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Editorial on the Research Topic

Broadening the Use of Machine Learning in Hydrology

The introduction of deep learning (DL) (LeCun et al., 2015) into hydrology around 2016–2018
(Tao et al., 2016; Laloy et al., 2017, 2018; Shen, 2018; Shen et al., 2018), especially the use of long
short-term memory (LSTM) as a dynamical modeling tool for soil moisture and streamflow (Fang
et al., 2017; Kratzert et al., 2019), has ignited a surge in machine learning applications across all
domains of hydrology. At the core, machine learning is a set of tools that allow us to build and
train models that extract and reproduce the spatial and temporal patterns in the datasets they
encounter. In particular, the central philosophy of DL has been to minimize the intervention of
the human experts in feature design and to facilitate maximal extraction of information from data
(Goodfellow et al., 2016). Improved prediction quality in hydrologicmachine learning (ML)models
has been achieved not by infusing process-based assumptions into the models, but by conducting
extensive training of the models with large quantities of a priori data. It has been argued by Nearing
et al. (2020) that there could be significantly more information in large-scale hydrological data sets
than hydrologists have been able to translate into theory or process-based models. The hydrology
community is poised to fully explore the power in the vast amount of data using machine learning
in various subdomains of hydrology.

In this Research Topic, we sought to broaden the use of machine learning (ML) in hydrology
rather than emphasizing the depth of a specific topic. We sought applications of machine learning
in both data-rich and data-scarce settings. We are highly encouraged to see the diversity and
breadth covered by the resulting collection of published papers, which have almost covered the
entire water cycle. A variety of machine learning techniques have been adapted to address various
challenges existing in predicting the hydrologic cycle, ranging from a dynamical modeling tool
to event localization, and from information extraction to a hypothesis generator. In the following
section, we briefly go over some editor-identified highlights of the papers.

Precipitation, as the beginning of the hydrologic cycle, is a major source of uncertainty, and
most satellite products are still too coarse for water management purposes, making precipitation
downscaling a high-stakes activity. Sun and Tang employed an attention-based, deep convolutional
neural network (AU-Net) to downscale coarse-resolution satellite-based precipitation data
products to 1 km resolution (learning from gauge-based precipitation data products), with the
help of auxiliary predictors including elevation, vegetation index, and air temperature. Novel
to hydrology, authors employed an attention mechanism that extracts multiscale features by
fusing gauged data. However, there are often missing values in gauged precipitation data due
to various instrumentation and data quality issues. Mital et al. developed a new sequential
imputation algorithm based on a Random Forest technique for interpolating the missing values in
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spatio-temporal daily precipitation records. They found that, for
reliable imputation, having a few strongly correlated references
is more effective than having a larger number of weakly
correlated references.

Snow is an important precipitation component that is even
more difficult to measure (in-situ or remotely) than rainfall.
Meyal et al. wrote one of the first papers to simulate a
snow water equivalent (SWE) using LSTM, leveraging climatic
and SWE data from five Snow Telemetry (SNOTEL) stations.
They reported Nash Sutcliffe efficiency coefficient (NSE) values
ranging from 0.85 to 0.96. The authors build an automated
prediction system with online data ingestion. This standard
application demonstrated the plausibility of using LSTM for
large-scale operational SWE modeling. With only five training
sites, however, it remains to be seen if the model can be applied
to larger scales.

Streamflow is an important and human-relevant component
of the hydrologic cycle. Duan et al. employed a temporal
convolutional neural network (TCNN), a one-dimensional
dilated convolutional unit with sequential or causal connections,
for long-term streamflow projection in California. By
comparing the performance of TCNN against other machine
learning approaches including the LSTM, Duan et al. not
only showed that TCNN excelled at capturing high flows,
but also qualitatively demonstrated that TCNN yielded
physically plausible estimations of streamflow in responding to
precipitation under future extreme climate scenarios beyond the
historic records (e.g., under high temperature and quadrupled
precipitation), showing that causal convolutions could enhance
the stability of ML models when extrapolated outside of their
trained conditions.

While still dealing with surface water, Oppel and Mewes
present a slightly different application that used machine
learning to localize events. They compared several machine
learning approaches ranging from support vector machines to
extreme learning machines to identify the beginning and end
of multiple flood events along with their associated volumes
from hydrographs. They also demonstrated that the MLmethods
afford additional benefits in facilitating the automation of
the workflow, which can lead to increased scalability for
practical operations.

With the groundwater of the hydrological cycle, Sahu et al.
trained a Multilayer Perceptron (MLP) model to predict three-
point observations of groundwater levels using temperature,
precipitation, river discharge, and past groundwater data as
inputs. The authors conducted a sensitivity analysis of features’
importance and observed that providing all available inputs
to their MLP models was not necessarily the optimal choice.
They also found that MLPs trained solely on temperature and
historical groundwater level measurements as features were
unreliable at all locations, which alluded to the dynamical linkage
between surface hydrology and groundwater. Future sensitivity
analysis will likely be accompanied by uncertainty estimates
to ensure the robustness of the analysis. We also note more
effort should be focused on finding ways to generalize these
types of models outside of locations with data included in the
training set. Groundwater flow problems, due to their lack of

observation, the three-dimensional nature of the problem, and
strong heterogeneity, are difficult to formulate into uniform
learnable problems.

Diving deep into the subsurface environment, Generative
Adversarial Networks (GAN) are becoming an alternative to
Multiple-point Statistics (MPS) techniques to generate stochastic
subsurface fields from training images. An open issue for all the
training image-based simulation techniques (including GAN and
MPS) is to generate consistent 3D field realizations when only
2D training data sets are available. This is especially relevant to
groundwater hydrology for which it is difficult, if not impossible,
to collect exhaustive and accurate data about the 3D subsurface
distribution of rock types (or physical properties). Coiffier et al.
introduced a novel approach termed Dimension Augmenter
GAN (DiAGAN) that enables GANs to generate 3D fields from
2D examples. Themethod is simple to implement as it introduces
a random cut sampling step between the generator and the
discriminator of a standard GAN. Numerical experiments show
that for complex binary subsurfacemedia, the proposed approach
is efficient and provides results of similar quality as those
obtained by a state-of-the-art MPS method.

Around the world, many aspects of urban water systems, e.g.,
water supply, discharge, and stormwater management, require
upgrades to adapt to the challenges of global change and urban
growth.We expect there will be a substantial surge in applications
of ML in urban water systems to improve their efficiency and
transform them into smart cities. Allen-Dumas et al. wrote a
thorough review that synthesized ways in which ML techniques
have been applied to different parts of the urban water system
in order to address multiple water hazards. They discussed
ML applications in monitoring, early warning, prediction of
urban water hazards (floods, drought, water contamination, soil
erosion, and sediment transport), multi-hazard risks (compound
risks), selection of best management practices, etc. They argued
that by weaving together multiple ML methods for different
risks, we can eventually arrive at a comprehensive watershed-
to-community planning workflow for smart-city management of
urban water resources.

In agreement with the general trend in the field of hydrology,
the abovementioned papers have covered most components of
the hydrologic cycle. Outside of this Research Topic, machine
learning has been applied to soil moisture (Fang et al., 2019),
soil data extraction (Chaney et al., 2019), hydrology-influenced
water quality variables including in-stream water temperature
(Rahmani et al., 2020) and dissolved oxygen (Zhi et al., 2021),
human water management through reservoirs (Yang et al., 2019;
Ouyang et al., 2021), subsurface reactive transport (Laloy and
Jacques, 2019; He et al., 2020), and vadose zone hydrology
(Bandai and Ghezzehei, 2021), among others. ML is not only
applicable in data-rich regions but can also be leveraged by
data-scarce regions (Feng et al., 2021; Ma et al., 2021). DL-
native methods for uncertainty quantification have also emerged
(Zhu et al., 2019; Fang et al., 2020). What is still missing to
date includes vegetation hydraulics, glaciers, preferential flow,
hyporheic exchange, and regional groundwater recharge, though
this list is incomplete. We believe these components will be
covered by machine learning approaches in the future.
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While the broadening of ML has been, to some extent,
achieved, one can also notice some limitations and unrealized
potential. First, most of the abovementioned use cases are siloed
to one variable, e.g., streamflow or precipitation. Second, many of
the presented examples are built on small datasets, which means
that instead of having learned universally-applicable physical
laws, they were locally-fitted models based on the measurement
sites in question. The implications of these limitations are that
the models are not transferable outside the training region, their
potential prediction failures are not yet sufficiently tested, and
the information from one observed variable cannot influence the
other variables.

There are many angles from which one can overcome the
limitations. From a purely data-driven perspective, multi-task
learning could allow multiple variables to interact and inform
each other. A multiphysics land surface model can be trained
to simultaneously predict multiple physical variables in the
context of multi-task learning, which is known to improve all
tasks. This is because many tasks can use shared representations
and are thus constrained by multiple targets at the same time
(Caruana, 1997). Alternatively, one may seek to organically tie
in physical processes with machine learning, allowing known
physical laws such as themass balance and the law of flow to serve
as the connective tissue between different model components.
While there is a substantial amount of effort in the direction
of knowledge-guided machine learning (Read et al., 2019), there
are certainly many different paths toward the goal of integrating
physics with machine learning. Outside of this Research Topic,
there are methods for parameter learning (Tsai et al., 2020a) and
physics-informed neural networks (He et al., 2020; Tartakovsky
et al., 2020).

One of such pathways, perhaps a niche one, was documented
in (Tsai et al., 2020b). This paper used machine learning to
generate articulable hypotheses about which physical factor
between soil texture, soil thickness, and slope caused water
storage and streamflow to be linked in a certain way in a
basin, and tested them using a physically-based model. While
machine learning is very powerful, due to data limitations and
factor covariation, it often cannot distinguish between causal
or associative relationships, and what it found are therefore
merely hypotheses. To test these competing hypotheses, Tsai et al.
configured a physically-based hydrology model, PAWS+CLM
(Shen and Phanikumar, 2010; Shen et al., 2013; Niu et al.,
2017; Ji et al., 2019) to represent these hypotheses, e.g., they
increased soil thickness or changed soil texture in one of the
synthetic simulations and checked if the storage-streamflow
relationships changed in agreement with the hypothesized effect
as a result. The outcome of the process-based model can in fact
be merged with the machine learning hypotheses in a Bayesian
and algorithmic way, which implies this avenue can in fact be
autonomously executed. While this paradigm is not expected
to become popular any time soon, it does suggest physical
models provide unique information that can fill in the gaps
(in this case, assessment for a causal relationship) for machine
learning methods.

Multiple pathways exist for ML to help to make advances
in hydrology: (1) incorporating physics in ML models; (2)
improving the interpretability of ML models; (3) developing
coupled, physics-informed neural networks; (4) quantifying and
propagating uncertainty in model results; (5) developing publicly
available benchmark training data sets that can be used to
aid and test new ML methods; and (6) building a community
computational platform to allow sharing of ML pipelines with
easy access to pre-trained MLmodels (e.g., similar to Model Zoo,
https://modelzoo.co/), standardized application-ready datasets,
interoperable process-based models, and supercomputing and/or
cloud computing resources. Generating public benchmark
training data sets (similar to ImageNet, http://www.image-net.
org/) that researchers can use to build better ML models is
the key to advancing applications of ML in Earth science
domains (Dramsch, 2020; Maskey et al., 2020). There is a unique
opportunity here to enhance the use of the new generation of
remote sensing products that capture components of the water
cycle (precipitation, snow, soil moisture, evapotranspiration,
groundwater, and runoff), as well as coupled carbon and
nutrient cycle components, with increasing spatial and temporal
resolutions. Training data may also be generated from process-
based models. Leveraging open-source resources from federal
agencies is necessary for the success of such extensive and
expensive effort. For example, NASA’s Earth Sciences Data
Systems (ESDS) have generated high-quality training data sets
that are open and easily accessible. NOAA, USGS, and other
federal agencies have been maintaining extensive observation
networks and are developing a large number of integrated
Earth system models. Standardized data management practices
would significantly increase data usability, and we call for
significant investment to support community efforts that address
these challenges.
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Can machine learning effectively lower the effort necessary to extract important

information from raw data for hydrological research questions? On the example of

a typical water-management task, the extraction of direct runoff flood events from

continuous hydrographs, we demonstrate how machine learning can be used to

automate the application of expert knowledge to big data sets and extract the relevant

information. In particular, we tested seven different algorithms to detect event beginning

and end solely from a given excerpt from the continuous hydrograph. First, the number

of required data points within the excerpts as well as the amount of training data has

been determined. In a local application, we were able to show that all applied Machine

learning algorithms were capable to reproduce manually defined event boundaries.

Automatically delineated events were afflicted with a relative duration error of 20 and

5% event volume. Moreover, we could show that hydrograph separation patterns could

easily be learned by the algorithms and are regionally and trans-regionally transferable

without significant performance loss. Hence, the training data sets can be very small

and trained algorithms can be applied to new catchments lacking training data. The

results showed the great potential of machine learning to extract relevant information

efficiently and, hence, lower the effort for data preprocessing for water management

studies. Moreover, the transferability of trained algorithms to other catchments is a clear

advantage to common methods.

Keywords: flood event separation, information extraction, time series, automation, data preprocessing

1. INTRODUCTION

Machine-learning has proven its capability in a vast range of applications, especially in those
cases when a certain pattern has to be revealed from a huge data archive in order to reproduce
it afterwards. Water management tasks require these capabilities in various steps. Natural and
anthropocentric processes have to be reproduced in order to model future events and behaviors
(Mount et al., 2016). Hence, machine learning (ML) has been applied in a broad range of
applications, like streamflow simulation (Shortridge et al., 2016), the interpretation of remote
sensing images (Mountrakis et al., 2011), modeling of evapotranspiration (Tabari et al., 2012),
rainfall forecasting (Yu et al., 2017), process analysis (Oppel and Schumann, 2020), and many
more. However, all water related tasks require pre-processed data. Pre-processing is in this case
defined as the extraction of the relevant information from raw data. A typical example is the need
for direct runoff flood events that have to be extracted from continuous time series of discharge.
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This kind of information can be used for flood event research,
training of hydrological models for flood forecasting, design
tasks, etc. Despite its relevance and expense, there is no single
accepted method to efficiently automate this problem.

Especially the separation of rain fed direct runoff from the
base flow, i.e., discharge from deeper soil layers and groundwater
with higher transit times, has been subject to much scientific
work. This might be due to the fact that rain fed direct runoff
events are especially relevant for flood security (Fischer, 2018).
The most accurate way to separate direct and base flow runoff in
order to define flood events is to use tracer based methods (Klaus
and McDonnell, 2013; Weiler et al., 2017). However, tracer data
are only rarely available and are not collected on a continual basis.
Hence, their application is limited to very few case studies and is
not suitable for automated information extraction especially for
long time series.

There are three main groups of methods to extract flood
events from continuous time series: graphical methods, digital
filtering and recession based methods. Graphical approaches
(Hall, 1968; Maidment, 1993) are well-established in the water
management community, yet they rely on assumptions and
experience of the user (Mei and Anagnostou, 2015). Moreover,
these types of methods cannot be applied to large data sets
and do not allow for automation. Digital filtering techniques
overcame this drawback. These methods use a one- (Lyne
and Hollick, 1979), two- (Su, 1995; Eckhardt, 2005) or three-
parametric (Eckhardt, 2005) base equation to reproduce the
long wave response of a hydrograph. The calculated response is
treated as the baseflow, the residual of baseflow and hydrograph
is treated as the direct runoff. The intersections of baseflow
and direct runoff curves can be treated as beginning and end
of individual events. These methods are especially applicable
to extract information from long time series and allow for
automation, like Merz et al. (2006), Merz and Blöschl (2009), and
Su (1995). Gonzales et al. (2009) and Zhang et al. (2017) stated
that digital filtering techniques, especially the three-parametric
filter (Eckhardt, 2005), delivers superior results to all other
methods. However, they also pointed out that these methods
require local calibration.

The calibration process limits the application of a digital
filter to its fitted catchment. Moreover, the missing physical
reasoning of the parameters introduced parameter uncertainty
to the process (Furey and Gupta, 2001; Blume et al., 2007;
Stewart, 2015). Recession based methods try to overcome the
lack of physical reasoning (Tallaksen, 1995; Hammond and Han,
2006; Mei and Anagnostou, 2015; Dahak and Boutaghane, 2019).
They either rely on a linear (Blume et al., 2007) or non-linear
(Wittenberg and Aksoy, 2010) connection between storage and
the active process that defines the hydrograph. Other methods
try to estimate the parameters of digital filter from the recession
curves (Collischonn and Fan, 2012; Mei and Anagnostou, 2015;
Stewart, 2015). The drawback of these approaches is the missing
automation. Stewart (2015) analyzed several recession curves and
their connections to the separation of direct runoff and base
flow. Although a connection between direct runoff and base flow
was identified, they also found that recession analysis relying
on streamflow data solely can be misleading. Under different

conditions of the catchment different processes are active, and
hence, the connection between storage and runoff changes.
Beside this process uncertainty most methods require calibration
just like digital filtering techniques and cannot be transferred to
other basins.

As already pointed out, the common methods either lack a
way to automate them or they require local calibration. Either
way, the effort to extract the relevant information is high.
Another drawback is that especially the physically based methods
search for the true separation of direct runoff and base flow. But,
in some cases this might not be the target of a separation. For
example: if the task is to evaluate just the first peak of each flood
event, no common method can adopt to that target. The power
of ML algorithms to detect patterns and to reproduce them in
further application could be a solution to this topic. Thiesen et al.
(2019) demonstrated that data-driven approaches with different
predicors can be applied to the task of hydrograph separation.
They found that models using discharge as predictors returned
the best results. Although their automated flood event separation
performed well, they required a large amount of training data
which is limiting the applicability of their approach. Thiesen
et al. (2019) estimated a label (flood event / no flood event) for
each time step of the continuous time series and, hence, searched
for the true separation of direct runoff and base flow. As stated
before, this might not be applicable in all cases. Therefore we
assumed that the event, i.e., the time stamp of the flood peak is
known, but the time of event beginning and end are unknown.

In the first part of the study we assessed which part of a flood
hydrograph is relevant to determine the begin and end of the
event. Based on a training set generated by expert knowledge
we analyzed how many points from a hydrograph excerpt are
needed to estimate the event boundaries. Moreover, we analyzed
which machine learning algorithms are suitable for this type of
problem and how many training data is required to automate the
separation process. A major shortcoming of common methods
is the local bound applicability. Therefore, we tested if trained
algorithms could successfully be applied in new catchments on a
regional and trans-regional scale.

2. MATERIALS AND METHODS

In this section we will shortly introduce the case study basins of
the Upper Main and the Regen. In the subsequent section, the
ML algorithms and their settings will be presented. This section
is completed with the introduction of the entropy concept and
the performance criteria used to evaluate the ML-algorithms.

2.1. Data
For this study, continuous time series from 15 gauges in south-
east Germany have been used. Five gauges from the basin of the
Upper Main have been used for local application and the tests
on required training data and predictors. Additional five gauges
from the Upper Main basin and five other gauges from the Regen
basin have been used for regional and trans-regional validation
of the trained algorithms solely. The time series had an hourly
temporal resolution and covered the time span from 2001 to 2007
in the Upper Main basin, 1999 to 2012 in the Regen basin.
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FIGURE 1 | Flood events observed at gauge Friedersdorf with manual defined markers of event begin tB and end tE to capture direct runoff.

We assumed that users know what kind of flood events they
are interested in and just needs to automate the process of
separation (Moreover, the process of peak identification can be
automated with a peak-over-threshold (POT) method). Hence,
we defined the time stamps of five highest discharge peaks per
year as the events of interest. The number of five events per year
has been chosen to create a large data basis while maintaining
the focus on floods. To create a training and validation data
set beginning tB and end tE of each event have been defined
manually. Due to the focus on flood events our strategy for
manual flood separation was to capture begin and end of direct
runoff. Although precipitation data was available, we excluded
it on purpose to focus on the hydrographs. The begin of the
direct runoff tB was defined as the first significant increase
of discharge prior to the peak. The end of direct runoff tE
was defined as either the last change of slope of the recession
curve starting from the peak before the next rise, or the last
ordinate of the recession curve before the next event (compare
Figure 1). Target variables tB and tE were defined as difference
between the time stamp of the peak and the time stamp of the
events begin/end.

As the spatial arrangement of the chosen gauges shows
(Figure 2), training and validation gauges have been selected
to cover similar relationships of neighboring and nested
catchments. Additionally, the training and validation sets have
been compiled to cover the same ranges of catchments area. Each
set comprises small catchments with an area between 10 and 100
km2 and large catchments with an area between 100 and 1,400
km2 (compare Table 1).

The transferability of trained ML algorithms was analyzed by
using a regional model strategy. The ML algorithms were trained
with the data from the five gauges from the Training data set,
defined in Table 1. All Training gauges were located in the upper
Main basin. For validation the trained algorithms were used to
estimate tB and tE for flood events observed at gauges from the
regional and trans-regional data set (compare Table 1).

2.2. Machine Learning Algorithms
The No-free-Lunch-Theorem pays its tribute to the plethora of
available ML-algorithms and reduces the problem of choice to
an optimization problem: If an algorithm performs well on a
certain class of problems then it necessarily pays for that with
degraded performance on the set of all remaining problems. A
certain algorithm is more or less suitable for a specific problem
(Wolpert and Macready, 1997). Accordingly, several approaches
have to be taken into account in parallel. Additionally, Elshorbagy
et al. (2010a,b) found that a single algorithm is not able to
cover the whole range of hydrologic variability. Hence, they
recommended to use an ensemble of algorithms for water related
tasks. In order to assess which type of algorithm is suitable to the
addressed task of this study we used seven different algorithms
(provided by Pedregosa et al., 2011 as Python package scikit-
learn), representing five different algorithm structures.

Artificial neuronal networks (ANN) are the most commonly
applied ML algorithms which is also true for hydrological
applications (Minns and Hall, 2005; Solomatine and Ostfeld,
2008). The structure of an ANN is inspired by the structure
of the human brain (Goodfellow et al., 2016). Multiple input
features are connected through multiple neurons on a variable
number of hidden layers with the output of the network. The
output neuron represents the target variable of the regression
(or classification) task. The hidden layers of the ANN define
the level of abstraction of the problem. The more layers, the
more abstraction is given to the input features (Alpaydin, 2010).
Because this study addressed the topic of pattern recognition in
hydrographs with a, to this point, unknown degree of abstraction,
ANNs with different numbers of hidden layers have been applied.
Specifically, an ANN with a single and an ANN with two hidden
layers have been applied. The number of neurons per layer
has been adjusted during the training process. Both regressors
were based on the multi-layer perceptron and used a stochastic
gradient descent for optimization (Goodfellow et al., 2016).
Additionally, an Extreme Learning Machine (ELM) was added
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FIGURE 2 | Case study basins of the Upper Main (upper left) and Regen (lower right) in south-east Germany. Five gauges (triangle) have been used for local

application and as training data for (trans-) regional application (circle).

TABLE 1 | Gauges and catchment areas in the case study regions.

Training Reg. Validation Tr.Validation

Gauge Area [km2] Gauge Area [km2] Gauge Area [km2]

Bad Berneck 99.7 Bayreuth 340.3 Chamerau 1356.5

Gampelmuehle 62.2 Coburg 346.3 Kothmaissling 405

Lohr 165.3 Friedersdorf 11.1 Koetzing 224.4

Unterlangenstadt 713.9 Schlehenmuehle 70.95 Teisnach 626.6

Untersteinach 73.5 Wallenfels 96.45 Zwiesel 293.4

to the group of used algorithms. The ELM is a special type
of ANN (Guang-Bin Huang et al., 2004) that was designed for
a faster learning process. In a classic ANN each connection
between neurons is assigned with a weight that is updated in
the optimization process. An ELM has fixed weights for the
connection between hidden layer and the output neuron. Only
the remaining connections are optimized during the training
process. Due to this simplification, the ELM learns faster while
regression outputs remain stable (Guang-Bin Huang et al., 2004).

The three types of neuronal networks are accompanied by
4 other algorithms. As a representative for the similarity-based

algorithms the K-nearest-neighbor (KNN) algorithms has been
applied (Kelleher et al., 2015). Here, no model in the common
sense is trained. For regression, the KNN uses the predictors to
define similarity between the elements of a new data set and the
known cases of the training data. The output is then defined as
the average of the k-nearest elements. In this study, k was defined
iteratively during the training process within a range of [5;10].
Parameter values for k outside the specified range were tested, but
rarely proved to be a better alternative. In order to accelerate the
training of the KNN, the comparatively small parameter space
was chosen. A Support Vector Machine (SVM) algorithm, an
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error-based approach, has also been used in this study. The SVM
fits a M-dimensional regression model to the given problem,
where M can be greater than the dimension of the original
feature space. To maintain a reasonable computation time, the
SVM focuses on data points outside a certain margin around the
regression line, the so-called support vectors (Cortes and Vapnik,
1995). Another type of ML-algorithm included in this study was
a Classification and Regression Tree (CART). Regression trees
are built node per node with a successive reduction of regression
error between the estimates and the true values. CART-regressors
have been used as base estimators for a Random Forest (RF)
that has been used additionally in this study. The RFs consisted
of 1,000 regression trees, each trained with a randomly chosen
subset of the given training data. The average of all regression
results is returned as estimate of the RF. We applied the RF due
to its common application in hydrological studies (Yu et al., 2017;
Addor et al., 2018; Oppel and Schumann, 2020). Moreover, the
use of an ensemble regressor accounts for the recommendations
of Elshorbagy et al. (2010a). Details on implementation are
provided by Pedregosa et al. (2011).

The applied algorithms face several inherent problems and
advantages, so the right choice of a suiting algorithm depends
on the available data and the problem to be solved. SVMs,
for example, work perfectly if the margin of the separating
vector is small. Thus, they tend to overfit if that is not the
case in the data they are trained on. Moreover, the choice of
the internal kernel is not trivial and has impact on the results
and the training behavior. CART trees are very comprehensible
models and quickly converging models, but tend to overfit, so
the remaining degrees of freedom have to be considered for an
interpretation of CART results. RF on the other hand reduce
to vulnerability of overfitting, yet the build less comprehensible
outcomes due to the large number of possible model trees. ANNs
are robust against overfitting, but require more data to converge
in complex situations than the other approaches. ELM inherits
the advantages and problems of ANNs and SVM. KNN converge
very quickly and are often a suitable method. Nevertheless, the
general ability of KNN forML prediction requires information on
internal structure of the data and its internal clustering of groups.

2.3. Shannon Entropy
The entropy concept, introduced by Shannon (1948), is the
underlying concept of information theory (Cover and Thomas,
2006). Shannon’s entropy concept is used to determine the
information content within a given data set. Entropy H is
calculated for a discrete random variable X with possible values
x1, . . . , xn by:

H = −

n∑

i=1

P(xi)logbP(xi) (1)

where P(xi) is the probability that X takes exactly the value
xi. The basis b of the log-function can take any value, but is
usually set to b = 2, which gives H the unit bit. As Equation
(1) shows, the entropy value is a measure for uncertainty of the
considered variable. If all samples drawn from X would take the
same value, the probability of this value would be 1 and hence the

entropy would be equal to 0.0, because one would be absolutely
certain about the outcome of new samples drawn from X. The
entropy increases to a value of 1.0 if the sample would be equally
distributed on two outcomes (Kelleher et al., 2015). The higher
the entropy, the wider the histogram of X is spread.

The problem with Equation (1) is that it can only be applied
to discrete data. Unfortunately most hydrological relevant data
is continuous. This was also the case in this study, because the
ordinates of the hydrograph are intended to determine the events
temporal boundaries. Gong et al. (2014) showed that the use of
frequency histograms, which is also refereed as Bin Counting, is
a feasible and reliable approach to represent the continuous as a
discrete distribution function. To apply Bin Counting the width
of bins has to be determined. Scott (1979) proposed the following
estimator for the optimal bin-width h∗:

h∗ = 3.49σN−1/3 (2)

where σ is the standard deviation of the data andN is the number
of samples. We followed the recommendations of Scott (1979)
and Gong et al. (2014) and used Bin Counting to calculate the
entropy of the predictor and target variables.

2.4. Performance Criteria
Estimation errors manifest as differences between estimated and
manually defined time stamps of event begin and end, resulting
in different event metrics duration and volume. The deviations of
these metrics were used to define the performance criteria. First,
the mean volume reproductionMVR was defined as follows:

MVR =

N∑
i−1

VEst;i

VMan;i

N
(3)

where N is the number of considered events and V is the
estimated (Est) or manual defined (Man) event volume. The
MVR is defined within [0;+ inf] with an optimal value of 1. The
second metric accounts for the duration of the event. For each
event two sets of time stamps are available: set M containing all
time stamps of themanually separated event, andD containing all
time stamps of the estimated event. Time stamps within both sets
are correctly ascertained time stamps by the ML-algorithm. This
set I can be expressed as the intersection of both sets I = D ∩M.
Temporal coverage of an estimated event has been calculated
as the ratio of the cardinalities of I and M, i.e., the ratio of
correctly ascertained time stamps and the true number of event
time stamps:

COV =
|D ∩M|

|M|
=

|I|

|M|
(4)

Temporal coverage COV is defined on [0; 1] with an optimal
value of 1. Note that COV only accounts for errors of time
stamps, not the actual event duration. An estimate of event
boundaries that sets event begin and end wrong, but outside of
the true event boundaries, has a coverage equal to 1. However,
the error will be accompanied by an MVR greater than one. The
combined evaluation of COV and MVR reveals that the time
stamps were set outside the true event boundaries.
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FIGURE 3 | Entropy values of the data sets H considering a varying number of ordinates from hydrographs (number of ordinates considered on the abscissa).

3. RESULTS

In this section, the analysis regarding the automation of the
flood event hydrograph separation will be presented. Section 3.1
presents the selection of the ML-predictors, i.e., the number of
hydrograph ordinates necessary to predict the event boundaries.
This is followed by the results of the local application of the
ML-algorithms (section 3.2).

3.1. Predictor Selection
As predictors for the estimation of event boundaries (time
stamps of beginning and end of a flood event), we intended
to use the ordinates of the hydrograph itself. Therefore, we
had to determine the required amount of ordinates to achieve
satisfactory results, while keeping the amount of predictors as low
as possible to minimize the training effort of the ML-algorithms.

In other words we wanted to focus on the necessary
hydrograph components to determine flood begin and end. In
course of the graphical, manual separation (section 2.1) we
observed that we mainly paid attention to the shape of the
hydrograph in comparison to its closer hydrological context for
our decisions. Transferring this to the numerical data of the
hydrographs (Q) means that the set of hydrograph ordinate
with the highest uncertainty about Q conveyed the highest
amount of relevant information to the separation process. In
order to determine the length of these sets we performed an
entropy analysis for different lengths of sets (see below). We
used the entropy metric to evaluate the information content
H, because its values quantifies the uncertainty of a data set
(compare section 2.3).

Although H calculated separately for the predictor and the
target variable set allowed us to compare the information within
the data, they do not tell us if these information coincide. The
common approach to quantify the shared information content
of data sets is to use the mutual information (MI) (Sharma
and Mehrotra, 2014). The MI-value concept evaluates the joint
probability distribution of two (or more) data sets and evaluates

the information obtained from the predictor data set about the
target data set. Due to the high dimension of our predictor data
set (number of hydrograph ordinates between 10 and 600), the
joint probability distributions could not be estimated. Hence,
the concept of MI was not applicable. Hence, we relied on H
calculated for target and predictor sets separately, to evaluate the
predictor data sets. We assumed that an entropy value of the
predictor set similar to the entropy of the target variable set is
a necessary but not sufficient condition for an optimal predictor.

First, we calculated the entropy of the target variables for
manually separated events, the time stamps of event beginning
and end. Equation (1) and (2) were applied to all available data
sets. We obtained average entropy values of HA = 1.55 bit for
the event beginnings and HE = 2.15 bit for event ends. The
standard deviation of HA and HE between the considered sub-
basins was σ (HA) = 0.15 and σ (HE) = 0.39. The entropy values
showed that the position of the flood beginning (in relation to
the peak) is afflicted with less uncertainty than the end of the
flood. A result that is in concordance with our experience from
the manual flood separation.

In the second step of the analysis we calculated the entropy for
different predictor data sets. The first data set evaluated consisted
of 10 hydrograph ordinates, half of the ordinates prior to the
peak the other half succeeded the peak. The amount of ordinates
was increased incrementally up to 600 ordinates. The obtained
entropy values showed that the data sets contained the highest
entropy if only a few ordinates were used (Figure 3). Data sets
with 10–50 ordinates, regardless of the sub-basin, showed an
entropy value of H ≥ 3.7 bit which is equal to the sum of
HA and HE. With an increasing amount of data the entropy
values decreased significantly. With 500 data points considered,
the entropy values lowered to a range of [2.0, 3.5] bit and did not
change any further with increasing data points.

In order to evaluate our assumption of the connection
between equal entropy values and predictive performance, a
test with different ML-algorithms in all sub-basins was carried
out. Each data set was split randomly into training data (50%)
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FIGURE 4 | Dependence of the number of hydrograph ordinates and the mean volume reproduction (MVR) and temporal coverage (COV) of automatically separated

flood events. Application of a trained RF in sub-basin Bad-Berneck.

FIGURE 5 | Hydrographs for two flood events at gauge Lohr with manually and automated defined markers of event begin tB and end tE .

and validation data (50%). Each ML-algorithm was trained and
validated with the MVR (Equation 3) and COV (Equation 4).
To minimize uncertainty due to the choice of training data, the
evaluation was repeated 10-times for each data set. The obtained
results were comparable in all applications. For the majority of
catchments the best MVR-results (median and variance) were
achieved with 40 or 50 ordinates used as predictors and the
optimal COV with 50 ordinates. As an example the results of
RF application in catchment Bad Berneck are shown in Figure 4

(Results for all other algorithms and catchments can be found in
the Supplementary Material).

Based on the experimental results and the evaluation of the
entropy values we chose 40 ordinates, 20 prior to the peak
and 20 succeeding the peak, as the predictor data set for the
following analysis.

3.2. Automated Flood Hydrograph
Separation
For each data set from the catchments marked as training gauges
in Table 1 and Figure 2, we tested if flood hydrograph separation

could be automated bymeans ofML. Like in the previous section,
we randomly chose 50% of the available flood event data for
training of the algorithms. Their performance was validated with
withheld data from the respective gauge. Again, the procedure
has been repeated to lower the uncertainty due to the randomly
chosen subsets. In this case, 500 iterations were performed. For
each event of the validation data, tB and tE were estimated with
all available ML-algorithms (Figure 5).

The results showed that the ML-algorithms were able to
perform the required automation task. However, they tended
to overestimate the volume of the events (Figure 6), while the
temporal coverage was met in the most cases (Figure 7). Only
the ANN1 and ANN2 did not match the temporal extend of the
events. The combination of a COV lower than 1 andMVR greater
than 1 (compare Figure 5, right panel) showed that one time
stamp was set too close to the peak, while the other was set too
far from to peak. Giving a low coverage of the event and high
volume error. In these cases it was the event start that was set too
close to the peak and the end was set too far. A different behavior
is visible in the results of the ELM and KNN. While the COV is
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FIGURE 6 | Mean volume reproduction (MVR) of the validation flood events in local application of trained artificial neuronal network with 1- (ANN1) and 2-hidden

layers (ANN2), regression tree (CART), extreme learning machine (ELM), k-nearest-neighbor (KNN), random forest (RF), and support vector machine (SVM).

FIGURE 7 | Temporal coverage (COV) of the validation flood event duration in local application of trained artificial neuronal network with 1- (ANN1) and 2-hidden layers

(ANN2), regression tree (CART), extreme learning machine (ELM), k-nearest-neighbor (KNN), random forest (RF), and support vector machine (SVM).

close to 1, the MVR shows an average overestimation of event
volume of 20%. This shows that ELM and KNN separated too
long flood events. The best results were obtained with the RF and
the SVM.

The results also showed regional dependence of the model
error. Independent from the chosen algorithm, Bad Berneck
showed the highest volume errors, while Gampelmuehle showed
the highest COV errors. It is striking that Gampelmuehle on
the other hand showed one of the lowest volume errors, and
Bad Berneck the lowest COV errors. Contrary to that, the three
remaining basins showed comparable results for both criteria. An
explanation for this observation lies within the response time of
these catchments. In comparison to the other hydrographs, they
are significantlymore flashier and the duration of the flood events
is significantly shorter.

4. DISCUSSIONS

The presented results showed that ML is in general capable
to automate the considered task. But several choices, like

the amount of training data have to be discussed and the
transferability of trained algorithms has to be tested. This sections
provides discussions on these topics.

4.1. Training Data
The results showed that all algorithms could be used in local
application to automate the task of flood event separation from
continuous time series. Yet, the true benefit of the automation
is unclear, because we randomly selected the size of the training
data set. A true benefit for automation would be a minimal
requirement of training data, because this would minimize the
manual effort for separation. The results in section 3.2 showed
that we could at least half the manual effort. But how many
manually separated flood events are really necessary to train
the algorithms?

To answer these questions, an iterative analysis has been
performed. First, 25% of the available flood events were randomly
chosen as validation data set and removed from the data
pool. In the succeeding steps a variable amount of training
data was chosen from this pool to train the ML-algorithms.
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FIGURE 8 | Dependence of mean volume reproduction (MVR)/temporal coverage (COV) and size of the training data set of a random forest (RF) and an extreme

learning machine (ELM). Uncertainty belts drawn in gray scales for different probabilities (50, 80, 90%). The amount of training data has been raised incrementally to

train the algorithms and were validated in each step with the same data set, containing 25% of the available data.

In each step, the trained algorithms were validated with the
same validation data set. In order to minimize uncertainty
due to the randomly chosen data sets, this procedure was
repeated 500 times.

The results showed that the required amount of training
data was surprisingly low for all algorithms. The median
MVR reached the optimum of MVR = 1.0 with the
lowest amount of uncertainty with only 20–30% percent used
training data (Figure 8, full plot with all ML-algorithms in the
Supplementary Material). This was true for all ML-algorithms
used in this study. The results for the COV criterion were
similar to these findings. But in contrast to the MVR criterion,
the uncertainty decreased slightly with increasing training data.
The combined evaluation of MVR and COV showed different
types of estimation errors. With a small data set the duration of
the separated flood events is afflicted with higher uncertainty,
while the true volume of the event is more likely to be
met and vice versa for larger data sets. However, the orders
of magnitude differ. The certainty of event duration does
not increase to the same extent as the uncertainty of the
volume increases.

Note that in this study only 20 events per sub-basin were
available, which means that a training data set of 4–5 manually
separated flood events was a sufficient training data set for the
automation of the task.

4.2. Transferability
In this section we present the results of the conducted test on
the ability to transfer the trained algorithms to other catchments.
First, a regional transfer has been tested. Here, we used the data
sets from the local application (sections 3.2, 4.1) to train the ML-
algorithms and validated their performance at five new gauges in
the same basin, i.e., regional neighborhood (Figure 2). Likewise
to the procedure in section 4.1, we analyzed the impact of training
data on the performance. Here, we had a total of 117 flood events
for training and validated with the individual data sets from the
new five catchments.

The performance of the ANN1 and ANN2 stabilized at
30–40% of used data for both criteria (Figure 9). Estimates
from both algorithms reached a median MVR ≈ 1.05 and a
median COV ≤ 0.8. A similar performance was achieved with
the ELM and the KNN, only that the obtained COV values
were larger than 0.8. Additionally, the ELM and KNN showed
faster learning than all other algorithms. Results stabilized at
approx. 5% of used training data. Further changes in median
performances and the uncertainty belts with increasing training
data were insignificant. The only algorithm that showed constant
improvement, i.e., a reduction of the uncertainty belt, was the
RF. However, this improvement was accompanied by a steady
increase of volume. With all available data used for training,
the volume was overestimated by approx. 10%. The concept of
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FIGURE 9 | Dependence of mean volume reproduction (MVR)/temporal coverage (COV) and size of the training data set for different ML-algorithms in regional

application. Uncertainty belts with different probabilities (50, 80, 90%) drawn for MVR in red scales, for COV in blue scales. The amount of training data has been

raised incrementally to train the algorithms. Validation was performed on data sets in regional neighborhood of the training data sources in the Main basin.

support vectors, as used in the SVM, proved to be not useful in
this case. Recall that the support vector defines a range around
the M-dimensional regression “line” and all data points falling
within the defined range are excluded from the optimization.
This focus on the outliners of the problem resulted in the inferior
performance of the SVM (Figure 9). Note that the results of the
CART algorithm are not shown in Figure 9, because the results
are similar to the results of the KNN, but with a medianMVR =

1.1 and median COV = 0.75.
In summary, the results showed that even with a small data

set automated hydrograph separation could be performed in
regional application. Neural network estimators (ELM, ANN1
and ANN2) and similarity-based estimators (KNN) performed
best. Flood event duration estimates were afflicted with median
bias of 20%. However, this mismatch of event duration did not
result in a significant volume error (5% overestimation with
ELM & KNN). Our results showed that a training data set of 35
manually separated flood events was needed to train ANNs, only
the ELM and KNN should be used with less available data.

Based on this results, we asked if the algorithms could be
applied to catchments of another basin, i.e., if the trained
algorithms could be used in a trans-regional application. Likewise
to the regional application, trained algorithms were used to
estimate the time stamps of event begin and end of the
floods events, but in this case for catchments in the Regen
basin (Figure 2). The results of the trans-regional applications
approved our findings of the regional application (Figure 10).
Again, the ANN1 andANN2 required 30-40% of the data to reach
stable results. ELM and KNN, again, required less training data.
Contrary to the regional application, the median MVR of the
RF converged toward the optimum value of 1.0 with increasing
data. Again, a training data set of approx. 35 flood events was
sufficient to automate the task of hydrograph separation, even in
a trans-regional application.

4.3. Hydrograph Similarity
Our results showed that we could successfully apply an ELM
or KNN trained with data from five basins in the Upper Main
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FIGURE 10 | Dependence of mean volume reproduction (MVR)/temporal coverage (COV) and size of the training data set for different ML-algorithms in trans-regional

application. Uncertainty belts with different probabilities (50, 80, 90%) drawn for MVR in red scales, for COV in blue scales. The amount of training data has been

raised incrementally to train the algorithms. Validation was performed on data sets in the Regen basin.

to other sub-basins within the same catchment and in another
catchment. This brought up the question: why did it work?
A trained, i.e., calibrated model can only be applied to other
data without significant performance decrease if the patterns,
i.e., variance, within the new data matches the training data.
In the previous analysis we proved that our trained models
could be applied without performance decrease. Hence, we made
the hypothesis that the hydrographs within the training and
validation data set, i.e., their variance was similar. As stated
in section 3.1 the entropy concept is a good tool to assess
the information, i.e., the variance within data sets. Hence, we
analyzed the entropy of the training and validation data sets in
order to test our hypothesis.

Although entropy quantifies the amount of information, it
cannot assess the actual information and is, hence, not applicable
to evaluate the equivalence of two data sets. But, if redundant
information is added to a data set its entropy value decreases
(compare section 2.3). We exploited this behavior of the entropy
metric to assess the information equivalence of the training and
validation data sets.

We incrementally enlarged a merged data set comprising
hydrographs from the training data and one of the validation
data sets (regional/transregional). In each step we added a
single hydrograph to the data set and calculated the entropy
value (Equation 1). First we added all training hydrographs,
then we added the validation hydrographs. In order to assess
the uncertainty of H, due to data availability we repeated this
procedure 500 times, in each iteration only used 50% of the
available data (randomly selected).

The results of this analysis supported our hypothesis
(Figure 11). We found that H increased very quickly with only
2 or 3 data sets (actual position of HMax depending of selected
hydrographs). After that H decreased, with some variance in
its development due to data selection. Although variance was
visible, HMax < 2.5 [bit] was never exceeded with the additional
validation data, neither with the regional nor with the trans-
regional data set. Note that HMax in this analysis was lower
than the entropy values in section 3.1, because normalized
hydrographs have been used to assess the information given to
the ML-algorithms.
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FIGURE 11 | Development of entropy H for merged training and validation (regional REG/trans-regional TR) data sets. Median (black lines) and 90%-uncertainty belts

calculated by randomly adding 50% of the available hydrographs per sub-basin to the merged data set.

5. CONCLUSIONS

In this article we demonstrated how machine learning can
be used to automate the task of hydrograph separation from
continuous time series. As predictor for the used ML-algorithm
we used the ordinates of hydrograph, solely. This minimized the
effort for data pre-processing. An analysis of entropy values and
numerical experiments showed that only a short excerpt of the
hydrograph (40 values, 20 prior, and another 20 succeeding the
flood peak) were required for hourly discharge data.

Seven different ML-algorithms were trained with manually
separated flood events and were applied locally, regionally
and trans-regionally. All applications showed that machine
learning was able to extract the relevant information (flood event
duration and volume). In the local application, i.e., application
of the trained algorithms to the same catchment, RF and SVM
showed the best results. However, in regional and trans-regional
application, i.e., application to other catchments than the training
data source, estimators based on artificial neuronal networks
(ELM, ANN with 1 hidden layer) and similarity based estimator
(KNN) performed best.

Moreover, we demonstrated that the application of ML
minimizes the effort for manual data pre-processing. For local
application, data sets containing only 4–5 manually separated
events were sufficient to transfer the experts knowledge to the
algorithms. For a transfer of the trained algorithms to other
catchments lacking training data, the manual effort increased
slightly. In our applications, 35 events from 5 gauges, i.e., 7 events
per gauge transferred the required amount of information to
the ML-algorithm.

A striking observation was that the performance of flood event
separation was comparable in local, regional and trans-regional
application. With an assessment of information equivalence in
the training and validation data sets we demonstrated that the
variance of our predictors necessary to be applied to other data
sets, could be covered with our training data set. The result of

the analysis not only supported our hypothesis about information
equivalence, but also provided an explanation why our approach
to automation of event separation had a quicker learning process
than other approaches like Thiesen et al. (2019). We excluded
the majority of natural variance within the continuous time with
the focus on the events we are interested in (via POT-method).
From the time-stamp returned by POT we used the 40-discharge
ordinates around the peak as predictors for the estimation of
event beginning and end. With this procedure we focused the
ML-algorithms on the shape of the flood event and trained
it to identify its begin and end. Our results proved that this
approach delivered good results and requires aminimum amount
of manual work for training.

However, we have to focus on this topic in future works.
We excluded the transfer to other climatic conditions and we
excluded the impact of biased data. With additional data, taking
more catchments into account, we want to test the application of
trained algorithms to a wider range of possible applications than
presented in this study. Moreover, more numerical experiments
have to be carried out to evaluate the impact of the training data
and choices made by the user, for example the chosen separation
target. In this study we tried to separate the full flood event.
However, other usersmight be interested in other tasks. Although
our results are promising in this respect, further tests must be
carried out.

DATA AVAILABILITY STATEMENT

All datasets presented in this study are included in the
article/Supplementary Material.

AUTHOR CONTRIBUTIONS

This study was developed and conducted by both
authors (HO and BM). HO provided the main text

Frontiers in Water | www.frontiersin.org 12 July 2020 | Volume 2 | Article 1819

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Oppel and Mewes Automation of Flood Event Separation

body of this publication which was streamlined
by BM.

FUNDING

The financial support of the German Federal Ministry of
Education and Research (BMBF) in terms of the project
Wasserressourcen als bedeutende Faktoren der Energiewende
auf lokaler und globaler Ebene (WANDEL), a sub-project
of the Globale Ressource Wasser (GRoW) joint project
initiative (Funding number: O2WGR1430A) for HO is
gratefully acknowledged.

ACKNOWLEDGMENTS

The authors would like to thank the Bavarian Ministry of the
Environment for providing the Data used in this study. We also
like to thank Svenja Fischer for her feedback that helped to
improve this work.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frwa.
2020.00018/full#supplementary-material

REFERENCES

Addor, N., Nearing, G., Prieto, C., Newman, A. J., Le Vine, N., and Clark, M. P.

(2018). A ranking of hydrological signatures based on their predictability in

space.Water Resour. Res. 54, 8792–8812. doi: 10.1029/2018WR022606

Alpaydin, E. (2010). Introduction to Machine Learning. Adaptive Computation and

Machine Learning, 2nd Edn. Cambridge, MA: MIT Press.

Blume, T., Zehe, E., and Axel, B. (2007). Rainfall–runoff response, event-based

runoff coefficients and hydrograph separation. Hydrol. Sci. J. 52, 843–862.

doi: 10.1623/hysj.52.5.843

Collischonn, W., and Fan, F. M. (2012). Defining parameters for Eckhardts digital

baseflow filter. Hydrol. Process. 27, 2614–2622. doi: 10.1002/hyp.9391

Cortes, C., and Vapnik, V. (1995). Support-vector networks. Mach. Learn. 20,

273–297. doi: 10.1007/BF00994018

Cover, T. M., and Thomas, J. A. (2006). Elements of Information Theory, 2nd Edn.

Hoboken, NJ: Wiley-Interscience.

Dahak, A., and Boutaghane, H. (2019). Identification of flow components

with the trigonometric hydrograph separation method: a case study

from Madjez Ressoul catchment, Algeria. Arab. J. Geosci. 12:463.

doi: 10.1007/s12517-019-4616-5

Eckhardt, K. (2005). How to construct recursive digital filters for baseflow

separation. Hydrol. Process. 19, 507–515. doi: 10.1002/hyp.5675

Elshorbagy, A., Corzo, G., Srinivasulu, S., and Solomatine, D. P. (2010a).

Experimental investigation of the predictive capabilities of data driven

modeling techniques in hydrology - Part 1: concepts and methodology.Hydrol.

Earth Syst. Sci. 14, 1931–1941. doi: 10.5194/hess-14-1931-2010

Elshorbagy, A., Corzo, G., Srinivasulu, S., and Solomatine, D. P. (2010b).

Experimental investigation of the predictive capabilities of data driven

modeling techniques in hydrology - Part 2: application. Hydrol. Earth Syst. Sci.

14, 1943–1961. doi: 10.5194/hess-14-1943-2010

Fischer, S. (2018). A seasonal mixed-POT model to estimate high flood

quantiles from different event types and seasons. J. Appl. Stat. 45, 2831–2847.

doi: 10.1080/02664763.2018.1441385

Furey, P. R., and Gupta, V. K. (2001). A physically based filter for separating

base flow from streamflow time series. Water Resour. Res. 37, 2709–2722.

doi: 10.1029/2001WR000243

Gong, W., Yang, D., Gupta, H. V., and Nearing, G. (2014). Estimating information

entropy for hydrological data: one-dimensional case. Water Resour. Res. 50,

5003–5018. doi: 10.1002/2014WR015874

Gonzales, A., Nonner, J., Heijkers, J., and Uhlenbrook, S. (2009). Comparison of

different base flow separation methods in a lowland catchment. Hydrol. Earth

Syst. Sci. 13, 2055–2068. doi: 10.5194/hess-13-2055-2009

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. Cambridge,

MA: MIT Press.

Hall, F. R. (1968). Base-flow recessions-a review. Water Resour. Res. 4, 973–983.

doi: 10.1029/WR004i005p00973

Hammond, M., and Han, D. (2006). Recession curve estimation for storm event

separations. J. Hydrol. 330, 573–585. doi: 10.1016/j.jhydrol.2006.04.027

Huang, G.-B., Zhu, Q.-Y., and Siew, C.-K. (2004). “Extreme learning machine:

a new learning scheme of feedforward neural networks, in 2004 IEEE

International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541),

Vol. 2, 985–990 (Budapest). doi: 10.1109/IJCNN.2004.1380068

Kelleher, J. D., MacNamee, B., and D’Arcy, A. (2015). Fundamentals of Machine

Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case

Studies. Cambridge, MA; London: MIT Press.

Klaus, J., andMcDonnell, J. J. (2013). Hydrograph separation using stable isotopes:

review and evaluation. J. Hydrol. 505, 47–64. doi: 10.1016/j.jhydrol.2013.09.006

Lyne, V., and Hollick, M. (1979). “Stochastic time-variable rainfall-runoff

modelling, in Institute of Engineers Australia National Conference (Barton,

ACT: Institute of Engineers Australia), 89–93.

Maidment, D. R., editor (1993).Handbook of Hydrology. New York, NY: McGraw-

Hill.

Mei, Y., and Anagnostou, E. N. (2015). A hydrograph separation method based

on information from rainfall and runoff records. J. Hydrol. 523, 636–649.

doi: 10.1016/j.jhydrol.2015.01.083

Merz, R., and Blöschl, G. (2009). A regional analysis of event runoff coefficients

with respect to climate and catchment characteristics in Austria.Water Resour.

Res. 45. doi: 10.1029/2008WR007163

Merz, R., Blöschl, G., and Parajka, J. (2006). Spatio-temporal variability of event

runoff coefficients. J. Hydrol. 331, 591–604. doi: 10.1016/j.jhydrol.2006.06.008

Minns, A. W., and Hall, M. J. (2005). “Artifical neuronal network concepts in

hydrology, in Encyclopedia of Hydrological Sciences, Vol. 1, ed M. G. Anderson

(Chichester: Wiley), 307–319. doi: 10.1002/0470848944.hsa018

Mount, N. J., Maier, H. R., Toth, E., Elshorbagy, A., Solomatine, D., Chang,

F.-J., et al. (2016). Data-driven modelling approaches for socio-hydrology:

opportunities and challenges within the Panta Rhei science plan. Hydrol. Sci.

J. 8, 1–17. doi: 10.1080/02626667.2016.1159683

Mountrakis, G., Im, J., and Ogole, C. (2011). Support vector machines in

remote sensing: a review. ISPRS J. Photogrammetry Remote Sens. 66, 247–259.

doi: 10.1016/j.isprsjprs.2010.11.001

Oppel, H., and Schumann, A. (2020). Machine learning based identification

of dominant controls on runoff dynamics. Hydrol. Process. 34, 1–16.

doi: 10.1002/hyp.13740

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

et al. (2011). Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12,

2825–2830.

Scott, D. W. (1979). On optimal and data-based histograms. Biometrika 66,

605–610. doi: 10.1093/biomet/66.3.605

Shannon, C. E. (1948). A mathematical theory of communication. Bell Syst. Tech.

J. 27, 379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x

Sharma, A., and Mehrotra, R. (2014). An information theoretic alternative to

model a natural system using observational information alone. Water Resour.

Res. 50, 650–660. doi: 10.1002/2013WR013845

Shortridge, J. E., Guikema, S. D., and Zaitchik, B. F. (2016). Machine learning

methods for empirical streamflow simulation: a comparison of model accuracy,

interpretability, and uncertainty in seasonal watersheds.Hydrol. Earth Syst. Sci.

20, 2611–2628. doi: 10.5194/hess-20-2611-2016

Solomatine, D. P., and Ostfeld, A. (2008). Data-driven modelling: some

past experiences and new approaches. J. Hydroinform. 10, 3–22.

doi: 10.2166/hydro.2008.015

Frontiers in Water | www.frontiersin.org 13 July 2020 | Volume 2 | Article 1820

https://www.frontiersin.org/articles/10.3389/frwa.2020.00018/full#supplementary-material
https://doi.org/10.1029/2018WR022606
https://doi.org/10.1623/hysj.52.5.843
https://doi.org/10.1002/hyp.9391
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/s12517-019-4616-5
https://doi.org/10.1002/hyp.5675
https://doi.org/10.5194/hess-14-1931-2010
https://doi.org/10.5194/hess-14-1943-2010
https://doi.org/10.1080/02664763.2018.1441385
https://doi.org/10.1029/2001WR000243
https://doi.org/10.1002/2014WR015874
https://doi.org/10.5194/hess-13-2055-2009
https://doi.org/10.1029/WR004i005p00973
https://doi.org/10.1016/j.jhydrol.2006.04.027
https://doi.org/10.1109/IJCNN.2004.1380068
https://doi.org/10.1016/j.jhydrol.2013.09.006
https://doi.org/10.1016/j.jhydrol.2015.01.083
https://doi.org/10.1029/2008WR007163
https://doi.org/10.1016/j.jhydrol.2006.06.008
https://doi.org/10.1002/0470848944.hsa018
https://doi.org/10.1080/02626667.2016.1159683
https://doi.org/10.1016/j.isprsjprs.2010.11.001
https://doi.org/10.1002/hyp.13740
https://doi.org/10.1093/biomet/66.3.605
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/2013WR013845
https://doi.org/10.5194/hess-20-2611-2016
https://doi.org/10.2166/hydro.2008.015
https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Oppel and Mewes Automation of Flood Event Separation

Stewart, M. K. (2015). Promising new baseflow separation and recession analysis

methods applied to streamflow at Glendhu catchment, New Zealand. Hydrol.

Earth Syst. Sci. 19, 2587–2603. doi: 10.5194/hess-19-2587-2015

Su, N. (1995). The unit hydrographmodel for hydrograph separation. Environ. Int.

21, 509–515. doi: 10.1016/0160-4120(95)00050-U

Tabari, H., Kisi, O., Ezani, A., and Talaee, P. H. (2012). SVM, ANFIS, regression

and climate based models for reference evapotranspiration modeling using

limited climatic data in a semi-arid highland environment. J. Hydrol.

444–445:78–89. doi: 10.1016/j.jhydrol.2012.04.007

Tallaksen, L. (1995). A review of baseflow recession analysis. J. Hydrol. 165,

349–370. doi: 10.1016/0022-1694(94)02540-R

Thiesen, S., Darscheid, P., and Ehret, U. (2019). Identifying rainfall-runoff

events in discharge time series: a data-driven method based on information

theory. Hydrol. Earth Syst. Sci. 23, 1015–1034. doi: 10.5194/hess-23-

1015-2019

Weiler, M., Seibert, J., and Stahl, K. (2017). Magic components-why quantifying

rain, snowmelt, and icemelt in river discharge is not easy. Hydrol. Process. 32,

160–166. doi: 10.1002/hyp.11361

Wittenberg, H., and Aksoy, H. (2010). Groundwater intrusion into leaky sewer

systems.Water Sci. Technol. 62, 92–98. doi: 10.2166/wst.2010.287

Wolpert, D. H., and Macready, W. G. (1997). No free lunch theorems for

optimization. IEEE Trans. Evol. Comput. 1, 67–82. doi: 10.1109/4235.585893

Yu, P.-S., Yang, T.-C., Chen, S.-Y., Kuo, C.-M., and Tseng, H.-W. (2017).

Comparison of random forests and support vector machine for

real-time radar-derived rainfall forecasting. J. Hydrol. 552, 92–104.

doi: 10.1016/j.jhydrol.2017.06.020

Zhang, J., Zhang, Y., Song, J., and Cheng, L. (2017). Evaluating relative merits of

four baseflow separation methods in eastern Australia. J. Hydrol. 549, 252–263.

doi: 10.1016/j.jhydrol.2017.04.004

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Oppel and Mewes. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Water | www.frontiersin.org 14 July 2020 | Volume 2 | Article 1821

https://doi.org/10.5194/hess-19-2587-2015
https://doi.org/10.1016/0160-4120(95)00050-U
https://doi.org/10.1016/j.jhydrol.2012.04.007
https://doi.org/10.1016/0022-1694(94)02540-R
https://doi.org/10.5194/hess-23-1015-2019
https://doi.org/10.1002/hyp.11361
https://doi.org/10.2166/wst.2010.287
https://doi.org/10.1109/4235.585893
https://doi.org/10.1016/j.jhydrol.2017.06.020
https://doi.org/10.1016/j.jhydrol.2017.04.004
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


ORIGINAL RESEARCH
published: 07 August 2020

doi: 10.3389/frwa.2020.00020

Frontiers in Water | www.frontiersin.org 1 August 2020 | Volume 2 | Article 20

Edited by:

Chaopeng Shen,

Pennsylvania State University (PSU),

United States

Reviewed by:

Andreas Panagopoulos,

Institute of Soil and Water Resources

(ISWR), Greece

Luk J. M. Peeters,

CSIRO Land and Water, Australia

*Correspondence:

Utkarsh Mital

umital@lbl.gov

Specialty section:

This article was submitted to

Water and Hydrocomplexity,

a section of the journal

Frontiers in Water

Received: 15 April 2020

Accepted: 26 June 2020

Published: 07 August 2020

Citation:

Mital U, Dwivedi D, Brown JB,

Faybishenko B, Painter SL and

Steefel CI (2020) Sequential

Imputation of Missing Spatio-Temporal

Precipitation Data Using Random

Forests. Front. Water 2:20.

doi: 10.3389/frwa.2020.00020

Sequential Imputation of Missing
Spatio-Temporal Precipitation Data
Using Random Forests

Utkarsh Mital 1*, Dipankar Dwivedi 1, James B. Brown 2, Boris Faybishenko 1,

Scott L. Painter 3 and Carl I. Steefel 1

1 Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States, 2 Environmental

Genomics and System Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States, 3Climate Change

Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States

Meteorological records, including precipitation, commonly have missing values. Accurate

imputation of missing precipitation values is challenging, however, because precipitation

exhibits a high degree of spatial and temporal variability. Data-driven spatial interpolation

of meteorological records is an increasingly popular approach in whichmissing values at a

target station are imputed using synchronous data from reference stations. The success

of spatial interpolation depends on whether precipitation records at the target station are

strongly correlated with precipitation records at reference stations. However, the need

for reference stations to have complete datasets implies that stations with incomplete

records, even though strongly correlated with the target station, are excluded. To address

this limitation, we develop a new sequential imputation algorithm for imputing missing

values in spatio-temporal daily precipitation records. We demonstrate the benefits of

sequential imputation by incorporating it within a spatial interpolation based on a Random

Forest technique. Results show that for reliable imputation, having a few strongly

correlated references is more effective than having a larger number of weakly correlated

references. Further, we observe that sequential imputation becomes more beneficial

as the number of stations with incomplete records increases. Overall, we present a

new approach for imputing missing precipitation data which may also apply to other

meteorological variables.

Keywords: precipitation, hydrology and water, imputation, sequential imputation, machine learning, Random

Forest

INTRODUCTION

Precipitation is an important component of the ecohydrological cycle and plays a crucial role in
driving the Earth’s climate. It serves as an input for various ecohydrological models to determine
snowpack, infiltration, surface-water flow, groundwater recharge, and transport of chemicals,
sediments, nutrients, and pesticides (Devi et al., 2015). Numerical modeling of surface flow
typically requires a complete time series of precipitation along with other meteorological records
(e.g., temperature, relative humidity, solar radiation) as inputs for simulations (Dwivedi et al.,
2017, 2018; Hubbard et al., 2018, 2020; Zachara et al., 2020). However, meteorological records
often have missing values for various reasons, such as due to malfunctioning of equipment,
network interruptions, and natural hazards (Varadharajan et al., 2019). Missing values need to
be reconstructed or imputed accurately to ensure that estimates of statistical properties, such as
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mean and co-variance, are consistent and unbiased (Schneider,
2001) because inaccurate estimates can hurt the accuracy of
ecohydrological models. Reconstructing an incomplete daily
precipitation time series is especially difficult since it exhibits
a high degree of spatial and temporal variability (Simolo et al.,
2010).

Past efforts for imputing missing values of a precipitation
time series fall under two broad categories: autoregression of
univariate time series and spatial interpolation of precipitation
records. Autoregressive methods are self-contained and impute
missing values by using data from the same time series that
is being filled. Simple applications could involve using a mean
value of the time series, or using data from 1 or several days
before and after the date of missing data (Acock and Pachepsky,
2000). More sophisticated versions of autoregressive approaches
implement stochastic methods and machine learning (Box
and Jenkins, 1976; Adhikari and Agrawal, 2013). To illustrate
some recent studies, Gao et al. (2018) highlighted methods
to explicitly model the autocorrelation and heteroscedasticity
(or changing variance over time) of hydrological time series
(such as precipitation, discharge, and groundwater levels). They
proposed the use of autoregressive moving average models
and autoregressive conditional heteroscedasticity models. Chuan
et al. (2019) combined a probabilistic principal component
analysis model and an expectation-maximization algorithm,
which enabled them to obtain probabilistic estimates of missing
precipitation values. Gorshenin et al. (2019) used a pattern-
based methodology to classify dry and wet days, then filled in
precipitation for wet days using machine learning approaches
(such as k-nearest neighbors, expectation-maximization, support
vector machines, and random forests). However, an overarching
limitation of autoregressive methods is the need for the imputed
variable to show a high temporal autocorrelation, which is
not necessarily valid for precipitation (Simolo et al., 2010).
Therefore, suchmethods have limited applicability when it comes
to reconstructing a precipitation time series.

Spatial interpolation methods, on the other hand, impute
missing values at the target station by taking weighted averages
of synchronous data, i.e., data at the same time, from reference
stations (typically neighboring stations). The success of these
methods relies on the existence of strong correlations among
precipitation patterns between the target and reference stations.
The two most prominent approaches are inverse-distance
weighting (Shepard, 1968) and normal-ratio methods (Paulhus
and Kohler, 1952). The inverse-distance weighting assumes the
weights to be proportional to the distance from the target,
while the normal-ratio method assumes the weights to be
proportional to the ratio of average annual precipitation at the
target and reference stations. Another prominent interpolation
approach is based on kriging or gaussian processes, which assigns
weights by accounting for spatial correlations within data (Oliver
and Webster, 2015). Teegavarapu and Chandramouli (2005)
proposed several improvements to weighting methods and also
introduced the coefficient of correlation weighting method—
here the weights are proportional to the coefficient of correlation
with the target. Recent studies have proposed new weighting
schemes using more sophisticated frameworks (e.g., Morales

Martínez et al., 2019; Teegavarapu, 2020). In parallel, studies
have also been conducted to account for various uncertainties in
imputation. For example, Ramos-Calzado et al. (2008) proposed
a weighting method to account for measurement uncertainties
in a precipitation time series. Lo Presti et al. (2010) proposed a
methodology to approximate eachmissing value by a distribution
of values where each value in the distribution is obtained via
a univariate regression with each of the reference stations.
Simolo et al. (2010) pointed out that weighting approaches
have a tendency to overestimate the number of rainy days and
to underestimate heavy precipitation events. They addressed
this issue by proposing a spatial interpolation procedure that
systematically preserved the probability distribution, long-term
statistics, and timing of precipitation events.

A critical review of the literature shows that, in general, spatial
interpolation techniques have two fundamental shortcomings: (i)
how to optimally select neighbors, i.e., reference stations, and
(ii) how to assign weights to selected stations. While selecting
reference stations is typically done using statistical correlation
measures, assigning weights to selected stations is currently an
ongoing area of research. The methods reviewed so far are based
on the idea of specifying a functional form of the weighting
relationships. The appropriate functional form may vary from
one region to another depending on the prevalent patterns of
precipitation as influenced by local topographic and convective
effects. Using a functional form that is either inappropriate or
too simple could distort the statistical properties of the datasets
(such as mean and covariance). Some researchers have proposed
to address these shortcomings by using Bayesian approaches (e.g.,
Yozgatligil et al., 2013; Chen et al., 2019; Jahan et al., 2019).
These fall under the broad category of expectation-maximization
and data augmentation algorithms, thus yielding a probability
distribution for each missing value.

An alternative approach for imputing missing data is the
application of data-driven or machine learning (ML) methods
which are becoming increasingly prominent for imputing using
spatial interpolation. These methods do not need a functional
form to be specified a priori and can learn a multi-variate
relationship between the target station and reference stations
using available datasets. Studies have found that the performance
of ML methods tends to be superior to that of traditional
weighting methods (e.g., Teegavarapu and Chandramouli, 2005;
Hasanpour Kashani and Dinpashoh, 2012; Londhe et al., 2015).
In addition, studies have been conducted to identify an optimal
architecture for ML-based methods (Coulibaly and Evora, 2007;
Kim and Pachepsky, 2010). In this work, we use a Random
Forests (RF) method. The RF is an ensemble learning method
which reduces associated bias and variance, making predictions
less prone to overfitting. In addition, a recent study showed
that RF-based imputation is generally robust, and performance
improves with increasing correlation between the target and
references (Tang and Ishwaran, 2017).

Regardless of the imputation technique, an inherent limitation
of spatial interpolation algorithms is the need for reference
stations to have complete records during the time-period
of interest. This limitation is critical for ML algorithms
where incomplete records preclude data-driven learning of
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multi-variate relationships. The success of spatial interpolation,
therefore, depends on whether precipitation at the target station
is highly correlated with precipitation at stations with complete
records. A station with an incomplete record is typically excluded
from the analysis even though that station may have a high
correlation with the target station. In this work, we hypothesize
that stations with incomplete records contain information that
can improve spatial interpolation if they are included in the
analysis. We propose a new algorithm, namely sequential
imputation, that leverages incomplete records to impute missing
values. In this approach, stations that are imputed first are also
included as reference stations for imputing subsequent stations.
We implement this algorithm in the context of imputing missing
daily values of precipitation and demonstrate its benefits by
incorporating it in an RF-based spatial interpolation.

In what follows, we start by describing our study area
and data sources and follow this with a brief introduction
to the Random Forests (RF) method. We then describe all
our numerical experiments, starting with a baseline imputation
that helps evaluate the performance of sequential imputation.
This is followed by a description of the sequential imputation
algorithm, along with an outline of different scenarios to
evaluate sequential imputation. We compare the results of
sequential imputation with a non-sequential imputation in which
incomplete records are not leveraged for subsequent imputations.
Finally, we discuss the implications of our results and provide
some concluding thoughts.

METHODOLOGY

Study Area and Data Sources
We conducted this study using data from the Upper Colorado
Water Resource Region (UCWRR), which is one of 21
major water resource regions classified by the United States
Geological Survey to divide and sub-divide the United States
into successively smaller catchment areas. The UCWRR is the
principal source of water in the southwestern United States
and includes eight subregions, 60 sub-basins, 523 watersheds,
and 3,179 sub-watersheds. Several agencies have active weather
monitoring stations in UCWRR. For our study, we considered
the weather stations maintained by the Natural Resources
Conservation Service (NRCS). Table 1 summarizes the various
networks that comprise the NRCS database.

TABLE 1 | Summary of NRCS stations in UCWRR.

Network # Of stations # Of complete records # Of incomplete records

SNOTEL 134 94 40

SCAN 12 1 11

ACIS 5 2 3

SNOLITE 1 0 1

All 152 97 55

SNOTEL: Snowpack Telemetry; SCAN: Soil Climate Analysis Network; ACIS: Applied

Climate Information System; SNOLITE: SNOTEL with Iridium Satellite System.

Figure 1 shows the spatial distribution of NRCS stations in
UCWRR. Ninety-seven stations have complete records which
primarily belong to the Snowpack Telemetry (SNOTEL) network.
We considered data spanning the 10-year window from 2008
to 2017. Over this period, NRCS had 152 active stations in
UCWRR which report daily precipitation data. For this study,
our dataset is restricted to the 97 stations with complete records.
We downloaded the data through the NRCS Interactive Map and
Report Generator1 (accessed Jan 16, 2020).

Spatial Interpolation Method: Random

Forests (RF)
RF is an ML-method based on an ensemble or aggregation of
decision-trees (Breiman, 2001). A decision-tree is a flowchart-
like structure that recursively partitions the input feature
space into smaller subspaces (Figure 2). Recursion is carried
out till the subspaces are small enough to fit simple linear
models on them In regression problems, the decision rules
for partitioning are determined such that the mean-squared
error between the tree output and the observed output is
minimized. The RF model trains each decision-tree on a
different set of data points obtained by sampling the training
data with replacement (or bootstrapping). Furthermore, each
tree may also consider a different subset of input features
selected randomly. The final output of the random forest
is obtained by aggregating (or ensembling) the results of
all decision trees. For regression problems, aggregation is
done by taking the mean. Figure 2 shows a schematic of an
RF regressor.

The ensemble nature of RF leads to several benefits (Breiman,
2001; Louppe, 2015). First, it makes RF less prone to overfitting,
despite the susceptibility of individual trees to overfitting (Segal,
2004). For regression problems, overfitting refers to low values of
mean-squared error on training data, and high values of mean-
squared error on test data. Second, it enables an evaluation of
the relative importance of a variable (which, in this work, refers
to a reference station) for predicting the output. This is typically
done by determining how often a variable is used for partitioning
the input feature space, across all trees. Third, the ensemble
nature of RF makes it possible to not set aside a test set. Since
the input for each decision tree is obtained by bootstrapping,
the unsampled data can be used to estimate the generalization
error. In addition, RF does not require extensive hyperparameter
tuning compared to other ML approaches (Ahmad et al.,
2017).

In this study, we implement RF using Python’s scikit-learn
module (Pedregosa et al., 2011). Precipitation data from reference
stations acts as input, and precipitation data at the target station
is specified as the output. Unlike typical spatial interpolation
approaches, we do not specify distances between the reference
and target stations. Distances are static variables and their
influence on dynamic precipitation relationships gets learnt as a
constant bias, regardless of whether they are explicitly specified
or not.

1https://www.wcc.nrcs.usda.gov
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FIGURE 1 | Spatial extent of UCWRR, along with the layout of stations in the NRCS database (comprising of 97 complete and 55 incomplete records).

FIGURE 2 | Schematic of a Random Forest regressor, adapted from Stockman et al. (2019).

Overview of Numerical Experiments
To investigate if stations with incomplete records contain
information that can improve spatial interpolation, we designed
three sets of numerical experiments: baseline, sequential, and
non-sequential imputation. In baseline imputation, each station
in our dataset is modeled using the remaining stations as
reference stations. This represents an upper bound on the
performance of sequential imputation when we have multiple
stations with incomplete records. The baseline imputation
provides statistics to help evaluate the performance of sequential

imputation. In sequential imputation, a subset of stations in
our dataset is marked as artificially incomplete. For each
station in the artificially incomplete subset, 20% of the values
are randomly marked as “missing.” The missing values are
imputed by leveraging other artificially incomplete stations in the
subset, in addition to using stations outside the subset. Finally,
in non-sequential imputation, the same artificially incomplete
subset as sequential imputation is considered, and missing
values are imputed using just the stations that are outside the
subset. We describe the three sets of numerical experiments in
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detail in sections Numerical Experiments: Baseline Imputation
and Numerical Experiments: Sequential and Non-sequential
Imputation. Before describing each of these experiments, it
would be instructive to discuss our performance criterion for
evaluating imputation.

Evaluating Imputation: Nash-Sutcliffe

Efficiency (NSE)
We evaluated the overall performance of imputation by
computing the Nash-Sutcliffe Efficiency (NSE) on test data
given by

NSE = 1−

∑N
i=1

(
yoi − ymi

)2
∑N

i=1

(
yoi − yo

)2 (1)

where N is the size of the test set, yoi is i-th observed value, ymi
is the corresponding modeled value, and yo is the mean of all
observed values in the test set.

The NSE is a normalized statistical measure that determines
the relative magnitude of the residual variance (or noise) of
a model when compared to the measured data variance. It is
dimensionless and ranges from −∞ to 1. An NSE value equal to
1 implies that the modeled (in our case, imputed) values perfectly
match the observations; an NSE value equal to 0 implies that the
modeled values are only as good as the mean of observations;
and a negative NSE value implies that the mean of observations
is a better predictor than modeled values. Positive NSE values
are desirable, and higher values imply greater accuracy of the
(imputation) model.

Two other common statistical measures for evaluating the
overall accuracy of prediction are Pearson’s product-moment
correlation coefficient R, and the Kolmogorov-Smirnov statistic.
While the former evaluates the timing and shape of the modeled
time series, the latter evaluates its cumulative distribution.
Gupta et al. (2009) decomposed the NSE into three distinctive
components representing the correlation, bias, and a measure
of relative variability in the modeled and observed values. They
showed thatNSE relates to the ability of a model to reproduce the
mean and variance of the hydrological observations, as well as the
timing and shape of the time series. For these reasons, the use of
NSE was preferred over other statistical measures to evaluate the
accuracy of imputation.

We also evaluated the performance of sequential imputation
for predicting dry events and extreme wet events. This is
because spatial interpolation approaches tend to overpredict
the number of dry events and underestimate the intensity of
extreme wet events (Simolo et al., 2010; Teegavarapu, 2020). A
common practice is to consider a day as a dry event if the daily
precipitation does not exceed a threshold of 1mm (Hertig et al.,
2019). We considered a threshold of 2.54mm since that is the
resolution of our dataset. We considered a day as an extreme
wet event if the daily precipitation exceeded the 95th percentile
of the entire precipitation record for a given station (Zhai et al.,
2005; Hertig et al., 2019). To evaluate prediction accuracy for
dry events, we computed the percentage error, or the percentage
of days that were correctly modeled as dry days. To evaluate

prediction accuracy for extreme wet events, we computed NSE
values exclusively for days that exceeded the 95th percentile
of daily precipitation values; this enabled us to evaluate the
predicted magnitude. In what follows, we use the acronym NSEE
to denote NSE for extreme events.

Numerical Experiments: Baseline

Imputation
For our first set of numerical experiments, we conducted baseline
imputations where each station in our dataset is modeled using
the remaining stations as reference stations. Our dataset consists
of 97 stations with complete records (as outlined in Figure 1 and
Table 1). This set of numerical experiments is a test of the RF-
based imputation method and provides an upper bound on the
performance of the sequential imputation algorithm discussed in
the section Sequential Imputation Algorithm. More importantly,
it provides estimates of the variance for modeling each station,
which will be used to evaluate the performance of the sequential
imputation algorithm. Specifically, each station in our dataset was
considered, in turn, to be a target station (or model output), with
the rest of the stations acting as references (or input features). For
each target station, 80% of the data were randomly selected for
training, and the remaining 20% were used for testing. The test
set effectively acted as missing data to be imputed. We conducted
this exercise 15 times for each station. Prior to these runs, we
also conducted an independent set of baseline runs to tune the
hyperparameters of RF.

Sequential Imputation Algorithm
ML-based spatial interpolation learns multi-variate relationships
between the reference stations and the target station. Studies have
noted that for imputation results to be reliable, data at reference
stations should be strongly correlated to data at the target station
(e.g., Teegavarapu and Chandramouli, 2005; Yozgatligil et al.,
2013). However, ML-based spatial interpolation excludes stations
that have incomplete records, even though they may be strongly
correlated with the target station. Here, we develop a technique
(i.e., sequential imputation) where stations that are imputed first
are used as reference stations for imputing subsequent stations.
In what follows, we refer to a station with a complete record as
a “complete station,” and a station with an incomplete record
as an “incomplete station.” The sequential imputation algorithm
involves the following steps:

1. Add all complete stations to the list of reference stations.
2. Calculate correlations between incomplete stations and

reference stations.
3. Pick the incomplete station having the highest aggregate

correlation with reference stations.
4. Impute missing values for the station picked in Step 3, using

all the reference stations.
5. Add the imputed station to the list of reference stations.
6. Repeat steps 2–4 till missing values of all the stations

are imputed.

In this study, correlation refers to Pearson’s product-moment
correlation coefficient, hereafter denoted by R. We chose this
measure for its simplicity. Step 3 requires calculating an aggregate
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correlation of each incomplete station with the reference stations.
This step assumes that the incomplete station having the highest
aggregate correlation with reference stations will have the most
accurate imputation.Wewill verify this assumption in the Results
section. To determine an appropriate aggregate correlation
measure for Step 3, we implemented the following procedure:

i. Compute correlations of a target station with each of the
reference stations.

ii. Sort the correlation values in descending order (highest
to lowest).

iii. Calculate the cumulative sum of the sorted correlations.
Denote each partial sum as Si, where subscript i refers to the
first i sorted correlations.

i varies from 1 to N, and N is the number of reference stations
in the dataset. Each Si is an aggregate measure of correlation
between a target station and the reference stations. For instance,
S2 refers to the sum of first two sorted correlations, S3 refers
to the sum of first three sorted correlations, and so on. We
computed values of Si for all the 97 stations in our dataset
and compared their values with NSE determined from baseline
imputations. The Si having the highest correlation with NSE
was picked to quantify aggregate correlation (for Step 3 of
sequential imputation). For practical applications, the above
procedure to determine an appropriate aggregate correlation
may be implemented using non-sequential imputations. Note
that other aggregate measures may be envisioned (e.g., mutual
information, spearman’s correlation), but we sought to pick one
that is relatively simple to keep our focus on the sequential
imputation approach.

Numerical Experiments: Sequential and

Non-sequential Imputation
To investigate the benefits of sequential imputation, we divided
our dataset of 97 complete stations into five (almost) evenly sized
subsets and labeled them 1 through 5, as shown in Figure 3.
The division into subsets was random. We then considered four
different scenarios, each of which marked certain subsets as
artificially incomplete. These are shown in Table 2.

Precipitation records typically have missing values resulting
from randommechanisms such as malfunctioning of equipment,
network interruptions, and natural hazards. In other words, the
probability that a precipitation value is missing does not depend
on the value of precipitation itself. These random mechanisms
also assume that the location or physiography of a weather station
has no bearing on whether its record is complete or incomplete.
This missing at random mechanism (Schafer and Graham, 2002)
is reflected in our decision to create subsets randomly, and
enables us to evaluate the sequential imputation approach in a
more generic setting.

Figures 4A–D shows the division of our dataset into complete
and artificially incomplete subsets for each of the scenarios
listed in Table 2. Scenario 1 had 77 out of 97 records marked
as artificially incomplete. Each subsequent scenario had fewer
records marked as artificially incomplete, culminating with
Scenario 4 which had only 19 such records. These scenarios

FIGURE 3 | Division of complete stations (see Figure 1) into five subsets.

TABLE 2 | Scenarios for sequential and non-sequential imputation.

Artificially incomplete subsets Complete subsets

Scenario 1 2, 3, 4, 5 1

Scenario 2 3, 4, 5 1, 2

Scenario 3 4, 5 1, 2, 3

Scenario 4 5 1, 2, 3, 4

were designed to investigate how the proportion of incomplete
records affects imputation. We expected sequential imputation
to be more beneficial as the proportion of incomplete records
increased in the dataset.

The stations belonging to the artificially incomplete subsets
had 20% of their data marked as missing. Previous studies on
imputation have considered two broad mechanisms for marking
missing values. One approach involves marking missing values
randomly (e.g., Teegavarapu and Chandramouli, 2005; Kim and
Pachepsky, 2010), while the other approach assumes that missing
values form continuous gaps in time (e.g., Simolo et al., 2010;
Yozgatligil et al., 2013). Since spatial interpolation assumes no
temporal autocorrelation and is agnostic to the timestamp of the
data, the mechanism for marking missing values is not relevant.
For simplicity, we assumed that values were missing completely
at random. The missing values were imputed using sequential
and non-sequential imputations; both these imputations were
compared and enabled us to highlight the benefits of sequential
imputation. Specifically, we calculated NSE corresponding to
both sequential and non-sequential runs and computed the
change (or increase) 1 in NSE for each station as follows:

1NSE = NSEsequential − NSEnon−sequential (2)
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FIGURE 4 | Artificially incomplete and complete datasets for different scenarios of sequential and non-sequential imputation. Note: Colormap for elevation is same as

Figures 1, 3. (A) Scenario 1. (B) Scenario 2. (C) Scenario 3. (D) Scenario 4.

To evaluate improvement in prediction of extreme wet events,
NSE in Equation 2 was replaced by NSEE. To evaluate
improvement in prediction of dry days, we computed the
percentage error (i.e., the percentage of days that were correctly
modeled as dry days) corresponding to both sequential and non-
sequential runs. We then computed the change (or decrease) 1

in percentage error (PE) as follows:

1PE = PEnon−sequential − PEsequential (3)

RESULTS

Baseline Imputation
We performed baseline imputation to estimate statistics to
evaluate the performance of the sequential imputation algorithm.
Figures 5A–C show results of baseline imputations on missing
data for all stations. Each station was modeled 15 times, with
different splits of training and testing (missing) data, and
the accuracy of each model for imputation was quantified by
computingNSE on test data. This provided us with a distribution
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FIGURE 5 | Results of baseline imputations on missing data. (A) Distribution of mean NSE (µs), (B) scatter of mean (µs), and standard deviation (σs) of NSE, (C)

geospatial distribution of mean NSE (µs).

of NSE values (instead of just one value) for reconstructing each
station, from which we estimated the mean µ and standard
deviation σ of NSE for each station. For clarity, we denote the
mean and standard deviation of a particular station s, by µs and
σs, respectively. Figure 5A compiles theµs for all the stations and
shows them as a histogram. Approximately 95% of the stations
have a mean NSE >0.5, and approximately two-thirds of the
stations have a mean NSE >0.65. Figure 5B compiles the µs

and σs for all stations and shows them as a scatter plot. We
see that for each station, the NSE values have a small standard
deviation relative to their mean. Figure 5C shows the geospatial
distribution of µs.

Figure 6 shows sample scatter plots of true and predicted
precipitation on test data using baseline imputations. The dotted
line shows the 45-degree line which corresponds to a perfect

match (i.e., NSE = 1) between true and predicted values.
Note that our dataset has a resolution of 0.1 inch or 2.54mm,
which results in visible jumps in the abscissa (or “true values”).
Subfigure (a) corresponds to a relatively high value ofNSE (∼0.8),
and subfigure (b) corresponds to a relatively low value of NSE
(∼0.5). We see from these plots that for a high value of NSE, the
relative scatter is smaller and closer to the dotted line.

Aggregate Correlation Between Target

Incomplete Stations and Reference

Stations
To identify an appropriate aggregate correlation measure
for sequential imputation, we analyzed results of baseline
imputations. Specifically, we computed values of Si for all
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the target stations (i.e., Ssi) and compared their values with
the corresponding µs. Since strong correlations with reference
stations lead to more accurate imputation, we expect Si to
be positively correlated with µ, regardless of the value of i.
As defined in the section Sequential Imputation Algorithm, Si
for a target station is the sum of first i sorted correlations
with reference stations. For clarity, we denote Ssi to refer to
Si for a particular target station s. Figure 7A shows a scatter

plot of Ss2 and µs for all the stations in our dataset (as
outlined in Figure 1 and Table 1). The correlation coefficient
was 0.95. Similarly, we computed correlations between Ssi and
µs for all values of i [denoted as Corr(µs, Ssi)], and plotted
them in Figure 7B. These results show that the correlation
between Ssi and µs is higher for lower values of i. On the
basis of Figure 7, we used S2 as the similarity measure for
sequential imputation. For practical applications, an appropriate

FIGURE 6 | Sample scatter plots of true and predicted precipitation on test data using baseline imputations: (A) NSE = 0.79, (B) NSE = 0.52. Note that the jumps in

true values are due to the coarse resolution (of 2.54mm) of the dataset.

FIGURE 7 | Quantifying similarity between target and reference stations: (A) scatter plot between Ss2 and µs (mean value of NSE) with a linear fit, (B) correlations

between µs and Ssi as a function of i (annotation: maximum value of the correlation).

FIGURE 8 | Sequential imputation results for Scenario 1. (A) NSE obtained during sequential imputation plotted as a function of increment in sequence and

superimposed over baseline NSE values, (B) Change 1NSE for each increment in sequence, when compared to a non-sequential imputation. Orange dots are

considered significant improvements (i.e., 1sNSE > σs).
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FIGURE 9 | Sequential imputation results for Scenario 2; captions of (A,B) are same as in Figure 8.

FIGURE 10 | Sequential imputation results for Scenario 3; captions of (A,B) are same as in Figure 8.

FIGURE 11 | Sequential imputation results for Scenario 4; captions of (A,B) are same as in Figure 8.

similarity measure may be determined by analyzing results of
non-sequential imputations.

Sequential Imputation
To implement the sequential imputation algorithm, the
artificially incomplete subsets in each of the four scenarios
were reconstructed using sequential and non-sequential
imputation (see section Numerical Experiments: Sequential and
Non-sequential Imputation). For a given station, sequential
imputation was considered to have made a significant
improvement if the corresponding 1sNSE (i.e., 1NSE for
station s computed using Equation 2) was greater than σs

estimated from baseline runs. This was done to ensure that
the change in NSE during sequential imputation may not be
attributed to noise.

Figures 8A–11A show the results of sequential imputation
for Scenarios 1–4, respectively, with values of NSE for each
station corresponding to sequential imputation. The values
are plotted in the order of sequential imputation and are
superimposed over the baseline values of NSE. The baseline

NSE curve is centered at its mean and the thickness represents

its standard deviation (as shown in Figure 5B). The baseline
curve provides an upper bound on the performance of the
sequential imputation algorithm. Figures 8B–11B show change
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in NSE for each increment in sequence, when compared to a
non-sequential imputation.

Results for the scenarios are summarized in Table 3.
Figure 12 shows scatter plots of true and predicted

precipitation on test data for a station that showed significant
improvement during sequential imputation in Scenario 1.
Subfigure (a) shows the scatter for non-sequential imputation,
and subfigure (b) shows the scatter for sequential imputation.
The dotted line shows the 45-degree line which corresponds to a
perfect match (i.e., NSE = 1) between true and predicted values.
Recall that our dataset has a resolution of 0.1 inch or 2.54mm,
which results in visible jumps in the abscissa (or “true values”).

Figures 13, 14 show the results of sequential imputation
for predicting dry [subfigures (a)] and extreme wet [subfigures

TABLE 3 | Summary of results for Scenarios 1–4 for sequential and

non-sequential imputation.

# Of imputed stations # Of stations where 1sNSE > σs

Scenario 1 77 49

Scenario 2 57 16

Scenario 3 38 4

Scenario 4 19 0

(b)] events for Scenarios 1, 2. The values are plotted in the
order of sequential imputation and denote the change in PE or
NSEE during sequential imputation when compared to a non-
sequential imputation. The 1 values are color-coded according
to results of Figures 8–11. The results for Scenarios 3, 4 are not
shown for the sake of brevity.

DISCUSSION

Figure 5A shows the mean NSE (µs) for all the stations as a
histogram. As noted earlier, approximately 95% of the stations
have µs >0.5, and approximately two-thirds of the stations have
a µs >0.65. Moriasi et al. (2007) reviewed over twenty studies
related to watershed modeling and recommended that for a
monthly time step, models can be judged as “satisfactory” if
NSE is >0.5; a lower threshold was recommended for daily time
steps. Therefore, our spatial interpolation technique for imputing
missing values can be considered to be effective.

The geospatial distribution of mean NSE in Figure 5C

suggests that lower values of NSE tend to arise when there
is a lower density of reference stations in close proximity.
This is because distant stations tend to experience dissimilar
precipitation patterns than the target station, making them less
likely to be reliable predictors of precipitation at the target

FIGURE 12 | Scatter plots of true and predicted precipitation on test data for a station that showed significant improvement during sequential imputation in Scenario

1: (A) non-sequential imputation, (B) sequential imputation. Jumps in true values are due to the coarse resolution (of 2.54mm) of the dataset.

FIGURE 13 | Sequential imputation results for predicting dry (A) and extreme wet (B) events for Scenario 1. Orange dots correspond to significant improvements in

overall predictions as shown in Figure 8.
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FIGURE 14 | Sequential imputation results for predicting dry (A) and extreme wet (B) events for Scenario 2. Orange dots correspond to significant improvements in

overall predictions as shown in Figure 9.

FIGURE 15 | Geospatial distribution of mean NSE (µs) with a red arrow

marking a station that has a low NSE.

station. This observation is why the inverse-distance weighting
method is popular.

Although proximity of reference stations may be considered
necessary for accurate imputation of precipitation values, it is
not sufficient (e.g., Teegavarapu and Chandramouli, 2005). We
show an example of this in Figure 15, which is a modified
version of Figure 5C with an arrow marking a station. The
marked station has a low NSE despite having reference stations
that exist in close proximity. This is because the reference
stations closest to it have significantly different values of

elevation (for reference, the marked station has an elevation
of 2,113m, while the closest station has an elevation of
3,085m). For accurate spatial interpolation at a target location,
the reference stations should have physiographic similarity
with the target. Factors influencing physiographic similarity
are location, elevation, coastal proximity, topographic facet
orientation, vertical atmospheric layer, topographic position, and
orographic effectiveness of the terrain (Daly et al., 2008). Note
that it is not known a priori how these different factors interact
with each other and subsequently influence the physiographic
properties of target and reference stations. Selecting reference
stations based on predefined physiographic criteria may result in
an unintentional exclusion of stations that have a high correlation
with the target station. Overall, any predefined physiographic
criterion will lack the flexibility in selecting stations and may not
result in the best imputation performance.

Figure 6 shows sample scatter plots of true and predicted
precipitation on test data using baseline imputations. We see
from these plots that for a high value of NSE, the relative scatter
is smaller. In addition, we can also observe that even for a high
value of NSE, there is a tendency to overpredict the number of
dry days and underestimate the intensity of extreme wet events.
For subfigure (a), the 95th percentile threshold is at 15.24mm,
and for subfigure (b), it is at 12.7mm. Recall that we define events
beyond the 95th percentile threshold as extreme wet events.

Figures 8–11 demonstrate the benefits of sequential
imputations when compared with non-sequential imputations.
In what follows, we will use the phrase “incomplete station” to
refer to an artificially incomplete station. Figures 8–11 show
that as the proportion of incomplete stations increases, there
is a higher percentage of stations benefitting from sequential
imputation. 1NSE values that correspond to significant
improvements (i.e., 1sNSE > σs) tend to be higher than
those that do not. A value of 1NSE that does not correspond
to a significant improvement (i.e., 1sNSE ≤ σs) implies that
the previously imputed stations do not add extra information
for spatial interpolation. This can be for two reasons: (i) the
previously imputed stations are weakly correlated to the target
station, or (ii) the previously imputed stations show strong
correlations with the target station, but also show strong
correlations with stations already in the complete subset. The
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FIGURE 16 | Comparisons between S2 for sequential and non-sequential imputations: (A) Scenario 1 and (B) Scenario 2.

second reason could happen if there is a cluster of stations that
have similar physiography and experience similar precipitation
patterns. Sequential imputation of stations in a cluster may not
add new information if other stations in the cluster already
have complete records. For instance, consider Scenario 4 where
the proportion of incomplete stations is small and sequential
imputation does not provide any benefits. Figure 4D shows
that the incomplete stations in Scenario 4 are either isolated
(and could be weakly correlated to other incomplete stations)
or are a part of a cluster with multiple complete records.
Figures 3, 4 show that the stations in our dataset tend to form
clusters; these figures help us understand why we observe
a smaller percentage of stations benefitting from sequential
imputation as the proportion of incomplete stations decreases.
The clustering tendency implies that when there is a small
subset of incomplete stations, there is a high probability that
previously imputed stations do not add any extra information
for spatial information.

Figure 12 shows scatter plots of true and predicted
precipitation on test data for a station that showed significant
improvement during sequential imputation in Scenario 1. As
noted for Figure 6 as well, these plots help visualize that as
the NSE value increases during sequential imputation, the
relative scatter decreases demonstrating improved spatial
interpolation. Figures 13, 14 demonstrate that the benefits of
sequential imputation also carry over to predicting dry events
and extreme events despite the underlying limitations of spatial
interpolation as noted in the section Evaluating Imputation:
Nash Sutcliffe Efficiency (NSE). We observe a general trend
that the improvements (or values of 1) tend to be higher for
stations that correspond to significant overall improvements
(i.e., 1sNSE > σs) as discussed above.

Results for aggregate correlations (Figure 7B) show that
the correlation between Si (i.e., partial sum of first i sorted
correlations) and NSE is high for lower values of i, and
gets progressively weaker as i increases. This implies that for
reliable imputation, having a few references that are strongly
correlated is more important than having many references that
are weakly correlated. This highlights why sequential imputation
is a powerful technique, since leveraging even one incomplete
station that is highly correlated to the target station can make a
significant improvement. We illustrate this further in Figure 16,

where we show values of S2 for all stations at the time
of sequential imputation in Scenarios 1 and 2. As expected,
values of S2 during sequential imputation are higher than those
during non-sequential imputation, which is consistent with
improved imputations.

It is important to note that stations imputed earlier during
sequential imputation tend to have a higher NSE, indicating a
more reliable imputation. NSE values tend to decrease along
the imputation sequence. This is primarily a consequence of
the order in which we pick stations for sequential imputation.
Stations that are imputed earlier in the sequence have a higher
aggregate correlation with reference datasets, implying that
missing data would be modeled with greater accuracy. This can
be verified by observing the trend of the baseline NSE curve in
Figures 8A–11A, which also shows a reduction in NSE values
along the imputation sequence. Stations that are imputed later
in the sequence will tend to have a lower value of NSE because
they have a lower baseline NSE to begin with; they could still
exhibit significant improvements during sequential imputation
when compared to non-sequential imputation (as shown in
Figures 8B–10B).

Finally, we note that the performance of sequential imputation
could be negatively impacted if the data gaps among stations
occur synchronously. In particular, this could happen if a
station earlier in the sequence was poorly imputed and
has a high correlation with a station imputed later in the
sequence. However, the proposed sequential approach can still
be implemented, and this approach will outperform or equally
match the non-sequential approach.

CONCLUSIONS

Spatial interpolation algorithms typically require reference
stations that have complete records; therefore, stations with
missing data or incomplete records are not used. This
limitation is critical for machine learning algorithms where
incomplete records preclude data-driven learning of multi-
variate relationships. In this study, we proposed a new algorithm,
called the sequential imputation algorithm, for imputing missing
time-series precipitation data. We hypothesized that stations
with incomplete records contain information that can be used
toward improving spatial interpolation. We confirmed this
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hypothesis by using the sequential imputation algorithm which
was incorporated within a spatial interpolation method based on
Random Forests.

We demonstrated the benefits of sequential imputation as
compared to non-sequential imputation. Specifically, we showed
that sequential imputation helps leverage other incomplete
records for more reliable imputation. We observed that as the
proportion of stations with incomplete records increases, there
is a higher percentage of stations benefitting from sequential
imputation. On the other hand, if the proportion of stations
with incomplete records is small, there is a high probability
that sequential imputation does not add any extra information
for spatial information. We also observed that the benefits
of sequential imputation carry over to improved predictions
of dry events and extreme events. Finally, results showed
that for reliable imputation, having a few strongly correlated
references is more important than having many references that
are weakly correlated. This highlights why sequential imputation
is a powerful technique, since including even one incomplete
station that is highly correlated to the target station can make a
significant improvement in imputation.

Although we demonstrated sequential imputation using
Random Forests, it can be implemented using other ML-
based and spatial interpolation methods found in the literature.
Furthermore, we presented a new but generic algorithm for
imputing missing records in daily precipitation time-series that
is potentially applicable to other meteorological variables as well.
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In this study, a novel temporal convolutional neural network (TCNN) model is developed

for long-term streamflow projection in California within the Catchment Attributes for

Large-Sample Studies (CAMELS) watershed regions. The TCNN model consists of

several convolution blocks and causal convolution is used as physical constraint. The

ensemble performance of the model is first compared with other machine learning

models for streamflow prediction. The model is further assessed through comparison

with reduced models and using different hyperparameters, with results suggesting that

this model correctly ascertains the physical relationship between input variables and

streamflow. The stability of the model and its behavior in the extrapolated regime

is assessed through an idealized extreme test with quadruple precipitation and 5◦C

higher temperature. Future streamflow projections are then developed using daily

high-resolution Localized Constructed Analogs dataset (LOCA). To understand the

importance of the nonlinear machine learning approach, we estimate the degree of

nonlinearity in the streamflow response among input variables. Our work shows the ability

and potential for TCNNs to perform future hydrology projections.

Keywords: machine learning, temporal convolutional neural network, model sensitivity, streamflow projection,

projection analysis

1. INTRODUCTION

Streamflow is an undeniably important hydrologic quantity for agriculture, society and ecosystems.
While historical records of streamflow have been indispensable in informing us of the probability
associated with particular flow conditions, it is unclear to what degree these predictions are valid
under future meteorological conditions in light of climate change. Failure to correctly predict
reservoir inputs has the potential to lead to reservoir failure, such as was witnessed recently with
the Oroville reservoir spillway collapse (White et al., 2019). Long-term projections of streamflow
that capture the climatology of streamflow within each watershed are further useful for informing
water management strategy. Models for streamflow prediction and projection can be generally
divided into two categories: physically-based models and data-driven models (Shen, 2018). Since
physically-based hydrological models typically require significant computational expense and
extensive calibration of land surface characteristics, machine learning (ML) models are being
increasingly employed for streamflow prediction, especially Artificial Neural Networks (ANNs)
(Gao et al., 2010; Noori and Kalin, 2016; Atieh et al., 2017; Peng et al., 2017), Support Vector
Machines (SVMs) (Kisi and Cimen, 2011; Huang et al., 2014), and recurrent networks like
Long-Short Term Memory (LSTM) (Feng et al., 2019; Kratzert et al., 2019; Le et al., 2019; Yan
et al., 2019).
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Instead of directly simulating physical processes, ML models
mimic the physical rules from historical datasets to develop
a functional relationship between inputs and outputs. The
learning process largely consists of repeated matrix algebra to
adjust the weights in the models, which makes it amenable
to acceleration by graphics processing units (GPUs). Further,
because ML is broadly applicable across a variety of industries
and fields, significant investments have beenmade in the software
supporting its use. Compared with physically-based models,
ML models are generally faster to train and can operate with
essentially any predictors (Kratzert et al., 2019). However, the
structure of the model and predictor selection are important
since they determine the model performance. The general
principle governing these models is to build a simple, easy to
train model with all the necessary predictors—while avoiding
redundant predictors—and ensuring the relationships being clear
and direct.

Significant research onML data-driven models for streamflow
has been directed toward data preprocessing, with the purpose
being to reduce the number of degrees of freedom in the input
dataset and so make any underlying patterns or relationships
easier to be identified by ML algorithms. Streamflow at a
single gauge station is a fairly traditional 1D time-series
dataset, but one that is composed of different components
at a variety of frequencies. Consequently Kisi and Cimen
(2011) used the discrete wavelet transform (DWT) with SVM
for monthly streamflow prediction. The DWT was used to
decompose streamflow into high-frequency and low-frequency
components, referred to as the “details” and “approximation” in
their study, respectively. The approximation, which is the low-
frequency component, acts as the baseflow while other high-
frequency details represent the variation with shorter period.
Their results demonstrated preprocessing with DWT increased
the prediction accuracy compared with a model leveraging
the raw series. Analogously, Peng et al. (2017) employed the
empirical wavelet transform (EWT). Unlike DWT, the EWT
decomposition consisted of only three modes, which were used
for an ANN model and a residual component. Huang et al.
(2014) introduced the empirical mode decomposition (EMD)
method for streamflow preprocessing. They decomposed the
original data into five intrinsic mode functions and a residual.
Instead of removing the residual, they retained it and excluded
the high-frequency intrinsic mode function, producing better
performance compared with the model using only the original
data series. Although these preprocessing steps can simplify the
streamflow series and increase performance, they also introduce
additional hyperparameters and uncertainty into the model
which may impact model robustness.

ML model research has also focused on limiting the choice
of predictors—including both input variables and time window
size—so as to reduce the number of inputs (Rasouli et al.,
2012). Since traditional ML models do not generally incorporate
comprehensive physical relationships, ML model developers can
focus on only the predictors that explain the most output
variability. For streamflow, the most common predictors are
precipitation (P) and streamflow (Q) over some historical time
period. However, other predictors have been explored as well,

informed by our understanding of the system’s physical drivers;
for instance, Rasouli et al. (2012) investigated several climate
indices as predictors, and demonstrated that these can be
beneficial for prediction with long lead times up to 7 days. If one
only uses precipitation and historical streamflow as predictors,
the 1-day lag streamflow prediction problem can be expressed as:
Identify a function f so that the predicted daily time series

Q̂t = f (Pt−N , Pt−N+1, . . . , Pt;Qt−N ,Qt−N+1, . . . ,Qt−1) (1)

satisfies Q̂t ≈ Qt (measured under some prescribed metric).
Here the subscript represents the time index and N represents
the number of historical time points used for prediction. N must
typically be large enough to incorporate all historical information
relevant to prediction of streamflow at present, but large values
of N can lead to increased model complexity which can in turn
reduce performance. The value of N is thus usually decided by
calculating the autocorrelation or partial correlation; Yaseen et al.
(2016) used this approach for monthly streamflow prediction,
eventually deciding on a time lag of 5 months.

A common feature in early data-driven streamflow prediction
models is that the input variables were independent of time
when fed into the ANNs or SVMs. For example, there were no
connections within each layer of dense ANNs, and consequently
the network could not “remember” past states. Under such
architectures, temporal features in the predictors that may be
vital for time series prediction might be neglected. To deal with
this problem, some recurrent ML models have been adapted to
recognize time dependent features (Le et al., 2019; Yan et al.,
2019). Among such models, the most commonly used network
(at present) is the LSTM. Kratzert et al. (2019) used LSTM
and Catchment Attributes for Large-Sample Studies dataset
(CAMELS) to predict streamflow over CONUS. Their results
demonstrated that the LSTM model is capable of extracting
temporal features and the results from the MLmodel can then be
used to interpret the physical characteristics of different basins.
Feng et al. (2019) added the previous flow rate as data integration,
which improves the prediction accuracy of LSTM model. They
also employed a convolution data integration method, although
the resulting model did not outperform feeding observations
directly into LSTMmodel.

Although there are many ML prediction models, not all
can be directly employed for long-term projection. Under
future climate change scenarios driven by increased greenhouse
gas concentrations, the U.S. West is expected to experience
more precipitation and higher surface temperature (Huang and
Ullrich, 2017; Ullrich et al., 2018). It is similarly expected that
the resultant streamflow patterns will also change. In MLmodels,
since the model is developed and trained with a prescribed
training dataset, it is generally expected that the target variable
is the same in both training and testing sets. In the real world,
however, the statistical properties of the target variable may be
changing in time (for instance, under climate change). Under
such scenarios, the prediction model may be inconsistent with
future projection data, a problem referred to as concept drift
(Tsymbal, 2004). Although streamflow can be used in a predictive
model framework such as Equation (1) (an initial-boundary value
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problem), a simple substitution of Q̂ forQ to produce a projection
model can lead to errors in streamflow that accumulate over
time, potentially biasing the projection. Consequently, projection
models must be more heavily constrained to external forcing
data, which can restrict the selection of ML model. In the
context of projection, Koirala et al. (2014) used the Catchment-
based Macro-scale Floodplain Model (CaMa-Flood) with runoff
from CMIP5 models as input to derive streamflow under
different climate scenarios. Gao et al. (2010) used an ANN and
ECHAM5/MPI-OM model output to derive monthly projection
for Huaihe River Basin. These studies demonstrated the potential
for ML in streamflow projection.

In the present work, we document the development and
validation of a ML-based modeling system for estimating
future daily streamflow in California under climate change.
After intercomparison among various ML models, a general
Temporal Convolutional Neural Network (TCNN) is selected as
our candidate system. Although CNNs have not been typically
employed for streamflow prediction and projection—being more
widely known for image processing—recent work has shown
that they exhibit comparable performance to recurrent networks
for time series problems (Bai et al., 2018). Consequently our
study aims to further establish that TCNNs are competitive
for streamflow forecasting with only atmospheric forcing data.
Model sensitivities to input variables and time window size are
investigated to develop optimal configurations for each basin.
With theML-based streamflowmodel in hand, future streamflow
projections are constructed through the end of the twenty-
first century using statistically downscaled LOCA meteorology
as input. To the best of the authors’ knowledge, this is the
first work to assess TCNNs for streamflow projection with
only atmospheric forcing data. The comprehensive study of the
model’s sensitivity to covariates and time window size are further
novelties of this study. Although this work identifies a strategy
for production of future streamflow projections, future work is
needed to validate the methodology against physical constraints
and investigate the impacts these changes may convey.

The remainder of the paper is structured as follows: section 2
provides technical details about our study, including descriptions
of the data sources and the ML model structures. Section 3
explores prediction and projection across ML models, examines
the sensitivity of the TCNN to input variables and time window
size, and assesses the linearity of the problem. Insights from
these future streamflow projections are presented in section 4.
Conclusions follow in section 5.

2. DATA AND MODELS

2.1. CAMELS
The Catchment Attributes for Large-Sample Studies (CAMELS)
dataset provides the hydrologic data for this study (Newman
et al., 2014). The CAMELS dataset contains gauge streamflow
data and forcing data for 671 basins that feature minimal
human disturbance and at least 20 years of data over CONUS.
The forcing data is provided as a basin average from NLDAS,
Daymet, and Maurer, and includes precipitation, day length,
solar radiation, and temperature. The streamflow time series data

is obtained from USGS gauge stations. The dataset covers 40
watersheds in California, which we have downselected to the 20
watersheds without missing values for this study. Figure 1 shows
the location, HUC8 identifier, and name of these watersheds.
Based on the location of these watersheds, we divided them into
five categories and there are the corresponding abbreviations: NC
for Northern California (Basin 11381500, 11451100, 11475560,
11522500, and 11528700), SN for Sierra Nevada (Basin 10343500,
11264500, 11266500, and 11284400), SC for Southern California
(Basin 10258500, 10259000, and 10259200), CC for Central Coast
(Basin 11141280, 11143000, 11148900, 11224500, and 11253310)
and BA for the Bay Area (Basin 11162500, 11176400, and
11180500). In our model, streamflow is normalized by the basin
area to avoid discrepancies in the magnitude of the streamflow.
The data period is from January 1st, 1980 through December
31st, 2014. In total, we select 10,000 daily samples for training
(approximately 27 years) and leave the remainder of the dataset
for testing. These training samples are consecutive from the
beginning of the time series.

2.2. LOCA Downscaled Meteorology
For future streamflow projection, the Localized Constructed
Analogs (LOCA) dataset (Pierce et al., 2014) is employed. This
dataset provides the three necessary input variables for this
study, namely precipitation, solar radiation, and near-surface
temperature. LOCA is a downscaled dataset ensemble with 6
kilometer resolution over North America from central Mexico
through Southern Canada. Among all available LOCA datasets,
we downselect four global climate model for this study, which
are HadGEM2-ES, CNRM-CM5, CanESM2, andMIROC5 under
RCP8.5. These models agree with the four models chosen by
California’s Climate Action Team Research Working Group as
priority models for research contributing to California’s Fourth
Climate Change Assessment (Pierce et al., 2018). The climatology
of these models can be described as warm/dry (HadGEM2-
ES), cool/wet (CNRM-CM5), and average (CanESM2). Finally,
MIROC5 was selected because it is the most unlike the other
three. Since all the basins have irregular shapes, TempestRemap
(Ullrich and Taylor, 2015; Ullrich et al., 2016) is used to
conservatively regrid the LOCA data to obtain basin-mean
forcing data. Because of the uncertainty from both the climate
model output and the downscaling process, the historical LOCA
data and CAMELS data have some significant disagreements,
especially in the values of solar radiation. Specifically, LOCA
tends to overestimate the solar radiation compared with NLDAS,
as seen in Tables S1–S5. To avoid issues related to this systematic
difference, the LOCA data was linearly transformed based on
the historical forcing data to match the mean and variance
of observations. The same transformation was also applied on
the projection forcing data. Specifically, for a given daily input
XLOCA, either historical or projection, we denote the transformed
value as Xtrans, where µ and σ represent the corresponding mean
and standard deviation from the historical period:

Xtrans =
XLOCA − µLOCA_hist

σLOCA_hist
× σNLDAS_hist + µNLDAS_hist (2)
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FIGURE 1 | A topographic plot of California and the 20 watershed regions considered in this study.

The values of µ and σ for NLDAS and the climate model
ensemble can be found in Tables S1–S5.

Although LOCA provides historical daily atmospheric forcing
data, it is not suitable for model training since it is generated from
several climatemodels via an statistical downscalingmethod. The
climate models produce a simulated climatology which is only
constrained to the real world through prescribed atmospheric
greenhouse gas concentrations, so there is effectively no
relationship between LOCA and observed gage-based streamflow
measurements. This is also the reason why we only analyze the
climatology of flow rate in section 4, and do not directly compare
the time series of streamflow.

2.3. Model Predictors and Target
As mentioned earlier, the input variables (predictors) for our
streamflow models are precipitation, temperature, and solar
radiation. By default, the input time window size is set it to
365 days (although this is explored later in the text). In general,
the length of the input time window needs to be long enough
to capture the relevant physical relationships between input
variables and streamflow. For each of our ML models, the target
variable is streamflow on the last day in the time window. In
other words, our objective is to determine the function f in the

following equation:

Qt = f (Pt−N+1, Pt−N+2, . . . , Pt;Tt−N+1,Tt−N+2, . . . ,

Tt; St−N+1, St−N+2, . . . , St) (3)

where Q denotes streamflow, P the precipitation, T the
temperature, and S the solar radiation. Note that this equation is
only provided for the reader to better understand the relationship
between streamflow and the independent quantities. The actual
functional relationship will vary based on the model architecture.
The subscript denotes the corresponding daily value for that
particular quantity, and N denotes the input time window size.
The input and output variables are all normalized before feeding
them into the models via

Xi =
xi − µx

σ (x)
. (4)

Here Xi and xi are the ith normalized and original variable,
and µ and σ stand for mean and standard deviation of
that variable. With the normalized variables having zero mean
and unit variance, the specific units and range of the inputs
will not influence the model. In turn, the normalization
procedure is expected to improve the model performance (e.g.,
Shanker et al., 1996).
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2.4. Machine Learning (ML) Models
Four machine learning model architectures have been
investigated and compared with a baseline linear regression
model. For the predictive simulations, model performance
is quantified by the Nash-Sutcliffe model efficiency (NSE)
coefficient (Nash and Sutcliffe, 1970), which is defined as:

NSE = 1−

∑
(Qt

m − Qt
o)
2

∑
(Qt

o − Q̄o)2
(5)

where Qt
m denotes the predicted flow at time t, Qt

o the observed
flow at time t, and Q̄o the mean observed flow. Here the observed
quantities refer to output streamflow from USGS gauge stations.
Larger NSE values indicate better performance. Since the NSE
is proportional to the square of the difference between model
and observations, it tends to put greater emphasis on high flow
periods. Tomaximize NSE, we set 1−NSE as the loss function for
ourmodels—that is, the quantity to beminimized during training
process. For eachmodel, training is performed separately on each
basin but with the same model architecture.

Before training these networks, we first need to set the
hyperparameters, which are tuning factors in the model
architectures and training process. Common hyperparameters
include the number of layers, optimizer, and number of
epochs: The number of layers is important to the specific
model architecture; the optimizer refers to the gradient descent
algorithm used in the training process; and the number of epochs
refers to the number of times that the model is trained on the
entire training set. The Adam optimizer is used with 0.0005 as
the learning rate. We trained each model for 150 epochs with the
batch size set to 512. These training configurations are set based
on the training loss function, which ensures the loss decreases
and stabilizes at a low value. Although the hyperparameters are
important for overall model performance (Bergstra and Bengio,
2012), in this work we hold the optimizer and the number of
epochs the same for all models. This study does not investigate
differences that may arise through more fine tuning of these
hyperparameters for specific models—indeed a comprehensive
investigation of the optimal hyperparameters for each model is
beyond our current computational capability. The remainder of
this section describes the architecture of the models investigated
in this study.

2.4.1. Linear Regression
Linear regression refers to the simple linear regression model
that only incorporates first-order terms from Equation (3). This
precludes nonlinear relationships between days in the time
series of input variables or between different input variables. As
mentioned earlier, the simple linear regression model will be our
baseline for assessing the ML models.

2.4.2. Artificial Neural Network (ANN)
An ANN is a traditional neural network composed of dense
neural layers (Hassoun et al., 1995). It is an all-connected network
without interactions within each single layer. According to the
universal approximation theorem, with enough hidden units
and depth among the hidden layers, an ANN can simulate any

nonlinear relationship (Csáji et al., 2001; Lu et al., 2017). For
time series data, however, recurrent neural networks such as GRU
and LSTM normally outperform ANNs because of their ability
to capture temporal features. In our work, the ANN model has
two hidden layers with 100 hidden units and a “ReLU” activation
function in each layer. The set of hyperparameters is set based
on our coarse tuning for all interested basins. This ANN model
is a nonlinear model without temporal features, which is the
baseline for the following GRU, LSTM, and CNN models. ANNs
have been previously investigated for streamflow prediction
in Kisi and Kerem Cigizoglu (2007), and they compared the
performance from different ANN models. Noori and Kalin
(2016) used an ANN coupled model and it was found that ANN
can help improve the streamflow prediction when coupled with
physically-based SWAT model.

2.4.3. Gated Recurrent Units (GRU)
As mentioned earlier, recurrent neural networks (RNNs) are
typically used to deal with time series and related quantities.
However, under simple recurrent designs the gradient will often
vanish or explode during the training process (Bengio et al.,
1994). As introduced by Cho et al. (2014), GRUs are a typical
gated recurrent neural network whose design can help to avoid
gradient vanishing for recurrent networks. There are two gates
in a GRU cell, referred to as the update gate u and relevant gate
r. A general GRU cell is depicted in Figure S1, followed by a set
of equations defining the GRU cell. There can be several hidden
units in a GRU layer and the number of hidden units is the
number of features in cell states.

Similar with the ANNmodel, a GRUmodel consists of several
layers, with each layer containing several hidden units. In our
work, we analyze a three-layer GRU model connected with a
dense layer. The GRU layers are set to extract temporal features
and the final dense layer is for output. Each GRU layer has
50 hidden units; this number is from coarse hyperparameter
searches. The stacked layer design provides sufficient complexity
to fit the streamflow data, and provides a similar stacked
architecture to compare with the TCNNmodel.

2.4.4. Long-Short Term Memory (LSTM)
The LSTM model is another example of a gated network,
and one which has been increasingly explored in recent years
for streamflow forecasting (Kratzert et al., 2019). The primary
difference between the LSTM and GRU models is that the LSTM
features three gates—the update gate u, the forget gate f and
the output gate o. A typical LSTM cell and the corresponding
formulas are shown in Figure S2. Like our GRU model, the
LSTM model has three LSTM layers and one dense layer. Within
each LSTM layer, there are 50 hidden units. The stacked layer
design ensures complexity to fit the streamflow data and the
same number of cells with GRU can help compare the different
model performance.

2.4.5. Temporal Convolutional Neural Network (TCNN)
CNNs remain a widely used model for image processing and
analysis because of their ability to extract and decompose
features (Gu et al., 2018). The typical input of the CNN
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model is an image with width, length, and color channels.
In our study of streamflow, which is one-dimensional data,
the input shape is the number of variables times the
input time window size. A typical CNN is comprised of
convolutional layers and dense layers. Some CNNs will further
add pooling layers between convolutional layers to reduce
the dimensionality of the problem and extract important
features. But it has also been argued that with sufficiently
large convolutional layers, the network can perform well only
using convolutional operations (Springenberg et al., 2014).
Thus, for simplicity we have only used convolutional layers in
our CNN.

A typical CNN architecture used for time-series data is the
Temporal Convolutional Neural Network (TCNN) (Lea et al.,
2017). Compared with the more well-known CNN for images,
TCNNs consist of a one-dimensional network using dilated
causal convolutions to keep temporal causation and residual
blocks for deeper networks. Bai et al. (2018) tested TCNNs
and LSTMs with different time series problems, and argued
that TCNNs are better in terms of accuracy and speed for
problems of similar complexity. Thus, to compare with our
three-layer GRU and LSTM models, we will assess a three-
block TCNN with residual connections. Each block has two
convolution layers and one residual connection. Dilation rates
are set to 1, 6, 12, respectively and kernel size is fixed at 7 for
all convolution layers. The number of filters are set to 40, 20,
20 for each block. In the final block, the reception field is large
enough to cover the entirety of the time window. Also, with
stacked causal convolution blocks, the input information will be
concentrated within the last few neurons. To reduce redundancy
and avoid overfitting, a slice layer is set after the final TCNN
block to only keep last 20 neurons. The TCNN model flow
chart and an illustration of dilated causal convolution are shown
in Figure S3.

2.5. Ensemble Runs
Unlike the linear model, which has an exact analytical solution,
all the neural networks use gradient-based method to optimize
the loss function. Since the networks allow for local minima,
different initial weights can potentially produce different models
with different performance. Thus one needs to be careful to
avoid drawing conclusions on the relative performance of each
model that are merely a byproduct of the initial weights. In
order to eliminate this effect, we run each model 15 times to
get an ensemble distribution of NSE values. Thus our results
and conclusions are based on the statistical distribution of model
performance across the ensemble.

Throughout this study we make use of boxplots for assessing
comparative performance between ensembles. As shown in
Krzywinski and Altman (2014), comparative performance is
intuitive from the boxplot—namely, if the median for one model
is above the interquartile range of another, we are confident that
it is the better model. However, if the median from the second
model lies within the interquartile range of the first model,
performance could be the result of randomness in the training
process, making it difficult to determine the better model.

3. RESULTS

In this section we first compare the various ML models discussed
in section 2.4 to demonstrate the competitive performance
of the TCNN. The TCNN is then examined in light of
stability under extreme forcing, its sensitivity to choice of input
variables across basins, and sensitivity to time window size. A
physical interpretation of the observed model sensitivity is also
discussed here.

3.1. Model Intercomparison
Figure 2 shows the ensemble prediction results for each basin
among the four ML models, plus the linear regression model.
The linear regression model performs the worst among available
models in almost all basins, in testament to the nonlinearity
of the prediction problem. The ANN model tends to achieve a
higher NSE value than the linear regression model for almost
all basins, but in terms of NSE the ANN is still inferior to the
recurrent networks and the TCNN, especially for basins where
the NSE values for the recurrent networks and the TCNN are
over 0.6, such as 11475560(NC) and 11522500(NC). In these
basins, the relatively low NSE scores from the ANN indicate
that there are some temporal features that the ANN cannot
capture but which are important for streamflow prediction.
Nonetheless, for some basins, the ANN outperforms the LSTM.
There are two possible reasons this may occur. Firstly, it could
be that temporal features are not important for these basins, a
hypothesis that is supported by the observation that the ANN
tends to also be better than GRU [e.g., basins 11176400(BA) and
11224500(CC)]. On the other hand, the TCNN doesn’t have a
recurrent architecture so it can effectively ignore the temporal
features and mimic the ANN. This could suggest that LSTMs
may not be as generalizable as TCNNs. Another possible reason is
that the LSTM hyperparameter set is suboptimal for these basins
– assessing this possibility may require a more comprehensive
basin-dependent hyperparameter search.

Among models with temporal features (TCNN, LSTM, GRU),
the TCNN exhibits the best average performance. The average
NSE over all basins and all ensemble runs is 0.40 for LSTM,
0.44 for GRU, and 0.55 for TCNN. The average NSE value for
the best run over all basins is 0.58 for LSTM, 0.58 for GRU,
and 0.65 for TCNN. For those basins where LSTM and GRU
achieve the highest NSE values, the performance of the TCNN
model is competitive—for example, in basins 11141280(CC)
and 11284400(SN) the NSE values among the different neural
networks are all higher than 0.5. For basins where neural
networks do not perform well, such as basins 10259200(SC),
11176400(BA), and 11253310(CC), the TCNN is nonetheless the
best among the different neural networks. Notably, the recurrent
networks can achieve high NSE values for some basins while
performing poorly for other basins. That is, their performance
varies substantially among different basins. The TCNN, however,
is more stable among all basins: The standard deviation of the
ensembles over all basins is 0.47 for LSTM, 0.38 for GRU, and 0.23
for TCNN. Although the choice of hyperparameters is important
in these results, the wider spread in the NSE value indicates that
for streamflow prediction the recurrent networks havemore local
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FIGURE 2 | Ensemble prediction comparison for all basins with different models. The boxplots denote results over each ensemble of 15 model runs for the ML

models. The straight line denotes the linear regression result. For basin 11224500 CC the linear regression model produced a NSE of −2.47.

minima over the optimization space, and consequently must be
trained many times to find a globally optimal configuration.

The stacked recurrent networks here are chosen to compare
with the stacked TCNN model. A one-layer LSTM model, such
as the one used in Kratzert et al. (2019), is also investigated.
We employ 256 hidden units for the LSTM to match (Kratzert
et al., 2019). Similarly a one-layer GRU model with 256 hidden
units is also compared. With this configuration, the average
NSE over all basins and all ensemble runs does improve to 0.47
for the one-layer LSTM, but degrades to 0.34 for the one-layer

GRU. The standard deviation is 0.40 and 0.74 for the one-layer
LSTM and GRU, respectively. When comparing the average NSE
for the best run, the one-layer LSTM and GRU achieve 0.61
and 0.56, respectively. We again tested another one-layer LSTM
model with 370 hidden units so as to match the number of free
parameters within the TCNN model. The average NSE over all
ensemble runs is 0.44, and 0.58 for the best run. The standard
deviation is 0.43. A comprehensive comparison can be found in
Table 1. Figure S4 shows the ensemble prediction comparison of
the TCNN model with one-layer recurrent networks. Compared
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TABLE 1 | Mean and standard deviation for ensemble prediction comparison with different models.

Mean NSE for all ensemble runs Mean NSE for the best run Standard deviation

TCNN 0.55 0.65 0.23

Stacked LSTM 0.40 0.58 0.47

Stacked GRU 0.44 0.58 0.38

One-layer GRU (256) 0.34 0.56 0.74

One-layer LSTM (256) 0.47 0.61 0.40

One-layer LSTM (370) 0.44 0.58 0.43

The number in parentheses denotes the number of hidden units.

with the one-layer recurrent networks, the TCNN model still
exhibits slightly better performance with lower variation.

Besides evaluating the NSE value for the whole prediction
period, we also examined the model performance for high flow
and low flow days. High flow (low flow) days are defined as
days when the observed flow rate is higher (lower) than the
95th (5th) percentile over all days. Since the low flow series
for some basins is zero throughout, NSE cannot be used to
assess performance. Instead, we use mean squared error (MSE)
to quantify the performance, given by

MSE =
∑

(Qt
m − Qt

o)
2. (6)

The MSE spread for all basins over the ensemble can be
found in Figures S5, S6. Whereas the TCNN tends to perform
well during high flow periods, the LSTM does exhibit better
performance in low flow periods. For the high flow period,
when average MSE is compared over all the ensemble runs, the
TCNN achieves the best performance on 12 basins compared
with 4 basins for LSTM. When comparing the minimum MSE
for the high flow period, the TCNN is the best model for 10
basins compared with 6 basins for LSTM. For the low flow
period, when using the average MSE, TCNN is the best model
for 2 basins compared with 10 basins for LSTM; when assessing
minimum MSE value, the LSTM is superior in 16 basins. The
reason for this behavior is likely a simple consequence of the
chosen hyperparameters of the model; further optimization will
likely result in incremental improvements to both the TCNN and
LSTM. Notably, the purpose for the comparisons in this section
are not to show the TCNN is better than the LSTM, since such a
proof would require us to effectively test all possible architectures
and hyperparameters. Instead, these results demonstrate that the
TCNN can achieve comparable performance to other commonly
used models.

In addition to assessing model performance, training time
also merits comparison among the different models. The average
training time for one basin with the ANN on a single RTX 2080Ti
is 11 s, 77 s for TCNN, 149 s for stacked GRU, and 150 s for
stacked LSTM. For the one-layer LSTM model, it takes 220 s for
256 hidden units and 380 s for 370 hidden units. Hence, for this
particular configuration the TCNN model is the fastest among
the models with temporal features, although only by a factor
of two.

Based on the results presented in this section, TCNN is
chosen as our candidate network for prediction and projection
of streamflow. The remainder of this paper now focuses assessing
and explaining the performance of the TCNN.

3.2. Model Stability Under Extreme
Climatological Forcing
One of the biggest challenges for ML projection is concept
drift (also known as non-stationarity). Under climate change,
it is widely accepted that the statistical properties of the input
predictors and output streamflow will change through time.
Although surface temperatures are expected to increase almost
everywhere, in parts of California these increases are also
accompanied by an increase in total precipitation of about 1.2%
per decade (Ullrich et al., 2018). It is further expected that the
input variance will increase in conjunction with more frequent
extreme precipitation and temperature events (Swain et al.,
2018). However, because the TCNNmodel is trained on historical
data, the end-of-century inputs may incur extrapolation, which
has the potential to produce unphysical results such as negative
flow. To test whether the TCNN model is able to produce
physically reasonable results even when inputs are not within the
range of the training data, an idealized test is devised to stress
the model far beyond the long-term range of possible inputs.
Specifically, themodel was executed with quadruple precipitation
and a temperature increase of 5 degrees Celsius from the training
set. Only one simulation was performed for each basin, using the
TCNNmodel with highest NSE value from the ensemble run.

The extreme scenario investigated here is unrealistic even
in light of climate change. However, if the ML model were
not stable, this extreme scenario, far outside the realm of
the training data, should cause the model to “blow up” or
generate negative flow rates. However, if our model can still
produce acceptable results under such an extreme scenario,
we have greater confidence that it will generate reasonable
projection results under the RCP8.5 scenario. Results from a
single representative basin are depicted in Figure 3. Although
only one basin in shown here, the results are analogous in other
basins (not shown). As expected, the projected streamflow is
generally much larger than historical, with much higher flood
peaks. In addition, the high flow period is longer under this test
as a result of precipitation accumulation, and low flow periods
produce consistently higher streamflow. The regression line from
the scatter plot is Qp = 4.001 × Qh (R2 = 0.74), where Qp is
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FIGURE 3 | A depiction of the streamflow response under idealized extreme forcing showing (top) time series of flow and (bottom) historical streamflow vs. projected

streamflow.

projection streamflow and Qh is the historical streamflow. Thus
the 4× increase in precipitation produces approximately a 4×
increase in streamflow. However, this simple linear factor appears
to underestimate flows on the low flow days and overestimate
flows during high flow days, again indicative of nonlinearity in
the streamflow dynamics.

3.3. Model Sensitivity to Input Variables
As discussed earlier, the input variables for our full model are
precipitation, temperature, and solar radiation. Although input
fields beyond precipitation can improve model performance by
capturing significant physical relationships, they also increase
the complexity of the model, potentially leading to a wider
spread among trained models. To test the importance of these
variables for streamflow prediction three reduced models were
compared, consisting of precipitation solely (p), precipitation
and temperature (pt), and precipitation and solar radiation (ps).

When comparing the performance of reduced models and the
full model, the 15-model ensemble was again used to avoid noise
from the initial state.

The overall performance of ps and pt models is again assessed
using box plots of NSE values. Figure 4 shows the result of
the ensemble comparison. It is apparent that for some basins
temperature boosts predictability, while for others solar radiation
is more important. There are only three basins where the best
pst model is better than the best ps or pt model [11264500(SN),
11266500(SN), and 11381500(NC)], and in each of these cases
the improvement with all three variables is modest. In each
basin, the dominant variable does reflect the geographic features
of the basin. Basins where temperature significantly improves
performance are 10343500 (SN), 11264500 (SN), 11266500 (SN),
11451100 (NC), 11522500 (NC), 11176400 (BA), and 11224500
(CC) which include three Sierra Nevada basins, two Northern
California basins, and one Bay Area basin. Basins where solar
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radiation improves performance are 10258500 (SC), 10259000
(SC), 11143000 (CC), 11253310 (CC), 11180500 (BA), 11284400
(SN), and 11475560 (NC)—except for the last two, these are
located in coastal areas or in the inland desert of Southern
California. These results suggest that, to a close approximately,
we can divide the basins into three categories using these reduced
models: those where temperature is important (generally in
mountainous regions), those where solar radiation is important
(generally near coastlines), and those where temperature and
solar radiation offer no significant benefit to predictability.

The physical explanation underlying the performance of
the reduced models is related to the climatological properties
of these different basins. For instance, in the basins of the
Sierra Nevadas and Northern California, accumulation and
melt of wintertime snowpack generally plays an important role
in driving streamflow. However, the inclusion of temperature
in these mountainous regions does not necessarily guarantee
a performance improvement. For instance, temperature does
not improve the model of 11528700 (NC), where snow is
a major driver for streamflow; nonetheless, the inclusion of
temperature also does not significantly degrade performance.
Further, in basins where temperature improves performance we
also generally see that inclusion of solar radiation does provide
some improvement over the models only using precipitation—
this suggests that the ML model is potentially identifying the
relationship between solar radiation and temperature, or is
instead using solar radiation to estimate snow melt rates.

The physical processes driving streamflow in the coastal
basins are significantly different than those of the mountains.
Namely, coastal basins do not experience significant temperature
variations as a result of temperature regulation by the ocean.
Further, because the ocean provides a ready source of moisture,
air remains close to saturation. In accordance with the Penman-
Monteith equation, evaporation from these basins will be driven
primarily by radiative forcing, in agreement with our results.
Among the central coast basins, the one exception that shows
improved performance with temperature, but no significant
improvement from solar radiation is 11224500 (CC). Although
this basin is on the Central Coast, it is far from the coastline
and so subject to larger temperature swings and lower relative
humidity. The relatively high-altitude coastal ranges in this basin
do produce occasional snow accumulation, but it is unlikely that
snow dynamics plays a role here.

For those basins where inclusion of solar radiation and
temperature produce worse model performance (i.e., the three
Southern California basins), we hypothesize that the ML model
is either identifying non-existent physical relationships between
these variables and streamflow in the training data, or that the
increased model complexity is making it more difficult for the
model to converge to an optimal configuration. The truth is
likely a combination of both of these factors, as for all three SC
basins the “best performing” pst model is not significantly worse
than the median p-only model, but is clearly worse than the best
p-only model.

In conclusion, the reduced models explored here are helpful
for giving insight into the processes that are most relevant for
each basin, and thus the relevant causative relationships. Here

snowpack dynamics and coastal meteorology have emerged as
two obvious geographical features important for determining
model behavior. Given this behavior agrees with our physical
understanding of the system, we have further evidence to suggest
that the models are behaving credibly.

3.4. Model Sensitivity to Time Window Size
The input time window size is an important hyperparameter for
our model, and one that is intrinsically connected to the physical
processes driving streamflow. However, a time window that is
too large can reduce model performance and slow training time.
Some past studies set the time window size based on the results
from a purely statistical analysis of autocorrelation or partial
correlation (Yaseen et al., 2016; Peng et al., 2017). In this study,
we estimate the time window size from an understanding of the
physical properties of each region. For streamflow prediction and
projection, the response time for precipitation, groundwater and
snowpack can range from several hours to months, and a proper
time window size should capture all necessary features and avoid
redundant information. The seasonality of the streamflow varies
regionally and depends on the climatic characteristics and the
contribution of snow/ice, and anthropologenic interventions. An
investigation of monthly global steamflow (Dettinger and Diaz,
2000) indicated that lags between the peak precipitation and
peak steamflow peaks up to 11 months, while 0–3 months was
the typical value. In this study we explore 100, 180, and 365
days as different window sizes. The 365-day window corresponds
to an entire water year, and so should capture all potential
physical processes except for long-term withdrawals or variations
in groundwater. The 100-day window captures a typical season
length and the 180-day window is in between these two. Figure 5
shows the ensemble performance results comparing models with
different time window sizes.

What stands out in Figure 5 is the monotonic tendencies
in most basins. There are increasing tendencies with the time
window size for basins 11224500 (CC), 10343500 (SN), 11264500
(SN), and 11266500 (SN), while 11162500 (BA), 11176400
(BA), 11253310 (CC), 11475560 (NC), and 11528700 (NC)
show decreasing tendencies. An increasing tendency implies
the presence of slow processes governing streamflow, whereas
a decreasing tendency implies upstream processes are fast and
there is no significant benefit in using a larger window size. In
fact, we can again classify basins into two categories by their
monotonic tendencies. Similar with the previous interpretation
of different predictors, these results are likely to be related to
physical factors, especially snowpack—particularly because of
its long response time. In general, the basins with increasing
tendencies are in mountainous area like Sierra Nevada and the
Coastal Ranges while basins with decreasing tendencies are in
Northern California, the Bay Area, and the Central Coast, which
are closer to the Pacific. Mountainous areas tend to have more
snowpack due to their higher elevation and thus streamflow
there is more likely influenced by snowpack. For coastal areas,
snowpack does not play a role in streamflow dynamics, and since
the temperature is more stable relative to inland areas, the impact
from snowpack will also be weaker than that in inland basins.
Therefore, snowpack should be the primary factor driving the
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FIGURE 4 | Ensemble prediction comparison for all basins with different reduced TCNN models.

direction of the tendency. Another factor not explored here that
may affect the tendency is the groundwater response time—this
may play a role in central coast basins such as 11143000 (CC)
and 11224500 (CC), which respond positively to increased time
window size.

4. PROJECTED STREAMFLOW

The best models from the ensemble run for each basin are
now employed with remapped and rescaled LOCA data to

produce our projection dataset. As described in section 2.2,
we first apply TempestRemap to obtain mean forcing data for
irregular basins from the gridded LOCA product. Then both
future and historical forcing from LOCA are rescaled (bias
corrected) based on the historical observations before being
used to drive the ML model. Tables S6–S8 show the mean daily
precipitation, temperature and solar radiation from NLDAS and
the four climate models employed. Figures S7–S9 also show the
climatological daily mean of these variables. Generally CanESM2,
CNRMCM5, and HadGEM2ES suggest a future wetter climate
with more precipitation, while MIROC5 tends to produce similar
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FIGURE 5 | Ensemble prediction comparison for all basins with different window sizes.

or less precipitation for these basins. Essentially all the basins are
projected to experience higher daily temperatures, but the change
in solar radiation is small. Figures 6, 7 show climatological
daily streamflow with historical and under the future projection
with RCP8.5 forcing. The daily streamflow projection dataset
produced in this manner is available at Duan et al. (2020) with
the units of millimeters per day. Within the database, each file
has the name as the format of “nnnnnnnn-model-scenario.csv.”
The first eight digits are HUC8 identifiers for each basin, followed
by the climate model name, and then the scenario (either
“hist” or “RCP8.5”).

4.1. Analysis of the Projected Streamflow
Since the historical forcing from different climate models
are corrected to match observations (as discussed in section
2.2), historical streamflow exhibits nearly the same pattern
and magnitude with forcings from different climate models
(Figure 6). Compared with USGS observation, the flows tend
to match fairly well except in a few SC and SN basins,
where a clear magnitude difference at the flow peak emerges.
For 10258500(SC) and 10259200(SC), even with the NLDAS
forcing data the TCNN underestimates the peak, so we can
conclude that the TCNN simply does not identify a relationship
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FIGURE 6 | Historical climatological daily streamflow from USGS and four climate models.

between forcing and streamflow during these high flow events.
Looking at the SN basins, Figure 2 shows that the TCNN
model achieves an NSE score around 0.9 for 11264500(SN)
and 11266500(SN), so in this case the differences are likely
due to differences between the forcing from NLDAS vs. LOCA.
Namely, we can deduce that for these basins the Gaussian bias
correction (2) still produces a forcing which is still somewhat
inconsistent with historical forcing. For 11264500(SN) and
11266500(SN) the primary source of this error appears to be
wintertime and springtime temperatures, which are intimately
connected to precipitation phase and snowpack melt rate;
when the LOCA temperatures and radiation are replaced with
NLDAS temperatures and radiation (while retaining the LOCA
precipitation) the correct streamflow curves are recovered
(Figure S13).

To assess the magnitude of future change, we examine the
projected flow duration curve (FDC) vs. the historical FDC from
the same climate model. Figure 8, Figures S14–S16 show the
projected future and historical FDCs with four different climate
models. When the projected streamflow curve is above the

historical curve, the ML model indicates that higher streamflow
rates become more probable. It is perhaps not surprising that
since precipitation increases across almost all basins, almost
all of the basins show increasing streamflow. The projections
also generally indicate that the peak flow rate will be higher,
potentially indicative of an increased probability of flooding
(although the degree to which this is possible is a subject
for future investigation). Note that the multimodel CMIP5
ensemble does produce some disagreement: For instance, under
the MIROC5 projection, the FDC curves for historical and
projection match closely for the most basins. As noted earlier, the
MIROC5 model is considered the most unlike the other CMIP5
models in this investigation, tending to produce precipitation
amounts that are relatively constant over time.

Although most basins see an increase in flow rate, basins
10343500 (SN), 11264500 (SN), and 11266500 (SN) are notable
exceptions. For these three basins, the future FDC curves
are sometimes below the historical curves (this is even more
obvious with MIROC5 forcing). For basins 11264500 (SN)
and 1266500 (SN) lower flow rates become more probable
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FIGURE 7 | Projection climatological daily streamflow from four climate models.

but the maximum flow rate decreases. These three basins are
all in the Sierra Nevada area—10343500 (SN) in the Tahoe
National Forest and the other two in Yosemite. Examining
Figures 6, 7, these three basins exhibit significant differences
in the character of their flow compared with other basins.
Namely, the climatological streamflow for these basins shows
a peak in late Spring and Summer, while other basins are
peaked in the winter season. Since we have shown earlier
that streamflow in these basins are driven by snow dynamics,
differences in streamflow are likely due to the impact of a
slow snowmelt process. Notably, this is in accord with our
previous discussion in sections 3.3, 3.4, where these basins are
temperature dominant and benefit from longer time window
sizes. These projection results lend further evidence to the
claim that streamflow in these basins is highly dependent
on snowmelt.

The change in the peak flow timing for each basin was also
investigated. The peak time is defined as the day of maximal
flow rate for the year, measured in days since the beginning
of a water year (set to October 1st in our study). Figure 9
shows the peak time for each basin in historical and projection

years with MIROC5 forcing. Peak timing figures with forcings
from other climate models can be found in Figures S17–S19.
Although there is generally no significant change in peak timing
for most basins, the Sierra Nevada basins are again outliers.
Namely, there is a statistically significant shift to earlier peak
times in these snowpack-dominated basins. Although it is not
always the case for all the climate models, the projected lead
of peak time associated with decrease of streamflow in the
future again captures the unique hydrology dynamics in the
Sierra Nevadas.

4.2. Understanding Nonlinearity in the
Projection
To better understand the nonlinearity of the streamflow
response to forcing under climate change, we consider a
decomposition of the response according to its predictors.
Specifically, the impact of precipitation alone on the projected
streamflow can be isolated by holding the temperature and
solar radiation at historical values while using the future
projected precipitation. An analogous approach can then
be employed for temperature and solar radiation. By then
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FIGURE 8 | Flow duration curve with CanESM2 forcing over both historical and future (projection) periods.

subtracting the historical streamflow time series from each of
these streamflow projections, we obtain 1Qp, 1Qt , 1Qs, the
change in streamflow from precipitation alone, temperature
alone, and solar radiation alone. These are contrasted against
1Qpts, which denotes the change in streamflow from all
three factors. From the first-order Taylor series expansion we
then have

1Qpts =1Qp + 1Qt + 1Qs + r

=1Qlinear + r
(7)

for some residual r that captures the influence of high-order
terms. The linear response is defined as summation of three

individual responses. To reduce noise from daily variations
in streamflow, the monthly averaged streamflow is used for
comparison. In Figure 10, we plot 1Qpts vs. 1Qlinear , with the
R2 value in the title. A fully linear response would be expected to
lay along the y = x line.

As seen in Figure 10, almost all basins show a nearly linear
response to the input variables, except for basin 10343500(SN),
11264500 (SN), and 11266400(SN)—all in the Sierra Nevada
mountains. From our discussion in sections 3.3, 3.4, these SN
basins are temperature dominated and require a longer time
window size to correctly capture streamflow, indicating the
interplay between precipitation and temperature in governing
snow processes.
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FIGURE 9 | Day of peak flow for each basin with MIROC5 forcing.

5. CONCLUSIONS AND FUTURE WORK

In this study, we have designed and analyzed a general temporal
convolutional neural network for streamflow projection in
California. Causal convolution is used to maintain physical
causation. The input consists of precipitation, temperature, and
solar radiation over a particular past window size. In prediction
mode, the TCNNmodel is compared with other commonly used
ML models based on ensemble performance so as to eliminate
random effects from initializing the training. The results of this
intercomparison indicate there are some important temporal
features that ANNs struggle to capture, in contrast to TCNNs and

other recurrent neural networks (LSTMs and GRUs). Compared
with other recurrent networks, the TCNN model is faster and
more stable under training. Overall, the TCNN produces better
agreement both on average and in the high-flow regime, whereas
the LSTM was better in the low-flow regime. Like these other
networks, the TCNN model can also be generalized to other
basins while maintaining the same architecture.

To demonstrate model stability under extreme forcing,
an idealized test with quadruple precipitation and 5 Celsius
higher temperature is implemented to verify whether the model
produces reasonable results when tested with data outside the
training regime. A qualitative analysis and linear regression of
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FIGURE 10 | Full response and linear response for all basins with CanESM2 forcing.

projected streamflow against historical precipitation suggests our
model produces physically acceptable results for projection.

We have also observed that the TCNN model can
build different functional relationships for different basins,
as demonstrated through the examination of reduced
models, models with different time window sizes, and the
nonlinear response of the model to input variables. With
this understanding of the “under the hood” workings of
the ML model, we can distinguish different geographic
features across basins. This classification ability suggests
our model can simulate physical processes with causal
convolution as a constraint. In regions where snowpack is
relevant, we conclude that temperature should be included
as a model covariate; whereas in coastal regions, solar

radiation should be included. Including both variables was
not observed to significantly improve model performance
in any basin. Also, in regions where snowpack is relevant, a
longer time window size is desirable for model performance
(here we tested a 365-day window), whereas in other
regions a shorter time window of 100-days produced
better results.

Under the RCP8.5 scenario, the nonlinearity of the streamflow
response was examined by decomposing the response into
three modes by the predictors. By inspecting the linear
response and full response, we observed that most basins
exhibit a linear response from precipitation, temperature,
and solar radiation, except for the basins in Sierra Nevada.
The nonlinearity is likely associated with snowpack, which
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is a physical feature that is sensitive to both precipitation
and temperature.

Model results for future projections and historical hindcasts
were compared to understand the changing character of the
streamflow. Generally streamflow in most basins increases
through the end of the century, except for the Sierra Nevada
basins. Peak flow time remained statistically indistinguishable
among most basins, except the Sierra Nevada basins which
showed a shift to earlier dates under some models. These
results further indicate that the snow dynamics in the Sierra
Nevada is important for correctly capturing streamflow in
these basins.

The idealized test here mainly deals with the problem
of model stability under extrapolation. In terms of ensuring
the model produces physically plausible results under extreme
forcings, we need to compare with a physically based model
with the same extreme forcing. This problem has been saved
for our future work. Also, to better understand the ML model
and ensure its credibility for producing future projections,
we intend to next cross-validate our projection datasets with
a physically-based model over the same time period. Model
credibility can also be enhanced through alternative designs
that explicitly include physically-based conservation laws. For
instance, subsurface flow or evaporation are not produced as
outputs, and so validation of the water budget is impossible.
With a more complicated design, ML models could predict
streamflow, evaporation and groundwater, and be constrained
via an appropriate physically-based conservation law. Such
constraints would further enable physical interpretation of the
model results. Finally, we wish to determine if the TCNN
can be used to interpolate predictors to higher temporal
resolution, for use (for instance) in physically-based models.
The ML model could also be used to examine model
performance when the strict causation is relaxed (namely,
if future streamflow could provide a better estimate of
present streamflow).
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Generative Adversarial Networks (GAN) are becoming an alternative to Multiple-point

Statistics (MPS) techniques to generate stochastic fields from training images. But a

difficulty for all the training image based techniques (including GAN and MPS) is to

generate 3D fields when only 2D training data sets are available. In this paper, we

introduce a novel approach called Dimension Augmenter GAN (DiAGAN) enabling GANs

to generate 3D fields from 2D examples. The method is simple to implement and is

based on the introduction of a random cut sampling step between the generator and

the discriminator of a standard GAN. Numerical experiments show that the proposed

approach provides an efficient solution to this long lasting problem.
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1. INTRODUCTION

For a wide range of problems in the hydrological sciences, there is a need to employ stochastic
models to generate spatial fields. These fields can represent for example climatic data, or physical
parameters of the atmosphere, ground or underground.

In that framework, multiple-points statistics and the concept of training image became very
popular in the last 10 years (Journel and Zhang, 2006; Hu and Chugunova, 2008; Mariethoz and
Caers, 2014; Linde et al., 2015). The key idea in these approaches is to use an exhaustively mapped
example (the training image) of the type of spatial patterns that are expected to occur for a given
variable and at a given scale. The training image is then used to train a spatial statistics non-
parametric model. The main advantage of that approach is that it allows to transfer information
about spatial patterns coming from external information such as an analog site or data set to
constrain the stochastic model. The range of applications is very broad and includes subsurface
hydrophysical parameters (Mariethoz et al., 2010; Barfod et al., 2018), rainfall simulation (Oriani
et al., 2014), bedrock topography below glaciers (Zuo et al., 2020), soil properties (Meerschman
et al., 2014), landforms attributes (Vannametee et al., 2014), etc.

More recently, Deep Learning algorithms and especially Generative Adversarial Networks
(GAN) (Goodfellow et al., 2014) have sparked a very strong interest thanks to their ability to
generate stochastic fields showing a high degree of similarity with the training data sets (Chan
and Elsheikh, 2017; Mosser et al., 2017a,b; Laloy et al., 2018). While this is very similar in principle
to Multiple Point Statistics (MPS), a key feature of GAN is that they can be trained to represent
a mapping from a low dimensional space to the manifold that supports the training data set. This
feature allows GAN to represent complex fields via a low dimension vector of continuous values.
Such a parametrization can then be used for example in the context of inverse modeling (Laloy
et al., 2018). Although they need a long training time, GAN also appear to be usually faster than
previous MPS methods at generating a set of realizations.
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When applied to underground hydrology, and especially for
uncertainty analysis or to solve inverse problems, a difficulty
with the MPS or GAN approaches is to obtain 3D training
images or examples. In practice, it is often very difficult, if
not impossible, to collect exhaustive and accurate data about
the three dimensional distribution of rock types (or physical
properties) at depth. To circumvent that problem, in many
applications, the 3D training images are derived from other
types of models such as object based or process based models
(de Marsily et al., 2005). But this is not always satisfying
because the object based models imply additional assumptions
and are not directly based on data when these are available
in 2D.

Indeed, many two-dimensional data sets are available. They
are much easier to collect than the 3D data sets using for
example: remote sensing techniques, direct observation on
outcrops, or microscopic data acquisition on thin sections of
rocks. Furthermore, geologists are used to draw conceptual cross
sections of typical structures. Therefore, simulating 3D stochastic
fields from 2D examples is of high practical importance, and
different techniques have been developed to solve that problem.
In the framework of MPS, the approaches are often based
on probability aggregation techniques or use some successive
2D simulation techniques (Okabe and Blunt, 2007; Comunian
et al., 2012; Kessler et al., 2013; Cordua et al., 2016; Chen
et al., 2018). In rock physics, the simulation of 3D porous
media from 2D sections has been addressed in numerous
articles (e.g., Adler et al., 1990; Yeong and Torquato, 1998;
Karsanina and Gerke, 2018). Simulated annealing is often used
in this context and allows to generate random fields which
reproduce specific morphological features such as correlation
functions or connectivity curves derived from the 2D data
sets (e.g., Gerke and Karsanina, 2015; Lemmens et al., 2019).
Deep Learning techniques have been used to accelerate MPS
simulations in this framework (Feng et al., 2018). The 3D
synthesis of textures from 2D examples has also been a main
research topic in the field of computer graphics as shown
in the review paper of Wei et al. (2009). These optimization
methods achieve good results in the unstructured or weakly
structured cases, but fail to capture long-range correlations.
Works around GANs aiming at inferring a fixed 3D structured
shape out of 2D projections has also been conducted (Gadelha
et al., 2017, 2019), demonstrating the ability of these algorithms
to infer an approximation of the three-dimensionnal shape
of a deterministic object (like a plane or chair) out of a set
of 2D views from a 3D scene. Here our problem is slightly
different since we aim at inferring the statistical distribution
of stochastic geological structures, which can have long range
correlations, from a limited set of cross-sections through
the domain.

In this paper, we introduce a novel approach based on GAN,
called Dimension Augmenter GAN (DiAGAN). It allows to
generate 3D fields from 2D training images, with sufficient
resemblance and variability for geostatistical applications. The
paper introduces first the general principle of GAN, then
it describes the DiAGAN approach and illustrates it with a
few examples.

2. METHODOLOGY

2.1. Generative Adversarial Networks
In the broadest sense, Machine Learning consists of designing
algorithms that automatically find complex mappings from a
given input data set X to a given target data set Y . In practice,
X is often infinite and intractable, and we only have access to
a finite set of training examples with their associated mapped
values D = {(x1, y1), ...(xN , yN)} ⊂ X × Y . Training algorithms
then aim at finding the parametrized function fω that minimizes
a loss function L defined over Y × Y :

fω = argmin
η

∑

x,y∈D

L(fη(x), y)

with the hope of also minimizing the loss over X , which would
lead to good performances on new unknown data.

In Deep Learning more specifically, the parameterized
function fω takes the form of a deep neural network: a
structure made of an alternation of parameterized linear
transformations called layers and non-linear component-wise
activation functions. Neural networks are designed to be
differentiable, so that their parameters can be optimized
(trained) through gradient descent algorithms. Deep neural
networks in their various forms had a deep impact in many
domains in computer science with state of the art performance,
including image recognition, natural language processing, data
classification or artificial intelligence.

Technically, as long as a correct loss function is defined, that
is to say a function that is differentiable and reaches an optimum
when the desired mapping is achieved, any transformation from
X to Y can be learned, provided enough training examples in
D are given. In the context of procedural image synthesis, one
difficulty is to define a loss function that assesses the quality of
the generated samples in relation to the training image. Classical
distances on the space of images, like the pixel-wise L2 norm
indeed fail to capture the notion of resemblance between two
images (note that in the following text we use the word image
both for standard 2D images and 3D grids made of voxels). One
has to define a loss function that takes into account multi-scale
features and must be robust for instance to the fact that certain
geological objects or patterns can be placed anywhere in the
image, as their shape and frequency needs to be similar with the
training image while their location is not fixed.

Generative Adversarial Networks (GAN) are a family of Deep
Learning algorithms designed to tackle this problem. One of
the key ideas here is that comparing two images can be done
using a neural network fω that takes an image x as an input, and
computes a numerical score fω(x) such that the higher the score,
the more confident the network is of being fed with an image
from the dataset it was trained with. Such a network fω, called
a critic, can be plugged on the output of an image generator gθ , in
order to give relevant numerical feedback.

More formally, the problem of image synthesis is the
following. Given the set of all possible images X of a certain size,
we have access to a finite subset of training images (TI) D. We
suppose that images from D were sampled from a probability
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distribution Pdata over X . From there, the goal is to be able to
sample any image following the same probability distribution
Pdata. Because neural networks are essentially mappings, this is
reduced in the case of GANs to finding a mapping from a latent
space with a known distribution Pz to the support space of Pdata,
under the constraint that Pθ = gθ (Pz) is as close as possible
from Pdata. Since Pdata and Pθ are intractable and can only be
sampled from, the generator gθ and the critic fω have to be trained
simultaneously in an adversarial fashion. Intuitively, one can see
this process as if on the one hand, the generator tries to fool the
critic by minimizing the distance between generated examples
and real training examples. On the other hand, the critic is trained
to separate training images from fake ones, thus maximizing the
distance between Pθ and Pdata.

In the original GAN algorithm, Goodfellow et al. (2014)
considered the Kullback-Leibler (KL) divergence as a distance
between probability distributions. We chose to follow more
recent works using the Wasserstein-1 distance, or Earth-mover
(EM) distance (Arjovsky et al., 2017; Gulrajani et al., 2017), in an
algorithm called the Wasserstein GAN (WGAN). This ultimately
lead us to a two player zero-sum game using the following
objective function (Gulrajani et al., 2017):

min
θ

max
ω

Ex∼Pdata
[fω(x)]− Ez∼Pz [fω(gθ (z))]︸ ︷︷ ︸

EM distance

− λ Ex̂∼Px̂
[(||∇x̂fω(x̂)||2 − 1)2]

︸ ︷︷ ︸
gradient penalty term

(1)

Equation (1) is directly used as a loss function during the
training phase of aWGAN, during which theoretical expectations
of probability distributions are replaced by statistical means
over sampled examples. From the generator’s point of view, the
parameters are optimized to minimize −Ez∼Pz [fω(gθ (z))], while
the critic’s parameters are optimized with relation to the whole
expression. In other words, gθ is trained to obtain the greatest
possible score from the critic, whereas the critic optimizes both
terms of Equation (1). The first term boils down to maximizing
the EM distance between TIs, which are associated to high
values of score, and generated images, associated to low values.
However, this expression of the EM distance term only holds for
fω being a Lipschitz function. The second term, called gradient
penalty, proposed by Gulrajani et al. (2017), is a way to enforce
this constraint on fω. In Equation (1), Px̂ is a mix of Pθ and Pdata.
More specifically, x̂ ∼ Px̂ means that the variable x̂ was sampled
from the distribution εPdata + (1− ε)Pθ with ε being uniformly
chosen in [0;1].

For the noise distribution Pz , we consider vectors of R
d

where each coordinate is sampled independently from a standard
normal distribution. Given the parameters of the generator,
such a latent vector contains the whole information about
the generated image, thus offering a compact representation.
For generating images of size 64x64x64, we determined
experimentally that d=256 was sufficient to represent the
whole distribution.

2.2. From 2D to 3D
Going from 2D training examples to 3D realizations with a GAN
is not straightforward, as the dimensionality of generated and
training images should match in order for them to be fed to
the same critic network. Most GAN algorithms directly feed
the generated image inside the critic, but we propose to add
an intermediate step to transform generated images, in order
for them to match the TIs. Our training data consists of a
set of triplets (Cx,Cy,Cz), where Ci is a two-dimensional image
representing a typical cut perpendicular to axis i. The generator
aims at generating 3D images which cuts along axis i resembles
Ci. Note that the cuts are provided as independent images. They
are not crossing each other at specific locations and they may not
be completely compatible as will discuss in one of the examples.

To make the critic compare cuts, we incorporated a random
cut sampler between the generator and the critic (Figure 1).
This sampler extracts from a 3D generated example a triple
of cuts (C′

x,C
′
y,C

′
z), with C′

i being chosen uniformly among all
possible cuts along the corresponding axis. The discriminator
then proceeds in comparing the patterns in the two triplets of
cuts. The comparison is done for each direction but it does
not account for the compatibility of the patterns along the
intersection of the cuts since this information is not available in
the training data. Depending on the type of symmetry and on
available data, a similar technique can be used to account for one
single set of cuts when the 3D patterns display similar structures
along the x, y, and z directions, or instead a set of cuts along two
axis when examples are available only along these two directions.

The sampler select the positions of the cuts randomly in a
uniform distribution along each axis of the 3D domain, with
only one cut per dimension. This mean that most of a generated
image in the 3D domain will not be fed into the critic. However,
since this sampling is random and thanks to the continuity of
the GAN, this strategy proved to be rather efficient as we will
illustrate with a few examples. Other approaches that may involve
additional computations can be envisioned, this will be discussed
in section 4.

In summary, the whole approach is stochastic and assumes
that the 2D images that have been given in input can represent
a cut anywhere in the domain. DiAGAN aims at reproducing
these patterns in a stochastic manner, and assuming a spatial
stationarity of the statistical process. In particular, it will not
check precisely and in a deterministic manner the compatibility
of the cuts at their intersection.

2.3. Neural Network Architecture
Following architectures proposed by Radford et al. (2015),
we use convolutional neural networks for both our generator
and critic. Throughout our experiments, we determined that
precise architecture tuning was not necessary to get satisfactory
results, as the WGAN is quite robust to those kind of
hyperparameters. The main principles we used was to alternate
convolutionnal layers, eventually normalization and upscaling,
and non-linear activation.

Training images are normalized so that their values
lay in [0;1]. Latent vectors z are sampled from a normal
distribution of zero mean and standard deviation of 0.5. z
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FIGURE 1 | The overall organization of DiAGAN.

is then reshaped into a 3-dimensional tensor that is fed into
the convolutions. One can use regular convolution coupled
with an upscaling function (like a trilinear interpolation),
or a transposed convolution with a stride parameter
greater than 1. The number of convolutional feature maps
is decreasing with the depth, being divided by two at
each layer.

We use the ReLU activation function (x 7→ max(0, x)) for
every internal layers, and a sigmoid x 7→ 1/(1+ exp(−x)) for the
final activation, in order to project the values back in the interval
[0;1]. Alternatively, one could consider a normalization in [-1;1],
Leaky ReLU function of parameter α=0.2 (x 7→ ReLU(x) −
αReLU(−x)), and an hyberbolic tangent as the final activation.

The discriminator is composed of convolutional layers
with 2D kernels. After the cut sampling step, we are left
with 3 images of size NxN stacked into a 1xNx3N tensor,
or a 3xNxN. 2D convolutions are applied to this tensor,
alternating with max pooling operations. This halves the
size of the tensor while the number of feature maps in
the convolution is doubled. Alternatively again, one could
replace the poolings by strides in the convolution. Activation
functions are also ReLU of Leaky ReLU. At the end, a
global max pooling operation is applied, to retrieve one
numerical value for each feature map. The obtained vector
of features is aggregated into a single numerical value by a
dense layer.

We use instance normalization layers (Ulyanov et al., 2016)
or batch normalization (Ioffe and Szegedy, 2015) after each
convolution to guarantee the stability of the computation. The
two methods performed equally well. Those normalization layers
are present in the generator before each activation layers,
but not in the critic, as they mess with the gradient penalty
term (Gulrajani et al., 2017).

Table 1 summarizes the architecture of the convolutional
networks that we use for DiAGAN. But note that the overall
method is pretty robust, we tested several other architectures
that worked also reasonably well. We expect that many other
architectures could give good results.

Both generator and discriminator were trained using the
Adam optimizer (Kingma and Ba, 2014) with a learning rate of
10−3, β1 = 0.5, and β2 = 0.9.

TABLE 1 | Basic architecture used for DiAGAN with images of size 64 × 64 × 64

and a normalization of the TIs in [0;1].

Generator Critic

input = Noise (256,) input = Cuts (3,64,64)

Linear (256 → 4096) Conv2D (3 → 8), kernel (3,3)

Reshape 4096 → (1, 16, 16, 16) ReLU

Conv3D (1 → 128), kernel (3,3,3) Conv2D (8 → 16), kernel (3,3)

InstanceNorm, ReLU ReLU, MaxPooling (2,2)

Upscale x2 Conv2D (16 → 32), kernel (3,3)

Conv3D (128 → 64), kernel (3,3,3) ReLU, MaxPooling (2,2)

InstanceNorm, ReLU Conv2D (32 → 64), kernel (3,3)

Upscale x2 ReLU, MaxPooling (2,2)

Conv3D (64 → 32), kernel (3,3,3) Conv2D (3 → 8), kernel (3,3)

InstanceNorm, ReLU ReLU, GlobalMaxPooling

Conv3D (32 → 1), kernel (3,3,3) Linear (64 → 1)

Sigmoid

Output = (64,64,64) Output = (1,)

2.4. Quantitative Analysis of the Results
To assess the quality of the results, and compare the simulation
with the reference when it is possible, we compute the indicator
variograms and connectivity functions, as well as the Frechet
Inception Distance (FID) between generated and real examples.

The indicator variogram γ (h) is defined as follows.

γ (h) =
1

2
E

[(
I(x)− I(x+ h)

)2]
, (2)

with I(x) being the indicator function of the facies 1. Since the
cases that we investigate in this paper are binary, the indicator
variogram is identical for facies 1 and 0.

The connectivity functions τi(h) describes the probability that
two pixels located at a distance h belong to the same connected
component, knowing that the first pixel is within the facies i.

τi(h) = P
[
x ⇐⇒ x+ h|I(x) = i

]
(3)
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τi(h) is computed for facies 0 and 1 separately. The connectivity
functions are known to be different when computed on 3D
or 2D fields. Indeed, the probability of having a connection
between two points is generally higher in 3D for the same type
of statistical configurations because the number of possible paths
between the two points is larger in 3D. In the following of the
paper, we compute the connectivity functions in 3D when we
have a 3D reference. When the reference contained only 2D
sections, we compare the connectivity functions computed only
on 2D sections.

For the indicator variogram and the connectivity functions,
we will compare the curves computed on individual realizations
belonging either to the training set and to the set of simulations.
The simulations are stochastic and therefore there will be some
variability between these curves. To ease the comparison, we plot
the mean values (as a function of distance) for the training sets
and simulated sets. Because the number of simulations is limited
(as well as the number of training examples), these mean curves
are subject to estimation errors (standard error on the mean).
Similarly to visualize the range of variations of the curves, we use
the standard deviation of the curves computed on the reference
set and superpose individual curves for the simulations. The
standard deviation estimated on the reference is subject to an
approximation error as well. These errors are not displayed on
the graphs for the sake of visibility, but they have been studied
for the first three cases.

The Frechet Inception Distance (FID), introduced by Heusel
et al. (2017), is a heuristic measure of the distance between the
distributions of generated sample and training images. Training
image samples x and generated samples x̂ are fed into an
InceptionV3 neural network (Salimans et al., 2016) trained for a
classification task on the ImageNet dataset. This network outputs
feature vectors y and ŷ. Denoting by (m, C) [resp. (m̂, Ĉ)] the
mean vector and covariance matrix over the samples y (resp. ŷ),
the FID score is then defined as:

FID = ||m− m̂||22 + Tr(C + Ĉ − 2(CĈ)1/2) (4)

In DiAGAN, the FID gives an insight on the convergence and the
relative quality of generated samples.

The variograms and connectivity functions, γ (h), τ (h) and the
FID are computed and plotted along the three main directions X,
Y , and Z.

3. RESULTS

DiAGAN is implemented in both Pytorch and Tensorflow, two
of the most popular Deep Learning librairies in Python. Both
implementation lead to similar results.

3.1. Data Sets
To illustrate the proposed methodology, we consider six
examples. The training images are shown in Figure 2. In all those
examples, we consider only binary cases even if the method can
be applied to discrete problems with more lithologies or even
continuous problems. Outputs of our GANs, that are intrinsically

continuous are thresholded to obtain binary data. Voxels with
positive values are set to facies 1, while voxels 0 stay the same.
Note that for most of the data sets the grid used for the simulation
domain is smaller than the size of the training data sets. Therefore
the size of the objects may look different when comparing a
simulation with the training data visually.

In general, a GAN requires a large training data set. However,
in most applications in geosciences only a few training images are
available or can be drawn manually by a geologist. Insufficient
variability in the training data set prevents a GAN to train
correctly. To tackle this problem, we use here large input
images that were sub-sampled to generate a large number of
smaller images. This fits our context well, since the challenge
we seek to resolve is to synthesize plausible volume data from
2D inputs.

The datasets used in this paper are of two types.
On the one hand, three-dimensionnal data sets are

represented in Figures 2A–D. They are used to test the
method and allow to make a visual and quantitative comparison
between the known 3D structure and the simulations obtained
by our procedure using only 2D cuts through these volumes as
training data.

• Figure 2A is a procedurally generated set of packed spheres.
The grid has a size of 300× 300× 300 voxels. The spheres have
diameters taken from a uniform distribution between 8 and 12
pixels and do not intersect each other. The global proportion
of voxels occupied by the spheres is around 20%. This synthetic
data set constitutes a benchmark even if it is far from a real-life
geological application.

• Figure 2B is taken from the literature (Mariethoz and Kelly,
2011), it shows a stack of folded geological layers that were
generated using an MPS method based on invariant distances
and a rotation field1. The grid has a size of 126 × 126 ×

120 voxels.
• Figure 2C is a rendering of a CT scan of the sandpack F42A

obtained from Imperial College, London2. The grid has a size
of 300× 300× 300 voxels.

• Finally, Figure 2D represents a geological reservoir at a
kilometer scale that contains a set of fluvial channels. The
image has been generated for this paper using the Tetris object
based algorithm implemented in Ar2GEMS (Boucher et al.,
2010). The grid has a size of 126× 126× 64 voxels.

On the other hand, training images depicted in Figures 2E,F are
purely two dimensional. Assessing the quality of the output for
these examples is more difficult because the 3D ground truth
is not available and may not even exist. However, these cases
are important to demonstrates the generalization capabilities
of DiAGAN.

• The training image displayed in Figure 2E1 was taken from
Laloy et al. (2018). It has a size of 1,000 × 1,000 pixels. This
image was inspired by the training image of 2D channels

1http://trainingimages.org/training-images-library.html
2https://www.imperial.ac.uk/earth-science/research/research-groups/perm/

research/pore-scale-modelling/micro-ct-images-and-networks/sand-pack-f42a/
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FIGURE 2 | The six training data sets used in this study. Training images (A–D) are 3D examples fed as cuts, while TI (E) and (F) are cuts with no 3D ground truth.

Details about the dimensions of the data sets and the data sources are given in the text. In all these data sets, the facies 0 is represented either in black or

transparent, the facies 1 is represented either in gray for the 3D blocks and in white for the 2D images.

created and used by Strebelle (2002) and extended by Laloy
et al. (2018) to improve the diversity of the data set during the
training phase. Since the original image has been heavily used
as a benchmark in the MPS literature, we will refer to it as the
Strebellian channels. It represents a map view of channel and
matrix oriented along the (X,Y) and (X,Z) planes. The image
displayed in Figure 2E2 was created manually for this paper
and used to represent a vertical cross section along the (Y ,Z)
plane displaying roughly circular objects sections through the
channels. It has a size of 600 × 746 pixels. With these two
training images as input data, the aim is to simulate 3D
channels or conduits propagating along the X direction. We
took great care to ensurematching scales along the two images.

• Finally, Figures 2F1,F2 correspond to two perpendicular
vertical sections (of about 30 × 30m) that have been mapped
by Huysmans and Dassargues (2011) through the Brussels
sand deposit. Both images have a size of 600 × 600 pixels.
These data were used previously in Comunian et al. (2012).
Image (f1) is a cut perpendicular to the X axis and (f2) is
perpendicular to the Y axis. The horizontal cut is not available
in that case. Notice how the two images differ: while layers
perpendicular to the X axis are roughly horizontal and loosely
connected, the one perpendicular to the Y axis presents some
cross-bedding.

3.2. Realizations From 3D Datasets
DiAGAN has been first applied to generate 3D volumes of
64 × 64 × 64 voxels from sections taken inside the 3D
examples. In real practical cases, these full 3D data sets would

not be available. The aim here is to test the methodology
in a situation where the 3D structure is known and can
be used as a reference. While only 2D data taken from
the 3D structure are used for training, the analysis of the
resulting 3D simulation is compared to the original 3D data
sets allowing to check if the simulation was correct. In
particular, variograms and connectivity functions are computed
in 3D.

The training times for these cases take from a few hours to a
whole day on a rather old Tesla K40C GPU with 12 Gb of RAM.
Once done, the generator is able to produce a simulation in less
than a second.

Figure 3 a shows the evolution of the FID score during the
training phase for the simulation of the 3D random packing of
spheres. The FID score is dropping rapidly in the initial phase
of training. This evolution is demonstrating the convergence of
the method.

Figures 4, 5 show that the simulations of the spheres and sand
grains display the correct order of magnitudes for the size of
the objects as compared to the 3D references. The variograms
and connectivity functions are reasonably well-reproduced. The
trends are correct even if some minor differences are visible
for example between the mean curves for the variograms. The
computation of the standard error on the mean values for
these curves show that the difference is not due to statistical
variations but to slight differences between the set of simulations
generated with DiAGAN and the set of training data resulting
from some model errors. The same remark holds for the
connectivity curves.
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FIGURE 3 | Evolution of the Frechet Inception Distance during training for two datasets. The FID score in approximated using 100 samples for both the TI and the

generated images. A random cut along axes X, Y, and Z was taken from each samples to be fed inside the InceptionV3 model.

FIGURE 4 | Results of DiAGAN on the ball dataset (a). Note for the visual comparison that the simulated domain has a size of 64x64x64 voxels while the training data

set covers a larger area. The three upper curves present the variogram of 100 DiAGAN realizations (green) and their mean (red) along the three axis. The black curve is

the mean of observations in the TI for samples of the same size, while the gray area is this mean plus or minus the observed standard deviation. Middle and bottom

curves present the connectivity curve of the two facies of the image along the three axes, with the same color conventions.

Figure 5 and the statistical analysis of the standard error for
the mean and for the standard deviation shows that the f42a
case is well-simulated with DiAGAN. The mean curves for the

variograms and the connectivity functions and the variability
around the mean are well-reproduced for that case (differences
within standard errors).
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FIGURE 5 | Results of DiAGAN on the sand grain dataset (c). Note for the visual comparison that the simulated domain has a size of 64 × 64 × 64 voxels while the

training data set covers a larger area of 300 × 300 × 300 voxels. The three upper curves present the variogram of 100 DiAGAN realizations (green) and their mean (red)

along the three axis. The black curve is the mean of observations in the TI for samples of the same size, while the gray area is this mean plus or minus the observed

standard deviation. Middle and bottom curves present the connectivity curve of the two facies of the image along the three axes, with the same color conventions.

The visual inspection of an ensemble of cross sections
(Figure 6) through the simulations allows to compare the
training image and the simulations with DiAGAN. We observe
that the size of the balls or sand grains are similar. The variability
of the shapes and the position of the objects appear to be well-
reproduced as well. A further comparison with results from
a standard 3D to 3D GAN showed that for these cases that
are relatively simple and isotropic, there were no significant
differences in the quality of the results.

The two other 3D examples that are considered here are more
difficult because they consider large objects traversing the whole
domain. The data sets contain less repetitions and identifying the
underlying statistical distribution from these images is therefore
more difficult than for the two previous cases. In addition, for
the folded layers dataset (Figure 2B) the orientation of the layers
varies inside the training image and therefore there is a non-
stationarity in the training data. The results from DiAGAN for
this example (Figure 7) show less variability in the orientations
or in the variograms, but a correct visual reconstruction of
the layers. Continuous fold layers that were solid in the TI
present holes or imperfections in the generated examples. We
therefore observe a reduction of the sill of the variogram and a
connectivity that remains high instead of fluctuating for facies
0, while often dropping faster than in the TI for facies 1. The

differences between the statistical estimates of the mean and
standard deviations are obviously important indicating that the
DiAGAN model in this case does not capture all the structure of
the examples.

Finally, for the channelized reservoir case (Figure 2D),
DiAGAN simulated the channels from the 2D sections pretty
well (Figure 8), although the output is noisier than the
reference. The structure and form of the TI is reproduced with
satisfactory accuracy as well as the directional variograms and
connectivity functions.

To conclude that part, these 4 examples show that DiAGAN
can generate 3D realizations that are close to the 3D references
from 2D examples. There are some differences but one has
to remember that the simulation of 3D structures from only
2D cross-sections is a problem that is more difficult than the
generation of 3D simulations from 3D examples because only
a part of the information is provided to the algorithm. It is
therefore not surprising that there is a quality loss. If 3D training
data is available, a more traditional 3D to 3DGAN should be used
to obtain the best quality.

3.3. Realizations From 2D Datasets
We are now considering some examples corresponding to the
real potential application of DiAGAN. Only 2D sections are
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FIGURE 6 | Visual comparison of cuts taken from the TI and DiAGAN

generated samples, for the balls dataset (a) and the sand grains dataset (c).

Cuts are tiled together for visualization.

available and the 3D ground truth is absent. The evaluation of
DiAGAN’s output in these cases is more challenging. As written
above, this situation is more difficult than the case in which a set
of 3D examples are provided. The algorithm has to compensate
the lack of information about the 3D geometries by assuming
(implicitly in the case of GAN) some type of regularities or
symmetries. This problemwas discussed previously in Comunian
et al. (2012) for example. It is therefore expected that 3D
simulations based only on 2D examples should be of lower quality
than 3D simulations based on 3D examples when the geometries
of the geological objects are complex. For a rather simple case
presenting a high degree of symmetry (like the balls presented
in the previous section), the loss of information is moderate and
therefore it is easier to reconstruct the 3D objects.

If we consider first the case based on the 2D Strebellian
channels taken as a training image in the (X,Y) and (X,Z) planes
(Figure 2E1), DiAGAN correctly simulates a three dimensional
network of conduits having a circular section in the (Y ,Z) plane.
The vertical and horizontal connections between the conduits
that are visible in Figure 9 are due to the fact that we use the same
training image along the (X,Y) and (X,Z) planes. The sinuosity
of the channels in the horizontal plane must also be reproduced
in the vertical plane and DiAGAN finds a reasonable solution by
creating the network of conduits.

In Figure 10, we present a set of cuts taken from generated
samples. The cuts along the (X,Y) and (X,Z) planes resembles
the channels from the TI, but they may be broken when a channel
moves out of the cut to ensure the 3D continuity that we see
in Figure 9. The perpendicular cuts along the (Y ,Z) plane are

much more isotropic but they depart from the target training
imagemade of disks (Figure 2E2).We think that this discrepancy
is due to the fact that the cuts in different directions are not
perfectly compatible. Those images have been drawn separately,
and despite the effort that we made to respect similar sizes for
the object in the common direction, nothing ensures that a
3D geometry with these sections can really exist. DiAGAN is
however capable of obtaining a compromise and a reasonable
solution in this situation. Finally, we note that the convergence
of the FID criteria for this problem is slower and more difficult to
reach (see Figure 3) because of the issue described above, i.e., the
incompatibility between the cuts along the X and Y axis.

For the Brussels sands deposit, the situation is easier since
the training images have been acquired from an existing
3D structure. In this case, DiAGAN generates some roughly
horizontal layers with cross beddings but only oriented along the
Y direction as it was indicated in the training data set (Figure 11).
The simulations are slightly noisy but the cuts sampled in the
3D simulations (Figure 12) show very well that the cross bedding
occurs only in the Y axis plane. The quality of the results is pretty
similar to what was obtained earlier with MPS techniques (see
Figure 18 in Comunian et al., 2012).

4. DISCUSSION AND CONCLUSION

Generative adversarial networks represent a new and really
different method to generate random fields having a predefined
spatial structure (prior distribution). This has already been
shown and experimented by several authors (Laloy et al., 2017,
2018; Mosser et al., 2017a).

The main novel idea presented in this paper is to introduce a
cut sampler in the GAN process between the generator and the
discriminator. Our numerical experiments show that this very
simple idea makes it possible to reconstruct 3D parameter fields
from a series of 2D examples. This is the main contribution of
the paper since this was impossible with the methods cited above.
We have tested the idea on a series of simple situations and
the results are of comparable quality with those obtained with
an MPS method previously published (Comunian et al., 2012).
Our experiments demonstrate the feasibility of the approach.
It is also to notice that although all experiments generated
64x64x64 images, which is a good trade-off between complexity
andmemory usage, an algorithm like DiAGAN is able to produce
images of any size without retraining, by simply providing a
latent noise vector of greater or smaller dimension. This is the
main interest of fully convolutional architectures for both the
generator and the discriminator (see Table 1). Note that if 3D
examples are available, the traditional GANs are expected to
generate better simulations because they will account for the
complete 3D information. The idea is not to replace existingGAN
implementations with DiAGAN. The quality of the simulations
obtained for example by Laloy et al. (2018) or Zhang et al. (2019)
are excellent. The idea here is to show how these techniques may
be slightly modified to generate 3D realizations when only 2D
examples are available as it often occurs in practice.
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FIGURE 7 | Results of DiAGAN on the categorical fold dataset (b). The three upper curves present the variogram of 100 DiAGAN realizations (green) and their mean

(red) along the three axis. The black curve is the mean of observations in the TI for samples of the same size, while the gray area is this mean plus or minus the

observed standard deviation. Middle and bottom curves present the connectivity curve of the two facies of the image along the three axes, with the same color

conventions.

The DiAGAN method could be further improved or
extended. One question that was not explored in this
work is the effect of using one single random cut per
direction or more cuts. The argument to use one cut only
per direction was to keep the algorithm as efficient as
possible. We have seen in the numerical experiments that
the random cut allowed to obtain results of rather good
quality. More cuts may improve the quality but would imply
more computations and would slow down the method.
Further research could investigate if this is worth doing
or not.

Another point that could be improved is the fact that the
input of the critic is stacked. It forces the cuts to have the
same size, and thus to have cubic realizations. In order to have
realizations of any shape, it would be pretty straightforward
to have different critics for the different orientations. This
could also be relevant from a quality point of view, since
these parts will be independently trained to identify different
patterns. It is therefore possible that this approach would
improve the quality of non-symmetrical examples (for example
the channels).

On top of this, while DiAGAN demonstrated satisfactory
results on various architectures, it is very likely that the algorithm
could benefit from recent and future state of the art techniques in

Deep Learning, like more efficient neural network architectures.
This could improve both the quality of the outputs and the
training time.

Finally, at the moment DiAGAN is not conditional.
For geoscience applications, this is a requirement. Some
methods have already been developed to condition the GANs
to hard data (Zhang et al., 2019). In the future similar
techniques should also be implemented in DiAGAN to make
it applicable for real applications. What is less clear at
the moment is how non-stationarities in patterns may be
controlled. In traditional MPS, we can force some trends
and describe rather precisely how the probabilities of finding
different facies may vary in space as a function of some
geological knowledge. This has still to be investigated for
the GANs.

As compared to the MPS approach, the main advantage of
DiAGAN is the possibility to use the latent input space of
Gaussian vectors. Indeed, generating a sample using DiAGAN
consists in feeding the generator with a latent vector and
applying all the layers. This is very efficiently done on modern
computers and GPUs. One can expect a speed-up of several
order of magnitude compared to more traditional multiple-
point statistics. The fact that the latent space is continuous,
differentiable, and that it is fast to generate realizationsmakes this
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FIGURE 8 | Results of DiAGAN on the procedurally generated channel dataset (d). The three upper curves present the variogram of 100 DiAGAN realizations (green)

and their mean (red) along the three axis. The black curve is the mean of observations in the TI for samples of the same size, while the gray area is this mean plus or

minus the observed standard deviation. Middle and bottom curves present the connectivity curve of the two facies of the image along the three axes, with the same

color conventions.

FIGURE 9 | Results of DiAGAN for the 2D channel dataset (Training Images E1 and E2 in Figure 2). Images were obtained by applying a density filter on the original

voxel data.

FIGURE 10 | Sample of cuts taken from DiAGAN for the 2D channel dataset (Training Images E1 and E2 in Figure 2).

approach potentially very efficient for inverse problem solving.
This path has been explored recently for example by Mosser
et al. (2019), Laloy et al. (2019) or Liu et al. (2019). However,

one remaining issue is that the inverse problem will involve the
computation of a forward model using the fields generated with
the GANs, and if these fields are discrete (like those studied

Frontiers in Water | www.frontiersin.org 11 October 2020 | Volume 2 | Article 56059866

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Coiffier et al. DiAGAN: 3D Simulations From 2D Examples

FIGURE 11 | Results of DiAGAN on the Brussel’s sand deposit dataset (Training Images F1 and F2 in Figure 2).

FIGURE 12 | Sample of cuts taken from DiAGAN for Brussel’s sand deposit TI (Training Images F1 and F2 in Figure 2).

in this paper), it is possible that the response of the forward
model may become discontinuous and not differentiable, posing
an issue in the inverse problem formulation. This has still to
be explored to better identify the domains of application of
these techniques.

Back to the computing time aspects, one has also to
remember that training time is still long and can last up
to several days of computation. This means that for the
moment, if a reasonable number of simulations are needed
(several hundreds for example), MPS is still faster. Of course,
it depends on the dimension of the problem, the complexity
of the patterns to simulate, and the size of the training
data set.

As of today, Generative Adversarial Networks represent
a very interesting alternative to classical geostatistics clearly
worth exploring. Their strength are different from the
current state of the art methods, which make them a good
complementary method.
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Snow derived water is a critical component of the US water supply. Measurements of the

Snow Water Equivalent (SWE) and associated predictions of peak SWE and snowmelt

onset are essential inputs for water management efforts. This paper aims to develop an

integrated framework for real-time data ingestion, estimation, prediction and visualization

of SWE based on daily snow datasets. In particular, we develop a data-driven approach

for estimating and predicting SWE dynamics using the Long Short-Term Memory

neural network (LSTM) method. Our approach uses historical datasets (precipitation, air

temperature, SWE, and snow thickness) collected at NRCS Snow Telemetry (SNOTEL)

stations to train the LSTM network and current year data to predict SWE behavior. The

performance of our prediction was compared for different prediction dates and prediction

training datasets. Our results suggest that the proposed LSTM network can be an

efficient tool for forecasting the SWE timeseries, as well as Peak SWE and snowmelt

timing. Results showed that the window size impacts the model performance (where

the Nash Sutcliffe efficiency (NSE) ranged from 0.96 to 0.85 and the Rooted Mean

Square Error (RMSE) ranged from 0.038 to 0.07) with an optimum number that should

be calibrated for different stations and climate conditions. In addition, by implementing

the LSTM prediction capability in a cloud based site-monitoring platform, we automate

model-data integration. By making the data accessible through a graphical web interface

and an underlying API which exposes both training and prediction capabilities. The

associated results can be made easily accessible to a broad range of stakeholders.

Keywords: SWE, LSTM, prediction, real-time web based interface, forecasting, model-data integration, neural

network

INTRODUCTION

Accurate estimation and prediction of snow water equivalent (SWE) in mountain watersheds has
been a longstanding challenge (Bair et al., 2018), while, it is a key metric used by hydrologists and
water managers to assess water resources in snow-dominated catchments or basins (Bales et al.,
2006; Painter et al., 2016). SWE is defined as the equivalent amount of water if the snow mass is
completely melted. SWE is one of the main parameters used in accurate prediction of snowmelt
runoff and snowpack and water supply forecasting (Schneider and Molotch, 2016). Consequently
there is substantial interest in forecasting seasonal SWE dynamics, including parameters such as
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peak SWE and snowmelt timing onset (Odei et al., 2009).
This snowmelt timing is critical for ecological processes
in snow-dominated regions, controlling plant dynamics, net
ecosystem exchanges, and soil carbon (Harte et al., 2015;
Sloat et al., 2015; Wainwright et al., 2020). Snowmelt timing
also drives peak flow timing during which significant nutrient
export occurs from the catchments (Carroll et al., 2018). In
recognition of its value for water resource prediction SWE and
associated measurements (temperature, precipitation, windspeed
and direction, and snow thickness) are measured across the west
area by the U.S. Natural Resource Conservation Service’s (NRCS)
through over 800 automated data collection stations known as
SNOTEL (SNOw TELemetry) stations, as well as by airborne
observations (Painter et al., 2016). Stations are typically located
in small clearings in evergreen forests. Data from these stations
is transferred multiple times a day to a central database, from
where the data is publicly accessible through web interfaces
and software APIs. Each SNOTEL station has a long record of
historical data, often more than 30 years, encompassing a variety
of metrological conditions at each site. This results in typically
more than 10,000 data points. In addition, snow accumulation
and melting is a highly heterogeneous process affected by a
complex terrain or regional scale atmospheric forcing which
support us to use deep learning method for SWE forecasting.

There is a long standing interest in the use of probabilistic
forecasting and Artificial Neural Networks (ANN) such as

FIGURE 1 | Location and names of the five SNOTEL Stations used in this study (red dash line: East River watershed boundary).

recurrent neural networks (RNNs) (Kumar et al., 2004) for
hydrology and SWE forecasting (Huang and Cressie, 1996;
Winstral et al., 2019; Magnusson et al., 2020). More recently
deep learning methods such as the long short-term memory
network (LSTM) have demonstrated a significant promise in
hydrological time series analysis and forecasting (Xiang et al.,
2020), such as soil moisturemodeling (Fang et al., 2017), monthly
water-table depth predictions (Zhang et al., 2018), and daily or
hourly rainfall-runoff modeling (Hu et al., 2018; Kratzert et al.,
2018; Le et al., 2019; Fan et al., 2020).

In this paper, we develop the integrated framework of
real-time ingestion, estimation/prediction and visualization
(webinterface) of the snow dynamics based on SNOTEL
generated time-series data. In particular, we demonstrate
the feasibility of using LSTM trained on for predicting
future SWE dynamics. Although we use a few selected
SNOTEL stations, our framework is general, and hence,
it can be used for other stations across the US. In
addition, the feasibility of automating and exposing this
capability through a webinterface and an underlying API
is demonstrated. It includes quality control, flagging and
interpolation, which is often a bottleneck of applying deep
learning to environmental datasets. We believe that this
framework makes the predictions and deep learning easily
accessible to different interested parties for public use or
stakeholder use.
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FIGURE 2 | Example of data used in this study. Top: SWE data from the Schofield station. Bottom: Temperature at the Schofield station.

MATERIALS AND METHODS

Study Area
In this paper, we focus on five SNOTEL stations, which are
located inWestern Colorado within the central RockyMountains
(Figure 1). Our interest in this area is associated with work
done by several of the authors on the multiyear, multi-institution
Department of Energy funded research effort (the Lawrence
Berkeley National Lab (LBNL) Watershed Science Focus Area
(SFA) (Hubbard et al., 2018), which focuses on the East River
Watershed located near Crested Butte, Colorado. The East River
watershed measures ∼300 km2. It includes montane to alpine
ecosystems with an elevation ranging from 2,500m to 4,000m.
The vegetation in this watershed is diverse, including mixed
conifer forest, aspen forest, and open meadows (Harte et al.,
2015). Streamflow is dominated by snowmelt in spring and
summer (Markstrom et al., 2012). This watershed is a typical
headwater catchment in the Colorado River Basin. As the
Colorado River Basin provides 75% of the water demand for 40
million people in seven states and two countries (Deems et al.,
2013) an understanding of hydro-biogeochemical processes in
these headwaters catchments is of obvious value and interest.

Data
Data types collected at SWE stations varies across stations. As
far as we can ascertain, all stations collect SWE, snow thickness,
precipitation and air temperature. Many stations also collect
other environmental parameters such as wind speed and wind
direction, air pressure and incoming broadband solar radiation.
While in general data quality and continuity is high, there are
instances (especially in the data from the early 2000s where
SNOTEL data is not continuous, is noisy or has outliers. In
this paper we have not included gapfilling or noise elimination
strategies as we limited our prediction to use data from five
selected stations for the last 10 years which are of good quality
(Figure 2). However, robust error handling strategies need to be
built in for real life applications.

Methods
Project Data Ingestion and Exposure Through Cloud

Based API
We have developed robust capabilities to automatically retrieve,
normalize (variable names, units, and timestamps), ingest and
link heterogeneous data (hydrological, geochemical, geophysical,
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microbiological, and remote sensing) from numerous public and
project specific data sources. These data are stored in project
specific relational databases. The datamodel underlying these
databases is a substantially modified version of the ODM2
(ObservationDataModel version 2) datamodel (Horsburgh et al.,
2016).

Data in the database is accessible to both through a web
interface (which allows both data visualization in a variety
of manners and data download) and a rich API. While the
public data hosted in our database can be obtained by users
themselves through APIs provided by different organizations,
our architecture allows users both to access and locate uniform
data across the project site using a single API call as well as
provides advanced visualization and analytical capabilities.

An example of the capabilities of this interface is shown in
Figure 3, which shows the SWE for the Butte SNOTEL Station for
different water years (defined by the USGS as the period between

October 1st of 1 year and September 30th of the next). Thus, the
water year 2020 runs from 10-1-2019 until 9-30-2020.

Long Short-Term Memory Network
The prediction of time series behavior is of interest for a wide
range of applications. Numerous statistical and machine learning
approaches exist to predict time series behavior (Fawaz et al.,
2019). When dealing with long-term dependencies, traditional
feed forward Artificial neural networks (ANNs) are limited
(Bengio et al., 1994; Fang et al., 2017). However, the Long Short-
Term Memory (LSTM) network method is well-suited for long
term dependencies (Hochreiter and Schmidhuber, 1997; Fan
et al., 2020). LSTM is a deep neural network (DNN) method
which has been successfully applied in various fields (Sahoo et al.,
2019) for especially for time sequence prediction problems.

LSTM is well-suited to classify, process, and predict time series
given time lags of unknown duration. It can be trained on and

FIGURE 3 | Graph of year over year SWE measured at the Butte SNOTEL station generated by the web interface of our cloud based data management system.

FIGURE 4 | One step iteration of the training process in the LSTM approach.
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deal with long sequences and does not rely on a pre-specified
window lagged observation as input (Kratzert et al., 2018). In
addition, LSTM is well-suited to deal with time series prediction
problems with multiple input variables (Le et al., 2019).

In order to use LSTM, we first need to train and calibrate a
model. Once this is done the model can be used to predict future
values. Figure 4 shows a schematic of the one-step iteration in the
LSTM training/calibration procedure (Fan et al., 2020).

A random batch of input data, consisting of several
independent training samples (depicted by the gray colors) that
is used in each step. Thus, the input to every LSTM prediction
layer is three dimensional, with the three dimensions being
samples (or sequences), time steps and features (observations
at a timestep). As can be seen in Figure 4 each training
sample consists of several days (timesteps) of look-back data
and one target value (Y) to predict. Therefore, the number of
samples refer to the number of observations fed into the LSTM
network. The number of timesteps or lookback, describes the
time window (past data) needed by the LSTM. In each LSTM
training iteration step, some of the available training data is used
to update some model parameters such as the weights, biases,
and learnable network parameters. This update is done in such

TABLE 1 | Multipliers to be used for confidence intervals.

Percentage Multiplier

70 1.04

80 1.28

90 1.64

95 1.96

a way that the loss function is reduced. The loss function is
computed from the observed training samples and the network’s
predictions. In this study, we used the mean-square-error as the
loss function for parameter optimization (Kratzert et al., 2018).
The gradient descent optimization algorithm is used to reduce
the loss function which is equivalent to the unexplained fraction
of variance (Xiang et al., 2020).

In building a LSTM, after normalizing the raw data, the
dataset is first made suitable for a supervised learning problem
by splitting into test and training data and by formatting the
data in the right input format. Following common practices
60% of data is used for training and 40% is used for validation.
After the model is trained and validated, the model can
then be used to generates predictions for the future values.
The model performance can be evaluated by using testing
datasets. Forecasting uncertainties can be represented with
confidence intervals. These confidence intervals give us an
interval within which we expect the real value to lie with a
specified probability that uses standard deviation and mean
values of previous observations and current real data. The range
of confidence intervals communicates our confidence in the
uncertainty associated with the forecast. The confidence intervals
are calculated by standard deviation, percentage multiplier and
forecast distribution. The percentage multiplier depends on the
coverage probability as shown in Table 1 (Hyndman et al., 2018).

Application of LSTM to SWE Time-Series Analysis

and Prediction
In our prediction problem (and in the software implementation),
we assume that we have the SWE time-series up to a specific
(generally the current) date in a specific (generally the current)
water year, and aim to predict the future SWE from this date for

FIGURE 5 | Web interface to the prediction API.
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FIGURE 6 | Detail of Figure 5 showing prediction for a start date of February 7. The prediction was made in Note that our prediction matches actual data (available

through the end of April) quite well.

the remainder of the water year based on the historical datasets.
As our architecture pulls in new SWE data on a daily basis this
prediction is quasi real-time, and in general most interest will
be in using our prediction in this mode. However, by allowing
the flexibility of providing dates in the past our code allows for
performance assessment.

For SWE timeseries forecasting we use the method described
above, which is implemented as a python code which uses
the Tensorflow (Abadi et al., 2016) and Keras (Chollet et al.,
2015) libraries. This code is exposed through an API. The API
can be accessed directly programmatically or through a web
interface which provides a visual interface to the API (Figure 5).
Parameters passed to the API include which SNOTEL location
to forecast for, how many years of historic data to use for
training, what type of snow years (below average, average, or
above average) prediction data to use, and for which date we
should predict for.

Once our code receives the parameters it first retrieves the
raw datasets (which includes SWE, precipitation, snow thickness,
and air temperature) needed for prediction through a call to the
data API. These are long sequences of thousands of observations
for data in previous water years. These sequences are split into
samples which are reshaped for the LSTM model. The size of
these samples is called the window size (Fan et al., 2020) and has
impact on the forecast accuracy.

The reshaped data is used to train the LSTM network. The
supervised learning problem is framed as predicting the SWE at a
specific day given SWE and associated data (precipitation, snow
thickness, and air temperature) up to that day. In our analysis
we used training datasets with between 5 and 10 years of recent
SNOTEL data, but our code is able to deal with different lengths
of data to train the LSTM network.

Once the network is trained, we can use it to make predictions
about SWE for a specific water year and date within this year. For
this prediction, the model needs the history of SWE over the past
months and days in the current water year until the prediction
start date. The model then predicts SWE for the remainder of
that water year. For the prediction data we allow users to select
any of snow years worth of data (e.g. “below average,” “average,”
“above average” years) to accommodate different kinds of
snow years.

It should be noted that in this study, the proposed LSTM
method was tested for several SNOTEL stations in the one
watershed (East River watershed), but as automated, it can be
used for any other stations in other watershed, hence, the model
and the system are not dependent on any dataset and station.
As presented in Figure 5, any location (station related to any
watershed) can be selected for SWE prediction.

Model Evaluation Criteria
To evaluate forecasting performance, we can use different
statistical criteria. The ones we use include the Nash Sutcliffe
model efficiency coefficient (NSE) (Nash and Sutcliffe, 1970)
and Rooted Mean Square Error (RMSE) which are a widely
used performance evaluation method for hydrological modeling
(Krause et al., 2005; Arnold et al., 2012). Both of these compare
predicted values with observed values. The NSE evaluates the
model performance to predict testing data different from the
mean and gives the proportion of the initial variance accounted
for by the model (Nash and Sutcliffe, 1970). The RMSE is used
to evaluate how closely the predicted values match the observed
values, based on the relative range of the data.

NSE = 1−

∑n
i=1

(
Yo
i − Y

p
i

)2

∑n
i=1

(
Yo
i − Y ′

)2 (1)

RMSE =

√√√√
∑n

i=1

(
Yo
i − Y

p
i

)2

n
(2)

where Yo
i , Y

p
i and Y ′epresent the observed, predicted and the

average observed data at time i respectively. NSE ranges from –∞
to 1, and the value close to 1 is equivalent the better model
performance (Arnold et al., 2012). In general, a lower RMSE
represents a higher accuracy and a better fit.

RESULTS

Forecasts and Performance
The method described above generates a site-specific LSTM
model which can be used to predict SWE. This model can be
trained using different datasets (e.g., the last 10 years of data),
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FIGURE 7 | SWE observed and predicted for the current year (2020) with their performance, for SNOTEL Schofield Pass station, SNOTEL Upper Taylor station, and

SNOTEL Park Cone station.

and be used to predict SWE dynamics in different types of years
(low snow, medium snow, high snow years). The model can use
any specified start date in the past to evaluate the performance of
the approach in SWE forecasting.

We evaluated SWE forecast performance, obtained from
LSTM model, by considering 3 month forecasting for different
SNOTEL stations (Schofield Pass, Upper Taylor, and Park Cone).
The observation data obtained from stations were available until
May 1, 2020 and 3 month before this time is February 1, 2020
that was the starting date to forecast. Given these conditions, the
performance of the model can be evaluated with the observed

data from the stations and the predicted SWE data from the
LSTM model. However, the model can use any dates in the past
to forecast, hence, it can be invoked programmatically makes it
easy to evaluate performance and to use it for scenario modeling.
An example of this prediction is shown in Figures 5, 6.

Figure 7 shows the SWE prediction for the selected stations.
In addition, the uncertainty in the prediction and the match
between predicted and observed data for each station are
presented in the associated graph for each station. The predicted
data is obtained from the LSTM model and current water
year data. All the graphs illustrate the both peak SWE and
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snowmelt timing captured within the confidence interval and
therefore the performance is consistent among these three
locations. The model and the results are validated by applying
criteria such as NSE value, RMSE value. The LSTM model
has a narrower range of RMSE between 0.026m and 0.03m
relative to the Upper Taylor and Schofield Pass station. The
value of NSE is also improved from 0.85 (Park Cone) to 0.96
(Schofield Pass). The results illustrate equally good performance.
However, since the LSTM model is highly dependent on
the meteorological variables such as rainfall, the model with
smoother observed data is able to capture more precisely
the peak of snowmelt timing and SWE forecast as well. As
mentioned, all three stations shown in Figure 7 have acceptable
results, although the model performance at Park Cone Station
is not as good as the other two stations, this is due to
meteorological data (rainfall) which is smoother at the other
two stations.

We can also evaluate the prediction behavior for different
days by changing the starting date. An example of this is
shown in Figure 8 which shows the SWE prediction for the
SNOTEL Schofield Pass station for different days in the past

TABLE 2 | Prediction performance for key metrics (peak SWE and Snow melt

timing) for different start dates.

From Peak SWE (m) Snow melt timing Performance

(NSE)

Observation – 0.81 04-21-2020 –

Forecasting December 1.07 04-08-2020 2.23

January 0.98 04-08-2020 1.21

February 0.78 04-07-2020 0.96

March 0.77 04-07-2020 0.95

April 0.76 04-08-2020 0.94

FIGURE 8 | Forecasting from the different past month for the water year 2020.
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FIGURE 9 | Improvement of SWE prediction during the learning process of the LSTM as the number of epochs increases.

(from December 1, 2019, to March 1, 2020). This demonstrates
the model’s ability to predict SWE at any time of the water year.
As is expected the confidence interval becomes narrower reduces
over time as we get closer to the end of the year (Table 2). In all
the cases, the SWE time series are contained within the interval,
which validates our methodology.

Model Parameter Effect
There are multiple model parameters which we can vary in the
LSTM network. These include the epoch and the number of
historic years we use as training data. In NN applications, the
epoch is one cycle through the full training set in which model
parameters are updated.

Figure 9 illustrates the LSTM learning process for different
numbers of training epochs. It shows how the training network
improves from the initial state from scratch (where it has random
weights) as we go to 200 epochs.

Effect of the Number of Years Used to
Train Our Dataset
As mentioned before (and as should be intuitively clear), the
number of years of data we use to train our dataset has an impact
on the model performance, and it is important to evaluate and
analyze this impact. We can evaluate the effect of the number of
years used on the model performance (which is represented by
Loss function or NSE). We compared 4 different lengths: 2, 5, 10,
and 15 years. The comparison results are shown in Figure 10.

The statistical results for the overall performances of LSTM
models for both length of training data are listed in Table 3.
As shown in Table 3, the prediction performed well for the 10
years length (2010–2020), with average NSEs of 0.96 and RSME
0.038. Although we initially expected that increasing the number
of years used to train our model (15 years for our model 2005–
2020) would have better performance, the 10 years window size
performed better. This behavior can be observed in Figure 10, in
the Predicted-Observed graph. The blue dots that represent 10
year window size (2010–2020) show a better performance than

the red dots that represent the 15 year window size. This may be
associated with a shift in system behavior—which would be better
expressed in recent data than in older data. In addition, it should
be noticed that the confidence interval becomes narrower when
the window size increases (Figure 10).

We can combine the results shown in Figures 9–11 which
shows the loss function behavior for different lengths of training
data. As shown in Figure 11, the Loss function of the LSTM
model decreased (or NSE increased) when the length of training
data increases. It should be noticed also that when training with
longer dataset the curve of the loss function becomes smoother.
However, as shown in Table 3 and Figure 10 adding more years
of data beyond 10 years does not increase performance. It is
interesting to consider why this is, and while a detailed analysis
of this falls outside the scope of this paper it could be because
SWE characteristics have changed over the last 10 years. If
this is the case, more recent SWE behavior would be a better
predictor of current behavior than SWE behavior of 15 or 20
years back.

LSTM Automation
In this study, we have presented a step-by-step workflow on the
SWE prediction by obtaining the metrological data form stations,
training the model with the different windows size, checking
the confidence interval, plotting the results and calculating
the performance of the prediction. However, all these process
and capability can be automated at different levels. First by
automatically creating trained networks for any SNOTEL site,
using API-able approach and creating daily updated predictions
using new data for every day by rerunning the prediction. Finally,
the predicted results can be delivered to interested end users.
This delivery can be either done through an API or through a
web interface as shown in Figures 5, 6. Due to the flexibility
of the API, the effect of using different training datasets can be
rapidly compared.
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FIGURE 10 | SWE predicted for the different length of years of training data (2, 5, 10, and 15 years).

TABLE 3 | Statistics of LSTM model for SWE prediction on the SNOTEL Schofield

Pass Station for different window size.

2005–2020 2010–2020 2015–2020 2017–2020

NSE 0.88 0.96 0.89 0.85

RSME 0.063 0.038 0.062 0.07

DISCUSSION

In this study, we demonstrated that LSTM networks can be
trained to accurately predict SWE behavior for different NRCS
SNOTEL stations. Prediction accuracy and performance were

analyzed for different epoch number and length of training data.
Our results demonstrate that training data length affects the
model performance. While 7–10 years of training data length
seems to be suitable for the sites we examined this number should
be determined for different stations and climate conditions.

There are multiple other efforts which have focused on
SWE. This includes the work by Guan et al. (2013) which
retrospectively estimates SWE distribution by using the blended
method. Similarly (Fassnacht et al., 2003) applied inverse
weighted distance and regression techniques to evaluate SWE
across the entire Colorado River. Bair et al. (2018), used different
machine learning techniques (bagged regression trees and
feed-forward neural networks). Schneider and Molotch (2016)
used regression techniques to estimate the spatial distribution of
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FIGURE 11 | Loss function after 200 epochs for predictions using different water years (2, 5, 10, and 15 years).

SWE for the Upper Colorado River basin weekly from January
to June 2001–2012. Leisenring and Moradkhani (2011) compare
common sequential data assimilation methods, the ensemble
Kalman filter (EnKF), the ensemble square root filter (EnSRF),
and four variants of the particle filter (PF), to explain. These
efforts differ from ours in that we provide a forecast for the water
year. In addition, in this study, we analyze presented the impact
of the training data set on the forecast accuracy of LSTM. This
analysis complements the work by other groups which used the
LSTM method to runoff prediction such as Kratzert et al. (2018)
and Zhang et al. (2018).

We demonstrated the feasibility of automated model/data
coupling and model generation, with the model accessible
through the API and through a web interface. We expect that this
ability will be of interest to multiple stakeholders. One limitation
of the current study is that the current prediction effort uses
single station data.We are currently exploring howwe can extend
this prediction by integrating multiple SNOTEL stations and
satellite data on watershed snow coverage to give watershed-wide
SWE and water predictions.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: data can be accessed at: https://www.wcc.nrcs.
usda.gov/.

AUTHOR CONTRIBUTIONS

AM implemented and tested the LSTM algorithm and applied it
to the Snotel data. RV designed and enhanced the data model and
provided method validation. EA implemented the data ingestion
pipeline for the Snotel data. DJ designed and implemented
the overall backend and supported API implementation. AR
developed the webinterface. MF and HW developed an initial
implantation of the LSTM method on SWE data. All authors
contributed to the article and approved the submitted version.

FUNDING

This research was funded by the U.S. Department of Energy,
Office of Science, Office of Biological and Environmental
Research under SBIR Award DE-SC0018447 to Subsurface
Insights (Cloud Based Watershed And Terrestrial Ecosystem
Data Management, Integration And Analytics), and under
Award Number DE-AC02-05CH11231 to Lawrence Berkeley
National Laboratory as part of the Watershed Function Scientific
Focus Area.

ACKNOWLEDGMENTS

This research benefited from numerous discussions on SWEwith
Rosemary Carroll, KenWilliams, and the overall LBNL SFA team.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,

C., et al. (2016). Tensorflow: large-scale machine learning on

heterogeneous distributed systems. arXiv [Preprint]. arXiv:1603.

04467.

Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J.,

Srinivasan, R., et al. (2012). SWAT: model use, calibration, and validation.

Trans. ASABE 55, 1491–1508. doi: 10.13031/2013.42256

Bair, E. H., Abreu Calfa, A., Rittger, K., and Dozier, J. (2018). Using machine

learning for real-time estimates of snow water equivalent in the watersheds of

Afghanistan. Cryosphere 12, 1579–1594. doi: 10.5194/tc-12-1579-2018

Frontiers in Water | www.frontiersin.org 11 November 2020 | Volume 2 | Article 57491780

https://www.wcc.nrcs.usda.gov/
https://www.wcc.nrcs.usda.gov/
https://doi.org/10.13031/2013.42256
https://doi.org/10.5194/tc-12-1579-2018
https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Meyal et al. Cloud Based LSTM SWE Prediction

Bales, R. C., Molotch, N. P., Painter, T. H., Dettinger, M. D., Rice, R., and Dozier, J.

(2006). Mountain hydrology of the western United States. Water Resourc. Res.

42:W08432. doi: 10.1029/2005WR004387

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies

with gradient descent is difficult. IEEE Trans. Neural Netw. 5, 157–166.

doi: 10.1109/72.279181

Carroll, R. W., Bearup, L. A., Brown, W., Dong, W., Bill, M., and Willlams, K. H.

(2018). Factors controlling seasonal groundwater and solute flux from snow-

dominated basins. Hydrol. Processes 32, 2187–2202. doi: 10.1002/hyp.13151

Chollet, F., et al. (2015). Keras. Available online at: https://github.com/fchollet/

keras

Deems, J. S., Painter, T. H., Barsugli, J. J., Belnap, J., and Udall, B. (2013).

Combined impacts of current and future dust deposition and regional warming

on Colorado River Basin snow dynamics and hydrology.Hydrol. Earth Syst. Sci.

17, 4401–4413. doi: 10.5194/hess-17-4401-2013

Fan, H., Jiang, M., Xu, L., Zhu, H., Cheng, J., and Jiang, J. (2020). Comparison

of long short term memory networks and the hydrological model in runoff

simulation.Water 12:175. doi: 10.3390/w12010175

Fang, K., Shen, C., Kifer, D., and Yang, X. (2017). Prolongation of SMAP

to spatiotemporally seamless coverage of continental US using a

deep learning neural network. Geophys. Res. Lett. 44, 11.030–11.039.

doi: 10.1002/2017GL075619

Fassnacht, S. R., Dressler, K. A., and Bales, R. C. (2003). Snow water equivalent

interpolation for the Colorado River Basin from snow telemetry (SNOTEL)

data.Water Resourc. Res. 39:1208. doi: 10.1029/2002WR001512

Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., and Muller, P. A. (2019). Deep

learning for time series classification: a review.DataMining Knowl. Discov. 333,

917–963. doi: 10.1007/s10618-019-00619-1

Guan, B., Molotch, N. P., Waliser, D. E., Jepsen, S. M., Painter, T. H., and

Dozier, J. (2013). Snow water equivalent in the Sierra Nevada: blending snow

sensor observations with snowmelt model simulations.Water Resources Res. 49,

5029–5046. doi: 10.1002/wrcr.20387

Harte, J., Saleska, S. R., and Levy, C. (2015). Convergent ecosystem responses

to 23-year ambient and manipulated warming link advancing snowmelt

and shrub encroachment to transient and long-term climate–soil

carbon feedback. Glob. Change Biol. 21, 2349–2356. doi: 10.1111/gcb.

12831

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural

Comput. 9, 1735–1780. doi: 10.1162/neco.1997.9.8.1735

Horsburgh, J. S., Aufdenkampe, A. K., Mayorga, E., Lehnert, K. A., Hsu, L., Song,

L., et al. (2016). Observations data model 2: a community information model

for spatially discrete earth observations. Environ. Modell. Softw. 79, 55–74.

doi: 10.1016/j.envsoft.2016.01.010

Hu, C., Wu, Q., Li, H., Jian, S., Li, N., and Lou, Z. (2018). Deep learning with a long

short-term memory networks approach for rainfall-runoff simulation. Water

10:1543. doi: 10.3390/w10111543

Huang, H.-C., and Cressie, N. (1996). Spatio-temporal prediction of snow water

equivalent using the Kalman filter. Comput. Stat. Data Anal. 22, 159–175.

doi: 10.1016/0167-9473(95)00047-X

Hubbard, S. S., Williams, K. H., Agarwal, D., Banfield, J., Beller, H.,

Bouskill, N., et al. (2018). The East River, Colorado, watershed: a

mountainous community testbed for improving predictive understanding of

multiscale hydrological–biogeochemical dynamics. Vadose Zone J. 17, 1–25.

doi: 10.2136/vzj2018.03.0061

Hyndman, R. J., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O’Hara-

Wild, M., et al. (2018). forecast: Forecasting Functions for Time Series and Linear

Models, 2018. Software, R package.

Kratzert, F., Klotz, D., Brenner, C., Schulz, K., andHerrnegger, M. (2018). Rainfall–

runoff modelling using long short-term memory (LSTM) networks. Hydrol.

Earth Syst. Sci. 22, 6005–6022. doi: 10.5194/hess-22-6005-2018

Krause, P., Boyle, D., and Bäse, F. (2005). Comparison of different efficiency

criteria for hydrological model assessment. Adv. Geosci. 5, 89–97.

doi: 10.5194/adgeo-5-89-2005

Kumar, D. N., Raju, K. S., and Sathish, T. (2004). River flow forecasting

using recurrent neural networks. Water Resour. Manage. 18, 143–161.

doi: 10.1023/B:WARM.0000024727.94701.12

Le, X.-H., Ho, H. V., Lee, G., and Jung, S. (2019). Application of long short-

term memory (LSTM) neural network for flood forecasting. Water 11:1387.

doi: 10.3390/w11071387

Leisenring, M., and Moradkhani, H. (2011). Snow water equivalent prediction

using Bayesian data assimilation methods. Stochastic Environ. Res. Risk Assess.

25, 253–270. doi: 10.1007/s00477-010-0445-5

Magnusson, J., Nævdal, G., Matt, F., Burkhart, J. F., and Winstral, A. (2020).

Improving hydropower inflow forecasts by assimilating snow data.Hydrol. Res.

51, 226–237. doi: 10.2166/nh.2020.025

Markstrom, S. L., Hay, L. E., Ward-Garrison, C. D., Risley, J. C., Battaglin, W. A.,

Bjerklie, D. M., et al. (2012). Integrated Watershed-Scale Response to Climate

Change for Selected Basins Across the United States. U.S. Geological Survey.

Scientific Investigations Report 2011-5077, 143

Nash, J. E., and Sutcliffe, J. V. (1970). River flow forecasting through

conceptual models part I—a discussion of principles. J. Hydrol. 10, 282–290.

doi: 10.1016/0022-1694(70)90255-6

Odei, J. B., Hooten, M. B., and Jin, J. (2009). Inter-Annual Modeling and Seasonal

Forecasting of Intermountain Snowpack Dynamics. 870–878.

Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems, J. S.,

Gehrke, F., et al. (2016). The airborne snow observatory: fusion of scanning

lidar, imaging spectrometer, and physically-based modeling for mapping snow

water equivalent and snow albedo. Remote Sens. Environ. 184, 139–152.

doi: 10.1016/j.rse.2016.06.018

Sahoo, B. B., Jha, R., Singh, A., and Kumar, D. (2019). Long short-term memory

(LSTM) recurrent neural network for low-flow hydrological time series

forecasting. Acta Geophys. 67, 1471–1481. doi: 10.1007/s11600-019-00330-1

Schneider, D., and Molotch, N. P. (2016). Real-time estimation of snow water

equivalent in the U pper C olorado R iver B asin using MODIS-based

SWE reconstructions and SNOTEL data. Water Resour. Res. 52, 7892–7910.

doi: 10.1002/2016WR019067

Sloat, L. L., Henderson, A. N., Lamanna, C., and Enquist, B. J. (2015). The

effect of the foresummer drought on carbon exchange in subalpine meadows.

Ecosystems 18, 533–545. doi: 10.1007/s10021-015-9845-1

Wainwright, H. M., Steefel, C., Trutner, S. D., Henderson, A. N., Nikolopoulos,

E. I., Wilmer, C. F., et al. (2020). Satellite-derived foresummer drought

sensitivity of plant productivity in Rocky Mountain headwater catchments:

spatial heterogeneity and geological-geomorphological control. Environ. Res.

Lett. 15:084018. doi: 10.1088/1748-9326/ab8fd0

Winstral, A., Magnusson, J., Schirmer, M., and Jonas, T. (2019). The bias-detecting

ensemble: a new and efficient technique for dynamically incorporating

observations into physics-based, multilayer snow models. Water Resour. Res.

55, 613–631. doi: 10.1029/2018WR024521

Xiang, Z., Yan, J., and Demir, I. (2020). A rainfall-runoff model with LSTM-

based sequence-to-sequence learning. Water Resour. Res. 56:e2019WR025326.

doi: 10.1029/2019WR025326

Zhang, J., Zhu, Y., Zhang, X., Ye, M., and Yang, J. (2018). Developing a long

short-term memory (LSTM) based model for predicting water table depth in

agricultural areas. J. Hydrol. 561, 918–929. doi: 10.1016/j.jhydrol.2018.04.065

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Meyal, Versteeg, Alper, Johnson, Rodzianko, Franklin and

Wainwright. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Water | www.frontiersin.org 12 November 2020 | Volume 2 | Article 57491781

https://doi.org/10.1029/2005WR004387
https://doi.org/10.1109/72.279181
https://doi.org/10.1002/hyp.13151
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://doi.org/10.5194/hess-17-4401-2013
https://doi.org/10.3390/w12010175
https://doi.org/10.1002/2017GL075619
https://doi.org/10.1029/2002WR001512
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1002/wrcr.20387
https://doi.org/10.1111/gcb.12831
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.envsoft.2016.01.010
https://doi.org/10.3390/w10111543
https://doi.org/10.1016/0167-9473(95)00047-X
https://doi.org/10.2136/vzj2018.03.0061
https://doi.org/10.5194/hess-22-6005-2018
https://doi.org/10.5194/adgeo-5-89-2005
https://doi.org/10.1023/B:WARM.0000024727.94701.12
https://doi.org/10.3390/w11071387
https://doi.org/10.1007/s00477-010-0445-5
https://doi.org/10.2166/nh.2020.025
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.1016/j.rse.2016.06.018
https://doi.org/10.1007/s11600-019-00330-1
https://doi.org/10.1002/2016WR019067
https://doi.org/10.1007/s10021-015-9845-1
https://doi.org/10.1088/1748-9326/ab8fd0
https://doi.org/10.1029/2018WR024521
https://doi.org/10.1029/2019WR025326
https://doi.org/10.1016/j.jhydrol.2018.04.065
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


ORIGINAL RESEARCH
published: 19 November 2020

doi: 10.3389/frwa.2020.573034

Frontiers in Water | www.frontiersin.org 1 November 2020 | Volume 2 | Article 573034

Edited by:

Chaopeng Shen,

Pennsylvania State University (PSU),

United States

Reviewed by:

Jie Niu,

Jinan University, China

Wei Shao,

Nanjing University of Information

Science and Technology, China

*Correspondence:

Juliane Müller

julianemueller@lbl.gov

Specialty section:

This article was submitted to

Water and Hydrocomplexity,

a section of the journal

Frontiers in Water

Received: 15 June 2020

Accepted: 12 October 2020

Published: 19 November 2020

Citation:

Sahu RK, Müller J, Park J,

Varadharajan C, Arora B,

Faybishenko B and Agarwal D (2020)

Impact of Input Feature Selection on

Groundwater Level Prediction From a

Multi-Layer Perceptron Neural

Network. Front. Water 2:573034.

doi: 10.3389/frwa.2020.573034

Impact of Input Feature Selection on
Groundwater Level Prediction From a
Multi-Layer Perceptron Neural
Network
Reetik Kumar Sahu 1, Juliane Müller 1*, Jangho Park 1, Charuleka Varadharajan 2,

Bhavna Arora 2, Boris Faybishenko 2 and Deborah Agarwal 3

1 Lawrence Berkeley National Laboratory, Computational Research Division, Center for Computational Sciences and

Engineering, Berkeley, CA, United States, 2 Lawrence Berkeley National Laboratory, Earth and Environmental Sciences Area,

Berkeley, CA, United States, 3 Lawrence Berkeley National Laboratory, Data Science and Technology, Computational

Research Division, Berkeley, CA, United States

With the growing use of machine learning (ML) techniques in hydrological applications,

there is a need to analyze the robustness, performance, and reliability of predictions

made with these ML models. In this paper we analyze the accuracy and variability

of groundwater level predictions obtained from a Multilayer Perceptron (MLP) model

with optimized hyperparameters for different amounts and types of available training

data. The MLP model is trained on point observations of features like groundwater

levels, temperature, precipitation, and river flow in various combinations, for different

periods and temporal resolutions. We analyze the sensitivity of the MLP predictions at

three different test locations in California, United States and derive recommendations

for training features to obtain accurate predictions. We show that the use of all

available features and data for training the MLP does not necessarily ensure the best

predictive performance at all locations. More specifically, river flow and precipitation

data are important training features for some, but not all locations. However, we find

that predictions made with MLPs that are trained solely on temperature and historical

groundwater level measurements as features, without additional hydrological information,

are unreliable at all locations.

Keywords: machine learning, groundwater level prediction, feature selection, sensitivty analysis, hyperparameter

optimization

INTRODUCTION

Groundwater is an important source of freshwater, accounting for almost 38% of the
global irrigation demand (Siebert et al., 2010). With growing economies and increasing
food demand, the stress on freshwater aquifers has increased in places like North America
and Asia (Aeschbach-Hertig and Gleeson, 2012). This situation is further aggravated by
increased climate variability. In California, USA, groundwater provides nearly 40% of the
water used by the state’s cities and farms. Many of the state’s groundwater basins have
experienced long-term overdraft due to withdrawal rates exceeding recharge rates. The
negative impacts of long-term overdraft include higher energy requirements for pumping
water from deeper wells, land subsidence, reduced river flow, and impaired water quality
(especially in coastal aquifers due to saltwater intrusion). Thus, in 2014, following a series
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of droughts, the Sustainable Groundwater Management Act
(SGMA) was passed, requiring local agencies to sustainably
manage groundwater and minimize undesirable results (DWR,
2020). This in turn requires decision makers access to accurate,
reliable, and timely predictions of groundwater levels.

Traditionally, groundwater depths and other water budget
components such as runoff and soil moisture are estimated using
mechanistic multi-scale, multi-physics simulationmodels such as
MODFLOW, PARFLOW, HydroGeoSphere, and TOUGH (Xu
et al., 2011; Steefel et al., 2015; Langevin et al., 2017). These
models capture physical processes of mass, momentum, and
energy transfer through partial differential equations and require
extensive characterization of hydrostratigraphic properties and
accurate boundary conditions, including recharge sources,
climate variability and changes in water use (Sahoo et al., 2017).
Such information is not always known a priori, and some
parameters can only be determined by solving an inverse problem
(Arora et al., 2011), which itself requires running simulation
models repeatedly until their values have been determined,
thereby substantially increasing the computational costs (Arora
et al., 2012). In addition, running the high-fidelity simulation
models at high resolution requires high performance computing
resources. Therefore, it is difficult for groundwater sustainability
agencies and policy makers to use these simulations to guide
water management decisions.

With the improvement of sensor technologies and data
systems, an unprecedented amount of environmental data
are being collected, through established long-term monitoring
networks, including river flow, groundwater level, water quality,
temperature, and precipitation (Rode et al., 2016). This has
resulted in an increased interest in applying ML methods for
hydrological applications (Deka, 2014; Shen, 2018) such as river
flow forecasts (Lin et al., 2006; Rasouli et al., 2012; Deo and
Sahin, 2016; Kratzert et al., 2018); water quality estimation and
prediction (Ahmad et al., 2010; Najah et al., 2013; Xu and Liu,
2013), and water demand forecasts (Ghiassi et al., 2008; Herrera
et al., 2010; Adamowski et al., 2012; Tiwari and Adamowski,
2013).

Deep learning (DL) models can be trained to approximate
the behavior of a complex system, such as a groundwater basin,
in a computationally inexpensive way while making highly
accurate predictions. DL techniques can utilize the climate
and hydrogeology data to capture the relationships between
groundwater levels and other dependent features such as nearby
river flow, precipitation and temperature. Recent advances inML
have enabled making groundwater predictions by using purely
data-driven models (Taormina et al., 2012; Moosavi et al., 2013;
Sahoo et al., 2017; Müller et al., 2020). ML techniques have been
used for both prediction and optimization purposes including
modeling of groundwater levels and or quality, optimization of
groundwater well design, pumping rate, and location (Banerjee
et al., 2011; Gaur et al., 2013). As an example, Sahoo et al.
(2017) utilized a hybrid feedforward neural network (FNN) to
model groundwater level changes in the High Plains aquifer,
United States, using both in-situ and remote measurements
with model simulations of different input features (climate and
anthropogenic). Their DL models were trained on monthly data

spanning over 33 years. Emamgholizadeh et al. (2014) built a
groundwater prediction model using an FNN model built from
9 years of monthly data that included rainfall recharge, pumping
rate and irrigated return flow at the Bastam Plain, Iran. The
FNN model showed the highest accuracy when built with a
lag time of 2 months giving a prediction error of about 3%
of difference between observed maximum and minimum levels.
Guzman et al. (2017) utilized a dynamic form of a Recurrent
Neural Network (RNN) model to predict groundwater levels in
the Mississippi River Valley Alluvial aquifer, United States. Eight
years of daily historical input time series including precipitation
and groundwater levels were used to forecast groundwater levels
for up to 3 months. Their results showed that models generated
with 100 lag days provided the most accurate prediction
of groundwater levels. Adamowski and Chan (2011) coupled
discrete wavelet transforms (WA) and artificial neural networks
(ANN) to predict groundwater levels using monthly average
precipitation, temperature, and groundwater level at two sites in
the Chateauguay watershed in Quebec, Canada. Their WA-ANN
models performed better than standard autoregressive integrated
moving average (ARIMA) time series models.

All of these prior studies involved building the DL model to
predict groundwater levels at a single well. In contrast, Mohanty
et al. (2015) built an FNN model to predict weekly groundwater
levels simultaneously at 18 different locations in the Mahanadi
Delta, India. The input features in this study included weekly
values of precipitation, pumping from tubewells, and the river
stage. The DL model could predict groundwater levels up to 4
weeks of lead time with a prediction error of about 8% of the
annual groundwater-level change. Our previous study (Müller
et al., 2020) compared results from a variety of DL methods
including multilayer perceptron (MLP), RNN, long short term
memory (LSTM), and 1D-convolutional neural network (CNN)
designed with our hyperparameter optimization approach for
both single- and multi-well groundwater level predictions in
California, and were able to attain prediction accuracies of 6–
20%, depending on the DL model.

Each of the referenced applications utilize different ML
models and architecture under different scenarios such as multi-
point vs. single-point sites, with data of varying temporal
resolutions (hourly, daily, weekly, and monthly). Despite these
differences, and the constraints imposed by data availability, all
of these models have similar ranges for prediction accuracies.
This raises the following questions: What is the right DL model
to use? How should the parameters of the model be tuned?
What data should we use to build an accurate prediction model?
Most importantly, in order to use DL models effectively to make
reliable future groundwater predictions in a computationally
inexpensive manner, we must first understand which input
features are necessary and sufficient. Additionally, these prior
studies only report results from a single optimized neural
network, and they do not address the inherent stochasticity
that arises during training when using stochastic gradient
descent (Amari, 1993). Thus, when training the DL model
for the same architecture multiple times, we obtain different
performances, and therefore different future predictions. In order
to ensure the reliability of the DL model predictions, we must
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report confidence intervals, as well as average, best, and worst-
case predictions. These uncertainty estimates will enable water
managers to analyze and explore a wide spectrum of sustainable
management practices and to identify those that are the most
robust for all scenarios.

To address this critical need, we conduct a critical analysis
of the sensitivity of DL model predictions to the choice of
input features used to train a model. In particular, we compare
the sensitivity of groundwater predictions to different choices
of input features including groundwater levels, temperature,
precipitation, and river flow. This kind of analysis will extend
our understanding of the applicability of ML techniques for
hydrological predictions and provide guidance on how to build
accurate and reliable models. These DL models can potentially
enable water managers to better prepare and sustainably manage
water resources in the face of future climate variability.

The remainder of this article is organized as follows. In section
Description of Numerical Study, we provide details of the setup
for our numerical experiments (including the data collection,
processing, and model framework), and present their results in
section Numerical Results. In section Discussion, we discuss the
results of the numerical experiments in the context of applying
ML techniques to groundwater and outline potential future
research directions. Finally, in section Conclusion, we present the
conclusions of our study.

DESCRIPTION OF NUMERICAL STUDY

In this section, we describe the setup of our numerical
experiments, including the data we used, model selection and
hyperparameters, our experimental setup for sensitivity analysis,
and the method for computing confidence intervals.

Data Collection and Preparation
We focused our study on wells in three different locations
in Northern California, United States in Butte County, Shasta
County, and Tehama County with different hydrostratigraphy
and land use (Figure 1). Moreover, they represent different
SGMA basin prioritization categories (high, medium, and low
respectively), which are determined by historical groundwater
trends (DWR, 2020). We primarily chose these well locations
since they had relatively long-term daily observations that were
publicly available. We briefly describe the sites below.

The Butte County Well Site
The majority of Butte county is located in the Sacramento Valley
groundwater basin which is filled with sediments from marine
and terrestrial environments. The groundwater well in this study
(22N01E28J001M) is a dedicated monitoring well of depth 200m
and screened at 140–170m. The well site is located in the
Vina subbasin of Butte county, which covers 750 sq. km of the

FIGURE 1 | Location of the three well sites in California: Butte, Shasta, and Tehama County. The red dots show the location of the observation wells. Weather station

(green diamond) and river flow monitoring station (black square) are located close to the well site. The map was created using ArcGIS® software by Esri.
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northern portion of Butte county. This subbasin is categorized as
a high priority basin under the 2019 SGMA basin prioritization
report (DWR, 2020), showing an immediate need to mitigate
the groundwater depletion therein. The aquifer system includes
stream channel and alluvial fan deposits, and deposits of the
Modesto and Tuscan formations (DWR, 2004). Groundwater is
a major water source for about 150 sq. km of irrigated land in
the basin. Out of the total county wide freshwater withdrawal,
about 94% is attributed to groundwater pumping for different
uses (Dieter et al., 2018) while the rest is from surface water
withdrawals. The nearest discharge monitoring station (Butte
Creek Durham) measures the daily discharge rate at the Butte
Creek which is about 8 km from the well. The Butte Creek and the
much larger Feather Creek are the main sources for surface water
diversion in the county (Butte County Department of Water and
Resource Conservation, 2016). Temperature and precipitation
data were obtained from the Chico weather station located 7 km
from the well.

The Shasta County Well Site
The groundwater well in Shasta County is an observation well
(30N04W10H005M) of depth 49m and screened at 33–48m.
It is located in the Anderson subbasin which is a part of the
Redding Groundwater Basin covering an area of about 400 sq.
km. This subbasin is one of the primary agricultural regions in
the county, is categorized as a medium priority basin according
to the SGMA guidelines (DWR, 2020). Eighty to ninety percent
of the basin’s precipitation typically occurs from November to
April. The aquifer system is comprised of continental deposits of
late Tertiary to Quaternary age. The Quaternary deposits include
Holocene alluvium and Pleistocene Modesto and Riverbank
formations (California Department of Water Resources, 2004).
The nature of surface water-groundwater interaction across the
basin is complex, both spatially and temporally, but in most
areas shallow groundwater levels lead to groundwater discharge
to surface streams. During pronounced drought conditions,
groundwater levels may decline to a level such that streams
that formerly gained river flow from groundwater discharge
now recharge the groundwater system through streambed
infiltration. Major water supplies in this region are provided
by surface storage reservoirs (Bureau of Reclamation, 2011).
Agricultural, industrial, and municipal groundwater users in the
basin pump primarily from deeper continental deposits, whereas
domestic groundwater users generally pump from shallower
deposits. Groundwater withdrawals contribute about 54% of

the total county wide freshwater withdrawal from different
sources (Dieter et al., 2018). Although this well is closest to
the Sacramento River, the nearest discharge monitoring station
is located in Cow Creek, which feeds into the Sacramento
River and is about 5 km away. Since the nearest discharge
station in the Sacramento River was located 20 km upstream,
we chose to use the discharge observations from the Cow
Creek station, as the closest approximation of discharge trends
and seasonality that determines surface water influence on
groundwater behavior. The temperature and precipitation data
were obtained from the Redding Fire station located 15 km from
the well.

The Tehama County Well Site
The groundwater well in Tehama County is an observation
well (29N04W20A002M) of depth 137m, with a screen at 109–
131m depth. It is located in the Bowman subbasin which is
categorized as a low priority basin. This subbasin, is also a
part of the Redding groundwater basin covering 495 sq. km
in the north central portion of the county. The aquifer system
of the Bowman subbasin is comprised of continental deposits
of late Tertiary to Quaternary age. The Quaternary deposits
include Holocene alluvium (thickness ranging from 0 to 10m)
and Pleistocene Modesto and Riverbank Formations (thickness
ranging from 0 to 15m). The Tertiary deposits include the
Pliocene Tehama Formation (thickness may reach up to 150m)
and Tuscan Formations (thickness may reach up to 750m)
(Ayres and Brown, 2008). The Bowman subbasin is primarily a
rural area where groundwater is used for agriculture, domestic,
and municipal purposes. Groundwater sources represent the
majority of supply, followed by local surface water. During an
average water year, Tehama County does not experience any
water shortages since the water supply is generally higher than
the water demand. Groundwater contributes about 37% of the

county’s total freshwater withdrawal (Dieter et al., 2018). The
observation well is located 0.6 km from the Cottonwood Creek.
However, the closest river flow monitoring station is located
about 8 km from the test site. The weather data was obtained from
the Davis Ranch station located 10 km from the well.

Input Features, Data Sources, and
Preprocessing Methodology
For our DL model, we identified features that we expect
to directly or indirectly impact groundwater levels including
temperature (T), precipitation (P), and river flow (i.e., discharge;
Q). Daily historical observations of these variables from 2010 to
2018 are used together with groundwater level measurements
(G) to train the neural network models (Table 1). In addition,
we use the week of the year of the measurements’ timestamps
as a training feature, which naturally represents the inherent
seasonality in the dataset.

The observation wells indicate regional drawdowns due
to groundwater extraction through pumping activities (for
agriculture, urban use, or other). However, pumping data are
not reported in California, and are not publicly available. Higher
pumping rates are observed during summer months when the
temperature is high with infrequent and small precipitation
events and low surface water availability. Low precipitation years
therefore lead to higher depletion rates, whereas wet years show
lower depletion rates (Figure 2). Our assumption is that the ML
model can capture the interaction between groundwater level and
pumping through other proxy hydrological or climate variables
that typically drive pumping (precipitation, temperature, or
river flow).

All the datasets are processed for quality assurance and
quality control (QA/QC), including gap-filling (also called as
“missing value imputation”) and normalization. The QA/QC
helps to remove erroneous values or outliers (unrealistic values)
in the measurements due to faulty sensors or equipment
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TABLE 1 | Data sources of historical observations.

County Groundwater well

station code

Average depth to

groundwater level from

surface (meters)

1max= GWLobs
max−GWLobs

min

(meters)

Weather station

code

River flow

station code

Butte 22N01E28J001M 16.3 9.4 Chico (CHI) Butte Creek

Durham (BCD)

Shasta 30N04W10H005M 6.2 4.6 Redding Fire

Station (RFS)

Cow Creek (COW)

Tehama 29N04W20A002M 15.6 4.2 Davis Ranch (DVR) Cottonwood

Creek (COT)

CNRA, California Natural Resources Agency; CDEC, California Data Exchange Center. Observations were obtained from CNRA and CDEC.

FIGURE 2 | Timeseries of all features at the three well sites at a daily frequency from 2010 to 2018. The top panel at each site shows the groundwater level (meters

above mean sea level). The second panel shows the temperature (◦C), the third panel shows the precipitation (mm), and the bottom panel of sites shows the river flow

(m3/sec).

failures, and the data gaps are then filled by using time series
imputation techniques. We imputed the missing values using
the imputeTS package (Moritz and Bartz-Beielstein, 2017) in
R. This package is used for univariate time series imputation.
We use the na.seadec (Seasonally Decomposed Missing Value
Imputation) function with the application of the “kalman”
algorithm, of the imputeTS package, which is well-suited for
gap filling of time series exhibiting seasonality. Using this
approach, the seasonal component is first removed, missing
data are imputed in the general trend and then the seasonal
component and the general trend are combined to generate
a gap-filled uninterrupted time series. The missing values of
each of the features in the datasets contribute to at most 2%
of total length of the time series. The ratios of missing data

to the total period at each monitoring station are provided in
Supplementary Table 1.

Since our input features have significantly different ranges
of absolute values, we scale each dataset to the range [0, 1].
This ensures that during the learning process (iterative weight
adjustment) a percentage change in the weighted input sample
is reflected with a similar percentage change at the nodes
of the output layer (Kanellopoulos and Wilkinson, 1997). To
this end, we use the minimum and the maximum values of
each dataset. For temperature, precipitation, and river flow
data, these lower, and upper limits are known and the task is
unambiguous. Since the observed values for the river discharge
have a huge variation (orders of magnitudes difference between
summer and winter due to the lack of precipitation in California
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in the summer months), we log-normalized the values to
attenuate the effect of high values that would occur in a
uniform scaling. For the groundwater levels, determining the
minimum and maximum levels is more difficult as the water
table depths reached unprecedented lows during the 2012− 2016
drought. Fixing the lower bound at the historically observed
minimum value is unreliable, because future droughts may cause
the lowest observed groundwater level to further decrease. A
similar argument can be made for the maximum groundwater
levels, which are expected to increase in particular for heavily
overdrafted basins as sustainable groundwater management
practices are being implemented. Thus, in this study, we set the
minimum groundwater level to the lowest historically observed
value less 15% and the maximum level to the highest historically
observed value plus 15%. Given these lower and upper bounds,
we then scale the groundwater data to [0, 1]. Note that scaling the
input data values does not force the predicted values to remain
within the lower and upper limits used for scaling.

Neural Network Model and
Hyperparameter Tuning
In this study we implement an MLP type of neural network
to build the groundwater prediction model. The MLP
is a feedforward type of neural network with different
hyperparameters that need to be adjusted before its training. The
MLP was chosen as it was the best performing model in terms of
accuracy and compute time, based on comparison with CNN,
RNN, LSTM neural networks (Müller et al., 2020).

The choice of hyperparameters reflect the complexity of the
MLP model. Hand tuning, grid and random sampling are the
most widely used methods for choosing the hyperparameters of
DL models (Bergstra and Bengio, 2012). Hand tuning is time
consuming, it does not scale well to large search spaces, and it
does not usually lead to the optimal hyperparameters. Thus, we
use an automated hyperparameter optimization (HPO) method
to find the best DL model hyperparameters.

We follow (Müller et al., 2020) to formulate a bilevel
optimization problem:

min
θ , w∗

ℓ
(
θ , w∗; Dval

)
(1)

s.t. θ ∈ � (2)

w∗∈ argmin w∈WL(w; θ ,Dtrain) (3)

where θ are the hyperparameters in the search space �; w are the
weights and biases associated with each node in the MLP, Dtrain

and Dval are the training and validation datasets, respectively.
The search space � is a product of finite sets of integer values. At
the upper-level optimization problem (Equation 1), the optimizer
selects a set of hyperparameters θ (the model architecture). Given
θ , the lower-level problem (Equation 3) is solved with RMSprop,
in which we find optimal weights w∗ that minimize the loss
function L for the training data. Once we obtain w∗, we can
then evaluate the upper-level objective function l that reflects how
good a choice θ is. Based on the outcome for l, the optimizer at the
upper-level selects the next set of hyperparameters for which the

lower-level problem is solved, and so on until convergence at the
upper-level is achieved. For solving the upper-level optimization
problem, we use a derivative-free optimization algorithm that
uses radial basis function surrogate models, see Müller et al.
(2020) for further details. Since a stochastic optimizer is used
to solve the lower-level problem (Equation 3), the performance
of the MLP for a given architecture θ depends on the random
number seed of the stochastic optimizer. Therefore, in order to
obtain an approximated expected performance for a given MLP
architecture, we solve the lower-level problem five times and
average the results.

In our study, we search for the hyperparameters in a 6-
dimensional search space, � =

∏6
h= 1 θh:

• Number of layers: θ1 ∈ { 1, 2, . . . , 6 }
• Number of nodes per layer: θ2 ∈ { 5, 10, . . . , 50 }
• Number of lags: θ3 ∈ { 30, 35, . . . , 365 }
• Dropout rate: θ4 ∈ { 0.1, 0.2, . . . , 0.5 }
• Batch size: θ5 ∈ { 50, 55, . . . , 200 }
• Epochs: θ6 ∈ { 50, 100, . . . , 500 }

and we map these numbers to consecutive integers for
optimization. Thus, if we used complete enumeration to
find the optimal MLP architecture, we would have to train
6, 120, 000 different MLPs, which is impractical for real-world
decision-support applications. In the “upper level optimization,”
we iteratively test only 50 different MLP neural network
hyperparameters (50 different hyperparameter sets that describe
the network architecture). This was sufficient to achieve
convergence at the test site (Müller et al., 2020). To handle
the lagged temporal relationship between variables, we use the
concept of Time-DelayedNeural Network (Waibel et al., 1989). A
consecutive set of observations is used as one input instead of one
observation. We call this amount of historical data the lag. Lag
is one of the most important hyperparameters in a feedforward
neural network for handling time series data (Zhang, 2003).

We divide the observations of all the features into training
(Dtrain(θ)), cross-validation, (Dval(θ), finding the optimal
hyperparameters), and testing data (Dtest(θ)), with a 50–25–25%
split, except when indicated otherwise. The MLP models are
trained to predict the groundwater level for the next time step
(e.g., day or month). This output is computed based on the
values of all features at the current time step and several previous
time steps (equal to the lag number). For example, with a lag
of 4-time steps, measurements of all features including the
groundwater level from the past 4-time steps are used along with
the current time step’s data, to predict the groundwater level at
the next time step. The MLP’s output is a single groundwater
level value for the next time step. When training the MLP
for a given set of hyperparameters, observed values of all
features are used to optimize the weights in the MLP model.
During cross-validation and testing, the observed values of
only temperature, precipitation, river flow, and week of year
are used as drivers for making groundwater level predictions.
To make groundwater level predictions over several time
steps, the predicted groundwater level from the previous
timestep is recursively incorporated with the observed values
of temperature, precipitation and river flow to make the new
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input sample. Using the recursive approach during the testing
and validation period, we test the capability of the MLP model
to make multi-month predictions of groundwater level using
projections of future meteorological or hydrological features.
This can potentially enable decision support for sustainable
groundwater management in the long run.

In this study, we use backpropagation (Rumelhart et al., 1986)
to train the MLP. Hyperparameters such as activation functions
and the optimization method used in training the MLP are fixed
(Rectified linear unit (Nair and Hinton, 2010) and RMSprop
(Tieleman and Hinton, 2012), respectively). We conducted our
numerical experiments with python (version 3.7) on Ubuntu
16.04 with Intel R© Xeon(R) CPU E3-1245 v6 @ 3.70GHz ×8,
and 31.2 GiB memory. We use the Keras package (Chollet, 2016)
with the TensorFlow (Abadi et al., 2016) backend for our deep
learning architectures.

DL Model Ensembles to Quantify
Prediction Accuracy and Variability
Given that a DL model training involves a stochastic optimizer,
we cannot infer prediction accuracy from a single DL model
trial. Thus, we train the model multiple times (Ne = 20
trials) for the same DL model architecture and the same inputs
to gain insights into the inherent prediction variability. Each
trial generates a future groundwater level prediction of Nt time
steps and a corresponding error between the predicted and the
observed values for all time steps of the testing period. The
accuracy of a trial i is quantified by the RMSE (δi) of the
groundwater prediction (Gpred), which is computed in Equation
(4). The average of the error (δi) generated across the trials gives

the mean prediction error (δ) of the MLP model (Equation 5).

δi=

√√√√
∑Nt+k−1

j=k

(
G
pred
i,j − Gobs

j

)2

Nt
for i ∈ {1, 2, 3, . . . ,Ne} (4)

δ =
1

Ne

Ne∑

i=1

δi (5)

where G
pred
i,j is the groundwater prediction made at the jth

time step for the ith trial, Gobs
j is the corresponding observed

groundwater level at the jth timestep. The testing period of Nt

time steps starts from time step k in the dataset and runs until
Nt+k−1 time step. In order to quantify the prediction variability,
at each time step j, we compute the standard deviation (σj) of
the ensemble over the Ne trials (Equation 6). We compute the
standard deviation as follows:

σj =

√√√√
∑Ne

i=1

(
G
pred
i,j − G

pred
j

)2

Ne
,

where G
pred
j =

1

Ne

Ne∑

i=1

G
pred
i,j and j = k, . . . , k

+Nk − 1 (6)

TABLE 2 | Combinations of input features for training the DL model.

Scenario label Input features

G-T-P-Q-4-d Groundwater, Temperature, Precipitation, River

flow, week of year

G-P-Q-4-d Groundwater, Precipitation, River flow, week of

year

G-T-P-4-d Groundwater, Temperature, Precipitation, week

of year

G-T-Q-4-d Groundwater, Temperature, River flow, week of

year

G-P-4-d Groundwater, Precipitation, week of year

G-Q-4-d Groundwater, River flow, week of year

G-T-4-d Groundwater, Temperature, week of year

G-T-P-Q-2-d Groundwater, Temperature, Precipitation, River

flow, week of year

G-T-P-Q-4-m Groundwater, Temperature, Precipitation, River

flow, month of year

We assume that groundwater levels are always available during the training period. G,
groundwater; T, temperature; P, precipitation; Q, river discharge; 4 indicates 4 years of
training; 2 indicates 2 years of training; d, daily resolution; m, monthly resolution.

To compute the overall prediction variability (S) of a DL model
architecture, the average of the standard deviations σj; j =

k, . . . , k+Nt−1 is computed as indicated in Equation (7). Lower
values of S means the DL model architecture is more robust to
the stochasticity in the training.

S =
1

Nt

k+Nt−1∑

j=k

σj (7)

Sensitivity Analysis of DL Model
Predictions
In our numerical study we examine how different combinations
of input features and the length of training time series affect
the prediction accuracy of the DL model. These combinations
represent potential settings in different watersheds where
different amounts and types of data are collected by local
agencies. This study enables us to identify input data that are
necessary and sufficient for making accurate predictions of future
groundwater levels. It also allows us to gain insights into “how
much accuracy we lose” when certain data are not available. We
examine eight different input feature scenarios for training the
MLP model (Table 2). For example, the experiment labeled G-T-
P-4-d indicates that groundwater, temperature, precipitation, and
week of year are used as input features. The number 4 indicates
that we used 4 years of historical observations as training data
and d indicates a daily data resolution for validation and testing.
Using data at the monthly resolution (indicated bym) means that
the number of training data points is reduced by 97%. In this
scenario, we also replace the week of year feature with the month
of the year.

We designed the numerical experiments such that they
address the following questions: (1) Which input features are

Frontiers in Water | www.frontiersin.org 7 November 2020 | Volume 2 | Article 57303488

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Sahu et al. Groundwater Level Prediction Using ML

sufficient to predict the groundwater level accurately? (2) Is there
a minimum amount of data necessary to build a reasonably
accurate prediction model? (3) How robust are the DL model
predictions given different input feature combinations?

In order to answer these questions, we optimized and
trained the MLP for each experiment shown in Table 2.
We cannot expect the same DL model to perform well for
all experiments, because the lack of certain input features
potentially requires different model architecture, and if not
adjusted, using too complex models may lead to data overfitting.
For each experiment, we solve the bi-level optimization
approach described in the section Neural Network Model and
Hyperparameter Tuning to find the best model architecture. We
solve the lower level problem five times to obtain an average
model performance. For the optimal hyperparameter choice, we
train the MLP network Ne = 20 times, each time generating a
different MLP model. Using the resulting model ensemble, we
obtain Ne replications of future groundwater predictions, which
allow us to compute the statistics of the DL model performance,
to quantify the prediction variability, and analyze the sensitivity
of the model predictions to the input data.

NUMERICAL RESULTS

In this section we describe the results of our numerical
experiments and provide a discussion of their implications on our
guiding questions.

Sensitivity Analysis of Prediction Errors
We compare the future predictions obtained with our optimized
and trained MLPs when using the different input feature
scenarios described in Table 2. We make predictions for a time
frame that was not used during optimization or training of the
MLP (2 years unless otherwise specified), to assess the ability of
the models to extrapolate beyond their training time frame.

We find that for all sites the mean prediction error ( δ )
ranges from 0.4 to 3.7m (Table 3). Ideally, a good predictive
model has low prediction errors and low variability. From the
numerical results, we observe that for the Butte well, we achieve
the lowest mean prediction error when training the model on
G-P-4-d scenario and the lowest prediction variability in the G-
T-P-Q-4-d scenario. For both Shasta and Tehama wells, we find
multiple scenarios that give the same lowest values of prediction
error and prediction variability.

The MLP model that is optimized and trained on all
input features (Groundwater, Temperature, Precipitation and
River flow) performs reasonably well across all the locations,
showing similar values of normalized error of about 0.1 or
10% of 1max (Figure 3), where 1max is the difference between
the observed maximum and minimum groundwater levels.
We use this scenario (G-T-P-Q-4-d) as the base scenario in
the following per-site analysis to understand the sensitivity of
different input features.

Butte Site
The Butte site is highly sensitive to the precipitation data (the
prediction error increases significantly compared to the base case

TABLE 3 | MLP predictive performance at all three sites and for nine scenarios.

Scenario label Butte Shasta Tehama

δ (m) S (m) δ (m) S (m) δ (m) S (m)

G-T-P-Q-4-d 1.1 0.5 0.4 0.3 0.4 0.2

G-P-Q-4-d 1.0 0.6 0.5 0.1 0.5 0.2

G-T-P-4-d 1.1 0.6 0.6 0.4 0.4 0.2

G-T-Q-4-d 1.3 1.0 0.4 0.3 0.4 0.2

G-P-4-d 0.8 0.6 0.6 0.1 0.5 0.4

G-Q-4-d 1.2 0.6 0.5 0.1 0.4 0.2

G-T-4-d 3.7 2.4 1.4 1.1 0.9 0.3

G-T-P-Q-2-d 1.1 0.6 0.5 0.3 0.5 0.3

G-T-P-Q-4-m 1.5 0.8 0.8 0.3 0.4 0.3

δ indicates the mean prediction error as the difference between the model prediction
and true groundwater level. S indicates the overall prediction variability (rounded to first
decimal place). Low values are better. All values are computed over 20 trials as described
in section DL Model Ensembles to Quantify Prediction Accuracy and Variability.

FIGURE 3 | Barplot comparing the normalized mean prediction error and their

standard deviation at all well-sites for all experiments. The normalized values

are obtained by dividing the error by the difference between the maximum and

minimum observed groundwater levels (1max). This normalization helps us to

compare model performance across different locations. Lower bars indicate

smaller prediction errors and therefore better model performance. The errors

were computed by comparing the true and predicted groundwater levels in the

testing dataset.

scenario when we remove precipitation as an input feature).
In fact, the MLP model trained only on groundwater and
precipitation provides the lowest prediction error. A comparison
of the prediction errors of the G-P-Q-4-d and G-Q-4-d scenarios
with the base scenario reveals that the precipitation events
in the past are most likely to impact the future groundwater
availability at this site. As the groundwater table at this site is
fairly deep (16m below ground surface), we postulate that river
flow likely does not directly impact the groundwater level at the
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well site. Instead, given the high proportion of water use being
groundwater at this site, the water table are likely driven by
pumping and dependent on the amount of rainfall received over
the past year.

Shasta Site
Based on simulations with different input feature scenarios,
we observe that the Shasta site is most sensitive to the river
flow feature. This can be seen by the error differences between
the scenarios G-T-P-Q-4-d and G-T-P-4-d. Precipitation is the
second most important feature. Although the river flow feature is
generated using Cow Creek discharge rates, given our scaling and
normalization procedure, we assume it is representative of the
discharge fluctuations in the Sacramento River (which is closer
to the well site). The sensitivity to river flow can be attributed to
the shallow depth to groundwater (about 6m), and short distance
from the river, suggesting possible hydraulic connectivity.

Tehama Site
The MLP model trained on the base case scenario gives the
lowest prediction error. We observe relatively small changes
in prediction accuracy when input features such as river flow
and precipitation are individually removed, showing equal input
feature sensitivity. The MLP model trained only on groundwater
and river flow (G-Q-4-d) also gives the same prediction
performance as the base scenario. However, this is not observed
when the MLP model is trained only on groundwater and
precipitation (G-P-4-d), or groundwater and temperature (G-T-
4-d). This indicates that the river flow carries more groundwater-
relevant information, followed by precipitation in this region.

This is consistent with the relatively low reliance on groundwater
for water use in this region.

In all cases, the predictions are the worst when all input
features except for groundwater and temperature are removed. In
the following sections we only present summarized findings from
the numerical experiments. The groundwater level prediction
results of the individual scenarios at each of the test sites are
provided in Supplementary Section 3.

Stochasticity in Training and Associated
Prediction Variability
In order to better illustrate the stochasticity associated with the
training process, we train an MLP with the same architecture but
with different random number seeds. This results in a slightly
different model for each run. For example, three different trials
resulted in three different accuracies, with some trials yielding
muchmore accurate outcomes than others (Figure 4). Therefore,
we should not base decisions for groundwater management on a
single trial with an MLP.

At the Butte well site the prediction variability (S) resulting
from the stochasticity in training shows the highest sensitivity
to the precipitation feature followed by the river flow feature
(Figure 5). By comparing the different scenarios across all well
sites, we find that the MLP models trained on groundwater
and temperature features (G-T-4-d) have a wider spread in
the predictions.

We illustrate the increasing variability of the MLP predictions
when excluding necessary input features in Figures 6, 7. The
prediction ensemble generated with all input features (G-T-P-Q-
4-d) at the Butte site is able to predict the groundwater levels

FIGURE 4 | MLP prediction for three trials with the same input features and hyperparameters at Shasta with different random seeds. The black time series shows the

observed groundwater level and the other colors represent predictions from three ensemble members. The stochasticity in the training leads to different MLP models

and corresponding different predictions. The prediction indicated by the Trial #5 (blue line) shows a large decrease of the groundwater level and has the highest

prediction error. Trial #4 (orange line) is closest to the observed groundwater levels (truth) while Trial #17 (green line) shows a more optimistic future with less

groundwater depletion.

Frontiers in Water | www.frontiersin.org 9 November 2020 | Volume 2 | Article 57303490

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Sahu et al. Groundwater Level Prediction Using ML

over the 2 years with good accuracy (Figure 6). On the other
hand, the predictions at Butte site when using only groundwater
and temperature data for training the MLP have low prediction
accuracy and high prediction variability (Figure 7). Although the
model is still able to capture the seasonality of the groundwater
levels, the differences between the observed and the mean of the

FIGURE 5 | Barplot comparing normalized model prediction variability (S).
Lower S values indicate more robust MLP models that make more reliable

predictions, while higher values indicate a higher variability in future

predictions. The model prediction variability S is also normalized in the same

way as the mean prediction error ( δ ). The standard deviation of S,
represented by the black line on each bar indicates the variation in the

ensemble prediction spread across all time steps.

predicted groundwater levels are large. We conducted a similar
analysis for Shasta and Tehama (see Supplementary Sections 3.1

and 3.7). Note, however, that low prediction variability does
not automatically imply high prediction accuracy, and thus both
variability and prediction accuracy must be considered.

Analysis of Monthly vs. Daily Training Data
Climate model data and groundwater observations are often
available at a monthly temporal resolution rather than at a
daily frequency. Therefore, we examined the effect of using
lower-resolution data for training the MLP model, by averaging
the daily values for each month. Using monthly data means
that, for the same date range, the number of available training
points is significantly lower: the total amount of data points is
reduced by about 97% (≈ 100 monthly vs. ≈ 2, 900 daily). The
groundwater predictions at Butte trained on monthly data are
much smoother and the daily groundwater drawdowns (high
frequency oscillations that we observe in the daily data) are not
present (Figure 8). The predictions show that theMLP is still able
to capture the seasonality in the data (lower groundwater levels
in the summer, higher levels in the winter). When compared to
the corresponding daily frequency model at Butte, G-T-P-Q-4-
d (Figure 6), we observe that the prediction errors are higher
and the model does not pick up on the larger amounts of water
that are available during the wet years (2017 and 2018). The
prediction variability is also relatively low, indicating that for
monthly predictions, the stochasticity that arises from training
the models is lower, perhaps due to overfitting. At Shasta, the
MLP model trained on monthly data shows a lower prediction
accuracy and higher prediction variability than the base scenario.
At Tehama, the MLP model built on monthly data shows
similar prediction accuracy, but a higher prediction variability
in comparison to the daily frequency base scenario suggesting

FIGURE 6 | Groundwater level prediction at Butte with input features: groundwater level, temperature, precipitation, and river flow (G-T-P-Q-4-d). The small

differences between the predicted groundwater levels (ensemble mean, dark blue) and the observed levels (black) indicate a high prediction accuracy. The narrow blue

band around the mean prediction indicates higher reliability in model prediction, and thus low prediction variability. Predictions made by MLP models in Shasta and

Tehama are provided in Supplementary Figures 1, 2.
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FIGURE 7 | Groundwater level prediction at Butte with input features: groundwater and temperature. Large differences between the ensemble mean (dark blue) and

observed (black) show low prediction accuracy. The high variability of the predictions of individual ensemble members (blue band) shows that the MLP model is not

reliable. Predictions made by MLP models in Shasta and Tehama are provided in Supplementary Figures 18, 19.

FIGURE 8 | Groundwater level prediction at Butte using monthly averaged data for all features (groundwater, temperature, precipitation, and river flow). Although the

ensemble spread is narrow (the model predictions are reliable), the prediction error is high, indicating a lack of sufficiently numerous training data points.

a lack of sufficient training data to build a robust model (see
Supplementary Figure 24).

Choice of Optimal Lag Hyperparameter
The lag hyperparameter helps the MLP model capture long-
term dependencies between groundwater and other features.
As mentioned previously the input to the MLP model is a
lagged time series data at each timestep (section Neural Network
Model and Hyperparameter Tuning). A lag number of 30
indicates that 30 days of past observations of the features are
required to make the next-day groundwater level prediction.
The lag parameter is a hyperparameter that is automatically

optimized. Table 4 lists the optimal lags that lead to the best
groundwater level predictions. At the Butte site, we observe
that most input feature combinations require a lag > 300 days.
When using monthly data, the optimal lag is 23 months (≈2
years). At Shasta, the optimal lag values are > 70 days; at
Tehama, the optimal lag values are > 260 days. The results
indicate that the optimal lag is dependent on the specific
experimental conditions and cannot be generalized to be the
same across different scenarios and well sites. An incorrect
lag can be detrimental to the model’s predictive performance.
Values of the other hyperparameters chosen are presented in
Supplementary Tables 2–4.
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Sensitivity Analysis of the Prediction
Performance to the Length of the Training
Time series Data
Analyzing the sensitivity of the MLP’s predictive performance to
the length of the training data addresses two questions. First, we
will examine if the predictive performance of the MLP model
is reduced by using a smaller training set. Second, by using a
shorter time series for HPO and training, we can assess the
accuracy of groundwater predictions for a longer time period.
We experiment with using only 2 years of data for training and
2 years of validation, thus testing the MLP’s prediction accuracy
over 4 years. At the three sites, our MLP models are still able to
predict the groundwater levels fairly accurately compared to the
base scenario (Figure 3).

TABLE 4 | Optimal lag hyperparameter chosen in the hyperparameter

optimization process at all three sites and for each scenario.

Scenario label Butte Shasta Tehama

G-T-P-Q-4-d 335 70* 315*

G-P-Q-4-d 350 260 200

G-T-P-4-d 350 95 290

G-T-Q-4-d 355 100 260

G-P-4-d 335* 250 305

G-Q-4-d 355 230 285

G-T-4-d 150 45 355

G-T-P-Q-2-d 305 150 170

G-T-P-Q-4-m 23 3 21

(*) indicates the best performing input feature scenario at each site.

At the Butte site, the overall prediction accuracy is the same
as the base scenario with a slightly higher prediction variability
(Figure 9). The seasonality in the groundwater levels (less water
in the summer and more in the winter) is captured well. The
groundwater predictions are close to the true values for the first
1.5 years of prediction (2014–2015), but in the subsequent years
the model predictions fail to accurately capture the highs and
lows. The errors of the groundwater predictions accumulate over
time, due to how we make next-day predictions [use the previous
[lag] days of groundwater level data, and at some point, we start
making predictions based on predictions and thus the errors
accumulate]. At the Tehama site (see Supplementary Figure 22),
the MLP model makes accurate predictions for the first 2 years
(2014 and 2015) and subsequently we observe that the MLP
predictions fail to capture the highs and the lows. This may
either be related to error accumulation or a missing feature,
such as snow pack or pumping data. A similar result holds
for the Shasta well: the MLP is able to capture the seasonal
behavior of the groundwater levels, but as we make predictions
over multiple years, the prediction inaccuracies increase (see
Supplementary Figure 21).

DISCUSSION

Future Prediction Using MLP Models
With a suitable choice of input features (e.g., G, T, P, and
Q), MLP models can reliably predict groundwater levels for
up to 1 year and possibly longer at a daily frequency. This is
observed at all sites despite the differences in the contribution
of groundwater to the county’s water budget. In addition, models
built exclusively withmeteorological variables using temperature,
precipitation and groundwater as input features (G-T-P-4-d)
also show a good prediction accuracy of about 85–90%. Long-
term forecasts of these meteorological variables generated from

FIGURE 9 | Groundwater level prediction at Butte with input features: groundwater level, temperature, precipitation, and river flow when using only 2 years of data

each for hyperparameter optimization process and training. The MLP is able to capture the seasonality of the groundwater levels, and it reflects well the groundwater

levels during the drought years and the wet years.
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different weather models can potentially be used to predict future
groundwater levels. This can help derive sustainable groundwater
management strategies.

Impact of Data Availability
A major challenge in this study was the selection of well sites
and monitoring stations that adequate measurement for training,
and located in near proximity. For example, at the Shasta site,
we would ideally use the discharge rate of the Sacramento River
rather than the CowCreek in theMLPmodel. But we did not find
such a monitoring station near the well site. On the other hand,
it is also difficult to find groundwater wells with a long period
of measurements close to river flow or weather monitoring
stations. Experiments with MLP models trained on monthly
averaged data and the analysis of optimal lag hyperparameter
chosen at the three sites (for different scenarios) also suggest
that access to a longer time range of data can help build better
prediction models. This recurring issue of site selection currently
makes DL techniques inapplicable in the majority of watersheds
in California.

Models built from monthly frequency data show a higher
prediction error than the daily frequency-based model and are
unreliable for making long term (multi-year) predictions. We
found that daily data were unavailable for most of the sites in
California. In fact, out of the 3,907 monitoring wells in the state,
only 387 had daily measurements through California statewide
groundwater elevation monitoring (CASGEM) network, and
most of the high-resolution datasets were only available for wells
in northern California, in mostly low-priority basins. Prediction
accuracies can be improved with access to higher-resolution
daily data, or longer monthly datasets (spanning decades).
Additionally, our current analysis is performed in the absence
of pumping data, which is not publicly available. Yet pumping
is a critical component of groundwater budget, and in several
places the primary driver of groundwater table depths. Access
to such data can potentially better equip our current DL models
with human behavior and improve management strategies. The
potential advantage of using additional data for obtaining more
accurate predictions may lead to investments into more in-situ
or remote measurement infrastructure. Based on our current
results, we recommend using more than 2 years of daily data
for training.

Impact of Training Stochasticity on
Prediction Results Matters
In addition to the prediction accuracy, we find that it is also
important tomeasure the prediction variability of theMLP, which
is due to stochasticity in the training process. The Keras tool used
in the study generated different weight optimized MLP models
for the same set of hyperparameters and training data.We cannot
analyze future predictions or derive water management strategies
based on a single training trial. We recommend training a DL
model of a given architecture multiple times, as the stochasticity
of the optimizer used during the training leads to multiple
prediction models that are consistent with the training data.
The resulting model ensembles allow us to assess the model’s
prediction reliability. Thus, in addition to potential uncertainty in

the data collected we also need to take into account the variability
in the training process. Our study showed that models trained on
groundwater, temperature, precipitation, and temperature data
(G-T-P-Q-4-d) yield the lowest prediction variability, whereas
models trained only on groundwater and temperature data
have the highest prediction variability. Note however, that low
variability does not necessarily mean high prediction accuracy,
and thus both metrics need to be taken into account when
assessing the quality of the DL model predictions. In a future
study, one can tackle this problem from a bi-objective perspective
in which the prediction accuracy is maximized and the variability
is minimized simultaneously.

Automated HPO Framework for Future DL
Applications
A key innovation in this study is the use of an HPO framework to
test different model architecture for making prediction models.
The setup of our study, and the HPO is general enough to be
applicable to any other type of neural network (e.g., CNN and
LSTM). The sensitivity analysis requires conducting multiple
experiments testing different input feature combinations and
our results indicate that each experiment requires a different
combination of hyperparameters. Hand tuning the model
architectures for each experiment can be a cumbersome process
especially when the number of features is large. The HPO
framework used in this study automates this process and ensures
the best model architecture (within the given bounds). We can
also potentially incorporate the choice of input feature into the
framework as a decision variable. The HPO formulation will
then choose the best combination of input features and its best
architecture simultaneously.

Multi-Well MLP Models
The current analysis has been conducted for single groundwater
well sites only, which does not reflect the overall health of
a groundwater aquifer. Thus, a spatially distributed parameter
sensitivity analysis across multiple groundwater well sites and
climatic parameters may reflect a more realistic behavior of a
groundwater aquifer and human use. Our previous study (Müller
et al., 2020) successfully built DL models to simultaneously
predict daily groundwater level at three locations in Butte county.
However, we saw that when we use an average prediction
error metric to measure the prediction performance across the
three wells, only two wells have accurate predictions. Thus, one
remedy could be a reformulation of the objective function by
introducing weights that reflect the importance of each well to
ensure optimal prediction performance across all wells. Although
training can be compute-intensive, once trained and optimized,
DL models are a more viable option for performing multi-
scenario analyses than high-fidelity simulation models, because
the required computational time to make future predictions
is orders of magnitude lower. Our multi-scenario analysis can
readily be used by groundwater managers who have access to
historical groundwater and local weather data.
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CONCLUSION

With the increased deployment of ML tools in hydrological
sciences, there is a need to understand the sensitivity of their
prediction performance to different input features. Groundwater
level timeseries are highly non-linear and non-stationary, making
them difficult to model with standard ARIMA models. DL
models offer a promising alternative for capturing the complex
interactions between features such as groundwater levels, river
flow, temperature, and precipitation.

In our study, we were able to accurately predict groundwater
levels at three different groundwater well locations (Butte,
Shasta, and Tehama) in California using an MLP model.
Additionally, we conducted a sensitivity analysis using multiple
different feature combination scenarios and compared the
accuracy and reliability of the resulting predictions. Our analysis
shows that models trained on groundwater, temperature, river
flow and precipitation data (G-T-P-Q-4-d) lead to the best
predictive performance at two of the three sites, while models
trained without hydrological features and based only on past
groundwater and temperature data consistently showed the
lowest prediction accuracy at all locations. The best predictive
models are shown to reliably predict groundwater levels at least
1 year into the future. The MLP prediction performance is
also affected by the data’s temporal resolution and the length
of the training period. The MLP models trained with only 2
years (rather than four) of data still gave reasonable accuracy
and indicate the potential capability for long-term predictions.
In addition to accuracy, we find that it is also important to
measure the prediction variability caused by the stochasticity in
the training process. The MLP model architectures for different
choices of input features, training length and temporal frequency
which were obtained using a hyperparameter optimization

framework indicate that the optimal combination is location-
specific. These results indicate that DL models are a good
choice for modeling groundwater levels, contingent on the
availability of adequately long time-series of prior groundwater
levels and some hydrological variables (precipitation or river flow
at the minimum).
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High-quality and high-resolution precipitation products are critically important to many

hydrological applications. Advances in satellite remote sensing instruments and data

retrieval algorithms continue to improve the quality of the operational precipitation

products. However, most satellite products existing today are still too coarse to be

ingested for local water management and planning purposes. Recent advances in

deep learning algorithms enable the fusion of multi-source, high-dimensional data for

statistical learning. In this study, we investigated the efficacy of an attention-based, deep

convolutional neural network (AU-Net) for learning spatial and temporal mappings from

coarse-resolution to fine-resolution precipitation products. The skills of AU-Net models,

developed using combinations of static and dynamic predictors, were evaluated over a

3 × 3◦ study area in Central Texas, U.S., a region known for its complex precipitation

patterns and low predictability. Three coarse-resolution satellite/reanalysis precipitation

products, ERA5-Land (0.1◦), TRMM (0.25◦), and IMERG (0.1◦), are used as part of

the inputs, while the predictand is the 1-km PRISM data. Auxiliary predictors include

elevation, vegetation index, and air temperature. The study period includes 18 years of

data (2001–2018) at the monthly scale for training, validation, and testing. Results show

that the trained AU-Net models achieve different degrees of success in downscaling the

baseline coarse-resolution products, depending on the total precipitation, the accuracy

of large-scale patterns captured by the baseline products, and the amount of information

transferable from predictors. Higher precipitation rate tends to affect AU-Net model

performance negatively. Use of the attention mechanism in the AU-Net models allows for

infilling of multiscale features and generation of sharper images. Correction using gauge

data, if there is any, can further improve the results significantly.

Keywords: PRISM, TRMM, deep learning, convolutional neural net, global precipitation measurement (GPM)

satellite, precipitation downscaling, attention-based U-net

1. INTRODUCTION

Precipitation is a primary driver of water and energy cycle (Trenberth et al., 2007), providing
essential inputs to many water, food, and energy applications including, but not limited to,
global and regional climate variability assessments, land surface-atmosphere interactions, natural
hazard prevention, crop yield management, hydrological forecasting, and surface and groundwater
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resources planning (Hong et al., 2007; Seneviratne et al., 2010;
Becker et al., 2013; Schewe et al., 2014). To a large degree,
the effectiveness of many disaster response and water resources
management decisions hinge on the quantity and quality, as well
as the spatial and temporal resolution of precipitation products.
Currently available precipitation products may be classified
into ground-based, satellite-based, reanalysis, and hybrid multi-
source/multi-sensor products.

Ground-based products are derived from rain gauges and
weather radar. However, the spatial coverage of rain gauge
networks is often limited, also varying significantly across
different countries owing to temporal sampling resolutions,
periods of operation, data latency, and data access (Kidd et al.,
2017). At the global scale, ground-based products are only
available at a relatively coarse resolution (≥0.5◦) and updated
rather infrequently (Sun Q. et al., 2018). High-resolution gridded
products are only available in a few developed counties that
have extensive gauge network coverage. For example, in the
U.S., the Parameter-elevation Regressions on Independent Slopes
Model (PRISM) gauge-based product (4-km resolution, 1895–
present), developed by the Oregon State University (Daly et al.,
1997), is widely used for operational planning and validation
of satellite products. Similarly, the Stage IV radar-based, gauge-
adjusted precipitation data (4 km, 2002–present) available from
the National Center for Environmental Prediction (NCEP) is also
commonly used as a reference dataset inmany conterminous U.S.
(CONUS) precipitation product comparisons (Lin and Mitchell,
2005).

Satellite precipitation products are derived from passive
and active microwave (MW) sensors onboard low Earth
orbiting satellites, and visible/infrared (VIS/IR) sensors onboard
geostationary satellites (Hou et al., 2014). So far, the raw
satellite precipitation data has been mainly retrieved from three
spaceborne precipitation radars: the Ku-band precipitation radar
onboard the Tropical Rainfall Measuring Mission (TRMM)
satellite that was in orbit from 1997 to 2015, the W-band
Cloud Profiling Radar (CPR) onboard the CloudSat operating
from 2006 to the present, and the Dual-frequency Precipitation
Radar (DPR) onboard the Global Precipitation Measurement
(GPM) Core Observatory operating from 2014 to the present
(Tang et al., 2018b). Unlike ground-based products, satellite
products provide spatially homogeneous coverage with low
latency. Some of the currently available satellite products, such
as the Integrated Multi-satellite Retrievals for GPM (IMERG)
(Huffman et al., 2015) and TRMM Multi-satellite Precipitation
Analysis (Huffman et al., 2007), not only assimilate information
from multiple MW/IR sensors, but also are corrected by ground
observations. Currently, the most common resolution of satellite
precipitation products is 0.25◦ per 3 h (Sun Q. et al., 2018).

Reanalysis products are generated by assimilating irregular
observations into earth system models to generate a synthesized
estimate of the state of the system (e.g., precipitation)
across a uniform model grid, with spatial homogeneity and
temporal continuity (Sun Q. et al., 2018). The commonly used
reanalysis products include the NCEP/NCAR Reanalysis system
(1.875◦, 1979–2010) (Kistler et al., 2001), European Center for
Medium-RangeWeather Forecasts (ECMWF) reanalysis systems

(0.25/0.75◦, 1979–present) (Dee et al., 2011), and the NCEP
Climate Forest System Reanalysis system (CFSR, 38 km, 1979–
2010) (Saha et al., 2010).

Recent trends in precipitation product development are
geared toward merging multi-source and multi-sensor data
to leverage information existing at multiple scales. Examples
include the Multi-Source Weighted-Ensemble Precipitation
(MSWEP, 0.1/0.5◦, 1979–present) (Beck et al., 2017) and
Modern-Era Retrospective Analysis for Research andApplication
system (MERRA-2) (Rienecker et al., 2011), both combining
gauge, satellite, and reanalysis data. These products typically
adopt an optimal weighting scheme to merge information. In
MSWEP, for example, weights assigned to the gauge-based
data are determined from the gauge network density, while
weights assigned to the satellite and reanalysis-based estimates
are calculated from their comparative performance at the
surrounding gauges (Beck et al., 2017).

Notwithstanding the tremendous effort dedicated to
developing various products, precipitation forcing remains a
major source of uncertainty in global hydrological and land
surface models (Wood et al., 2011; Scanlon et al., 2018) because
of its inherent high variability in space and time, especially in
topographically complex, convection-dominated, and snow-
dominated regions (Tang et al., 2018a; Beck et al., 2019). The
accuracy of rain gauge data may be affected by a number of
environmental factors, such as wind, wetting and evaporation
loss, and undercatch (Sun Q. et al., 2018; Tang et al., 2018a).
The uncertainty in satellite precipitation data may stem from
different sources, including algorithms used for retrieving,
downscaling, and merging multi-sensor data, as well as from the
acquisition instrument itself (Sorooshian et al., 2011).

Recently, Sun Q. et al. (2018) reviewed 30 currently available
global precipitation datasets, including gauge-based, satellite-
related, and reanalysis datasets. They found that the magnitude
of annual precipitation estimates over global land deviated by as
much as 300mm/yr among the products. They also noted that the
degree of variability in precipitation estimates varied by region,
with large differences found over tropical oceans, complex
mountain areas, northern Africa, and some high-latitude regions.
Beck et al. (2019) evaluated the performance of 26 gridded daily
precipitation products over the CONUS for the period 2008–
2017. Among the 15 uncorrected datasets considered, they found
that ERA5-HRES (the 5th global reanalysis product released by
ECMWF, 0.28◦, 2008–present) gives better performance than
others across most of CONUS, especially in the west; among
the 11 gauge-corrected products, MSWEP V2.2 gives the best
performance, which was attributed to applying daily gauge
corrections and accounting for gauge reporting times during
product development. Both product reviews suggest that the
reliability of precipitation datasets depends on the number and
spatial coverage of surface stations, the accuracy of satellite data
retrieval algorithms, as well as the data assimilation models used.
Most data assimilation and bias correction methods, in turn,
rely on the understanding and characterization of precipitation
error distributions, which are typically non-stationary and
product dependent. AghaKouchak et al. (2012) investigated
the systematic and random errors in several major satellite
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precipitation products against the NCEP Stage IV data. A
major finding of their study is that the spatial distribution of
the systematic error had similar patterns for all precipitation
products they considered, for which the error is remarkably
higher during the winter than in summer; the error was also
found to be proportional to rain rates, with larger errors tending
to be associated with higher rain rates. Parameterization of
the precipitation error model is thus critically important for
improving precipitation products, but remains a challenging task,
partly because of the strong spatial and temporal variability in
rainfall patterns (Sorooshian et al., 2011; AghaKouchak et al.,
2012).

The advent of deep learning (DL) algorithms in recent years
has revolutionized the field of statistical pattern recognition,
enabling machines to achieve human-like classification accuracy
(Goodfellow et al., 2016). Precipitation product development
represents a research domain that can readily benefit from
the DL because of the explosive growth of multiscale, multi-
source Earth observation data (Ma et al., 2015; Sun and Scanlon,
2019). Pan et al. (2019) recently presented a convolutional
neural network (CNN)method for precipitation estimation using
numerical weather model outputs. The CNN model architecture
follows an end-to-end design, in which a fully connected dense
layer is used at the output layer to recover the dimensions of
the input images. The input predictors they used include 3-
h geopotential height and precipitable water at 500, 850, and
1,000 hPa, which were taken from the NCEP regional reanalysis
at 32 km (~0.29◦) resolution; and the predictand is the total
precipitation. Their results show CNN obtained better skills in
the northwest and east parts of CONUS, but performed poorer
than the reference Climate Prediction Center (CPC) gauge-based
dataset in the mid-U.S. Tang et al. (2018b) applied a four-layer,
deep multilayer perceptron network to predict precipitation rates
(at single locations), by mapping passive microwave data from
GPM and MODerate resolution Imaging Spectroradiometer
(MODIS) to spaceborne radar data. Kim et al. (2017) used
ConvLSTM, a combination of convolutional neural nets and
long short-term memory (LSTM) neural net (Shi et al., 2015),
for precipitation nowcasting using weather radar data. Their
results showed ConvLSTM was able to obtain better results than
the simple linear regression method. Similarly, ConvLSTM was
recently used for precipitation estimation based on atmospheric
dynamical fields simulated by ERA-Interim (a predecessor of
ERA5) (Miao et al., 2019).

Tremendous interests exist in using machine learning
techniques for statistical precipitation downscaling, which has
long been studied even before the DL era to refine coarse-
resolution precipitation products and global climate model
projections for local water management and hydrological
modeling needs (Maraun et al., 2010; Jia et al., 2011; Duan and
Bastiaanssen, 2013; Chen et al., 2018). To correct biases arising
during downscaling, two types of traditional methods may be
identified, quantile mapping (Li et al., 2010; Shen et al., 2014;
Yang et al., 2016) andmultiplicative/additive correction (or linear
scaling) (Vila et al., 2009; Jakob Themeßl et al., 2011). In the realm
of DL, Vandal et al. (2018) introduced DeepSD, which is a stacked

superresolution CNN for statistical downscaling of climate and
Earth system model simulations. In their experiments, Vandal
et al. (2018) upsampled the 4-km PRISM data progressively to
1◦, and then tried to restore the original high-resolution data by
training a CNN model. He et al. (2016) used the random forest
algorithm to downscale the precipitation forcing field used in
North-American Land Data Assimilation System Project Phase
2 (NLDAS-2). Their main research question was whether the
upsampled NLDAS-2 precipitation forcing (in spatial resolutions
of 0.25, 0.5, and 1◦) could be restored to its native resolution
(0.125◦) by using additional dynamic and static information (e.g.,
air temperature, wind speed, elevation, slope) as auxiliary inputs.

So far, however, few studies have attempted to directly
map coarse-resolution precipitation products (e.g., satellite or
reanalysis products) to fine-resolution, gauge-based precipitation
products using DL. As mentioned previously, gauge products
tend to have higher resolutions but are often created using
proprietary data processing algorithms that may not be readily
accessible to local users. Inconsistencies in data release times may
also prevent end users from accessing the information when they
need it the most. The main motivation of this research was thus
to investigate a data-driven, DL-based statistical downscaling
procedure by learning covariational patterns between the coarse-
and fine-resolution precipitation products. A novel, attention-
based, deep convolutional neural network model was adopted
to help capture multiscale spatial and temporal patterns. Once
trained, end users may apply the DL-based model to generate
downscaled high-resolution precipitation maps using only
coarse-resolution products, which are available operationally.
Ultimately, such a DL-based downscaling procedure may be
applied to regions without high resolution products through
transfer learning, in which models trained for data-rich domains
are “transferred” to inform models for data-sparse domains
(Pan and Yang, 2009; Goodfellow et al., 2016; Jean et al., 2016;
Sun and Scanlon, 2019). Like in all regression studies, a main
hypothesis underneath this research is that certain spatial and
temporal covariational patterns exist between the predictand and
its predictors, which has been confirmed to a certain degree
by previous validation studies (Beck et al., 2017), but is also
shown to vary significantly across space and time (AghaKouchak
et al., 2012), creating a major challenge for the pattern-based
learning algorithms.

For demonstration, we focus on Central Texas, which is a
region of low hydrometeorological predictability (AghaKouchak
et al., 2012; Sun et al., 2014; Beck et al., 2019; Pan et al., 2019),
and yet, is frequented by flooding and drought events (Lowrey
and Yang, 2008; Long et al., 2013; Sun A. Y. et al., 2018).
PRISM data is used as the high-resolution training target. The
performance of three coarse-resolution satellite and reanalysis
products, along with other auxiliary variables, are evaluated.
This paper is organized as follows. Section 2 describes the study
area and datasets used. Section 3 presents the design of the
deep CNN model. Results are provided in section 4, followed
by discussion and conclusions. For reference, a table of major
abbreviations and acronyms used this paper is provided in the
Appendix.
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2. STUDY AREA AND DATA USED

2.1. Study Area
Central Texas represents the fastest-growing region in the U.S.
among metros with at least 1 million people (Austin Statesman,
2019). The region is also known for its severe precipitation
events, resulting from a juxtaposition of meteorological factors,
including moisture influx from the Gulf of Mexico, easterly wave
moving across the area, and orographic uplift from the Balcones
Escarpment (a physiographic feature of steep elevation gradient
at the boundary between the Edwards Plateau and the Gulf Coast
Plain) (Hirschboeck, 1987; Nielsen-Gammon et al., 2005; Lowrey
and Yang, 2008; Sun A. Y. et al., 2018).

The area of study is a 3× 3◦ region bounded between latitudes
29–32◦N and longitudes 100–97◦W (Figure 1). It encompasses
two major Central Texas cities, Austin and San Antonio, as
well as their surrounding regions. Central Texas is part of the
Texas Hill Country, which is within the Edwards Plateau, a
geographic region known by its rugged karstic terrains and
thin top soils (Mace et al., 2000). Major land cover types
include forest lands, rangeland, agricultural lands, urban, barren
land, and wetlands (Omranian and Sharif, 2018). Elevation is
highest (736 m) near the west boundary of the study area
and gradually decreases toward the east boundary to 42 m
(Figure 1A). Climate in the region is humid subtropical, and
precipitation exhibits a distinctive bimodal pattern: spring is
the wettest season, with April and May the wettest months; a
secondary peak of rainfall occurs in September and October
(Slade and Patton, 2003). Spatially, the annual rainfall in the 3
× 3◦ region ranges from 575 to 1,005 mm, which is the highest
in the east and decreases toward the west (Figure 1B). Tropical
cyclones (hurricanes and tropic storms) typically occur in late
summer or early fall, bringing the largest amount of rainfall.
Moreover, Balcones Escarpment acts as a major mechanism
of localization and intensification of rainfall (Nielsen-Gammon
et al., 2005).

Hydrology wise, the study area is part of two major river
basins, the Lower Colorado River Basin that drains to Lower
Colorado River and its major tributaries (San Saba River, Llano
River, and Pedernales River), and the Brazos River Basin. The
former includes a cascade of surface reservoirs (e.g., Lake
Buchanan, Lake Travis) that provide surface water supply to the
City of Austin. In addition to flooding, severe drought is a major
concern, often causing significant loss to the regional economy
(Long et al., 2013). The accuracy and reliability of precipitation
estimate is thus of paramount importance to local water agencies,
for continuously evaluating flood/drought potential, as well as
for quantifying groundwater recharge, reservoir storage, and
water availability. For those reasons, the Lower Colorado River
Authority (LCRA), the primary water management agency of
the area, has established a dense gauge network in recent
years to provide continuous rainfall data at relatively high
spatial and temporal resolutions (open circles in Figure 1A).
The in situ data offers important additional information for
precipitation downscaling in this study, as discussed below in
section 4.

2.2. Datasets
The study period is from Jan 2001 to Dec 2018, which was
chosen based on the common period of coverage of all products
considered. Themonthly scale was chosen because of our interest
in downscaling precipitation for supporting subseasonal water
management activities. In the following, the gridded and gauge
data used are described in details, and a summary of all data used
is also provided in Table 1, including the data URLs.

2.2.1. Gauge Data
Monthly gauge precipitation data was obtained from Texas
Mesonet. Figure 1A shows the locations of rain gauges as
of Jan 2017 (the first month of our test period), which are
distributed more densely within the LCRA boundary than in the
surrounding areas. The number of valid gauges increased from
361 in Jan 2017 to 532 in Dec 2018. As mentioned before, the
number of rain gauges only increased in recent years in light
of the severe 2012–2013 Texas drought. Before that event, the
number of in situ data was generally much smaller. For example,
the number of gauge data available in Jan 2003 was 24 and in Jan
2013 it was 53. Thus, the quality of the PRISM data evolved with
time. In other words, patterns used for the training period may
be less constrained than the patterns used during validation.

In this study, the gridded, gauge-based precipitation product
PRISM is the training target or predictand. The Stage IV data
from NCEP was used for cross-examining the PRISM patterns.
Stage IV data includes merged operational radar data and rain
gaugemeasurements in hourly accumulations. Both datasets have
a spatial resolution of 4 km andwere temporally aggregated to the
monthly scale.

2.2.2. Satellite and Reanalysis Data
Three coarse-resolution satellite and reanalysis precipitation
products, TRMM, ERA5-Land, and IMERG, were tested for
generating PRISM like data. The TRMM data used in this
study is 3B43 v7 (0.25◦, 1998–2019), which is a post-real-
time, gauge-corrected monthly product that merges precipitation
estimates from multi-sensors, as well as monthly precipitation
gauge analysis from the Global Precipitation Climatology Center
(https://www.dwd.de) (see also Table 1). The main motivation
behind developing the 3B43 algorithm was to produce the best
estimate of precipitation rate from sensors onboard TRMM,
as well as from other satellites including Advanced Microwave
Scanning Radiometer for Earth Observing Systems (AMSR-
E), Special Sensor Microwave Imager (SSMI), Special Sensor
Microwave Imager/Sounder (SSMIS), Advanced Microwave
Sounding Unit (AMSU), Microwave Humidity Sounder (MHS),
and microwave-adjusted merged geo-infrared (IR) (Huffman
et al., 2010). After TRMM was decommissioned in 2015,
TRMM data continued to be produced using the climatological
calibrations/adjustments until 2019 (Bolvin and Huffman, 2015).

ERA5 is the latest generation of reanalysis data from ECMWF.
It is produced using the 4D-variational data assimilation system
in ECMWF’s Integrated Forecast System, and features several
improvements over its predecessor (i.e., ERA-Interim), including
an updated model and data assimilation system, higher spatial
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FIGURE 1 | (A) Study area boundary (lat: 29–32◦N, lon: 100–97◦W) and the shaded relief map (open circles correspond to the existing rain gauges as of Jan 2017);

(B) 30-years precipitation normal extracted from PRISM, where color and contour lines represent total rain amount in mm.

resolution (0.28 vs. 0.75◦) and temporal resolution (1 vs. 6-
h), more vertical levels (137 vs. 60), and assimilation of more
observations (Hennermann and Berrisford, 2017). Currently,
the ERA5 dataset includes a high-resolution realization (HRES,
~0.28◦) and a reduced-resolution, 10-member ensemble, and are

available at both sub-daily and monthly intervals (Hennermann
and Berrisford, 2017). For this study, the ERA5-Land data (0.1◦)
was used and was downloaded from the Climate Data Store (see
Table 1). The grid resolution of ERA5-Land is higher than the
native ERA5 resolution of 0.28◦. Thus, during processing, the
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input air temperature, air humidity, and pressure used to run
ERA5-Land were corrected to account for the altitude difference
between the grid of the forcing and the higher resolution grid of
ERA5-Land (Hennermann and Berrisford, 2017).

IMERG supersedes the TRMM 3B42 product as the next-
generation precipitation product developed using the GPM
data. The original purpose of IMERG was to calibrate,
merge, and interpolate all satellite microwave precipitation
estimates, together with microwave-calibrated infrared (IR)
satellite estimates, precipitation gauge analyses, and potentially
other precipitation estimators at fine temporal (30 min) and
spatial resolution (0.1◦) over the entire globe (Huffman et al.,
2015). Previously, Tang et al. (2016) compared Day-1 IMERG
with TRMM 3B42V7 over a well-gauged, mid-latitude basin in
China, and concluded that theDay-1 IMERGproduct could be an
adequate replacement of TRMM products, both statistically and
hydrologically. Probably more relevant to this study, Omranian
and Sharif (2018) compared the quality and accuracy of Day-
1 IMERG product over the entire Lower Colorado River Basin.
They showed the Day-1 IMERG product can be potentially used
at small basin scales with errors comparable to those of weather
radar products, provided that gauge-based real-time adjustment
algorithms are available for correction. For this study, monthly
IMERG V06 data (0.1◦, 2000–present) was downloaded from
NASA’s data repository (see Table 1).

In addition to exploring temporal and spatial correlation
in precipitation itself, other auxiliary predictors commonly
considered during precipitation downscaling include elevation,
vegetation index, and air temperature (Duan and Bastiaanssen,
2013; He et al., 2016; Vandal et al., 2018). For this study,
elevation, slope, and aspect were tested as possible static auxiliary
variables. The elevation data (DEM) was extracted from the
Global Multi-resolution Terrain Elevation Data (GMTED2010)
developed by U.S. Geological Survey and National Geospatial-
Intelligence Agency (15 arc s or ~450 m). Slope and aspect were
derived from the DEM using the Python package, RichDEM
(Barnes, 2018). Monthly enhanced vegetation index (EVI) was
also evaluated as a dynamic auxiliary variable. The response of
vegetation to precipitation can have a lag time of 2–3 months in
semi-arid areas (Quiroz et al., 2011). Previous studies utilizing
the vegetation index were done at both monthly (López López
et al., 2018) and annual (Duan and Bastiaanssen, 2013) scales.
For this study, EVI was extracted from the Level-3 vegetation
index product derived fromMODIS, MOD13C2 (0.05◦). Finally,
the 2-m air temperature data was extracted from the ERA5-Land
forcing data available from the Climate Data Store.

3. METHODOLOGY

3.1. Problem Formulation
Here a regression model is sought to relate a pair of low-
and high-resolution precipitation maps that are created from
different types/sources of data. Formally, the problem may be
stated as the following statistical learning problem (Goodfellow
et al., 2016)

κ :X → Y , (1)

where domain X represents the input space, including the low-
resolution precipitation data and any auxiliary information, as
explained later in section 3.3; and domain Y represents the high-
resolution target space. In reality, the true mapping operator
κ is not accessible. Thus, we seek an approximation to κ ,
namely, finding y = f (X,2), where y ∈ Y , X ∈ X , f is
a statistical mapping that is trained using the labeled training
dataset {X(i), y(i)}Ni=1 consisting of input samples X(i) ∈ R

H×W×C

and output samples y(i) ∈ R
H×W (H, W, and C denote the

height, width, and channel dimensions of inputs) and 2 is a
set of trainable parameters of f . In this work, we adopt an
attention-based, U-Net model (AU-Net) for f .

3.2. Attention-Based Deep Convolutional
Neural Net
Deep CNN models consist of a cascade of convolution blocks,
each including one or more convolutional layers that perform
convolution operations on inputs from the previous layer
(Goodfellow et al., 2016)

xlc = σ

(
∑

c′

Wl
c′ ,c ⊗ xl−1

c′ + blc

)
,

xli,j,c = σ

(
∑

m

∑

n

∑

c′

wl
m,n,c′ ,cx

l−1
i+m,j+n,c′ + blc

)
,

i = 1, . . . ,H, j = 1, . . . ,W, c = 1, . . . ,Cf (2)

where xl−1 and xl are the input and output tensors of the l-th
layer; subscripts m, n denote indices along the width and height
dimensions of a kernel, c′ is the index along channel dimension;
c represents the index of output channel dimension Cf , which
is equal to the number of kernels used for convolving the l-th
layer; ⊗ is a convolution operator as defined in the second line
of the above equation; Wl

c′,c = {wl
m,n,c′ ,c} represents the weight

matrix of the c-th kernel for the input channel c′, and bl = {blc}
represents a bias vector, both are trainable parameters; and σ

represents the activation function. In practice, a number of other
types of layers, such as batch normalization and pooling, are
used in the convolution block to increase the learning efficiency
while keeping the number of trainable parameters manageable
(Goodfellow et al., 2016).

U-Net is a type of deep CNN and more specifically, an
image-to-image autoencoder that was originally introduced in
biomedical image segmentation (Ronneberger et al., 2015).
Unlike some early deep CNN model designs that use dense
(or fully connected) layers at the output end, U-Net is fully
convolutional (i.e., consisting of only convolutional layers).
The downsampling step (encoder) is designed to capture fine-
scale image contexts by using repeated convolutional blocks
to progressively extract downsampled feature maps, while the
upsampling step (decoder) is designed to progressively enlarge
the feature maps until the original image dimension is restored.
In the final step, a 1× 1 (kernel size) convolutional layer is used to
condense the stack of feature maps along the channel dimension
and generate a single output image, completing the image-to-
image regression process (Figure 2). For this work, the rectified
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TABLE 1 | Summary of datasets used in this study, where P–precipitation, T–temperature, DEM–elevation, EVI –enhanced vegetation index.

Data (Variable) Format (resolution) Source

Texas Mesonet (P) Gauge https://www.texmesonet.org

PRISM (P) Gridded (4 km) http://www.prism.oregonstate.edu

Stage IV (P) Gridded (4 km) https://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4

TRMM3B43 V7 (P) Gridded (0.25◦) https://earthdata.nasa.gov

ERA5 (P,T) Gridded (0.1◦) https://cds.climate.copernicus.eu

IMERG V06 (P) gridded (0.1◦) ftp://arthurhou.pps.eosdis.nasa.gov

GMTED2010 (DEM) Gridded (450 m) https://www.usgs.gov/land-resources

MOD13C2 (EVI) Gridded (0.05◦) https://modis.gsfc.nasa.gov/data/dataprod/mod13.php

FIGURE 2 | Model architecture of attention-based U-Net (AU-Net), which consists of a pair of encoder and decoder for end-to-end learning. Green blocks are

convolutional blocks, for which the number of kernels used is labeled on top of each block. Red blocks are attention gate blocks, the design of which is shown in the

callout on bottom right. Dashed arrow lines are skip connections. Most hidden convolutional layers use 3× 3 kernels and the ReLU activation function, except in the

attention block and in the output layer, where 1× 1 kernels and tanh are used. Meanings of other symbols are explained in the legend shown at bottom left.

linear unit (ReLU) is used as the activation function for all hidden
layers except in the output layer, where the hyperbolic tangent
function (tanh) is used. The pooling size is 2 so that the input
layer dimension is halved after each pooling operation.

A key feature of the U-Net design is the skip connection,
which is a combination of copy and concatenation operations
to merge the fine-scale features from the downsampling step
with the upsampled coarse-scale feature maps to better learn
representations (dashed arrow lines in Figure 2) (Ronneberger
et al., 2015). Mao et al. (2016) showed that the use of skip
connections helps the training process to converge much faster
and attain a higher-quality local optimum. So far, U-Net and its
variants have been used in a large number of DL applications
in geosciences (Sun, 2018; Arge et al., 2019; Karimpouli and
Tahmasebi, 2019; Mo et al., 2019; Sun et al., 2019; Zhong et al.,
2019; Zhu et al., 2019).

In CNN design, the size of the receptive field (e.g., kernel
dimensions) directly affects the learning performance. If a single,
fixed-size kernel is used to scan the inputs, global information
may be missed, especially when the resolution of the input image
is high. In the literature, several methods have been proposed
to circumvent the issue. The skip connection used in U-Net is
one example. As another example, Ren et al. (2016) proposed a
multiscale CNN model consisting of a pair of coarse-scale and
fine-scale autoencoders, the former uses a 11 × 11 kernel, while
the latter uses a 7 × 7 kernel; the output of the coarse network
is fed to the fine network as additional information to refine
the coarse prediction with details. In recent years, self-attention
has emerged as yet another alternative for capturing multiscale
contexts in an image.

Simply speaking, attention refers to the biological capability
of certain animals, including humans, to direct their gaze
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rapidly toward objects of interest in a visual environment,
transforming the understanding of a visual scene into a series
of computationally less demanding, localized visual analysis
problems (Itti and Koch, 2001). Significant interests exist in
computational neuroscience to replicate such capability in
pattern recognition algorithms. In machine translation (natural
language processing), for example, self-attention has been
proposed as a mechanism for relating different positions of
a single sequence in order to compute a representation of
the sequence (Vaswani et al., 2017). In image processing,
attention has been used to model the image as a sequence
of regions, allowing for better capturing of large-scale features
while producing sharper local details, thus leading to improved
performance in object tracking, object detection, and image
caption generation applications (Xu et al., 2015; Oktay et al.,
2018; Bello et al., 2019; Hou et al., 2019). For this study, we
hypothesize that the same attention mechanism that helps to
capture multiscale spatial and temporal interactions may also be
useful in learning the covariational patterns between high- and
low-resolution precipitation products.

In general, attention-based algorithms work by suppressing
the irrelevant background and enabling salient features to
dynamically come to the forefront (Xu et al., 2015). We adopt
the attention-gate module proposed by Oktay et al. (2018),
which has the advantage of being compatible with the standard
CNN models (e.g., U-Net) and can be added as an additional
block without incurring significant computational overhead. As
illustrated in Figure 2, the attention block is attached to the
upsampling step of the U-Net (i.e., red blocks in Figure 2). For
the l-th layer, the inputs to the attention block are outputs from
the coarse-scale decoder (gl) and that from the encoder (via the
skip connection) (xl). Inside the attention block, the inputs are
passed through separate 1×1 convolutional layers, concatenated,
and then passed through another 1× 1 convolutional layer (with
activation) to arrive at an attention map. In essence, the attention
blockmay be regarded as a sub-network and its role is to suppress
irrelevant features from the skip connections using information
from the decoder. Mathematically, the series of attention gate
operations may be described as (Oktay et al., 2018)

ql = Ws ⊗

(
σ1

(
Wx ⊗ xl + bx +Wg ⊗ gl + bg

))
+ bs, (3)

α
l = σ2

(
ql
(
xl, gl;2

))
, (4)

where 2 = {Wx,Wg , bg , bx, bs} represents a set of trainable
weight matrices and bias terms, σ1 is ReLU activation function,
σ2 is sigmoid activation function, αl is the resulting attentionmap
for weighting different regions in the input.

3.3. Network Training and Performance
Metrics
Monthly data from 2001/01 to 2018/12 were divided into three
parts, training (Nr = 168), validation (Nv = 24), and testing
(Nt = 24). After preliminary analyses, four predictor groups
were considered, including coarse-resolution satellite/reanalysis

precipitation products (P), enhanced vegetation index (EVI), air
temperature (T), elevation (DEM), slope, and aspect,

M1 : Pt−2 : t , EVIt−1 : t , DEM, Slope, Aspect, (5)

M2 : Pt−2 : t, DEM, Slope, Aspect, (6)

M3 : Pt−2 : t, DEM, (7)

M4 : Pt−2 : t , Tt−2 : t , (8)

where the subscript t denotes the month index, and the target
is PRISM data at month t. Models M1 to M3 include both static
and dynamic variables, whileM4 only includes coarse-resolution
dynamic variables. All AU-Net models are developed at the 128×
128 grid resolution, which is about 2.6 km/pixel for the current
problem. The lags for the dynamic variables are chosen based on
preliminary analyses. Higher-resolution grids are tested as part of
the sensitivity study. Before training, all inputs are resampled to
the same grid resolution through bilinear interpolation, and then
normalized before passing to the DL model for training.

All models were developed in the PyTorch (v1.1) machine
learning framework. The loss function used in training the AU-
Net models is the mean square error (MSE) defined as

MSE =
1

Nr

Nr∑

i=1

‖yi − ŷi‖
2
2, (9)

where y and ŷ represent the true precipitation data used for
training and the predicted data, respectively. The ADAM solver
(Kingma and Ba, 2014) was used to train the neural nets, with a
learning rate α = 5 × 10−4, first moment decay rate β1 = 0.5,
and second moment decay rate β2 = 0.999. During training
and validation, the data samples were randomly shuffled to
improve generalization. Training of the AU-Net was carried
out on a dual-processor computing node equipped with 128Gb
RAM and Nvidia 1080-TI GPU. A total of 100 epochs were
used for each model and the batch size (i.e., number of samples
used in each solver iteration) was set to 10. Early stopping
was implemented by monitoring the validation loss to mitigate
overfitting. Training time depends on the model size and grid
resolution and generally takes about 15 min for each model at
the 128× 128 grid resolution.

Model performance evaluation includes comparison with
both in situ gauge data and PRISM data for the testing period. For
comparison with in situ data, three metrics are used, namely, the
root mean square error (RMSE), bias, and correlation coefficient
(CC),

RMSE =

√√√√ 1

NG

NG∑

i=1

(yg,i − ŷi)2, (10)

BIAS =
1

NG

∑
NG

(
ŷi − yg,i

)
∑

NG

(
yg,i
) × 100, (11)

CC =
1

NGσyσg

NG∑

i

(yg,i − µg)(ŷi − µy), (12)
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FIGURE 3 | Correlation maps between PRISM and (A) ERA, (B) TRMM, and (C) GPM over the entire study area. Correlation at each grid cell is calculated as the

Pearson correlation coefficient between pairs of time series for that cell.

FIGURE 4 | Convergence history of AU-Net training and validation: (A) ERA5, (B) TRMM, and (C) GPM.

where yg and ŷ are measured and predicted data at a gauge
location, NG is the number of usable gauge data for a month, and
µ and σ denote mean and standard deviation. If multiple gauges
exist in a grid cell, we used the average of gauge values for that
cell. Mean metric values were then obtained by averaging over all
months in the testing period.

For image-to-image comparison, RMSE is calculated over
all grid cells. In addition, the structural similarity index metric
(SSIM) is calculated, which is a metric widely used in computer
vision to measure similarity between two images (Wang et al.,
2004). Specifically, for two sliding windows u and v operating
separately on the testing and reference images (grayscale), SSIM
is defined as

SSIM(u, v) =
(2µuµv + c1)(2σuv + c2)

(µ2
u + µ2

v + c1)(σ 2
u + σ 2

v + c2)
, (13)

where µ and σ represent the mean and standard deviation of
image patches falling in the sliding windows, and c1 and c2 are
small constants introduced to avoid numerical instability (Wang
et al., 2004). The global SSIM is obtained by averaging the patch
SSIM values and is in the range [−1, 1], with higher values
indicating better pattern matches. The sizes of sliding windows
used are 11× 11.

3.4. Residual Correction
Residual correction is commonly used in the final step
of downscaling to fuse gauge observations (Haylock et al.,
2006; Duan and Bastiaanssen, 2013; Chen et al., 2018). We
experimented with both kriging and inverse distance weighting
(IDW), and found that the latter gave better results. Thus, the
IDW scheme was adopted to interpolate the residual errors
between AU-Net results and gauge observations, ei, to the
entire grid, which were then added to the AU-Net estimates ŷ.
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Specifically, the final estimate ỹ is obtained by

ỹ(x) =

{
ŷ(x)+

(∑NG
i=1 wi(x)ei

)/(∑NG
i=1 wi(x)

)
, if d(x, xi) 6= 0

yg,i, if d(x, xi) = 0

where ei = yg,i − ŷi is the residual calculated at a gauge location,
d =‖ x − xi ‖ is the distance between a grid cell location x and
a gauge location xi, and the weight factor is wi = d−β . For this
study, we set β = 2 based on error statistics calculated against
PRISM data.

4. RESULTS

For each coarse-resolution precipitation product (i.e., ERA5-
Land, TRMM, and IMERG), the performance of four groups of
predictors (M1 − M4) that are defined under section 3.3 were
evaluated, leading to a total of 12 different AU-Net models.
For brevity, IMERG will be simply referred to as GPM, and
ERA5-Land as ERA5 in the following discussions.

As part of the exploratory analyses, the temporal correlations
between PRISM and the coarse-resolution products at all
128 × 128 grid cell locations (i.e., after resampling via bilinear
interpolation) were calculated and are shown in Figures 3A–C.
The correlation maps of both TRMM and GPM exhibit similar
spatial patterns, which tend to be higher in the eastern part and
lower in the northwest high-elevation areas; all correlation values
are above 0.8 (Note: despite the similarity, TRMM and IMERG
processing are different in a number of ways, e.g., the Level-
2 and Level-3 algorithms, the infrared data used for gap filling
and replacement, as well as the spatiotemporal resolutions).
In comparison, the correlation between ERA5 and PRISM is
generally lower, except near the southwestern corner of the
study area. Nevertheless, the large-scale spatial patterns of all
three coarse-resolution products are similar, all exhibiting this
diagonally oriented (southwest to northeast) stripe pattern.

4.1. Performance of AU-Net Models
Figure 4 plots the training and validation errors vs. training
epochs for all models. The ERA5 model group (Figure 4A)
tends to have larger training and validation errors than TRMM
(Figure 4B) and GPM (Figure 4C) groups. In each group, the
M4 AU-Net model tends to have slower training convergence rate
and stronger oscillations than the rest of the models.

Table 2 summarizes the mean performance metrics of all
products and (uncorrected) AU-Net models against the gauge
data for the test period 2017/01–2018/12. The target data, PRISM,
has the smallest RMSE (3.59 cm) and highest CC (0.637) values.
Among the three satellite/reanalysis products, TRMM and GPM
have similar mean RMSE values (4.19 and 4.15 cm, respectively),
which are all lower than that of the ERA5 (4.89 cm), but are
more than 16% higher than that of the PRISM. The bias of
TRMM (0.41) is lowest among all. GPM shows a slightly higher
mean CC value (0.408), but is still about 35% lower than that
of PRISM. Note that the CC values shown in Table 2 are lower
than those seen previously in Figure 3. This is because the former
quantifies the spatial correlation between gridded products and

TABLE 2 | Summary of gauge comparison metrics on testing data

(2017/01–2018/12) for three precipitation products, ERA5, TRMM, and GPM, and

AU-Net models (best performing member in each category is highlighted).

Product RMSE (cm) Bias CC

PRISM 3.59 10.58 0.637

ERA5 4.89 25.18 0.283

M1 4.88 1.14 0.247

M2 4.86 6.13 0.251

M3 4.80 9.33 0.243

M4 4.96 1.54 0.247

TRMM 4.19 0.41 0.396

M1 4.23 −3.37 0.410

M2 4.21 −4.95 0.407

M3 4.22 3.78 0.407

M4 4.26 3.91 0.399

GPM 4.15 4.27 0.408

M1 4.19 −12.11 0.416

M2 4.16 −1.76 0.414

M3 4.19 0.49 0.412

M4 4.20 −4.97 0.407

point measurements at gauge locations, while the latter measures
CC between harmonized time series at each grid cell. Also
rain gauges are subject to various errors as mentioned in the
Introduction, and point-scale gauge measurements may deviate
significantly from areal precipitation (Tang et al., 2018a).

At the gauge level, Table 2 suggests that the AU-Net models
in the ERA5 group show similar mean RMSE and CC, but the
bias is reduced significantly compared to the original ERA5.
The AU-Net models for TRMM show slightly worse RMSE than
the original TRMM, and slightly better CC, but the bias is also
larger. The same is true for GPM AU-Net models. All the metrics
are summarized in Figures 5A–C in separate Taylor diagrams
(Taylor, 2001), which help to visualize model performance in
terms of CC, standard deviation (SD), and RMSE relative to the
reference gauge observations. The Taylor diagrams suggest that
all gridded precipitation products underestimate the data spread
as seen in the gauge data, which is due to the harmonization
process behind the gridded products. ERA5 has the greatest SD,
while TRMM and GPM have similar SD values. The AU-Net
models for different data groups are mostly clustered together,
although theM1 models seem to do better than others.

In Supplementary Figures 1–3, boxplots of the monthly
values of MSE, bias, and CC for each AU-Net model are
provided. In general, the boxplots support the aforementioned
observations. Moreover, they also suggest that the range of
model performance metrics depends on the quality of the coarse-
resolution inputs. For example, models trained using TRMM
and GPM, both are already gauge corrected, generally exhibit
smaller variations in metric values than the models trained using
ERA5 do.

Overall, on the basis of rain gauge data comparison, the best
performers are scattered among predictor groupsM1–M3 for the
three products considered. TheM4 group seems to underperform
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FIGURE 5 | Taylor diagrams summarizing statistics of all gridded rainfall products and uncorrected AU-Net models, against the gauge data and PRISM data for test

period (2017/01–2018/12): (A) ERA, (B) TRMM, and (C) GPM. The blue star on the horizontal axes corresponds to the gauge dataset result.

FIGURE 6 | Time series of ERA metrics over the test period (2017/01–2018/12): (A) monthly averaged PRISM and ERA data; (B) mean grid averaged RMSE; and (C)

SSIM. All subplots share the same x axis.
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FIGURE 7 | Time series of TRMM metrics over the test period: (A) monthly averaged PRISM and TRMM data; (B) mean grid averaged RMSE; and (C) SSIM. All

subplots share the same x axis.

compared to the other three predictor groups, due to its use of
only coarse-scale information.

At the grid-level, Figures 6–8 show the monthly time series
of performance metrics for each product. The top panel of each
figure compares the spatially averaged precipitation calculated
on PRISM and the respective data product. In general, results
suggest that the model performance is sensitive to the amount
of precipitation, as well as to antecedent conditions of dynamic
variables (i.e., P, T, and EVI). The models tend to outperform
the baseline coarse-resolution product in dry months than in
wet months. For ERA5, models M1 and M3 improve over ERA5
(as measured in SSIM) in the mid part of the test period,
ranging from 2017/03 to 2018/06. Most ERA5 models, however,
underperform the original ERA5 data during two extreme wet
events, one in 2017/08 when Hurricane Harvey made landfall
and the other during the record-breaking wet period 2018/08–
2018/09. This may be attributed to the extremity of the events
and the lack of predictability at the monthly scale. In the case
of TRMM and GPM models, the metrics time series are less
oscillatory—all models tend to have very similar RMSE values,
and the model SSIM values are better than the TRMM and

GPM during the dry period in the middle of the test period.
Compared to ERA, the metrics of TRMM and GPM model
stay close to the original data products even during the two
extreme events.

To give examples of learned patterns, in Figure 9 we plot the
AU-Net results (left three columns), together with the original
coarse-resolution data (top row) and the fine-resolution PRISM
and Stage-IV datasets (the rightmost column) for 2017/01, which
was a relatively wet month. The SSIM between each image
and PRISM is shown on top of each subplot. PRISM and
Stage-IV have very similar spatial patterns. Compared to the
PRISM and Stage-IV data, ERA5 (upper-left) did not capture
the higher rainfall zone near the eastern side, while both TRMM
and GPM were able to capture the same zone in a large-scale
sense. The AU-Net models that include static information (i.e.,
M1–M3) introduce more fine-scale features in the results, such
as near the southwestern corner of the domain and inside
the wetter zone; however, the improvements over the original
products are rather limited in terms of SSIM. Only the M2

model under the GPM group predicts the location of the high-
precipitation relatively accurately. The M4 models, which only
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FIGURE 8 | Time series of GPM metrics over the test period: (A) monthly averaged PRISM and GPM data; (B) mean grid averaged RMSE; and (C) SSIM. All subplots

share the same x axis.

use coarse-resolution information, yield more smooth features
than the other models do.

As another example, we compare the AU-Net results for the
month 2018/01, which was a relatively dry month. Figure 10
shows that all three coarse-resolution products are able to
delineate the large low-precipitation zone near the northwestern
corner. Under the ERA group, the M1 model gives the best
pattern match (SSIM = 0.69), while in the cases of TRMM and
GPM, M1 (SSIM = 0.63) and M4 (SSIM = 0.67) give the best
pattern match, respectively. In this case, even the M4 model,
which only uses dynamic variables, is able to infill some fine-
scale features.

Results in Figures 9, 10 highlight the promises, as well as
challenges, in extracting and learning the fine-scale features in
precipitation data for this low-predictability study area. The
use of antecedent conditions and auxiliary static information
helped to improve the baseline coarse-resolution products in

some cases, but deteriorated the baseline in other cases. In
particular, we note that static information tends to be more useful
under dry conditions, while autocorrelation in precipitation itself
seems to play a major role in predictability. No predictor group
consistently performed better than the others. The inherent
high variability of precipitation in space and time, especially
in topographically complex regions, makes the pattern-based
downscaling challenging, without further correction using in
situ data.

4.2. Corrected AU-Net Models
The AU-Net models were corrected by first calculating the error
residual between model and gauge data, and then interpolating
to the grid using the IDW scheme described under this section.
Figure 11 shows the gauge-corrected AU-Net results on the
2017/01 data used in Figure 9. Similarly, Figure 12 shows the
gauge corrected results for 2018/01 data. Results suggest that
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FIGURE 9 | AU-Net results on 2017/01 data (128× 128 grid). Left column (from top to bottom) ERA5 and the corresponding M1 −M4 AU-Net models; 2nd column:

TRMM and the corresponding AU-Net models; 3rd column: GPM and the corresponding AU-Net models; rightmost column: PRISM and the reference Stage-IV data

for the same month. All subplots are scaled to the same color range.
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FIGURE 10 | AU-Net results on 2018/01 data (128× 128 grid). Left column (from top to bottom): ERA5 and the corresponding M1 −M4 AU-Net models; 2nd column:

TRMM and the corresponding AU-Net models; 3rd column: GPM and the corresponding AU-Net models; rightmost column: PRISM data for the same month.
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FIGURE 11 | Results of gauge correction using inverse distance weighting on 2017/01 data. Left column (from top to bottom) ERA5 and the corresponding M1 −M4

AU-Net models; 2nd column: TRMM and the corresponding AU-Net models; 3rd column: GPM and the corresponding AU-Net models; rightmost column: reference

PRISM and Stage-IV data for the same month.
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FIGURE 12 | Results of gauge correction on 2018/01 data. Left column (from top to bottom) ERA5 and the corresponding M1 −M4 AU-Net models; 2nd column:

TRMM and the corresponding AU-Net models; 3rd column: GPM and the corresponding AU-Net models; rightmost column: reference PRISM data for the same

month.
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FIGURE 13 | Results of U-Net models for 2017/01. Top row: ERA5 results; mid-row: TRMM results; and bottom row: GPM results.

gauge correction significantly improved the pattern match for
all AU-Net models, leading to convergence in model patterns
among all models. In the case of 2017/01, gauge correction
actually introduced more fine-scale features than that are present
in the PRISM image. This may be caused by the difference
in point measurement set used, and also in the gauge data
interpolation algorithm. In the case of 2018/01, gauge correction
almost resulted in identical patterns to the PRISM image. The
dominating effect of gauge correction observed here is not
surprising, given the large number of gauges available for the
study area (361 in 2017/01 and 459 in 2018/01). RMSE of
the gauge-corrected AU-Net models (not reported here) is also
significantly reduced, compared to the uncorrected results.

4.3. Effect of Attention Mechanism
A main motivation of this work to explore the use of attention
mechanism for multiscale pattern extraction. To demonstrate the
effect of attention mechanism, we train the classic U-Net models
using the same model structures, but with the attention block
removed (see Figure 2). The kernel size used in the U-Net is 4×4
and stride size is 2. As mentioned before, attention mechanism
helps to capture the large-scale patterns while producing sharper
local details. Figure 13 shows the result for the same 2017/01

data, as shown earlier in Figure 9. An immediate observation
from Figure 9 is that all images produced by the U-Net are more
blurry than those generated by the AU-Net models. The SSIM
values are also smaller than their counterparts in AU-Nets.

5. DISCUSSION

In this work, the feasibility of using AU-Net to downscale
precipitation data was investigated over Central Texas, U.S., on
three coarse-resolution satellite/reanalysis products. Climate in
the region ranges from semi-arid in the west to subtropical in the
east. The climate and hilly terrain of the region lead to strong
spatial and temporal variations in precipitation patterns, making
downscaling for the study area at the monthly level especially
challenging. The AU-Net models, which can extract features at
multiple scales, are used to learn the mappings between coarse-
and fine-resolution products.

At the regionally aggregated scale, all three coarse-resolution
products (baseline) are shown to have relatively strong temporal
correlation with the fine-resolution PRISM product (>0.7) at the
monthly level. The question is whether this correlation can be
propagated down to the grid level. A main finding of this study
is that the efficacy of downscaling and thus, model improvement,
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depends on the precipitation amount and information content
embedded in antecedent conditions and auxiliary variables,
as well as the quality of the original product. Under drier
conditions, the precipitation patterns are more contiguous and
are easier for the AU-Net models to learn. In addition, the static
information tends to be more useful under drier conditions. On
the other hand, in wet months the precipitation patterns become
spatially heterogeneous and are more difficult to downscale
without additional constraints. This observation is largely in
agreement with the previous studies that show systematic errors
in precipitation products are proportional to precipitation rates,
which is higher for higher rates (e.g., AghaKouchak et al.,
2012).

The fine-resolution auxiliary variables considered in this
study only include EVI and DEM. EVI may be less reliable
as a predictor at the monthly level (Duan and Bastiaanssen,
2013), even with added lags. Thus, future effort should focus on
experimenting with alternative fine-resolution remotely sensed
information, which is especially valuable when high-density rain
gauge networks are not available.

Performance of DL models may depend on grid resolution.
Higher grid resolution models, however, also increase training
time significantly. In this work, we mainly experiment with 128×
128 grids. As a sensitivity analysis, we also trained the same AU-
Net models on 256 × 256 grids. The average training time is
about 30 min on the same computing node. The results, which
are compared in Supplementary Material S2, indicate that finer
resolution tends to improve error metrics across all groups. The
relative performance between models and the original products
remains about the same.

The monthly scale considered in this work limits the number
of data samples available for training which, in turn, may also
affect the network performance. Future work will examine daily
scales. At last, in this work we assume that the ground truth is
PRISM, which itself may be subject to uncertainties present in
the rain gauge data.

6. SUMMARY

High-resolution precipitation data is needed in a large number
of hydrological planning and emergency management activities.
Currently, a number of coarse-resolution remotely sensed
products are produced on operational basis. To maximize the
societal benefits of these products, some type of downscaling is
necessary, which is a highly ill-posed inverse problem. This work
investigates the feasibility of deep-learning-based downscaling

approaches by considering different combinations of static and
dynamic variables as predictors. The state-of-the-art, end-to-
end deep learning (DL) framework adopted in this study allows
for stacking of multi-source and multi-resolution inputs. In
addition, we explore a new attention mechanism for learning
multiscale features (i.e., AU-Net). The efficacy of the AU-Net is
demonstrated over Central Texas, U.S., for downscaling three
coarse-resolution precipitation products, namely, ERA, TRMM,
and IMERG data. Results suggest that the trained AU-Net models
achieve different degrees of success in downscaling the coarse-
resolution products. In general, the model performance depends
on the precipitation rate, and the performance is better under
nominal and dry conditions than in extremely wet conditions.

Although we mainly demonstrate an attention-based, DL
framework for a low-predictability study area in the U.S., the
problem setup is general and the approach can be applied to other
regions and at different spatial and temporal resolutions.
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APPENDIX

Definition of Abbreviations
AU-Net Attention-based U-Net
CFSR NCEP Climate Forest System Reanalysis
CNN Convolutional Neural Network
DL Deep learning
ECMWF European Center for Medium-Range Weather

Forecasts
ERA ECMWF reanalysis
GPM Global Precipitation Measurement
IDW Inverse distance weighting
IMERG Integrated Multi-satellite Retrievals for GPM
LSTM Long short-term memory
MERRA Modern-Era Retrospective Analysis for Research

and Application
MODIS MODerate resolution Imaging Spectroradiometer
MSWEP Multi-Source Weighted-Ensemble Precipitation
NCEP National Centers for Environmental Prediction
PRISM Parameter-elevation Regressions on Independent

Slopes Model
RMSE Root mean square error
SSIM Structural similarity index metric
TRMM Tropical Rainfall Measuring Mission
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Some machine learning (ML) methods such as classification trees are useful tools to

generate hypotheses about how hydrologic systems function. However, data limitations

dictate that ML alone often cannot differentiate between causal and associative

relationships. For example, previous ML analysis suggested that soil thickness is the key

physiographic factor determining the storage-streamflow correlations in the eastern US.

This conclusion is not robust, especially if data are perturbed, and there were alternative,

competing explanations including soil texture and terrain slope. However, typical causal

analysis based on process-based models (PBMs) is inefficient and susceptible to human

bias. Here we demonstrate a more efficient and objective analysis procedure where ML is

first applied to generate data-consistent hypotheses, and then a PBM is invoked to verify

these hypotheses. We employed a surface-subsurface processes model and conducted

perturbation experiments to implement these competing hypotheses and assess the

impacts of the changes. The experimental results strongly support the soil thickness

hypothesis as opposed to the terrain slope and soil texture ones, which are co-varying

and coincidental factors. Thicker soil permits larger saturation excess and longer system

memory that carries wet season water storage to influence dry season baseflows. We

further suggest this analysis could be formulated into a data-centric Bayesian framework.

This study demonstrates that PBM present indispensable value for problems that ML

cannot solve alone, and is meant to encourage more synergies between ML and PBM

in the future.

Keywords: Machine Learning (ML), process-based model (PBM), streamflow-storage relationships, data-centric,

Bayes law, classification tree, soil texture
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BACKGROUND

Basin water storage has deep connections with streamflow
(Reager et al., 2014; Fang and Shen, 2017). Hence terrestrial
water storage anomalies (TWSA) data could, under certain
circumstances, be used to increase flood forecast lead time
(Reager et al., 2015). From a physical hydrologic point of view,
more water stored in a basin could mean a higher groundwater
table or wetter soils which lead to more runoff source areas
(Dingman, 2015). The storage-streamflow relationship is also
important for predicting baseflow (Thomas et al., 2013) and
related ecosystem (Poff and Allan, 1995) and water supply
issues. The issue is that these relationships vary widely in
space. Fang and Shen (2017) (hereafter named FS17, more
description in section The Background Story) conducted an
analysis of the correlation between TWSA annual extrema
and different streamflow percentiles in a year, and found very
interesting patterns of these correlations over the conterminous
United States (CONUS). The correlations between TWSA
annual extrema and high-percentile flows are strong in certain
parts of the CONUS, e.g., the southeastern Coastal Plain and
northern Great Plains, but are weak in other areas such as the
Appalachian Plateau, northern Indiana, and Florida. Why are
there wildly different storage-streamflow relationships, i.e., what
physical factors caused them? Our limited understanding of this
question hampered our use of water storage and groundwater
data in flood forecasting.

In general, to answer “why” questions such as the one raised
above, one could resort to two avenues: process-based models
(PBMs) or data-driven analyses. They are often regarded as
two separate roads that do not cross. PBMs embody our beliefs
about how the system functions. We can use PBMs to conduct
numerical experiments to assess causal relationships, as we
can alter measurable physical factors to directly examine their
impacts on the outputs. We typically employ a “model-centric”
framework, where we (i) deploy some prior distributions or
beliefs of model structures; (ii) create an ensemble of model
simulations (with different parameter sets, inputs, or model
structures); (iii) confront these models with observations by
evaluating likelihood functions either formally or informally by
visually examining the outcomes; and (iv) identify the model(s)
that best describe(s) the data. It is easy to see that paradigms
like model calibration (Vrugt et al., 2003) or Monte Carlo
Markov Chain (Vrugt et al., 2009) fit into this framework.
Moreover, numerical experiments where the modelers perturb
model physics on an ad-hoc basis (e.g., Maxwell and Condon,
2016; Shen et al., 2016; Ji et al., 2019) could also be placed in this
framework. Potential issues with this framework are that it can
be both subjective and inefficient, as many competing hypotheses
remain un-tested. The priors are often based on one’s own beliefs,
and one needs to throw a huge amount of simulations to capture
the plausible model structure. It has been argued that hydrologic
models are necessarily degenerate (Nearing et al., 2016) and even
sampling exhaustively from its parameter distribution does not
capture the whole possible model space.

In contrast to PBMs, various interpretable machine learning

approaches could be used to generate possible explanations, or

“hypotheses” in machine learning language (Russell and Norvig,
2009), of an observed behavior. For example, the weights from
linear regression could inform us of the relative importance
of factors. Classification and regression tree (CART) analysis
(Breiman et al., 1984; Mitchell, 1997), which iteratively separates
data points based on predictors and their thresholds, is another
explanatory tool that has often been employed. For example,
Verhougstraete et al. (2015) used the first level split in a CART
model to draw the conclusion that septic systems are the primary
driver of fecal bacteria levels in 64 US rivers. An advantage of
machine learning approaches is that they are highly efficient to
execute compared to PBMs, and the models they generate are
already consistent with data. They also carry the appeal of relying
less on subjective assumptions and model choices.

However, the “Achilles heel” for machine learning as an
explanatory tool is arguably their inability to distinguish between
causal and associated relationships. If we had a large enough
training dataset that covered all possible combinations of physical
factors, machine learning should theoretically be able to extract
the causal factor. However, we are limited by the combinations
that exist in the real world and for which we have data, posing
limits on the power of data. Naturally, onemight wonder if PBMs’
strength in causality analysis could be exploited to complement
machine learning algorithms.

Recently, there have emerged increasing interest in combining
physics with data-driven models. One could adopt a variety
of methods loosely termed “physics-guided machine learning”
(PGML) or “theory-guided machine learning” (Ganguly et al.,
2014; Karpatne et al., 2017; Jia et al., 2019; Read et al., 2019; Yang
et al., 2019), such as modifying the loss function to accommodate
physical constraints (Jia et al., 2019) or pre-training a ML model
using PBM outputs (Jia et al., 2018). These constructive ideas
have made ML more robust and have enriched our means
of investigations. Nevertheless, PGML frameworks have not
taken advantage of PBM’s ability to conduct experiments and
assess causes and effects. Here we propose that the evaluation
of competing hypotheses could be accomplished by running
numerical experiments with a PBM to utilize the physics encoded
in the PBM (Figure 2), as an example of the alternative research
avenue proposed earlier (Shen et al., 2018). We then compare
the probability of each hypothesis and reject those with low
probability. Bayes’ law allows information from different sources
to be merged in a sequential manner given some evidence. In the
context of hydrology (Beven and Binley, 1992; Kavetski et al.,
2006; Raje and Krishnan, 2012; Viglione et al., 2013), the gist
is that a likelihood function based on (oftentimes subjective)
assumptions of error or data distribution replaces the conditional
probability of observing a data point given model parameters.
While such kinds of likelihood functions have been well-
established, Bayes’ law itself is quite generic and not restricted
to this use. An opportunity exists to explore using Bayes’ law
to use process-based models to provide a quantification of the
likelihood. Because this framework first starts with data, we
call it a data-centric framework, in contrast to a conventional
model-centric Bayesian framework where a model’s inputs and
parameters are perturbed and the posterior probability of each
realization is calculated. We will use the storage-streamflow
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question to showcase the effectiveness of this framework and help
us understand the main controlling factors of streamflow in the
Susquehanna River basin to inspire best modeling practices. This
work is a first exploration of this particular method of coupling
data-driven hypotheses with process-basedmodeling capabilities,
and by no means do we indicate this method is optimal or the
most efficient.

In the following, we first provide some background for the
case study of streamflow-storage correlations and the competing
hypotheses that explain them (section The Background
Story). Then we describe the process-based model and the
experimental setup (sections Process-Based Hydrologic Model
and Competing Hypotheses and the Implementation of
Perturbation Experiments). We make sure the model produces

FIGURE 1 | Class map (A) and boxplots of the SSCS for Class #1 to Class #6 (B). The boxes contain 25–75% percentiles, and the crosses are those considered

outliers (Reprinted from FS17 with permission).
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reasonable hydrologic dynamics (section Performance of
the Physically-Based Model), and then finally we use the
perturbation experiments to test the competing hypotheses from
ML (section Testing Competing Hypotheses).

THE BACKGROUND STORY

The Storage-Streamflow-Correlation

Spectrum
In FS17we introduced a hydrologic signature termed the Storage-
Streamflow-Correlation Spectrum (SSCS), which quantifies
how water storage is correlated with streamflow at different
flow regimes. SSCS is the collection of Pearson’s correlation
coefficients (R) between annual extrema (peaks or troughs) of
the terrestrial water storage anomalies (TWSA) and different
streamflow percentiles (15 percentiles extracted are: {0.5%, 1%,
2%, 5%, 10%, 20%, 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%,
99.5%}) in a window around the extrema for the same basin. The
correlations are calculated on an annual scale, using the water
year (the 12-month period from October 1 through September
30 of the following year). The study period of FS17 is from 1
October 2002 to 31 September 2012. Treating each flow percentile
as a “band,” we obtained a correlation “spectrum.” The SSCS gives
a snapshot of the correlations across all bands, as compared to
previous studies that focused only on high flow regimes.

If streamflow is disconnected from storage, e.g., when most
rainfall runs off or evaporates directly without entering the
subsurface, the system would exhibit low correlation between
flows and storage during peak flows. Generally, the high-
flow bands have lower R than low-flow bands because peak
streamflows result from large storms whose magnitudes are
poorly correlated to water storage. In contrast, if groundwater
exerts a significant influence over streamflow, we expect the
correlation to be higher. A high correlation between TWSA
peaks and low flows indicates a long system memory: when such
basins receive plenty of precipitation in the wet season, the excess
storage is carried over the seasons and is reflected in low flows.
Therefore, SSCS gives us a window of observation into how
varied surface and subsurface hydrologic systems function. Please
see FS17 for more details.

When applying the SSCS over the conterminous United States
(CONUS), a large variety of SSCS behaviors emerged (FS17). To
facilitate our interpretation, we clustered these responses into
6 different classes using K-means and a distance measure (the
Euclidean distance in the SSCS space). The correlation values
for different classes and the spatial distribution of classes are
shown in Figure 1. We can clearly observe regional clusters and
spatial gradients in the SSCS patterns. Class #1 was described as
“full-spectrum responsive” since it had the highest correlations
and the smallest variability across all SSCS bands. Class #1
concentrated on the southeast Coastal Plain and northern
Great Plains. Class #2 and #3 catchments had weaker SSCS
values and were concentrated along the northern Appalachian
Plateau. For Class #3, in peak-TWSA bands, streamflow-storage
correlation was low for flow percentiles below 20%, but higher
for percentiles above 60%; in trough-TWSA bands, there were
high streamflow-storage correlations at percentiles below 60%,

FIGURE 2 | A framework for integrating PBM and machine learning.

but correlations were a little lower for high streamflow percentiles
(80% above). Class #2 can be considered a transition type between
class #1 and class #3.

Explaining the Controls of SSCS
When observing the large spatial gradients of SSCS classes
over CONUS in Figure 1, one cannot help asking, “what
causes the SSCS behavior to differ between Appalachia and

the Coastal Plain?”, which was the central question of this
study. FS17 employed a CART analysis to learn simple and
interpretable decision rules (the split criteria and thresholds)
from the data. Focusing on the differences between basins in
Appalachia (Appalachian Plateau, Piedmont, and Valley and
Ridge physiographic provinces) and basins in the southeastern
Coastal Plain, FS17 trained a specific CART model to predict
the distances of basins to class centers in SSCS space. They used
a number of predictors including the aridity index, depth to
bedrock, rainfall seasonality, and the fraction of precipitation as
snow (supporting information Table S1 in FS17). In other words,
they asked what factors made the two clusters of basins different
in terms of their SSCS patterns. From this ad hoc tree, the CART-
based model automatically identified soil thickness (RockDep),
obtained by merging soils-survey-based depth to bedrock with
bedrock depth simulated by a geomorphological model (Pelletier
et al., 2016) as the main difference between the two types of
streamflow-storage correlation patterns.

The problem of learning an optimal CART is that a CART is
not robust. This can be mitigated by training multiple trees in
an ensemble as in the random forest (RF) algorithm (Ho, 1995),
where the features and samples are randomly sampled with
replacement. The RF generalizes from the CART and provides
an estimation of probability. While RF models are more robust
and can be used to infer probabilities, they are more difficult for
humans to interpret.

While the RockDep explanation does make physical sense, it
could be dangerous to take this hypothesis as the truth. First, even
though soil thickness appeared to be the stronger explanatory
model, there could be other slightly weaker but nonetheless valid
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models. We have yet to explore what would happen if we slightly
alter the training dataset. Because we rely on available data, the
results may be dependent on a few data points that critically cover
certain parts of the input space. However, such critical data points
may happen to be missing in our training data; the robustness of
the model has not been established.

METHODS AND DATASETS

To answer our central question, here we propose a novel
framework that combines the strengths of machine learning
and process-based modeling. In this framework, machine
learning first presents competing hypotheses and assigns them
prior probabilities. Then, we construct numerical perturbation
experiments with a process-based model to implement and
test the hypotheses (Figure 2). The testing of the hypotheses
could be achieved by visual examination of the outcome of the
experiments, or via a more quantitative Bayesian approach.

Study Area—Susquehanna River Basin

(SRB)
The Susquehanna River (watershed area: 71,225 km2) is a
major river located in the northeastern and mid-Atlantic
United States (Figure 3A), which has historically been the source
of many instances of flooding damage along the main river
floodplains (Yarnal et al., 1997; May, 2011). The basin spans the
physiographic provinces of the Appalachian Plateau, Piedmont,
Valley and Ridge, and Coastal Plain regions. In general, most of
the northern subbasins of the SRB consist of mountains mantled
by thin soils which are mostly thinner than 2m (Figure 3B). We
show the SSCS behaviors of 13 randomly selected subbasins in
the Susquehanna River Basin. We found that the all 13 stations
in the Susquehanna River Basin belong to either Class #2 or Class
#3 (Figure 3C, the original pattern of SSCS from 13 USGS gauge
stations is similar to class #3).

We further chose 4 subbasins (Figure 3A), namely, the Otselic
River basin (OR), the Pine Creek basin (PIN), the Raystown
Branch Juniata River basin (RAY), and the Octoraro Creek
basin (OCT) in the south to create process-based hydrologic
models. Both soils survey data and global modeled soil thickness
data were used to parameterize soil thickness: in most of the
basin where the bedrock is within the limit of the soils survey
depth (1.52m), the RockDep attribute in SSURGO (NRCS,
2010) was used; outside of these areas, we used the average
soil and sedimentary layer thickness from Pelletier et al. (2016),
which has global coverage with 1 km resolution. Among the
subbasins modeled, OR and PIN are headwater subbasins in the
Appalachian Plateau, RAY is a headwater subbasin in the Valley
and Ridge physiographic division, and OCT is near the Coastal
Plain region. OCT has a visibly larger soil thickness.

Process-Based Hydrologic Model
To be able to conduct causal experiments, we employed the
Process-based Adaptive Watershed Simulator coupled with the
Community LandModel (PAWS+CLM) (Shen and Phanikumar,
2010; Shen et al., 2013, 2014, 2016; Ji et al., 2015, 2019;
Niu et al., 2017; Ji and Shen, 2018; Fang et al., 2019). First

introduced in Shen and Phanikumar (2010), the PAWS model
was coupled to the Community Land Model (CLM) (Collins
et al., 2006; Dickinson et al., 2006; Oleson et al., 2010; Lawrence
et al., 2011) which describes the land surface and vegetation
dynamics (Shen et al., 2013). The PAWS model has been used to
explain the relative importance of different controlling processes
on hydrologic and ecosystem dynamics. CLM incorporates
comprehensive physical and biogeochemical processes including
vapor and momentum transfer, surface radiative transfer, soil
heat transfer, freeze-thaw phase changes, and biochemical
photosynthesis, as well as plant carbon and nitrogen cycles (Shen
et al., 2014). PAWS+CLM inherits the land surface processes
from CLM, including surface energy fluxes, ET, vegetation
growth, and carbon cycling, while solving physically-based
conservative laws for flow processes including 2D overland flow,
quasi-3D subsurface (soil and groundwater) flow, vectorized
channel networks, and the exchanges among these domains. The
flow module starts with throughfall, stemflow, and snowmelt
as the precipitation inputs, and converts the CLM-computed
evapotranspiration term into a sink. The surface water layer is
divided into the flow domain, which can flow laterally, and the
ponding domain, which exchanges with the main soil column
and does not circulate laterally. The flow domain water is
routed downstream as overland flow, described by a diffusive
wave equation (DWE). Infiltrated water is governed by the
Richards equation. Water reaching the phreatic water table may
move laterally, as described by Dupuit-Forchheimer flow in
an unconfined aquifer. 1D columns of vertical soil flow are
coupled to the saturated lateral flow at the bottom. The confined
aquifers below are described by a 3D saturated groundwater flow
equation. The channel flow is governed by DWE in a 1D cascade
network. More information about PAWS can be found in Shen
et al. (2016).

Configuration of the Hydrologic Model
In this study, a 1,040 × 1,040m horizontal grid was
used to discretize the domain. Precipitation and climate
forcing data used in PAWS+CLM were obtained from the
North American Land Data Assimilation System (NLDAS)
(Mitchell, 2004). Information from the Soil Survey Geographic
Database (SSURGO) was used to provide initial values for
the soil properties. In PAWS+CLM, we extracted topographic
information from the National Elevation Dataset (30m) to
parameterize the river bed elevations, and used the mean
elevation to parameterize the gridcell elevation (Shen et al., 2016).
The climatic forcing datasets that come from NLDAS are on an
hourly basis.

The channel network is represented by an explicit, vectorized
channel network for larger rivers and the implicit, gridded
overland flow for smaller headwater streams. As an advance of
PAWS+CLM, the channel network topology is now established
based on the National Hydrography Dataset Plus Version
2 (NHDPlus V2) shapefiles. In NHDPlus V2, each segment
is encoded with a unique ID number and the downstream
ID. Combing through this connectivity information, our pre-
processing package traces the rivers from downstream to
upstream and records the river distances of each segment. The
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FIGURE 3 | Study area, Susquehanna River Basin (SRB). Main class of SRB observation data is class #3 and #2 in FS17. (A) Study area, Susquehanna River Basin.

Among the subbasins modeled, OR and PIN are headwater subbasins in the Appalachian Plateau, RAY is a headwater subbasin in the Valley and Ridge physiographic

division, and OCT is near the Coastal Plain region. (B) Soil thickness. (C) SSCS in Susquehanna River Basin for 13 USGS gauge stations (station numbers in legend).

available channels from NHD are vastly greater than what can
be explicitly represented in the vectorized channel network in
the model. In previous work, the selection of the explicitly
modeled streams was manual. We have now implemented
an automatic selection procedure: our pre-processing utility
iteratively selects the longest rivers from the candidate pool
built from NHDPlus V2, so that the total selected river
length satisfies a prescribed river density (river length :
basin area). Based on these explicitly represented rivers, we
then establish a network structure, recording names of the
streams, network topology, upstream/downstream nodes in
the hierarchy, boundary condition types (headwater, inflow,
connecting streams, or outflow), tributaries, and locations of
confluences. For each explicitly modeled river, the discretization
procedure evenly distributes the river polyline into river cells.
We then overlay the river cell with high resolution DEM and
groundwater data, extracting information, e.g., bank and bed
elevation (inferred through regional regression equation), during
discretization (Shen et al., 2016).

In PAWS the soil water retention and unsaturated hydraulic
conductivity are parameterized using the van Genuchten
formulation. To obtain spatially distributed van Genuchten

parameters, we incorporated a range of well-established
pedotransfer functions (PTFs) (Guber et al., 2009) and the
Rosetta (Schaap et al., 2001) program which employs a hierarchy
of PTFs, ranging in complexity from a soil textural lookup
table to algorithms based on Artificial Neural Networks (ANN).
We also exported soil textural information (sand, clay, and
silt percentages), bulk density, and water contents from soil
horizon data from the SSURGO database (NRCS, 2010) into
Rosetta, wherever they were available. Rosetta was then used
to predict van Genuchten parameters, and the results were
subsequently read into PAWS. Normally, we chose the “best
possible model” option in Rosetta. The SSURGO database
contains fine resolution (1:24,000 map scale) soil type maps,
which are encoded as “map unit” keys (mukey). A mukey value
serves as an index key to the SSURGO relational databases that
detail the characteristics of that soil type. A mukey may contain
several “soil components,” each taking up a certain fraction of
the map unit. Every component then describes the vertical soil
horizons and their depths.

The runtime of PAWS-CLM for 18 years of simulation in
an SRB subbasin (OR) is about 4 h on a machine with CPU.
Even with the help of the pedotransfer functions, process-based
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hydrologic model parameters need to be further adjusted or
calibrated. The SRB is large, and it is difficult to perform
calibration for the whole basin. We thus defined our objective
function as the mean of the Nash-Sutcliffe model efficiency
coefficients (Nash and Sutcliffe, 1970) for the four subbasins.
This way, the resulting parameter set may not produce the best
achievable performance for each subbasin, but presents a balance
between them for the whole basin. Model performance was
evaluated against USGS streamflow records.

Competing Hypotheses and the

Implementation of Perturbation

Experiments
To identify potential competing hypotheses, we first ran a CART
analysis, which combines classification tree and linear regression
algorithms, for both southeastern and Appalachian basins with
multiple random seeds and randomized removal of training data
points (basins). A classification tree is used to split data points
with a binary decision rule, and a linear regression is used to
predict the distance to clusters’ centroids. The runtime of the
CART-based model was 3∼5 s for both the southeastern and
Appalachian areas. Then we further ran RF analysis with an
expanded list of attributes. With the CART-based model, we
considered all basin physiographic parameters that were deemed
as important for SSCS in FS17, including: RockDep, sand,
slope, soil bulk density, watershed percent agriculture, watershed
percent developed, and standard deviation of elevation. In FS17,
we employed sand and clay as representatives for soil texture
and removed silt, since they add up to one. In the present
analysis we also followed this practice. We then implemented
changes in these factors via perturbing corresponding parameters
in the process-based model. Essentially, we first replaced the
values of these factors in the SRB by their counterparts from the
Southeastern CONUS, and ran experiments to determine their
individual impacts on the SSCS classes. We also considered the
combinatory impacts of these factors by altering them at the
same time.

Some climatic variables such as relative humidity, annual
precipitation, and fraction of precipitation as snow could
overtake as the top-level split, but are ignored in the manual
CART analysis because we are interested in the relative impacts
of physical basin parameters. We nonetheless included them in
the RF model and PBM perturbation experiments by replacing
forcing data on the SRB with those from some locations in the
Coastal Plain region, to compare their impacts with the physical
basin parameters.

One of the important physical basin parameters is soil
thickness. The difference in average soil thickness between the
thinly-mantled Appalachian basins and their southeastern
neighbors is about 30m. Hence, for the perturbation
experiments, we added 30m of soil thickness to each subbasin
of SRB.

The second factor of importance is soil texture (sand or clay
percentages). We replaced the soil van Genuchten parameters
in the SRB with those from soil classes that were randomly
selected from two survey areas in the Southeast. One survey area

had many map units, each of which had many soil component
and horizons. We randomly selected one soil horizon from
each survey area (GA603 and GA632). The soil van Genuchten
parameters were obtained using the Rosetta program. We also
selected two SSURGO horizons where one had the maximum
sand content (FL131) and the other one had the minimum sand
content (TN081). Hence, in these experiments, the SRB basins
effectively are given the same soil texture as the Coastal Plain
region. The characteristics of soil texture of these four SSURGO
entries are shown in Table 1 (sand, silt, and clay percentages).
One could note that basins in the Coastal Plain region have much
more sandy soils, and thus have high infiltration capacity.

The third factor to be analyzed was the terrain slope. We
examined the difference between the slopes of the southeastern
CONUS (Class #1) and SRB, which are <10% and ∼30%,
respectively. Thus, we implemented an experiment where the
terrain slope was reduced by 80%, by changing the digital
elevation data that were inputs to the data pre-processor (Shen
et al., 2014) of PAWS+CLM. 80% was chosen because after this
treatment, the average slopes of the SRB basins were similar to
those in the Coastal Plain region.

Besides single factor experiments, we also evaluated how
multiple factors interacted to impact hydrologic fluxes. After
implementing the numerical experiments, we recalculated the
SSCS from each perturbed simulation. The total simulated water
stored in the soil column and groundwater in the model was used
as the water storage, while streamflow was extracted from the
simulated daily outflow from each subbasin.

The Data-Centric Bayesian Learning

Framework
The effects of the ML hypotheses can be demonstrated solely
by visualizing the results from the experiments. However, as
an exploratory step, here we also propose a quantitative, data-
centric Bayesian framework to integrate data and the results from
the modeling experiments. Essentially, the machine learning
provides the prior, and the numerical experiments compute
a likelihood for a factor being the causal factor. The two
probabilities can be integrated using Bayes’ law.

Here, we define y as the observed patterns and F as the list
of perturbations of the “process parameters”, i.e. physical factors
whose effects can be represented by perturbing our PBM. In
the present example, F can take one of three values in {“soil
thickness,” “soil texture,” “slope”}. When F is equal to “soil
thickness,” the setup of the PBM experiment is to increase soil

TABLE 1 | The characteristics of alteration of soil texture.

Soil Sand percentage Silt percentage Clay percentage

category (%) (%) (%)

GA603 86 4 10

GA632 43 40 17

FL131 85 10 5

TN081 21 55 25

SRB Average 32.8 51.7 15.5
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thickness, while leaving soil texture and slope untouched. We
can then identify the factors causing the differences in observed
patterns between instances using Bayes’ law:

P
(
F
∣∣y

)
=

L(y|F)P(F)

P(y)
(1)

where P(F) is the prior probability of the process parameters
being the cause of the observed differences between instances,
to be obtained from the pure data-driven analysis (more
below), L(y|F) is the likelihood that, after making the process
perturbations in F, the differences in patterns in y are observed,
P

(
y
)

=
∫
L(y|F)P(F)dF is the marginalized probability, and

P
(
F
∣∣y

)
is then the probability that, given the evidence with

the model experiments, F is the causal factor for the observed
differences. In the Bayesian analysis here, we only consider the
top three individual factors as potential values for F, and do not
consider parameter interactions.

More specifically for this case, we start from basins that are
by default of SSCS class #2 and #3 in the SRB, and ask whether
a change in one of the physical factors could turn them into
class #1. Therefore, P(F) is the prior probability of each process
perturbation, and was calculated as the frequency that F appears
as the first level split in the RF model trained to predict the
distance to the class center #1; L(y|F) is the likelihood function for
the perturbed model to produce class #1 basins. This likelihood
was assessed using a Gaussian Mixture Model (GMM), which is
a generalization from K-means clustering. Instead of predicting
one class membership, the GMM generates a fuzzy membership
for all classes. Our GMM used the clustering results of FS17,
including the clusters’ centroids, clusters’ covariances, and the
fraction of data points belonging to each class (more details of the
GMM are in Appendix A). The marginalized probability, P(y),
was computed by integration.

The definitions of P(F), which uses model visit frequency,
may seem unestablished. However, in the world-shocking event
where AlphaGo defeated the Go world champion, the algorithm
selected the most visited move during its Monte Carlo tree search
as its actual action (Silver et al., 2016). Their choice, also reliant
on model visit frequency, also seemed informal, but it performed
marvelously well. Our choices were based on the current best tool
we have given the overall objective of this paper.

RESULTS AND DISCUSSIONS

In this section, we first show the limitations of CART analysis and
ML in general, and present multiple competing hypotheses from
ML. After demonstrating the performance of the PAWS+CLM
model for the Susquehanna River basin, we show results from
the perturbation experiments. Finally, we put those results in the
exploratory Bayesian framework and examine its usefulness.

The Robustness of CART and the

Competing Hypotheses
While soil thickness was the most frequent factor that can
predict the SSCS difference between class #1 and class #3 basins
(Figures 4A,B), we found that soil texture (Figures 4C,D display

the result for sand percentage), and terrain slope (Figures 4E,F)
are competing hypotheses. The CART experiments with 20
different random seeds showed that there is a 75% chance
that RockDep was selected as the top-level split, followed by
Sand and then Slope. From the RF modeling, RockDep, Sand,
and Slope have 21%, 17%, and 2% chances to be selected
as the top-level split, respectively, with the other remaining
chances mostly taken by climatic variables. The performance of
these alternative models are weaker than soil thickness, but the
difference, especially between soil thickness and soil texture, was
not big enough to warrant confident rejection. These competing
hypotheses exist because terrain slope, soil texture, and depth to
bedrock covary in space. As we go fromAppalachia (Appalachian
Plateau, Piedmont, Valley and Ridge) to the Coastal Plain,
simultaneously the terrain flattens, the soil texture becomes more
sandy, and the soil thickness increases substantially.

Besides random seeds, we also ran experiments with reduced
training data points to examine the robustness of CART.
We found that the frequency of the first-level criterion of
the classification tree changed significantly when we randomly
removed ∼22% of the data. Moreover, in the extreme case, if
we purposefully removed as few as 7 data points with the lowest
sand percentages out of 693 total data points, the most important
variable would change from “RockDep” to “Sand.”

These results all suggest that the CART analysis is not robust.
CART is indeed problematic; however, this is not just an issue
with CART, but more generically an issue with the statistical
power of the data. It can be argued that there is not enough
statistical power in the data to differentiate between the causal
and the coincidental factors. Geoscientists are opportunistic in
the sense that we can only examine basins with the combinations
of land use, geology, soil texture, and slope that naturally exist in
the world and have been, or are, under study. It is not be hard to
imagine missing some critical combinations which would lead to
erroneous conclusions.

More importantly, from these results, we extracted three
factors that are treated as competing hypotheses that explains
the main difference in SSCS between the Appalachian basins
and their Southeast neighbors: soil thickness (RockDep), soil
texture (Sand, Silt, or Clay), and terrain (Slope). Other
basin parameters such as soil bulk density and land use
have very low importance and can be ignored in later
analysis. We then implemented changes in these factors
in the process-based model to examine their impacts on
the SSCS.

Performance of the Physically-Based

Model
The daily observed USGS streamflow and simulated flow
for a period of 18 years (2000–2017) were compared in
Figure 5. The model had decent performance for streamflow
simulation, especially within the baseflow and low flow periods
(Figure 5), and captures the long-term streamflow pattern as
well as some extreme high flows. The Nash-Sutcliffe model
efficiency coefficient is not as high as in some of our previous
applications (e.g., Shen and Phanikumar, 2010; Shen et al.,
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FIGURE 4 | A one-level classification tree model picks up soil thickness (RockDep) as the main difference between two types of storage-stream flow correlation

patterns compared to other physical factors like soil texture (result for sand percentage shown here, Sand) and terrain (Slope) (Reproduced from FS17 with

permission). (A,C,E) Southeastern region of CONUS. Color indicates SSCS class, symbols indicate tree nodes for physical factor (RockDep, Sand, Slope). (B,D,F)

One-level ad hoc trees to predict class #1 in (A,C,E) via physical factor (RockDep, Sand, Slope).

2014; Niu et al., 2017), due to the compromise in the 4
subbasins’ parameter calibration. While the largest dam on
the Susquehanna River, the Conowingo Dam, is downstream
from our gage, there are other smaller dams in the basin

that could have contributed to the mismatch. In addition,
our experiences have indicated that NLDAS precipitation
often underestimates the peak storms, leading to an under-
estimation of peaks. As the main focus of the paper is
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FIGURE 5 | Model streamflow simulation of whole SRB streamflow simulation. The red solid line indicates the USGS measured streamflow, and the blue dashed line

indicates the model’s simulated flow.

not streamflow prediction, our calibration of the model is
not extensive.

Testing Competing Hypotheses
It is easy to observe the impacts of soil thickness on the SSCS
curves extracted from the default and perturbed simulations
(Figure 6). On this figure, we colored experiments by whether
they do have thicker soil implemented (adding 30m to the
soil thickness, shown in blue) or do not (shown in red). All
four basins have similar patterns. The default SSCS (red x)
curves are similar to SSCS classes #2 and #3 of FS17 (except
the trough band of PIN, which is similar to Class #4), in
that they have low correlations in peak-storage-low-flow bands,
medium correlations in peak-storage-high-flow bands, and low
correlations in trough-storage bands. These patterns all indicate
a limited system memory; the water storage in the wet season
has no impact on baseflow later in the water year. When we
increased the soil thickness, the correlations in peak-storage-
low-flow increased substantially, indicating that the annual-
scale system memory had been enhanced. Except for the OCT
subbasin, there is a clear separation between the red and
blue points.

On the other hand, when soil texture was modified from the
default (red x) into those from the Southeast (red plus, asterisk,
square, and diamond), SSCS barely fluctuated, and results based
on these southeastern soil textures were clustered closely with
the default simulation. We could see that soil texture has a
small impact: FL131 (red square) appears to encourage higher
correlations across the spectrum as compared to the others. The
notable soil texture characteristics were that GA603 had a high
sand percentage (most were higher than 70%); GA632 had high
sand and high silt percentages (summation of both were higher
than 70%); FL131 was high in sand percentage (most were higher

than 80%); and TN081 was high in silt percentage (most were
higher than 50%). However, the magnitude of the impact of
soil texture was not comparable to that of the soil thickness.
According to the likelihood value calculated by the GMM,with all
default parameters, OR belongs to Class #2 (highest probability,
almost 1) and PIN belongs to Class #2 with a likelihood of 0.75
(Figures 7A,B). In contrast, all experiments with “thick soil” had
SSCS class #1. Some parameter interaction can be observed, but
its effects were minor compared to the impact of soil thickness.

From the experiments where we replaced forcing data in the
SRB with those from the Coastal Plain region, we found the
impacts of climate on SSCS classes (or GMM likelihoods) to
be small (data not shown here). In fact, going from Appalachia
in the North to the Coastal Plain in the South, we saw a
lower fraction of precipitation as snow, which should have
reduced storage-streamflow relationships, but this effect ran
counter to the observation of higher correlations between
storage and streamflow in the south. Apparently, the effects
of climatic variables were not as strong as the physical basin
parameters, and were also coincidental factors. Hence, they were
not further examined.

The Data-Centric Bayesian Inference

Results
According to the Bayesian inference framework in Equation 1,
the soil thickness factor had the highest posterior probability
(Table 2). Although soil texture also had a prior that was
comparable to that of soil thickness, experiments that only
perturbed soil had very low likelihood functions, lowering its
posterior to almost zero. Terrain slope had a lower prior
(although it was higher than other physical factors which were
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FIGURE 6 | SSCS extracted from the numerical experiments. “Thin soil” is the default simulation with SRB-default parameters.

examined but not mentioned here), and its likelihood was also
low, indicating that it was only a coincidental factor, not causal.

These results unequivocally support soil thickness as the
causal factor of SSCS differences between Appalachian basins

and those on the southeastern Coastal Plain, whereas soil texture
and slope were merely coincidental factors. It is notable that the
PBM was needed to break the practical tie between the priors
of soil texture and soil thickness. From these results, we can
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FIGURE 7 | The likelihood function L(y|F) as calculated by GMM in different PAWS+CLM experiments. Deeper blue color highlights higher probability. Here, we only

show the (A) OR and (B) PIN subbasins, but the other 2 subbasins have similar results (Appendix B).
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TABLE 2 | Calculations of the data-centric Bayesian inference framework for three factors.

OR basin P(F) L(y|F)

(Class 1)

P(y)

(P1*L1+P2*L2+P3*L3)

P (F|y)

(Class 1)

Thickness 30m addition 0.21 (P1) 0.99999 (L1) 0.21012 1.00

Slope 80% reduction 0.02 (P2) 0.00001 (L2) 0.00

Soil texture Different SSURGO 0.17 (P3) 0.00070 (L3) 0.00

PIN basin P(F) L(y|F)

(Class 1)

P(y) P (F|y)

(Class 1)

Thickness 30m addition 0.21 0.99997 0.21001 1.00

Slope 80% reduction 0.02 0.00020 0.00

Soil texture Different SSURGO 0.17 0.00004 0.00

The remaining P(F) was mostly taken by climatic variables. Bold font indicates the factor with the highest posterior probability.

conclude that in general, systems with large soil thickness have
longer memory, allowing water from the recharge season to
accumulate, which thus impacts the baseflow in the hot summers.
Although more sandy soil could allow for more infiltration
and hence mildly boost storage-streamflow correlations, its
impact was apparently not comparable to that of soil thickness.
This contrast was automatically highlighted by the Bayesian
framework proposed here.

Further Discussion
In this case study, ML allowed us to focus on only three factors
prior to running any numerical experiments. If we were to run
the hydrologic model to assess all of the 11 factors analyzed in
CART, assuming 3 levels for each factor, 311 model runs would
be needed, but in this analysis we only ran 11 jobs. Not only
does this provide savings of computational power and time, but
also means that we need to objectively confront our PBMs with
the identified ML hypotheses. If the PBM at hand is not able
to represent the effects of these factors, one needs to take note
and either refine the PBM or select a different one. Because of
the target, inputs, training data, and other aspects of ML still
needing to be defined by humans, it is not unbiased, and fairness
in artificial intelligence is a big topic (Zou and Schiebinger, 2018).
However, as long as the initial ML problem is posed inclusively,
ML can be relatively impartial compared to only using one PBM
and starting only from expert-conceived hypotheses. The PBM
was also critically important here, allowing us to study causal
relationships and nuances of parameter interactions, where data
may not be sufficient for complete analysis via ML.

The proposed framework is very different from that of
physics-guided machine learning (PGML) (Ganguly et al., 2014;
Jia et al., 2019) in that it utilizes established PBMs, which are
valuable assets which the geoscience community has accumulated
over the past decades, as the backbone of the analysis, whereas
PGML relies on ML algorithms as the backbone. While one
can easily encode simple principles such as mass and energy
conservation in the loss function for PGML, it will be quite
difficult to similarly express the complex physical processes and
cross-domain interactions encoded in complex PBMs. Another

PGML method is to pre-train a ML network with outputs
from the PBM; in the future it will certainly be interesting to
compare these methods in terms of their capability and clarity
of finding explanations.

The proposed data-centric Bayesian framework is raised here
for the first time, and is thus only exploratory. It requires the
definition of a prior (from ML), a proper PBM, a likelihood
function (calculated by the GMM), and a marginalization
strategy. Upon proper definition of the prior and likelihood
functions, this framework can be autonomously executed. The
prior is obtained purely from data analysis of GRACE and
streamflow data while the posterior mostly depends on the
assumed model dynamics which were built from physical laws
such as the Richards equation, diffusive flow equations, and
ecosystem equations. Each one of these choices can have
alternatives, and may involve arbitrary decisions that lead to
debates. We fully recognize that the choices we made could be
improved in the future. However, our goal here was to highlight
the value of both PBM and ML, and to inspire exploration into
the diverse ways that both approaches can be coupled together
for the advancement of knowledge.

Here we used an interpretable machine learning method
(classification tree) for illustrative purposes, essentially to obtain
a parameter importance ranking and an estimate of a prior. Other
methods such as linear regression, support vector machines, or
deep learning neural networks could also be used to provide
the prior. Time series deep learning-based models (Fang et al.,
2017, 2018; Fang and Shen, 2020; Feng et al., 2020), have
also emerged and are transforming hydrology (Shen, 2018),
but they are less interpretable. The main purpose of the ML
algorithm is to obtain a parameter importance ranking and
an estimate of prior. Besides algorithm-specific methods such
as layer-wise relevance propagation (Bach et al., 2015), many
model-agnostic methods, e.g. permutation feature importance
(Fisher et al., 2019) or forward/backward feature selection, exist
to obtain parameter importance rankings and priors. On the
other hand, interpretability is not necessarily required if the
purpose is to autonomously discover knowledge, e.g., if the
purpose is for an AI agent to reduce uncertainty in the framework
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of active learning (Settles, 2012). The only true requirements
are that the hypothesis generated by the ML algorithm can
be translated into a PBM configuration and used to make
perturbations, and that the likelihood of those configurations can
be evaluated.

CONCLUSIONS

Here we have proposed a Bayesian framework that combines
machine learning and process-based modeling to overcome
limitations of both approaches. In this framework, machine
learning is first used to generate competing hypotheses that are
consistent with existing data. These hypotheses are subsequently
implemented as perturbed process-based model simulations,
which help to distinguish between causal and coincidental
factors. This framework can be executed by a program and
could be regarded as giving PBMs to machine learning as
diagnosis tools. ML has its limitations regarding robustness,
the statistical power of limited data, and causal reasoning,
but it allows us to rapidly focus on several competing
hypotheses and limit our subjective bias when choosing
a model.

We tested the framework using the example of inferring
the physical factor that controls storage-streamflow correlation
behaviors across the gradients from Appalachia to the Coastal
Plain. Although machine learning suggested that soil thickness
and soil texture have similar prior probabilities of being the
causal factor, the PBM experiments unequivocally supported soil
thickness. This example highlights the value of the PBM in the
era of big data, and promotes an alternative ML-PBM integration
methodology to physics-guided machine learning, as it works
with complicated, established PBMs.
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Due to the complex interactions of human activity and the hydrological cycle, achieving

urban water security requires comprehensive planning processes that address urban

water hazards using a holistic approach. However, the effective implementation of

such an approach requires the collection and curation of large amounts of disparate

data, and reliable methods for modeling processes that may be co-evolutionary yet

traditionally represented in non-integrable ways. In recent decades, many hydrological

studies have utilized advanced machine learning and information technologies to

approximate and predict physical processes, yet none have synthesized these methods

into a comprehensive urban water security plan. In this paper, we review ways in

which advanced machine learning techniques have been applied to specific aspects

of the hydrological cycle and discuss their potential applications for addressing

challenges in mitigating multiple water hazards over urban areas. We also describe

a vision that integrates these machine learning applications into a comprehensive

watershed-to-community planning workflow for smart-cities management of urban

water resources.

Keywords: urban water security, hazard mitigation, machine learning, watershed modeling, integrated water

resource management

1. INTRODUCTION

A recent United Nations report projects that 60% of the world’s total population will live in cities
by the year 2030 (U.N., 2018). This highly-urbanized population will face vulnerability to water-
related hazards in many ways. For example, the combined effect of natural changes and human
intervention on the landscape can lead to flooding, drought, and morphologic instabilities (e.g.,
stream erosion and instability, erosion, and sedimentation at structures) in and around urban areas,
as well as deterioration of water quality, riverine ecology, and natural habitats (Crossman et al.,
2013; Krajewski et al., 2016). Because of the accelerated pace of anthropogenic activity, hazard
frequency, and intensity is exacerbated requiring immediate delivery of science-based solutions
for mitigation, resilience, and adaptation that can be quickly deployed in any hazard-prone area.
Mitigating these urban water hazards is challenging for watershed management and the urban
planning community (Eriksson et al., 2015) due to the following hydro-complexities. First, these
hazards exist in a variety of forms (e.g., floods, droughts, increased soil erosion, andwater pollution)
and are associated with multiple urban risks (e.g., property inundation and infrastructure failure,
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water shortage, landslide, and eco-habitat deterioration) (Carson
et al., 2018). Second, these urban water hazards may occur
separately or in a multi-hazard chain (Kappes et al., 2012;
Komendantova et al., 2014), in which the occurrence of one
hazard (e.g., urban flooding) may trigger another hazard (e.g.,
bank erosion and landslide). Third, the occurrences of different
urban water hazards are connected through the flow of the water
and watershed processes over a range of spatial scales (Souchère
et al., 2010; Santelmann et al., 2019), pressing the need for
multiscale mitigation strategies that target hazard drivers at both
watershed and urban neighborhood scale (Bertolotto et al., 2007;
Xu et al., 2019b).

Given these challenges, a holistic approach to water security
is articulated by Ait Kadi and Arriens (2012), as one that
produces a world in which each community has access to
enough water for social and economic development, and for
ecosystems in and beyond those communities; and where those
communities are protected from floods, droughts, landslides,
erosion, and waterborne diseases (Carson et al., 2018; Aboelnga
et al., 2019). Additionally, ensuring urban water security is
a complex endeavor, as it involves dynamic processes and
requires the interaction and participation of multiple planning
actors (stakeholders, resource managers, and policy makers) to
safeguard the integrity and security of urban water systems
and assets in a continuous, physical, and legal manner.
Subsequently, these actors must formulate policies and make
investments using robust, adaptive, and accessible strategies
that balance the socioeconomic and ecological benefits and
urban sustainability with the cost of mitigation measures
and management practices, and increase the resilience and
preparedness of urban communities against extreme weather and
natural disasters (Medema et al., 2014; Carson et al., 2018).

Fundamentally, these methods must have the capability of
identifying and assessing the risk of multiple interconnected
urban water hazards simultaneously (Kappes et al., 2012;
Komendantova et al., 2014). Further, these methods must
include system-based techniques for providing generalized
predictions and acquiring unseen data in order to obtain reliable
and accurate depictions of both current and future states
of water resources in both urban areas and their associated
watersheds. The projections and updates provided through these
techniques must be easy to interpret and to understand, so
that researchers, decision makers, and communities can readily
obtain useful insights that support the planning of urban water
resources, including the mitigation of existing hazards and the
prevention of future hazards (Carson et al., 2018; Zaidi et al.,
2018).

To fulfill these management needs, comprehensive disaster
management frameworks are proposed to promote the
collaborative planning and management of water, land, and
related resources (Selin and Chevez, 1995; Emerson et al.,
2012). These frameworks are developed to reduce the risk of
multiple water hazards equitably without compromising the
sustainability of vital ecosystems. Examples of these frameworks
include Integrated Water Resources Management (IWRM),
Adaptive Management (AM), and the Ecosystem Approach
(EA) (Cardwell et al., 2009; Dörendahl, 2013; Palmer et al., 2013;

Carson et al., 2018). In general, these frameworks entail a series
of planning processes that can be categorized into four major
stages (Yu et al., 2018; Sun and Scanlon, 2019):

1. Long-term planning and mitigation
2. Early warning and prediction of hazards
3. Rapid response and rescue
4. Recovery and restoration.

Within the long-term planning and mitigation stage, we
summarize here a list of common planning processes from
several planning frameworks (Yoe and Orth, 1996; NRCS, 2003;
USEPA, 2012), and we address machine learning (ML) methods
for application to these processes throughout the paper. These
steps are as follows:

1. Identification and assessment of multi-hazard risk in urban
water systems.

2. Determination of the objectives of urban water planning and
hazard mitigation.

3. Inventory of useful data resources that can define urban water
hazards and risks, indicate the performances of existing urban
water systems, and reflect the current state of the urban water
system and the watershed to which it pertains.

4. Identification, evaluation, and selection of Best Management
Practices (BMPs) from a variety of planning alternatives for
water quality improvement, stormwater management, and
erosion controls (NRCS, 2011; USEPA, 2018).

5. Evaluation of the performance and effectiveness of the
implemented plan by examining information and monitoring
data collected from pilot studies.

6. Identification, evaluation, and selection of proposed
modifications for ongoing or existing plans and
implementation schedules based on the future scenarios
of urban water.

Despite the usefulness of these planning directives, the
implementation of these processes is sophisticated and faces
both methodological and technical challenges. Methodological
challenges are associated with the long-term planning and
mitigation processes and include: (a) assessing the multi-
hazard risk and vulnerability of a municipal water system
(Kappes et al., 2012; Jetten et al., 2014; Lambert, 2014), and
(b) optimizing the selection of the BMPs from a variety of
mitigation alternatives based on multiple criteria and objectives
(FHWA, 2000). Technical challenges are associated with the
implementation of multiple planning processes. One of the
major technical challenges is related to the discovery and
integration of a large volume of interdisciplinary data and
simulation models (Adamala, 2017), which is essential for
supporting the multi-hazard risk assessment in the long-term
planning and mitigation process, as well as for informing rapid
response and rescue during a hazardous event. These information
resources can provide data-driven and model-driven insights
for informing the current and future state of urban water
systems and watersheds. Another major technical challenge is
related to the accurate and timely prediction of hazardous
events, which help facilitate early warning and prevention
of hazard.
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Conventionally, these challenges are approached using
domain models and human justification of decision-makers,
and therefore require computation- and labor-intensive efforts
for coupling multiple models and investigating the underlying
physical processes of different hazards. In recent decades,
developments in advanced ML techniques has offered a more
time efficient method for overcoming these challenges in an
intelligent manner. Many review papers have enumerated ML
and big data applications for enhancing various water resources
management related applications and hydrological analysis
(Adamala, 2017; Holzbecher et al., 2019) and for mitigating a
specific water hazard, such as flooding (Mosavi et al., 2018),
water pollution (Haghiabi et al., 2018), and erosion (Abdulkadir
et al., 2019). In this paper, we explore and discuss benefits and
potential opportunities of the ML applications for enhancing
the mitigation of multiple urban water hazards. Herein, we
review a selection of successful studies that apply various ML
techniques and hybrid modeling techniques (i.e., the fusion of
ML methods with process-based domain models) to overcome
challenges encountered by different planning processes for
integrated urban water management. Hybrid models are a
mixture of inductive (data-driven) and deductive (process-based)
approaches (Goldstein and Coco, 2015; Hajigholizadeh et al.,
2018; Frame, 2019) and are referred to by Goldstein and Coco
(2015) as the use of empiricisms built from ML in process-based
models. Other researchers (e.g., Karpatne et al., 2016) approach
hybrid modeling from the opposite direction—as “theory-guided
data science,” in which data analysis, given sufficient grounding
in physical principles, can represent causative relationships
among parameters.

Additionally, we provide a vision for ways in which ML
techniques can be used to facilitate different processes in the
planning framework for the future. Different from previous
review articles that focus on the machine learning application
in the water management sector (Sun and Scanlon, 2019;
Chen et al., 2020), we review innovative and application-
ready machine learning solutions to facilitate urban water
hazard mitigation from the practical aspect of addressing
technical and methodological challenges in water resources and
disaster management frameworks. The target audience of this
paper includes watershed management authorities (WMAs),
urban and regional planners, and research professionals in the
water resources management sectors. To retrieve the relevant
literature in this field that applies various ML techniques
for urban water management, we conducted searches using
tools such as Google scholar (https://scholar.google.com) and
Scopus (https:www.scopus.com). Figure 1 shows the result of
the query: (“Random Forest” OR “Artificial Intelligence” OR
“ANN” OR “Support Vector Machine” OR “ANN” OR “Artificial
Neural Network” OR “Neural Network” OR “SVM” OR “Machine
Learning”) AND (“water management” OR “water resources
management” OR “watershed management” OR “watershed
planning” OR “urban water systems” OR “multi-hazard” OR
“water hazard” OR “flood disaster” OR “water pollution”) AND
[EXCLUDE (PUBYEAR, 2020)]. We executed the query for years
1999–2019, and excluded year 2020. The above query retrieved a
total of 46,145 documents from Scopus such that either article

title, list of keywords or abstract satisfies the query. It is clear
from Figure 1A that there is a significant growth in ML based
approaches for water related areas such as water management
and urban water hazards. Figure 1B shows the top four scientific
journals which receive research on ML application to water
related areas. The graph in Figure 1B also confirms the increasing
trends in the applications ofML techniques in watermanagement
and hazards.

Among the thousands of literature identifies from the Scopus,
we select a handful of studies that are either published in recent
years or are most relevant to and practical for improving specific
processes and steps in the generic hazard mitigation stages
and long-term water planning frameworks that are discussed
early in the introduction section. We also consider the diversity
and novelty of the machine learning techniques during the
selection of studies for more detailed reviews and discussions.
Based on the challenge and planning process targeted by these
studies, we divide our review here into the following sections.
Section 2 reviews the predictive data analytics powered by
various ML techniques that help planners predict water-related
hazards (e.g., flood, drought, water quality, and soil erosion and
sediment transport). Multiple applications of hybrid modeling
are also discussed in this section. Additionally, a subsection
reviewing innovative combinations of ML and remote sensing
technologies for disaster management is included, as remote
sensing technologies are increasingly applied for improving the
discovery and extraction of useful information and features
(e.g., land use and land cover, flood inundation extent, and
reservoir storage from satellite imagery) that are critical for
early warning of hazards and rapid response and rescue during
hazardous events (Hodgson et al., 2010). Section 3 presents
the ML applications for the identification and assessment of
water-related multi-hazard risks and vulnerability (e.g., building
inundation, infrastructure failure, and economic loss) in urban
water systems. In section 4, we review a few case studies
that utilize ML algorithms to optimize the selection of urban
BMPs, which can improve long-term planning and mitigation
and recovery and restoration processes. Finally, in section 5,
we present our vision for the application of next-generation
ML techniques to efficient generation of mitigation strategies
in response to urban water hazards. ML methods and their
performance as applied to each issue are summarized in Table 1.

2. EARLY WARNING AND PREDICTION OF
URBAN WATER HAZARDS

The capability to predict timely and accurate occurrence,
intensity, and frequency of natural hazards is essential to
every planning process that develops disaster preparedness
and response to ensure public safety and mitigate unfavorable
consequences associated with hazardous events (de Goyet et al.,
2006). Traditionally, hydrological processes that contribute to
water-related hazards have been analyzed using probabilistic
modeling and physics based modeling approaches. The
probabilistic approaches are devised to estimate the available
stock over relatively short future time horizons (Philbrick and
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FIGURE 1 | Research trend showing increased application of machine learning techniques in water management and hazard (Copyright 2020 Elsevier B.V. All rights

reserved. Scopusr is a registered trademark of Elsevier B.V). (A) Documents per year during 1999–2019. (B) Documents per year source during 1999–2019.

Kitanidis, 1999). However, since the overall global climate is
changing, rainfall data in any given area are non-stationary;
thus the past does not necessarily predict the future, and
the information given in recent data points may be more
predictive than that of the data points from the more distant
past (Tay and Cao, 2002). Limitations of probabilistic methods
to produce realistic and specific results for water security
planning have required the employment of physics based
models for these predictions. Modeling hazardous events using
physics based approaches requires the theoretical understanding
of the atmospheric, land, and human processes and their
interconnections; along with dynamics behind multiple hazards.
However, many physics based models are designed to simulate
pristine watersheds where hydrology is assumed to behave in
a “pure” way, untainted by human interference (Joslin, 2016);
therefore these physics based models are not suitable alone
for predicting water-related hazards in urban watersheds. In
addition, physics based models require large parallel machines
and long periods of time for computation, neither of which may
be available to water managers. Compared with the traditional
modeling approaches, predictive data analytics powered by
ML models can directly extract knowledge of natural disaster
processes based on previous disaster occurrences and geo-
environmental factors without prior knowledge (Pham et al.,
2016; Rahmati et al., 2019). Unlike physics based modeling
approaches, ML techniques can provide a bridge between physics
based and probabilistic models because they can highlight
patterns, trends, and regularities in data without requiring
detailed understanding of the physical processes (Dibike and
Solomatine, 2000; Rahmati et al., 2019), even when data are
sparse, and with less complexity of construction and at relatively
low computational cost (Mekanik et al., 2013).

Based on the scientific reasoning behind them, ML
applications for predicting water-related parameters can
be categorized either as inductive, whereby classifications
are made based on statistical similarity in the hydrologic
data directly; or deductive, whereby environmental variables
(e.g., watershed characteristics) are analyzed as key drivers

of hydrology to create classification (Wagener et al., 2007,
2010; Olden et al., 2012; Auerbach et al., 2015). Because
the inductive approach requires abundant hydrologic data
(although all watersheds are ungauged at some point with
unavailable or insufficient measurements; Joslin, 2016) many
studies have favored the deductive approach, which classifies
rivers and watersheds based on readily available environmental
data that reflect the main drivers of hydrologic processes
(Auerbach et al., 2015). Many researchers have utilized the
deductive approach to relate stream condition (e.g., flow
regimes, biodiversity, streamflow) with upstream watershed
characteristics for different water resource management
purposes (Poff and Allan, 1995; Snelder and Biggs, 2007;
Carlisle et al., 2008; Reidy Liermann et al., 2012; Rice et al.,
2015). The rationale for deductive classification methods, such
as hydrologic regionalization, environmental regionalization,
and environmental classification is to group river hydrological
characteristics by spatial representation (e.g., river basin,
region, catchment) based on environmental, hydrological,
physical, and climatic similarity (Olden et al., 2012) to develop
reliable class and empirical relationships between predictor and
watershed characterizations.

2.1. Floods
Long term processes of change, including changes in climate,
shifts in population, and increases in urbanization, will likely
increase future urban flood risk changing the assumptions
upon which flood risk analysis and management has long been
based (Gangrade et al., 2019), and requiring new tools for risk
assessment (Milly et al., 2008). In order to understand how
to predict floods and to mitigate their effects on urban areas
using new tools, it is important to understand the events that
lead to flooding. The locations and processes that contribute
to floods include atmospheric processes, catchment-level floods,
river flooding, and accumulation of water in flood-prone urban
areas (Merz et al., 2010).We discuss next theMLmethods applied
to each of these processes.
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TABLE 1 | Machine learning methods discussed in each section.

Topic Machine learning Summary References

Atmosphere (section

2.1.1)

ANN Use of ANN has proved to be efficient in analyzing and representing

complex, non-linear relationships between multiple atmospheric and

hydrological parameters. Compared with the traditional modeling

approach, ANNs have varying performance and are less time

consuming.

Sahoo et al., 2017;

Zaidi et al., 2018

SVM The performance of SVMs for forecasting regional rainfall varies across

the geographic area. For non-stationary time series forecasting,

DSVMs generalize better than the standard SVMs. The evaluation of

these methods is conducted using both real data and simulated data.

Cao and Gu, 2002;

Mohanty and

Mohapatra, 2018

Anomaly detection Various anomaly detection algorithms have been proposed for

detecting point anomalies to improve hydrological and climate data

quality, as well as to mine potentially meaningful pattern anomalies

within a given time series or spatio-temporal data.

Chandola et al., 2009a;

Das and Parthasarathy,

2009; Sun et al., 2017

Catchment (section

2.1.2)

Evolutionary algorithms Genetic programming approach performs better than the traditional

hydrological models during scenarios where surface water movement

and water losses are poorly understood.

Whigham and Crapper,

2001

Cellular automata (CA) The CA technique provides a versatile approach for modeling complex

physical systems using a simplified 5-feature cell-based system.

Compared with physically-based models, CA can dramatically reduce

computational load, while providing a minimum required accuracy for

rapid flood analysis in large-scale applications.

Guidolin et al., 2016

Rivers (section 2.1.3) ANN Compared with statistical models, ANNs tend to perform better for

simulations containing non-linear patterns. Among popular ANNs,

FFBPNN has been proven to have the best performances by many

studies, and GRNN performs better than RBFNN in most cases. Thus,

ANNs can serves as helpful tools for predicting river floods, as well as

for mitigating missing flow data records.

Shamseldin, 2010;

Badrzadeh et al., 2013;

Tayyab et al., 2016

Urban Flood (section

2.1.4)

ANN, Bayesian linear regression,

boosted decision tree

regression, decision forest

regression, linear regression

Noymanee et al. (2017) compared multiple ML techniques for

predicting urban flood peak using a list of error metrics. The

performance of different ML techniques varies for predicting urban

flood stage at different timestamps. The study demonstrated that for

predicting flood peaks, ANNs and Boosted trees performed best.

Noymanee et al., 2017

Indirect effects (section

2.1.5)

Reinforcement learning with

agent-based models

Yang S. et al. (2019) used two studies to demonstrate the effect of

Reinforcement learning with agent-based models in supporting the

decisions of recovery actions after a flood disaster. The case that

adopts the ML technique outperformed the other case and achieved a

shorter recovery time.

Yang S. et al., 2019

Drought prediction

(section 2.2.1)

ARF, BRT, Cubist Model performance varies by drought type and across different

regions. Park et al. (2016) demonstrated a case study showing that

boosted random forests generally produced better results than the

other two models for both arid and humid regions.

Park et al., 2016

CART, random forests Kuswanto and Naufal (2019) used a case study (based on both the

TRMM and MERRA-2 datasets) to demonstrate that random forests

perform well for prediction of droughts in East Nusa Tenggara,

Indonesia.

Kuswanto and Naufal,

2019

CART, BRT, random forests,

MARS, FDA, SVM

Rahmati et al. (2019) demonstrated that the performance of different

models varies when predicting the risk for different types of hazards.

For example, the SVM model showed the highest accuracy for

avalanches, while BRT demonstrated the best performance for flood

hazards.

Rahmati et al., 2019

ANN, SVR For predicting the Standardized Precipitation Index (SPI) (in this case

SPI 3, SPI 12, and SPI 24), a meteorological drought index, the wavelet

boosting ANN (WBS-ANN) and wavelet boosting SVR (WBS-SVR)

models produced better prediction results compared to the SVM.

Belayneh et al., 2016

XGBoost Zhang R. et al. (2019) demonstrated that the incorporation of

non-linear and lag effects of predictors into the XGBoost method can

significantly improve prediction accuracy of Standardized Precipitation

Evapotranspiration Index (SPEI) and drought, providing a new modeling

strategy for drought predictions based on multistation data.

Zhang R. et al., 2019

(Continued)
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TABLE 1 | Continued

Topic Machine learning Summary References

W-QEISS Zaniolo et al. (2018) applied a variable subset selection algorithm to

improve the FRIDA’s (FRamework for Index-based Drought Analysis)

capability for automating the design of basin-customized drought

indexes across different types of basins. The algorithm is based on a

Wrapper for Quasi-Equally Informative Subset Selection (W-QEISS) and

is capable of maximizing the wrapper accuracy, minimizing the number

of selected variables, and optimizing relevance and redundancy of the

subset.

Zaniolo et al., 2018

Water quality prediction

(section 2.3)

ANN Several studies have shown the ability of ANNs to simulate water quality

variables and to produce simulated values for un-gauged locations.

Palani et al., 2008;

Singh et al., 2009;

García-Alba et al., 2019

XGBoost, RF Lu and Ma (2020) evaluated the prediction performances of two novel

hybrid decision tree-based ML models (based on XGBoost and RF)

using the absolute percentage errors. The RF-based model has the

best performance for predicting temperature, dissolved oxygen, and

specific conductance, and the XGBoost-based model is best for

predicting the pH value, turbidity, and fluorescent dissolved organic

matter.

Lu and Ma, 2020

Random forests, M5P, RT, REPT Bui et al. (2020) demonstrated the capability of hybrid algorithms to

improve the predictive power of several standalone ML models. Among

these models, the Hybrid BA-RT showed the best performance.

Bui et al., 2020

Soil erosion (section

2.4)

Tree-based ML methods Rahmati et al. (2017) found that many tree-based models (e.g., RF,

RBF-SVM, BRT, and P-SVM) performed excellently both in the degree

of fit and in performance for predicting gully headcuts. Hosseinalizadeh

et al. (2019) proved that random forests were the most effective of

these models for predicting and mapping gully headcuts in the future.

Rahmati et al., 2017;

Hosseinalizadeh et al.,

2019

SVM Mustafa et al. (2018) demonstrated that SVMs with different kernel

functions have different performance levels for predicting soil erosion.

They found that the polynomial kernel function had the highest

performance, followed by linear and radial basis functions.

Pourghasemi et al. (2017) explored multiple individual and ensemble

ML methods (e.g., ABB, SVM, maximum entropy) for soil erosion

prediction and concluded that the ANN-SVM ensemble performed

best.

Pourghasemi et al.,

2017; Mustafa et al.,

2018

ANN Rahmati et al. (2017) demonstrated that the ANN could be applied to

produce accurate and robust gully erosion susceptibility maps for

decision-making and soil and water management practices, even

though the random forests outperform ANN in many cases.

Abdollahzadeh et al. (2011) demonstrated that ANN outperforms Multi

Linear Regression (MLR) for predicting soil erosion.

Abdollahzadeh et al.,

2011; Pourghasemi

et al., 2017; Rahmati

et al., 2017

Sediment transport

(section 2.4.1)

ANN The performance of ANN varies based on the training dataset (e.g., the

time span and data quality) and the type of sediment for prediction.

These ANN predictions are often tested against domain models and

theories.

Tayfur, 2002; Lin and

Montazeri Namin,

2005; Bhattacharya

et al., 2007; Yang et al.,

2009

Adaptive-network-based fuzzy

inference system (ANFIS)

Wieprecht et al. (2013) demonstrated that the ANFIS approach could

be a useful alternative technique for predicting both bedload and total

bed-material load. Lin and Montazeri Namin (2005) found that the

method can be used to model both uniform and non-uniform

suspended sediment. Bakhtyar et al. (2008) revealed that the ANFIS

model provides higher accuracy and reliability for longshore sediment

transport techniques than other methods, such as Fuzzy Inference

System and CERC.

Lin and

Montazeri Namin,

2005; Bakhtyar et al.,

2008; Wieprecht et al.,

2013

M5 model trees Goyal (2014) presented a comparative evaluation of the performance of

M5 Model Tree and wavelet regression vs. ANN clearly demonstrating

that M5 Model Tree and wavelet regression outperform ANN models in

estimation of sediment yield. Onderka (2012) compared the M5 model

tree with the conventional power-law rating curves, and concluded that

the M5 model has better performance for modeling suspended

sediments in a headwater catchment.

Onderka, 2012; Goyal,

2014

(Continued)
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TABLE 1 | Continued

Topic Machine learning Summary References

Sediment load (section

2.4.1)

Random forests Francke et al. (2008) demonstrated that Random forests and quantile

regression forests, compared with generalized linear models, are more

accurate and favorable for reproducing sediment dynamics.

Francke et al., 2008;

López-Tarazón et al.,

2012

Genetic algorithms (GA) Yadav et al. (2019b) suggested that GA models outperform other

models, such as ANN and SVM, for estimating suspended sediment

yield. Altunkaynak (2009) found that GA models outperform the

regression method for predicting sediment loads.

Altunkaynak, 2009;

Yadav et al., 2019b

Unsupervised techniques These methods are self-organizing, and their results are often validated

using domain models and knowledge. For example, Xu et al. (2019a)

used the concept of geological landform regions to verify the clustering

results of sedimentation potential from a self-organizing map.

Ahmed et al., 2018; Xu

et al., 2019a

Urban infrastructure

(section 2.4.1)

Random forests Xu et al. (2019a) demonstrated decent performance of random forests

for forecasting sedimentation risks at culverts by validating the results

with field inspection.

Xu et al., 2019a

ANFIS Azamathulla et al. (2011, 2012) demonstrated that the ANFIS approach

can give more satisfactory results for predicting both the scour depth at

culvert outlets and sediment transport in clean sewers compared with

other methods (regression equations and ANN).

Azamathulla et al.,

2011, 2012

Flood management

with RS (section 2.5.1)

ANN Tsintikidis et al. (1997) used a shallow neural network with one hidden

layer to estimate rainfall from a passive microwave radiometer SSM/I

data. The network considered brightness temperature and associated

polarization information as inputs and it output the rainfall rates.

Tsintikidis et al., 1997

Random forests Kühnlein et al. (2014) performed a precipitation estimate using random

forests with satellite-derived information on cloud-op height, cloud-top

temperature, cloud phase, and cloud water path retrieved from

Meteosat Second Generation (MSG) Spinning Enhanced Visible and

Infrared Imager (SEVIRI). Feng et al. (2015) developed a random forest

based approach to map accurately a flooded area using high-resolution

(0.2 m) imagery obtained from Unmanned Areal Vehicle (UAV) imagery.

Kühnlein et al., 2014;

Feng et al., 2015

K-NN Shahabi et al. (2020) employed a ML ensemble method with four

different k-nearest neighbor (kNN) algorithms for flood detection and

susceptibility mapping using Sentinel-1 images to generate the flood

inventory and SRTM DEM to obtain various flood-related conditioning

factors.

Shahabi et al., 2020

LSTM A spatio-temporal sequence forecasting using Convolutional

Long-Short Term Memory (ConvLSTM) for precipitation nowcasting.

RADAR echo data in 2D from a ground-based RADAR was used in this

study. ConvLSTM forecasted the echo data.

Shi et al., 2015

CNN Pan et al. (2019) used CNN to improve the precipitation estimates from

NWP models. Based on the work by Hong et al. (2004), Hayatbini et al.

(2019) proposed a CNN model to estimate precipitation using

geostationary satellite data GOES-16. Jain et al. (2020) used water

indices with CNN to detect flood water. Potnis et al. (2019) used a

CNN based architecture called ERFNet to detect flooded urban regions

from high resolution Worldview-2 satellite imagery. Jiang et al. (2020)

proposed an approach to obtain waterlogging depth from video

images using CNN.

Hong et al., 2004;

Hayatbini et al., 2019;

Pan et al., 2019; Potnis

et al., 2019; Jain et al.,

2020; Jiang et al., 2020

Knowledge-based approaches Kurte et al. (2017) used a semantics-driven framework to enable spatial

relationships based semantic queries to detect flooded regions from

satellite imagery and further extended the framework (Kurte et al., 2019)

to accommodate temporal dimension that enabled spatio-temporal

queries over flooded regions. In a similar approach, Potnis et al. (2018)

developed a flood scene ontology (FSO) which formally defines

complex classes such as Accessible Residential Buildings, to classify

flooded regions in urban area from satellite imagery.

Kurte et al., 2017;

Potnis et al., 2018;

Kurte et al., 2019

(Continued)
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TABLE 1 | Continued

Topic Machine learning Summary References

Water quality

monitoring with RS

(section 2.5.2)

ANN Dogan et al. (2009) used ANN to improve the accuracy of biological

oxygen demand (BOD) estimation from RS imagery. Wu et al. (2014)

used ANN for TSS turbidity estimations to analyze data measured with

a hyperspectral spectroradiometer. Hafeez et al. (2019) compared

various ML techniques for estimating water quality indicators form RS

imagery and found that ANN worked well. Govedarica and Jakovljević

(2019) found that the SVM algorithm worked better than ANN with

Landsat 8 data and ANN worked better than SVM when Sentinel-2

data was used for water quality monitoring.

Dogan et al., 2009; Wu

et al., 2014;

Govedarica and

Jakovljević, 2019;

Hafeez et al., 2019

SVM Wang et al. (2011) used the support vector regression (SVR) method to

retrieve various water quality estimators from SPOT-5 satellite data.

Huo et al. (2014) used genetic algorithms combined with support

vector machines (GA-SVM) to build an inversion model for eutrophic

indicators such as Chl-a from Landsat ETM imagery.

Wang et al., 2011; Huo

et al., 2014

Impervious surface

detection with RS

(section 2.5.3)

Random forests Bian et al. (2019) used a random forest algorithm and time-series data

from multiple satellites HJ-1A/B and GF-1/2 to estimate the changes in

the impervious surface percentage over the years 2009–2017.

Bian et al., 2019

PBL, PUL, SVM Yao et al. (2017) adopted a one-class classification approach to detect

impervious surfaces using high-resolution GF-1 satellite images, and

found that Presence and Background Learning (PBL) and Positive

Unlabeled Learning (PUL) outperformed SVM models.

Yao et al., 2017

CNN Zhang H. et al. (2019) used a deep CNN approach with data fusion

from optical and SAR satellites WV-3, Sentinel-2, and Radarsat-2.

Similar other works, Sun et al. (2019) (used 3D CNN with WV-3 and

LiDAR), McGlinchy et al. (2019) (used UNet with WV-2), show

increasing trends of using deep learning based approaches with

multi-satellite data fusion.

McGlinchy et al., 2019;

Sun et al., 2019; Zhang

Z. et al., 2019

Multi-hazard

assessment (section 3)

BRT, GAM, SVM Rahmati et al. (2019) investigated and mapped multi-hazard exposure

using a combination of ML models. They found that the different ML

models differed in their accuracy in predicting the different hazards, but

that the applied ML models were nevertheless useful and generalizable

for multi-risk mapping.

Rahmati et al., 2019

Random forests, RBF neural

network

Chen et al. (2019) evaluated the risk of regional flood disaster in the

Yangtze River Delta (YRD) region. They discovered that the level of

urban flood disaster is closely related to rainfall, topography, economic

development, land use, soil erosion, urban flood control investment,

and disaster emergency response capability.

Chen et al., 2019

Random forests, SOM Xu et al. (2019a) showed that ML application can be used not only for

multi-risk assessment and hazard prediction but also for exploring the

complex and interconnected processes behind multiple hazards.

Xu et al., 2019a

Random forests Pourghasemi et al. (2020) developed the Sendai framework, which

used random forests to produce a reasonable understanding of the

factors controlling flood, forest fire, and landslide occurrence, and to

produce a multi-hazard probability map for facilitating integrated and

comprehensive watershed management and land use planning.

Pourghasemi et al.,

2020

LSTM Yang T. et al. (2019) used long short-term memory units (LSTM) to

improve the timing component of the amplitude of peak discharge for

flood simulations generated by global hydrological models over

different climate zones.

Yang T. et al., 2019

Best management

practices (BMP)

GA/adaptive search Hadka and Reed (2013) developed a high-performance adaptive

search “Borg” algorithm, which was shown to be the most scalable and

the best performing of five best performing multi-objective optimization

algorithms applied to rainfall-runoff calibration, long-term groundwater

monitoring, and risk-based water supply portfolio planning. Others

applied GA-based optimization models to find solutions to water quality

problems for several watersheds in the United States by connecting

non-point pollution reduction models with economic components.

Srivastava et al., 2002;

Hadka and Reed,

2013; Limbrunner

et al., 2013; Reed and

Kollat, 2013; Chen

et al., 2015
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2.1.1. Atmospheric Process Methods
One ML method that is used to capture the underlying
relationship between independent and dependent variables in
atmospheric processes is Artificial Neural Networks (ANNs).
ANNs are interconnected networks comprising an input layer,
some number of hidden layers, and an output layer. Each layer
contains several processors, or nodes, referred to as artificial
neurons. The neurons in each layer are connected to the neurons
in the previous and next layers, and they transfer information
from one layer to the next. Synaptic weights and biases, along
with activation functions applied to the input layer, modulate
the input signals sent from one layer to the next. The processed
information is then sent as output to the connected neurons in
the output layer (Zounemat-Kermani et al., 2020). The power
of ANNs is their ability to learn functional relationships, with
minimal empirical error, between these variables. Additionally,
the use of activation functions with ANNs allows them to handle
non-linear data effectively (Zaidi et al., 2018). In fact, many
water related studies (e.g., Sahoo et al., 2017) using ANNs
have shown that complex, reproducible, non-linear relationships
exist among, for example, precipitation, temperature, streamflow,
climate indices, irrigation demand, and groundwater levels.

Another MLmethod that has been used for predicting average
rainfall is a classification algorithm known as Support Vector
Machines (SVM) (e.g., Mohanty and Mohapatra, 2018). This
method, developed by Vapnik (1995), is based on Structural Risk
Minimization, which, rather than minimizing empirical error,
as ANNs do, minimizes an upper bound of the generalization
error ε. Dynamic Support Vector Machines (DSVMs), a
modified version of the SVM, can be used to accommodate
the structural changes in non-stationary rainfall data because
it uses, instead of a static ε and static regularization constants,
an exponentially decreasing ε, and exponentially increasing
regularization constants (Cao and Gu, 2002) to allow room for
analysis of changing patterns in the data.

The probabilities of hydrological extreme events such as floods
and drought are modeled using different distributions from
those that predict future average values. Traditionally, these
events and their return periods are estimated with distributions
associated with Extreme Value Theory (e.g., Kao and Ganguly,
2011). However, ML techniques for anomaly detection have
begun to be applied to hydrological extremes problems. Anomaly
detection is the identification of outliers in the data, or items that
differ significantly from the overall trend of the data. Typically,
anomalous data is related to issues such as measurement
equipment failure or an extreme hydrological event. For example,
Das and Parthasarathy (2009) used unsupervised spatio-temporal
distance-based and neighborhood-based anomaly detection
method with global climate data to identify extreme drought and
heavy rainfall at specific locations. Characterization of short-term
and long-term future extreme events have also been made with
anomaly detection using trends found in historical time series.
For these analyses, techniques such as kernel-based (rule-based
classification), window-based (examination of the data in smaller
“windows” in space or time), predictive, and segmentation
(partitioning data into even smaller, possibly unequal, segments)
algorithms are employed along with anomaly detection for

locating extremely low and extremely high temperature and
precipitation events (Chandola et al., 2009b). In the case of
the research by Sun et al. (2017), a density-based method was
applied to anomaly detection in a hydrological time series. That
is, the data were transformed to a piecewise linear representation
through the important feature points of the data before mapping
their slope, length, and mean to three-dimensional space
for examination.

2.1.2. Catchment-Level Methods
Flood models at the catchment level analyze mainly issues of
runoff generation and concentration leading to flood discharge.
Because flood flow predictions are complex, non-linear, and not
well-understood, ML may be required to evolve algorithms to
derive characteristics of a particular flow. One way of evolving
these algorithms is with the use of genetic programming, or
genetic algorithms (GA), which produce, using routines imitating
Darwin’s “natural selection,” algorithms directed to perform
tasks defined by a set of training examples. Whigham and
Crapper (2001) applied a type of genetic programming system
to discover rainfall-runoff relationships for two meteorologically
and topographically different catchments, one in Wales and one
in Australia, and compared the results to those obtained with a
traditional deterministic lumped parameter model. While both
models did well when rainfall and runoff were correlated, the
genetically programmed model performed better on the more
poorly correlated data because it was allowed not to assume any
underlying relationships, only to demonstrate its “fitness” to solve
the problem.

Guidolin et al. (2016) used a two-dimensional cellular-
automata-based model employing simple transition rules and
a weight-based system to model catchment-level runoff. This
diffusive-like method is designed to work with various general
grids (rectangular, hexagonal, triangular) and with different
neighborhood types (e.g., Moore or von Neumann). It also
allows for model parallelization to increase its efficiency in large
compute environments. To propagate a flood using this method,
ratios of water to be transferred from a central cell to downstream
neighbor cells are calculated using a weight-based system,
with water volume transferred limited by Manning’s formula
(Manning et al., 1890), and the critical flow equation. Water
velocity and an adaptive time step are evaluated within a larger
updated timestep. The results of the emergent behavior of this
process shows good agreement with much more computationally
intensive physical methods.

2.1.3. Machine Learning for Analyzing River Floods
Flood hazard in rivers can be characterized by the probability and
intensity of large river flows and their consequent inundations,
and it depends on the atmospheric and catchment processes
preceding river flood generation (Merz et al., 2010). In fact,
river floods are generally defined in hydrological terms by their
water level or amount of discharge. Thus, Shamseldin (2010)
explore the use of ANN for forecasting discharge from the Blue
Nile river in Sudan. The type of neural network they chose was
that of a multi-layer perceptron (MLP) feedforward network,
a non-linear input–output model consisting of a network of
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interconnected neurons, or computational units, linked together
by connection pathways. The input layer is essentially a set
vectors of independent variable values, whereas the output layer
is a set of possible dependent variable vectors of values. Between
these two layers is a hidden layer containing an unknown number
of neurons which are usually estimated by a trial-and-error
procedure based on a mathematical non-linear transfer function
(Shamseldin, 2010). Input variables in this case were weighted
historical rainfall estimates, weighted seasonal rainfall estimates,
and seasonal expectation of discharge; and the output variables
were the river discharge values. Results showed strong correlation
with observations for the river.

In addition to the multilayer perceptron ANN approach,
other types of ANNs have been used to analyze river floods.
For example, Tayyab et al. (2016) applied and compared three
different types of ANNs to predict stream discharge for the Jinsha
River Basin in China. The methods included feedforward back
propagation neural networks (FFBPNN), generalized regression
neural networks (GRNN), and radial basis function neural
networks (RBFNN). The differences among these approaches
lies in the hidden layer functions and activation functions that
are applied to the problem. Badrzadeh et al. (2013) expanded
on these ANN approaches by coupling wavelet (transforms that
identify trends in the data normally not revealed by signal
analysis approaches and also help to de-noise a dataset) multi-
resolution analysis and adaptive neuro-fuzzy interface system
(ANFIS) techniques (integration of neural networks and fuzzy
logic) as preprocessing techniques to the ANN and show
improved daily river flow forecasting over the use of ANNs alone,
especially for long lead times. Mosavi et al. (2018) demonstrated
the application of ANNs, neuro-fuzzy, SVM, and support vector
regression (SVR) (SVMwith regression only), in forecasting river
floods and predicting the runoff hydrograph. The robustness of
these techniques was evaluated and was found to be in good
agreement with the observations.

2.1.4. Methods for Addressing Flood-Prone Urban

Areas
Building resilience to natural disasters is one of the most pressing
challenges for achieving sustainable urban development in flood-
prone regions (Chang et al., 2019). River flooding in urban areas
can cause high levels of damage, and while a relationship between
hydrological characteristics and damaging floods may exist,
knowing about an area’s hydrological characteristics does not
always indicate understanding of its vulnerability to damaging
floods (Pielke, 2000). This understanding is imperative for
hazard-mitigation planning for urban areas because these areas’
responses to rainfall extremes tend to be faster than those for
natural surfaces (Rodriguez et al., 2003). Thus, strategies for flood
mitigation in these areas such as detention ponds, soakaways,
permeable concrete, and green spaces, or upstream solutions
such as river training and construction of dams and levees
(Shamseldin, 2010) should be evaluated and implemented based
on a thorough understanding of flood risks and responses of
the area. For example, for predicting urban floods for the city
of Pattani south of Thailand, Noymanee et al. (2017) examined
the entire Pattani basin, which includes two dams for water

management: a diversion-type, Pattani Dam, and a hydropower
plant, Bang Lang Dam. It is known that the most frequent floods
are a result of overflow from flash flooding of the Pattani Dam
rushing toward the city. The researchers acknowledge that a
comprehensive approach to controlling floods in the area must
include both structural and non-structural measures such as the
development of improved technology for data management of
the drainage network, and an increase in the sensors’ frequency
and extent of coverage. Thus, Noymanee et al. (2017) tested five
different ML methods using open data pertaining to the area
hydrology, the dam structures, the drainage network, and the
technological components of the dams to explain the occurrence
of extreme floods estimating dam water levels and cumulative
precipitation amounts to forecast flood peaks in the urban area.
The five methods tested included an ANN, Bayesian linear
regression (statistical inference using Bayes’ theorem), boosted
decision tree regression and decision forest regression (both
similar to random forest analysis discussed in section 2.2.1) and
linear regression. Results showed the lowest error and highest
correlation with the observations in the urban area from the
Bayesian linear regression. This favorable result for that method
may have occurred because it was informed by probability
distributions drawn from prior data.

Often, in order to understand and manage risks of urban
flooding beyond purely hydrological considerations, integration
of decision support tools with predictive models is instructive.
For example, one study (Rozos, 2019), combined a hydrological
model, a demand management model called a network flow
programming model (NFP), and an Feed Forward Neural
Network (FFNN) to simulate a water supply system in Athens,
Greece. The NFP optimizes and simulates the operation of a
water supply system given hydrological inputs. FFNNs are the
simplest type of ANN, whereby information moves in a forward
direction from input nodes to the hidden layer to the output
nodes (Mosavi et al., 2018) and they lend themselves to multi-
model coupling. In this case, the NFP used synthetic data of a
length capable of capturing the risk of each policy. Then the
penalty functions of the NFPwere selected to reflect the operating
policies with different levels of risk acceptance. This process
provided a large set of training data over a long period of time that
was then used as input to the FFNN. This process allowed optimal
decisions to be identified and made for the Athens system.

2.1.5. Predicting Indirect Flood Effects in Urban Areas
Indirect flood effects are those that cause damage to assets outside
the flooded area. These assets can be physical, economic, social,
or ecological in nature with impacts lasting for days, months, or
even years after a large flooding event (Costello et al., 2019). In
order to evaluate the extent of these effects, multi-agent-based
simulations have been applied. Agent-based models simulate
actions and interactions of autonomous agents, which can be
individual actors or groups of actors, to assess the effects of these
individual actions on the system as a whole. In one study (Yang
S. et al., 2019), reinforcement learning, which rewards software
agents for actions taken to maximize their cumulative reward,
was used with the agent-based simulation for the optimization
of post-disaster recovery for both individual companies and
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supply chains for Tokyo, Japan. That study showed improved
indirect damage estimation accuracy and mitigation potential
over statistical methods and rough empirical models.

2.2. Drought
Drought is a prolonged period of precipitation deficit that may
occur at varying spatiotemporal scales ranging from local to
regional, lasting for weeks, months, multiple years, or even
decades (Pendergrass et al., 2020; Hao et al., 2018). Drought
may be exacerbated by extreme heat, soil moisture deficit,
land atmosphere feedbacks, sea surface temperature anomalies,
atmospheric circulation, and human activities such as land use
and land cover changes and increased water demand (Cook et al.,
2007; Dai, 2011; Kam et al., 2014). Droughts are high-impact
weather hazards that affect agriculture, economy, ecosystem,
water supply, and human lives (Hao et al., 2018). Over the
past two decades, the total cost associated with drought is
estimated to be billions of dollars (Huntingford et al., 2019). In a
warming climate, the duration and intensity of drought is further
projected to increase (Pagán et al., 2016; Pendergrass et al., 2020).
Therefore, an advancement in the capability of timely prediction
and development of early warning systems is crucial for drought
risk management and strategic planning.

2.2.1. Advancement in the Use of Machine Learning

Techniques for Drought Prediction
Drought is a complex weather hazard (Van Loon, 2015);
therefore, a comprehensive understanding of the physical
mechanisms that drive drought is essential to improving drought
prediction (Huang et al., 2016). Numerous studies have been
conducted to understand the intricate physical processes that lead
to the extreme low moisture conditions of drought. Scientists
have employed dynamical methods that involve climate and
hydrological model simulations, statistical models using a suite
of predictors and drought indices, as well as hybrid models for
drought prediction (Fernández et al., 2009; Dutra et al., 2014;
AghaKouchak, 2015; Mo and Lyon, 2015; Wood et al., 2015; Hao
et al., 2017, 2018).

During the last decade, there has been an increase in the
use of ML techniques to improve drought predictability (Hao
et al., 2018). For instance, random forest ML algorithms have
been increasingly used in drought prediction studies (Park
et al., 2016; Kuswanto and Naufal, 2019; Rahmati et al., 2020).
Random forests are extensions of decision tree analysis that
start with classification trees–types of decision trees that can
be grown together as a “forest” in a computational system.
They provide highly accurate classification and characterization
of complex predictor variable interactions while maintaining
flexible analytical technique selection (Allen et al., 2018).
Random forests also provide the capability to deal with the
issue of overfitting and multicollinearity as compared to the
traditional linear regression models (Konapala and Mishra,
2020). Park et al. (2016) employed random forests, boosted
regression tree, and Cubist ML algorithms (rule-based model
trees on which the terminal leaves contain linear regression
models) for meteorological and agricultural drought monitoring
using 16 remote sensing based drought factors over arid and

humid regions in the United States. Their findings suggest
that among the three approaches, random forests provide the
best performance for Standardized Precipitation Index (SPI)
prediction. Similarly, Kuswanto and Naufal (2019) found the
performance of random forests to be optimal when using SPI
derived from Modern-Era Retrospective analysis for Research
and Applications (MERRA-2) for drought prediction over the
East Nusa Tenggara Province in Indonesia. A more recent study,
Rahmati et al. (2020) compared the performance of six different
ML techniques [classification and regression trees (CART),
boosted regression trees (BRT), random forests, multivariate
adaptive regression splines (MARS), flexible discriminant
analysis (FDA), and SVM] for mapping agricultural drought
hazard in the southeast region of Queensland, Australia. Similar
to Park et al. (2016) and Kuswanto and Naufal (2019), they found
that random forests had the best goodness-of-fit and predictive
performance among the six models. Zaniolo et al. (2018)
contributed to the FRIDA (FRamework for Index-based Drought
Analysis) for the automatic design of basin-customized drought
indexes across different types of basins by applying a ML-
powered variable selection algorithm. The algorithm is based on
a Wrapper for Quasi-Equally Informative Subset Selection (W-
QEISS), which applies a multi-objective evolutionary algorithm
to identify Pareto-efficient subsets of variables. This technique is
able to maximize the wrapper accuracy, minimize the number
of selected variables, and optimize relevance and redundancy of
the subset. As a result, the framework is able to build an index
that represents a surrogate of the drought conditions in a basin
through the computation and combination of all the relevant
available information regarding the water cycle in the system
identified using the feature selection algorithm.

ANN ML techniques (see section 2.1.1) have also been
used for drought forecasting (Mishra et al., 2007; Morid
et al., 2007; Belayneh and Adamowski, 2012; Belayneh et al.,
2014). Belayneh et al. (2016) coupled a wavelet transform data
processing technique (see section 2.1.3), bootstrapping and
boosting ensemble approaches with ANN and Support Vector
Regression (SVR) (see section 2.1.1) for drought prediction in
the Awash river basin of Ethiopia. Bootstrapping is a resampling
technique with replacement that was used to create bootstrap
ANN and SVR ensemble models to reduce model prediction
uncertainty. Boosting techniques improve the performance of an
algorithm by producing a series of models focusing on training
cases that were not well predicted previously. The researchers
found that the coupledmodels showed an improved performance
and provided more robust SPI predictions as compared to either
of ANN or SVR alone.

ANN models can be limited by model interpretability,
local minima traps, and computational efficiency issues. Thus,
alternatively, XGBoost has been gaining popularity due to its high
execution speed and improved model performance as compared
to other ML techniques such as SVM, ANN, and random forests
(Fan et al., 2018; Shimoda et al., 2018; Zhang R. et al., 2019).
XGBoost is an ensemble technique that implements a gradient
boost decision tree algorithm to produce an ensemble of weak
prediction models. Models are subsequently added to improve
errors until an optimum performance is achieved. Zhang R.
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et al. (2019) compared the performance of XGBoost with a
traditional statistical model and an ANNmodel for Standardized
Precipitation Evapotranspiration Index (SPEI) prediction with a
lead time of 1–6 months for 32 weather stations in the Shaanxi
Province of China. In their study, the XGBoost model showed the
best performance for SPEI prediction, achieved highest user’s and
producer’s accuracies and was much faster than the ANNmodel.

2.3. Water Quality
The deterioration of water quality in both groundwater and
surface water has become a major concern causing negative
impacts on human well-being, eco-systems, water supply, and
infrastructure around the world (UN, 2012; Khan and See, 2016).
According toUnitedNations (UN),more than 880million people
are living in water scarcity without adequate safe drinking water,
and 2.6 billion people lack access to basic sanitation due to
water shortage (UN, 2010, 2012). Effective management of water
supply systems and watersheds often requires reliable and timely
approaches for predicting water quality and forecasting future
water quality trends (Wang et al., 2017; Bui et al., 2020). Based
on established water quality standards (Nowell and Resek, 1994;
EPA, 2012), water quality is often estimated using a combination
of water quality parameters that reflect the physical, biological,
or chemical characteristics of the air, watershed hydrology, soils,
and sediment transported in the aquatic system (Hou et al.,
2013; EPA, 2019). Developing accurate and timely prediction of
water quality is a challenging effort. The traditional approaches
utilize water quality models for analyzing and predicting water
quality parameters. Most of these models consist of mathematical
representations of physical mechanisms that determine (a) the
fate, transport, and degradation of pollutants within a water
body, and (b) the movement of pollutants from land-based
sources to a water body (Refsgaard andHenriksen, 2004). Despite
their usefulness for modeling specific scenarios, water quality
models can only provide one line of evidence that serves as
an imperfect approximation of reality (Kebede, 2009). This is
because of process complexity of the water quality problems in
that (1) there is a large number of interconnected multi-domain
processes (e.g., physical transport, hydrological, chemical, and
biological); and that (2) many underlying mechanisms that
may affect water quality are still unknown. Complex water
qualitymodels often involve time-consuming and labor-intensive
processes (Ahmed et al., 2019), rendering them costly and
ineffective for supporting many time-critical water resources
management tasks that have limited budgets. Compared with
process-based (mechanistic) models, the newly emerging data-
driven approaches for water quality predictions often rely on a
large volume of water quality and hydrological data from various
sources (Khan and See, 2016). Examples of these data sources
include the United States Geological Survey (USGS) online
resource—National Water Information System (NWIS) and
the United States Environmental Protection Agency’s (USEPA)
STORET Data Warehouse (Beran and Piasecki, 2008). These
analyses normally consider the combined effect of multiple water
quality parameters, such as ammoniacal nitrogen (NH3-N),
suspended solid (SS), dissolved oxygen (DO), pH, and salinity.
As many of these parameters are dynamic and affected by natural

watershed hydrology, their influences on water quality may vary
across watersheds (EPA, 2019). In different watersheds, some
parameters may have greater and more noticeable influences on
water quality than others (Khan and See, 2016). In response
to this challenge, the water quality index (WQI) has been
proposed as a representation of several water quality variables
simultaneously considered. However, calculating WQI using
traditional approaches consumes time and is often filled with
errors during derivations of sub-indices (Bui et al., 2020). To
address these limitations and improve water quality analysis
and prediction, researchers have applied many ML techniques
(Khan and See, 2016; Ahmed et al., 2019; Bui et al., 2020), as
well as developed a few hybrid approaches that combine various
traditional methods with ML techniques (Taskaya-Temizel and
Casey, 2005; Wang et al., 2017). We discuss the application of
some of these approaches next.

Palani et al. (2008) and Singh et al. (2009) applied ANN
models to predict river and coastal water quality in India and
Singapore respectively. Each found that the ANN-computed
values of water quality indicators were in close agreement with
their respective measured values in the river water. García-Alba
et al. (2019) developed an ANN model to estimate bathing
water quality in estuaries and found that ANN models are
able to estimate Escherichia coli concentrations comparable to
those extimated by process-based models, and at much lower
computational cost. In more recent studies, combinations of
multiple ML and data analytic techniques applied to a problem
are preferred to analysis with a singleML technique. For example,
Lu andMa (2020) proposed coupling twoMLmodels to improve
water quality prediction: XGBoost (section 2.2.1), and a random
forest algorithm (section 2.2.1). They found that while the
hybrid XGBoost model performed better for PH values, turbidity,
and fluorescent dissolved organic matter predictions, and the
random forest model performed better for temperature, dissolved
oxygen, and specific conductance prediction; the combined
performance of the two models was the best for optimizing the
calculation of a water quality index. Barzegar et al. (2020) applied
two standalone deep learning (DL) models, a convolutional
neural network (CNN), an ANN with a convolutional activation
function, and the long short-termmemory (LSTM)model, which
includes feedback in addition to feedforward networks, and
a combined CNN–LSTM model to predict two water quality
variables, dissolved oxygen (DO; mg/L), and chlorophyll-a (Chl-
a; µ/L), in the Small Prespa Lake in Greece. Assessment of
the model performance using statistical metrics, showed that
LSTM outperformed the CNN model for DO prediction, but
the standalone DL models yielded similar performances for
Chl-a prediction. The combined CNN–LSTM model, however,
outperformed the standalone models for predicting both DO
and Chl-a. By coupling the LSTM and CNN models, both the
low and high levels of water quality parameters were successfully
captured, particularly for the DO concentrations (Barzegar et al.,
2020). Similar successful approaches involving the coupling of
multiple ML algorithms for the short-term prediction of water
quality parameters include Li et al. (2018) and Lu and Ma (2020).
Bui et al. (2020) applied four standalone algorithms [random
forests and three variants: M5P (similar to Cubist, section 2.2.1),
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random tree (RT), reduced error pruning tree (REPT)], and
developed 12 algorithm combinations among these methods
to predict water quality in northern Iran. They found fecal
coliform concentrations to have the most effect and total solids
to have the least effect on the predictions. Finally, Read et al.
(2019) integrated theory with state-of-the-art ML techniques to
improve predictions of water quality related parameters guided
by physical laws. The study presented a use case for a Process-
Guided Deep Learning (PGDL) hybrid modeling framework for
predicting depth-specific lake water temperature, which serves as
an important water quality parameter. The PGDL consisted of
three primary components: a deep learning (many-layered neural
network) model with temporal awareness (long short-term
memory recurrence), theory-based feedback (model penalties
for violating conversation of energy), and model pre-training
to initialize the network with synthetic data (water temperature
predictions from a process-based model) (Read et al., 2019).
Through the use case the researchers demonstrated that the
integration of scientific knowledge into deep learning tools
shows promise for improving predictions of many important
environmental variables.

2.4. Soil Erosion and Sediment Transport
Erosion and sedimentation are naturally occurring processes that
include the detachment, transportation, and deposition of soil
particles through the action of wind, water, and ice (NRCS,
2008). However, excessive soil erosion and sedimentation rates
are results of anthropogenic activities (e.g., urbanization and
agriculture) where soil surfaces are exposed and initially not
revegetated (e.g., construction sites). Without proper mitigation,
erosion and sedimentation in urban areas can cause a series of
adverse impacts to the environment and urban areas (Guy, 1970;
Hewett et al., 2018), which include water pollution, degradation
of aquatic habitat, infrastructure damage (e.g., sediment blockage
in urban waterways, storm sewer, and stream crossings, as well as
silting of roadways, utility supply networks, and fences), increase
in water-treatment costs, and stream bank instabilities (e.g.,
gullying and land-slides) (NRCS, 2008).

2.4.1. Machine Learning Techniques for Sediment

Research
To tackle sediment-related problems, the predictions of sediment
production and transport are required to inform urban planning
and watershed management communities of the major source
of sediment and erosion-prone areas. Conventionally, these
predictions are addressed through a wide variety of erosion and
sediment transport models (Merritt et al., 2003; Nearing et al.,
2005). Despite the usefulness and maturity of these traditional
approaches, the prediction of sediment-related parameters (e.g.,
soil losses, in-stream sediment load, and sediment delivery
ratio) is still challenging because of the following model
limitations: (a) running many physically-based erosion and
sediment transport models are time- and resource-intensive,
and requires the consideration of more physical processes in
addition to the hydrological process making models are less
applicable to sediment-related predictions in large watersheds
and areas (Abaci and Papanicolaou, 2009); (b) most models are

designed to simulate a specific type of erosion (e.g., rill, gully, and
stream bank erosion) and sediment transport (e.g., suspended
load and bed load) (Wischmeier and Smith, 1978; Ganasri and
Gowda, 2015), while sediment-related problems in urban areas
and urban waterways often entail multiple types of erosions
and sediment transport therefore requiring the integration of a
variety of models; and (c) most erosion and sediment transport
models do not cover sediment transport and deposition at man-
made structures (Rowley, 2014) in urban areas. A comparative
study conducted by Liang et al. (2019) showed that data-driven
models can effectively inform and complement the simulations
conducted with physics based models. Currently, there are many
studies that utilize various ML methods to address various issues
in sediment research. We summarize a list of example studies by
their application areas and their applied ML methods:

1. Modeling sediment transport

(a) Artificial neural networks (Tayfur, 2002; Lin and
Montazeri Namin, 2005; Bhattacharya et al., 2007;
Yang et al., 2009),

(b) Adaptive-network-based fuzzy inference system: (Lin and
Montazeri Namin, 2005; Bakhtyar et al., 2008; Wieprecht
et al., 2013),

(c) M5 Model trees (Onderka, 2012; Goyal, 2014).

2. Predicting sediment load

(a) Random forests (Francke et al., 2008; López-Tarazón et al.,
2012),

(b) Genetic algorithms (Altunkaynak, 2009; Yadav et al.,
2019b),

(c) Unsupervised techniques (Ahmed et al., 2018; Xu et al.,
2019a).

3. Predicting soil erosion

(a) Tree-based ML methods (e.g., random forest, gradient
boosted regression tree, naïve Bayes tree, and tree ensemble
models) (Rahmati et al., 2017; Hosseinalizadeh et al., 2019),

(b) Support vector machine (SVM) (Pourghasemi et al., 2017;
Mustafa et al., 2018),

(c) Artificial neural networks (Abdollahzadeh et al., 2011;
Pourghasemi et al., 2017; Rahmati et al., 2017).

4. Sediment-related impacts on urban infrastructure

(a) Random forest (Xu et al., 2019a),
(b) Adaptive-Network-based Fuzzy Inference System (ANFIS)

(Azamathulla et al., 2011, 2012).

In general, erosion and sediment research is a broad subject
that provides numerous opportunities for ML applications.
By reviewing the above-mentioned example studies, we have
summarized that (a) compared with traditional erosion and
sedimentation transport models, ML methods are easier and
cheaper (Cigizoglu, 2002; Tayfur and Guldal, 2006; Yadav et al.,
2019a), and can be readily applied to solve complex sediment
problems that entail human factors and multiple erosion and
sediment transport processes (Xu et al., 2019a), (b) ML models
that rely on field data generally produce better and more
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reliable results than those obtained from experimental models
(Kitsikoudis et al., 2014).

2.4.2. Hybrid Modeling Techniques for Sediment

Research
In addition to its application to previously described hydrological
studies, hybrid modeling has also been applied to sediment
research (Merritt et al., 2003; Hajigholizadeh et al., 2018).
Through the fusion of inductive data-driven models and
deductive process-based models (Goldstein and Coco, 2015),
hybrid models inherit the strengths of both the ML methods
and physics-based models in a single model that has an
increased performance in terms of speed (Babovic et al., 2001;
Hall, 2004), accuracy (Krasnopolsky and Fox-Rabinovitz, 2005;
Goldstein and Coco, 2015), and the capability of addressing soil-
water problems with complex and multi-scale physical processes
(Hajigholizadeh et al., 2018). An additional benefit of hybrid
modeling is that ML models and data can be directly coupled
to improve the calibration of process-based models (Knaapen
and Hulscher, 2003; Ruessink, 2005; Mekonnen et al., 2012).
Hajigholizadeh et al. (2018) summarized a table of hybrid
modeling applications that integrate statistical models with
process-based models in sediment research including:

• Modified Morgan, Morgan and Finney (MMMF) (Morgan
et al., 1984),

• Sediment river network model (SEDNET) (Prosser et al.,
2001),

• Erosion Assessment Tool of MIKE BASIN &MILW (SEAGIS)
(DHI, 2003),

• Automated GeospatialWatershed Assessment (AGWA) (Scott
et al., 2002).

2.5. Application of Machine Learning to
Remotely-Sensed Data for Water Hazard
Prediction and Mitigation
Remotely-sensed (RS) data, due to its wide spatial coverage,
provides a synoptic view of disaster affected areas. It is
also frequently available during the disaster response phase
providing a temporal overview of the disaster situation. Due
to the recent advancements in satellite sensor technology, RS
data is now available at various spatial resolutions (i.e., low,
medium, and high) affording local, regional, and global coverage,
and various spectral resolutions, from a few spectral bands
in optical sensors to several hundreds of spectral bands in
hyperspectral sensors. Additionally, advancements in the RS field
have resulted in a continuous growth in Earth Observation
(EO) data archives. Due to these characteristics, RS data is a
potential data source for each stage during hydrological pre-
event planning and post-event countermeasures (Ge et al., 2020).
Nevertheless, it is not always possible and is often dangerous
to conduct ground surveys of disaster affected areas. Often
the disaster destroys the transportation and communication
facilities making ground-based survey impossible. In such time-
critical situations, the proper selection of the sensor type,
spatial resolution, and satellite revisit period is crucial, as pre-
disaster and ancillary data can provide a wide coverage of the

disaster affected area (Ge et al., 2020). Despite these occasional
limitations, various powerful approaches have been developed
recently in the context of advanced ML and computer vision
to exploit the wealth of information that can be found in RS
data to address various urban water hazards related events
(Kurte et al., 2017).

2.5.1. Flood Management
Over the last two decades, RS data have successfully contributed
to various stages of flood management (Rahman and Di,
2017) such as flood risk assessment and flood emergency
planning and management. Flood risk assessment requires
the performance of flood hazard assessment, exposure risk
assessment, and vulnerability assessment. As a part of the
flood hazard assessment, RS data have been analyzed for flood
forecasting and evaluation of flood inundation. As a part of flood
emergency planning and management, RS data have been widely
used in flood early warning systems, rescue and relief operations,
post-flood damage assessment and policy making. Various recent
approaches have used advanced ML techniques and RS during
various stages of flood management.

Flood forecasting requires accurate estimation of rainfall.
Although satellite RS has limited direct applicability to flood
forecasting, it has been widely used for precipitation estimation,
which is an important input for flood forecasting models. In
the late 90s, Tsintikidis et al. (1997) used a shallow neural
network with one hidden layer to estimate rainfall from a passive
microwave radiometer SSM/I data. The network considered
brightness temperature and associated polarization information
as inputs and it output the rainfall rates. A random forest
based ML algorithm was used to estimate the precipitation
which used satellite-derived information on cloud-top height,
cloud-top temperature, cloud phase, and cloud water path
retrieved from the Meteosat Second Generation (MSG) Spinning
Enhanced Visible and Infrared Imager (SEVIRI) (Kühnlein
et al., 2014). Recently, Shi et al. (2015) proposed a spatio-
temporal sequence forecasting approach using Convolutional
Long-Short Term Memory (ConvLSTM) with RADAR echo
data in 2D from a ground-based RADAR for precipitation
nowcasting by forecasting the RADAR echo data. Pan et al.
(2019) proposed a Convolutional Neural Network (CNN) based
approach to improve the precipitation estimates from numerical
weather prediction (NWP) models. The authors stated that the
method outperformed reanalysis precipitation products as well
as statistical downscaling (SD) products using linear regression,
nearest neighbors, random forests, or fully connected deep neural
networks. In an another recent work, Hayatbini et al. (2019)
proposed a precipitation estimation framework using a fully
convolutional neural network and the advanced baseline imager
data from GOES-16, a multispectral geostationary satellite.
Specifically, they proposed that the U-net CNN architecture
could perform rain/no-rain classification using satellite imagery.
The study was based on the earlier work of Hong et al. (2004) on
precipitation estimation using remote sensing data and an ANN.

Flash flood susceptibility mapping is another important
process in flood risk assessment. Recently, Costache et al. (2019)
used a Digital Elevation Model (DEM) with 30 m spatial
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resolution obtained from Shuttle Radar Topography Mission
(SRTM), and which was developed using the technique called
SAR interferometry, to derive seven flash-related conditioning
factors such as slope angle, aspect, profile curvature, and other
factors. In addition, the authors used aerial imagery from Google
Earth to delineate the torrential areas along with the land
use/cover data, CORINE, which was derived from Sentinel-2 and
Landsat-8 RS images. K-nearest neighbors (kNN), K-Start (KS),
and Anlytical Hierarchy Process (AHP) algorithms were then
applied to obtain the flash-flood susceptibility mapping. Thus,
RS techniques played a crucial role in obtaining eight out of 10
flash-flood conditioning factors. In a similar work, Shahabi et al.
(2020) used a ML ensemble method with four different k-nearest
neighbor (kNN) algorithms for flood detection and susceptibility
mapping. Authors used Sentinel-1 images to generate the flood
inventory and SRTM DEM to obtain various flood-related
conditioning factors. These two works show that ML ensemble
methods are gaining traction in flood susceptibility mapping.

Mapping of flooded areas is important to performing
damage assessment, deploying rescue and relief operations and
developing policies. An example of applying RS and ML to this
undertaking is Feng et al. (2015), who developed a random
forest based approach to map accurately a flooded area using
high-resolution (0.2 m) imagery obtained fromUnmanned Areal
Vehicle (UAV) imagery. The data were obtained for Yuyao City
of Zhejiang Province in Eastern China during the flooding that
occurred due to the extreme rainfall event on October 7, 2013.
Additionally, Jain et al. (2020) developed a hybrid approach to
combine the strength of the traditional water indices from RS
imagery and generalization capability of Convolutional Neural
Networks (CNN). The authors proposed a newwater index which
minimized cloud interference in the RS image and used it with
a pre-trained VGG-16 model (Simonyan and Zisserman, 2014)
and a transfer learning based approach to re-train the model for
a new task of flood water detection. In a similar work, Potnis
et al. (2019) used an Encoder-Decoder Neural Network based on
the Efficient Residual Factorized Convnet (ERFNet) architecture
for multi-class segmentation of urban floods satellite imagery
fromWorldView-2 of floods in Srinagar, India during September
2014. Recently, Jiang et al. (2020) proposed an approach to obtain
waterlogging depth from video images using CNN. The approach
generated synthetic images from the set of images of reference
objects and flood surface, which was further used to train the
CNN model to obtain the waterlogging depth. This method
can also be employed to obtain waterlogging depth from the
images taken of the flooded area using recent drone-based video
surveillance. Cervone et al. (2017) added to these techniques a
methodology to fuse social media data with the RS data during a
flood situation to improve the flood mapping capability.

Recently, a few approaches to model the semantics in RS
images were proposed for flood detection and mapping. Kurte
et al. (2017) proposed a semantics enabled framework to model
the spatial relationships among various regions in the RS images
to enable spatial-relationships-based queries such as Retrieve all
images in the ALI repository having Built Up region externally
connected to the Stagnated Flood Water. Later this work was
extended to accommodate the temporal aspect to enable the

spatio-temporal semantic queries such as Show road segments
which were completely submerged during 9th September 2014 to
22nd September 2014 (Kurte et al., 2019). In a similar semantics
based approach, Potnis et al. (2018) developed a flood scene
ontology (FSO) which formally defines complex classes such as
Flooded_Residential_Buildings, Accessible_Residential_Buildings,
Operational_Roads. After detecting various objects in the RS
imagery using any supervised classification approach, the
ontology can be used to infer complex classes which are very
important for flood mapping.

2.5.2. Water Quality Monitoring
RS data has been used over the past 50 years to monitor water
quality. For instance, RS data can be used to measure water
turbidity, or lack of transparency, which is a good measure of the
water quality. Clear water shows high absorptivity in the infra-
red and near-infrared wavelength regions. It also shows some
reflectivity in the visible regions. Reflectivity in this application
can reveal variations in water quality due to salinity, temperature,
and turbidity. In the past decade, much research has been
published in which remote sensing and ML approaches are used
to estimate additional water quality parameters. For example,
Dogan et al. (2009) explored the non-linear capability of ANN
to improve the accuracy of biological oxygen demand (BOD)
estimation. Wu et al. (2014) compared multiple regression (MR)
with ANN for total suspended solid (TSS) turbidity estimations
using data measured with a hyperspectral spectroradiometer
and found that the non-linear transformation function of
ANN performed better than MR. Wang et al. (2011) used the
support vector regression (SVR) method to retrieve various
water quality estimators from SPOT-5 satellite data. SVRs
showed potential in solving problems with small sample size,
non-linearity, or high dimension (Vapnik, 1995). Huo et al.
(2014) stated that the lakes near urban areas or inside urban
areas are becoming eutrophied or even hypereutrophied due
to excessive urbanization and a fast growing economy. The
authors used genetic algorithms combined with support vector
machines (GA-SVM) to build an inversion model for eutrophic
indicators such as Chl-a from Landsat ETM imagery. They
showed that the GA-SVM based method had better prediction
accuracy than the traditional statistical regression methods and
ANN based approaches. According to Sharaf El Din et al.
(2017), modeling water quality using satellite data is a complex
problem, and conventional regression-based approaches can
not perform well while modeling such complex relationships
between water quality and RS data. The authors claimed that
the proposed Landsat8-based-BPNN—back propagation neural
network—to estimate water quality (both optical and non-
optical) worked better than SVM-based methods. Moreover, the
authors mentioned that, compared to the BPNN-based methods,
the SVM-based methods could produce very different results
due to differences in parameter selections, kernel-selection, high
algorithmic complexity, and extensive memory requirement.
The developed model showed R2 > 0.9 for the water quality
indicators such turbidity, total suspended solids (TSS), chemical
oxygen demand (COD), biological oxygen demand (BOD), and
dissolved oxygen (DO). Recently, Hafeez et al. (2019) compared
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several ML techniques including artificial neural networks,
random forests, cubist regression, and support vector regression
for estimating the concentrations of suspended solids (SS), Chl-
a, and turbidity using Landsat data. The results showed that the
ANN-based model achieved the highest accuracy in estimating
the above mentioned water quality indicators. In an another
recent study, Govedarica and Jakovljević (2019) used 4-years of
time-series data of in-situ monitoring of surface water bodies
for the calibration and validation of a water quality estimation
based on SVM and ANN algorithms using Landsat 8 data. The
work also compared the estimations based on Landsat 8 with
the Sentinel-2 data and found that, due to higher spatial and
spectral resolution, Sentinel-2 data is a better alternative for
water quality monitoring. Interestingly, the results showed that
SVM produced more accurate results than ANN when used with
Landsat data, whereas ANN provided better estimation accuracy
for turbidity and TSS than SVM, and lower accuracy for TN
and TP than SVM when used with Sentinel-2 data. Finally,
Wang et al. (2017) conducted a study that combined a ML
algorithm and remote sensing spectral indices [difference index
(DI), ratio index (RI), and normalized difference index (NDI)]
through fractional derivatives methods and in turn establishes a
model for estimating and assessing the water quality index (WQI)
(2.3). For this study, the WQI was calculated using sensitive
wave bands and a spectral index of hyperspectral data, and
particle swarm optimization (Kennedy and Eberhart, 1995; Shi
and Eberhart, 1998)—support vector regression models (PSO-
SVR), which deploy a population of candidate solutions over the
SVR search space. Through comparisons of the predictive effects
of the 22 water quality index estimations determined by the PSO-
SVR, Wang et al. (2017) demonstrated that the model based on
RI, DI, and NDI values of the 1.6 order was better performing
than the others for predicting the water quality index of the semi-
arid area of central Asia [R2 (0.92), RMSE= 58.4, RPD (2.81) and
a slope of curve fitting of 0.97].

2.5.3. Impervious Surface Detection
Urban impervious surfaces such as roads, driveways, sidewalks,
and parking lots prevent water from infiltrating into soil, which
has impacts on urban hydrology, groundwater, and water quality.
Impervious surfaces facilitate pollutant’s movements to nearby
water bodies during heavy rain and urban flooding (Hall and
Hossain, 2020). In the context of ML, identifying impervious
surfaces from RS data is fundamentally a classification approach.
However, many index-based approaches for sighting impervious
surfaces using RS (e.g., Weng, 2012) focus on the developments
in this area that use ML algorithms. Recently, Yao et al.
(2017) adopted a one-class classification approach to detect
impervious surfaces using high-resolution GF-1 satellite images,
and found that Presence and Background Learning (PBL) and
Positive Unlabeled Learning (PUL) outperformed SVM models
in detecting impervious surfaces. Miao et al. (2019) also used
a one class classification technique and Landsat-8 imagery for
impervious surface classification. In a similar study, Bian et al.
(2019) used a random forest algorithm and time-series data from
multiple satellites HJ-1A/B and GF-1/2 to estimate the changes
in the impervious surface percentage over the years 2009–2017.

Lin et al. (2019) addressed the challenges in detecting impervious
surfaces due to the diversity of land use and shadow effects
in high-resolution satellite imagery using a dictionary sparse
representation classification and data fusion approach with WV-
2, GeoEye-1, TerraSAR-X, and LiDAR. Zhang H. et al. (2019)
addressed similar issues by using a deep CNN approach with
data fusion from optical and SAR satellitesWV-3, Sentinel-2, and
Radarsat-2. Similar other works, Sun et al. (2019) (used 3D CNN
with WV-3 and LiDAR), McGlinchy et al. (2019) (used UNet
withWV-2), show increasing trends of using deep learning based
approaches with multi-satellite data fusion.

3. IDENTIFICATION AND ASSESSMENT OF
MULTI-HAZARD RISK

Multi-hazard identification and compound risk assessment
inform effective planning activities and strategies (FEMA, 2015),
and help water managers prioritize attention, investment, and
recourse (Dickson-Anderson et al., 2016) to target the most
urgent and the highest impact risks. Risk is defined as a
combination of hazard, exposure, and vulnerability (Garrick and
Hall, 2014). Because exposure in urban areas is relatively high
due to the high density of population and man-made structures
(Hoekstra et al., 2018), cities without proper preparedness and
adaptation strategies are vulnerable to a wide variety of urban
water hazards (Shaw et al., 2016; Eldho et al., 2018; Hoekstra
et al., 2018; Gangrade et al., 2019; Rahmasary et al., 2019)
that are often causally linked to further hazards. Additionally,
coincidental hazards may occur, resulting in a compounding
effect overwhelming the ability of local or national governments
to respond (Liu and Huang, 2014). For example, a specific
urban water hazard such as flooding can lead to multiple risks
(Dai et al., 2017; Cook et al., 2019) that include inundation of
building structures, damage to infrastructure, and/or the spread
of water-borne diseases (Gangrade et al., 2018; Pereira, 2018).
Consequently, multi-hazard risk assessment techniques must be
conducted in the urban water management sector in a manner
that considers the combined effects and interactive reactions of
multiple urban water hazards in urban areas (Garcia-Aristizabal
and Marzocchi, 2013; Gruber and Mergili, 2013; FEMA, 2015;
Karlsson et al., 2017).

Despite its usefulness for hazard mitigation planning, multi-
hazard risk assessment has been under-emphasized in natural
disaster management and planning (Rahmati et al., 2019) due
to the difficulty of analyzing the risk for more than one
hazard in the same area, and of analyzing their interaction.
In the past, studies have focused primarily on forecasting and
controlling hazards, and their physical processes (Kalantari
et al., 2019) in natural areas, without considering the social
and economic impacts of these hazards in urban areas (e.g.,
hazard effects on buildings, infrastructures, and agriculture).
Previous studies, which intended to analyze hazard risk and
social vulnerabilities, only analyzed the risks of single hazards
separately (Bühler et al., 2013; Statham et al., 2017) using
physical or statistical models [e.g., flood impact using the HEC-
FIA model (Lehman and Light, 2016) or economic damage to
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fisheries caused by surface water pollution using AQUATOX
model (Park et al., 2008)]. In general, most past studies do
not consider the multi-hazard chain (hazard interaction) and
the combined risk of coupled hazard events (Garcia-Aristizabal
and Marzocchi, 2013; Rahmati et al., 2019). Although a few
studies (Freeman and Warner, 2001; Newman et al., 2017)
analyze the components of different types of vulnerability and
risk by evaluating physical, social, and economic consequences
of a chain of urban hazards, developing a systematic approach
for multi-hazard risk assessment using conventional modeling
methods facesmultiple challenges. These challenges are primarily
associated with (a) integrating multiple physical or statistical
models and domain-data that only target single hazards to
simulate a multi-hazard chain and predict the combined effect
of multiple urban water hazards, and (b) in-depth understanding
of hazards, including interconnections between different hazards,
and dynamics behind multiple hazards. In the presence of hydro-
complexities, many underlying mechanisms of urban water
hazards remain unknown. Therefore, conventional methods
based on physical modeling alone may not be the best way to
assess multi-hazard risk in urban water systems.

In recent years, advanced ML methods have been used to
develop innovativemulti-hazard risk assessment frameworks and
workflows, which are able to address the challenges associated
with conventional risk assessment techniques. The feasibility
of applying ML to multi-hazard risk assessment is shown by
the following: (a) ML is a subfield of artificial intelligence
and data-driven analysis where ML models can easily identify
trends, patterns, and empirical relationships in a large volume
of data without considering detailed physical processes behind a
phenomenon, such as the interactive reactions between multiple
water hazards (Dibike and Solomatine, 2000; Rahmati et al.,
2019), and (b) ML models are capable of handling data that
are multi-dimensional and multi-domain (Anzai, 2012). In this
section, we review several ML workflows and applications that
are designed to support the analysis of multi-hazard risk for
mitigating water-related hazards.

For example, Rahmati et al. (2019) investigated and mapped
multi-hazard exposure using several ML models including BRT
(Boosted Regression Trees), GAM (Generalized Additive Model,
a regression which can include linear or non-linear predictor
variables and predicted values potentially following any of a
variety of probability distribution functions), and SVM (Support
Vector Machines), and they evaluated the performance of
these ML models using threshold-dependent and threshold-
independent methods. The study consists of several steps: (1)
selection of predictive factors for modelingmultiple hazards (e.g.,
flood, landslide, soil erosion, and debris flow), (2) creation of
Multi-Hazard Inventory using records from road organization
and the regional water company (RWC) to document the
occurrence of various hazards, (3) application of ML models
to predict and map the exposure of multiple hazards, and (4)
evaluation of the accuracy of these models. The results of this
study indicate that (a) different ML models differed in their
accuracy of predicting the different hazards (Rahmati et al.,
2019), and (b) the appliedMLmodels are useful and generalizable
for multi-risk mapping around the world.

Another example of a multi-hazard multi-model approach is
Chen et al. (2019), in which the researchers evaluate the risk of
regional flood disaster in the Yangtze River Delta (YRD) region.
Based on the driving force, pressure, state, impact, and response
(DPSIR) conceptual framework, the study first applies a random
forest algorithm to screen important indices of flood risk. They
then construct a radial basis function (RBF) neural network to
evaluate the flood risk level. In this study, the radial basis function
is the activation function for the ANN. The study approaches
the urban flood risk assessment as a multi-classification problem
using ML methods and indicates that only a few of the previous
studies use ML theory to assess the urban flood disaster risks
that are complex and associated with multiple sources and
contributing factors. The study concludes that the level of
urban flood disaster is closely related to rainfall, topography,
economic development, land use, soil erosion, urban flood
control investment, and disaster emergency response capability,
shedding light on effective regulation measures for improving
flood prevention in urban environments.

3.1. Exploration of Complex and
Interconnected Hazards and Risks
To explore complex and interconnected hazards and risks,
Xu et al. (2019a) present a visual analytics framework that
combines various types ofML applications (e.g., feature selection,
classification, and multivariate clustering analysis) with different
geo-visualization techniques to analyze multi-hazard risk at
culverts due to flooding and sedimentation. ML models applied
in this study include the classification schemes, random forests
and Self Organizing Maps (SOM), and are used for exploratory
data analysis, aiming to improve the understanding of the
factors and interconnected hazards (e.g., flooding, excessive
erosion, and sediment transport in rivers) that contribute to the
sedimentation and flood over-topping of culverts (transportation
infrastructure). The results of the study show that ML application
can be used not only for multi-risk assessment and hazard
prediction but also for exploring the complex and interconnected
processes behind multiple hazards. Additionally, the same
framework can be readily extended to analyze multiple hazards
at other hydraulic structures, such as bridges and weirs.
Pourghasemi et al. (2020) presented a ML workflow, debuted as
the Sendai framework, for assessing and mapping multi-hazard
risk susceptibility, with an overall objective of reducing hazard
risk and increasing sustainable development in urban areas.
The workflow entails three main steps: (1) data preparation for
obtaining the location of various hazards (floods, forest fires,
and landslides), (2) recognition of the most important factors
contributing to the occurrence of different hazards using the
Boruta algorithm (a wrapper around random forest classification
that iteratively removes irrelevant features from the data), and
(3) construction of multi-hazard susceptibility maps along with
validation processes using the random forest model and the
preparation of a Multi-hazard Probability Index (MHPI) for the
study area. The significance of the Sendai framework is that it
(a) creates a reasonable understanding of the factors controlling
flood and forest fire through ML-powered variable ranking
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and landslide occurrence, and (b) produces a multi-hazard
probability map for facilitating integrated and comprehensive
watershed management and land use planning.

3.2. Hybrid Modeling for Multi-Hazard Risk
Assessment
A few researchers have applied hybrid models to water-related
multi-hazard risk assessment. For example, Yang T. et al. (2019)
used long short-term memory units (LSTM) to improve the
timing component of the amplitude of peak discharge for flood
simulations produced with global hydrological models over
different climate zones. Hajigholizadeh et al. (2018) used hybrid
models for predicting and assessing water erosion vulnerability
and risks, as well as for the optimization of management
strategies for agricultural or soil and water conservation
practices. Application of hybrid models to these multi-hazard
hydrological risks is still emerging within the domain, but the
utility of this approach continues to be demonstrated across a
variety of hydrological applications.

4. SELECTION OF BEST MANAGEMENT
PRACTICES

The proper selection and placement of Best Management
Practices (BMPs) is a critical planning process that helps many
watershed and urban planning communities effectively mitigate
water-related hazards and manage urban water resources (e.g.,
stormwater management, water pollution reduction, and erosion
controls) (Cheng et al., 2006; NRCS, 2011; USEPA, 2018).
These BMPs are carefully selected from a pool of planning
and mitigation alternatives that exists in various forms. Based
on their spatial scales, these alternatives can be categorized as
either localized alternatives, which are city-scale practices for
protecting themunicipal water supply and infrastructure through
structural actions and non-structural actions, and watershed
alternatives, which represent the management of land cover
and land-use at the watershed scale (Carson et al., 2018). The
selection of BMPs is a complex multi-objective optimization
problem that requires the consideration of multiple planning
objectives and criteria, which aim tomaximize the environmental
and social benefits for multiple urban communities, while
minimizing the economic cost for the implementation of these
management practices (Maringanti et al., 2008; Rodriguez et al.,
2011). The development and advancement in GA (section
2.4.1) have provided watershed management communities with
a method for solving complicated optimization problems that
are associated with the selection of BMPs. GA are capable of
handling complex and irregular solution spaces when searching
for a global optimum (Chambers, 2000; Rodriguez et al., 2011)
in a multiobjective optimization. Multiobjective optimization
has been defined as “vector optimization” (Cohon and Marks,
1975) for which the objective function is a vector containing
scalar objectives subject to a set of constraints, and for which
Pareto optimal solutions show the best performance. Reed et al.
(2013) evaluated a variety of multiobjective optimization GA
as applied to rainfall-runoff calibration, long-term groundwater

monitoring, and risk-based water supply portfolio planning.
They found five best performing algorithms, of which their high-
performance adaptive search Borg algorithm (Hadka and Reed,
2013) was the most scalable and the best performing, and has
shown particular stakeholder usefulness in its incorporation into
a visual and interactive decision support framework (Reed and
Kollat, 2013).

In the water quality management sector, several studies
applied GA-based optimization models to find optimal solutions
to water quality problems for several watersheds in the
United States by connecting non-point pollution reduction
models with economic components (Srivastava et al., 2002;
Chen et al., 2015). In the stormwater management sector,
Limbrunner et al. (2013) applied classic optimization techniques
to stormwater and non-point source pollution management
at the watershed scale, and compared their effectiveness for
finding optimal solutions to that of genetic algorithms, and linear
and dynamic programming. Dynamic programming proved to
find the most efficient solution to the sediment-management-
optimization problem.

In addition to the optimization of planning alternatives, ML
methods can enable selection for optimal management practices
(Savic, 2019). AI-driven applications are envisioned to learn
from the human decision-making process, during which best
management practices are selected by planners and watershed
managers based on their past experiences.

5. VISION: NEW APPLICATIONS OF
MACHINE LEARNING TO URBAN WATER
SECURITY

In order to ensure high-quality and timely water availability in
the right quantities for urban areas, water resources must be
managed well. In order for water resources to be managed well,
a planning system leading to actions that promote sustainability
and urban water security must be in place at the municipal level.
We have shown that ML can help with this system as it applies
to every stage of disaster management and planning, as outlined
sequentially on the left hand side of Figure 2 and shown as an
interconnected and cyclical process on the right side. That is,
we have outlined a variety of ML applications for facilitating the
individual disaster management stages and planning processes.
For long-term planning and mitigation, we have presented
studies that use ML methods to identify and assesses multi-
hazard risks and vulnerability in urban water systems, taking into
account socio-economic factors and the multi-hazard chain. We
have also discussed how ML can help optimize the selection of
urban best management practices for reducing water pollution
and supporting storm water management. For early warning and
hazards prediction, we have examined a range of ML applications
for supporting the prediction of various water-hazard related
parameters. We included studies that combine ML methods
with process-based models (e.g., conceptual and physics-based
hydrological and sediment transport models) into hybrid models
to increase the accuracy and speed of the predictions for
water hazard-related parameters. We have also discussed how
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FIGURE 2 | Potential ML opportunities for improving both the generic hazard mitigation stages (left) and detailed long-term planning steps (right).

innovative combinations of ML and remote sensing technologies
can improve the discovery and extraction of useful hazard
information and features that are critical to early-warning, rapid
response and rescue, and recovery and restoration.

Our vision is that these methods can be combined into ML
water management workflows that build on those already in
use for characterizing and predicting multi-hazard hydrological
events. By weaving together the ML methods we have described,
long-term management processes including the six steps shown
on the right hand side of Figure 2 and outlined in the
introduction can be captured. For example, risks associated with
flood, drought and water quality can be identified using genetic
algorithms, artificial neural networks, support vector machines,
random forests, and other types of regression and hybrid models.
Then planning objectives can be determined by weighing social
risk and adaptive capacity using agent-based models, boosted
regression trees, generalized additive models, and support vector
machines. To inventory data, ground-based and satellite-based
data can be reckoned, cataloged, and formatted for use in spatial-
relationships-based queries, k-nearest neighbors, analytical
hierarchy processes, and convolutional neural networks. To
select mitigation approaches, classification schemes can be
used along with multi-criteria decision methods. Uncertainty
estimates can be used to evaluate the mitigation approaches
selected. Finally, the insight gained from the ML results may

be discussed by the planners to modify and implement the
approaches determined.

ML is often not the first choice of analytical tools for
planners for a variety of reasons. The first is that reasonably
robust methods with known uncertainty for analyzing water
risks are well established and accepted in the water management
community. ML methods are less proven even if they often
can perform better on data than the traditional methods.
To address the uncertainty in ML methods, some researchers
(e.g., Morrison et al., 2003; Duncan, 2014) use metrics
such as Receiver Operating Characteristic Curves for scoring
the diagnostic ability of a binary (or higher dimensional)
classifier system, or alternative goodness-of-fit measures for
evaluating the reliability of ML output. Others (e.g., Munafò
and Smith, 2018) suggest a method of investigation called
triangulation, in which multiple approaches (at least 3) are
used to address one question. The uncertainty associated
with a complete model chain is large, especially at the
required level of decision-making under climate change,
urbanization (Dessai et al., 2009), and the accumulation of
uncertainty at each level of the assessment (Merz et al.,
2010). However, while each ML method may have its own
strengths, weaknesses, and unrelated assumptions, uncertainty
quantification can help assign some degree of confidence to
results obtained.
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We observe that many aspects of urban water security and
hazard modeling are still underrepresented as ML problems,
in particular, those pertaining to the prediction of indirect
effects of water-related hazards and their associated risks.
Additionally, the use of ML techniques often requires additional
mathematical and computational training (and often large high
performance compute resources) beyond traditional statistical
methods, and time constraints of working water managers
may not allow for this additional training. Nevertheless,
understanding the development of sustainable urban water
management planning, we can draw lessons from history and
devise sensible approaches for the future that include ML. If
we view hydrological systems as “structurally co-constituted
of natural, engineered, and social elements,” (Brelsford et al.,
2020), we may more readily employ ML to integrate disparate
data and discover new perspectives on management practices
based on the new patterns these methods reveal. In the
near future, We also envision an increase in the applications
of the hybrid modeling approaches (i.e., theory-guided ML)
(Mekonnen et al., 2012; Karpatne et al., 2017; Frame, 2019)
in the urban water management sector through the integration
of data-driven ML methods and conventional process-based
domain models.
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