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Editorial on the Research Topic

Application of Systems Biology in Molecular Characterization and Diagnosis of Cancer

Cancer is one of the top killers of human beings, causing ∼10 million deaths in 2020 alone, which
makes it either the first or second leading cause of death for people under 70-years-old (Sung et al.,
2021). Therefore, there is an increasing need for an effective diagnosis and treatment for cancer, and
researchers have spent a huge amount of resources and efforts to define the molecular mechanisms
driving its development and progression. However, studying cancer is quite difficult as there is
huge heterogeneity among human cancers, which means the variation of different individuals
diagnosed with the same cancer type can sometimes be greater than that of patients from different
types of cancers (Uhlén et al., 2017). As a result, most current cancer drugs are only effective in a
certain subgroup of patients, and there is still a huge gap in our understanding of other treatment
approaches and cancer pathogenesis (Brennan et al., 2010).

To address this huge heterogeneity among cancer patients, there is an urgent need to develop
personalized diagnostic strategies to characterize cancer patients with different molecular profiles
which could consequently facilitate the development of personalized and precision medicine for
better treatment strategies of individual cancer. Systems biology has been a powerful tool in
the integration of omics data and the characterization of different cancers. The cancer research
community is increasingly using systems biology approaches to understand the complex molecular
profile of cancers and decipher the mechanisms of tumor progression for the development of more
effective cancer therapies (Du and Elemento, 2015). Creighton et al. characterized four different
subtypes of clear cell renal cell carcinoma based on multi-omic molecular profile of the tumor
(Creighton et al., 2013). Bidkhori et al. employed a metabolic network to stratify hepatocellular
carcinoma and revealed three molecular subtypes relying on alternative enzymes to catalyze the
same metabolic reactions (Bidkhori et al., 2018). In addition, Toy et al. performed a meta-analysis
on long non-coding RNA HOX transcript antisense RNA using publically available data and
identified potential prognostic biomarkers for the prediction of the survival of different cancers
(Toy et al., 2019). In this Research Topic, Shi et al. reviewed the recent progression of multi-
omic data integration for the study of gastric cancer. The authors specifically focused on systems
biology approaches for integration of multi-omics data, and also discussed the association between
gastrointestinal microbiota and gastric cancer. In addition, Zhang et al. summarized recent
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understanding of four existing molecular subtypes of
glioblastoma, and the indication of these classifications in
guiding diagnosis, prognosis, and treatment of cancer.

Thanks to the rapid development of Next-Generation
Sequencing technology, the cost and time needed for the
generation of RNA-sequencing data have been significantly
reduced in the past few years. As a result, a huge amount of
transcriptomic data has been generated from different cancer
patients and made publically available, which greatly facilitated
the molecular characterization of subtypes based on cancer
transcriptomic profile. In this context, many transcriptomic
based models have been developed for the diagnosis of cancer
molecular subtypes. Hu et al. evaluated the transcriptomic
profile of tumor and adjacent normal tissue samples as well as
lymph nodes from Head and Neck Squamous Cell Carcinoma
patients, and identified a list of gene markers for metastasis
of the tumor. Based on the transcriptomic profiles of gastric
cancer patients, Dai et al. revealed the association between
mucins and clinical outcomes. In addition, they proposed a
prognostic marker by combining the transcriptomic expression
of two mucin related genes. Kaushik et al. who are more
interested in non-small cell lung cancer, focused on the
commonly differentially expressed genes among several patient
cohorts, and proposed a combined prognostic model which can
stratify patients into different molecular subgroups with different
survival outcomes.

The canonical transcriptomic and survival analyses are
sensitive to the batch effect, and they may also mask the
heterogeneity of individual cancer patients. In order to address
these issues, Chen et al. and Guan et al. both applied a
method (Wang et al., 2015) that uses gene ranking within
each individual sample for patient classification to study the
molecular subtypes of breast cancers. Both of these studies
obtained biomarkers that could classify the individual patient
into different subtypes which are either resistant or sensitive to
a certain treatment.

Apart from transcriptomics, other omics profiles can also
be integrated and applied in characterizing cancer molecular
subtypes. Xu et al. integrated both genetic and transcriptomic
information from breast cancer patients and identified immune
subtypes among the patients. Wu et al. analyzed both proteomics
and transcriptomics data from patients and identified XRCC1
as a promising predictive biomarker and therapeutic target
for gallbladder cancer. Deng et al. integrated clinical and
comprehensive molecular information from patients diagnosed
with endometrial carcinoma and built a prognosis model to
predict the prognosis of the patients from different identified
subgroups. Elnemr et al. developed amachine learningmethod to
identify biological causes of malignant diseases based on protein
correlations. Moreover, Cheng et al. reported that cancer purity
correlates with the number of mutations in tumors and will affect
the genomic mutation profile in pathological analyses.

The work presented in this Research Topic highlights the
importance of the characterization of the molecular subtypes of
different cancers and presents many recent studies that identify
different cancer subtypes based on transcriptomics, proteomics,
and/or genomics using systems biology approaches. These
studies provide valuable insights and extend understanding of
the complexity of cancer pathogenesis and progression, and
will accelerate the development of personalized and precision
medicine for cancer treatment.
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The progress of Head and Neck Squamous Cell Carcinoma (HNSCC) is dependent on

both cancer stem cells (CSCs) and immune suppression. This study was designed to

evaluate the distribution of CSCs and the characteristic immune suppression status in

HNSCC primary tumors and lymph nodes. A total of 303 lymph nodes from 25 patients,

as well as tumor and adjacent normal tissue samples, were evaluated by a quantitative

PCR assay of the markers of CSCs and the characteristic immune suppression.

Expressions of selected genes in The Cancer Genome Atlas (TCGA) datasets were also

analyzed. In the primary tumors, we found that expressions of CSCs markers (ALDH1L1,

PECAM1, PROM1) were down-regulated, while immune suppression markers FOXP3,

CD47, EGFR, SOX2, and TGFB1 were up-regulated significantly when compared to that

in adjacent normal tissues. In the lymph nodes, expressions of both CSCs, and immune

suppression markers were upregulated significantly compared with that in primary

tumors. The mRNA expression of selected CSCs and immune suppression markers

exhibited the highest expression in the level II of metastasis, then declined in the level III

and remained constant at a reduced value in levels IV and V of metastases. These results

reveal a comprehensive understanding of the unique genetic characteristics associated

with metastatic loci and potential routes of lymphatic dissemination of HNSCC, which

helps to explain why the level II has a high incidence of lymph node metastasis, and why

skip metastasis straight to the level IV or level V is rarely found in the clinic.

Keywords: head and neck squamous cell carcinoma (HNSCC), lymph nodes, metastasis, mRNA expression, CSCs

and immune suppression markers

INTRODUCTION

Head and Neck squamous cell carcinoma (HNSCC) is ranked as the sixth most common cancer in
the world, with almost 600,000 new cases occurring every year (Bray et al., 2018). More than 50%
of HNSCC patients present with metastasis to local lymph nodes at the time of diagnosis. Regional
lymph nodes metastasis not only indicates poor survival, but is also a major prognostic factor
for the determination of the appropriate treatment (Ozdek et al., 2000; Michikawa et al., 2012).
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Patients with regional lymph nodes metastasis present a 30–
60% 5-year survival rate compared with ∼85% for patients
without synchronous nodal dissemination (de Juan et al., 2013).
Furthermore, regional or metastatic recurrence are more likely
to arise in the patients with synchronous nodal dissemination
after completing synthetic serial therapy (Wan et al., 2012).
However, such regional or metastatic recurrence in HNSCC is
generally considered to be incurable and resistant to conventional
treatment, with almost 22 months median survival rate in
patients receiving salvage surgery or irradiation, and∼12months
for those undergoing palliative chemotherapy alone (Leon et al.,
2012; Ho et al., 2014).

Increasing evidence demonstrates a complex, nonlinear,
branched evolution model of subclonal populations in cancers
(Ginos et al., 2004). The model characterized as a dynamic
process that minor subclones likely expand under the selective
pressure of therapy (Ginos et al., 2004). It has been reported
that hematological malignancies reveal a distinct pattern of
clonal evolution in the development of therapeutic resistance
and relapse (Tomasson et al., 2012). A microarray-based study
has identified a number of HNSCC metastasis and recurrence
associated genes in the tissue of primary or recurrent tumors,
unmatched normal mucosa and lymph node metastases, but
the clinical implication of these observations remains unknown
(Lacko et al., 2012). Another study revealed that the mRNA
expression of HNSCC in primary tumors are similar to their
respective matched metastatic lymph nodes (Reis et al., 2011).
These studies have provided a great insight into the genetic
alterations underlying the process of metastasis in HNSCC,
which will help us to identify novel therapeutic targets.

The extent of lymph node metastasis is an important
prognostic factor for locally advanced HNSCC, and previous
studies have reported that skip metastasis to inferior cervical
lymph nodes at levels III or IV in the absence of demonstrable
involvement of levels I and II is rarely found in HNSCC (Amin
et al., 2017). However, the genetic alterations and underlying
mechanism in the process of nodal dissemination are poorly
understood and little is known about the impact of the level
of lymph nodes metastasis (LNM) for patients with HNSCC. It
presents a great challenge to develop more effective therapeutic
strategies to prevent metastases and recurrence. For the purpose
of uncovering the CSCs and immune suppression-related genetic
alterations underlying metastasis in HNSCC, we chose 15 of
the CSCs and immune suppression-related genes that have been
reported in the primary expression of HNSCC before (Kosan
and Kunz, 2002; Grosse-Gehling et al., 2013; Nor et al., 2014;
Prakasam et al., 2014; Yang et al., 2014; Hartomo et al., 2015;
Wu et al., 2015; Ji, 2016; Ren et al., 2016) performed RT-PCR to
examine the expression levels of in cancer tissues, lymph nodes,
and the matched normal tissues from the same patients with
synchronous nodal metastases.

MATERIALS AND METHODS

Cohorts of Enrolled HNSCC Patients
Twenty-five patients diagnosed with HNSCC and subjected to
primary operation in Oral and Maxillofacial–Head and Neck
Oncology Department of Shanghai Ninth People’s Hospital

between 2015 and 2016 were screened for the experiments. All
patients recruited had not had chemotherapy or radiotherapy
prior to the surgical treatment and the patients who underwent
neo-adjuvant chemo or radiotherapy were excluded from our
study. The mean age of 25 participants (17 men and 8 women)
was 57, ranging from 52 to 74. The samples were collected
during the surgery and immediately frozen, including cancer
tissues, adjacent normal tissues and lymph nodes from the
same patient. Adjacent normal tissues were required to be more
than 2 cm from the tumor margins in the same patient. The
categorization of neck dissection samples was in accordance
with the topographic classification of cervical lymph node levels
suggested by Gregoire et al. (2014) as IA, IB, IIA, IIB, III, IV, V.
Metastatic lymph nodes were confirmed by hematoxylin-eosin
(HE) staining and observed by two pathologists independently.
The written informed consent of all patients was obtained,
following the protocols approved by Shanghai Ninth People’s
Hospital Ethical Committee and the study was performed in
accordance with the Declaration of Helsinki.

Exclusion Criteria
The patients in one of the following situations were excluded in
this study (Zhi et al., 2015).

Patients with local recurrences or second primary tumors.
Patients who were HPV positive.
Patients who experienced chemo- or radiotherapy prior to

this study.

The Cancer Genome Atlas (TCGA)
Datasets Analysis
The selected gene expression was downloaded from mRNA
expression detection platform RNA-seq version 2 (level 3) in
TCGA data portal (http://cancergenome.nih.gov/). The final
number of HNSCC patients included was 509. The statistical
programing software R (version 2.14.1) was used to analyze
the datasets with the statistical significance at P < 0.05. The
normalized counts (cancer and adjacent normal) were used to
compare the gene expression (RNA-Seq version 2).

mRNA Expression Profiling
Trizol reagent (Life Technologies, USA) was used to extract the
total RNAs of all the acquired samples, and iScriptTMcDNA
synthesis kit (Bio-Rad, CA) was used to reverse transcription
(RT). The FastSYBR Green master mix with Rox (Life
Technologies, USA) was used to perform the quantitative PCR.
Fifteen genes were evaluated by quantitative RT-PCR. The
primers for IRF1, IFNAR2, FOXP3, TMEM173, CD47, PECAM1,
BMI-1, TWISTNB, ALDH1L1, PROM1, EGFR, SOX2, TGFB1,
SMAD3, and STAT3 were purchased from SABiosciences. The
primer sequences of the genes are listed in Table S1. The gene
β-actin was chosen to be the control gene for normalization.

Statistical Analysis
Data from more than three independent experiments are
represented as the mean ± standard deviation (SD). Pared t
test was used to do statistical analyses comparing the genes
expression between primary and adjacent normal tissues of
HNSCC patients, Mann Whitney test was performed to analyze
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TABLE 1 | Clinicopathological parameters of enrolled HNSCC patients.

No. Tobacco Alcohol Site of tumor origin Pathological stage AJCC stage

1 YES YES Tongue (oro-pharyngeal) pT4aN0M0 IVa

2 YES YES Mouth floor pT2N0M0 II

3 NO NO Buccal pT4aN0M0 IVa

4 NO NO Tongue pT2N1M0 III

5 YES YES Mouth floor pT2N0M0 II

6 YES YES Gingiva pT2N2aMO IVa

7 NO NO Gingiva pT2N2bM0 IVa

8 YES YES Mouth floor pT3N1MO III

9 YES NO Tongue pT3N0M0 III

10 NO NO Palate pT4N0M0 IVa

11 YES YES Mouth floor pT3N1MO III

12 YES YES Mouth floor pT4aN2cM0 IVa

13 NO NO Tongue pT3N1M0 III

14 YES YES Tongue (oro-pharyngeal) pT4N0M0 IVa

15 NO NO Tongue pT3N1M0 III

16 NO NO Tongue (oro-pharyngeal) pT4N1M0 IVa

17 YES YES Mouth floor pT4N2bM0 IVa

18 NO YES Gingiva pT2N2bM0 IVa

19 NO NO Tongue pT2N0M0 II

20 YES YES Tongue pT1N0M0 I

21 NO NO Tongue (oro-pharyngeal) pT3N1M0 III

22 YES NO Tongue (oro-pharyngeal) pT4N0M0 IVa

23 NO NO Tongue (oro-pharyngeal) pT4N1M0 IVa

24 NO NO Buccal pT2N0M0 II

25 NO NO Buccal pT2N0M0 II

TABLE 2 | Results of histopathologic examination of various cervical lymph node levels.

Lymph node levels

Numbers Level IA Level IB Level IIA Level IIB Level III Level IV Level V Total

Metastasis 4 10 3 2 5 2 1 27

Non-metastasis 39 40 25 38 62 52 20 276

Total 43 50 28 40 67 54 21 303

the genes expression in metastatic nodes and non-metastatic
nodes and data from TCGA, Kruskal–Wallis test was used to
access the expression of metastatic nodes in different levels.
Mean-normalized mRNA expression value in non-metastasis
lymph nodes were chosen to be control for the entire cohort of
lymph nodes. The relative value of each gene was calculated as
follow: The 11Ct = tumor 1Ct-control 1Ct, fold change of
mRNA was obtained as 2(−11Ct). We considered the data was
significant at P <0.05.

RESULTS

Clinicopathologic Characteristics of
HNSCC Patient Samples
Clinicopathologic characteristics for the study groups (n = 25)
including age, gender, tobacco and alcohol history, tumor site,
and AJCC stage [which was according to AJCC 8th Edition

(Tao et al., 2006)] are summarized in Table 1. Patients’ ages
ranged from 52 to 74 with a mean age of 57 ± 7.8 years.
The gender distribution was 68% male (17/25) and 32% female
(8/25). Forty eight percent (12/25) had a history of substantial
tobacco exposure (generally >20 pack years), and 44% (11/25)
had documented alcohol use. The lesion sites involved were
oropharynx (24%) and oral cavity (76%). 4, 36, 24, and 36%
of the patients had T1, T2, T3, and T4 tumors, respectively,
while 4, 20, 28, and 48% were staged to I, II, III, and

IV, accordingly. The majority of the patients had subsequent
therapy with radiation (92%) after the surgery. Of all the 25

patients, 13 patients were diagnosed with synchronous nodal
metastasis. Metastatic carcinomatous cells were observed in 27
(2.5%) of the 303 lymph nodes. However, there were only
2 cases of skip metastases to level IV and 1 case of skip
metastasis for level V. The details of these results are presented
in Table 2.
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TABLE 3 | Clinicopathological parameters of HNSCC patients in TCGA dataset.

Characteristic Number Characteristic Number

Gender Age

Male 381 < 60 288

Female 141 ≥ 60 233

Not available 1

Smoking status Alcohol

Smoker 388 Yes 351

Nonsmoker 121 No 162

Not available 13 Not available 9

Tumor stage Lymph node stage

I-II 186 N0-1 327

III-IV 320 N2-3 173

Tx 12 Nx 18

Not available 4 Not available 4

Metastasis stage AJCC stage

M0 492 I-II 120

M1 4 III-IV 388

Mx 21 Not available 14

Not available 5

Primary region Race

Gingiva 18 American Indian 2

Tongue 131 Asian 11

Hard palate 7 Black American 45

Floor of mouth 61 White American 447

Bucca 22 Not Available 17

Tonsil 45 HPV

oropharynx 37 Positive 44

hypopharynx 10 Negative 81

Larynx 115 Not Available 397

Lip 3

Oral Cavity 73

Gene Expression Profiles in HNSCC TCGA
Dataset
Since differentially expressed genes of the transcriptome data
of HNSCC in TCGA dataset have been reported (Cancer
Genome Atlas, 2015; Yan et al., 2016), we further examined the
expression profiles of the selected genes (i.e., IRF1, IFNAR2,
FOXP3, TMEM173, CD47, PECAM1, BMI-1, TWISTNB,
ALDH1L1, PROM1, EGFR, SOX2, TGFB1, SMAD3, and STAT3)
in the primary tumors of HNSCC. The Clinicopathologic
characteristics of TCGA dataset was shown in Table 3. It
enrolled 522 HNSCC patients and lesion sites involved 312 in
oral cavity (59.8%), 115 in Larynx (22.0%), 82 in oropharynx
(15.7%), 10 in hypopharynx (1.9%), and 3 in Lip (0.6%). Forty
four of them were diagnosed with HPV infection. This is shown
in Figure 1, in which ALDH1L1, PECAM1, SMAD3, TMEM173,
PROM1, and STAT3 were expressed lower, and the rest of the
genes were expressed higher in primary tumors than in adjacent
normal tissues. Among them, the expression levels of IRF1,
IFNAR2, FOXP3, CD47, ALDH1L1, PROM1, EGFR, SOX2,

TGFB1, and STAT3 were significant (P < 0.05) between tumors
and normal tissues (Figure 1).

Examination of mRNA Expression in
Primary Tumors by RT-PCR Detection
To further investigate the above-mentioned gene expression in
our HNSCC samples, we validated the mRNA expression using
real time RT-PCR detection. The differential levels of mRNA
expression (–11Ct) of the 15 genes in each of the 25 individuals
HNSCC sample are shown in Figure 2. Except for PECAM1,
which showed a significant decrease (P < 0.05), while the TCGA
dataset revealed no significant difference, the expression levels
(up or down) of the rest 14 selected genes were consistent with
TCGA profiles as validated by real time RT-PCR assay for all
recruited patients and a clustering analysis was performed in
the primary of HNSCC (Figure 2). Furthermore, there were no
significant differences betweenmen and women in normal tissue,
but it showed gender difference with male dominancy in the
primary (Figure 3 and Figure S1). We also found there were
no significant differences between sex and risk factors (such as
smoking or drinking) (p = 0.896 and 0.694, respectively). It
suggested that sex factor might play a role in the formation of
CSCs and immune suppression and might be more susceptible
to metastasis.

Gene Expression in Different Lymph Nodes
We further compared the mRNA expression of the selected genes
between metastatic nodes and non-metastatic nodes in cervical
lymph nodes using RT-PCR assay. Similar to the expression
levels in primary tumors, the expressions of CD47, EGFR,
FOXP3, IFNAR2, IRF1, SOX2, BMI-1, PROM1, and TGFB1 were
upregulated significantly in metastatic nodes when compared
to non-metastatic nodes (Figure 4). STAT3 and PECAM1 were
decreased in primary but upregulated in lymph nodes (P >

0.05) (Figures 2, 3). One exception is ALDH1L1 that exhibited
a low mRNA expression level in metastatic nodes (Figure 3).
Finally, we analyzed the mRNA expression of the selected genes
among different levels of metastatic lymph nodes. We found
that all the selected genes except ALDH1L1 followed a similar
change from level I–level V metastatic nodes, in which all the
genes reached the highest expression in level II, declined in
level III and remained at a constant low value in level IV and
level V of metastatic nodes (Figure 5). Also, it revealed gender
difference with male dominancy in the lymphatic loci of HNSCC
(Figure S2).

DISCUSSION

The nodal dissemination of carcinomatous cell is a vital
determinant of prognosis in patients with HNSCC, as the overall
survival rate of patients with metastatic lymph nodes decreased
by a half compared with that without nodal implicated (Yan
et al., 2014). Keeping track of tumor cells through lymphatic
metastasis and microenvironment in lymph nodes is particularly
vital for treatment (Owens et al., 2014). As far as we know,
there were no studies that investigated the mRNA expression
in an individual cervical lymph node level. Hence, the TCGA
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FIGURE 1 | FPKM values of ALDH1L1 (A), PECAM1 (B), SMAD3 (C), TMEM173 (D), PROM1 (E), STAT3 (F), BMI-1 (G), TWISTNB (H), IRF1 (I), IFNAR2 (J), FOXP3

(K), CD47 (L), EGFR (M), SOX2 (N), and TGFβ1 (O) expression of HNSCC patients in TCGA datasets; (P) Heatmap of gene expression profiles of HNSCC patients in

TCGA datasets. Gene expression values are calculated based on the log transform of FPKM values determined from RNA sequencing analyses. High expression is

depicted by red; low expression is depicted by green, normalized by row z scores (legend). *P < 0.05, **P < 0.01, ***P < 0.001.

database was used in our study to perform the unbiased, large-
scale analysis of 15 metastasis and tumor microenvironment
associated genes. The results showed a significant change of
related gene expression through both the HNSCC TCGA-based
and our tumor-based analyses. Furthermore, the head and
neck squamous cancer (HNSCC) with HPV-negative (HPV−)

always occurred in an older patient population and their clinical
outcomes were unquestionably worse than HPV+ HNSCC, and
few HNSCCs are associated with HPV infection. Therefore, our
results provide a model to determine gene expression patterns
in both the primary tumors and metastatic lymph nodes of
HPV− HNSCC.
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FIGURE 2 | RT-PCR results of ALDH1L1 (A), PECAM1 (B), SMAD3 (C), TMEM173 (D), PROM1 (E), STAT3 (F), BMI-1 (G), TWISTNB (H), IRF1 (I), IFNAR2 (J), FOXP3

(K), CD47 (L), EGFR (M), SOX2 (N), and TGFβ1 (O) expression in primary tumors. Each bar represents the average log2 gene mRNA expression level of the paired

tumor and adjacent normal tissues (n = 25 per group). Eleven genes showed significant changes between paired tumor and adjacent normal tissues (P) Heatmap of

gene expression profiles of HNSCC patients in the primary of HNSCC, Gene expression values are calculated based on the log transform of FPKM values determined

from RNA sequencing analyses. High expression is depicted by red; low expression is depicted by green, normalized by row z scores (legend) (**p < 0.05, t-test).

IFNAR2 encodes a protein that forms one of the two chains of
a receptor for interferons alpha and beta (Zhang et al., 2015). The
protein encoded by IRF1 functions as a transcription activator of
interferons α-,β-, and γ-induced transcription (Choe et al., 2015)
TMEM173 encodes a transmembrane protein that functions as
a pattern recognition receptor that activates type I interferon
responses (Schreiber and Piehler, 2015; West et al., 2015). All
three genes promote the IFN-signaling in the lymph node of
HNSCC (Li and Flavell, 2008). TGF-β1 encodes a secreted ligand
of the transforming growth factor-beta superfamily proteins
(Kudinov et al., 2016). The band of these ligands and various
TGF-β receptors result in the recruitment and stimulation of

SMAD3 that promotes the process of carcinogenesis (Chaturvedi
et al., 2014; Wang et al., 2016). IFN-α, IFN-β and TGF-β play
important roles in regulating the activity of lymph node stromal
cells embracing lymphatic endothelial cells (LECs), follicular
dendritic cells (DCs), and fibroblastic reticular cells (FRCs) (Yang
et al., 2014; Ji, 2016). The functional stromal cells may reconstruct
and remodel the lymph node, which would produce a unique
microenvironment benefit for cancer metastasis (Hartomo et al.,
2015). Our RT-PCR results show that are both upregulated in
the lymph nodes of HNSCC patients and suggest that these
hyperactive lymph node stromal cells may provide a suitable
microenvironment for the metastases.
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FIGURE 3 | mRNA expression of ALDH1L1 (A), PECAM1 (B), SMAD3 (C), TMEM173 (D), PROM1 (E), STAT3 (F), BMI-1 (G), TWISTNB (H), IRF1 (I), IFNAR2 (J),

FOXP3 (K), CD47 (L), EGFR (M), SOX2 (N), and TGFβ1 (O) in the primary of tumor samples between male and female patients. *P < 0.05, **P < 0.01, ***P < 0.001.

It has been reported that ALDH1 has higher activity in
the stem cell subclone of leukemia and some solid tumors
(Li et al., 2016). However, ALDH1L1 showed totally different
presentation in distinct types of cancers; mRNA high expressions
of ALDH1L1 were reported to be correlated to higher overall
survival rate for breast cancer patients but were revealed as a
poor prognostic factor in gastric and prostatic cancers (Prakasam
et al., 2014; Wu et al., 2015; Ren et al., 2016). Our result revealed
ALDH1L1 had a lower mRNA expression level in primary and

metastatic nodes and exhibited an entirely different behavior
compared with other selected genes, indicated that ALDH1L1
mRNA low expressions is related with metastasis of HNSCC.
Our observations showed SOX2, BMI-1, PROM1 (CD133), and
TWISTNB (TWIST NEIGHBOR) upregulated in lymph nodes.
SOX2, BMI-1, and PROM1 are cancer stem cells-related genes
(Kosan and Kunz, 2002; Grosse-Gehling et al., 2013; Nor et al.,
2014), and TWISTNB is implicated in EMT (Li and Li, 2015).
Previous studies indicated that cancer stem cells (CSCs) in situ
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FIGURE 4 | Overall mean-normalized mRNA expression of ALDH1L1 (A), PECAM1 (B), SMAD3 (C), TMEM173 (D), PROM1 (E), STAT3 (F), BMI-1 (G), TWISTNB

(H), IRF1 (I), IFNAR2 (J), FOXP3 (K), CD47 (L), EGFR (M), SOX2 (N), and TGFβ1 (O) in lymph nodes. Each bar represents the average log2 gene mRNA expression

level of the non-metastatic and metastatic lymph nodes. P-values are calculated by Wilcoxon rank-sum test. (**p < 0.05).

can transform into migrating cancer stem cells (MCSCs) by EMT
(Schlereth et al., 2014). Subsequently, the MCSCs disseminate
and form metastatic colonies (Li and Li, 2014). Furthermore,
direct trans-differentiation of CSCs into LECs occurs during
tumor lymphatic metastasis (Chao et al., 2012; Semenza, 2013).
As previously mentioned, LECs remodel the lymph nodes that

provide a comfortable microenvironment for cancer metastasis.
Our observations of gene expression profiles in lymph nodes
suggest that CSC may directly convert into LECs and contribute
to tumor neovascularization in themetastasis process of HNSCC.

CD47 is likely involved in the process of evading
immunological eradication (Chattopadhyay et al., 2005; Matlung
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FIGURE 5 | Normalized 2 (−11Ct) mRNA expression of ALDH1L1 (A), PECAM1 (B), SMAD3 (C), TMEM173 (D), PROM1 (E), STAT3 (F), BMI-1 (G), TWISTNB (H),

IRF1 (I), IFNAR2 (J), FOXP3 (K), CD47 (L), EGFR (M), SOX2 (N), and TGFβ1 (O) in different levels of lymph nodes. Each bar represents the average log2 gene mRNA

expression level of the metastatic lymph nodes in each individual level. P-values are calculated by Kruskal–Wallis test (*p < 0.05, **p < 0.01, ***p < 0.001).

et al., 2017), and FOXP3 is mainly considered as a biomarker
of Treg cells that impede the antitumor immune responses in
cancer patients (Quante et al., 2013; Triulzi et al., 2013). STAT3
overexpression in metastatic sites may restrain the immune
responses to render an immunosuppressive environment (Punt
et al., 2015). PECAM1 (CD31) makes up a large portion of cell
intercellular junctions and loss of its function may disrupt cell
adhesion (ElShamy et al., 2016). Interaction of hypoxia-surviving

cells with the immunosuppressive environment influenced
by newly recruited tumor-associated macrophages (TAMs),
mesenchymal stromal cells (MSCs), and other types of immune
cells most likely form and maintain a necrotic/hypoxic core
called “aggressiveness niche” that will be the foster ground for
cancer metastasis precursors (Johnson, 2001). In accordance
with above reports, our study demonstrates that CD47 and
FOXP3 were significantly upregulated both in primary site and
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lymphatic loci, but STAT3, and PECAM1 were only upregulated
in lymph nodes. It indicates that there may form a more
immunosuppressive environment in the lymph nodes than
primary site and may exist an aggressiveness niche to foster
metastasis in HNSCC patients.

A previous study revealed that male patients may have higher
tendency of cancer-associated gene expression in the primary
than matched adjacent normal tissue (Shores et al., 2004).
Similarly, the expression of 15 selected genes showed gender
differences with male dominancy not only in the primary but
also in metastatic loci, with no significant differences between
men and women in matched adjacent normal tissue. It indicated
that males may be at a higher risk of metastasis than females in
HNSCC. The mechanism underlying these expression patterns
will be further studied in the future.

It have been reported that a relatively constant and sequential
route might exist in the lymphatic drainage of the head and neck
region (Ji, 2016). Level I and level II are the most common region
of metastases in cancers of the oral cavity, while level III is most
likely area of metastases in cancers of hypopharynx (Vishak and
Rohan, 2014). Considering the potential mechanisms of the route
of lymphatic metastasis remains unknown, our observations of
the differential mRNA expressions in respective cervical levels
showed that CSC and immunosuppression-related genes achieve
a peak value in the level II, but maintain a constant low value
in the levels IV and V, which suggests that the level II may
mostly provide a necrosis-induced inflammation and hypoxia-
induced immunosuppressive environment that seems to be the
most fertile ground to generate the tumor cells with metastatic
potentials. This supports that carcinomatous cells in the level II
tend to have the highest metastatic potency, which may also offer
a genetic explanation why rare skip metastases of the level IV or
level V were found in HNSCC (Lydiatt et al., 2017).

The relatively small quantity of lymphatic metastasis samples,
the variations of tumor sample purity, and the intratumor
heterogeneity limit our current study, especially given that
the expression of SMAD3, PECAM1, TMEM173, STAT3, and
TWISTNB reveals no statistically significant difference among
different groups. Meanwhile, our observation revealed PECAM1
was significantly decreased but it showed no significant difference
in TCGA datasets. It may result from that the squamous cell
cancer in oropharynx, hypopharynx, and larynx were included
in TCGA dataset, and they had an entirely different biological
behavior and prognosis from HNSCC. While these findings will
require further validation in larger cohorts of patient samples in
the future, we believe this first gene expression analysis of cervical

lymph nodes in the individual level of cancer patients will provide
us an important opportunity to guide the future investigations
of HNSCC.

Through gene expression analyses, we found that the mRNA
expression of selected CSCs and immune suppression markers
exhibit the highest expression in the level II metastatic lymph
nodes, then declined in the level III and remained constant at
a reduced value in levels IV and V metastatic lymph nodes.
These results help to explain the reason why the level II has a
high incidence of lymph node metastasis, and skip metastasis
to the level IV or level V is rarely found in the clinic. It will
help to increase the understanding of the genetic characteristics
associated with metastatic loci and potential routes of lymphatic
dissemination of HNSCC, and may aid the clinical diagnosis and
treatment of HNSCC.
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Digestive cancers-including gastric cancer (GC), colorectal cancer, hepatocellular
carcinoma, esophageal cancer, and pancreatic cancer-accounted for 26% of cancer
cases and 35% of cancer deaths worldwide in 2018. It is crucial and urgent to develop
biomarkers for the diagnosis, prognosis, and therapeutic benefits of digestive cancers,
especially for GC, since the incidence of GC is lower only than lung cancer in China,
is hard to detect at an early stage, and is associated with poor prognosis. Mucins,
glycoproteins encoded by MUC family genes, act as a part of a physical barrier in
the digestive tract and participate in various signaling pathways. Some mucins have
been used or proposed as biomarkers for carcinomas, such as MUC16 (CA125) and
MUC4. However, there are no systematic investigations on the association of MUC
family members with diagnoses and clinical outcomes even though relevant data
have been largely accumulated in the past decade. By analyzing transcriptomic and
clinical data of digestive cancer samples from TCGA involving colon adenocarcinoma
(COAD), esophageal carcinoma (ESCA), liver hepatocellular carcinoma (LIHC), stomach
adenocarcinoma (STAD), and pancreatic adenocarcinoma (PAAD), it was found that
expressions levels of MUC15, MUC13, and MUC21 were individually associated with
survival for digestive cancers, and high expressions of EMCN (MUC14) and MUC15
were correlated with poor survival for STAD. Cox regression analysis indicated the
predictive power of an EMCN/MUC15 combination for overall survival (OS) of GC
patients, which was validated on an independent dataset from GEO. EMCN/MUC15
correlated genes were identified to be enriched in cancer-related processes, such
as vasculature development, mitosis, and immunity. Therefore, we propose that an
EMCN/MUC15 combination could be a potential prognostic signature for gastric cancer.
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INTRODUCTION

Digestive cancers are a group of cancers that occur in the
digestive tract, and include gastric cancer (GC), colorectal cancer,
hepatocellular carcinoma, esophageal cancer, and pancreatic
cancer. Digestive cancers accounted for around 26% of cancer
cases and 35% of cancer deaths in the world in 2018 (Bray
et al., 2018). Among them, the morbidity and mortality of GC
in Eastern Asia is much higher than the worldwide average
level. In China, the incidence of GC is only lower than lung
cancer, and the mortality is third to lung cancer and liver cancer
(Chen et al., 2014). Most patients suffering from early stage GC
are asymptomatic and always develop distant metastasis at the
time of diagnosis (Van Cutsem et al., 2016; Bray et al., 2018).
Surgery is the main treatment for GC. Adjuvant or neoadjuvant
therapy combined with surgery is commonly used to treat
advanced GC, while targeted drugs for advanced GC, such as
the HER2 (also known as ERBB2) antibody trastuzumab, and
the VEGFR-2 antibody ramucirumab, are still in clinical trials
(Van Cutsem et al., 2016). Therefore, developing biomarkers for
the diagnosis, prognosis, and therapeutic response of digestive
cancers, especially of GC, is necessary and urgent for reducing
the mortality rate.

Mucins represent a group of glycoproteins encoded by MUC
family genes. These high-molecular weight and filamentous
glycoproteins could be classified into secreted mucins and
membrane-bound mucins. In the digestive tract, secreted mucins
form a mucus layer and act as part of a physical defensive barrier
against external aggressive forces (Dekker et al., 2002; Dhanisha
et al., 2018); membrane-bound mucins possess membrane
specific domains which enable their diverse roles in signaling
pathways (Dekker et al., 2002; Dhanisha et al., 2018). Not
surprisingly, dysfunction of mucins in their fundamental roles is
implicated in disease development at mucosal surfaces (Corfield,
2015; Dhanisha et al., 2018), and some mucins have been
reported to display diagnostic or prognostic significance in
different types of cancer. For example, MUC16, also known
as CA125, is a widely used biomarker for the diagnosis of
ovarian cancer (Yonezawa et al., 2011; Jonckheere and Van
Seuningen, 2018) and was also found to be over-expressed in
several other human malignancies, including pancreas, breast,
and lung (Aithal et al., 2018). MUC4 promotes carcinogenetic
progression and has been proposed as a promising biomarker
for pancreatic, ovarian, esophagus, and lung cancers (Kaur
et al., 2013; Jonckheere and Van Seuningen, 2018). MUC15
overexpression is significantly correlated with several types of
cancers, including colon cancer, hepatocellular carcinoma, and
thyroid cancer (Huang et al., 2009; Nam et al., 2011; Wang et al.,
2013; Choi et al., 2018). Moreover, MUC4/MUC16/MUC20 high-
expression signature was very recently reported to be correlated
with poor overall survival (OS) in several types of digestive
cancers including pancreatic, colon, and GCs (Jonckheere
and Van Seuningen, 2018). However, there are no systematic
investigations, so far, on the association of MUC family members
with diagnosis, prognosis, and/or therapeutic benefits, even
though the Cancer Genome Atlas (TCGA) project is producing
massive genomic, transcriptomic, proteomic, and clinical data

involving more than 11,000 patients of 33 different types of
tumors (Weinstein et al., 2013), and meanwhile, a number of
web tools, such as GEPIA (Tang et al., 2017) and cBioPortal for
Cancer Genomics (Cerami et al., 2012; Gao et al., 2013), have
been developed that enable users to easily and effectively mine
TCGA data.

In the present study, by analyzing digestive cancer samples
from TCGA involving colon adenocarcinoma (COAD),
esophageal carcinoma (ESCA), liver hepatocellular carcinoma
(LIHC), stomach adenocarcinoma (STAD), and pancreatic
adenocarcinoma (PAAD), we found that expression levels of
MUC15, MUC13, and MUC21 were individually associated with
survival for all these digestive cancers, and high expressions of
EMCN (MUC14) and MUC15 were correlated with poor survival
for STAD. Cox regression analysis showed that EMCN/MUC15
combination still exhibited a significant correlation with the OS
of GC patients. The prognostic prediction power of signature
EMCN/MUC15 was further validated on an independent GC
dataset, GSE84437. EMCN/MUC15 top 50 correlated genes were
identified to be enriched in cancer-related processes, including
vasculature development, mitosis, immunity, and so on. Taken
together, we propose EMCN/MUC15 combination as a potential
prognostic signature for GC.

MATERIALS AND METHODS

Datasets
Datasets were collected from TCGA1 and GEO2 (Barrett et al.,
2012). Specifically, gene expression data (TPM, Transcripts Per
Kilobase Million) and clinical data for digestive cancers including
COAD, ESCA, LIHC, STAD, and PAAD, were analyzed with the
online webserver GEPIA 1.0 (Tang et al., 2017). Among them,
MUC family mRNA expression data (mRNA expression z-scores,
which is based on RNASeqV2 processed and normalized using
RSEM) and clinical profiles involving 407 STAD samples were
extracted by using an online web tool cBioPortal for Cancer
Genomics (Cerami et al., 2012; Gao et al., 2013). Additionally,
GSE84437 were extracted from the GEO database, which involves
mRNA microarray data and clinical profiles of 433 GC samples.

Survival Analysis
Kaplan–Meier (KM) survival analysis for digestive cancer
samples as a whole was carried out by using the webserver
GEPIA 1.0 (Tang et al., 2017), and for GC samples (TCGA-STAD
from cBioPortal and GSE84437 R package survival3 was used.
KM analysis was based on individual gene expression value and
survival data. By using the median expression value of a query
gene in a certain sample group as a cutoff, the samples were split
into high and low expression groups with the expression level
of the query gene not less than and less than the cutoff. The
Cox proportional hazard model was built by using R package

1https://www.cancer.gov/about-nci/organization/ccg/research/structural-
genomics/tcga
2https://www.ncbi.nlm.nih.gov/geo/
3https://cran.r-project.org/web/packages/survival/
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survival, fitted with two genes’ expression values for OS or disease
free survival (DFS). Similar to the individual gene analysis, the
median value of weighted expression value (shortened as WEV)
of a gene combination in a certain cohort were used as a group
cutoff, where WEV was calculated as the sum of cox-regression
coefficient weighted expression value of each gene involved in
the combination. Log rank p-values, cox proportional hazard
ratios (HRs), and HR p-values were calculated to compare the
survival between two groups split by the median value of gene
expression or WEV. A p-value of less than 0.05 and HR greater
than 1.05 or less than 0.95 suggest statistical significance of
the survival difference between high and low groups, which
indicates the corresponding gene or gene combination has a
prognostic potential.

Gene Co-expression Analysis and
Enrichment Analysis
Gene co-expression analysis was carried out using webserver
cBioPortal, and the top 25 positively correlated and top 25
negatively correlated genes were selected according to Spearman
correlation coefficients, which were taken together and simplified
as “top 50 correlated genes” in our results. Here, correlated genes
met two criteria: the absolute value of Spearman correlation
coefficient is greater than 0.25, and the p-value is less than 0.01.
Gene set enrichment analysis (GSEA) was performed by using R
package clusterProfiler (Yu et al., 2012). The pathways enriched
for GO (Gene Ontology) (Ashburner et al., 2000; The Gene
Ontology Consortium, 2019) were plotted based on the negative
logarithm of p-value.

RESULTS

MUC15, 13, and 21 Display Prognostic
Potential for Digestive Cancer on TCGA
Aiming to assess the prognostic potentials of every MUC gene,
KM survival analysis was applied to TCGA digestive cancer
samples as a whole involving COAD, ESCA, LIHC, STAD,
and PAAD by using the webserver GEPIA 1.0 (Tang et al.,
2017). Among the 14 MUC family members with expression
data available, the expression levels of MUC1, MUC5AC,
MUC6, OVGP1 (MUC9), MUC13, EMCN (MUC14), MUC15,
MUC16, MUC17, and MUC21 individually exhibited significant
correlations with OS, with HR p-values less than 0.05 and
HR greater than 1.05 or less than 0.95; similarly, MUC2,
MUC3A, MUC12, MUC13, MUC15, MUC17, MUC20, and
MUC21 were significantly correlated with DFS (Table 1 and
Supplementary Figure S1). MUC13, MUC15, MUC17, and
MUC21 were significant for both OS and DFS, among which
MUC15 performed best for OS correlation and the second
best for DFS correlation. In comparison, MUC13 displayed the
best performance in DFS analysis, while ranked relatively lower
(9th) in OS analysis; MUC21 ranked 3rd for OS, and 8th for
DFS (Table 1 and Supplementary Figure S1). These indicate
that MUC15 represents a promising candidate for developing
strategies for prognosis prediction for digestive cancers.

MUC14 (EMCN) and 15 Display
Prognostic Potential for Gastric Cancer
on TCGA-STAD
To investigate the prognostic potentials of MUC family genes
for STAD, we performed KM survival analysis exclusively on
STAD samples from TCGA with R package survival. It was
found that the expression levels of EMCN (MUC14) and MUC15
individually showed significant correlations with both OS and
DFS, and MCAM (MUC18) was significant only with OS
(Table 2). KM survival plots, together with log rank p-values,

TABLE 1 | Survival analysis of TCGA digestive cancer samples for prognostic
potentials of MUC family genes.

Gene HR
p-value
for OS

OS
p-value

rank

HR
p-value
for DFS

DFS
p-value

rank

MUC1 1.3E−05 6 0.23 11

MUC2 0.69 14 5.2E−08 3

MUC3A 0.49 12 1.7E−06 4

MUC5AC 7.9E−06 5 0.74 14

MUC6 2.7E−07 3 0.41 12

OVGP1 (MUC9) 0.0021 7 0.094 10

MUC12 0.58 13 0.00012 5

MUC13 0.032 9 2.1E−08 1

EMCN (MUC14) 0.044 10 0.71 13

MUC15 1.7E−09 1 3.6E−08 2

MUC16 6.4E−09 2 0.059 9

MUC17 0.0053 8 0.00051 6

MUC20 0.36 11 0.01 7

MUC21 9.8E−07 4 0.01 8

OS stands for overall survival and DFS stands for disease free survival (DFS). The
p-values less than 0.05 are displayed in bold.

TABLE 2 | Survival analysis of TCGA STAD samples for prognostic potentials of
MUC family genes.

Gene HR p-value for OS HR p-value for DFS

MUC1 0.654 0.591

MUC2 0.129 0.364

MUC4 0.9 0.203

MUC5B 0.441 0.753

MUC6 0.67 0.0854

OVGP1 (MUC9) 0.662 0.925

MUC12 0.957 0.637

MUC13 0.0511 0.234

EMCN (MUC14) 0.00154 0.00737

MUC15 0.0185 0.0141

MUC16 0.825 0.0975

MUC17 0.145 0.406

MCAM (MUC18) 0.0167 0.323

MUC20 0.891 0.62

MUC21 0.224 0.745

OS stands for overall survival and DFS stands for disease free survival. The p-values
less than 0.05 are displayed in bold.
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FIGURE 1 | Survival analysis of TCGA STAD samples for prognostic potentials of EMCN (MUC14) and MUC15. (A) Overall Survival (OS) of EMCN. (B) Disease Free
Survival (DFS) of EMCN. (C) Overall Survival of MUC15. (D) Disease Free Survival of MUC15. Log rank p-values, hazard ratios (HRs) and hazard ratio p-values were
calculated. The 95% confidence intervals for survival time were shown in as dotted lines in the Kaplan–Meier (KM) survival plot.

cox proportional HRs, and HR p-values summarized in Figure 1
indicated that EMCN performed better than MUC15 in both OS
and DFS analyses. Overall, EMCN and MUC15 could be potential
biomarkers for STAD prognosis.

EMCN/MUC15 Combination Could Serve
as Prognostic Signature for Gastric
Cancer
So far we have observed that high expressions of both EMCN
and MUC15 were associated with poor prognosis in GC, and
that EMCN and MUC15 displayed the strongest correlation to
survival for GC and digestive cancers, respectively (Table 2 and
Figure 1). Thus, we set out to investigate whether EMCN/MUC15
combination could be a prognostic signature for GC. Cox
proportional hazards regression analysis was performed based

on the two genes’ expression values and OS data derived
from TCGA STAD dataset. As expected, the expression of
EMCN/MUC15 combination exhibited significant correlation
with OS, with log rank p-value of 0.00299 and HR p-value of
0.00301 (Figure 2A).

We then separately tested the prognostic prediction power
of EMCN, MUC15 and their combination on an independent
dataset, GSE84437, which involved 433 GC samples. Again,
significant results of EMCN/MUC15 combination (HR = 1.33)
were obtained with log rank p-value being 0.0419 and HR p-value
being 0.0413 (Figure 2B); while one single gene, EMCN (HR
p-value of 0.0807, HR = 1.27) or MUC15 (HR p-value of 0.156,
HR = 0.82), had no significant prognostic prediction power, as
shown in Supplementary Figure S2. We therefore proposed
that EMCN/MUC15 combination could be a potential prognostic
signature for GC.
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FIGURE 2 | Overall survival analyses of gastric cancer (GC) samples from TCGA STAD (A) and GSE84437 (B) for predictive power of EMCN/MUC15 signature. Log
rank p-values, hazard ratios (HRs) and hazard ratio p-values were calculated. The 95% confidence intervals for survival time were shown as dotted lines in the
Kaplan–Meier survival plot.

EMCN/MUC15 Correlated Genes Are
Functionally Enriched in Cancer Related
Processes
By using webserver cBioPortal, the top 50 EMCN- (Table 3)
or MUC15- (Table 4) correlated genes were identified based
on mRNA expression data of TCGA STAD samples, including
the top 25 positively correlated genes and top 25 negatively
correlated genes. It is noticeable that there is no intersection
between the two top 50 gene lists at all and no co-
expression between EMCN and MUC15 (Spearman’s Correlation
of 0.0264 with p-value of 0.592) either, implying the functional
complementarity between EMCN and MUC15 and thus the
rationality of the combination of the two genes in predicting
prognosis for GC.

We then performed functional enrichment analysis with the
two top 50 correlated genes as a whole. GSEA identified a
total of 22 GO terms (Figure 3 and Supplementary Table S1).
Among them, the most significant pathways were associated
with vasculature development, such as glomerulus vasculature
development and renal system vasculature development. Some
enriched pathways are associated with mitosis, such as mitotic
sister chromatid segregation and mitotic metaphase plate
congression. Some pathways were associated with immunity,
such as inflammatory cell apoptotic process and response to
interferon-gamma. The other enriched pathways were involved
in DNA binding, cell cycle phase transition, cell polarity,
phosphatase activity, and side of plasma membrane (Figure 3
and Supplementary Table S1). These indicate that genes
correlated with EMCN and MUC15 in GC tend to be enriched
in cancer related processes, such as vasculature development,
mitosis, and immunity.

DISCUSSION

In the present study, by systematically analyzing mRNA
expression and clinical data of TCGA digestive cancer samples
and GEO GC samples, we propose MUC15 as a promising
candidate for prognosis prediction of digestive cancers,
and EMCN/MUC15 combination as a potential prognostic
signature for GC.

Gene signature identification is essentially a process of
dimension reduction of high dimensional data. On one hand,
a signature involving less features or genes obviously has more
practicality; on the other hand, a signature is also expected to
have sufficient interpretability, although it is far from achieved.
In this sense, a good signature is supposed to consist of
orthogonal or mutually exclusive features which are able to
hold a testable hypothesis from a systematic viewpoint while
also sustaining the robustness and reliability of the signature.
However, most current efforts in this field focus on reducing
dimension over enhancing explanatory power of the signature.
In our work, although EMCN and MUC15 coding genes belong
to the same gene family, it is noted that there is no expression
correlation between the two genes and no intersection between
their top 50 correlated genes, implying the orthogonality and
functional complementarity between EMCN and MUC15. As we
expected, the combination of EMCN/MUC15 shows more robust
prognostic power than the individual genes in GC according
to the testing result implemented on an independent dataset
GSE84437. These observations not only support the rationality
of the combination of the two genes in predicting prognosis,
but also indicate the explanatory power of EMCN/MUC15
signature, which is supposed to play an important role in the
robustness improvement.
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TABLE 3 | Top 50 genes correlated with EMCN based on TCGA STAD dataset.

Correlated gene Cytoband Spearman correlation p-value

CYYR1 21q21.3 0.931414 2.19E−183

MYCT1 6q25.2 0.929044 1.90E−180

ERG 21q22.2 0.894179 3.19E−146

DIPK2B Xp11.3 0.887525 4.57E−141

ADGRL4 1p31.1 0.886757 1.71E−140

CD34 1q32.2 0.880383 6.99E−136

TEK 9p21.2 0.873397 4.03E−131

PECAM1 17q23.3 0.871639 5.73E−130

S1PR1 1p21.2 0.870224 4.72E−129

LDB2 4p15.32 0.860092 8.59E−123

RHOJ 14q23.2 0.859913 1.10E−122

CLEC14A 14q21.1 0.854201 2.25E−119

GNG11 7q21.3 0.853027 1.03E−118

EBF1 5q33.3 0.846286 5.16E−115

MMRN2 10q23.2 0.846005 7.29E−115

CLEC1A 12p13.2 0.843416 1.71E−113

CALCRL 2q32.1 0.841594 1.53E−112

LRRC70 5q12.1 0.84015 8.47E−112

MEF2C 5q14.3 0.839354 2.16E−111

ARHGEF15 17p13.1 0.836065 9.86E−110

CDH5 16q21 0.828483 4.80E−106

PALMD 1p21.2 0.828283 5.97E−106

SHE 1q21.3 0.826792 3.01E−105

SPARCL1 4q22.1 0.823121 1.52E−103

JAM2 21q21.3 0.821442 8.85E−103

RAD54L 1p34.1 −0.53926 1.10E−32

CDCA5 11q13.1 −0.53612 2.96E−32

PKP3 11p15.5 −0.53108 1.41E−31

CDCA8 1p34.3 −0.5303 1.79E−31

ZWINT 10q21.1 −0.52817 3.44E−31

KIF2C 1p34.1 −0.52339 1.46E−30

HJURP 2q37.1 −0.51982 4.21E−30

MCM2 3q21.3 −0.51829 6.63E−30

CDT1 16q24.3 −0.51369 2.54E−29

MYO19 17q12 −0.51058 6.24E−29

TONSL 8q24.3 −0.50684 1.82E−28

CCNA2 4q27 −0.5056 2.58E−28

NCAPH 2q11.2 −0.5018 7.48E−28

POC1A 3p21.2 −0.50165 7.81E−28

NELFA 4p16.3 −0.50116 8.95E−28

UBE2T 1q32.1 −0.50026 1.15E−27

POLD2 7p13 −0.49997 1.25E−27

DTL 1q32.3 −0.49967 1.35E−27

PTBP1 19p13.3 −0.49959 1.38E−27

CNOT11 2q11.2 −0.49871 1.76E−27

STIP1 11q13.1 −0.49718 2.69E−27

MAP7 6q23.3 −0.49631 3.41E−27

ESPL1 12q13.13 −0.49591 3.81E−27

TBRG4 7p13 −0.49548 4.29E−27

CDC25A 3p21.31 −0.49474 5.24E−27

Genes mentioned in Discussion section are highlighted in bold and italic.

EMCN, i.e. MUC14, encodes a membrane-bound protein,
endothelial sialomucin or mucin-like sialo glycoprotein,
which was reported to inhibit cell and extracellular matrix

TABLE 4 | Top 50 genes correlated with MUC15 based on TCGA STAD dataset.

Correlated gene Cytoband Spearman correlation p-value

ANO3 11p14.3-p14.2 0.558879 1.82E−35

FSTL4 5q31.1 0.4959 3.82E−27

TMPRSS13 11q23.3 0.469609 3.76E−24

ZNF750 17q25.3 0.464898 1.21E−23

LGALS7 19q13.2 0.454428 1.54E−22

NCCRP1 19q13.2 0.452369 2.52E−22

PCLO 7q21.11 0.449054 5.50E−22

GABRA3 Xq28 0.446711 9.51E−22

DLX3 17q21.33 0.443637 1.94E−21

LIN28B 6q16.3-q21 0.440243 4.21E−21

ADGRV1 5q14.3 0.439028 5.55E−21

USH1G 17q25.1 0.436641 9.52E−21

C12ORF56 12q14.2 0.429849 4.32E−20

RSPO4 20p13 0.428819 5.41E−20

SPAG17 1p12 0.425992 1.00E−19

MARK1 1q41 0.424353 1.43E−19

HTR2C Xq23 0.423044 1.90E−19

CT45A5 Xq26.3 0.420712 3.13E−19

PRPF40B 12q13.12 0.419994 3.64E−19

C3ORF67 3p14.2 0.419376 4.16E−19

RIPPLY3 21q22.13 0.417437 6.27E−19

CNGB3 8q21.3 0.417398 6.32E−19

ATP6V0A4 7q34 0.413452 1.45E−18

LINC00964 8q24.13 0.412548 1.74E−18

VGLL1 Xq26.3 0.409463 3.30E−18

MCUB 4q25 −0.35985 3.92E−14

FAS 10q23.31 −0.32779 7.51E−12

IRF1 5q31.1 −0.32732 8.08E−12

ZIC2 13q32.3 −0.31402 5.99E−11

CDC42SE2 5q31.1 −0.31243 7.55E−11

HK3 5q35.2 −0.30198 3.37E−10

NUB1 7q36.1 −0.30007 4.41E−10

GBP4 1p22.2 −0.29733 6.45E−10

BBC3 19q13.32 −0.29722 6.55E−10

AIM2 1q23.1-q23.2 −0.29707 6.68E−10

NLRC5 16q13 −0.29669 7.04E−10

MAX 14q23.3 −0.29642 7.30E−10

MTHFD1 14q23.3 −0.29437 9.67E−10

AGAP2 12q14.1 −0.29096 1.54E−09

IFNG 12q15 −0.29068 1.59E−09

RASSF1 3p21.31 −0.28787 2.32E−09

GZMA 5q11.2 −0.28696 2.62E−09

CCL4 17q12 −0.28515 3.32E−09

MAT2B 5q34 −0.28231 4.82E−09

FCGR3A 1q23.3 −0.28226 4.85E−09

THG1L 5q33.3 −0.28207 4.97E−09

TK2 16q21 −0.28202 5.01E−09

PRKX Xp22.33 −0.27772 8.71E−09

JAK2 9p24.1 −0.27752 8.94E−09

EEF2 19p13.3 −0.2774 9.07E−09

Genes mentioned in Discussion section are highlighted in bold and italic.

interaction, interfere with leukocyte-endothelial cell adhesion,
and even promote the peritoneal metastasis process of GC
cells (Liu et al., 2001; Zahr et al., 2016; Dhanisha et al., 2018;
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FIGURE 3 | Go terms derived from gene set enrichment analysis (GSEA) for top 50 EMCN- and MUC15-correlated genes. The pathways are ranked by -log p-value.
The 95% confidence intervals for survival time were shown as dotted lines in the Kaplan–Meier survival plot.

Bao et al., 2019). Among the 22 enriched functions for top
50 EMCN-correlated genes and top 50 MUC15-correlated
genes, the most significant one is glomerulus vasculature
development that is associated with four EMCN/MUC15
correlated genes including CD34, TEK, PECAM1, and IFNG
(Tables 3, 4 and Supplementary Table S1). After carefully
checking functional annotations of the four genes, we
focused on two cancer relevant genes, CD34 and PECAM1.
Both genes are significantly coexpressed with EMCN with
correlation coefficients of 0.880 and 0.871, respectively
(Table 3). CD34, a marker of vascular endothelial cells, is
capable of supporting cell adhesion by increasing surface
expression (Nielsen and McNagny, 2008). PECAM1, also
known as CD31, encodes platelet endothelial cell adhesion
molecule 1 that is necessary for leukocyte transendothelial
migration (TEM) (Dasgupta et al., 2009). It is noteworthy
that EMCN/COL4A5/CCL11 combination was very recently
reported as a prognostic signature for diffuse type GC (Bao
et al., 2019). In our study, among MUC family members,
EMCN exhibits the strongest correlation with survival
for GC. Taken together, EMCN may play crucial roles in

tumorigenesis and progression of GC via cell adhesion and
TEM of lymphocytes.

MUC15 also encodes a membrane-bound protein, which
could promote cell proliferation, cell-extracellular matrix
adhesion, colony forming ability, and invasion in colon cancer
cells (Huang et al., 2009). Its overexpression is significantly
correlated with diverse cancers (Pallesen et al., 2002; Shyu et al.,
2007; Huang et al., 2009; Nam et al., 2011; Wang et al., 2013;
Choi et al., 2018). However, it was also found that the expression
of MUC15 decreased in hepatocellular carcinoma cells and
negatively regulated metastasis of hepatocellular carcinoma
(Wang et al., 2013). This suggests that MUC15 may perform
diverse functions in tumorigenesis and progression. In our
study, MUC15 displays the strongest correlation among the
MUC family with survival for digestive cancers and MUC15
overexpression seems to be a promising candidate for a prognosis
biomarker of digestive cancers. Combined with EMCN, the two
genes provide a potential prognostic signature for GC and
show more robustness in the prognostic prediction power than
individual genes. As far as we know, the association of MUC15
with GC is rarely reported.
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In summary, we propose EMCN/MUC15 combination as a
prognostic signature with mechanistic interpretability. It not only
possesses prognostic capability for GC, but also offers clues for
further exploring systematic mechanisms of carcinogenesis of GC
and other digestive cancers.
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For estrogen receptor (ER)-negative breast cancer patients, paclitaxel (P), doxorubicin
(A) and cyclophosphamide (C) neoadjuvant chemotherapy (NAC) is the standard
therapeutic regimen. Pathologic complete response (pCR) and residual disease (RD)
are common surrogate measures of chemosensitivity. After NAC, most patients still
have RD; of these, some partially respond to NAC, whereas others show extreme
resistance and cannot benefit from NAC but only suffer complications resulting from
drug toxicity. Here we developed a qualitative transcriptional signature, based on the
within-sample relative expression ordering (REO) of gene pairs, to identify extremely
resistant samples to PAC NAC. Using gene expression data for ER-negative breast
cancer patients including 113 pCR samples and 137 RD samples from four datasets,
we selected 61 gene pairs with reversal REO patterns between the two groups as
the resistance signature, denoted as NR61. Samples with more than 37 signature
gene pairs that had the same REO patterns within the extremely resistant group were
defined as having extreme resistance; otherwise, they were considered responders. In
the GSE25055 and GSE25065 dataset, the NR61 signature could correctly identify 44
(97.8%) of the 45 pCR samples and 22 (95.7%) of the 23 pCR samples as responder
samples, respectively; it also identified 13 (16.9%) of 77 RD samples and 8 (21.1%) of
38 RD samples as extremely resistant samples, respectively. Survival analysis showed
that the distant relapse-free survival (DRFS) time of the 14 extremely resistant cases
was significantly shorter than that of the 108 responders (P < 0.01; HR = 3.84; 95%
CI = 1.91–7.70) in GSE25055. Similar results were obtained in GSE25065. Moreover, in
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the integrated data of the two datasets with 94 responders and 21 extremely resistant
samples identified from RD patients, the former had significantly longer DRFS than the
latter (P < 0.01; HR = 2.22; 95% CI = 1.26–3.90). In summary, our signature could
effectively identify patients who completely respond to PAC NAC, as well as cases
of extreme resistance, which can assist decision-making on the clinical therapy for
these patients.

Keywords: breast cancer, neoadjuvant chemotherapy, pathological complete response, extreme resistance,
relative expression ordering

INTRODUCTION

Breast cancer is a common malignancy with the highest incidence
and mortality among females (Ferlay et al., 2015; Jia et al., 2015).
A standard regimen for estrogen receptor (ER)-negative breast
cancer patients, accounting for 30% of breast cancer patients,
is paclitaxel (P), doxorubicin (A), and cyclophosphamide (C)
neoadjuvant chemotherapy (NAC) (Jemal et al., 2011). However,
the heterogeneity of breast cancer can result in different responses
to standard therapy (Rouzier et al., 2005; Carey et al., 2007).

In clinical practice, a pathologic complete response (pCR)
is defined as a non-viable invasive cancer in the breast and
lymph nodes after the completion of NAC, indicating a complete
response to NAC and a favorable outcome (Kaufmann, 2003;
Guarneri, 2006; Mieog et al., 2007; Liedtke et al., 2008; Rastogi
et al., 2008). However, the proportion of pCR is quite low among
patients accepting NAC, and most patients have residual disease
(RD) (Popovici et al., 2010). Among patients with RD, accounting
for a great proportion of patients treated with NAC, most are
partial responders, whereas the others are extremely resistant
to NAC. These extremely resistant patients cannot benefit from
NAC, but only suffer complications resulting from the toxic
effects of NAC. More seriously, these patients may lose the best
treatment time because clinicians would evaluate the feasibility
of curative or conservative surgery after finishing chemotherapy
and a series of examinations (Helene et al., 2012). Therefore,
the development of a predictor to identify extremely resistant
patients who cannot benefit from NAC is of great significance.

Up to now, many signatures have been developed for pCR
prediction (Hess et al., 2006; Thuerigen, 2006; Liedtke et al.,
2009), but few studies have focused on the identification of
extremely resistant patients. The pCR predictive signatures
are based on risk scores summarized from quantitative
transcriptional data, which have poor reproducibility (Borst
and Wessels, 2010; Tabchy et al., 2010; Zhang et al., 2013; Qi
et al., 2016) due to widespread batch effects and the uncertain
quality of clinical samples. Although several reported quantitative
transcriptional disease signatures – including AlloMap R© (Pham
et al., 2010) – have been approved by the Food and Drug
Administration, the tissue samples must be sent to specific
laboratories for measurement with strict quality control, which
limits their wider applications in clinical practice.

In contrast, qualitative transcriptional signatures based on
within-sample relative expression orderings (REOs) are found to
be robust against experimental batch effects and can be directly
applied to samples at the individualized level (Eddy et al., 2010;

Wang et al., 2013; Chen et al., 2017). REO is a binary variable
based on comparing the mRNA levels within a single pair of
genes (Geman et al., 2004). For a gene pair (i, j), the REO pattern
represents whether the expression level of i is higher or lower than
that of j in the sample. Additionally, REO-based signatures are
also highly robust against common factors that lead to the failure
of quantitative transcriptional signatures in clinical applications,
such as varied proportions of tumor epithelial cells (Cheng et al.,
2017), amplification bias for minimum specimens (Liu et al.,
2017), and partial RNA degradation (Freidin et al., 2012; Chen
et al., 2017). Thus, the REO-based method is more practicable for
tissue biopsy samples acquired by fine needle aspiration (FNA) or
core biopsy (CBX) prior to NAC.

Based on the within-sample REOs of gene pairs, Zhang
et al. (2013) have developed a pCR predictor and a prognosis
predictor for RD to identify patients who might benefit from
NAC. However, this study did not consider the impact of
ER subtype. ER-positive patients with good prognosis have a
lower pCR rate than that of ER-negative patients with poor
prognosis (Guarneri, 2006). Meanwhile, for the same set of breast
cancer patients approximately 20% of ER states determined by
immunohistochemical (IHC) methods gave different results for
different pathologists (Dubowitz, 1991; Arihiro et al., 2007),
especially for weak ER-positive samples (Hammond et al., 2010;
Sheffield et al., 2016), which may reduce the accuracy of pCR
prediction. Thus, we re-determined the ER status of breast
cancer patients using the 112-gene-pair signature for ER status
developed by Cai et al. (2018) to reduce misjudgments of
ER status by IHC.

In this study, we used the gene expression data of ER-negative
samples reclassified by the 112-gene-pair signature to identify a
qualitative transcriptional signature consisting of 61 gene pairs to
predict patients with extreme resistance to PAC chemotherapy.
Our signature was well-verified in two independent datasets with
survival information.

MATERIALS AND METHODS

Data and Preprocessing
We collected four expression datasets (GSE20194, GSE20271,
GSE41998, and MDA133) including 250 IHC-determined ER-
negative breast cancer patients in total, who accepted PAC
NAC, from the Gene Expression Omnibus (GEO1) and the MD

1http://www.ncbi.nlm.nih.gov/geo/
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Anderson Cancer Center2 databases. In the datasets of GSE20194
and GSE20271, we only used the expression data of patients who
received paclitaxel followed by fluorouracil (F), doxorubicin [or
epirubicin (E)], and cyclophosphamide. In the GSE41998 and
MDA133 datasets, the treatment regimens for these patients were
PFAC and PAC, respectively.

Two other independent expression datasets (GSE25055 and
GSE25065) were used to evaluate whether there was a difference
in survival between the responsive and the resistant groups. The
treatment regimen for patients in GSE25055 was PAC or PA and
the treatment regimen for patients in GSE25065 was PA.

Although PAC NAC is a very common chemotherapeutic
regimen, doctors design individual drug delivery schemes for
each patient, depending on their condition. Some patients
received 6 months of NAC including PFAC (e.g., GSE20194),
whereas others received sequential NAC starting with 4 cycles
of AC administered every 3 weeks, followed by paclitaxel weekly
for 12 weeks (e.g., GSE41998). In this study, we only considered
the drug type and not the dose of each drug or the duration of
chemotherapy. The clinical characteristics for each dataset are
summarized in Table 1.

For the Affymetrix array data, the raw intensity files (.cel),
downloaded from the GEO database were processed using the
Robust Multichip Average algorithm (RMA) for background
adjustment without quantile normalization. The probe identity
documents (ID) were mapped to the Entrez gene ID according
to the corresponding platform annotation files. If a probe did not
map to a gene or was mapped to multiple genes, the data for this
probe were deleted. If multiple probes mapped to the same gene,
the arithmetic mean of the expression values for the multiple
probes was taken as the final expression value for this gene.

ER Status Re-determination
We used the 112-gene-pair signature developed by Cai et al.
(2018) to reclassify the ER-negative samples. An IHC-determined
ER-negative patient was reclassified as ER-negative if more than
68 gene pairs match the REOs of the ER-negative signature.

Identification of the REO-Based
Resistant Signature
For each RD (or pCR) sample, the gene expression profile
was first converted into a rank profile according to measured

2https://bioinformatics.mdanderson.org/pubdata.html

expression levels in ascending order (the lowest expression value
corresponds to the smallest rank). Then, pair-wise combinations
of all genes were examined to determine the REO pattern of
each gene pair within the sample. The within-sample REO
of a gene pair (i, j) has only two possibilities, Gi > Gj or
Gi < Gj, where Gi and Gj denote the expression values.
If the number of RD samples with a certain REO pattern
(Gi > Gj or Gi < Gj) is significantly more than expected by
chance, we define this gene pair as a stable gene pair of RD
samples; stable gene pairs of pCR samples are defined in a
similar manner. The significance of a REO in RD (or pCR)
samples was determined using a binomial test (Bahn, 1969)
as follows:

P = 1−
∑k−1

i=0

(
n
i

)
p0

i (1 − p0)
(n − i) (1)

where n is the total number of samples with the RD (or pCR)
status, k denotes the number of samples that have a certain REO
pattern (Gi > Gj or Gi < Gj), and p0 denotes the probability
of observing a gene pair with a certain REO pattern by chance
(here, p0 = 0.5). Then the P-values were adjusted using the
Benjamini and Hochberg (1995) procedure to control the false
discovery rate (FDR).

We then defined stable-reversal gene pairs as pairs that
had a significantly stable REO pattern in the pCR samples
and RD samples, respectively, but had a reversal REO pattern
between the two groups.

Significant Majority Vote Rule
Based on the stable-reversal gene pairs between the pCR
and RD, we developed an extremely resistant signature.
A sample was identified as an extremely resistant sample, if
the number of REOs of the signature gene pairs matching that
of the extremely resistant group was significantly more than
expected by chance. The threshold for identifying an extremely
resistant sample was determined according to a binomial test
as follows:

P = 1 −
∑k−1

i=0

(
n
i

)
p0

i (1 − p0)
(n − i) (2)

where n is the number of signature gene pairs and k is the
number of gene pairs in the sample that match the REOs

TABLE 1 | Description of all datasets collected in this study.

Usage Dataset Regimen ER-negative sample size pCR RD With DRFS information

Training GSE20194 Popovici et al. (2010) T-FA(E)Ca 114 46 68 no

GSE20271 Tabchy et al. (2010) T-FA(E)C 79 19 60 no

MDA133 Hess et al. (2006) T-FAC 51 27 24 no

GSE41998 Horak et al. (2013) T-ACb 48 29 19d no

Validation GSE25055 Hatzis et al. (2011) T-AC;TAc 129 45 84 yes

GSE25065 Hatzis et al. (2011) TA 68 23 45 yes

aT-FA(E)C paclitaxel (T) followed by fluorouracil (F), doxorubicin (A) [or epirubicin (E)] and cyclophosphamide (C). bT-AC doxorubicin (A) and cyclophosphamide (C) followed
by paclitaxel (T). cTA taxane (T) and anthracycline (A) based regimens. dPD and SD samples representing tumor residuals screened from RD samples.
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for the extremely resistant group. p0 (here, p0 = 0.5) is the
probability of a gene pair having a certain REO pattern in a
sample by chance.

Survival Analysis
The distant relapse-free survival (DRFS), defined as the time
from surgery to distant recurrence or the final documented

date (censored), was used as a surrogate assessment of
tumor response status (Liedtke et al., 2008). A log-rank
test was used to assess the difference between the Kaplan–
Meier estimates of DRFS in two different groups. The
univariate Cox proportional-hazards regression model was used
to calculate the hazard ratios (HRs) and their 95% confidence
intervals (CIs).

FIGURE 1 | The flowchart for developing and validating the resistant signature.
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RESULTS

Development of the Resistant Signature
The flowchart of the process used for developing and validating
the resistance signature is shown in Figure 1. Using the
112-gene-pair signature for the ER status, 100, 64, 43, and
43 samples were re-determined as ER-negative samples from
the GSE20194, GSE20271, MDA133, and GSE41998 dataset,
respectively (Table 2).

To identify an extremely resistant signature, we first extracted
169,222 gene pairs with stable (binomial test, FDR < 0.05)
but reversed REOs between the pCR and RD group from the
integrated data of the GSE20194, GSE20271, and MDA133
datasets, with 86 pCR samples and 121 RD samples in total.
We then used the GSE41998 dataset to optimize the signature.
Beside the pCR and RD category, the GSE41998 dataset also
provided an evaluation of drug response criteria in solid
tumors (RECIST), which divided the patients into four groups:
complete response (CR), partial response (PR), stable disease
(SD), and progressive disease (PD) (Watanabe et al., 2009).
Among them, SD and PD indicated that the tumor area of
the patients did not improve significantly but was increased
after receiving NAC; therefore, we screened out the PD and SD
samples from the RD samples as extremely resistant samples.
We then extracted 30,588 stable-reversal gene pairs between the
16 extremely resistant samples and 27 pCR samples. Finally,
61 gene pairs that had consistent REO patterns between the
above two lists of stable-reversal gene pairs were selected
as the resistance signature, denoted as NR61. The details of
NR61 are shown in Table 3. Each gene pair has a certain
REO pattern in extremely resistant patients and a reversal
REO pattern in responsive patients. Based on the significant
majority vote rule (see section “Materials and Methods”), if
more than 37 gene pairs (P < 0.05) of NR61 showed the
same REO patterns as observed in extreme resistance, the
sample was identified as extremely resistant; otherwise, it was
considered a responder.

Researchers (Tong et al., 2015) have proven that if two
different regimens share one or several drugs, then the overlaps
of the clinically relevant drug resistance genes (CRGs) for the
two different regimens should be considered as the CRGs for the
shared drug(s). We speculated that this is similar for clinically
relevant drug resistance gene pairs (CRGPs). In this study,

TABLE 2 | The ER-negative samples reclassified by the 112-gene-pairs signature
from the IHC-determined ER-negative samples.

Usage Dataset Reclassified ER-negative
sample size

pCR RD

Training GSE20194 100 43 57

GSE20271 64 19 45

MDA133 43 24 19

GSE41998 43 27 16a

Validation GSE25055 122 45 77

GSE25065 61 23 38

aPD and SD samples representing tumor residuals screened from RD samples.

TABLE 3 | Each pair of genes in NR61.

Gene 1 Gene 2 Gene 1 Gene 2 Gene 1 Gene 2

UBTD1 ACOX1 LAMA5 SMARCC1 LMAN2L COBL

NOVA2 ADCY2 GPX5 SST RBP3 PART1

TAS2R1 APLP1 GRIA1 SST DNAH2 PART1

GCLM ARL1 TMEM165 VAMP7 GCLM CHIC2

RASL11B CKB STC1 VEGFB ACKR4 TOX3

PTPRA RCAN1 TGFB3 AKAP1 ATHL1 SLC43A3

AGPAT2 GNAQ TPST2 SPOP SLC30A1 ERGIC2

PLD2 GTF2F1 LETM1 SORBS2 FAM69A CRNKL1

B4GALT5 HNRNPF COPZ1 IQGAP1 VRK2 DPM3

NOS2 HSPA1L GCLM PRPF4B SFXN3 CPVL

GCLM IPO5 MICALL2 PRPF4B TRAFD1 BSPRY

SYDE1 MAZ IGSF3 ZNHIT3 GCLM C5orf22

GTF2H3 NFIB FAM69A RNF14 SLC12A4 LMO3

MCAM NFIB TJP1 GCC2 SULT2B1 LMO3

TBC1D4 NFIB LETM1 TOX4 SLC28A1 LMO3

NUAK1 NFIB C10orf2 DCAF7 SEMA3F FKBPL

FZD6 NUCB2 CPA3 SPAG5 GCLM AIDA

CIAPIN1 PBX1 DUOX1 OR7E14P P3H1 C17orf70

TRIT1 PBX3 MPPE1 KAT7 KREMEN2 IL17RC

GCLM RBM3 GLTSCR1 XPO7 SMURF1 KLHL22

MMP16 RYR3

The expression patterns of these gene pairs is Gene 1 > Gene 2 in the extremely
resistant samples and Gene 1 < Gene 2 in the response samples.

overlapping gene pairs between 169,222 CRGPs of PFAC and
30,588 CRGPs of PAC should thus be the CRGPs for PAC.
Thus, the resistant signature that we developed is specific for
predicting PAC resistance. However, the NR61 signature should
be applicable for patients who received any combination of P,
A, and C, as the extremely resistant patients identified by this
signature showed multidrug resistant to P, A, and C.

Performance of the NR61 Signature
In the GSE25055 and GSE25065 datasets, 122 and 61 ER-negative
breast cancer samples were separately re-determined using the
112-gene-pair signature (Table 2) and were used to validate
NR61. Among these re-determined ER-negative samples, the
NR61 signature could correctly classify 44 (97.8%) out of 45 pCR
samples and 22 (95.7%) out of 23 pCR samples as responder
samples, which showed that NR61 can effectively identify patients
that completely responded to PAC NAC.

The survival analysis was then used to validate the NR61
signature, assuming that the responsive patients have a better
prognosis than the extremely resistant patients. First, the survival
analysis was performed in all re-determined ER-negative breast
cancer patients. In the GSE25055 dataset with 122 ER-negative
breast cancer patients, 108 and 14 patients were classified as
responders and extremely resistant, respectively. The extremely
resistant patients had a significantly shorter DRFS time than
the responders (log-rank P < 0.01; HR = 3.84; 95% CI = 1.91–
7.70; Figure 2A). Similar results were obtained in the GSE25065
dataset with 61 ER-negative breast cancer patients (log-rank
P < 0.01; HR = 3.07; 95% CI = 1.28–7.36; Figure 2B).
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FIGURE 2 | Kaplan–Meier estimates of distant relapse-free survival (DRFS). DRFS curves for responder and extreme resistance in (A) GSE25055; (B) GSE25065;
(C) RD samples of GSE25055; (D) RD samples of GSE25065; (E) integrated RD samples of GSE25055 and GSE25065.

To avoid the impact of pCR patients and further demonstrate
the poor prognosis of extremely resistant patients, the survival
analysis was limited to RD patients. For the 77 RD patients
with ER-negative breast cancer in the GSE25055 dataset, 64 and
13 patients were classified into the responder and extremely
resistant group, respectively. Survival analysis showed that the
DRFS time of the extremely resistant group was significantly
shorter than that of the responders (log-rank P < 0.01;
HR = 2.59; 95% CI = 1.28–5.27; Figure 2C). In the RD
samples from the GSE25065 dataset with 38 ER-negative breast
cancer patients, the NR61 signature stratified 30 and 8 RD
patients into the responder and extremely resistant groups,
respectively. Survival analysis showed that, in this dataset with
a small sample size (low statistical power) there was a trend
of difference in the DRFS time between the responder and
extremely resistant groups (log-rank P = 0.29; HR = 1.66;
95% CI = 0.65–4.24; Figure 2D). In the integrated data of
the two datasets with 94 responders and 21 extremely resistant
patients in total, identified from the RD patients, the former had
significantly longer DRFS than the latter (log-rank P < 0.01;
HR = 2.22; 95% CI = 1.26–3.90; Figure 2E). This result
indicates that NR61 well divided the RD samples into two
categories, one of which is the PR to NAC with a good
prognosis, whereas the other has a very poor prognosis, which
is extreme resistance.

In the validation dataset where a number of patients received
PA rather than PAC, the extremely resistant patients who were
multidrug resistant to P, A, and C should have a poor prognosis,
while those patients who were resistant to P and A but sensitive
to C would be classified into the response group. The patients
under a treatment of PA should have a poor prognosis. However,
we still observed the extremely resistant group had a significantly
longer survival than the responder group, even though the latter
included some patients with poor prognosis.

All the above results indicate that the extremely resistant
patients identified by NR61 cannot benefit from the PAC
NAC treatment. The NR61 signature is thus expected
to assist physicians in choosing treatment plans for ER-
negative breast cancer patients in clinical practice. If a
patient is judged as extremely resistant by NR61, accepting
PAC NAC may only cause complications and a loss
of the best time for surgery. For these patients, other
chemotherapeutic regimens or direct surgery might be more
sensible options.

Correlation of NR61 With HER2 Status
and PAM50 Subtype
As HER2 status is an important prognostic and predictive
signature, we evaluated the performance of NR61 in HER2−
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and HER2+ patients, respectively. We found that all 61 ER-
negative breast cancer samples of GSE25065 were HER2− and
that 115 of 122 ER-negative breast cancer samples in GSE25055
were HER2−. In the 115 HER2+ patients, the survival of the
responder group and the extremely resistant group as identified
by NR61 was significantly different (Supplementary Figure 1A).
A similar result was found in 74 RD samples (Supplementary
Figure 1B). For another seven patients in GSE25055, the HER2
status of three patients was positive, and four patients were
uncertain. All of these seven patients were classified into the
responder group by NR61.

In addition, we counted the number of samples for each
PAM50 subtype in the responder group and in the extremely
resistant group as reclassified by NR61. In the responder group
of the GSE25055 dataset, the sample sizes of Normal, Luminal
A, Luminal B, HER2, and basal-like were 1, 0, 0, 1, and
12, respectively. In the extremely resistant group, the sample
size corresponding to these subtypes was 8, 0, 0, 8, and 92,
respectively. A Chi-square test showed no statistically significant
difference in the sample distribution of each PAM50 subtype
between the responder group and the extremely resistant group
(P = 0.9986, Supplementary Figure 2A). Similar results were also
observed in the GSE25065 dataset (P = 0.1213, Supplementary
Figure 2B). This result indicates that there is no relationship
between NR61 and PAM50 subtypes.

DISCUSSION

In this study, we developed a qualitative drug resistant signature
(NR61), which could well predict the ER-negative breast cancer
patients who were extremely resistant to PAC NAC. Based on
this signature a total of 183 ER-negative patients in the two
validation datasets could be divided into responder and extremely
resistant patients. Our research showed that the DRFS time of
the extremely resistant group was significantly shorter than that
of the responders. Patients identified with extreme resistance
should be recommended other treatment schemes to avoid
unnecessary suffering and expenses. Additionally, this signature
can correctly identify almost all patients who can completely
respond to PAC NAC.

Our qualitative transcriptional signature based on the within-
sample REOs is robust against batch effects (Chen et al., 2017;
Cheng et al., 2017; Guan et al., 2018) and could be performed
for the individual analysis of ER-negative breast cancer, which is
of great value for clinical application. The REO-based signatures
may lose some so-called “subtle” quantitative information of gene
expression measurements. However, the “subtle” quantitative
information is often unreliable because it is affected by the high
variations in measurement and batch effects, the proportions
of tumor epithelial cells in clinical tissue samples, partial RNA
degradation during specimen preparation and storage, and the
amplification bias of low-input RNA (Freidin et al., 2012; Chen
et al., 2017). Even the ratios of the expression values of gene pairs
are affected by batch effects (Loven et al., 2012; Qi et al., 2016).
Thus, this apparent disadvantage of REO analysis is actually a
unique advantage in terms of robustness (Chen et al., 2017).

In this study, PD and SD samples screened from RD samples
were defined as extremely resistant to PAC NAC. The pCR-RD
system is based on microscopic observation and a large number
of patients are diagnosed with RD. However, in the image-based
RECIST system (Watanabe et al., 2009), PD is defined as at least
a 20% increase in the sum of the diameters of target lesions
after receiving NAC, and SD is defined as neither sufficient
shrinkage to qualify for PR (at least a 30% decrease in the sum
of diameters of target lesions) nor sufficient increase to qualify
for PD, both of which are less sensitive to NAC. Therefore, it is
reasonable to screen PD and SD patients from RD patients as
extremely resistant, as used in this study. However, there is only
one dataset with information of both RECIST and pCR-RD. Thus,
we used the DRFS to evaluate whether the identified patients can
benefit from PAC NAC.

Due to the lack of RNA-seq data with suitable drug response
information, we only tested the NR61 signature in the microarray
data measured on the Affymetrix platform. In future, we will
collect the breast cancer expression data from the RNA-seq
platform to optimize our signature, in order to improve its
cross-platform ability.

CONCLUSION

In summary, the NR61 signature could be used to robustly
identify patients who are extremely resistant to PAC NAC among
ER-negative breast cancer patients. These patients are highly
unlikely to benefit from the PAC NAC regimen and should thus
be recommended other therapeutic regimens. The clinical value
of the NR61 signature for extreme resistance to the PAC NAC
regimen thus deserves further validation.
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This study aims to achieve a clearer and stronger understanding of all the mechanisms
involved in the occurrence as well as in the progression of lung cancer along
with discovering trustworthy prognostic markers. We combined four gene expression
profiles (GSE19188, GSE19804, GSE101929, and GSE18842) from the GEO database
and screened the commonly differentially expressed genes (CDEGs). We performed
differentially expressed group analysis on CDEGs, alteration and mutational analysis,
and expression level verification of core differential genes. Systems biology discoveries
in our examination are predictable with past reports. Curiously, our examination revealed
that screened biomarker adjustments, for the most part, coexist in lung cancer. After
screening 952 CDEGs, we found that the up-regulation of neuromedin U (NMU) and
GTSE1 in the case of lung cancer is related to poor prognosis. On the other hand,
FOS CDKN1C expression is associated with poor prognosis and is responsible for the
down-regulation of CDKN1C and FOS. Changes in these qualities are on free pathways
to lung cancer and are not usually of combined quality variety. Even though biomarkers
were related to both survival occasions in our examination, it gives us another point
of view while playing out the investigation of hereditary changes and clinical highlights
employing information mining. Based on our results, we found potential and prospective
clinical applications in GTSE1, NMU, FOS, and CDKN1C to act as prognostic markers
in case of lung cancer.

Keywords: lung cancer, TCGA, survival, systems biology, prognostic biomarkers

INTRODUCTION

Lung cancer cases are among the most reported tumors that have peak sickness and impermanence
rates worldwide (Siegel et al., 2019). Various factors could result in the development of such
condition; however, smoking, which may be regular or passive, radon gas, asbestos fibers, familial
predisposition, lung diseases, and air pollution is the main cause. The symptoms may vary from
person to person and case to case, but some regular signs involve ongoing cough, blood-streaked
saliva, puffed hoarseness, or some slight infection that keeps on coming. As per the various
diagnostic types, lung cancer is majorly grouped into two types, namely, small cell lung cancer
(SCLC) and non-small cell lung cancer (NSCLC), of which nearly 90% of the cases account for
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GRAPHICAL ABSTRACT | This picture depicts the whole methodology’s pipeline used for the current work that involves genomics and systems biology to scan for
potential lung cancer biomarkers.

NSCLC (Siegel et al., 2018). Although a lot of advancement
has taken place in the field of science and technology and
medical methods, the 5-year existence percentage of patients
who have SCLC continues to be merely 30% due to factors
such as tumor recurrence and metastasis. Finding tumor markers
with accurate prognosis can further aid in understanding the
direction and mechanism of tumor progression and provide
patients with personalized treatment plans to advance the overall
endurance of sufferers.

In the present scenario, the integration of high-throughput
omics technology and bioinformatics analysis continues to be a
significant and effective research method in clinical research to
discover target molecules associated with diseases. Moreover, it is
considered to be a reliable technique for bioinformatics analysis
of the integration of a huge quantity of omics data to discover
targets that have potential application importance, for instance,
researches on colorectal cancer (Luca et al., 2019), oral cancer (Di
et al., 2019; Pan et al., 2019), ovarian cancer (Hu et al., 2019),
osteosarcoma (Ma et al., 2019), and lung cancer (Feng et al.,
2019). In the present study, the first step we did was to collect
expression profiles of NSCLC mRNA from the GEO database
and inspected them for genes that are commonly differentially
expressed. The systems biology workbench was used to execute
analysis of gene network and visual analysis of network on genes
that are commonly differentially expressed, and after this, we
chose the major differentially expressed genes from commonly
differentially expressed genes Common differentially expressed

genes (cDEGs). The prognostic value of major differential genes
in NSCLC patients was then analyzed based on metainspection
(Graphical Abstract).

MATERIALS AND METHODS

Data Retrieval and Acquisition
The gene’s countenance contours of [GSE19188 (Hou et al.,
2010), GSE19804 (Lu et al., 2010), GSE101929 (Mitchell et al.,
2017), and GSE18842 (Sanchez-Palencia et al., 2011)] were
acquired from GEO database. All the microarray data belonging
to GSE19188, GSE19804, GSE101929, and GSE18842 exist on
GPL570 Platforms (Affymetrix Human Genome U133 Plus 2.0
Array), which was inclusive of 54 NSCLC tissues and 49 normal
lung matching tissues, 60 tissues of NSCLC and 60 normal lung
matching tissues, 30 tissues of NSCLC and 34 normal lung
matching tissues, and 46 tissues of NSCLC and 45 normal lung
matching tissues, respectively. We used (Teng et al., 2016) R
package to plot the gene expression (transcript per million) on
the basis of gene length for normalization, where total reads were
mapped to gene × 103/gene length in base pairs (bp) shown in
Figure 2.

mRNA Expression Profiling
The microarrays expression in lung tissues was used to identify
those genes that are differentially expressed (DEGs). The lung
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tissues used in this case were both of the tumor and coordinated
head-to-head non-cancerous. In order to scan for genes
associated with cancer, detailed literature review was considered,
integrating bioinformatics approaches. The GTSE1, neuromedin
U (NMU), FOS, and CDKN1C were obtained for confirming the
aspirant’s gene transcription and expression degree. In the end,
Fisher’s test was conducted to analyze the connection among the
pathological characteristics and aspirant genes.

Functional Identification of GTSE1, NMU,
FOS, and CDKN1C Using Systems
Biology Approach
To plan and perform the GTSE1, NMU, FOS, and CDKN1C
and their associated genes in biological mechanism, the
computational systems biology workbench was employed. The
required data for both the direct and indirect linkages were
collected by conducting a detailed survey of the available
information. A complete biological pathway is formed showing
all the interacting species. In this constructed pathway, the
entities are signified by nodes, while the edges represent the
linkage in between a pair of nodes that reveals their close
association. A particular concentration was assigned for the time

course simulation of the biochemical pathway that was noted
from previous reports. Differentially expressed genes of each and
every series were taken for analyses, where criterion was set to
adjusted P < 0.01 and | logFC| > 1. The analysis began by
first screening the DEGs present in each of the dataset with
standard P < 0.01.

Kaplan–Meier Survival Breakdown
The analysis of prognostic value of CDEGs in the patients
who were suffering from lung cancer was done by Kaplan–
Meier, with 54,000 genes in 21 tumors. In this study, we used
information on lung cancer from the database to analyze the
prognostic value, inclusive of 675 squamous cell carcinomas and
866 adenocarcinomas.

Validation of CDEGs Expression Levels
and Correlation Analysis
For the screening of promising CDEGs, we verified their
countenance points in 969 lung cancer models and 735
paracancerous samples where cutoff values were set as | logFC|
> 1 and P < 0.01. In addition, the correlation between
countenance levels and clinical stage of tumors was assessed

FIGURE 1 | The demonstration of the potential medical value of GTSE1, NMU, FOS, and CDKN1C in the prognosis of patients suffering from lung cancer. This figure
shows the difference in the expression pattern on chromosomes of all the four genes in a tissue (tissue-wise expressed genes on chromosomes). The figure
demonstrates that four CDEGs were wholly coherent with the results obtained in all the four sets of data, which further demonstrates that the prognostic value of
these four targets for lung cancer is good. As per the above results, FOS, GTSE1, CDKN1C, and NMU have good prognostic values for patients with lung cancer, as
shown in the figure.
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as well, investigating whether valuable CDEGs are independent
influencing factors influencing the prognosis of lung cancer.

RESULTS

Genomic Landscape of GTSE1, NMU,
FOS, and CDKN1C in Prognosis of
Patients Suffering From Lung Cancer
The demonstration of the potential medical value of GTSE1,
NMU, FOS, and CDKN1C in the prognosis of patients suffering
from lung cancer was done by us in order to verify the levels
of expression of FOS, CDKN1C, NMU, and GTSE1. The results
illustrated that expression levels of GTSE1 (P < 0.05) and NMU
(P < 0.05) were notably up-regulated, and expression levels
of CDKN1C (P < 0.05) and FOS (P < 0.05) were notably
down-regulated in lung adenocarcinoma (LUAD), as well as
in lung squamous cell carcinoma, and significantly statistically
significant. The results of verification demonstrated that four
CDEGs were wholly coherent with the results obtained in all the
four sets of data, which further demonstrate that the prognostic
value of these four targets for lung cancer is good. As per

the above results, FOS, GTSE1, CDKN1C, and NMU have
good prognostic values for patients with lung cancer, as shown
in Figure 1.

Expression of CDEGs
We executed differential expression screening on four datasets of
lung cancer (GSE101929, GSE18842, GSE19188, and GSE19804),
which we collected from the GEO database. These datasets consist
of 3,179, 3,162, 2,601, and 1,404 genes, which are differentially
expressed, of which 952 genes were CDEGs, inclusive of
256 up-regulated genes and 696 down-regulated genes shown
in Figure 2.

mRNA Expression Profiling
Analyzing the mRNA expression microarrays showed FOS,
GTSE1, CDKN1C, and NMU are greatly harbored by the patients
of lung cancer and are observed to be differentially expressed
(fold change ≥2.0) of these genes. Of these differentially
expressed qualities, GTSE1 and NMU were overexpressed,
whereas the down-regulated qualities were CDKN1C and FOS.
The computational techniques used here revealed that CDKN1C
and FOS, which are down-regulated genes in lung cancer-positive

FIGURE 2 | Expression analysis of potent biomarkers. Differential expression screening on four datasets of lung cancer GSE101929, GSE18842, GSE19188, and
GSE19804. Gene expression (transcript per million) on the basis of gene length for normalization, where total reads were mapped to gene × 103/gene length in bp.
The level of expression accords that all the considered tumor samples are given for each up-regulated and down-regulated genes where the CDKN1C is considered
to be the least expressed, whereas FOS is observed to be highly overexpressed.
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patients, are closely associated with the compulsive situation
and are responsible for the regulation number of biological
comebacks. Information assessment regarding CDKN1C and
FOS exposed its down-regulation as a separate countenance
outline in lung cancer happening in other geographical locations
shown in Figure 3. The association breakdown of experimental
features disclosed down-regulation of CDKN1C and FOS and its
correlation with the development of the diseased condition. In
the end, Fisher’s test was conducted to analyze the connection
between the pathological characteristics and aspirant genes
shown in Figure 4.

Functional Identification of DEGs Using
Systems Biology Approach
Systems biology is an interdisciplinary field that involves
computational and mathematical investigations for modeling
a complex biological mechanism. It mainly addresses the

linkages formed within the living systems and tracks changes
upon the incorporation of any non-native event using an all-
inclusive technique. Narrowing down to cancer systems biology,
it mainly involves the use of systems biology’s technology in
cancer research, for the sake of examining an ailment as a
challenging adaptive system having evolved characteristics at
various biological parameters, as shown in Figure 5.

To obtain the synopsis of the role and contribution of 952
CDEGs in the enhancement of lung cancer, we observed that
biological processes significantly related to the advancement of
lung cancer, angiogenesis, cells’ outside medium association,
collagen catabolic progression, and positive regulation of
angiogenesis. Moreover, cell components such as cells’ outside
medium, protein-rich medium surrounding the cell, and cells’
outer area; collagen trimer and extracellular region; molecular
function; integrin binding; and protein-binding and heparin-
binding activities of metalloendopeptidase were also found to
be tightly linked with the progression of the lung cancer. The

FIGURE 3 | mRNA expression microarrays showed FOS, GTSE1, CDKN1C, and NMU are greatly harbored in lung cancer patients and are observed to be
differentially expressed (fold change ≥2.0) in these genes. The up- and down-regulated genes as a potential biomarker are analyzed for its mRNA expression. This
figure depicts the mRNA biological impact of this gene by virtue of its intrinsic regulatory nature in patients.
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FIGURE 4 | Various pathological stages of all four genes are shown in this plot. For each individual biomarker, four stages can be observed showing significant
difference present among all the genes.

results obtained from the signaling pathways and cell adhesion
molecules (CAMs) were observed to be most closely related to
the occurrence of lung cancer. The ratio of DEGs in lung cancer
patients was high and was observed to be responsible for the
loss of function in many biological mechanisms. Therefore, it
is initially proposed that FOS, GTSE1, CDKN1C, and NMU
could be the potential genes for further evaluation in this regard
and may play an important role as biomarkers of lung cancer
diagnosis, as shown in Figure 5.

The CDKN1C, which is also known as p57kip2, is claimed to be
a tumor suppressor considered to be a potential tumor suppressor
caught up in several types of cancer in humans. However, recent
reports (Qiu et al., 2018) demonstrate CDKN1C in breast cancer
is observed to be intensely down-regulated equated with normal
tissue. Furthermore, the CDKN1C expression is detected to be
associated with age and tumor size in The Cancer Genome Atlas

(TCGA) cohort containing 708 cases of breast cancer. The low
expression of CDKN1C is expressively connected with overall
poor survival rate, as shown in Figure 5.

On the other hand, reports on the FOS maintained that its
down-regulation might be associated with the pathogenesis of
lung cancer (Mahner et al., 2008). This gene and TP53 play
as transcription factors and also as target genes in this system,
having the ability to self-regulate. The need for transcription
factor for TP53 is fulfilled by the FOS (Levin et al., 1995), as
shown in Figure 5.

An ample amount of expression is detected regarding NMU in
the vast majority of lung cancers. Various analyses have unveiled
a substantial connotation of NMU expression with a minor
prognosis of patients suffering from NSCLC. The expression of
this gene can be suppressed when short interfering RNAs are cast
off to treat NSCLC that retards the cell’s development. In contrast,
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FIGURE 5 | Systems biology is an interdisciplinary field that involves computational and mathematical investigations for modeling a complex biological mechanism.
This figure is a depiction of the genes in a lung cancer biochemical pathway and how they interact in a system. FOS, GTSE1, CDKN1C, and NMU could be the
potential genes for further evaluation in this regard and may play an important role as biomarkers of lung cancer diagnosis. The CDKN1C, which is also known as
p57kip2, is claimed to be a tumor suppressor considered to be a potential tumor suppressor caught up in lung cancer in humans. However, recent reports
demonstrate CDKN1C in lung cancer is observed to be intensely down-regulated. The low expression of CDKN1C is expressively connected with overall poor
survival rate shown in Figure 5. In contrast, the growth-encouraging movement and augmented mobilization of cells are conferred by inducing an exogenous
expression of NMU shown in Figure 5. The GTSE1 gene is claimed to be involved in lung cancerous pathways because of its overexpression and negative
regulation of p53 expression. It is also observed that its expression is linked with venous invasion, global short survival, and size of the tumor. FOS can be utilized as
markers of poor prognosis of lung cancer shown in Figures 5, 6 as pathway for each species.

the growth-encouraging movement and augmented mobilization
of cells are conferred by inducing an exogenous expression of
NMU shown in Figure 5.

The GTSE1 gene is claimed to be involved in many cancerous
pathways due to its overexpression and negative regulation
p53 expression. Recent reports also claimed that this gene
both at its mRNA and protein levels is extremely up-regulated
in hepatocellular carcinoma specimens (silencing GTSE-1
expression inhibits proliferation and invasion of hepatocellular
carcinoma cells). It is also observed that its expression is linked
with venous invasion, global short survival, and size of the
tumor shown in Figure 5. The time course simulation’s illustrate
elevated NMU and GTSE1 countenance, reduced expression of
CDKN1C and FOS, can be utilized as markers of poor prognosis
of lung cancer, as shown in Figures 5, 6 showing pathway for
each species.

Survival Analysis
We selected four major genes, of which GTSE1 (logFC = 1.32,
adjusted P < 0.001) and NMU (logFC = 2.81, adjusted P < 0.001)
were found to be up-regulated in the tissues of those patients

who had lung cancer, and expression levels of FOS (logFC = -
2.22, adjusted P < 0.001) and CDKN1C (logFC = -1.56,
adjusted P < 0.001) were found to be down-regulated. For
the assessment of prognostic value belonging to GTSE1, NMU,
FOS, and CDKN1C in patients with NSCLC, we analyzed 1,926
NSCLC cases from TCGA, GEO, and EGA databases. It was
illustrated through the results that high levels of expression of
GTSE1 (P < 0.01) and NMU (P < 0.01) were very closely
associated with shorter complete survival of NSCLC patients,
with statistical importance. On the contrary, high levels of
expression of CDKN1C [P < 0.01 and FOS (P < 0.01)]
were significantly related to longer survival in patients with
NSCLC; these findings illustrate elevated NMU and GTSE1
countenance and reduced expression of CDKN1C and FOS can
be utilized as markers of poor prognosis of lung cancer as shown
in Figure 7.

DISCUSSION

The mortality rate of lung cancer is high because it
easily metastasizes and lapses in between treatments.
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FIGURE 6 | Time course simulation of NMU-, GTSE1-, CDKN1C-, and
FOS-associated pathways, where simulation was done in four phases for
each species (genes and proteins in the pathway). Narrowing down to cancer
systems biology, it mainly involves the use of systems biology’s technology in
cancer research, for the sake of examining an ailment as a challenging
adaptive system having evolved characteristics at various biological
parameters shown in the figure.

Hence, it is of utmost importance to overcome the
medical obstruction by accurate prediction of potential
prognostic markers of the status of tumor progression.
Transcription omics that have high-throughput benefits
can be of great help for those who are in medical
research to facilitate the screening of the target molecules.
So, we combined four mRNA expression profiles
belonging to lung cancer.

By carrying out a comparison between NSCLC tissues and
paired paracancerous tissues, 952 CDEGs were screened from
the four expression profiles, among which had up-regulated
expression and 696 CDEGs had down-regulated expression,
respectively. It was seen by performing Gene Ontology analysis
that CDEGs were majorly supplemented in biological processes
such as cell adhering, as well as positive modulation of
angiogenesis, and KEGG pathways, such as ECM–receptor
interaction and CAMs. In the same way, this result was also
reported by Piao et al. (2018).

GTSE1 has been found to be highly expressed in
the tumors such as melanoma and lung cancer and
is related to the weak prognosis of the patients (Wu
et al., 2017; Xu et al., 2018). Additionally, GTSE1 might
be participating in tumorigenesis and progression by
modulating p53 phosphorylation (Liu et al., 2010, 2019).

FIGURE 7 | Assessment of prognostic value belonging to GTSE1, NMU, FOS, and CDKN1C in patients with NSCLC. The Kaplan–Meier survival curves of LUAD and
their major significance have been drawn to explore their effects on prognosis. Patients with LUAD showed significantly worse prognosis than patients without
biomarkers. Lung adenocarcinoma showed worse prognosis than patients with four biomarkers. (A) Alteration frequency of pan-cancer, (B) screened biomarker
expression in lung cancer, (C) overall survival, (D) progression-free survival.
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Neuromedin U is very well known for its uterine smooth muscle
contraction inducer. In the meantime, it also contributes to
the process of formation and enlargement of various kinds
of tumors. For instance, it was reported by Takahashi et al.
(2006) that the positive rate of NMU in NSCLC and SCLC
was as high as 68 and 82%, and the overexpression of NMU
was validated at the transcriptional level and protein level
(Takahashi et al., 2006). Moreover, studies have demonstrated
that overexpression of NMU is also produced in HER2-
overexpressing breast cancer, and overexpression of NMU in
breast cancer is linked with reduced prognosis in sufferers
(Shetzline et al., 2004; Wu et al., 2007). Similar reports
have been reported in the study of clear cell renal cell
carcinoma and endometrial carcinoma (Ketterer et al., 2009;
Przygodzka et al., 2016; Zhang et al., 2019). CDKN1C is a
cancerous lump restrainer gene, which is down-regulated in
studies related to gastric cancer (Shin et al., 2000), bladder
cancer (Oya and Schulz, 2000), pancreatic cancer (Sato et al.,
2005), lung cancer (Sun et al., 2017), and breast cancer
(Qiu et al., 2018), and low expression points are connected
with reduced prediction in sufferers. Importantly, all of the
above research results strongly support our analysis results.
Additionally, CDKN1C, GTSE1, NMU, and FOS are not
correlated with one another, which indicates that every target
can individually be cast off as a predictive marker for lung
cancer. Ultimately, the aforementioned studies show the
capability of FOS, CDKN1C, GTSE1, and NMU as prognostic
markers of lung cancer.

CONCLUSION

The molecular specification of lung cancer has considerably
changed the categorization and treatment of tumors,
becoming a crucial component of diagnosis and oncologic
therapy. We executed differential analysis of samples
of lung cancer and matching tissues of paracancer
and noticed four core CDEGs could be utilized as
prognostic markers of lung cancer via correlation analysis
and expression level verification. We strongly believe
that GTSE1, NMU, FOS, and CDKN1C have potential
and clinical application values to act as prognostic
markers of lung cancer.
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The classification of immune subtypes was based on immune signatures highlighting
the tumor immuno-microenvironment. It was found that immune subtypes associated
with mutation and expression patterns in the tumor. How the intrinsic genetic and
transcriptomic alterations contribute to the immune subtypes and how to select drug
combinations from both targeted drugs and immune therapeutic drugs according to
different immune subtypes are still not clear. Through statistical analysis of genetic
alterations and transcriptional profiles of breast invasive carcinoma (BRCA) samples,
we found significant differences in the number of somatic missense mutations and
frameshift deletions among the different immune subtypes. The high mutation load for
somatic missense mutations and frameshift deletions may be explained by the high
frequency of mutations and high expression of DNA double-strand break repair pathway
genes. Extensive analysis of signaling pathways in both the genetic and transcriptomic
levels reveals significantly altered pathways such as tumor protein Tumor Protein P53
(TP53) and receptor tyrosine kinase (RTK)/RAS signaling pathways among different
subtypes. Drug targets in the signaling pathways such as mitogen-activated protein
kinase kinase kinase 1 (MAP3K1) and Phosphatidylinositol-4,5-Bisphosphate 3-Kinase
Catalytic Subunit Alpha (PIK3CA) show genetic alteration in specific subtypes, which
may be potential targets for patients of a specific subtype. More drug targets which
show transcriptional difference among immune subtypes were discovered, such as
cyclin-dependent kinase (CDK)4, CDK6, Erb-B2 receptor tyrosine kinase 2 (ERBB2),
etc. Moreover, differences in functional activity between tumor growth and immune-
related pathways also elucidate the extrinsic factors of differences in prognosis and
suggest potential drug combinations for different immune subtypes. These results help
to explain how intrinsic alterations are associated with the immune subtypes and provide
clues for possible combination therapy for different immune subtypes.
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INTRODUCTION

In recent years, growing evidence has shown that
immunosuppression in the tumor microenvironment (TME) is a
major obstacle for effective antitumor therapy in patients (Munn
and Bronte, 2016). The relationship between the infiltration level
of immune cells in solid tumors and prognosis has been reported
(Fridman et al., 2017). Solid tumors from diverse tissues of origin
in The Cancer Genome Atlas (TCGA) have been classified into
six immune subtypes, namely, wound healing (C1), interferon
IFN-γ dominant (C2), inflammatory (C3), lymphocyte depleted
(C4), immunologically quiet (C5), and transforming growth
factor TGF-β dominant (C6) (Thorsson et al., 2018). The
immune subtypes are associated with different prognoses and
provide clues for immunotherapy response.

Some clinical successes are due to patient stratification,
typically according to either the genetic features or immune
environment, where it is hoped that more precise treatments
can be delivered. Cancer immunotherapy demonstrates
tremendous success in improving prognosis of some cancer
types, including breast invasive carcinoma and melanomas
(Li et al., 2016; Naik et al., 2019). Programmed cell death
protein 1 (PD-1) and programmed death ligand 1 (PD-L1)
antibodies have been shown to be effective in treating multiple
malignancies (Gang et al., 2018); however, the drug efficacy
depends on the mutational load (Hugo et al., 2016). Breast
invasive carcinoma is a widely investigated tumor type with
targeted drugs for different genetic subtypes. For example,
the Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic
Subunit Alpha (PIK3CA) inhibitor alpelisib was approved
in 2019 by the US Food and Drug Administration (FDA)
for the treatment of PIK3CA-mutated hormone receptor-
positive advanced breast invasive carcinoma as it significantly
increases the progression-free survival for patients (Turner
et al., 2015); human epidermal growth factor (EGF) receptor 2
human epidermal growth factor receptor-2 (HER2) antibodies
such as trastuzumab and lapatinib can be used to treat
HER2-positive patients; talazoparib, a poly (ADP-ribose)
polymerase (PARP) inhibitor was approved in 2018 for
the treatment of patients with breast cancer gene (BRCA)
mutations and HER2-negative advanced or metastatic breast
invasive carcinoma.

Although tumor patients can be classified into different
immune subtypes, the biological mechanism that drives the
differences in the immune microenvironment is not fully
understood. How alterations in tumor cells induce specific tumor
immuno-microenvironments or are associated with each other
is still not clear. With multiple drug options for both immune
therapy and targeted therapy, the understanding of the associated
genetic factors of immune subtypes may provide new clues for
precise drug or drug combinations.

For over 10 years, the TCGA has profoundly illuminated
the multiple omics landscape of human malignancy. Cell
composition methods, such as CIBERSORT (Newman et al.,
2015) and TIMER (Li et al., 2016), have been developed to
characterize complex tissue cell compositions. Using the genomic
and transcriptomic data derived from bulk tumor samples,

both TME and tumor genetic features from cancer cells can
be explored, which can help to understand the association of
tumor genetic features with TMEs, as well as exploring new drug
combinations for different tumor subtypes.

In this study, based on the tumor immune subtypes identified
in literature (Thorsson et al., 2018), we explored the genetic
and transcriptional features for different immune subtypes.
Through the integrative analysis of gene mutations, DNA damage
response, and oncogenic signaling, we find an association of
these pathways with immune subtypes and identified targeted
drugs which are associated with different immune subtypes in
breast invasive carcinoma. We also analyzed the interactions
between key immune-related altered pathways and tumor growth
pathways to explain the significant differences in prognosis
among different immune subtypes.

MATERIALS AND METHODS

Data Acquisition
Multiple omics data including gene expression data normalized
by RSEM from Illumina HiSeq RNASeq, DNA somatic mutation
data, and clinical data were downloaded from UCSC Xena
(2018)1. In this study, two solid tumor types were selected,
with breast invasive carcinoma (BRCA) as the research subject
and lung adenocarcinoma (LUAD) as the comparative analysis
and verification.

Mutation Signature Analysis
Different mutational processes generate unique combinations
of mutation types, termed “Mutational Signatures,” which have
been classified based on the analysis of somatic mutation
spectrum (Alexandrov et al., 2013). Based on tumor somatic
mutation data in the TCGA database, the weights of mutation
signatures (Alexandrov et al., 2013) for each tumor sample
were calculated using the R packages “deconstructSigs” and
“maftools” (Mayakonda et al., 2018). Kruskal–Wallis test was
performed to estimate the difference of mutation signature
weights among immune subtypes, and significant mutation
signatures (P-value < 0.05) were selected among the immune
subtypes. For pairwise analysis of mutation signature weights
between immune subtypes, Wilcoxon rank-sum test was used.
Significant results (P-value < 0.05) were shown in the boxplot
using the R package “ggpubr.”

Prognosis Analysis of Immune Subtypes
Survival analysis of tumors and relapse-free survival were
performed using the R packages of “survminer” and “survival.”
According to the overall survival time and relapse-free survival
time in TCGA clinical data, the survival rates of different
immune subtypes were compared and the survival curves were
drawn. Log-rank test was performed to compare the difference of
survival distribution between immune subtypes, P-values smaller
than 0.05 were considered as significant difference in the survival
rate of immune subtypes.

1https://tcga.xenahubs.net/
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Gene Set Variation Analysis
To calculate single-sample gene set enrichment, we used the
gene set variation analysis (GSVA) program (Hanzelmann et al.,
2013) to derive the absolute enrichment scores of previous
literature reported DNA damage repair (DDR) (Knijnenburg
et al., 2018) gene signatures as follows: (1) Base Excision Repair
(BER), (2) Nucleotide Excision Repair (NER; including TC-
NER and GC-NER), (3) Mismatch Repair (MMR), (4) Fanconi
Anemia (FA), (5) Homologous Recombination (HR), (6) Non-
Homologous End Joining (NHEJ), (7) Direct Repair (DR),
(8) Translesion Synthesis (TLS), (9) Damage Sensor, etc., and
oncogenic signaling pathway (Sanchezvega et al., 2018) gene
signatures as follows: (1) cell cycle, (2) Hippo signaling, (3) Myc
signaling, (4) Notch signaling, (5) oxidative stress response/Nrf2,
(6) phosphatidylinositol 3-kinase (PI3K) signaling, (7) receptor
tyrosine kinase (RTK)/RAS/mitogen-activated protein (MAP)
kinase signaling, (8) TGF-β signaling, (9) tumor protein
(TP)53 signaling, (10) b-catenin/Wnt signaling, and (11) Erb-
B2 receptor tyrosine kinase (ERBB) signaling. To make a more
comprehensive analysis of the functional modules, we further
evaluated the activity of Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways (gene sets) (Minoru and Susumu,
2000) within immune subtypes using the single-sample GSVA
(ssGSVA). This method quantifies gene set enrichment in
individual samples rather than at the group level.

Mutational Status for Oncogenic
Signaling Pathways
The mutational status for each signaling pathway is defined
through a binary classification: if any gene was mutated in this
pathway in one sample, the mutational status of this pathway
in this sample was considered as mutated (use 1 to represent
mutated status). On the contrary, the mutation status is set to
non-mutated (use 0 to represent the non-mutated status). Fisher’s
exact test was performed on the number of mutated samples
and non-mutated samples within immune subtypes for each
signaling pathway to compare the level of mutation in different
immune subtypes.

Drug Target Selection
To derive mutant genes associated with immune subtypes in
breast invasive carcinoma and explore potential drug targets
for each subtype, we detected gene mutations associated with
each immune subtype using Fisher’s exact test (P-value < 0.05).
The high-frequency mutant genes (mutation frequency > 5%)
associated with each immune subtype were used to find linked
therapeutic drugs using OncoKB2 and Drugbank3. Further, we
selected the target genes in 11 signaling pathways from Drugbank
and then compared whether the expression levels of these
target genes were statistically significant among different immune
subtypes using Wilcoxon rank-sum test. Target genes that are
statistically significant (P-value < 0.05) were used to query
DrugBank for drug selection.

2https://www.oncokb.org/
3https://www.drugbank.ca/

Correlation Analysis
The proliferation scores and leukocyte fractions for breast
invasive carcinoma have been previously calculated (Thorsson
et al., 2018). The enrichment scores of tumor growth and
immune-related pathways in breast invasive carcinoma samples
were estimated using GSVA on TCGA gene expression
data. We measured the correlation coefficient between the
proliferation scores and the enrichment scores of tumor growth-
related pathways using Spearman’s rank correlation. Similarly,
correlations between the enrichment scores of immune-
related pathways and the leukocyte fraction were assessed
using Spearman’s rank correlation. Significant correlations were
considered as those pairs with P-value less than 0.05.

RESULTS

Mutation Types and Mutation Signatures
Are Associated With Immune Subtypes
To understand the intrinsic tumor cell features that may drive the
immune subtypes, we first asked whether there are differences in
mutation types among immune subtypes. As mutated genes may
produce altered neo-antigens, the mutation load and mutation
types may have functional consequences for tumor cells and
further drive the formation of immune microenvironments.
Using breast invasive carcinoma in the TCGA dataset as an
example, five immune subtypes can be detected according
to the pan-cancer immune subtyping (Thorsson et al., 2018)
(Figure 1A). Significant differences in the number of somatic
missense mutations are found among different immune subtypes
as well as significant difference in the number of somatic
frameshift deletions (P < 10−7, Kruskal–Wallis test). The
frequencies of frameshift deletion and missense mutations in the
C1 and C2 immune subtypes were significantly higher than other
subtypes (P < 0.01, Wilcoxon rank-sum test) (Figures 1B,C). In
addition, consistent results were observed in LUAD (P < 0.05,
Wilcoxon rank-sum test) (Figures 1D,F). This might hint that
these types of mutations were important factors in generating the
C1 and C2 immune subtypes in breast invasive carcinoma and
LUAD. Both somatic missense mutation and frameshift deletion
can introduce abnormal peptides, which may play a key role in
recruiting immune cells.

Somatic mutations can be the consequence of multiple
mutational processes, such as the deficiency in the DNA
replication machinery and DNA repair system, abnormal
enzymatic modification of DNA, or exposure to exogenous
or endogenous mutagens (Alexandrov et al., 2013). From a
large cohort of tumors, somatic mutation spectra have been
categorized into 30 mutation signatures, which are associated
with different biological processes (Alexandrov et al., 2013;
Forbes et al., 2016). Using this concept, we measured the
weight of different mutational signatures for each breast invasive
carcinoma sample in TCGA and compared the difference of each
mutation signature among immune subtypes (Alexandrov et al.,
2013, 2015; Mayakonda et al., 2018). Results show that mutation
signature 3 (MS3) showed significant differences among immune
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FIGURE 1 | Mutation loads and mutation signatures in immune subtypes. (A) Sample proportions of different immune subtypes in breast invasive carcinoma. (B,C)
Comparison of the frequency of frameshift deletion or missense mutation among different immune subtypes of breast invasive carcinoma (Wilcoxon rank-sum test
was used. **P < 0.01, ***P < 0.001, ****P < 0.0001). (D,F) Comparison in the frequency of frameshift deletion or missense mutation among different immune
subtypes of lung adenocarcinoma (LUAD) (Wilcoxon rank-sum test was used. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). (E) The weight of each mutation
signature of breast invasive carcinoma immune subtype. (G) The boxplot of the weight of mutation signature 3 for each immune subtype in breast invasive
carcinoma (Wilcoxon rank-sum test was used. **P < 0.01, ***P < 0.001, ****P < 0.0001).
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subtypes (P.adjust < 0.05, Kruskal–Wallis test, Benjamini and
Hochberg adjustment) (Figure 1E). It is associated with the
failure of DNA double-strand break repair by HR (Alexandrov
et al., 2013; Forbes et al., 2016). The higher MS3 weights in
C1 and C2 immune subtypes (P < 0.05, Wilcoxon rank-sum
test) (Figure 1G) and the higher mutational load for somatic
mutations and frameshift indels suggest that the formation of
these two immune subtypes may result from the failure of a DNA
double-strand break repair.

Genetic Alteration and Expression Levels
of DNA Damage Repair Shape the
Immune Subtypes
We then ask whether differences in the DDR system exist
among immune subtypes. Loss of DDR function is an important
determinant of cancer risk, progression, and therapeutic response
(Jeggo et al., 2015). The proportions of samples with mutated
DDR genes are shown in Figure 2A. The result shows that the
proportion of mutated DDR genes in C1 and C2 subtypes of
breast invasive carcinoma is significantly higher compared to that
in the C3 subtype and slightly higher than those in C4 and C6.
Similarly, the result was also observed in LUAD. However, these
results do not fully explain how the DDR system interacts with
the immune microenvironment.

We further compared the expression level of DDR genes
among immune subtypes. ssGSVA (Hanzelmann et al., 2013)
was performed for DDR-related pathways in breast invasive
carcinoma (Figure 2B). BER, FA, and HR genes show higher
expression in C1 and C2 subtypes and lower expression in
C3 and C6 subtypes (P < 0.01, Wilcoxon rank-sum test)
(Figures 2C–E). This indicates that the C1 and C2 subtypes
may be more active in DDR and suggest genomic instability in
these subtypes. Additionally, a similar result was found in LUAD
(P < 0.01, Wilcoxon rank-sum test) (Supplementary Figures
S1C–E). A promising way forward might be to select optimal
drugs targeting the DDR pathway based on specific types of DDR
mutations (O’Connor, 2015). The recent approval of olaparib, a
PARP inhibitor for treating tumors harboring BRCA1 or BRCA2
mutations, provides a good example. The association of DDR
features in tumor cells and the immune subtypes may provide
new clues for selecting drug combinations for cancer treatment.

Subtype-Specific Alterations in Signaling
Pathways Provide Opportunities for
Targeted Therapy and Immune Therapy
Current breast invasive carcinoma drugs are mostly targeted
to signaling or cell cycle-related pathways, such as HER2
antibodies, PI3K inhibitors. To bridge the gap between
targeted therapy and immune subtypes, we further investigated
how signaling pathways are associated with tumor immune
subtypes. Oncogenic signaling pathways in the TCGA have been
reported to represent the individual and co-occurring actionable
alterations which also suggest opportunities for targeted and
combination therapies (Sanchezvega et al., 2018). The reported
oncogenic pathways as well as well-known drug targetable
signaling pathways that include (1) cell cycle, (2) Hippo signaling,

(3) Myc signaling, (4) Notch signaling, (5) oxidative stress
response/Nrf2, (6) PI3K signaling, (7) RTK/RAS/MAP kinase
signaling, (8) TGF-β signaling, (9) TP53 signaling pathway, (10)
b-catenin/Wnt signaling, and (11) ERBB signaling were further
analyzed to understand the association of signaling pathways and
immune subtypes (Sanchezvega et al., 2018). Oncogenic genes
in each pathway which show genetic alterations are shown in
Supplementary Table S1 (Sanchezvega et al., 2018).

Results show that the alterations of genes in the TP53
signaling pathway were significantly overrepresented in C2
subtypes (Figure 3A). Specifically, the proportion of samples
with TP53 mutations is significantly higher in the C2 subtype
(Figure 3B). The alterations of genes in the RTK-RAS pathways
were significantly overrepresented in the C1 subtype (Fisher’s
exact test) (Figure 3A). Among these pathways, several potential
target genes show a difference in mutation frequency among
immune subtypes. PIK3CA and MAP kinase kinase kinase 1
(MAP3K1) were significantly high frequently mutated in C3
subtype, GATA3 was significantly high frequently mutated in
C4 subtype (Fisher’s exact test) (Figures 3B,C), and BRCA1
or BRCA2 was mutated in a higher percentage of samples in
C1 and C2, although not significantly different (Supplementary
Figure S3A). PIK3CA is a key player in the ERBB signaling
pathway which can be targeted by PI3K inhibitors (Wullenkord
et al., 2019). So the immune subtype C3, which shows a higher
mutation frequency in PIK3CA, may have a better response
for PI3K inhibitors (Supplementary Figures S1A,B). MAP3K1
mutations are also reported to be associated with sensitivity to
MAP kinase kinase (MEK) inhibitors in multiple cancer models
(Zheng et al., 2018).

To consider the impact of molecular subtypes for our
result, we performed enrichment analysis with the molecular
subtypes in immune subtypes and the alteration of carcinogenic
signaling pathways in molecular subtypes. Results show
that HER2 subtype is associated with a significantly higher
proportion of samples with mutations in the RTK–RAS signaling
pathway (Supplementary Figure S2F). Meanwhile, HER2
subtype is significantly enriched in the C1 immune subtype
(Supplementary Figure S2B), which is consistent with the
significant mutation results of C1 subtype in the RTK–RAS
signaling pathway (Figure 3A). We observed that HER2 subtype
is also associated with a significantly higher proportion of
samples with mutations in the ERBB signaling pathway; however,
immune subtypes show a difference to that. Basal subtype is
associated with a significantly higher proportion of samples
with mutations in the p53 signaling pathway (Supplementary
Figure S2F), while Basal is significantly enriched in the
C2 immune subtype (Supplementary Figure S2A), which
is consistent with the significant mutation results of C2
subtype in the TP53 signaling pathway (Figure 3A). TP53
gene is significantly mutated in Basal and HER2 subtypes
(Supplementary Figure S2H), while Basal and HER2
subtypes are significantly enriched in C2 immune subtypes
(Supplementary Figures S2A,B), which is consistent with the
result that TP53 gene mutated significantly in C2 immune
subtypes. PIK3CA and MAP3K1 gene is significantly mutated
in Luminal A subtypes (Supplementary Figure S2H), while
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FIGURE 2 | Relationship between immune subtypes and DNA damage repair (DDR) in breast invasive carcinoma. (A) The histogram shows the proportion of DDR
gene mutations in different immune subtypes. (B) The heatmap shows the single-sample gene set variation analysis (ssGSVA) enrichment scores for DDR pathways
from immune subtypes. (C–E) The boxplot shows the enrichment scores for breast invasive carcinoma immune subtypes in three DDR pathways (Wilcoxon
rank-sum test was used. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).

Luminal A subtypes are significantly enriched in C3 immune
subtype (Supplementary Figure S2C), which is consistent with
the results that PIK3CA and MAP3K1 gene mutated significantly
in C3 immune subtypes. Previous study also suggested that
PIK3CA and MAP3K1 alterations imply luminal A status in
breast cancer and are associated with clinical benefits from
PI3K inhibitors (Nixon et al., 2019). GATA3 gene is significantly
mutated in Luminal B subtypes (Supplementary Figure S2H),
while Luminal B subtypes are significantly enriched in C4
immune subtypes (Supplementary Figure S2D), which is
consistent with the result that GATA3 gene mutated significantly
in C4 immune subtypes. The enrichment analysis between the
immune subtypes and the classical molecular subtypes suggest

that, for different types of molecular subtypes, their immune
environment also show different preference.

These results suggest that MAP3K1 and PIK3CA may be drug
targets for patients in C3 subtype. GATA3 may be a potential
therapeutic target for patients with the C4 subtype, and TP53 may
be a potential therapeutic target for patients with the C2 subtype.

To further explore the differences among immune subtypes
of breast invasive carcinoma in the transcriptomic level, from
the perspective of signaling pathways, we also performed
single-sample gene set enrichment analysis for the same 11
signaling pathways using breast invasive carcinoma samples
(Figure 3D). Across immune subtypes, the 11 signaling
pathways show statistical significance (P.adjust < 0.05,
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FIGURE 3 | The alteration of carcinogenic signaling pathways in genetic mutations and transcriptional process. (A) Proportion of mutated samples for canonical
signaling pathways in different immune subtypes (Fisher’s exact test, “Mutated samples proportion” is measured as the ratio of the number of samples with mutation
in the pathway among the total number of samples in each immune subtype). (B) Genes with significant difference of mutations among different immune subtypes
(Fisher’s exact test) or potential target genes for different immune subtypes. (C) The histogram shows the proportion of mutated samples for potential target genes in
breast invasive carcinoma immune subtypes. (D) The heatmap shows enrichment scores of breast invasive carcinoma immune subtypes in canonical signaling
pathways.

Kruskal–Wallis test, Benjamini and Hochberg adjustment)
across immune subtypes. Since many drugs can target
signaling pathways, understanding subtype-specific target
gene expression will provide clues for drug selection. The

target genes which show significant differences among
immune subtypes are shown in Supplementary Figure S3B
(P < 10−6, Kruskal–Wallis test). In total, our results showed
12 target genes, namely, ataxia telangiectasia mutated (ATM),
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TABLE 1 | Therapeutic drugs corresponding to target genes in signaling pathways
and which immune subtypes are associated.

Target Signaling pathways Drug Subtypes

ATM TP53 Caffeine C3, C6

BRAF RTK-RAS, ERBB Sorafenib C3

Vemurafenib C3

Regorafenib C3

Fostamatinib C3

Encorafenib C3

Dabrafenib C3

CDK4 Cell Cycle Palbociclib C1, C2

Abemaciclib C1, C2

Fostamatinib C1, C2

Ribociclib C1, C2

CDK6 Cell Cycle Palbociclib C2, C6

Abemaciclib C2, C6

Ribociclib C2, C6

EGFR RTK-RAS, ERBB Cetuximab C1, C2, C3, C6

Gefitinib C1,C2,C3,C6

Erlotinib C1,C2,C3,C6

Lapatinib C1,C2,C3,C6

Lidocaine C1,C2,C3,C6

Necitumumab C1,C2,C3,C6

Zalutumumab C1,C2,C3,C6

Icotinib C1,C2,C3,C6

Vandetanib C1,C2,C3,C6

Afatinib C1,C2,C3,C6

Osimertinib C1,C2,C3,C6

Olmutinib C1,C2,C3,C6

Neratinib C1,C2,C3,C6

Brigatinib C1,C2,C3,C6

Dacomitinib C1,C2,C3,C6

Fostamatinib C1,C2,C3,C6

Panitumumab C1,C2,C3,C6

Zanubrutinib C1,C2,C3,C6

ERBB2 RTK-RAS, ERBB Afatinib C3

Brigatinib C3

Fostamatinib C3

Zanubrutinib C3

Lapatinib C3

Trastuzumab C3

Trastuzumab emtansine C3

Pertuzumab C3

FGFR1 RTK-RAS Regorafenib C1,C3,C6

Ponatinib C1,C3,C6

Sorafenib C1,C3,C6

Lenvatinib C1,C3,C6

Nintedanib C1,C3,C6

Fostamatinib C1,C3,C6

Erdafitinib C1,C3,C6

FGFR2 RTK-RAS Thalidomide C3

Regorafenib C3

Ponatinib C3

Nintedanib C3

Fostamatinib C3

(Continued)

TABLE 1 | Continued

Target Signaling pathways Drug Subtypes

Erdafitinib C3

Lenvatinib C3

NTRK1 RTK-RAS Imatinib C3,C6

Regorafenib C3,C6

Fostamatinib C3,C6

Larotrectinib C3,C6

Entrectinib C3,C6

NTRK2 RTK-RAS Larotrectinib C3,C6

Entrectinib C3,C6

Fostamatinib C3,C6

NTRK3 RTK-RAS Fostamatinib C3,C6

Larotrectinib C3,C6

Entrectinib C3,C6

PRKCA ERBB Ellagic acid C3,C6

Midostaurin C3,C6

ATM, ataxia telangiectasia mutated; CDK, cyclin-dependent kinase; EGFR,
epidermal growth factor receptor; ERBB, Erb-B2 receptor tyrosine kinase; FGFR,
fibroblast growth factor receptor; NTRK, neurotrophic receptor tyrosine kinase;
PRKCA, protein kinase C alpha; RTK, receptor tyrosine kinase; TP53, tumor protein
53. The mechanism of action is given as inhibitors or antagonists (Law et al., 2014).

B-Raf Proto-Oncogene, Serine/Threonine Kinase (BRAF),
cyclin-dependent kinase (CDK)4, CDK6, EGF receptor (EGFR),
ERBB2, fibroblast growth factor receptor (FGFR)1, FGFR2,
neurotrophic receptor tyrosine kinase (NTRK)1, NTRK2, and
protein kinase C alpha (PRKCA). The subtype-specific targets
and drugs are shown in Table 1. Specifically, the high expression
levels of CDK4 in C1 and C2 suggest the potential usage of
CDK4 inhibitors such as palbociclib and related drugs. The
high expression levels of ERBB2 in C3 suggest the potential
usage of trastuzumab or lapatinib (or associated drugs). The
association of signaling pathway alteration with expression
and immune subtypes similarly may provide new ideas in
combination drug therapy.

Functional Behaviors in Immune
Subtypes
The observation of cell growth potential and immune activities
may help to explain prognosis and predict therapeutic
opportunities in different subtypes. The tumor proliferation
score represents the tumor growth activity, while the leukocyte
fraction, to some degree, represents the level of immune
activity. Although tumor proliferation and leukocyte fractions
have been reported to be statistically significant in different
immune subtypes (Wilcoxon rank-sum test) (Thorsson et al.,
2018) (Supplementary Figures S4A,B), it is not known which
functional gene modules cause the observed differences in
tumor proliferation and immune microenvironment content.
To make a more comprehensive analysis of the functional
modules, we further expand our analysis from DNA damage
processes and signaling pathways to a more comprehensive
pathway set. Single sample gene set enrichment analysis was
performed using KEGG pathways with the expression data of
breast invasive carcinoma samples (Supplementary Figure S4C).
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FIGURE 4 | Single-sample gene set variation analysis (ssGSVA) of immune-related pathways and tumor growth-related pathways for different immune subtypes in
breast invasive carcinoma. (A,B) The heatmap shows the ssGSVA enrichment scores of breast invasive carcinoma immune subtypes in tumor growth-related

(Continued)
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FIGURE 4 | Continued
pathways and immune-related pathways. (C,D) The violin plot shows the ssGSVA enrichment scores of breast invasive carcinoma immune subtypes in cell cycle
pathway and DNA replication pathway (Wilcoxon rank-sum test was used. ****P < 0.0001). (E,F) The violin plot shows the GSVA enrichment scores of breast
invasive carcinoma immune subtypes in T cell receptor (TCR) signaling pathway and chemokine signaling pathway play (Wilcoxon rank-sum test was used.
**P < 0.01, ****P < 0.0001). (G) Key characteristics of breast invasive carcinoma immune subtypes. (H–J) Differences in the expression levels of immune drug
targets among breast invasive carcinoma immune subtypes. (Wilcoxon rank-sum test was used. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).

The tumor growth-related pathways such as energy metabolism,
transcription, translation, replication and repair, folding, sorting
and degradation, cell growth and death, nucleotide metabolism
show statistical significance among the gene set enrichment
scores (P.adjust < 0.05, Kruskal–Wallis test, Benjamini and
Hochberg adjustment) among different immune subtypes. The
C2 and C4 subtypes present higher enrichment scores; on the
contrary, the C3 and C6 subtypes show lower enrichment scores
for the tumor growth-related gene sets (P.adjust < 0.05, Kruskal–
Wallis test, Benjamini and Hochberg adjustment) (Figure 4A).
It suggests that the C2 and C4 subtypes might be more active in
tumor growth. Among these tumor growth-related pathways, cell
cycle and DNA replication were positively correlated with tumor
proliferation fraction (P < 0.05, Spearman correlation analysis)
(Supplementary Figure S4D). Comparing gene expression in
the cell cycle pathway or the DNA replication pathway among
immune subtypes, the C2 and C4 subtypes show significantly
higher enrichment scores in tumor growth-related pathways,
followed by C1 subtype, C3 and C6 subtypes which have the
lowest scores (Figures 4C,D). The low tumor growth enrichment
scores for C3 and C6 subtypes indicate slow tumor growth.

We also performed GSVA using the immune-related
pathways. Results show that 28 immune-related pathways were
significantly different among immune subtypes (Figure 4B)
(P.adjust < 0.05, Kruskal–Wallis test, Benjamini and Hochberg
adjustment). Among these immune-related pathways, T cell
receptor (TCR) signaling and chemokine signaling pathways
were positively correlated with the leukocyte fraction (P < 0.05,
Spearman correlation) (Supplementary Figure S4E). T cell
development, differentiation, and maintenance are associated
with the antigen-specific TCR and cytokine-mediated signals
(Huang and August, 2015). Therefore, TCR signaling pathway
and chemokine signaling pathway play a key role in regulating
tumor immune microenvironment. The comparison of
the gene expression in the T cell signaling pathways or
chemokine signaling pathways among immune subtypes
shows that the C2 and C6 subtypes have significantly higher
enrichment scores, followed by C1 and C3 subtypes, and last,
the C4 subtype (Figures 4E,F). This is consistent with the
previous annotation for C4 as the lymphocyte-depleted subtype
(Thorsson et al., 2018).

The C2 subtype shows a high expression level of tumor
growth pathways as well as immune-related pathways, and the
expressions of immune checkpoint genes such as PD-1, PD-
L1, and cytotoxic T lymphocyte-associated antigen (CTLA)4 are
also higher than other subtypes (Figures 4H–J). These results
might suggest the potential usage of both anti-proliferation
drugs and immune therapeutic drugs for this subtype. The C4
subtype is rapidly growing for tumor cells but without attracting

much immune cells, which may result in a poor prognosis
(Supplementary Figure S1A). It may also suggest that anti-
proliferation drugs might work better for this subtype rather than
immune therapy. The C6 subtype shows a high level of expression
in immune-related pathways, but with low scores for tumor
growth. The poor prognosis (Supplementary Figure S1A) for C6
might be caused by other factors that stimulate the activity of the
immune system. As C6 is annotated as TGF-β dominant (C6),
it also suggests a potential metastatic potential. The relatively
high expression of immune drug targets (PD-L1, PD-1, CTLA4)
in C6 also suggests the potential usage of immune therapy
for this subtype. The C3 subtype shows the best prognosis,
and with moderate levels of immune activity and slow tumor
growth (Figure 4G), it may allow the potential drug combination
for anti-proliferation drugs and immune therapeutic drugs. In
conclusion, analysis of tumor growth and immune functional
activity at the transcriptome level makes some progress in
explaining the significant differences observed in the survival
rates between immune subtypes as well as provides clues for drug
combination selection.

DISCUSSION

The analysis of breast invasive carcinoma immune subtypes is
hopefully beneficial to the diagnosis and treatment of breast
invasive carcinoma. The pan-cancer classification of immune
subtypes is based on immune-related gene sets and molecular
markers previously reported in the literature (Thorsson et al.,
2018). Our results suggest that mutation types, carcinogenic
signaling pathways, and DDR machinery is associated with
immune subtypes. The integrative analysis from tumor genetic
features and immune subtypes may also provide clues for drug or
drug combination selection.

In breast invasive carcinoma, two subtypes (C1 and C2)
showed a high frequency of somatic missense mutations and
frameshift deletions that may be a result of a failure of DNA
double-strand break repair. This is supported by pathway
enrichment analysis as well as the relatively high mutation
frequency of BRCA1/BRCA2 in these two subtypes, suggesting
the potential application of PARP inhibitors. Furthermore, C2
shows high expression of cell cycle-related drug targets such
as CDK4, CDK6, as well as immune therapy-related drug
targets such as PD-1, PD-L1, CTLA4, suggesting the potential
combinatory usage of drugs from multiple categories.

The C3 subtype shows the best prognosis. In breast
invasive carcinoma, this subtype shows a low mutation load
(fewer number of somatic missense mutations and frameshift
deletion) and is enriched with mutations in PIK3CA, with
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moderate immune activities and slow tumor growth. All these
features suggest that the C3 subtype would be a candidate
for treatment with drugs including PI3K inhibitors and anti-
proliferation drugs. It also shows a potential for immune
therapeutic drug response.

The C4 subtype in breast invasive carcinoma is found
to have reduced immune activity coupled with active tumor
growth indicating that the C4 subtype tumors are rapidly
growing but without attracting immune cells, resulting in a poor
prognosis (Supplementary Figure S1A). This subtype fits with
the idea of “cold” tumors, which cannot be easily targeted by
immune therapeutic drugs. So, anti-proliferation drugs might
instead be considered.

The C6 subtype in breast invasive carcinoma shows high
expression in immune-related pathways and low expression
in the tumor growth-related pathways. The poor prognosis
(Supplementary Figure S1A) for C6 might be caused by other
factors that stimulate the activity of the immune system. C6 is
annotated as TGF-β dominant (C6), increasing the potential for
metastasis. High expression of PD-L1 and PD-1 in this subtype
suggests the potential usage of immune therapy for this subtype.

The present study has several limitations. Although most of
these observations are similar between breast invasive carcinoma
and LUAD, there will likely be tissue-specific features. Therefore,
there are likely additional factors that participate in immune
subtype formation. Strong tissue specificity reflects differences
in inflammatory or immune microenvironments of different
tissues. The mutagenesis map of carcinogenic signaling suggests
a certain relationship between the signaling pathways and
the formation of immune subtypes. The degree to which
mutations in signaling pathways are the driving force in
the formation of the immune microenvironment still needs
experimental verification. Furthermore, our results provide clues
for finding drug combinations applicable to immune subtypes;
however, for clinical practicality, more detailed experiments
must be carried out.

CONCLUSION

This study highlighted important factors potentially affecting the
formation of immune subtypes in breast invasive carcinoma and
elucidated the potential impact of canonical signaling pathways
and DDR on immune subtypes. Functional activities from
immune- and tumor growth-related pathways help explain the
mechanisms by which there is a significant difference in patient
survival between immune subtypes. This study also provides new
clues for the therapeutic targets of immune subtypes of breast
invasive carcinoma.
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FIGURE S1 | Prognostic analysis of tumor immune subtypes and gene set
variation analysis of DNA damage repair (DDR) in lung adenocarcinoma (LUAD)
immune subtypes. (A,B) Overall survival analysis and recurrence-free survival
analysis for all non-hematologic tumors. (C–E) The boxplot shows the gene set
variation analysis (GSVA) enrichment scores of LUAD immune subtypes in three
DDR pathways (Wilcoxon rank-sum test was used. *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001).

FIGURE S2 | Enrichment analysis with the molecular subtypes in immune
subtypes and the alteration of carcinogenic signaling pathways in molecular
subtypes. (A–E) Enrichment analysis comparing BRCA molecular subtype
distribution across C1–C6 immune subtypes (Fisher’s exact test was used.
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). (F) Proportion of mutated
samples for canonical signaling pathways in different molecular subtypes (Fisher’s
exact test, “Mutated samples proportion” is measured as the ratio of the number
of samples with mutation in the pathway among the total number of samples in
each molecular subtype. (G) Genes with significant difference of mutations among
different molecular subtypes or potential target genes for different molecular
subtypes. (H) The histogram shows the proportion of mutated samples for
potential target genes in breast invasive carcinoma molecular subtypes.

FIGURE S3 | Mutation differences and expression differences of genes on
signaling pathways in different immune subtypes in breast invasive carcinoma. (A)
The histogram shows proportion of BRCA1 or BRCA2 mutated samples in breast
invasive carcinoma immune subtypes. (B) Differences in the gene expression of
known drug targets in the signaling pathways among breast invasive carcinoma
immune subtypes. (Wilcoxon rank-sum test was used. *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001).

FIGURE S4 | Pathways associated with tumor proliferation and immune
microenvironment in immune subtypes. (A,B) Tumor proliferation and leukocyte
fractions were statistically significant among different immune subtypes from
breast invasive carcinoma (Wilcoxon rank-sum test was used. *P < 0.05,
**P < 0.01, ***P < 0.001, ****P < 0.0001). (C) The heatmap shows enrichment
score of breast invasive carcinoma immune subtypes for KEGG pathways that
cover a wide range of functionalities. (D) Bar plot of Spearman correlation
ecoefficiency between the proliferation fraction and tumor growth related
pathways enrichment scores in breast invasive carcinoma. (E) Bar plot of
Spearman correlation ecoefficiency between the leukocyte fraction and
immune-related pathways enrichment scores in breast invasive carcinoma.

TABLE S1 | Gene set specification for oncogenic pathways used in the analysis.
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Gallbladder cancer is a relatively uncommon human malignant tumor with an extremely
poor prognosis. Currently, no biomarkers can accurately diagnose gallbladder cancer
and predict patients’ prognosis. XRCC1 is involved in tumorigenesis, progression, and
chemo-resistance of several human cancers, but the role of XRCC1 in gallbladder
cancer is never reported. In this study, we investigated the expression of XRCC1
and its clinicopathological and prognostic significance in gallbladder cancer, and
explored the biological role of XRCC1 in gallbladder cancer cells. We found that
XRCC1 was significantly up-regulated in gallbladder cancer in protein and mRNA
levels. Positive XRCC1 expression was correlated with aggressive clinicopathological
features and was an independent poor prognostic factor in gallbladder cancer. The ROC
curves suggested that XRCC1 expression had potential clinicopathological diagnostic
value in gallbladder cancer. In vitro, XRCC1 was overexpression in CD133+GBC-
SD cells compared to GBC-SD cells. In functional experiment, XRCC1 knockdown
had a non-significant impact on proliferation, migration, invasion, and apoptosis
of CD133+GBC-SD cells. But, XRCC1 knockdown could significantly improve the
sensitivity of CD133+GBC-SD cells to 5-Fluorouracil via promoting cell necrosis and
apoptosis. Thus, this study indicates that XRCC1 may be a promising predictive
biomarker of gallbladder cancer and a potential therapeutic target for gallbladder cancer.

Keywords: XRCC1, gallbladder cancer, prognosis, clinicopathological significance, chemo-resistance

INTRODUCTION

Gallbladder cancer (GBC) is a relatively uncommon human malignant tumor with an extremely
poor prognosis. Histologically, GBC mainly consists of gallbladder adenocarcinoma (AC) (about
90%) and squamous cell/adenosquamous carcinoma (SC/ASC) (accounting for 1–12%) (Roa et al.,
2011; Samuel et al., 2018). Although various studies about GBC were performed, GBC clinical
outcome remains extremely poor. Currently, radical resection remains the only way to cure
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GBC, although adjuvant treatments (chemotherapy and
radiotherapy) are available. Because GBC patients at early stages
present asymptomatic and are difficult to be diagnosed, most
patients are diagnosed at late stages when patients lost the
chance to receive radical surgery (Reid et al., 2007; Henley et al.,
2015). Additionally, GBC is often resistant to chemotherapy and
radiotherapy (Horgan et al., 2012). These above reasons make
the prognosis of GBC unsatisfactory. Although many biological
marks have been studied, no one can accurately diagnose GBC
and predict patients’ survival (Sicklick et al., 2016; Sharma
et al., 2017). Therefore, discovering reliable early diagnostic
biomarkers and exploring the mechanism of treatment resistance
are critically important to improve the prognosis of GBC.

DNA repair pathways are related to tumorigenesis and
treatment resistance, and base excision repair (BER) is one
pathway of DNA repair systems (Wood et al., 2001). BER
functions an essential role in protecting the genome against
chemical carcinogens and ionizing radiations (Tudek, 2007).
Chemotherapy and radiotherapy usually kill tumor cells by
causing DNA damage which could be repaired via BER. As
a BER protein, x-ray repair cross-complementing group 1
(XRCC1), a 70-kDa protein, is encoded by the gene located on
chromosome 19q13.2–13.3 (Thompson and West, 2000). XRCC1
functions as a scaffold protein in the BER and its aberrant
expression is associated with carcinogenesis of multiply human
malignant tumors (Hanssen-Bauer et al., 2012; Meng et al.,
2017; Mei et al., 2019). Currently, researches on XRCC1 mainly
concentrate on the relationship between gene polymorphism and
cancer susceptibility. Recently, several studies have investigated
the clinicopathological and prognostic significance of XRCC1
in human cancers including gastric cancer, ovarian cancer,
and non-small cell lung cancer (Wang et al., 2012; Abdel-
Fatah et al., 2013; Liu et al., 2015). Moreover, XRCC1 affects
the effectiveness of chemotherapy and the role of XRCC1
in chemosensitivity varies in different types of cancer. For
example, in gastric and ovarian cancer, patients with low
XRCC1 expression exhibited favorable response to platinum-
based chemotherapy (Wang et al., 2012; Abdel-Fatah et al.,
2013). However, bladder cancer patients with high XRCC1
expression had a favorable chemosensitivity to platinum-based
chemotherapy (Sakano et al., 2013). As we know, the role of
XRCC1 in GBC is never reported.

Therefore, in this study, we investigated the expression of
XRCC1 and its clinicopathological and prognostic significance
in gallbladder SC/ASC and AC. Furthermore, the biological
function of XRCC1 in CD133+GBC cells was evaluated.

MATERIALS AND METHODS

Case Selection
This study was approved by the Ethics Committee for
Human Research, Central South University and performed
in accordance with the Declaration of Helsinki. The included
patients were histologically diagnosed by two pathologists.
These patients never received chemotherapy or radiotherapy
preoperatively and postoperatively. We collected 69 SC/ASC

samples from January 2001 to December 2013 (16 from
Xiangya Hospital, 31 from Second Xiangya Hospital, 10
from Third Xiangya Hospital, 5 from Hunan Provincial
People Hospital, 5 from Hunan Provincial Tumor Hospital,
and 1 each from Changde Central Hospital and Loudi
Central Hospital). According to the recommendations of
the American Joint Committee on Cancer, tumors with a
squamous component ≥10% were considered as ASC. The
69 SC/ASCs accounted for 5.5% of 1248 GBCs. We collected
146 AC samples from January 2008 and December 2013
at Second Xiangya Hospital and Third Xiangya Hospital.
Survival data for these patients was obtained through
letters and telephone calls. The follow-up time was 2 years,
and patients who survived over 2 years were considered
as censored cases.

EnVision Immunohistochemistry
The rabbit anti-human XRCC1 primary antibody and HRP-
conjugated anti-rabbit second antibody were purchased from
Santa Cruz Biotechnology (CA, United States). EnVisionTM
Detection Kit was purchased from Dako Laboratories (CA,
United States). Immunohistochemistry was performed as
previously described (Wu et al., 2017). Briefly, four-micrometer-
thick sections were cut from routinely paraffin-embedded
tissues. The sections were deparaffinized and then incubated with
peroxidase inhibitor (3% H2O2) in the dark for 15 min, followed
by EDTA-trypsin digestion for 15 min. Then, the sections were
incubated with primary antibody for 60 min at 37◦C. Next, the
sections were incubated with the second antibody for 30 min at
37◦C after being soaked with PBS for 3 × 5 min. Then, solution
A was added to the sections for 30 min, followed by DAB staining
and hematoxylin counter-staining. The slides were dehydrated
with different concentrations (70%–100%) of alcohol, and soaked
in xylene for 3× 5 min and finally mounted with neutral balsam.

Evaluation of Immunostaining
Ten random fields were examined per section by two
independent pathologists. The percent of positively stained
cells was determined. Strength of staining was rated on a scale
of 1 to 3 (1: little to no positive staining or uncertainly weak
staining; 2: weak to moderate staining; 3: moderate to strong
staining). A section was determined as positive expression when
the percent of positively stained cells was ≥10% and staining
strength was ≥2. The few sections where percent positive
staining was 5% to 10% and staining strength was 3 were also
regarded as positive.

Western Blot
Total protein was extracted from frozen tissues or cell samples.
Protein concentrations were tested via a BCA protein-assay.
Protein samples were separated on 10% SDS-PAGE gel. The
separated proteins were transferred to Immun-Blot PVDF
membrane (Bio-Rad) using a wet transfer system (Bio-Rad).
The membrane was blocked with 5% skimmed milk and then
incubated with primary antibody (XRCC1, 1:500, proteintech,
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China) at 4◦C overnight, followed by incubation with HRP-
linked anti-rabbit IgG (Merck Millipore) in a dilution of 1: 10000
for 1 h at room temperature.

Real-Time Quantitative PCR (qRT-PCR)
Trizol reagent (Beijing Dingguo Changsheng Biotech, Co.,
Ltd., China) was applied to extract total RNA. The RNA was
reverse-transcribed to cDNA by the PrimeScript RT reagent
Kit (Takara Biomedical Tech, Co., Ltd., China). The cDNA was
subjected to qRT-PCR using SYBR Premix Ex Taq II (Takara,
Co., Ltd., China) and the assay was performed on the CFX
connect system (Bio-Rad Co., Ltd., United States). GAPDH
was used as an internal control. The primers were synthesized
from Tsingke Biological Technology Co., (Changsha, Hunan,
China), and sequences of primers were listed as followed:
XRCC1: Forward 5′-CCTTTGGCTTGAGTTTTGTACG-3′,
Reverse 5′-CCTCCTTCACACGGAACTGG-3′; GAPDH:
Forward 5′-ATGACCACAGTCCATGCCATCA-3′, Reverse
5′-TTACTCCTTGGAGGCCATGTAG-3′.

Cell Lines and Culture
The human gallbladder cancer cell line GBC-SD was obtained
from the Cell Bank of the Chinese Academy of Sciences
(Shanghai, China). Cells were cultured in RPMI-1640 (Hyclone,
United States) supplemented with 10% fetal bovine serum
(Gibco, Grand Island, NY, United States), Penicillin 100 U/ml
and Streptomycin 100 ug/ml (Beyotime, China) in humidified
atmosphere at 37◦C and 5% CO2.

Isolation of CD133+cell Population by
Magnetic Cell Sorting
For magnetic cell sorting, cells were labeled with CD133
microbeads and sorted using the Miltenyi Biotec CD133 Cell
Isolation Kit according to the manufacturer’s protocols (Miltenyi
Biotec, Germany). Magnetic separation was performed twice to
obtain high purity of CD133+cells. The purity of sorted cells was
evaluated by flow cytometry with a FACS Calibur machine after
labeling with phycoerythrin (PE)-conjugated anti-human CD133
antibody (Biolegend, United States).

Inhibition of XRCC1 Expression by
shRNA Transfection
XRCC1 shRNA and negative control shRNA were purchased
from GeneChem (Shanghai, China). XRCC1 shRNA or
negative control shRNA were mixed with RPIM-1640 (Hyclone,
United States) and Lip2000 (Invitrogen, United States), and
then incubated at room temperature for 20 min. Approximately
2 × 105 CD133+cells were plated in 6-well plates, followed by
treating them with the transfection mixture and incubated at
37◦C with 5% CO2. Cells were harvested at 6 h post-transfection
for further studies.

CCK8 Assays
The proliferation of CD133+cells transfected with control shRNA
or XRCC1 shRNA was detected by use of Cell Counting Kit-
8 (CCK8) (DOJINDO, Japan). Cells were seeded into 96-well

culture plates at a density of 1 × 104 cells/100 ul. Four wells
of each group were detected every day. At the end of each
experiment, CCK-8 solution was added to each well, and the
cultures were incubated at 37◦C for 4 h. Then, the cultures were
detected by use of a microplate reader.

Transwell Assays
Cell migration assays were performed in a 24-well Transwell
plate (Corning, United States). Cells in serum-free medium
(1 × 105 cells) was added to the upper chamber. Complete
medium was added to the bottom wells of the chamber.
After 48 h of incubation at 37◦C, the cells that did not
migrate were removed from the upper face of the filters.
The number of cells migrating to the lower face was
counted after fixed with 4% formaldehyde and stained with
0.5% crystal violet. The number of cells was counted under
a microscope. The cell invasion assay was essentially the
same as the migration assays, except that the membrane
filters were coated with Matrigel (Becton, Dickinson and
Company, United States).

Flow Cytometry Assay for Apoptosis
Cells transfected with control shRNA or XRCC1 shRNA
were cultured in a 6-well plate. After 48 h, cells were
harvested by trypsinization, washed twice with PBS, and
then stained with annexin V-APC (APC) (NanJing KeyGen
Biotech, Co., Ltd., China) and propidium iodide (PI) (NanJing
KeyGen Biotech, Co., Ltd., China) to detect cell apoptosis.
Samples were immediately detected in the flow cytometer. This
method can distinguish the cells in early (APC+/PI-) and late
(APC+/PI+) apoptosis.

Drug Sensitivity Assay
CD133+cells transfected with XRCC1 shRNA or negative control
shRNA were cultured in 96 well plates (1 × 104 cells/well)
overnight. On the second day, the cells were treated with 5-
Fluorouracil (5-FU, final concentration of 0.1 mg/L) (APExBIO,
United States) (Paschall et al., 2016). After 72 h, CCK-8 solution
was added to each well, and the cultures were incubated at
37◦C for 4 h. Then, the cultures were detected by use of a
microplate reader.

CD133+cells transfected with XRCC1 shRNA or negative
control shRNA were cultured in 6 well plates (2 × 105 cells/well)
overnight. On the second day, the cells were treated with
5-Fluorouracil (5-FU, final concentration of 0.1 mg/L). After
72 h, cells were harvested to assess cell apoptosis by flow
cytometry as above.

Statistical Analysis
Data was analyzed using SPSS 13.0. The relationship between
XRCC1 expression and clinicopathological factors was analyzed
using χ2 or Fisher’s exact test. Kaplan-Meier and Log-rank test
were used for univariate survival analysis. Cox proportional
hazards model was used for univariate and multivariate analysis.
A P < 0.05 was considered as statistical significance.
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RESULTS

Characteristics of Patients
Among the 69 SC/ASC samples, 44 were collected from female
patients and patient ages ranged from 35 to 80 (53.8 ± 10.2)
years. Among the 146 AC patients, 85 were female with an age
range of 33 to 78 (52.4± 9.6) years. The detail clinicopathological
information of the 146 SC/ASC patients and the 69 AC patients
was presented in Table 1. Briefly, among the 69 SC/ASCs, the
squamous cell component presented well-differentiated in 19
(27.5%), moderately differentiated in 33 (47.8%), and poorly
differentiated in 17 (24.6%). The 146 ACs consisted of 51 well-
differentiated types (34.9%), 54 moderately differentiated types
(37.0%) and 41 poorly differentiated types (28.1%). Among the

TABLE 1 | Comparison of gallbladder SC/ASC and AC clinicopathological
characteristics and XRCC1 expression status.

Clinicopathological
characteristics

Number of SC/ASC (%) Number of AC (%) P

Gender

Male 25 (36.2) 61 (41.8) 0.438

Female 44 (63.8) 85 (58.2)

Age

≤45 years 3 (4.3) 20 (13.7) 0.038

>45 years 66 (95.7) 126 (86.3)

Differentiation

Well 19 (27.5) 51 (34.9) 0.308

Moderate 33 (47.8) 54 (37.0)

Poor 17 (24.6) 41 (28.1)

Maximum tumor
diameter

≤3 cm 39 (56.5) 90 (61.6) 0.474

>3 cm 30 (43.5) 56 (38.4)

Cholecystolithiasis

No 31 (44.9) 78 (53.4) 0.245

Yes 38 (55.1) 68 (46.6)

TNM stages

I + II 29 (42.0) 77 (52.7) 0.143

III + IV 40 (58.0) 69 (47.3)

Lymph node
metastasis

No 27 (39.1) 80 (54.8) 0.032

Yes 42 (60.9) 66 (45.2)

Locoregional
invasion

No 24 (34.8) 72 (49.3) 0.045

Yes 45 (65.2) 74 (50.7)

Surgical methods

Radical 27(39.1) 75 (51.4) 0.223

Palliative 28 (40.6) 50 (34.2)

Without resection 14 (20.3) 21 (14.4)

XRCC1

− 28 (40.6) 58 (39.7) 0.905

+ 41 (59.4) 88 (60.3)

−, negative expression; +, positive expression.

SC/ASC patients, invasion to surrounding tissues and organs was
observed in 45 patients (65.2%); 42 (60.7%) occurred regional
lymph node metastasis; and 38 (55.1%) existed gallstones. Among
the 146 AC patients, 74 (50.7%) occurred invasion; 66 (45.2%)
presented regional lymph node metastasis; and 68 (46.6%) had
gallstones. According to tumor-node-metastasis (TNM) staging,
29 SC/ASCs and 40 SC/ASCs stage I + II and stage III + IV,
respectively. Among the 146 ACs, 77 were in a stage of I or
II and 69 were in a stage of III or IV. Among all patients, 27
SC/ASC patients and 75 AC patients received radical surgery; 28
SC/ASC patients and 50 AC patients received palliative surgery;
14 SC/ASC patients and 21 AC patients only underwent biops.

XRCC1 Is Significantly Over-Expressed
in Gallbladder Cancer Tissues
To evaluate the expression of XRCC1 in GBC tissues and
corresponding adjacent non-tumor tissues, qRT-PCR and
western blot were performed. The results demonstrated that
XRCC1 expression in GBC tissues was significantly higher
than adjacent non-tumor tissues both in mRNA and protein
levels (Figures 1A,B).

We then assessed XRCC1 expression in gallbladder cancer
tissues (including 69 SC/ASCs and 146 ACs) and gallbladder
epithelium with chronic cholecystitis by immunohistochemistry.
The majority of XRCC1 positive-reaction was localized in the
cytoplasm of the SC/ASC (Figure 1C) and AC (Figure 1E).
The representative images of XRCC1 negative expression in
SC/ASC and AC were seen in Figure 1D and Figure 1F,
respectively. The staining positive rate was significantly higher
in SC/ASC (59.4%) and AC (60.3%) than gallbladder epithelium
with chronic cholecystitis (6.7%, P < 0.01). The epithelium
of chronic cholecystitis with high XRCC1 expression showed
moderate to severe dysplasia. This suggested that XRCC1 may be
a biomarker to evaluate the pre-malignant changes.

Comparison of Gallbladder ASC/SC and
AC in Clinicopathological Features
Including XRCC1 Expression
As showed in Table 1, the percentage of cases with a patient
age over 45 years, lymph node metastasis and invasion was
significantly higher in SC/ASC compared with AC (all P < 0.05).
However, there was a non-significant difference between SC/ASC
and AC in other clinicopathological features including tumor
differentiated degree, tumor size, TNM stages, receiving surgical
methods, and XRCC1 positive expression (all P > 0.05, Table1).

XRCC1 Positive Expression Correlates
With Poor Clinicopathological Features
of Gallbladder SC/ASC and AC Patients
We further evaluated the clinicopathological significance of
XRCC1 expression in SC/ASC and AC patients. We found
that XRCC1 positive expression was associated with several
poor clinicopathological features of gallbladder cancer.
In SC/ASC, XRCC1 positive expression was positively
correlated with lymph node metastasis, invasion, and only
receiving biopsy (all P < 0.05, Table 2). Similarly, XRCC1
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FIGURE 1 | XRCC1 expression is up-regulated in GBC and associated with poor prognosis. (A) XRCC1 expression was analyzed by western blot. (B) XRCC1
expression was assessed by qRT-PCR. (C) Positive expression of XRCC1 in moderately differentiated ASC, ×200. (D) Negative expression of XRCC1 in moderately
differentiated SC, ×200. (E) Positive expression of XRCC1 in moderately differentiated AC, ×200. (F) Negative expression of XRCC1 in well differentiated AC, ×200.
(G) Kaplan-Meier curves for SC/ASC patients with positive and negative XRCC1 expression. (H) Kaplan-Meier curves for AC patients with positive and negative
XRCC1 expression. (I) ROC of diagonal segments was produced by ties of XRCC1 in SC/ASC. (J) ROC of diagonal segments was produced by ties of XRCC1 in AC.

positive expression was positively associated with large
tumor size (>3 cm), lymph node metastasis, invasion, late
TNM stages (III + IV), only receiving biopsy in AC (all
P < 0.05, Table 2).

XRCC1 Positive Expression Is an
Independent Risk Factor for the
Prognosis of Gallbladder SC/ASC and
AC Patients
Gallbladder cancer patients (both AC/ASC and AC) in XRCC1
positive expression group had significantly shorter average
survival time than patients in the negative expression group
(all P < 0.01, Table 3). The Kaplan-Meier survival curves

demonstrated that patients with XRCC1 positive expression
had a poor overall survival than patients with XRCC1
negative expression (Figures 1G,H). Moreover, univariate and
multivariate analysis showed that XRCC1 positive expression was
an independent risk factor for the overall survival of gallbladder
SC/ASC and AC patients (Tables 4, 5). Finally, the receiver
operating characteristic (ROC) curve was depicted to assess
the diagnostic efficacy of XRCC1 expression in SC/ASC and
AC. The AUC of XRCC1 expression in SC/ASC and AC was
0.764 (95%CI: 0.669–0.859) and 0.768 (95%CI: 0.689–0.847)
respectively (Figures 1I,J). These results fully revealed that
XRCC1 was closely related to poor survival and might be a
novel independent prognosis biomarker for gallbladder SC/ASC
and AC patients.

Frontiers in Molecular Biosciences | www.frontiersin.org 5 April 2020 | Volume 7 | Article 7063

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-00070 April 23, 2020 Time: 15:4 # 6

Wu et al. XRCC1 in GBC

TABLE 2 | Correlations of XRCC1 expression with the clinicopathological characteristics of gallbladder SC/ASC and AC.

Clinicopathological characteristics SC/ASC AC

Number of patients Positive Number (%) P Number of patients Positive Number (%) P

Differentiation

Well 19 10 (52.6) 0.738 51 29 (56.9) 0.131

Moderately 33 21 (63.6) 54 29 (53.7)

Poorly 17 10 (58.8) 41 30 (73.2)

Tumor size

≤3cm 39 16 (53.3) 0.366 90 45 (50.0) 0.001

>3cm 30 25 (64.1) 56 43 (76.8)

Gallstone

No 31 18 (58.1) 0.836 78 52 (66.7) 0.091

Yes 38 23 (60.5) 68 36 (52.9)

Lymph node metastasis

No 27 12 (44.4) 0.037 80 40 (50.0) 0.005

Yes 42 29 (69.1) 66 48 (72.7)

Invasion

No 24 10 (41.7) 0.028 72 37 (51.4) 0.030

Yes 45 31 (68.9) 74 51 (68.9)

TNM stage

I + II 29 14 (48.3) 0.108 77 38 (49.4) 0.004

III + IV 40 27 (67.5) 69 50 (72.5)

Surgery

Radical 27 11 (40.7) 0.031 75 39 (52.0) 0.006

Palliative 28 19 (67.9) 50 30 (60.0)

Biopsy 14 11 (78.6) 21 19 (90.5)

XRCC1 Is Significantly Up-Regulated in
CD133+GBC-SD Cells Compared With
Normal GBC-SD Cells
Previous studies reported that both XRCC1 and CD133+cancer
cells are related to tumor drug resistance so that we studied
the role of XRCC1 in CD133+GBC-SD cells. CD133+GBC-SD
cells were obtained from GBC-SD cells by CD133 magnetic
bead sorting. We applied qRT-PCR and western blot to
research XRCC1 expression in normal GBC-SD cells and
CD133+GBC-SD cells. Compared with GBC-SD cells, XRCC1
mRNA and protein were overexpressed in CD133+GBC-SD cells
(Figure 2). Based on previous studies, these results indicated
that XRCC1 might affect the unique biological features of
CD133+GBC-SD cells compared to normal GBC-SD cells,
such as chemo-resistance.

Knockdown XRCC1 Has a
Non-significant Effect on
CD133+GBC-SD Cells Proliferation,
Migration, Invasion, and Apoptosis
To further study the function of XRCC1 in CD133+GBC-SD
cells, XRCC1 expression in cells was manipulated via short
hairpin RNA (shRNA) knockdown. Three shRNAs (shRNA1,
shRNA2, and shRNA3) were designed to knockdown XRCC1
expression in CD133+GBC-SD cells. After CD133+GBC-SD
cells were infected with XRCC1-shRNA, the expression level of
XRCC1 was tested by western blotting to evaluate the efficacy of

shRNA knockdown. Among the three XRCC1-shRNAs, shRNA3
was the most effective one (Figure 3A) and was selected for
further studies. To study the effect of XRCC1 knockdown
on the proliferation, migration, invasion, and apoptosis of
CD133+GBC-SD cells, CCK8 assay, transwell assay, and flow
cytometry were performed. Our results showed that XRCC1
knockdown in CD133+GBC-SD cells had a non-significant
impact on the ability of proliferation, migration, invasion,
and apoptosis, compared with control-shRNA/CD133+GBC-SD
cells (Figure 3).

XRCC1 Facilitates CD133+GBC-SD Cells
Resistance to 5-FU
To explore the role of XRCC1 in CD133+GBC-SD cells drug
resistance, 5-FU was used to treat control-shRNA/CD133+GBC-
SD cells and XRCC1-shRNA/CD133+GBC-SD cells. After
treated with 5-FU (0.1 mg/L) for 72 h, CCK8 assay was performed
to assess the cell totality of every group. Results showed that
in CCK8 assay, XRCC1-shRNA/CD133+GBC-SD had a lower
absorbance compared to control-shRNA/CD133+GBC-SD,
which suggested that XRCC1 could promote CD133+GBC-
SD cell resistance to 5-FU (Figure 4A). To further validate
the results of CCK8 assay, flow cytometry was performed.
Under 5-FU treated 72 h, flow cytometry revealed that
cell necrosis and apoptosis were significantly increased in
XRCC1-shRNA/CD133+GBC-SD compared to control-
shRNA/CD133+GBC-SD (Figure 4B). Thus, our results
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TABLE 3 | Relationship between XRCC1 expression, clinicopathological characteristics and average survival of SC/ASC and AC patients.

Clinicopathological characteristics SC/ASC AC

Sample (n) Average survival (month) P Sample (n) Average survival (month) P

Differentiation

Well 19 13.68(5− 24) 0.000 51 16.69(5− 24) 0.000

Moderately 33 11.58(4− 24) 54 12.33(2− 24)

Poorly 17 6.12(2− 14) 41 6.49(1− 24)

Tumor size

≤3cm 30 14.57(6− 24) 0.000 90 14.60(1− 24) 0.000

>3cm 39 7.44(2− 24) 56 8.38(1− 24)

Gallstones

No 31 8.26(3− 18) 0.008 78 12.19(2− 24) 0.980

Yes 38 12.90(2− 24) 68 12.24(1− 24)

TNM stage

I + II 29 16.31(3− 24) 0.000 77 16.99(3− 24) 0.000

III + IV 40 6.83(2− 14) 69 6.88(1− 24)

Lymph node metastasis

No 27 16.04(3− 24) 0.000 80 16.35(2− 24) 0.000

Yes 42 7.45(2− 15) 66 7.20(1− 24)

Invasion

No 24 17.25(3− 24) 0.000 72 18.08(4− 24) 0.000

Yes 45 7.38(2− 20) 74 6.50(1− 14)

Surgery

Radical 27 16.93(5− 24) 0.000 75 17.84(6− 24) 0.000

Palliative 28 7.32(2− 12) 50 6.86(1− 14)

Biopsy 14 6.00(4− 8) 21 4.86(1− 9)

XRCC1

− 28 12.95(4− 24) 0.002 58 14.47(2− 24) 0.001

+ 41 8.42(2− 24) 88 10.73(1− 24)

−, negative expression; +, positive expression.

TABLE 4 | Univariate Cox regression analysis of survival rate in SC/ASC and AC patients.

Groups Factors SC/ASC AC

P HR (95% CI) P HR (95% CI)

Differentiated degree Well/moderately/poorly 0.000 2.040(1.394− 2.983) 0.000 2.227(1.740− 2.851)

Tumor size ≤3 cm/>3 cm 0.034 1.765(1.044− 2.984) 0.000 2.331(1.614− 3.367)

Gallstone No/Yes 0.088 1.565(0.935− 2.261) 0.981 1.004(0.704− 1.433)

TNM stage I + II/III + IV 0.000 6.830(3.619− 12.890) 0.000 5.923(3.898− 9.002)

Lymph node metastasis No/Yes 0.000 4.550(2.453− 8.438) 0.000 5.021(3.312− 7.612)

Invasion No/Yes 0.000 5.453(2.942− 10.104) 0.000 12.808(7.412− 22.131)

Surgery Radical/Palliative/Biopsy 0.000 4.240(2.709− 6.637) 0.000 5.693(4.081− 7.940)

XRCC1 −/+ 0.005 2.125(1.258− 3.591) 0.002 1.826(1.251− 2.666)

Abbreviation: HR, hazard risk ratio; CI, confidence interval; −, negative expression; + , positive expression.

indicated that XRCC1 might promote CD133+GBC-SD cells
resistance to 5-FU through inhibiting cell necrosis and apoptosis.

DISCUSSION

GBC is an aggressive malignant of the biliary tree and consists
of several pathological subtypes including AC and SC/ASC. In
comparison of AC, the incidence rate of gallbladder SC/ASC is

relatively rare and its clinicopathological features remain to be
further elucidated. Currently, most reports investigated SC/ASC
based on individual cases or small case samples. As far as we
know, the 69 SC/ASC cases that we included in this study are
relatively large samples in current clinical studies on gallbladder
SC/ASC, which could provide more detail clinicopathological
knowledge about SC/ASC. In the present study, we found that
SC/ASC accounted for 5.5% of GBC and the occurring rate of
lymph node metastasis and invasion was significantly higher in
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TABLE 5 | Multivariate Cox regression analysis of survival rate in SC/ASC and AC patients.

Groups Factors SC/ASC AC

P HR (95% CI) P HR (95% CI)

Differentiated degree Well/moderately/poorly 0.005 1.815(1.198− 2.750) 0.002 1.514(1.158− 1.981)

Tumor size ≤3 cm/>3 cm 0.030 1.974(1.067− 3.653) 0.016 1.772(1.111− 2.825)

Gallstone No/Yes 0.461 1.237(0.702− 2.180) 0.460 1.153(0.791− 1.679)

TNM stage I + II/III + IV 0.024 3.662(1.189− 11.280) 0.002 2.965(1.499− 5.865)

Lymph node metastasis No/Yes 0.002 3.823(1.607− 9.091) 0.000 3.869(2.062− 7.258)

Invasion No/Yes 0.016 3.684(1.273− 10.658) 0.000 6.488(3.287− 12.809)

Surgery Radical/Palliative/Biopsy 0.016 1.960(1.132− 3.393) 0.000 2.284(1.522− 3.427)

XRCC1 −/+ 0.020 1.998(1.116− 3.576) 0.011 1.721(1.134− 2.613)

HR, hazard risk ratio; CI, confidence interval; −, negative expression; +, positive expression.

FIGURE 2 | XRCC1 is up-regulated in CD133+ GBC-SD cells. (A) XRCC1 expression in GBC-SD cells and CD133+GBC-SD cells was analyzed by western blotting.
(B) XRCC1 expression in GBC-SD cells and CD133+GBC-SD cells was assessed by qRT-PCR (**P < 0.01).

SC/ASC than AC, which was consistent with previous reports
(Kim et al., 2011; Roa et al., 2011; Samuel et al., 2018). In
agreement with previous researches (Chan et al., 2007; Kim
et al., 2011), our results also showed that gallbladder SC/ASC
and AC had similar clinicopathological features such as tumor
differentiated degree, tumor size, the existence of gallstone, TNM
stage, and XRCC1 expression.

Nowadays, the prognosis of GBCs remains extremely poor.
In this study, our data revealed that lymph node metastasis,
invasion, large tumor size, and advanced TNM stages were
independent risk factors for patient’s survival, and radical
surgery could significantly prolong the mean survival time
of patients in SC/ASC and AC. These results suggested that
early diagnosis was very important for improving the clinical
prognosis of GBC. Thus, it is extremely vital to discover early
specific diagnostic biomarkers and explore the reason why GBC
resists to chemotherapy. Previous works have demonstrated that
XRCC1 is associated with tumor resistance to chemotherapy and
radiotherapy, carcinogenesis, and tumor progression (Sak et al.,
2005; Hanssen-Bauer et al., 2012; Xu et al., 2014; Li et al., 2018).
CD133+cancer cells are a small subgroup of tumor cells and
related to tumor resistance to chemotherapy and radiotherapy
(Zhang et al., 2010; Desai et al., 2014; Vincent et al., 2014; Kanwal
et al., 2018). Thus, we further studied the clinicopathological and
prognostic significance of XRCC1 in gallbladder SC/ASC and AC,

and evaluated the biological role of XRCC1 in CD133+ GBC-
SD cells.

As a DNA repair gene, XRCC1 is involved in tumorigenesis,
progression, and poor prognosis of many human cancer types. In
this study, we observed that XRCC1 expression was up-regulated
in GBC compared with non-tumor tissues, which was consistent
with previous studies where XRCC1 was overexpression in
ovarian cancer and head and neck squamous cell cancer (Ang
et al., 2011; Abdel-Fatah et al., 2013). On the contrary, several
reports showed that XRCC1 was down-regulated in glioma,
bladder cancer, pancreatic cancer, and gastric cancer (Crnogorac-
Jurcevic et al., 2002; Sak et al., 2005; Wang et al., 2012; Mei
et al., 2019). This contradiction may be owed to the organ
specificity. Furthermore, we found that the epithelium of chronic
cholecystitis with high XRCC1 expression showed moderate
to severe dysplasia, suggesting that XRCC1 may be involved
in the processes that benign lesions evolve into GBC. Thus,
we further evaluated the clinicopathological and prognostic
significance of XRCC1 in gallbladder SC/ASC and AC. Our data
demonstrated that XRCC1 positive expression was significantly
related to lymph node metastasis, invasion, and poor prognosis,
which was consistent with previous studies (Ang et al., 2011;
Abdel-Fatah et al., 2013; Mian et al., 2016). Moreover, cox
univariate and multivariate analysis further showed that XRCC1
positive expression was an independent risk factor for the
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FIGURE 3 | XRCC1 has no effect on proliferation, migration, invasion, and apoptosis of CD133+GBC-SD cells. (A) Western blot detected XRCC1 expression in
CD133+GBC-SD cells transfected with different shRNAs. (B) Proliferation of XRCC1-shRNA/CD133+GBC-SD cells and control-shRNA/CD133+GBC-SD cells was
examined by CCK8. (C) Transwell migration assay detected the migration capacity of XRCC1-shRNA/CD133+GBC-SD cells and control-shRNA/CD133+GBC-SD
cells. (D) Transwell invasion assay detected the invasion capacity of XRCC1-shRNA/CD133+GBC-SD cells and control-shRNA/CD133+GBC-SD cells. (E) Flow
cytometer detected the apoptosis capacity of XRCC1-shRNA/CD133+GBC-SD cells and control-shRNA/CD133+GBC-SD cells; UL: necrosis, UR: late apoptosis,
LL: normal cells, LR: early apoptosis.
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FIGURE 4 | XRCC1 is related to CD133+GBC-SD cells resistance to 5-FU. (A) Cell viability of cells treated with 5-FU 72 h was assessed by CCK8 (**P < 0.01). (B)
Apoptosis of cells treated with 5-FU 72 h was examined by Flow cytometer; Q1-UL: necrosis cells, Q1-UR: late apoptosis cells, Q1-LL: normal cells, Q1-LR: early
apoptosis cells.

overall survival of SC/ASC and AC. The AUC of XRCC1
indicated that the expression of XRCC1 might have potential
clinicopathological diagnostic significance in SC/ASC and AC.
These results suggested that XRCC1 might be involved in
carcinogenesis and development of GBC.

Previous studies have demonstrated that XRCC1 plays a
role in regulating cell biological features such as proliferation,
migration, invasion, and drug resistance in several human cancer
cell lines (Xu et al., 2014; Meng et al., 2017; Li et al., 2018;
Mei et al., 2019). However, there is no study reporting the
function of XRCC1 in gallbladder cancer cells. Herein, we
firstly studied the biological role of XRCC1 in CD133+GBC-
SD cells. Unexpectedly, the functional experiments revealed
that knockdown of XRCC1 had no significant effect on the

ability of proliferation, migration, invasion, and apoptosis in
CD133+GBC-SD cells, which was inconsistent with previous
researches (Li et al., 2018; Mei et al., 2019). This inconsistency
may be caused by cell specificity. Additionally, we found that
XRCC1 was up-regulated in CD133+GBC-SD cells compared
with GBC-SD cells, indicating that XRCC1 might be associated
with unique biological features of CD133+cancer cells, such
as chemo-resistance. Therefore, we further investigated the
impact of XRCC1 on CD133+GBC-SD cells resistance to 5-
FU. As we suspected, our results showed that XRCC1 were
contributed to the resistance of CD133+GBC-SD cells to 5-
FU via inhibiting cell necrosis and apoptosis, which was in
accordance with previous studies (Abdel-Fatah et al., 2013;
Xu et al., 2014). Thus, XRCC1 may promote GBC resistance
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to chemotherapy, which needs further studies to validate and
explore potential molecular mechanism. Thus, we speculated that
XRCC1 might be a promising target to improve the sensitivity of
GBC to chemotherapy.

CONCLUSION

In conclusion, this study demonstrated that XRCC1 was
overexpression in gallbladder cancer tissues. XRCC1 positive
expression was associated with aggressive clinicopathological
features and poor prognosis of gallbladder SC/ASC and
AC. Moreover, XRCC1 was related to the chemo-resistance
of CD133+GBC-SD cells to 5-FU. Thus, XRCC1 may
be a promising predictive biomarker and a potential
therapeutic target for GBC.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

This study was approved by the Ethics Committee for Human
Research, Central South University and was carried out in
accordance with Declaration of Helsinki.

AUTHOR CONTRIBUTIONS

ZW, RL, and YZ carried out studies and wrote the manuscript.
ZY, XM, and RL designed the study and revised the manuscript.
ZY and XM performed the statistical analysis. DL, YY, and QZ
collected specimens and experimental materials. All authors read
and approved the final manuscript.

FUNDING

This work was supported by The National Natural
Science Foundation of China (81472738); Natural Science
Foundation of Hunan Province, China (2019JJ10002);
and Hunan Provincial Key Research and Development
Program (2019SK2042).

REFERENCES
Abdel-Fatah, T., Sultana, R., Abbotts, R., Hawkes, C., Seedhouse, C., Chan, S., et al.

(2013). Clinicopathological and functional significance of XRCC1 expression in
ovarian cancer. Int. J. Cancer 132, 2778–2786. doi: 10.1002/ijc.27980

Ang, M. K., Patel, M. R., Yin, X. Y., Sundaram, S., Fritchie, K., Zhao, N., et al.
(2011). High XRCC1 protein expression is associated with poorer survival in
patients with head and neck squamous cell carcinoma. Clin. Cancer Res. 17,
6542–6552.

Chan, K. M., Yu, M. C., Lee, W. C., Jan, Y. Y., and Chen, M. F. (2007).
Adenosquamous/squamous cell carcinoma of the gallbladder. J. Surg. Oncol. 95,
129–134. doi: 10.1002/jso.20576

Crnogorac-Jurcevic, T., Efthimiou, E., Nielsen, T., Loader, J., Terris, B.,
Stamp, G., et al. (2002). Expression profiling of microdissected pancreatic
adenocarcinomas. Oncogene 21, 4587–4594. doi: 10.1038/sj.onc.1205570

Desai, A., Webb, B., and Gerson, S. L. (2014). CD133+ cells contribute to
radioresistance via altered regulation of DNA repair genes in human lung
cancer cells. Radiother. Oncol. 110, 538–545. doi: 10.1016/j.radonc.2013.10.040

Hanssen-Bauer, A., Solvang-Garten, K., Akbari, M., and Otterlei, M. (2012). X-ray
repair cross complementing protein 1 in base excision repair. Int. J. Mol. Sci. 13,
17210–17229. doi: 10.3390/ijms131217210

Henley, S. J., Weir, H. K., Jim, M. A., Watson, M., and Richardson, L. C. (2015).
Gallbladder cancer incidence and mortality, United States 1999-2011. Cancer
Epidemiol. Biomarkers. Prev. 24, 1319–1326. doi: 10.1158/1055-9965.EPI-15-
0199

Horgan, A. M., Amir, E., Walter, T., and Knox, J. J. (2012). Adjuvant therapy in the
treatment of biliary tract cancer: a systematic review and meta-analysis. J. Clin.
Oncol. 30, 1934–1940. doi: 10.1200/JCO.2011.40.5381

Kanwal, R., Shukla, S., Walker, E., and Gupta, S. (2018). Acquisition of tumorigenic
potential and therapeutic resistance in CD133+ subpopulation of prostate
cancer cells exhibiting stem-cell like characteristics. Cancer Lett. 430, 25–33.
doi: 10.1016/j.canlet.2018.05.014

Kim, W. S., Jang, K. T., Choi, D. W., Choi, S. H., Heo, J. S., You, D. D., et al. (2011).
Clinicopathologic analysis of adenosquamous/squamous cell carcinoma of the
gallbladder. J. Surg. Oncol. 103, 239–242. doi: 10.1002/jso.21813

Li, Q., Ma, R., and Zhang, M. (2018). XRCC1 rs1799782 (C194T) polymorphism
correlated with tumor metastasis and molecular subtypes in breast cancer.
Onco. Targets Ther. 11, 8435–8444. doi: 10.2147/OTT.S154746

Liu, J. Y., Liu, Q. M., and Li, L. R. (2015). Association of GSTP1 and XRCC1 gene
polymorphisms with clinical outcomes of patients with advanced non-small cell
lung cancer. Genet. Mol. Res. 14, 10331–10337. doi: 10.4238/2015.August.28.19

Mei, P. J., Bai, J., Miao, F. A., Li, Z. L., Chen, C., Zheng, J. N., et al. (2019).
Relationship between expression of XRCC1 and tumor proliferation, migration,
invasion, and angiogenesis in glioma. Invest. New Drugs 37, 646–657. doi:
10.1007/s10637-018-0667-669

Meng, Q., Wang, S., Tang, W., Wu, S., Gao, N., Zhang, C., et al. (2017). XRCC1
mediated the development of cervival cancer through a novel Sp1/Krox-20
swich. Oncotarget 8, 86217–86226. doi: 10.18632/oncotarget.21040

Mian, M., McNamara, M. G., Doherty, M., Hedley, D., Knox, J. J., and Serra, S.
(2016). Predictive and prognostic values of ERCC1 and XRCC1 in biliary tract
cancers. J. Clin. Pathol. 69, 695–701. doi: 10.1136/jclinpath-2015-203397

Paschall, A. V., Yang, D., Lu, C., Redd, P. S., Choi, J. H., Heaton, C. M., et al. (2016).
CD133+CD24lo defines a 5-Fluorouracil-resistant colon cancer stem cell-like
phenotype. Oncotarget 7, 78698–78712. doi: 10.18632/oncotarget.12168

Reid, K. M., Ramos-De, L. M. A., and Donohue, J. H. (2007). Diagnosis and surgical
management of gallbladder cancer: a review. J. Gastrointest. Surg. 11, 671–681.
doi: 10.1007/s11605-006-0075-x

Roa, J. C., Tapia, O., Cakir, A., Basturk, O., Dursun, N., Akdemir, D., et al.
(2011). Squamous cell and adenosquamous carcinomas of the gallbladder:
clinicopathological analysis of 34 cases identified in 606 carcinomas. Mod.
Pathol. 24, 1069–1078. doi: 10.1038/modpathol.2011.68

Sak, S. C., Harnden, P., Johnston, C. F., Paul, A. B., and Kiltie, A. E. (2005). APE1
and XRCC1 protein expression levels predict cancer-specific survival following
radical radiotherapy in bladder cancer. Clin. Cancer Res. 11, 6205–6211. doi:
10.1158/1078-0432.CCR-05-0045

Sakano, S., Ogawa, S., Yamamoto, Y., Nishijima, J., Miyachika, Y., Matsumoto, H.,
et al. (2013). ERCC1 and XRCC1 expression predicts survival in bladder cancer
patients receiving combined trimodality therapy. Mol. Clin. Oncol. 1, 403–410.
doi: 10.3892/mco.2013.85

Samuel, S., Mukherjee, S., Ammannagari, N., Pokuri, V. K., Kuvshinoff, B.,
Groman, A., et al. (2018). Clinicopathological characteristics and outcomes of
rare histologic subtypes of gallbladder cancer over two decades: a population-
based study. PLoS One 13:e0198809. doi: 10.1371/journal.pone.0198809

Sharma, A., Sharma, K. L., Gupta, A., Yadav, A., and Kumar, A. (2017). Gallbladder
cancer epidemiology, pathogenesis and molecular genetics: recent update.
World J. Gastroenterol. 23, 3978–3998. doi: 10.3748/wjg.v23.i22.3978

Frontiers in Molecular Biosciences | www.frontiersin.org 11 April 2020 | Volume 7 | Article 7069

https://doi.org/10.1002/ijc.27980
https://doi.org/10.1002/jso.20576
https://doi.org/10.1038/sj.onc.1205570
https://doi.org/10.1016/j.radonc.2013.10.040
https://doi.org/10.3390/ijms131217210
https://doi.org/10.1158/1055-9965.EPI-15-0199
https://doi.org/10.1158/1055-9965.EPI-15-0199
https://doi.org/10.1200/JCO.2011.40.5381
https://doi.org/10.1016/j.canlet.2018.05.014
https://doi.org/10.1002/jso.21813
https://doi.org/10.2147/OTT.S154746
https://doi.org/10.4238/2015.August.28.19
https://doi.org/10.1007/s10637-018-0667-669
https://doi.org/10.1007/s10637-018-0667-669
https://doi.org/10.18632/oncotarget.21040
https://doi.org/10.1136/jclinpath-2015-203397
https://doi.org/10.18632/oncotarget.12168
https://doi.org/10.1007/s11605-006-0075-x
https://doi.org/10.1038/modpathol.2011.68
https://doi.org/10.1158/1078-0432.CCR-05-0045
https://doi.org/10.1158/1078-0432.CCR-05-0045
https://doi.org/10.3892/mco.2013.85
https://doi.org/10.1371/journal.pone.0198809
https://doi.org/10.3748/wjg.v23.i22.3978
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-00070 April 23, 2020 Time: 15:4 # 12

Wu et al. XRCC1 in GBC

Sicklick, J. K., Fanta, P. T., Shimabukuro, K., and Kurzrock, R. (2016). Genomics
of gallbladder cancer: the case for biomarker-driven clinical trial design. Cancer
Metastasis Rev. 35, 263–275. doi: 10.1007/s10555-016-9602-9608

Thompson, L. H., and West, M. G. (2000). XRCC1 keeps DNA from getting
stranded. Mutat. Res. 459, 1–18. doi: 10.1016/s0921-8777(99)00058-0

Tudek, B. (2007). Base excision repair modulation as a risk factor for human
cancers. Mol. Aspects Med. 28, 258–275. doi: 10.1016/j.mam.2007.05.003

Vincent, Z., Urakami, K., Maruyama, K., Yamaguchi, K., and Kusuhara, M. (2014).
CD133-positive cancer stem cells from Colo205 human colon adenocarcinoma
cell line show resistance to chemotherapy and display a specific metabolomic
profile. Genes Cancer 5, 250–260. doi: 10.18632/genesandcancer.23

Wang, S., Wu, X., Chen, Y., Zhang, J., Ding, J., Zhou, Y., et al. (2012). Prognostic
and predictive role of JWA and XRCC1 expressions in gastric cancer. Clin.
Cancer Res. 18, 2987–2996. doi: 10.1158/1078-0432.CCR-11-2863

Wood, R. D., Mitchell, M., Sgouros, J., and Lindahl, T. (2001). Human DNA repair
genes. Science 291, 1284–1289. doi: 10.1126/science.1056154

Wu, Z. C., Xiong, L., Wang, L. X., Miao, X. Y., Liu, Z. R., Li, D. Q.,
et al. (2017). Comparative study of ROR2 and WNT5a expression in
squamous/adenosquamous carcinoma and adenocarcinoma of the gallbladder.
World J. Gastroenterol. 23, 2601–2612. doi: 10.3748/wjg.v23.i14.2601

Xu, W., Wang, S., Chen, Q., Zhang, Y., Ni, P., Wu, X., et al. (2014). TXNL1-
XRCC1 pathway regulates cisplatin-induced cell death and contributes to
resistance in human gastric cancer. Cell Death Dis. 5:e1055. doi: 10.1038/cddis.
2014.27

Zhang, Q., Shi, S., Yen, Y., Brown, J., Ta, J. Q., and Le, A. D. (2010). A subpopulation
of CD133(+) cancer stem-like cells characterized in human oral squamous
cell carcinoma confer resistance to chemotherapy. Cancer Lett. 289, 151–160.
doi: 10.1016/j.canlet.2009.08.010

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Wu, Miao, Zhang, Li, Zou, Yuan, Liu and Yang. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org 12 April 2020 | Volume 7 | Article 7070

https://doi.org/10.1007/s10555-016-9602-9608
https://doi.org/10.1016/s0921-8777(99)00058-0
https://doi.org/10.1016/j.mam.2007.05.003
https://doi.org/10.18632/genesandcancer.23
https://doi.org/10.1158/1078-0432.CCR-11-2863
https://doi.org/10.1126/science.1056154
https://doi.org/10.3748/wjg.v23.i14.2601
https://doi.org/10.1038/cddis.2014.27
https://doi.org/10.1038/cddis.2014.27
https://doi.org/10.1016/j.canlet.2009.08.010
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-00203 August 24, 2020 Time: 17:26 # 1

MINI REVIEW
published: 26 August 2020

doi: 10.3389/fmolb.2020.00203

Edited by:
Paula Soares,

Universidade do Porto, Portugal

Reviewed by:
Juntaro Matsuzaki,

University of California,
San Francisco, United States
Nikolay Mikhaylovich Borisov,
Moscow Institute of Physics

and Technology, Russia

*Correspondence:
Yongjun Wei

yongjunwei@zzu.edu.cn
Boyang Ji

boyangji@gmail.com

Specialty section:
This article was submitted to

Molecular Diagnostics
and Therapeutics,

a section of the journal
Frontiers in Molecular Biosciences

Received: 17 April 2020
Accepted: 27 July 2020

Published: 26 August 2020

Citation:
Shi X-J, Wei Y and Ji B (2020)

Systems Biology of Gastric Cancer:
Perspectives on the Omics-Based

Diagnosis and Treatment.
Front. Mol. Biosci. 7:203.

doi: 10.3389/fmolb.2020.00203

Systems Biology of Gastric Cancer:
Perspectives on the Omics-Based
Diagnosis and Treatment
Xiao-Jing Shi1, Yongjun Wei2* and Boyang Ji3,4*

1 Laboratory Animal Center, State Key Laboratory of Esophageal Cancer Prevention and Treatment, Academy of Medical
Science, Zhengzhou University, Zhengzhou, China, 2 School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug
Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, China, 3 Department of Biology
and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden, 4 Novo Nordisk Foundation Center
for Biosustainability, Technical University of Denmark, Lyngby, Denmark

Gastric cancer is the fifth most diagnosed cancer in the world, affecting more than a
million people and causing nearly 783,000 deaths each year. The prognosis of advanced
gastric cancer remains extremely poor despite the use of surgery and adjuvant
therapy. Therefore, understanding the mechanism of gastric cancer development,
and the discovery of novel diagnostic biomarkers and therapeutics are major goals
in gastric cancer research. Here, we review recent progress in application of omics
technologies in gastric cancer research, with special focus on the utilization of systems
biology approaches to integrate multi-omics data. In addition, the association between
gastrointestinal microbiota and gastric cancer are discussed, which may offer insights
in exploring the novel microbiota-targeted therapeutics. Finally, the application of data-
driven systems biology and machine learning approaches could provide a predictive
understanding of gastric cancer, and pave the way to the development of novel
biomarkers and rational design of cancer therapeutics.

Keywords: gastric cancer, omics, systems biology, data integration, personalized medicine

INTRODUCTION

Although the incidences and deaths of gastric cancer are declining in Northern America and
Western European, gastric cancer still remains as the fifth most common diagnosed cancer
worldwide, and is second compared to lung cancer in terms of worldwide cancer deaths (Bray
et al., 2018). Gastric cancer is responsible for over one million new cases and an estimated 783,000
deaths in 2018 (Bray et al., 2018). In Eastern Asia, gastric cancer accounts for ∼31% of all cancer
incidences in men and for ∼22% in women. In estimation, most of gastric cancer patients at
advanced stages have a 5-year survival rate of <30% (Parkin, 2001). Therefore, early detection and
targeted treatment of gastric cancer will be potential therapeutic strategies for increasing the 5-year
survival rate of gastric cancer patients.

The vast majority of gastric cancer are adenocarcinomas, which can be classified based on
their histological and etiological characteristics. Traditionally, gastric cancer can be divided
into two major subtypes: intestinal- and diffuse- types of adenocarcinomas according to the
Lauren’s criteria (Lauren, 1965). Additionally, the alternative World Health Organization (WHO)
classification system differentiates gastric cancer into tubular, papillary, mucinous, and poorly
cohesive carcinomas, respectively (Bosman et al., 2010). Both classifications enable a better
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understanding of the pathology of gastric cancer. However,
these classifications have quite limited success in promoting the
development of subtype-specific treatment approaches due to the
heterogeneity of gastric cancer and their disability to identify
potential molecular targets. With the development of next-
generation sequencing (NGS), omics technologies have provided
valuable tools to study gastric cancer at the molecular level.
Omics based data integration have been extensively applied in
gastric cancer research. These studies have successfully identified
numerous mutations, gene expression differences, protein
abundance differences, epigenetic mutations, and metabolite
concentrations to be linked with gastric cancer heterogeneity
and staging, which significantly improve our understanding
of gastric cancer.

Systems biology approaches aim to the transcendence of
individual genes/proteins and to the integration of biological
system that taking account into the intrinsic interactions. With
more and more available omics data, systems biology approaches
have developed many new methods and applications in gastric
cancer research. In this review, we will briefly summarize the
recent progress in “omics” technologies and their applications in
gastric cancer research. We will then highlight the use of omics
data integration to classify gastric cancer, and the application
of systems approaches and machine learning methods to
discover novel biomarkers and potential therapies. Furthermore,
how the gastric cancer research shift from human omics to
human-microbiota omics for current and future applications
will be discussed.

GENOMICS, TRANSCRIPTOMICS, AND
EPIGENOMICS IN GASTRIC CANCER

Next-generation sequencing technologies are mainly based on
the massively parallel sequencing of short DNA/RNA fragments,
which have been extensively reviewed elsewhere (Metzker, 2010).
The advances of NGS enable a variety of applications in both
DNA and RNA sequencing, including whole-genome, whole-
exome, and targeted sequencing of DNA, and total RNA, mRNA,
and small RNA. In addition, methylation and ChIP sequencing
with NGS are also commonly applied, which remove the biases
and limitations generated by previous microarray-based systems
(Hurd and Nelson, 2009).

Comprehensive characterization at the genomic,
transcriptomic, and epigenomic levels have been applied to
define the molecular subgroups of almost all types of cancers.
In early studies, the heterogeneity of gastric cancer had been
characterized by the expression of a large panel of genes (Cho
et al., 2011; Tan et al., 2011). Recently, the genomic landscapes
of gastric cancer have been extensively investigated and reviewed
elsewhere (Lin et al., 2015; Chia and Tan, 2016; Katona and
Rustgi, 2017; Wang et al., 2019). The use of whole genomic
data including TCGA (Bass et al., 2014) and ACRG (Cristescu
et al., 2015) cohort, have enabled the development of novel and
robust molecular classifiers that can guide clinical therapeutics
against gastric cancer (Figure 1). With unsupervised clustering
of molecular data including array-based somatic copy number

analysis, array-based DNA methylation profiling, whole-exome
sequencing, mRNA sequencing, miRNA sequencing, and
reverse-phase protein array (Bass et al., 2014), the gastric
cancer can be classified into four subtypes: (1) Epstein–Barr
virus (EBV) positive (9%), (2) microsatellite instability (MSI,
22%), (3) genomically stable (GS, 20%), and (4) chromosomal
instability (CIN, 50%). Further evaluation of the clinical and
histological characteristics of these molecular subtypes revealed
the enrichment of the diffuse histological subtype in the GS
subtype (Bass et al., 2014). While the ACRG study developed
a distinct 4-subtype classification system with gene expression
microarray, genome-wide copy number microarrays and
targeted gene re-sequencing (Cristescu et al., 2015). As observed
in TCGA cohort, gene mutation profiles (e.g., TP53) and
structural variations are frequently identified in gastric cancer
(Zang et al., 2012; Wang et al., 2014; Cristescu et al., 2015; Hu
et al., 2016), and these four subtypes show strong associations
with clinical phenotypes. Taken together, the accumulation of
multiple omics dataset increases the complexity of gastric cancer
classification, and the treatment of gastric cancer will be benefit
from the clinical-pathological-omics combined subtyping with
an individualized way.

Transcriptomics describes the expression levels of RNA
transcripts. Gene expression had been shown to dramatically
change according to the clinical information of patients, which
led to the identification of novel expression biomarkers in
patients’ group (Tan et al., 2011; Lei et al., 2013). The expression
signatures of gastric tumors derived from microarray or NGS
had been used to improve the early diagnosis and prognosis
prediction (Chia and Tan, 2016). Using 973- and 1024-gene
expression signatures, gastric tumors can be distinguished from
the normal gastric tissues with high precision in early gastric
cancer (Vecchi et al., 2007; Nam et al., 2012). As previous
described, gene expression had also been applied for stratification
of gastric cancer (Shah et al., 2011; Tan et al., 2011), which
reveal distinct transcriptomic subtypes. Moreover, recent advent
of single-cell DNA/RNA sequencing provides an opportunity
enabling the identification of cell types and state. For instance,
the recent study (Zhang et al., 2019) reconstructed single-cell
expression atlas underlying the gastric premalignant lesions and
early gastric cancer. With expression profiles at the single-
cell level, the expression signatures of multiple cell types were
identified across different lesions. Furthermore, the single-
cell atlas revealed a panel of six high-confidence markers
related to early gastric cancer, which could be used as specific
biomarkers for early diagnosis targets to recognize the onset
of gastric cancer (Zhang et al., 2019). Interestingly, the single-
cell RNA sequencing had also been applied to explore the
tumor microenvironment of gastric cancer recently (Sathe et al.,
2020), which showed distinct expression changes in tumor
samples compared with paired normal tissue. The stromal
cells, macrophages and cytotoxic T cells were significantly
enriched in tumor samples with expression of multiple immune
checkpoint and costimulatory molecules (Sathe et al., 2020).
Altogether, gene expression profiling at both the population
and the single-cell level elucidate the heterogeneity of gastric
cancer and the complex relationship between the immune
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FIGURE 1 | The systems biology approach for gastric cancer research. The different types of omics data including genomics, transcriptomics, proteomics,
epigenomics, and metabolomics are obtained using according omics technologies from gastric cancer cohort. Omics data (transcriptome, proteome, or
metabolome) is measured for two or more group that differ in clinical information. Generally, differentially expressed genes (DEGs) based methodology is applied.
DEGs are identified by comparative analysis of measured omics data. With integrative network-based approach, the biological networks, such as gene regulatory
network (GRN), protein-protein interaction network (PPIN), and genome-scale metabolic network (GEM) are used together with omics data in an integrative way.
Then, the up-regulated or down-regulated subnetworks are identified by integrating data into network models. Using network modeling tools, the key driver gene
linked to clinical information can be identified. Identified key driver genes can be further applied into clinical studies. In addition, the multi-omics data are used to
stratify patient into subtypes. Machine learning algorithms utilize omics features to predict potential treatment outcome. The machine learning methodology can be
applied to chemotherapy, immunotherapy or their combinations. Finally, the key driver gene information and the predictive models can be used to design the
personalized treatment strategy, and applied in clinics. The clinical survival outcome then can be evaluated after personalized medicine treatment.

microenvironment and gastric cancer, which may provide
valuable clues to develop rational diagnosis and personalized
therapeutic approaches.

Epigenomics describes the modifications of DNA or histones
that influence gene expression without altering DNA sequence
(Jones and Baylin, 2007). By analyzing the global CpG
methylation profiling of gastric cancer and normal tissues,
cancer-specific epigenetic alternations were observed in 44% of
CpGs in the form of both tumor hyper- and hypomethylation
(Toyota et al., 1999; Zouridis et al., 2012). Interestingly, the
regions of long-range tumor hypomethylation were strongly
associated with increased chromosomal instability (Zouridis
et al., 2012). Besides DNA methylation, other types of epigenetic
changes, such as histone methylation and acetylation, had been
found to be associated with the prognosis of gastric cancer
treatment (Calcagno et al., 2019; Li et al., 2019).

PROTEOMICS AND METABOLOMICS IN
GASTRIC CANCER

Proteomics complements the genomic and transcriptomics
approaches, providing additional information about the protein
expression and post-translational modifications. Most of
proteomics studies in this field so far focused on the discovery

of gastric cancer associated biomarkers from plasma samples
(Uen et al., 2013; Abramowicz et al., 2015; Gao et al., 2015;
Yoo et al., 2017). An early study (Uen et al., 2013) investigated
the glycoprotein profiles of serum samples from gastric
cancer patients and healthy subjects. Seventeen significant
differentially expressed Con A-bound glycoproteins were
identified. Validations using Con A-bound LRG1 glycoprotein
revealed an AUC value of 0.65. Another comparative proteomics
analysis (Yoo et al., 2017) with serum samples was performed
among early gastric cancer, advanced gastric cancer and normal
control groups, leading to the identification of hundred protein
biomarkers. Using clusterin isoform 1, the highest AUC values
to distinguish the advanced or early gastric cancer from normal
controls are 0.94 and 0.88, respectively (Yoo et al., 2017). In
addition, the comprehensive proteomics studies had also been
employed to classify gastric cancer subtypes as genomics data
(Ge et al., 2018; Wippel et al., 2018; Mun et al., 2019). The diffuse-
type gastric cancer can be further classified into three or four
distinct subtypes according to proteome profiling, respectively
(Ge et al., 2018; Mun et al., 2019). Moreover, integration of
phosphoproteome data with other types of omics data elucidated
the signaling pathways associated with somatic mutations
(Mun et al., 2019). Most of the metabolomics studies in this field
so far focused on the discovery of biomarkers associated with
gastric cancer from plasma samples (Abbassi-Ghadi et al., 2013;
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Jayavelu and Bar, 2014). Numerous metabolic changes in plasma,
urine, gastric juice, and carcinoma tissues had been identified by
using targeted or untargeted metabolomics analyses. It provides
efficient ways for diagnosis, prognosis, and drug evaluation of
gastric cancer, which serves as a potential strategy to develop
personalized gastric cancer therapeutics.

GASTROINTESTINAL MICROBIOME IN
GASTRIC CANCER

Human microbiome has been confirmed to play critical roles in
human health and disease (Knight et al., 2017). The intrinsically
heterogeneity of gastric cancer had been extensively explored
in decades based on the omics information from human host.
However, little is known about how the human microbiota
linked to gastric cancer at the function level. Thus, exploring
the gastric microbiota at DNA, RNA, and protein level using
meta-omics technologies will be helpful for us to understand the
potential roles of gastric microbes in cancer development and
stage (Figure 1).

Helicobacter pylori is one of the gastric pathogen that colonizes
in more than 50% persons in the world, and 1% of persons with
H. pylori infections develop into gastric cancer (Wroblewski et al.,
2010; Noto and Peek, 2017; Ferreira et al., 2018). While H. pylori
was not the dominant bacterial species in some gastric cancer
patients, implying other microbes might account for the gastric
cancer development (Noto and Peek, 2017). The gastrointestinal
microbiota directly interacted with gastric tissue, and affected
gastric cancer development (Brawner et al., 2014; Nardone and
Compare, 2015). Recent studies indicated that gastric microbiota
was strongly associated with gastric cancer (Dias-Jácome et al.,
2016). The gastric microbiota of cancer subjects have reduced
microbial diversity, decreased Helicobacter abundance and the
enrichment of other bacterial genera mainly from the intestinal
commensals (Ferreira et al., 2018). In addition, significant
changes of gut microbiota including microbial richness and
diversity were observed in H. pylori positive subjects compared
to H. pylori negative subjects (Guo et al., 2019). Altogether,
metagenomics analyses had provided insights into the scenario
of gastric microbiota and their interaction with human host.
Recently, the drug-microbiota interaction have been extensively
investigated (Maier et al., 2018; Vila et al., 2020). However,
the influence of gastric cancer treatment, especially the adjunct
chemotherapy, on gastric and gut microbiota is still unknown.
Therefore, exploring of the gastrointestinal microbiota and
gastric cancer associations may provide us novel views in gastric
cancer progress and development of microbiota targeted nutrient
supplementations or drugs.

DATA-DRIVEN INTEGRATION
APPROACHES IN GASTRIC CANCER
RESEARCH

Most of gastric studies concentrated on the differential analysis
between gastric cancer samples and normal controls using one

type of omics data. The comprehensive multi-omics studies of
gastric cancer (Bass et al., 2014; Cristescu et al., 2015; Mun et al.,
2019) had create a molecular landscape spanning the genome,
transcriptome, proteome, and even phosphoproteome. However,
there are strong interdependence among different types of omics
data. In order to comprehensively understand the gastric cancer
and develop efficient diagnosis and treatment approaches, it is
critical not only to analyze these omics data as separate layers, but
also to dissect how they interact with each another by integrating
them together (Figure 1).

Cellular processes are represented with networks, whose
structures involve in both the species that participate in the
biological processes and the interactions between these species
(Chiappino-Pepe et al., 2017). The network based multi-
omics data integration thus provides us the opportunity to
incorporate information across multiple biological layers and
describe the gastric cancer (Figure 1). For the transcriptome,
proteome, and metabolome data, network inference, pathway
enrichment analysis and network module identification are three
principal steps in network based integration (Borisov et al.,
2017; Chiappino-Pepe et al., 2017; Yan et al., 2017). Both the
top-down approaches using available experimental data and
the bottom-up approaches using reconstructed networks from
related organisms as a scaffold to assemble new biological
networks with published data are main strategies to infer
biological networks (Chiappino-Pepe et al., 2017).

Pathway and network analysis are the two common
procedures to explore the functional dynamics linked to
cancer. As shown in Figure 1, the differentially expressed
genes (DEG) are firstly identified using available computational
workflows, which are generally performed between gastric
cancer samples and normal controls. With the over-expression
or under-expression profiles of the DEGs, the related biological
pathways are associated with cancer status or stage by pathway
enrichment analysis approaches such as gene set enrichment
analysis (Subramanian et al., 2005; Buzdin et al., 2017). The DEG-
based pathway analysis approach had been successfully applied to
identify potential biomarkers distinguishing gastric cancer with
normal controls samples using the transcriptomics, proteomics
or metabolomics data (Anvar et al., 2018). Nevertheless, DEG-
based approach still has a number of limitations, restricting its
use in clinics. Firstly, the number of DEGs identified usually
exceeds the number that can be experimentally validated. Thus,
only parts of DEGs selected according to literature or knowledge
are experimentally tested in most of studies. Secondly, not all
of DEGs identified are the driver genes for gastric cancer. In
fact, it is not easy to discover key driver genes from DEGs, and
DEG-based approach cannot always guarantee the successful
discovery of key gastric cancer driver genes. Considering such
limitations, integrative network-based approach may be useful
to intercept omics data and discover cancer driver genes in the
context of biological network.

With the predefined biological networks [e.g., protein-
protein interaction network (PPIN), gene regulatory network,
gene interaction network, and metabolic network], the omics
data can be mapped into the biological networks to identify
potential functional subnetworks (Figure 1). The activity of
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subnetwork or modules can be inferred by searching the
alternations in predefined networks, providing related regulatory
or interaction information linked to clinical information.
Furthermore, network-based modeling approaches can be
applied to relate the activities of subnetwork components
with their influences and consequences on other network
components (Creixell et al., 2015). Integrative network analysis
utilizing gene expression data identified seven candidates
for gastric carcinogenesis with increased levels as disease
progression (Takeno et al., 2008; Mansouri et al., 2018).
Recent investigations of miRNA and mRNA expression with
the human PPIN also reveal a novel miRNA that may
function in decreasing gastric tumor proliferation and metastasis
through its regulated protein interaction network (Tseng et al.,
2011). In summary, transforming the gene-level information to
network-level information may provide network biomarkers for
understanding the cancer biology (Takeno et al., 2008; Tseng
et al., 2011; Mansouri et al., 2018).

MACHINE LEARNING IN GASTRIC
CANCER RESEARCH

The applications of machine learning methods, which learn
functional relationships from data, had been largely increased in
cancer research and drug discovery (Angermueller et al., 2016;
Borisov and Buzdin, 2019; Vamathevan et al., 2019; Cuocolo et al.,
2020). One important application of machine learning is medical
images, and image-based recognition with machine learning
had been increasingly applied to diagnosis in various medical
fields (Cuocolo et al., 2020). Esophagogastroduodenoscopy
(EGD) is the standard procedure for gastric cancer diagnosis.
However, the false-negative rate for EGD detection is about 4.6–
25.8% (Yalamarthi et al., 2004; Hirasawa et al., 2018). Using
convolutional neural networks (CNNs), the machine learning
diagnostic system had been trained with >10,000 endoscopic
images of gastric cancer (Hirasawa et al., 2018; Yoon and Kim,
2020). The resulting CNN correctly diagnosed 71 of 77 gastric
cancer lesions with a overall sensitivity of 92.2% (Hirasawa
et al., 2018). Moreover; endoscopic images were used to stratify
gastric cancer risk by CNNs, which can diagnose patients as low,
moderate, and high risk, respectively (Nakahira et al., 2020).

Not only cancer diagnostics, machine leaning also brings
personalized treatment to clinics (Borisov and Buzdin, 2019;
Cuocolo et al., 2020). Surgery is the primary treatment for gastric
cancer, while the high incidence of distant metastases and the
local recurrence of most gastric cancer patients, especially those
with advanced gastric cancer, have paved the way for adjuvant
therapy (Janunger et al., 2001; Sitarz et al., 2018). The adjuvant
treatment may include chemotherapy, targeted drug therapy or
immunotherapy, either alone or in combinations (Cunningham
et al., 2006). In addition, an emerging chemotherapy method
named as neoadjuvant chemotherapy refers to preoperative
chemotherapy is recommended for the treatment of patients
with resectable advanced-stage gastric cancer (Sitarz et al.,
2018). With increased number of omics data linked to gastric
cancer treatment, it provided us the opportunities to explore

the individual responses to chemotherapy or other types of
treatment, and to predict the possible outcome using machine
learning and mathematical modeling methods (Figure 1). With
the gene expression data from TCGA cohort and KUGH
cohort, gene expression signatures specific to each of the four
molecular subtypes was used to develop predictive models
for patients stratification, and the model was tested in other
large independent cohorts (Sohn et al., 2017; Oh et al., 2018).
Interestingly, these results showed that the subtypes could be as
predictors for survival and response to adjuvant chemotherapy
(Sohn et al., 2017). Moreover, a recent study characterized
key mutational features, copy number alternations and gene
expression changes associated with responses to neoadjuvant
chemotherapy with multi-omics data of tumor samples from
patients responding to neoadjuvant chemotherapy or not (Li
et al., 2020). Compared the responders with non-responders
tumors and pre- with post-treatment samples, the C10orf71
mutations were found to be associated with treatment resistance
by statistical models (Li et al., 2020). Taken together, such
machine learning based approach integrates multi-omics data,
providing efficient ways to predict the treatment outcome based
on the host genetic information.

Immunotherapy has revolutionized both the cancer research
and treatment landscape by targeting the host immune system
(Coutzac et al., 2019; Szeto and Finley, 2019). Antibodies
targeting to blocking immune checkpoints such as programmed
cell death-1 (PD-1), programmed death ligand-1 (PD-L1),
and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4)
have proven efficacies in diverse solid cancers. Several studies
had showed the strong correlations between intra-tumoral
immune cells and gastric cancer prognosis (Kang B. W.
et al., 2017), and the efficiency of checkpoint inhibitors
(e.g., nivolumab, pembrolizumab) and their combinations with
chemotherapy had been evaluated in clinical trials (Kang Y.-
K. et al., 2017; Boku et al., 2019). These results suggest
that immunotherapy may be a potential option for patients
with advanced gastric cancer. Machine learning has been used
to build predictors of drug response and immunotherapy
outcomes (Borisov and Buzdin, 2019; Leiserson et al., 2019).
However, there is a lack of mechanistic understanding of
the effects of gastric cancer immunotherapy in both human
host and gastrointestinal microbiota. With the availability of
immunotherapy or chemotherapy related multi-omics data, data-
driven integration approach and machine learning method will
integrate data with known gastric cancer subtyping knowledge
in the tumor-specific and patient-specific ways, which can help
in stratifying patients before the treatment. In addition, data-
driven machine learning or mathematical modeling method may
also be useful to learn knowledge and develop predictive models
to provide insight into the rational design of cancer therapy in
personalized way.

CONCLUSION AND PERSPECTIVES

The advances of omics technologies in decades are enabling the
parallel measurement of millions of biomolecules at the same
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time. Omics-wide association studies have been widely applied
in gastric cancer research, which revealed strong associations
between omics features and the gastric cancer development.
With the omics data from genome, transcriptome, proteome,
and epigenome levels, gastric cancer have been extensively
stratified, and the resulting subtypes show strong correlations
with the therapeutic outcomes. Both the TCGA and ACRG
classifications revealed four distinct gastric cancer subtypes,
and the comparison between these two classification systems
showed similarities such as tumors with MSI in both data sets,
and the TCGA GS, EBV+, and CIN subtypes were enriched
in ACRG dataset (Cristescu et al., 2015). However, strong
inconsistencies between these two subtype systems were also
observed, which covered most of the patient population. The
wide variation in study designs, heterogeneity in study cohorts,
together with the variations in data analysis strategy, especially
in data processing and analysis methods, make the findings of
gastric cancer subtyping difficult to applied in clinics (van den
Boorn et al., 2018). Therefore, applying robust statistical methods
and performing meta-analyses pooling estimates from multiple
multi-omics studies may provide a powerful way to investigate
gastric cancer across multiple cohorts.

With the proteomics and metabolomics data, numerous
gastric cancer-specific biomarkers had been identified, which
pave ways for the diagnosis of gastric cancer at the early
stages. Systems biology based integration of multi-omics data
have provided lot of insights into the cancer diagnosis and

therapeutics. However, the application of such methods in
gastric cancer still lags behind. Moreover, the application of big
data and machine learning approach in gastric cancer studies
are still limited. With increased omics data generating from
the gastric cancer research field, the application of systems
biology approach would provide a systematic scenario of gastric
cancer in the future.
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Glioblastoma (GBM) is highly invasive and the deadliest brain tumor in adults. It is
characterized by inter-tumor and intra-tumor heterogeneity, short patient survival, and
lack of effective treatment. Prognosis and therapy selection is driven by molecular
data from gene transcription, genetic alterations and DNA methylation. The four
GBM molecular subtypes are proneural, neural, classical, and mesenchymal. More
effective personalized therapy heavily depends on higher resolution molecular subtype
signatures, combined with gene therapy, immunotherapy and organoid technology.
In this review, we summarize the principal GBM molecular classifications that guide
diagnosis, prognosis, and therapeutic recommendations.

Keywords: glioblastoma, molecular heterogeneity, transcription-based subtype, genetic alteration-based
subtype, DNA methylation-based subtype, subtype-specific therapy

INTRODUCTION

The World Health Organization (WHO) defines adult diffuse gliomas into grade II and grade III
astrocytic tumors, grade II and III oligodendrogliomas, and grade IV glioblastomas (Louis et al.,
2016). Glioblastoma (GBM) is grade IV, the most invasive and deadly glioma (Brennan et al., 2009;
Szopa et al., 2017; Lee et al., 2018; Ghosh et al., 2018; Shergalis et al., 2018; Paolillo et al., 2018).
It invades adjacent areas of the brain but rarely spreads outside the brain (Phillips et al., 2006).
Clinical data show GBM has a poor prognosis, with less than 5% of patients surviving 5 years after
diagnosis (Verhaak et al., 2010). Based on clinicopathologic features, GBM is defined as primary or
secondary GBM (Ohgaki and Kleihues, 2013). Primary GBM starts as grade IV, with no evidence
of lower grades, and is more aggressive and more likely to affect elderly patients. Secondary GBM
develops from astrocytoma (Grade II or III glioma), grows slowly initially then gradually becomes
aggressive (Ohgaki and Kleihues, 2007). The mechanism of GBM tumorigenesis is still unclear,
many patients relapse due to ineffective treatment options. Notably, recurrent GBM is frequently
accompanied by molecular alterations compared with the initial diagnosis (Li et al., 2015; van den
Bent et al., 2015; Cioca et al., 2016; Neilsen et al., 2019; Schafer et al., 2019).

Histomorphology ambiguity and tumor heterogeneity pose challenges to GBM diagnosis,
prognosis and treatment. Histologic diagnosis often varies among clinicians and limits
diagnostic reproducibility. GBM histologically and genetically show significant inter-tumoral
and intra-tumoral heterogeneity, differing mutations, and indistinct phenotypic and epigenetic
states reflect genomic instability that leads to varying therapy choices and clinical outcomes
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(Homma et al., 2006; Marusyk and Polyak, 2010; Szerlip et al.,
2012; Brennan et al., 2013). Molecular classification of GBM is
a newer tool and a complement to the traditional pathology-
based description (Verhaak et al., 2010; Brennan et al., 2013;
Ceccarelli et al., 2016).

Molecular-based diagnosis, patient stratification, and
personalized treatment are increasingly important. The ISN
Haarlem recommends “hierarchical diagnosis with histological
classification, WHO classification, and molecular information for
comprehensive diagnosis” (Louis et al., 2014). In 2016, the WHO
updated guidelines combining morphology and genetic variation,
leading to a significant reorganization of the classification of
several brain tumor entities, especially in gliomas (Louis et al.,
2016). Two significant entities of 2016 WHO classification based
on IDH (Isocitrate dehydrogenase) gene mutant status are IDH
wild-type and IDH mutated GBM; patients whose full IDH
evaluation cannot be assessed are classified as GBM NOS (not
otherwise specified) (Louis et al., 2016).

Multi-omics studies from the landscape of GBM in the
Cancer Genome Atlas Research Network (TCGA), the Chinese
Glioma Genome Atlas (CGGA), and other databases, together
reveal the complicated genetic profile of GBM (Cancer Genome
Atlas Research Network, 2008; Brennan et al., 2013; Zhao
Z. et al., 2020). These aberrant molecules, including 1p and
19q co-deletions (oligodendroglioma-specific), IDH gene
mutations, PTEN (Phosphatase and tensin homolog) gene
mutations, TP53 mutations, TERT (Telomerase reverse
transcriptase) gene promoter mutations, ATRX (Alpha
thalassemia/mental retardation syndrome X-linked) gene
mutations, and EGFR (Epithelial growth factor receptor) gene
amplification, are forcing clinicians to reconsider traditional
GBM treatment (Mclendon et al., 2008; Brennan et al., 2013).
GBM classification based on aberrant molecules shortens the
time from diagnosis to treatment, and significantly improves
accuracy and targeting.

In this paper, we summarize the process of GBM classification
based on transcription levels, genetic alterations, and DNA
methylation. We also describe the molecular characteristics
of each category, and the relationship between different
classification methods. Finally, we provide the current guiding
strategy for diagnosis and treatment.

GBM HETEROGENEITY IDENTIFIED BY
TRANSCRIPTION, GENETIC
ALTERATION, AND DNA METHYLATION

Deciphering GBM heterogeneity and complexity is the key to
understanding it’s progression and creating effective therapies.
Some important and aberrant molecular events drive GBM
malignant transformation, highlighting the importance of
molecular classification. First, GBM has a wide variety of
chromosomal changes, including amplification in chromosome
4 (Chr.4, PDGFRA), Chr.7 (EGFR; MET, hepatocyte growth
factor receptor; CDK6, Cyclin-dependent kinase 6), Chr.12
(CDK4, Cyclin-dependent kinase 6; MDM2, Mouse double
minute 2 homolog), and deletion in Chr.10 (PTEN). Notably,

some GBM patients have simultaneous gain of Chr.19 and 20
(Brennan et al., 2013).

Second, the TCGA GBM project describes somatic genome
changes based on multidimensional and comprehensive features
that show significant mutations in GBM, including TP53
(34.4%), EGFR (32.6%), PTEN (32%), NF1 (Neurofibromin
1, 13.7%), PIK3CA (Phosphatidylinositol 4,5-bisphosphate
3-kinase catalytic subunit alpha isoform, 12%), PIK3R1
(Phosphatidylinositol 3-kinase regulatory subunit alpha, 11.7%),
RB1 (Retinoblastoma-associated protein 1, 9.3%), SPTA1
(Spectrin alpha chain, erythrocytic 1, 9%), ATRX (6%), IDH1
(5.2%), KEL (Kell blood group glycoprotein, 5%), PDGFRA
(Platelet-derived growth factor receptor A, 4.5%), and GABRA6
(Gamma-aminobutyric acid receptor subunit alpha-6, 4%)
(Cancer Genome Atlas Research Network, 2008; Parsons et al.,
2008; Verhaak et al., 2010; Brennan et al., 2013).

Lastly, DNA methylation is a key factor when measuring
heterogeneity and stratification of GBM patients. Epigenetic
modifications of GBM is related to biological characteristics
and are considered therapeutic targets (Hegi et al., 2005;
Etcheverry et al., 2010; Romani et al., 2018; Carella et al., 2020).
DNA methylation states in GBM are correlated with survival,
which has been extensively explored in recent years (Lofton-
Day and Lesche, 2003; Hegi et al., 2005; Etcheverry et al.,
2010; Christensen et al., 2011). GBM genome-wide methylation
data show biologically distinct subtypes (Brennan et al., 2013).
For example, DNA methylation of the MGMT (O6-Methyl
guanine DNA methyltransferase) gene promoter occurs in 48.5%
of GBM patients (174/359); MGMT is a known marker for
treatment strategy (Parsons et al., 2008). Additionally, GBM
patient data show other methylated genes, including GATA6
(GATA binding protein 6) (68.4%), CD81 (CD81 antigen)
(46.1%), DR4 (Death receptor 4) (41.3%) and CASP8 (Caspase-
8) (56.8%) (Skiriute et al., 2012). Interestingly, H. Noushmehr
et al. found CpG island hypermethylation in a distinct subgroup
of gliomas (G-CIMP), however only a small number of GBM
patients with a positive prognosis belong to G-CIMP phenotype
(Noushmehr et al., 2010).

MOLECULAR-BASED GBM
CLASSIFICATION IN DIAGNOSIS AND
PROGNOSIS PREDICTION

With the recent development of technology and classification
algorithms, GBM is divided into different subtypes based on
transcription profiles, genetic alterations, and DNA methylation.
This allows targeted therapy based on molecular characteristics
of subclasses. For example, clinicians can target the mesenchymal
subtype from transcription subtypes in GBM via inhibition of
diacylglycerol kinase alpha. In doing so, patients with MGMT
methylation had a more robust response to temozolomide
(Hegi et al., 2005; Taylor and Schiff, 2015; Olmez et al.,
2017). The TCGA GBM project used a multi-platform analysis
and comprehensively determined the genomic landscape to
better understand the pathogenic and drug-resistant mechanism
of GBM (Brennan et al., 2013). Here, we describe the
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classical classification, and analyze the differences among
various GBM subtypes.

Transcription-Based Subtypes
GBM classification based on gene expression profiles initially
used microarray technology, then large-scale high-throughput
next-generation sequencing technology. The molecular map
of GBM is shown in Figure 1A. The classification method
proposed by Verhaak et al. has been widely used, includes
four subtypes: Proneural, Neural, Classical and Mesenchymal
(Verhaak et al., 2010).

Initial Exploration on the Transcription-Based
Classification
In the 1990s, scientists acquired data from techniques like
PCR, allele analysis, and first-generation sequencing to
analyze gliomas. They found a variety of molecular markers
of different types and grades, but the landscape was not
clear (Sehgal, 1998). Indeed, tumor development is highly
complex, involving multiple genetic and epigenetic changes.
Through microarray investigations, genes associated with GBM
were identified and used as biomarkers in early diagnosis,
leading many researchers to begin exploration of molecular
diagnosis, classification, and treatment (Figure 1A; Schena
et al., 1995; Velculescu et al., 1995; Derisi et al., 1996;
Dudoit et al., 2002; Irizarry et al., 2003; Hu et al., 2006).

Rickman et al. found 360 distinct genes in GBM from pilocytic
astrocytomas, including MDM2, IGFBP2 (Insulin-like growth
factor-binding protein 2), CD44 (CD44 antigen), and CDK4
(Cyclin-dependent Kinase 4) (Rickman et al., 2001). Sallinen
et al. found more than 200 gene expression alterations in
GBM and demonstrated a strategy for high-throughput
molecular genetic profiling of brain tumors (Sallinen et al.,
2000). In addition, Nutt et al. found 14 GBMs and 7 anaplastic
oligodendroglioma, diagnosed by pathology, were predicted
using gene markers that accurately classified 18 samples (Nutt
et al., 2003). The classification prediction model objectively
and reliably classifies high-grade non-classical glial tumors
(Nutt et al., 2003). Compared with pathological classification,
this model reliably predicts the prognosis of atypical lesions
more accurately.

In a groundbreaking study, Phillips et al. classified three
GBM subtypes: Proneural, Proliferative and Mesenchymal
(Figure 1 and Table 1; Phillips et al., 2006). Proneural
subtypes are more common in young patients, less pathological
compared with proliferative or interstitial GBM and have
a better prognosis (Phillips et al., 2006). NCAM (Neural
cell adhesion molecule), GABBR1 (Gamma-aminobutyric acid
type B receptor subunit 1), and SNAP91 (Clathrin coat
assembly protein AP180) are associated with neurons and
are more similar to normal brain tissue and expression in
proneural subtype (Phillips et al., 2006). The Proliferative

FIGURE 1 | The process of molecular-based GBM classification: (A) GBM classification timeline and classical subtypes. (B) The relative overlap between subtypes
from different classification methods.
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subtype is similar to stem cells with significantly up-regulated
markers of proliferation, including TOP2A (DNA topoisomerase
II alpha) and PCNA (Proliferating cell nuclear antigen)
(Phillips et al., 2006). In contrast, the Mesenchymal subtype
displays overexpression of angiogenesis markers, including
the endothelial marker PECAM1 (Platelet endothelial cell
adhesion molecule) gene, VEGF (Vascular endothelial growth
factor) gene, VEGFR1 (Vascular endothelial growth factor
receptor 1) gene and VEGFR2 (Vascular endothelial growth
factor receptor 2) gene, which shows mesenchymal and
angiogenic characteristics (Phillips et al., 2006). Proliferative
and Mesenchymal subtypes are characterized by activation
of PI3K/AKT (Phosphoinositide 3-kinase/Protein kinase B)
signaling, loss on Chr.10 (location of PTEN), gain on Chr.7
(location of EGFR), and poor prognosis with invasive growth
and angiogenic pathways (Phillips et al., 2006). These three
subtypes are reminiscent of the various stages of developmental
neurogenesis, which provides the basis and perspective for the
molecular classification of GBM.

Deep Analysis of Transcription-Based Classification
The above studies demonstrated tumors often cluster in
groups that display heterogeneity, highlighting the weaknesses
of conventional diagnosis. With the advent of large-scale,
high-throughput, next-generation sequencing methods, and
with algorithms in machine learning, complex tumor data is
becoming more precise.

Verhaak et al. (2010) offered more in-depth research and
treatment possibilities for GBM (Figure 1A) based on the
four subtypes Proneural, Neural, Classical and Mesenchymal
(Table 1). The Proneural subtype is found primarily in younger
patients, characterized by high PDGFRA gene expression and
frequent IDH1 mutation. Compared with the other three
subtypes, the Proneural subtypes may have better survival

rates. However, Proneural subtypes showed no significant
difference from other subtypes in response to chemotherapy
and radiotherapy (Colman et al., 2010). The Neural subtype
has similar gene expression patterns compared with normal
brain tissue and tends to be more responsive to radiation
and chemotherapy. GBMs with neural markers like SYT1
(Synaptotagmin 1), SLC12A5 (Solute carrier family 12 members
5), GABRA1 (Gamma-aminobutyric acid type A receptor
alpha1) and NEFL (Neurofilament light polypeptide), are
classified as the Neural subtype. The Classical subtype shows
aberrant changes, including Chr.7 amplification, Chr.10 loss,
inactivation of the RB (Retinoblastoma-associated protein)
pathway, and focal 9p21.3 homozygous deletion. In addition,
Sonic hedgehog pathways (SMO, Smoothened homolog;
GAS1, Growth arrest-specific protein 1; GLI2, Growth arrest-
specific protein 2), Notch signaling pathways (NOTCH3,
Neurogenic locus notch homolog protein 3; JAG1, Jagged1;
LFNG, Lunatic fringe) and the neural precursor and stem cell
marker NES are highly expressed in the Classical subtype.
Importantly, patients with Classical subtype show a significant
reduction in mortality with aggressive radiotherapy and
chemotherapy. The Mesenchymal subtype is characterized
by extensive necrosis and inflammation, upregulation of
interstitial and angiogenesis genes, deletion of tumor suppressor
genes P53, PTEN, and NF1, and high expression of genes
in the tumor necrosis factor superfamily and the NF-κB
pathway. Although responsive to aggressive radiotherapy and
chemotherapy, the prognosis of Mesenchymal subtypes is the
worst among all subtypes (Colman et al., 2010). Recently,
Sharma et al. found that VEGF-A (Vascular endothelial
growth factor A), VEGF-B (Vascular endothelial growth
factor B), ANG1 (Angiopoietin 1) and ANG24 (Angiopoietin
24) genes are highly expressed in the Mesenchymal subtype
(Sharma et al., 2017).

TABLE 1 | The classification by Phillips, Verhaak and Wang.

Phillips et al.
(2006)

Proneural Proliferative Mesenchymal

Signature NCAM, GABBR1,
SNAP91

PCNA, TOP2A, EGFR VEGF,VEGFR1,
VEGFR2, PECAM1

Chromosome
Gain/loss

None Gain on Chr.7, loss on Chr.10 Gain on Chr.7, loss on
Chr.10

Biological
process

Neurogenesis Proliferation Angiogenesis

Verhaak et al.
(2010)

Proneural Neural Classical Mesenchymal

Signature PDGFRA, OLIG2,
DDL3,SOX2, NKX2-2

MBP/MAL, NEFL,
SLC12A5, SYT1,

GABRA1

EGFR, AKT2, SMO,
GAS1, GLI2, NOTCH3,

JAG1, LFNG

YKL40, MET, CD44,
MERTYK, TRADD,
RELB, TNFRSF1A

Mutated genes TP53, PI3K, IDH1,
PDGFRA

PTEN, CHKN2,
PDGFRA

NF-κB, NF1

Wang et al.
(2017)

Proneural Neural Classical Mesenchymal

Cell source Tumor cells Tumor cells Tumor cells Non-tumor cell
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In 2017, Wang et al. (2017) proved that GBM tumor
cells include Classical, Proneural, and Mesenschymal,
and Neural subtype is non-tumor cells in the tumor
microenvironment. They found the median survival of
Mesenchymal, Classical, or Proneural are 11.5, 14.7, and
17.0 months, respectively. Wang’s classification is based on
tumor cells rather than microenvironmental/non-malignant
tumor cells in tumor entities.

Using cancer genome data from the TCGA GBM project
and classification from Verhaak et al. (2010) and Park A. K.
et al., 2019 identified subtype-specific prognostic core genes
and further examined prognostic chromosome changes and
mutations (Figure 1A). Specific prognostic core genes in
Classical subtype exist in DNA repair, cell cycle, Janus kinase,
and transcription activation factor (JAK-STAT) pathway. And,
specific prognosis genes in Mesenchymal subtype are related
to mesenchymal cell movement, PI3K/AKT pathway, Mitogen-
activated protein kinase (MAPK) pathways, extracellular
signal-regulated kinase (ERK) pathways, and Wnt pathways
(Park A. K. et al., 2019). Notably, patients with Mesenchymal
subtypes with PIK3R1 or PCLO (Protein piccolo) mutations
show a poorer prognosis (Park A. K. et al., 2019). These results
demonstrate specific molecular targets and biomarkers for
each subtype of GBM.

Recent studies offer new insights into GBM classification
based on transcription. Teo et al. validated three robust GBM-
subtypes: Proneural/Neural, Classical, and Mesenchymal across
six different datasets (Figure 1A; Verhaak et al., 2010; Teo
et al., 2019). This was validated in subtype-specific patient-
derived orthotopic xenograft (PDOX) mice; the Classical
subtype showed no survival difference between radiotherapy
and temozolomide monotherapy. A Proneural/Neural specific-
PDOX model showed temozolomide significantly improved
survival compared to radiotherapy. This points to better
predictive clinical outcomes based on more precise patient
selection in clinical trials.

Park J. et al. (2019) identified three subtypes related to
prognosis prediction: Mitotic (favorable), Intermediate, and
Invasive (poor) by analyzing and verifying four large-scale gene
expression profiles (Figure 1A). These new GBM subtypes
have different multi-omics features and biological phenotypes.
Among GBM prognostic subtypes, the invasiveness in the
Invasive subtype is significantly higher than the Mitotic subtype.
Interestingly, the methylated MGMT gene promoter is correlated
with the Mitotic subtype, indicating Mitotic subtype patients
are more likely to respond to temozolomide (Park J. et al.,
2019). This study suggests that treatment strategies should be
based on prognostic subtypes. For example, patients in the
Mitotic subtype can be treated with temozolomide, while patients
in Invasive subtypes require therapeutic intervention for the
aggressiveness of the GBM. Although the prognostic subtype is
based only on transcription and survival time, genomic features
such as pathogenic somatic variations of IDH1 and ATRX and
DNA methylation are only present in Mitotic subtypes. Since
these three subtypes suggest a prognosis for GBM, inhibition of
target genes in different subtypes may improve patient survival.
Further, these genes may have clinical value as prognostic

biomarkers and new drug targets, while also leading to new
pathological and etiological factors for the oncogenesis and
development for GBM.

Genetic Alteration-Based Subtypes
In recent years, large-scale genomic studies have revealed many
mutations in tumor suppressor genes and oncogenes, and
significantly improved our understanding of GBM. Specifically,
mutated IDH, PTEN and EGFR are related to patient survival and
can be used as indicators of patient classification.

IDH-Wild Type and IDH-Mutation Type
The identification of the IDH mutation is an important
contribution to the molecular pathology of GBM. In 2008,
Parsons et al. (2008) found the IDH1 gene had a point mutation
in a small number of glioblastoma samples. Subsequently,
Yan et al. (2009) found that GBM patients with IDH1/IDH2
mutations had a higher survival rate than those without these
mutations (Table 2). Many studies have shown that patients
with IDH mutations are significantly different from those
without IDH mutations in molecular and clinical characteristics,
including prognosis (Ichimura et al., 2009; Nobusawa et al., 2009;
Watanabe et al., 2009; Yan et al., 2009; Lu et al., 2012; Songtao
et al., 2012; Stancheva et al., 2014; Mondesir et al., 2016). There
are three IDH enzymes: IDH1, IDH2, and IDH3 (Yan et al., 2009).
IDH1 is mainly cytoplasmic, while IDH2 and IDH3 are mostly
present in the mitochondrial matrix. IDH is the central enzyme
in the citric acid cycle and plays a vital role in oxidative stress
resistance (Marko and Weil, 2013). The most common IDH1
mutation observed in gliomas is the point mutation at position
132 (R132H), which is regarded as a typical IDH1 mutation
(Parsons et al., 2008).

In 2016, the WHO divided it into two: IDH mutation and IDH
wild type (Figure 1A; Louis et al., 2016). IDH wild type GBM
with poor survival is dominated by stellate cell differentiation,
characterized by nuclear atypia, cell polymorphism, typical
diffuse growth patterns, mitotic activity and microvascular
proliferation and/or necrosis. There are three variants of
IDH wild-type, including giant cell GBM, gliosarcoma and
epithelial-like GBM (Ep-GBM) (Louis et al., 2016). Genetically,

TABLE 2 | The characteristics of IDH WT subtype and IDH mutant subtype.

IDH WT IDH mutant References

Corresponds to Primary GBM Secondary GBM Louis et al., 2016

Proportion 90% ∼10% Louis et al., 2016

Age Usually > 60 Younger adults Louis et al., 2016

CpG methylator Less frequent More frequent Brennan et al., 2013

TERT promoter
mutation

∼95% 51% Yan et al., 2009

homologous
deletion of
CDKN2A/CDKN2B

∼45% Less Yan et al., 2009

EGFR alterations ∼41% 0% Yan et al., 2009

PTEN
mutation/deletion

∼25% 0% Yan et al., 2009

TP53 mutations ∼20% 81% Yan et al., 2009
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giant cell GBM lacks EGFR amplification and homozygous
CDKN2A deletion and contains PTEN mutation and TP53
mutation (Meyer-Puttlitz et al., 1997). Patients with the
giant cell GBM have outcomes similar to classical GBM. In
gliosarcoma, TP53 mutations are rare, and EGFR amplification
is also uncommon, and contains CDKN2A deletion (Lowder
et al., 2019). The clinical outcome of gliosarcoma differs from
classical GBM, but there are still conflicting and uncertain
results from various studies. Ep-GBM, as a new variant
of GBM, is more prevalent in children and young people,
manifesting as superficial brain or mesencephalic masses, and
often carries BRAF (Serine/threonine-protein kinase B-Raf)
V600E mutations (Chapman et al., 2011; Kleinschmidtdemasters
et al., 2013; Broniscer et al., 2014). Ep-GBM is based on
the absence of INI1 expression, distinguishing it from similar
epithelioid counterparts (Kleinschmidt-DeMasters et al., 2010).
Additionally, Ep-GBM often lacks EGFR amplification and
PTEN loss, but ODZ3 usually has hemizygous deletions
(Alexandrescu et al., 2016).

Multiple studies have confirmed that IDH mutations have
prognosis and predictive value (Yan et al., 2009; Beiko et al.,
2014; Stancheva et al., 2014). Compared to GBM patients with
wild-type IDH, IDH-mutant GBM patients had higher overall
survival and were more responsive to temozolomide (Songtao
et al., 2012). The inhibitor of IDH mutation, which has been
applied in preclinical models, shows activity to retard glioma cell
growth (Rohle et al., 2013).

Other Genetic Mutations
In IDH1 wild type GBM, the median survival rate of
patients with CDK4/MDM2 co-amplification is 6.6 months after
diagnosis, while the median survival rate of patients without an
CDK4/MDM2 co-amplification is 12.7 months (Abedalthagafi
et al., 2018). The TERT promoter mutation was recently
identified as a sign of poor prognosis. It is enriched in elderly
patients, with approximately 40% having grade II/III glioma,
suggesting TERT’s correlation with shorter overall survival as a
key pathological player and therapeutic target (Chamberlain and
Sanson, 2015; Mosrati et al., 2015; Spiegl-Kreinecker et al., 2015;
Yang et al., 2016; Yuan et al., 2016).

EGFR amplification is usually accompanied by EGFR
mutation, the most frequent being EGFRvIII (Gan et al., 2009).
Under normal physiological conditions, EGFR plays a central
role in cell proliferation, differentiation and development. EGFR
is located on the short arm of Chr.7 (7p12) and encodes a
cell surface receptor tyrosine kinase (Hatanpaa et al., 2010).
EGFRvIII is characterized by the absence of 267 amino acids in
the extracellular domain, resulting in the inability of the receptor
to bind to the ligand but with substitutive activity (Hatanpaa
et al., 2010). EGFRvIII enhances the tumorigenic potential of
GBM by activating and maintaining mitotic and anti-apoptotic
signaling pathways, along with their impaired internalization and
degradation (Gan et al., 2009). Some studies have found that
EGFRvIII overexpression and EGFR amplification are associated
with poor prognosis in young patients, and other data show
EGFR overexpression is associated with poor prognosis in elderly
patients (Shinojima et al., 2003; Srividya et al., 2010). But

recently, Felsberg et al. found EGFRvIII and EGFR SNVs are not
prognostic; Chen et al. showed that there is insufficient evidence
for the presence of either EGFR amplification or EGFRvIII
mutation has prognostic value in patients with GBM using meta-
analysis (Chen et al., 2015; Felsberg et al., 2017). These results
may be biased by the inherent variability in subtypes, therefore,
the exploration of the relationship between EGFR and prognosis
needs to be carried out in different subtypes. Notably, compared
with patients with both TERT and EGFR gene mutations, the
overall survival of TERT/EGFR wild-type patients (EGFR not
amplified) is almost twice that of the former (Chamberlain and
Sanson, 2015; Yang et al., 2016).

The PTEN protein catalyzes the dephosphorylation
of 3’ phosphorylation of the inositol ring in PIP3
(phosphatidylinositol-3,4,5-trisphosphate) to produce PIP2
(phosphatidylinositol-4,5-bisphosphate). The dephosphorylation
is critical because it inhibits the AKT signaling pathway. The
PI3K/AKT pathway is normally dormant in differentiated and
quiescent cells, but when activated, the cell cycle modulation
leads to cancer. The deficiency of PTEN mainly plays the role
of lipid phosphatase through the PI3K/AKT pathway (Endersby
and Baker, 2008). Therefore, the loss of PTEN is associated with
a more aggressive phenotype.

In addition to the genes above, other genetic mutations also
drive GBM development. However, the mutation or deletion of
a single gene may not serve to classify GBM independently. The
combination of aberrant events related to survival may be a more
effective classifier. Data suggest combination of two or three
genes provide a robust classifier to diagnostic analysis for clinical
applications (Kim et al., 2002). Classification driven by genetic
mutation (single or consistent) is the basis for exploring GBM
classification, and critical genetic targets can be used as the key
for diagnosis, prognosis and treatment.

DNA Methylation-Based Subtypes
Epigenetic changes are common markers of human cancers,
including GBM (Kim and Kim, 2008; Romani et al., 2018). DNA
methylation is a core element of epigenetic alteration, an essential
signaling tool for regulating genomic functions, and a key feature
mediating tumorigenesis (Koch et al., 2018; Muhammad et al.,
2018; Yamashita et al., 2018). DNA methylation can provide
biomarkers for the early diagnosis and prognosis of cancer and
provide a new method for further clinical applications (Lofton-
Day and Lesche, 2003; Gustafsson et al., 2018; Kim et al.,
2018; Li et al., 2018, 2019; Pérez et al., 2018. We know the
methylation status of single genes corresponds to expression
levels in GBM (Bell et al., 2018; Johannessen et al., 2018). MGMT
promoter methylation is a prognostic factor for glioblastoma
patients and has a significant correlation with worse survival
rates (16.9 months vs. 12.7 months) (Brennan et al., 2013).
Due to the diversity of GBM, a broader genome and expression
profile is needed to gain insight into the potential response of
treatment methods.

Brennan et al. used large-scale methylated sequencing data to
classify GBM, divided into six categories based on the expression
level of DNA methylation, including Cluster M1 to Cluster
M6, in which Cluster M5 was G-CIMP subtype (Figure 1A;

Frontiers in Molecular Biosciences | www.frontiersin.org 6 September 2020 | Volume 7 | Article 56279884

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-562798 September 6, 2020 Time: 20:41 # 7

Zhang et al. Molecular Classification of Glioblastoma

Brennan et al., 2013). Cluster M6 is relatively hypomethylated
and has the majority of IDH1 wild type patients than the
G-CIMP subtype. Cases of missense mutations or deletions
in MLL (Histone-lysine N-methyltransferase 2A) genes or
HDAC (Histone deacetylase) family genes were concentrated
in Cluster M2 (Brennan et al., 2013). These results indicate
that the classification based on DNA methylation makes GBM
classification clearer.

Recently, Ma et al. (2019) identified specific prognostic
subtypes based on DNA methylation status and identified 3
GBM methylation clusters (Cluster 1, Cluster 2, and Cluster 3),
which have significantly different survival curves (Figure 1A).
Among all clusters, Cluster 2 has the best prognosis. The
methylation levels in each cluster are related to specific molecular
characteristics. Compared with Cluster1 and Cluster2, Cluster
3 showed more TP53 mutations and deletion of wildtype
IDH1 and 1p/19q. The genes corresponding to the promoter
region of the CpG site annotation are related to the survival
and biological processes in GBM. By focusing on the level of
DNA methylations in patients with GBM, researchers eventually
developed a new prediction panel for 10 CpGs. They are
superior to other molecular indicators because these 10 CpG
signals reflect the relationship between GBM intrinsic tumor
subtypes (Kloosterhof et al., 2013; Paul et al., 2017; Yin et al.,
2018). The study also found the enriched CpG sites in genes
involved in neuronal differentiation and brain development,
including KIFC3 (Kinesin-like protein), OC90 (Otoconin-90),
CRB2 (DNA repair protein crb2), IGSF22 (Immunoglobulin
superfamily member 22) and NR0B2 (Nuclear receptor subfamily
0 group B member 2) (Wu et al., 2010; Yu et al., 2013).

DNA methylation provides a framework for understanding
GBM and guiding a therapeutic strategy. It has offered more
molecular biomarkers for each subtype and suggested more
targets for treatment. Methylation is a powerful complement
to classification based on genetic alterations and transcription,
making GBM classification more comprehensive.

The Relationship Among Transcription,
Genetic Alterations and DNA Methylation
Classifications
Early attempts to identify specific tumor subtypes generally
focused only on gene expression patterns. But biological
processes are not so simply regulated. Omics data have helped
identify clusters of tumors with similar characteristics, including
genotypic and epigenetic regulation. Many studies have found
that molecular subtypes classified at different levels are related
and overlapped, as exampled from the four transcription-based
subtypes from Verhaak et al. (2010), six DNA methylation-
based subtypes from Brennan et al. (2013) and IDH mutation-
based subtypes (Figure 1B). Combined analysis with four
transcriptome-based subtypes of TCGA, Cluster M1 and M2
are enriched in the Mesenchymal subtypes, Cluster M3 and
M4 in the Classical subtype, Cluster G-CIMP in the Proneural
subtype, and Cluster M6 is relatively hypomethylated, which
belongs to the Proneural subtype (Verhaak et al., 2010). Notably,
Cluster G-CIMP increases the likelihood of DNA methylation

of MGMT (79% of patients with DNA methylation of MGMT
in Cluster G-CIMP and 46% in non-G-CIMP). Interestingly,
MGMT DNA methylation is a predicted biomarker of classical
subtypes, but not other subtypes. In addition, C-CIMP is a unique
and almost invariable feature of IDH1/2 mutant GBMs, and
studies have shown that patients with this GBM subtype have a
better prognosis (Noushmehr et al., 2010; Baysan et al., 2012).
According to the characteristic of DNA methylation pattern
causally related to IDH1/2 mutation status and better prognosis,
the Proneural subtype is further subdivided into G-CIMP positive
and negative groups (Noushmehr et al., 2010).

MOLECULAR SUBTYPE MIGRATION IN
RECURRENT GBM

Recently, some studies have shown that subtype migration and
molecular changes occur in recurrent GBM, highlighting the
need for further research (Wang et al., 2016). The recurrence of
GBM is inevitable, although current standards of care for GBM
patients include chemotherapy after surgical resection (Stupp
et al., 2005). However, when GBM occurs, the tumor always
recurs, and treatment options are limited. There is no standard
care for patients with relapsed GBM because pathological and
molecular features are lacking (Weller et al., 2012; Lukas and
Mrugala, 2016). The progression-free survival of recurrent GBM
is 2–4 months, and the survival of conventional chemotherapy
after progression is 6–8 months (Gorlia et al., 2012).

Transcription-based molecular subtypes are also associated
with tumor recurrence. For example, Wang et al. found that two-
thirds of patients with primary GBM switched transcriptional
subtype after recurrence. Importantly, the Mesenchymal subtype
was the most stable primary GBM subtype (Wang et al., 2016).
Therefore, further analysis of the molecular changes of recurrent
GBM poses significant value in guiding treatment. van den
Bent et al. showed that half of recurrent GBM patients lost
EGFRvIII compared with the molecular expression of GBM at
initial diagnosis (Table 3; van den Bent et al., 2015). Cioca et al.
found recurrent GBM had lower EGFR expression than primary
GBM in 10 cases, and only one case had increased expression

TABLE 3 | The molecular changes in recurrent GBM.

Event Primary vs. Recurrent References

EGFRvIII About half of recurrent GBM
patients lose EGFRvIII (7/15)

van den Bent
et al., 2015

EGFR Lower EGFR expression at
recurrent GBM

Cioca et al.,
2016

Initial Recurrent

CDKN2A deletions 86% 53% Neilsen et al.,
2019

CDKN2B deletions 86% 54%

EGFR mutation 52% 10%

EGFR amplification 81% 45%

TERT mutation 95% 51%
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on recurrence (Table 3; Cioca et al., 2016). The discrepancies of
EGFR expression between primary GBM and recurrence suggest
heterogeneity of GBMs is actively fluid. Neilsen et al. analyzed 10
pairs of matched primary and recurrent GBM through genomic
changes, and the results indicate all matched tumor pairs showed
differences. This study showed that EGFR mutation increased
significantly in 3 cases, and the other three genes were generally
changed in primary GBM and recurrent GBM, namely CDKN2A
and CDKN2B deletion, and TERT mutation. Mutations that
cause activation of the PI3K pathway are also common (Table 3;
Neilsen et al., 2019). Kim et al. (2015) found that recurrent GBM
had a hypermutant phenotype that initially occurred in the IDH1
mutant, suggesting IDH1 is associated with a hypermethylated
phenotype, resulting in MGMT inhibition, making tumors more
susceptible to mutagenesis by temozolomide.

Studies focused on recurrent GBM have shown molecular
composition and molecular subtypes of tumors evolve in
response to radiotherapy and targeted therapy, therefore
molecular signatures guiding treatment protocols may improve
patient survival (Campos et al., 2016). However, it is still
challenging to develop new molecular therapies for recurrent
GBM patients and personalized treatment.

MOLECULAR SUBTYPES AND
SIGNATURES GUIDING CLINICAL
TREATMENT

Subtype-Specific Molecular Guidance
for the Selection of Targeted Drugs
Treatment corresponding to tumor subtypes is an effective
strategy to avoid the obstacles caused by molecular heterogeneity
(Collisson et al., 2011; Linnekamp et al., 2015; Zhao S.
et al., 2020). Chen et al. analyzed the relationship between
four subtypes distinguished by Verhaak (Figure 1A; Verhaak
et al., 2010; Chen and Xu, 2016). The gene signatures in the
Mesenchymal subtype is highly enriched in pathways associated
with immune response, such as Hepatic Fibrosis/Hepatic Stellate
Cell Activation, Coagulation System and IL-10 Signaling.
The gene signatures in Proneural subtype are significantly
enriched in pathways associated with cellular processes, such as
Wnt/β-catenin Signaling and Cyclins and Cell Cycle Regulation.
Signatures in the Neural subtype are significantly enriched
in pathways associated with nervous system pathways and
environmental information processing, such as nNOS Signaling
in Skeletal Muscle Cells and cAMP-mediated signaling. Finally,
the gene signatures in the Classical subtype are significantly
enriched in pathways associated with the metabolism pathways,
the nervous system and immune system, such as Fatty
Acid Activation, CREB Signaling in Neurons, and PI3K
Signaling in B Lymphocytes. They found the response to
temozolomide in Classical and Mesenchymal subtypes was
higher than that of neurotypes, and the Proneural subtype
was lower than these three subtypes. They also developed a
computational drug repurposing approach to predict GBM drugs
based on the molecular subtypes. Protein kinase inhibitors,

antipsychotics, and antidepressants have been identified as
the most common drugs for all four subtypes. But in
different subtypes, the ranking of drugs is different. In the
Proneural subtype, antidepressants and antipsychotics were
more effective. Anti-globulin inhibitors of the Mesenchymal
subtype are involved in many immune system pathways and
phenotypes. These results indicate that different molecular
subtypes respond differently to drugs, and GBM subtype-specific
therapies should be used.

Further evidence of molecularly guided treatment comes
from Sandmann et al. that showed a 4.3 month increase in
median survival with the addition of bevacizumab for IDH1
wild-type GBM in the proneural subgroup (Sandmann et al.,
2015). The IDH1 R132H vaccine has been developed and
shown promising results in animal models of IDH mutant
glioblastomas (Schumacher et al., 2014; Dimitrov et al., 2015).
These results demonstrate the necessity of diagnosing and
developing personalized treatment plans according to IDH status.

Temozolomide is an oral alkylation agent. The main
mechanism of temozolomide arrests the cell cycle at G2/M
checkpoint, which leads to apoptosis of cancer cells (Alonso
et al., 2007). The study showed the median survival was
12 months for patients receiving both temozolomide and
radiation therapy and only 8 months for patients receiving
radiation therapy alone (Alonso et al., 2007). However, in
GBM, due to individual differences, the lack of MGMT
methylation in some patients leads to the formation of
temozolomide resistance. Herrlinger et al. found that for
patients newly diagnosed, without MGMT methylation and
with irinotecan/bevacizumab/radiation combination therapy had
significantly prolonged mPFS (median progression – free
survival) of 9.7 months. Temozolomide/radiation had significant
mPFS of 5.9 months, an encouraging result that supports
further investigation with this combination (Herrlinger et al.,
2014). Therefore, before temozolomide treatment, it is advised
to determine the methylation status of MGMT for most
effective strategy.

Due to the heterogeneity of GBM, individualized treatment
based on specific tumor subtype is clearly a more effective
clinical strategy. Gene mutations in TP53, IDH-1 and PDGFR-
A in Proneural subtype; mutations or amplification of EGFR
gene in Classical subtype; NF-1 gene mutations in Mesenchymal
subtype; and the expression of neural markers in Neural subtype
are promising therapeutic targets. Several studies have shown
that targeting these molecules improves treatment. For example,
Sang et al. found the efficacy of SHP099, a potent, selective, and
oral SHP-2 inhibitor for treating GBM with activated PDGFR-
A signaling; and Liu et al. proved that the third-generation
EGFR inhibitor osimertinib overcomes primary resistance by
continuously blocking ERK signaling in GBM (Liu et al., 2019;
Sang et al., 2019).

Due to subtype migration and molecular changes after
recurrence, molecular evaluation of patients must be performed
prior to chemotherapy. Patients undergoing surgical resection
must undergo immunohistochemical studies to determine
various predictors, such as MGMT methylation, to assist in
treatment planning.
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Individualized Treatment
Gene Therapy
Gene therapy aims to introduce genetic material into cells to
compensate for abnormal genes or to make beneficial proteins. If
a mutated gene causes a necessary protein loss, gene therapy can
introduce a normal gene to supplement the protein’s function.
Gene therapy is the delivery of a gene through a vector to a cell.
Viruses are often used as vectors because they can deliver new
genes by infecting cells. These viruses are modified so that when
they are used in humans, they do not cause disease. Adenovirus
(AAV) vectors have been used to inject directly into GBM cells
in the brain to express tumor-killing genes. Crommentujin et al.
demonstrated the AAV9 vector, which produces the anticancer
agent sTRAIL, killed up to 60% of GBM cells in mouse models
and transfected cell lines (Gray et al., 2011; Crommentuijn et al.,
2016). AAV9 virus vector is an excellent choice because its
serotype can cross the blood-brain barrier during intravenous
administration (Gray et al., 2011). CRISPR gene editing also
belongs to gene therapy. By combining Cas9 nuclease with
synthetic guide RNA and introducing it into the cell, the cell
genome can be accurately trimmed, allowing existing genes to
be removed or new ones added (Hendel et al., 2015). Using
gene therapy technology to repair and compensate the tumor
suppressor gene mutation in each subtype of GBM patients, such
as PTEN mutation in the Classical subtype, may improve the
survival time of patients.

Immunotherapy
Immunotherapy offers the promise of a sustained antitumor
immunity that is pathway independent and has the potential to
amplify antigens to boost immune responses. Peptide vaccines,
such as EGFRvIII found in Classical GBM subtypes, can trigger
immunity to GBM tumor cells expressing EGFRvIII. In a phase
II trial involving 18 patients, EGFRvIII patients showed an
overall survival of 26 months, compared with only 15 months
for the control group (Heimberger, 2005). The vaccine has a
promising future in immunotherapy for GBM. Tumor-specific
antigen vaccines require confirmation that the tumor expresses
the targeted antigen. Thus, immunotherapy limits the scope of
these vaccines and the population in which they can be used, so
specific vaccines can be designed according to the expression of
molecules in different subtypes.

Organoid Model
Glioblastoma organs can be an effective model for rapid testing of
personalized treatment strategies. The models allow researchers
to reconstruct key features of a patient’s diseased brain to help
paint a clearer picture of the cancer and then allow researchers
to explore the best ways to treat it. Researchers have successfully
transplanted eight glioblastoma organoids (GMOs) samples into
brains of adult mice, administering standard care and targeted
therapy to GBOs, including clinical trial drugs and chimeric
antigen receptor T (CAR-T) cell immunotherapy (Jacob et al.,
2020). For each treatment, the researchers showed that organ-
like responses were different, and the effect was linked to genetic
mutations in the patient’s tumor. The model opens the possibility
of future clinical trials that can personalize treatment based

on how a patient’s tumor responds to different drugs. Notably,
the researchers have observed the benefits of treating organ-
like organs with CAR-T therapy in clinical trials for EGFRvIII
mutations, a driver of the disease. In 6 cases of GBOs, the
EGFRvIII mutation was shown to have a specific effect on patient
GBOs, with increased CART cells and decreased EGFRvIII
expression cells (Jacob et al., 2020). These results highlight
the potential of using personalized approaches to detect and
treat glioblastoma.

CONCLUSION

The unique and highly reproducible molecular changes
discovered in recent years have begun to elucidate the diversity
of GBM and contribute to the more effective classification of
tumors. These studies provide insights into how to improve
current treatment strategies. GBM genomics, transcription, and
epigenetic features reveal critical molecular changes that may
lead to pathologic disease progression. Large-scale analysis,
like the TCGA project, confirm that GBM is a heterogenetic
tumor at the molecular level that can be subdivided into
different subtypes according to the molecular pathogenesis
and biological entities of “driving factor” lesions. Although
these comprehensive studies provide useful insights into the
characteristics and classification of tumors, their limitations need
to be considered when drawing conclusions. Some prognostic
markers have appeared in these studies, and there is still a great
need to identify true predictive markers to improve the treatment
process of personalized care. In addition, the intra-tumoral
heterogeneity of GBM needs to be further classified by single-cell
sequencing technology to obtain a more complete and more
precise inter-tumoral and intra-tumoral classification. We
still need large-scale animal experiments and human clinical
verification to improve treatment response and survival time
among the different subtypes.

Through these molecular-level studies, we can further
improve the molecular detection methods, guide the targeted
therapy based on molecular classification, and form a set of
accurate GBM molecular therapy manuals that can improve
patient outcome.
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Malignant Tumors are developed over several years due to unknown biological factors.
These biological factors induce changes in the body and consequently, they lead
to Malignant Tumors. Some habits and behaviors initiate these biological factors. In
effect, the immune system cannot recognize a Malignant Tumor as foreign tissue. In
order to discover a fascinating pattern of these habits, behaviors, and diseases and
to make effective decisions, different machine learning techniques should be used.
This research attempts to find the association between normal proteins (environmental
factors) and diseases that are difficult to diagnose and propose justifications for those
diseases. This paper proposes a technique for medical data mining using association
rules. The proposed technique overcomes some of the limitations in current association
algorithms such as the Apriori algorithm and the Equivalence CLAss Transformation
(ECLAT) algorithm. A modification to the Apriori algorithm has been proposed to mine
Erythrocytes Dynamic Antigens Store (EDAS) data in a more efficient and tractable way.
The experiments inferred that there is a relation between normal proteins as environment
proteins, food proteins, commensal proteins, tissue proteins, and disease proteins. Also,
the experiments show that habits and behaviors are associated with certain diseases.
The presented tool can be used in clinical laboratories to discover the biological causes
of malignant diseases.

Keywords: malignant tumors, data mining, association rule, apriori algorithm, eclat algorithm

INTRODUCTION

Lifestyle habits and behaviors affect human general health, like cigarette smoking, excessive alcohol
consumption, excessive sunlight exposure, poor diet, lack of exercise, medical drugs, change of
hormones, radiation, viruses, bacteria, and environmental chemicals. Chemical factors might be
in the air, water, food, and/or workplace. The genetic makeup is essential so that these mentioned
factors can lead to malignant transformation (Fymat, 2017; Iqbal, 2017; Ellberg et al., 2018; Ukawa
et al., 2018).

Because of the complicated interplay of many habits and behaviors, it is difficult to predict which
combination of these habits and behaviors is accountable for certain cancer. The cause of cancer is
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still unknown and the human body’s readiness to be diseased
is unpredictable. One of the important areas of research
today is attempting to identify the association between the
habits and behavior of an individual and diseases, specifically,
Malignant Tumor.

Rafea and Souchelnytskyi (2012) observed and described
phenomena related to the protein content of the Red Blood
Cell (RBC). It was noticed that plasma contains antibodies
against some of the RBC proteins, which are contained within
the cytoplasm of RBC of the same person. The discovery is
that RBC has a dynamic store of body antigens [Tissue-Specific
Antigens (TSA)], food antigens, environment antigens, bacterial
commensals antigens, and disease antigens whether microbial,
viral, or tumors. This store is named: Erythrocytes Dynamic
Antigens Store (EDAS).

To maximize the utility of the EDAS, computer knowledge
processing capability was adopted to increase the profit of
this discovery. To this endeavor, a random generation of
the EDAS model was described in Rafea et al. (2019). This
random generation was based on a mathematical model that
simulates reality. The random generation of EDAS consists
of a set of normal proteins and a set of disease proteins.
The normal proteins are environment proteins, food proteins,
commensal proteins, and tissue proteins. The diseases proteins
are malignant tumor proteins or pathogens proteins. They
developed a biomarker discovery technique to detect a minimum
set of biomarkers for each disease. They applied their technique
on two categories of diseases; Malignancies (Mi) and Pathogens
(Gi). Thus, malignancies have 20 types (M1, M2, . . ., M20)
and pathogens have 20 types (G1, G2, . . ., G20). In this work,
we will use the EDAS data to find which normal proteins
(Tissue-Specific Antigens, food antigens, environment antigens,
and bacterial commensals antigens) are related to a particular
Malignant Tumor. The main challenge of our research is to find
the interesting correlations and associations between the set of
normal proteins to the set of malignant tumor proteins.

To forecast the association of those biological data, we should
use an association rule mining algorithm. The Apriori algorithm
was described by Agrawal et al. (1993), is widely used to study the
relations and associations between items in an ecosystem. The
Apriori algorithm is simple, and it is easy to program (Ghosh
and Dutta, 2016; Patil and Deshmukh, 2016). It applies the
Apriori property; a candidate itemset is unnecessary if at least
one of its subsets is infrequent (Ingle and Suryavanshi, 2015).
Hence, it reduces the number of candidate itemsets. However, the
Apriori algorithm requires multiple scans over the database for
generating the itemsets (Ingle and Suryavanshi, 2015; Patil and
Deshmukh, 2016). Since the number of database passes is equal
to the max length of the frequent itemset, it takes time to scan
the database (Han et al., 2000; Mandave et al., 2013; Kaur and
Madan, 2015; Rajeswari, 2015). However, the Apriori algorithm
has low performance in big datasets (Ghosh and Dutta, 2016).
In this study, the primary dataset as typical medical data with a
considerable number of cases and a large number of features.

Another algorithm is Equivalence CLAss Transformation
(ECLAT) was described by Zaki (2000). ECLAT is also used to
study the associations between items in a more efficient manner.

It only scans the database once. The ECLAT algorithm uses a
depth-first search strategy (Shah and Patel, 2015; Shukla and
Solanki, 2015; Giri et al., 2016). Thus, it is fast but the accuracy
is not preserved, as it violates the Apriori property (Shah and
Patel, 2015; Ishita and Rathod, 2016). Because the generation
of candidate itemset is operated in an equivalence class, the
candidate itemsets are not clipped under the prior knowledge.
These candidate itemsets still need to be calculated. Although
adopting the technology of equivalence classes, ECLAT needs to
judge whether two k-itemsets can be joined to generate a (k + 1)-
itemsets, a great time is needed if the itemset is very long (Kavitha
and Selvi, 2016). A large number of conditional branches are
used to merge which are highly predictable. There is a waste of
time to calculate the support of infrequent itemsets. It fails to
manage the main memory at the time of high candidate itemsets
(Giri et al., 2016).

Accordingly, there is a need to propose a technique that
preserves the Apriori property to ignore a candidate itemset if at
least one of its subsets has support less than the threshold and
works efficiently to infer association relations. Many researchers
have done modifications to improve the efficiency of the Apriori
algorithm and to overcome some of the limitations of the Apriori
algorithm. They used some methods to improveApriori efficiency
as Intersection (Aqra et al., 2018), Hash-based itemset counting
(Park et al., 1995; Vyas and Sherasiya, 2016), Partitioning (Jia
et al., 2012), Sampling (Toivonen, 1996; Rajeswari, 2015), etc. The
Intersection is a method used to improve memory management,
efficiently, by reducing the computation cost of Apriori and
removing its complexity. The Intersection method is designed
for vertical data format, by removing the limitations of the
horizontal data format used in Apriori. Moreover, the support
is calculated by counting the common transactions that contain
each element of the candidate set. This takes less time than the
original algorithm; however, data must be in a vertical layout
(Agrawal et al., 2013; Raval et al., 2013; Aqra et al., 2018).

In this research, we shall enhance the Apriori algorithm
performance by adopting an intersection mechanism while
preserving the Apriori property to achieve accuracy. Accordingly,
the performance is enhanced by two ways; executing one scan
to the database and applying the Apriori property that helps
to reduce the number of candidate itemsets. Therefore, in
this research, the proposed algorithm is given to discover the
association of proteins to environmental factors, with higher
performance and accuracy.

This paper is structured as follows: Section 2 states the related
work. Section 3 states the background of using the Apriori
algorithm in medical problems. Section 4 includes the proposed
model. Section 5 describes the experiment and results. Section 6
describes the evaluation. Section 7 describes the discussion. And
Section 8 describes the conclusion.

RELATED WORK

Some researchers attempt to improve the Apriori algorithm based
on Intersection as in Ganesh et al. (2016), the authors proposed
a Vertical Format Frequent Mining (VFFM) algorithm. This
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algorithm was used to find frequent items from the database. The
transaction database is transformed into a vertical data format.
They scan the database only one time. They converted the data
into 0 and 1 and calculated the support for them. They used the
depth strategy for mining. Thus, they could not apply the Apriori
property. Also, there is no need for converting the data into 0
and 1 because the researcher did not benefit from it. There is no
application for their method.

Aqra et al. (2018) presented an Intermediate Transaction ID
Apriori (ITD Apriori) algorithm where a new itemset format
structure is adopted to address the problem of threshold that
necessitates rescanning the entire database. This approach creates
an intermediate itemset. The intermediate itemset has a new
structure called Intermediate Transaction Id itemset ITDM list;
this structure increases the efficiency of mining. This can be done
by scanning the database and by representing data to a vertical
data format. After this process, support can be collected by the
intersection TID list. Thus, it improves the overall efficiency as
no longer the algorithm needs to rescan the entire database. The
algorithm also helps to extract frequent itemsets according to
pre-determined minimum support with an independent purpose.
Furthermore, the association rule set is extracted with high
confidence and weak support. However, they used the depth
strategy for mining; thus could not apply the Apriori property.

Chen and Xiao (2014) proposed the Intersection Maximum
Frequent Pattern (ISMFP) algorithm, which was based on
set theory and the idea of a top-down search for mining
the maximum frequent patterns. Since the maximum frequent
patterns have already implied all frequent patterns. They
converted the problem from detecting frequent patterns
to discover the maximum frequent patterns, avoiding the
production of a large number of candidate sets. They forwarded
a kind of association rule mining algorithm depending on
the intersection, which decreases the search space and the
number of cycles by using the principle of the maximum
frequent pattern and intersection. Their experimental results
showed that the algorithm ISMFP is efficient in mining frequent
patterns; especially there exists a low threshold of support degree
or long patterns.

BACKGROUND

Multiple papers reviewed the solution of medical problems
as Association Rules. They provided a computational study,
based on the Apriori algorithm to discover the associations
among clinical traits and risk factors of different disease [i.e.,
asthma (Poorani et al., 2018), chronic diseases (Karthiyayini and
Jayaprakash, 2015), and heart diseases (Said et al., 2015)]. The
Apriori algorithm was used to find the frequent symptoms and
related causes of a disease from the dataset that was collected
from self-reported patients. It was even used in predicting the
possibility of chronic occurrence of diseases. In (Karthiyayini
and Jayaprakash, 2015), the percentage of possibility for chronic
disease was calculated from each symptom of all considered
chronic diseases. The higher number of symptoms leads to higher
accuracy of calculating the disease possibility.

Others diagnosed by considering NED (No Evidence of
Disease) and ED (Evidence of Disease) studies. Fahrudin et al.
(2017) experimented with two Association Rules algorithms:
Apriori and FP-Growth. They categorized NED and ED to
detect the relationship between different factors that influences
patients. Another study by Gitanjali et al. (2014) was conducted
to generate the frequency of diseases that affect patients in
various geographical regions and at various periods. The use of
association in medicine has numerous critical applications; where
mainly Apriori is the exemplar algorithm of all those studies.

The state of the art literature concentrated on discovering the
relationship between the diseases and their symptoms. However,
we have a different goal to discover the relationship between
normal proteins and the disease’s proteins.

MATERIALS AND METHODS

From the comparison of Association Rule Mining (ARM)
algorithms, we propose an enhancement to the Apriori algorithm
with the concept of vertical format from the ECLAT algorithm.
We merged several scientific concepts of mining into Apriori
employing the set theory of intersection, lattice theory, and
vertical data format. Moreover, we use divide and conquer
methodology to divide the problem into clusters.

The Proposed Association Rule Model
The proposed association rule model is used to discover the
association between the normal proteins and the diseased
proteins. It is composed of two phases. Phase one is the Disease
Sub-Typing (DST), we attempt to find the different subtypes
of a particular disease. Phase two is the Association Rule (AR)
generation; we attempt to find the association between each
subtype to its normal proteins. Inferring, the association rules of
factors causing diseases.

Phase One: Disease Sub-Typing
The main idea is to cluster each malignant tumor, Mi, into its
subtypes. For each disease, the set of cases is compared to each
other to extract similar cases. The similarity is measured by the
number of similar proteins. A certain threshold is used to identify
the subtype. The rest of the cases are re-evaluated to each other
until no further cases remain. The steps are:

1. We select the cases which have the same
malignant tumor Mi.

2. For the first case (record), we compare its set of proteins
with sets of proteins in the rest cases.

3. The cases which their proteins have similarity with the first
case proteins, equal to or greater than the threshold are
considered of the same sub-type.

4. The other cases which are less than the threshold are re-
evaluated by repeating the previous steps until no further
cases remain.

Interestingly, the set of proteins defining a subtype of
the disease can be used as a signature of that specific
disease for diagnosis.
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Disease sub-typing algorithm
Algorithm 1: detecting the type of each Disease.

#Input: PatientsRecords be the list of
all records

#Output: typeIndexTable of disease types
and the Records to each disease type

DisTypeProtein proteins of disease types
//intersection algorithm will be used to

cluster the records
Initialize SimilarityFactor//this is a

constant user-defined factor
for each Disease in PatientsRecords

set dList = select all diseaserecords
from PatientsRecords
//find similar cases
create typeIndexTable//where each
protein list of records is stored
create DisTypeProtein//collection of
proteins in cases of same type
k = 1
foreach r in dList do

add in typeIndexTable(Tk, r)
DisTypeProtein [k] = r
remove r from dList
foreach nextR in dList
count = | r ∩ nextR |//number of
intersecting proteins
avgRecordLength = (length of
r + length of nextR)/2

intersectionPerc = count/avgRecord
Length
if (intersectionPerc > =
SimilarityFactor) then
add in typeIndexTable(Tk, nextR)
remove nextR from dList
DisTypeProtein [k] ∪ nextR//add
proteins of nextR

end foreach//nextR
increment K

end foreach r
returntypeIndexTable
returnDisTypeProtein

end foreach

Phase Two: Association Rule
The proposed association rule mining algorithm is considered
as an enhancement to the Apriori algorithm. The proposed
algorithm is based on converting the structure of the dataset from
horizontal to vertical format. This vertical format will facilitate
applying the intersection concept for getting the support for
each itemset. Therefore, the breadth-first search strategy of the
proposed new algorithm preserves the Apriori property. It is
known that most association rule mining algorithms that apply
the vertical format works by depth search strategy which violates
the Apriori property. However, our proposed association rule
mining algorithm works by the breadth search strategy. From
this point, the proposed algorithm does only one scan to the

FIGURE 1 | Workflow pipeline of the experiment.

TABLE 1 | Results of the experiment for malignant tumors (Rafea et al., 2019).

Disease M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Number of_records 2063 2109 2083 2053 2035 2094 2062 2135 1982 2096

Disease M11 M12 M13 M14 M15 M16 M17 M18 M19 M20

Number of_records 2040 2084 2076 2149 2130 2115 2059 2080 2116 2181
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database, decreasing the candidate sets. Thus, it is fast and
guarantees accuracy.

The Proposed Association Rule Mining
Algorithm
The main challenge of the model is in its ability to help in finding
the relations between the normal proteins and disease conditions
that are difficult to diagnose and propose justifications for these
diseases through the following steps:

First, we scan all the records to convert the datasets from
horizontal to vertical format. This step generates a protein index
table containing all 1-itemsets (proteins) without repetition, TID
(the records where the protein is located), and its support.

Second, prune the proteins which don’t satisfy the
minimum support.

Third, self-join the frequent proteins to generate 2-itemsets.
Note that the 2-itemsets are unordered sets such that p1p5 is
the same as p5p1. Calculate the support for 2-itemsets by the
intersection concept where we get the common records between
those 2-itemsets by intersecting the record list of each itemset.
This eliminated the scans to the database.

Forth, prune the 2-itemsets which don’t satisfy the
minimum support.

Fifth, self-join the frequent proteins to generate 3-itemsets,
however, the Apriori property has to be applied here. Each subset
of the generated 3-itemsets must also be a frequent itemset, i.e.
satisfies the minimum support. If at least one 2-itemset of the
generated 3-itemsets are infrequent then discard this generated 3-
item set.

Sixth, prune the 3-itemsets which don’t satisfy the
minimum support.

Finally, repeat these steps until no new frequent
itemsets are identified.

Proposed Association Rule Mining Algorithm
Algorithm 2: detecting the association between Normal Proteins
and Diseases Proteins.

#Input: typeIndexTable be the list of all
records associated with a certain disease
type

#Output: associationProteins be the list
of proteins associated with each disease

//Apriori algorithm will be used

TABLE 2 | Results of phase two (malignant tumor subtypes).

Disease Its subtypes Number of
subtypes

Malignant Tumor (M1) M1T1, M1T2, M1T3, M1T4, and M1T5 5

Malignant Tumor (M7) M7T1, M7T2, M7T3, M7T4, M7T5, and
M7T6

6

Malignant Tumor (M18) M18T1, M18T2, M18T3, M18T4, M18T5,
and M18T6

6

Malignant Tumor (M20) M20T1, M20T2, M20T3, M20T4, M20T5,
M20T6, and M20T7

7

Initialize MIN_SUPPORT//this is a
constant will be changed to search for a
useful result

for each typeOfDisease in typeIndexTable

set dList = select all records
of a certain disease defined by
typeIndexTable
set dListLength = no_of_records (dList)
set proteinList = select all proteins
in dList//without repetition
//find frequent proteins
create proteinIndexTable//where each
protein list of transactions is stored
foreachp in proteinList do

tList = select all transactions, TID,
in dList that have p
pCount = no of transactions that have
P
pSupport = pCount ∗ 100/dListLength
if (pSupport > = MIN_SUPPORT) then
add in proteinIndexTable(p, pCount,
pSupport, tList)

end foreach

TABLE 3 | Results of phase three (association rule mining).

Disease Disease
Subtype

Associations between proteins

Normal proteins Diseased proteins

Malignant
Tumor (M1)

M1T1 P3580 P119913, P119662, P119786,
P119535, P119939

Malignant
Tumor (M1)

M1T2 P3887 P119640, P119513, P119637,
P119515, P119790, P119541,
P119917, P119886, P119792,
P119668

Malignant
Tumor (M7)

M7T5 P3734, P6006 P719501, P719807

Malignant
Tumor (M7)

M7T6 P625, P3886 P719785, P719964

Malignant
Tumor (M18)

M18T2 P6376 P1819795, P1819919, P1819668,
P1819546

Malignant
Tumor (M18)

M18T5 P327, P3479 P1819668, P1819696

Malignant
Tumor (M20)

M20T3 P777 P2019891, P2019964, P2019765,
P2019863, P2019640, P2019643,
P2019516, P2019741, P2019614,
P2019518, P2019638, P2019889,
P2019767, P2019990

TABLE 4 | Rules, confidence, lift, and leverage.

Rule
Number

Rule Confidence Lift Leverage

R1 P3479 ˆ P327→ P1819668 86.36% 1.2164 0.0711

R2 P3479 ˆ P327→ P1819696 84.81% 1.1751 0.0622

R3 P3479→ P1819696 81.48% 1.1111 0.0533

R4 P347 9→ P1819668 81.48% 1.062 0.0433
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TABLE 5 | Precision, recall, f-measure, and accuracy of the three algorithms on different support (40%, 50%, 60%, and 70%).

Algorithm Precision % Recall % F-measure % Accuracy %

40% 50% 60% 70% 40% 50% 60% 70% 40% 50% 60% 70% 40% 50% 60% 70%

Apriori Algorithm 42 54 62 64 67 69 84 87 52 61 71 74 91 95 98 98

ITDApriori 42 54 62 64 67 69 84 87 52 61 71 74 91 95 98 98

Proposed Algorithm 42 54 62 64 67 69 84 87 52 61 71 74 91 95 98 98

TABLE 6 | The execution time (in second) comparison among Apriori Algorithm,
ITDApriori, Proposed ARM Algorithm on 500 transactions.

Minimum
Support

Apriori (in
sec.)

ITDApriori (in
sec.)

Proposed
ARM (in sec.)

Improvement
%

40% 12174 9296 7407 44.93

50% 10979 7312 5840 56.60

60% 8472 4620 3448 89.85

70% 3125 1368 1035 117.05

//find 2-itemsets frequent proteins as
an unordered set of pairs
joinedProteins = join pi,pj of proteins
in frequentProteins
foreach pi, pj in joinedProteins do

tList = get all intersecting
transactions from proteinIndex table
pCount = length of tList
pSupport = pCount ∗ 100/dListLength
if (pSupport > = MIN_SUPPORT) then
add in frequentProteins ({pi, pj},
pSupport)

end foreach
//find i-itemsets frequent proteins
until no merges can be done
set i = 3//the number of proteins to be
merged
curFreqProteins = frequentProteins
repeat

joinedProteins = join i number of
proteins in curFreqProteins
clear curFreqProteins
foreach set of proteins, {pi} in
joinedProteinsdo
//prune itemsets that have
non-frequent subsets
if all subsets of {pi} in
frequentProteinsthen
tList = get all intersecting
transactions of {pi} from
proteinIndex
pCount = length of tList
pSupport = pCount ∗ 100/dListLength
if (pSupport > = MIN_SUPPORT) then
add in curFreqProteins ({pi},
pSupport)

endif
endif
end foreach
add curFreqProteins
tofrequentProteins
increment i

until no MIN_SUPPORT is satisfied
associationProteins = frequentProteins
return associationProteins

end foreach

EXPERIMENT AND RESULTS

The experiment is divided into three phases as shown in Figure 1:
the random generation of the EDAS data, the Disease Sub-
Typing phase, and the association rule mining phase. The
aim is to detect the association between Normal Proteins and
Malignant Tumor Proteins.

The experiment is performed on MacBook Pro, 2.9 GHz Intel
Core i5 and 8 GB of RAM, the database is created in Microsoft
SQL Server 2008, the algorithms are implemented in C#.

Phase one: the generation of EDAS data, our data is based on
the previous experiment by Rafea et al. (2019), where the total
generated cases are 100K record. Malignant tumor patients are
41,742 records from the total 100 K, which was concluded from
the experiment by Rafea et al. (2019). Malignant Tumor (Mi) has
20 types (M1, M2, . . ., M20). These patients are divided according
to their malignant type as shown in Table 1. For example, the
number of patients who have a Malignant Tumor (M1) is 2063.
The number of patients who have a Malignant Tumor (M7) is
2062. The number of patients who have a Malignant Tumor
(M18) is 2080. The number of patients who have a Malignant
Tumor (M20) is 2181.

Phase two: apply the Disease Sub-Typing Algorithm to detect
the sub-type of each malignant tumor (Mi) as explained in section
4.1.1

Phase three: The aim is to detect the association between
Normal Proteins and Malignant Tumor Proteins for each subtype
of a malignant tumor. We shall apply the Association Rule
Mining Algorithm to the resulted data from phase 2 as defined
in section 4.1.2

Results
From phase 2, we concluded that each disease can be divided into
several subtypes as shown in Table 2. For example,
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FIGURE 2 | Execution times over different support: Apriori Algorithm ITD Apriori proposed Algorithm on 500 transactions.

Malignant Tumor (M1) has 5 subtypes which are
M1T1, M1T2, M1T3, M1T4, and M1T5. Malignant Tumor
(M7) has 6 subtypes which are M7T1, M7T2, M7T3,
M7T4, M7T5, and M7T6.

Malignant Tumor (M18) has 6 subtypes which are M18T1,
M18T2, M18T3, M18T4, M18T5, and M18T6.

Malignant Tumor (M20) has 7 subtypes which are M20T1,
M20T2, M20T3, M20T4, M20T5, M20T6, and M20T7.

From phase three, we concluded that there are interesting
associations between malignant tumor proteins and the
environmental factors (normal proteins) as shown in Table 3.
For example,

(1) In Malignant Tumor (M1) which has a subtype (M1T1)
and minimum support%60, there is a relation between
the food proteins and the disease proteins as the
following (P3580, P119913, P119662, P119786, P119535,
P119939), where P3580 is a food protein and the rest are
malignant tumor proteins.

(2) In Malignant Tumor (M1) which has subtype (M1T2) and
minimum support%60, there is a relation between the food
proteins and the disease proteins as the following (P3887,
P119640, P119513, P119637, P119515, P119790, P119541,
P119917, P119886, P119792, P119668), where P3887 is a
food protein and the rest are malignant tumor proteins.

(3) In Malignant Tumor (M7) which has subtype (M7T5) and
minimum support%60, there is a relation between the food
proteins, the commensal proteins, and the disease proteins
as the following (P3734, P6006, P719501, P719807), where
P3734 is a food protein, P6006 is a commensal protein and
the rest are malignant tumor proteins.

(4) In Malignant Tumor (M7) which has subtype (M7T6) and
minimum support%60, there is a relation between the
environment proteins, the food proteins, and the disease
proteins as the following (P625, P3886, P719785, P719964),
where P625 is an environment protein, P3886 is a food
protein and the rest are malignant tumor proteins.

(5) In Malignant Tumor (M18) which has a subtype (M18T2)
and minimum support%60, there is a relation between
the commensal proteins and the disease proteins as
the following (P6376, P1819795, P1819919, P1819668,
P1819546), where P6376 is a commensal protein and the
rest are malignant tumor proteins.

(6) In Malignant Tumor (M18) which has a subtype (M18T5)
and minimum support%60, there is a relation between
the commensal proteins and the disease proteins as the
following (P327, P3479, P1819668, P1819696), where P327
is an environmental protein, P3479 is a food protein and the
rest are malignant tumor proteins.

(7) In Malignant Tumor (M20) which has subtype (M20T3)
and minimum support%60, there is a relation between
the environment proteins, and the disease proteins as
the following (P777, P2019891, P2019964, P2019765,
P2019863, P2019640, P2019643, P2019516, P2019741,
P2019614, P2019518, P2019638, P2019889, P2019767,
P2019990), where P777 is an environment protein, and the
rest are malignant tumor proteins.

Rule Generation
The developed algorithm with a lower minimum support
threshold allows for more rules to show up. For example,
for the disease M18T5, the generated rules are fifteen rules.
Consequently, by applying the statistical measure, like

TABLE 7 | The execution time (in second) comparison among Apriori Algorithm,
ITDApriori, Proposed ARM Algorithm on 1000 transactions.

Minimum
Support

Apriori (in
sec.)

ITDApriori (in
sec.)

Proposed
ARM (in sec.)

Improvement
(%)

40% 20067 10849 9195 68.11

50% 16955 9452 7015 88.22

60% 13433 6028 4910 98.18

70% 7628 3730 3275 118.71
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FIGURE 3 | Execution times over different support: Apriori Algorithm ITD Apriori proposed Algorithm on 1000 transactions.

TABLE 8 | The execution time (in second) comparison among Apriori Algorithm,
ITDApriori, Proposed ARM Algorithm on 1500 transactions.

Minimum
Support

Apriori (in
sec.)

ITDApriori (in
sec.)

Proposed
ARM (in sec.)

Improvement
%

40% 28176 13880 11376 84.85

50% 24013 10277 8949 91.58

60% 17642 8095 6134 109.79

70% 10384 5260 3498 123.61

confidence, lift, and leverage, the rules are reduced to four
main rules. The generated association rules and their confidence,
lift, and leverage of M18T5 are shown in Table 4.

Notice that in Table 4, the results of R1 show that disease
M18T5 profiled by protein P1819668 is affected by proteins

P3479 and P327 which are food and environmental proteins
respectively. R2 shows that disease M18T5 profiled by protein
P1819696 is affected by proteins P3479 and P327 which are
food and environmental proteins respectively. R3 means that

disease M18T5 profiled by protein P1819696 is affected by protein
P3479 which is food protein. R4 means that disease M18T5
profiled by protein P1819668 is affected by protein P3479 which
is food protein.

EVALUATION

The evaluation between the three algorithms (Apriori Algorithm,
ITDApriori, Proposed Algorithm) consists of two steps; firstly,
the common evaluation methodology by calculating precision,
recall, F-measure, and accuracy. Secondly, we experiment
the performance by calculating the execution time of the
three algorithms (Apriori Algorithm, ITDApriori, Proposed
Algorithm). Thus, the algorithms have been tested over different
minimum support and different number of transactions (cases).
The minimum support values used are 40%, 50%, 60, and 70%,
for the number of transactions 500, 1000, and 1500. For example,
we will take (M1T2) to explain the results.

FIGURE 4 | Execution times over different support: Apriori Algorithm ITD Apriori proposed Algorithm on 1500 transactions.
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Table 5 shows the results of the first step of the evaluation
methodology on several experiments covering different
minimum support (40%, 50%, 60%, and 70%) on the Apriori
Algorithm, the ITDApriori Algorithm, and the proposed ARM
algorithm. As shown in Table 5, we noticed that the precision,
recall, f-measure, and accuracy are the same for the three
algorithms. This is due to the three algorithms gave the same
frequent itemset. By which accuracy is not violated by our
proposed algorithm.

For the second step of the evaluation, we evaluated the
performance of time between the three algorithms. We applied
three experiments that are done based on changing the number
of transactions and the minimum support values.

The first experiment is carried out for the three algorithms
(Apriori Algorithm, ITDApriori, and the Proposed Algorithm)
on 500 transactions. From Table 6, we found that whatever the
minimum support value the proposed ARM algorithm is the best.
Table 6 is visualized in Figure 2.

The second experiment is conducted for the three algorithms
over 1000 transactions. The execution time for the three
algorithms is presented in Table 7. We noticed that, although
changing the value of minimum support, the proposed ARM
algorithm is the best. Table 7 is represented as a graph in Figure 3.

Thirdly, the experiment is done for the three algorithms over
1500 transactions. The execution time is presented in Table 8. We
found that whatever the minimum support value the proposed
ARM algorithm is the best. Table 8 is depicted as a graph in
Figure 4.

DISCUSSION

From the previous experiments, we concluded that the proposed
ARM algorithm is efficient than the ITDApriori and the Apriori
algorithm. When the number of transactions is increased, the
proposed ARM algorithm showed high efficiency, and this
is evident from the time of implementation. The proposed
ARM algorithm converts the data structure from horizontal to
vertical data format. It executes one scan to the database to
create an index table.

The proposed ARM algorithm does not do a scan over the
entire database for calculating the support of candidate itemsets,
it scans only the records of the candidate itemsets in the index
table, which causes to reduce the search time. The computation of
the support is done by getting the intersection of the Transaction
Id sets of the corresponding k-itemsets. The proposed ARM
algorithm applies the Apriori property which plays a vital role in
reducing the search time and space when handling properly. By
decreasing the number of candidates itemsets, our algorithm does
not waste time for calculating the support for infrequent itemsets.
Moreover, it uses the breadth-first search strategy on vertical data
layout which guarantees accuracy.

The horizontal format of the data in the Apriori algorithm
leads to some problems: it does several scans to the entire
database which is the main cause of increasing the time. Also,
when the number of transactions increases the runtime increases.
The Apriori algorithm is not efficient in case the number of

transactions increases and the number of items increases because
more candidate itemsets must be examined during candidate
generation and support calculation.

Although the ITDApriori algorithm converts the data
structure from horizontal to vertical data format and calculating
the support of candidate items by intersection, it does not apply
the Apriori property which leads to an increase in the number
of candidate itemsets. Thus, it takes extra time to calculate the
support for infrequent items. Moreover, the larger the number of
items the higher the storage space required.

The Apriori algorithm scans the database too many
times, which reduces the overall performance. Due to
this, both the time and space complexity of the Apriori
algorithm are very high: O (2D), thus exponential, where
D is the width of the transaction (the total number of
items) present in the database. While in our proposed
Association Rule Mining algorithm the complexity is O
(D + D2). In conclusion, we can say that the proposed
ARM Algorithm is faster than the other algorithms while
preserving accuracy.

CONCLUSION

This paper is focused on issues related to the design and
implementation of an advanced technique. Its main purpose is to
help in finding the association between the habits and behavior
of the human and causing malignant tumor. The proposed
model in this stage is based on hypothetical generated data.
Our model is tested by generating databases each with 41742
patients’ records who suffering from malignancies. Firstly, the
proposed model detects the sub-type of each disease. Secondly,
it finds the relation between the normal proteins and each sub-
type of malignancies. Lastly, it presents the evaluation of our
proposed ARM algorithm against the original Apriori Algorithm
and, the Intermediate TID Apriori (ITDApriori) Algorithm.
The evaluation is based on accuracy and time. The results
demonstrate that the proposed algorithm achieves superior
performance in execution time with preserving accuracy. In
the future, the proposed model will be modified by using
a parallel method to take in an extremely large database.
Improve the proposed model to work on patients that may
be infected by more than one disease. Also, it will more
interesting to improve the proposed model to predict the
relations between these diseases.
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Breast cancer cell lines are frequently used to elucidate the molecular mechanisms of
the disease. However, a large proportion of cell lines are affected by problems such
as mislabeling and cross-contamination. Therefore, it is of great clinical significance
to select optimal breast cancer cell lines models. Using tamoxifen survival-related
genes from breast cancer tissues as the gold standard, we selected the optimal
cell line model to represent the characteristics of clinical tissue samples. Moreover,
using relative expression orderings of gene pairs, we developed a gene pair signature
that could predict tamoxifen therapy outcomes. Based on 235 consistently identified
survival-related genes from datasets GSE17705 and GSE6532, we found that only
the differentially expressed genes (DEGs) from the cell line dataset GSE26459 were
significantly reproducible in tissue samples (binomial test, p = 2.13E-07). Finally, using
the consistent DEGs from cell line dataset GSE26459 and tissue samples, we used
the transcriptional qualitative feature to develop a two-gene pair (TOP2A, SLC7A5;
NMU, PDSS1) for predicting clinical tamoxifen resistance in the training data (logrank
p = 1.98E-07); this signature was verified using an independent dataset (logrank
p = 0.009909). Our results indicate that the cell line model from dataset GSE26459
provides a good representation of the characteristics of clinical tissue samples; thus,
it will be a good choice for the selection of drug-resistant and drug-sensitive breast
cancer cell lines in the future. Moreover, our signature could predict tamoxifen treatment
outcomes in breast cancer patients.

Keywords: breast cancer, tamoxifen, cell line, resistant, sensitive

INTRODUCTION

The overall recurrence rate of estrogen receptor positive (ER+) early breast cancer can be
reduced by adjuvant treatment with tamoxifen. However, approximately 30–40% of ER + breast
cancer patients receiving adjuvant tamoxifen therapy still would relapse or progress to deadly
advanced metastatic stages within 15 years follow-up; this is largely attributed to tamoxifen

Abbreviations: DEGs, differentially expressed genes; GEO, Gene Expression Omnibus; ER + , estrogen receptor positive;
KEGG, Kyoto Encyclopedia of Genes and Genomes; REO, relative expression ordering; RFS, relapse-free survival; SAM,
significance analysis of microarrays.
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resistance (Ye et al., 2019). Therefore, it is of great clinical
significance to identify the efficacy of tamoxifen in ER + breast
cancer patients. Cell lines are a common modeling tool in
cancer research (Domcke et al., 2013); they can help us to better
understand the biological processes and molecular mechanisms
of cancer and aid in the development of anticancer drugs (Kong
and Yamori, 2012; Knudsen et al., 2014). However, whether
cell line models could adequately reflect the characteristics of
clinical tissue samples is controversial (American Type Culture
Collection Standards Development Organization Workgroup
ASN-0002, 2010; Liedtke et al., 2010; Bayer et al., 2013;
Capes-Davis et al., 2019; Wass et al., 2019). It is well known
that tumor cell lines might lose some of their tumor-related
characteristics owing to the culture environment (Masters, 2000).
Cross-contamination (International Cell Line Authentication
Committee, 2014) and misidentification (American Type Culture
Collection Standards Development Organization Workgroup
ASN-0002, 2010) of cell lines exacerbates such issues. Moreover,
there is no unified gold standard for the identification of drug-
resistant cell lines, which also results in some cell lines poorly
reflecting the characteristics of clinical tissue samples (Liedtke
et al., 2010). Thus, it is of great value to find resistant/sensitive cell
line models that are more representative of clinical tissue samples.

Considering tamoxifen survival-related genes from breast
cancer tissue samples as the gold standard, we screened for
the optimal cell line model. In the survival-related analysis
of tissue samples, we assumed that genes that were positively
(negatively) correlated with survival risk in tissue samples were
comparable with genes that are upregulated (downregulated)
in resistant compared with sensitive cell lines. In this study,
through evaluating the consistency of prognosis-related genes
in tissue samples from patients undergoing tamoxifen treatment
with drug-resistance genes in cell lines, we selected the optimal
cell line model to represent the characteristics of clinical tissue
samples; the consistent genes between tissues and cell lines were
identified as clinical drug-resistance-related genes.

Moreover, the relative expression orderings (REOs) of
gene pairs within individual samples, also called qualitative
transcriptional characteristics, are robust against experimental
batch effects and can be directly applied to samples at
an individual level (Eddy et al., 2010; Guan et al., 2019).
The robustness property of the qualitative transcriptional
characteristics enables integration of multiple datasets from
different sources to develop disease signatures or classifiers,
which improves the probability of finding robust signatures
(Xu et al., 2008; Guan et al., 2019). Thus, based on qualitative
transcriptional characteristics and the clinical drug-resistance-
related genes that we identified, we developed a tamoxifen-
resistance signature for ER + breast cancer and verified it in
independent data.

MATERIALS AND METHODS

Data and Preprocessing
Breast cancer gene expression data and corresponding clinical
information were downloaded from the GEO database

(Gene Expression Omnibus, http://www.ncbi.nlm.nih.gov/geo/).
Relapse-free survival (RFS) time was defined as the interval
between the first day of surgery and the date of death from
any cause or of recurrence (local and/or distant) (Punt et al.,
2007; Merok et al., 2013). Breast cancer tissue samples from
ER+ patients who had received post-operative tamoxifen
treatment were selected from the seven datasets, as described
in Table 1. Nine gene expression datasets for breast cancer
tamoxifen-resistant/sensitive cell lines were also downloaded
from the GEO database, as shown in Table 1.

For the array data measured by Affymetrix platform,
raw mRNA expression data (.CEL files) were downloaded,
and the Robust Multi-array Average algorithm was used for
normalization with Affy package in R software (Bolstad et al.,
2003; Irizarry et al., 2003). For sequence-based data, the processed
data were directly downloaded.

Identification of Survival-related Genes
in Tissue
The Cox proportional hazard model was used to study the
relationships between gene expression levels and survival (Kreike
et al., 2010). For the coefficient β obtained from the Cox model,
if β > 0 for a certain gene, this gene was considered to be
positively correlated with survival risk and was comparable
with the upregulated gene between resistant and sensitive cell
lines. Similarly, if β < 0, the gene was comparable with the
downregulated gene between resistant and sensitive cell lines.

Identification of Differentially Expressed
Genes (DEGs) in Cell Lines
In this study, the SAM (significance analysis of microarrays)
algorithm (Tusher et al., 2001) was used to identify DEGs
between resistant and sensitive cell lines.

Consistency Evaluation Between Tissues
and Cell Lines
In this study, we hypothesized that genes positively (negatively)
associated with survival in tissues corresponded to those
genes upregulated (downregulated) between resistant and
sensitive cell lines.

The consistency ratio, which is the number of overlapping
and consistent DEGs/number of overlapping DEGs, was used
to evaluate the similarity between tissues and cell lines.
The significance was evaluated by the binomial distribution
test as follows:

p = 1−
k−1∑
i=0

(
n
i

)
0.5i(1− 0.5)n−i

where n denotes the number of overlapping DEGs between tissue
and cell line, and k denotes the number of those overlapping
DEGs with the same dysregulation direction.

Then, the p-values were adjusted using the Benjamini-
Hochberg method (Benjamini and Hochberg, 1995).

Frontiers in Molecular Biosciences | www.frontiersin.org 2 December 2020 | Volume 7 | Article 564005103

http://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-07-564005 November 30, 2020 Time: 20:33 # 3

Guan et al. Identification of Breast Cancer Cell Lines

TABLE 1 | Data used in this study.

Tissue

GEO Acc Platform ER+ Sample Endpoint

GSE17705 Affymetrix GPL96 298 RFS

GSE6532 Affymetrix GPL96 176 RFS

GSE12093 Affymetrix GPL96 136 RFS

GSE4922 Affymetrix GPL96 66 RFS

GSE2990 Affymetrix GPL96 54 RFS

GSE42568 Affymetrix GPL570 67 RFS

GSE9195 Affymetrix GPL570 77 RFS

Cell line

GEO Acc Platform Sensitive Resistant Sample (R vs S) Method

GSE27473 Affymetrix GPL570 MCF7 MCF7 silenced ER 3:3 RNA silencing

GSE12708 Affymetrix GPL96 SUM44 SUM44/LCCTam 3:3 Drug pressure

GSE26459 Affymetrix GPL570 B7 G11OH-T 3:3 MCF7 subclones

GSE8562 Affymetrix GPL96 MCF7 MCF7/XBP1 3:3 XBP1 overexpression

GSE14986 Affymetrix GPL570 MCF7 T8, T17, T29, T52 4:3 Drug pressure

GSE21618 Affymetrix GPL570 WT tamR 20:11 Drug pressure

GSE67916 Affymetrix GPL570 MCF7 MCF-7/TAMR 10:8 Drug pressure
#GSE118713 Illumina GPL16791 MCF7 MCF-7/TAMR 3:3 Drug pressure
#GSE125738 HiSeq GPL20795 T47D T47D-TR 3:3 Drug pressure

RFS: relapse-free survival; ER: estrogen receptor. Sample (R vs S) denotes the number of the resistant and sensitive cell line sample from the corresponding dataset;
Method denotes the production process for tamoxifen-resistant breast cancer cell lines. #High-throughput sequencing data.

KEGG Pathway Enrichment
The hypergeometric distribution model was used to determine
the significance of KEGG (Kanehisa and Goto, 2000) (Kyoto
Encyclopedia of Genes and Genomes) pathways enriched with
the genes of interest using the following statistical model:

p = 1−
k−1∑
i=0

(
m
i

)(
N−m
n− i

)
(

N
n

)
where N denotes the number of background genes, n denotes the
number of genes of interest, m denotes the number of genes in
a given pathway, and k denotes the number of genes of interest
in that pathway.

Identification of REO-based
Tamoxifen-resistance Signature
Taking the consistent DEGs between tissues and cell lines as
candidate genes, we used the Cox model and C-index analysis
(Harrell et al., 1984) to develop a tamoxifen-resistance signature.
The detailed process was described as follows.

Step 1: Selecting Survival-related Gene Pairs
(1) For the n candidate DEGs, pairwise comparisons were
performed for all genes (generating a total of C2

n gene pairs), and
this gene pair set was defined as Set 1. (2) From all gene pairs
(Gi, Gj) in Set 1, the Cox model was used to select those that
were significantly correlated with RFS of the tamoxifen-treated

breast cancer patients. The set of significantly correlated gene
pairs (FDR < 10%) was defined as Set 2.

Step 2: Optimizing the Gene Pair Signature
First, we enumerated all the gene pair combinations in Set 2. For
each gene pair combination in a sample, if at least half of the
gene pairs in the combination were consistent with tamoxifen
sensitivity, the sample was identified as low risk; otherwise, it was
considered high risk. Then, we calculated the C-index value for
each gene pair combination, and selected the combination with
maximum C-index as our tamoxifen-resistance signature (Set 3).

RESULTS

Identification and Evaluation of DEGs in
Cell Lines
A flowchart of the analysis procedure is shown in Figure 1. We
identified the DEGs between tamoxifen-resistant and tamoxifen-
sensitive cell line samples within each of the nine datasets
using the SAM method (FDR < 20%). We also evaluated the
consistency of DEGs among different datasets (a total of C2

9 = 36
combinations). Among the 36 combinations, only 16 showed
significant consistency (p < 0.05), as described in Table 2. These
results indicate that there is greater heterogeneity among cell lines
from different sources.

Identification of Tamoxifen
Survival-related Genes in Tissues
Based on the univariate Cox regression model with FDR < 20%,
893 and 968 tamoxifen survival-related genes were identified
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FIGURE 1 | Flowchart of the analysis procedure.

in datasets GSE17705 and GSE6532, respectively; 235 genes
were common to the two groups, all of which had the same
dysregulation direction (which could not occur by chance;
binomial test, p < 1.0E-16), further verifying the reliability of the
results. These 235 genes were considered to be breast cancer tissue
candidate genes.

Owing to the heterogeneity among cell lines, we evaluated
the consistency between tissue candidate genes and DEGs
from different cell line datasets (resistant vs sensitive) to select
an optimal cell line model that could well represent the
characteristics of clinical tissue samples. We found that only
the DEGs from dataset GSE26459 were well reproduced among
tissue candidate genes; the consistency ratio was above 73%,
indicating that this did not occur by chance (binomial test,
p = 2.13E-07). The DEGs from the other cell line datasets were
not well reproduced among the tissue candidate genes (Table 3).
These results demonstrate that the cell line data from dataset
GSE26459 could well represent the characteristics of clinical
breast cancer tissue samples.

KEGG Pathway Enrichment
KEGG pathway enrichment analysis was performed for the 235
tissue candidate genes from datasets GSE17705 and GSE6532
using a threshold of FDR < 0.2, and for the DEGs from cell
line dataset GSE26459 using the same threshold (Table 4). There
was no pathway commonly enriched between tissues and the
cell line, possibly owing to the low statistical power (Zou et al.,
2011) or to partial differences between resistant and sensitive cell
lines induced by tamoxifen treatment (Dancik et al., 2011). Thus,
taking the pathways enriched in tissues as the gold standard, we
obtained the p-values of these pathways in dataset GSE26459
(Table 4). With p < 0.2, the cell cycle, p53 signaling pathway,
oocyte meiosis, and progesterone-mediated oocyte maturation

were recurring themes in the pathway analysis for both tissues
and cell lines. These pathways have been reported to be correlated
with tamoxifen resistance.

Studies have shown that tamoxifen could affect the cell
cycle of human breast cancer cell lines, the major sensitivity to
tamoxifen in terms of both inhibition of cell cycle progression
and drug cytotoxicity occurring particularly in the G0-G1
stage (Taylor et al., 1983). Tamoxifen could also affect the
mitosis of oocytes and lead to premature centromere separation
(London and Mailhes, 2001). The PTEN protein, encoded by
the gene, in the p53 signaling pathway has been shown to
be associated with tamoxifen resistance (Shoman et al., 2005).
Similarly, the PGR protein in the progesterone-mediated oocyte
maturation signaling pathway has been shown to be associated
with tamoxifen response (Elledge et al., 2000). In summary,
the pathways found to be enriched in tissues and also in
cell line dataset GSE26459 (p < 0.2) were correlated with
tamoxifen resistance, further demonstrating that the cell line
model from dataset GSE26459 could represent the characteristics
of clinical tissue samples.

Moreover, with FDR < 20%, the DEGs from cell line dataset
GSE26459 were enriched in 31 pathways, compared with only
seven pathways for the genes from tissue samples. However,
as shown in Table 4, many of the pathways enriched for the
cell lines from dataset GSE26459 are associated with tamoxifen
treatment. For example, the prolactin signaling pathway and
neurotrophin signaling pathway are related to side effects of
tamoxifen (Lamberts et al., 1982; El-Ashmawy and Khalil, 2014),
indicating that some of the differences between resistant and
sensitive cell lines were due to tamoxifen treatment.

Identification of Tamoxifen Response
Signature
First, we considered the 84 consistent DEGs between tissues
and cell line dataset GSE26459 to be clinical tamoxifen-
resistance-related genes. In the training dataset GSE12093,
pairwise comparisons were performed for all clinical tamoxifen-
resistance-related genes, and all the gene pairs were analyzed
with a univariate Cox regression model. With FDR < 10%, 20
gene pairs were identified that were significantly associated with
RFS. Then, among the 20 gene pairs, we enumerated all the
gene pair combinations to calculate their C-index values, and
selected the gene combination with the maximum C-index as the
tamoxifen response signature. Finally, two gene pairs (TOP2A,
SLC7A5; NMU , PDSS1) were identified. Based on our signature
and the majority vote rule, the training dataset samples could be
divided into high- and low-risk samples, which had significantly
different RFS (hazard ratio [HR] = 9.509, logrank p = 1.98E-
07). Our signature was also verified in an independent validation
test using combined data from datasets GSE4922 and GSE2990
(HR = 2.191, logrank p = 0.009909), as shown in Figure 2A.
Moreover, we searched public databases again for breast cancer
tissue samples treated only with post-operative tamoxifen, for
which associated RFS information was available, to further verify
the performance of our signature. Finally, two new independent
datasets were obtained. For the breast cancer tissue samples
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TABLE 2 | Consistency evaluation of DEGs from different cell line datasets.

GEO Acc Cell line* Def_gene Com_gene Con_gene Ratio P

GSE27473 si-ER MCF7: MCF7 15937 10795 6147 0.5694 <1.00E-16

GSE14986 T8/17/29/52: MCF7 13391

GSE27473 si-ER MCF7: MCF7 15937 12580 7427 0.5904 <1.00E-16

GSE21618 TamR: WT 15481

GSE27473 si-ER MCF7: MCF7 15937 9675 5424 0.5606 <1.00E-16

GSE67916 MCF-7/TAMR:MCF-7 12227

GSE27473 si-ER MCF7: MCF7 15937 8074 4450 0.5512 <1.00E-16

GSE118713 MCF-7/TAMR:MCF-7 10023

GSE14986 T8/17/29/52: MCF7 13391 10494 7391 0.7043 <1.00E-16

GSE21618 TamR: WT 15481

GSE14986 T8/17/29/52: MCF7 13391 8125 5396 0.6641 <1.00E-16

GSE67916 MCF-7/TAMR:MCF-7 12227

GSE14986 T8/17/29/52: MCF7 13391 6534 4139 0.6335 <1.00E-16

GSE118713 MCF-7/TAMR:MCF-7 10023

GSE14986 T8/17/29/52: MCF7 13391 6505 4042 0.6214 <1.00E-16

GSE125738 T47D-TR:T47D 10685

GSE21618 TamR: WT 15481 9331 5386 0.5772 <1.00E-16

GSE67916 MCF-7/TAMR:MCF-7 12227

GSE26459 G11OH-T: B7 6375 5525 3192 0.5777 <1.00E-16

GSE27473 si-ER MCF7: MCF7 15937

GSE21618 TamR: WT 15481 7729 4189 0.5420 8.22E-14

GSE118713 MCF-7/TAMR:MCF-7 10023

GSE118713 MCF-7/TAMR:MCF-7 10023 5808 3161 0.5442 8.16E-12

GSE125738 T47D-TR:T47D 10685

GSE21618 TamR: WT 15481 7597 4061 0.5346 9.04E-10

GSE125738 T47D-TR:T47D 10685

GSE67916 MCF-7/TAMR:MCF-7 12227 5824 3212 0.5515 2.00E-15

GSE118713 MCF-7/TAMR:MCF-7 10023

GSE26459 G11OH-T: B7 6375 3767 2044 0.5426 9.10E-08

GSE118713 MCF-7/TAMR:MCF-7 10023

GSE27473 si-ER MCF7: MCF7 15937 7991 4163 0.5210 9.32E-05

GSE125738 T47D-TR:T47D 10685

GSE26459 G11OH-T: B7 6375 1163 521 0.4480 1.00E + 00

GSE12708 SUM44/LCCTam: SUM44 2538

GSE26459 G11OH-T: B7 6375 52 21 0.4038 9.37E-01

GSE8562 MCF7/XBP1: MCF7 97

GSE26459 G11OH-T: B7 6375 4623 2084 0.4508 1.00E + 00

GSE14986 T8/17/29/52: MCF7 13391

GSE26459 G11OH-T: B7 6375 5262 2643 0.5023 3.76E-01

GSE21618 TamR: WT 15481

GSE26459 G11OH-T: B7 6375 4090 1946 0.4758 9.99E-01

GSE67916 MCF-7/TAMR:MCF-7 12227

GSE26459 G11OH-T: B7 6375 3750 1321 0.3523 1.00E + 00

GSE125738 T47D-TR:T47D 10685

GSE27473 si-ER MCF7: MCF7 15937 2264 1056 0.4664 9.99E-01

GSE12708 SUM44/LCCTam: SUM44 2538

GSE27473 si-ER MCF7: MCF7 15937 89 33 0.3708 9.95E-01

GSE8562 MCF7/XBP1: MCF7 97

GSE12708 SUM44/LCCTam: SUM44 2538 23 12 0.5217 5.00E-01

GSE8562 MCF7/XBP1: MCF7 97

GSE12708 SUM44/LCCTam: SUM44 2538 1885 702 0.3724 1.00E + 00

GSE14986 T8/17/29/52: MCF7 13391

GSE12708 SUM44/LCCTam: SUM44 2538 2134 920 0.4311 1.00E + 00

(Continued)
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TABLE 2 | Continued

GEO Acc Cell line* Def_gene Com_gene Con_gene Ratio P

GSE21618 TamR: WT 15481

GSE12708 SUM44/LCCTam: SUM44 2538 1676 862 0.5143 1.25E-01

GSE67916 MCF-7/TAMR:MCF-7 12227

GSE12708 SUM44/LCCTam: SUM44 2538 1588 625 0.3936 1.00E + 00

GSE118713 MCF-7/TAMR:MCF-7 10023

GSE12708 SUM44/LCCTam: SUM44 2538 1630 840 0.5153 1.12E-01

GSE125738 T47D-TR:T47D 10685

GSE8562 MCF7/XBP1: MCF7 97 80 42 0.5250 3.69E-01

GSE14986 T8/17/29/52: MCF7 13391

GSE8562 MCF7/XBP1: MCF7 97 84 46 0.5476 2.23E-01

GSE21618 TamR: WT 15481

GSE8562 MCF7/XBP1: MCF7 97 57 30 0.5263 3.96E-01

GSE67916 MCF-7/TAMR:MCF-7 12227

GSE8562 MCF7/XBP1: MCF7 97 63 25 0.3968 9.62E-01

GSE118713 MCF-7/TAMR:MCF-7 10023

GSE8562 MCF7/XBP1: MCF7 97 63 25 0.3968 9.62E-01

GSE125738 T47D-TR:T47D 10685

GSE67916 MCF-7/TAMR:MCF-7 12227 5751 2910 0.5060 1.85E-01

GSE125738 T47D-TR:T47D 10685

*Resistant and sensitive cell line samples from the corresponding dataset. Taking dataset GSE14986 as an example, among T8/17/29/52: MCF7, T8/17/29/52
denote resistant cell lines, MCF7 denotes sensitive cell line; Def_gene denotes the number of DEGs in the corresponding dataset; Com_gene denotes the number
of overlapped DEGs between two datasets; Con_gene denotes the number of overlapping DEGs with the same dysregulation between two datasets; Ratio denotes the
consistency ratio of DEGs.

from dataset GSE42568, 37 samples were identified as high
risk, and 30 were identified as low risk (HR = 1.804, logrank
p = 0.2), as shown in Figure 2B. For the breast cancer tissue
samples from dataset GSE9195, 41 samples were identified as
high risk and 36 as low risk (HR = 1.516, logrank p = 0.5),
as shown in Figure 2C. Although the difference between the
groups was not significant according to statistical tests, there was
a clear trend indicating a difference in RFS between the high-
and low-risk groups identified by our signature (Figure 2B-C).
Moreover, we combined the above two datasets to further verify
the performance of our signature. In the combined data from
datasets GSE42568 and GSE9195, 78 samples were identified as
high risk and 66 samples were identified as low risk (HR = 1.7,
logrank p = 0.1), as shown in Figure 2D. In summary, the results
indicate that our signature (consisting of two gene pairs) can
predict drug efficacy to some extent.

DISCUSSION

Cell line models are widely used in various fields of medical
research, especially in basic cancer research and drug discovery
(Masters, 2000; Mirabelli et al., 2019). Despite the successful
application of cell lines in basic research, their use as model
systems remains controversial (Masters, 2002; Sandberg and
Ernberg, 2005; Peng et al., 2018; Hallas-Potts et al., 2019).
Owing to issues such as cross-contamination, mislabeling, or the
identification of drug resistance, some cell line models do not
adequately represent the characteristics of clinical tissues. In this
study, based on evaluation of the consistency of DEGs between

tissues and cell lines, we selected the optimal cell line model to
represent the characteristics of clinical tissue samples; this was
further verified by pathway analysis. Our analysis method is also
suitable for other types of cell line modes.

The tamoxifen survival-related genes identified in tissue
samples from different datasets were significantly consistent,
suggesting that the results were reliable. However, the DEGs
found in tamoxifen-resistant and tamoxifen-sensitive cell lines
from different sources were less reproducible, indicating that
cell line models from different sources show more heterogeneity.
Therefore, it will be of great clinical significance to screen

TABLE 3 | Consistency evaluation between tissues and cell lines.

GEO Acc Def_gene Com_gene Con_gene Ratio P

GSE26459 6375 114 84 0.7368 2.13E-07

GSE27473 15937 211 93 0.4408 9.63E-01

GSE12708 2538 46 15 0.3261 9.94E-01

GSE8562 97 5 3 0.6000 5.00E-01

GSE14986 13391 178 55 0.3090 1.00E + 00

GSE21618 15481 207 82 0.3961 9.99E-01

GSE67916 12227 162 61 0.3765 9.99E-01

GSE118713 10023 159 63 0.3962 9.97E-01

GSE125738 10685 159 32 0.2013 1.00E + 00

Def_gene denotes the number of DEGs in the corresponding dataset; Com_gene
denotes the number of overlapping DEGs between the 235 tissue candidate
genes and the corresponding cell line dataset; Con_gene denotes the number
of overlapping DEGs with the same dysregulation between two datasets; Ratio
denotes the consistency ratio of DEGs.
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TABLE 4 | KEGG pathway enrichment of tissue and cell line.

Tissue Cell line

Pathway num Pathway namea P* Pathway num Pathway nameb FDR

hsa04110 Cell cycle 0.0270 hsa03013 RNA transport 4.62E-08

hsa04115 p53 signaling pathway 0.0226 hsa03010 Ribosome 1.14E-05

hsa04114 Oocyte meiosis 0.0726 hsa00970 Aminoacyl-tRNA biosynthesis 1.82E-05

hsa04914 Progesterone-mediated oocyte maturation 0.1176 hsa03008 Ribosome biogenesis in eukaryotes 1.64E-04

hsa03440 Homologous recombination 0.3907 hsa03040 Spliceosome 7.40E-04

hsa04672 Intestinal immune network for IgA production 0.8288 hsa03410 Base excision repair 1.98E-03

hsa04060 Cytokine-cytokine receptor interaction 0.9977 hsa00620 Pyruvate metabolism 9.57E-03

hsa01230 Biosynthesis of amino acids 0.0119

hsa01100 Metabolic pathways 0.0194

hsa01212 Fatty acid metabolism 0.0194

hsa01200 Carbon metabolism 0.0214

hsa00510 N-Glycan biosynthesis 0.0244

hsa00531 Glycosaminoglycan degradation 0.0244

hsa04360 Axon guidance 0.0244

hsa04612 Antigen processing and presentation 0.0244

hsa04917 Prolactin signaling pathway 0.0257

hsa00511 Other glycan degradation 0.0272

hsa04144 Endocytosis 0.0272

hsa03018 RNA degradation 0.0300

hsa04142 Lysosome 0.0322

hsa04330 Notch signaling pathway 0.0513

hsa01040 Biosynthesis of unsaturated fatty acids 0.0573

hsa04722 Neurotrophin signaling pathway 0.0754

hsa04910 Insulin signaling pathway 0.0872

hsa01210 2-Oxocarboxylic acid metabolism 0.0945

hsa04141 Protein processing in endoplasmic reticulum 0.1101

hsa00280 Valine, leucine and isoleucine degradation 0.1121

hsa04120 Ubiquitin mediated proteolysis 0.1121

hsa00270 Cysteine and methionine metabolism 0.1319

hsa00020 Citrate cycle (TCA cycle) 0.1527

hsa03050 Proteasome 0.1848

Tissue: aKEGG pathway enriched for survival-related genes in tissues (FDR < 0.2); P denotes the p-value for a KEGG pathway, enriched for tissues, in the cell line
dataset GSE26459. Cell line:bKEGG pathway enriched by DEGs between resistant and sensitive cell lines in dataset GSE26459 (FDR < 0.2).

for drug-resistant and drug-sensitive cell line models that
better represent the characteristics of clinical tissue samples.
According to our results, the DEGs from cell line dataset
GSE26459 were reproducible in tissue samples, indicating that
the cell line model from this dataset was representative of
the characteristics of clinical tissue samples. Tissue samples
were obtained by surgical resection before tamoxifen therapy.
Thus, the survival-related genes obtained from tissues were
intrinsic to the patient and not induced by tamoxifen
treatment. The resistant and sensitive cell lines from dataset
GSE26459 were selected from MCF subclones (Gonzalez-
Malerva et al., 2011); this might partly explain why the cell
lines from GSE26459 could represent the characteristics of
clinical tissue samples. The pathways enriched in tissues and
in cell line dataset GSE26459 (p < 0.2) have been reported
to be associated with tamoxifen resistance (Lamberts et al.,
1982; El-Ashmawy and Khalil, 2014). Moreover, the clinical
tamoxifen-resistance gene-pair signature we developed was

verified in independent validation dataset, which indicates
that our signature has some power to predict response to
tamoxifen therapy, and further demonstrates that we have
selected appropriate tamoxifen-resistant and tamoxifen-sensitive
cell line models.

Although the cell line models identified by our analytical
method could well reflect the information of clinical tissue
samples, there were some limitations. As patients with breast
cancer usually have good prognosis, the endpoint of their follow-
up is usually survival or recurrence time. Furthermore, as well as
the effects of drugs, many factors including mood, marital status,
and economic status could affect the survival of patients. The
above factors might cause that some of the survival-related genes
that we have identified are not involved in tamoxifen resistance.
In future work, use of more tissue sample data or an improved
algorithm should be considered. Moreover, as DNA methylation
patterns, genomic changes, etc., might also predict sensitivity
to drugs, the use of other types of data (such as microRNAs,
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FIGURE 2 | Performance of our signature in independent dataset. (A) RFS curves in the combined data from datasets GSE4922 and GSE2990. (B) RFS curves in
the dataset GSE42568. (C) RFS curves in the dataset GSE9195. (D) RFS curves in the combined data from datasets GSE42568 and GSE9195.

DNA methylations, and genomic changes) in cell line model
optimization deserve consideration in future studies.
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The non-cancerous components in tumor tissues, e.g., infiltrating stromal cells and
immune cells, dilute tumor purity and might confound genomic mutation profile analyses
and the identification of pathological biomarkers. It is necessary to systematically
evaluate the influence of tumor purity. Here, using public gastric cancer samples
from The Cancer Genome Atlas (TCGA), we firstly showed that numbers of mutation,
separately called by four algorithms, were significant positively correlated with tumor
purities (all p < 0.05, Spearman rank correlation). Similar results were also observed in
other nine cancers from TCGA. Notably, the result was further confirmed by six in-house
samples from two gastric cancer patients and five in-house samples from two colorectal
cancer patients with different tumor purities. Furthermore, the metastasis mechanism of
gastric cancer may be incorrectly characterized as numbers of mutation and tumor
purities of 248 lymph node metastatic (N + M0) samples were both significantly lower
than those of 121 non-metastatic (N0M0) samples (p < 0.05, Wilcoxon rank-sum test).
Similar phenomena were also observed that tumor purities could confound the analysis
of histological subtypes of cancer and the identification of microsatellite instability status
(MSI) in both gastric and colon cancer. Finally, we suggested that the higher tumor
purity, such as above 70%, rather than 60%, could be better to meet the requirement
of mutation calling. In conclusion, the influence of tumor purity on the genomic mutation
profile and pathological analyses should be fully considered in the further study.

Keywords: tumor purity, gastric cancer, microsatellite instability status, mutation calling algorithms, number of
mutation

INTRODUCTION

Somatic mutation is accumulated during tumor development, which is commonly believed to play
an important role in revealing the mechanism of carcinogenesis (Stratton et al., 2009; Stratton, 2011;
Nik-Zainal et al., 2012). Recently, through sequencing analysis of cancer genomes, considerable
advancements have been made in identifying cancer genes with “driver” mutation, such as TP53
(Moon et al., 2019), KRAS (Polom et al., 2019), BRAF (Yang et al., 2018a), EGFR (Paez et al., 2004),
and PIK3CA (Harada et al., 2016). They provide insights into understand cancer development, find
targets for therapeutic intervention (Alexandrov et al., 2013a,b) and develop diagnostic biomarkers.
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However, it has been reported that the identification of somatic
mutation may be influenced by tumor purity (Koboldt et al., 2012;
Cibulskis et al., 2013). As is known to all, tumor tissues collected
patients contain not only tumor cells, but also non-tumor cells,
e.g., infiltrating stromal cells, immune cells, fibroblasts and
normal cells (Joyce and Pollard, 2009), which could dilute the
purity of tumor cells. Specifically, DNA from tumor samples are
inevitably contaminated with non-tumor DNA. Various tumor
purities might affect mutation detections through disturbed
the numbers of mutated read (Raphael et al., 2014), and
consequently affect the biological interpretations of genomic
analyses (Aran et al., 2015).

Several approaches have been proposed to reduce the
influence of tumor purity on mutation detection. For example,
most studies generally require samples with at least 60% of
tumor nuclei. However, the threshold of tumor purity might
remain to be further evaluated (Aran et al., 2015). Practically, it
is often difficult to obtain some cancer samples with sufficient
tumor purity, such as diffuse gastric cancer and pancreatic
adenocarcinomas. The laser capture microdissection (LCM) is
commonly used to isolated pure tumor cells from tumor tissues
(Espina et al., 2006), but it is cost and time consuming, which
makes it difficult to be widely used in clinical scenes. Meanwhile,
other collection technologies have been reported to isolate
pure or putative tumor cells from tumor tissues. For example,
DEPArray technology could isolate putative tumor cells from
cancer samples (Lee et al., 2018), but it is difficult to handle
large number of cells from large volume of cancers because of
sorting time and the expenses (Lee et al., 2018). Furthermore,
several algorithms have been proposed to evaluate tumor purities
based on the copy number ploidy variations (Carter et al., 2012),
methylation (Zheng et al., 2014), or expression levels of signature
genes (Yoshihara et al., 2013). However, these tumor purities
commonly reflect the average proportion of various cell types
or are biased to a certain cell type. And the measurements of
genes are sensitive to experimental batch effects (Leek et al.,
2010; Oesper et al., 2014). The evaluation and correction of
tumor purity is very hard and the golden standard is still
dependent on the pathologists. Therefore, it is necessary to fully
evaluate the influence of tumor purity on the analysis of genome
mutation profile.

Gastric cancer is one of the common malignant tumors
(Siegel et al., 2017). Tumor progression of gastric cancer, e.g.,
metastasis or post-surgery relapse, is the main death cause,
and the tumor-node-metastasis (TNM) staging is an important
indicator for tumor progression, which T represents primary
tumor, N represents metastasis of regional lymph nodes and
M represents distant metastasis of cancer. Based on the TNM
system, the absence or presence of lymph node metastasis is
identified as N0M0 or N + M0. Meanwhile, according to
the Lauren’s pathological classification, gastric cancer could be
distinguished as intestinal, diffuse, or mixed subtypes (Shah
et al., 2011). Compared with intestinal subtype, diffuse subtype
has a different pattern of spread and behavior with a worse
prognosis (Shah et al., 2011). The TNM staging system and
the pathological classification are always used to determine
the treatment strategies for gastric cancer patients. Besides,

the microsatellite instability (MSI) status is another indicator
for determining the treatment regimen in gastric cancer and
colon cancer, which patients with high level of MSI (MSI-H)
are less likely to benefit from the 5-Fu-based chemotherapy
(Ilson, 2018). The MSI status were commonly identified by
using immunohistochemistry and polymerase chain reaction
(PCR), which measured the expressions of putative genes or
the mutations of putative sites. However, molecular analyses
between N0M0 and N + M0, or between diffuse and intestinal
subtypes, or the identification of MSI status, may be affected by
various tumor purities.

In this study, mainly using public gastric cancer samples from
The Cancer Genome Atlas (TCGA) for example, the influence of
tumor purity on mutation detection, pathological subtypes and
the identification of MSI status were evaluated. Moreover, the
biased influences were further evaluated in other nine cancers
from TCGA and the in-house samples with different tumor
purities from the same cancer patients. To obtain the robustly
biological interpretations of genomic and pathological analyses,
we suggested that the biased influences of various tumor purities
should be fully considered.

MATERIALS AND METHODS

Data and Pre-processing
Public Data and Pre-processing
The mutation profiles called by four algorithms (MuSE, MuTect2,
SomaticSniper, and VarScan2) and the clinical information of
stomach adenocarcinoma (STAD) samples were downloaded
from TCGA (Table 1).1 Generally, multiple slides which were
sampled from the top to bottom of the same tumor tissue were
collected. Each slide was consisted of tumor cells and non-
tumor cells. The percent of tumor nuclei in each slide was
evaluated by pathologists. According to the report by Yoshihara
et al. (2013), the tumor purity of a sample was the arithmetic
mean percent of tumor nuclei in all slides. If the information
of percent of tumor nuclei in one of the multiple slides was

1http://cancergenome.nih.gov/

TABLE 1 | Description of the number of public data/samples used in this study.

Cancer type Sample size

MuSE MuTect2 SomaticSniper VarScan2

STAD 432 436 426 432

BRCA 979 982 970 981

CRC 534 534 535 534

GBM 389 389 383 388

LGG 502 504 497 503

LIHC 361 363 360 363

LUAD 504 508 497 502

LUSC 485 487 482 485

PAAD 161 169 140 150

PRAD 472 486 456 475
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unavailable or the percent of tumor nuclei of all slides are
zeros, the sample is excluded. Moreover, the mutation profiles
and corresponding clinical information of other nine cancer
types, included breast invasive carcinoma (BRAC), colorectal
carcinoma (CRC), glioblastoma multiforme (GBM), brain lower
grade glioma (LGG), liver hepatocellular carcinoma (LIHC),
lung adenocarcinoma (LUAD), lung squamous cell carcinoma
(LUSC), pancreatic adenocarcinoma (PAAD), and prostate
adenocarcinoma (PRAD) were also downloaded, respectively.
And 723 cancer genes were downloaded from the COSMIC
database (Tate et al., 2019),2 which were used to analyze the
influences of tumor purity on mutation callings of cancer genes.

In-house Data and Measurement
Six surgical resection specimens from two gastric cancer patients
were measured by whole-exome sequencing with mean depth
of 80–100×. For each patient, three specimens were sampled
in three different locations, whose diameters of tumor tissues
were at least 50 mm, respectively. The tumor purities of six
samples, measured by pathologists, ranged from 26.5 to 92.5%, as
shown in Table 2. Meanwhile, five surgical resection specimens
collected from two colorectal cancer patients in our previous
study were used to validate the influence of tumor purity on
mutation detection (Yan et al., 2019). The tumor purities of five
colorectal cancer samples ranged from 40 to 100% (Table 2).
This study was approved by the institutional review boards of
all participating institutions, and written consent forms were
obtained from all participants.

Afterward, according to the manufacture’s protocol, total DNA
was isolated from the fresh frozen gastric tumor tissues and
the generated raw whole-exome sequencing files (.fastq) were
preprocessed using Trimmomatic (Bolger et al., 2014), and the
reference genome (GRCh37) was used to align reads using
Burrows-Wheeler aligner (BWA; Li and Durbin, 2009). Finally,
the mutations were called using default parameters. Mutations
included single nucleotide variation (SNV), indel (insertion and
deletion, less than 50 bp) in this study. And they were filtered to
exclude the mutation sites of germline risk based on gnomAD
variant dataset file.3 Only those SNVs which were identified as
mutations were further analyzed.

Statistical Analysis
The spearman rank correlation analysis was used to assess the
correlation between numbers of mutation and corresponding

2https://cancer.sanger.ac.uk/cosmic/
3https://gnomad.broadinstitute.org/downloads

TABLE 2 | The tumor purities of in-house gastric cancer and colorectal cancer
samples.

Patient Position A (%) Position B (%) Position C (%)

GC-1 92.50 72.50 26.50

GC-2 88.00 56.50 33.00

CRC-1 100.00 100.00 40.00

CRC-2 70.00 40.00 –

tumor purities in tumor samples. The wilcoxon rank-sum test
was used to assess the difference of tumor purities (or numbers
of mutation) between two groups of samples. And the fisher
exact test was used to evaluate the significance of mutation
frequencies of genes between high-purity and low-purity samples
or between N0M0 and N + M0 samples. N0M0 and N + M0
represent non-metastatic samples and lymph node metastatic
samples of gastric cancer, respectively. The hypergeometric test
and cumulative binomial test were used to assess the impact of
sample size on the correlation between numbers of mutation and
tumor purities, respectively.

RESULTS

Tumor Purity Confounds Mutation
Detection
Taken gastric cancer as an example, we firstly analyzed the
associations between numbers of mutation called by four
mutation calling algorithms (MuSE, MuTect2, SomaticSniper,
and VarScan2) and corresponding tumor purities, respectively.
Tumor purities of gastric cancer samples distributed dispersedly,
ranging from 5 to 100%. The tumor purity of about 72% gastric
cancers were higher than 70%. The results showed that numbers
of mutation called by MuSE and SomaticSniper algorithms were
significant positively correlated with tumor purities (p = 2.22e-
05 for MuSE and p = 1.84e-05 for SomaticSniper). Similar
results were also observed in numbers of mutation called by
MuTect2 (p = 1.00e-04) and VarScan2 (p = 7.73e-06) algorithms
which are implanted the correction parameters of tumor purity.
Notably, the significantly positive correlation between numbers
of mutation and tumor purities in other nine cancer types
could also be observed (Table 3). These results suggested
that mutation detections might be significantly influenced by
various tumor purities.

Then we verified the influence of tumor purity on mutation
detection using MuTect2 algorithm in six in-house gastric tumor
samples, which were sampled from three different locations with
different tumor purities from each gastric cancer patient. The
results showed that, for the samples from the same patient, the
numbers of mutation decreased as the tumor purities decreased,

TABLE 3 | The p-values of spearman’s rank correlations between tumor purities
and numbers of mutation in other nine cancer types.

Cancer types MuSE MuTect2 SomaticSniper VarScan2

BRCA 2.00e-04* 1.02e-02* 1.47e-06* 3.00e-04*

CRC 7.23e-02 2.03e-01 1.52e-04* 9.35e-02

GBM 3.42e-02* 1.16e-05* 1.66e-01 4.67e-02*

LGG 7.25e-08* 5.49e-06* 6.75e-10* 1.45e-08*

LIHC 5.65e-02 1.22e-01 5.20e-03* 2.98e-02*

LUAD 4.17e-02 8.84e-01 1.54e-02* 3.03e-01

LUSC 9.35e-05* 5.30e-03* 3.07e-08* 8.69e-05*

PAAD 2.34e-02* 3.42e-02* 7.40e-03* 6.71e-02

PRAD 4.00e-04* 4.00e-04* 3.61e-07* 7.05e-05*

*Represented the significance of p-value.
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FIGURE 1 | The result of mutation calling in different sampling positions. The number of mutation (or SNV) decreased as tumor purities decreased in two patients
with gastric cancer (A,B) and two patients with colorectal cancer (C,D).

as shown in Figures 1A,B. Similar results were also observed
in five in-house colorectal tumor samples collected from two
patients, as shown in Figures 1C,D. The results further confirmed
that various tumor purities might affect numbers of mutation.
Moreover, similar results were observed in numbers of mutation
detected by the Varscan2, SomaticSniper and MuSE algorithms,
respectively, which decreased with the tumor purities, as shown
in Supplementary Table 1.

Additionally, we further analyzed the numbers of mutated
reads aligned to each mutation site in measured gastric cancer
samples. For GC-1 patient, among 19 SNVs that were identified
in samples with tumor purities of 92.50 and 72.50%, 15 SNVs
were not detected in sample with the lowest tumor purity
of 26.50%. Nevertheless, they were aligned to several mutated
fragments (14 SNVs: 1–4 reads and 1 SNV: 6 reads). Similarly,
14 SNVs were not identified as mutations in the position C with

33% of tumor purity for GC-2 patient, but they were also aligned
to several mutated fragments (1–5 reads). Those unidentified
mutation sites in the position C of two patients included the
genes FBXO11 and XPO1, which were identified as cancer genes
in the COSMIC database,4 shown in Table 4. These results
indicated that the artificially low mutation burden might result
from low tumor purities.

Tumor Purity Confounds the Mutation
Differences Between Metastasis and
Non-metastasis of Gastric Cancer
Based on the non-synonymous mutation data of primary gastric
cancer samples from TCGA database, which were called by
MuTect2 algorithm, we found that the numbers of mutation

4https://cancer.sanger.ac.uk/cosmic/
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TABLE 4 | Mutations of FBXO11 and XP01 in different sampling positions.

Patient/
gene

Sites Mutation
type

Mutation site Mutation
reads

Aligned
reads

GC-1/
FBXO11

PositionA disruptive_
inframe_del

c.11_37del 5 57

PositionB disruptive_
inframe_ del

c.11_37del 8 51

PositionC no no 1 81

GC-2/
XP01

PositionA missense c.1426T > C 7 68

PositionB missense c.1426T > C 11 100

PositionC no no 0 98

in 248 N + M0 samples tended to be significantly less than
those in 121 N0M0 samples (p = 5.14e-02, Wilcoxon rank-
sum test, Figure 2A). Then we compared the differences of
multiple clinical factors between two subgroups, including age,
gender, tumor purity and grade, and found that only tumor
purity was significantly different between two subgroups. The
tumor purities in N +M0 samples were significantly lower than
those in N0M0 samples (p = 1.77e-02, Wilcoxon rank-sum test,
Figure 2B). In order to remove the biased influence of sample
sizes, we randomly selected 121 samples from 248 N + M0
samples and compared tumor purities and numbers of mutation
between 121 N0M0 and 121 N + M0 samples. The random
experiment was repeated 1,000 times. The result showed that
there were 546 times of significantly different tumor purities

between N0M0 and N + M0 samples, 388 times of significantly
different numbers of mutation, and 246 times that tumor purity
and number of mutation were both significantly different (all
p < 0.05, Wilcoxon rank-sum test). The results were not
happened randomly (p < 1.00e-16, hypergeometric test), which
indicated that the biased sample sizes could not be the main cause
of mutation differences between N0M0 and N + M0 samples.
Removing diffuse gastric tumor samples with high heterogeneity,
similar phenomena were also observed in intestinal gastric
cancer that numbers of mutation in 115 N + M0 samples were
significantly less than those in 46 N0M0 samples (p < 8.40e-
03, Wilcoxon rank-sum test, Figure 2C), and tumor purities
in 115 N + M0 samples were also significantly less than those
in 46 N0M0 samples (p < 4.24e-02, Wilcoxon rank-sum test,
Figure 2D). The results indicated that the difference of numbers
of mutation between N0M0 and N + M0 may be mainly caused
by the variations of tumor purity. The lower tumor purities of
N + M0 samples could lead to the artificially lower mutation
burden than that of N0M0 samples.

Meanwhile, we also found the mutation frequency of 1,184
genes were significantly different between N0M0 and N + M0
samples (p < 0.05, Fisher’s exact one-side test). Subsequently,
we divided the primary gastric tumor tissues into two groups
according to tumor purities. Totally, 129 samples whose tumor
purities were at least 80% were divided into the high-purity
group, while 127 samples whose tumor purities were less than
70% were divided into the low-purity group. The information of
low- and high-purity samples in different categories was shown

FIGURE 2 | The influence of tumor purity on mutation detection between N0M0 and N + M0 samples. The differences of number of mutation or tumor purity
between N0M0 and N + M0 samples (A,B), between N0M0 (N0M0-intes) and N + M0 (N + M0-intes) samples in intestinal gastric cancer (C,D), and between
high-purity and low-purity samples (E,F). Outline points were deleted.
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TABLE 5 | The number of low- and high-purity samples in different categories.

Sample size High_purity ≥ 80% Low_purity < 70%

All(436) 129 127

N0M0(121) 46 31

N + M0(248) 61 80

N + M0-intes(115) 28 40

in Table 5. The numbers of mutation in low-purity samples were
significantly lower than those in high-purity samples (p < 0.05,
Wilcoxon rank-sum test, Figures 2E,F). Similarly, the mutation
frequencies of 1,247 genes were significantly different between
high-purity and low-purity groups (p < 0.05, Fisher’s exact one-
side test). There were 184 genes overlapped with the 1,184 genes
of differentially mutated frequency between N0M0 and N +M0
samples, of which 182 genes had significantly higher mutation
frequency in both N0M0 samples and high-purity samples.
Gene SLC3A2 and APC, which were associated with metastasis
and neoplasia (Ghatak et al., 2017; Wang et al., 2017), were
included. These results indicated that various tumor purities had
an impact on mutation differences between N0M0 and N + M0
samples, which might confound the interpretation of metastasis
mechanism for gastric cancer.

Tumor Purity Confounds the Molecular
Analysis of Gastric Cancer Subtypes
We then evaluated the influence of tumor purity on the mutation
analysis between the diffuse and intestinal histological subtypes
of gastric cancer. No significant difference of tumor purity was
observed between 70 diffuse samples and 190 intestinal samples
(p = 1.45e-01, Wilcoxon rank-sum test). However, after excluding
five intestinal and four diffuse unrepresentative samples that only
had one slide with more than 90% of tumor purity, the tumor
purities of 66 diffuse samples tend to be significantly lower than
those of 185 intestinal samples (p = 5.04e-02, Wilcoxon rank-
sum test), while numbers of mutation in diffuse subtype were
significantly less than those in intestinal subtype (p = 9.49e-
05, Wilcoxon-rank test), as showed in Figure 3A. Furthermore,
similar phenomena that the significant differences of tumor
purities and numbers of mutation between the histological
subtypes of lung cancer (including LUAD and LUSA) or glioma
(including GBM and LGG) were also observed, respectively,
as shown in Figure 3B. The results suggested the various
tumor purities might confound the mutation differences between
different histological subtypes of cancer.

Tumor Purity Confounds the
Identification of MSI Status
We further evaluated the influence of various tumor purities
on the identification of a known pathological biomarker, the
MSI status, which is commonly used to determine the follow-
up treatment regimen for gastric and colon cancer patients.
According to the MSI status of gastric cancer, the tumor purities
of 241 samples with stable level of MSI were significantly lower

than both 72 MSI-H samples and 56 low level of MSI (MSI-
L) samples, respectively (all p < 0.05, Wilcoxon rank-sum test,
Figure 3C). Compared with the distribution of tumor purities
of gastric cancer samples, the tumor purities of colon cancer
samples distributed narrowly, and 86% of the colon cancer
samples were with ≥70% of tumor purities. No significant
correlation was observed between number of mutation and
tumor purity in colon cancer. However, the tumor purities of 83
MSI-H samples were significantly higher than those of 82 MSI-
L samples (p = 4.46e-02, Wilcoxon rank-sum test) and tentative
significantly higher than those of 291 samples with stable level
of MSI (p = 7.20e-02, Wilcoxon rank-sum test), respectively, as
shown in Figure 3C. The above results suggested that various
tumor purities might confound the identification of MSI status.

An Appropriate Threshold of Tumor
Purity for Mutation Calling
Finally, we took gastric cancer as an example to identify an
appropriate tumor purity for mutation calling. According to
the at least 60% of tumor purity required in most researches,
we firstly removed the gastric cancer samples with tumor
purity less than 60%, and observed that numbers of mutation
called by four algorithms were still significant positively
correlated with tumor purities (p < 0.05, Table 6). These
results indicated that higher tumor purity may be needed for
mutation calling. Then we analyzed samples with higher than
70% of tumor purity. No significant correlation was observed
between tumor purity and number of mutation, except for
SomaticSniper algorithm. Moreover, similar results that non-
significant correlation between tumor purities and numbers of
mutation were observed in other nine cancer types, except for
LGG (Table 6).

In order to remove the influence of sample size, the same
size of gastric samples with above 70% of tumor purity were
randomly selected from samples with ≥60% of tumor purity
and the correlations between tumor purities and numbers of
mutation were calculated. The random experiment was repeated
1,000 times. Finally, a cumulative binomial test was used to
assess the significance of positive correlation in the 1,000 random
experiments. The results showed that 65.50% of 1,000 random
experiments were significant correlations in Mutect2 algorithms
and more than 80% of 1,000 random experiments were significant
correlations in other three algorithms, respectively (all p < 0.05,
binomial test, Supplementary Table 2). Similar results of random
experiments were also observed in other multiple cancer types
(Supplementary Table 1). These results indicated that the sample
sizes could not be the major factor of correlation between number
of mutation and tumor purity. In a word, above 70% of tumor
purity, rather than 60%, might be better to meet the requirement
of mutation calling.

DISCUSSION

As showed in this study, numbers of mutation and tumor
purities were significantly positive correlation in gastric cancer
and other nine cancer types, regardless of calling algorithms. The
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FIGURE 3 | The influence of tumor purity on MSI status and pathological subtypes. (A) The differences of number of mutation or tumor purity between the diffuse
and intestinal gastric cancer. (B) The differences of number of mutation or tumor purity between GBM and LGG or between LUAD and LUSC. (C) The differences of
tumor purity between different MSI status both in gastric and colon cancer. Outline points were deleted.

lower tumor purities may lead to the artificially lower mutation
burden, which may consequently cause the misleading biological
interpretation of metastasis mechanism, pathological subtypes,
as well as pathological biomarker analyses. Finally, we suggested
that above 70% of tumor purity could be better to meet the
requirement of mutation callings.

Moreover, gene FBXO11, XPO1, SLC3A2, and APC, whose
mutation detections may be affected by various tumor purities
in gastric cancer, were closely related with cancer occurrence
and development. For examples, protein FBXO11 has both the
E3 ubiquitin ligase and methyltrasferase activity, which could
facilitate epithelial-mesenchymal transition (EMT), promote
PI3K/AKT pathway activation, and regulate metastasis and
apoptosis in human cancer (Kim et al., 2018, 2020; Sun
et al., 2018). Protein XPO1 is positively correlated with
cell proliferation and growth transformation, and negatively
correlated with poor survival outcomes, which could be a

promising molecular target in gastric cancer (Subhash et al.,
2018; Gruffaz et al., 2019; Sexton et al., 2019). Protein SLC3A2
is associated with the migration and invasion of tumor cells
(Wang et al., 2017), which is a potential biomarker for molecular
imaging-based detection of gastric cancer (Yang et al., 2012).
Gene APC, which is involved in Wnt/β-catenin signaling
pathway, has been reported to be associated with tumorigenesis,
tumor metastasis and resistance (Yang et al., 2018b).

Currently, many studies have been proposed that tumor
mutation burden (TMB) could predict the response to
immunotherapy (Goodman et al., 2017; Qin et al., 2018),
which patients with high TMB commonly responds better
to immunotherapy than patients with low TMB. However,
due to the differences in surgical sampling or biopsy sites of
tumor tissue, the TMB or the pathologic biomarkers, such as
PDL-1 (Anagnostou et al., 2017; Qin et al., 2018), could be
affected by various tumor purities. For this problem, some
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TABLE 6 | The p-values of spearman’s rank correlation between tumor purity
higher than 60 or 70% and number of mutation.

Cancer types MuSE MuTect2 SomaticSniper VarScan2

Tumor purity ≥ 60%

STAD 1.24e-04* 1.40e-03* 7.05e-05* 8.44e-05*

BRCA 1.40e-03* 4.68e-02* 5.57e-05* 4.80e-03*

CRC 1.08e-01 2.64e-01 5.48e-04* 1.14e-01

GBM 8.00e-02 5.37e-05* 1.96e-01 1.07e-01

LGG 1.26e-06* 1.88e-05* 2.59e-08* 1.72e-07*

LIHC 5.65e-02 1.22e-01 5.20e-03* 2.98e-02*

LUAD 7.03e-01 8.10e-01 4.01e-02* 5.49e-01

LUSC 6.85e-04* 1.58e-02* 5.63e-07* 4.54e-04*

PAAD NAN NAN NAN NAN

PRAD 7.61e-06* 3.31e-05* 4.10e-07* 3.29e-05*

Tumor purity > 70%

STAD 1.43e-01* 4.19e-01* 3.17e-02* 1.29e-01*

BRCA 1.78e-01 5.47e-01 1.76e-02* 7.00e-02

CRC 3.02e-01 5.69e-01 6.30e-03* 3.75e-01

GBM 1.14e-01 9.54e-05# 3.60e-01 1.34e-01

LGG 7.00e-03* 1.87e-02* 7.40e-03* 1.40e-03*

LIHC 1.76e-01 3.71e-01 3.58e-02* 1.42e-01

LUAD 3.74e-01 6.55e-01 4.80e-02* 4.17e-01

LUSC 3.40e-01 3.05e-01 1.84e-01 4.43e-01

PAAD NAN NAN NAN NAN

PRAD 8.21e-02 2.25e-01 2.61e-02* 7.45e-02

# and * represented non-significant and significant p-value (< 0.05) calculated by
spearman rank correlation, respectively. NAN represented that the p-value was not
calculated due to small sample size.

researches proposed to increase the sequencing depth to reduce
the false negatives from low tumor purity, but it might also
sharply increase the false positives of mutation detection, work
burden and cost.

Additionally, for the threshold of tumor purity, TCGA
originally required at least 80% of tumor nuclei (Aran et al.,
2015), but it is generally difficult to collect enough amount of
samples. Then, this threshold was later reduced to 60% as the
RNA-seq technology developed. And most current studies set
the threshold as 60%. However, the research by Dvir Aran et.al
(Aran et al., 2015) indicated that the impact of 60% of tumor
purity on the interpretation of genomic analyses remained to be
evaluated. Our results in ten cancer types showed that, above 70%
of tumor purity, rather than 60%, might be better to meet the
requirement of mutation calling and obtain relatively sufficient
and reliable mutation profiles. Certainly, a novel mutation
detection algorithm for tumor sample with low purity should be
developed as soon as possible.

A major limitation is that the tumor heterogeneity,
pathological subtypes, and the colonal selection of mutations do
affect mutation callings during the process of tumor occurrence
and development (Gerlinger et al., 2012), which could not be
excluded in this study. However, our study revealed that there
were universal significantly correlations between numbers of
mutation and tumor purities in ten cancer types. Although the
sample size of in-house data is small in this study, the low tumor
purities resulted in less mutations that were further demonstrated

in six gastric cancer samples from two patients and five colorectal
cancer samples from two patients with different tumor purities.
That suggested that numbers of mutation were influenced by
tumor purities regardless of tumor types and the influence of
tumor purity on number of mutation should be noticed.

In conclusion, the influences of various tumor purities on
mutation detection and pathological analyses should be fully
considered in further analysis. And we suggested that more than
70% of tumor purity could be better to meet the requirement of
mutation calling.
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Due to the difficulty in predicting the prognosis of endometrial carcinoma (EC) patients

by clinical variables alone, this study aims to build a new EC prognosis model integrating

clinical and molecular information, so as to improve the accuracy of predicting the

prognosis of EC. The clinical and gene expression data of 496 EC patients in the TCGA

database were used to establish and validate this model. General Cox regression was

applied to analyze clinical variables and RNAs. Elastic net-penalized Cox proportional

hazard regression was employed to select the best EC prognosis-related RNAs, and

ridge regression was used to construct the EC prognostic model. The predictive ability

of the prognostic model was evaluated by the Kaplan–Meier curve and the area under

the receiver operating characteristic curve (AUC-ROC). A clinical-RNA prognostic model

integrating two clinical variables and 28 RNAs was established. The 5-year AUC of the

clinical-RNA prognostic model was 0.932, which is higher than that of the clinical-alone

(0.897) or RNA-alone prognostic model (0.836). This clinical-RNA prognostic model can

better classify the prognosis risk of EC patients. In the training group (396 patients), the

overall survival of EC patients was lower in the high-risk group than in the low-risk group

[HR = 32.263, (95% CI, 7.707–135.058), P = 8e-14]. The same comparison result was

also observed for the validation group. A novel EC prognosis model integrating clinical

variables and RNAs was established, which can better predict the prognosis and help to

improve the clinical management of EC patients.

Keywords: endometrial carcinoma, cancer genomics, the Cancer Genome Atlas (TCGA), integrative model,

prognosis

INTRODUCTION

Endometrial carcinoma (EC) is a common malignant tumor of the female reproductive system,
and its incidence is increasing (Chen W. et al., 2016; Siegel et al., 2020). Metastasis or recurrence
often occurs in EC patients after surgery, and the median survival time of patients with recurrence
or metastasis is generally <12 months (Obel et al., 2006). Chemotherapy and radiation therapy
fail to kill tumor cells with high specificity. The 5-year overall survival rate of EC patients without
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metastasis is between 74 and 91% (Morice et al., 2016), while
the rate is reduced to 68 or 17% for EC patients with local or
distant metastases, respectively (Colombo et al., 2016). Therefore,
it is urgent to study the factors and mechanisms that affect the
prognosis of EC patients and improve the clinical management.

At present, the prognosis prediction of EC patients is
mainly based on the age at diagnosis, FIGO stage, pathological
classification, treatmentmethod, and other clinical variables. Due
to the strong individual differences in the stages of occurrence,
development, and metastasis of EC, it is difficult to accurately
predict the prognosis of EC patients through clinical variables
only (Frederick and Straughn, 2009). Studies have shown that
specific genes or molecular changes influence the prognosis
of EC patients (Bell and Ellenson, 2019). Molecules such as
ER, PR, p53, HER-2/neu, and Ki-67 have been used to predict
EC recurrence or prognosis; nevertheless, the results are still
controversial (Fanning et al., 2002; Jeon et al., 2006).

In recent years, a class of non-coding RNA (ncRNA),
including microRNA (miRNA) and long non-coding RNA
(lncRNA), which cannot encode proteins, has been found to play
an important role in life regulation (Djebali et al., 2012). More
and more studies show that abnormal expression of ncRNA is
closely related to the prognosis of EC patients. For example,
miRNA-200c, miR-944, HOTAIR, H19, and SRA are related to
prognosis of EC patients or the malignant degree of EC tumors
(Smolle et al., 2015; He et al., 2017; Wilczynski et al., 2018). The
expression levels ofmiR-142-3p,miR-142-5p, andmiR-15a-5p are
higher in EC patients with progression-free survival (PFS)>21
months than in EC patients with PFS<21months, suggesting that
miR-142 andmiR-15amay be useful for EC prognosis prediction
(Jayaraman et al., 2017). Hsa-mir-15a.MIMAT0000068, hsa-
mir-142.MIMAT0000433, hsa-mir-142.MIMAT0000434, hsa-mir-
3170.MIMAT0015045, hsa-mir-1976.MIMAT0009451, and hsa-
mir-146a.MIMAT0000449 are significantly related to EC overall
survival (OS), and the six-microRNA signature is an independent
prognostic factor of EC (Wang Y. et al., 2019). However, so far,
there has been no report on EC prognostic model integrating
mRNAs, miRNAs, lncRNAs, and clinical variables.

This study intends to analyze the clinical and genome-wide
mRNA, miRNA, and lncRNA expression data of EC patients in
The Cancer Genome Atlas (TCGA) database and screen RNAs
and clinical variables that are related to EC prognosis, with the
expectation of discovering new EC prognostic molecular markers
and establishing the integrated clinical-mRNA–miRNA–lncRNA
prognostic model, thus providing a theoretical basis for EC
prognostic risk assessment and individualized treatment.

MATERIALS AND METHODS

Data Acquisition and Selection
We searched the TCGA database and other open databases,
including Gene Expression Omnibus (GEO), International
Cancer Genome Consortium (ICGC), ArrayExpress, Oncomine,
etc. Only the TCGA database has an EC-related dataset with
both gene profiles and clinical survival information. Clinical
data, RNAseq-HTSeq FPKM data (including mRNA and lncRNA
profiles), and miRNAseq data of EC patients were downloaded

from the TCGA database (https://gdc-portal.nci.nih.gov/) in
June 2019, and the dataset obtained contains 548 EC patients.
Then, 52 of 548 EC patients were excluded. The reasons for
exclusion were as follows: (1) 14 EC patients had no clinical data
or mRNA, miRNA, and lncRNA gene expression profiles, and
(2) 38 EC patients survived <30 days after the first pathological
diagnosis. Eventually, 496 EC patients were included in this
study, and the data missing rates for each clinical variable and
the expression of each gene were <10%. The missing data
of the 496 EC patients included in this study were filled by
predictive mean matching. Differential expression analysis was
performed based on log2 transformation of RNA expression data.
From among all the patients involved in this study, 100 EC
patients were randomly selected as the validation group, while
the remaining 396 EC patients were used as the training group
for the construction of the EC prognostic model. Furthermore,
33 out of the 496 EC patients had mRNA, miRNA, and lncRNA
gene expression profiles of paracancerous tissues available, which
were used as the control group for differential expression analysis.

Construction of the Prognosis Model
The univariate Cox regression (the 2-sided log-rank test) was
applied to analyze 12 clinical variables, including age at initial
pathologic diagnosis, height, weight, histologic grade, clinical
stage, histologic type, initial pathological diagnosis method,
time since last menstruation, neoplasm status, race, surgical
approach, and tissue indicator (prospective or retrospective).
Clinical variables resulting in a univariate Cox regression P
< 0.05 were initially screened for inclusion multivariate Cox
regression analysis (αin = 0.10, αout = 0.15). Then, the clinical
variables selected by the multivariate Cox regression model were
identified, and the prognosis clinical model (model 1) of EC
patients based on the identified clinical variables was established.
Clinical variables that had a hazard ratio (HR) for death>1 were
considered to be risk-increasing clinical variables, and those with
HR<1 were defined as protective clinical variables.

The RNA genes related to EC prognosis were screened by the
following three steps: (1) A fold change (FC) and false discovery
rate (FDR) were applied to identify RNAs with differential
expression between the EC patient group (396 patients) and the
control group (33 controls). mRNAs,miRNAs, and lncRNAswith
a FC>2 or<-2 and FDR<0.05 were screened as differentially
expressed RNAs. (2) Univariate Cox regression analysis was used
to explore the relationship between the differentially expressed
RNAs and the prognosis of EC patients, and the differentially
expressed RNA with a univariate Cox regression P < 0.05 is
considered to be a prognosis-related RNA in EC patients. (3)
The three types of RNAs (i.e., mRNA, miRNA, and lncRNA)
with P < 0.05 identified in the univariate Cox regression analysis
were further subjected to elastic net-penalized Cox proportional
hazards regression analysis with 10,000 iterations and 10 cross-
validation (Zou and Hastie, 2005; Pak et al., 2020). Lastly, the
mRNAs, miRNAs, and lncRNAs with a non-zero elastic net-
penalized Cox proportional hazards regression coefficient were
the final selected RNAs considered to be related to the OS of
EC. Then, the ridge regression Cox model was used to fit the
selected RNAs (mRNAs, miRNAs, and lncRNAs) to construct
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the prognosis models of mRNA (model 2), miRNA (model
3), and lncRNA (model 4), respectively. The integrated RNA
molecular prognostic model (model 5) was then constructed
by fitting the selected mRNAs, miRNAs, and lncRNAs with the
ridge regression Cox model. Eventually, the integrated clinical-
RNA prognostic model was established by fitting the screened
prognosis-related clinical variables and RNAs with the ridge
regression Cox model (model 6). RNAs that had a HR for
death>1 were considered to be risk-increasing RNAs, and those
with HR<1 were defined as protective RNAs.

Evaluation of the Prognostic Model
The prognostic index (PI) is a weighted linear combination
of various factors in the prognostic model. In the prognostic
model, the PI value reflects the prognosis of the patient. PI is
positively proportional to the risk function. A greater PI value
indicates worse prognosis, and conversely, a smaller PI values
means better prognosis. Standardization was carried out for PI
to obtain a weighted prognostic index (WPI). The formulas used
for calculating PI and WPI of each patient are as follows:

PI =
∑

i

(βi × Vi) (1)

WPI =
PI −mean(PI)

SD(PI)
, (2)

Where β i is the regression coefficient of the i-th factor in the
model, V i is the value of the i-th factor of EC patients, and mean
(PI) and SD (PI) are the mean and standard deviation (SD) of
the PI vector in EC patients, respectively. Applying WPI = 0
as the cutoff point, the patients were classified into two groups
in terms of the predicted prognosis. Specifically, patients with
WPI≤0 were in the low-risk group, whereas those with WPI
> 0 were in the high-risk group. The Kaplan–Meier curves of
patients in the high-risk group and low-risk group were drawn
and subjected to the log-rank test. P≤0.05 indicates statistically
significant difference in theOS between the two groups. The areas
under the time-dependent ROC curves (AUC-ROC) of the six
prognostic models were calculated. The model with the greatest
AUC value was selected as the optimal prognostic model. An
AUC value between 0.7 and 0.9 is generally believed to indicate
medium predictive ability, while an AUC value greater than 0.9
indicates relatively ideal predictive ability. The larger is the AUC
value, the stronger is the predictive ability of the model.

GO and KEGG Enrichment Analysis
The online tool DAVID (The Database for Annotation,
Visualization and Integrated Discovery, version 6.8, http://david.
abcc.ncifcrf.gov) was used to perform the GO and KEGG
enrichment analysis for mRNAs, miRNA-targeted mRNAs
(mRNAs with miRDB database-predicted scores higher than 90),
and lncRNA-related mRNAs (Spearman’s correlation coefficient
rs >0.50 and P < 0.05) in the EC prognostic molecular model.
Fisher’s exact test was employed to select terms with P < 0.05 as
significant GO and KEGG pathway terms. GO analysis annotates
and classifies genes through biological process (BP), molecular
function (MF), and cell composition (CC).

Statistical Analysis
Data analyses in this study were conducted by R, version 3.6.1.
The missing data were filled by the “mice” R package (version
3.11.0), and differential expression analysis was performed with
the “limma” R package (version 3.26.9). The “survival” R
package (version 3.2-3) was applied for univariate Cox regression,
multivariate Cox regression, and plotting Kaplan–Meier curves.
The elastic net-penalized Cox proportional hazards regression
model and the ridge regression Cox model were analyzed using
the “glmnet” R package (version 3.0-2). The “timeROC” R
package (version 0.4) was used to plot the time-dependent
ROC curves and calculate the AUC values, and the “ggplot2” R
package (version 3.3.1) was used to generate figures of GO and
KEGG analysis.

RESULTS

Workflow
Figure 1 shows the process of our Study. RNA expression data
and corresponding clinical variable data from TCGA for EC
were analyzed. Cox proportional hazards regression was used
to analyze clinical variables related to EC prognosis. RNAs
related to EC prognosis were screened by differential expression
analysis, univariate Cox proportional hazards regression, and
elastic net-penalized Cox proportional hazards regression. The
EC prognostic model was constructed by using EC prognostic-
related RNAs/clinical variables, and the performance of the
prognostic model was evaluated.

Clinical Characteristics and Prognosis

Model of EC Patients
Among the 396 EC patients in the training group, 33 patients
died by the follow-up deadline and 363 patients survived. The
minimum and maximum ages of patients at initial pathological
diagnosis were 33 years and 89 years, respectively, with the
average age being 64.22 years (SD = 10.86 years). Univariate
Cox regression analysis indicated that histological grade, clinical
stage, and neoplasm status were statistically significant (P <

0.05) among the 12 clinical variables. Further multivariate Cox
regression analysis was performed for the three factors, and the
results suggested that histological grade and neoplasm status are
independent prognostic clinical variables of EC, and both of them
are EC risk factors (HR > 1). Then, a clinical prognostic model
of EC was established based on histological grade and neoplasm
status (Table 1).

Differentially Expressed and OS-Related

RNAs of EC
The EC RNA expression data acquired from TCGA database
were preprocessed, and a total of 36,844 RNAs (19,754 mRNA,
2,243 miRNA, and 14,847 lncRNA) were included in this
study. 1060 differential expression RNAs were screened by
differential expression analysis, including 920 mRNAs (353
upregulation and 567 downregulation, Figure 2A), 100 miRNAs
(83 upregulation and 17 downregulation, Figure 2B), and 40
lncRNAs (21 upregulation and 19 downregulation, Figure 2C).
Univariate Cox regression was performed on these 1,060
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FIGURE 1 | Flowchart of construction and evaluation of the EC prognostic model. AUC, the area under the receiver operating characteristic curve.
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TABLE 1 | Survival analysis results of demographic and clinical variables for EC patients in the prognostic model training group (396 patients).

Variables n

(%)a
Univariate Cox Multivariate Coxc

HRb (95% CI) P-value HRb (95% CI) P-value

Histological grade 3.27 (1.48–7.23) 0.003 1.89 (0.87–4.10) 0.107

G1 70 (17.68)

G2 88 (22.22)

G3 238 (60.10)

Neoplasm status 22.45 (9.25–54.47) <0.001 18.24 (7.38–45.08) <0.001

Yes 319 (84.62)

No 58 (15.38)

Data missing 19

Clinical stage 2.20 (1.61–2.98) <0.001

I 241 (60.86)

II 42 (10.60)

III 95 (23.99)

IV 18 (4.55)

Age at initial pathological diagnosis (years) 1.69 (0.78–3.63) 0.182

≤60 143 (36.11)

>60 253 (63.89)

Height (cm) 1.13 (0.84–1.53) 0.418

≤155 77 (20.70)

≤160 102 (27.42)

≤165 95 (25.54)

>165 98 (26.34)

Data missing 24

Weight (kg) 1.01 (0.73–1.39) 0.969

≤50 118 (31.13)

≤60 101 (26.65)

≤70 85 (22.43)

>70 75 (19.79)

Data missing 17

Histological typed

Serous 88 (22.22) – 0.111

Endometrioid 294 (74.24) 1.19 (0.15–9.22) 0.867

Mixed serous and endometrioid 14 (3.54) 0.56 (0.07–4.17) 0.568

Initial pathological diagnosis method 1.82 (0.91–3.65) 0.093

Biopsy 248 (63.42)

Other 143 (36.58)

Data missing 5

Time since last menstruation (months) 0.76 (0.44–1.31) 0.323

≤6 25 (6.87)

≤12 9 (2.47)

>12 330 (90.66)

Data missing 32

Raced

Black 87 (23.32) – 0.649

White 260 (69.71) 0.39 (0.08–2.00) 0.257

Asian 17 (4.56) 0.45 (0.11–1.90) 0.277

Other 9 (2.41) 0.31 (0.04–2.25) 0.249

Data missing 23

Surgical approach 1.26 (0.61–2.63) 0.532

Open surgery 222 (59.04)

(Continued)
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TABLE 1 | Continued

Variables n

(%)a
Univariate Cox Multivariate Coxc

HRb (95% CI) P-value HRb (95% CI) P-value

Minimally invasive 154 (40.96)

Data missing 20

Tissue collection indicator 0.80 (0.18–3.53) 0.769

Prospective 79 (19.95)

Retrospective 317 (80.05)

aBefore missing data is filled. bProtective RNA had a HR <1 and risky RNA had a HR > 1 in EC patients. cThe multivariate Cox regression analysis (αin = 0.10, αout = 0.15) was carried

out for clinical variables with P <0.05 in the univariate Cox regression analysis. dDummy variables were applied.

EC, endometrial carcinoma; CI, confidence interval; HR, hazard ratio.

FIGURE 2 | Volcano diagram of the differential expression RNAs in ECs and controls. (A) Volcano diagram of mRNA, (B) volcano diagram of miRNA, and (C) volcano

diagram of lncRNA.

differentially expressed RNAs individually, and there were
126 RNAs with P < 0.05 (115 mRNAs, 8 miRNAs, and 3
lncRNAs). Subsequently, the whole 126 RNAs were subjected
to elastic net-penalized Cox proportional hazard regression
analysis, and 17 RNAs related to EC prognosis were selected,
including 15 mRNAs (ANGPTL1, ALDH1A1, FIBIN, GFPT2,
HIST1H3H,HOXD8, IGFBP5,MAL,MMP1, PRKAR2B, PROM2,
SCARA3, SNAP25, TFPI, and TSPYL5), and 2 miRNAs (has-
miR-215-5p and has-miR-592). There is no lncRNA in the
17 RNAs. We do not think it can reflect the whole picture
of RNAs associated with EC prognosis. Recent studies have
shown that although lncRNA does not encode proteins, lncRNA
participates in gene expression regulation at various levels, such
as transcriptional regulation and posttranscriptional regulation.
The abnormal expression of lncRNA is usually associated
with the occurrence, recurrence, and metastasis of tumors
(Kopp and Mendell, 2018). Therefore, we used elastic net-
penalized Cox proportional hazard regression to screen the three
types of RNAs (mRNA, miRNA, and lncRNA), respectively.
Eventually, 28 EC OS-related RNAs (17 mRNAs, 8 miRNAs,
and 3 lncRNAs) were identified (Figure 3, Table 2). These
28 EC OS-related RNAs contain all 17 RNAs screened by
elastic net-penalized Cox proportional hazard regression using
whole genes.

RNA Molecular Prognostic Models of EC
The EC OS-related 17 mRNAs, 8 miRNAs, and 3 lncRNAs were
fitted with the ridge regression Cox model respectively to obtain
the corresponding mRNA prognostic model, miRNA prognostic
model, and lncRNA prognostic model. The 28 EC OS-related
RNAs were fitted with the ridge regression Cox model, and an
integrated mRNA–miRNA–lncRNAmolecular prognostic model
was established (Table 3).

Integrated Clinical-RNA Prognostic Model

of EC
The EC prognosis-related 28 RNAs and 2 clinical variables were
fitted with the ridge regression Cox model, and an integrated
clinical-RNA prognostic model was established (Table 3). As
listed in Table 4, the AUC (95% CI) values of the lncRNA
model based on the selected three lncRNAs at 1, 3, and 5 years
were 0.823 (0.719–0.928), 0.646 (0.505–0.788), and 0.737 (0.608–
0.870), respectively. These results suggest that the three lncRNAs
have a certain predictive effect on the prognosis of EC. The AUC-
ROC showed that except for the lncRNAmolecularmodel (model
4) with a 3-year prognosis AUC of 0.646 (<0.7), the minimum
AUC value of other models was 0.733. The AUC of the integrated
RNA molecular prognostic model (model 5) was ≥0.821, which
is greater than the AUC of mRNA, miRNA, and lncRNA models,
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FIGURE 3 | The cross-validation curves of the elastic net-penalized Cox proportional hazard regression. (A) Cross-validation curve for mRNA, (B) cross-validation

curve for miRNA, and (C) cross-validation curve for lncRNA.

TABLE 2 | The 28 identified EC prognosis-related RNAs.

Number Gene symbol HRa 95% CI P-valueb Regulationc Coefficientd

mRNA

1 ALDH1A1 1.001 1.001–1.002 <0.001 Down 0.0002

2 ANGPTL1 1.001 1.001–1.002 <0.001 Down 0.0018

3 COL4A6 1.113 1.061–1.169 <0.001 Down 0.0324

4 FIBIN 1.028 1.016–1.040 <0.001 Down 0.0024

5 GFPT2 1.026 1.014–1.038 <0.001 Down 0.0042

6 HIST1H3H 1.011 1.005–1.016 <0.001 Up 0.0059

7 HOXD8 1.019 1.009–1.028 <0.001 Down 0.0022

8 IGFBP5 1.001 1.0005–1.0014 <0.001 Down 0.0001

9 MAL 1.001 1.001–1.002 <0.001 Up 0.0005

10 MMP1 1.006 1.003–1.009 <0.001 Up 0.0005

11 PRKAR2B 1.036 1.016–1.055 <0.001 Down 0.0034

12 PROM2 1.008 1.004–1.012 <0.001 Up 0.0031

13 RAB26 1.020 1.008–1.032 0.001 Up 0.0001

14 SCARA3 1.003 1.002–1.005 <0.001 Down 0.0011

15 SNAP25 1.125 1.075–1.177 <0.001 Down 0.0567

16 TFPI 1.057 1.030–1.084 <0.001 Down 0.0114

17 TSPYL5 1.015 1.008–1.022 <0.001 Down 0.0078

miRNA

18 hsa-miR-141-3p 1.034 1.001–1.068 0.041 Up −0.0002

19 hsa-miR-191-5p 0.999 0.999–1.000 0.048 Up −0.00002

20 hsa-miR-192-5p 1.000 1.00001–1.00007 0.011 Up 0.00002

21 hsa-miR-215-5p 1.003 1.001–1.005 <0.001 Up 0.00205

22 hsa-miR-3170 0.875 0.779–0.983 0.024 Up −0.0465

23 hsa-miR-3613-5p 0.963 0.931–0.997 0.034 Up −0.0143

24 hsa-miR-592 1.006 1.003–1.009 0.001 Up 0.00483

25 hsa-miR-7-5p 1.034 1.001–1.068 0.041 Up 0.03034

lncRNA

26 DNM3OS 1.057 1.004–1.112 0.036 Down 0.05966

27 FAM83H-AS1 1.014 1.001–1.027 0.042 Up 0.01465

28 RP11-295G20.2.1 1.010 1.000–1.020 0.049 Up 0.00946

aProtective RNA had a HR <1 and risky RNA had a HR > 1 in EC patients. bUnivariate Cox regression P value <0.05 was considered statistically significant. cType of regulation

(upregulated or downregulated) in ECs vs controls. dElastic net-regulated Cox regression coefficient.

EC, endometrial carcinoma; HR, hazard ratio; CI, confidence interval.
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TABLE 3 | Ridge regression Cox prognostic model.

Number Variable Coefficienta Coefficientb Coefficientc Coefficientd Coefficiente

mRNA

1 ALDH1A1 0.000460 - - 0.0003 0.0003

2 ANGPTL1 0.005925 - - 0.0056 0.0033

3 COL4A6 0.033186 - - 0.0322 0.0343

4 FIBIN 0.004171 - - 0.0053 0.0037

5 GFPT2 0.005855 - - 0.0058 0.0033

6 HIST1H3H 0.006833 - - 0.0068 0.0071

7 HOXD8 0.003590 - - 0.0039 0.0034

8 IGFBP5 0.000262 - - 0.0003 0.0003

9 MAL 0.000456 - - 0.0004 0.0005

10 MMP1 0.001393 - - 0.0011 0.0004

11 PRKAR2B 0.009734 - - 0.0097 0.0043

12 PROM2 0.002367 - - 0.0020 0.0018

13 RAB26 0.005232 - - 0.0051 0.004

14 SCARA3 0.001498 - - 0.0014 0.0019

15 SNAP25 0.044875 - - 0.0377 0.0333

16 TFPI 0.015739 - - 0.0141 0.0173

17 TSPYL5 0.008143 - - 0.0079 0.0066

miRNA

18 hsa-miR-141-3p - −0.000121699 - −0.00006 −0.00007

19 hsa-miR-191-5p - −0.000123281 - −0.00004 −0.00003

20 hsa-miR-192-5p - 2.08217E-05 - 0.00001 0.00001

21 hsa-miR-215-5p - 0.001517209 - 0.0009 0.0009

22 hsa-miR-3170 - −0.02585058 - −0.019 −0.0256

23 hsa-miR-3613-5p - −0.00941356 - −0.0058 −0.0063

24 hsa-miR-592 - 0.00339596 - 0.0033 0.005

25 hsa-miR-7-5p - 0.01726421 - 0.0144 0.0159

lncRNA

26 DNM3OS - - 0.054349555 0.0044 0.0074

27 FAM83H-AS1 - - 0.012946912 0.0023 0.0021

28 RP11-295G20.2.1 - - 0.008863742 0.0034 0.0042

Clinical

29 Histologic grade - - - - 0.1432

30 Neoplasm status - - - - 1.1664

aCoefficient of the mRNA ridge regression Cox model (model 2). bCoefficient of the miRNA ridge regression Cox model (model 3). cCoefficient of the lncRNA ridge regression Cox model

(model 4). dCoefficient of the mRNA–miRNA–lncRNA ridge regression Cox model (model 5). eCoefficient of the clinical-RNA ridge regression Cox model (model 6).

suggesting that the integrated RNA molecular prognostic model
is superior to the mRNA or miRNA or lncRNAmodel in terms of
predictive ability. As for the clinical prognostic model, the AUC
value was ≥0.830, implying that the two clinical variables (i.e.,
histological grade and neoplasm status) screened in this study can
predict the prognosis of EC. The 1-, 3-, and 5-year AUC values
of the integrated clinical-RNA prognostic model (model 6) were
≥0.919, being greater than the AUC values of other models at the
same time point. This indicates that the integrated clinical-RNA
prognostic model has the best predictive ability among the six
models (Figure 4).

The integrated clinical-RNA prognostic model was used to
calculate the WPI value of each EC patient in the training group
(396 patients). TheWPI value of EC patients ranged from−1.957

to 4.831. Taking WPI = 0 as the cutoff point, the EC patients
were divided into the high-risk group (147 patients) and low-
risk group (249 patients) (Figure 5A). The difference between
the two groups’ Kaplan–Meier curves was statistically significant
(P = 8e-14). The prognosis of EC patients was worse in the
high-risk group than in the low-risk group [HR = 32.263, (95%
CI, 7.707–135.058)], suggesting that the integrated clinical-RNA
prognostic model enables accurate prediction of the prognosis
of EC patients (Figure 5C). Furthermore, this model was used
to calculate the WPI value of each EC patient in the validation
group (100 patients) to predict the prognosis of EC patients. The
WPI value of EC patients in the validation group ranged from
−1.455 to 3.822. Taking WPI = 0 as the cutoff point, the EC
patients in the validation group were divided into the high-risk
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TABLE 4 | 1-, 3-, and 5-year AUC of the EC prognostic model.

Model 1-year 3-year 5-year

AUC 95% CI AUC 95% CI AUC 95% CI

1. Clinical model 0.830 0.695–0.964 0.872 0.808–0.936 0.897 0.828–0.966

2. mRNA model 0.894 0.764–1.025 0.756 0.634–0.879 0.783 0.664–0.903

3. miRNA model 0.733 0.579–0.888 0.761 0.653–0.869 0.763 0.646–0.879

4. lncRNA model 0.823 0.719–0.928 0.646 0.505–0.788 0.737 0.608–0.870

5. RNA model 0.927 0.813–1.042 0.821 0.717–0.925 0.836 0.733–0.938

6. Clinical-RNA model 0.979 0.949–1.008 0.919 0.860–0.978 0.932 0.875–0.989

AUC, the area under the receiver operating characteristic curve; CI, confidence interval.

FIGURE 4 | The time-dependent receiver operating characteristic curves. (A–F) The 1-, 3-, and 5-year ROC curves of the clinical model, mRNA model, miRNA

model, lncRNA model, RNA model, and clinical-RNA model.

group (41 patients) and low-risk group (59 patients) (Figure 5B).
The difference between the two groups’ Kaplan–Meier curves
was statistically significant (P = 0.0052). The prognosis of EC
patients in the high-risk group was worse than that of patients
in the low-risk group [HR = 6.674, (95% CI, 1.437–30.995)],
showing that the integrated clinical-RNA prognostic model also
has satisfactory accuracy in predicting the prognosis of EC
patients in the validation group (Figure 5D).

Functional Analysis of EC

Prognosis-Related Genes
Taking the union of the 17 mRNAs, the 371 target mRNAs of
the 8 miRNAs, and the 300 mRNAs related to the 3 lncRNAs
in the RNA prognostic model, a gene set with 652 mRNAs was
obtained and subjected to GO and KEGG analyses. The GO
analysis results show that in biological processes, target genes

are mainly enriched in “signaling,” “positive regulation of RNA
polymerase II promoter transcription,” and “negative regulation
of RNA polymerase II promoter transcription” (Figure 6A). In
terms of cellular composition, the target genes are mainly located
in the “cytoplasm” and “plasma membrane” (Figure 6B). As for
the molecular function, “protein binding” is the most important
mode (Figure 6C). According to the results of KEGG analysis,
the top three pathways are pathways in cancer, the PI3K-Akt
signaling pathway, and the focal adhesion pathway (Figure 7).

DISCUSSION

At present, researchers have been searching for EC prognosis-
related biomarkers and establishing EC prognostic prediction
model with higher accuracy to provide better clues for
formulating reasonable individualized treatment plans, thereby
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FIGURE 5 | Prognostic performance assessment of integrated clinical-RNA prognostic model. WPI distributions and stratifications of EC patients in training set (A)

and validating set (B), respectively. Kaplan–Meier curves for stratifications in training set (C) and validating set (D), respectively. WPI, weighed prognostic index; HR,

hazard ratio.

improving patients’ prognostic quality of life. After acquiring
the clinical data of EC patients from the TCGA database
and the full mRNA, miRNA, and lncRNA genome expression
profiles, 30 factors related to EC prognosis, including two clinical
variables and 28 RNAs, were identified in this study. Based on
the 30 EC prognosis-related factors, 6 EC prognosis models
were established: clinical model, mRNA model, miRNA model,
lncRNA model, integrated RNA model, and integrated clinical-
RNA model. The clinical-RNA model displayed the highest AUC
(≥ 0.919), indicating the strongest predictive ability among the
six prognostic models.

Previous studies have shown that the clinical variables related
to the prognosis of EC include pathological grade, pathological
stage, FIGO stage, age at initial pathological diagnosis, degree

of muscular invasion, vascular tumor thrombus, and lymph
node metastasis (Braun et al., 2016; Morice et al., 2016). Our
study suggests that histological grade and neoplasm status are
independent prognostic factors for EC overall survival.

There were 17 prognosis-related mRNAs with HR>1,
indicating that an increased expression level of these mRNAs will
increase the risk of death in EC patients. Most of these genes are
reportedly related to the occurrence, development, or prognosis
of cancer. The expression of ALDH1A1 is upregulated in
endometrial carcinoma cells (Shiba et al., 2019), and ALDH1A1
is a confirmed oncogene for lung cancer (Gao et al., 2015).
As a member of angiopoietin-like protein genes, ANGPTL1
acts as a tumor-suppressor gene in various tumors (Chen H.
A. et al., 2016). The absence of COL4A6 may cause familial
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FIGURE 6 | GO analysis of the 28 validated genes. (A) Biological process (BP), (B) cellular component (CC), and (C) molecular function (MF).
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FIGURE 7 | KEGG analysis of the 28 validated genes.

hemorrhagic nephritis (Murata et al., 2016). GFPT2 is highly
expressed in lung cancer (Zhang et al., 2018). HIST1H3H is
a histone gene, and its high expression is related to the OS,
relapse-free survival (RFS), and distant metastasis-free survival
(DMFS) of breast cancer patients (Xie et al., 2019). HOXD8
belongs to a homeobox gene family and is closely related to
cell proliferation, apoptosis, and cell cycle. Studies have found
that HOXD8 is a downstream target gene of miR-5692a. MiR-
5692a plays the role of an oncogene in the occurrence and
development of liver cancer by regulating the expression of
HOXD8 (Sun et al., 2019). IGFBP5 is a tumor-suppressor gene for
leukemia, osteosarcoma, breast cancer, and pancreatic cancer and
participates in cell biological functions, such as cell metastasis
and apoptosis (Baxter, 2014). Hypermethylation of MAL in
cervical intraepithelial neoplasia accelerates cervical lesions
(Meršaková et al., 2018). High expression of MMP1 in cancer
tissues leads to accelerated angiogenesis, thus promoting the
proliferation and migration of cancer cells (Pahwa et al., 2014).
It has been clarified that the PRKAR2B gene is overexpressed

in castration-resistant prostate cancer (CRPC), which mainly
promotes cell-cycle biological processes, accelerates CRPC cell
proliferation and invasion, and inhibits CRPC cell apoptosis
(Sha et al., 2017). The expression of PROM2 (prominin 2) is
upregulated in kidney cancer and melanoma (Rohan et al., 2006;
Winnepenninckx et al., 2006). The function of RAB26 is mainly
related to membrane transport and cell autophagy. Some studies
have found that RAB26 can affect the metastasis and invasion
of breast cancer (Schwartz et al., 2007). SCARA3 inhibits the
lethal effect of dexamethasone and bortezomib on myeloma cells
(Brown et al., 2013). SNAP25 is mainly involved in the occurrence
and development of mental diseases (González-Giraldo and
Forero, 2020). TFPI reduces tumor cell-induced coagulation
activation and lung metastasis, and it has shown inhibitory effect
on primary and metastatic tumors in mice (Hembrough et al.,
2003; Amirkhosravi et al., 2007). Some studies suggest that the
methylation of the tumor-suppressor gene TSPYL5 will cause
its expression silencing and, thereby, gastric cancer (Jung et al.,
2008).
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In this study, eight EC prognosis-related miRNAs were
identified. The HR values of miR-141-3p, miR-192-5p, miR-
215-5p, miR-592, and miR-7-5p were greater than 1, indicating
that the five miRNAs are highly expressed in EC, acting as
tumor genes and prognostic risk factors. MiR-141-3p acts as a
tumor-suppressor gene in colorectal cancer and enhances the
sensitivity of colorectal cancer cells to cetuximab by inhibiting
EGFR (Xing et al., 2020). MiR-192-5p plays different roles in
different cancers, e.g., it is highly expressed in gastric cancer
and pancreatic ductal cancer, while the expression is low in lung
cancer (Feng et al., 2011; Zhao et al., 2013; Chen et al., 2014).
Overexpression ofmiR-215-5p in colorectal cancer leads to G2/M
phase cell-cycle arrest and p53-dependent apoptosis induction,
thus reducing the proliferation and migration of colorectal
cancer cells (Vychytilova-Faltejskova et al., 2017). The biological
function of miR-592 varies according to the cancer type. Its
overexpression in liver cancer inhibits the proliferation and
metastasis of cancer cells, while the opposite effect is observed
in prostate cancer (Wang et al., 2012; Lv et al., 2015). Studies
have shown that miR-7-5p can inhibit tumor development by
regulating the PI3K/Akt pathway and the expression of the target
gene KLF4 (Fang et al., 2012; Okuda et al., 2013). The other
three miRNAs (i.e., miR-191-5p, miR-3170, and miR-3613-5p)
have HR values lower than 1, indicating that these three genes
are protective factors for EC prognosis, i.e., their high expression
reduces the risk of death in EC patients. The overexpression
of miR-191-5p in lung adenocarcinoma downregulates Wnt
signaling via the target gene SATB1, thus blocking lung cancer
cell migration and proliferation (Zhou et al., 2020). Studies have
shown that the prognosis is better in EC patients with high
expression ofmiR-3170 than in those with low expression ofmiR-
3170 (Wang Y. et al., 2019). The expression level of miR-3613-
5p in the serum of patients with endometriosis is significantly
reduced (Cosar et al., 2019).

The HR values of the three identified EC prognosis-related
lncRNAs (e.g., DNM3OS, FAM83H-AS1, and RP11-295G20.2.1)
are all greater than 1, indicating that they are prognostic risk
factors for EC. Studies have observed that the expression of
DNM3OS is upregulated in gastric cancer tissues and cell lines.
Knocking out DNM3OS hinders snail-mediated epithelial-to-
mesenchymal transition, thereby inhibiting the proliferation,
migration, and invasion of gastric cancer cells (Wang S.

et al., 2019). FAM83H-AS1 promotes radiation resistance and

metastasis of ovarian cancer via targeted HuR protein (Dou
et al., 2019). At present, the specific biological function of RP11-
295G20.2.1 is not clear, and its relationship with the occurrence,
development, and prognosis of EC needs to be confirmed by
further experimental research.

CONCLUSIONS

In summary, 28 RNAs that are related to the prognosis of
EC patients were identified in this study, and a clinical-
mRNA–miRNA–lncRNA prognostic model for EC patients was
established. The predictive ability of this clinical-RNA model is
significantly better than the clinical-alone model and RNA-alone
model in terms of prognosis prediction for EC patients. This
study provides a scientific basis for discovering new prognostic
markers for EC patients, clarifying the molecular mechanism of
EC prognosis, and improving prognosis and clinical management
of EC patients.
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