance of each isolate (determined by
the agar disc-diffusion size), using notably: ceftazidime 10µg and
cefotaxime 5 µg discs.

BL-REDTM Test V1.0
All blood cultures were tested after the blood culture flagged
positive as recommended by the manufacturer. For aerobic blood
culture, a 40 µL sample was mixed with 40 µL of reagent
and incubated 1 h at 37 ± 2◦C. For anaerobic blood culture,
a pre-analysis was needed: a 500 µL sample was centrifuged
one time 2min at 6,000 g; the pellet was re-suspended into
500 µL of NaCl solution (0.9%) and re-centrifuged 2min at
6,000 g; this second pellet was suspended into 40 µL of buffer
and 40 µL of reagent; the mix was incubated 1 h at 37 ±
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TABLE 1 | Characteristics of the studied Enterobacterales isolates.

Resistance profile (no. of strains) Species (no. of strains) β-lactamase content (no. of strains)

3GC susceptible (50) No resistance to β-lactams (19) E. coli (18) None (18)

P. mirabilis (1) None (1)

Penicillinases (22) E. coli (17) TEM-1 (10)

Inhibitor-resistant TEM (7)

K. pneumoniae (3) SHV-1 (2)

Inhibitor-resistant TEM (1)

C. koseri (2) CKO (2)

Cephalosporinases (9) M. morganii (3) Low-level AmpC (3)

P. rettgeri (2) Low-level AmpC (2)

K. aerogenes (1) Low-level AmpC (1)

E. cloacae (1) Low-level AmpC (1)

E. coli (1) Low-level AmpC (1)

S. marcescens (1) Low-level AmpC (1)

β-lactamases conferring

resistance to 3GC (70)

ESBL (29) E. coli (16) CTX-M-group 1 (7)

CTX-M-group 1 + CTX-M-group 8 (5)

CTX-M-group 9 (4)

P. mirabilis (5) CTX-M-group 1 (3)

CTX-M-group 9 (1)

CTX-M no group typed (1)

K. pneumoniae (4) CTX-M-group 1 + SHV-1 (2)

SHV-5 (1)

CTX-M-group 1 + CTX-M-group 8 + SHV-1 (1)

E. cloacae (3) CTX-M-group 1 + High-level AmpC (1)

CTX-M-group 9 + High-level AmpC (1)

TEM-24 + High-level AmpC (1)

K. oxytoca (1) CTX-M-group 8 + OXY-1 (1)

Chromosomal overproduced

cephalosporinases (29)

E. cloacae (9) High-level AmpC (9)

E. coli (6) High-level AmpC (6)

K. aerogenes (6) High-level AmpC (6)

C. freundii (4) High-level AmpC (4)

M. morganii (3) High-level AmpC (3)

H. alvei (1) High-level AmpC (1)

Plasmid cephalosporinases (9) K. pneumoniae (9) DHA-1 + SHV-1 (9)

Chromosomal overproduced penicillinases (3) K. oxytoca (3) High-level OXY-1 (3)

Carbapenemases (30) Class A carbapenemase (6) K. pneumoniae (5) KPC-2 + SHV-1 (4)

KPC-2 + CTX-M-group 1 + SHV-1 (1)

E. cloacae (1) IMI-1 + Low-level AmpC (1)

Class B carbapenemase (10) E. cloacae (4) VIM-1 + High-level AmpC (3)

VIM-1 + CTX-M-group 9 (1)

E. coli (2) NDM-1 + CTX-M-group 9 (1)

NDM-1 + DHA (1)

K. pneumoniae (2) NDM-1 + CTX-M-group 1 + SHV-1 (2)

C. freundii (1) VIM-1 + High-level AmpC (1)

P. mirabilis (1) NDM-1 (1)

Class D carbapenemase (12) K. pneumoniae (4) OXA-48 + SHV-1 (2)

OXA-48 + CTX-M-group 1 + SHV-1 (2)

K. aerogenes (2) OXA-48 + Low-level AmpC (2)

E. cloacae (2) OXA-48 + CTX-M-group 1 + Low-level AmpC (2)

(Continued)
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TABLE 1 | Continued

Resistance profile (no. of strains) Species (no. of strains) β-lactamase content (no. of strains)

E. coli (2) OXA-48 (1)

OXA-181 + CTX-M-group 1 (1)

K. oxytoca (1) OXA-48 + OXY-1 (1)

S. marcescens (1) OXA-48 + Low-level AmpC (1)

Class B + D carbapenemase (2) K. pneumoniae (2) NDM-1 + OXA-48 + CTX-M-group 1 + SHV-1 (2)

TABLE 2 | Analytical performance of assays for detection of 3GC-resistant Enterobacterales isolates in positive blood cultures.

Method Result 3GC cephalosporins Sensitivity (95% CI) Specificity (95% CI)PPV (95% CI) NPV (95% CI) Accuracy (95% CI) Youden

Resistant

(n = 92)

Susceptible

(n = 58)

BL-REDTM Positive 43 0 46.7% (36.9–56.9) 100% (93.8–100) 100% (91.8–10) 54.2% (44.8–63.3) 67.3% 46.7%

Negative 49 58

β-LACTATM Positive 48 0 52.2% (42.1–62.1) 100% (93.8–100) 100% (92.6–100) 56.9% (47.2–66.1) 70.7% 52.2%

Negative 44 58

PPV, positive predictive value; NPV, negative predictive value.

2◦C. After this incubation, 20 µL of the mix was placed on
the ceramic electrode and after in the sensor. The reagent
includes a “false” 3GC substrate which is hydrolysed when
there is a 3GC β-lactamase, this frees an electro-conductive
product. The intensity of the electrochemical signal [measured by
DropSens (Metrohm, Villebon Courtaboeuf, France)] is posted
in nanoAmpere (nA). The threshold of positivity is 80 nA for
blood culture.

β-LACTATM Test
The protocol B of the manufacturer recommendations was
followed for the treatment of the positive blood cultures. Three
different centrifugations and different solutions (Triton 0.01%,
NaCl solution) were used to obtain the final bacterial pellet. After
using the reagents provided in the kit on the bacterial pellet, we
can read visually the hydrolysis of the chromogenic substrate
(HMRZ-86, cephalosporin) from yellow to red in 15min for a
positive test. No change in color was considered a negative result
(no hydrolysis of HMRZ-86).

Statistical Analysis
The sensitivity, specificity, negative and positive predictive
value (NPV and PPV, respectively) were calculated and
comparison with molecular characterization which served
as the reference standard. 3GC-sensitive isolate with a
negative test and 3GC-resistant isolate with a positive
test are considered correct. Conversely, 3GC-sensitive
isolate with a positive test and 3GC-resistant isolate with a
negative test are considered incorrect. Additionally, the 95%
confidence intervals (CIs), accuracy and the Youden index
were calculated.

RESULTS

Evaluation on 3GC-Susceptible Isolates
Among our panel, 50 isolates had no 3GC resistance. These
isolates harbored either a penicillinase (CKO, TEM-1, SHV-1,
inhibitor-resistant TEM) or a naturally chromosomally-encoded
inducible AmpC cephalosporinase. The two assays confirmed the
absence of 3GC-resistance in all strains: 0 nA for most of the
strains with BL-REDTM, yellow color with β-LACTATM test.

Of note, two isolates (one wild-type E. coli and one TEM-
1-producing E. coli) presented a very low intensity using BL-
REDTM at 10 nA. However, they were still considered negative
because the positive threshold for blood culture was established
at 80 nA.

Global Detection of 3GC-Resistance
Concerning all isolates belonging to the tested panel, the
performance of the BL-REDTM and β-LACTATM tests were,
respectively: sensitivity, 46.7% (CI 36.9–56.9%) and 52.2% (CI
42.1–62.1%); specificity, both 100% (CI 93.8–100%); NPV, 54.2%
(CI 44.8–63.3%), and 56.9% (CI 47.2–66.1%) and PPV, both 100%
(CI 91.8–100%; 92.6–100%). The Youden index was 46.7 and
52.2%, respectively (Table 2).

Evaluation on Ambler Class a β-Lactamase
Producers
When considering only the Ambler class A ESBL (without
carbapenemase associated), 79.3% (23/29) of the isolates were
positive using the BL-REDTM, with a signal >80 nA [100–1,220]
(Table S1). Six isolates were negative: two CTX-M-group 1-
producing P. mirabilis, one CTX-M-group 9-producing E. coli,
one CTX-M-group 1 and 8-producing E. coli, one CTX-M-group
9-producing E. cloacae with altered membrane permeability, and
one SHV-5-producing K. pneumoniae with altered membrane
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TABLE 3 | Analytical performance of assays for detection of Ambler Class A β-lactamases-producing Enterobacterales isolates in positive blood cultures.

Method Result Class A b-lactamase* Sensitivity (95% CI) Specificity (95% CI)PPV (95% CI) NPV (95% CI) Accuracy (95% CI) Youden

Resistant

(n = 37)

Susceptible

(n = 113)

BL-REDTM Positive 31 1 83.8% (68.9–92.4) 99.1% (95.2–99.8) 96.9% (84.3–99.5) 94.9% (89.4–97.7) 95.3% 82.9%

Negative 6 112

β-LACTATM Positive 37 0 100% (90.6–100) 100% (96.7–100) 100% (90.6–100) 100% (96.7–100) 100% 100%

Negative 0 113

*IMI-producing E. cloacae strain susceptible to 3GC was excluded.

PPV, Positive Predictive Value; NPV, Negative Predictive Value.

permeability. All these isolates (n = 29) were positive using
the β-LACTATM test that shows a sensitivity of ESBL detection
of 100%. Interestingly, the two techniques detected the OXY-
hyperproducing K. oxytoca isolates with low outer membrane
permeability (n= 3).

Concerning Ambler class A carbapenemases, both tests were
able to detect the KPC-producing isolates (n = 5) whatever the
presence or absence of an ESBL (Table S1). Negative results were
obtained with IMI-1-producing E. cloacae strain that is resistant
to carbapenems but remains susceptible to 3GC.

The analysis of the different previous results suggested that
the two methods evaluated in this study had an interest in the
detection of Ambler class A producers (not restricted to ESBL
producers). When considering all Ambler class A producers
(excluding IMI producers), the performance of BL-REDTM and
β-LACTATM were, respectively: sensitivity, 87.5% (CI 75.3–
94.1%) and 100% (CI 92.6–100%); specificity, 99.0% (CI 94.7–
99.8%) and 100% (CI 96.4–100%); PPV, 97.7% (CI 87.9–99.6%)
and 100% (CI 92.6–100%) and NPV, 94.4% (CI 88.3–97.4%) and
100% (CI 96.4–100%) (Table 3).

Evaluation on Ambler Class C β-Lactamase
Producers
All AmpC-overproducing isolates (n = 29, excluding ESBL
co-producers) tested were negative for the two techniques
(Table S2). The alteration of outer membrane permeability
(seven strains) did not influence the results. One isolate (C.
freundii) presented a high intensity using BL-REDTM at 60
nA but under the positive threshold. The antibiogram analysis
performed after blood cultures confirmed the resistance to 3GC
and the presence of the hyperproduction of AmpC in all isolates.

Among plasmid-mediated AmpC producers (n = 10), only
one strain (K. pneumoniae DHA-1 with decreased membrane
permeability) was positive with BL-REDTM test (480 nA).

Evaluation on Ambler Class B and D
β-Lactamase Producers
Despite the high level of 3GC resistance, Ambler class B
carbapenemase producers were only detected (6/12) in both tests
when the isolates were also ESBL co-producers.

Similarly, OXA-48 carbapenemases were only detected (7/14)
by the two tests when the isolates were ESBL co-producers.

DISCUSSION

Enterobacterales are the most important etiologies of
community-onset and hospital-acquired BSI (Laupland and
Church, 2014). The diffusion of 3GC-resistance among
Enterobacterales, resulting from the spread of ESBL- and
carbapenemase-producing isolates represents a serious problem
worldwide. This is particularly true for life-threatening infections
such as BSI, for which inappropriate first-line antibiotic therapy
has a dramatic impact on short-term mortality (Kumar et al.,
2009; Zilberberg et al., 2014).

Rapid and reliable identification of MDR Enterobacterales
in the clinical microbiology laboratory is essential to effective
infection control. In this study, we evaluated two rapid and
easy-to-use methods: BL-REDTM and β-LACTATM tests. If the
β-LACTATM test has been used for few years on bacterial
strains and directly from blood cultures, the present study is
the first to evaluate the recently commercialized BL-REDTM

test v1.0. Both tests allowed early detection of most Ambler
class A β-lactamases conferring 3GC resistance (e.g., ESBL,
OXY, and KPC) to Enterobacterales (Table 3) in <1 h after
positivity of the blood culture with interesting performance
(sensitivity and specificity to 83.8 and 99.1% for BL-REDTM test
and both 100% for β-LACTATM test) suggesting that the two
tests may provide useful therapeutic guidance. However, when
testing challenged 3GC-resistant isolates non-ESBL producers,
the two tests showed poor performance. Of note, a very
low detection rate of plasmid-mediated AmpC or AmpC-
overproducing isolates could be observed: 2.4% for BL-REDTM

and 0% for β-LACTATM test. This limitation has been previously
published concerning β-LACTATM test, when testing with
subculture on agar plates (Renvoise et al., 2013; Morosini
et al., 2014; Compain et al., 2015). The lack of sensitivity
for the detection of high level AmpC must be balanced
against the fact that ESBL producers are predominant among
3GC resistant Enterobacterales in European countries, notably
among BSI (European Antimicrobial Resistance Surveillance
Network (EARS-Net), 2018). Moreover, early adaptation by
cefepime could be proposed when naturally AmpC producer
was identified by MALDI-TOF MS, as previously suggested
(Mizrahi et al., 2018). Another limitation of both tests was
the failure to identify metallo-β-lactamase-producing isolates
directly in blood cultures, whereas β-LACTATM test carried
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FIGURE 1 | Algorithm proposed for the management of Gram negative bacilli in positive blood culture in the routine laboratory. ID, identification; 3GC, third generation

cephalosporins; 4GC, fourth generation cephalosporin; AST, antimicrobial susceptibility testing.

out with VIM-1-producers on agar plates showed acceptable
sensitivity (Morosini et al., 2014). The lack of detection of
metallo-β-lactamase-producing Enterobacterales isolates have
been previously reported with phenotypical tests applied on
blood culture, the zinc concentration in the medium being
essential for an efficient detection of Ambler class B enzymes
(Dortet et al., 2014; Pantel et al., 2018). Concerning class D
carbapenemase producers, the isolates are frequently associated
with ESBL positive producers (Bakthavatchalam et al., 2016)
allowing their detection with both evaluated tests (7/7, 100%).
Without the presence of ESBL-carrying plasmids, the tests
failed to identify this resistance mechanism. To date, molecular
methods remain the faster tool with a higher sensitivity to detect
the carbapenemase-producing Enterobacterales (Rood and Li,
2017).

If no study has previously evaluated the BL-REDTM test, some
previous works were performed on the use of β-LACTATM test
combined with MALDI-TOF MS from positive blood cultures
(Compain et al., 2015; Walewski et al., 2015; Hasso et al., 2017;
Mizrahi et al., 2018). The first study conducted in 2015 by
Compain et al. evaluated the β-LACTATM test on 3-h subcultures.
84.8% of the 33 blood culture isolates resistant to 3GC were
correctly detected Compain et al. (2015). Walewski et al. (2015)
used the test on bacterial pellets from the blood culture broths
after treatment by saponin followed by two washes, with 95.7%
of sensitivity and 100% of specificity for identifying ESBL-
producing Enterobacterales. Hasso et al. (2017) evaluated the

accuracy of the β-LACTATM test for rapid detection of ESBL-
producing E. coli andKlebsiella spp. from smudge plates prepared
with positive blood cultures. The authors noted a sensitivity and
specificity of 100 and 97.8%, respectively. Finally, the last two
studies carried out in France by Mizrahi et al. (2018) and Farfour
et al. (2019) obtained similar results: excellent performance
regarding ESBL-producers and lack of sensitivity for Group 3
Enterobacterales. All results underlined the interest of these rapid
techniques to be used effectively in daily laboratory practice.

The use of rapid phenotypic susceptibility techniques have
demonstrated their interest in an optimized antimicrobial
treatment (Schneider et al., 2019). Globally, our study shows
excellent PPV (both 100%) but poor NPV (46.7 and 52.2%)
for the BL-REDTM and β-LACTATM tests, respectively. This
reinforces the idea to only manage positive results with these
assays and adapt antibiotic treatment whereas the negative results
need to use additional tests. In this way, we suggest an algorithm
incorporating MALDI-TOF MS combined with β-LACTATM

test for optimized Ambler class A producers detection with
the advantage of being rapid, affordable, and simple (Figure 1).
This algorithm could be accurate to give in <2 h a decisive
orientation in the antibiotic management of sepsis or septic
shock patients, particularly when the β-LACTATM test is positive.
An early adaptation by 4GC could be proposed when naturally
AmpC producer was identified by MALDI-TOF MS with a
negative β-LACTATM test. However, its use must be debated.
Recently, Dépret et al. (2018) evaluated the rapid identification
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using MALDI-TOF MS results only vs. the combined MALDI-
TOF MS and the β-LACTATM test in a method close to
our algorithm. No impact on the current standard choice of
therapy in terms of escalation/de-escalation or in reduction of
carbapenems prescription was observed. Indeed, only 9% of
the positive blood cultures in this study were confirmed as
ESBL-producing, decreasing the interest of the techniques. This
suggests that the use of a rapid test for Ambler class A-producers
detection would be useful in a population with high prevalence
of these enzymes and/or when treatment choices are not made
by infectious disease specialists. In contrast, Mizrahi et al. (2018)
have demonstrated the crucial role played by rapid detection of
3GC resistance with β-LACTATM. In this study, 75% (21/28) of
the patients with BSI involving 3GC-resistant bacteria received
a non-adapted first-line treatment. β-LACTATM test performed
on blood culture significantly reduced the delay for treatment
adaptation (28.1 h) and patient isolation (35 h). In 2019, Farfour
et al. (2019) observed the same impact of rapid diagnostic tests
on the management of BSI. Patients receiving a rapid strategy
(rapid identification and 3GC-susceptibility testing) received
more frequently an effective and appropriate antibiotic therapy
than patients receiving conventional strategy on the first day of
BSI diagnosis. Studies in settings where the prevalence of Ambler
class A producers is high must be done to definitively conclude
on the interest of the rapid technique.

In conclusion, the two evaluated assays (BL-REDTM and
β-LACTATM tests) showed excellent PPV, at least for the
detection of the common Ambler class A family conferring
3GC-resistance and are suitable for the routine microbiology
laboratory, decreasing the time to detection, and the need to refer
these isolates to molecular biology confirmation.When a positive
result is detected, these techniques permitted a quick and easy
detection of the presence of ESBL-producing Enterobacterales in
a clinical sample. They may help clinicians to guide appropriate
antimicrobial therapy in septic patients and presumably improve
their prognosis in a country or region where the Ambler class A
family is particularly prevalent.
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Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) appeared recently

and now presents a particularly critical problem to hospitalized patients worldwide.

We aim to investigate the epidemiology and the risk factors for CRKP colonization

and infections, and to evaluate the application performance of MALDI-TOF MS in

clustering CRKP.

Results: CRKP colonization and infections incidence was 2.7 (35/1,319,427) per

100,000 patient-days. Inpatients in CRKP group had higher medical expense than CSKP

group. Inpatients with underlying conditions, particularly with pulmonary diseases, and

with antimicrobial use prior to culture within 30 days, especially with carbapenem use,

were risk factors for CRKP acquisition. All CRKP isolates were detected producing

KPC-2. The MALDI-TOF MS system and PFGE system provided similar results, with

a good concordance between the two methods (adjusted Rand’s coefficient, 0.846) and

a high probability of MALDI-TOF MS to predict PFGE results (Wallace coefficient, 0.908).

Conclusions: Underlying conditions, particularly pulmonary diseases, and antimicrobial

use prior to culture within 30 days, especially carbapenem use, are risk factors for CRKP

acquisition. BlaKPC−2 is the mainstream gene of CRKP in our geographic area of analysis.

As only simple sample preparation is needed and the results can be obtained in a short

time, MALDI-TOF MS may be considered a probable alternative to PFGE in clustering

KPC-2-producing CRKP.

Keywords: carbapenems, resistance, Klebsiella pneumonia, carbapenem-resistant Klebsiella pneumonia,

MALDI-TOF MS
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BACKGROUND

Carbapenems are widely used due to their broad spectrum
of activity. Nevertheless, carbapenem-resistant Klebsiella
pneumoniae (CRKP) appeared and now presents a particularly
critical problem to hospitalized patients worldwide (Yigit et al.,
2001; Canton et al., 2012; McConville et al., 2017; Asai et al.,
2018). The limited clinical options often make anti-infective
therapy extremely difficult and also cause an extra financial
burden on patients. Thus, it is necessary to identify the risk
factors to prevent CRKP colonization and infections.

Molecular typing of bacterial isolates is the key strategy to
identify clusters that are due to the transmission of clonal
strains. Multilocus sequence typing (MLST), the repetitive
sequence-based PCR Diversi Lab system and pulsed-field gel
electrophoresis (PFGE) are good genotyping approaches, but
these techniques remain time-consuming with a substantial cost.
Rapid methods for molecular typing in colonization or infections
with pathogens can not only provide basis for preventing cloning
spread but also timely treatment. Therefore, quick methods
that can be easily integrated into the routine work flow and
do not cause increased costs are important (Sauget et al.,
2017). Recently, matrix-assisted laser desorption ionization-time
of flight mass spectrometry (MALDI-TOF MS) has been used
as a simple tool for typing in infections with bacteria such
as Enterobacter cloacae (Khennouchi et al., 2015). But other
researcher do not recommend MALDI-TOF-based typing as a
bacterial typing method given the heterogeneity in comparison
to genotyping (Sachse et al., 2014). Thus, the application
performance of MALDI-TOFMS as a clustering analysis method
is still controversial.

Here, we set out to conduct a study for CRKP in
Xiamen, a southern area in China, and we considered the
following objectives: (1) study the epidemiology and risk
factors for CRKP colonization and infections in this area, (2)
evaluate the application performance of MALDI-TOF MS in
clustering CRKP.

MATERIALS AND METHODS

Patients and Settings
With the intent of examining prevalence, the background
of the patients and the risk factors of CRKP acquisition
(colonization and infection), we conducted a case-controlled
study. A retrospective epidemiologic surveillance study of CRKP
colonization and infections was conducted within a 1900-bed
academic Medical Center in the southern area of China from
1 January 2015 to 31 January 2017. Either CRKP colonization

Abbreviations: CRKP, carbapenem-resistant Klebsiella pneumoniae; CSKP,
carbapenem-susceptible Klebsiella pneumonia; MALDI-TOF MS, matrix-assisted
laser desorption ionization-time of flight mass spectrometry; MLST, multilocus
sequence typing; PFGE, pulsed-field gel electrophoresis; PCRs, multiplex
polymerase chain reactions; NCBI, National Center of Biotechnology Information;
FDA, Food and Drug Administration; MICs, minimum inhibitory concentrations;
CLSI, the Clinical and Laboratory Standards Institute; IQR, interquartile range;
ICU, intensive care unit; CCI, Charlson comorbidity index; COPD, pulmonary
diseases included chronic obstructive pulmonary disease; OR, odds ratio; aOR,
adjusted odds ratio; CI, confidence interval; SID, Simpson’s index of diversity.

or infections cases during the inpatients’ stay period in hospital
were classified as the case group. Patients who were negative
for CRKP but positive for carbapenem-susceptible Klebsiella
pneumoniae (CSKP) during their stay in hospital were used as the
selection pool for the control group during the same study period.
Exclusion criteria were community-acquired colonization and
infections, missing key data, screening samples, and subsequent
episodes in the same patient. The same exclusion criteria were
applied to cases and controls.

CRKP cases were selected by a review of microbiological
reports. All identified inpatients were initially eligible to
participate, and their medical charts were reviewed. For
inpatients with multiple episodes of colonization and infection
with CRKP, only data relevant to the first episode were
collected and analyzed. A colonization or infection case is
defined according to CDC definitions of nosocomial infections
(Garner et al., 1988).

The CSKP cases as control group were randomly selected
from the same units where the inpatients isolated with CRKP
during the study period. Records of the control participants
were cross-referenced with microbiology results to ensure that
they did not have any CRKP positive cultures. Controls whose
records had insufficient information were replaced by other
randomly selected controls. For inpatients with multiple episodes
of infection with CSKP, only data relevant to the first episode
were collected and analyzed. The age (±2 years) and sexes of
the patients were matched to inpatients with CRKP colonization
and infections, and the ratio for the CRKP:CSKP group was 1:2.
We used age (±2 years) and sexes as the matching variables
because both two are strong confunders and good candidates
for direct mathing (Mansournia et al., 2018). We set a ratio
of 1:2 in this study for two reasons: (1) concern for sufficient
numbers in a stratified analysis; and (2) the increase in power
given the expected prevalence of exposure among the controls
(Hennessy et al., 1999).

Both case and control groups’ data were collected from
a database of hospital infection monitoring system. This
database drew information from numerous sources, including
patients’ electronic health record, laboratory, microbiology, and
medication administration records.

For identifying possible risk factors of CRKP colonization
and infections, patients’ demographic characteristics andmedical
conditions were collected from the electronic sources mentioned
above by comparing the CRKP and CSKP groups.

This study was approved by the local Ethics Committee of
The First Affiliated Hospital of Xiamen University and complied
with the Declaration of Helsinki (2008). Written and informed
consent was obtained from all participants.

Definition of CRKP
A CRKP case was defined as the first clinical Klebsiella
pneumoniae positive culture from inpatient with one or more of
the following criteria, minimum inhibitory concentrations
(MICs) for meropenem/imipenem ≥4 mg/L, MICs for
ertapenem ≥2 mg/L according to the CLSI guidelines (CLSI,
2020).
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Microbiological Investigations
Species identification was performed with the Vitek 2
Compact automatic microbial analyzer (BioMerieux, Marcy—
l’Etoile, France) and confirmed by matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry
(MALDI-TOF MS; BioMerieux, Marcy-l’Etoile, France).

Molecular Detection
Multiplex polymerase chain reactions (PCRs) were used
to detect the presence of carbapenemase genes (blaNDM,
blaKPC, blaIMP, and blaVIM). PCR products were sequenced,
and the nucleotide and deduced protein sequences were
analyzed with software programs that were available from the
National Center of Biotechnology Information (NCBI) website
(www.ncbi.nlm.nih.gov).

Antimicrobial Susceptibility Testing
With regard the antimicrobial susceptibility test, MICs of
ceftazidime, cefepime, cefotaxime, ceftriaxone, piperacillin/
tazobactam, meropenem, ertapenem, imipenem, aztreonam,
amikacin, gentamycin, tobramycin, ciprofloxacin, levofloxacin,
trimethopri-sulfamethoxazole, and tigecycline were determined
with the Vitek 2 Compact automatic microbial analyzer
(BioMrieux, Marcy-l’Etoile, France) according to the Clinical and
Laboratory Standards Institute (CLSI) guidelines. In addition,
MICs of ertapenem, imipenem, meropenem and colistin-
polymyxin-B were determined using E-test strips (BioMerieux,
Marcy-l’Etoile, France) according to the manufacturer’s
instructions. Ertapenem, imipenem and meropenem MICs were
interpreted according to the CLSI guidelines. The interpretive
criteria for colistin-polymyxin-B was based on the breakpoints of
EUCAST. And the interpretive criteria for tigecycline was based
on the breakpoints of the Food and Drug Administration (FDA).

Identification and Clustering of
Klebsiella Pneumoniae Using MALDI-TOF
MS
The Klebsiella Pneumoniae isolates were plated on Columbia
blood agar (bioMérieux, Marcy l’Étoile, France) and incubated
for 18 h to 24 h at 37◦C. Isolated colonies of each strain were
selected and used for MALDI-TOF MS identification using
the MALDI-TOF MS (BioMerieux, Marcy-l’Etoile, France), as
previously described (Rodel et al., 2019). The obtained spectra
were manually selected in the spectra mode of SARAMIS
Premium software (BioMerieux, Marcy-l’Etoile, France). Cluster
analysis were performed by spectra compared to each other
in SARAMIS RUO database according to the manufacturer’s
instructions (Vitek MS Plus SARAMIS Premium user manual,
BioMerieux, Marcy-l’Etoile, France). Consensus spectra were
analyzed with a single link agglomerative clustering algorithm,
applying the relative taxonomy analysis tool of SARAMIS
premium software to show the resulting dendrogram with
differences and similarities in relative terms (percent matching
masses). As a standard setting, the mass signal intensity was
not considered in the cluster analysis. According to the type
assignment, we defined a cut-off value was >75% similarity
(Meng et al., 2019).

Typing of Klebsiella Pneumoniae Using
Pulse-Field Gel Electrophoresis (PFGE)
The 1 day, standardized PFGE protocol (Han et al., 2013)
was used for all CRKP isolates during the study periods. Cell
suspensions were placed in polystyrene tubes (Falcon; 12 ×

75mm), and their optical densities were adjusted to 3.8–4.0 by
a Densimat photometer (BioMérieux, Marcy l’Etoile, France).
Slices of CRKP agarose plugs were digested using 50U of
XbaI (TaKaRa Bio, Dalian, China) per slice for 4 h at 37◦C,
and electrophoresis was performed using a CHEF-DRIII system
(Bio-Rad Laboratories, Hercules, CA, USA). Electrophoresis
was conducted with a switch time of 6 to 36 s for 18.5 h,
and images were captured using a Gel Doc 2000 system (Bio-
Rad) and converted to TIFF files which were analyzed by
BioNumerics version 5.1 software (Applied Maths, Kortrijk,
Belgium). A similarity analysis of the PFGE patterns was
performed by calculating the Dice coefficients (SD) and clustering
was performed using the unweighted-pair group method with
average linkages (UPGMA).

Statistical Analysis
CRKP colonization and infections incidence was reported as
the number of CRKP cases per 100,000 hospital patient-
days. Descriptive statistics were used to summarize the clinical
and epidemiologic characteristics of CRKP colonization and
infections. Continuous variables were presented as medians
with the range or interquartile range. For categorical variables,
the percentage of patients or isolates in each category was
calculated. The Chi-square test were used to compare categorical
variables. The Mann-Whitney U-test was used to compare
continuous variables. To identify risk factors for isolating CRKP,
the Chi-square test were performed. Factors showing p < 0.05,
were considered candidate predictors that were significantly
related to CRKP isolation and were extracted; following which,
multivariate analysis was performed for these factors using
the Logistic Regression model. The discriminatory power of
each typing method was assessed using Simpson’s index of
diversity (SID), calculating the probability that two unrelated
strains sampled from the test population will be placed into
different typing groups (Hunter and Gaston, 1988), and the 95%
confidence intervals (CI) of the SID values were calculated as
described previously (Grundmann et al., 2001). The quantitative
concordance between typing methods was analyzed by using
adjusted Randand Wallace coefficients (Carrico et al., 2006). All
analyses were performed using the IBM SPSS statistical software
package version 25 (IBM Corp, Armonk, NY, USA).

RESULTS

Prevalence of CRKP Colonization and
Infections
CRKP colonization and infections incidence during 1 January
2015 and 31 January 2017 was 2.7 (35/1,319,427) per 100,000
patient-days. During 1,319,427 patient-days, we found that 2,875
patients with Enterobacteriaceae isolates were obtained, and 36
patients with CRKP colonization and infections were eligible for
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screening in this study. After application of the exclusion criteria,
35 inpatients were included. Five of 35 patients isolating CRKP
had infections. All the five were bloodstream infections, all were
cured. The characteristics of the inpatients are shown in Table 1

and included 27 males and 8 females. The median age was 73
years (range 0–91 years).

Clinical and Microbiological
Characteristics in CRKP Inpatients
We found that 25.7% (9/35) of inpatients had functional status
deterioration seen in Table 1. One patient in ICU died within
30 days of admission that was not due to that of a bloodstream
infection, but of multiple organ failure caused by cancer, the
same reason as the one patient died in CSKP group. CRKP
group patients had higher medical expense than those among
CSKP group (as shown) in Table 1 (p = 0.015). With regard
the antimicrobial susceptibility test, colistin-polymyxin-B, and
tigecycline retained excellent activity, with a susceptibility rate of
more than 97%. Trimethopri-sulfamethoxazole remained quite
susceptible, with susceptibility rate of 57.1%. All isolates of
CRKP were detected producing KPC-2 carbapenemase. Further,
no CRKP was detected producing two or more gene types
of carbapenemase.

Analysis of Risk Factors for Patients
Isolating CRKP
The results of univariate analysis using the Chi-square test in
patients with CRKP are shown in Table 1. Eight parameters were
associated with patients isolating CRKP, namely one or more
underlying conditions (p = 0.007), pulmonary diseases (p <

0.001), gastric tube (p < 0.001), antifungal agents (p = 0.021),
one or more antimicrobial use prior to culture within 30 days (p
< 0.001), carbapenem use (p < 0.001), quinolone use (p < 0.001)
and length of stay (p < 0.001).

Multivariate logistic regression analysis was applied to analyze
the prognostic significance of these eight factors, revealing that
one or more underlying conditions (p = 0.031, odds ratio [OR]:
3.991, 95% confidence interval [CI]: 1.132–14.068), pulmonary
diseases (p = 0.007, odds ratio [OR]: 5.293, 95% confidence
interval [CI]: 1.590–17.618), one or more antimicrobial use prior
to culture within 30 days (p= 0.009, odds ratio [OR]: 17.358, 95%
confidence interval [CI]: 2.051–146.931) and carbapenem use (p
= 0.018, odds ratio [OR]: 5.118, 95% confidence interval [CI]:
1.321–19.829) were indeed independent risk factors for patients
isolating CRKP. Four different clusters of 35 KPC-2-producing
CRKP isolates were identified by PFGE and MALDI-TOF MS.
Cluster I, II, and III were mainly isolated from geriatrics and
respiratory wards. Cluster IV was mainly isolated from pediatrics
and icu departments.

Clonal Typing KPC-2 Producing CRKP by
PFGE
The PFGE system identified four different clusters of 35 KPC-
2-producing CRKP isolates (Figure 1A). All indistinguishable
isolates in four clusters presented an average genomic similarity

TABLE 1 | Comparison with patients’ characteristics between CRKP and CSKP

groups.

Characteristica CRKP groupb

(n = 35) n, %

CSKP groupb

(n = 70) n, %

p-value

Health care exposure during prior year

Acute care hospitalization 5 (14.3) 9 (12.9) 0.839

Dialysis 1 (2.9) 2 (2.9) 1.000

Resident of a long-term-care

facility

6 (17.1) 14 (20.0) 0.725

Transfer to ICU within 30

days

6 (17.1) 5 (7.1) 0.115

Receipt of corticosteroids 4 (11.4) 9 (12.9) 0.834

Underlying conditions

One or more underlying

conditions

17 (48.6) 16 (22.9) 0.007

Cancerc 4 (11.4) 14 (20.0) 0.272

Diabetes mellitus 8 (22.9) 16 (22.9) 1.000

Heart diseasesd 4 (11.4) 6 (8.6) 0.638

Hypertension 11 (31.4) 29(41.4) 0.320

Liver diseasese 7 (20.0) 14 (20.0) 1.000

Neurological diseasesf 5 (14.3) 20 (28.6) 0.105

Pulmonary diseasesg 28 (80.0) 25 (35.7) <0.001

Renal diseasesh 8 (22.9) 16 (22.9) 1.000

CCI score [Median (IQR)] 2.0 (4.0) 2.0 (4.0) 1.000

CCI ≥ 3 15 (42.9) 31 (44.3) 0.889

Smoking history 6 (17.1) 4 (5.7) 0.060

Indwelling devices prior to culture

Central venous catheter 15 (42.9) 20 (28.6) 0.143

Gastric tube 24 (68.6) 21 (30.0) <0.001

Tracheal cannula 5 (14.3) 12 (17.4) 0.708

Tracheotomy 10 (28.6) 10 (14.3) 0.079

Urinary catheter 20 (57.1) 36 (51.4) 0.580

Laboratory findings

White blood cells/mm3

Median (IQR) 12,350 (3, 900) 9,790 (6,853) 0.054

Subgroup

<4,000 0 (0.0) 6 (8.6) 0.074

>10,000 24 (68.6) 39 (55.7) 0.205

C-reactive protein > 10

mg/liter

16 (45.7) 39 (55.7) 0.333

Procalcitonin

0.5 to 2 ng/ml 5 (14.3) 20 (28.6) 0.105

>2 ng/ml 10 (28.6) 18 (25.7) 0.755

Use of proton pump inhibitors 8 (22.9) 18 (25.7) 0.749

Antifungal agents 8 (22.9) 5 (7.1) 0.021

Antimicrobial use prior to

culture within 30 days

One or more Antimicrobial

uses

34 (97.1) 33 (47.1) <0.001

Third- or fourth-generation

cephalosporin use

6 (17.1) 15 (21.4) 0.605

Carbapenem use 16 (45.7) 5 (7.1) <0.001

Quinolone use 14 (40.0) 6 (8.6) <0.001

(Continued)
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TABLE 1 | Continued

Characteristica CRKP groupb

(n = 35) n, %

CSKP groupb

(n = 70) n, %

p-value

Specimen isolating Klebsiella pneumoniae

Respiratory specimen 13 (37.1) 31 (44.3) 0.484

Urine 9 (25.7) 16 (22.9) 0.746

Blood 6 (17.1) 13 (18.6) 0.858

Ascites 2 (5.7) 2 (2.9) 0.471

Bile 1 (2.9) 3 (4.3) 0.718

Skin 1 (2.9) 2 (2.9) 1.000

Others 3 (8.6) 3 (4.3) 0.372

Length of stay [Median (IQR)]i 34 (38.0) 16 (20.0) <0.001

Discharge disposition

Recovery 7 (20.0) 13 (18.6)

Improvement 18 (51.4) 39 (55.7) 0.375

Patients transfer to other

hospital

0 (0.0) 1 (1.4)

Functional status

deterioration

9 (25.7) 16 (22.9)

In-hospital mortality 1 (2.9) 1 (1.4) 0.015

Medical expense for admissioni

(Mean ± SD, RMB)

107,472.27 ±

110,564.67

60,738.59 ±

72,925.18

CRKP, carbapenem-resistant Klebsiella pneumoniae; CSKP, carbapem-sensitive

Klebsiella pneumoniae; CCI, Charlson comorbidity index.
a IQR, interquartile range; ICU, intensive care unit.
bData are presented as the number/total number (%), unless otherwise indicated.
cCancer includes malignancy of the lung, digestive tract, gynecology, hematological

system, and neurological system.
dHeart diseases include congestive heart failure, coronary heart disease, valve

replacement, and congenital heart disease.
eLiver diseases included cirrhosis, hepatitis, liver abscess, hepar adiposum (i.e., fatty liver),

and hepatic injury.
fNeurological diseases include stroke, transient ischemic attack, cerebral palsy,

and meningitis.
gPulmonary diseases included chronic obstructive pulmonary disease (COPD), asthma,

interstitial lung disease, history of pneumonia and tuberculosis, emphysema, respiratory

failure, and infection.
hRenal diseases include azotemia and chronic kidney disease.
iOnly patients admitted to hospital were evaluated.

ratio of >90.0%. The four clusters were significantly different
from each other in the percentage of similarity.

Clustering CRKP Isolates Using
MALDI-TOF MS
All the 35 CRKP isolates were correctly identified at the species
level byMALDI-TOFMS. The hierarchical clustering ofMALDI-
TOF peak profiles identified four different clusters, substantially
interchangeable with those obtained with the PFGE system
(Figure 1B). The statistical analysis of the data showed that the
PFGE system (Simpson’s index, 0.608; 95% CI, 0.512–0.705) and
MALDI-TOFMS system (Simpson’s index, 0.640; 95% CI, 0.532–
0.748) provided similar results, with a good concordance between
the two methods (adjusted Rand’s coefficient, 0.846) and a high
probability of MALDI-TOFMS to predict PFGE results (Wallace
coefficient, 0.908).

DISCUSSION

This present retrospective case-controlled study assessed
potential risk factors for the development of colonization and
infections by CRKP in hospitalized patients. In this study, it
demonstrates that inpatients with one or more underlying
conditions, especially pulmonary diseases, and antimicrobial
use prior to culture within 30 days, particularly carbapenem
use, were risk factors for CRKP acquisition. And four different
clusters of KPC-2-producing CRKP isolates were identified.
Cluster I, II, and III were mainly isolated from geriatrics and
respiratory wards. Patients with underlying conditions, such as
pulmonary diseases, often visit an outpatient clinic or transfer
from icu to respiratory ward, or transfer between the two, even
from one hospital to another hospital, and they are subsequently
exposed to additional health care and antimicrobials, which are
among the most prominent risks (Gupta et al., 2011). These
patients could have poor functional status and severe clinical
symptoms, which not only places them at a greater risk of an
infection caused by CRKP but also results in higher medical
expense. Our study demonstrated that medical expense for
admission of CRKP groups were almost double higher than
those of CSKP group (107,472 vs. 60,739 RMB, p= 0.015).

Among the four classes of β-lactamases defined by the Ambler
classification system, the KPC β-lactamase, in Bush group 2f,
belongs to Class A. Yigit et al. (2001) first reported KPC β-
lactamases in Klebsiella pneumoniae strains isolated from a
patient in North Carolina in the United States in 2001. After
that, the KPC-producing organisms had being reported globally
(Villegas et al., 2006;Wiener-Well et al., 2010; Canton et al., 2012;
Mojica et al., 2012; Cuzon et al., 2013; Asai et al., 2018; Kim
et al., 2018). Since in 2015, Biberg et al. (2015) reported KPC-2-
producing Klebsiella pneumoniae in theMidwest region of Brazil,
the rapid increase and dissemination of KPC-2, the primary
type of β-lactamases, in CRKP from many areas, has become a
significant public health challenge in the whole word (Gaiarsa
et al., 2015). In this study, all CRKP isolates were detected with
KPC-2 carbapenemase. The blaKPC−2 is the mainstream gene of
CRKP in our geographic area of analysis.

Bacterial typing is an important method to identify
the route of pathogen transmission. Currently, the main
method for bacterial typing is the time-consuming and
expensive molecular biology technique like Pulsed Field Gel
Electrophoresis (PFGE) or Multilocus sequence typing (MLST).
Nevertheless, with the application to cultured microorganism
identification, matrix-assisted laser desorption/ionization time-
of-flight mass spectrometry MS (MALDI-TOF MS) presents
incomparable advantages. However, as a new method of bacteria
clustering, the application performance of mass spectrometry
is controversial. Some studies reported that MALDI-TOF
MS could be a good bacterial typing method in several
kinds of bacteria, such as extended-Spectrum-β-Lactamase-
and armA methyltransferase-producing Enterobacter cloacae
clinical isolates, methicillin-resistant Staphylococcus aureus,
Acinetobacter baumannii, Serratia marcescens, and Citrobacter
freundii (Mencacci et al., 2013; Khennouchi et al., 2015; Steensels
et al., 2017; Rodel et al., 2019). But, Jiang et al. (2019) employed
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FIGURE 1 | Hierarchical clustering of KPC-2-producing carbapenem-resistant Klebsiella pneumoniae isolates by PFGE and MALDI-TOF MS. (A) Hierarchical cluster

analysis provided by PFGE. (B) Hierarchical cluster analysis provided by MALDI-TOF MS.

44 CRKP isolates of 15 STs covering divere carbapenemases and
they demonstrated that MALDI-TOF MS had a lower predictive
power than PFGE. And Sachse et al. (2014) did not recommend
MALDI-TOF-based typing as a bacterial typing method given
the heterogeneity in comparison to genotyping.

In this study, all 35 CRKP isolates were correctly identified at
the species level by MALDI-TOFMS. The hierarchical clustering
of MALDI-TOF peak profiles identified four different clusters,
substantially interchangeable with those obtained with the PFGE
system. The statistical analysis of the data showed that the PFGE
system and MALDI-TOF MS system provided similar results,
with a good concordance between the two methods and a high
probability of MALDI-TOF MS to predict PFGE results. Since
rapid microorganism identification using MADI-TOF MS not
only can lead to more effective antimicrobial use and reduced
patient care costs (Galar et al., 2012; Tan et al., 2012; Huang
et al., 2013; Perez et al., 2013), but also include the high through
put, low reagent costs and ease of use, the usage of MALDI-
TOF MS in clustering the CRKP of epidemic KPC-2 type was
an agreeable practice and the subsequent clinical application
would be meaningful to both hospital infection control and
patients. It could be one of the choices to rapidly reveal the

routes of transmission of infectious diseases. However, because
of the small size of sample, further studies are needed to confirm
our observations.

There were three limitations of this study. Firstly, information
on the clinical characteristics and outcomes could not be
completely acquired because of the limitations that are inherent
in a retrospective clinical study. Second, this is a retrospective
study with a relatively small study population. Furthermore, this
study was a case-controlled design in which the level of risk
factors were not equal to the expected level commonly seen in
the population.

CONCLUSIONS

One or more underlying conditions, especially pulmonary
diseases, and one or more antimicrobial use prior to culture
within 30 days, particularly carbapenem use, are risk factors
for CRKP acquisition. The blaKPC−2 is the mainstream gene of
CRKP in our geographic area of analysis. As only simple sample
preparation is needed and the results can be obtained in a short
time, MALDI-TOF MS may be considered a probable alternative
to PFGE in clustering KPC-2-producing CRKP.
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Background: Diverse sequence types (ST) and various carbapenemase-producing

carbapenem-resistant Enterobacterales (CP-CRE) infections, which complicate

treatment strategies, have emerged in Singapore. We aim to describe these CP-CRE

infections and clinical outcomes according to their carbapenemase types and determine

the hierarchy of predictors for mortality that are translatable to clinical practice.

Methods: Clinically significant CP-CRE infections were identified in Singapore General

Hospital between 2013 and 2016. Retrospectively, all clinically relevant data were

retrieved from electronic medical records from the hospital. Univariate analysis was

performed. To further explore the relationship between the variables and mortality in

different subsets of patients with CP-CRE, we conducted recursive partitioning analysis

on all study variables using the “rpart” package in R.

Results: One hundred and fifty five patients were included in the study. Among them,

169 unique CP-CRE were isolated. Thirty-day all-cause in-hospital mortality was 35.5%

(n = 55). There was no difference in the severity of illness, or any clinical outcomes

exhibited by patients between the various carbapenemases. Root node began with

patients with Acute Physical and Chronic Health Evaluation (APACHEII) score ≥ 15

(n = 98; mortality risk = 52.0%) and <15 (n = 57; mortality risk = 9.0%). Patients

with APACHEII score ≥ 15 are further classified based on presence (n = 27; mortality

risk = 23.0%) and absence (n = 71, mortality risk = 62.0%) of bacterial eradication.

Without bacterial eradication, absence (n = 54) and presence (n = 17) of active source

control yielded 70.0 and 35.0%mortality risk, respectively. Without active source control,

the mortality risk was higher for the patients with non-receipt of definite combination

therapy (n = 36, mortality risk = 83.0%) when compared to those who received (n = 18,

mortality risk = 47.0%). Overall, the classification tree has an area under receiver

operating characteristic curve of 0.92, with a sensitivity of 0.87 and specificity of 0.91.
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Conclusion: Different mortality risks were observed with different treatment strategies.

Effective source control and microbial eradication were associated with a lower mortality

rate but not active empiric therapy for CP-CRE infection. When source control was

impossible, definitive antibiotic combination appeared to be associated with a reduction

in mortality.

Keywords: treatment, outcomes, infections, carbapenemase-producing, carbapenem-resistance,

Enterobacterales

INTRODUCTION

The growing incidence of carbapenem-resistant Gram-negative
bacilli (CRGNB) is an urgent global healthcare challenge today
(Paterson and Doi, 2007). Prevalence of carbapenem resistance
among GNB in South and Southeast Asian countries, including
Singapore, is potentially driven by extensive carbapenem use
(Hsu et al., 2017). The number of carbapenem-resistant
Enterobacterales (CRE) colonization cases reported swelled on
the back of ramp-up screening within both public and private
hospitals in Singapore (Marimuthu et al., 2017). High counts of
carbapenemase-producing (CP) CRE were also recovered from
the sewage systems of four main hospitals locally (Koh et al.,
2015). Heightened surveillance of these organisms is crucial to
their management as CRE is associated with increased mortality
and limited treatment options (Molton et al., 2013).

Unlike countries in the United States and Europe, where
a predominant Klebsiella pneumoniae clonal (ST-258) and
resistance type (KPC) is observed, there is greater diversity
in Singapore (Teo et al., 2016). This greatly complicates
management strategies, including the selection of effective
combinations for clinical use. Our local CRE is associated with
a variety of resistance mechanisms (e.g., various carbapenemases
production in IMPs, KPCs, NDMs, OXA-48, OXA-181, OXA-
232, and dual-carbapenemase production with or without porin
downregulation) and at least 16 sequence types (ST) (Teo et al.,
2016).

To date, there is a lack of consensus on treatment
recommendations for CRE infections and data is scanty for
patients infected with CP-CRE of varied ST and mechanisms of
resistance, especially in the types of carbapenemases production
(Molton et al., 2013; Tzouvelekis et al., 2014). Our institution,
which is the largest tertiary care hospital in Singapore and an
international health hub with a diverse CP-CRE landscape (Teo
et al., 2016; Marimuthu et al., 2017), has the highest number of
CP-CRE infections.

This retrospective cohort study aims to describe our CP-CRE
infections, the various treatment strategies, and the outcomes
of CP-CRE infections according to their carbapenemase types
and determines the hierarchy of predictors for mortality that are
translatable to clinical practice.

METHODS

The retrospective cohort study was conducted in Singapore
General Hospital (SGH), a 1,700-bed tertiary care hospital

in Singapore. SingHealth Institutional Review Board provided
approval with waiver of informed consent (CIRB number:
2014/912/F). Hospitalized adult patients (≥18 years old) with
clinical CP-CRE infections from 1st January 2013 to 31st
December 2016 were included in the study. These patients were
identified from a hospital microbiology database. Criteria for
inclusion were as follows: (i) documented CP-CRE culture from
clinically relevant sterile sites, with exclusion of positive cultures
from the urinary system as it was difficult to retrospectively
ascertain if the patient had a true infection; (ii) patient exhibited
clinical signs and symptoms of sepsis with systemic inflammatory
response from a documented or suspected site of infection,
as defined in Society of Critical Care Medicine and European
Society of Intensive Care Medicine Surviving Sepsis guidelines
(Rhodes et al., 2017); (iii) patient received treatment of CP-CRE
infection with at least two consecutive doses of antimicrobial,
with the exception of single-dose aminoglycosides. In patients
with more than one episode of CP-CRE infection, only the first
infection was documented and analyzed.

Data was retrieved from electronic hospital medical records.
Data includes demographic information, admission details, past
medical history, comorbid conditions (according to Charlson
Comorbidity Index, CCI; Charlson et al., 1987), past invasive
procedure, prior antibiotic or immunosuppressive therapy,
infection characteristics, severity on onset according to Acute
Physical and Chronic Health Evaluation (APACHE II) (Knaus
et al., 1985) and sepsis-related organ failure assessment (SOFA)
(Jones et al., 2009), and treatment regimen. Primary outcome
measured was 30-day all-cause in-hospital mortality. Secondary
outcomes include time to clinical response, microbiological
eradication, and occurrence of reinfection in 1 year.

The following terms were defined prior to data collection
and analysis. Onset of infection was determined as the day of
sampling of the positive CP-CRE culture. Baseline characteristics
of patients and infection details were documented on the day
of index culture. Infections were categorized according to the
European Center for Disease Prevention and Control guidelines
(European Centre for Disease Prevention Control, 2016). Prior
hospital exposure was dated for the preceding 1 year, while
antibiotic use and surgical operations or invasive procedures at
bedside were dated 3 months from index culture. Septic shock
was defined as sepsis, a life-threatening organ dysfunction caused
by dysregulated host response to infection, with circulatory
and metabolic dysfunction (Rhodes et al., 2017). Source control
includes any intervention that physically removes the infectious
source. Empiric and definitive antimicrobial treatments were
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defined as regimens given prior to or after susceptibility of index
culture was available, respectively. Adequate empirical treatment
was defined as receipt of an empirical agent that is active in
vitro against the pathogen and was administered for at least
48 h. Effective combination therapy was the concurrent use of at
least one antimicrobial agent that was still active against the CP-
CRE. Clinical improvement was defined as complete or partial
response as determined by downtrending inflammatory markers
and associated resolution of infective symptoms. Microbiological
eradication involved a repeat negative culture of the CP-CRE
from the same site after the index culture. Reinfection was
defined as clinically significant CP-CRE infections occurring after
clinical improvement or microbiological clearance of infection,
7-days after and within 1 year of index culture.

Carbapenem-resistant isolates were identified from the
hospital microbiological database. The genus was determined
using Vitek 2 ID-GN cards (bioMerieux Inc. Hazelwood, MO).
Carbapenem susceptibility was determined using disk diffusion
and interpreted according to Clinical and Laboratory Standards
Institute (CLSI) guidelines. Polymerase chain reaction was
conducted to identify the type of carbapenemase production
(Hammoudi et al., 2014). Susceptibility of the following
antibiotics were tested: amikacin, aztreonam, cefepime,
doripenem, ertapenem, imipenem, levofloxacin, meropenem,
piperacillin-tazobactam, polymyxin, tigecycline. Susceptibility
of tigecycline and polymyxin was determined using Food
and Drug Administration breakpoints (Pillar et al., 2008) and
interpreted from CLSI breakpoints against Enterobacterales (Lat
et al., 2011), respectively. Extensive drug resistance is defined as
non-susceptibility to at least one agent in all but two or fewer
antimicrobial categories (i.e., bacterial isolates remain susceptible
to only one or two antimicrobial categories) (Magiorakos et al.,
2012).

Statistical Analysis
All statistical analyses were performed with SPSS (IBM Corp,
Version 20.0) and R (Version 3.6.0). Continuous variables
were presented as mean and standard deviation for normal
distributed data and as median and interquartile range for non-
normal distributed data. Categorical variables were presented
as number and percentages. For non-normal distributed data,
three-group and two-group comparisons were analyzed via
Kruskal–Wallis H test and Kruskal–Wallis test, respectively.
Categorical variables were analyzed using Pearson’s chi-squared
test or Fisher’s exact test. To determine the independent factors
associated with mortality in CP-CRE patients, lasso regression
was first used to identify the factors that best predicted
mortality (“glmnet” package in R) (Tibshirani, 1996). Once
the final model was identified, traditional multivariable logistic
regression was performed, and a final two-tailed p < 0.05 was
5% level considered to be statistically significant. To further
explore the relationship between the variables and mortality
in different subset of patients with CP-CRE, we conducted
recursive partitioning analysis on all study variables using
the “rpart” package in R (Therneau and Atkinson, 1997). To
avoid overfitting, the decision tree was pruned based on the
complexity parameter associated with minimal error (i.e., when

no additional variables achieve further reductions in node
impurity). The sensitivity, specificity, and area under the receiver
operating characteristic curve (ROC) was tabulated to assess the
performance of the final decision tree.

RESULTS

CP-CRE Isolates
Two hundred and three patients with CP-CRE-positive culture
were identified during the study period; 48 did not harbor
clinically significant infection. One hundred and fifty-five
patients met the inclusion criteria and were included in the study
(Figure 1). From these patients, a total of 169 CP-CRE isolates
were identified.

Study Population
The baseline characteristics of the patients and their infections
were compared between the various carbapenemases in Table 1.
The median age of these patients was 65 years (IQR 56.5–
74 years), and the age-adjusted CCI score was 6 (IQR4–8);
43.2% had malignancies. One hundred and thirty-one patients
(84.5%) were hospitalized in the preceding 1 year, with 23
(14.8% of the recruited patients) in a foreign hospital. Prior
antibiotic exposure was prevalent among 95.5% (n = 148) of
the patients. Patients, who were infected with KPC-producing
isolates, were also more likely to have received surgery compared
to patients infected with OXA- and MBL-producing isolates
(p = 0.035). There was no difference in the severity of illness or
any clinical outcomes exhibited by patients between the various
carbapenemases. Each eligible patient, whose infection was
caused by more than one carbapenem-resistant isolates but with
similar carbapenemase production was counted once, under the
respective carbapenemase type. However, if any eligible patient
had infection involving 2 carbapenemase types, this patient
would be included twice, under the respective carbapenemase
types for analysis.

Types of CP-CRE Isolates and Their
Susceptibilities
The characteristics of CP-CRE isolates are described in
Table 2. Among the 174 carbapenemases observed in the 169
isolates, there were 95 (54.6%) KPC, 51 (29.3%) MBL, and 28
(16.1%) OXA carbapenemases. Five out of 169 isolates were
CP-CRE carbapenemase co-producers. Four K. pneumoniae
and 1 Citrobacter freundii isolates produced a combination
of MBL (specifically NDM) and OXA carbapenemases,
each. K. pneumoniae was the most commonly encountered
Enterobacterales (n = 86, 50.9%), followed by Enterobacter spp.
(n = 42, 24.9%), Escherichia coli (n = 32, 18.9%), Citrobacter
spp. (n = 8, 4.7%), and Serratia marcescens (n = 1, 0.6%).
The proportion of extensive drug-resistant KPC-producing
isolates (54.7%) was significantly lower (p = 0.001) than those
of OXA- (82.1%) and MBL- (80.4%) producing isolates. MBL-
(OR= 3.39, 95%CI, 1.52–7.55) andOXA-producing (OR= 3.80,
95% CI, 1.33–10.85) isolates demonstrated significantly higher
proportion of extensive drug resistance when compared to
KPC. The most common infection sites were skin and soft
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FIGURE 1 | Flowchart of patient selection.

tissue (n = 47, 27.8%), followed by intra-abdominal infection
(n= 43, 25.4%).

The susceptibilities of the isolates are described in Table 3.
The isolates were highly resistant to all carbapenem and
cefepime, with 65.7% (n = 111) demonstrating extensive drug
resistance. Susceptibilities to tigecycline and polymyxin B were
only performed in some isolates upon request. As some patients
died, or were transferred out of hospital, the susceptibilities of
polymyxin B and tigecycline were not requested for. However,
among those tested, susceptibilities remained high for tigecycline
at 78.1% (100/128 tested) and polymyxin B at 90.6% (115/127
tested). Susceptibilities ofMBL-producing isolates remained high
toward polymyxin B (88.1%, 37/42 tested) and tigecycline (70.7%,
29/41 tested). The susceptibilities of polymyxin B, tigecycline,
and amikacin for KPC-producing isolates remained above 85%,
while levofloxacin’s susceptibility was notably at 67.9% (38/56
tested). Only 1 KPC-producing isolate demonstrated pan-drug
resistance while the 5 carbapenemase co-producers were all
extensive drug resistant.

Treatment Regimens
One hundred and fifty-two (98.1%) patients received empiric
antibiotic therapy, of which 106 (68.4%) had monotherapy.
Of the 3 patients not empirically treated, 1 demised within
24 h of index culture, another was terminally discharged, while
the last patient was initiated on antibiotics only after culture
results were released. When culture and susceptibilities results
were back, only 43 (27.7%) patients were found to be receiving
adequate empirical therapy, and out of which, 18 (41.9%) and 25
(58.1%) patients received adequate empirical monotherapy and
combination therapy, respectively.

Definitive treatment regimens are described in Table 4.
Seventy-one percent of patients (n = 110) received definitive
treatment based on culture results. Definitive monotherapy
and combination therapy were administered to 45 (29.0%)
and 65 (41.9%) patients, respectively. Tigecycline and

polymyxin-containing combination therapy were equally
common in the treatment of skin and soft tissue infections
while polymyxin-containing combination therapy were most
frequently administered for intra-abdominal infections. Only 4
and 9 patients received polymyxin and tigecycline monotherapy,
respectively. Among these 13 patients, 6 underwent source
control interventions, while the rest (7 patients) demised within
30 days of index culture. There were 3 patients who were
treated with meropenem as their CP-CRE exhibited ertapenem
resistance but remained susceptible or intermediately susceptible
to meropenem. Out of these 3 patients, only 1 patient had
surgical debridement and survived, while the other 2 died at 14-
and 15-days of infection, respectively. Out of the 15 patients who
were treated appropriately with culture-directed monotherapy
with fluoroquinolones, 4 patients demised. Only 1 patient, out of
these 4 demised, had active surgical source control, while 9 out
of the 11 patients who survived had active source control.

Forty-five (29.0%) patients did not receive definitive antibiotic
therapy. Of which, 11 (24.4%) patients underwent source control
interventions and survived; 6 (13.3%) patients, with CP-CRE as
part of their polymicrobial cultures, were continued with their
empiric non-active antibiotic therapy as they had demonstrated
clinical improvement by the time their microbiological cultures
and their susceptibilities were known. The remaining 28 (62.2%)
were patients who had demised prior to culture results being
made available, patients whowere transferred to another hospital,
or patients on palliative care who were managed expectantly.

Outcomes
During the onset of infection, 58 (37.4%) required ICU admission
with a median APACHE II score of 17 (IQR 12–22.5), and 32
(20.6%) presented with septic shock. The overall 30-day all-
cause in-hospital mortality rate was 35.5% (n = 55). Of these
55 cases, 24 patients succumbed to the infection. The overall
clinical response rate was 60.6% (n= 94), after a median duration
of 7-days (IQR 5–11-days) from infection onset (when index
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TABLE 1 | Baseline characteristics of study population and their infections.

Total

patients

Carbapenemase

n = 163

P-value

n = 155 *KPC

n = 86

*MBL

n = 49

*OXA

n = 28

Demographic

Age, median (IQR) 65 (56.5–74) 67 (61–76) 62 (46–69.5) 62.5 (49–71) 0.001

Male (%) 91 (58.7) 48 (55.8) 30 (61.2) 18 (64.3) 0.676

Duration from admission to index culture, median days (IQR) 16 (1–38) 21 (7–40) 12 (1–37) 7 (0.5–26.5) 0.079

Comorbidities

Charlson comorbidity index, median (IQR) 6 (4–8) 6 (5–8) 6 (2–8) 7 (4–8.5) 0.292

Malignancies (%) 67 (43.2) 40 (46.5) 19 (38.8) 11 (39.3) 0.623

Receiving immunosuppressive therapy (%) 29 (18.7) 13 (15.1) 13 (26.5) 5 (17.9) 0.263

Prior healthcare exposure

Hospitalization (%) 131 (84.5) 68 (79.1) 45 (91.8) 26 (92.9) 0.061

Foreign hospitalization (%) 23 (14.8) 3 (3.5) 14 (28.6) 8 (28.6) <0.001

Antibiotic use (%) 148 (95.5) 84 (97.7) 44 (89.8) 28 (100.0) 0.091

Surgery (%) 65 (41.9) 44 (51.2) 15 (30.6) 9 (32.1) 0.035

Invasive procedure at bedside (%) 138 (89.0) 81 (94.2) 42 (85.7) 22 (78.6) 0.050

Severity of infection

SOFA score, median (IQR) 5 (2–8) 4 (2–8) 5 (2–9) 5 (3.5–7) 0.822

APACHE II score, median (IQR) 17 (12–22.5) 17 (12–25) 15 (12–21.5) 18 (14–20.5) 0.714

Septic shock on infection onset (%) 32 (20.6) 19 (22.1) 10 (20.4) 4 (14.3) 0.671

ICU admission (%) 58 (37.4) 31 (36.0) 19 (38.8) 10 (35.7) 0.943

Outcomes

Length of hospital stay, median (IQR) 48.5

(21.5–74.5)

53 (24–75) 43 (20.5–78) 39.5

(11.5–66)

0.179

Receipt of source control (%) 57 (36.8) 28 (32.6) 22 (44.9) 12 (42.9) 0.309

Clinical response (%) 94 (60.6) 54 (62.8) 30 (61.2) 14 (50.0) 0.478

Time to clinical response, median (IQR) 7 (5–11) 7 (5–10) 9 (3–15) 7 (5–15) 0.529

Microbiological eradication (%) 43 (27.7) 22 (25.6) 14 (28.6) 11 (39.3) 0.380

30-day-all-cause mortality (%) 55 (35.5) 32 (37.2) 13 (26.5) 11 (39.3) 0.379

*Each eligible patient, whose infection was caused by more than one carbapenem-resistant isolate, but with similar carbapenemase production was counted once, under the respective

carbapenemase type. However, if any eligible patient had infection involving 2 carbapenemase types, this patient would be included twice, under the respective carbapenemase types

for analysis.

culture was sent). Microbiological clearance was achieved in 43
patients (27.7%) while reinfection with CP-CRE occurred in 15
(9.7%) patients. There were no significant differences in 30-day
all-cause mortality rates among the patients who were infected
with different carbapenemases producing Enterobacterales. From
Table 5, 30-day all-cause in-hospital mortality was significantly
associated with older patients, ICU admission, septic shock,
higher CCI score, APACHE II score or SOFA score, pneumonia
infection, patients not receiving definitive combination therapy
and those without clinical response, microbiological clearance, or
source control interventions.

Risk Factors for Mortality
The results of the multivariable analysis are shown in Table 6.
As shown, the presence of source control (OR, 0.258; 95%
CI, 0.093–0.661), presence of microbial eradication (OR, 0.176,
95% CI, 0.053–0.504), and receipt of definitive combination
therapy (OR, 0.391, 95% CI, 0.162–0.906) were associated with

a significant lower risk for 30-day all-cause in-hospital mortality,
while APACHE II score ≥15 (OR, 8.755, 95% CI, 3.573–31.997)
was a significant predictor for mortality. Using binary recursive
partitioning, the final classification tree for mortality in CP-CRE
patients included 4 study variables and is shown in Figure 2.
The root node classified the patients with APACHEII score ≥15
(n = 98; mortality risk = 52.0%) and <15 (n = 57; mortality
risk = 9.0%). Patients with APACHEII score ≥15 are further
classified based on presence (n= 27; mortality risk= 23.0%) and
absence (n= 71, mortality risk= 62.0%) of bacterial eradication;
in the subset of patients without bacterial eradication, patients
were further subdivided based on presence (n = 17, mortality
risk = 35.0%) and absence (n = 54, mortality risk = 70.0%)
of active source control. In patients who did not achieve active
source control, the risk of mortality was higher for the patients
that did not receive definite combination therapy (n = 36,
mortality risk = 83.0%) when compared to those who received
definite combination therapy (n = 18, mortality risk = 47.0%).
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TABLE 2 | Characteristics of carbapenemase-producing carbapenem-resistant Enterobacterales isolates.

Total

isolates

Carbapenemase

n = 174

P-value

n = 169* KPC

n = 95

MBL

n = 51

OXA

n = 28

Species

Klebsiella pneumoniae (%) 86 (50.9) 49 (51.6) 22 (43.1) 19 (67.9) 0.109

Enterobacter spp. (%) 42 (24.9) 29 (30.5) 11 (21.6) 2 (7.1) 0.035

Escherichia coli (%) 32 (18.9) 15 (15.8) 11 (21.6) 6 (21.4) 0.624

Others (%) 9 (5.3) 2 (2.1) 7 (13.7) 1 (3.6) 0.013

Primary site of infection

Skin and soft tissue infection (%) 47 (27.8) 22 (23.2) 16 (31.4) 11 (39.3) 0.207

Intra-abdominal infection (%) 43 (25.4) 28 (29.5) 11 (21.6) 6 (21.4) 0.491

Bloodstream (%) 36 (21.3) 18 (18.9) 12 (23.5) 6 (21.4) 0.804

Pneumonia (%) 28 (16.6) 18 (18.9) 7 (13.7) 4 (14.3) 0.674

Others (%) 15 (8.9) 9 (9.5) 5 (9.8) 1 (3.6) 0.662

Resistance

Extensive drug resistance (%) 111 (65.7) 52 (54.7) 41 (80.4) 23 (82.1) 0.001

*Of 169 isolates, there were 5 co-producers for carbapenemases, with two carbapenemases in each isolate.

TABLE 3 | Antimicrobial susceptibility of carbapenemase-producing

carbapenem-resistant Enterobacterales isolates.

Antibiotic Overall susceptibility (%) Carbapenemase (%)

KPC MBL OXA

Levofloxacin 46.9 67.9 21.4 12.5

Cefepime 7.7 8.5 2.0 14.3

Ertapenem 1.2 1.1 0.0 3.6

Imipenem 3.1 1.4 0.0 15.0

Meropenem 6.1 7.5 0.0 12.0

Doripenem 5.0 3.6 3.2 12.5

Tigecycline 78.1 86.8 70.7 62.5

Polymyxin B 90.6 91.0 88.1 95.7

Amikacin 74.5 92.5 55.6 40.0

Piperacillin-tazobactam 1.9 1.6 3.7 0.0

Aztreonam 5.4 0.0 14.8 11.1

Overall, the classification tree has an area under ROC of 0.92,
with a sensitivity of 0.87 and specificity of 0.91.

DISCUSSION

Heterogeneous CP-CRE Infections in
Singapore
Unlike countries with a predominant carbapenemase reported
(van Duin and Doi, 2016), Singapore, an international health
hub, has to deal with a more diverse range of CP-CREs at
our healthcare institutions (Molton et al., 2013; Marimuthu
et al., 2017). There are 3 predominant carbapenemases (KPC,
MBL, OXA-producing) observed in the isolates from our center.
Majority of our patients with CRE infections were infected

TABLE 4 | Definitive antibiotic regimen prescribed for patients in this study.

Antibiotic regimens Overall (%)

n = 155

Monotherapy 45 (29.0)

Fluoroquinolone 15 (9.7)

Aminoglycoside 13 (8.4)

Tigecycline 9 (5.8)

Polymyxin B 4 (2.6)

Carbapenem 3 (1.9)

Cefepime 1 (0.6)

Combination therapy 65 (41.9)

Polymyxin B containing 48 (31.0)

Polymyxin B + carbapenem 30 (19.4)

Polymyxin B + tigecycline 6 (3.9)

Polymyxin B + carbapenem +

aminoglycoside/fluoroquinolone

4 (2.6)

Polymyxin B + tigecycline +

aminoglycoside/fluoroquinolone

4 (2.6)

Polymyxin B + tigecycline + carbapenem 2 (1.3)

Polymyxin B + aminoglycoside/fluoroquinolone 2 (1.3)

Non-polymyxin B containing 17 (11.0)

Tigecycline + aminoglycoside/fluoroquinolone 6 (2.6)

Carbapenem + aminoglycoside/fluoroquinolone 3 (1.9)

Tigecycline + carbapenem 3 (1.9)

Aminoglycoside + fluoroquinolone 3 (1.9)

Cephalosporin + aminoglycoside 2 (1.3)

No definitive antibiotic therapy 45 (29.0)

with KPC-producing strains (54.6%) (Hsien Koh et al., 2013),
and this was usually associated with prior surgical procedure.
However, there was also a significant proportion of MBL isolates
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(29.3%). Approximately one-sixth of the study population had
prior foreign hospital exposure which was significantly associated
with MBL infections, and half of these patients were from India
or Bangladesh whereMBL carbapenemase predominates (Lascols
et al., 2011; Snyder et al., 2016; Islam et al., 2017). Among the
patients with OXA isolates, ∼64.3 and 28.6% had prior local and
foreign hospitalization, respectively. Surgery compromises the
protective barriers and has been well-established to be associated
with infections by CP-CRE (Di Carlo et al., 2013; da Silva et al.,
2016; Hilliquin et al., 2018). Locally, we have observed that
patients infected with KPC isolates were also more likely to have
received prior surgical operations, when compared to the OXA
or MBL isolates.

Given the heterogeneity of CP-CRE infections and its
associated morbidities and mortality, we applied recursive
partitioning to identify predictors of outcomes in CP-CRE
infections in a simple and intuitive manner. Translating this to
clinical practice, we found that in severely ill (i.e., APACHEII
score ≥ 15) patients who could not achieve bacterial eradication
and did not receive active source control, the use of definitive
antibiotic combinations appeared to improve clinical outcomes
with a reduction in mortality. In an environment of diverse
mechanisms of resistance, individualized and target therapy for
CP-CRE infections, guided by antimicrobial combination testing,
is the way forward.

Degree of Resistance
Depending on the type of carbapenemase production, the
antimicrobial susceptibility profile of the various CP-CRE isolates
may differ. MBL-producing CP-CRE isolates were at more than
3 times more likely to be extensively drug resistant compared
to KPC-producing isolates, likely attributed by the wider array
of resistant genes present compared to other carbapenemases
(Nordmann et al., 2011; Tzouvelekis et al., 2014). Similarly,
82.1% OXA-producing CP-CRE was extensive-drug resistant;
this was at more than 3 times than KPC-producing isolates.
This could be of clinical significance, given the mortality
associated with OXA-48 producing CP-CRE pan-drug resistance
infections (Stewart et al., 2018; Sah et al., 2019). The treatment
armamentarium shrinks considerably, and the medical team
is left with polymyxin, tigecycline, and to a lesser extent
aminoglycoside as our only treatment options.

Interestingly in our study, more than 67% of our KPC-
producing isolates retained susceptibility to levofloxacin, which
is surprising considering that fluoroquinolone resistance globally
is frequently mediated by prevalent plasmid or chromosomal
mutations (Endimiani et al., 2008; Morrill et al., 2015;
Muggeo et al., 2018). Having said this, there are also
reports of fluoroquinolone activity against KPC-producing
Enterobacterales and they provide an additional treatment option
(Vasoo et al., 2015).

Antibiotic Treatment
In our cohort, approximately only one-quarter of the cohort
received adequate empirical treatment, which is comparatively
lower than other CP-CRE studies (Nordmann et al., 2011;
Tzouvelekis et al., 2014). One of the possible reasons is

that although CP-CRE infections have increased in prevalence
over the years (Teo et al., 2016), CP-CRE infections are
still uncommon due to heightened infection control measures
and ongoing surveillance nationwide; the rates of CP-CRE
infection stand at 7% (Cai et al., 2017). By far, infections
with extended spectrum beta-lactamase-producing pathogens
are more common at approximately 38% (Cai et al., 2017).
Polymyxin and tigecycline are not used upfront as our first line
antibiotics in managing severe infections.

Treatment Regimens
In general, culture-directed monotherapy with polymyxin or
tigecycline was not frequently practiced at our center, despite
their susceptibilities toward isolates. This practice is driven
by reports of higher treatment failure rates and increased
risk of further resistance with monotherapy when compared
to combination therapy (Sun et al., 2013; Tumbarello et al.,
2015). Similarly, mortality with monotherapy appears to be
high. In addition, we had observed that 7 out of 13 patients,
with appropriate monotherapy (with polymyxin or tigecycline)
administered and no source control interventions, had demised.
Surgical removable of infection source where possible should be
the primary treatment.

The notable use of either intravenous or oral formulations
of levofloxacin and ciprofloxacin as monotherapy or part of the
combination treatment in our institution which was based on
the high rate of fluoroquinolone susceptibility was observed,
especially among our KPC-producing isolates. This is in contrast
to observations elsewhere that CP-CRE isolates commonly
exhibit resistance to fluoroquinolones (Morrill et al., 2015).

Regardless of the type of infection, the most common
combination utilized was carbapenem paired with polymyxins,
supported by data, which supports its use to reduce mortality and
increase treatment success (Falagas et al., 2011; Tumbarello et al.,
2012). The synergistic effect of polymyxins and carbapenem
has been demonstrated in vitro (Qureshi et al., 2012). We
have also found that definitive combination therapy was
associated with a lower 30-day all-cause in-hospital mortality
rate if active source control was not possible, similar to
previous observation elsewhere (Lee and Burgess, 2012). This
highlights the importance of individualized and targeted
therapy for CP-CRE infections and the need for combination
testing, especially in healthcare institutions who are treating a
diverse range of CP-CRE infections. Of note, use of definitive
carbapenem monotherapy to treat carbapenemase-producing
Enterobacterales, which remains carbapenem-susceptible
during testing, is concerning. Tzouvelekis et al. reported that
using carbapenem monotherapy to treat such Enterobacterales
(especially OXA-48 producing isolates) are often associated with
treatment failures (Tzouvelekis et al., 2014).

Source Control
Source control is vital for the treatment of CP-CRE infections.
It was found to be significantly associated with reducing
30-day mortality and clinical improvement in approximately
one-quarter of patients not receiving definitive antibiotics
therapy (n = 11, 24.4%). Higher rates of source control
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TABLE 5 | Comparison of characteristics between survivors and non-survivors.

Survivor

n = 100

Non-survivor

n = 55

P-value

Demographics

Age, median (IQR) 63 (53.5–74) 68 (62–77) 0.003

Male (%) 63 (63.0) 28 (50.9) 0.144

Comorbidities

Charlson comorbidity index, median (IQR) 5 (4–8) 7 (6–9) 0.001

Malignancies (%) 46 (46.0) 21 (38.2) 0.347

Receiving immunosuppressive therapy (%) 19 (19.0) 10 (18.2) 0.901

Prior healthcare exposure

Hospitalization (%) 86 (86.0) 45 (81.8) 0.491

Foreign hospitalization (%) 16 (16.0) 7 (12.7) 0.583

Antibiotic use (%) 96 (96.0) 52 (94.5) 0.699

Surgery (%) 47 (47.0) 18 (32.7) 0.085

Invasive procedure at bedside (%) 89 (89.0) 49 (89.1) 0.986

Primary site of infection

Bloodstream 17 (17.0) 16 (29.1) 0.079

Pneumonia 12 (12.0) 15 (27.3) 0.016

Skin and soft tissue 31 (31.0) 12 (21.8) 0.222

Intra-abdominal 29 (29.0) 10 (18.2) 0.138

Others 11 (11.0) 2 (3.6) 0.114

Severity of infection

SOFA score, median (IQR) 4 (1–5) 8 (5–13) <0.001

APACHE II score, median (IQR) 14 (10–18) 28 (17–33) <0.001

Septic shock on infection onset (%) 8 (8.0) 24 (43.6) <0.001

ICU admission (%) 28 (28.0) 30 (54.5) 0.001

Infection characteristics

Carbapenemase

KPC (%) 54 (50.5) 32 (57.2) 0.418

MBL (%) 36 (33.6) 13 (23.2) 0.168

OXA (%) 17 (15.9) 11 (19.6) 0.546

Extensive drug resistance (%) 65 (65.0) 36 (65.5) 0.955

Treatment received

Active empiric therapy (%) 23 (23.0) 20 (36.4) 0.075

Definitive monotherapy (%) 30 (30.0) 15 (27.3) 0.720

Definitive combination therapy (%) 49 (49.0) 16 (29.1) 0.016

Source control (%) 49 (49.0) 8 (14.5) <0.001

Outcomes

Length of hospital stay, median (IQR) 57.5 (34–87) 28 (11–59) <0.001

Clinical response (%) 88 (88.0) 6 (10.9) <0.001

Time to clinical response, median (IQR) 7 (5–11) 9 (7–11) 0.675

Microbiological eradication (%) 36 (36.0) 7 (12.7) 0.002

(39.3% vs. 30.2%) among patients on inadequate empiric
therapy might have contributed to better clinical rates
of improvement (66.1% vs. 46.5%) when compared to
patients on adequate empiric treatment. This seems to
further reiterate that source control ought to be primary
modality of treatment if possible. The inability to perform
any form of source control for patients with pneumonia
could have contributed to a higher 30-day all-cause
mortality (55.6%, p = 0.016) compared to other types of
infection studied.

30-Day All-Cause Mortality
The 30-day all-cause mortality rate of 35.5% within our study
was comparable to previous studies on CRE infections (Falagas
et al., 2014; Martin et al., 2018). The predictors found to be
independently associated with 30-day all-cause mortality include
presence of source control, microbial eradication, definitive
combination therapy, andAPACHE II score, which are consistent
with findings from relevant studies (Morrill et al., 2015;
Gutiérrez-Gutiérrez et al., 2016). Interestingly, neither presence
of extensive drug-resistant phenotype or type of carbapenemases
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TABLE 6 | Multivariable logistic regression of predictors for 30-day all-cause mortality in CP-CRE infections.

Variable Odds ratio (95% confidence interval) P-value

Presence of active source control 0.258 (0.093–0.661) 0.022

APACHEII score ≥ 15 8.755 (3.573–31.997) 0.006

Presence of microbial eradication 0.176 (0.053–0.504) <0.001

Use of definitive combination therapy 0.391 (0.162–0.906) 0.031

Presence of bloodstream infection 2.295 (0.762–7.693) 0.154

FIGURE 2 | Tree diagram depicting the likelihood of mortality in patients with CP-CRE infections, determined by recursive partitioning.

was found to be associated with higher mortality. Using recursive
partitioning, we were able to further determine the hierarchy
of predictors in a simple and intuitive manner that is easily
translatable to clinical practice; most notably, we found that in
severely ill (i.e., APACHEII score ≥ 15) patients who could not
achieve bacterial eradication and did not receive active source
control, use of definitive antibiotic combinations appeared to be
associated with a reduction in mortality.

In medical decision-making (classification, diagnosing, etc.),
there are many heterogeneous clinical situations, where decision
must be made effectively and reliably. Conceptual simple
decision-making models with the possibility of automatic
learning are the most appropriate for performing such tasks.
Decision trees are a reliable and effective decision-making
technique that provides high classification accuracy with a simple
representation of gathered knowledge, and they have been used in
different areas of medical decision-making.

Limitation
Our study has certain limitations that must be acknowledged.
Firstly, this was a retrospective cohort evaluation of treatment
outcomes of diverse CP-CRE infections. Secondly, the relatively

small representation, from a single tertiary care institution,
large academic hospital, may further limit the applicability of
our results. Thirdly, the frequent changes within the antibiotic
regimens throughout the duration of treatment make systematic
assessment of specific treatment regimen difficult. Lastly, with a
significant portion of foreign patients, our study is prone to being
lost to follow-up as patients get transferred back to their country.

CONCLUSION

Our CP-CRE are diverse, resulting in infections that require
individualized antibiotic treatment strategies. Effective source
control and microbial eradication were associated with a lower
rate of 30-day all-cause mortality but not active empiric therapy
for CP-CRE infection. If adequate source control could not be
implemented safely, definitive use of antibiotic combinations
appeared to be associated with a reduction in mortality.
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Aeromonas hydrophila resides in a variety of aquatic environments. Infections with

A. hydrophila mainly occur after contact with fresh or brackish water. Nosocomial

infections with A. hydrophila can also occur. A. hydrophila infections can be difficult to

treat due to both intrinsic and acquired antimicrobial resistance (AMR) mechanisms. In

2018–19, we isolated multi-drug resistant (MDR) A. hyrodphila from two solid organ

transplant patients with intra-abdominal infections. We aimed to characterize their

AMR mechanisms and to determine their genetic relatedness to aid epidemiological

investigation. We performed whole genome sequencing (WGS) using Illumina MiSeq and

Nanopore MinIon on 3 A. hydrophila isolates, with one isolate from Patient A (blood)

and two isolates from Patient B (abdominal and T-tube fluid, isolated 2 weeks apart).

Phenotypic assays included: Broth Microdilution (BMD), Modified Hodge Test (MHT),

Modified Carbapenem Inactivation Method (mCIM), and EDTA Carbapenem Inactivation

Method (eCIM). Data analyses were performed using CLCbio and Geneious. AMR

genomic analysis revealed that all three isolates possess chromosomally encoded genes

including blaOXA−12(oxacillinase), blacepS(AmpC), and blacphA7(metallo-beta-lactamase).

All isolates tested strongly positive by MHT and mCIM, but only Patient B’s second

isolate (after 2 weeks of meropenem treatment) tested positive by eCIM. More intriguingly,

Patient B’s first isolate (before meropenem treatment) tested falsely susceptible to

carbapenems by BMD, suggesting blacphA7 gene was not expressed constitutively.

Phylogenetic analysis showed the two isolates from Patient B were highly similar with only

1 SNP difference. The isolate from Patient A only differed from Patient B’s isolates by 35

and 36 SNPs, respectively, suggesting close genetic relatedness. Further epidemiological

investigation is undergoing. We report the first cases of CphA-mediated carbapenem

resistant A. hydrophila in the U.S. It is concerning that 1 out of 3 isolates tested falsely

susceptible to carbapenems by BMD despite clear carbapenemase production shown

by strongly positive MHT and mCIM. In both cases, meropenem was initially used to treat

the patients. Clinicians and microbiologists in the US should be aware of the emerging

MDR Aeromonas nosocomial infections and the potential false carbapenem susceptible

results due to CphA-type carbapenemase, which may be induced during treatment.

Keywords: carbapenem resistant, Aeromonas hydrophila, CphA7, carbapenemase, metallo- beta-lactamase
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INTRODUCTION

Aeromonas hydrophila is a Gram-negative bacillus that resides
in a variety of aquatic environments (Hazen and Fliermans,
1979). Infections with A. hydrophila mainly occur after contact
with fresh or brackish water. These infections can range from
mild illness such as cellulitis or gastrointestinal disease, to
serious disease such as sepsis and necrotizing fasciitis (Lee et al.,
2008; Wu et al., 2009; Janda and Abbott, 2010). Nosocomial
infections with A. hydrophila can occur and in some cases these
infections are associated with contaminated medical devices such
as catheters used in hemodialysis treatment (Lin et al., 1996;
Khalil et al., 2013).

A. hydrophila infections can be difficult to treat due to
both intrinsic and acquired antimicrobial resistance (AMR)
mechanisms. The main mechanism of intrinsic resistance is
chromosomally encoded ß-lactamases including Ambler class C
cephalosporinases, class D penicillinases and class B metallo-ß-
lactamases (MBLs) (Janda and Abbott, 2010). The most common
MBL found in A. hydrophila is CphA that has a very specific
substrate profile: highly active on carbapenems but not penicillin
and cephalosporins (Segatore et al., 1993; Wu et al., 2012).
CphA is also found in other clinically relevant Aeromonas
species: A. bestiarum, A. caviae, A. sobria, A. veronii, and A.
jandaei (Rossolini et al., 1995). Disseminated infections by CphA
carrying A. hydrophila, primarily bacteremia, have mainly been
reported in Asian and South American countries including
Taiwan (Wu et al., 2007, 2011, 2012), Australia (Sinclair et al.,
2016), and Colombia (Rosso et al., 2019).

CphA carrying A. hydrophila are resistant to extended-
spectrum cephalosporins but are susceptible to monobactams
such as aztreonam (Janda and Abbott, 2010). Reports have
shown that carbapenemase-mediated resistance due to CphA is
not easily detected by common in vitro susceptibility methods
(Rossolini et al., 1995). Susceptibility tests with a large inoculum
such as the Modified Hodge Test (MHT) have been shown
to accurately detect carbapenem resistance and carbapnemase
activity in CphA carrying strains of Aeromonas (Wu et al., 2011,
2012).

In 2018–19, we isolated several multi-drug resistant (MDR)
A. hydrophila isolates from two solid organ transplant
patients both presenting with intra-abdominal infections
and subsequent bacteremia. We aimed to characterize their AMR
mechanisms and to determine their genetic relatedness to aid
epidemiological investigation.

MATERIALS AND METHODS

Bacterial Isolates, Antimicrobial
Susceptibility, and Phenotypic Testing
A total of three Aeromonas isolates were included in this study.
The first (A-1) was from a patient’s blood culture (Patient
A), while the other two were isolated 2 weeks apart from the
intra-abdominal abscess (B-1) and T-tube fluid (B-2) from
Patient B. These three isolates were identified as Aeromonas
hydrophila from the original culture plates using Matrix Assisted
Laser Desorption Ionization-Time of Flight mass spectrometry

(Biomerieux). The antimicrobial susceptibility testing was
performed using Broth Microdilution (BMD) following
guidelines set forth by the Clinical and Laboratory Standards
Institute (CLSI) (CLSI, 2016). The Modified Carbapenem
Inactivation Method (mCIM) and the EDTA-Carbapenem
Inactivation Method (eCIM) were performed following the
CLSI of the M100 guidelines (29th edition) (Clinical Laboratory
Standards Institute, 2019). Modified Hodge Test (MHT) was
also performed (Amjad et al., 2011). A positive control (MHT
positive Klebsiella pneumoniae ATCC1705) and a negative
control (MHT negative Klebsiella pneumoniae ATCC1706) were
included in all the three phenotypic carbapenemase tests.

Whole Genome Sequencing (WGS)
The three Aeromonas isolates were sequenced with both short-
read and long-read sequencing technologies. In brief, for short-
read sequencing, extraction of the DNA from the isolates was
done using the QIAGEN EZ1 DNA Tissue Kit (Germantown,
MD) and the EZ1 Advanced XL (Germantown, MD). The
libraries were prepared for sequencing using the Nextera DNA
Flex Library Prep (Illumina; San Diego, CA). These prepared
libraries were then loaded onto the Illumina MiSeq (San Diego,
CA) with the 2 × 250 pair-read protocol. A positive control
using Escherichia coliATCC R© 25922 DNA and a negative control
of just water were run alongside the three Aeromonas isolates.
For long-read sequencing, genomic DNA was extracted using
Qiagen AllPrep Mini Kits (Germantown, MD) on the QIAcube
automated system (Germantown, MD). Library preparation for
sequencing on the Oxford Nanopore Technologies system was
performed using the Native Barcoding Kit 1D and Ligation
Sequencing kits, and run using FLO-MIN107 flow cells on
the MinION system, following the manufacturer’s instructions
(Wick et al., 2017a). Base calling for Nanopore reads were
completed using Guppy (v2.1.3, Oxford nanopore Technologies),
and sequence reads were demultiplexed using Porechop (v0.2.4,
https://github.com/rrwick/Porechop). Hybrid genome assembly
was completed using Unicycler (v0.4.8-beta) (Wick et al., 2017b).
Genomes were submitted to NCBI and can be found under
BioProject PRJNA648413.

Bioinformatics
Mapping of the three Aeromonas isolates to reference strains
were performed using both CLCbio Workbench Version 12
(Qiagen, Germany) and Geneious Prime 2.1 (Biomatters,
New Zealand). The Kmer-based phylogenetic tree and single
nucleotide polymorphism (SNP)-based analyses were done using
CLCbio Workbench Version 12 (Qiagen, Germany). Specifically,
the Kmer-based phylogenetic tree was performed using Feature
Frequency Profile which is an alignment free genome comparison
(Sims et al., 2009). The AMR prediction analyses were performed
using Nucleotide Database (DB) with QIAGEN Microbial
Insight—Antimicrobial Resistance (QMI-AR) as the reference
database and the parameters of a minimum percent identity
and percent length of 90% on CLCbio Workbench Version 12
(Qiagen, Germany). Center of Genomic Epidemiology tools,
including KmerFinder (for closely related strain) (Hasman et al.,
2014; Larsen et al., 2014) and PlasmidFinder (for plasmid types)
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FIGURE 1 | Kmer Tree. Kmer analysis was performed with the three A. hydrophila isolates (A-1, B-1, and B-2) and five reference A. hydrophila (Genbank IDs:

NZ_CP018201, NZ_CP011100, NZ_CP016990, NZ_CP028568, NZ_CP016989), two reference Aeromonas salmonicida (Genbank IDs: NZ_CP022550,

NZ_CP021654), two reference Aeromonas veronii (Genbank IDs: NZ_CP046155, NZ_CP002607), one reference Aeromonas dhakensis (Genbank ID: NX_CP023141),

one reference Pseudomonas aeruginosa (Genbank ID: NZ_LN831024), and one Plesiomonas shigelloides (Genbank ID: NZ_LT575468). Branch lengths are shown to

show the relatedness.

TABLE 1 | Mapping statistics of the three A. hydrophila Isolates to NZ_CP018201.

Isolate Pairwise identity Mean coverage Ref-seq percentage

2018–1 98.5% 63.4 94.0%

2019–1 98.6% 48.8 94.5%

2019–2 98.6% 54.3 94.6%

Mean 98.6% 55.5 94.4%

(Carattoli et al., 2014) were also used. Plasmids were annotated
using RAST (Aziz et al., 2008).

RESULTS

Clinical History
Patient A had a history of megacystitis, hypoperistalsis syndrome,
renal failure requiring hemodialysis, multiple drug allergies, and
a history of small bowel transplant complicated by rejection
and subsequent ex-plantation. The patient developed end-stage
liver disease due to chronic exposure to total parental nutrition.
Patient A was initially admitted to the hospital for a foot
infection and received treatment with broad spectrum antibiotics
including meropenem. During to hospitalization, the patient
had a wound culture from the site of a previous catheter
insertion that grew multidrug resistant Aeromonas classified as
Aeromonas hydrophila group, however this isolate was not able to
be sequenced. Two weeks later the patient had a fever and a blood
culture was obtained which grew multidrug resistant Aeromonas
(A-1). Patient A was treated with broad spectrum antibiotics
initially and ultimately completed a course of amikacin. The
patient’s hospital course was complicated by a gastrointestinal
bleed, bacteremia, and fungemia. Patient A died several months
later after transitioning to comfort care.

Patient B had a history of hypertension, polycystic liver-
kidney disease who was initially admitted to our medical
center for liver transplant. The patient’s post-transplant course
was complicated by bacteremia, cardiac arrest, and cerebral
infarcts. Patient B received multiple courses of broad-spectrum
antibiotics including meropenem during hospitalization. On
9/23/19, the patient had a surgical drain with milky drainage
which grew multidrug resistant Aeromonas (B-1). Again, on
10/10/19 there was further drainage from a surgical drain which
grew multidrug resistant Aeromonas (B-2). Patient B was treated
with ceftazidime/avibactam and polymyxin/colistin. Patient B
died 2 months later after transitioning to comfort care.

The Infection Prevention team conducted a thorough
investigation to determine whether there was a correlation
between Patient A and B’s infection. The patients were admitted
to the hospital during different time periods separated by
over 6 months. No procedural items (e.g., duodenoscope) were
shared between the two patients. Cleaning protocols for the
rooms and point of care filter replacements for faucets were
reviewed. Surveillance culture results of the dialysis machines
were reviewed and had no evidence of contamination.

Phylogenetic Analysis
The Kmer Tree analysis revealed that the three Aeromonas
isolates are all closely related to an Aeromonas hydrophila
MX16A strain (NZ_CP018201) isolated from a water source
in China in 2012 (Figure 1). Mapping of the three isolates
to this reference strain showed an average Pairwise identity
of 98.6% with a coverage of 94.4% (Table 1). We performed
a SNP analysis and found that the two isolates from Patient
B were highly similar with only 1 SNP difference detected
(Figure 2). This SNP difference was in the gene that encodes
for the protein RodA and appeared to cause a neutral amino
acid change (Supplementary Table 1). RodA is a peptidoglycan
glycosyltransferase important for cell wall elongation (Henriques
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FIGURE 2 | SNP Analysis. Matrix showing the number of SNP differences between each of the A. hydrophila isolates.

et al., 1998). The isolate (A-1) from Patient A differed from B-
1 and B-2 by 35 and 36 SNPs, respectively, suggesting a close
genetic relatedness among these bacteria. A complete list of the
SNPs among the 3 isolates are shown in Supplementary Table 1.

AMR Genotypic Analysis
AMR genotypic analysis revealed that all three isolates
possess three different chromosomally encoded ß-lactamases:
blaOXA−12(oxacillinase), blacepS(AmpC), and blacphA7(metallo-
beta-lactamase) (Table 2). The two isolates from the Patient B
(B-1 and B-2) had additional AMR genes detected conferring
resistance to the following antibiotic classes: aminoglycosides,
fluoroquinolones, phenicols, macrolides, and trimethoprim-
sulfonamide (Table 2). Hybrid sequencing revealed that
these additional AMR genes were on plasmids (Table 3). We
identified a novel plasmid (Plasmid 1) present in both isolates
from Patient B that has 123,554 bp and carries 185 genes
(Supplementary Tables 2, 3). BLAST analysis showed only 20%
of the sequences in this plasmid matched to any known plasmids
(Table 3). These plasmids have many hypothetical proteins
based on RAST data (Supplementary Tables 2, 3); AMR gene
analysis of this plasmids identified genes conferring to resistance
to beta-lactams (blaSHV−5), aminoglycosides (aadA2 and
aph(3′)-la), fluoroquinolones (qacH), macrolides (mphA) and
trimethoprim-sulfonamide (dfrA12 and sul1) (Tables 2, 3).

The second isolate from the Patient B (B-2) appeared to have
additional AMR genes detected compared to the first isolate (B-1)
(Table 2). PlasmidFinder revealed an IncC-type plasmid present
in isolate B-2 but not in the other two isolates. Hybrid assembly
of both Illumina and NanoPore sequencing data confirmed
that B-2 has a 129,067 bp plasmid (Plasmid 2) which carries
183 genes (Supplementary Table 4). BLAST analysis showed
that this second plasmid in B-2 is 94% similar to a plasmid
found in Klebsiella pneumoniae known as pHM881QN. It is a
IncA/C plasmid isolated in Japan (GenBank ID: LC055503.1).
The additional AMR genes on this plasmid in B-2 include the ß-
lactamase blaOXO−10, aminoglycoside resistance genes ant(3′′)-la,
aac(6′)-lld and aadA13, phenicol resistance genes catB3 and floR,
and trimethoprim/sulfonamide resistance gene sul2 (Tables 2, 3).
The additional plasmid found in B-2 suggested that either this

isolate gained a plasmid or that the antibiotic treatment of the
patient with meropenem had selected this sub-population from
a mixed bacteria population. Further analysis is undergoing to
polish and finalize the complete genomes of these two plasmids.

Correlation Between AMR Genotypes and Phenotypic

Susceptibility and Carbapenemase Profiles
The phenotypic antimicrobial susceptibility results of the
three A. hydrophila isolates demonstrated several interesting
patterns (Table 4): (1) all isolates are resistant to cefazolin,
piperacillin/tazobactam, and all 3rd generation cephalosporins,
which is consistent with the presence of the oxacillinase gene
blaOXA−12 and the AmpC gene blacepS; (2) Isolate B-1 had
elevated cefepimeMIC due to the additional ESBL gene blaSHV−5

(Gutmann et al., 1989); (3) Isolate B-2 (after meropenem
treatment) exhibits full resistance to all beta-lactams except
ceftazidime/avibactam due to the additional beta-lactamase genes
blaSHV−5 and blaOXA−10(Gutmann et al., 1989), as well as the
apparently induced MBL gene blacphA7 expression, which is
shown by the only positive eCIM result. Interestingly, although
all isolates tested strongly positive by MHT and mCIM, Isolate
B-1 demonstrated false susceptibility results to imipenem and
meropenem by BMD (Table 4 and Figure 3). In addition, the two
eCIM negative isolates showed much lower minimum inhibitory
concentration (MIC) for cefepime, suggesting no or low level of
blacphA7 gene expression in these two isolates.

DISCUSSION

Here we report the first cases of CphA-mediated carbapenem
resistant A. hydrophila in the United States. The majority of
CphA-mediated carbapenem resistance has been detected in soil
or water environments in Asia and Europe (Walsh et al., 1997;
Balsalobre et al., 2009; Piotrowska et al., 2017; Piccirilli et al.,
2019), but also found in human infections as severe as bacteremia
reported from Taiwan (Wu et al., 2007, 2011, 2012), Australia
(Sinclair et al., 2016), and Colombia (Rosso et al., 2019). The
idea that MDR organisms from the environment cause human
infection is not novel; however, what is highlighted in this case
is that current phenotypic methods are limited in correctly
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TABLE 2 | Antimicrobial genotypic prediction of the three Aeromonas hydrophila isolates.

Antibiotic class Antibiotic gene A-1 B-1 B-2

Chromosome Chromosome Plasmid_1 Chromosome Plasmid_1 Plasmid_2

Beta-Lactams blaOXA−12 X X X

blacepS X X X

blacphA7 X X X

blaOXA−10 X

blaSHV−5 X X X

Aminoglycoside aadA2 X X

aph(3′)-la X X

ant(3′′)-la X

aac(6′)-lld X

aadA13 X

Trimethoprim-Sulfonamide dfrA12 X X

sul1 X X X

sul2 X

Fluoroquinolone qacH X X X

Phenicol catB3 X

floR X

Macrolide mphA X X

TABLE 3 | Hybrid sequence plasmid results.

Isolate Plasmid number Length (base pairs) Genes* BLAST results

Plasmid description Query Percent identity Accession

B-1 Plasmid 1 123,554 184 K. pneumoniae AR_0120 plasmid tig00000500 pilon 19% 99.55% CP021834.1

B-2 Plasmid 1 123,554 185 K. pneumoniae AR_0120 plasmid tig00000500 pilon 19% 99.56% CP021834.1

Plasmid 2 129,067 183 K. pneumoniae plasmid pHM881QN 94% 99.98% LC055503.1

*Based on RAST annotation results.

detecting carbapenem resistance in Aeromonas species. We
demonstrated that using WGS and phenotypic carbapenemase
assays can detect wider spectrum of resistance mechanisms that
may be missed otherwise in highly resistant strains.

It is concerning that 1 out of 3 A. hydrophila isolates
tested falsely susceptible to imipenem and meropenem by
the conventional BMD method despite clear carbapenemase
production shown by strongly positive MHT and mCIM results.
These false susceptible results are defined by CLSI as very
major errors (VMEs) (Humphries et al., 2018). VMEs are
serious because they mislead clinicians to falsely believe that
an ineffective antibiotic therapy is appropriate to administer.
Current guidelines recommend ciprofloxacin or levofloxacin as
first-line therapies for the infection with Aeromonas (Gilbert
et al., 2019). Carbapenems are usually used empirically in
treating Gram-negative bacteremia, as demonstrated in our cases.
The carbapenem treatment in Patient B may have resulted in
the selection of a sub-population of A. hydrophila that had
an additional plasmid with antimicrobial resistance genes, or
an induction of the carbapenemase gene CphA, which led to
extended resistance profile (Table 3).

This work demonstrated the strength of using bothmCIM and
MHT phenotypic tests to detect the CphA-type carbapenemases
in A. hydrophila. Currently the CLSI guidelines for the
interpretation of mCIM results are limited in Enterobacterales
and Pseudomonas aeruginosa while eCIM results are limited to
only Enterobacterales (Pierce et al., 2017; Clinical Laboratory
Standards Institute, 2019; Sfeir et al., 2019). MHT results are no
longer endorsed by CLSI to be used for any species. Our study
suggests that these phenotypic tests are useful for the detection
of carbapenemase in A. hydrophila. The intriguing part is that
we do not have an explanation for why the B-2 isolate tested
positive for eCIM only after meropenem treatment. One possible
explanation is that positive eCIM requires hyperproduced CphA
enzyme, but MHT and mCIM do not. Further studies are needed
to solve this puzzle.

The detection of chromosomally encoded β-lactamase genes
in our study is consistent with previously published literature on
Aeromonas species isolated from human infections (Janda and
Abbott, 2010). However, the two Patient B isolates demonstrated
a substantial increase in the number of antimicrobial genes
detected genotypically with AMR prediction (Table 2). This
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TABLE 4 | Summary of phenotypic results of the three Aeromonas hydrophila isolates.

Antibiotic class Antibiotic Aeromonas hydrophila (11/20/18) A-1 Aeromonas hydrophila (9/23/19) B-1 Aeromonas hydrophila (10/10/19) B-2

MIC (MCG/mL) Interpretation MIC (MCG/mL) Interpretation MIC (MCG/mL) Interpretation

Beta-Lactams Piperacillin/Tazobactam >128 Resistant >128 Resistant >128 Resistant

Ceftriaxone >32 Resistant >64 Resistant >64 Resistant

Ceftazidime 32 Resistant >32 Resistant >32 Resistant

Ceftolozane/Tazobactam 16 No Inter Criteria 8 No Inter Criteria 16 No Inter Criteria

Cefepime 8 Susceptible 4 Intermediate >32 Resistant

Imipenem 8 Resistant 1 Susceptible >16 Resistant

Meropenem 4 Resistant 1 Susceptible >16 Resistant

Ertapenem >4 Resistant >4 Resistant >4 Resistant

Ceftazidime/Avibactam <=2 No Inter Criteria <=2 No Inter Criteria 4 No Inter Criteria

Aminoglycoside Gentamicin 1 Susceptible <=1 Susceptible >16 Resistant

Tobramycin 8 No Inter Criteria 4 No Inter Criteria >16 No Inter Criteria

Amikacin 2 Susceptible 16 Susceptible 32 Intermediate

Trimethoprim-

Sulfonamide

Trimethoprim-

Sulfonamide

<=1/20 Susceptible >4/80 Resistant >4/80 Resistant

Colistin Colistin >4 No Inter Criteria <=2 No Inter Criteria >4 No Inter Criteria

Fluoroquinolone Ciprofloxacin >2 Resistant >4 Resistant >4 Resistant

Levofloxacin 4 Intermediate 4 Intermediate 2 Susceptible

Modified Carbapenem Inactivation Method (mCIM) Positive Positive Positive

EDTA Carbapenem Inactivation Method (eCIM) Negative Negative Positive

Modified Hodge Test (MHT) Positive Positive Positive
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FIGURE 3 | Phenotypic Test Results of Three A. hydrophila Isolates. (A–C) Are results from the mCIM and eCIM tests. (D–F) Are results from the MHT.

increase in the number of antimicrobial genes detected
genotypically is attributed to the presence of plasmids with one
novel plasmid in both isolates and an additional plasmid in
B-2 (Table 3). The ability of Aeromonas to exchange and gain
plasmids is well-known within the literature and all species
within Aeromonas are known to have an open pan-genome
with extensive genomic variability (Bello-López et al., 2019;
Zhong et al., 2019). Therefore, there is a greater ability for
Aeromonas spp. to acquire AMR genes. Of note, in a recent pan-
genome analysis, A. aquatica MX16A which was just recently
re-classified as A. hydrophila MX16A (NZ_CP018201), was
shown to harbor the greatest number of AMR genes among 29
species of Aeromonas. All three A. hydrophila isolates in our
study were closely related to this strain. There was no known
travel history or exposure history for these two patients. The
epidemiological investigation revealed no common source or
mode of transmission for the multidrug resistant Aeromonas
strains isolated from these two patients. In addition, no other
multidrug resistant Aeromonas were isolated or identified from
sources or patients in the time period between the two patients.
As of writing this manuscript, the sources of these Aeromonas
were still unknown.

One major limitation of this study is that we did not perform
further investigation to check if the blacphA7 gene was derepressed
in Patient B’s Isolate B-2, which could provide more clear
explanation for its much higher MICs for the carbapenems and

cefepime compared to Isolate B-1. We did, however, identify a
non-synonymous point mutation (AC) resulting in an Asp17Tyr
substitution in the beta-lactam response regulator transporter
gene blrA in both Isolate B1 and B2 (Supplementary Table 1).
The gene blrA had been shown to regulate three inducible beta-
lactamases encoded by blaampH , blacepH , and blaimiH in an A.
hydrophila strain T429125 (Niumsup et al., 2003). Further studies
are required to elucidate how this mutation in the blrA gene affect
the gene expression of various beta-lactamases in the isolates
from Patient B.

Clinicians and clinical microbiologists in the US should be
aware of the emerging MDR Aeromonas infections and the
potential false carbapenem susceptible results due to CphA-type
carbapenemase. The inability to accurately detect this type of
carbapenemase using the conventional methods is concerning
because carbapenem is a common drug choice for treating
MDRO.Workflows within the clinical microbiology lab will need
to adapt to detecting these type of resistance mechanisms in
the future. We suggest one good strategy is combining both
genomic analysis by WGS and phenotypic characterization by
MHT, mCIM, and eCIM. Genomic analysis by WGS is not
yet accessible for all clinical laboratories; therefore, we propose
further studies be performed to establish a reliable and fast
algorithm to detect these types of resistance mechanisms in
Aeromonas. In addition, we suggest the susceptible carbapenem
MIC results on Aeromonas species isolated from the sterile site
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in patients with severe infections should always be carefully
evaluated before being finalized and reported.

DATA AVAILABILITY STATEMENT

The datasets generated for this study can be found in online
repositories. The names of the repository/repositories
and accession number(s) can be found in the
article/Supplementary Material.

ETHICS STATEMENT

Ethical review and approval was not required for the study
on human participants in accordance with the local legislation
and institutional requirements. Written informed consent for
participation was not required for this study in accordance with
the national legislation and the institutional requirements.

AUTHOR CONTRIBUTIONS

EH conceived of the presented idea, performed the experiments,
analyzed the data, and drafted the manuscript. SF performed the
experiments and analyzed the data. AM reviewed clinical history,
and reviewed and revised the manuscript. KW performed the
experiments. OG supervised the project, and reviewed and
revised the manuscript. SY conceived of the presented idea,
supervised the project, analyzed the data, and reviewed and
revised the manuscript. All authors contributed to the article and
approved the submitted version.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fcimb.
2020.563482/full#supplementary-material

REFERENCES

Amjad, A., Mirza, I., Abbasi, S., Farwa, U., Malik, N., and Zia, F. (2011).
Modified hodge test: a simple and effective test for detection of carbapenemase
production. Iran. J. Microbiol. 3, 189–193.

Aziz, R. K., Bartels, D., Best, A. A., Dejongh, M., Disz, T., Edwards, R. A., et al.
(2008). The RAST Server: rapid annotations using subsystems technology.
BMC Genomics 9:75. doi: 10.1186/1471-2164-9-75

Balsalobre, L. C., Dropa, M., Lincopan, N., Mamizuka, E. M., Matté, G. R., and
Matté, M. H. (2009). Detection of metallo-beta-lactamases-encoding genes in
environmental isolates of Aeromonas hydrophila and Aeromonas jandaei. Lett.
Appl. Microbiol. 49, 142–145. doi: 10.1111/j.1472-765X.2009.02625.x

Bello-López, J. M., Cabrero-Martínez, O. A., Ibáñez-Cervantes, G.,
Hernández-Cortez, C., Pelcastre-Rodríguez, L. I., Gonzalez-Avila, L.
U., et al. (2019). Horizontal gene transfer and its association with
antibiotic resistance in the genus Aeromonas spp. Microorganisms 7:363.
doi: 10.3390/microorganisms7090363

Carattoli, A., Zankari, E., García-Fernández, A., Voldby Larsen,M., Lund, O., Villa,
L., et al. (2014). In silico detection and typing of plasmids using PlasmidFinder
and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58,
3895–3903. doi: 10.1128/AAC.02412-14

Clinical and Laboratory Standards Institute (2019). M100-Performance Standards

for Antimicrobial Susceptibility Testing. Wayne, PA: Clinical and Laboratory
Standards Institute.

CLSI (2016). M45-Methods for Antimicrobial Diluation and Disk Susceptibility

Testing of Infrequently Isolated or Fastidious Bacteria. Wayne, PA: Clinical and
Laboratory Standards Institute: CLSI Guideline.

Gilbert, D., Chambers, H., Eliopoulos, G., Saag, M., Pavia, A., Black, D., et al.
(2019). The Sanford Guide to Antimicrobial Therpay 2019. Sperryville, VA:
Antimicrobial Therapy, Inc.

Gutmann, L., Ferré, B., Goldstein, F. W., Rizk, N., Pinto-Schuster, E., Acar, J. F.,
et al. (1989). SHV-5, a novel SHV-type beta-lactamase that hydrolyzes broad-
spectrum cephalosporins and monobactams. Antimicrob. Agents Chemother.

33, 951–956. doi: 10.1128/AAC.33.6.951
Hasman, H., Saputra, D., Sicheritz-Ponten, T., Lund, O., Svendsen, C. A., Frimodt-

Møller, N., et al. (2014). Rapid whole-genome sequencing for detection and
characterization of microorganisms directly from clinical samples. J. Clin.
Microbiol. 52, 139–146. doi: 10.1128/JCM.02452-13

Hazen, T. C., and Fliermans, C. B. (1979). Distribution of aeromonas hydrophila in
natural andman-made thermal effluents.Appl. Environ.Microbiol. 38, 166–168.
doi: 10.1128/AEM.38.1.166-168.1979

Henriques, A. O., Glaser, P., Piggot, P. J., and Moran, C. P. Jr. (1998). Control of
cell shape and elongation by the rodA gene in bacillus subtilis. Mol. Microbiol.

28, 235–247. doi: 10.1046/j.1365-2958.1998.00766.x

Humphries, R. M., Ambler, J., Mitchell, S. L., Castanheira, M., Dingle, T., Hindler,
J. A., et al. (2018). CLSI methods development and standardization working
group best practices for evaluation of antimicrobial susceptibility tests. J. Clin.
Microbiol. 56, e01934–e01917. doi: 10.1128/JCM.01934-17

Janda, J. M., and Abbott, S. L. (2010). The genus aeromonas: taxonomy,
pathogenicity, and infection. Clin. Microbiol. Rev. 23, 35–73.
doi: 10.1128/CMR.00039-09

Khalil, M. A., Rehman, A., Kashif, W. U., Rangasami, M., and Tan, J. (2013). A
rare case of aeromonas hydrophila catheter related sepsis in a patient with
chronic kidney disease receiving steroids and dialysis: a case report and review
of aeromonas infections in chronic kidney disease patients. Case Rep. Nephrol.
2013:735194. doi: 10.1155/2013/735194

Larsen,M. V., Cosentino, S., Lukjancenko, O., Saputra, D., Rasmussen, S., Hasman,
H., et al. (2014). Benchmarking of methods for genomic taxonomy. J. Clin.
Microbiol. 52, 1529–1539. doi: 10.1128/JCM.02981-13

Lee, C. C., Chi, C. H., Lee, N. Y., Lee, H. C., Chen, C. L., Chen, P. L., et al.
(2008). Necrotizing fasciitis in patients with liver cirrhosis: predominance of
monomicrobial gram-negative bacillary infections. Diagn. Microbiol. Infect.

Dis. 62, 219–225. doi: 10.1016/j.diagmicrobio.2008.05.016
Lin, S. H., Shieh, S. D., Lin, Y. F., De Brauwer, E., Van Landuyt, H. W.,

Gordts, B., et al. (1996). Fatal aeromonas hydrophila bacteremia in a
hemodialysis patient treated with deferoxamine. Am. J. Kidney Dis. 27,
733–735. doi: 10.1016/S0272-6386(96)90112-2

Niumsup, P., Simm, A. M., Nurmahomed, K., Walsh, T. R., Bennett, P. M., and
Avison, M. B. (2003). Genetic linkage of the penicillinase gene, amp, and
blrAB, encoding the regulator of beta-lactamase expression in Aeromonas spp.
J. Antimicrob. Chemother. 51, 1351–1358. doi: 10.1093/jac/dkg247

Piccirilli, A., Pompilio, A., Rossi, L., Segatore, B., Amicosante, G., Rosatelli,
G., et al. (2019). Identification of CTX-M-15 and CTX-M-27 in antibiotic-
resistant gram-negative bacteria isolated from three rivers running in
central Italy. Microb. Drug Resist. 25, 1041–1049. doi: 10.1089/mdr.2019.
0016

Pierce, V. M., Simner, P. J., Lonsway, D. R., Roe-Carpenter, D. E., Johnson, J.
K., Brasso, W. B., et al. (2017). Modified carbapenem inactivation method for
phenotypic detection of carbapenemase production among enterobacteriaceae.
J. Clin. Microbiol. 55, 2321–2333. doi: 10.1128/JCM.00193-17
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Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a prominent cause of nosocomial
infections associated with high rates of morbidity and mortality, particularly in oncological
patients. The hypermucoviscous (HMV) phenotype and biofilm production are key factors
for CRKP colonization and persistence in the host. This study aims at exploring the impact
of CRKP virulence factors on morbidity and mortality in oncological patients. A total of 86
CRKP were collected between January 2015 and December 2019. Carbapenem
resistance-associated genes, antibiotic susceptibility, the HMV phenotype, and biofilm
production were evaluated. The median age of the patients was 71 years (range 40–96
years). Clinically infected patients were 53 (61.6%), while CRKP colonized individuals were
33 (38.4%). The most common infectious manifestations were sepsis (43.4%) and
pneumonia (18.9%), while rectal surveillance swabs were the most common site of
CRKP isolation (81.8%) in colonized patients. The leading mechanism of carbapenem
resistance was sustained by the KPC gene (96.5%), followed by OXA-48 (2.3%) and VIM
(1.2%). Phenotypic CRKP characterization indicated that 55.8% of the isolates were
strong biofilm-producers equally distributed between infected (54.2%) and colonized
(45.8%) patients. The HMV phenotype was found in 22.1% of the isolates, which showed
a significant (P<0.0001) decrease in biofilm production as compared to non-HMV strains.
The overall mortality rate calculated on the group of infected patients was 35.8%. In
univariate analysis, pneumoniae significantly correlated with death (OR 5.09; CI 95%
1.08–24.02; P=0.04). The non-HMV phenotype (OR 4.67; CI 95% 1.13–19.24; P=0.03)
and strong biofilm-producing strains (OR 5.04; CI95% 1.39–18.25; P=0.01) were also
gy | www.frontiersin.org December 2020 | Volume 10 | Article 561741152

https://www.frontiersin.org/articles/10.3389/fcimb.2020.561741/full
https://www.frontiersin.org/articles/10.3389/fcimb.2020.561741/full
https://www.frontiersin.org/articles/10.3389/fcimb.2020.561741/full
https://www.frontiersin.org/articles/10.3389/fcimb.2020.561741/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:enea.didomenico@ifo.gov.it
https://doi.org/10.3389/fcimb.2020.561741
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2020.561741
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2020.561741&domain=pdf&date_stamp=2020-12-10


Di Domenico et al. Biofilm Production in CRKP

Frontiers in Cellular and Infection Microbiolo
associated with increased CRKP infection-related mortality. Notably, the multivariate
analysis showed that infection with strong biofi lm-producing CRKP was an
independent predictor of mortality (OR 6.30; CI 95% 1.392–18.248; P=0.004). CRKP
infection presents a high risk of death among oncological patients, particularly when
pneumoniae and sepsis are present. In infected patients, the presence of strong biofilm-
producing CRKP significantly increases the risk of death. Thus, the assessment of biofilm
production may provide a key element in supporting the clinical management of high-risk
oncological patients with CRKP infection.
Keywords: biofilm, Klebsiella, carbapenem, skin colonization, cancer
INTRODUCTION

Klebsiella pneumoniae is a major human pathogen with mortality
rates up to 50%, particularly in immune-compromised individuals
(Kanj and Kanafani, 2011; David et al., 2019). It causes a broad
spectrum of diseases including pneumonia, urinary tract
infections, bloodstream infections, skin and soft tissue infections
(Melot et al., 2015; Pitout et al., 2015; Paczosa and Mecsas, 2016;
David et al., 2019). Carbapenems are often considered the last line
therapy for the treatment of multidrug-resistant K. pneumoniae
(Tzouvelekis et al., 2012; David et al., 2019). However, global
surveillance studies indicate that a significant fraction of
nosocomial K. pneumoniae isolates display extended-spectrum
b-lactamases (ESBLs) and carbapenemases activities (Molton
et al., 2013; Morrissey et al., 2013; Pitout et al., 2015; Brescini
et al., 2019). The endemic distribution of carbapenem-resistant K.
pneumoniae (CRKP) has been reported worldwide (Munoz-Price
et al., 2013). In European countries, the population-weighted
mean percentage of CRKP is 7.2%. Greece, Italy, and Romania
had the highest rates of CRKP as compared to the rest of Europe
(Cassini et al., 2019). Dissemination of CRKP is primarily
sustained by the horizontal transfer of carbapenemase genes on
mobile elements (Mathers et al., 2011; Martin et al., 2017;
Partridge et al., 2018). K. pneumoniae carbapenemase (KPC),
imipenemase metallo b-lactamase (IMP), New Delhi metallo b-
lactamase (NDM), Verona integron metallo b-lactamase (VIM),
and oxacillinase-48 (OXA-48) are the most common
carbapenemases in CRKP (Meletis, 2016; Partridge et al., 2018).
Treatment for CRKP infections is often limited to colistin, which
represents, in many cases, a last-resort option due to its
nephrotoxicity and neurotoxicity (Karaiskos et al., 2017). More
recently, novel combinations of b-lactam- b-lactamase inhibitors,
such as ceftazidime-avibactam and meropenem-vaborbactam,
have been found effective against CRKP producing KPC-type
and OXA-48-like enzymes, but not for those strains producing
metallo carbapenemases (Bassetti et al., 2018).

The production of capsular polysaccharide is the prominent
virulence factor of K. pneumoniae that allow this bacterium to
overcome innate host immunity (Zhang et al., 2016). Currently,
more than 130 different capsule types have been recognized for
Klebsiella (Follador et al., 2016). A recent study demonstrated that
K. pneumoniae can enhance its pathogenicity by adopting two
opposing strategies based on the capsule biosynthesis. The first is
gy | www.frontiersin.org 253
related to hypercapsule production, which confers phagocytosis
resistance, enhanced dissemination, and higher mortality in animal
models (Ernst et al., 2020). Alternatively, K. pneumoniae can
acquire mutations impairing capsule production, thus allowing
enhanced epithelial cell invasion, increased persistence in urinary
tract infections, and biofilm formation (Ernst et al., 2020).
Hypervirulent strains of K. pneumoniae can be identified by a
hypermucoviscous (HMV) phenotype on agar plates, as a result of
a positive string test (Compain et al., 2014). HMV subtypes,
initially described in 1986, are characterized by increased
production of a capsular substance compared with classic K.
pneumoniae, which confers a HMV phenotype (Casanova et al.,
1989). Mutations in genes reducing capsule production affect the
HMV phenotype and correlate with a substantial reduction in
virulence when tested in mice (Walker andMiller, 2020). Thus, the
HMV phenotype is directly linked with the amount of capsule
production. However, a recent study demonstrated that a mutation
in a gene encoding a transcriptional regulator of the mucoid
phenotype (RmpC) reduces capsule production but does not
affect the HMV phenotype (Walker et al., 2019). This finding
suggests that HMV is dependent on the presence of the capsule, but
HMV and capsule have to be considered independently (Walker
and Miller, 2020). HMV, isolates showed an increased ability to
cause both severe community-acquired infections such as
pneumonia, liver abscesses, and meningitis in young, healthy
individuals, and healthcare-associated invasive infections (Fang
et al., 2007; Turton et al., 2010; Decre et al., 2011; Liu and Guo,
2019). Most HMV K pneumoniae strains have been related to the
capsular type K1, and, in a lower fraction, with the serotype K2
(Alcantar-Curiel and Giron, 2015; Gu et al., 2018; Cubero et al.,
2019) both reported as antibiotic-sensitive (Yeh et al., 2007; Gu
et al., 2018). However, in recent years, carbapenem-resistant HMV
strains have been reported worldwide (Gu et al., 2018; Huang et al.,
2018; Lev et al., 2018; Ferreira et al., 2019; Wang et al., 2020).

Biofilm production is also important to the virulence of K.
pneumoniae because the biofilm matrix facilitates the transfer of
antibiotic-resistance mobile elements while physically protecting
bacteria, thus increasing microbial tolerance to antibiotics,
bacterial persistence, and dissemination (Clegg and Murphy,
2016; Ribeiro et al., 2016; Cubero et al., 2019). Biofilm
eradication requires high antimicrobial concentrations, which
are often impossible to achieve due to drug-related toxicity.
Thus, relapses are frequent even after targeted and prolonged
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therapies (Clegg and Murphy, 2016; Di Domenico et al.,
2019). Despite its role in microbial virulence, biofilm
is not routinely assessed in clinical microbiology, and
diagnosis of biofilm-related infection, in most cases, can only
be presumed based on clinical signs and symptoms (Di
Domenico et al., 2016).

This study analyzes the impact of different CRKP virulence
determinants to assess their predictivity in supporting clinical
decision-making in high-risk oncological patients.
MATERIALS AND METHODS

This retrospective study was performed at the San Gallicano
Dermatological Institute and Regina Elena National Cancer
Institute, Rome, Italy, between January 2015 and December 2019.

The Central Ethics Committee I.R.C.C.S. Lazio, approved the
study (Prot. CE/1016/15—15 December 2015, trials registry N.
730/15).

Microbiology
The samples were collected from a total of 86 oncological patients
colonized or infected with CRKP. Bacterial identification was
performed by matrix-assisted laser desorption/ionization-time of
flight mass spectrometry (MALDI-TOF MS) system (Bruker
Daltonik, Bremen, Germany). The antimicrobial susceptibility
was assessed by the VITEK® 2 system (bioMérieux, Marcy
l’Étoile, France) (Lucarelli et al., 2017). Susceptibility for colistin
and ceftazidime/avibactam was determined by the Sensititre broth
microdilution method (Thermo Scientific, New Jersey, USA), and
results were interpreted according to the European Committee on
Antimicrobial Susceptibility Testing (EUCAST) clinical
breakpoints (http://www.eucast.org/clinical_breakpoints). The
presence of blaKPC, blaVIM, blaOXA-48, blaIMP-1, blaNDM types was
determined by the Cepheid Xpert® Carba-R assay and the
GeneXpert® device (Cepheid, Sunnyvale, USA).

Biofilm Formation
Biofilm production was assessed by the clinical BioFilm Ring Test
(cBRT) (Biofilm Control, Saint Beauzire, France), as described in
Di Domenico et al., 2016. Briefly, an overnight culture of K.
pneumoniae grown on a blood agar plate was used to inoculate
2 ml of 0.45% saline solution to 1.0 ± 0.3 McFarland turbidity
standard. The bacterial suspension was used to inoculate a 96-well
polystyrene plate with 200 ml/well. The test was performed using
the toner solution (TON004) containing magnetic beads 1% (v/v)
mixed in the Brain Heart Infusion medium. Ten-fold serial
dilutions were performed in a volume of 200 ml BHI/TON
mix. K. pneumoniae ATCC700603 and K. pneumoniae ATCC
13883 were included in each plate as standard reference and
internal control. After 5 h of incubation at 37°C in a static
condition, wells were covered with contrast liquid, placed for
1 min on the block carrying 96 mini-magnets, and scanned with
a plate reader (Pack BIOFILM, Biofilm Control, Saint Beauzire,
France). The adhesion strength of each strain was expressed as
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BioFilm Index (BFI). Each K. pneumoniae strain was classified as
weak moderate and high biofilm producers (Di Domenico et al.,
2016; Di Domenico et al., 2017). Besides, moderate and high biofilm
producers were grouped and classified as strong biofilm producers
(Di Domenico et al., 2019). Each K. pneumoniae isolate was
analyzed in duplicate, and experiments were repeated three times.

String Test
The HMV phenotype of the CRKP isolates was revealed by the
string test as described previously (Zhan et al., 2017; Liu
et al., 2019).

Sedimentation Assay
Overnight cultures were pelleted by centrifugation at 9,000×g
and resuspended in PBS to an OD600 of 1. The suspensions were
centrifuged at 1,000×g for 5 min, and the OD600 of the
supernatants was measured. Readings were normalized to the
OD600 of the strains before centrifugation (Bachman et al., 2015;
Walker et al., 2019).

Statistics
Continuous variables were compared by Student’s t-test for
normally distributed variables and the Mann-Whitney U test
for non-normally distributed variables. Categorical variables
were evaluated using the c2 or two-tailed Fisher’s exact test.
Univariate and multivariate analyses were carried by a logistic
regression model to identify independent risk factors for 30-days
mortality. Statistical analyses were carried out using IBM SPSS
v.21 statistics software.
RESULTS

From January 2015 to December 2019, 86 consecutive patients
infected or colonized with CRKP were included in the study.
Patients’ demographic and clinical characteristics are described in
Table 1. The most represented underlying malignancy was hepato-
bilio-pancreatic cancer (27.9%), urinary tract cancer (24.4%),
hematologic malignancy (12.8%), and gastrointestinal cancer
(12.8%) (Table 1). Infected patients were 61.6% (N53), while
colonized patients accounted for 38.4% (N33). A concomitant
fungal infection was detected in 5.8% (N5) of patients. Among
infected patients, the most frequent manifestation caused by CRKP
was sepsis (N23; 43.4%) followed by pneumoniae (N10; 18.9%),
urinary tract infections (N7; 13.2%) and intra-abdominal infection
(N5; 9.4%). CRKP caused 9 cases of catheter-related bloodstream
infections and one case of catheter-acquired urinary infection.
Among colonized patients, rectal surveillance swabs (RSS) were
the most common site of CRKP isolation (N27; 81.8%) followed by
urine samples (N4; 12.1%).

Based on genotypic characterization, the leading mechanism of
carbapenem resistance was related to the KPC gene (N83, 96.5%),
followed by OXA-48 (N2, 2.3%) and VIM (N1, 1.2%). None of the
strains analyzed were positive for the class B metallo-b-lactamases
IMP and NDM. The OXA-48 and VIM were only isolated from
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RSS in colonized patients, while all CRKP from infected patients
were KPC-producing K. pneumoniae strains. The antimicrobial
susceptibility profile confirmed that almost all the CRKP strains
were resistant to three carbapenems with a high level of resistance
to all tested beta-lactams (Table 2). Among the CRKP strains,
10.5% (N9) were also resistant to colistin. Notably, only one strain
were found resistant to ceftazidime-avibactam. The only CRKP
isolate resistant to ceftazidime-avibactam was the VIM-positive
strain. In the colistin-resistant group, seven strains were isolated
from infected patients and two from colonized individuals.
Among aminoglycosides, 25.6% (N22) of CRKP strains were
susceptible to amikacin, and 17.4% (N15) were susceptible to
gentamycin. Trimethoprim/sulfamethoxazole-susceptible isolates
were 23.3% (N20), while fosfomycin and tigecycline were below
the breakpoints in only 13.9% (N12) and 12.7% (N11) of cases,
respectively. Notably, only 2.3% (N2) of the CRKP strains were
found to be susceptible to ciprofloxacin.

Phenotypic CRKP characterization indicated that 22.1%
(N19) of the isolates were HMV, and 77.9% (N67) were
classified as non-HMV. The HMV isolates showed a positive
string test result (Figure 1A). The median length of the string
was 7 mm (ranging from 5–25 mm). The mucoviscosisty levels
were determined by the sedimentation assay. HMV strains do
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 455
not sediment properly during low-speed centrifugation, and the
supernatant remains turbid, while the non-HMV strains produce
compact pellets with clear supernatants. The turbidity of
supernatant can be measured by the optical density at 600 nm
(OD600) (Walker and Miller, 2020). The OD600 of HMV strains
was 0.32±0.12 and, non-HMV was 0.13±0.08 (P<0.001)
(Figure 1B).

One HMV isolate was found colistin-resistant and eight were
non-HMV. Due to the low number of colistin-resistant
compared to colistin-susceptible strains the difference was no
statistically significant. Besides, HMV and non-HMV isolates did
not show any significant association to infected or colonized
patients as well as to a specific site of isolation.

Among the 86 CRKP isolates, 55.8% (N48) were classified as
strong biofilm producers, while 44.2% (N38) showed a weak
production (Table 1). Strong biofilm-producing CRKP were
equally distributed in both infected (N26) and colonized (N22)
patients, while weak biofilm-producing strains were more
abundant in infected (N27) as compared to colonized patients
(N11). Although the level of biofilmwas not significantly related to
the site of isolation, strong biofilm producers were detected in 80%
of BAL from patients with pneumoniae, 63% of urine samples,
63% of RSS, and 43.5% of blood cultures of septic patients (Figure
2). Among the colistin-resistant isolates, six were classified as
strong and three as weak biofilm producers. The degree of biofilm
was not significantly associated with colistin resistance.
Noteworthy, biofilm production was significantly different in
HMV and non-HMV strains (P=0.0002), with the former being
mostly weak biofilm producers (88.2%) as compared to non-HMV
(33.3%) isolates (Figure 2). Confocal microscopy analysis of the
biofilms was performed after 24 h of incubation (Figure 3). The
strong biofilm-producing CRKP isolates (Figure 3A) formed a
compact 15–25 mm thick multi-layered structure. Conversely,
weak biofilm-producing strains, including non-HMV (Figure
3B) and HMV (Figure 3C) isolates, were scattered over the
polystyrene slide surface and no three-dimensional structure
could be observed.
TABLE 2 | Antibiotic susceptibility profile of carbapenem-resistant K.
pneumoniae clinical isolates.

Antibiotic N %

Amikacin 22 25.6
Amoxicillin/clavulanic acid 1 1.2
Cefepime 0 0
Cefotaxime 0 0
Ceftazidime 0 0
Ceftazidime/avibactam 85 98.8
Ciprofloxacin 2 2.3
Colistin 77 89.5
Ertapenem 1 1.2
Fosfomycin 12 13.9
Gentamycin 15 17.4
Imipenem 0 0
Meropenem 0 0
Piperacillin/Tazobactam 0 0
Tigecycline 11 12.7
TMP-SMX 20 23.3
December 202
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N, number of strains susceptible for the indicated antibiotic; TMP-SMX, Trimethoprim/
sulfamethoxazole.
TABLE 1 | Demographic and clinical characteristics of patients at enrollment.

Clinical Characteristics N %

Female 46 53.5
Male 40 46.5
Median age (range) 71 40–96
Primary Cancer
Hepato-bilio-pancreatic cancers 24 27.9
Urinary tract cancers 21 24.4
Hematologic malignancies 11 12.8
Gastro-intestinal cancers 11 12.8
Others 19 22.1
Infected patients 53 61.6
Sepsis 23 43.4
Pneumoniae 10 18.9
Urinary tract infections 7 13.2
Intra-abdominal infection 5 9.4
Other 8 15.1
Colonized patients 33 38.4
Rectal swab 27 81.8
Urine 4 12.1
Other 2 6.1
Genotipic characterization
KPC 83 96.5
OXA-48 2 2.3
VIM 1 1.2
NDM 0 0
IMP 0 0
Phenotype
HMV 19 22.1
Non-HMV 67 77.9
Biofilm Production
Weak 38 44.2
Strong 48 55.8
Clinical outcome
Infection-related mortality 19 35.8
KPC, Klebsiella pneumoniae carbapenemase; IMP, imipenemase metallo b-lactamase;
NDM, New Delhi metallo b-lactamase; VIM, Verona integron metallo b-lactamase; OXA-
48, oxacillinase-48. Hypermucoviscous (HMV) phenotype.
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None of the patients colonized with CRKP died in the study
period. Therefore, the 30-day mortality rate was calculated on
the group of infected patients (Table 3). Infection-related
mortality in this group was 35.8% (N19). In univariate
analysis, a significantly high proportion of patients dying
within 30 days had pneumoniae (OR 5.09; CI 95% 1.08–24.02;
P=0.04). The presence of colistin resistance was not significantly
related to increased attributable mortality in this group of
patients (OR 3.08; CI 95% 0.33–28.77; P=0.32). Likewise, a
concomitant fungal infection was not correlated with increased
30-day mortality (OR 4.00; CI 95% 0.33–47.73; P=0.27). Among
the CRKP virulence factors, either the presence of a non-HMV
phenotype (OR 4.67; CI 95% 1.13–19.24; P=0.03) or the presence
of strong biofilm-producing isolates (OR 5.04; CI 95% 1.39–
18.25; P=0.01) represents a significant predictive element for 30-
day mortality. Further assessment of CRKP virulence factors by
multivariate analysis gave a strong biofilm-producing phenotype
as the only independent predictor of mortality (OR 6.30; CI 95%
1.78–19.24; P=0.004).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 556
DISCUSSION

Infections caused by CRKP represent a considerable clinical
challenge, often burdened by a delay in the introduction of
appropriate antimicrobial therapy, prolonged hospitalization,
and considerable mortality rates (Gasink et al., 2009; Mouloudi
et al., 2010; Freire et al., 2015; David et al., 2019). Therefore,
understanding the impact of microbial infection/colonization
factors on the outcome of CRKP-induced diseases may help
improve patient management and prognosis.

This study analyzed data from 86 oncological patients with an
infection or colonization sustained by CRKP. We found that the
leading mechanism of carbapenem resistance was due to the
expression of the KPC gene, present in 96.5% of the isolates,
followed by OXA-48 and VIM, found in 2.3 and 1.2% of cases,
respectively. These data, though from a limited group of strains,
are consistent with previous epidemiological studies. Indeed, in
Italy, approximately 90% of the CRKP isolates carry the KPC
gene, followed by VIM (9.2%) and, in a small percentage, by
A B

FIGURE 1 | String test for identification of the HMV phenotype. A positive string test (A) is defined as the formation of viscous strings of >5 mm in length on an agar
plate. (B) Sedimentation assay for HMV and non-HMV isolates.
A B

FIGURE 2 | Biofilm formation of CRKP clinical isolates according to (A) the site of isolation and (B) the HMV and non-HMV phenotype.
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OXA-48 (1.3%) (Giani et al., 2015; Navon-Venezia et al., 2017;
Ripabelli et al., 2018; Di Tella et al., 2019). Different classes of
carbapenemases exhibit specific functional properties and
susceptibilities, which may be clinically relevant (Cassini et al.,
2019). Therefore, information regarding the molecular
mechanism leading to carbapenem resistance may also provide
a guide in antibiotic selection and administration upon suspicion
of infection (Giannella et al., 2014).

The antimicrobial susceptibility profile confirmed that almost
all the CRKP strains assessed in this study were resistant to three
carbapenems with high resistance levels against all the b-lactams
tested (Table 2). Novel b-lactam/b-lactamase inhibitor
combinations have been recently introduced as new treatment
options against infections caused by carbapenem-resistant
Enterobacteriaceae (Karaiskos et al., 2019; Sheu et al., 2019).
Recent evidence indicates that ceftazidime-avibactam may
represent an effective treatment for CRKP infections (Shields
et al., 2016; van Duin and Bonomo, 2016; Krapp et al., 2017;
Caston et al., 2017; Tumbarello et al., 2019). Indeed, ceftazidime-
avibactam inhibits KPC and OXA-48 enzymes, but it is not active
against the metallo-b-lactamases (ECDC EARS-NET report,
2017; Shirley, 2018; Sousa et al., 2018; Ambretti et al., 2019).
Consistently with these observations, our results show that
ceftazidime-avibactam is effective against KPC and OXA-48
but not against CRKP strains harboring the VIM gene (Shirley,
2018; Garcıá-Castillo et al., 2018).

Colistin is considered as an antibiotic of last resort for treating
severe CRKP infections, because of increasing microbial
resistance and associated toxicity (Elnahriry et al., 2016;
Schwarz and Johnson, 2016; Rojas et al., 2017; Wang et al.,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 657
2018; Ghirga et al., 2020). In this study, we found a 10.5% of
CRKP resistant to colistin. This result is consistent with studies
performed worldwide, which confirm a colistin-resistant rate
not exceeding 8.8%–13% among CRKP isolates, as assessed
by broth microdilution (Goel et al., 2014; Olaitan et al., 2014;
Rojas et al., 2017; Zafer et al., 2019). Previous colistin therapy
was considered an independent risk factor for colistin resistance
among CRKP (Giacobbe et al., 2015). In this study, the
prevalence of colistin-resistant clinical CRKP isolates was
relatively low. Such colistin resistance rates may indicate that
infection prevention procedures and antimicrobial stewardship
adopted in our institution have reduced the selective pressure,
limiting the spread of colistin resistance. In our colistin-resistant
group, seven strains were isolated from infected patients and two
from a colonized individual. Notably, we did not observe a
statistically significant difference in mortality rates between
patients infected with colistin-resistant and colistin-susceptible
isolates. This observation is consistent with a recent study
showing that the patient’s conditions and not the presence of
colistin-resistant strains have the most significant impact on the
clinical outcome (Brescini et al., 2019). However, other studies
pointed to a direct association between colistin-resistant strains
and mortality (Giacobbe et al., 2015; Rojas et al., 2017). In
particular, results from a multicenter study conducted in Italy,
in which a 20% colistin resistance was found, reported a
mortality rate significantly higher than that observed in
patients infected with colistin-susceptible strains (Giacobbe
et al., 2015).

The HMV strains represent a serious health threat, causing
severe infections in both immune-compromised and healthy
A B C

FIGURE 3 | Representative confocal microscopy images of CRKP biofilms developed on polystyrene slides for 24 h at 37°C. (A) Strong biofilm-producing non-HMV
isolates. (B) Weak biofilm-producing non-HMV and (C) Weak biofilm-producing HMV strain. Orthogonal sections displaying horizontal (z) and side views (x and y) of
reconstructed 3D biofilm images are shown.
TABLE 3 | Univariate and multivariate analyses of factors associated with for 30-day mortality in 53 patients infected with carbapenem-resistant K. pneumoniae.

Variables Univariate Analysis Multivariate Analysis

OR (CI 95%) P value OR (CI 95%) P value

Biofilm (strong vs weak) 5.04 (1.39–18.25) 0.01 6.30 (1.78–19.24) 0.004
Colistin resistance (no vs. yes) 3.08 (0.33–28.77) 0.32 – ns
Fungal infection (yes vs. no) 4.00 (0.33–47.73) 0.27 – ns
Phenotype (non-HMV vs. HMV) 4.67 (1.13–19.24) 0.03 – ns
Site (respiratory vs. other) 5.09 (1.08–24.02) 0.04 – ns
December 2020 | Volume 10 | Article
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individuals (Shon and Russo, 2012; Shon et al., 2013; Gu et al., 2018;
Liu and Guo, 2019). In critically ill patients, such as those from
intensive care units, HMV K. pneumoniae can induce invasive
infection and syndromes (Lee et al., 2010; Liu and Guo, 2019).
Thus, the assessment of the HMV phenotype by the string test has
been proposed as a necessary addition into the daily practice of
microbiological surveillance in ICU (Hagiya et al., 2014). Globally,
the prevalence of HMV strains in K. pneumoniae isolates is
reported in the range of 17%–45% (Yu et al., 2006; Liu and Guo,
2019). The HMV strains are usually highly susceptible to
antibiotics, and infections can be generally treated with success
using carbapenems (Shon and Russo, 2012; Holt et al., 2015).
Nevertheless, sporadic reports of isolation of carbapenemase-
producing HMV strains are emerging worldwide, mostly
occurring in hospitalized patients (Arena et al., 2017; Gu et al.,
2018; Simner et al., 2018). In our study, CRKP-HMV strains
accounted for 22.1% of the total isolates. This result is in contrast
with previously reported epidemiological data showing a prevalence
of about 1% (Gu et al., 2018; Simner et al., 2018; Liu and Guo,
2019). An important concern when considering the highly
susceptible HMV strains is their ability to became resistant to
carbapenems when subjected to a meropenem regimen (Simner
et al., 2018). The carbapenem resistance in HMV appears to be
maintained only in the presence of meropenem and is lost after
antibiotic removal (Huang et al., 2013; Simner et al., 2018). This
suggests that the presence of carbapenemase-encoding plasmids in
HMV strains may someway harm bacterial fitness and is
dispensable in the absence of selective pressure (Huang et al.,
2013; Simner et al., 2018). Such instability may recognize several
possible causes and associated factors, including the specific K.
pneumoniae strains, the type of plasmid incompatibility groups
and/or the acquisition of different carbapenemase genes (Simner
et al., 2018). The exposure to multiple cycles of prolonged antibiotic
treatment in our group of hospitalized patients might have exerted
the selective pressure necessary to acquire and preserve
carbapenemase genes in such a high number of strains. If true,
this further emphasizes the judicious use of antibiotics to limit
the development and spread of antibiotic resistance in
hypervirulent strains of K. pneumoniae. Of importance, we
found that non-HMV strains were associated with a significant
increase in infection-related mortality. This is in contrast with a
previous study describing high mortality rates caused by HMV
K. pneumoniae strains (Shon and Russo, 2012). However, some
controversies exist regarding the HMV classification and its
putative virulence (Lin et al., 2011; Zhang et al., 2015). In
animal models, HMV strains did not show more severe
infections or higher mortality rates as compared to non-HMV
(Zhang et al., 2016; Catalan-Najera et al., 2017). Besides, CRKP
with an HMV phenotype were found to produce a significantly
lower amount of biofilm compared to non-HMV isolates,
suggesting that exopolysaccharides production has a negative
impact on CRKP fitness (Cubero et al., 2019). This further
confirms that the presence of the capsular polysaccharides
reduces bacterial adhesion probably by the shielding of the
fimbrial adhesins (Wang et al., 2015; Wang et al., 2017).
However, in this reduced ability of adhesion may reside an
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 758
advantage of the HMV strains. Indeed, capsule allows tighter
bacterial packing, as compared to capsule-deficient cells,
promoting an increased ability to disseminate to distant sites,
including the lung, eye, soft tissue and central nervous system
(Dzul et al., 2011; Choby et al., 2020). On the other hand, biofilm
production may explain, at least in part, the association of non-
HMV strains with a significant increase in infection-related
mortality, since most non-HMV strains (55.8%) were strong
biofilm producers, being equally distributed between infected
and colonized patients. Notably, in infected patients, the
presence of strong biofilm-producing CRKP significantly
(P=0.01) correlated with increased mortality. Strong biofilm
producers were detected in 80% of pneumonia cases, 63% of
urine samples, 63% of RSS, and 43.5% of blood cultures. The
fraction of strong biofilm-producing CRKP observed in this
study is consistent with previous reports (Di Domenico et al.,
2017; Vuotto et al., 2017; Nirwati et al., 2019; Ramos-Vivas et al.,
2019). Studies directed at assessing carbapenem-susceptible K.
pneumoniae isolated from blood, respiratory specimens, urine,
and wounds, found strong biofilm producers in percentages
ranging from 65% to 85% (Yang and Zhang, 2008; Hassan
et al., 2011; Seifi et al., 2016; Cepas et al., 2019). The analysis
of biofilm production in vitro showed a large variation among K.
pneumoniae isolates according to the microenvironment, the
surface where the biofilm adheres, temperature, pH, and the
physicochemical characteristic of the isolate. A number of
reports have pointed to an association between higher level of
biofilm formation and the acquisition of a multidrug-resistant
phenotype in K. pneumoniae (Yang and Zhang, 2008;
Subramanian et al., 2012; Sanchez et al., 2013; Vuotto et al.,
2017; Bocanegra-Ibarias et al., 2017; Cepas et al., 2019; Nirwati
et al., 2019). In particular, an increased rate of horizontal gene
transfer among bacteria growing in close contact within the
biofilm matrix is deemed responsible for the rapid acquisition of
antibiotic resistance, both at the single and multispecies levels
(Ghigo, 2001; Madsen et al., 2012; Lebeaux et al., 2014). Despite
these findings, the association between antibiotic resistance and
biofilm formation is still debated (De Campos et al., 2016; Di
Domenico et al., 2017; Cepas et al., 2019).

The overall CRKP infection-related mortality rate observed in
the present study was 35.8%. This figure is consistent with recent
studies reporting mortality rates of approximately 40% in Italy
and other European countries (Hoxha et al., 2016; Xu et al., 2017;
Ramos-Castañeda et al., 2018). However, geographic variations,
as well as co-morbidities, should be considered. Studies in South
America gave figures of 51.0% of CRKP-related mortality while
in North America, a 33.2% mortality rate was reported (Rossi
Gonçalves et al., 2016; GBD 2015, 2017; Xu et al., 2017). In
immune-compromised patients, CRKP infection gave mortality
rates higher than those observed in our study, particularly when
considering patients undergoing liver transplantation (78%), or
patients with hematologic malignancies and solid tumors (56%–
73%) (Lübbert et al., 2013; Satlin et al., 2013; Freire et al., 2015;
Ramos-Castañeda et al., 2018). We found the highest rate of
mortality in patients with pneumoniae and sepsis. Similar results,
in association with additional factors, including a high APACHE
December 2020 | Volume 10 | Article 561741
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score, inappropriate initial antimicrobial therapy, advanced age
and shock, were previously found among cancer patients infected
with multidrug-resistant agents (Gasink et al., 2009; Souli et al.,
2010; Zarkotou et al., 2011; Tumbarello et al., 2012; Bodro et al.,
2014; Xu et al., 2017).

Assessment of these data by univariate analysis indicated that
both a Non-HMV phenotype (P=0.001) and a strong biofilm-
producing strain (P=0.01) are predictive of an increased CRKP
infection-related mortality. Besides, multivariate analysis indicated
that the presence of strong biofilm-producing CRKP strains was
the only microbial factor independently associated with death (95%
CI, 1.78-19.24; P=0.004) in oncological patients infected with
CRKP. This result is also supported by previous study
demonstrating that biofilm formation contributes to increased K.
pneumoniae pathogenicity (Wu et al., 2011; Ernst et al., 2020).
These data further support the notion that biofilm production
represents a key CRKP virulence factor, which protects bacteria
from physical and chemical insults, including antimicrobials,
supporting microbial persistence and dissemination The effective
antibiotic concentration required for biofilm eradication in vivo is,
in most cases, impossible to reach due to drug toxicity and side
effects (Ciofu et al., 2015). Therefore, the diagnosis of a biofilm-
associated infection represents an area of serious concern for the
clinical management of patients. The timely recognition of a strong
biofilm producer, before the development of a mature biofilm
matrix, may provide key decision-making elements for most
appropriate targeting of either medical or surgical intervention,
including type, doses, duration of antimicrobial therapy or removal
of medical devices, respectively. However, conventional
antimicrobial susceptibility testing performed on planktonic cells
does not detect the additional resistance mechanism provided by
biofilm. Thus, the introduction of reliable microbiological
platforms for the diagnosis of biofilm-associated infections and
the determination of biofilm-induced antibiotic tolerance
represents a desirable addition in clinical microbiology.

Although bringing relevant information, this study has a few
limitations. Being a retrospective study performed in a single
oncological Hospital, our epidemiology findings might differ
from those emerging from other experiences. Nevertheless,
data from this study indicated that the mortality rate among
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oncological patients infected with CRKP is high (35.8%). The
infection-related mortality rate did not correlate with the
presence of HMV strains but, conversely, was significantly
associated with non-HMV, strong biofilm-producing isolates,
the latter representing an independent risk factor of death in
oncological patients infected with CRKP. A more in-depth
exploration of the mechanisms promoting biofilm formation in
K. pneumoniae will help identify specific virulence markers.
Nevertheless, the timely recognition of biofilm-associated
infections and biofilm-induced drug tolerance still represents
an unmet need in clinical microbiology.
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Urinary tract infections (UTI) are common infections that can be mild to life threatening.
However, increased bacterial resistance and poor patient compliance rates have limited
the effectiveness of conventional antibiotic therapies. Here, we investigated the
relationship between nitrofurantoin and amikacin against 12 clinical MDR uropathogenic
Escherichia coli (UPEC) strains both in vitro and in an experimental Galleria mellonella
model. In vitro synergistic effects were observed in all 12 test strains by standard
checkerboard and time-kill assays. Importantly, amikacin or nitrofurantoin at half of the
clinical doses were not effective in the treatment of UPEC infections in the G. mellonella
model but the combination therapy significantly increased G. mellonella survival from
infections caused by all 12 study UPEC strains. Taken together, these results
demonstrated synergy effects between nitrofurantoin and amikacin against MDR UPEC.

Keywords: MDR UPEC, nitrofurantoin, amikacin, antibiotic combination, G. mellonella model
INTRODUCTION

Urinary tract infections (UTI) are defined microbiologically as the inflammatory response of the
urothelial to microbial pathogens and are some of the most common bacterial infections affecting
150 million people each year worldwide (Klein and Hultgren, 2020). UTIs are most commonly
associated with uropathogenic Escherichia coli (UPEC) and E. coli ST131 is the globally dominant
multiple drug-resistant (MDR) UPEC clone that causes infections associated with limited treatment
options (Daoud et al., 2015; Phan et al., 2020). These infections can also be highly recurrent and
following antibiotic therapy, 20–30% of women with acute UTIs will have a recurrent episode within
six months and half of these recurrences are caused by the same UPEC strain that caused the initial
infection (Godaly et al., 2015). The increases in bacterial resistance as well as poor patient
compliance rates have limited the effectiveness of conventional antibiotic therapies for UTIs
especially in developing countries (Ayukekbong et al., 2017; Goodlet et al., 2018). Therefore,
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there is a great need for alternative strategies to treat these
infections and one important approach is combination therapy
using pre-existing antibiotics (Brochado et al., 2018).

Carbapenems have been recommended for treating UTIs
caused by extended spectrum b-lactamase (ESBL) producing
bacteria but currently are being restricted due to increased
resistance (Han et al., 2015). However, non-carbapenem
antibiotics are also important for UTI treatment. Trimethoprim-
sulfamethoxazole (TMP-SMX) was the preferred antibiotic for
UTI treatment for many years due to its efficacy and low cost.
However, the development of TMP-SMX resistance among
uropathogens has altered this strategy and fluoroquinolones are
now preferred because they are highly concentrated in urine and
have excellent activity against most uropathogens (Johnson and
Stamm, 1987). The US Food and Drug Administration (FDA)
approved nitrofurantoin in 1953 and was the standard UTI
treatment until the late 1970s when other antibiotics became
available (Muller et al., 2017). In 2011 nitrofurantoin was again
recommended as first-line therapy for lower UTI due to increasing
resistance to newer antibiotics such as the fluoroquinolones
(Gupta et al., 2011). Antibiotic resistance is spreading rapidly in
UPEC, which may be related to the genetic modulate, own
pathogenicity and drug resistance of themself. The use of
fluoroquinolones can induce the UPEC to partial or total loss of
the pathogenicity islands and lead to cross-resistance of b-lactam
drugs (Soto et al., 2006; Rohde et al., 2018; Adamus-Bialek et al.,
2019; Tchesnokova et al., 2019). On the other hand, the high
prevalence of integrons and plasmids also leads to high levels of
antibiotic resistance and virulence genes in clinical urogenic
bacteria, such as resistance of extended spectrum b-lactamase
(ESBL) producing and to quinolones (Raeispour and Ranjbar,
2018; Abbasi and Ranjbar, 2018; Farajzadah Sheikh et al., 2019;
Halaji et al., 2020a; Halaji et al., 2020b). However, the use of
nitrofurantoin is contraindicated in patients with renal failure due
to metabolites that may cause peripheral neuropathy (Spring et al.,
2001). Similarly, nitrofurantoin is not recommended for the
treatment of complicated UTIs because these infections often
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 265
compromise the kidney and lead to renal dysfunction (Ingalsbe
et al., 2015). In contrast, amikacin is a first-line drug used for
Gram-negative infections other than UTIs that is economical and
convenient to administer. Its potential ototoxicity and
nephrotoxicity is dose related so that it could be efficacious and
safe for the treatment of pyelonephritis and sepsis if managed
properly (Leibovici et al., 2009).

Interestingly, amikacin and nitrofurantoin can synergize
against E. coli in vitro (Yeh et al., 2006), and these two
antibiotics are used separately to treat or prevent UTIs caused
by MDR E. coli. In this study, we examined whether the co-
administration of amikacin and nitrofurantoin could provide a
new strategy for UTI treatment and evaluated the synergistic
effects of these two drugs in vitro and in vivo.
MATERIALS AND METHODS

Bacterial Strains and Culture Conditions
Twelve clinical isolates were obtained from the urine of
hospitalized UTI patients at the Third Affiliated Hospital of
Sun Yat-Sen University (Guangzhou, China). All tested strains
were identified to the species level by MALDI-TOF MS (Axima-
Assurance-Shimadzu) and E. coli ATCC 25922 was used as a
quality control strain (Table 1).

Genomic DNA from the 12 clinical isolates was subjected to
250 bp paired-end whole genome sequencing (WGS) using the
Illumina MiSeq system (Illumina, San Diego, CA, USA) and the
reads were assembled using SPAdes v3.6.2. (Bankevich et al.,
2012) MLST and antibiotic resistance genes (ARG) were
analyzed using the CGE server (https://cge.cbs.dtu.dk/services/)
and ABRicate (https://github.com/tseemann/abricate).

Antimicrobial Agents
Amikacin (AMK), nitrofurantoin (NIF), meropenem (MEM),
cefotaxime (CTX), tigecycline (TIG) and tetracycline (TET) were
TABLE 1 | In vitro antimicrobial susceptibility profiles for clinical strains.

E. coli strain Relevant genotype MIC (mg/L)

NIF AMK MEM AMP CTX FOS CST TIG TET CIP SXT

ATCC 25922 ST73 16 4 0.03 4 0.125 2 2 0.06 1 0.015 1/19
E7102 ST131 16 2 0.015 >256 256 0.25 2 0.06 64 128 >16/304
E6929 ST131 16 4 0.25 >256 >256 0.5 1 2 1 128 >16/304
E4396 ST1193 16 2 0.015 >256 >256 2 4 0.06 64 32 >16/304
E3759 ST101 16 4 0.03 >256 >256 64 0.5 0.25 128 16 >16/304
E7088 ST1426 16 2 0.015 >256 >256 4 2 0.125 256 1 >16/304
E4181 ST53 16 4 0.015 >256 256 8 2 0.06 2 32 >16/304
E68071 ST3177 8 2 0.015 >256 256 16 2 0.03 64 128 >16/304
E67991 ST3177 16 2 0.25 >256 >256 0.25 2 2 1 64 >16/304
E3966 ST354 8 4 0.015 >256 >256 >256 0.5 0.03 128 >256 >16/304
E4740 ST53 16 4 0.015 >256 >256 8 1 0.06 64 32 >16/304
E68317 ST1249 16 16 0.015 >256 >256 256 2 0.125 64 2 >16/304
E62603 ST1196 32 4 0.125 >256 >256 8 0.5 4 128 64 >16/304
Dec
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purchased from Yuan Ye Biological Technology (Shanghai,
China). Ampicillin (AMP), fosfomycin (FOS), colistin (CST),
ciprofloxacin (CIP) and sulfamethoxazole/trimethoprim (SXT)
were purchased from Xiang Bo Biotechnology (Guangzhou,
China). Antibiotic stocks solutions were prepared according to
the manufacturer’s recommendations.

MIC Determinations
Antimicrobial susceptibility assays were performed and
interpreted according to CLSI guidelines (CLSI, 2018) using
the microdilution broth method except for fosfomycin. The
MIC of Fosfomycin was tested using the agar dilution method
in agar media supplemented with 25 mg/L glucose-6-phosphate.
E. coli strain ATCC 25922 was used for quality control.

In Vitro Fractional Inhibitory Concentration
Index (FICI) Assay
The checkerboard technique was employed to determine the
Fractional Inhibitory Concentration Index (FICI) of
nitrofurantoin/amikacin combinations as previously described
(White et al., 1996). Briefly, 96 well plates containing serial
dilutions of nitrofurantoin and amikacin (range 0.125 to
32 mg/L) were inoculated with 5 × 10 (Goodlet et al., 2018)
cfu/mL of test bacteria and incubated for 18 h at 37°C. Plates
were screened for growth by spectrometry at 600 nm. Control
wells did not receive any drugs. The FICI was calculated by the
following equation: FICI= (MIC of agent A in combination/MIC
of agent A alone) + (MIC of agent B in combination/MIC of
agent B alone) (Odds, 2003). Synergy was defined as FICI ≤0.5,
antagonism as FICI ≥4 and no interaction as 0.5 < FICI < 4.
All FICI assays were carried out three times on three different
days. FICIs were calculated as the mean values from three
independent experiments.

In Vitro Time–Kill Curves
Time–kill experiments were conducted to further characterize the
synergistic activity of the nitrofurantoin and amikacin combination
as previously described (Dong et al., 2017). In brief, an initial
inoculum of ~104 cfu/larva logarithmic-phase cells were incubated
with amikacin in the presence and absence of nitrofurantoin and
time–kill curves were compared to assess efficacy. Serial samples
were obtained at 0, 3, 6, 9, and 24 h after incubation at 37°C.
Bacterial counts were determined based on the quantitative cultures
on MHA plates. Synergy was defined as achieving a ≥ 2 log10 cfu/
mL reduction in bacterial growth at 24 h with the combination
compared with the most active individual drug concentration used
on its own (Gomara and Ramon-Garcia, 2019). Three independent
experimental runs were performed.

Antibiotic Resistance Evolution Under
Nitrofurantoin and Amikacin Single or
Combination Stress
After time–kill experiments, five clones used for viable count
enumeration in 24 h were randomly selected for each
experimental group from MHA plates. MIC values were
measured for these clones to compare whether drug resistance
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 366
developed under nitrofurantoin and amikacin selection pressure
when used alone and in combination.

Galleria mellonella Infection Model
A well-characterized G. mellonella model was used in this study
as previously described publication (Dong et al., 2017). The
G. mellonella larvae were obtained from Kaide Ruixin (Tianjin,
China). The optimal infection doses of the study test strains
were determined using G. mellonella larvae that were randomly
distributed into six experimental groups (n=10/group or
~250 mg). These were then infected by injection of 10 mL of
logarithmic phase E. coli cells (~104 cfu/larva) into the last left
proleg. After injection, the larvae were incubated in plastic Petri
dishes at 37°C for 72 h and scored for survival daily. In all
experiments, PBS injections were used as negative controls.

The in vivo efficacy of nitrofurantoin and amikacin alone and
in combination were assessed in the same G. mellonella model
caused by our study E. coli strains using the optimal infection
doses as determined above (~104 cfu/larva). At 2 h post-
infection, animals were randomized to receive no therapy or
nitrofurantoin and amikacin alone, and in combination (n = 10/
group) (Seed and Dennis, 2008; Ahmad et al., 2010; Dong et al.,
2017). The antibiotics were administered only once (10 mL) into
the last right proleg with nitrofurantoin at 3.75 mg/kg, amikacin
at 7.5 mg/kg alone or in combination at half doses (Beaucaire
et al., 1991; Amabile-Cuevas and Arredondo-Garcia, 2011).
Larvae were observed daily for 3 days and percent of larvae
survival was calculated for each group (Figure 3A).

Statistical Analysis
Bacterial counts were transformed to log10 values and the data
were analyzed using Graphpad Prism 7.0 (GraphPad Software,
San Diego, CA, USA). P values were determined using a two-
sided, Mann–Whitney U-test. A P-value of ≤ 0.05 was
considered significant. All data were presented as means ± SD.
RESULTS

In Vitro Susceptibility and Interaction
Assessment
The MICs of 11 antibiotics were determined against our
collection of clinical isolates. The MICs for amikacin ranged
from 2 to 16 mg/L and all strains were susceptible. The MICs for
nitrofurantoin ranged from 8 to 32 mg/L and all 12 UPEC strains
were susceptible. These 12 clinical UPEC strains were classified
as MDR E. coli (Table 1 and Table S1). In vitro testing of
amikacin/nitrofurantoin combinations indicated a synergistic
action against all 12 UPEC strains with FICI values ranging
from 0.292 ± 0.072 to 0.500 ± 0.125 (Figure 1). These data
indicated that combination of amikacin and nitrofurantoin can
synergize to combat MDR UPEC strains.

In Vitro Time–Kill Curves
We then performed kinetic time–kill assays for all test strains to
better evaluate the pharmacodynamics of the amikacin and
December 2020 | Volume 10 | Article 608547
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nitrofurantoin interaction. We examined time–kill curves
representing log10 changes in bacterial burden using the ST131
UPEC strains E7102 and E6929 over 24 h following exposure to
amikacin (1×MIC) in the presence of increasing amikacin
concentrations (1/4−1×MIC). The addition of nitrofurantoin to
amikacin increased in vitro bactericidal activity compared with
nitrofurantoin alone. Similarly, the addition of amikacin to
nitrofurantoin also significantly increased in vitro bactericidal
activity (Figures 2A, B). We then tested amikacin at 1/2 MIC
alone and in combination with 1/2 MIC nitrofurantoin, to
observe whether they could have a good bactericidal effect
under the sub-inhibition concentration. The combination
therapy resulted in synergistic effects against all 12 clinical
UPEC strains. For instance, the combination therapy caused
more than a 2 log10 cfu/mL reduction for all 12 UPEC strains as
compared to the most active antibiotic alone (Figure 2C and
Figure S1). The amikacin/nitrofurantoin combination
significantly increased in vitro antimicrobial activity and
resulted in a rapid killing of the bacterial test strains for 9
combination groups caused reductions as compared with the
most active antibiotic alone that ranged from 4.055 ± 1.050 to
8.714 ± 0.131 cfu/mL (Table S2). The combination group against
E. coli strain E67991 was obtained most weakly synergistic
effects, but also caused more than 4 log10 cfu/mL reductions
and showing bactericidal action. Against E. coli strain E4740 and
E62603, the combination group almost completely elimination
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 467
the bacteria at 24 h of incubation, and the bacterial burden less
than 1 log10 cfu/mL (Figure 2D).

Antibiotic Resistance Evolution Under
Nitrofurantoin and Amikacin Single or
Combination Stress
Considering the pronounced effects that the combination
therapy had on in vitro bacterial growth, five clones were
selected for MIC determinations. In the 12 nitrofurantoin
groups, 3 MICs were increased while the other 9 were
unchanged. In contrast, 5 amikacin MICs were decreased, 5
were unchanged and 2 groups displayed MIC increases. The 12
amikacin groups displayed 10 MICs that were increased and 2
unchanged while 4 nitrofurantoin MICs were decreased and 8
remained unchanged. When the amikacin groups were
compared with the combination group, the amikacin MICs
were decreased in 10/12 of the combination groups and in the
other two groups, one group was unchanged and one increased.
Compared to the nitrofurantoin groups, the nitrofurantoin MICs
had decreased in 3/12 of the combination groups while the
remaining 9 groups were unchanged (Figure S2).

In Vivo Synergistic Efficacy
The amikacin/nitrofurantoin combination showed significant
synergistic effects in vitro so we investigated whether these
effects in the in vivo G. mellonella model using amikacin and
A B

D E F

G IH

J K L

MC

FIGURE 1 | Potentiation of amikacin partnered with nitrofurantoin against 12 test strains. (A–L) Microdilution chequerboard assays are shown as 8×8 matrix heat
map graphs. The blue colour gradient represents the bacterial cell density estimated by OD600. AMK, amikacin; NIF, nitrofurantoin. (M) FICI of the test strains where
synergy is defined as a FIC index of ≤ 0.5. The thin red line represents the (MICs) for antibiotics used separately and the think one represents the FIC index of 0.5.
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nitrofurantoin at half clinical dosages. The amikacin and
nitrofurantoin monotherapies were ineffective against our two
ST131 UPEC strains (E7102 and E6929) but the combination
therapy resulted in 80–90% survival after 72 h. The combination
therapy also significantly increased survival from infections with
the E4396 and E3759 strains (Figure 3B). The use of amikacin
monotherapy significantly increased G. mellonella survival from
infections in only a single UPEC strain (E4181). Similarly,
nitrofurantoin monotherapy significantly increased G. mellonella
survival from infections caused by two strains; E4181 and E68071.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 568
Therefore overall, amikacin or nitrofurantoin given at
subinhibitory concentrations was not effective in the treatment
of UPEC infections in the G. mellonella model. In contrast, the
amikacin/nitrofurantoin combination significantly increased
survival from infections caused by all 12 study UPEC strains.
More importantly, the combination therapy significantly
increased survival compared with amikacin or nitrofurantoin
monotherapies with 11/12 of the test strains (p < 0.05). Only
one UPEC strain E68071 generated a non-significant P value
(0.0957). Overall, we found increases in survival with the
A

B

D

C

FIGURE 2 | In vitro time–kill curves using amikacin and nitrofurantoin alone and in combination against the indicated test strains. (A–C) Combinatorial bactericidal
activity of amikacin and nitrofurantoin against ST131 UPEC strains. Mean ± standard error from three independent experiments are shown. AMK, amikacin; NIF,
nitrofurantoin. (D) Growth after 24 h for all the test strains using amikacin and nitrofurantoin alone and in combinations compared to the control.
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combination therapies that increased survival against challenge by
our UPEC test strains from 40 to 70% (Figure 3C and Figure S3).
DISCUSSION

Almost all patients with UTI are treated with antibiotics that
generates annual costs estimated for the United States at
$2.14 billion (Brown et al., 2005). The antimicrobial agents
most commonly used to treat uncomplicated UTI include the
combination trimethoprim and sulfamethoxazole, trimethoprim,
b-lactams, fluoroquinolones, nitrofurantoin, and fosfomycin,
third-generation cephalosporins, aminoglycosides and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 669
carbapenems (Jancel and Dudas, 2002; Koningstein et al.,
2014) and this wide range of treatment options belies the
serious threat that these MDR organisms pose. The increasing
prevalence of antibiotic-resistant uropathogens has begun to
limit the effectiveness of our existing antibiotic arsenal (Barber
et al., 2013). Combinations of antibiotics are commonly used in
medicine to broaden the antimicrobial spectrum and generate
synergistic effects and this therapy has proven effective against
MDR bacteria (Gomara and Ramon-Garcia, 2019). For example,
the use of oral cephalosporin and b-lactamase inhibitor
combinations for ESBL-producing Enterobacteriaceae UTI
(Stewart et al., 2020).

Nitrofurantoin and amikacin are both used for the treatment
and prevention of UTIs. To the best of our knowledge, we are the
A

B

C

FIGURE 3 | Therapeutic effects of amikacin combined with nitrofurantoin in the G. mellonella model. (A) Scheme of the experimental protocol for the G. mellonella
model. (B) Survival rates of amikacin and nitrofurantoin alone (most effective) and in combination treatment in an experimental G. mellonella model caused by the
indicated UPEC strains. (C) Survival rates after 72 h caused by the indicated UPEC strains. (∗) p < 0.05 and (∗∗) p < 0.01.
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first to report of the synergistic effect of amikacin and
nitrofurantoin against UPEC in the G. mellonella model. This
provides a new strategy for the treatment of UTIs caused by
UPEC. It is worth noting that aminoglycoside drugs (such as
gentamicin and tobramycin) previously been reported can
improve the sensitivity of UPEC to Nitrofurantoin after
treatment (Adamus-Bialek et al., 2019). One challenge
presented by drug combinations is the requirement to
determine coincident pharmacological properties such as tissue
distribution and penetration (Ejim et al., 2011). The
nitrofurantoin/amikacin combination can avoid this problem
because these two antibiotics are in current used for UTI
treatment and prevention. In general, maximum urine
concentrations of nitrofurantoin vary from 15 mg/L to 230 mg/L
and were found between ~ 3 and 10 h after dosing, depending on
the crystal size, formulation of the nitrofurantoin product and the
fasting status of the subject (Wijma et al., 2018). Conventional
amikacin is almost entirely excreted unchanged in the urine within
hours after administration in all species studied (Fielding
et al., 1999).

The synergistic mechanism of nitrofurantoin and amikacin is
not clear because nitrofurantoin possesses several mechanisms of
antimicrobial action that involve damage to DNA and ribosomes
(Woody-Karrer and Greenberg, 1963; Jenkins and Bennett, 1976;
Huttner et al., 2015). Amikacin targets the bacterial ribosome
and inhibits translation by causing misreading and hindering
translocation (Taber et al., 1987; Allison et al., 2011). Both these
drugs target the ribosome and this is the most likely site of action
for the combination. In addition, nitrofurantoin stimulates the
production of reactive oxygen species (ROS) (Garcia Martinez
et al., 1995) that can facilitate the entry of aminoglycosides and
subsequent bacterial killing (Ezraty et al., 2013). Furthermore,
aminoglycosides have collateral sensitivity with many antibiotics,
nitrofurantoin has also been reported to be collateral sensitivity
with tigecycline, mecillinam and protamine, therefore, whether
nitrofurantoin has synergistic sensitivity with amikacin is also
very much studied (Suzuki et al., 2014; Pal et al., 2015; Roemhild
et al., 2020).

The results of the time-kill assays in this study demonstrated that
nitrofurantoin/amikacin at 1/2 MIC concentration displayed
synergistic bactericidal effects and indicated that combination
therapy can reduce antibiotic dosage. In addition, at half of the
clinically recommended dose, the combined treatment group
significantly increased the survival rate of larva compared with the
single treatment group. After 24 h under nitrofurantoin or amikacin
stress, the MIC values of the corresponding drugs increased to
different degrees, especially in the case of amikacin. However, the
MIC values for both nitrofurantoin and amikacin were decreased in
the combination group compared with the single drug group,
although the decrease was less than 2-fold. This suggests drug
combination strategies can be effective against MDR bacteria while
slowing down the development of antibiotic resistance.

In the G. mellonella infection model, the combination
treatment significantly improved larvae survival compared with
the most active antibiotic alone. These results were consistent
with the in vitro time kill assays except for a single UPEC strain,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 770
68071. These results indicated that the G. mellonella model is
useful for assessing the in vivo efficacy of anti-UPEC agents.
Previous studies have indicated that in vivo synergism results
were not always directly related to the in vitro results (Thieme
et al., 2020). This may be due to strain differences and the test
antibiotics. The G. mellonella model enables a rapid, economical
and reproducible model to assess the synergistic effects of
antimicrobials in an in vivo setting (Cools et al., 2019).

There are several limitations to this study that should be
noted. For example, we did not have a full complement of strains
with low level resistance to both nitrofurantoin and amikacin. In
addition, we only tested UPEC strains in the G. mellonellamodel
rather than the murine urinary tract infection model and future
will address this concern. There was a certain gap in the model
construction compare with the natural infection, and we did not
take into account factors such as the formation of biofilm by
UPEC in animal, these require further study. Moreover, based on
our current findings, further investigations are necessary to
examine the effectiveness of this combination in PK/PD
models to optimize the dose regimen. The tests of synergy for
this drug combination must also be linked to patient outcome
(Doern, 2014).

In summary, we confirmed that the combination of
nitrofurantoin and amikacin possesses a significantly synergistic
effect on MDR UPEC in vitro. In addition, we demonstrated for the
first time that this drug combination was significantly synergistic
effect on MDR UPEC in the G. mellonella model. Our findings
constitute an alternative and promising therapeutic option for the
treatment of UTIs caused by MDR UPEC.
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Heterogeneous Klebsiella
pneumoniae Co-infections
Complicate Personalized
Bacteriophage Therapy
Jinhong Qin1,2,3†, Nannan Wu2†, Juan Bao4†, Xin Shi1†, Hongyu Ou5, Shanke Ye6,
Wei Zhao7, Zhenquan Wei8, Jinfeng Cai9, Lisha Li10, Mingquan Guo2,9, Jingyan Weng11,
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1 Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
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Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
4 Department of Urology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China, 5 School of Life
Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China, 6 Department of Infectious Diseases, Shanghai
Public Health Clinical Center, Fudan University, Shanghai, China, 7 Experiment Teaching Center of Basic Medicine, Shanghai
Jiao Tong University School of Medicine, Shanghai, China, 8 Core Facility of Basic Medical Sciences, Shanghai Jiao Tong
University School of Medicine, Shanghai, China, 9 Department of Laboratory Medicine, Shanghai Public Health Clinical
Center, Fudan University, Shanghai, China, 10 Department of Microbiology, School of Basic Medical Science, Guizhou
Medical University, Guiyang, China, 11 Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China,
12 Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China

Multidrug-resistant (MDR) organisms have increased worldwide, posing a major challenge
for the clinical management of infection. Bacteriophage is expected as potential effective
therapeutic agents for difficult-to-treat infections. When performing bacteriophage
therapy, the susceptibility of lytic bacteriophage to the target bacteria is selected by
laboratory isolate from patients. The presence of a subpopulation in a main population of
tested cells, coupled with the rapid development of phage-resistant populations, will make
bacteriophage therapy ineffective. We aimed to treat a man with multifocal urinary tract
infections of MDR Klebsiella pneumoniae by phage therapy. However, the presence of
polyclonal co-infectious cells in his renal pelvis and bladder led to the failure of three
consecutive phage therapies. After analysis, the patient was performed with
percutaneous nephrostomy (PCN). A cocktail of bacteriophages was selected for
activity against all 21 heterogeneous isolates and irrigated simultaneously via the kidney
and bladder to eradicate multifocal colonization, combined with antibiotic treatment.
Finally, the patient recovered with an obviously improved bladder. The success of this
case provides valuable treatment ideas and solutions for phage treatment of
complex infections.

Clinical Trial Registration: www.chictr.org.cn, identifier ChiCTR1900020989.

Keywords: urinary tract infection, phage therapy, percutaneous nephrostomy, heterogeneous cells, multidrug-
resistant Klebsiella pneumoniae
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INTRODUCTION

Urinary tract infections (UTIs) are among the most prevalent
microbial diseases in both men and women during their lifespan
and cause a major burden worldwide (Sihra et al., 2018).
Administration of antibiotics is one of the key means for the
management of infectious pathogens. However, MDR organisms
have increased worldwide, posing a major challenge for the clinical
management of infection (Moellering, 2010). One of the most
urgent areas is the rapid evolution of antibiotic resistance among
Enterobacteriaceae e.g., Klebsiella pneumoniae (K. pneumoniae)
(Tacconelli et al., 2018). MDR K. pneumoniae is known to cause
various bodily infections, including UTIs, pneumoniae, bloodstream
infections, and sepsis. It is also a threat to individuals with weak
immune systems and hospitalized patients following invasive
surgical procedures. Infections caused by these organisms are not
only difficult to treat but are also known to cause significant
mortality (Marr and Russo, 2019). Bacteriophage is expected as
potential effective therapeutic agents for difficult-to-treat infections,
with some successful case reports supported by a large fundamental
knowledge base (Schooley et al., 2017; Watts, 2017; Corbellino et al.,
2019; Dedrick et al., 2019; Schmidt, 2019).

Heteroresistance phenomena was first described in the 1940s
(Alexander and Leidy, 1947), which refers to seemingly identical
bacterial cells in a population with one subpopulation or several
subpopulations that exhibit increased levels of antibiotic resistance
compared with the main population (Andersson et al., 2019). Such
populations are often difficult to detect and cause antibiotic
treatment failure (Nicoloff et al., 2019). Phage therapy also
requires phage screening with clinically isolated strains to select
the appropriate phage for treatment. Due to the high specificity of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 274
bacteriophage, the presence of bacterial heterogeneity in a
population can also lead to the failure of bacteriophage therapy.
Thus, a phages that will be selected for treatment should have a
broad range of activity. In the present study, we report a case of
polyclonal heterogenous bacterial UTI treated by personalized
bacteriophage cocktails. After four round phage screenings against
clinical isolates, bacteriophage cocktail with combination of
antibiotics and PCN eventually cured the patient of long-term
MDR K. pneumoniae UTI.
MATERIALS AND METHODS

Bacteriological Studies
Bacterial isolates were obtained from routine microbiological
cultures from patient. Twenty-one K. pneumoniae strains were
recovered from the patient’s urine, renal pelvis effusion and
proximal ureteral stent tip, as detailed in Table 1. Identification
of isolates at the species level was obtained by MALDI-TOF
Biotyper (Bruker, Germany).

Minimum inhibitory concentrations (MICs) for carbapenems
(imipenem and ertapenem) and aminoglycosides (gentamicin,
amikacin and tobramycin) were determined using VITEK 2
COMPACT (bioMérieux), and tigecycline was determined
using E-test strips (Oxoid) on Mueller-Hinton agar plates
(Oxoid). The MICs for colistin were determined by broth
culture microdilution. Meropenem (Oxoid) was determined
using the disc diffusion test on Mueller-Hinton agar plates
(Oxoid). The results were interpreted according to the
CLSI2018 (Clinical and Laboratory Standards Institute).
TABLE 1 | Klebsiella pneumoniae strains and their phage susceptibilities.

Strain Date Origin Phage sensitive

ФJD902 ФJD905 ФJD907 ФJD908 ФJD910

4137 25 Nov 2017 Urine + + + + +
0344 8 Jan 2018 Urine + + + + +
1231 26 Jan 2018 Urine + + + + +
1280 28 Jan 2018 Urine + + + + +
1439 30 Jan 2018 kidneyr – + – + +
1440 30 Jan 2018 kidneyl + + + + +
1469 31 Jan 2018 Urine + + + + +
1518 1 Feb 2018 Urine – + + + +
1532 2 Feb 2018 Urine – + + + +
1591 3 Feb 2018 Urine + + + + +
1639 4 Feb 2018 Urine + + + + +
1667 5 Feb 2018 Urine – + + + +
1769 6 Feb 2018 Urine – + – + +
1789 7 Feb 2018 Urine – + + + +
3549 21 Mar 2018 Double J b + + – + +
3637 21 Mar 2018 Double J k + + – + +
3837 26 Mar 2018 Urine + + – + +
4078 28 Mar 2018 Urine + + + + +
4163 1 Apr 2018 Urine + + + + +
4247 3 Apr 2018 Urine + + – + –

4321 4 Apr 2018 Urine + + + + +
January 2021
 | Volume 10 | Articl
Kidneyr represents right renal pelvis effusion; kidneyl represents left renal pelvis effusion; Double J b represents stent tip from bladder; Double J k represents stent tip from right renal pelvis.
“+” represents lytic activity; “-” represents non-lytic.
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Illumina WGS and Phylogenetic Analysis
The clonal relationship of the isolates was analysed by whole-genome
sequencing. Briefly, total DNA from the K. pneumoniae isolates was
extracted and sequenced with the Illumina X10 (Illumina, San Diego,
CA, USA). Genome assembly was performed using the Velvet 1.0.15
program (Zerbino and Birney, 2008). The sequence of K.
pneumoniae was deposited in the GenBank databases with
accession number (SAMN13324145, SAMN13324146,
SAMN13324147, SAMN13324148, SAMN13324149, SAMN1
3324150, SAMN1332415, SAMN13324152, SAMN13324153,
SAMN13324154, SAMN13324155, SAMN13324156, SAMN
13324157, SAMN13324158, SAMN13324159, SAMN13324160,
SAMN13324161, SAMN13324162, SAMN13324163, SAMN
13324164, SAMN13324165). Genome-wide single nucleotide
polymorphism (SNP) calling and phylogenetic analysis were
performed by using kSNP v3 (Gardner et al., 2015). The genome
sequences of 4 K. pneumoniae ST15 isolates, including PMK1, BR,
Kp-Geo-39795 and Kp36, were downloaded from GenBank. The
phylogeny scheme was generated from the kSNP3-detected SNP sites
for all the genome sequences under analysis with k = 21, as
determined by Kchooser. A parsimony tree was generated by
kSNP3 based on an extended majority rule consensus of the
equally most parsimonious trees from a sample of 100 trees. The
tree was displayed with iTOL with midpoint rooting (Letunic and
Bork, 2016).

Bacteriophage Studies
Bacteriophages were purified by caesium chloride (CsCl) density-
gradient ultracentrifugation. Transmission electron microscopy
(Hitachi 700, Tokyo, Japan) studies were performed on the
bacteriophage preparation after staining with 2% phosphotungstic
acid. Bacteriophage DNA was extracted with the Phage DNA
Isolation Kit (Aidlab Biotech, Beijing). PacBio single-molecule
real-time (SMRT) sequencing was performed using a PacBio RSII
sequencer with C4 chemistry. De novo assembly was conducted
using the Hierarchical Genome Assembly Process (HGAP) method
based on the SMRT Analysis package 2.0. All of the ORFs predicted
by Prokka (Seemann, 2014). Using BLAST at the NCBI,
comparative genome analysis of phage was carried out. The
prediction of the conserved protein domain was conducted using
BLASTP and the NCBI Conserved Domain Database. The sequence
of bacteriophages has been deposited in the GenBank databases
with accession number (SAMN13324166, SAMN13324167,
SAMN13324168, SAMN13324169, SAMN13324170).

The MDR K. pneumoniae Infection and
Pathophysiology of the Patient
A 66-year-old man whose cancerous bladder was partially
excised in 2002 was enrolled. He had UTIs since 2006. MDR
K. pneumoniae was the causative agent that led to frequent and
urgent urination and dysuria over the past dozen years.
Antibiotics that have in vitro activity against the isolates have
been used for conventional treatment since then. However, none
of those antibiotics or their combination worked to eradicate the
pathogen. The UTIs with K. pneumoniae reappeared
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immediately post drug withdrawal and were continuously
susceptible to the previous antibiotic panels. A cystoscope scan
showed that his bladder mucosa was hyperemic with local
ulceration and pseudomembrane attachment; bilateral ureteral
openings were not clearly observed (Figure 1A). He was
recruited with hospital admission to receive bacteriophage
treatment at the Shanghai Public Health Clinical Center
(ChiCTR1900020989), Shanghai, China.
Selection and Preparation of Therapeutic
Bacteriophages
Bacteriophage collections were stored at Shanghai Public
Health Clinical Center, which was isolated from various
environmental samples by using routine isolation techniques
(Wommack et al., 2009). Bacteriophages used for this treatment
were screened from bacteriophage collection. The lytic activity
of the bacteriophage was screened via spot testing against
successive patient isolates as those isolates became available.
To evaluate the killing efficacy of each phage on clinical isolates,
1 ml dilution aliquots of 10-fold serial dilutions of each
bacteriophage was spotted on a bacterial lawn to observe
plaque formation. The bacteriophage candidates that showed
the strongest antibacterial activity and broad spectrum against
available isolates as measured by this assay were selected for
inclusion in the therapy. Bacteriophages were generated using
solid media and recovered by diffusion into SM buffer (5.8 g/L
NaCl, 20 mM Tris HCl pH 7.5, 2 g/L mM MgSO4.7H2O),
yielding lysates with titres of >1x1010 pfu/ml. These lysates were
concentrated using CIM® Anion-exchange column QA (BIA
Separations, Slovenia) according to the protocol. The
concentration was dialysed against 0.9% sodium chloride
physiological solution (Shandong Qidu Pharmaceutical Co.,
Ltd.). The resulting lysate was further sterilized through 0.22
mm filters. The final bacteriophage preparation was used for
therapeutic application, with a titre estimated at >5x109 pfu/ml.
Bacteriophage Therapy
The entire treatment process for the patient is shown in
Figure 2A. Strain Kp0344 were used as host to amplify
bacteriophage Ф902, ФJD908, and ФJD910. Strain Kp1440
were used as host to amplify bacteriophage Ф905 and ФJD907.
Fifty ml of the bacteriophage preparation containing 5×108

pfu/ml was irrigated via bladder every 48 h for 2 weeks at a
time. For the fourth bacteriophage treatment, in addition to
irrigation via the bladder, 10 ml of the phage preparation
containing 5x108 pfu/ml was also irrigated via the kidney
every 48 h for 2 weeks. Prior to the fourth phage treatment, we
performed a bilateral PCN on the patient (Figure S1). The
patient was hospitalized during therapy. The clinical
examination and urine culture were performed throughout
the study (Figure 2B). After the treatment, the patient visited
every week in the following 2 months. Urine cultures and
blood tests were obtained on each visit.
January 2021 | Volume 10 | Article 608402
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RESULTS

Morphological Characteristics and
Genome Sequence of Bacteriophages
Bacteriophage was screened against successive patient isolates as
those isolates became available. A total of five bacteriophagesФ902,
ФJD905, ФJD907, ФJD908, and ФJD910 were selected for therapy.
Photograph of five bacteriophages was obtained by transmission
electron microscopy, as shown in Figure 3. Morphologically,Ф902,
ФJD907, ФJD908, and ФJD910 belong to the podoviridae family
while ФJD905 belong to the myoviridae family. Ф902, ФJD907,
ФJD908, and ФJD910 have genome sizes of 43,274, 39,465, 40,777,
and 38,834 bp, respectively. ФJD905 has genome sizes of 147,174
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 476
bp. These five bacteriophages encoded ORFs were searched by blast
in the database of virulence and antibiotic resistance genes (http://
www.genomicepidemiology.org/), with no identifiable virulence or
antibiotic resistance genes found in their genome.

Heterogeneity of Bacterial Isolates
A total of 21 K. pneumoniae strains were isolated from the patients
during treatment.Whole genome sequence analysis showed that they
all belong to ST15.The genome-wide detectionof these 21 sequenced
isolates and 4 completely sequenced ST15 K. pneumoniae currently
available at GenBank (PMK1, BR, Kp-Geo-39795, and Kp36)
generated 9,170 SNPs. The SNP-based phylogenetic tree analysis
showed that these 21 isolates are from the same clone (Figure 4A).
A

B

FIGURE 2 | Time course of clinical treatment. (A) Timeline beginning with patient hospitalization and ending with recovery. Major treatment during the course is
indicated above the line. Surgery during the course is indicated below the line. (B) Laboratory culture event and culture result during the course.
FIGURE 1 | Cystoscope of the inner wall of the bladder. (A) The inner wall of the bladder before phage treatment. The bladder mucosa was hyperemic with local
ulceration and pseudomembrane attachment; bilateral ureteral openings were not clearly observed. (B) The inner wall of the bladder post phage treatment. Bladder
mucosa was smooth and complete; bilateral ureter openings were clear.
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FIGURE 3 | Transmission electron microscopy image of phages. (A) phage ФJD902. (B) phage ФJD905. (C) phage ФJD907. (D) phage Ф JD908. (E), phage ФJD910.
A

B

FIGURE 4 | Phylogenetic trees of K. pneumoniae isolates. (A) The genome-wide SNP-based phylogenetic trees of 21 sequenced K. pneumoniae ST15 isolates and
4 completely sequenced ST15 K. pneumoniae isolates currently available at GenBank (PMK1, BR, Kp-Geo-39795, and Kp36). (B) The genome-wide SNP-based
phylogenetic trees of 21 sequenced K. pneumoniae isolates by this study. The phylogeny scheme based on parsimony was generated from 9,170 SNPs for all
genomes and 2,795 SNPs for 21 genomes by this study using kSNP3 with k = 21 and displayed by iTOL with midpoint rooting.
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Further genome-wide detection of these 21 isolates generated 2,795
SNPs. The SNPs-based phylogenetic tree analysis showed the
polyclonal strains (Kp4137, Kp0344, Kp1439, Kp1440) cloned in
the patient before phage treatment (Figure 4B). The sensitivity of
these strains to the phage 902, ФJD905, ФJD907, ФJD908, and
ФJD910 was also different (Figure 5A). These results suggested
that the patient was infected with polyclonal K. pneumonia for long
time. These results suggest that the colonized K. pneumoniae has
evolved into polyclone as a result of the patient’s chronic infection.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 678
K. pneumoniae continued to be isolated in the urine of
patients during bacteriophage ФJD902 treatment (Table 1 and
Figure 2B). Analysis of phage lytic spectrum of these 10
successively isolates showed that five strains (Kp1231, Kp1280,
Kp1469, Kp1591, and Kp1639) were still sensitive to ФJD902,
whereas the remaining five strains (Kp1518, Kp1639, Kp1667,
Kp1769, Kp1789) developed resistance to ФJD902 (Figure 5B).
Phylogenetic tree analysis showed that the five bacteriophage-
sensitive strains are located in different branches. Similarly, the
A

B

C

D

FIGURE 5 | Phage susceptibilities of clinical isolates. (A) K. pneumoniae strains isolated before phage therapy. (B) K. pneumoniae strains isolated post ФJD902
therapy. (C) K. pneumoniae strains isolated post Ф902+Ф905 therapy. (D) K. pneumoniae strains isolated post Ф905+Ф907+Ф908 therapy. Phages were serially
diluted 10-fold and spotted onto 21 K. pneumoniae as indicated. These assays were repeated three times with similar results and a representative experiment
is shown.
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five bacteriophage-resistant strains are in different branches. It
has been reported that bacteria mutate rapidly to develop phage
resistance when a bacteriophage infects a bacterium (Hesse et al.,
2020). It was speculated that the five bacteriophage-resistant
strains may come from the mutation during bacteriophage
therapy. However, it cannot be ruled out that it may be the
heterogeneous strain colonized in the patient.

By screening for lytic bacteriophages against previous isolates,
a two-phage cocktail (ФJD902+ФJD905) and a three-phage
cocktail (ФJD905+ФJD907+ФJD908) was used to the
continued treatment. However, after the phage cocktail was
administered, the patient still had K. pneumoniae in his urine.
As shown in Figures 5C, D, these isolates are still sensitive to the
phage cocktail, suggesting that the phage cocktail did not
function in some degree. It is speculated that heterogeneous
bacteria colonized in the renal pelvis cannot be effectively cleared
because the phage cannot reach them.

Phage Therapy Outcome
According to the isolates (strain Kp4173 and Kp0344) from the
patient urine, lytic phage ФJD902 against them was selected for
his first therapy (Figure 2A). We performed a regimen of
antibiotic withdrawal and a two-week phage administration by
bladder irrigation. During the time, we placed a “Double J” stent
to dredge the connection between the pelvis and bladder, and the
phage was irrigated to the renal pelvis once during the placement
process. Renal pelvis effusion was submitted to culture. Despite
the ongoing phage therapy, urine cultures were positive (Figure
2B). Five isolates recovered from urine developed resistance to
ФJD902 (Figure 3B). Bilateral pelvis effusion cultures
were positive.

Thus, a phage cocktail containing ФJD902 and ФJD905 lytic
to all previous isolates was administrated for second therapy via
bladder irrigation. The patient felt relief of his symptoms with
negative urine culture during therapy. Considering that the
double J stent was in place for two months, we felt it necessary
to replace it with a new one (Figure 2A). The right stent was
successfully removed, while the left stent was missing.
Unexpectedly, his urine culture became positive again (Figures
2B, 3C). Following screening, an adapted phage cocktail
containing ФJD905, ФJD907, and ФJD908 for the third
therapy via bladder irrigation were continued. However, the
patient’s urine culture remained positive with K. pneumoniae.
We had to halt the phage therapy and replaced it with
antimicrobial therapy with piperacillin/tazobactam (Figure 2A).

According to the renal pelvis culture, K. pneumoniae
colonized the kidney. We hypothesized that the heterogeneous
pathogens in the renal pelvis were unreachable by phage
cocktails via bladder irrigation. Thus, they could be released to
the bladder continuously. To remove pathogens colonizing the
bladder and renal pelvis, phage should be irrigated both via
kidney and bladder. After obtaining informed consent from the
patient, we performed PCN on the patient prior to phage therapy
(Figure 2A and Figure S1). A phage cocktail containing
ФJD902, ФJD905, ФJD908, and ФJD910 was irrigated via the
pelvises and subsequently the bladder (Figure 2A). At the same
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org
 779
time, the administration of piperacillin/tazobactam continued to
enhance the eradication of minority subpopulations of phage-
resistance variants. Then, phage therapy continued for another
10 days without antibiotic treatment (Figure 2A). Finally, the
patient recovered with an obviously improved bladder with
smooth mucosa (Figure 1B). MDR K. pneumonia infection did
not recur after two months of follow-up as determined by culture
growth from the patient’s urine.
DISCUSSION

Although UTIs are normally not considered life-threatening, these
recalcitrant infections lead to unbearable symptoms of urinary
irritation and diminished quality of life (Portsmouth et al., 2018).
The bactericidal mechanism of bacteriophages is completely
different from that of antibiotics. When bacteriophage therapy is
administered, it is necessary to screen for highly lytic activity
bacteriophages directly to the bacterial pathogen that is causing a
clinically relevant infection (Schooley et al., 2017; Corbellino et al.,
2019; Dedrick et al., 2019). Therefore, the clinical isolates are of
great significance for guiding clinicians in choosing optimal
bacteriophage therapy. Bacterial heterogeneity means that a
patient may have polyclone bacterial infections, and generally
we can only diagnose the main population and miss the
subpopulations with low densities (Andersson et al., 2019;
Nicoloff et al., 2019).

In this case, heterogeneous K. pneumoniae colonized renal
pelvis and bladder prior to phage therapy. However, for our first
phage therapy, we were able to isolate K. pneumoniae strain only
from the urine and performed phage screening against these
isolates. The patient’s urine culture still had phage sensitive and
phage-resistant strains during phage therapy. It was later
discovered that isolates from the renal pelvis and the bladder
were different clones, and that K. pneumoniae colonized in the
renal pelvis was not sensitive to therapeutic bacteriophage
ФJD902. Even with the phage cocktail treatment, phage-
resistant strains were rapidly isolated from the patient’s urine.
These resistant strains could be the result of minor undetected
resistant populations or from mutations. In this case, the
patient’s renal pelvis is also colonized by pathogenic bacteria,
which makes it difficult for phages to reach via bladder irrigation.
We speculate that these are the two main causes of
treatment failures.

In the following treatment, we performed a PCN on the
patient so that phages could be irrigated via the kidney. A
cocktail of bacteriophages was selected for activity against all
previously isolates and irrigated simultaneously via the kidney
and bladder, using antibiotics in combination. It is reported that
bacterial mutation to bacteriophage resistance has also been
associated with significant fitness costs of the reduction of
antibiotic resistance or virulence (Ofir and Sorek, 2018;
Gordillo Altamirano and Barr, 2019). Therefore, we
hypothesized that the eventual successful clearance of K.
pneumoniae was due to the synergistic effect of bacteriophage
and antibiotics.
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CONCLUSION

In recent years, phage is expected as potential effective
therapeutic agents for the untreatable infections (Gordillo
Altamirano and Barr, 2019; Monteiro et al., 2019; Schmidt,
2019). In this case, as a patient with urinary tract infection, we
designed phage treatment via bladder effusion for first therapy
since it was easy to perform and less invasive. However, K.
pneumoniae infection did not clear due to bacterial colonization
of the renal pelvis and bacterial heterogeneity. Thus, we
performed simultaneous bladder and renal pelvis perfusion
using bacteriophage cocktails with activity against a range of
pathogen. We developed a personalized approach for the patient,
including phage cocktail-made and administration. The success
of this case provides valuable ideas and solutions for personalized
phage therapy of complex infection.
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Prevalence of Carbapenem-Resistant
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blaKPC-Carrying Plasmid and
pLVPK-Like Virulence Plasmid in
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1 Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang,
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This study aimed to characterize carbapenem-resistant Klebsiella pneumoniae (CR-KP)
co-harboring blaKPC-2-carrying plasmid and pLVPK-like virulence plasmid. Between
December 2017 and April 2018, 24 CR-KP isolates were recovered from 24 patients
with bacteremia. The mortality was 66.7%. Pulsed-field gel electrophoresis and multilocus
sequence typing results indicated four clusters, of which cluster A (n = 21, 87.5%)
belonged to ST11 and the three remaining isolates (ST412, ST65, ST23) had different
pulsotypes (cluster B, C, D). The blaKPC-2-carrying plasmids all belonged to IncFIIK type,
and the size ranged from 100 to 390 kb. Nineteen strains (79.2%) had a 219-kb virulence
plasmid possessed high similarity to pLVPK from CG43 with serotype K2. Two strains had
a 224-kb virulence plasmid resembled plasmid pK2044 from K. pneumoniae NTUH-
K2044(ST23). Moreover, three strains carried three different hybrid resistance- and
virulence-encoding plasmids. Conjugation assays showed that both blaKPC-2 and
rmpA2 genes could be successfully transferred to E. coli J53 in 62.5% of the strains at
frequencies of 4.5 × 10−6 to 2.4 × 10−4, of which three co-transferred blaKPC-2 along with
rmpA2 in large plasmids. Infection assays in the Galleria mellonella model demonstrated
the virulence level of these isolates was found to be consistently higher than that of classic
Klebsiella pneumoniae. In conclusion, CR-KP co-harboring blaKPC-2-carrying plasmid and
pLVPK-like virulence plasmid were characterized by multi-drug resistance, enhanced
virulence, and transferability, and should, therefore, be regarded as a real superbug that
could pose a serious threat to public health. Hence, heightened efforts are urgently
needed to avoid its co-transmission of the virulent plasmid (gene) and resistant plasmid
(gene) in clinical isolates.
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INTRODUCTION

Carbapenem-resistant Klebsiella pneumoniae (CR-KP) has
emerged as one of the most challenging pathogens in the latest
years (Holt et al., 2015). CR-KP showed resistant to almost all
available antibiotics and was related to limited treatment options
and high mortality rates. CR-KP has been listed as a “critical
priority” by the World Health Organization (WHO). For
pathogen survival, the acquisition of virulent traits is necessary
(Vila et al., 2011), and some reports suggest that the virulence of
carbapenem-resistant Klebsiella pneumoniae is enhanced
(Ferreira et al., 2018).

The virulence plasmid carrying major virulence genes such as
capsular polysaccharides regulator genes (rmpA and rmpA2) and
those encoding siderophores (eg, iroBCDN, iucABCD, iutA) were
recognized as essential contributors to the virulence of
hypervirulent Klebsiella pneumoniae (hvKP), and might serve
as potential biomarkers for hvKP. The loss of this pLVPK-
derived virulence plasmid significantly decreased virulence.
Danxia Gu and colleagues (Gu et al., 2018) reported that CR-
KP strains could further evolve to become carbapenem-resistant
hvKP (CR-hvKP) through the acquisition of a pLVPK-like
virulence plasmid. Meanwhile, CR-hvKP strains may emerge as
a result of the acquisition of a carbapenemase-encoding plasmid
by K1 or K2 hypervirulent Klebsiella pneumoniae (Zhang et al.,
2016a). The emergence of carbapenem-resistant hypervirulent
Klebsiella pneumonia(CR-hvKP) was due to the convergence of
virulence and resistance. An increasing number of cases have
also been observed worldwide. The high prevalence of
carbapenem-resistant K pneumoniae (average 9.0% in 2017
and 15.4% in Jiangxi) and hypervirulent K pneumoniae (about
30–50%) (Zhang et al., 2016b; Liu and Guo, 2019) in Chinese
hospitals may have contributed to the emergence of carbapenem-
resistant and hypervirulent microorganism.

In the present study, we characterize clinical characteristics,
clonal relationships, virulence and resistance potential of CR-KP
co-harboring blaKPC-2-carrying plasmid and pLVPK-like
virulence plasmid in bloodstream infections. The findings of
this study provide insight into the current prevalence and
features of CR-KP co-harboring blaKPC-2-carrying plasmid and
pLVPK-like virulence plasmid in a Chinese hospital.
MATERIALS AND METHODS

Bacterial Isolates and Antimicrobial
Susceptibility Tests
Between December 2017 and April 2018, 24 CR-KP strains, which
were identified by the VITEK 2 system (bioMérieux) and
confirmed by 16S rRNA gene sequencing, were isolated from
blood cultures of 24 patients hospitalized in the First Affiliated
Hospital of Nanchang university (Nanchang), Southern China.
Antimicrobial susceptibility testing was done for all isolates using
Vitek 2 automated systems. Results were interpreted according to
the Clinical and Laboratory Standards Institute (document M100-
S27). Furthermore, antimicrobial susceptibility of tigecycline was
performed by the broth microdilution method and interpreted by
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 283
the recommendation of the European Committee on
Antimicrobial Susceptibility Testing clinical breakpoints (http://
www.eucast.org). Patient information was queried from the
medical records. This study was approved by the ethical
committee of the First Affiliated Hospital of Nanchang
University. Informed consent was also obtained from all of the
study patients.

Antimicrobial Resistance Genes
Polymerase chain reaction was used to detect carbapenemase-
encoding genes (blaKPC, blaVIM, blaNDM, blaIMP, and blaOXA-48-like),
b-lactamase genes (blaCTX-M, blaTEM, and blaSHV), plasmid-
mediated quinolone resistance determinants (qnrA, qnrB, qnrS,
aac(6′)-Ib-cr) and 16S rRNA methylase genes(armA, rmtB) as
described previously (Liu et al., 2019). The positive PCR products
were purified and sequenced, and the sequences alignments were
compared to those in the NCBI database using BLAST.

Capsular Serotyping and Virulence-
Associated Genes Detection
The capsular type of K. pneumoniae was determined by PCR and
sequencing of wzi loci as previously described (Brisse et al., 2013).
The sequences of products were compared to the wzi sequences
deposited in the database of Institute Pasteur to identify the
corresponding capsular types using BLAST program (https://
bigsdb.pasteur.fr/klebsiella/klebsiella.html). Isolates were
screened for the presence of 14 virulence-associated genes,
including rmpA, rmpA2,terW, iutA, silS, mrkD, fimH, ybtS, entB,
kpn, aerobactin, kfu, magA, and wcaG (Turton et al., 2018).
Primers used for PCR are shown in Table S2.

Plasmid Analysis and Plasmid Transfer
S1 nuclease-pulsed-field gel electrophoresis (S1-PFGE) and southern
blotting hybridization were performed to determine the plasmid
location of blaKPC-2-carrying plasmid and virulence plasmid (Xu
et al., 2019). Briefly, total DNA was embedded in agarosegel plugs.
The plugs were digested with S1 nuclease (TaKaRa) for 30 min at
37°C and then separated by eletrophoresis. Labeling of the probes
(Table S1) and hybridization were performed with the DIG-High
Prime DNA Labeling and Detection Starter Kit II, according to the
manufacturer’s instructions (Roche, Basle, Switzerland).

Conjugal transfer experiment was performed using broth-
based methods with Escherichia coli J53 as the recipient strain.
Donor and recipient cells were mixed at 2:1 donor-to-recipient
ratio. Transconjugants were selected using 2 or 8 mg/ml potassium
tellurite or 2 mg/ml meropenem plus 150 mg/ml sodium azide.
Successful conjugation and transformation were confirmed by
antimicrobial susceptibility and PCR detection of the blaKPC-2
gene and pLVPK-derived gene (rmpA, rmpA2, terW, iutA, silS).
S1-PFGE was performed as described previously to confirm
acquisition of this plasmid by the recipient strain.

Galleria Mellonella Infection Model
For virulence testing, the Galleria mellonella model was used to
investigate toxicity. Ten larvae weighing between 250 and 350 mg
(purchased from Tianjin Huiyude Biotech Company, Tianjin,
China) were used for the assessment of the virulence level of
March 2021 | Volume 10 | Article 556654
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each isolate. The insects were inoculated by injecting 1 × 106 CFU
per 10 µl aliquot into the hemocoel via the rear left proleg using
methods described previously (Mclaughlin et al., 2014), followed by
a recording of survival rate every 12 h for 2 days. All experiments
were performed in triplicates. The recent assessment of a range of
K. pneumoniae isolates suggests the parameters for the Galleria
model to define hypervirulence, based on a calculation of LD50

value (Shi et al., 2018). The hvKP strain NTUH-K2044 and K.
pneumoniae strain ATCC700603 were used as controls of high and
low virulence strains, respectively. Statistical analyses were
performed and visualized with GraphPad Prism 7.00.

Multilocus Sequence Typing (MLST) and
Pulsed-Field Gel Electrophoresis (PFGE)
MLST was performed by amplifying and sequencing the seven
conserved housekeeping loci including gapA, infB, mdh, pgi,
phoE, rpoB, and tonB (Diancourt et al., 2005), according to
protocols on the Pasteur Institute MLST website (http://bigsdb.
pasteur.fr/klebsiella/klebsiella.html).

Clonal relatedness was established using XbaI-PFGE
(Taraka). DNA fragments were separated with a CHEF DR III
apparatus (Bio-Rad; Richmond, CA, USA). The molecular
marker was Salmonella serotype Braenderup strain H9812. The
isolates sharing >80% similarity were defined as the same PFGE
cluster (Tenover et al., 1995).
RESULTS

Patients and Bacterial Isolates
The clinical characteristics of the 24 patients with K. pneumoniae
bacteremia are shown in Table 1. These patients were mainly
from the ICU (58.3%, n = 14). The mean age of the patients was
61.9 ± 16.6 years (range, 25–87 years) and 79.2% of these patients
were males. The mean time of hospitalization from admission to
the identification of CR-KP was 27.5 ± 16.5 days (range, 3–58
days). Hyperglycemia was found among eight cases (33.3%) and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org
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seven patients (29.2%) had hypertension. The majority of
patients used various invasive procedures and devices, of which
the usage rate of mechanical ventilation and tracheal intubation
were highest (70.8%). All cases had received a wide variety of
antibiotics in combination. The incidence rate of septic shock
was 41.7%, and the mortality was 66.7%.

Antimicrobial Susceptibility and
Antimicrobial Resistance Genes
The detailed antimicrobial resistance profiles are shown in Table
2. The antibiotic susceptibility test showed that all 24 isolates were
resistant to ceftriaxone, cefotaxime, aztreonam, ertapenem,
imipenem, and meropenem. The percentage of bacteria resistant
to gentamicin (16.7%, n = 4), tobramycin (16.7%, n = 4), amikacin
(12.5%, n = 3) is low. Resistant to ceftazidime (95.8%, n = 23),
cefepime (95.8%, n = 23), piperacillin/tazobactam (91.7%, n = 22),
levofloxacin (87.5%, n = 21), ciprofloxacin (87.5%, n = 21), and
sulfamethoxazole-trimethoprim (95.8%, n = 23) was high.
However, all isolates were sensitive to tigecycline.

All the 24 isolates were positive for blaKPC-2 gene. The b-
lactamase genes were detected, including blaTEM-1 (95.8%, n = 23),
blaCTX-M-15 (95.8%, n = 23), and blaSHV-11 (79.2%, n = 19). In
addition, 20 isolates (83.3%) carried qnrS1, 17 isolates carried aac
(6’)-Ib-cr (70.8%) and 2 isolates (8.3%) carried qnrB4. However,
only one isolate carried plasmid-mediated 16S rRNA methylase
gene rmtB. All isolates were negative for blaVIM, blaNDM, blaIMP,
blaOXA-48, armA, and qnrS.

Plasmid Profiles
Plasmid location of blaKPC-carrying plasmid and pLVPK-like
virulence plasmid was determined by S1-PFGE and Southern blot
analysis. The results demonstrated that the plasmid size carrying
blaKPC-2 ranged from 100 to 390 kb (Figures 1, S1). Furthermore,
two isolates had two different plasmids harboring blaKPC-2 gene.
Nineteen strains (79.2%) had a 219-kb virulence plasmid possessed
high similarity to previously reported pLVPK from Klebsiella
pneumoniae CG43 with serotype K2. Two strains had a 224-kb
virulence plasmid resembled plasmid pK2044 from K. pneumoniae
NTUH-K2044 belonged to sequence type 23. Moreover, there were
three isolates (KP3, KP5, KP6) carrying a hybrid resistance- and
virulence-encoding plasmid, which harbored both the
carbapenemase gene blaKPC-2 and the virulence gene rmpA2.

Conjugation assays showed that both blaKPC-2 and rmpA2
genes could be successfully transferred to E. coli J53 in 62.5% (15/
24) of the strains at frequencies of 4.5 × 10−6 to 2.4 × 10−4

(transconjugant/recipient), of which three co-transferred
blaKPC-2 along with rmpA2 in large plasmids. KP3 isolate
transferred a hybrid resistance- and virulence-encoding
plasmid of 390 kb to E. coli J53 at a frequency of 3.5 × 10−5

(transconjugant/recipient) by mating. In addition, KP10 and
KP24 isolates co-transferred the blaKPC-2-carrying plasmid and
pLVPK-like virulence plasmid to E. coli J53 at a frequency of
7.4 × 10−6 (transconjugant/recipient) by mating (Table S3).

Virulence-Associated Features
The prevalence and distribution of virulence factors are shown in
Figure 2A. The virulence-related genes detected in 24 isolates
TABLE 1 | Clinical characteristics of patients with carbapenem-resistant
K. pneumoniae bacteremia.

Demographics Prior antibiotic exposure

Age (mean ± SD), years 61.9 ± 16.6 Carbapenem 24 (100.0)
Gender, male 19(79.2) cephalosporin 3 (12.5)
Length of stay
(mean ± SD), days

27.5 ± 16.5 b-lactam and b-
lactamase inhibitor

11(45.8)

Underlying disease Fluoroquinolone 9 (37.5)
Diabetes mellitus 8(33.3) Aminoglycoside 8 (33.3)
Hypertension 7(29.2) Tigecycline 11 (45.8)

Invasive procedures and devices Glycopeptide 14(58.3)
Central venous catheter 13(54.2) Clinical outcomes
Urinary catheter 14(58.3) Septic shock 10(41.7)
Endotracheal tube 17(70.8) 30-day Mortality 16(66.7)
Mechanical ventilation 17(70.8)
Surgical drainage 11(45.8)
Tracheostomy 5(20.8)
Surgery 16(66.67)
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included fimH-1 (100%), mrkD (100%), ybtS (91.7%), entB
(83.3%), kpn (83.3%), aerobactin (62.5%), kfu (20.8%), magA
(12.5%), and wcaG (8.3%) (Figure S2). Moreover, all the five
pLVPK-derived locus, rmpA, rmpA2, terW, iutA, silS, were
detected in all 24 isolates.

The G. mellonella larvae infection model was used to assess
the potential virulence of these isolates (Figure 2B). After 48 h of
infection, the mortality of the larvae infected with CR-KP isolates
co-carrying virulence plasmid and KPC-2 plasmid were
consistently higher than that infected with cKP (P < 0.05)
(Table S2). Among the 24 strains, the virulence level of 15
isolates is similar to hvKP previously reported (P>0.05), but nine
isolates are less virulent (P < 0.05) (Table S2).

Clonal Relationship
Among the 24 isolates, four STs were identified, including ST11
(14 wzi47-K47 isolates, five wzi64-K64 isolates, and two wzi125-
K1 isolates), ST23 (1 wzi1-K1 isolate), ST65 (1 wzi2-K2 isolate),
ST412 (1 wzi206-K57 isolate). PFGE (Figure 1) identified one
major pulsotype (cluster A), encompassing 21 of the 24 isolates,
all belonging to ST11 (Figure 3). The three remaining isolates
(Kp20, Kp21, and Kp24) had different pulsotypes.
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DISCUSSION

In our study, we reported the prevalence of carbapenem-resistant
K. pneumoniae co-harboring blaKPC-2-carrying plasmid and
pLVPK-like virulence plasmid in patients with bacteremia.
Klebsiella pneumoniae is the second most common pathogen
in Enterobacteriaceae bloodstream infections (Meatherall et al.,
2009). In this study, the overall 30-day mortality rate was 66.7%,
which was higher than in those with KPC-producing K.
pneumoniae bloodstream infections (44.2%) (Xu et al., 2018).
Ten patients (41.7%) developed septic shock, which was the
recognized reason for increased mortality (Falcone et al., 2016).
In addition, 33.3% of the patients had hyperglycemia, which was
considered to be a significant risk factor for hypervirulent
Klebsiella pneumoniae infection (Zhang et al., 2016b). There
are many possible contributing factors to the emergence, rise,
and spread of antibiotic resistance, including ICU admission,
antibiotics exposure, using invasive devices and procedures (Li
et al., 2019). These risk factors may have contributed to the high
rates of antibiotic resistance found in our study.

Although all the 24 CR-KP co-harboring blaKPC-2-carrying
plasmid and pLVPK-like virulence plasmid were multi-drug-
TABLE 2 | Resistance genes and antibiotic susceptibilities of 24 CR-KP co-harboring blaKPC-2-carrying plasmid and pLVPK-like virulence plasmid.

Isolates Resistance profile of K. pneumoniae Carbapenemase b-lactamase genes 16S rRNA methylase
gene

PMQR genes

Kp1 CRO,CAZ,CTX,FEP,TZP,ATM,GEN,TOB,AMK,LVX,CIP,
ETP,IMP,MEM,SXT

KPC-2 TEM-1 – qnrB4

Kp2 CRO,CAZ,CTX,FEP,TZP,ATM,TOB,LVX,CIP,ETP,IMP,
MEM,SXT

KPC-2 SHV-12,TEM-1,CTX-M-14 rmtB qnrS1,acc6-Ib-cr

Kp3 CRO,CAZ,CTX,FEP,TZP,ATM,LVX,CIP,ETP,IMP,MEM KPC-2 SHV,TEM-1,CTX-M-14 – acc6-Ib-cr
Kp4 CRO,CAZ,CTX,FEP,TZP,ATM,AMK,LVX,CIP,ETP,IMP,

MEM,SXT
KPC-2 SHV-12,TEM-1,CTX-M-

14,15
– qnrS1,acc6-Ib-cr

Kp5 CRO,CAZ,CTX,FEP,TZP,ATM,ETP,IMP,MEM,SXT KPC-2 SHV-12,TEM-1,CTX-M-14 – –

Kp6 CRO,CAZ,CTX,FEP,TZP,ATM,LVX,CIP,ETP,IMP,MEM KPC-2 SHV-11,TEM-1,CTX-M-14 – qnrS1,acc6-Ib-cr
Kp7 CRO,CAZ,CTX,FEP,TZP,ATM,GEN,TOB,AMK,LVX,CIP,

ETP,IMP,MEM,SXT
KPC-2 SHV-12,TEM-1,CTX-M-14 – qnrS1,acc6-Ib-cr

Kp8 CRO,CAZ,CTX,FEP,TZP,ATM,LVX,CIP,ETP,IMP,MEM,SXT KPC-2 SHV-12,TEM-1,CTX-M-14 – qnrS1,acc6-Ib-cr
Kp9 CRO,CAZ,CTX,FEP,TZP,ATM,LVX,CIP,ETP,IMP,MEM,SXT KPC-2 TEM-1,CTX-M-14 – qnrS1,acc6-Ib-cr
Kp10 CRO,CAZ,CTX,FEP,TZP,ATM,LVX,CIP,ETP,IMP,MEM,SXT KPC-2 SHV-11,TEM-1,CTX-M-14 – qnrS1,acc6-Ib-cr
Kp11 CRO,CAZ,CTX,FEP,TZP,ATM,LVX,CIP,ETP,IMP,MEM,SXT KPC-2 TEM-1,CTX-M-14 – qnrS1,acc6-Ib-cr
Kp12 CRO,CAZ,CTX,FEP,TZP,ATM,LVX,CIP,ETP,IMP,MEM,SXT KPC-2 SHV-12,TEM-1,CTX-M-14 – qnrB4,qnrS1,

acc6-Ib-cr
Kp13 CRO,CAZ,CTX,FEP,TZP,ATM,GEN,LVX,CIP,ETP,IMP,

MEM,SXT
KPC-2 SHV-12,TEM-1,CTX-M-14 – qnrS1,acc6-Ib-cr

Kp14 CRO,CAZ,CTX,FEP,TZP,ATM,LVX,CIP,ETP,IMP,MEM,SXT KPC-2 SHV-12,TEM-1,CTX-M-14 – qnrS1,acc6-Ib-cr
Kp15 CRO,CAZ,CTX,FEP,TZP,ATM,LVX,CIP,ETP,IMP,MEM,SXT KPC-2 TEM-1,CTX-M-14 – qnrS1
Kp16 CRO,CAZ,CTX,FEP,TZP,ATM,LVX,CIP,ETP,IMP,MEM,SXT KPC-2 SHV-11,TEM-1,CTX-M-14 – qnrS1,acc6-Ib-cr
Kp17 CRO,CAZ,CTX,FEP,TZP,ATM,LVX,CIP,ETP,IMP,MEM,SXT KPC-2 SHV-11,TEM-1,CTX-M-14 – qnrS1,acc6-Ib-cr
Kp18 CRO,CAZ,CTX,FEP,TZP,ATM,LVX,CIP,ETP,IMP,MEM,SXT KPC-2 SHV-12,TEM-1,CTX-M-14,-

15
– qnrS1,acc6-Ib-cr

Kp19 CRO,CAZ,CTX,FEP,TZP,ATM,LVX,CIP,ETP,IMP,MEM,SXT KPC-2 SHV-12,TEM-1,CTX-M-14 – qnrS1,acc6-Ib-cr
Kp20 CRO,CAZ,CTX,FEP,ATM,LVX,CIP,ETP,IMP,MEM KPC-2 SHV-11,TEM-1,CTX-M-14 – qnrS1,acc6-Ib-cr
Kp21 CRO,CAZ,CTX,FEP,TZP,ATM,ETP,IMP,MEM KPC-2 SHV-12,TEM-1,CTX-M-14 – qnrS1
Kp22 CRO,CAZ,CTX,FEP,TZP,ATM,GEN,TOB,AMK,LVX,CIP,

ETP,IMP,MEM,SXT
KPC-2 SHV-12,TEM-1,CTX-M-14,-

15
– qnrS1

Kp23 CRO,CAZ,CTX,FEP,TZP,ATM,LVX,CIP,ETP,IMP,MEM,
TGC,SXT

KPC-2 SHV-12,TEM-1,CTX-M-14 – qnrS1

Kp24 CRO,CTX,ATM,ETP,IMP,MEM KPC-2 CTX-M-14 – –
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resistant, amikacin, gentamicin, and tigecycline still had efficient
antimicrobial activity in vitro against these isolates, indicating
that they could be valuable treatment choices. The production of
Klebsiella pneumoniae carbapenemase (KPC) is the most
prevalent mechanism of resistance to carbapenems (Munoz-
Price et al., 2013). In China, the first detection of the plasmid-
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mediated class A carbapenemase KPC-2 gene was located on an
approximately 60-kb plasmid in 2007 (Wei et al., 2007). In this
study, the blaKPC-2 carrying plasmids all belonged to IncFIIK
type, and the size ranged from 100-kb to 390-kb.

Virulence plasmids were associated with hypervirulent
serotypes of Klebsiella pneumoniae and predisposed patients to
March 2021 | Volume 10 | Article 556654
A B C

FIGURE 1 | The S1-PFGE and Southern hybridization analysis of 3 strains hybrid resistance- and virulence-encoding plasmids. Notes: (A) S1 nuclease digestion of
genomic DNA of K. pneumoniae strains was followed by PFGE. Plasmid bands are shown as linearized fragment on the gel. (B) Southern blot hybridization of
blaKPC-2 gene. Mark it with a red arrow. (C) Southern blot hybridization of the marker gene (rmpA2) of the virulence plasmid. Mark it with a blue arrow. Lane M,
reference standard strain Salmonella serotype Braenderup H9812 restricted with Xbal. M, marker; S1-PFGE, S1 nuclease pulsed-field gel electrophoresis.
A B

FIGURE 2 | (A) The distributions of virulence-associated genes among CR-KP co-harboring blaKPC-2-carrying plasmid and pLVPK-like virulence plasmid.
(B) Virulence potential of representative CR-KP co-harboring blaKPC-2-carrying plasmid and pLVPK-like virulence plasmid in a Galleria mellonella infection model.
CR-KP, carbapenem-resistant Klebsiella pneumoniae.
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abscess formation (Tang et al., 2010). In the present study,
nineteen strains (79.2%) carry a 219-kb virulence plasmid
similar to pLVPK plasmid from serotype K2, K. pneumoniae
CG43 (Chen et al., 2004). Two strains (8.3%) carry a 224-kb
virulence plasmid similar to the pK2044 plasmid from serotype
K1, sequence type (ST) 23 strain NTUH-K2044 (Wu et al., 2009).
The pLVPK-like virulence plasmids in K. pneumoniae are very
large and would, therefore, be regarded as non-conjugative. This
would explain their strong association with particular
hypervirulent serotypes (Struve et al., 2015). Nevertheless, it is
obvious that virulence plasmids have been reported in several
serotypes of Klebsiella, indicating that conjugation is occurring,
albeit at a low frequency. In this study, three strains CR-KP co-
harboring blaKPC-2-carrying plasmid and pLVPK-like virulence
plasmid can transfer virulence plasmids to E. coli J53. The
conjugative transfer of this virulence plasmid increased the
virulence level of such strain.

Carbapenem-resistant K. pneumoniae rarely carry virulence
plasmids and hypervirulent K. pneumoniae generally do not carry
antibiotic resistance genes. Nevertheless, in the current study, 24
strains Klebsiella pneumoniae co- harbored blaKPC-2-carrying
plasmid and pLVPK-like virulence plasmid. Most recently, Dong
et al. (2018) reported that a blaKPC-2-encoding element can be
integrated into a virulence plasmid, which then possesses the
ability to mediate expression of both hypervirulence and hyper-
resistance phenotype in K1 hypervirulent Klebsiella pneumoniae.
Similarly, we found three strains ST11 K. pneumoniae carrying a
blaKPC-2-harboring virulence plasmid, which were approximately
390, 270, and 170 kb, respectively. The convergence of virulence
and MDR in a single plasmid vector enables simultaneous transfer
and potentially rapid emergence of hypervirulence-MDR K.
pneumoniae clones.

The presence of mrkD and fimH has previously been related to
KPC-positiveK. pneumoniae (De Cassia AndradeMelo et al., 2014).
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However, previous studies (Yeh et al., 2007) reported thatmagAwas
characteristic of the K1 capsular operon, which was associated with
the hypermucoviscosity phenotype of K. pneumoniae. Siderophore-
associated genes, such as entB, ybtS, and iutA, were critical for
bacterial growth, replication, and virulence (Holden and Bachman,
2015). entB was only characterized for virulence when it occurs in
association with iutA or ybtS (Daehre et al., 2018). By analyzing
virulence genes, all K. pneumoniae isolates carried both mrkD and
fimH genes in our study. Moreover, the entB, iutA or ybtS genes
were present from three-quarters of all isolates, all of which serve as
high mark of virulence.

Capsule, lipopolysaccharide (LPS), fimbriae (types 1 and 3),
siderophores, and pLVPK-like virulence plasmid are virulence
factors that contribute to the pathogenicity of K. pneumoniae.
Nevertheless, Shu et al. (2019) reported OXA-232-producing ST15
carbapenem-resistantK. pneumoniaewere not hypervirulent despite
harboring a virulence plasmid. In the current study, the virulence
level of CR-KP co-harboring blaKPC-2-carrying plasmid and pLVPK-
likevirulenceplasmidwas found tobeconsistentlyhigher than thatof
cKP. But we also found nine strains CR-KP co-harboring blaKPC-2-
carrying plasmid and pLVPK-like virulence plasmid were less
virulent than hvKP. Further studies are required to establish the
relationship between the hypervirulence phenotype and the carriage
of the virulence plasmid in K. pneumoniae.

In our study, 87.5% of CR-KP co-harboring blaKPC-2-carrying
plasmid and pLVPK-like virulence plasmid belonged to ST11, in
accordance with the report by Qi et al. (2011), which described
that ST11 was the dominant clone of KPC-2-producing K.
pneumoniae in China. Nineteen out of twenty-one ST11
isolates were wzi47-K47 or wzi64-K64 by the capsular
serotyping. Two ST11 isolates belonged to wzi125-K1, which
was rarely reported in a previous study (Wei et al., 2016). One
wzi1-K1 strain belonged to ST23, was strongly correlated with
liver abscess (Shon et al., 2013); one wzi2-K2 strain belonged to
FIGURE 3 | PFGE dendrogram of 24 carbapenem-resistant Klebsiella pneumoniae co-harboring blaKPC-2-carrying plasmid and pLVPK-like virulence plasmid. ICU,
intensive care unit; ND, neurosurgery department; GD, gastroenterology department; ID, infectious department.
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ST65, which is in accordance with the previous study that ST65
was the most common ST associated with K2 serotype in
K. pneumoniae (Liao et al., 2014); one wzi206-K57 belonged to
ST412, which was hypermucoviscous.

In conclusion, all isolates were characterized by multi-drug
resistance, enhanced virulence, and transferability, and should,
therefore, be regarded as a real superbug that could pose a serious
threat to public health. Moreover, three strains carried 3 different
hybrid resistance- and virulence-encoding plasmids. We should
strengthen the ability of anti-infective prophylaxis and
management to avoid its co-transmission of the virulent
plasmid (gene) and resistant plasmid (gene) in clinical isolates.
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Deceiving Phenotypic Susceptibility
Results on a Klebsiella pneumoniae
Blood Isolate Carrying Plasmid-
Mediated AmpC Gene blaDHA-1
Susan Realegeno, Kevin Ward, Omai B. Garner and Shangxin Yang*
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Los Angeles, Los Angeles, CA, United States

Carbapenem-resistant Klebsiella pneumoniae (CRKP) frequently causes hospital-
acquired infections and is associated with high morbidity and mortality. CRKP can have
multiple resistance mechanisms and only a few can be routinely detected by commercial
molecular or phenotypic assays making surveillance for CRKP particularly challenging. In
this report, we identified and characterized an unusual non–carbapenemase-producing
CRKP carrying a rare plasmid-borne inducible AmpC gene, blaDHA-1. The isolate was
recovered from blood culture of a 67-year-old female presenting with sepsis post bladder
surgery and ureteral stent removal. The primary isolate displayed an indeterminate
susceptibility pattern for ceftriaxone by broth microdilution, but was susceptible by disk
diffusion with one colony growing within the zone of inhibition. The ceftriaxone resistant
colony was sub-cultured and had a minimum inhibitory concentration (MIC) of 2 ug/ml for
imipenem (intermediate) and a zone size of 18 mm for ertapenem (resistant), but remained
susceptible to cefepime and meropenem. Further phenotypic characterization of this sub-
cultured isolate showed carbapenemase activity. Whole genome sequencing (WGS)
revealed the presence of two subpopulations of a K. pneumoniae (MLST sequence
type 11) from the primary blood culture isolate: one pan-susceptible to beta-lactams
tested and the other resistant to the 3rd generation cephalosporins and ertapenem. WGS
analysis identified the resistant K. pneumoniae harboring IncFIB(K) and IncR plasmids and
the presence of plasmid-borne beta-lactam resistance genes blaOXA-1 and blaDHA-1, an
inducible AmpC gene. Additional resistance genes against quinolones (aac(6′)-Ib-cr,
oqxA, oqB), aminoglycoside (aph(3′)-Ia), sulfonamide (sul1), and tetracycline (tet(A))
were also identified. DHA-1 positive K. pneumoniae have been previously identified
outside the US, particularly in Asia and Europe, but limited cases have been reported in
the United States and may be underrecognized. Our study highlights the importance of
using both extended phenotypic testing and WGS to identify emerging resistance
mechanisms in clinical Enterobacterales isolates with unusual antimicrobial
resistance patterns.

Keywords: carbapenem resistance, whole-genome sequence analysis, DHA-1, plasmid-mediated AmpC,
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INTRODUCTION

Klebsiella pneumoniae is a gram-negative rod and a member of
the Enterobacterales family. These organisms are known to cause
significant nosocomial infections with a wide range of clinical
presentations including pneumonia, bacteremia, and urinary
tract infections. One of the most concerning aspects of
infection with K. pneumoniae is the high prevalence of drug
resistance that can limit treatment options. Beta-lactamases are
one of the most significant mechanisms of resistance in K.
pneumoniae, including extended spectrum beta-lactamase
(ESBLs) and carbapenemases, which are capable of hydrolyzing
penicillins, cephalosporins, and carbapenems. From 1998 to
2010, K. pneumoniae surveillance isolates in the United States
(US) showed a significant increase in antimicrobial resistance to
drugs of all classes, except tetracyclines (Sanchez et al., 2013).

One under-recognized resistance mechanism of particular
concern is plasmid encoded AmpC-type beta-lactamase. AmpC
type beta-lactamases are part of the Ambler class C group of beta-
lactamases that display resistance to penicillins, first, second, and
third generation cephalosporins, cephamycins, and monobactams
but are not susceptible to commonly used beta-lactamase inhibitors
such as clavulanate, sulbactam, and tazobactam (Jacoby, 2009).
Inducible AmpC beta-lactamase activity is typically chromosomally
encoded and is characteristic in a group of Enterobacterales species,
commonly referred to as the “SPICE” group, which include Serratia
marcescens, Pseudomonas aeruginosa, indole-positive Proteus,
Citrobacter freundii, and Enterobacter cloacae. Klebsiella species
do not have chromosomally encoded AmpC, but can acquire the
resistance gene through plasmids. Plasmid-borne AmpC gene
usually lacks genetic components that regulate AmpC expression
and is therefore frequently found to be constitutively expressed.
One exception is plasmid encoded blaDHA-1 which is usually
adjacent to ampR, the transcriptional regulator gene for activation
or repression of AmpC (Barnaud et al., 1998; Verdet et al., 2006;
Compain et al., 2014; Luan et al., 2015), making it similar to
inducible chromosomal AmpC enzymes.

In this report, we identified a clinical carbapenem-resistant
Klebsiella pneumoniae (CRKP) isolate with inducible blaDHA-1
AmpC in a mixed bacterial population that initially showed
inconsistent and confusing phenotypic susceptibility results
which prompted further investigation. There are currently no
established guidelines for the detection of plasmid-mediated
AmpC expression in the clinical microbiology laboratory. WGS
was used to identify resistance genes in this isolate, demonstrating
that conventional methods are limited in detection of this type of
resistance mechanism, which may lead to a vast under-recognition
of its prevalence in the community (Jacoby, 2009).

MATERIALS AND METHODS

Antimicrobial Susceptibility and Molecular
Testing
A K. pneumoniae isolate was recovered from a positive aerobic
blood culture bottle and identified by matrix-assisted laser
desorption/ionization time-of-flight (MALDI-TOF) using the
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Vitek MS (BioMerieux, Marcy l’Etoile, France). Initial
antimicrobial susceptibility testing was performed using in-
house prepared broth microdilution (BMD) trays according to
the CLSI guidelines (M07 and M100 29th edition, 2019). Disk
diffusion (DD), modified carbapenem inactivation method
(mCIM), and modified Hodge-test (MHT) were also
performed to further characterize phenotypic resistance
mechanisms (CLSI M100 29th edition, 2019 & M07, 11th

edition, 2018). A total of 3 isolates are described: the primary
isolate (Isolate 10) initially recovered from the blood culture and
two isolates representing subpopulations of Isolate 10 separated
based on the DD method using a ceftriaxone disk: Isolate 1A was
susceptible and Isolate 1B grew inside the inhibition zone. The
Xpert CarbaR (Cephid, Sunnyvale, CA) was also performed for
detection of specific carbapenemase genes including KPC, NDM,
VIM, IMP, and OXA-48-group genes.

Whole Genome Sequencing
DNA was extracted from bacterial isolates using the Qiagen EZ1
tissue kit (Qiagen, Hilden, Germany) extraction method
according to manufacturer’s instructions. Sequencing libraries
were prepared using the Illumina DNA Flex kit (Illumina, San
Diego, CA) and sequencing was performed on the Illumina
MiSeq instrument (Illumina, San Diego, CA) using 2 x 250
protocol. Genomic analysis was done using the KmerFinder,
ResFinder, Multi Locus Sequence Typing (MLST), and
PlasmidFinder tools provided by the Center for Genomic
Epidemiology (http://www.genomicepidemiology.org/).
Additional analyses of sequence data were performed using
CLC Genomics Workbench v12.0.3 (Qiagen, Hilden,
Germany) and Geneious Prime software (Biomatters,
Auckland, New Zealand), including mapping, de novo
assembly, and variant analysis. Sequence data was mapped to
the following references: Klebsiella pneumoniae strain KP38731,
complete genome (Genbank NZ_CP014294.1), and Klebsiella
pneumoniae p lasmid pKPS30 , comple t e sequence
(Genbank NC_023314.1).
RESULTS

Patient History and Antibiotic Susceptibility
Results
A 67-year-old woman with a history of rectal cancer and recently
diagnosed bladder cancer experiencing anuria presented to the
clinic for ureteral stent removal approximately 1 month post
bladder surgery, cystectomy and ileal conduit (Figure 1). She was
referred to the ER for evaluation and was admitted due to
hematuria, chills, nausea, abdominal pain and severe sepsis on
the same day. A primary bacterial culture (Isolate 10) was
recovered from the aerobic blood culture bottle and identified
as Klebsiella pneumoniae by MALDI-TOF. Antimicrobial
susceptibility testing was performed using BMD but wells for
ceftriaxone and ceftolozane-tazobactam displayed an
indeterminate growth pattern in which the MIC could not be
interpreted accurately. Upon repeat testing by DD, a single
March 2021 | Volume 11 | Article 561880
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colony (Isolate 1B) was noted within the zone of inhibition for
ceftriaxone and was sub-cultured for further workup.

Further phenotypic testing revealed two sub-populations in
the primary culture, one susceptible to ceftriaxone and all other
3rd generation cephalosporins (Isolate 1A) and the other resistant
to most cephalosporins and ertapenem (Isolate 1B) (Table 1).
Isolate 1A showed pan susceptibility to all antibiotics tested
except fluoroquinolones. Isolate 1B was resistant to most beta-
lactams tested, except ceftazidime-avibactam, cefepime, and
meropenem. The contrasting differences in beta-lactam
susceptibility results between the two sub-populations in the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 392
primary culture prompted us to perform carbapenemase assays
and WGS for further investigation.

Phenotypic Characterization of Resistance
Mechanisms
Carbapenemase was tested by MHT, mCIM, and CarbaR PCR
assays. No carbapenemase activity was detected in any isolate by
MHT. However, Isolate 1B was mCIM positive, while Isolate 1A
was negative. CarbaR PCR test, which detects KPC, NDM, VIM,
OXA-48-group and IMP genes, was negative in all isolates.
Further phenotypic testing was performed to determine
FIGURE 1 | Patient Clinical Course. Significant events are noted under each hospitalization day, including procedures, symptoms, and antibiotics course. AST,
Antimicrobial susceptibility testing.
TABLE 1 | Antimicrobial susceptibility testing results.

Antibiotic Class Antibiotic Isolate 10 Isolate 1A Isolate 1B

BMD DD BMD DD BMD DD

Beta-lactam Ampicillin-Sulbactam 8 S >32 R
Amoxicillin-Clavulanate 4 S >32 R
Piperacillin-Tazobactam 64 I 18 I ≤8 S 25 S >128 R 6 R
Cefazolin >32 R 6 R 2 S 23 S >32 R 6 R
Cefoxitin 6 R 19 S 6 R
Ceftriaxone Indeterminate 25 S ≤1 S 30 S 64 R 10 R
Cefotaxime 24 S 31 S 6 R
Ceftazidime 16 R 18 I ≤0.5 S 28 S >32 R 6 R
Ceftazidime-Avibactam ≤2 S ≤2 S ≤ 2 S
Ceftolozane-Tazobactam ≤0.5 S ≤0.5 S >32 R
Cefepime ≤0.5 S 26 S ≤0.5 S 32 S ≤ 0.5 S 24 SDD
Aztreonam ≤0.5 S >32 R
Ertapenem ≤0.25 S 20 I ≤0.25 S 30 S 0.5 S 18 R
Imipenem 1 S 24 S ≤0.25 S 26 S 2 I 26 S
Meropenem ≤0.25 S 25 S ≤0.25 S 29 S ≤0.25 S 26 S
Meropenem-Vabrobactam ≤0.6 S ≤0.6 S

Aminoglycosides Amikacin ≤4 S 23 S ≤4 S 26 S ≤4 S 23 S
Gentamicin ≤1 S 22 S ≤1 S 26 S 1 S 23 S
Tobramycin 4 S 25 S ≤1 S 24 S 4 S 14 I
Streptomycin S S

Macrolides Azithromycin 16 S >32 R
Tetracyclines Minocycline 2 S 8 I

Tigecycline 0.5 1
Fluroquinolones Ciprofloxacin >4 R 6 R >4 R 6 R >4 R 6 R

Levofloxacin >4 R >8 R >8 R
Moxifloxacin >8 >8

Polymixins Colistin ≤2 WT ≤2 WT ≤2 WT
Folate Pathway antagonists Trimethaprim/Sulfamethoazole ≤1/20 S 12 I ≤1/20 S 14 I ≤1/20 S 6 R
March 202
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Broth microdilution (BMD) MIC reported in µg/ml; Disk Diffusion (DD) zone size reported in mm; R, Resistant; I, Intermediate; S, Sensitive, SDD, Susceptible-dose dependent.
1880

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Realegeno et al. K. pneumoinae Plasmid-Mediated AmpC blaDHA-1
possible AmpC activity with cefotaxime adjacent to imipenem or
cefoxitin disks on Isolate 1A and 1B (Figure 2). Cefoxitin and
imipenem were both able to induce resistance against cefotaxime in
Isolate 1B but not in Isolate 1A as noted by truncation of the zone,
suggesting a possible inducible AmpC resistance mechanism.

Genetic Determinants of Resistance
Whole genome sequencing was performed on the two sub-
populations and the primary mixed culture for comparison to
determine genetic relatedness and to identify drug resistance
genetic elements. All isolates were identified as Sequence Type
(ST) 11 based on MLST analysis and all closely related to the
same strain Klebsiella pneumoniae strain KP38731 by
KmerFinder analysis. Variant analysis was performed using
KP38731 as the reference genome and showed no single
nucleotide polymorphisms (SNPs) among the four isolates,
indicating they are of the same bacterial lineage. Drug
resistance genetic analysis using ResFinder identified numerous
genes conferring resistance to beta-lactams, aminoglycosides,
fluroquinolones, rifamycins, tetracycline, phenicol, macrolides,
and fosfomycin in Isolate 10, 1B (Table 2). In contrast, 1A had
much fewer resistance genes identified (Table 2), with only
blaSHV-182, oqxA, oqB, and fosA, which are known to be
chromosomally encoded in K. pneumoniae (Fu et al., 2007; Ito
et al., 2017). In addition, in silico plasmid identification analysis
by PlasmidFinder detected the presence of two plasmid types,
IncFIB(K) and IncR in primary Isolate 10 and Isolate 1B. The
InR-type plasmid was not detected in Isolate1A, which was the
isolate that demonstrated susceptibility to most antibiotics,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 493
further supporting that the primary culture was mixed with
two-subpopulations.

Further BLAST analysis identified the InR-plasmid in Isolate
10 and 1B to be closely related to a previously published InR
pKPS30 plasmid (NC_023314.1) with 98.3% pairwise identity
and 100% coverage. This 61,288-bp plasmid was initially
described in a K. pneumoniae ST11 strain isolated in France
(Compain et al., 2014). It carries several mobile genetic elements
(integron and transposons) with multiple resistance genes,
including blaDHA-1, blaOXA-30, aac(6′))-Ib-cr, aphA1, arr-3,
A B

C D

FIGURE 2 | Isolate 1B was cultured in the presence of an imipenem disk (left) placed adjacent to a cefotaxime disk (right) (A) and a cefoxitin disk (left) placed
adjacent to a cefotaxime disk (right) (B). Isolate 1A was cultured in the presence of an imipenem disk (left) placed adjacent to a cefotaxime disk (right) (C) and a
cefoxitin disk (left) placed adjacent to a cefotaxime disk (right) (D).
TABLE 2 | Resistance genes identified by WGS.

Antibiotic Class Targeted AMR Gene Isolate 10 Isolate 1A Isolate 1B

Beta-lactam blaDHA-1 ✓ ✓

blaOXA-1 ✓ ✓
blaSHV-182 ✓ ✓ ✓

Aminoglycoside aac(6′))-Ib-cr ✓ ✓
aph(3′))-Ia ✓ ✓

Folate Pathway sul1 ✓ ✓
Quinolone aac(6′))-Ib-cr ✓ ✓

oqxA ✓ ✓ ✓

oqxB ✓ ✓ ✓
qnrB4 ✓ ✓

Rifamycins arr-3 ✓ ✓
Tetracycline tet(A) ✓ ✓

Phenicol catB3 ✓ ✓
Macrolide mph(A) ✓ ✓

Fosfomycin fosA ✓ ✓ ✓

Plasmids IncFIB(K) ✓ ✓ ✓
IncR ✓ ✓
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catB3, mph(A), qnrB4, aac(6′))-Ib-cr, sul1, and tet(A), all of which
were also identified in Isolate 10 and 1B. Notably, both blaDHA-1
and ampR, along with sul1, are within a class-1 integron that was
originally discovered in a DHA-1-Producing Klebsiella spp. in
France over 15 years ago (Verdet et al., 2006).
DISCUSSION

In this report, we describe the detection of AmpC expression in a
subpopulation of K. pneumoniae recovered from a blood culture
using phenotypic antimicrobial susceptibility testing,
carbapenemase assays and WGS. From the primary culture
isolate, we uncovered two subpopulations: one was ceftriaxone
resistant with inducible AmpC and the other was ceftriaxone
susceptible without AmpC. The AmpC encoding gene, blaDHA-1,
was detected in Isolate 1B but not in 1A, which is consistent with
phenotypic susceptibility results and carbapnemase test results.
No carbapenemase encoding genes were detected, suggesting the
elevated ertapenem & imipenem MIC and positive mCIM might
be due to the hyperproduction of AmpC after induction by
cephalosporins or carbapenems.

The patient was admitted due to sepsis-like symptoms and was
empirically treated with vancomycin for 2 days and piperacillin-
tazobactam for 1 day, both of which would not be effective in
treating the K. pneumonia isolate. The antibiotic regime was
quickly switched to ertapenem on Hospital Day 2 pending
susceptibility results, blood cultures were negative by Hospital
Day 3, even though the final susceptibility results (reported on
Hospital Day 5) showed the bacteria were not susceptible to
ertapenem. The short duration of sepsis-like symptoms and
suboptimal drug treatment suggested transient bacteremia post
ureteral sent removal procedure and antibiotic regime would likely
not change the clinical outcome in this case. However, in the
context of more severe infection, treatment options are expected to
be more challenging due to the limited selection of susceptible
beta-lactams, such as imipenem, meropenem, meropenem-
vaborbactam, and ceftazidime-avibactam.

Chromosomally encoded AmpC-type beta-lactamases are
known to be readily induced by cephamycins and carbapenems
(Jacoby, 2009). Non-SPICE group organisms, such as Escherichia
coli and K. pneumoniae, can obtain plasmid-mediated AmpC
resistance that is constitutively expressed due to the lack of
regulatory genes. However, there is an emerging threat of
organisms carrying plasmid mediated inducible AmpC, such as
blaDHA-1, as identified in this report. Plasmid-mediated blaDHA-1
was first identified in 1992 from a stool isolate of Salmonella
enterica serovar Enteritidis in Saudi Arabi (Gaillot et al., 1997).
Two subsequent DHA-1 producing K. pneumoniae isolates were
identified in California and Florida (Moland et al., 2002; Alvarez
et al., 2004) the same year and additional isolates were later
identified in France in 1998 (Verdet et al., 2006). The DHA-1
carrying plasmid in this study is closely related with the plasmid
pKPS30 first identified in a ST11 type K. pneumoniae in 2008 in a
urine isolate from a patient in France (Compain et al., 2014).
Plasmid KPS30 contains a 12,391-bp backbone with an IncR
replicon and a 44,944-bp MDR region including blaDHA-1 and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 594
ampR, insertion sequences, complete class 1 integron, and several
transposons. K. pneumoniae carrying DHA-1 AmpC have been
increasingly reported worldwide, particularly in Europe and Asia
(Yan et al., 2002; Lee et al., 2006; Song et al., 2006; Verdet et al.,
2006; Vanwynsberghe et al., 2009; Hennequin et al., 2012; Luan
et al., 2015) but rarely in the US. In a recent study examining 482
ceftriaxone not susceptible in Enterobacterales isolates in a US
medical center, 17% of isolates were found to have a plasmid
mediated AmpC and 5% of those were blaDHA positive,
including one K. pneumoniae isolate (Tamma et al., 2019).
Although there have been few documented instances of
blaDHA-1 carrying K. pneumoniae in the US, there are no
routine testing methods that can detect this gene and therefore
the actual prevalence may be underestimated. Importantly, we
demonstrated cefoxitin and imipenem were able to induce
resistance to cefotaxime in an isolate harboring the plasmid-
borne blaDHA-1. This would have been concerning if the patient
continued to be treated with ertapenem due to the potential for
AmpC derepression and therefore carbapenem resistance.

Interestingly, the mCIM test was able to demonstrate
carbapenemase activity in our isolate. The mCIM test generally
has high sensitivity and specificity for carpabenemase producing
organisms but does not typically detect carbapenemase activity in
non-carbapenemase producing organisms (Pierce et al., 2017;
Zhou et al., 2018; Thomson et al., 2019). Previous studies have
shown few positive mCIM results in non-cabapenemase producing
organisms, including AmpC producing Enterobacter spp. (Pierce
et al., 2017; Thomson et al., 2019). Here we demonstrate a blaDHA-1
encoding K. pneuominae isolate as another instance of a non–
carbapenemase-producing organisms that could result in a positive
mCIM. The MHT in all isolates were negative, which contrasts
previous studies reporting weakly false positive MHT results in
non-carbapenemase, plasmid mediated blaDHA-1 encoded AmpC
in Enterobacter spp. and K. pneumoniae isolates with mCIM
negative results (Zhou et al., 2018). In this case, hyperproduction
of AmpC is likely causing the hydrolysis of carbapenem which
resulted in positive mCIM. According to the current Council of
State and Territorial Epidemiologists (CSTE) position statement
(Centers for Disease Control and Prevention, 2018), this isolate
qualifies as a CRE based on the mCIM positive result alone or the
ertapenem resistance seen by disk diffusion. Identification of a CRE
is critical for infection control precautions and accurate antibiotic
susceptibility testing is important for determining CRE status.
However, our study has shown that it is increasingly challenging
to detect emerging resistance mechanisms due to limitations of
current methods used by many clinical microbiology laboratories.

In summary, we described a case of unusual K. pneumoniae
bacteremia with a mixed subpopulations of bacteria with or
without AmpC gene blaDHA-1, causing an initial false and
discrepant susceptibility profile. Performing disk diffusion to
resolve the ceftriaxone susceptibility result was the key in
revealing the hidden bacterial subpopulation expressing AmpC.
We used WGS to show the mix of bacterial populations were all
genetically related except for the presence of an additional plasmid
carrying blaDHA-1. This case highlights the need for guidelines that
include both molecular testing and phenotypic screening for
inducible AmpC producing organisms outside the typical
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“SPICE” group. Although plasmid-borne blaDHA-1 is seldom
reported in the US, it is possible that organisms with this gene
are under detected due to the lack of effective screening methods.
WGS is instrumental in revealing inducible resistance mechanisms
that are difficult to identify by routine methods. Further molecular
epidemiological investigation is required to fully understand the
true prevalence of this resistance mechanism in the community.
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The emergence of carbapenem-resistant Enterobacterales (CRE) has become a major
public health concern. Moreover, its colonization among residents of long-term care
facilities (LTCFs) is associated with subsequent infections and mortality. To further explore
the various aspects concerning CRE in LTCFs, we conducted a literature review on CRE
colonization and/or infections in long-term care facilities. The prevalence and incidence of
CRE acquisition among residents of LTCFs, especially in California, central Italy, Spain,
Japan, and Taiwan, were determined. There was a significant predominance of CRE in
LTCFs, especially in high-acuity LTCFs with mechanical ventilation, and thus may serve as
outbreak centers. The prevalence rate of CRE in LTCFs was significantly higher than that
in acute care settings and the community, which indicated that LTCFs are a vital reservoir
for CRE. The detailed species and genomic analyses of CRE among LTCFs reported that
Klebsiella pneumoniae is the primary species in the LTCFs in the United States, Spain, and
Taiwan. KPC-2-containing K. pneumoniae strains with sequence type 258 is the most
common sequence type of KPC-producing K. pneumoniae in the LTCFs in the United
States. IMP-11- and IMP-6-producing CRE were commonly reported among LTCFs in
Japan. OXA-48 was the predominant carbapenemase among LTCFs in Spain. Multiple
risk factors associated with the increased risk for CRE acquisition in LTCFs were found,
such as comorbidities, immunosuppressive status, dependent functional status, usage of
gastrointestinal devices or indwelling catheters, mechanical ventilation, prior antibiotic
exposures, and previous culture reports. A high CRE acquisition rate and prolonged CRE
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carriage duration after colonization were found among residents in LTCFs. Moreover, the
patients from LTCFs who were colonized or infected with CRE had poor clinical
outcomes, with a mortality rate of up to 75% in infected patients. Infection prevention
and control measures to reduce CRE in LTCFs is important, and could possibly be
controlled via active surveillance, contact precautions, cohort staffing, daily chlorhexidine
bathing, healthcare-worker education, and hand-hygiene adherence.
Keywords: Enterobacteriaceae, long-term care facilities, oxacillinase, carbapenemases, metallo-beta-lactamase
INTRODUCTION

The emergence of antimicrobial resistance has become a major
public health concern. Since the identification of carbapenem-
resistant Enterobacterales (CRE) in the 1990s, CRE has spread
worldwide during the past two decades (Centers for Disease
Control and Prevention, 2013). The threat is not only confined to
tertiary referral hospitals or academic health science centers. In a
network of community hospitals in the southeastern United
States, a CRE incidence of 0.26 per 100,000 patient-days in
2008 and 1.4 per 100,000 patient-days in 2012 was reported
(Thaden et al., 2014). In a population-based study in seven states
in the United States, CRE incidence of up to 2.93 per 100,000
persons (95% Confident Interval 2.65–3.23) was also reported
(Guh et al., 2015). In addition, previous studies had reported
high mortality rates among CRE-infected patients, ranging from
32.1%–48% (Patel et al., 2008; Gasink et al., 2009), which could
even increase to 71% in one year among liver transplant patients
(Kalpoe et al., 2012). Regarding the median cost of CRE
infections with an incidence of 2.93 per 100,000 persons in the
United States, it would cost hospitals $275 million, third party
payers $147 million, and the society $553 million (Bartsch et al.,
2017), indicating a high economic burden caused by CRE
infections. Collectively, considering the rapid worldwide
spreading of CRE, the association of CRE infections with poor
clinical outcomes, high economic burden, and relatively limited
antimicrobial treatment for CRE in the current era, the Centers
of Disease Control and Prevention (CDC) announced CRE as the
most urgent public health threat in 2013.

During the past decade, the demand for chronic rehabilitation
and skilled nursing care after an acute illness has increased as the
population ages. At the same time, a high prevalence of
colonization by multi-drug resistant organisms (MDRO)
among residents in long-term care facilities (LTCFs) was
reported. The SHIELD Orange County Project demonstrated
an MDRO prevalence of 65% among nursing homes (NHs)
residents and 80% among long-term acute care hospital (LTACs)
residents (Mckinnell et al., 2019). Furthermore, Guh et al.
reported that most CRE isolates came from individuals with a
history of health care exposure or hospitalization within one
year, and most CRE hospitalized cases resulted in a discharge
directly to a long-term care facility or LTAC hospitals (Guh et al.,
2015). Another case-control study using the Illinois hospital
discharge database reported that the CRE carriage rate at the
time of admission was highly associated with prior health-care
gy | www.frontiersin.org 298
facility exposure (particularly LTACs) (Lin et al., 2019). That is,
compared with the relatively low prevalence rate in the
community (Prabaker et al., 2012) and in the acute care
hospitals (ACHs), the high prevalence of CRE in LTCFs is an
important public health issue and a critical component of large-
scale antibiotic stewardship programs.

Tracing back, a systematic review and meta-analysis was
conducted to highlight the importance of CRE in hospital
settings (Van Loon et al., 2018). In this article, we conducted a
literature review to summarize the current understanding of CRE
in LTCF settings, and to demonstrate that the CRE colonization
and/or infection rates are truly higher among LTCFs in different
geographic regions.

We searched the English-language medical literature
using PubMed/MEDLINE from 1990 to 2020, using the
following keywords: carbapenem-resistant Enterobacteriaceae,
carbapenem-resistant Enterobacterales, long-term care
facilities, nursing home, long-term acute care hospitals. The
references of articles found using this search were also
reviewed to identify other potential studies that were not
located using the search terms. Studies reporting CRE carriage
and/or infection among elderly residents or patients who lived in
or being admitted from long term care facilities were reviewed.
Studies that provided data on previous long term care facilities
exposure in the setting of acute care hospital or community or
outbreak were also included. Exclusion criteria included studies
that only documenting CRE carriage and/or infection in acute
care hospital, tertiary medical centers, ICU or community;
studies that tested for multiple-drug organism carriage and/or
infection but did not evaluate for CRE; or studies that evaluated
CRE carriage and/or infection among pediatric patients or health
care workers. In total, 33 studies were reviewed in full. Other 12
articles involved in this study were searched while reviewing the
similar articles in above mentioned papers.
Prevalence and Incidence of CRE Among
Residents in LTCFs
An increasing number of studies have evaluated CRE in LTCFs
between 2012 and 2020. In most studies, LTCF were facilities
that provide long-term rehabilitation and skilled nursing care,
such as long-term acute care hospitals or facilities (LTACs),
skilled nursing facilities (SNFs) and nursing homes (NHs) in the
United States, and residential care homes for the elderly (RCHE)
in Hong-Kong. The study designs for CRE acquisition among
April 2021 | Volume 11 | Article 601968
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LTCF residents could be broadly classified into four types: point
prevalence survey (identifying the number of people with CRE at
a specific point in time), incidence surveillance (determining the
rate of CRE in LTCF for a specific period), outbreak
investigations (reports of investigation during CRE outbreak),
and network model formulation. CRE colonization and/or
infection in LTCFs shared similar but not identical
characteristics in different geographic regions; therefore, we
separated the studies geographically, that is, the United States,
Europe (including Turkey, Israel, and North Lebanon) and Asia.

The prevalence rate of CRE colonization among LTCFs in the
United States varied widely, as demonstrated in Table 1, ranging
from 1%–30.4% (Prabaker et al., 2012; Lin et al., 2013; Johnson
et al., 2014; Van Duin et al., 2014; Cunha et al., 2016; Mckinnell
et al., 2016; Prasad et al., 2016; Han et al., 2017; Reuben et al.,
2017; Mckinnell et al., 2019). The prevalence rate of
Carbapenem-resistant K. pneumoniae (CRKP) among residents
of LTCFs in the United States demonstrated a high geographical
variation, with the highest prevalence in the West (42.2%),
followed by the South (12.2%), Midwest (7.3%), and Northeast
(9.9%) (Han et al., 2017). The highest CRKP prevalence was
found in California (45.5%, 701/1540) (Han et al., 2017). Among
the CRKP endemic West region, the CRKP prevalence rate
changed significantly across the study period: 48.5% in quarter
1, 2014; 40.4% in quarter 2, 2014; 49.5% in quarter 3, 2014; 32.5%
in quarter 4, 2014; and 39.0% in quarter 1, 2015 (p<0.01, test for
trend) (Han et al., 2017). The CRE incidence among residents of
LTCFs in the United States varied from 1.07–6.83 cases per
10000 patient-days (Brennan et al., 2014; Chopra et al., 2018).
The pooled mean incidence rate of CRE in the United States was
0.46 per 1000 patient-days (Marquez et al., 2013).

In Europe (including Turkey, Israel, and North Lebanon),
CRE in LTCFs also demonstrated a high geographic variance
(Table 2). Recent studies about CRE in Europe were few and
most of them reported low CRE prevalence rates among
residents of LTCFs. There was a 0.3% CRE prevalence rate in
LTCFs in Switzerland (37/12423) (Kohler et al., 2018), and only
one resident with CRE carriage was found in each LTCF in
Belgium and the Netherlands (Latour et al., 2019; Van Dulm
et al., 2019). Even though a low prevalence rate was noted, the
high association of CRE colonization with LTCF was still noted
from the hospital admission data in Spain, reporting that about
37% of cases were health-care associated, of which 42% were
nursing home residents (Palacios-Baena et al., 2016). Different
from mainland Europe, a higher prevalence of CRE carriage was
found among residents in LTCFs in Israel (12%) (Ben-David
et al., 2011) and North Lebanon (1.7%) (Dandachi et al., 2016).
Though a relatively low prevalence rate of CRE colonization in
LTCFs was found in Belgium, the Netherlands, and Switzerland,
high CRE carriage rates (28.4%) were reported among a LTAC
rehabilitation facility (LTACRF) in central Italy, which is a CRE
endemic region since 2010 (Ambretti et al., 2019).

As shown in Table 3, the prevalence rate of CRE colonization
among LTCFs in the Asia region ranged from 13%–22.7%
(Dandachi et al., 2016; Lee et al., 2017; Chen et al., 2018; Hagiya
et al., 2018; Jean et al., 2018; Mao et al., 2018; Le et al., 2020).
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The two-point prevalence studies in Japan showed a 13%
prevalence rate of CRE colonization in LTCFs in Hiroshima
and a 19.3% prevalence rate in Osaka hospitals (one of which
had approximately 200 long-term care beds) (Hagiya et al., 2018;
Le et al., 2020). The CRE prevalence among the LTCFs in Taiwan
was 22.7% (Lee et al., 2017). In Korea, a 10-month active
surveillance survey via rectal specimens among LTCFs reported
a low carbapenemase-producing Enterobacterales (CPE)
prevalence rate (1.4%, 4/282) (Hwang et al., 2018). In
Hong-Kong, no CPE fecal carriage was found in residential care
homes for the elderly (RCHEs) (Dandachi et al., 2016), compatible
with a previous study of 28 RCHEs in Hong-Kong by (Cheng
et al. (2016).

Collectively, the high predominance of CRE in LTCFs was
observed worldwide, especially in LTCFs in the West region of
the United States (California), Spain, Italy, Japan, and Taiwan.
Since very few studies have been conducted to evaluate the
clinical epidemiology of CRE in LTCFs in some regions in
Europe (Russia, Arabia) and Asia (such as the mainland
China, and the southern east countries), we could not
determine the clinical epidemiology of CRE colonization and/
or infections in these countries or regions.

High-Acuity LTCFs Were an Important
Reservoir of CRE
The high predominance of CRE in LTCFs reflects the local
clinical epidemiology in the community or hospital settings,
especially the ACHs or intensive care units (ICUs). In the
following section, we compared recent studies evaluating CRE
in LTCFs with previous studies about CRE in hospital settings
and/or the community to demonstrate the issue.

In the United States, there were many studies supporting that
the CRE acquisition and/or infections among residents of LTCFs
was much more than that in acute care settings and/or the
community. A population-based incidence study of CRKP
among ACHs, LTACs, and SNHs in the Los Angeles County
between 2010 and 2011 reported a higher CRE incidence rate in
LTACs (2.54 per 1000 patient-days) than that in ACHs (0.31 per
1000 patient-days, p <0.001) (Marquez et al., 2013). Another
outbreak investigation conducted among ACHs and LTACs in
Indiana and Illinois in 2008 reported that one of the LTACs was
the main locus of the outbreak, which accommodated 60% (24/
60) of the cases, and only 10% (4/60) of the patients definitely
had CRE colonization in ACHs (Gohil et al., 2017). A previous
systematic review of CRE in the United States between 2000 and
2016 reported higher infection rates in LTACs than in ACHs and
community settings (Livorsi et al., 2018), and community-onset
cases mostly had health care exposure within the previous 90
days (Brennan et al., 2014). The multihospital case-control study
in Chicago during an early KPC epidemic reported a higher
prevalence of CRE carriage among LTCFs patients (8.3%, n=15)
compared with patients admitted from the community (0%, n=0)
(p<0.001) (Prabaker et al., 2012). Additionally, the HARP-DC
studies (one of the first study to measure the prevalence of CRE
colonization in a region aligning with CDC’s recommendation of
collaborative approach), highlighted that the CRE prevalence in
April 2021 | Volume 11 | Article 601968
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TABLE 1 | Studies of carbapenem-resistant Enterobacterales colonization in long-term care facilities in the United States.

ge Molecular
studies

Risk factors

m NA NA

)

e,

NA LTACH facility type, mechanical
ventilation, and length of stay

H

15 K.
pneumoniae
(60% ST258)
6 E. Coli
(50% ST131)
1 E. Cloacae.
Of all
19 KPC-2
3 KPC-3.

Mechanically ventilated

NA Geographic variation

CR-KP (n=46)
30 KPC-3
16 KPC-2
CR-E coli
11 KPC-3
4 KPC-2
10 additional
CTX-M.
[9 KP KPC-3
1 E.Coli KPC-
2)

Recent CDI
Tracheostomy collar
mechanical ventilation

NA history of MDRO, care needs,
incontinence, and catheters.
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Reference Study type Sites Study period Study populations Specimen
sources

Sample size Prevalence/
incidence

LTCF percenta

Lautenbach
et al., 2009

Point
prevalence
study

New Jersey,
Pennsylvania
Delaware

2008/01/15
-2008/11/15

63 LTCFs
across 3 US states

Urine
culture

1,805 isolates 6% CR-KP 1,653 isolates fr
44 SNF
152 isolates from
19 ALF

Lin et al.,
2013

Point
Prevalence
study

Chicago 2010/07-2011/06 24 ACHs
7 LTACs

rectal,
inguinal
swab, or
urine

391 patients 30.4% (119 of
391) of LTACHs
with KPC-
producing
Enterobacterales,
compared to
3.3% (30 of 910)
of ACHs ICU
patients
[prevalence ratio
9.2, 95% CI 6.3-
13.5]

All LTACHs had
KPC, prevalence
range, 10%–54%
15 of 24 ACHs
had KPC
(prevalence rang
0%–29%).

Johnson
et al., 2014

Point
Prevalence
study

Maryland 2010/07-2010/08 30 (67%) ACHs and
10 (83%) LTCFs

peri-anal
and
sputum

390 patients,
total 358
samples

6% of patients
(ACH/LTCF) with
KPC-producing
Enterobacterales.

55% (n=11) in
LTCF
45% (n=9) in AC

Han et al.,
2017

Point
Prevalence
study

USA 2014/01-2015/03 3,470 patients
across 64 LTACs

Blood,
respiratory,
urine

3,846 unique
quarterly K.
pneumoniae
clinical cultures
in 3,470
patients

24.6% CRKP
(946/3846)

NA

Prasad
et al., 2016

retrospective
Point
Prevalence
study

New York chart review a single center–
affiliated LTCF

rectal swab 301 residents
(80-bed
ventilator unit)

18.9%
asymptomatic
rectal CRE
colonization (n=57
patients 61
isolates)

CR-KP
n=46
CR E. coli
n=15

Mckinnell
et al., 2016

Retrospective
point
prevalence
study

Southern
California

2015/06 - 2015/
08

605 residents in 3
NHs

axilla/groin
swabs

1,800 swabs
from 605
residents

1% CRE NA

100
o
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TABLE 1 | Continued

tage Molecular
studies

Risk factors

acility

4.3%(n=44)
KPC
1 NDM
1 both KPC
and OXA48.

NA

NA Gastrointestinal device
(OR 19.7, 95% CI 3.5-109.4,
p<0.001)
Prior MDROs

01).

NA LTCF subtype

88 CRKP
isolates
belong to
ST258

NA

2 KPC
producing
Citrobacter
freundii

Gastrostomy (p=0.04)

nset,
ity
d

in

89 cases K.
pneumoniae
(87.2%)
13 cases E.
coli (12.7%)

surgery in 90 days, recent infection/
colonization with a multidrug-
resistant organism, recent exposures
to antimicrobials

nts
wing
on

8 CRE
isolates had
blaKPC-3, and
belonged to
ST258

in

s

CRE
infections
originate from
almost all
ACHs and
half of SNFs.

Medicare patient transfers strongly
correlated with CRE case-transfer
data in ACHs (r=0.75; P<0.01) and
LTACHs (r=0.77; P=0.03), but not in
SNFs (r=0.02; P=0.85).

incidence rate in ACHs and LTACs was 0.46 per 1000

Cs (2.54 per 1000 patient-days) was higher than that in
er 1000 patient-days, p<0.001)
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Reference Study type Sites Study period Study populations Specimen
sources

Sample size Prevalence/
incidence

LTCF perce

Reuben
et al., 2017

Retrospective
prevalence
study

Washington,
District of
Columbia

2016/01/11-
2016/04/14

8 ACHs,
2 LTACs
5 SNFs
1 inpatient
rehabilitation facility

perianal
swab

1,022
completed
tests

5.2% CRE (n=53,
95% CI, 3.9%–

6.8%)

ACH 5.0%
LTCF 7.0%
inpatient
rehabilitation
0%.

Mckinnell
et al., 2019

Retrospective
point
prevalence
study

Southern
California

2016/09-2017/03 18 NHs and 3
LTACHs [SHIELD
Orange County
Project]

bilateral
axilla/groin
and peri-
rectal
swabs

50 adults
in 18 NHs
and 3 LTACHs

67% (n=701)
MDROs
3% (n=31) CRE

NA

Prabaker
et al., 2012

Hospital
admission
Case control

Chicago NA Hospitalized adults
from 4 hospitals with
an early KPC
epidemic.

Rectal
swab

180 patients
from LTCF

8.3% (n=15) of
LTCF had KPC-
producing
Enterobacterales
colonization

0 (0%) of the
community
patients (P<.0

Van Duin
et al., 2014

Hospital
admission

Northeastern
Ohio

2011/12/24
-2013/03/01

Hospitalized patients
from LTCF and
community (28%)

NA 251 patients
admitted to
18 hospitals

CRKP infection in
45% patients

NA

Cunha
et al., 2016

Hospital
admission
Case-Control

Providence,
Rhode Island

2012/07-2012/09 hospital admission
from NHs

Fecal
carriage
(rectal
swab PCR)

404 patients
with 500
hospital
admissions

4.6% CPE fecal
carriage rate
(n=23),

NA

Brennan
et al., 2014

Incidence
surveillance

Michigan 2012/09/01-
2013/02/28

17 ACHs
4 LTAC

NA 102 cases over
957220 patient
days

1.07 cases per
10,000 patient
days

5% hospital o
65% commu
onset (75% h
health care
exposure with
90d)

Chopra
et al., 2018

Incidence
surveillance
Retrospective
Cohort

Detroit 2011/01/01-
2012/07/31

A 77-bed LTAC in
Detroit

NA 30 patients with
CRE
24(80%)
infection, 6
(20%)
colonization

Incidence
6.83 episodes per
10,000 inpatient-
days (30/351112)

23 (77%) pat
had CRE follo
LTAC admiss

Bower
et al., 2020

point incident
survey

8-county
Atlanta
metropolitan
area

2016 Georgia Emerging
Infections Program
(EIP), Facility-specific
Connectivity Using
Medicare Data

NA NA 283 incident CRE
cases

50% in ACH
(n=141), 40%
SNFs
(n=113)
10% in LTAC
(n=29)

Marquez
et al., 2013

Incidence
and outbreak
surveillance

NA 2010/06/01-
2011/05/31

ACH, LTAC, NH
outbreak in
1 LTAC

NA 814 reports
(CRKP positive)

ACH (57%,
n=387), LTAC
(34%, n=231),
SNH (8%, n=57)

pooled mean
patient-days
the rate in LT
ACHs (0.31 p
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LTCFs was even higher than that in the ACHs (7.0% in LTCFs vs
5.0% in ACHs), with a relative prevalence ratio of 0.9% [0.5-1.5]
in LTCFs and 1.5% [0.9-2.6] in ACHs) (Reuben et al., 2017).
Furthermore, up to 30.4% prevalence rate of KPC-producing
Enterobacterales among LTCFs was even reported (prevalence
range 10–54%), compared with the relatively low prevalence rate
in short-stay hospital ICU patients (3.3%, prevalence rate 0–
29%) (Lin et al., 2013). That is, a 9-fold greater risk of KPC-
producing Enterobacterales was found in the LTCF patients
compared to the ACH patients (Lin et al., 2013). However,
conflicting results of CRE prevalence between LTCFs and
ACHs remain. A population based study conducted in Atlanta
reported different results, of which CRE incidence was attributed
mostly to the ACHs (n=141, 50%) and skilled nursing facilities
(SNFs; n=113, 40%), rather than the LTACs (n=29, 10%) (Bower
et al., 2020). A CRE incidence study by Guh et al. reported that
most cases were collected from ACHs (33.9%) rather than from
LTCFs (26.9%) or a LTAC (7.5%) (Guh et al., 2015).

In Europe, the European survey of carbapenemase-producing
Enterobacterales (EuSCAPE study) evaluating CRE colonization
and/or infections in hospitalized patients reported that CRE
prevalence varied geographically, with the highest rate in the
Mediterranean and Balkan countries (Grundmann et al., 2017).
High incidence countries included Greece patients (5.78 per
10000 hospital admissions), Italy (5.96 per 10000 hospital
admissions), Montenegro (5.65 per 10000 hospital admissions),
Spain (4.01 per 10000 hospital admissions), and Serbia (3 per
10000 hospital admissions) (Grundmann et al., 2017). The high
predominance of CRE in Spain and Italy were similar between
ACHs and LTCFs, but the difference of CRE prevalence and/or
incidence among LTCFs in other countries and/or regions in
Europe had not been clarified in previous studies.

In Asia region, Kayoko Hayakawa et al. reported a 30%
prevalence rate of carbapenemase-producing Enterobacterales
(CPE) among tertiary hospitalized patients (Hayakawa et al.,
2020), which was much higher than the CRE prevalence rate in
LTCFs in another study in Japan (Le et al., 2020). However,
Kayoko Hayakawa highlighted that patients with CPE were more
likely to be residents in the nursing homes or the LTCFs prior to
hospital admission (Hayakawa et al., 2020). Dokyun Kim et al.
reported a low carbapenem resistance rate among K. pneumoniae
in Korean secondary and tertiary hospitals (less than 0.1–2%),
but an increasing trend of CRE (CRKP and E. coli) was reported
in recent years (the carbapenem susceptibility rates of E. coli were
100% in 2011 and 99.3% in 2015; the carbapenem susceptibility
rates of K. pneumoniae were 99.0% in 2011 and 97.0% in 2015)
(Kim et al., 2017). In China, Qi Wang et al. conducted a
longitudinal large scale CRE study between 2012 and 2016
among hospitals in China, and a high prevalence rate of
carbapenem resistance among Enterobacterales was found
(91% in K. pneumoniae, 80% in E. coli, and 72% in E. cloacae).
However, there were few data about CRE prevalence in LTCFs in
mainland China and other countries in Europe. Though little is
known about the accurate difference of CRE prevalence between
ACHs and LTCFs in the Asia region and Europe, studies in the
United States, Italy, and Japan highlighted the threat of high
prevalence of CRE among LTCFs, of which the prevalence
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TABLE 2 | Studies carbapenem-resistant Enterobacterales colonization in long-term care facilities in the Europe.

ple size Prevalence/
incidence

LTCF
percentage

Molecular studies Risk factors

arriage in
atients

12% CRKP (1004/
1144)

NA NA Prolonged length of stay,
sharing a room with known
carrier, antibiotic use in prior
3 months, prior culture grew
CRKP

samples
40
s

0.3% CRE
(37/12,423)

NA NA Non-urogenital isolates,
geographic

sidents
NHs

CRE carriage in
only 1 resident

NA NA NA

idents from
Fs

CRE carriage in
only 1 resident

MDR-GNB
carriage rate
18.2% (range
0-47%)

NA NA

lates from
esidents

1.7% CRE
(3/178)

NA 1.7% co-producers
of OXA-48 and
ESBL

Recent antibiotic use

379 isolates from
245 patients had
CPE
164(66.9%)
infection
81 colonized
23 asymptomatic
bacteremia

Healthcare
associated in 91
cases (37%), of
which 42% NH
residents

Of 35 NH cases
32 K. pneumoniae
(31 OXA-48, 1 VIM-
1)
3 E. coli (OXA-48)

NA

10 CRE in 3
outbreaks

NA 10/10 OXA-48 K.
pneumoniae
3/10 OXA-48 E. coli

Antibiotic consumption,
high frailty, incontinence

terobacterales; CRE, carbapenem-resistant Enterobacterales; LTCFs, long-term care facilities; MDR-GNB, multidrug-
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Authors Study type Sites Study period Study
populations

Specimen
sources

Sam

Ben-David et al.,
2011

Point prevalence
study

Israel NA 1,144
patients in
12 PACFs

Rectal
swab

CRKP
1,044 p

Kohler et al., 2018 Point prevalence
study

Switzerland 2007/01-2017/10 NH Urogenital,
skin, other

16,804
from 9,
residen

Latour et al., 2019 Point prevalence
study

Belgium 2015/06
-2015/10

51 randomly
selected
residents
per NH

Rectal
swab

1,447 r
from 29

Van Dulm et al.,
2019

Point prevalence
study

Netherlands 2014/11
-2015/08

12 LTCFs Rectal
swab

385 res
12 LTC

Dandachi et al.,
2016

Point prevalence
study

North
Lebanon

2013/12-2014/04 2 NHs Fecal swab 178 iso
68 NH

Palacios-Baena
et al., 2016

Hospital
admission

Spain 2013/02/01-
2013/05/01

in 34
hospitals

NA NA

Legeay et al., 2019 Outbreak
surveillance

Western
France

2014/05-2017/07 10 isolates
from 3 intra-
NH outbreak

Urine
Rectal
swab

NA

CRKP, carbapenem resistant Klebsiella pneumoniae; PACF, post-acute-care facilities; CPE, carbapenemase-producing En
resistant micro-organisms; NA, not available; NHs, nursing homes.
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and/or incidence of CRE acquisition and infections in LTCFs was
much higher than that in ACHs, ICUs, and the community. Our
review suggests that LTCFs are vital reservoirs for CRE and are
important in regional outbreaks and/or dissemination of CRE
(Chitnis et al., 2012; Prabaker et al., 2012; Lin et al., 2013;
Guh et al., 2015; Gohil et al., 2017).

The CRE prevalence varied among different subtypes of
LTCFs. One study reported a higher CRE prevalence in
facilities that managed ventilated LTAC patients and ventilator-
capable nursing homes (vNH) residents (8% vs < 1%, p<.001) and
was rare in NHs that did not offer mechanical ventilation (NH <1%,
vNHmedian 10% [0-12%], LTACs median 8%[8-10%]) (Mckinnell
et al., 2019). Predominant CRE carriage among skilled nursing
facilities with ventilator care (VSNFs) (27.3%) and LTACs (33.3%)
(p <0.001) was found (Prabaker et al., 2012). Furthermore, patients
from VSNFs and LTACs had a 7.0-fold greater odds ratio of KPC-
producing Enterobacterales colonization (95% CI 1.3-42, p=0.022)
than patients from SNFs (Prabaker et al., 2012). Collectively, high-
acuity LTCFs that provided mechanical ventilation, such as
ventilated LTAC, vNHs, and VSNFs, were particularly important
for regional CRE spread.
Similar CRE Species Distribution Between
LTCFs and ACHs
The species distribution of KPC-producing Enterobacterales was
similar between the ACHs and LTCFs in the United States, of
which K. pneumoniae was the prominent species (Brennan et al.,
2014; Guh et al., 2015; Cunha et al., 2016; Satlin et al., 2017; Jean
et al., 2018; Hayakawa et al., 2020). The KPC-producing K.
pneumoniae was the predominant species (87%, n=129),
followed by Enterobacter aerogenes (6%), E. coli (4%), E.
cloacae (0.7%), and co-colonization with K. pneumoniae plus
either E. coli or E. cloacae (2.7%) (Lin et al., 2013). Consistent
with the CRE incidence study from the United States
communities in 2012–2013, a high prevalence (58.6%, n=351)
of K. pneumoniae among CRE isolates was found among the
United States population, followed by E. coli (13.2%, n=79) and
E. cloacae (12.5%, n=75) (Guh et al., 2015). A high percentage of
K. pneumoniae (87.2%, n=89) was also noted in a state-wide
surveillance study in Michigan (Brennan et al., 2014).

In Europe, the predominant CRE species were also similar
between the ACHs and the LTCFs. A hospital admission survey
demonstrated K. pneumoniae as the primarily species in Spain, of
which 37% of cases were health-care related (42% were NH
residents) (Palacios-Baena et al., 2016). The EuSCPAPE study
reported predominant K. pneumoniae among CRE species,
followed by E. coli. Wide geographic variations in CRE
prevalence existed in Europe, with a high prevalence in Italy,
Romania, Turkey, and Spain (Grundmann et al., 2017).

In the Asian region, among CPE in Japan, the most common
species were E. cloacae (30%), followed by K. pneumoniae (22%),
E. coli (14.8%), Citrobacter freundii (11.1%), Klebsiella oxytoca
(7.4%), E. aerogenes (3.7%), and Serratia marcescens (3.7%)
(Hayakawa et al., 2020). The prominent CRE strains identified
among LTCFs in Taiwan were K. pneumoniae, compatible with
previous studies (Jean et al., 2018).
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Risk Factors for CRE Colonization and/or
Infections Among Residents in LTCFs
Multiple risk factors were reported to be associated with the
increased vulnerability for colonization and/or infections with
CRE or specifically KPC-producing Enterobacterales. The
identified risk factors could be broadly classified into four
groups: patient characteristics, environmental factors (including
facility subtypes and the use of medical devices) and previous
microbiology status or antibiotic exposures (including previous
hospital stay and co-infection with other pathogens) (Table 4).

The identified patient characteristics associated with a
significant risk factors for CRE colonization or infection
among residents in LTCFs were fecal incontinence (OR 5.78,
95% CI 1.52 to 22.0, p=0.01) (Mills et al., 2016), solid organ or
stem cell transplantation (OR 5.05, 95% CI 1.23 to 20.8, p=0.03)
(Mills et al., 2016), comorbidity status with Charlson’s score
greater than three (OR 4.85, 95% CI 1.64 to 14.41) (Bhargava
et al., 2014), strokes (Le et al., 2020), dementia (Lee et al., 2017),
residents in dependent functional status (Hagiya et al., 2018;
Hayakawa et al., 2020), and immunosuppressive status (OR 3.92,
95% CI, 1.08 to 1.28) (Bhargava et al., 2014).

The environmental factors associated with a significant risk
for CRE colonization or infection among residents of LTCFs
were usage of gastrointestinal devices (OR 19.7, P <0.001)
(Cunha et al., 2016; Mckinnell et al., 2019), mechanical
ventilation (OR 3.56, 95% CI 1.24 to 5.28, p=0.01) (Mills et al.,
2016), the presence of indwelling devices, such as central venous
catheters or urinary catheters (OR 5.21, 95% CI 1.09 to 2.96),
LTAC facility subtype (Lin et al., 2013), particularly high acuity
facilities with mechanical ventilation, prolonged length of stay
(Ben-David et al., 2011; Lin et al., 2013), and sharing a room with
a known carrier (Chitnis et al., 2012).

Prior antimicrobial carriage status and associated antibiotics
exposure were also associated with increased risk of CRE
colonization or infection among residents in LTCFs (Ben-
David et al., 2012). A high prevalence (41%) of residents in
LTCFs had body cultures consistent with their prior CRE
colonization status (Reuben et al., 2017). Prior antibiotic
exposures (OR 3.89; 95% CI 0.71 to 21.47) (Chitnis et al., 2012;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9105
Bhargava et al., 2014; Brennan et al., 2014) and previous culture
growing CRKP within 90 days were identified as independent
risk factors for continued CRKP carriage (Chitnis et al., 2012).
Furthermore, even short-term antimicrobial exposure in the
prior one month was significantly associated with the increased
risk of CRE colonization and infection among residents in LTCFs
(meropenem OR 3.55, 95% CI 1.04–12.1, p=0.04; vancomycin
OR 2.94, 95% CI 1.18–7.32, p=0.02; metronidazole OR 4.22, 95%
CI 1.28–14.0, p=0.02) (Mills et al., 2016). In addition, recent
Clostridium difficile infection was associated with increased risk
of C. difficile and CRE colonization (Prasad et al., 2016), which
indicated that prior or co-infection with other bacteria may
increase CRE colonization risk in residents of LTCFs.

In the ACHs, the risk factors for CRE acquisition were
exposure to antibiotics, high comorbidity indexes, deteriorated
functional status and/or cognition at baseline, recent LTCF stay,
and recent invasive procedures or permanent foreign devices
(Lin et al., 2019). Our review of the risk factors associated with
increased risk of CRE colonization and/or infection among
residents in LTCFs was similar but not identical to the
previous systematic review and meta-analysis (Van Loon et al.,
2018), of which the systemic review identified risk factors
associated with CRE acquisition among hospitalized patients
between 2005 and 2017 in Europe, Asia, America, Australia, and
Africa (Van Loon et al., 2018). Risk factors identified by Karlijn
Van Loon et al. for CRE acquisition among hospitalized patients
were patient’s underlying disease or condition (pooled OR 2.54;
95% CI 2.08 to 3.09, p <0.05), usage of medical devices (pooled
OR 5.09; 95% CI, 3.38 to 7.67, p <0.05), mechanical ventilation
(pooled OR 1.96; 95% CI 1.42 to 2.69, p<0.05), ICU admission
(pooled OR 4.62; 95% CI, 2.46 to 8.69, p <0.05), antibiotic
exposures (particularly carbapenem OR range 1.83 to 29.17
and cephalosporin OR 2.24 to 49.56), and CRE exposures
(pooled OR 4.10; 96% CI, 1.46 to 11.52) (Van Loon et al., 2018).

Resistance Mechanisms of CRE From
LTCFs Were Similar to ACHs
KPC is the major resistance determinant of CRE from LTCFs in
the United States (Figure 1). Molecular study for CRE from
TABLE 4 | Risk factors for CRE acquisition in LTCFs.

Types of factors Odds ratio or relative risks documented in studies

Patient characteristics Fecal incontinence (OR 5.78) (Mills et al., 2016)
Solid organ or stem cell transplantation (OR 5.05) (Mills et al., 2016)
Immunosuppressive status (OR 3.92) (Bhargava et al., 2014)
Comorbidities (Charlson’s score > 3; OR 4.85) (Bhargava et al., 2014)
Strokes (Le et al., 2020), Dementia (Lee et al., 2017), Dependent functional status (Hagiya et al., 2018; Hayakawa et al., 2020)

Environmental factors Usage of gastrointestinal devices (OR 19.7) (Cunha et al., 2016; Mckinnell et al., 2019)
Indwelling devices (e.g. CVC or urinary catheters) (OR 5.21) (Lin et al., 2013)
Mechanical ventilation (OR 3.56) (Mills et al., 2016)
LTAC facility subtypes, esp. high-acuity facility with mechanical ventilation (Lin et al., 2013)
Prolonged length of stay (Ben-David et al., 2011; Lin et al., 2013)
Sharing a room with known carriers or increased prevalence of known carriers in the same ward (Chitnis et al., 2012)

Microbiology status Prior antibiotic exposures (OR 3.89) (Chitnis et al., 2012; Bhargava et al., 2014; Brennan et al., 2014)
Previous culture growing CRKP within 90 days (Chitnis et al., 2012)
Recent Clostridium difficile infection (Prasad et al., 2016)
CVC, central venous catheter; CRKP, carbapenem-resistant Klebsiella pneumoniae; LTAC, long-term acute care hospitals; OR, odds ratio.
April 2021 | Volume 11 | Article 601968

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Chen et al. Carbapenem-Resistant Enterobacteriaceae in LTCF
LTCFs in the United States demonstrated a high prevalence of
KPC-producing Enterobacterales (55%) (Johnson et al., 2014).
Among KPC-producing Enterobacterales, the prominent species
were KPC-producing K. pneumoniae (87%), followed by E.
aerogenes (6%), E. coli (4%), and E. cloacae (0.7%) (Lin et al.,
2013). Among LTCFs in the United States, most KPC-producing
K. pneumoniae strains carried KPC-2 (19/21) and mostly
belonged to the strain ST258 (60%) (Johnson et al., 2014).
Regarding KPC-producing E. coli, half of the tested strains
belong to ST131 (Johnson et al., 2014). Another report showed
a higher carriage rate of KPC-3 in K. pneumoniae and E. coli,
whereas other carbapenemase (NDM, IMP, VIM, OXA-48) were
uncommon among CRE colonized in LTCF residents in the
United States (Prasad et al., 2016; Reuben et al., 2017; Dubendris
et al., 2020). Among these studies, the carriage of CTX-M
(Reuben et al., 2017) or OXA-48 (Reuben et al., 2017) could be
found in KPC-producing Enterobacterales. The predominance of
KPC-producing CRE isolates was supported by previous CRE
incidence study, of which 90% KPC was identified from CRE
(79.3% were K. pneumoniae) (Guh et al., 2015); and previous
outbreak investigation study (Gohil et al., 2017). Furthermore,
clustering of the ST258 was also noted in the outbreak
investigation study in Indiana and Illinois (Gohil et al., 2017).
Similarly, in the ACHs, the predominance of KPC-producing
CRE (KPC-3 48%, KPC-2 44%) and co-existence of NDM-1 and
OXA-48 were identified in a multicenter prevalence study in the
United States (Satlin et al., 2017). In addition, the prominent
ST258 strain among CRKP was also identified in ACHs (Satlin
et al., 2017).

There are only few studies concerning the resistance
mechanisms of CRE from LTCFs in Asia. Molecular analyses
showed that nearly all CRE harbored IMP-type carbapenemase
in LTCFs in Japan, of which IMP-11 was the most prominent
type (40.7% IMP-11, 22.2% IMP-42, 14.8% IMP-6, 11.1% IMP-
10, 11.1% IMP-1) (Hayakawa et al., 2020), though another study
reported IMP-6 as the most common carbapenemase in Japan
(Hagiya et al., 2018). Besides, efflux pump genes (oqxA and oqxB)
were mostly observed in the CP-CRE group compared with the
non-CP-CRE group (Hayakawa et al., 2020). A study in Taiwan
revealed blaCMY-2 in imipenem-resistant Providencia stuartii
isolates associated with the outbreak in a LTCF, yet the true
determinant remained unidentified (Mao et al., 2018).

OXA-48 has been reported in CPE isolates from LTCFs in
Europe. In a hospital admission survey of 379 CPE isolates from
245 patients in Spain, OXA-48 was the predominant
carbapenemase, followed by VIM-1, IMP, and KPC (74%
OXA-48, 22% VIM-1, 2% IMP, 2% KPC) (Palacios-Baena
et al., 2016). In the 35 isolates from NHs, 32 of them were K.
pneumoniae, of which 31 isolates were OXA-48 and one isolate
was VIM-1. On the contrary, among hospitalized patients in
Europe, KPCs remained the predominant carbapenemase (42%,
393/927), followed by OXA-48-like enzymes (38%, 353/927),
NDM-1 (12%, 113/927), and VIM (7%, 68/927) (Grundmann
et al., 2017). At country level, KPC were predominantly detected
in Italy (96%, 187/195), Israel (80%, 31/39), Greece (65%, 56/86),
and Portugal (59%, 36/61) (Grundmann et al., 2017). OXA-48-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10106
like carbapenemases were common in Turkey (79%, 98/124),
Romania (74%, 50/68), Spain (70%, 81/116), Belgium (38%, 18/
48), France (37%, 10/27), and Germany (33%, 12/36)
(Grundmann et al., 2017).
Outcome of CRE Colonization in LTCFs
and ACHs
Acquisition of CRE is associated with a high economic burden
and poor clinical outcomes. Among patients colonized or
infected with CRE in LTCFs, the 30-day mortality rate was
10%–25% (Tischendorf et al., 2016; Chopra et al., 2018;
Igbinosa et al., 2020). It is worth noting that the mortality rates
in specific subgroups of patients with clinical CRE infections
were as high as 30%–75% (Borer et al., 2012; Papadimitriou-
Olivgeris et al., 2013; Lubbert et al., 2014). The condition is
complicated by the prolonged CRE colonization which has been
documented in various studies. Manon R. Haverkate et al.
demonstrated that the duration of KPC-producing
Enterobacterales colonization could be more than 9 months in
KPC-positive patients (Haverkate et al., 2016).

The risk of infection after colonization with CRE varied in
different studies. The cumulative risk of infection after CRE
colonization was 16.5% in a systemic review (Tischendorf et al.,
2016). The risk of infection varied, ranging from 7.6%–44.4%
(Tischendorf et al., 2016), of which the most common site of
infection was the lung (50% of the patients), followed by the
urinary tract (20%), primary bloodstream, and skin and soft
tissue infections (including surgical sites) (Tischendorf
et al., 2016).

Regarding the hospitalized patients, a systemic review and
meta-analysis revealed that the pooled risk ratio of CRE infection
and mortality rate was 2.85 [95% CI, 1.88 to 4.30] (Soontaros and
Leelakanok, 2019). Dickstein et al. conducted a matched cohort
study in the ICU, and reported that colonization with CRE was
independently associated with Enterobacterales infection (cause-
specific hazard ratio was 2.06, 95% CI 1.31 to 8.43) (Dickstein
et al., 2016). Zilberberg et al. conducted a retrospective cohort
study among the hospitals in the United States, and reported that
the presence of CRE was significantly associated with increased
inappropriate empirical treatment than the absence of CRE
(46.5% vs. 11.8%, p <0.001) (adjusted relative risk ratio 3.95,
95% CI 3.5 to 4.5, p <0.001) (Zilberberg et al., 2017). In addition,
increased mortality rate (adjusted mortality 12%, 95% CI 3% to
23%) and prolonged length of hospital stay (an excess of 5.2 days,
95% CI 4.8 to 5.6, p <0.001) were found (Zilberberg et al., 2017).

Colonization with CRE poses an increasing threat to other
residents in the same facility. CRE are mostly transmitted via
patient-to-patient contact, and interestingly, the CRE
transmission in the environment follows the 20/80 rule. That
is, 20% super-spreaders are responsible for 80% bacterial
transmission, which indicated that the super-spreaders play an
important role in CRE transmission (Lerner et al., 2015). CRE
super-spreaders were associated with high rectal CRE
concentrations (modelled as blaKPC copies/16s rDNA copies
ratio, OR 14.5, 95% CI, 1.09 to 192.0, p=0.042) and respiratory
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illnesses on admission (OR 20.5, 95% CI, 1.41 to 297.6, p=0.027)
(Lerner et al., 2015).

The Consideration of Active Surveillance
for CRE in LTCFs
In 2016, with the worsening threat of CRE, the European Centre
for Disease Prevention and Control (ECDC) recommended
infection prevention and control measures in hospitals and
other healthcare settings, active screening in the epidemic
region, and active surveillance in the endemic region. Even
though active surveillance is one of the infection control
measures for the prevention of CPE transmission and spread
(Ambretti et al., 2019), and the 2013 European Society of Clinical
Microbiology and Infectious Disease (ESCMID) strongly
recommended contact precautions, using alert codes to identify
known colonized patients at admission, pre-emptive contact
precautions, isolation in a single room for infected or
colonized patients, cohort staffing, antimicrobial stewardship
and education, monitoring cleaning performance and active
surveillance (Ambretti et al., 2019); there are limited national
or international guidelines for optimal measures for active
surveillance and management of CRE colonized patients in
LTCFs (Ambretti et al., 2019). Some experts suggested that
screening all hospital admission from the LTCFs for CRE may
not be cost-effective (Hwang et al., 2018).

For CRE, targeting patients at high risk of CRE carriage is
very important, and these high risk patients should be screened
for digestive tract carriage, with concomitant pre-emptive
contact precaution and followed isolation if colonization was
confirmed (Magiorakos et al., 2017). Lau A. F. et al.
recommended that the universal nucleic acid amplification
technology (NAAT)-based method of CRE screening may not
be universally affordable, but molecular rapid methods may be
applicable for high-risk patients (e.g. from endemic region,
LTCFs, extensive exposure to carbapenems), followed by
susceptible culture-based method if the screening is negative,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11107
and considering to perform the carbapenemase confirmatory test
if suspicious species are detected (Lau et al., 2015). Other than
molecular and/or genomic analyses, Vincent J. LaBombardi et al.
suggested that Remel Spectra CRE agar plates could provide
faster (18 hours for Remel Spectra CRE agar versus 36 hours for
the CDC method) and reliable results for KPC-type CRE
detection (Labombardi et al., 2015). The sensitivity for
common commercial chromogenic media were also reported,
including chromID Carba media 96.5%, Remel Spectra CRE
97.8%, CHROMagar KPC 76.6%, and Direct ertapenem disk
method 83% (Labombardi et al., 2015).

The CDC recommended perirectal swab for targeted CRE
screening at hospital admission, especially for those admitted
directly from LTACs, other LTCFs with known endemicity, or
patients who are transferred directly from another ACHs
(Tischendorf et al., 2016). Although KPC-producing
Enterobacterales were mostly identified in perianal swab
specimens (Johnson et al., 2014) or rectal swab culture (Cunha
et al., 2016)), axilla/groin screening samples also detected 1%
CRE prevalence in nursing home facilities (Mckinnell et al.,
2016). CRE could be found in a variety of samples. Various
studies reported urine as the most common source of CRE
(Brennan et al., 2014; Guh et al., 2015), and CP-CRE were
prominently isolated from sputum (40.7%) (Hayakawa et al.,
2020). In a study conducted in Hiroshima, CRE were detected in
oropharyngeal swab specimen (Le et al., 2020), and in a study in
Osaka, CRE were detected from blood, sputum, urine, and intra-
abdominal samples (Hayakawa et al., 2020).

Interventions to Reduce CRE Colonization
and Infection in LTCFs
The importance of interventions to reduce the CRE carriage rate in
LTCFs has already been documented. An outbreak investigation of
CRE colonization among patients in LTAC between 2009 and 2011
revealed that surveillance testing and targeted interventions resulted
in significant reductions in CRE prevalence (49% vs 8%), CRE
FIGURE 1 | The global distribution of various carbapenemase-producing Enterobacteriaceae related to long-term care facilities.
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incidence (44% vs 0%) and CRE bacteremia (2.5 vs 0.0 per 1000
patient-days) (Chitnis et al., 2012). In addition, the prevention
measures for CRE in LTCFs from a nation-wide coordinated
protocol in Israel between 2007 and 2008 successfully reduced
nosocomial CRE cases from 55.5 cases per 100000 patient-years
to 11.7 cases per 100000 patient-years (Schwaber et al., 2011). The
infection prevention measures in Israel were contact isolation, self-
contained nursing units (single room or cohorts), and re-isolation of
known carriers when they are encountered for subsequent hospital
admission (Schwaber et al., 2011). Furthermore, the subsequent
nation-wide intervention (alcohol-based hand rub, appropriate use
of gloves, and a policy of CRE surveillance at hospital admission) in
13 post-acute hospitals in Israel between 2008 and 2011 resulted in
the reduction of the overall CRE carriage rate (16.8% vs 12.5%,
p=0.013) (Ben-David et al., 2014). Collectively, the Israeli guidelines
for CRE prevention were isolation or cohorting of CRE carriers,
cohorting of nursing staff (mandatory only for ACHs), barrier
precautions on room entrance, admission CRE screening for
high-risk patients, screening of patients’ contacts, standard
protocol for discontinuation of contact isolation, daily reporting
of new cases to the Israeli National Center for Infection Control in
theMinistry of Health, and periodic auditing of health care facilities’
compliance with national guidelines by the National Center for
Infection Control in the Ministry of Health (Ben-David et al., 2014).

In the United States, Mary K. Hayden et al. (Hayden et al., 2015)
examined a bundled intervention in four LTACs in a high endemic
KPC-producing Enterobacterales region (Chicago, Illinois) (Hayden
et al., 2015). They adopted a rectal swab culture for active
surveillance and preemptive contact isolation while awaiting the
culture report. KPC intervention bundle was as follows: biweekly
rectal culture surveillance, contact isolation, geographic separation
of KPC-positive patients with ward cohort or single room, universal
contact isolation of all patients in a high-acuity ward, daily 2%
chlorhexidine gluconate (CHG) bathing for patients, healthcare-
worker education, and adherence monitoring (particularly hand
hygiene) (Hayden et al., 2015). During the pre-intervention period,
the prevalence rate of KPC-producing Enterobacterales remained
unchanged (average 45.8%, 95% CI 42.1% to 49.5%) (Hayden et al.,
2015). During the intervention period, the prevalence rate of KPC-
producing Enterobacterales declined significantly, then reached a
plateau (34.3%, 95% CI 32.4 to 36.2%, p <0.001) (Hayden et al.,
2015). The incidence of KPC-producing Enterobacterales also
declined significantly during the intervention (from 4 to 2
acquisition per 100 patient-weeks, p=0.004) (Hayden et al., 2015).
Other important clinical outcome indicators, including KPC
identified in any clinical culture (32% reduction) and KPC
bacteremia (56% reduction) also decreased (Hayden et al., 2015).

Similar to Hayden et al.’ s study (Hayden et al., 2015), Toth
et al. designed an agent-based simulation model for CRE
transmission in a single LTAC within a regional network of
ten health-care facilities (including one LTAC, three ACHs, and
six NHs). The CRE prevalence rate was 45.8% and clinical
detection incidence was 3.7 per 1000 patient-days (Toth et al.,
2017). Two models with different transmission rates were
created, and significant reduction in CRE transmission (range
79% to 93%) and prevalence (decrease from 21% to 6% in model
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12108
A, decrease from 9% to 0.5% in model B) in a five-year period
were reported (Toth et al., 2017). Even when the intervention
was delayed until the 20th CRE detection, CRE transmission was
still reduced by 60%–79% over five years (Toth et al., 2017).
Furthermore, among the infection control measures, Toth et al.
(Toth et al., 2019) designed a model-based assessment in
Chicago, and reported that contact precautions by itself could
potentially explain the decline in CPE colonization among
surveillance-detected carriers (Toth et al., 2019). Other
interventions, including CHG bathing, hand hygiene, and
adherence monitoring may play a role in the slowing down of
colonization (Toth et al., 2019). Therefore, focusing infection
control and prevention measures in LTCFs is an effective strategy
to reduce CRE acquisition and transmission (Toth et al., 2017).

Moreover, the importance of controlling CRE in LTCFs could
not be over emphasized, since it may become a tragedy without
interventions. Bruce Y Lee et al. conducted a prediction model
and reported that if infection control and prevention measures
were not implemented properly, CRE would become endemic in
almost all health-care facilities (in Orange County) within 10
years (Lee et al., 2016). Although benefits of CRE decolonization
include reduced CRE-related infection incidence and all-cause
mortality (Tacconelli et al., 2019), the potential of increased
antimicrobial resistance to decolonizing agents was reported in
nearly all studies (Tacconelli et al., 2019). Consequently, the
ESCMID-EUCIC clinical guidelines do not recommend routine
decolonization of CRE (Tacconelli et al., 2019).

Antimicrobial use in LTCFs remains a critical issue in long-
term care (Ricchizzi et al., 2018). Antimicrobial stewardship
programs are needed to control the spreading of multidrug-
resistant organisms (Oliva et al., 2018). Current data suggested
effective antimicrobial stewardship strategies in LTCF reduced
antimicrobial use (Jump et al., 2012). The implementation
strategies vary considerably in different setting and warrant
more studies to define appropriate and quality appraisal tools
(Wu et al., 2019).

Summary
The emergence of CRE has become a major public health
concern. Moreover, its colonization among residents of LTCFs
is associated with subsequent infections and mortality. LTCFs
are also an important reservoir of CRE. There are increasing
studies concerning the high predominance of CRE in LTCFs.
Further studies are needed to develop effective control measures.
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