
EDITED BY : Matilde Esther LLeonart, Josep Castellvi and Hiroshi Kondoh

PUBLISHED IN : Frontiers in Oncology

HOW DO METABOLISM, ANGIOGENESIS, 
AND HYPOXIA MODULATE RESISTANCE?

https://www.frontiersin.org/research-topics/11846/how-do-metabolism-angiogenesis-and-hypoxia-modulate-resistance
https://www.frontiersin.org/research-topics/11846/how-do-metabolism-angiogenesis-and-hypoxia-modulate-resistance
https://www.frontiersin.org/research-topics/11846/how-do-metabolism-angiogenesis-and-hypoxia-modulate-resistance
https://www.frontiersin.org/journals/oncology


Frontiers in Oncology 1 May 2021 | Metabolism and Hypoxia Modulate Resistance

About Frontiers

Frontiers is more than just an open-access publisher of scholarly articles: it is a 

pioneering approach to the world of academia, radically improving the way scholarly 

research is managed. The grand vision of Frontiers is a world where all people have 

an equal opportunity to seek, share and generate knowledge. Frontiers provides 

immediate and permanent online open access to all its publications, but this alone 

is not enough to realize our grand goals.

Frontiers Journal Series

The Frontiers Journal Series is a multi-tier and interdisciplinary set of open-access, 

online journals, promising a paradigm shift from the current review, selection and 

dissemination processes in academic publishing. All Frontiers journals are driven 

by researchers for researchers; therefore, they constitute a service to the scholarly 

community. At the same time, the Frontiers Journal Series operates on a revolutionary 

invention, the tiered publishing system, initially addressing specific communities of 

scholars, and gradually climbing up to broader public understanding, thus serving 

the interests of the lay society, too.

Dedication to Quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include some 

of the world’s best academicians. Research must be certified by peers before entering 

a stream of knowledge that may eventually reach the public - and shape society; 

therefore, Frontiers only applies the most rigorous and unbiased reviews. 

Frontiers revolutionizes research publishing by freely delivering the most outstanding 

research, evaluated with no bias from both the academic and social point of view.

By applying the most advanced information technologies, Frontiers is catapulting 

scholarly publishing into a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers Journals 

Series: they are collections of at least ten articles, all centered on a particular subject. 

With their unique mix of varied contributions from Original Research to Review 

Articles, Frontiers Research Topics unify the most influential researchers, the latest 

key findings and historical advances in a hot research area! Find out more on how 

to host your own Frontiers Research Topic or contribute to one as an author by 

contacting the Frontiers Editorial Office: frontiersin.org/about/contact

Frontiers eBook Copyright Statement

The copyright in the text of 
individual articles in this eBook is the 

property of their respective authors 
or their respective institutions or 

funders. The copyright in graphics 
and images within each article may 

be subject to copyright of other 
parties. In both cases this is subject 

to a license granted to Frontiers.

The compilation of articles 
constituting this eBook is the 

property of Frontiers.

Each article within this eBook, and 
the eBook itself, are published under 

the most recent version of the 
Creative Commons CC-BY licence. 

The version current at the date of 
publication of this eBook is 

CC-BY 4.0. If the CC-BY licence is 
updated, the licence granted by 

Frontiers is automatically updated to 
the new version.

When exercising any right under the 
CC-BY licence, Frontiers must be 

attributed as the original publisher 
of the article or eBook, as 

applicable.

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 

others may be included in the 
CC-BY licence, but this should be 

checked before relying on the 
CC-BY licence to reproduce those 

materials. Any copyright notices 
relating to those materials must be 

complied with.

Copyright and source 
acknowledgement notices may not 
be removed and must be displayed 

in any copy, derivative work or 
partial copy which includes the 

elements in question.

All copyright, and all rights therein, 
are protected by national and 

international copyright laws. The 
above represents a summary only. 

For further information please read 
Frontiers’ Conditions for Website 

Use and Copyright Statement, and 
the applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-88966-801-4 

DOI 10.3389/978-2-88966-801-4

https://www.frontiersin.org/research-topics/11846/how-do-metabolism-angiogenesis-and-hypoxia-modulate-resistance
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/about/contact


Frontiers in Oncology 2 May 2021 | Metabolism and Hypoxia Modulate Resistance

HOW DO METABOLISM, ANGIOGENESIS, 
AND HYPOXIA MODULATE RESISTANCE?

Topic Editors: 
Matilde Esther LLeonart, Vall d’Hebron Research Institute (VHIR), Spain
Josep Castellvi, Vall d’Hebron University Hospital, Spain
Hiroshi Kondoh, Kyoto University, Japan

Citation: LLeonart, M. E., Castellvi, J., Kondoh, H., eds. (2021). How do Metabolism, 
Angiogenesis, and Hypoxia Modulate Resistance?. Lausanne: Frontiers Media SA. 
doi: 10.3389/978-2-88966-801-4

https://www.frontiersin.org/research-topics/11846/how-do-metabolism-angiogenesis-and-hypoxia-modulate-resistance
https://www.frontiersin.org/journals/oncology
http://doi.org/10.3389/978-2-88966-801-4


Frontiers in Oncology 3 May 2021 | Metabolism and Hypoxia Modulate Resistance

04 Editorial: How Do Metabolism, Angiogenesis, and Hypoxia Modulate 
Resistance?

Hiroshi Kondoh, Josep Castellvi and Matilde Esther LLeonart

07 Hypoxia-Induced lncRNA-NEAT1 Sustains the Growth of Hepatocellular 
Carcinoma via Regulation of miR-199a-3p/UCK2

Qiangnu Zhang, Qian Cheng, Mengting Xia, Xiaotao Huang, Xiaoyan He and 
Juan Liao

22 Therapeutic Targeting of Signaling Pathways Related to Cancer Stemness

Asunción Espinosa-Sánchez, Elisa Suárez-Martínez, Laura Sánchez-Díaz 
and Amancio Carnero

54 The Double-Edge Sword of Autophagy in Cancer: From Tumor 
Suppression to Pro-tumor Activity

Rodolfo Chavez-Dominguez, Mario Perez-Medina, Jose S. Lopez-Gonzalez, 
Miriam Galicia-Velasco and Dolores Aguilar-Cazares

73 Autophagy Takes Center Stage as a Possible Cancer Hallmark

Jose G. Alvarez-Meythaler, Yoelsis Garcia-Mayea, Cristina Mir, 
Hiroshi Kondoh and Matilde E. LLeonart

96 Therapy-Induced Modulation of the Tumor Microenvironment: New 
Opportunities for Cancer Therapies

Sergi Benavente, Almudena Sánchez-García, Silvia Naches, 
Matilde Esther LLeonart and Juan Lorente

114 Alterations of Lipid Metabolism in Cancer: Implications in Prognosis and 
Treatment

Lara P. Fernández, Marta Gómez de Cedrón and Ana Ramírez de Molina

138 Five microRNAs in Serum Are Able to Differentiate Breast Cancer Patients 
From Healthy Individuals

Andrea Feliciano, Lucila González, Yoelsis Garcia-Mayea, Cristina Mir, 
Mireia Artola, Nieves Barragán, Remedios Martín, Anna Altés, 
Josep Castellvi, Sergi Benavente, Santiago Ramón y Cajal, 
Martín Espinosa-Bravo, Javier Cortés, Isabel T. Rubio and Matilde E. LLeonart

148 Tumor Profiling at the Service of Cancer Therapy

Ceres Fernandez-Rozadilla, Ana Rita Simões, Matilde E. Lleonart, 
Amancio Carnero and Ángel Carracedo

165 Synthesis and Preliminary Evaluation of a Novel 18F-Labeled 
2-Nitroimidazole Derivative for Hypoxia Imaging

Jing Lu, Chi Zhang, Xi Yang, Xi-Juan Yao, Qun Zhang and Xin-Chen Sun

Table of Contents

https://www.frontiersin.org/research-topics/11846/how-do-metabolism-angiogenesis-and-hypoxia-modulate-resistance
https://www.frontiersin.org/journals/oncology


Frontiers in Oncology | www.frontiersin.org

Edited and reviewed by:
Michael P. Lisanti,

University of Salford Manchester,
United Kingdom

*Correspondence:
Matilde Esther LLeonart
matilde.lleonart@vhir.org

Specialty section:
This article was submitted to

Cancer Metabolism,
a section of the journal
Frontiers in Oncology

Received: 23 February 2021
Accepted: 19 March 2021
Published: 12 April 2021

Citation:
Kondoh H, Castellvi J and

LLeonart ME (2021) Editorial: How Do
Metabolism, Angiogenesis, and
Hypoxia Modulate Resistance?

Front. Oncol. 11:671222.
doi: 10.3389/fonc.2021.671222

EDITORIAL
published: 12 April 2021

doi: 10.3389/fonc.2021.671222
Editorial: How Do Metabolism,
Angiogenesis, and Hypoxia
Modulate Resistance?
Hiroshi Kondoh1, Josep Castellvi 2 and Matilde Esther LLeonart3,4*

1 Geriatric Unit, Kyoto University Hospital, Kyoto, Japan, 2 Pathology Department, Vall d´Hebron Hospital, Barcelona, Spain,
3 Biomedical Research in Cancer Stem Cells Group, Vall d´Hebron Research Institute (VHIR), Barcelona, Spain, 4 Spanish
Biomedical Research Network Centre in Oncology, CIBERONC, Madrid, Spain

Keywords: cancer stem cell, autophagy, cancer, cancer resistance, therapy

Editorial on the Research Topic

How Do Metabolism, Angiogenesis, and Hypoxia Modulate Resistance?

Metabolic alterations were among the first discovered hallmarks of cancer. They were first described
90 years ago when Otto Warburg realized that cancer cells in culture had a relatively increased
metabolic rate (the Warburg hypothesis). It has been proposed that the drastic changes seen in
cancer metabolism are in part attributed to mutations in the mtDNA, metabolic reprogramming, or
mitochondrial dysfunction. However, novel players in cancer metabolism are emerging. In this
regard, the review of Fernández et al. describes how lipidic alterations impact cancer prognosis and
response to treatment. For example, it has been described that obesity increases the risk of cancer
death, possibly due to the consequences of lipid accumulation throughout a lifetime. Lipid
accumulation changes the microenvironment and produces chronic inflammation by increasing
several cytokines. While the levels of genetic or epigenetic modifications diverge in different cancer
types, all cancer cells adapt to drastic microenvironmental conditions. This adaptation entails
metabolic reprogramming to cope with scarce nutrients and oxygen. Lipid metabolism sustains
cancer initiation and contributes to cancer progression and therapy resistance. The role of lipids has
been underestimated, as they have largely been considered scaffolds of biological membranes. In
recent decades, the role of lipids in cancer has emerged in parallel to the characterization of lipids as
essential components of cell signaling, redox homeostasis control, and energy sources (i.e., ß-fatty
acid oxidation).

Moreover, while de novo synthesis of fatty acids and cholesterol is restricted to the liver and
adipocytes in normal cells, cancer cells can synthesize such components. This altered lipid
metabolism affects key steps involved in the metastatic process, like migration, invasion, and
angiogenesis, and can also be associated with prognosis. Moreover, Fernández et al. provide a list of
preclinical and clinical studies with bioactive compounds from natural sources to target lipid
metabolism and associated risk factors in cancer.

Tumor adaptation to hypoxia is another important aspect that modulates resistance in cancer.
Hypoxia is a forced situation where oxygen levels are different from normal physiological
conditions. Hypoxia occurs in higher or minor levels in most cancers, if not all. The detection of
hypoxic areas by clinical imaging would improve cancer chemotherapeutic treatments and optimal
radiotherapy planning. The technique of positron emission tomography (PET) measures cancer
metabolism and cellular proliferation, but it can also measure blood flow and oxygen use. PET can
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identify patients who would be good candidates for molecularly
targeted chemotherapies and can be used to monitor response to
these personalized therapies. The primary PET radiotracers for
this are 18F-fluorodeoxyglucose (for observation of abnormal
energy metabolism) and 18F-fluorothymidine (for evaluation of
cell proliferation). In clinical trials, the current candidate of PET
tracers for hypoxia is 18F-labeled fluoromisonidazole. In this
context, Lu et al. aimed to design a novel nitroimidazole
derivative to detect hypoxic regions in tumors, which is
important to predict resistance to therapy. These authors
observed that Al18F-NOTA-NI is a novel nitroimidazole tracer.
The major advantage of this new tracer is the quick elimination
from normal tissue and its retention in hypoxic cancer tissue.
Therefore, it has great potential in the planning of new and
efficient therapies.

To identify the new molecular markers of hypoxia with
translational relevance, Zhang et al. describe the increase in the
expression of the non-coding RNA Inc-NEAT1 under hypoxic
conditions in the hepatocellular carcinoma model (HCC), which
is among the tumors with the worst life expectancies. Using in
vitro (i.e., RNA immunoprecipitation and luciferase reporter
assays) and in vivo (mice model) approaches, Zhang et al.
characterize the role of the miR-199a-3p/uridine-cytidine
kinase 2 (UCK2) axis and its functional association with Inc-
NEAT1. These authors propose that the coordinated pathway
that involves IncRNA-NEAT1, miR-99a-3p, and UCK2
upregulation in HCC is a potential signaling cascade and
contributes to HCC progression under hypoxic conditions,
making it a suitable drug target.

On the other hand, cancer stem cells (CSCs) are the most
representative cell type resistant to radio and chemotherapies.
Espinosa-Sánchez et al. performed an exhaustive review of
various canonical and non-canonical CSC pathways. In
addition to the pathways associated with the Yamanaka
factors, such as Wnt signaling, the Notch pathway, or Sonic
Hedgehog; they also added novel signaling players with a
relevant role in resistance, which includes the Hippo pathway,
NF-KB signaling, and Toll-like receptors. An overview of the
current chemotherapeutic drugs against each specific gene
comprised in these signaling routes is shown. Furthermore,
these authors propose that cross-talk among different CSC
pathways drives the resistance to single pathway inhibitors,
enabling CSCs to maintain their CSC phenotype. This aspect
should be considered in CSC-directed therapies.

To identify possible cancer markers at the preventive level,
Feliciano et al. reported a microRNAs signature (miR-125b,
miR-29c, miR-16, miR-1260, and miR-451) in the serum of
breast cancer patients that can distinguish women with cancer
from healthy individuals. Most of the microRNAs included in
the genetic signature (predictor) are related to stemness and
resistance. This is the case for miR-125b, miR-29c, miR-16,
and miR-451, which have been associated with resistance in
various cancer types and cellular models. Interestingly, the
predictor described by Feliciano et al. was able to detect the
risk of 11 healthy women to potentially develop breast cancer in
the future. Moreover, to corroborate the expression of
Frontiers in Oncology | www.frontiersin.org 25
microRNAs with protein expression levels in serum (proteomic
study), the low expression of miR-16 was correlated
with elevated levels of the CD44 protein. Feliciano et al.
describe the stem-related marker CD44, so far identified in
the serum of triple-negative breast cancer patients (the subtype
of breast cancer with high mortality), as a marker present in
the other subtypes of breast cancer with less aggressiveness
(luminal breast cancer A or B). Detecting resistance/stem
markers in serum will help predict cancer in healthy
individuals and identify which patient subgroups are at most
risk of recurrences.

The success of personalized therapy for cancer patients has
attracted much attention. Autophagy has a decisive role in several
cellular functions, and its dysregulation is associated with cancer
progression, tumor-stroma interactions, CSC maintenance,
and resistance to therapy. A growing body of evidence shows
that autophagy is a key regulator in the tumor microenvironment
and cellular drug response. Two extensive review articles
have focused on the function of autophagy in cancer resistance.
Alvarez-Meythaler et al. reinforce the role of chemotherapeutic
treatment failure as the main cause of tumor resistance.
If the tumor cell population is extremely heterogeneous, certain
cells would not respond properly to standard chemotherapeutical
treatments. Tumor heterogeneity comprises different tumor
cell subpopulations and the interactions with stroma and
other immune or fibroblast cell types. Alvarez-Meythaler et al.
propose a model by which autophagy-directed therapies can be
determinant to avoid the propagation of resistant cell variants
when applied in the first-line therapy in combination with
standard chemotherapeutic treatments.

Chavez-Dominguez et al. describe the dual role of autophagy
in cancer as a tumor suppressor or oncogenic mechanism. They
attributed the dual autophagy function mainly to the evolution
of the tumor (tumor stage). Chavez-Dominguez et al. claim that
in early tumorigenesis, autophagy acts as a tumor suppressor
mechanism aiming to destroy those molecules or organelles
defective in proliferative cells. While in advanced tumors –
especially when the metastatic spread has reached stage III or
IV– autophagy acts as an oncogenic driver. In this case,
the interaction of several pathways induced by hypoxia,
metabolism, and tumor microenvironment contribute to
burst autophagy.

Another aspec t to cons ider i s tha t the tumor
microenvironment modulates tumor evolution and growth and
can also actively participate in conditioning the therapeutic
response. This is because – depending on the cell types
involved and the cyto- and chemokines released into the
extracellular medium – a pre-metastatic niche can emerge in
the tumor microenvironment. In this sense, Benavente et al.
propose novel strategies to enhance the antitumor immune
response, with a special focus on radiotherapy. Strategies to
enhance tumor perfusion can increase tumor immunogenicity.
Angiogenesis, desmoplasia, and inflammation promote leakage
and compression of tumor vessels. Vascular normalization
strengthens the vessel wall by reducing intercellular gaps and
improving perfusion. Decompression of blood vessels by
April 2021 | Volume 11 | Article 671222
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depleting cancer-associated fibroblasts or extracellular matrix
reperfuses the vessel and increments perfusion. Overall,
reprogramming the tumor microenvironment to an
immunomodulatory state augments antitumor immunity. This
can be especially relevant to optimize treatment immunogenicity,
improving patient outcomes.

Lastly, there have been major advances in massive sequencing
technology, known as next-generation sequencing (NGS).
Fernández-Rozadilla et al. describe how, with its ultra-high
throughput, speed, and scalability, NGS allows researchers to
scrutinize genetic and gene expression information at an
unprecedented level. Fernández-Rozadilla et al. highlight the
importance of NGS in the revolution of biomedical research.
NGS was developed just over a decade ago. Since then, it has been
used not only for the diagnosis and prognosis of tumors but also
to identify the best chemotherapy treatments.

Overall, although additional basic and clinical research
is needed to identify additional regulatory proteins and
how they interact to contribute to cancer resistance, in the
medium-short term, we expect the FDA to approve new drugs
targeting the revised pathways described in this special issue.
Frontiers in Oncology | www.frontiersin.org 36
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Objective: The long noncoding RNA (lncRNA) nuclear paraspeckle assembly transcript

1 (NEAT1) has emerged as a novel player in hepatocellular carcinoma (HCC). Hypoxia is a

common characteristic of the microenvironment of HCC. This study aimed to investigate

whether lncRNA-NEAT1 is induced by hypoxia in HCC, and themechanism that underlies

LncRNA-NEAT1 function.

Methods: The expression changes of lncRNA-NEAT1 in HCC cell lines under

hypoxic conditions were examined by quantitative reverse transcription-polymerase

chain reaction (qRT-PCR). The regulatory effect of HIF-1α on lncRNA-NEAT1 was

confirmed with chromatin immunoprecipitation (ChIP) and luciferase reporter assays.

The function of lncRNA-NEAT1 on HCC cell growth under hypoxic conditions was

determined by CCK-8 assay and flow cytometry. lncRNA -NEAT1 was predicted to

serve as a competing endogenous RNA (ceRNA) within microRNA (miRNA)/mRNA axes

based on microarray data, public HCC-related datasets and integrative bioinformatics

analysis, and the miR-199a-3p/UCK2 axis was selected and validated by qRT-PCR,

western blotting, RNA immunoprecipitation, and luciferase reporter analyses. The role

of miR-199a-3p/UCK2 in HCC and its functional association with lncRNA-NEAT1 were

assessed both in vitro and in vivo.

Results: LncRNA-NEAT1 expression was significantly induced by hypoxia in SNU-182

and HUH7 cells. HIF-1α was shown to regulate lncRNA-NEAT1 transcription. Under

hypoxic conditions, lncRNA-NEAT1 maintained the growth of HCC cells and inhibited

apoptosis and cell cycle arrest. LncRNA-NEAT1 was predicted to regulate a panel

of HCC-associated miRNA-mRNA pairs consisting of 8 miRNAs and 13 mRNAs.

LncRNA-NEAT1 was shown to function as a ceRNA of miR-199a-3p/UCK2 both in HCC

cells under hypoxic conditions and in an animal model.

Conclusion: LncRNA-NEAT1 is a hypoxia-responsive lncRNA in HCC cell lines Insilico

evidence suggested that LncRNA-NEAT1 may sustainthe growth of HCC cells by
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regulating HCC-associated mRNAs that interact with tumor-suppressive miRNAs. The

lncRNA-NEAT1/miR-199a-3p/UCK2 pathway may contribute to the progression of HCC

cell lines in a hypoxic microenvironment and therefore may represent a novel therapeutic

target for HCC.

Keywords: hepatocellular carcinoma, LncRNA-NEAT1, microRNA, UCK2, hypoxia

INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most commonly
diagnosed primary cancers of the liver and the leading cause
of cancer-related mortality worldwide, accounting for more
than 780,000 deaths in 2018 (1). Although progress has been
made in recent years in diagnostic, treatment, and screening
technologies, HCC is often diagnosed at advanced stages, and
in most cases, advanced HCC patients miss the best surgical
window (2). Unfortunately, the effects of chemoradiotherapy,
targeted therapy, and immunotherapy against HCC are rather
limited, with dismal survival rates for most HCC patients (3).
Therefore, there is an urgent need to identify novel targets
and molecular markers for the diagnosis and treatment of
HCC. Concerted efforts are needed to better understand the
pathophysiological mechanisms underlying the development and
progression of HCC.

Abnormal vascular networks surrounding solid tumors and
the requirement of excess oxygen for rapid growth of cancer
cells can lead to hypoxia, which is a common characteristic
of the microenvironment of solid tumors (4). At the cellular
level, hypoxia induces angiopoiesis, metabolic reprogramming,
epithelial–mesenchymal transition, remodeling of extracellular
mechanisms, stemness, and immune escape. Clinically, hypoxia
contributes to the aggressive clinical characteristics of HCC and
resistance to both radiotherapy and chemotherapy (5, 6). Genes,
especially those that are regulated by hypoxia inducible factors
(HIFs), as well as signal transduction related to the hypoxic
microenvironment, have been a common focus over the last
decade. Nevertheless, it is still a challenge to treat HCC by
targeting hypoxia.

Considerable evidence suggests that hypoxia regulates long
non-coding RNA (lncRNAs) that involved in the onset and

progression of various cancers. Hypoxia responsive lncRNAs
may play clinical roles on patients’ progression and prognosis
by regulating proliferation, migration, invasion, and therapy
resistance of cancer cells (7, 8). For instance, Deng et al.
found that lncRNA-BX111887 transcription is induced by HIF-
1α in response to hypoxia, which enhances the proliferation
and invasion of pancreatic cancer cells (9). LncRNA-MALAT1
expression is also dramatically increased in HCC cells in response
to hypoxic conditions, whereas knock-down of MALAT1
counteracts the tumor-promoting effect of hypoxia (10). Thus,
elucidation of the roles of lncRNAs under hypoxic conditions is
crucial to better understand the onset, features, and poor clinical
outcome of HCC.

The lncRNA nuclear paraspeckle assembly transcript 1
(NEAT1) has been reported as a novel player in the onset and
progression of HCC. Overexpression of NEAT1 drives HCC

progression and has been correlated with the poor prognosis of
patients (11, 12). Furthermore, Choudhry et al. demonstrated
that lncRNA-NEAT1 activation in response to hypoxia promotes
the survival of breast cancer cells (13). However, the activation of
lncRNA-NEAT1 in response to hypoxia has not been elucidated
in HCC, and lncRNA-NEAT1-regulated downstream pathways
are not well-established. Therefore, in the present study,
we investigated the response of lncRNA-NEAT1 to hypoxia
and revealed its mechanism, which involves transcriptional
regulation by HIF-1α. Potential miRNA and mRNA targets of
lncRNA-NEAT1 were selected and filtered by an integrative
bioinformatics analysis approach that was based on numerous
HCC-related datasets. Moreover, candidate miRNA and mRNA
targets were validated in vitro and in vivo.

MATERIALS AND METHODS

Cell Culture and Hypoxic Conditions
HCC cells (SNU-182 and HUH7) were obtained from the
American Type Culture Collection (Manassas, VA, USA) and
routinely cultured in Roswell Park Memorial Institute 1640 (for
SNU-182 cells) or Dulbecco’s Modified Eagle’s Medium (for
HUH7 cells) supplemented with 10% fetal bovine serum, 100
U/mL of penicillin, and 100 mg/mL of streptomycin (Hyclone
Laboratories, Inc., South Logan, UT, USA) under an atmosphere
of 5% CO2 at 37◦C. As a model for hypoxia, SNU-182 and
HUH7 cells were cultured under an atmosphere of 1% O2/5%
CO2/94% N2 for 24 h. we also treated cells with CoCl2, a hypoxia
mimetic agent (14), to simulated hypoxia. The CoCl2 treatment
performed under normoxic condition.

Cell Transfection
Cells were transfected with the plasmid pcDNA3.1-NEAT1
to up-regulate lncRNA-NEAT1 expression, while the plasmid
pcDNA3.1-UCK2 was used to overexpress UCK2. The empty
plasmid pcDNA3.1 served as a negative transfection control.
All plasmid were obtained from GenePharma(Shanghai, China).
Small interfering RNA for lncRNA-NEAT1 (siRNA-NEAT1)
UCK2 (siRNA-UCK2) and HIF-1α (siRNA- HIF-1α) were used
to silence their expression (Genepharma, Shanghai, China).
To upregulate candidate miRNAs, miR-mimics were obtained.
AllStars Negative Control siRNA was used to transfect cells
with siRNA and miR-mimics (Qiagen, Hilden, Germany). Prior
to experimentation, the cells were transfected for 24 or 48 h.
To obtain stably transfected SNU-182 cells, lentiviral vectors
were prepared by Genechem Company (Shanghai, China)
and used to deliver lncRNA-NEAT1 (Lv-NEAT1), miR-199a-
3p (Lv-miR-199a-3p), and shRNA-UCK2 (Lv-shRNA-UCK2).
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Successful transfection was confirmed by quantitative reverse
transcription-polymerase chain reaction (qRT-PCR) analysis
after 48 h (Supplementary Figure 1).

qRT-PCR Analysis
Total RNA was isolated using TRIzol reagent (Life Technologies
Corporation, Carlsbad, CA, USA), quantified, and reverse
transcribed into complementary DNA (cDNA) using
PrimeScriptTM RT Master Mix and the PrimeScriptTM RT
Reagent Kit (Takara Bio, Inc., Shiga, Japan). Then, the cDNA
samples were analyzed using the SYBR R© Premix Ex TaqTM II Kit
(Takara Bio, Inc., Shiga, Japan) with glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) as an internal control. For miRNA
analysis, cDNAs were generated and amplified using theMir-XTM

miRNA First-Strand Synthesis and qRT-PCR TB Green R© Kit
(Takara Bio, Inc., Shiga, Japan). U6 was used as reference for
miRNA analysis. The PCR protocol was conducted in accordance
with the manufacturer’s instructions using the primers shown in
Supplementary Table 1.

Western Blot Analysis
Total protein samples were prepared in
radioimmunoprecipitation assay buffer (Beyotime Institute
of Biotechnology, Shanghai, China) containing protease
inhibitor cocktail. Samples with equal amounts of protein were
loaded into the wells of a 12% polyacrylamide gel and separated
by electrophoresis. Then, the protein bands were transferred
onto nitrocellulose blotting membranes, which were blocked
with 5% fat-free milk and incubated with primary antibodies
(Abcam, Cambridge, UK) against UCK2 (dilution, 1:1000) and
GAPDH (1:2000) for 12 h at 4◦C. After incubation with IRDye R©

secondary antibody (LI-COR Biosciences, Lincoln, NE, USA),
the protein bands were imaged using the Odyssey R© Infrared
Imaging System (LI-COR Biosciences).

Chromatin Immunoprecipitation (ChIP)
Analysis
ChIP analysis was conducted using the ab500 ChIP Assay
KIT with anti-HIF-1α antibody (Abcam, Cambridge,
UK) in accordance with the manufacturer’s instructions.
Immunoglobulin G (IgG) served as a control. The resulting
DNA fragments were amplified by PCR with the primers listed
in Supplementary Table 1. The PCR products were analyzed
by electrophoresis.

RNA Immunoprecipitation (RIP) Assay
RIP analysis was performed using the Imprint R© RNA
Immunoprecipitation Kit (Sigma-Aldrich Corporation, St.
Louis, MO, USA) in accordance with the manufacturer’s
instructions, with an antibody against argonaute-2 (AGO2,
Abcam, Cambridge, UK). IgG served as a control. The purified
RNAs were then subjected to qRT-PCR analysis.

Luciferase Reporter Assay
The 3′ untranslated region of the wild-type (WT) or mutant
lncRNA-NEAT1 (or UCK2) sequence was inserted into the
psiCHECK-2 luciferase reporter vector (Promega Corporation,

Madison, WI, USA). After 48 h of co-transfection with the
luciferase reporter vector and miR-199a-3p mimic (or AllStars
Negative Control), the cells were lysed, and luciferase activity
was measured using the Dual-Luciferase R© Reporter Assay
System (Promega Corporation). Renilla luciferase activity was
normalized to firefly luciferase activity. SNU-182 cells or HIF-
1α knock-down cells were transfected with luciferase reporter
vectors containing the WT or mutant putative hypoxia response
element (HRE) sequence (ACGTGC) and then treated with
CoCl2 for 24 h. A similar luciferase reporter assay was performed
to assess the effect of HIF-1α on the promoter of lncRNA-NEAT1.

Proliferation Analysis
Cell proliferation was assessed using the Cell Counting Kit-8
(CCK-8; Sigma-Aldrich Corporation). In brief, 1 × 104 cells
were seeded into the wells of 96-well plates and cultured for
24 h. Then, adherent cells were cultured under normoxic or
hypoxic conditions. After 24, 48, or 72 h of culture, the cells were
incubated with 10% CCK-8 reagent at 37◦C for 1 h. Cell viability
was determined by measuring the absorbency at 450 nm. The
relative proliferation rate was calculated as the cell viability at 24,
48, or 72 h/cell viability at 0 h. The viability of untreated adherent
cells was assessed at 0 h.

Flow Cytometry Analysis
At 48 h after transfection or 24 h under hypoxic conditions,
the cells were harvested and washed with phosphate-buffered
saline. The proportion of apoptotic cells was determined by flow
cytometry with an Annexin V-FITC Apoptosis Detection Kit
(Beyotime Institute of Biotechnology, Shanghai, China). For cell
cycle analysis, harvested cells were fixed with 70% cold ethanol
for 12 h and then treated with propidium iodide for 30min.
The proportion of apoptotic cells and the cell cycle distribution
were measured by flow cytometry using a FACSCaliburTM Flow
Cytometer (BD Biosciences, San Jose, CA, USA). Data were
analyzed using the FlowJoTM platform for flow cytometry analysis
(version 10; FlowJo LLC, Ashland, OR, USA).

Microarray Analysis
SNU-182 cells were transfected with pcDNA3.1-NEAT1. After
48 h, RNA was collected and analyzed by Agilent Whole
human genome Microarray and Human miRNA Microarray,
Release 21.0 (Agilent Technologies, Santa Clara, CA, USA).
The differentially expressed mRNAs and microRNAs (fold
change>1.5 and P < 0.05, control vs. pcDNA3.1-NEAT1
transfection) were identified using R with Limma package.

Animal Tumor Model
Twelve BALB/c nude mice, aged 4–6 weeks, were purchased from
Biolite Biological Engineering Co., Ltd. (Nanjing, China) and
subcutaneously injected with SNU-182 cells stably transfected
with Lv-NEAT1, Lv-miR-199a-3p, Lv- shRNA-UCK2, or Lv-
control (5 × 106 cells/mouse, n = 3 for each group). Tumor
diameters were measured every 3 days. The tumor volumes were
calculated as 0.5 × (length × width2). All mice were sacrificed
on day 24, and the tumors were resected and weighed. All animal
experiments were performed in accordance with the guidelines of
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the Research Animal Care Committee of Zhengzhou University
(Zhengzhou, Henan, China).

Statistical Analysis
Statistical analysis was performed with R software (version
3.5.3; https://www.r-project.org/). Normally distributed data are
presented as the mean ± standard deviation. Non-normally
distributed data are presented as median values. The t-test
was used to identify significant differences between two sets of
normally distributed data, while one-way analysis of variance was
used identify differences among multiple groups. Non-normally
distributed data were analyzed using the Mann–Whitney U-
test. The significance of survival data was determined using the
log-rank test. A probability (p) value of <0.05 was considered
statistically significant.

Bioinformatics Analysis
Liver cancer transcriptome profiling data were downloaded
from The Cancer Genome Atlas (TCGA) database (https://
www.cancergenome.nih.gov). The expression profile data of
one miRNA (GSE36915) and 7 mRNAs (GSE14520, GSE22058,
GSE25097, GSE36376, GSE45436, GSE64041, and GSE76427) of
HCC patients were retrieved from the Gene Expression Omnibus
database (https://www.ncbi.nlm.nih.gov/geo/). Differentially
expressed genes and miRNAs were extracted from each dataset
with the Limma package of R software (version 3.5.3). The
RobustRankAggreg package of R was used for integrated
analysis of the expression profile data of the 7 mRNAs. Survival
analysis was performed using the “survival” package, and data
visualization was performed using the “ggplot2” package of R.
The open-source online software (ENCORI v1.0) provided by
Encyclopedia of RNA Interactome database (http://starbase.sysu.
edu.cn/index.php) was used to predict lncRNA-NEAT1/miRNA
interactions. miRWalk 2.0 online software (http://zmf.umm.
uni-heidelberg.de/apps/zmf/mirwalk2/) and TargetScan web
server (http://www.targetscan.org/vert_72/) were used to predict
miRNA-target interactions and the binding sites of candidate
miRNAs and mRNAs. Gene ontology enrichment analysis were
performed using online tools provided by DAVID Bioinformatics
Resources 6.8 (https://david.ncifcrf.gov/). microRNA pathway

analyses were conducted using mirPath v.3 (http://snf-515788.
vm.okeanos.grnet.gr/).

RESULTS

LncRNA-NEAT1 Is Induced by Hypoxia via
HIF-1α in HCC Cells
To evaluate the response of lncRNA-NEAT1 to hypoxia, we
cultured SNU-182 and HUH7 cells under hypoxic conditions
(1% O2) or treated them with the hypoxia mimetic agent CoCl2.
As shown in Figures 1A,B, both hypoxic conditions and CoCl2
significantly increased lncRNA-NEAT1 expression in SNU-182
cells; however, knock-down of HIF-1α suppressed the response
of lncRNA-NEAT1 to hypoxia. Additionally, inspection of the
TCGA-LIHC database revealed that HIF-1α expression positively
correlates with the lnc-NEAT1 level in HCC tissues (Figure 1C).
Therefore, we speculated that transcription of lncRNA-NEAT1

might be regulated by HIF-1α. Inspection of the genomic
sequence showed that there is an HRE (ACGTGC) in the
lncRNA-NEAT1 3’ upstream region that is predicted to bindHIF-
1α (Figure 1D, left). We further validated the binding of HIF-
1α to the lncRNA-NEAT1 promoter by ChIP assay in SNU-182
and HUH7 cells (Figure 1D, right). Additionally, dual-luciferase
reporter assays verified that CoCl2 increases the luciferase activity
in cells transfected with plasmids containing the WT HRE
sequence, but not a mutant sequence (Figure 1E). On the other
hand, knock-down of HIF-1α reduced the luciferase activity in
CoCl2-treated cells for HRE-WT but not HRE-MUT reporter
plasmids (Figure 1F). These data indicate that transcriptional
upregulation of lncRNA-NEAT1 in HCC cells under hypoxic
conditions is mediated by HIF-1α.

LncRNA-NEAT1 Sustains the Growth of
HCC Cells Under Hypoxic Conditions
To assess the function of lncRNA-NEAT1 in HCC cells in
under hypoxic conditions, we evaluated the effect of lncRNA-
NEAT1 overexpression and knock-down. Overexpression of
lncRNA-NEAT1 had no effect on the viability of SNU-182
cells under normoxic conditions; however, knock-down of
lncRNA-NEAT1 inhibited cell viability (Figure 2A, left panel).
Furthermore, under hypoxic conditions, cells transfected with
pcDNA3.1-NEAT1 had higher proliferation rates, while knock-
down of lncRNA-NEAT1 inhibited proliferation (Figure 2A,
right panel). Consistently, knock-down of lncRNA-NEAT1
induced apoptosis of SNU-182 cells, while after 24 h of exposure
to hypoxic conditions, siRNA-NEAT1 treatment increased the
proportion of apoptotic cells, which was reduced by lncRNA-
NEAT1 overexpression (Figure 2B). Similarly, overexpression
of lncRNA-NEAT1 had no effect on the cell cycle under
normoxic conditions. However, lncRNA-NEAT1 knock-down
induced G1 arrest after hypoxia treatment for 24 h, and
overexpression of lncRNA-NEAT1 antagonized this effect
(Figure 2C). These results were confirmed in HUH7 cells
(Supplementary Figure 2). Therefore, these findings suggest
that lnc-NEAT1 increases the proliferation rate in HCC cells
under hypoxic conditions by decreasing the apoptotic rate and
promoting G1 arrest.

Identification of a Panel of
HCC-Associated miRNAs and mRNAs That
lncRNA-NEAT1 May Regulate as
Competing Endogenous RNAs (ceRNAs)
Next, we investigated the mechanisms underlying the effects
of lncRNA-NEAT1 in inducing cell growth under hypoxic
conditions. LncRNAs are known to regulate mRNAs by sponging
miRNAs as ceRNAs. Firstly, we used microarray analysis to
identify the differentially expressed microRNAs and mRNAs (>
1.5-fold with P < 0.05, compared with negative transfection
control) after pcDNA3.1-NEAT1 transfection in SNU-182 cells.
63 microRNA were significantly down-regulated and 414 mRNA
significantly up-regulated after lncRNA-NEAT1 overexpression
(Supplementary Tables 2, 3). Next, we built a ceRNA network
of potential lncRNA-NEAT1/microRNAs/mRNAs combinations
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FIGURE 1 | LncRNA-NEAT1 expression is enhanced by hypoxia via transcriptional regulation of HIF-1α in HCC cells. (A,B) HIF-1α knock-down and control SNU-182

and HUH7 cells were cultured for 24 h under normoxic vs. hypoxic conditions (Panel a) or without and with CoCl2 treatment (Panel b). Changes in the expression level

of lncRNA-NEAT1 were detected by qRT-PCR. (C) The correlation of HIF-1α with lnc-NEAT1 in tumor tissues from TCGA-LIHC is shown. (D) Left: A putative HRE

(ACGTGC) was identified in the promoter of lncRNA-NEAT1. Right: Binding of HIF-1α to the HRE (ACGTGC) was validated by ChIP assay in SNU-182 and HUH7

cells. HIF-1α antibody or IgG was added to the reaction. DNA fragments were amplified and analyzed by qRT-PCR with specific primers. (E) SNU-182 and HUH7 cells

were transfected with a luciferase reporter containing the WT or mutant putative HRE (ACGTGC) sequence. Cells were treated with CoCl2 for 24 h, where indicated,

and relative luciferase activity was detected. (F) HIF-1α knock-down SNU-182 and HUH7 cells were transfected with a luciferase reporter containing the WT or mutant

putative HRE (ACGTGC) sequence. Cells were treated with CoCl2 for 24 h, and relative luciferase activity was detected. In Panels a and b, *P < 0.05 compared with

normoxia condition or control. #P < 0.05 compared with siRNA-negative control (siRNA-NC). In Panels e and f, *P < 0.05 compared with normoxia control or

siRNA-NC.

based on the microarray data and bioinformatics predictions
(see Supplementary Figure 2 for workflow). CLIP-Seq analysis
data derived from online software provided by Encyclopedia
of RNA Interactome database were used to identify miRNAs
from our microarray analysis containing 7-mer or 8-mer
seed matches that are predicted to bind to lncRNA-NEAT1.
To further select HCC-associated miRNAs, the miRNAs were
filtered with the use of the following criteria: (a) down-
regulation by more than 1.5-fold (P < 0.05) in HCC tissues
according to the GSE36915 dataset; and (b) reported in the
literature as cancer suppressors in HCC. Eight candidate
miRNAs conforming to these criteria were identified (miR-
144-5p, miR-129-5p, miR-199a-3p, miR-214-5p, miR-483-3p,
miR-486-5p, miR-542-3p, and miR-582-5p). Next, the targeted
mRNAs of these 8 candidate miRNAs were predicted using
integrated data from TargetScan and miRWalk 2.0. In total,

780 genes were predicted as target mRNAs of the 8 candidate
miRNAs. We compared this list of 780 genes with the set
of differentially expressed mRNAs measured in pcDNA3.1-
NEAT1 transfected cells. To identify HCC-related genes in
the overlapping mRNA list, results were further filtered using
the expression profiles results obtained from 7 independent
HCC-related public datasets (GSE14520, GSE22058, GSE25097,
GSE36376, GSE45436, GSE64041, and GSE76427). An integrated
list of differentially expressed genes (HCC-RRA-list) was
obtained using the robust rank aggregation (RRA) algorithm
with genes that were significantly up- or down-regulated
(> 1.2-fold with P < 0.05, tumor tissue vs. non-tumor
tissue) in all 7 HCC-related datasets. Thirteen genes in the
overlapping mRNA list were also in the HCC-RRA-list and
were up-regulated in HCC tissues. Finally, a potential HCC-
associated lncRNA-miRNA-mRNA regulatory flow network
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FIGURE 2 | LncRNA-NEAT1 sustains the growth of SNU-182 cells under hypoxic conditions. (A) The expression of lncRNA-NEAT1 was modulated by transfection

with the pcDNA3.1-NEAT1 vector or siRNA-NEAT1. After transfection for 24 h, cells were cultured under hypoxic or normoxic conditions. Cell viability was detected

using CCK-8 assay and used to estimate proliferation. (B,C) The roles of lncRNA-NEAT1 on apoptosis (Panel b) and the cell cycle (Panel c) in SNU-182 cells under

hypoxic and normoxic conditions were assessed by flow cytometry. *P < 0.05 compared with transfection negative control. #P < 0.05 compared with

pcDNA3.1-NEAT1.

was assembled, comprised of lncRNA-NEAT1, 8 candidate
miRNAs, and 13 candidate genes (Figure 3A). To better
understand the potential biological function of the candidate

miRNAs and mRNAs, functional enrichment analysis based
on Gene Ontology (GO) and KEGG (Kyoto Encyclopedia of
Genes and Genomes) pathway databases was performed. As
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FIGURE 3 | Microarray and integrative bioinformatics analysis of HCC-associated miRNA-mRNA pairs that are potentially regulated by lncRNA-NEAT1. (A)

Differentially expressed miRNAs and mRNAs in lnc-NEAT1 knock-down SNU-182cells were identified by microarray analysis. According to the ceRNA theory, miRNAs

that may be sponged by lncRNA-NEAT1 and their possible target mRNAs were also predicted by bioinformatics analysis and filtered according to their expression

patterns in 7 public HCC-related datasets. Candidate miRNA-mRNA pairs that passed each of these filters are shown in the Sankey diagram. The miRNAs that are

shown are predicted to act as suppressors in HCC. (B) KEGG pathway enrichment analysis for the 8 candidate microRNA’s target genes. (C) GO enrichment analysis

for the 13 candidate genes. GO-biological process terms, -molecular function terms and -cellular component terms are shown.

shown in Figure 3B, the 8 candidate miRNAs were mainly
associated with the typical tumor-associated pathways (e.g.,
cell cycle, p53 signaling pathway, pathway in cancers). The
enriched GO-biological process terms, -molecular function
terms and -cellular component terms are shown in Figure 3C.
Among them, potential terms (e.g., “regulation of cell growth,”
“positive regulation of cell cycle,” and “cellular response to
starvation”) further support a role for these miRNAs in tumor-
related functions.

To further verify the potential role of the 8 miRNAs and 13
mRNAs in HCC, we evaluated their expression patterns reported

in public databases. The fold changes (tumor tissue vs. non-
tumor tissue) of the 8 candidate miRNAs in the GSE36915
and The Cancer Genome Atlas Liver Hepatocellular Carcinoma
(TCGA-LIHC) datasets are shown in Figure 4A. Except for miR-
129-5p, which was not included in the TCGA-LIHC dataset, all of
the other candidate miRNAs were consistently down-regulated
in HCC tissues in the GSE36915 and TCGA-LIHC datasets.
Furthermore, all 13 genes were up-regulated in HCC tumor
tissues compared with normal tissue (> 1.5-fold with P <

0.05), as confirmed in the TCGA-LIHC dataset (Figure 4B). The
integrative fold changes of the 13 candidate genes among the

Frontiers in Oncology | www.frontiersin.org 7 June 2020 | Volume 10 | Article 99813

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. LncRNA-NEAT1 in HCC Under Hypoxia

7 HCC-related public datasets are shown in Figure 4C (tumor
tissue vs. non-tumor tissue). We further evaluated the potential
roles of these genes in HCC prognosis. In the GSE14520 dataset,
7 of 13 candidate genes (UCK2, LRCC1, GINS2, CDK4, LPGAT1,
UBR5, and DLK1) are risk factors for poor survival, while
according to the TCGA-LIHC dataset, high expression of 7 of the
13 candidate genes (UCK2, LRRC1, TTF2, GINS2, CDK4, CPD,
and SESTD1) predict poor survival of HCC patients (Figure 4D).
These data indicate that lncRNA-NEAT1 may play a role in the
progression of HCC through a panel of HCC-related miRNAs
and mRNAs associated with HCC.

LncRNA-NEAT1 Regulates UCK2 by
Sponging miR-199a-3p
Next, we sought to validate the predicted candidate lncRNA-
NEAT1-miRNA-mRNA regulatory patterns. Among the 4 genes
(UCK2, LRCC1, GINS2, and CDK4) that were identified to
be associated with poor survival of HCC patients in both
the GSE14520 and TCGA-LIHC datasets, UCK2 had the
greatest number of predicted interactions with NEAT1-targeted
miRNAs (miR-199a-3p, miR-483-3p, miR-486-5p, miR-582-5p,
and miR-129-5p) and, thus, can be regarded as a potential hub
mediator. Furthermore, UCK2 was found to be an impressive
risk factor for survival (hazard ratio = 2.2, P < 0.01 in
the GSE14520 dataset; hazard ratio = 2.1, P < 0.01 in the
TCGA-LIHC dataset). Therefore, we sought to further validate
the functional interaction of UCK2, along with miR-199a-3p,
miR-483-3p, miR-486-5p, miR-582-5p, and miR-129-5p, with
lncRNA-NEAT1. As shown in Figure 5A, only miR-199a-3p
mimic influenced UCK2 mRNA expression in SNU-182 and
HUH7 cells. The inhibitory effect of miR-199a-3p on UCK2
was confirmed by western blotting (Figure 5B). Furthermore,
overexpression of lncRNA-NEAT1 was found to suppress the
expression of miR-199a-3p (Figure 5C) and enhance UCK2
mRNA and protein expression (Figures 5D,E), while lncRNA-
NEAT1 knock-down had the opposite effect. The role of
miR-199a-3p in mediating the effect of lncRNA-NEAT1 on
UCK2 expression was further verified by luciferase reporter
assay results, which demonstrated that miR-199a-3p decreases
luciferase activity in cells transfected with reporter plasmids
containing either the NEAT1-WT or UCK2-WT sequences that
are predicted to be binding sites for miR-199a-3p, but not
corresponding mutant sequences (Figures 5F,G). In addition,
the results of RIP assays demonstrated that lncRNA-NEAT1
and miR-199a-3p were both contained in complexes that were
pulled down with AGO2 antibody (Figure 5H), which suggests
that lncRNA-NEAT1 resides within RNA-induced silencing
complexes that are involved in miRNA processing. Taken
together, these data indicate that lncRNA-NEAT1 regulates
UCK2 by sponging miR-199a-3p as a ceRNA.

LncRNA-NEAT1 Sustains the Growth of
HCC Cells Under Hypoxic Conditions via
the Regulation of miR-199a-3p/UCK2
To further evaluate the role of the lnc-NEAT1/miR-199a-
3p/UCK2 axis in lnc-NEAT-1-mediated growth promotion,

we repeated the MTT assays in cells transfect with UCK2
overexpression vector or miR-199a-3p mimic. Under normoxic
conditions, UCK2 overexpression significantly enhanced cell
proliferation, while miR-199a-3p overexpression produced
opposite results. Furthermore, under hypoxic condition, UCK2
knock-down or miR-199a-3p overexpression significantly
neutralized the sustaining effect of lncRNA-NEAT1 on cell
proliferation (Figure 6A). The converse trend was observed in
our evaluation of cell apoptosis, for which miR-199a-3p-mimic
caused an increase in apoptosis under normoxic conditions,
and si-UCK2 and miR-199a-3p neutralized the reduction in
apoptosis levels mediated by lncRNA-NEAT1 overexpression
under hypoxic conditions (Figure 6B). A similar trend was also
observed for cell cycle arrest (Figure 6C), and these results were
confirmed in HUH7 cells (Supplementary Figure 4), which
suggests that UCK2 and miR-199a-3p have critical roles in
lncRNA-NEAT1-induced HCC cell promotion under conditions
of hypoxia.

LncRNA-NEAT1 Promotes HCC Tumor
Growth Through miR-199a-3p/UCK2 in vivo
To determine whether lnc-NEAT contributes to HCC by a
similar mechanism in vivo, we evaluated the effect of lncRNA-
NEAT1, sh-UCK2 and miR-199a-3p expression in xenografted
mouse tumors from SNU-182 cells. LncRNA-NEAT1 promoted
the development of xenografted tumors (Figure 7A), which was
evidenced by larger tumor volumes (Figure 7B) and higher
tumor weights (Figure 7C). However, co-transfection of either
miR-199a-3p mimic or sh-UCK2 inhibited these promotive
effects of lncRNA-NEAT1. Thus, these findings support the
role of the lnc-NEAT1/miR-199a-3p/UCK2 axis in HCC tumor
growth in vivo.

DISCUSSION

Hypoxia-regulated lncRNAs play pivotal roles in the
development of various cancers, including HCC, gastric cancer,
and pancreatic cancer, by regulating cellular proliferation,
invasion, metastasis, metabolism, and autophagy (15). As an
example, Zhao et al. found that lncRNA-MALAT1 is significantly
overexpressed in HCC cells under hypoxic conditions, whereas
knock-down of MALAT1 weakened the promotive effect of
hypoxia on cellular proliferation, migration, and invasion (10).
Zhang et al. reported that lncRNA-PCGEM1 is induced in
GC cells under hypoxic conditions and acts as an oncogenic
factor (16), while up-regulation of lncRNA-BX111 in response
to hypoxia promotes metastasis and progression of pancreatic
cancer (9). In the present study, we confirmed the response of
lncRNA-NEAT1 to hypoxia and demonstrated that lncRNA-
NEAT1 is transcriptionally regulated by HIF-1α in HCC
cells. Integrated analysis of public HCC-related datasets was
performed to select a group of HCC-associated miRNA-mRNA
pairs that could potentially be modulated by lncRNA-NEAT1
in a ceRNA-related manner. Moreover, the regulatory effects of
lncRNA-NEAT1 on the miR-199a-3p/UCK2 axis in HCC were
validated both in vitro and in vivo.
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FIGURE 4 | Expression changes and survival relevance of HCC-associated miRNAs and mRNAs that are potentially regulated by lncRNA-NEAT1. (A) Expression

differences of 8 candidate miRNAs between tumor and non-tumor tissues. Data are from the GSE36915 and TCGA-LIHC datasets. In GSE36915 n(Tumor) = 72, n

(non-tumor) = 21. In TCGA-LIHC n(Tumor) = 375, n (non-tumor) = 50. (B) Expression difference of 13 candidate mRNAs between tumor and non-tumor tissues in

the TCGA-LIHC dataset. n(Tumor) = 375, n (non-tumor) = 50. (C) Integrative fold change of 13 candidate mRNAs in tumor tissues as compared with non-tumor

tissue in 7 independent HCC datasets obtained from the Gene Expression Omnibus database were calculated by the Robust Rank Aggregation method. (D) The

associations of the 13 candidate genes with survival are shown using Kaplan–Meier survival curves based on data from the GSE14520 and TCGA-LIHC datasets. In

GSE14520, n (High expression of candidate gene) = 123, n (low expression of candidate gene) = 124. In TCGA-LIHC, n (High expression of candidate gene) = 182,

n (low expression of candidate gene) = 182.*P < 0.05 compared with normal tissue.
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FIGURE 5 | LncRNA-NEAT1 regulates UCK2 by sponging miR-199a-3p in HCC cells. (A,B) SNU-182 and HUH7 cells were transfected with miR-mimics of

miR-199a-3p, miR-483-3p, miR-486-5p, miR-582-5p, or miR-129-5p. After 48 h, the mRNA and protein expression changes of UCK2 were determined by qRT-PCR

(Panel a) and western blot analyses (Panel b). (C) SNU-182 and HUH7 cells were transfected with pcDNA3.1-NEAT1, siRNA-NEAT1, or their respective controls. After

48 h of transfection, changes in miR-199a-3p expression levels were detected by qRT-PCR. (D,E) SNU-182 and HUH7 cells were transfected with pcDNA3.1-NEAT1,

siRNA-NEAT1, or their respective controls. After 48 h of transfection, changes in UCK2 mRNA (Panel d) and protein expression levels (Panel e) were determined by

qRT-PCR and western blot analyses. (F,G) The binding of lncRNA-NEAT1 to miR-199a-3p (Panel f ) and miR-199a-3p to the 3’ untranslated region of UCK2 (Panel g)

were verified by luciferase reporter assay. Wild-type and Mutant sequences of NEAT1 or UCK2 3’ UTR are shown at the bottom. (H) RIP assay was performed to

further confirm whether lncRNA-NEAT1 regulates miR-199a-3p as a ceRNA. Cell lysates collected from SNU-182 and HUH7 cells were incubated with antibodies

against AGO2 or IgG. Enrichment of lncRNA-NEAT1 and miR-199a-3p in purified RNA was detected by qRT-PCR. In Panels a-g, *P < 0.05 compared with

transfection negative control. In Panel h, *P < 0.05 compared with lgG control.
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FIGURE 6 | LncRNA-NEAT1 sustains the growth of SNU-182 cells under hypoxic conditions by regulating miR-199a-3p/UCK2. (A) The expression levels of

miR-199a-3p and UCK2 in SNU-182 were up-regulated by transfection under normoxic conditions; or miR-199a-3p or siRNA-UCK2 were co-transfected with

pcDNA3.1-NEAT1 in SNU-182 cells under hypoxic conditions. The cell proliferation changes were determined by CCK-8 assay. (B,C) The effects of miR-199a-3p and

UCK2 on apoptosis (Panel b) and the cycle (Panel c) of SNU-182 cells were determined by flow cytometry. *P < 0.05 compared with transfection negative control.
#P < 0.05 compared with pcDNA3.1-NEAT1.

LncRNA-NEAT1 has been established as a target for the
diagnosis and treatment of various solid tumors. Elevated
expression of lncRNA-NEAT1 drives tumor initiation

and progression by regulating cellular growth, migration,
invasiveness, epithelial-to-mesenchymal transition, and stemness
(17, 18). Furthermore, lncRNA-NEAT1 has been reported to

Frontiers in Oncology | www.frontiersin.org 11 June 2020 | Volume 10 | Article 99817

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. LncRNA-NEAT1 in HCC Under Hypoxia

FIGURE 7 | LncRNA-NEAT1 promotes HCC tumor growth through miR-199a-3p/UCK2 in vivo. (A) SNU-182 cells transfected with Lv-NEAT1, Lv-NEAT1 +

Lv-miR-199a-3p, or Lv-NEAT1 + Lv-siRNA-UCK2 were subcutaneously injected into nude mice. After 3 weeks, the tumor formation was examined. (B) Tumor

diameters were measured every 3 days. (C) Tumor weights were measured on day 21 post injection. *P < 0.05 compared with transfection negative control.
#P < 0.05 compared with Lv-NEAT1.

affect the sensitivity to sorafenib and radiotherapy, as well as
immune escape in HCC in vitro. Consistent with this role,
aberrant expression of lncRNA-NEAT1 has been demonstrated
in HCC and is associated with poor survival of HCC patients
(11, 19–21). Liu et al. demonstrated that high expression of
lncRNA-NEAT1 in a Chinese population is an independent risk
factor for poor survival of patients with HCC (22). Furthermore,
Ling et al. evaluated the expression level and clinical relevance of
lncRNA-NEAT1 in HCC based on data from TCGA-LIHC and
other HCC datasets from the Oncomine database, and found
that lncRNA-NEAT1 is consistently up-regulated in HCC tumor
tissues, though in the TCGA-LIHC dataset, lncRNA-NEAT1 was
not significantly associated with overall patient survival but was

significantly correlated to distant metastasis. Combined with data
from in vitro experiments showing that knock-down of lncRNA-
NEAT1 inhibits proliferation and induces apoptosis, Ling et al.
suggested that lncRNA-NEAT1 promotes deterioration in HCC
(23). In the present study, we focused more on the up- and
downstream regulatory mechanisms of lncRNA-NEAT1 in HCC
rather, than on its tumor-promoting role under conventional
conditions, and our results, therefore, may be increase the
mechanistic understanding of lncRNA-NEAT1 in each of these
prior investigations.

In general, the abnormal expression of lncRNA-NEAT1
in cancer cells is known to be caused by genetic alterations,
transcription factors, DNA methylation, miRNAs, and
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RNA-binding proteins (24). Emerging evidence indicates
that hypoxia can modulate the expression of lncRNAs, including
lncRNA-NEAT1. Up-regulation of lncRNA-NEAT1 has been
found in breast cancer cells under hypoxic conditions (13)
and in cardiomyocytes (25), further indicating that lncRNA-
NEAT1 may be a hypoxia-responsive lncRNA. However, the
response of lncRNA-NEAT1 to hypoxia in HCC has not been
well-elucidated. We investigated changes in lncRNA-NEAT1
expression levels in HCC cells under hypoxic conditions (1%
O2) or treatment with the hypoxia mimetic CoCl2. Both the
3.7-kb poly-adenylated NEAT1-1 and the 23-kb non-adenylated
NEAT1-2 are upregulated by hypoxia (13). However, NEAT1_1
is a highly conserved and abundant poly-adenylated transcript,
which is muchmore abundant than the longer NEAT1_2 isoform
(26). Hence in our study we focused on NEAT1_1. Our data
verify that lncRNA-NEAT1 is induced by hypoxia in HCC cells.
HIF-1α has been established as a predominant transcriptional
regulator in response to hypoxia with the ability to binding to
HREs and enhance expression of target genes, including lncRNAs
(27). By accessing the JASPAR database, we identified a potential
putative HIF-1α-related HRE (5’-ACGTGC-3’) located in the
promoter of lncRNA-NEAT1. Knock-down of HIF-1α eliminated
the response of lncRNA-NEAT1 to hypoxia. Furthermore, the
results of the ChIP and luciferase reporter assays supported
the binding of HIF-1α to the promoter of lncRNA-NEAT1,
suggesting that lncRNA-NEAT1 is transcriptionally induced by
HIF-1α. These results provide evidence for the role of HIF-1α
and the HRE in the lncRNA-NEAT1 promoter as a mechanism
that regulates lncRNA-NEAT1 expression under conditions
of hypoxia.

We further demonstrated that overexpression of lncRNA-
NEAT1 does not promote proliferation of HCC cells
under normoxic conditions, possibly because the overactive
proliferative properties of tumor cells under normal conditions
may obscure the effect of lncRNA-NEAT1 overexpression by the
“ceiling effect.” In addition, the endogenous lncRNA–NEAT1 in
HUH7 and SNU-182 cells may be redundant, so in the absence
of stress (such as hypoxia), overexpression of lncRNA-NEAT1
cannot promote cell proliferation without limitation. Under
hypoxic conditions, the proliferation of HCC cells is inhibited,
which provides an opportunity for lncRNA-NEAT1 to function.

As expected, knock-down of lncRNA-NEAT1 inhibited the
growth of HCC cells, which was evident both under normoxic
and hypoxic conditions. Moreover, acute hypoxia inhibited
growth and promoted apoptosis and cell cycle arrest of HCC cells,
and HCC cells overexpressing lncRNA-NEAT1 grew relatively
faster with less apoptosis and G1 phase arrest. Therefore, these
results suggest that increased lncRNA-NEAT1 levels sustain the
growth of HCC cells under hypoxic conditions.

LncRNAs regulate gene expression in cancers through distinct
mechanisms. For instance, lncRNAs may regulate target genes by
specific recruitment of transcriptional activators or suppressors;
by acting as decoys that bind to and block transcription
factors from target genes; or by recruiting chromatin-remodeling
complexes as scaffolding proteins, thereby affecting target genes
(28). In tumor biology, lncRNAs primarily serve as ceRNAs
that sponge tumor–promotive or tumor-suppressive miRNAs.

Sponged miRNAs lose their regulatory effect on target mRNAs,
which ultimately influences tumor progression (29). Thus,
we employed microarray analysis and a series of advanced
online bioinformatics tools to identify potential miRNA-mRNA
pairs that may interact with lncRNA-NEAT1 according to a
ceRNA mechanism. The candidate miRNA-mRNA pairs were
filtered according to their reported suppressive functions and
predicted interactions with tumor-related genes, as well as by
their down-regulated expression patterns in HCC. To obtain
more evidence for the roles of candidate miRNAs in HCC, we
performed pathway annotation analysis of predicted miRNA
targets based on the KEGG database. The candidate miRNAs
were determined to be involved in multiple tumor-related
pathways. To filter HCC-related mRNA targets of lncRNA-
NEAT1-miRNAs, 7 independent datasets from HCC patients
with different backgrounds were used for integrated analysis
using the RRA method, which strengthened the evidence. Eight
candidate mRNAs were up-regulated in HCC tissues in the 7
datasets. To better explore the potential biological functions of
the candidate mRNAs, GO enrichment analysis was performed.
Enriched GO-terms, such as “regulation of cell growth” and
“positive regulation of cell cycle,” provided a potential explain
of how lncRNA-NEAT1 may sustain growth of HCC cells by
regulating the candidate mRNAs identified in our study. Though
we could not perform a detailed analysis of all candidate miRNA-
mRNA pairs in the present study, we selected UCK2, a hub
target gene and impressive prognosis risk factor of HCC, for
confirmation. The miRNAs that potentially regulate UCK2,
including miR-199a-3p, miR-483-3p, miR-486-5p, miR-582-5p,
and miR-129-5p, were considered. However, definite interactions
were verified only for the lncRNA-NEAT1-miR-199a-3p-UCK2
axis. The results of ChIP and luciferase analyses confirmed
the binding of lncRNA-NEAT1/miR-199a-3p and miR-199a-
3p/UCK2, thus providing a downstream mechanism that may
regulate lncRNA-NEAT1 function.

Previous studies have reported that miR-199a-3p acts as a
tumor suppressor via various mechanisms in HCC. For instance,
miR-199a-3p inhibits tumor growth in an animal model of
HCC by modulating the mTOR pathway (30). Giovannini
et al. suggested that miR-199a-3p down-regulation is a common
characteristic of HCC and thatmiR-199a-3p regulates E-cadherin
expression through Notch1 (31), Jia et al. reported that miR-
199a-3p represses tumorigenesis in HCC by targeting HIF-1α
(32). Fornati et al. showed that miR-199a-3p modulates the
cell cycle of HCC cells and sensitizes these cells to hypoxia-
induced apoptosis (33). In the present study, the suppressive
role of miR-199a-3p was confirmed and expression changes
of lncRNA-NEAT1 were shown to induce alteration of miR-
199a-3p in HCC cells. Furthermore, luciferase reporter and
RIP assay demonstrated that lncRNA-NEAT1 sponges miR-
199a-3p, which is consistent with our other bioinformatics and
experimental data.

Functionally, UCK2 is a pyrimidine ribonucleotide kinase that
catalyzes phosphorylation of uridine to uridine monophosphate
and cytidine to cytidine monophosphate. Overexpression of
UCK2 is regarded as an indicator of unfavorable prognosis in
various cancers, including HCC, pancreatic cancer, breast cancer,
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and lung cancer (34–37). However, few studies have revealed the
detailed mechanisms underlying the regulation of UCK2. Zhou
et al. found that UCK2 promotes metastasis via up-regulation
of MMP2/9 expression and activation of STAT3 signaling (38).
The upstream mechanisms of UCK2, especially those involved
with lncRNA/miRNA, had not been clarified prior to this study.
Therefore, we confirmed the growth-promotive effect of UCK2 in
HCC cells and demonstrated that UCK2 is regulated by lncRNA-
NEAT1/miR-199a-3p. Most importantly, lncRNA-NEAT1 was
shown to function under hypoxic conditions partly through
miR-199a-3p/UCK2. Moreover, an animal model was used to
further explore the role and regulatory relationship of lncRNA-
NEAT1/miR-199a-3p/UCK2. As a limitation of this study, some
miRNAs and mRNAs that may be also controlled by lncRNA-
NEAT1 were not validated so that we could focus our efforts on
validating the lncRNA-NEAT1/miR-199a-3p/UCK2 axis. These
miRNAs or mRNAs should be investigated in future studies.

In conclusion, we identified lncRNA-NEAT1 as a hypoxia-
responsive lncRNA in HCC cell lines in vitro. Based on in
silico data, we suggested that lncRNA-NEAT1 sustains the
growth of HCC cells under hypoxic conditions. LncRNA-
NEAT1 may regulate a panel of HCC-associated mRNAs by
interacting with tumor-suppressive miRNAs in HCC. The roles
of lncRNA-NEAT1/miR-199a-3p/UCK2 were validated HUH7
and SNU-182 cells, which indicated that lncRNA-NEAT1 and its
downstreammiRNAs/mRNAs may contribute to the progression
of HCC cells in hypoxic microenvironments and, therefore, are
potential targets for novel therapeutic strategies for HCC.
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The theory of cancer stem cells (CSCs) proposes that the different cells within a tumor, as

well as metastasis deriving from it, are originated from a single subpopulation of cells with

self-renewal and differentiation capacities. These cancer stem cells are supposed to be

critical for tumor expansion andmetastasis, tumor relapse and resistance to conventional

therapies, such as chemo- and radiotherapy. The acquisition of these abilities has been

attributed to the activation of alternative pathways, for instance, WNT, NOTCH, SHH,

PI3K, Hippo, or NF-κB pathways, that regulate detoxification mechanisms; increase the

metabolic rate; induce resistance to apoptotic, autophagic, and senescence pathways;

promote the overexpression of drug transporter proteins; and activate specific stem cell

transcription factors. The elimination of CSCs is an important goal in cancer therapeutic

approaches because it could decrease relapses and metastatic dissemination, which are

main causes of mortality in oncology patients. In this work, we discuss the role of these

signaling pathways in CSCs along with their therapeutic potential.

Keywords: CSC, cancer, EMT, stem cell-like pathways, therapy

INTRODUCTION

The understanding on the tumorigenesis process has been explained during decades according
to the clonal evolution model. This model postulates that all cells within a tumor contribute
to the maintenance of the tumor at different levels (1). In the cell, a number of genetic and
epigenetic changes accumulate during time, and, by selection, the most aggressive cancer cells drive
tumor progression (1, 2). Therefore, any cancer cell can become highly malignant, contributing to
metastases and the resistance against therapies (2). However, currently, the cancer stem cell (CSC)
model proposes a more suitable explanation to cancer complexity. The tumors contain a subset
of different tumor cells, called cancer stem cells that are crucial for tumor initiation, progression,
and recurrence (3, 4). These CSCs, through self-renewal and differentiation, are critical for the
generation of most tumor cell types contributing to tumor heterogeneity. However, the rest of
mature cells compose the bulk of the tumor, but are not responsible for the tumor generation.
Therefore, tumor resistance to therapies and metastases are the direct result of these CSCs (5).

CSCs, or “tumor-initiating cells,” have the ability to self-renew and differentiate as normal stem
cells. However, the mechanisms that regulate these processes are deregulated; therefore, CSCs
continuously expand and produce differentiated progeny (5–7). Furthermore, CSCs can form new
form tumors when grown into animals, but normal stem cells are unable to do (8, 9). CSCs compose
a small population of cells within a tumor, share similar surface markers with normal stem cells
(10, 11) and share common signaling pathways with normal stem cells (12, 13).
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The size of the CSC pool is different in each tumor (14–
16) and show, in general, a good correlation with agresivity
and response, as well as patient survival (17, 18). CSCs show
great heterogeneity, and may be different between grades
and/or stages of the same type of tumors. The different
pools of CSCs usually coexist in the same tumor, even
within the same microenvironment niche. Interestingly, CSC
different pools may communicathe physiologically among them
thorugh phenotype interconversion (10, 19–21). CSCs are a
“status” rather than a fixed “category” of cells. CSCs and
non-CSCs can also interconvert in dynamic equilibrium. Non-
CSCs can acquire CSC properties through de-differentiation
(8, 22–24), and in this process, either genetic or epigenetic
alterations, as well as microenvironment may be involved
(25–28). Therefore, the CSCs model should be considered
to be bidirectional, switching between stem and mature cells
within the tumor (8, 22–24). Numerous studies support the
concept that mature tumor cells (non-CSCs) are respond to
cancer therapy, while CSCs are resistant to treatment [(29)
and references therein]. In tumor stem cells (CSCs), different
clonal evolution at the genetic and epigenetic levels generate
distinct tumorigenic potential and heterogeneity which greatly
influences disease progression and response to treatment (27,
29). On the other hand, the dynamic equilibrium between
CSCs and differentiated non-CSCs adds another level of
complexity. The potential for non-CSCs to revert to CSCs due
to genetic, epigenetic, or microenvironment alterations that
confer phenotypic plasticity to the tumor cell population is a
strong driving force of tumor evolution and resistance to cancer
therapy. Moreover, exposure of differentiated cells to therapeutic
doses of radiation or many therapeutic compounds increases
the CSC pool. To explain this CSC plasticity through cell
maturation and dedifferentiating processes, it has been described
that acquiring new genetic mutations, epigenetic changes, or
microenviromental conditions that are able to activate the
epithelial mesenchymal transition (EMT) induces the mature
non-CSCs to dedifferentiate and acquire the CSC phenotype.
Thus, activating TGF-β activates the EMT transcription factors
Twist or Snail, and/or hypoxic conditions seem to influence
dedifferentiation processes greatly, activating the SC pathways
in tumor mature cells, leading to new CSCs (21, 30–
33). Therefore, the phenotypic plasticity inducing conversions
between mature non-CSCs and CSCs influences tumor evolution
and clinical management.

The capability of one cell type to acquire the phenotype of
another or of differentiated somatic and stem cells to interconvert
states is denominated cellular plasticity (22, 34). This plasticity
may explain the altered gene expression found in different tumor
types resembling cell lineages that differ from the true progenitors
(22, 35–38). Indeed, the inherent plasticity of stem cell pathways
such as Wnt, Notch or Hedgehog, can be modified suggesting
that these pathways may be relevant for anticancer research
(5, 34, 39–41).

These and other results suggest that some oncogenic signals
are able to induce CSCs. These signals are accompanied by an
increase in resistance to chemotherapeutic treatments (35, 36)
and, in some cases, radiotherapy (42, 43). Therefore, wemust take

into account the processes involved in the activation of stemness
pathways and tumor evolution and evaluate how their influences
affect therapy to effectively eliminate a tumor (Figure 1).

Therefore, cancer cells can move from stem to differentiated
states, and viceversa, in response to therapy, transcription
changes or signaling in the microenvironment (20, 44, 45).
Moreover, inside a single tumor, CSCs can coexist in more
than one metabolic and/or pluripotency state. CSCs from breast
cancer, for example, can be found in different mesenchymal-
and epithelial-like states (24, 46). The transition between these
states has been reported to be regulated by epigenetic alterations
(47). Phenotypic plasticity contributes to the complexity of the
cancer ecosystem and represents a major challenge for tumor
eradication since it actively contributes to tumor cell survival
and metastasis.

CSC cells present many mechanisms for therapy resistance,
such as high-level of drug efflux pumps, reactive oxygen
species scavengers, antiapoptotic proteins, DNA repair efficient
mechanisms, interactions with the protective microenvironment
(37, 48–51) or exosomes loaded with proteins of non-coding
RNA prone to modify the environment to favor metastasis (51–
54). On the other hand, similar to normal stem cells, CSCs are
known to be slow cycling in many tumors and are maintained in
the G0 phase (55).

Epigenetic mechanisms may mediate therapeutic resistance
in CSCs in many different ways (27, 35, 43, 51, 56–59). The
silencing of the epigenome is also involved in maintaining
plasticity and the transition of mature tumor non-CSCs to
CSCs, as reported for the transition of metabolic states in renal
tumor cells by the inactivation of MYBBP1a and the activation
of MYB (60–62). For example, epigenetic demethylation of
MAP17 driving the resistance against some targeted therapies
was observed in lung adenocarcinoma (43). Additionally,
studying lung cancer, Sharma and coworkers reported that a
reversible drug-tolerant state of EGFR TKi therapy was obtained
by chromatin alterations induced by histone demethylase
activity (63). These and other results established that CSCs
can regulate epigenetic factors to maintain their pool and
overcome targeted therapies. However, the reversible nature
of these epigenetic alterations suggests that inhibitors of the
pathways modifying these epigenetic regulators may hold
promise as relevant clinical therapeutic targets, either alone or
in combination.

Thus, the CSC hierarchical model explains the failure of
treatment and tumor recurrence and promises new targets
for anticancer drug discovery. This article does not pretend
to be an exhaustive review of all CSC pathways related to
plasticity and/or therapeutic approaches. We summarize some
evolving treatment strategies related to these pathways with the
aim of shedding new light on current therapy development
with promising new anticancer agents. Other CSC-related
signaling pathways more commonly studied, not reviewed
here, but relevant to stemness include MYB, TGF-β, JAK-
STAT, FGFs, PI3K, or MEK. Targeting these pathways has been
shown to exert anti-CSC effects, and promising agents are
currently under investigation, as recently reviewed elsewhere
(30, 36, 37, 47, 48, 51, 62, 64–74).
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FIGURE 1 | Generation and maintenance CSCs. The activation of different signaling pathways leads to Yamanaka factors expression among other genes, promoting

the enrichment of CSC populations within the tumor.

WNT PATHWAY

The Wnt pathway is involved in embryonic development and
homeostasis. Moreover, this signaling pathway regulates cell
proliferation and survival (75). This pathway has two different
signaling pathways: canonical (β-catenin dependent) and non-
canonical (β-catenin-independent).

According to canonical signaling, Wnt is secreted and binds
to Frizzled receptors and/or the low-density lipoprotein-related
protein (LRP) 5 and 6 coreceptors. When R-spondin ligands
bind to Lgrs, the action of the Wnt pathway is enhanced.
In the presence of a Wnt ligand, Wnt interacts with Frizzled
and/or LRP5/6 (76). This situation generates a cascade in
which the phosphorylation of the cytoplasmic domain in LRP,
the recruitment of scaffolding protein Disheveled (Dvl) and
the hijack of GSK-3b and Axin are realized, with the last
molecule produced through tankyrases. Thus, β-catenin is

available for translocation into the nucleus, where it binds to
lymphoid enhancer factor (LEF)/T cell factor (TCF) transcription
factors and activates target gene transcription (76). In the
absence of a Wnt ligand, the level of intracellular β-catenin
is very low due to the action of the proteasome degradation
complex; this complex is composed of scaffolding protein Axin
and adenomatous polyposis coli (APC). Moreover, the kinase
proteins glycogen synthase kinase-3b (GSK-3b) and casein kinase
1a (Ck1a) phosphorylate β-catenin triggering its ubiquitination
(76) (Figure 2).

In non-canonical signaling, transduction proceeds in some
different ways; for example, in the Wnt/Ca2+ pathway. The
interaction between Wnt5A and Frizzled FZD2 receptors
activates Dvl. Moreover, it promotes the release of Ca2+ into the
cytosol as facilitated by FZD2, which cleaves guanine nucleotide-
binding protein (G protein). Ca2+ activates CaMKII_AD
(Ca2+/calmodulin-dependent protein kinase II) and suppresses
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FIGURE 2 | Wnt pathway including targets and drugs that could be employed to inhibit it. (Left) canonical Wnt signaling. (Right) non-canonical Wnt signaling.

the canonical Wnt pathway. This situation increases the
differentiation of cells in the neuronal system (77–80) (Figure 2).

Cancer Stem Cells
Some articles suggest that the role of Wnt in the regulation
of CSCs differs depending on the types of cancer, such as
blood, intestine, lung, mammary, gland, nervous system, skin,
and urinary tract. During the development and maintenance
of CSCs, the most common alteration is the hyperactivation
of Wnt signaling. In skin cancer, the role of the Wnt pathway
was discovered using a reporter mouse strain. It was observed
that the genetic deletion of β-catenin produced induced tumor
regression in chemically induced skin tumors through a decrease
in the pool of CD34+ stem cells (81). In human acute
leukemia, the crucial role of Wnt signaling activation in cell
self-renewal capacity and drug-resistant properties has been
suggested (82). Another article reported that the overexpression
of miR-582-3p causes Wnt signaling activation by targeting
multiple negative regulators of the Wnt pathway, such as
AXIN2, DKK3, and SFRP1. Therefore, miR-582-3p promotes
tumorigenesis in NSCLC and CSCs in vitro (83). Wnt enhancer
R-Spondin-2 (RSPO2) is highly expressed in subpopulations

with high intrinsic Wnt activity and with properties indicative
of CSCs. Therefore, the employment of promoter inhibitors
such as RSPO2 was proposed to block stemness-promoting
pathways (84). In metastatic colorectal cancer, an increase in
the level of progastrin, a tumor-promoting peptide essential
for the self-renewal of colon CSCs, was observed, implicating
β-catenin/TCF4 as a direct target gene. Therefore, therapy
employing antibodies directed against progastrin was proposed
for patients with metastatic colorectal cancer K-RAS-mutations
(85). A recent article suggested a role for SOX8 in cancer stem
cell properties and therapy resistance. It reported that SOX8
conferred chemoresistance and enhanced stemness properties.
Additionally, SOX8 mediated EMT via the FZD7-mediated
Wnt/β-catenin pathway (86).

Therapeutic Targets and Drugs
A large number of mutations in the Wnt pathway have been
identified. Above all, aberrations in the expression of Wnt
ligands, Frizzled receptors, β-catenin and APC were discovered
in many different tumors (87–89). According to these results,
this pathway has been researched in recent years to identify
potential therapeutic targets. Some drugs that may be potential
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therapeutics to be employed in the treatment of different tumors
are detailed.

A fusion protein called OMP-54F28, ipafricept (OncoMed
Pharmaceuticals), competes for the FZD8 receptor and
antagonizes Wnt signaling. Preclinical models with this
drug have shown reduced tumor growth as a single drug
in combination with other chemotherapeutic agents (90).
OMP-54F28 was studied in phase Ib clinical trials for different
types of cancer (ClinicalTrials.gov Identifiers: NCT02050178,
NCT02069145, and NCT02092363). In ovarian cancer patients,
ipafricept was well-tolerated in combination with sequential
carboplatin/paclitaxel, but it caused bone toxicity at efficacy
doses; therefore its use is limited (91).

Another drug of interest is SM08502 (Samumed LLC), which
is a potent CDC-like kinase (CLK) inhibitor. Moreover, CLKs
play important roles in the integral cellular mechanism of mRNA
splicing to induce the retention of introns in DVL2, TCF7,
ERBB2, and LRP5 and exon skipping in LEF1 and TCF7L2
(92). SM08502 inhibits the growth of gastrointestinal tumors
in xenograft mouse models (93). The molecule was recently
found in phase 1 (ClinicalTrials.gov Identifier: NCT03355066) to
show safety, tolerability and efficacy in patients with advanced
solid tumors.

On the other hand, the combination of gedatolisib (a pan-class
I PI3K/mTOR isoform inhibitor) and PTK7-ADC (an antibody-
drug conjugate used against the cell-surface PTK7 protein) has
a double synergistic effect, whereby gedatolisib increases the
expression of PTK7-ADC and an auristatin payload causes an
effect similar to that of gedatolisib. Currently, this combination is
in s phase I trial for patients with metastatic triple-negative breast
cancer because the PI3K pathway is dysregulated in most cells of
this type of cancer (94).

The inhibition of porcupine, an O-acyltransferase required
for Wnt activation and secretion, induced by LGK974 (Novartis,
Basel, Switzerland, https://www.novartis.com), reduced the
phosphorylation of the LRP6 receptor and the expression of
WNT target genes in preclinical models. Furthermore, in vivo
studies of LGK974 have demonstrated an antitumoral response
in different types of cancer (95). Phase I evaluation of LGK974
alone and in combination with PDR001 (spartalizumab, an
anti-PD-1 antibody) is ongoing (ClinicalTrials.gov Identifier:
NCT01351103) in patients with lobular or triple negative breast
cancer, melanoma or pancreatic cancer (96).

A monoclonal antibody against dickkopf WNT signaling
pathway inhibitor 1 (DKK1) and DKN-01 was discovered.
The high expression of DKK1 may be a predictive biomarker
for effective treatment with DKN-01 and pembrolizumab in
gastroesophageal adenocarcinoma (97). A phase 2 study is
assessing this molecule as a monotherapy or in combination with
paclitaxel in patients with endometrial, uterine or ovarian cancer
(ClinicalTrials.gov Identifier: NCT03395080).

PRI-724 (PRISM BioLab) is a small molecule that inhibits
the interaction between β-catenin and CBP in the nucleus.
Thus, the downregulation of genes involved in symmetric non-
differentiation division and increased p300/β-catenin binding
were produced. This situation promotes stem cell differentiation
and increases the sensitivity of cytotoxic drugs (98). Phase

IIb of this drug in combination with gemcitabine in patients
with advanced pancreatic adenocarcinoma (APC) has been
completed, and the results showed the necessity for more work
to find useful predictive and PD markers.

Aberrant activation of signaling from Wnt pathway usually
is associated with stem-like phenotypes and EMT, which
induce resistance to endocrine therapy. Plumbagin inhibited
colony formation and mammosphere formation and decreased
the number of cancer stem cell markers by inhibiting
the Wnt signaling pathway. Plumbagin also reduced Wnt-
dependent genes as well as β-catenin. Moreover, treatment
of orthotopic xenografts with Plumbagin inhibited tumor
growth, angiogenesis and metastasis without significant adverse
effects on body weight or blood coagulation; therefore,
Plumbagin may be useful to treat endocrine-resistant breast
cancer (99).

On the other hand, the inhibition of the non-canonical Wnt
pathway can be achieved through different drugs. Foxy-5 is
a mimetic Wnt5a molecule that binds to and activates the
Frizzled 2/5 receptor. Increased Wnt-5a signaling may inhibit
endothelial tumor cell migration and invasion. This effect may
decrease the metastasis of susceptible tumor cells (100). A phase
2 evaluation of it as a neoadjuvant therapy will be performed
for subjects with colon cancer who express low levels of Wnt-5a
(ClinicalTrials.gov Identifier: NCT03883802). Moreover, other
molecules, such as NH125, which is more selective as an eEF-
2 kinase inhibitor that is as an PKC, PKA, or CaMKII inhibitor
(101), and KN93, which is a selective inhibitor of CaMKII
(102), may be potential drugs to regulate the non-canonical
Wnt pathway (Table 1).

NF-κB PATHWAY

The NF-κB pathway is a complex and pathway that has been
studied mainly for its controversial roles in inflammation and
immune responses. This signaling also plays an important role
in cellular proliferation, survival and differentiation (103–105).

The inflammatory effects on cancer development have been
studied, above all the modulation of inflammation-associated
cancer through the transcription factor NF-κB (106). The
excessive innate immunity activation and growth caused by
NF-κB are involved in tumor development and progression
(107). Moreover, the activation of NF-κB could be caused
for genetic alterations such as amplification, mutations, or
deletions in different cancer cells. NF-κB binds to promoters
of genes such as IL1B, TNF, and IL6 which cause the secretion
of cytokines and chemokines (108). For this reason, it is
suggested that the exposure to proinflammatory stimuli in
tumor microenvironment or genetic alterations in components
of IKK—NF-κB pathway could cause the activation of NF-κB
in cancer.

The NF-κB family of transcription factors includes five
different proteins: p105/p50, p100/p52, p65 (RelA), c-Rel, and
RelB, which are inactivated in the cytoplasm upon binding to
IκB proteins (109). Two signals are differentiated: canonical
and non-canonical.
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TABLE 1 | Overview of drugs targeting CSC pathways.

Pathway Agent Mechanism of action Model Clinical trial phase

Wnt pathway OMP-54F28 Wnt antagonist Solid tumors Phase Ib

SM08502 CDC-like kinase (CLK) inhibitor Advanced solid tumors Phase I

Gedatolisib (1) and PTK7-ADC (2) (1) PI3K/mTOR inhibitor Metastatic triple-negative breast cancer Phase I

(2) PTK7 protein antagonist

LGK974 Porcupine inhibitor Melanoma, breast cancer, and pancreatic

cancer

Phase I

DKN-01 DKK1 inhibitor Endometrial, uterine, and ovarian cancer Phase II

PRI-724 CBP inhibitor Advanced pancreatic adenocarcinoma Phase IIb

Plumbagina Wnt ligands inhibitor Endocrine resistant breast cancer Preclinical

Foxy-5 Mimetic Wnt5a molecule Colon cancer Phase II

NH125 eEF-2 kinase inhibitor Solid tumors Preclinical

KN93 CaMKII inhibitor Solid tumors Preclinical

NFkB pathway Thalidomide TNF-a inhibitor Solid tumors Phase II

Bortezomib Proteosome inhibitor Myeloma, lymphoma, and acute leukemia Phase III

BMS-345541 IKKb and IkB protein inhibitor Lung cancer Preclinical

Bardoxolone methyl (RTA-402) IKKb and JAK1 inhibitor Pancreatic adenocarcinoma and lymphomas Phase I

IMD-0354 and KRT1853 IKKb inhibitor Lung cancer Preclinical

PS1145 IKK inhibitor Prostate cancer and nasopharyngeal

carcinoma

Preclinical

Notch pathway PF-03084014 γ-secretase inhibitor (GSI) Desmoid tumors Phase II/III

BMS-906024 γ-secretase inhibitor (GSI) T-ALL relapses and T cell lymphoblastic

lymphoma

Phase I

Adenoid cystic adenocarcinoma Phase II

MK-0752 γ-secretase inhibitor (GSI) Recurrent central nervous system tumors,

advanced breast cancer, and T-ALL

Phase I

MK-0752 +

docetaxel/gemcitabine

γ-secretase inhibitor (GSI) Locally advanced or metastatic breast and

pancreatic cancer, respectively

Phase I/II

RO4929097 γ-secretase inhibitor (GSI) Renal cell carcinoma, metastatic pancreatic

cancer, and non-small cell lung cancer relapses

Phase II

RO4929097 + temsirolimus/ γ-secretase inhibitor (GSI) Solid tumors Phase I

Cediranib/gemcitabine/

Bevacizumab

Enoticumab DLL-4 monoclonal antibody Advanced solid cancers (ovarian carcinoma) Phase I

Demcizumab + gemcitabine DLL-4 monoclonal antibody Pancreatic cancer Phase I

Demcizumab + FOLFIRI DLL-4 monoclonal antibody Colorectal cancer Phase I

Demcizumab + Carboplatin and

pemetrexed

DLL-4 monoclonal antibody Non-squamous NSCLC Phase II

Tarextumab Notch2, 3 monoclonal antibody Epithelial cancers (breas, small cell lung,

ovarian, and pancreatic cancers)

Phase I/II

Brontictuzumab Notch1 monoclonal antibody Hematological malignances and advanced

solid tumors

Phase I

AMG 757 DLL-3 Bi-specific T cell engager Neuroendocrine carcinomas (small cell lung

cancers)

Phase I

AMG 119 DLL-3 Chimeric antigen receptor

(CAR) T cell

Neuroendocrine carcinomas (small cell lung

cancers)

Phase I

Rovalpituzumab tesirine DLL-3 antibody-drug conjugate (ADC) Neuroendocrine carcinomas (small cell lung

cancers)

Phase II

CB-103 Pan-Notch inhibitor against

transcriptional complex

Advanced-stage solid tumors and

hematological malignancies

Phase I/IIa

Sonic Hedgehog

pathway

Vismodegib SMO inhibitor Metastatic basal cell carcinoma (BCC) or

recurrent locally advanced BCC

Approved by FDA

2012 + clinical trials

in other tumors

(breast cancer)

(Continued)
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TABLE 1 | Continued

Pathway Agent Mechanism of action Model Clinical trial phase

Sonidegib SMO inhibitor Recurrent locally advanced BCC Approved by FDA

2015

Saridegib SMO inhibitor Chondrosarcoma, head and neck, pancreatic,

adenocarcinoma, BCC, myelofbrosis

Phase II

BMS-833923 SMO inhibitor Basal cell nevus syndrome chronic myeloid

leukemia

Phase II

Glasdegib SMO inhibitor Acute myeloid leukemia, other cancers Phase II

Taladegib SMO inhibitor Various carcinomas and sarcomas Phase II

TAK-441 SMO inhibitor BCC, advanced non-hematologic malignancies Phase I

Arsenic trioxide GLI1, 2 inhibitor Acute promyelocytic leukemia Approved by FDA

2000 + phase I–IV

clinical trial in other

tumors

Genistein GLI1 inhibitor Different solid tumors (gastric, prostate, breast)

and hematological malignancies

Phase I/II

5,00E+01 SHH monoclonal antibody Various cancer types Preclinical

RU-SKI43 SHHat enzyme inhibitor Various cancer types Preclinical

Hippo pathway Verteporfin YAP-TEAD interaction inhibitor Metastatic breast cancer, pancreatic tumors,

prostate cancer

Phase I–II

CA3 YAP-TEAD interaction inhibitor Esophageal adenocarcinoma Preclinical

Flufenamic acid YAP-TEAD interaction inhibitor Metastatic breast tumor and hepatocellular

carcinoma

Preclinical

Chloromethyl ketone YAP-TEAD interaction inhibitor Various cancer types Preclinical

Super-TDU YAP-TEAD interaction inhibitor Pancreatic, gastric, and colorrectal cancer Preclinical

CT-707 YAP post-transcriptional

modifications

Non-small cell lung Phase I

C19 MST agonist Melanoma, breast cancer, colon cancer, and

neuroblastoma

Preclinical

BET inhibitors Epigenetic modulation Solid and hematological malignancies Phase I–II

Panobinostat Epigenetic modulation Solid and hematological malignancies Phase I–IV

TLR pathway Bacillus Calmette-Guerin (BCG) TLR2/4 agonist Carcinoma in situ or muscle non-invasive

cancer of the urinary bladder

FDA approved in

1998 + Clinical trials

(melanoma,

colorectal and lung

cancer…)

CADI-05 TLR2 agonist Advanced melanoma Phase I–II

Monophosphoryl lipid A (MPLA) TLR4 agonist Adjuvant in vaccines of human papillomavirus

(HPV)-associated cervical cancer

FDA approved +

Phase I–IV in other

tumors

Glucopyranosyl lipid A TLR4 agonist Skin and colorectal cancer, sarcoma,

lymphoma

Phase I–II

AS15 TLR4 agonist Various cancer types Phase I–III

Poly (I:C) TLR3 agonist Various cancer types Phase I–II

Poly-ICLC (Hiltonol® ) TLR3 agonist Solid tumors Phase I–II

Rintatolimod (Ampligen® ) TLR3 agonist Fallopian tube, ovarian, colorectal, prostate,

and brain tumors

Phase I–II

Entolimod (CBLB502) TLR5 agonist Local or metastatic malignancies Phase I-II

Imiquimod TLR7/8 agonist Superficial basal cell carcinoma FDA approved +

Phase I–IV in other

tumors

(Continued)
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TABLE 1 | Continued

Pathway Agent Mechanism of action Model Clinical trial phase

Resiquimod TLR7/8 agonist Skin tumors and vaccine adjuvant Phase I–II

852A TLR7 agonist Melanoma, breast, ovarian, endometrial,

cervical and esophageal cancer, and

hematological malignancies

Phase I–II

VTX-2337 TLR8 agonist Solid and hematological maliganancies Phase I–II

Agatolimod (CpG7909) TLR9 agonist Vaccine adjuvant in solid and hematological

malignancies

Phase I–II

SD-101 TLR9 agonist Various solid tumors and lymphoma Phase I–II

E5564 TLR4 antagonist Leukemia Phase I

CRX-526 TLR4 antagonist Colon cancer Preclinical

OPN305 TLR2 antagonist antibody Myelodysplastic syndrome Phase I–II

LPS and proinflammatory cytokines, such as IL-1, Toll-like
receptors (TLRs) and tumor necrosis factor alpha (TNF-α),
activate the NF-κB signaling pathway. The recruitment of a
receptor proximal adaptor protein facilitates the phosphorylation
and activation of IκB kinase (IKK) protein complex, which
subsequently initiates the phosphorylation of IκB proteins. IκB
proteins are degraded, allowing NF-κB translocation into the
nucleus to activate specific target genes. This pathway can activate
antiapoptotic factors and cytokines as well as proliferation
factors (109).

The non-canonical brand of the NF-κB pathwaymay activated
by different factors such as the receptor activator of NF-κB
(RANK) and CD40, leading to the stabilization of NF-κB-
inducing kinase (NIK). This molecule activates IKKα dimers,
promoting p100 phosphorylation and cleavage into p52. The
activated RelB/p52 dimer can be translocated into the nucleus
regulating specific target gene transcription (109, 110) (Figure 3).

Cancer Stem Cells
The link between inflammation and cancer stem cells (CSCs)
is found during tumorigenesis and disease progression (111,
112). The involvement of the NF-κB pathway in CSCs was
discovered in primary AML samples, in which the DNA in
CD34+ cells bind with NF-κB. However, this binding was not
observed in normal hematopoietic stem cells (113). In adult
murine neurogenesis, TLR2 and TLR4 were found to have
opposite functions in adult neural stem/progenitor cell (NPC)
proliferation and differentiation. Moreover, the inhibition of the
LRPs impacted the self-renewal and the cell fate decision of NPCs
(114). A MEC-targeted inducible transgenic inhibitor of NF-κB
was developed in mammary oncomice, and it inhibited breast
tumor stem cell markers and expanded NANOG and SOX2
expression in vivo and in vitro (115).

Chronic inflammation may be responsible for the
accumulation of proinflammatory cytokines, which increase
the action of NF-κB. This situation promotes a tumorigenic
microenvironment in colon cancer (116). In the basal-like
subtype of triple-negative breast cancer, high levels of activated
NF-κB pathway components were observed. Inflammatory
cytokines or dysregulated NIK expression induced this activation

and caused the upregulation of JAG1 expression in normal
cancer cells. NOTCH signaling was stimulated in cancer stem
cells and induced the expansion of CSC populations (117). The
upregulation of NIK caused a decrease in the CSC population,
and its reduction led to the results that were opposite those
found for breast cancer (118). In addition, mammary stem and
progenitor cells were expanded by constitutive RANK signaling,
and the overexpression of this activator increased tumorigenesis
properties (119).

IKKα and its activator, NF-κB-inducing kinase, were critical
for the expansion of tumor-initiating cells (TICs). IKKα is
translocated into the nucleus, where it phosphorylates the cyclin-
dependent kinase (CDK) inhibitor p27/Kip1 and promotes its
nuclear export or exclusion (120).

Therapeutic Targets and Drugs
To determine the efficacy of cancer treatment through the
inhibition of the NF-κB pathway, various problems have
been found: low efficacy of NF-κB inhibitors in addition to
lymphoma and leukemia (121), immunosuppression after long-
term systemic administration of these drugs (122) and the
appearance of short-term drug resistance (123, 124). However,
NF-κB inhibitors can be useful in combination with other
chemotherapies, as most anticancer agents can activate this
pathway, protecting cancer cells from apoptosis (125).

TNF-α is a target that can be employed to inhibit the NF-kB
pathway. Drugs such as thalidomide and its derivatives act in this
way (126, 127). However, thalidomide does not show good results
in combination with gemcitabine or irinotecan chemotherapy,
and its use increases the risk of thrombotic events (128).

On the other hand, bortezomib is an innovative drug with
remarkable preclinical and clinical antitumor activity in different
types of cancer. The mechanism of action consists of proteasome
inhibition, which causes inactivation of the canonical NF-
κB pathway (129, 130). Additionally, the prolonged inhibition
of this pathway accelerates chemical lung carcinogenesis by
perpetuating carcinogen-induced inflammation (131). Currently,
many phase III clinical trials are in the recruitment stage
for patients with myeloma, lymphoma or acute leukemia who
will be treated with bortezomib in combination with other
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FIGURE 3 | NF-κB pathway including targets and drugs that could be employed to inhibit it. (Left) canonical NF-κB signaling. (Right) non-canonical NF-κB signaling.

anticancer agents, and the results will be compared to those of
conventional treatments.

There is another type of drug that inhibits IKKβ and IκB
protein, BMS-345541, which causes the reduction of stemness,
self-renewal and migration capacity in lung cancer (132).
Another drug in this group, bardoxolone methyl (RTA-402),
is a triterpenoid and antioxidant inflammation modulator that
inhibits IKKβ and JAK1. Phase I studies have been conducted
for various types of cancer: pancreatic adenocarcinoma (133),
solid tumors and lymphomas (134). Additionally, IMD-0354 and
KRT1853 are IKKβ inhibitors and block IκBα phosphorylation,
inactivating its translocation into the nucleus and the activation
of NF-κB (135). In lung cancer, it was discovered that these
drugs can be potential anticancer agents through suppression of
cancer cell invasion, proliferation, and survival (136). In addition,
PS1145 reduced the growth of tumorigenic prostate cancer (137)
and nasopharyngeal carcinoma (PNC) cell lines (138). Moreover,
in the most recent study, it was observed that NF-κBp65 and
KLF4 upregulation was involved in drug resistance (138).

These drug groups only partially inhibit NF-κB signaling
because IKKα can also activate this pathway. Therefore,

inhibitors of IKKα and IKKβ need to be found to generate better
effects (139) (Table 1).

NOTCH PATHWAY

The Notch pathway is an evolutionarily conserved signaling
route involved in a variety of developmental and homeostatic
processes, such as proliferation, stem cell maintenance, cell
fate specification, differentiation, or angiogenesis, despite the
apparent simplicity of its signaling network. The effects of
activating this signaling pathway are very diverse, depending
on the signal dose and cell context (140–144). Its deregulation
contributes to a wide range of disorders and diseases, such as
congenital afflictions, viral infections, and/or different types of
cancer (142).

The Notch signaling pathway is composed of Notch receptors
and Notch ligands, as well as different proteins that serve as
posttranslational modifiers, but there is not an amplification
cascade induced by different proteins in well-known signaling
pathways (142, 145).

Frontiers in Oncology | www.frontiersin.org 9 August 2020 | Volume 10 | Article 153330

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Espinosa-Sánchez et al. Therapeutic Targeting of Stemness

There are four Notch receptors encoded by different
genes: Notch1–4. The general structure of Notch receptors
consists of a single-pass transmembrane protein composed
of different protein modules, with some differences: Notch3
and 4 have a shorter extracellular domain and lack the
intracellular transcription-activating region, and Notch4 lacks
the Notch cytokine response domain. Notch1 and Notch2
are expressed in many tissues during development and
in adults, whereas Notch3 is expressed mostly in vascular
smooth muscle and pericytes, and Notch4 is expressed in the
endothelium (142, 145–149).

There are four Notch ligands in humans: Dll1 and Dll4,
from the Delta family of ligands, and Jag1 and Jag2, from
the Serrate family. There is a Dll3 ligand, but it is not able
to activate Notch receptors. These ligands are also single-pass
transmembrane proteins. The expression pattern of these ligands
is less established than that of the Notch receptor ligands (142,
145, 150, 151).

Notch receptor activation begins with the binding of a
Notch ligand expressed in a neighboring cell upon the release
of the Notch receptor negative regulatory region (NRR). The
Notch ligand, which has been previously ubiquitinated in the
cytoplasmic tail by E3 ligases Neuralized or Mind Bomb to
trigger endocytosis, induces a conformational change in the
receptor, exposing cleavage sites for ADAM metalloproteases to
access to cleave the extracellular receptor domain. Then, the
transmembrane domain is cleaved by γ-secretase, releasing the
Notch intracellular domain (NICD). The NICD is translocated to
the nucleus and, together with the DNA-binding factor RBPJ and
coactivators in the Mastermind-like (MAML) family, it forms
the Notch transcription complex (NTC). NTC binds to Notch
regulatory elements (NREs), and transcriptional coregulators are
recruited, activating the transcription of Notch target genes, such
as HES and HEY (3, 142, 145, 152, 153) (Figure 4).

The Notch signaling pathway is highly regulated, and
its target genes vary according to different epigenetic
contexts, such as different cell subtypes, changing the
cellular outcomes. Indeed, NICD function is influenced by
other signaling routes and undergoes many posttranslational
modifications at different sites, with a variety of consequences,
which have not yet been fully elucidated. Notch receptor
expression is also closely regulated in normal cells.
Notch1 upregulation is crucial in the early stages of T cell
development, whereas its downregulation in later stages is
important to prevent the transformation in this lineage.
Furthermore, there are other levels of regulation, such as
inhibitory feedback loops or RBPJ binding to transcriptional
repressors, explaining why deregulation of this pathway can
lead to different pathologies, such as cancer development
(142, 145, 153, 154).

Cancer Stem Cells
Loss of balance in the Notch signaling pathway can lead to
tumor formation. Indeed, Notch has been implicated in all of
the hallmarks of cancers, including cell growth and survival,
the EMT, angiogenesis, and/or metastasis. The most frequent
alterations have been found in Notch receptor genes. Notch

might act as an oncogene or a tumor suppressor, depending on
the context and/or the tumor type (140, 142, 145, 149, 155).
Interestingly, in some cancers, such as head and neck squamous
cell carcinoma (HNSCC), Notch seems to have a bimodal role,
as it might function as an oncogene or a tumor suppressor
gene (149).

The Notch pathway can be deregulated by mutational
activation or inactivation, overexpression, posttranslational
modifications or epigenetic alterations (156). In T cell acute
lymphoblastic leukemia, translocation 7; 9 produces a fusion
gene consisting of the end of Notch1 and enhancer elements
or the TCRβ gene, causing a the removal of the NRR receptor
activation inhibitor, and ligand-independent activation of the
Notch pathway. Other tumors are characterized by mutations
in the Notch PEST domain (C-terminal domain), such as B cell
tumors (chronic lymphocytic leukemia, splenic marginal zone
lymphoma, etc.) or basal-like breast cancer (142, 157). In these
cases, among others, such as cancer of the pancreas, prostate,
and lung, hepatocellular cancer, esophageal tumors, and HNSCC
(149), Notch functions as an oncogene. On the other hand,
several tumors present with mutations in the Notch N-terminal
domain, producing a loss of function, such as squamous cell
carcinomas (skin, head and neck, esophagus and lung) and small
cell lung cancers, urothelial carcinomas, and low-grade gliomas;
in these cases, Notch acts as a tumor suppressor (142, 149).

Notch has also been associated with stemness maintenance,
important in adult organisms and in pathologies such as cancer.
In several cell types, Notch activation seems to maintain or
promote expansion of stem cell pools, especially in solid tumors
such as glioblastoma, hepatocellular carcinoma, ovarian cancer,
breast cancer, and HNSCC. Notch inhibitors can decrease
stemness marker expression and sensitize tumor cells to chemo-
and radiotherapy (142, 149, 153, 155, 157–160).

Notch signaling mediates the interactions between cancer
stem cells and tumor microenvironment cells (endothelial,
immune, and mesenchymal cells). The Notch pathway is
activated in tumor cells by ligands localized in the vascular
niche. Specifically, Jag1 is the main ligand that plays this role.
For example, in B cell lymphomas, this interaction induces
aggressive behavior and resistance to chemotherapy. In other
tumors, Jag1 promotes cancer stem cell self-renewal, proliferation
and stemness maintenance. Jag1 can eventually activate the
transcription of several genes, such as Klf4 in head and
neck cancer cell lines, inducing a stem cell phenotype and
chemotherapy resistance (145).

Therapeutic Targets and Drugs
Among the signaling pathways that are activated in cancer cells,
the Notch signaling pathway is among the most upregulated, and
it is implicated in cancer metastasis, angiogenesis and CSC self-
renewal, making it is an important target in cancer therapy (144).

There are two groups of inhibitors that have been developed
to target the Notch signaling pathway: γ-secretase inhibitors
(GSIs) and monoclonal antibodies against Notch ligand-
receptor interactions (mAbs). These therapeutic strategies can
be effective in combination with conventional therapies to
treat cancer patients with promising results. Furthermore,
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FIGURE 4 | Notch signaling pathway, including targets and drugs that could be employed to inhibit it.

GSIs and mAbs have been demonstrated to be useful as
single agents in the early stage of several tumors, such as
thyroid, lung, intracranial and colorectal cancers, and sarcomas.
However, Notch signaling is also crucial for normal tissue
homeostasis; therefore, its inhibition can induce serious side
effects, especially GSIs, such as gastrointestinal toxicity, diarrhea,
hepatotoxicity, and nephrotoxicity (3, 140, 144, 149, 161).
For this reason, these inhibitors are dose limiting and are
administered intermittently (144).

γ-Secretase Inhibitors (GSIs)
γ-Secretase is the enzyme critical for releasing the Notch
intracellular domain (NICD) and activating the signaling
pathway. Therefore, this enzyme may offer promising results as
an inhibiter of the Notch pathway. GSIs constituted the first class
of inhibitors developed to be used in cancer patients, and more
than 100 GSIs have been developed to date (162).

There are many GSIs currently in clinical trials in several
cancer types, as single agents or in combination. For example,
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PF-03084014 is a small reversible and non-competitive GSI that is
being studied alone or in combination in several cancer subtypes
(163, 164), but currently, its clinical development has focused
on desmoid tumors (phase II/III) (165). BMS-906024 is being
studied in relapsed T-ALL and T cell lymphoblastic lymphoma
(phase I) (166), as well as adenoid cystic adenocarcinoma (phase
II), with promising results (3). Another GSI, MK-0752, is a non-
competitive oral inhibitor that is being tested for use against
recurrent central nervous system tumors, advanced breast cancer
and T-ALL (phase I) and in combination with docetaxel or
gemcitabine for use in locally advanced or metastatic breast and
pancreatic cancer, respectively (phase I/II) (3, 144, 167, 168).
RO4929097 has been studied as a single agent in renal cell
carcinoma, metastatic pancreatic cancer, and non-small cell lung
cancer relapses (phase II) and in combination with temsirolimus,
cediranib, gemcitabine, or bevacizumab in different solid tumors
(phase I) (3, 144, 169–171).

All these GSIs have been demonstrated to promote the
inhibition of the Notch pathway, tumor growth, angiogenesis,
stem cell marker expression, and metastasis, etc. (3, 140, 144).
However, some of them, such as MK-0752 or RO4929097, are
not being developed for use in active clinical trials because of the
limited efficacy observed (3) (Table 1).

Monoclonal Antibodies (mAbs)
Several monoclonal antibodies have been developed to inhibit
Notch signaling as in inhibitors of ligands (DLL-4) and
receptors (Notch1–3). They impair ligand-receptor interactions
or extracellular domain conformational changes, which are
crucial for exposing Notch receptor cleavage sites (140, 144).

DLL-4 is one of the ligands that binds Notch receptors
and is involved in growth control, stem cell renewal and
development. The deletion of its gene has lethal consequences
in the vasculature, and its overexpression has been found
in cancer cells and tumor vasculature. Furthermore, DLL-4
inhibition impairs the formation of functional capillaries, leading
to aberrant angiogenesis and promoting direct effects that inhibit
Notch signaling in tumor cells (172–175).

Enoticumab is a humanized mAb against DLL-4 that seems
to have a reasonable safety profile and efficacy in advanced solid
cancers, such as ovarian carcinoma (phase I) but is no longer
in clinical development. Demcizumab is a DLL-4 antibody that
is being studied with gemcitabine in pancreatic cancer, with
FOLFIRI in colorectal cancer (phase I) and with carboplatin
and pemetrexed in non-squamous NSCLC (phase II), but it did
not improve efficacy; therefore, it not in clinical development
(3, 140, 144).

Monoclonal antibodies against Notch receptors have also been
studied. There are two groups of monoclonal antibodies: those
directed to the NRR domain, preventing the conformational
change necessary to activate Notch signaling, and those targeted
to the EGF-repeat region in Notch receptors to impede the
ligand-receptor interaction. Both groups promote substantial
downregulation of Notch1 signaling (161, 176).

Tarextumab is a humanized monoclonal antibody against
Notch2 and 3 that inhibits Notch signaling as a single agent
or in combination with chemotherapeutic agents in epithelial

cancers, such as breast, small cell lung, ovarian, and pancreatic
cancers (phase I/II). It can inhibit tumor cell proliferation, reduce
the number of CSCs and prolong the time before tumors recur
after chemotherapy. However, the clinical trials did not show
survival improvement; therefore, clinical development has been
discontinued (3, 140, 144). Brontictuzumab is an anti-Notch1
mAb that is being studied in hematological malignances and
advanced solid tumors (phase I) (177, 178) (Table 1).

Other Therapeutic Targets
The DLL-3 Notch ligand is highly expressed in neuroendocrine
carcinomas, such as most small cell lung cancers. DLL-3
can promote tumorigenesis through Notch signaling pathway
inhibition (in contrast to DLL-4). Therefore, DLL-3 is being
studied as a therapeutic target in these cancers. Some other
approaches include co-administering AMG 757, a bispecific T
cell engager; AMG 119, a chimeric antigen receptor (CAR) T cell
(phase I); or as an anti-DLL3 antibody-drug conjugate (ADC),
rovalpituzumab tesirine (phase II) (3, 179, 180).

Another strategy involves inhibiting the formation of the
Notch transcriptional complex, which acts downstream of
abnormal Notch receptor activation. CB-103 is an oral pan-
Notch inhibitor that belongs to a novel class of small molecules
that target the Notch transcriptional complex, inhibiting the
expression of target genes. CB-103 is being studied in phase I/IIa
clinical trials for patients with advanced-stage solid tumors or
hematological malignancies (181) (Table 1).

SONIC HEDGEHOG PATHWAY

The Sonic Hedgehog pathway plays a role in embryogenesis and
brain development. In adults, it is usually inhibited, although
it participates in the maintenance of somatic stem cells and
pluripotent cells of many organs, tissue repair, and regeneration
of several epithelial cells (182–186). Furthermore, there is
evidence that the Hedgehog pathway (Hh) is deregulated in
various cancer types, such as pancreatic, gastric, prostate, and
esophageal cancer (187–189). The activation of the Hh signaling
pathway may have a variety of effects involving cell proliferation,
cell fate determination, the epithelial-to-mesenchymal transition,
and cell motility or adhesion. Therefore, the deregulated
activation of this pathwaymay lead to the development of tumors
or resistance to treatment (190).

There are two different mechanisms by which Hh signaling
activated: ligand-receptor binding, known as the canonical
pathway, or as a consequence of the activation of another
downstream member of the signaling pathway, known as the
non-canonical pathway (191).

Canonical
The main receptor in the Hh signaling pathway is Patched
(Ptch1), which localized to the base of the primary cilia
(PCs), structures that protrude from the cell membrane
to sense a variety of stimuli (192). The main ligand that
binds Ptch1 is Sonic Hedgehog (SHh), but there are
two other ligands: Indian Hedgehog (IHh) and Desert
Hedgehog (DHh).
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In the absence of Hh binding, Ptch1 does not translocate
with the transmembrane protein Smoothened (SMO) to the
PCs. When Hh binds to Ptch1, Ptch1 is internalized and
degraded, causing the accumulation of SMO in the PC, and
as a consequence, the signaling cascade is initiated through a
complex formed by kinesin protein (Kif7), suppressor of fused
(SUFU) and full-length glioma-associated oncogene (GliFL).
This pathway eventually leads to the translocation of the Gli
transcription factor to the nucleus.

There are three Gli proteins: Gli1, Gli2, and Gli3. Gli1 is
a transcriptional activator, whereas Gli2 and Gli3 could act
as activators or repressors. However, Gli2 acts mainly as an
activator, and Gli3 acts as a repressor.

SUFU usually inhibits Gli transcription factor translocation
to the nucleus by direct binding. SUFU activates the
phosphorylation by glycogen synthase kinase 3 beta (GSK3β),
casein kinase I (CK1), and protein kinase A (PKA) and promotes
the recruitment of β-transducin repeat-containing protein
(β-TrCP), which causes the transformation of Gli2 and Gli3 into
the Gli repressors Gli2R and Gli3R, which are translocated to the
nucleus to inhibit the transcription of Hh pathway target genes
(186, 190, 193) (Figure 5).

When the signaling pathway is activated by the Hh ligand,
the accumulation of SMO leads to the hyperphosphorylation of
SUFU, releasing Gli proteins, which translocate to the nucleus
and activate the transcription of the target genes Ptch1 and Gli1
(186, 193) (Figure 5).

Non-canonical
The non-canonical signaling pathway is independent of
Gli proteins but is not yet fully understood. In the type
I non-canonical pathway, SMO appears to be critical for
modulating Ca2+ and the actin cytoskeleton, whereas
SMO does not participate in the type II non-canonical
signaling pathway, which may enable cell proliferation and
survival (194).

Cancer Stem Cells
The cancer stem cell (CSC) model explains tumor heterogeneity
through the presence of a small group of cells with unlimited
self-renewal capacity and the potential to regenerate all cell
types in the entire tumor. They seem to be critical for therapy
resistance and relapses. The Hh signaling pathway, as well as
other signaling pathways, has been implicated in themaintenance
of CSCs (190, 195, 196).

The mechanisms by which the Hh signaling pathway can
be activated are mutations in Hh signaling members or the
deregulation of Hh ligand release. Furthermore, the Hh signaling
pathway may participate in the formation of CSCs.

A variety of members of the Hh pathway have been found
to be affected by mutations in human cancers, such as the
inactivating mutations of Patch1 or SUFU or the activating
alterations of SMO, Gli1, and Gli2, which lead to signaling
pathway activation independently of ligand binding. Patch1
loss of heterozygosity is usually found in Gorlin syndrome or
nervoid basal cell carcinoma syndrome. Furthermore, alterations
to the Hh pathway in combination with tumor suppressor

mutations are able to generate other sporadic tumors, such as
skin, medulloblastoma, gastric, and rhabdomyosarcoma tumors
(190, 197–199).

In other cases, the Hh signaling pathway is stimulated by a
deregulation in ligand release, which could be autocrine (from
the tumor cell to itself, as it seems to occur in gliomas), paracrine
(from the tumor cell to the stroma or from the stroma to
the tumor cell, as it may happen in multiple myeloma, which
has been studied to a lesser extent) or both, as it might take
place in esophageal or gastric cancers (182, 190, 195, 196, 199).
It is thought that tumor cells can release ligands that may
stimulate the Hh signaling pathway in stromal cells via paracrine
signaling and then promote a supportive microenvironment for
the tumor (190).

Hh signaling pathways have been demonstrated to participate
in the formation andmaintenance of cancer stem cells in a variety
of tumors, such as hematological malignancies and gastric,
pancreatic, prostate, and lung cancers. The Hh signaling pathway
is able to activate the transcription of key genes that contribute
to the stem cell phenotype, such as Nanog, Oct4, Sox2, and Bmi1.
Targeting this pathway in CSCs may be a promising strategy to
reduce tumor growth, relapse, and metastasis (200–202).

Therapeutic Targets and Drugs
Tumors that present with mutations in signaling components
may be ameliorated by some Hh pathway inhibitors, but
the efficacy of these treatments is dependent on the level
of alterations in the signaling pathway. In addition, ligand-
dependent tumors may be treated by inhibitors of the Hh
signaling cascade that are directed against any of its signaling
components, regardless of the level in the route (190).

Among all proteins that may take part in the signaling
cascade, SMO and Gli transcription factors are the main targets
on which current research is focused. Although there are
currently many SMO inhibitors, spontaneous mutations can
arise as a consequence of the treatment, which may cause drug
resistance (203).

SMO Inhibitors
Cyclopamine, a natural alkaloid fromVeratrum californicum, was
the first SMO inhibitor, but the significant side effects in mice
did not allow it to be used in humans. Vismodegib, a second-
generation cyclopamine derivative approved by the FDA in 2012,
is being used in metastatic basal cell carcinoma (BCC) treatment
and in recurrent locally advanced BCC, which are not candidates
for surgery or radiotherapy. More than 85% of BCC patients
have constitutive activation of the SHH pathway, most of which
are due to a mutation in PCHT1. Vismodegib binds to SMO
and inhibits its function, but continuous exposure can induce
mutations in SMO, promoting drug resistance. Furthermore,
vismodegib is being studied in many clinical trials in a variety
of human cancers, such as breast cancer (204–206).

Sonidegib is another SMO antagonist, approved in 2015 by
the FDA, that is used in the treatment of patients with locally
advanced BCC that recurred disease after surgery or radiotherapy
or patients who are not able to receive surgery or radiation
treatments. Sonidegib, similar to vismodegib, binds SMO in
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FIGURE 5 | Sonic Hedgehog canonical signaling, including targets and drugs that could be employed to inhibit it. (Left) inactive signaling pathway. (Right) active

signaling pathway.

the “drug binding pocket,” and mutations at this site lead to
resistance (205, 206). Sonidegib and Vismodegib are teratogen,
as other Sonic Hedgehog pathway targeting drugs, due to the role
of this signaling route in embryogenesis (206).

There are other drugs that are currently in clinical trials for
different cancer types, such as Saridegib (phase II), BMS-833923
(phase II), glasdegib (phase II), taladegib (phase II), or TAK-441
(phase I), and they have shown promising results in preclinical
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models (205, 206). TAK-441 has shown efficacy in cells that
have developed adaptive mutations in SMO; therefore, it may be
relevant for patients with drug resistance (206) (Table 1).

GLI Inhibitors
Arsenic trioxide, a Gli inhibitor approved by the FDA for the
treatment of acute promyelocytic leukemia, binds directly to Gli1
and Gli2, among other actions, causing the inhibition of their
activity (205, 206). It has been shown to affect the viability of
cancer stem cells in pancreatic and prostate cancer (in the cancer-
initiating cells). This drug is being studied in phase I–IV clinical
trials for solid tumors and hematological malignancies. Arsenic
trioxide could imply some cardiac side effects such as QT interval
elongation or tachycardia, as well as circulatory, gastrointestinal
and respiratory disorders (205–207).

Genistein (phase I and II), an isoflavone isolated from Genista
tinctoria, has been shown to inhibit Gli1, causing the growth
suppression of different tumors and the cancer stem niche
(206, 208) (Table 1).

SHh Inhibitors
Inhibitors of SHh, which is the most important ligand, have not
yet been approved for use in the clinic, but they have been shown
to effectively inhibit the SHh pathway in mice. Some of these are
SHh monoclonal antibody 5E1, or RU-SKI43, which inhibits the
SHHat enzyme, critical for catalyzing the binding of palmitate to
SHh, one of the final steps in SHh synthesis (205, 206) (Table 1).

Other Therapeutic Targets
A truncated isoform of the Gli1 transcription factor, which
indicates a gain of function, has been discovered: tGli1. This
isoform has been detected exclusively in tumor cells, not in
normal cells, and promotes tumorigenesis to a greater extent than
does Gli1, which makes it a promising drug target. There is no
drug directed specifically against tGli1, but it may be possible
to target the genes activated by tGli1, such as CD24, VEGF-A,
VEGFR2, orHPA1, and inhibit their expression. A phase I clinical
trial is testing a CD24 monoclonal antibody. Furthermore, some
heparanase (HPA1) inhibitors, such as PI-88 or PG545, are being
studied as antiangiogenic anticancer drugs (PI-88 in phase III and
PG545 in phase I). Finally, there are several antiangiogenic drugs
approved by the FDA and directed against VEGF-A and VEGFR,
such as bevacizumab, Ziv-aflibercept, and sorafenib (205).

HIPPO PATHWAY

The highly evolutionarily conserved Hippo signaling pathway
regulates biological processes, such as survival, differentiation,
cellular proliferation, fate determination, organ size, or tissue
homeostasis (209). The core pathway consists of a kinase cassette
that is composed of MST1/2 and LATS1/2 (210). In addition
to MST1/2, MAP4K, and TAOK also directly phosphorylate
LATS1/2 (211–214). NF2 is critical for pathway activation
through the phosphorylation of MST1/2. The major target
of the Hippo pathway is YAP and its paralog transcriptional
coactivator TAZ. Phosphorylation of YAP and TAZ leads to
their sequestration in the cytoplasm by 14-3-3 proteins and

ubiquitination-dependent proteosomal degradation (215). In the
nucleus, YAP/TAZ it can bind and regulate a family of sequence-
specific transcription factors called TEA DNA-binding proteins
(TEAD1–4) that modulate genes such as CTGF, CRY61, BIRC5,
ANKRD1, and AXL, involved in proliferation and survival. In
addition to TEADs, the YAP/TAZ complex also cooperates with
RUNX1 and 2, TBX5, and SMADs, among others (216–219)
(Figure 6). High TEAD expression levels have been correlated
with poor clinical outcomes, and therefore, it can serve as a
prognostic marker in many solid tumor types (220–231).

Cancer Stem Cells
Hippo pathway effectors activated by YAP/TAZ have been shown
to induce cancer stem cell (CSC) properties in a wide range
of human cancers, including osteosarcoma, glioblastoma, and
chemoresistant breast cancer (232, 233). Moreover, breast cancer
tissues with a high content of CSCs show a gene expression profile
that overlaps with YAP/TAZ-induced gene expression, and breast
CSCs with a CD44+/CD24– phenotype have a relatively high
expression of TAZ (234).

YAP/TAZ are known to promote other properties of CSCs,
such as the epithelial-to-mesenchymal transition (EMT) and
metastasis, via activation of TEAD transcription factors in
different tumors, including breast cancer and melanoma (235–
241). In the context of these tumors, TEAD activation leads to the
disruption of cell–cell junctions, mesenchymal gene expression,
increased cell migration, anoikis resistance and cell invasion.
TEAD specifically regulates genes such as ZEB1, ZEB2, DNp63,
and Slug, which induce an increase in the progression and
metastatic potential of tumors such as squamous cell carcinoma,
breast cancer, and small-cell lung carcinoma (NSCLC) (242–244).
Interestingly, YAP expression was critical for the progression
of various KRAS-driven cancers, and YAP/KRAS converged on
FOS to promote the EMT, which contributed to oncogenic KRAS
oncogenic addiction (245).

It has also been proven that the activation of YAP/TAZ confers
resistance to chemotherapy in cancer cells, in part because of
the CSC characteristics acquired by the cells. YAP/TAZ has
been linked to castration resistance in prostate cancer and
paclitaxel and doxorubicin resistance in breast cancer (234, 246,
247). Moreover, different studies suggest that Hippo pathway
activation promotes cancer cell survival in the presence of DNA-
damaging agents such as UV exposure, radiation, cisplatin,
Taxol, and fluorouracil (5-FU) in a wide number of tumor
types (248–251).

YAP/TAZ, in conjunction with their target genes of secreted
ligands, also promote resistance to targeted therapies, such as the
drugs targeting RAF andMEK and BRAF inhibitors and receptor
tyrosine inhibitors, such as gefitinib (252–258).

The relevance of the Hippo pathway in cancer and,
more specifically, in the biology of CSCs has already been
demonstrated in multiple publications. Therefore, the Hippo
pathway is currently being studied as an interesting target for
use in developing targeted therapies for different types of tumors.
There are some approved compounds able to regulate this
pathway; however, they have shown to have some bioavailability
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FIGURE 6 | Hippo pathway including targets and drugs that could be employed to inhibit it. (Left) active signaling pathway. (Right) inactive signaling pathway.

or toxicity problems. Consequently, extensive effort is being
made in the research of new drugs to address these issues.

Therapeutic Targets and Drugs
Regarding therapeutic opportunities for the Hippo pathway, YAP
inhibition has been shown to produce promising therapeutic
effects in different types of tumors, such as NSCLC, breast cancer
and colorectal cancer (259–262). Additionally, the regulation of
upstream or downstream molecules of this pathway also show
antitumoral effects. However, the inhibition of the upstream
regulators of YAP might serve to increase transcriptional activity
and thus be counterproductive. This result makes the inhibition
of the YAP/TAZ interaction and the suppression of their binding
to their targets the most appealing strategies.

Verteporfin, an FDA-approved drug, was identified to inhibit
the interaction between YAP and TEAD (263, 264). Therefore, it
can decrease the expression of Hippo target genes; however, it has
shown low solubility and stability, unfavorable pharmacokinetics,
and rapid clearance; complicating its clinical use. Moreover,
this compound lacks tumor specificity and have serious Hippo-
independent effects, and thus, may originate adverse effects in
healthy tissues (265–267). In addition, its mode of inhibition

and mechanism of interaction with YAP remain unknown.
Considering all, verteporfin might not be the most promising
drug, nevertheless, some studies have shown that the loading
of verteporfin into microparticles improves its specificity and
pharmacokinetics, making it more suitable as a treatment (267–
269). Similarly, the CA3 compound has been reported as a
modulator of YAP/TEAD transcriptional activity through the
inhibition of YAP, but it has drawbacks similar to those of
verteporfin (270, 271).

Another possibility for YAP/TEAD inhibition is the lipid
pocket at the core of the TEAD family, which is essential for
TEAD folding, stability, and YAP binding (272–274). Some
compounds targeting this domain in cell assays, such as
flufenamic acid or chloromethyl ketone moieties, have been
shown to inhibit cell proliferation and several Hippo pathway
responsive genes. However, the underlying mechanism remains
unclear because, in some cases, YAP/TAZ binding remains
unchanged (275, 276). In recent studies, a cyclic YAP-like
peptide has been shown to block the YAP-TEAD interaction
through competition with endogenous YAP (277). However,
this peptide has not yet been converted into a cellularly active
compound. “Super-TDU,” a peptide mimicking VGLL4, has also
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been reported to compete with YAP binding to TEADs. Its
mechanism is based on the binding of vestigial-like proteins
(VGLL) to TEADs, and it has led to the reduced growth of gastric
cells in vitro and in vivo (278). All these antagonistic compounds
offer promising strategies; however, their clinical viability and
applicability remain unproven.

Due to YAP druggability problems, it has been proposed to
target its posttranscriptional modifications, which are critical for
its oncogenic properties. In this context, some already approved
drugs, including metformin, statins, dasatinib, pazopanib, and
nicotinamide (NAM), and some agents being tested in clinical
trials, such as the multikinase inhibitor CT-707, have been
reported to decrease YAP activation through the regulation
of posttranscriptional modifications (279, 280). These findings
suggest that they might be plausible cancer therapies, although
many more studies are needed.

Another potential approach to inhibiting the Hippo pathway
is through the activation of MST and LATS kinases, which
phosphorylate and inactivate YAP (281). The small-molecule
compound C19 has shown the ability to activate MST and
therefore to suppress melanoma cell growth in a mouse xenograft
model (282). Moreover, metformin and statins have been known
to activate LATS and inhibit YAP activity (283). However, their
applicability as cancer therapeutic agents is still controversial and
requires more clinical trials (284, 285).

Finally, the downregulation of Hippo pathway regulators
is also possible at the transcriptional level. The combination
of some epigenetic modulators, including I-BET151 and
panobinostat, has been shown to induce the synergistic
downregulation of the AKT and Hippo pathways in melanoma
cell lines without binding to the cytoplasmic proteins of
these pathways (286). Nevertheless, compounds regulating
the epigenome show some drawbacks, for instance, off-
target effects due to their lack of specificity, low stability
and sustainability, and significant toxicity in normal
cells (287).

Altogether, there are significant advances in the field of
developing targeted therapies for the Hippo pathway. They could
be a priceless weapon in the fight against cancer; nevertheless,
we need more research in this area. It is important to better
understand the mechanism of action of these compounds and
to develop clinical trials to test their secondary effects and their
applicability in cancer patients (Table 1).

TLR PATHWAY

Toll-like receptors (TLRs) belong to the pathogen recognition
receptor (PRR) group in the innate immune system. They
recognize exogenous ligands from invading pathogens
(pathogen-associated molecular patterns or PAMPs) and
endogenous ligands released from damaged host cells (damage-
associated molecular patterns or DAMPs) (288–290). Ten TLRs
are found in both human immune cells (T-cell and B-cell
subsets, macrophages, and dendritic cells) and non-immune
cells (epithelial cells and fibroblasts). Some of these TLRs are
localized in intracellular vesicles, for instance, TLR3, TLR7,

TLR8, and TLR9, while others are localized on the cell surface
(291). TLRs are type I glycoproteins that share some common
structural domains: an extracellular domain containing multiple
leucine-rich repeats that enable the recognition of the ligand,
a transmembrane region, and a highly conserved intracellular
Toll-interleukin 1 (IL-1) receptor domain (TIR) necessary for
signal transduction (292–294).

When a ligand binds to the extracellular domain of a TLR,
it induces a conformational change in the receptor allowing
for its homodimerization, and therefore, the binding of their
TIR domains and the recruitment of different intracellular
adaptor molecules. These adaptor proteins include Myd88,
TRIF/TICAM-1, TIRAP/Mal, TIRP/TRAM, and SRAM
(295, 296). All TLRs except TLR3 initiate signaling through
MyD88 (the classical inflammatory pathway), forming a
Myd88/IRAK1/IRAK4/TRAF6 axis that activates TAK1.
This pathway triggers the activation of transcription factors,
such as NF-κB, AP-1, and IFN regulatory factors (IRFs)
(297–300). On the other hand, TLR3 and TLR4 can induce
signaling through TRIF/TIRAM adaptor molecules instead
of Myd88, leading to the activation of IRFs (301). All
these activated transcription factors are translocated to
the nucleus and interact with their target genes, including
inflammatory cytokines, chemokines, and type I interferon
(IFNs) (Figure 7).

Alterations in TLR signaling can have both antitumoral and
protumoral effects on carcinogenesis and tumor progression.
These effects depend on the TLR class, the cell type and
the signaling pathway that is triggered in those cells. For
instance, TLR agonists have been used as adjuvants in
anticancer vaccines to stimulate immune cells to fight the
tumor (302, 303). However, TLR expression in some cancer
and immune cells is related to the activation of genes related
to tumor progression and thus to tumor growth (304). Due
to this double action of TLR signaling, it is important to
study the role of each type of TLR in cancer individually
and to always consider the origin of the tumor being
investigated. Additionally, various cells in the tumor and its
microenvironment can have different TLR expression patterns,
and therefore, they will react differently to TLR modulation
(305, 306).

Cancer Stem Cells
Despite their involvement in immunity against tumor invasion,
the TLR signaling pathway with cancer stem cell properties
have been found in different tumor types. For example,
TLR2 activation in epithelial ovarian cancer has been shown
to enhance a proinflammatory environment and thus to
increase cell self-renewal through the upregulation of stem
cell-associated genes (307). Similarly, targeting TLR3 with an
agonist in breast cancer cells led to the expression of stem-
associated genes, including OCT3/4, NANOG, and SOX2,
because of the activation of β-catenin and NF-κB signaling
pathways (308). Additionally, in murine models of hepatocellular
carcinoma, TLR4 expression was associated with stem-like
properties, including the invasion and migration of cells. TLR4
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FIGURE 7 | TLRs pathway including targets and drugs that could be employed to inhibit it. (Left) Myd88-dependent signaling. (Right) Myd88-independent signaling.

stimulation is suggested to enhance the emergence of stem-
like cancer cells through Nanog and STAT3, which cooperate
to activate the metastasis regulator TWIST1 (309). Accordingly,
there was a strong correlation between TLR4 expression and
poor prognosis for patients (310, 311). Moreover, in breast
cancer, TLR4 activation has resulted in enhanced stemness and
tumorigenicity of cells. It has also been linked to poor prognosis
and an increased relapse rate in patients (312). Nevertheless,
the downregulation of TLR4 in glioblastoma CSCs has been
observed. This result may be considered a mechanism by which
these CSCs escape immune surveillance and is thought to
be related to an increase in retinoblastoma-binding protein
5 (305).

In the case of TLR7, CD133+ cells in colorectal cancer
patients showed increased expression of this marker, which
was associated with a poor prognosis (313). Similarly,
it has been suggested that TLR9 is able to promote the
stem-like prostate cancer cell phenotype through NF-κB
and STAT3 upregulation of stem-related genes, including

NKX3.1, KLF-4, BMI-1, and COL1A1 (314). It has also
been demonstrated that the upregulation of TLR9 in
glioma cancer stem-like cells is able to activate STAT3 and
thus maintain the quiescent state of tumor-repopulating
cells (315).

All this information suggests a feedback loop of inflammation
and stemness in tumor cells. The presence of extrinsic stimuli
in the tumor microenvironment can activate proinflammatory
pathways, for instance, TLR signaling. This activation leads
to the upregulation of genes related to stemness and the
epithelial-to-mesenchymal transition (EMT), which are able to
induce and maintain the dedifferentiation of cells, converting
them to CSCs (115, 316–319). On the other hand, CSCs
constitutively exhibit deregulation in the expression of NF-kB,
increasing the levels of inflammation within the tumor (320).
This positive feedback loop might promote malignancy and
resistance to treatments. Therefore, targeting TLR signaling may
be a promising strategy for reducing CSC expansion and, thus,
tumor progression.
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Therapeutic Targets and Drugs
Targeting TLRs represents a promising strategy for tumor
immunotherapy due to their ability to activate innate immunity
and even stimulate adaptative responses for long-lasting
defense against tumor antigens. Furthermore, in some cases,
the activation of certain TLRs, such as TLR2 or TLR4,
can have direct antitumoral effects on cancer cells. These
TLRs have been used in different approaches; for example,
they have been used as adjuvants for cancer vaccines or
in combination with radiotherapy, chemotherapy and other
immunotherapies. However, when targeting this pathway, it is
important to consider that the same TLR can have different
behavior, either protumoral or antitumoral, depending on the
tumor type.

Treatments Based on TLR Agonism
There are multiple cancer treatments based on activating
the immune response through different TLR receptors. A
large number of compounds have been developed and used
as monotherapy or in combination with other strategies to
treat diverse types of tumors. Some molecules targeting this
pathway have already been approved by the Food and Drug
Administration (FDA) and are currently being used to treat
patients. Many more are being tested in preclinical and clinical
trials and might be in the clinic in the near future.

Bacillus Calmette-Guerin (BCG) is an FDA-approved
treatment that activates TLR2/4 through its cell wall and TLR9
through its bacterial DNA (321, 322). It is the standard of care for
patients with carcinoma in situ or urinary bladder cancer that has
not invaded muscle (323). However, it still shows a 50% risk of
failure (324) and the difficulty of its manufacturing process and
its increasing demand have created a shortage of this treatment
(325). Agents similar to BCG and their combination with other
therapies are being tested in multiple clinical trials for different
tumor types, such as colorectal cancer (326, 327), melanoma
(328–330), and small cell lung cancer (331). Other bacteria that
activate TLR2, such as Mycobacterium indicus pranii (Immuvac,
CADI-05), are also being studied. CADI-05 is an approved
treatment for leprosy, and interestingly, it has been shown to
reduce myeloma and thymoma tumor size in murine models
(332, 333). In addition, monophoryl lipid A (MPLA), currently
used as a synthetic adjuvant in vaccines, is a derivative of lipid A
and can stimulate TLR4. Some of its analogs are being tested as
adjuvants for cancer vaccines, for instance, glucopyranosyl lipid
A for skin cancer (334) and AS15 (a combination of MPLA with
other immune stimulators) in distinct types of tumors (335, 336).
These type of combinations might show a slight increase of mild
side effects probability, specially, local injection site reactions
(336, 337).

In the case of TLR3, Poly (I:C) is a TLR3 ligand that functions
as a potent adjuvant for cancer vaccines (338); however, due to its
fast degradation, new alternative agonists are being investigated.
Some Poly(I:C) derivatives are promising, for instance, poly-
ICLC (Hiltonol R©) for solid tumors (339) and rintatolimod
(Ampligen R©) for fallopian tube, ovarian and brain tumors
(NCT03734692 and NCT01312389).

Targeting TLR5 has shown promising effects in murine
models, in which flagellin and different nanoparticles have
shown antitumoral effects (340–342). A Salmonella flagellin
derivative, entolimod (CBLB502), is being tested in clinical
trials against advanced local and metastatic malignancies (343).
Additionally, it has demonstrated radioprotective effects in
animal models (344).

The TLR7/8 agonist imiquimod has been approved by the
FDA and is currently being used for treating superficial basal
cell carcinoma (345, 346). It has also shown efficacy in the
treatment of different cutaneous tumors (347–349), and it
is being tested in several clinical trials for skin and other
malignancies, such as glioma and breast and prostate cancer
(350, 351) (NCT01792505, NCT00899574, and NCT02234921).
It might cause some local inflammatory reactions and systemic
symptoms, including muscle aches, fatigue, and nausea, but, in
general terms, it is well-tolerated (352). Resiquimod is another
TLR7/8 agonist and has shown a more intense immune response
than imiquimod (353). It is being explored in precancerous
and malignant skin tumors (354, 355) and in multiple clinical
trials as a vaccine adjuvant. Additionally, 852A, a TLR7 agonist,
and VTX-2337, a TLR8 agonist, are being examined in clinical
trials against different tumor types, such as ovarian, breast,
cervical, endometrial, and head and neck cancers (NCT00319748
and NCT01334177).

Finally, CpG oligodeoxynucleotides are agonists of TLR9 and
are being tested in several tumor types and in some clinical trials
(356–359). For example, Agatolimod (CpG 7909) and is being
studied as a vaccine adjuvant and as a monotherapy for various
solid and hematological malignancies (360–362). Although
the tolerability and safety of TLR9 ligands in monotherapy
have been proven in numerous clinical trials, they have shown
scarce antitumoral efficacy (363). The combination with other
immune modulating compounds can greatly improve CpG
ODNs-based strategies. Hence, Agatolimod is also being tested
in combination with monophosphoryl lipid A and MAGE-A3 (a
melanoma antigen) in phase II clinical analysis (NCT00085189).
Furthermore, an alternative TLR9 agonist, SD-101, has been
shown to overcome resistance to checkpoint inhibitors and is
being investigated in association with these inhibitors in ongoing
clinical trials (NCT02521870). With these types of drugs the
primary adverse effects are also related to immunostimulation
or systemic-flu like symptoms (364). Nevertheless, they
could lead to autoimmune disorders if used as long-term
treatments (365) (Table 1).

Treatments Based on TLR Antagonism
In some cellular locations, TLR antagonism, not TLR activation,
is needed. For this purpose, inhibiting treatments are being
tested, and some have entered phase I and II clinical trials.
Molecules derived from LPS, such as E5564 and CRX-526,
and antibodies targeting TLRs, such as OPN305, are able to
inhibit TLR signaling and reduce inflammation, but they are not
currently being used against cancer (366–369) (NCT02363491).
Recently, various studies have shown that the blockade of TLR4
might have antitumoral effects in ovarian, breast and prostate
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cancer (370–372). In another possible approach, bacteria,
and/or gut microbiota are modulated by using probiotics or
antibiotics. This approach has been shown to reduce TLR tumor-
promoting signals and inflammation in several studies (373–
376). However, the use of this technique in cancer is still
being developed (Table 1).

Future Treatment Opportunities Targeting the TLR

Pathway
Immunomodulation in cancer is currently being intensely
researched, with some approved innovations showing
substantially positive results, such as antibodies targeting T
cell-mediated immune checkpoints, adoptive cellular therapies,
or cancer vaccines. In this context, numerous trials are
combining these novel treatments with TLR agonists to improve
their activity (377–380).

Another possible approach using TLR as a clinical cancer
treatment is based on targeting its downstream modulators.
The MYD88 protein is involved in surface and endosomal
TLR pathways and thus is considered an attractive candidate.
In addition, some studies suggest that it may be involved
in oncogenesis (381) and related to the clinical response to
ibrutinib (382, 383). Similarly, IRAK4 is a downstream mediator
of the pathway that links multiple TLRs to NF-κB activation.
Constitutive activation or increased expression of this gene has
been reported for different tumor types and is correlated with
chemoresistance (384, 385). Other proteins, including TRAF6
and NF-κB, have been shown to stimulate bortezomib activity in
preclinical models (386).

Finally, TLR might serve as a protective agent in cancer
treatment. TLR5 agonists have shown chemoprotective and
radioprotective effects in numerous studies (344, 387–389).
Furthermore, they have been demonstrated to improve the
outcome of bone marrow allotransplant and decrease the
incidence of graft-vs.-host disease (GVHD) (390, 391).

In summary, TLR-targeted therapies for cancer are currently
being successfully used, however, many opportunities remain
to develop new compounds to provide better treatment for
patients and to minimize the secondary effects of current
strategies (Table 1).

OXIDATIVE STRESS AND CSCs

The generation of reactive oxygen species (ROS) in a high
concentration is detrimental for the cell, due to the fact that
oxidative stress promotes DNA, RNA, proteins, and lipids
modifications. It is well-known that cancer cells, in consequence
of its active metabolism and altered oncogenic and tumor
suppressor signaling pathways, are usually characterized by a
high ROS level. However, cancer cells are able to adapt and
proliferate, becoming resistant to oxidative stress (392–394).

Oxidative stress has been associated with a variety of cancer-
related effects: cellular proliferation, apoptosis evasion, invasion,
metastasis, or angiogenesis. Different signaling pathways
mentioned in this review are implicated in these ROS production
outcomes. For instance, ROS could regulate EMT through
activation of NFkB signaling pathway, or metastasis through

Wnt signaling cascade stimulation, among other signaling routes
(392, 395–398).

Aerobic glycolysis is energetically more efficient than
anaerobic one, but leads to the generation of a big amount
of ROS. Tumor cells accomplish adapting to oxidative stress
switching aerobic glycolysis for anaerobic one, independently of
oxygen available in the microenvironment. This phenomenon is
called Warburg effect, and leads to a low ROS level formation,
accompanied by a redox potential increase, through NADPH
production (399–402). Furthermore, cancer cells possess higher
antioxidant efficiency than non-tumoral cells. In order to
counteract the less ATP generation in anaerobic glycolysis, tumor
cells considerably increase glucose intake. It has been shown that
cancer cells also activate the pentose phosphate pathway (PPP)
with a prolonged ROS exposure, in order to acquire NADPH and
nucleotides for DNA synthesis and repair (402–406).

Cancer stem cells seem to possess a lower ROS level than non-
tumoral stem cells, due to different mechanisms useful to reduce
oxidative stress and maintain stem cell properties (404, 407–
409). However, there are controversial aspects in the metabolism
regulation of CSCs. While several studies show that CSCs often
present a high glycolytic metabolism, which preserves them from
oxidative stress damaging, others highlight that they could be
more dependent on oxidative phosphorylation. Furthermore,
CSC could switch from anaerobic glycolysis to PPP in order to
obtain a stronger antioxidant potential to maintain stemness.
Also, increased PPP has been associated with drug resistance
(403, 405, 406, 408, 410, 411).

Due to the dual consequences of an augmented ROS levels,
the oxidative stress targeted therapies are under discussion. On
the one hand, several well-known anticancer treatments increase
ROS levels in cancer cells, in order to reach a threshold which
causes the cell death, such as radiation, arsenic trioxide, 5-
fluorouracil, or paclitaxel. Another strategies try to decrease ROS
scavengers in cancer cells. On the other hand, as it has been
mentioned above, ROS is related to several cancer-promoting
effects, thus it might be advantageous to reduce ROS levels or
increase antioxidant molecules, in order to restore de redox
balance in the cell. For these reasons, the efficacy of these
anticancer strategies depends on the ROS level in the tumor type
and the capacity of the tumor to modulate its metabolism routes
(404, 409, 412–419).

CONCLUSIONS

Currently, many observations have indicated the association
between the CSC content and clinicopathological characteristics
of tumors upon diagnosis. Additionally, CSC populations
are resistant to conventional therapies aimed at the bulk of
proliferative cells, and they can be enriched in a posttreatment
setting. Therefore, targeting stemness pathways may provide
promising strategies to actively eradicate tumors and metastasis.
There are many pathways that regulate the CSC phenotype
and its pluripotency state, providing mechanistic support for
acquired drug resistance, including altered metabolism and
oxidation states; phenotypic plasticity; increased membrane
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extrusion pumps and receptors; altered apoptosis, autophagy,
and/or cell cycle regulation; different DNA damage, and/or repair
responses; epigenetic regulation and/or differential secretion of
proteins or non-coding RNA. Some of these stemness pathways
have been reviewed here, and their targeting approaches have
been described. However, data on their proper response to
the inhibitors and accounts of the extent to which they have
antitumor efficacy are scarce. In most cases, the inhibitor
activity depends on the extent of the molecular dependence
on the specific targeted pathway in the CSCs or its ability to
avoid targeting mature cells or normal stem cells to prevent
undesirable toxicity.

Importantly, the stemness pathways are interconnected to
regulate the CSC phenotype and the transition among different
pluripotency states. This cross talk among pathways may drive
the resistance to single pathway inhibitors and maintain the CSC
phenotype. For example, cross talk between PI3K and Notch
may contribute to the resistance to therapeutic PI3K inhibitors
of breast cancer (420). Additionally, PIM inhibition might not
have the same effect as AKT on MEK targets, which may not be
effected by PIM single inhibitors in vivo. This phenomenon may
explain in part the negative results obtained in clinical trials with
single-agent therapy.

Other important reason for tumor resistance is based on
advanced tumors, in general, containing expanded polyclonal
CSC populations, which render them resistant to therapies
against single CSC signaling pathways. Therefore, ongoing
clinical trials using molecular biomarkers may be used to
overcome these challenges. Moreover, the incorporation of CSC-
based functional assays (for example, 3D organoids, pluripotency
assays) may provide a better view of CSCs and therefore of tumor,
eradication using these pathway-based therapeutic strategies.

Despite all of the challenges, some inhibitors for these
pathways are currently used as a standard of care for patients,
and many others are being tested in phases III and IV

clinical trials. A huge effort is being made in order to
develop more specific and less toxic compounds to target every
single pathway known to be involved in CSC establishment
and maintenance. Different drugs, antibodies, vaccines and,

even, immunotherapeutic approaches are being assayed for
this purpose. Therefore, although more research is needed to
undercover additional regulatory elements, we expect to see new
molecules targeting these pathways approved by the FDA in the
following years.
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During tumorigenesis, cancer cells are exposed to a wide variety of intrinsic and

extrinsic stresses that challenge homeostasis and growth. Cancer cells display activation

of distinct mechanisms for adaptation and growth even in the presence of stress.

Autophagy is a catabolic mechanism that aides in the degradation of damaged

intracellular material and metabolite recycling. This activity helps meet metabolic

needs during nutrient deprivation, genotoxic stress, growth factor withdrawal and

hypoxia. However, autophagy plays a paradoxical role in tumorigenesis, depending

on the stage of tumor development. Early in tumorigenesis, autophagy is a tumor

suppressor via degradation of potentially oncogenic molecules. However, in advanced

stages, autophagy promotes the survival of tumor cells by ameliorating stress in the

microenvironment. These roles of autophagy are intricate due to their interconnection

with other distinct cellular pathways. In this review, we present a broad view of

the participation of autophagy in distinct phases of tumor development. Moreover,

autophagy participation in important cellular processes such as cell death, metabolic

reprogramming, metastasis, immune evasion and treatment resistance that all contribute

to tumor development, is reviewed. Finally, the contribution of the hypoxic and nutrient

deficient tumor microenvironment in regulation of autophagy and these hallmarks for the

development of more aggressive tumors is discussed.

Keywords: autophagy, cell death, metabolic reprograming, metastasis, carcinogenesis, tumor microenvironment,

immune evasion, chemotherapy and targeted therapy resistance

INTRODUCTION

Eukaryotic cells, over their lifespan, are continuously exposed to a variety of physical, chemical, and
biological stresses that result in homeostatic imbalance. However, cells are equipped with a set of
intracellular defense mechanisms to neutralize and adapt to such stress. Macroautophagy, hereafter
referred to as autophagy, is an adaptation mechanism to preserve cellular integrity and viability.
Intracellular content, including proteins, organelles and portions of cytoplasm, are sequestered
in double-membrane structures, called auto phagosomes, that are delivered to lysosomes for
degradation of their content (1). Autophagy is strictly regulated by a variety of genes termed
autophagy-related genes (ATG). Autophagy in the absence of stress is active at basal levels to
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degrade damaged cellular components and recycle nutrients to
preserve the energetic state of the cell (2). However, in response
to stresses, such as nutrient deprivation, hypoxia, genotoxic
stress, accumulation of misfolded proteins, inhibition of protein
synthesis or presence of pathogens, autophagy is upregulated to
maintain cellular homeostasis (1).

Autophagy is dysregulated in distinct pathological conditions,
such as infection, aging, neurological disorders and cancer.
Autophagy in cancer cells is considered a double-edged sword
since, in initial stages of tumorigenesis, it may act as a tumor
suppressor by degrading potentially harmful agents or damaged
organelles, thus avoiding the spread of damage including
DNA alterations (3). However, in advanced stages of tumor
development, autophagy is a tumor-promoting mechanism
because of its ability to sustain tumor viability in stressful
microenvironments. Besides this tumor-promoting activity,
autophagy makes a notable contribution to resistance to distinct
types of therapy, representing a serious obstacle for successful
treatment (4).

According to Hanahan and Weinberg, tumor cells exhibit
eight particular characteristics, called as hallmarks of cancer, that
include sustained proliferation, evasion of growth suppressing
signals, replicative immortality, angiogenesis, immune escape,
evasion of cell death, metabolic reprogramming and activation
of invasion and metastasis (5). Recent reports demonstrate
that autophagy is associated with some of these hallmarks. For
example, autophagy and apoptosis are typically considered as
opposite pathways, yet under specific biological circumstances,
they act in a cooperative fashion for cell demise.

Little is known concerning crosstalk between these pathways
in the early stages of cancer development, but an increasing
body of evidence suggests that under stressful conditions
associated with cancer, autophagy and apoptosis cooperate to
limit the growth of incipient tumor cells. Kitanaka et al. reported
that autophagy participates in spontaneous regression of high
expressing-RAS neuroblastoma. Dying cells during regression do
not exhibit morphological and biochemical signs of apoptosis,
suggesting that autophagy may serve as an additional mechanism
for cell death (6).

Nutrient demand is increased as tumors develop to sustain
cell proliferation. Moreover, the uncontrolled proliferation
of cells leads to critical fluctuations in the availability of
nutrients. Tumor cells display reprogrammed metabolism
adapted to stress induced by decreased supplies of essential
nutrients. Additionally, somemetabolites derived frommetabolic
reprogramming, activate autophagy to increase recycling of
nutrients and sustain tumor viability. Autophagy thus provides
tumor cells with metabolic plasticity to tumor cells due to the
diversity of substrates degraded (7). The role of autophagy in
epithelial to mesenchymal transition as well as during metastasis
will also be discussed. Autophagy participates in promoting cell
survival against stressful conditions elicited along with these
processes (8).

In this review, we will discuss the role of autophagy during
tumor development, from early to late stages of tumor growth.
Moreover, crosstalk between autophagy and apoptosis, metabolic
reprogramming, and metastasis will be examined. Further, the

emerging role of autophagy as an immune evasion mechanism is
considered. Finally, the repercussions of autophagy in resistance
to distinct cancer treatments are assessed.

REGULATION OF AUTOPHAGY

The mammalian autophagic process can be divided in three
phases: phagophore formation, elongation of isolation
membranes, and maturation. Under optimal physiological
conditions, the nutrient sensor mammalian target of rapamycin
(mTOR) interacts with Unc-51-like kinase 1/2 (ULK 1/2)
complex, composed of ULK 1/2 kinases, Atg13, Atg101, and
FIP200 proteins. mTOR phosphorylates ULK 1/2, causing
inhibition of its kinase activity. However, under stress, such as
starvation, ULK 1/2 is activated by the kinase of AMP (AMPK).
AMPK functions as a monitor of intracellular energy levels by
sensing AMP/ATP ratio. During starvation, intracellular levels of
AMP increase leading to AMPK activation (9). AMPK regulates
activation of ULK 1/2 by direct and indirect mechanisms. The
direct mechanism is due to AMPK-mediated phosphorylation
of ULK-1 at serine residues 467, 555, and 638, resulting in
ULK activation (10). Mutational-directed loss of these residues
in ULK-1 in human osteosarcoma U-2 OS cells and mouse
embryonic fibroblast (MEF) inhibits autophagy. This loss leads
to accumulation of damaged mitochondria (10). The indirect
regulation of ULK 1/2 occurs via suppression of mTOR activity.
In this sense, AMPK downregulates mTOR by phosphorylation
of the tuberous sclerosis complex 2 (TSC2), which is an mTOR
inhibitor, or by phosphorylation of the regulatory associated
protein of mTOR (Raptor) (11, 12). These post-translational
modifications promote mTOR dissociation from the ULK
1/2 complex leading to activation of ULK 1/2 kinase, which
phosphorylates Atg13 and FIP200 (1, 11).

When ULK-1, located in the nascent phagophore, activates
class III phosphatidylinositol 3-kinase (PI3K) VPS34, conversion
of phosphatidylinositol to phosphatidylinositol 3-phosphate is
promoted by the VPS34, Beclin-1, VPS15, Atg14, and p150
complex (13, 14). The activity of this PI3K complex is modulated
in two ways: ultraviolet irradiation resistance-associated gene and
BAX-interacting factor 1 (Bif-1) favoring its activity. Conversely,
members of the Bcl-2 family, such as Bcl-2 and Bcl-XL, or the
run domain Beclin-1 interacting cysteine-rich containing protein
(Rubicon), have a negative effect on the activity of the complex
(1). In the latter case, Bcl-2 proteins interact with the BH3-
binding region of Beclin-1 that prevents their interaction with
VPS34, thus inhibiting autophagy. Transgenic mice with Beclin-
1 gene mutations in its BH3-binding region show higher levels
of basal autophagy in distinct tissues compared to wild type mice
(15) (See Figure 1, left panel).

The next step, the elongation of isolation membranes, is
regulated by two ubiquitin-like conjugation systems: Atg5-
Atg12 and LC3 pathways. The Atg5-Atg12 complex is formed
by Atg12 activation by Atg7 and transfer to Atg10 before
conjugation with Atg5. Finally, the complex Atg5-Atg12 is non-
covalently conjugated to Atg16 to form the complex Atg5-
Atg12-Atg16 that displays E3 ligase activity (16). Conversely,
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FIGURE 1 | Regulation of the mammalian autophagy. Under low nutrient conditions or starvation, the energy sensor AMPK detects alterations in energy pools

(AMP/ATP ratio) inhibiting autophagy repressor mTOR and activating ULK1/2 complex. For phagophore formation, ULK1/2 complex activates the Beclin-1

P13K-class III complex. Additional systems activate (red arrows) or inhibit (blue arrows) the activity and assembly of the complex. The elongation of the isolation

membrane requires the participation of two ubiquitin-like conjugation systems. The formation of the Atg12-Atg5-Atg16 complex involves the activity of Atg7 and

Atg10. The LC3 requires the participation of Atg4 to hydrolyze LC3 into LC3-I, Atg3 as well as Atg7 for conjugation of LC3-II to pohosphatidyletanolamine (PE).

Phagophore closure is regulated by members of ESCRT, CHMP2A VPS4. In the late steps of maturation and fusion, Dynein participates in the mobilization of auto

phagosomes. The fusion of auto phagosomes with lysosomes is mediated by members of the SNARE family. Created by BioRender.com.

the LC3 pathway begins with the C-terminus cleavage of LC3
by the protease, Atg4B, to generate the soluble form, LC3-
I. LC3-I is then conjugated to phosphatidylethanolamine (PE)
by Atg7, Atg3 and the Atg5-Atg12-Atg16 complex, producing
the LC3-II conjugated form (1) (See Figure 1, mid-panel).
Some proteins, such as p62 (also known as sequestosome-
1), NBR1 and NIX harbor an LC3-interacting region (LIR)
which facilitates the recognition of ubiquitylated proteins or
specific organelle membranes to selectively deliver cargo to
auto phagosomes (17, 18). Although Atg5 and Atg7 are crucial
molecules for autophagy, recent studies show that autophagy
can be induced by etoposide in Atg5 or Atg7-deficient MEF
(19). This Atg5/Atg7 independent form of autophagy is termed
“alternative autophagy”. The elongation and closure of the

isolation membrane in this alternative pathway are mediated by
fusion of endosomal membranes with trans-Golgi, and depends
on the activity of Rab9 GTPase that replaces Atg5/Atg7 of the
canonical pathway (19).

For phagophore closure in the canonical pathway,
participation of members of the endosomal sorting complex
required for transport (ESCRT), mainly CHMP2A and the
vacuolar protein sorting-associated-4 (VPS4), is required (20).
CHMP2A is translocated to the edge of phagophore structures
in this process to promote closure of the membranes. Also,
VPS4 locates on the outer leaf of nascent autophagosomal
membranes to promote disassembly of ESCRT molecules in
an ATP-dependent manner (20) (See Figure 1, right panel).
Experiments carried out in U-2 OS cells demonstrate that genetic
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inhibition of CHMP2A or VPS4 impairs phagophore closure,
preventing the formation of nascent auto phagosomes and
causing late fusion with lysosomes (20).

Finally, in the maturation step of auto phagosomes, LC3-II
located in the outer autophagosomal membrane is delipidated,
and auto phagosomes fuse with lysosomes to form auto
phagolysosomes, leading to degradation of auto phagosome
content by several hydrolytic enzymes (1). Auto phagosome-
lysosome fusion is mainly regulated by soluble NSF attachment
protein receptors (SNAREs), specifically Qa-SNARE, syntaxin 17,
Qbc-SNARE and lysosomal R-SNARE (21). Also, small GTPase
Rab7 and the homotypic fusion and protein sorting participate in
auto phagolysosome formation (22) (See Figure 1, right panel).

AUTOPHAGY AND APOPTOSIS
CROSSTALK IN CANCER

Autophagy and apoptosis represent two self-regulatory
mechanisms by which cells respond to different types of
stresses and death stimuli to maintain homeostasis. Apoptosis
is a type of regulated cell death related to the elimination
of cells and tissues during embryonic development and also
in the removal of damaged cells in adult organisms, thus
limiting their proliferation (23). Apoptosis is classified in two
mechanisms depending on the type and the source of stress.
The intrinsic pathway of apoptosis is activated by intracellular
stressors such as DNA damage, endoplasmic reticulum stress,
accumulation of reactive oxygen species (ROS), and mitotic
defects (23). In contrast, the extrinsic pathway is triggered by
extracellular stress and is sensed by distinct death receptors
expressed on cell surfaces. Such factors include tumor necrosis
factor receptor 1A (TNFR1A) and Fas cell surface receptor
(FAS). Activation of extrinsic pathway requires the formation
of the death-inducing signaling complex which in turn requires
association with TNFRSF1A associated via death domain
(TRADD) and Fas-associated via dead domain (FADD) to
TNFR or FAS, respectively (23). Both pathways converge in the
induction of permeability in the mitochondrial outer membrane,
releasing a wide variety of apoptogenic molecules leading to
cellular disassembly.

Although autophagy and apoptosis act antagonistically,
under specific biological conditions, their crosstalk can lead to
cooperation for cellular demise. Currently, accurate molecular
interactions of apoptosis-autophagy crosstalk in cancer remain
unclear. In the present section, we discuss the participation of key
regulatory molecules shared between processes and their impact
on cancer, focusing on early stages of tumor development.

As previously mentioned, Beclin-1 is an important protein
in the early stages of autophagy. Several studies demonstrate
that autophagy may serve as a tumor suppressor. beclin 1 +/−

mice show a higher incidence of spontaneous lymphomas and
carcinomas in lung, liver, and mammary tissue (24). Moreover,
Beclin-1 is monoallelically deleted or epigenetically silenced in
50–70% of human breast, prostate and ovarian cancer (4, 25,
26). These findings suggest that Beclin-1 is important for the
development of cancer and may serve as a tumor suppressor.

Loss of Beclin-1 blocks activation of autophagy, and thus
precludes its cytoprotective role. This impairment of degradation
of potentially carcinogenic agents or damaged organelles leads
to the spreading of damage inside cells and increases the risk
of cancer development. In this sense, autophagy is proposed
as the “guardian of the genome” since it helps mitigate DNA
damage (3). Monoallelic loss of beclin-1 gene in a mouse model
of breast cancer led to increased signs of DNA damage and
activity of repair systems, therefore increasing the chance for
introduction of mutation and thus the risk of tumorigenesis (27).
Besides autophagy, Beclin-1 is implicated in apoptotic cell death,
representing a node of crosstalk between these mechanisms
(28). In vitro experiments show that Beclin-1 overexpression
in gastric cancer and glioblastoma cell lines induces apoptosis
upon exposure to cytotoxic agents (29, 30). These pro-apoptotic
properties of Beclin-1 might be explained by two mechanisms.
First, as Beclin-1 interacts through its BH3-only domain with
Bcl-2 anti-apoptotic molecules, Beclin-1 overexpression may
release pro-apoptotic molecules such as BAX and BAK from
Bcl-2 to promote intrinsic apoptosis (Figure 2, right panel).
Additionally, caspase-mediated cleavage of Beclin-1 promotes
apoptosis. Withdrawal of serum in Ba/F3 murine pro-B cell
lines promotes autophagy. However, sustained depletion of
growth factors induces apoptosis with activation of caspases
which cleave Beclin-1, rendering distinct fragments. The C-
terminal fragment moves into mitochondria and introduces
and provokes the release of pro-apoptotic molecules, such
as cytochrome-c and HtrA2/Omi (31) (Figure 2, right panel).
It is possible that in early stages of carcinogenesis, loss of
Beclin-1 affects autophagy induction, and also impacts apoptosis
regulation, especially in cells with molecular alterations in
apoptotic genes.

Members of the Atg5-Atg12-Atg16 complex are also involved
in the interplay between autophagy and apoptosis. This complex,
as previously mentioned, is part of an ubiquitin-like conjugation
system active in the elongation phase of autophagy. Specifically,
some findings relate Atg12 protein to apoptotic cell death. Atg12
harbors a BH3-like domain within its structure and physically
interacts with anti-apoptotic Bcl-2 molecules such as Mcl-1 and
Bcl-2 (32). This interaction may release pro-apoptotic molecules
to induce intrinsic apoptosis. For example, Atg12 expression
is regulated by distinct transcription factors, such as factors in
the forkhead homebox transcription factor family (FOXO) that
are induced by different stressors (33). Atg12 is overexpressed
after different carcinogenic insults, suggesting that it might
participate in autophagy and apoptosis induction in the early
stages of carcinogenesis (34). In 2018, Yoo et al. transfected rat
intestinal epithelial cells with oncogenic H-RAS and observed
that Atg12 was downregulated in these cells due to increased
proteasomal degradation, mediated by MAPK activation. In
addition, this same group demonstrated that ectopic expression
of Atg12 in oncogenic-RAS intestinal epithelial cells resulted in
decreased clonogenicity and increased cell death by apoptosis
(35). Although increased expression of Atg12 has been found
in certain solid tumors, in the early stages of carcinogenesis it
might participate in the induction of autophagy also in activation
of apoptosis.
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FIGURE 2 | Crosstalk of autophagy and apoptosis in cancer. Potential carcinogenic agents induce distinct types of stress in cell, triggering autophagy or apoptosis.

Under certain threshold of damage, stress-responsive transcription factors such as p53 or FOXO promote the upregulation of genes involved in control and activation

of autophagy, thereby neutralizing the damage. However, if the carcinogenic stimulus persists and damage is above threshold, autophagic proteins interact with pro-

or anti- apoptotic molecules triggering intrinsic or extrinsic apoptosis, therefore limiting the growth of incipient tumor cells. Created by BioRender.com.

In vitro studies using HeLa cells indicate that IFN-γ treated
cells die by apoptosis preceded by autophagy. Cell death
is dependent on expression and interaction of Atg5 and
FADD (36) (Figure 2, right panel). Although precise molecular
mechanisms remain elusive; the extrinsic pathway of apoptosis
is presumably activated. We propose a similar phenomenon
in the early stages of carcinogenesis, especially considering
the participation of immune response. Immunoediting theory
suggests that, during the elimination phase, immune cells
remove incipient tumor cells through different mechanisms,
involving the release of some cytokines such as IFN-γ (37).
Accumulation of this cytokine could lead to the elimination
of nascent tumor cells. Moreover, similar to Beclin-1, Atg5
is cleaved by calpain rendering fragments that localize in
the mitochondria and promote the release of pro-apoptotic
molecules (28).

Another important molecule participating in the crosstalk
between autophagy and apoptosis is the BH3-only protein, BIM.
BIM interacts with other pro-apoptotic members of the Bcl-2
family during apoptosis to induce the release of apoptogenic
molecules from mitochondria, thereby activating the intrinsic

pathway (38). BIM is present in cells in three splice variants: BIM-
short (BIMS), BIM-long (BIML), and BIM-extra-long (BIMEL)
(39). BIMS and BIMEL participate in apoptosis induction, BIML

displays an important role in autophagy. In IL-7 cultured
T-lymphocytes, BIML localizes in mature lysosomes through
interaction with dynein (39). BIML silencing was not reported,
however, lack of BIML may affect fusion of lysosomes with
phagosomes and subsequent degradation of contents. BIM
polymorphisms are detected in lung cancer patients (40). We
propose that participation of BIM in cancer is crucial since its
loss in early stages of carcinogenesis impairs both apoptosis and
autophagy, leading to the emergence of tumors.

Another key modulator of autophagy and apoptosis is the
tumor suppressor protein TP53, hereafter referred to as p53.
p53 is an intracellular sensor of stress caused by genotoxic
agents or activation of oncogenes (41). Under non-stressed
conditions, p53 is degraded in the cytoplasm by the E3-
ubiquitin ligase MDM2. Nonetheless, the cytoplasmic pool
of p53 downregulates autophagy by physical interaction with
FIP200, thereby inhibiting ULK-1/2 complex activation (42, 43).
However, different cellular insults cause stabilization of this
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protein and localization in the nucleus. In turn, p53 presence
in the nucleus leads to upregulation of transcription of distinct
genes involved in cell cycle control, repair of damaged DNA,
apoptosis and autophagy (41). p53, activated by genotoxic stress,
induces autophagy by upregulation of AMPK, thus increasing
expression of its β-1 and β-2 subunits and TSC-2, leading to
mTOR inhibition, as discussed above (44). In addition, animal
models show that the absence of Atg7 induces pancreatic
neoplasia without progression to an aggressive phenotype inmice
expressing mutated K-RAS. However, the concomitant loss of
p53 leads to development of more aggressive pancreatic tumors.
Further, p53 activated cell cycle arrest and apoptosis during
early stages of tumor development in defective autophagy cells,
limits tumor growth (45). These findings suggest that autophagy
protects cells from the damage induced by oncogenic signals.
Additionally, whether autophagy is defective, p53 limits tumor
development by arresting or eliminating incipient tumor cells.

Nuclear p53 also regulates the transcription of the damage-
regulated autophagy modulator (DRAM) that represents another
point of crosstalk between autophagy and apoptosis. In A549
lung cancer cell lines, soon after exposure to mitochondrial
inhibitors or genotoxic agents, DRAM was localized in
lysosomes, regulating the process of autophagy in a p53-
dependent manner (46). Specifically, DRAM participates in LC3-
I to LC3-II conversion, lysosomal acidification, and degradation
(46) (Figure 2, right panel). However, sustained stress promotes
participation of DRAM in apoptosis, a phenomenon again
dependent on p53. Further investigation in lung and cervical
cancer cell lines revealed that DRAM regulates apoptosis by
disrupting Bcl-2/BAX interaction, interacting with BAX and
directing it to lysosomes, where BAX promotes the release of
cathepsin-B. Once cathepsin-B is in cytosol, cleaves Bid into
t-Bid provoking the release of apoptogenic molecules from
mitochondria (47) (Figure 2, right panel). In ovarian cancer,
DRAM is downregulated in cell lines and tumor samples
of advanced stages, highlighting its participation as a tumor
suppressor gene (48). Evidence is poor for participation of
DRAM in cancer onset, and we propose that is important in
autophagy-dependent clearance of damaged organelles elicited
by potentially carcinogenic stimuli sensed by p53, hence,
preserving cellular viability. Nonetheless, if carcinogenic stimuli
persist or damage is above certain threshold, DRAM might
participate in the induction of apoptosis of incipient cancer cells.

Thus, according to the experimental findings and
propositions, during early stages of tumor development
autophagy and apoptosis cooperate to prevent damage elicited by
carcinogenic stimuli or eliminate damaged cells. However, more
experimental evidence is required to demonstrate the precise
molecular mechanisms governing the crosstalk between these
processes during tumor development.

Notably, crosstalk between autophagy and apoptosis in cancer
is not steady during tumor progression. Instead, it is modified
by intracellular and extracellular perturbations affecting both
processes. As tumors evolve, extracellular perturbations caused
by a limited influx of nutrients and oxygen modify uptake
and metabolism of nutrients and production of intermediary
metabolites. Some of these metabolites regulate autophagy

activation. Thus, autophagy can be activated via extracellular
perturbations, inhibiting cell death, and sustaining cell viability.

AUTOPHAGY IN CANCER METABOLIC
REPROGRAMING

The ability of cells to adapt to stress requires diverse changes in
cellular processes, including metabolic pathways. Autophagy is a
principal pathway for adaptive metabolic response, an important
survival process.

Tumor cells reorganize metabolic pathways to supply ATP,
building blocks for macromolecule biosynthesis, and redox
molecules required to cell proliferation, invasion, migration,
and other processes essential for malignancy, including chemo
resistance (49). Consequently, the current research focus on
metabolic reprogramming on the development and progression
of human cancers reflects these hallmarks of cancer (5, 50).

Otto Heinrich Warburg was the first author to identify
changes in the metabolism of tumor cells; he demonstrated that
cancer cells avidly consume glucose and excrete high amounts of
lactate when oxygen is present. He concluded that tumor cells
increase glucose consumption and lactate production because of
mitochondrial function (51). This effect was termed theWarburg
effect, or aerobic glycolysis (52).

In normal cells, mitochondria oxidize glucose in the presence
of oxygen to obtain ATP via the tricarboxylic acid cycle (TCA)
and electron transport chain. In the absence of oxygen, the
glucose molecule is converted to lactate by lactate dehydrogenase
using NADH+, to ensure ATP production and evade glycolysis
inhibition. The Warburg effect was initially considered a
disadvantage for cancer cells, considering that the amount of ATP
produced by the glycolytic pathway much less in comparison
to mitochondrial ATP production (53). Nevertheless, glycolysis
is the fastest way that cells obtain ATP from the glucose
breakdown, and occurs independently of oxygen. Tumor growth
is unorganized and the tumor microenvironment is poorly
oxygenated; hence, glycolysis allows cancer cells to proliferate
even in hypoxic conditions (54). Additionally, this metabolic
pathway provides building blocks necessary for other metabolic
pathways, such as the synthesis of fatty acids, nucleotides and
serine (55, 56).

The Warburg effect is a metabolic adaptation associated with
cell transformation that requires oncogene activation, such as
RAS, AKT (57), and MYC (58), and the inhibition of tumor
suppressors, such as p53 (59, 60). MYC and RAS activation
impair decarboxylation of pyruvate, leading to reduce acetyl-CoA
production, an essential metabolite in TCA cycle (61). Moreover,
in RAS transformed cells, acetyl-CoA production is affected by
inhibition of β-oxidation of fatty acids (62). Further, uptake of
glucose and glutamine in MYC transformed cells is enhanced
along with glycolysis and glutaminolysis (1).

Autophagy supports broad metabolic plasticity to tumor
cells, providing biomolecules to almost all carbon metabolic
pathways, based on the diversity of substrates degraded (63,
64). For example, the breakdown of several carbohydrates into
monosaccharides can fuel glycolysis, and proteins break down
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into amino acids or degradation of lipids in fatty acids provides
substrates necessary for the TCA cycle. This process is essential
for metabolic reprogramming (64, 65). Autophagy in tumor
cells is closely associated with oncogenic activators and tumor
suppressors. RAS activation induces autophagy via PI3K/mTOR,
Rac1/JNK, Raf-1/ERK pathways, in addition to the Warburg
effect discussed above (63, 66, 67).

Uncontrolled proliferation of malignant cells causes loss of
tissue architecture. This structural tissue alteration promotes
dysfunctional distribution of nutrients, growth factors, and
oxygen within a tumor. Deficient formation of vasculature in
the tumor supports the development of heterogeneous tumor
microenvironments that differ depending on tumor region (5).
The concentration of oxygen is a crucial parameter affected by
the heterogeneous nature of tumors. Regions exist where oxygen
concentration is <2% within the tumor, therefore, generating
a hypoxic zone (68). These hypoxic conditions trigger cellular
mechanisms to maintain homeostasis. Hypoxia-inducible factor
1 (HIF-1) is a primary transcriptional regulator during hypoxic
conditions. HIF-1 is a complex of two subunits, α and β. The
α subunit is degraded under normoxic conditions (oxygen-rich)
(69, 70). However, during hypoxia ubiquitylation of the α subunit
is decreased, promoting HIF-1 stability. HIF-1 binds to hypoxia-
responsive element DNA sequences, facilitating a metabolic shift
from oxidative phosphorylation (OXPHOS) to glycolysis (70).
In tumor cells, HIF-1 upregulates expression of over 80 genes
that are critical in glucose metabolism, cell survival, tumor
angiogenesis, invasion, and metastasis, independent of oxygen
concentration (71). In hypoxia or starvation, HIF-1 stimulates
AMPK and subsequently induces autophagy via BINP3/Beclin-
1 or by mTOR inhibition (72). Further, in hypoxia, HIF-1
stimulates transcription of regulated in development and DNA
damage response 1 (REDD1) that activates the TSC1/2 complex,
thereby inhibiting mTOR activity and promoting autophagy (73).
HIF-1 also promotes the transcription of the gene encoding
the Bcl-2/adenovirus E1 19 kDa protein-interacting protein 3
(BNIP3) that induces mitochondrial autophagy (mitophagy)
by releasing Beclin-1 from Bcl-2 family members, therefore
inducing autophagy (69).

However, glycolysis is strictly regulated. The hexokinase (HK)
family in mammalian cells catalyzes the conversion of glucose
to glucose 6-phosphate (G6P), representing the first rate-limiting
step in glycolysis and other metabolic pathways such as pentose
phosphate and gluconeogenesis (74). Phosphofructokinase (PFK)
is another regulatory enzyme essential in regulating glycolysis.
High levels of ATP allosterically inhibit the enzyme, decreasing
affinity to fructose 6-phosphate. Thus, ATP/AMP ratio is an
essential regulator of PFK. If ATP/AMP ratio is reduced, enzyme
activity is increased. In addition, pH also regulates PFK activity.
The inhibition of PFK by excessive accumulations of H+

prevents the formation and release of lactic acid, which avoids
a precipitous drop in blood pH (acidosis) (55).

Nonetheless, overexpression or specific mutations in cancer
cells in HK proteins is associated with poor prognosis (75).
Specifically, mutations in the catalytic site of PFK enzyme are
promoted in the oncogenic process. In glioblastomas, AKT is
degraded by polyubiquitylation leading to increased PFK activity,

and consequent increase glycolysis, cell proliferation, and tumor
growth (76).

Some tumor cells generally express high levels of isoform
M2 pyruvate kinase (PKM2) and low levels of isoform M1
of pyruvate kinase (PKM1), a specific regulatory enzyme of
glycolysis. Overexpression of PKM1 promotes glycolysis and
inhibits mitochondrial oxidative phosphorylation. When PKM2
was knocked out in cancer cells, the PI3K/AKT/mTOR pathway
and autophagy were inhibited, thereby leading to a decreased
proliferation and inhibition of the invasive phenotype (77). Use
of stable isotope tracers (e.g., 13C), is currently employed for
mapping metabolic pathways. Using this experimental strategy,
it is possible to trace the fate of biosynthetic fuels through
analysis of downstream isotope enrichment of labeled nutrients.
Experiments in cancer patients confirmed that (i) glucose is
metabolized through glycolysis and the mitochondrial TCA
cycle and (ii) a significant fraction of the acetyl-CoA used in
the TCA cycle is not derived from blood-borne glucose (78–
80). This information casts doubt on the glycolysis dependency
in tumor cells. Besides, accumulating evidence suggests that
mitochondrial metabolism is required in tumor cells and is
crucial for tumorigenesis, treatment resistance, migration, and
metastasis. Some tumors overexpress critical metabolic enzymes
and pathways associated with the mitochondrial metabolism.
Progression in these tumors is driven by oncogenes and is
associated with poor prognosis (52, 74, 81). For example, several
cancer mutations in TCA cycle-associated enzymes, such as
succinate dehydrogenase, fumarate hydratase, and isocitrate
dehydrogenase, contribute to mitochondrial dysfunction during
tumorigenesis (82, 83). Autophagy in this case might be essential
for providing substrates for anaplerotic reactions, such as amino
acids through protein degradation or lipids through turnover,
to sustain mitochondrial metabolism (61). Most glucose is
consumed by glycolysis, and glutamine becomes the primary
substrate for the mitochondrial TCA cycle and generation
of fatty acids and NADPH. Autophagy supports necessary
metabolic rearrangements which makes cells highly dependent
on autophagy for survival.

Metabolites, oxygen concentration, and oncogenes all regulate
the initiation of auto phagosome formation, and regulation of
autophagy is finely balanced by the integration of these signals.
Autophagy is strongly induced in response to nutrient starvation,
primarily controlled by mTOR (65).

Glutamine is the most abundant free amino acid and becomes
physiologically essential in conditions of high proliferation.
Glutaminolysis is the pathway that cells employ to transform
glutamine to α-ketoglutarate, an irreversible reaction catalyzed
by glutaminase (GLS) and glutamate dehydrogenase. In cancer
cells, increased consumption of glutamine has been linked to
regulation of oncogenes like MYC. Overexpression of MYC
correlates with expression of cellular transporter of glutamine,
SLC1A5, and enhances glutamine consumption in cancer cells
(84, 85).

Glutaminolysis is proposed as an essential metabolic pathway
in tumor cells that supplies carbon for anaplerotic pathways,
such as TCA (86, 87). Proliferating cancer cells require high
quantities of fatty acids and lipids to generate new membranes.
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Citrate is diverted from the TCA cycle to sustain fatty acid
synthesis, causing TCA cycle disruption, and compelling cancer
cells to consume alternative nutrients to reestablish the TCA
cycle (87, 88). Hence, glutamine stimulates the production
of α-ketoglutarate, reconstituting the TCA cycle. In addition,
glutamate produced by GLS is necessary for the synthesis of
glutathione (GSH), an intracellular antioxidant that contributes
to mitigation of oxidative stress in proliferating cells (88, 89).

α-ketoglutarate, induces translocation of mTORC1 in the
lysosome, increasing phosphorylation of ribosomal protein
S6 kinase (S6K) and inhibiting the formation of the ULK-
1/ATG13/FIP200 complex resulting in inhibition of autophagy
(86). However, in cancer cells this link between mTORC1
and glutaminolysis acts in both directions. Starvation leads
to the activation of forkhead box O3 (FOXO3), which in
turn, increases the expression of glutamate-ammonia ligase,
the enzyme that resynthesizes glutamine from glutamate. The
increase in glutamine synthesis abolishes the production of α-
ketoglutarate from glutaminolysis, and thus inhibits mTORC1
and enhances autophagy (86, 90).

However, the interaction between glutaminolysis and
mTORC1/autophagy seems to be more complex. α-ketoglutarate
might activate mTORC1 and inhibit autophagy through an
alternative mechanism involving acetyl-CoA synthesis and
protein acetylation (91). Further, despite the inhibitory effect of
glutaminolysis on autophagy, a by-product of glutaminolysis,
ammonium, has a dual role in autophagy, activating this
process at low concentrations and inhibiting it at higher
concentrations (92).

Reprogramming of glucose and amino acid metabolism is
accompanied by alterations in lipid metabolism in tumor cells to
meet energy demands for sustaining viability and proliferation
(Figure 3).

Lipids represent a wide variety of molecules, including sterols,
triacylglycerols, and phospholipids. When energy supplies are
plentiful, lipids are stored in cells as lipid droplets (LD) to avoid
the accumulation of fatty acids in the cytosol (93). However,
starvation promotes degradation of lipids stored in LD into
fatty acids that are then metabolized by β-oxidation to obtain
large amounts of ATP. Two primary metabolic pathways for
lipid degradation within LD: neutral lipolysis and autophagic
degradation. Neutral lipolysis involves the breakdown of lipids
into fatty acids by cytosolic lipases which function under neutral
pH environments (94). In contrast, autophagic degradation of
LD (termed lipophagy) involves sequestration of portions or
entire LD into auto phagosomes with subsequent degradation in
lysosomes by acidic lipases (95). Lipophagy was firstly detected
and studied in hepatocytes of starved mice (96). More recently,
the process was shown in starved adipocytes, neurons and
immune cells (96, 97).

Lipophagy is also strictly regulated by a variety of transcription
factors that respond to nutrient status, such as the nuclear
receptors of farnesoid X receptors, master regulator of lysosomal
biogenesis transcription factor EB (TFEB), TFE3, members of the
FOXO family and CCAAT enhancer binding protein α (C/EBP-
α) (94, 98). The precise molecular mechanism of lipophagy is not
clear. It is initiated by recognition of LD mediated by p62, NBR1,

and NDP52, which display LIR domains and interact with LC3-II
present in phagophores (94).

The role of lipophagy in cancer is still unknown, since some
studies report a positive effect in tumor progression and others
a negative impact. In 2015, Lu et al. reported that increased
expression of C/EBP-α correlated with poor prognosis in patients
with hepatocellular carcinoma (98). Hepatocarcinoma cell lines
deprived of glucose and glutamine overexpress C/EBP-α and
avoid cell death owing to increased lipid catabolism. Further,
fatty acid β-oxidation or autophagy inhibition, induced cell death
after nutrient deprivation, suggesting that lipophagy protects
tumor cells from starvation (98). However, contrasting results
were obtained in lung and hepatic tissue of knockout lysosomal
acid lipase (LAL) mice that develop more tumors than wild
type counterparts and display major susceptibility to metastasis.
Further, the absence of LAL was associated with increased release
of tumor-promoting cytokines (99, 100). In this case, it seems
that lipophagy could act as a tumor suppressor in the early
stages of tumor development, and in advanced stages, in which
environmental and metabolic alterations are present, lipophagy
may promote tumor progression. More studies are required to
test this hypothesis.

The metabolic implications of this process are profound
and multifaceted. First, autophagy-mediated degradation and
recycling of cell substrates supports metabolism and promotes
survival and tumor growth. Second, activation of autophagy in
response to cancer therapy potentially leads to tumors resistance
to conventional chemotherapy.

THE INTERPLAY OF AUTOPHAGY AND
METASTASIS

Metastasis is a specific process of tumor aggressiveness, and
most cancer patients die as a result of metastasis. Metastasis
is a response to the challenge of metabolic alterations and
tumor microenvironment (101). The unfavorable conditions in
this microenvironment, such as hypoxia and lack of nutrients
that occur during uncontrolled cell proliferation contribute to
the development of metastasis (102). Clear evidence exists of
migration of tumor cells at early stages of tumor development,
but the metastatic process is associated with advanced stages
of tumors. Autophagy plays an essential role in the metastasis
cascade (8).

The steps of this cascade are the invasion of tumor cells
into the primary site, the intravasation, and survival of the
tumor cells in blood or lymph, and finally, extravasation and
colonization by tumor cells at a distant site. Studies on the role
of autophagy during the metastatic process are contradictory.
Autophagy is reported to stop tumor cell metastasis (103, 104),
but other authors suggest that autophagy favors metastasis (105,
106). Molecules involved in autophagic process are upregulated
during metastasis. The LC3B protein is increased in lymph
nodes of breast cancer patients compared to the primary
tumor, and the expression of LC3B increases in advanced
stages of disease (107). LC3B also increases in metastases of
melanoma and hepatocellular carcinoma compared to primary
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FIGURE 3 | Metabolic stress and autophagy. During the oncogenic process, the proliferation rate and the microenvironmental conditions promote that the tumor cells

reprogram their metabolism. Consequently, autophagy plays an essential role in this reprogramming, providing different substrates to feed the pathways of tumor cells.

However, the induction of autophagy depends on the stimuli to which the cell is subjected, the alteration of oncogenes such as MYC or RAS, the autophagy process

is inhibited and during some microenvironmental tumor conditions such as hypoxia, autophagy is promoted. Created by BioRender.com.

tumors (108). Expression of autophagic molecules DRAM1 and
p62 in glioblastoma correlates with a poor prognosis (109).
Other molecules with oncogenic activity, such as long non-
coding RNA (lncRNA) MALAT1 in pancreatic cancer, increase
autophagy during the metastatic process (110). Blocking the
expression of PD-L2 in osteosarcoma inhibits LC3-II and Beclin-
1, impeding the ability of tumor cells to invade surrounding tissue
(111). Annexin-A1 protein inhibits autophagy by activating
the AKT pathway, which inhibits ERK-1/2 in nasopharyngeal
carcinoma (112).

As previously mentioned, hypoxia is an autophagic-inducing
factor, but may also promote autophagy and cell migration.
IncRNACPS1-IT1 in colorectal carcinoma suppresses expression
of HIF-1α and decreases epithelium-mesenchymal transition
(EMT). Autophagy was observed in this study (113). Levels of
BNIP3, PI3KC3, and LC3-II were increased in a model of CoCl2-
induced hypoxia in cholangiocarcinoma. CoCl2 at 100µM,
accelerated cell migration due to upregulation of the metastasis
marker, phosphorylated focal adhesion kinase (pFAK) (114).

Soluble factors in the tumor microenvironment, secreted in
an autocrine or paracrine manner by the tumor cells, trigger
metastasis, and autophagy (115). One such factor is transforming
growth factor (TGF)-β. Exposure to TGF-β in non-small cell
lung carcinoma cell lines, induced autophagy and EMT (116).
Autophagy and EMT are initiated in a TGF-β dependent manner
in starved hepatocellular carcinoma cells (117).

The metastasis process begins with tumor cell invasion at
the primary site and is coupled with EMT. Neoplastic cells
lose adhesion and contact with other cells because of the EMT
program (118). Loss of adhesion and activation of EMT trigger
cell death stimuli that are avoided by activation of autophagy

(119). Autophagy is reported to be mainly involved in promoting
cancer cell motility. Tumor cells must evade anoikis, a type of
programmed cell death that occurs when a cell detaches from
the extracellular matrix. This process of cell death is mediated by
apoptosis. Tumor cells can evade anoikis by activating autophagy
(120). Another mechanism involving autophagy during cell
motility is the degradation of adhesionmolecules, such as paxillin
in auto phagosomes (8).

Autophagy and Anoikis
Interaction between cells and extracellular matrices (ECM)
requires complex bonds called focal adhesions (FA) (121).
These junctions connect the cytoskeleton of epithelial cells with
components of the ECM through integrins. On the extracellular
side, integrins bind to ECM components, such as collagen,
fibronectin, vitronectin, and laminin (122). While in the interior
of the cell, the integrins bind to the cytoskeleton by means
of a protein complex formed by talin, vinculin, paxillin, zyxin,
and α-actin (121, 123). FA is regulated by the focal adhesion
kinase (FAK)-Src, which is part of this complex. FA bond
composition varies among tissues and recognizes components
of ECM, changes in the cell surface, and physiological and
mechanical stress. Dissociation of FA from ECM leads to cell
death by apoptosis in a process called anoikis (124). The
disruption of integrins interactions with ECM activates FAK-
Src, which suppresses survival signals such as ERK, PTEN, and
NF-kB (125). Lack of cell adhesion activates Bid and Bim, pro-
apoptotic molecules that promote the assembly of BAX-BAK
oligomers on the outer mitochondrial membrane, activating the
intrinsic apoptosis pathway (125). Death by anoikis might also
occur via the extrinsic pathway since the loss of adhesion leads
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to downregulation of FLIP and increased expression of Fas and
FasL (125).

The multi-functionality of FA allows detection of reduced
integrin signaling that occurs after tumor cell detachment to the
ECM. The signal of cell detachment is translated as a signal of
metabolic stress, activating pathways such as PI3K-AKT, which
has a fundamental role in the regulation of integrins by growth
factors such as epidermal growth factor and TGF-β. These signals
mediate a cellular survival response and inhibit pro-apoptotic
proteins such as Bad, caspase-9, and glycogen synthase kinase 3b,
among others (104, 126).

Tumor cells are remarkably resistant to anoikis, which
favors cell motility and metastasis. Autophagy is the primary
mechanism of resistance to anoikis in cancer (125). Fung et al.
(127), showed in a 3D oncogenesis model of breast epithelial
cultures, that cell shedding from ECM induces autophagy
and tumor cell survival. In hepatocellular carcinoma cells,
cell detachment from the ECM produced inactivation of the
mTORC1 complex and activation of autophagy, evading anoikis.
BNIP3 was upregulated by the ERK/HIF-1α pathway in this
study, leading to autophagy (128). Also, astrocyte elevated
gene 1 (AEG-1) protein has a high correlation with metastasis
in hepatocarcinoma. AEG-1 induces resistance to anoikis by
activating autophagy (129). Another molecule that induces
resistance to anoikis by activating autophagy is miR-30a. By
inhibiting this miRNA, a decrease in Beclin-1 and Atg5 was
observed, as well as an increase in cell death (130) (Figure 4).

Autophagy and FA
As previously mentioned, cell-ECM attachments are essential
for cell homeostasis. During cell migration, FA is involved in
generating tension and traction necessary for cell motility. FA
at the front of a cell is employed to anchor the cell to ECM,
generating tension required to move the cell. At the rear of the
cell, FAmust be disassembled to producing advancingmovement
of the cell. This mechanical movement is termed FA turnover
(121, 131, 132).

The metabolic stress produced by the lack of oxygen and
nutrients in the tumor and the tumor microenvironment
activates cellular motility. Autophagy participates in FA turnover
in this context, by degrading paxillin in auto phagosomes and
disrupting FA. Sharifi et al. found that inhibiting autophagy
suppresses metastasis to the lungs and liver without affecting
tumor cell proliferation in a metastatic 4T1 mouse model
of breast cancer (8, 133). Paxillin in breast cancer and
melanoma metastasis serves as FA scaffolding and contains
a LIR. FAK-Src phosphorylates this domain in Y40, and
paxillin is activated by LC3B and degraded via autophagy
(134). Paxillin is recruited via the c-Cbl cargo receptor and
LC3 (135). Finally, endothelial cells around the tumor secrete
large amounts of the chemokine CCL5 that induces autophagy
in tumor cells that display suppressed androgen receptors in

a castration-resistant prostate cancer model. These authors
reported co-localization of paxillin in auto phagosomes in
metastatic tumor cells, indicating that paxillin is degraded via

autophagy, favoring the disassembly of FA and cell motility (136)
(Figure 4).

Autophagy During Colonization
The last step in the metastasis cascade is the colonization of
host secondary organs. At this point, metastatic cells show
EMT, detachment from ECM, intravasation and extravasation.
Metastatic cells must reprogram their metabolism to cope with
stress induced by metastasis processes.

Colonization represents a final challenging step for metastatic
cells since target organs exhibit distinct environmental
conditions from the primary tumor. Moreover, organs display
varying environmental and metabolic conditions and exhibit
distinct ECM composition, oxygen abundance and nutrient
disposition (137).

When reaching host organs, metastatic cells encounter these
distinct and hostile microenvironments. Cells do not adapt
to these adverse environmental conditions, may enter into a
state of dormancy. These dormant cancer cells remain clinically
undetectable and progress, causing tumor relapse, and organ
failure. Signals responsible for triggering tumor outgrowth
and colonization of secondary organs remain unknown, the
participation of ECM components and aspects of tumor
microenvironments likely play essential roles. Dormant cells are
characterized by a reversible growth arrest in G0-G1 cell cycle
phases, reduced metabolism and a stem-cell-like phenotype (138,
139). To survive to this stage, dormant cells activate autophagy.
Recent findings of Green et al. showed that autophagy inhibition
in dormant breast cancer cells of mice decreased their viability,
potential to growth and ability to form lung metastases in vitro
and in vivo (140).

When metastatic cells are able to adapt to distinct
environmental conditions, cells display a highly flexible
metabolism that allows for colonization and formation of
secondary tumor foci.

For example, metastatic cells attempting to invade and
colonize lungs must adapt to the acute oxidative environment
of these organs. To cope with oxidative toxicity, metastatic cells
upregulate the expression of molecules controlling endogenous
antioxidant responses, such as glutathione peroxidase 1,
superoxide dismutase and peroxiredoxins (141, 142). If these
antioxidant defense mechanisms are not sufficient, oxidative
damage is generated in organelles. A growing body of evidence
shows that accumulation of ROS triggers autophagy through
distinct signaling pathways such as inhibition of PI3K-AKT-
mTOR, and activation of AMPK and MAPK (143). ROS-
activated autophagy promotes degradation of damaged material
or organelles (143). In 2013, Peng et al. demonstrated in vivo
that lung metastases of hepatocellular carcinoma cells exhibit
higher levels of autophagy than primary tumors (108). In
addition, the same group demonstrated that genetic inhibition
of autophagy of highly metastatic hepatocellular carcinoma cells
blocked lung colonization potential without changing EMT
activation, invasion and migration (144). These findings do not
provide information about the redox state of metastatic cells in
intact and inhibited autophagy, but autophagy could, in theory,
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be important for protecting cells against oxidative damage in
the lungs.

Another example is the colonization of the liver. The liver
is characterized into zones with a varying oxygen gradient and
high glucose concentrations, therefore showing hypoxic regions
enriched with glucose. In this way, any metastatic cell seeking
to establish in the liver must be able to adapt to hypoxic
and glucose-rich conditions. Several reports demonstrate that,
under hypoxia, HIF-1 upregulates transcription of distinct genes
involved in glucose metabolism including, but not limited to,
glucose transporters and the enzymes, hexokinase 1/2, lactate
dehydrogenase (LDH), enolase 1 and pyruvate dehydrogenase
kinase 1 (PDK-1) (145). PDK-1 is a negative regulator of pyruvate
dehydrogenase complex, thus reducing the entry of pyruvate to
TCA cycle, decreasing mitochondrial activity, and promoting
glycolytic metabolism. Kim et al. reported that hypoxia-induced
transcriptional upregulation of PDK-1 ensures the glycolytic
synthesis of ATP, mitigation of hypoxic ROS production and
inhibition of apoptosis (146). Dupuy et al. reported that liver
metastases upregulate their glycolytic activity under hypoxia
by enhancing the activity of the PDK-1 (147). PDK-1 also
regulates autophagy in other cellular settings. Quin et al. reported
in acute myeloid leukemia cells that PDK-1 associates with
ULK-1 promoting its activation and leading to induction of
autophagy (148). Mariño et al. reported, in starved human
osteosarcoma cells and in mouse heart tissue, that genetic or
pharmacological inhibition of PDK genes resulted in autophagy
inhibition (149). Participation of PDK-1 in autophagy induction
during liver colonization by metastatic cells has not been
studied, and we propose that besides promoting metabolic
reprograming, PDK-1 also promotes autophagy as an adaptation
mechanism to encourage the survival and colonization of liver by
metastatic cells.

INVOLVEMENT OF AUTOPHAGY IN
TUMOR IMMUNE EVASION

In the previous sections, we discussed the evolution of tumor
microenvironments and how they sustain most hallmarks
of cancer such as tumor growth, metabolic reprogramming,
and cell death evasion, invasion and metastasis (5). In this
sense, cellular components of the tumor microenvironment
like endothelial cells, pericytes, cancer-associated fibroblasts
and tumor-infiltrating immune cells play a key role in tumor
growth (5).

The immune response is implicated as a key factor during
tumor development. According to the cancer immunoediting
theory, during early stages of tumor development, the immune
system recognizes nascent tumor cells expressing neoantigens
on major histocompatibility complex (MHC) molecules, thereby
promoting tumor elimination mediated by natural killer (NK)
cells or cytotoxic lymphocytes (CTL) (150). However, immune-
mediated elimination also represents a selective pressure, and
highly immunogenic tumor cells are eliminated while less
immunogenic tumor cells survive, avoiding immune recognition
and destruction, a feature established as a hallmark of cancer

(5, 150). Distinct immune evasion mechanisms have been
reported. For instance, decreased expression of death receptors;
development of an immunosuppressive microenvironment
through release of cytokines, such as TGF-β and IL-10,
and recruitment of immunosuppressive cells (150). Emerging
evidence also demonstrates that autophagy plays a key role in
protecting tumor cells against immune-mediated elimination. In
the present section, we discuss the participation of autophagy
as an immune evasion strategy, focusing on NK and CTL-
mediated elimination.

Autophagy is induced in response to adverse conditions
elicited by the tumor microenvironment, such as nutrient
deprivation and hypoxia. Tumor cells activate autophagy
to help meet energy demands and sustain viability and
proliferation. Additionally, in 2009 Noman et al. reported that
hypoxic conditions impaired elimination of non-small cell lung
carcinoma cells by autologous CTL (151). They found that
stabilization of HIF-1α and increased phosphorylation of the
signal transducer and activator of transcription 3 (pSTAT3), in
tumor cells, were associated with evasion of immune surveillance.
Further studies performed by this group demonstrate that
hypoxia-induced autophagy is responsible for this phenomenon
since pharmacologic or genetic inhibition of autophagy in
hypoxic conditions restored susceptibility of tumor cells by
CTL elimination (152). Further, inhibition of autophagy during
hypoxia promoted pSTAT3 degradation in proteasome in a p62-
dependent manner. Autophagy degrades p62 and consequently
enhances the accumulation of pSTAT3. However, the mechanism
by which hypoxia promotes the dissociation of pSTAT3 from
p62 remains unclear. Molecular mechanisms are not completely
studied, but STAT3 activation by hypoxia-induced autophagy
in tumor cells could, in theory, help in escaping CTL-
mediated elimination, since this transcription factor controls
the expression of anti-apoptotic genes (153) (See Figure 5,
upper panel).

Autophagy is also implicated in decreased susceptibility
of tumor cells to elimination by NK cells. Baginska et al.
reported, in MCF-7 breast cancer cells, that hypoxia-induced
autophagy blocked NK cell-mediated lysis of tumor cells
(154). In this study, recognition of tumor cells by NK cells
and NK cell degranulation were not affected by hypoxia.
Instead, tumor cells sequestered granzyme B and perforin
granules inside auto phagosomes for subsequent degradation.
These findings are supported using in vivo models, in
which tumor growth of melanoma or breast cancer cells
in C57BL/6 or BALB/c mice was reduced in autophagy-
deficient tumor cells (154). Results obtained in this work led
us to propose that a similar mechanism of cytoprotection
elicited by autophagy could be responsible for impaired
elimination of tumor cells by CTLs, such as granzyme B and
perforin that are also present in CTLs (150) (See Figure 5,
upper panel).

Collectively, these findings support the notion that tumor
microenvironment has a critical role in tumor development
since hypoxic conditions promote the activation of autophagy
to protect cells against elimination by innate or adaptive
immune cells.
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FIGURE 4 | Uncontrolled cell proliferation produces a high demand for oxygen and nutrients. As a result, the tumor becomes hypoxic and starved. These metabolic

changes generate the activation of the epithelium-mesenchymal transition (EMT) program and the presence in the environment of factors that promotes metastasis

and autophagy such as TGF-β. Autophagy participates in two ways favoring cellular migration: (a) avoiding anoikis and (b) in the turnover of the focal adhesion.

Created by BioRender.com.

A main aspect during CTL-mediated elimination of tumor
cells is the interaction between MHC-I molecules, harboring
tumoral neoantigens, and TCR on surface of primed CTL (150).
However, tumor cells develop distinct evasion mechanisms to
limit this interaction. For example, mutations in the beta-
2 microglobulin coding gene or deletions in genes involved
in antigen processing are responsible for downregulation of
MHC-l molecules (155, 156). Current evidence demonstrates,
in pancreatic ductal adenocarcinoma cell lines, that autophagy
promotes degradation of MHC-l molecules, therefore reducing
their surface expression (157). In this study, MHC-l molecules
are targeted for selective autophagic degradation mediated
by NBR1. Pharmacologic or genetic inhibition of autophagy
increased surface expression of MHC-I molecules and restored
susceptibility of pancreatic tumor cells for elimination by
CTLs. An increased number of infiltrating CTLs and reduced
tumor volume were found using a genetically engineered mouse
model (157). Also, concomitant inhibition of autophagy by
expression of mutated ATG4B in cancer cells and systemic

administration of chloroquine improved efficacy of dual immune
checkpoint therapy. This work reveals new insights in the
participation of autophagy as an immune evasion strategy, yet
some questions remain.

First, MHC-l molecules were degraded by selective autophagy
and neither by LC3-associated phagocytosis nor LC3-associated
endocytosis, and we speculate that this degradative process
occurs during biogenesis in the endoplasmic reticulum.
Therefore, NBR1 could interact with MHC-l molecules or
their chaperones (calnexin, calreticulin, ERp57), to mediate
selective degradation of the endoplasmic reticulum (158) (See
Figure 5, lower panel). However, more studies are required to
test this possibility.

Second, results were obtained in non-stressful conditions, in
which basal levels of autophagy in tumor cells were associated
with degradation of MHC-l molecules. However, study during
hypoxia, nutrient starvation or other micro environmental stress
could determine if these alterations enhance degradation of these
and other surface molecules.
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FIGURE 5 | Autophagy as an immune evasion mechanism. Autophagy induced by environmental stress such as hypoxia promotes the escape to CTL or NK

mediated elimination of tumors cells. (A) Hypoxia, by an undefined mechanism, releases pSTAT3 from p62, thereby degrading p62 by autophagy and favoring pSTAT3

nuclear localization to up-regulate transcription of antiapoptotic genes. (B) During hypoxia, tumor cells activate autophagy to sequester and degrade cytotoxic

granules released by NK cells or CTLs, thus impeding the elimination of tumor cells. (C) Selective ER phagy might participate in degradation of MHC-l molecules

during their biogenesis. NBR1 associate to MHC-l molecules or their chaperones in ER. Decreased surface expression of MHC-l molecules leads to impaired

recognition by innate or adaptive immune cells, leading to escape for immune-mediated elimination. Created by BioRender.com.

Autophagy has a pivotal role in the late stages of tumor
development, assisting with immune evasion. This finding points
for inhibition of autophagy as a therapeutic alternative to
treat tumors.

ROLE OF AUTOPHAGY IN
CHEMOTHERAPY AND TARGET THERAPY
RESISTANCE

Chemoresistance is the leading challenge anti-tumor therapy,
mainly in advanced stages of cancer. Several mechanisms
for chemoresistance are recognized, including autophagy.
Stress produced by chemotherapy induces autophagy as a
cytoprotective mechanism, allowing the tumor cells to resist
chemotherapeutic treatment (159, 160).

Cis-diamminedichloroplatinum (II) (cisplatin) is a platinum-
based compound approved since the 1970s for the treatment
of various neoplasms, such as bladder, ovarian, lung, head
and neck, testicular, and others (161). Cisplatin induces

autophagy through increased expression of BECN1 in bladder
cell lines, which promotes resistance of these cells to the drug
(162). Overexpression of thioredoxin-related protein of 14 kDa
(TRP14) in ovarian cancer cell lines decreases sensitivity to
cisplatin. TRP14 induced autophagy by activating AMPK and
inhibiting mTOR and p70S6K. When TRP14 expression was
inhibited using shRNA, sensitivity to cisplatin was markedly
increased (163). Lung adenocarcinoma cell line A-549/DDP
is resistant to cisplatin, and expression of tripartite motif-
containing proteins (TRIM)-65 is enhanced along with LC3-II
expression. When TRIM65 is inhibited by shRNA in cell lines
and in a mouse xenograft model, the cisplatin-induced apoptosis
increased, associated with reduction of ATG5, ATG7, and Beclin1
mRNAs levels (164). The LncRNA-small nucleolar RNA host
gene 14 (SNHG14) is an antisense sequence of the ubiquitin-
protein ligase. In colorectal cancer biopsies, high expression of
SNHG14 and ATG14 was observed. In the same work, SNHG14
inhibitedmiR-186, which blocked ATG14 expression in cisplatin-
resistant colorectal cancer cell lines. The authors concluded
that SNHG14 induced autophagy and cisplatin resistance by
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inhibiting miR-186 (165). In another study, cisplatin resistance
was related to autophagy by inhibiting the expression of Bcl-
2 associated athanogene 3 (BAG3) in cisplatin-resistant ovarian
epithelial cancer SKOV3 cells. Autophagy inhibition in SKOV3
cells increased sensitivity to cisplatin (166). In osteosarcoma
cell lines, the heat shock chaperone molecule HSP90AA1 is
overexpressed when cells are treated with cisplatin, doxorubicin,
and methotrexate. Treatments induce autophagy through the
PI3K/Akt/mTOR signaling pathway, resulting in resistance to
chemotherapy. When HSP90AA1 was inhibited, autophagy was
blocked and sensitivity to chemotherapy was enhanced (167).
These studies demonstrate that autophagy acts as a cytoprotective
mechanism against cytotoxic agents.

Food Drug Administration (FDA)-approved targeted therapy
is classified in two groups, monoclonal antibodies, and small
inhibitor molecules. These compounds block the growth of
tumor cells by interfering with specific and essential molecules
required for tumor development (168).

In the breast cancer cell line, MCF-7, which is estrogen
receptor-positive and resistant to 4-hydroxytamoxifen (4-OHT),
inhibition of autophagy with siRNAs for Atg5 and Beclin-
1 increased sensitivity to tamoxifen (169). Further, exposure
of MCF-7 cells to 4-OHT induced autophagy in 95% of the
cells, yet only 15–20% exhibited markers associated with active
cell death II (ACDII). When cells were treated with 4-OHT
and 3-methyladenin (3-MA), an inhibitor of auto phagosome
formation, or siRNA for Beclin-1, the cells showed sensitivity to
4-OHT (170).

Autophagy is usually a mechanism of resistance for targeted
therapy, but contradictory results are reported. Cetuximab is
a monoclonal antibody approved by the FDA that inhibits
epidermal growth factor receptor (EGFR). Exposure of A431
human vulvar squamous carcinoma, DiFi colorectal carcinoma,
HN5, and FaDu head and neck carcinomas cells to cetuximab,
elicited diverse responses. In DiFi cells, cetuximab induced
cytoprotective autophagy, which was inhibited with chloroquine,
thus activating cell death. In A431 cells, cetuximab induced
a slight apoptotic response, which was potentiated with an
autophagy inhibitor such as chloroquine or activator such
as rapamycin. Finally, in HN5 and FaDu cells, cetuximab
induced a cytostatic effect. By exposing these cells to a
combination of cetuximab and rapamycin, cell death was
induced (171).

The antitumoral compounds erlotinib and gefitinib are first-
generation tyrosine kinase inhibitors (TKI’s) that target cells
harboring EGFR-activating mutations, causing growth inhibition
and cell death. However, these TKI’s trigger cytoprotective
autophagy. Cell lines, such as HeLa-R30, are resistant to erlotinib,
yet do not display autophagy. When these cells were treated
with erlotinib and rapamycin, cell death was increased. The
depletion of ATG7 with siRNA restored erlotinib resistance,
suggesting that defects in autophagy might be a mechanism of
resistance (172). Osimertinib (OSI), is a third-generation EGFR
TKI that has been approved for the treatment of NSCLC patients
harboring EGFR T790Mmutation. Exposure of NSCLC cell lines
H-1975, HCC827, and A-549 to OSI induced ROS, which in
turn activates autophagy leading to decreased cell viability. Thus,

ROS inhibition decreased autophagy and apoptosis in NSCLC
cell lines (173).

Autophagy, as a response to treatment, is diverse. Cytotoxic
autophagy is characterized by promotion of cell death associated
with apoptosis and reduced sensitivity to treatment when it is
inhibited (159). Rituximab-monomethyl auristatin E (MMAE)
treatment, induced cell death by autophagy in B cell lymphoma
by inactivating the AKT/mTOR pathway. Cell death was
stimulated with exposure to rapamycin and was inhibited with
chloroquine (174). Oridonin is an active diterpenoid compound
isolated from Rabdosia rubescens. Colorectal carcinoma lines HT-
29, HCT116, SW480, and S620 exposed to oridonin showed
autophagic cell death due to metabolic imbalance characterized
by a dramatic inhibition of glucose uptake without reduction
of ATP levels. In this setting, tumor cells become autophagy-
dependent to meet energetic and nutritional demands to sustain
viability, causing autophagic cell death (175). Brefeldin A is a
lactone that inhibits protein transport from the endoplasmic
reticulum to the Golgi apparatus. In colorectal carcinoma cell
lines and xenograft tumor models, brefeldin A produced stress
at the endoplasmic reticulum level by increasing regulation
and interaction of binding immunoglobulin protein (Bip) with
AKT, which activated autophagic cell death (176). In other
study, when folate receptor was blocked using a monoclonal
antibody MORAB-003 (farletuzumab) in ovarian cancer cells
and in an orthotopic mouse models tumor growth was inhibited
due to autophagic cell death. When MORAB-003 was combined
with hydroxychloroquine, the inhibition of tumor growth was
reversed (177).

Chloroquine and hydroxychloroquine are the only autophagy
inhibitors approved by the FDA for clinical use (178),
comprehensive reviews are examining the role of various
compounds and biological molecules in the regulation of
autophagy and various ATG genes (160, 176, 179–181). Clinical
trials are underway in which inhibitors of autophagy are
administered in combination with chemotherapy or targeted
therapy (182, 183). However, because of dissimilar participation
of autophagy as a cytoprotective or cytotoxic mechanism,
biomarkers related to these scenariosmust be identified to predict
treatment response.

CONCLUDING REMARKS

The role of autophagy in several stages of tumor development
is reviewed. Metabolic status through distinct stages of tumor
impacts in tumor suppressor or tumor-promoting roles of
autophagy is discussed. In incipient tumors, nutrient, and
oxygen supply is sufficient and do not represent environmental
stress; therefore, autophagy acts as an intrinsic cytotoxic
response suppressing tumor development. However, as tumor
grows metabolic requirements are increased to sustain high
proliferation rates. Autophagy provides reduced carbon to
maintain the energy demand and support survival of tumor
cells in hostile microenvironments. In advanced stages of tumor
development, the hypoxic, and starvation conditions generate
signals promoting tumor invasion and metastasis. Autophagy
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helps cells evade anoikis and promote focal adhesion turnover
favoring cell motility and metastasis. Additionally, autophagy
serves as an immune evasion strategy in cancer advanced
stages. In these settings, autophagy might promote resistance to
chemotherapy or targeted therapy in most scenarios.

We consider autophagy and cancer metabolism parts of an
overall process. For this reason, it is necessary to consider the
metabolic status of tumor for use of autophagy inhibitors as a
therapeutic strategy for impacting clinical outcomes.
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Cancer remains one of the leading causes of death worldwide, despite significant

advances in cancer research and improvements in anticancer therapies. One of the

major obstacles to curing cancer is the difficulty of achieving the complete annihilation

of resistant cancer cells. The resistance of cancer cells may not only be due to intrinsic

factors or factors acquired during the evolution of the tumor but may also be caused

by chemotherapeutic treatment failure. Conversely, autophagy is a conserved cellular

process in which intracellular components, such as damaged organelles, aggregated

or misfolded proteins and macromolecules, are degraded or recycled to maintain

cellular homeostasis. Importantly, autophagy is an essential mechanism that plays a

key role in tumor initiation and progression. Depending on the cellular context and

microenvironmental conditions, autophagy acts as a double-edged sword, playing a

role in inducing apoptosis or promoting cell survival. In this review, we propose several

scenarios in which autophagy could contribute to cell survival or cell death. Moreover, a

special focus on novel promising targets and therapeutic strategies based on autophagic

resistant cells is presented.

Keywords: autophagy, cancer, therapy, resistance, protective autophagy

INTRODUCTION

Autophagy is a conserved catabolic process that sequesters and degrades intracellular components
in double-membraned compartments known as autophagosomes, playing a key role in homeostasis
maintenance (1). The recycling capabilities of this process prevent the accumulation of damaged
proteins and organelles that can generate cell toxicity; therefore, autophagy functions as an internal
quality control system (2). Autophagy is tightly regulated and normally induced in response to
different intrinsic and extrinsic signals, such as starvation, growth factor deficiency, hypoxia,
and many other types of stress (3). In normal conditions, the functions of autophagy comprise
cell survival control to regulate homeostasis. However, in cancer cells, autophagy is frequently
deregulated in and becomes important in tumorigenesis (4). Moreover, autophagy plays a pivotal
role in some cancer hallmarks, including cell survival, cell death, deregulation of metabolism,
modulation of the immune response, epithelial–to-mesenchymal-transition (EMT) process, cancer
stem cell (CSC) promotion, and multidrug resistance (MDR) (Figure 1).

This paradoxical dual role in stimulating cell survival or promoting cell death is still under
investigation in cancer at clinical and molecular levels (5). Deciphering in which genetic
background and under which circumstances autophagy stimulates or eliminates cancer cells may
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FIGURE 1 | Roles of autophagy in cancer. Autophagy mechanisms are involved in several hallmarks in cancer cells. Autophagy can lead to cell survival or death,

depending on the presence, duration, and intensity of the stimulus in which it develops. In addition, autophagy can modulate the EMT phenotype after the adaptation

to hypoxia. Moreover, the metabolic switch of cancer cells into aerobic glycolysis (i.e., the Warburg effect) is sustained by autophagy activation, ensuring energetic

requirements, and metabolic homeostasis. On the other hand, the activation of autophagy process influences the suppression or activation of antitumor immune

response, depending on the stage, genetic, and microenvironmental conditions. For example, in response to chemotherapy, autophagy-competent cancer cells

attracted dendritic cells, and T lymphocytes to the tumor, activating the immune response. Moreover, autophagy activation maintains the CSC phenotype and

functions inside the tumor. Also, an upregulated autophagic activity are involved in cancer progression and metastasis. Furthermore, autophagic machinery triggered

by anticancer drugs may facilitate multiple drug resistance in cancer cells and tumor survival. All these processes depend on the cell type, genetic background, and

the microenvironment stimulus in the tumors.

facilitate the development of specific therapeutic strategies. Also,
many studies associate autophagy with drug resistance (6). In this
review, we discuss how the role of autophagy associated with
cell survival and drug resistance might determine an effective
therapeutic approach against, particularly aggressive tumors.

MECHANISMS OF AUTOPHAGY

While the molecular mechanisms that govern autophagy in
normal and cancer cells have not been thoroughly elucidated,
several pathways are involved in each case. It is known that the
central pathway governing autophagy is led by PI3K/AKT/mTOR
signaling (7). Strikingly, this pathway is one of the most altered
pathways in cancer (8, 9). The mammalian target of rapamycin
(mTOR) is a highly conserved serine/threonine kinase, part of
the mTOR complex 1 (mTORC1), in which different stimuli
converge, including autophagy-stimulating signals (nutrient or
growth factor deprivation, hypoxia, oxidative stress, or protein
aggregation) (10). The activation of mTOR by growth factors
exerts a negative effect on autophagy, inhibiting the autophagy

process (11, 12). The process of autophagy is divided into
five phases: initiation, phagophore nucleation, elongation and
autophagosome formation, autophagosome-lysosome fusion,
and cargo degradation, where autophagy-related genes (ATGs)
play an important role in the entire pathway (13). In the
initiation phase, mTORC1 is inactivated in response to these
autophagy signals, and consequently, the Unc-51-like kinase 1
(ULK1 or ATG1) complex, which consists of ULK1, ULK2,
ATG13, RB1-inducible coiled-coil protein 1 (RB1CC1 or FIP200)
and ATG101, is activated. This complex stimulates phagophore
nucleation, activating, by phosphorylation, the components
of class III phosphatidylinositol 3-kinase (class III PI3K or
PI3KC3) complex, which consists of vacuolar protein sorting
34 (VPS34), ATG14, activating molecule in Beclin-1-regulated
autophagy (AMBRA1), general vesicular transport factor (p115),
UV radiation resistance-associated gene protein (UVRAG or
p63) and Beclin-1, with the last protein acting as the scaffold. This
complex activates local phosphatidylinositol-3-phosphate (PI3P)
production at the endoplasmic reticulum (ER), specifically in an
ER structures named the omegasome (14). Then, PI3P associates
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with different members of the WD-repeat protein interacting
with phosphoinositides (WIPI) protein family (15). Bcl-2 is a
key control protein of autophagy that interacts with Beclin-
1 at the Bcl-2-homology 3 (BH3) domain to inhibit its pro-
autophagic activity. Bcl-2 reduces the interaction of Beclin-1 with
VPS34 and UVRAG (10). However, Beclin-1 has also autophagy-
independent functions; for example, it has been described to act
as a negative regulator in the execution of necroptosis (16).

Elongation of the phagophore is controlled by two ubiquitin-
like protein systems. First, ATG7 and ATG10 regulate the
synthesis of the ATG12-ATG5-ATG16L1 complex. WIPI
proteins, specifically WIPI2, bind ATG16L1 directly, anchoring
the ATG12-ATG5-ATG16L1 complex to the phagophore.
This complex enhances the second system, in which ATG4B,
ATG7, and ATG3 act coordinately to cleave the precursors of
protein light chain 3 (LC3)-like proteins and conjugate them to
phosphatidylethanolamine (PE) present in the membrane. Also,
γ-aminobutyric acid receptor-associated protein (GABARAP)
conjugates with PE and, as a result, is incorporated into
the rising autophagosome. LC3 and GABARAP give the
autophagosome the capability to attach autophagic substrates
targeted by selective autophagy receptors (SARs), such as
sequestosome-1 (p62/SQSTM1), before membrane sealing
and complete autophagosome formation (15, 17). Ultimately,
microtubule proteins facilitate autophagosome transport to the

lysosomes. SNARE proteins, including syntaxin 17 (STX17)
and vesicle-associated membrane protein 8 (VAMP8), facilitate
autophagosome-lysosome fusion. Autolysosomal contents
are degraded due to the acidic lysosomal hydrolases, and the
recovered nutrients are released back and recycled by the cell,
using them in new metabolic processes (10, 13, 18).

Besides, key oncogenes inhibit autophagy, such as AKT or
p21Cip1, while tumor suppressor genes activate it, such as PTEN,
p53, and TSC1/TSC2 (19). AMPK, a protein that maintains
metabolic homeostasis, is crucial for determining the destiny
of autophagy. AMPK induces autophagy by phosphorylation
of mTORC1, part of the mTOR pathway, and the autophagy-
related complexes ULK1 and PI3KC3. Also, AMPK regulates
autophagy indirectly through several transcription factors and
coactivators, such as DAP1, p300, TFE/MITF, and FOXO3 (20).
Proteins involved in the different phases of the autophagic
process are shown in Figure 2. In the following section, the roles
of autophagy in different scenarios will be discussed.

SELECTIVE AUTOPHAGY

Selective autophagy is that type of autophagy that is specifically
aimed at a specific cellular organelle. Selective autophagy is
committed to preserving intracellular homeostasis by eliminating
specific substrates in the autophagosome through recognition of

FIGURE 2 | Schematic representation of the autophagy process. The autophagy mechanism consists of five phases. In the initiation phase, mTORC1 is inactivated

due to autophagy-stimulating signals, liberating the repression of the ULK1 complex. During the nucleation phase, the ULK1 complex phosphorylates the PI3KC3

complex, which induces phagophore formation in the omegasome, through the production of PI3P and association with WIPI protein family members, commonly

WIPI2. In the elongation phase, two ubiquitin-like protein systems, ATG12-ATG5-ATG16L1 and ATG4B-ATG7-ATG3, mediate the activation of LC3 into LC3I, lipidation

with PE to form LC3II, and subsequent anchoring to the phagophore. GABARAP also conjugates with PE and attaches to the membrane. LC3 and GABARAP

mediate the sequestration of autophagic substrates marked with SARs, such as p62/SQSTM1, before phagophore closure and total autophagosome development.

During the fusion phase, STX17 and VAMP8, present in the autophagosome and lysosome, respectively, interact and stimulate autolysosome formation. Finally, in the

degradation phase, acidic lysosomal hydrolases degrade autophagic cargo, generating nutrients that are released to the cytoplasm and reused by the cell. ER,

endoplasmic reticulum.
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specific receptors. Contrary to the bulk degradation process of
unspecific autophagy, the objective of selective autophagy is to
maintain cell homeostasis by maintaining the number of integral
organelles, including mitochondria (mitophagy), ribosomes
(ribophagy), aggregated proteins (aggrephagy), peroxisomes
(pexophagy), lysosomes (lysophagy) or invading pathogens (21,
22). Many research findings related to selective autophagy
receptors (SARs) have demonstrated that autophagy can be
directed against a specific cargo. Examples of SARs, such as
p62/SQSTM1, NBR1, TOLLIP, BNIP3L/NIX, and Cue5, show
the mechanisms behind the formation of autophagosomes for
selective autophagy (23, 24).

The cargo receptor p62/SQSTM1 is one of most extensively
studied receptors and modulates selective autophagy due to its
mediation in the degradation of ubiquitinated material, such
as protein aggregates, mitochondria, peroxisomes, lysosomes,
or intracellular bacteria (22). For example, the binding of the
bacterial type III effector protein HopQ to vimentin provokes
the degradation of vimentin through p62/SQSTM1-dependent
selective autophagy (25).Moreover, it has been demonstrated that
constant p62 levels, due to autophagy defects, were enough to
alter NF-κB regulation and gene expression, thereby stimulating
tumor generation (26). Another selective cargo receptor is the
nuclear receptor coactivator 4 (NCOA4), which is involved in
selective autophagy of ferritin, called ferritinophagy, which is
activated during low levels of intracellular iron (27).

AUTOPHAGY-MEDIATED CELL DEATH

Although it was identified as an initial function of autophagy,
currently, autophagic cell death is a process that occurs less
frequently in cancer cells than protective autophagy. Autophagic
cell death is characterized by cytoplasmic vacuolization,
accumulation, and assembling of autophagosomes labeled by
LC3, and elimination of cell organelles via autolysosomes.
However, the criteria to differentiate autophagic cell death from
other types of cell death accompanied by autophagy are still
controversial (28, 29). Although several studies suggest that
an uncontrolled and nonspecific overactivation of autophagy
induces cell death, other studies emphasize that the selective
removal of autophagy substrates is a key factor in cell death
promotion (30, 31).

Autophagic cell death—described in mammalian
development, other less complex organisms, and cancer
cells—can be suppressed by pharmacological or genetic
inhibition or induced by specific cancer drugs (30, 32). As an
example, kaempferol, a flavonoid with anticancer properties,
was shown to induce autophagic cell death in gastric cancer
through IRE1/JNK/CHOP signaling pathway activation, and the
suppression of kaempferol-induced autophagy restores cancer
cell survival (33). RY10-4, an analog version of proto-apigenone,
promotes ACD by inactivation of the AKT/mTOR pathway
in the breast cancer cell line MCF-7, and the inhibition of
autophagy through genetic and chemical approaches extends
cancer cell viability (34). Another novel anticancer drug,
designated ABTL0812, which is already in preclinical trials,

induces ER stress-mediated cytotoxic autophagy by increasing
dihydroceramide levels in cancer cells of several models,
including lung and pancreatic cancer (35). In ovarian cancer
cells, activation of oncogenic H-Ras activates autophagy
mechanisms, upregulating BH3-only protein Noxa and Beclin-1
and triggering cell death. Silencing of ATG5, ATG7, Beclin-1, or
Noxa expression reduces autophagy and increases survival (36).

Autosis, considered a form of autophagic cell death, is
regulated by Na+, K+-ATPase in the presence of Tat-Beclin-
1 and Tat-vFLIP α2, Beclin-1-derived peptides, or starvation
(37). Recently, treatment with Tat-Beclin-1 and Tat-vFLIP-α2
peptides showed to induce autosis as a strategy to selectively
kill HIV-infected macrophage and resting memory CD4+

T cells, avoiding reactivation of virus (38, 39). Autosis is
characterized by a dependence of Na+, K+-ATPase pump, an
enhanced cell-substrate adherence, a dilated, fragmented, and
finally disappeared endoplasmic reticulum, and an initial nuclear
membrane convolution with a subsequent focal ballooning of
the perinuclear space (37). Autosis is not entirely regulated
by autophagy markers nor controlled by apoptotic and
necrotic markers, although autosis is induced with a high
level of autophagic activity (40). However, a recent study
demonstrated the interaction of Beclin-1 and Na+, K+-ATPase,
whose interaction and autotic death process increase during
pathological and physiological stress conditions, and decrease
by cardiac glycosides, inhibitors of Na+, K+-ATPase (41). Also,
autosis can be interrupted by knockout of the autophagy-
related genes ATG13 and ATG14 or by blocking treatments of
autophagosomal assembly (42).

AUTOPHAGY AND OTHER TYPES OF CELL
DEATH

Autophagy and Apoptosis
Apoptosis, a programmed cell death widely studied in cell
biology, is a highly controlled process that mediates the efficient
and orderly elimination of damaged cells. In the body, the
balance between apoptosis and proliferation is crucial to ensure
homeostasis (43). Apoptosis inducesmorphological changes such
as cell membrane asymmetry and blebbing, protein cleavage,
cell shrinkage, nuclear fragmentation, chromatin condensation,
chromosomal DNA fragmentation, and phagocytic recognition
(44, 45). At the molecular level, the adequate regulation
of apoptosis involves several signaling pathways that control
biological responses such as embryonic development, cell
renewal, and external factors (e.g., radiation, chemicals), which
produce DNA damage. As a result, a complete process of
apoptosis implicates the interactions of many proteins, signal
transducers, and signaling pathways (44). The balance between
anti- and pro-apoptotic proteins is essential to decide if the
apoptosis ultimately occurs. Evasion of apoptosis encourages
cancer initiation and tumor progression and facilitates the
emergence of resistant variants with great metastatic potential
(43, 45).

Many studies indicate that autophagy and apoptosis are
closely interconnected because of their regulation by effector
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proteins, pathways, and intracellular locations. For example,
autophagy boosts apoptosis by degrading a negative regulator
of the Fas (CD95/Apo-1) ligand, but it can also protect it
by modifying levels of the Bcl-2 family members. Besides,
autophagy is activated by several apoptotic stimuli, and both
occur after cellular stress (46). Thus, it is expected that
autophagy and apoptosis in certain circumstances cooperate in
cancer progression. However, the interplay of both processes is
complex due to the double-edged sword function of autophagy,
stimulating apoptosis, or cell survival (47). In most cases,
autophagy precedes apoptosis under stress conditions. For
example, low-stress conditions stimulate autophagy as a way
to cope and adapt to this scenario. However, if the stress
event crosses a threshold of time and/or intensity, apoptosis
is activated (48). Some proteins have a dual role in apoptosis
and autophagy. For example, Beclin-1 binds to Bcl-2, forming

a complex at normal conditions, resulting in the inhibition
of autophagy, without losing anti-apoptotic capacities of Bcl-2
(49) (Figure 3A). Bcl-2 is a mitochondrial membrane protein
belonging to the Bcl-2 family, which consists of∼25 proapoptotic
(e.g., Bax, Bak, and PUMA) and antiapoptotic (e.g., Bcl-2, Bcl-
XL, and MCL-1) protein family members (50). Bcl-2 promotes
anti-apoptotic functions through the interaction with Bax, which
repress the Mitochondrial Outer Membrane Permeabilization
(MOMP) (51), and the subsequent release of proteins, such
as cytochrome c (cyt-c), high-temperature requirement protein
A (HtrA2/Omi), and second mitochondria-derived activator of
caspase/direct inhibitor of apoptosis (IAP)-binding protein with
low pI (Smac/DIABLO) to the cytosol (52). In cancer cells
under starvation, C-Jun N-terminal protein kinase 1 (JNK1)
becomes activated and phosphorylates Bcl-2, disrupting the
Bcl-2/Beclin-1 complex and promoting autophagy due to the

FIGURE 3 | Mechanism of crosstalk between autophagy and apoptosis. (A) Under normal cellular conditions, Beclin-1 binds to Bcl-2, keeping autophagy and

apoptosis inactivated. (B) However, if the cell experiences low-level stress conditions (e.g., nutrient deprivation), JNK1 phosphorylates Bcl-2, disturbing Bcl-2/Beclin-1

union. As a result, isolated Beclin-1 activates the autophagic pathway. (C) However, if the stressful stimulus crosses a threshold of time, JNK1 promotes Bcl-2

hyperphosphorylation, inducing its dissociation with Bax and the subsequent activation of the intrinsic apoptotic pathway. In addition, c-FLIP, a suppressor of extrinsic

apoptosis, also inhibits autophagy through interaction with ATG3, reducing LC3 lipidation. Moreover, caspase activation mediates autophagy-related proteins, such as

Beclin-1 and ATG5. Additionally, the C-terminal fragment generated by caspase-mediated cleavage of Beclin-1 translocates to the mitochondrial membrane and

stimulates intrinsic apoptosis. Furthermore, ATG5, after cleavage by calpains, suppresses autophagy activity and induces apoptosis.
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activation of core autophagic components by isolated Beclin-1 as
a response for cell protection (47, 53) (Figure 3B). However, if
the starvation is prolonged, JNK1 induces hyperphosphorylation
of Bcl-2 that generates its dissociation with Bax and apoptosis
stimulation (54) (Figure 3C). Therefore, Bcl-2 and Beclin-1
interaction represent a significant mechanism for regulating the
switch between autophagy and apoptosis. As an example of other
members of Bcl-2 family, BNIP3 and NIX are also implicated
in the stimulation of autophagy, and specifically mitophagy, due
to a BH3 domain in their structure, apart from their role as
pro-apoptotic proteins (55, 56). The augmentation of reactive
oxygen species (ROS) production and the competition for Bcl-2
binding with Beclin-1, with consequent Beclin-1 liberation, are
strategies that BNIP3 and NIX can apply to induce autophagy
(56). Moreover, BNIP3 and NIX regulates mitophagy through
HIF-1α/BNIP3 signaling pathway, which promotes a decrease of
ROS production and plays a protective role during hypoxia (57–
59).

Beyond their autophagic functions, many autophagy-related
proteins have a pivotal role in apoptosis. For example, non-
conjugated forms of ATG5 and ATG12 induce apoptosis
under stress conditions. ATG12 directly binds to Bcl-2 family
members, including the antiapoptotic proteins Bcl-2 and
MCL-1, independent of its interaction with ATG5 or ATG3
(60). ATG5 is cleaved by calpains, suppressing its autophagy
activity (Figure 3C). Also, the N-terminal fragment of ATG5
translocates to mitochondria and induces the release of cyt-
c, leading to the activation of effector caspases and apoptosis
(61). Some studies indicate that overexpression of ATG5
sensitizes tumor cells to chemotherapy, and knockout of this
protein increases tumor cell resistance to chemotherapeutic
drugs (62, 63).

Additionally, some key apoptotic proteins also participate
in the regulation of autophagy. For example, FADD-like IL-
1β-converting enzyme-inhibitory protein (c-FLIP) is an anti-
apoptotic protein that suppresses extrinsic apoptosis (62).
Ligation of dead receptors, such as type 1 TNF receptor
(TNFR1), Fas, and TRAIL, at their extracellular domain generates
recruitment of specific procaspases (−8 and sometimes −10)
and adaptor proteins to the cytosolic domain, such as Fas-
associated death domain (FADD) and TNFR-associated death
domain (TRADD), forming amultiproteic structure called death-
inducing signaling complex (DISC) (64). Due to the death
effector domain (DED) present in its structure, c-FLIP interferes
with the interaction of dead receptors, and adaptor proteins
(50). Besides, FLIP suppress autophagy through blockage of LC3
lipidation by competitive interaction with ATG3 (Figure 3C). In
contrast, if the autophagic process is initiated, the FLIP andATG3
interaction is substantially reduced (65).

Autophagy usually becomes regulated due to cleavage of
essential proteins in the autophagic process by caspases (48).
Caspases (cysteinyl, aspartate-specific proteases) comprise a
family of cysteine proteases that mediate the molecular process of
apoptosis and participate actively in the initiation and execution
pathways (66). Caspases are crucial proteins in the apoptosis
process and are involved as apoptotic initiators (caspase-
2,−8,−9, and−10) and executors (caspase-3,−6, and−7) of

cell death (67). Essential autophagy proteins, such as Beclin-
1, ATG3, ATG5, and ATG7, are cleaved by caspase-3,−7,
and−8, destroying their autophagic function (68). Also, caspase-
mediated cleavage of Beclin-1 produces a C-terminal fragment
that translocates to mitochondria and boosts intrinsic apoptosis
(69, 70) (Figure 3C). However, although caspase cleavage of
ATG4, principally ATG4D by caspase-3 (71), induces cytotoxicity
through its movement to the mitochondria, this autophagy-
related protein also induces the autophagy pathway (29),
demonstrating a complex interaction with very fine regulation
determined by the levels of apoptotic and anti-apoptotic proteins
present in the cells.

Autophagy and Necroptosis
Necroptosis was discovered as a new form of strictly regulated
programmed cell death with characteristics of necrosis (72).
Escape from necroptosis via loss of RIPK3 expression is a feature
of some cancers. Moreover, downregulation of necroptosis
mediators such as RIPK3 and MLKL in tumors suggests an
escape mechanism from necroptosis in cancer (73). Necroptosis
is principally controlled by receptor-interacting protein kinase
1 (RIP1 or RIPK1), RIPK3, and mixed lineage kinase domain-
like pseudokinase (MLKL), and its activation is mediated by
death receptors, mainly TNFR1 (74). Death receptor binding
with its ligand, tumor necrosis factor α (TNFα), promotes
the recruitment of RIPK1, TRADD, a cellular inhibitor of
apoptosis protein 1 (cIAP1), cIAP2, TNFR-associated factor 2
(TRAF2), and TRAF5, forming pro-survival complex I. RIPK1,
which is polyubiquitinated in complex I, assembles complex
IIa after deubiquitination, formed by RIPK1, RIPK3, TRADD,
FADD, and caspase-8. Complex IIa mediates caspase-8 activation
and subsequent apoptosis. However, if caspase-8 is inhibited,
RIPK1 recruits RIPK3, forming complex IIb that, after their
phosphorylation, activates the necroptosis pathway through the
establishment of a necrosome (75). Then, RIPK3 phosphorylates
MLKL, promoting its oligomerization and translocation to the
plasma membrane, which boosts membrane permeabilization
due to phospholipid disturbance. This stimulation of membrane
permeability, resulting in cytokine and chemokine release, causes
an immune response that provokes inflammation and determines
the outcome of apoptosis or necroptosis (76).

Necroptosis and autophagy maintain a close and complex
interplay, considering that both processes can be activated
sequentially or at the same time, activating or suppressing one
with the other, and with the same or contrary purposes of
cell survival or death (77). Regularly, autophagy is activated
to restore levels of energy, saving cells that would otherwise
undergo necroptosis due to ATP deficiency (78). Besides,
autophagy is induced by necroptosis as a reaction to high
levels of reactive oxygen species (ROS) produced, eliminating
critically damaged cell structures, ensuring homeostasis, and
ultimately avoiding necroptotic cell death (79). Phosphorylation
of VSP34 and Beclin-1 by protein kinase D1 (PKD) and death-
associated protein kinase (DAPK), respectively, to stimulate
autophagosomal formation are two examples of autophagy
activation mechanisms against oxidative stress, with subsequent
necroptosis suppression (77). Another example is the induction
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of necroptosis signaling by poly(ADP-ribose) polymerase-1
(PARP-1) overactivation, which provokes ATP depletion and
consequent autophagy pathway activation through the LKB1-
AMPK-mTOR pathway to ensure cell survival (80). Therefore,
autophagy inhibition during low cell energy availability
could generate a metabolic crisis that promotes necroptosis
activation (78).

Several studies highlight the caspase-8/RIPK1 interaction
as crucial in the regulation of the autophagy pathway and
the interplay between autophagy, necrosis, and apoptosis (74).
For example, caspase-8 is triggered inside autophagosomal
membranes in some cases and acts as a platform and eliminates
inhibitors of apoptosis, promoting apoptosis (81). Also, activated
caspase-8 cleaves RIPK1, reinforcing apoptotic vs. necroptosis
signaling. However, in a MAP3K7 deletion context, autophagy
changes the death cell mode toward necroptosis, recruiting and
scaffolding RIPK1 via p62/SQSTM1 to the autophagosome. As
a result, the necrosome becomes more selectively and quickly
activated (82).

Moreover, necroptosis and autophagy can be activated in
parallel to boost cell death (78). For example, some investigations
with zVAD, a general caspase and apoptosis inhibitor, evidenced
a stimulation of necroptosis and autophagy by this peptide
after TNFα stimulation, characterized by the formation of
autophagosomal vacuoles (77). However, the cell death response
can be suppressed by downregulation of RIPK1, ATG7, or Beclin-
1 expression (83). Thus, these autophagic genes participate
actively in the control of necroptosis-mediated cell death.

Autophagy and Pyroptosis
Pyroptosis is a regulated cell death accompanied by a
proinflammatory response. Various microbial infections
and internal damage-associated signals, such as dysfunctional
mitochondria, induce the assembly of inflammasome, a
multiprotein complex that promotes the activation of
inflammatory caspases (-1,−4,−5, and−11), which mediate
the pyroptotic signaling pathway (84). These non-apoptotic
caspases play two important roles in pyroptosis activation. First,
inflammatory caspases activate the inflammatory cytokines
interleukin 1β (IL-1β) and IL-18 (75). Second, caspases activate
Gasdermin D (GSDMD), a pyroptotic protein that, after caspase-
mediated cleavage of its N-terminal fragment (GSDMD-N),
moves toward the inner plasmatic membrane by generating
porosity and permeabilization (85). It results in an uncontrolled
flow of ions and water, causing cell lysis, cell death, and
subsequent release of additional cytokines in the extracellular
microenvironment (86). Pyroptosis, contrary to apoptosis and
other types of cell death, is characterized by maintaining nuclear
integrity, without DNA fragmentation, but showing signs of
nuclear condensation and cell swelling (75, 85).

The autophagy mechanism plays an important role in the
suppression of pyroptosis by inactivation of the inflammasome
(87). To avoid the pyroptotic pathway, autophagy applies two
strategies. First, autophagy sequestrates inflammasome inducers
such as ROS, bacteria, and critical damaged mitochondria
that, after ubiquitination for recognition, are delivered to
autophagosomes for degradation (24). Second, autophagic

machinery recognizes overactivated components of the
inflammasome, especially NLR family pyrin domain-containing
protein 3 (NLRP3) and Absent InMelanoma 2 (AIM2), which are
specifically recognized by the autophagy receptor p62/SQSTM1,
transported and destroyed via the autophagosome (88, 89). Both
strategies limit the activation and release of the proinflammatory
cytokines IL1β and IL-18, reducing inflammation and pyroptosis
signaling (87, 89).

Autophagy and Ferroptosis
Ferroptosis is a novel type of programmed cell death
characterized by iron and lipidic ROS/peroxides accumulation
(29). It has been proposed that cancer cells from different
tissues show different degrees of ferroptosis sensitivity. Even so,
some authors have shown that ferroptotic reagents can induce
cancer cell death that could be rescued by ferroptosis inhibitors
(90). This iron- and oxidative-mediated cell death is activated
through excessive levels of iron production by Fenton reaction
and through the loss of balance in ROS production and cell
glutathione (GSH)-dependent antioxidants, which protect cells
from lipid peroxidation (85). Glutathione peroxidase 4 (GPX4)
is a crucial enzyme for the elimination of lipid ROS continuously
generated by the cell. Its inhibition can induce ferroptosis even
with normal levels of the cofactor GSH (91). Besides, depletion
of GSH or its precursor, cysteine (Cys), constitutes an indirect
way to activate ferroptosis (92). Ferroptosis is characterized,
contrary to other regulated cell death mechanisms, by cell
membrane integrity, normal nucleus size, and dense small
mitochondria (76).

Recent studies have described a direct contribution of
autophagy in ferroptosis initiation, arguing the presence of a
specific autophagic cell death called ferritinophagy (91). After
Cys suppression, autophagy is activated to sequester and degrade
ferritin, a cell iron storage protein, by the selective autophagy
cargo receptor NCOA4, inducing ROS accumulation and the
consequent ferroptotic cell death. Inhibition of the expression
of autophagic proteins such as ATG5, ATG7, and NCOA4
reduces ferritin elimination, iron levels, lipid peroxidation,
and ferroptosis activation (93). Furthermore, autophagy
pathway activation by Tat-Beclin-1, a direct autophagic-
mechanism inducer, selectively promotes ferroptotic cell
death in tumor cells (94). Other studies demonstrate that
ferroptosis stimulation also induces autophagy, evidenced
by an intensification in the conversion of mature LC3 and
autolysosome assembly (95), demonstrating a close interplay
between both signaling mechanisms.

AUTOPHAGY AND EMT

The epithelial-to-mesenchymal transition (EMT) is a key process
involved in the genetic, biochemical, and phenotypic changes
that epithelial cells experience to convert them to mesenchymal
cells, a cellular type with greater versatility and plasticity (96).
Further, has been discovered that the reverse process, designated
mesenchymal-to-epithelial transition (MET), is also crucial in
the metastatic process. When a cell undergoes EMT, it loses
its basal polarity to acquire a fibroblast-like morphology (97).
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EMT is important to allow migratory properties to the cancer
cells, facilitating their entry into the bloodstream. Further, to
find a niche in any tissue, the cancer cells need to exit from
the circulation by experiencing the MET process to acquire
epithelial properties to nest in the tissues and establish metastatic
niches. The most important signals to stimulate EMT occur in
the microenvironment. For example, hypoxia, which appears in
certain parts of the tumor that are oxygen-deprived, generates
EMT through by the activation of HIF-1α, which in turn
stimulates inflammatory cytokines (e.g., TNFα or IL-6), which
contribute to EMT induction (98, 99).Moreover, hypoxia induces
high levels of ROS in cancer cells, which leads autophagy
stimulation (100, 101). Conversely, autophagy also increases the
EMT phenotype after the adaptation to hypoxia (102).

The effect of autophagy on EMT appears controversial and
depends on the type of stimulus, the cell genetic background,
and the cell type. Different cytokines or microenvironmental
conditions that stimulate EMT can provoke opposite reactions
in autophagy (97). For example, salvianolic acid B, an active
component of a Chinese natural product, suppresses EMT in a
renal fibrosis animal model by induction of autophagy, mediated
by silent information regulator 1 (Sirt1) (103). Imprinted
gene pleckstrin homology-like domain family A member 2
(PHLDA2) is upregulated in colorectal cancer, and its knockout
stimulates autophagy via the PI3K/AKT pathway, reducing cell
proliferation, invasion, migration, and EMT process (104). In
gastric cancer, forkhead box K1 (FOXK1) is a transcription factor
involved in cancer development. The inhibition of FOXK1 in
an acidic microenvironment triggers autophagy and reverses
EMT in gastric cancer cells (105). However, in bladder cancer
cells, it has been demonstrated that starvation conditions
promote autophagy, which boosts the EMT process through
TGF-β1/Smad3 signaling, enhancing cell invasion and migration
(106). Moreover, knockdown of the autophagy-related protein
DNA damage-regulated autophagy modulator 1 (DRAM1)
reduces the migrative and invasive capabilities of hepatoblastoma
cells, inactivating autophagy, and EMT (107).

AUTOPHAGY AND METABOLISM

It has been assumed that malignant cells have a hyperactivation
of metabolic activities that increase ROS levels. However, the
known Warburg effect described one century ago in cancer cells,
is based upon the use of glycolysis, even in the presence of oxygen,
to avoid the OXPHOS respiration through the mitochondria
and, consequently, high ROS accumulation (108, 109). The high
use of glycolysis generates huge concentrations of lactic acid
released in the microenvironment. It has been suggested that not
only the avoidance of ROS accumulation gives an extra survival
capacity to cancer cells but also the lactic acid acidifying the
microenvironment (110). For example, it has been described that
in melanoma cells, glucose-deprivation stress induces autophagic
cell death, but this is inhibited by the large concentrations of lactic
acid in the microenvironment (111).

Autophagy can be activated by ROS through diverse signaling
pathways, such as ROS-FOXO3-LC3/BNIP3, ROS-NRF2-P62,

ROS-HIF1-BNIP3/NIX, and ROS-TIGAR; as a result, autophagy
suppresses ROS-promoted damage by eliminating oxidized
substance, keeping cellular homeostasis (112, 113). In cancer,
autophagy also regulates tumor homeostasis, preventing the
accumulation of ROS generated by the hyperactivation of
metabolism (114). On the other hand, in principle, autophagy
counteracts the metabolic switch followed by malignant
transformation by eliminating deteriorated mitochondria to
sustain the maximum bioenergetic needs and preserve the
physiological, metabolic homeostasis. ROS has been described
to oxidize ATG4, resulting in the formation of autophagosomes
and autophagy (115). This process occurs in cadmium-mediated
cell proliferation, migration, and invasion in pulmonary
adenocarcinoma cells (116).

Moreover, ATG12 has been shown to control mitochondrial
biogenesis and metabolic pathways such as glycolysis,
tricarboxylic acid cycle, and β-oxidation in cancer cells (117).
Additionally, tyrosine kinase signaling by hepatocyte growth
factor (HGF) and its receptor tyrosine kinase (MET/HGFR)
is hyperactivated in numerous cancers, inducing proliferation,
invasion, and metastasis. In liver cancer, HGF/MET pathway
activation provokes the Warburg effect and glutaminolysis,
mediating cancer cell development. However, targeting MET
to suppress kinase activation triggers the autophagy pathway
to ensure cell growth and survival (118). In nasopharyngeal
carcinoma, the Epstein-Barr virus latent membrane protein 1
(LMP1) can promote tumor development by its transference
inside extracellular vesicles released by fibroblasts, boosting their
transformation into cancer-associated fibroblasts (CAFs) via the
NF-κB pathway. As a result, CAFs activate autophagy machinery
and mediate a metabolic switch from OXPHOS to glycolysis to
generate energy-rich nutrients for cancer cells, which enhance
their OXPHOS metabolic activity, in a process called the Reverse
Warburg Effect (RWE) (119).

AUTOPHAGY AND THE IMMUNE SYSTEM

Autophagy participates actively in the regulation of the immune
system, playing significant roles in the activation, differentiation,
and survival of immune cells such as T and B cells, monocytes,
macrophages, natural killer (NK)-cells, and dendritic cells.
Thereby, the autophagic process modulates innate and adaptative
immunity (120, 121). Also, autophagy controls the production
and release of cytokines, such as IL-1, IL-18, Type I IFN, and
TNF-α. Apart from immune cells, immune components, such
as cytokines and immunoglobulins, influence the activation and
suppression of autophagic processes. It has been described that
IL-1, IL-2, IL-6, IFN-γ, TNF-α, and TGF-β1 are stimulators
and IL-4, IL-10, and IL-13 are inhibitors of the autophagy
process (122). For example, natural secretion of IL-17 and IL-
22 by γδ T cells can be regulated by IL-1-dependent autophagy
activation (123). Moreover, in antigen donor cells, upon severe
stress exposure (which might be prolonged in time), cell death
will take place, causing autophagy-mediated antigen release and
stimulation of immune and inflammatory responses (124).
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Several studies indicate that a piece of active autophagic
machinery produces tumor-specific antigens in tumor cells
which, after their release due to antigen donor cells, boost
antitumor effects by enhancing antigen presentation and
subsequent T cell activation (120). Autophagy induces liberation
of more ATPs as a required signal to stimulate recruitment
of antigen-presenting cells (APCs) and tumor sensitivity to
cytotoxic T lymphocytes (124). Also, inhibition of autophagy
by targeted drugs or genetic deficiencies in autophagy-
related genes such as ATG5, ATG7, ATG12, Beclin-1, and
VPS34 reduces ATP release and hinders the recruitment
of required immune cells from boosting antitumor immune
responses (125). Furthermore, radiotherapy- or chemotherapy-
induced autophagy mediates the release of the mannose-6-
phosphate receptor (MPR) without its natural ligand from the
autophagosome and its movement back to the cell surface,
promoting T cell activation after granzyme B binding (126).
Autophagy has also been involved in antigen processing
for major histocompatibility complex class I (MHC-I) and
II (MHC-II) presentation, including cross-presentation. To
give an example, alpha-tocopheryloxyacetic acid (α-TEA),
derived from vitamin E, promotes autophagy-controlled cross-
presentation of tumor antigens in lung cancer cells to
the immune system, mainly antigen-specific cytotoxic T
lymphocytes (127).

Moreover, autophagy can suppress immune effector
mechanisms against tumors. For example, the hypoxia
condition triggers autophagy machinery in lung cancer
cells, which suppresses T cell antitumoral activity through
phosphorylation of STAT3 and subsequent HIF-1α signaling
pathway activation (128). Tumor susceptibility to the cytotoxic
effect and tumor cell lysis of T lymphocytes are restored through
hydroxychloroquine (HCQ)-mediated autophagy inhibition or
knockdown of ATG and Beclin-1 genes (125, 129). Moreover,
hypoxia-induced autophagy also interrupts the anticancer
killing activity of NK-cells by selective degradation of NK-
derived granzyme B, which can be reversed after autophagy
inhibition by targeting Beclin-1 (130, 131). On the other hand,
tumor-associated macrophages (TAMs) are key components
of the immune system and the main drivers of inflammatory
microenvironment inside tumor and cancer progression (132).
According to a recent study in metastatic ovarian cancer,
TAMs that specifically express T-cell immunoglobulin and
mucin domain-containing 4 (TIM4) showed high oxidative
phosphorylation and adapted mitophagy to mitigate oxidative
stress (133). Besides, genetic deficiency of autophagy protein
FIP200 ensued in Tim-4+ TAM loss via ROS-mediated
apoptosis increasing T cell-immunity and tumor inhibition in
vivo (133).

Therefore, autophagy activation can induce antitumor
immune responses but can also mediate inhibition of immune
cell activity against tumors to allow cancer cells to escape
from the immune system. Overall, autophagy has a context-
dependent function as an activator and inhibitor of the
immune response in cancer cells, which might be crucial in
current immunotherapies.

AUTOPHAGY AND NON-CODING RNAs

Non-coding RNAs (ncRNAs) comprise 98% of the human
genome, and their biological functions consist of chromatin
and epigenetic modifications, regulation of gene expression,
transcription, mRNA splicing, regulation of protein localization
and activity, and apoptosis, among others (134). These regulatory
RNAs are classified into two groups: long ncRNAs (lncRNAs),
larger than 200 nucleotides, and small ncRNAs, which mainly
comprise microRNAs (miRNAs), small interfering RNAs
(siRNAs), small nuclear RNAs (snRNAs), small nucleolar RNAs
(snoRNAs), circular RNA (circRNAs), and piwi-interacting
RNAs (piRNAs) (135). The role of ncRNAs in cancer cells
has been associated with many physiological and pathological
processes, such as proliferation, differentiation, migration,
invasion, metastasis, and drug resistance (136).

Recent studies have described the mechanisms of several
ncRNAs in the regulation of the autophagy process in
tumor cells (137). For instance, circNRIP1 was proven to
modulate the autophagy and cancer cell metabolism switch
into the Warburg effect by alteration of AKT1 expression
and, consequently, the AKT/mTOR pathway, which induces
tumor development and metastasis in gastric cancer (138).
Moreover, miRNA-133a-3p suppresses tumor growth, and the
development of metastatic lesions in gastric cancer, inhibiting
autophagy-mediated glutaminolysis by targeting GABARAPL1
(a GABARAP subfamily) and ATG13 (139). Additionally, miR-
142-3p was demonstrated to target ATG5 and ATG16L1, causing
the inhibition of autophagy, producing an increased sensitization
of hepatocellular carcinoma cells to sorafenib (140). Also,
miR-519a sensitizes glioblastoma cells to temozolomide by the
activation of autophagy via the STAT3 pathway, which generates
Bcl-2/Beclin-1 complex dissociation and resultant autophagy-
mediated apoptosis (141). There are many other miRNAs, such
as miR-124, miR-144, miR-224-3p miR-301a/b, and miR-21,
involved in the alteration of autophagy in many cancer cell
types, either activating or inhibiting, which influence tumor
resistance to conventional therapy (142–145). Additionally,
lncRNAs control autophagy mainly by directly or indirectly
regulating ATG expression (146). As an example, knockdown

in colorectal cancer cells of homeobox transcript antisense
intergenic RNA (HOTAIR), a lncRNA that has been widely
studied, induces upregulation of miR-93 and a downregulation of
ATG12, resulting in a blockage of autophagy and the induction
of apoptotic cell death (147). In hepatocellular carcinoma,
the lncRNAs phosphatase and tensin homolog pseudogene 1
(PTENP1) activate autophagy, interacting with miR-17, miR-
19b, and miR-20a, denying their targeting of the autophagy
genes ULK1, ATG7 and p62/SQSTM1, and the tumor suppressor
PTEN. As a result, the overexpression of PTENP1 reduces tumor
size, restrains proliferation, suppresses angiogenesis, and induces
cancer cell apoptosis (148). Also, highly upregulated lncRNA
in hepatocellular carcinoma cells diminishes their sensitivity
to chemotherapeutic drugs by autophagy triggering, mediated
by suppressing silent information regulator 1 (Sirt1) (149).
Other lncRNAs, such as XIST, BLACAT1, and MEG3, also
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play a pivotal role in the regulation of autophagy processes in
different types of tumors, which modulate cancer progression
and chemotherapeutic resistance (150–152).

AUTOPHAGY AND CSCs (CANCER STEM
CELLS)

The cancer stem cell hypothesis proposes that many cancer types
originate from cancer cells with stemness-like characteristics,
known as cancer stem cells (CSCs) (153). CSCs are a
subpopulation of cancer cells that possess the abilities of
differentiation, tumor initiation, pluripotency, and self-renewal
capabilities, being able to reconstruct the original tumor
by themselves. CSCs are the cell type most representative
of resistance to conventional anticancer therapies (including
radiation and chemotherapy) in comparison to other cells
that constitute the tumor (154). These features confer CSCs
the abilities of tumor relapse and metastasis dissemination.
Besides, CSCs show the capacity to grow under serum
starvation, forming spheres in 3D conditions, maintaining high
aldehyde dehydrogenase (ALDH) activity while showing cell
cycle dysregulation (155). Moreover, under the term CSCs, there
is a large heterogeneous population of different CSCs with
different degrees of malignancy (156).

Many studies underline the crucial role of the autophagy
mechanism in the maintenance of CSC homeostasis, features,
and functions inside tumor and cancer progression (157).
CSCs use autophagy to reinforce their resilience against
microenvironmental stress conditions, such as starvation and
hypoxia, promoting their survival to preserve their stemness
phenotype (155). It has been proposed that through TGF-
β1 inducing EMT in CSCs; it is autophagy activation that
enables them to invade the circulation. In breast cancer, the
inhibition of the autophagy-related proteins Beclin-1, ATG12,
and LC3 reduces the stemness-like phenotype, reinforcing that
the activation of protective autophagy supports the maintenance
of the breast CSC population (158, 159). In the same line of
evidence, autophagy inhibition by knockdown of ATG5 and
ATG7 drastically decreases the stemness features of colorectal
CSCs, evidenced by a reduction in the expression levels of
stemness markers (OCT4, SOX2, and NANOG), increased
cellular senescence, and the decline of cell proliferative capacities
in CSCs in tumors (160). As would be expected, enhancement
of the autophagy pathway in colon cancer induces resistance
to anticancer therapies and an increase in the stemness-like
phenotype (161). In glioblastoma, the autophagy regulator
p62/SQSTM1 and DNA damage-regulated autophagy modulator
1 (DRAM1) is highly expressed in CSCs and control their
migrative and invasive capacities (162, 163).

Additionally, some studies associate pluripotency-related
factors with autophagy activation (55). For example, in non–
small lung carcinoma, melanoma, and breast cancer, NANOG
induces autophagy under hypoxia conditions in CSCs by direct
regulation of BNIP3, a protein that interacts with Bcl-2 and
mediates the disruption of the Bcl-2/Beclin-1 interaction (164),
promoting tumor cell immune resistance (165). Furthermore,

SOX2 induces autophagy through enhancement of ATG10 gene
expression in colon cancer cells (165). These results corroborate
that autophagy is an essential process involved in stem-like
phenotype maintenance and tumor resistance to treatment
in CSCs.

AUTOPHAGY IN STRESS RESPONSES,
CANCER PROGRESSION, AND
METASTASIS

It is broadly known that a basal level of autophagy is present
in all cell types that naturally occurs. In contrast, an increase
of the autophagy pathway or the autophagy flux accounts
when cells are exposed to certain levels of stress (166). The
autophagic stress response consists of two parts: a very rapid
increment (minutes or hours after exposure to the stressor) in
the autophagic flux through post-translationalmodifications, and
a long term autophagic response consisting in the activation
of stress-responsive transcription programs, being transcription
factors such as p53, NF-κB, and STAT3 relevant in regulation of
the autophagy facing stressful conditions (167).

As we analyze before, autophagy activity can be tumor
suppressive or promoting depending on the scenario, such
as nutrient availability, microenvironment influence, immune
response, and among others (168). Genomic analysis of human
cancers has identified that oncogenic events involving classical
oncogenes and tumor suppressor genes have a key role in
autophagy including PI3K, AKT1, PTEN, proteins of the Bcl-
2 family, among others (169). However, functional evaluation
of autophagy at the clinical level is demanding because the
autophagic flux is not possible to measure in tumor samples
of patients (168, 170). Even so, different studies corroborate
that autophagy is upregulated in different types of cancer since
progression to metastasis, and expression of several autophagy
markers has been correlated with poor outcomes (171). As an
example, the identification of a novel autophagy associated-
gene signature can predict the prognosis of cancer patients with
hepatocellular carcinoma. Such five genes are HDAC1, RHEB,
ATIC, SPNS1, and SQSTM1, that were associated with overall
survival in hepatocellular carcinoma patients (172). Of interest,
the expression of autophagy-related genes was correlated with
drug sensitivity in hepatocellular carcinoma cell lines (172).

Autophagic activity plays the primary role in the regulation of
the different metastatic phases, including invasion, intravasation,
survival inside the circulation, extravasation, survival, and
growth in the second site; and also in the diverse mechanisms
involved in metastasis, such as focal adhesion, integrin
trafficking, cytoskeleton remodeling, anoikis resistance,
detachment from the extracellular matrix, EMT, and tumor-
stromal interaction (170, 173). Although it is challenging to
determine autophagy flux in tumor patients, surrogate markers,
such as LC3, have found a correlation between increased levels
of autophagy and metastasis generation in varied types of cancer
(112, 174, 175). Moreover, novel proteins related to metastasis
have been shown to have a role in autophagy. For example,
Nuclear protein 1 (NUPR1) is a molecule regulated in response
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to stress, that has been implied in the progression of many
cancers including of breast, pancreas, brain, and thyroid, in
the development of metastasis (176, 177). NUPR1, initially
associated with the rescue of cells to doxorubicin-induced
genotoxic stress, has been shown to have a multifaceted role,
including involvement in autophagy (178). Chaperones represent
other examples. BAG3, a multifunctional HSP70 co-chaperone,
exerts various physiological functions, including stress response
and apoptosis, and oncopathological roles such as cell adhesion,
metastasis, angiogenesis, stimulation of autophagy flux, and
others. Also, BAG3 interacts with HSP70 and LC3 delivering
polyubiquitinated proteins to the autophagy pathway. (179).

AUTOPHAGY AND CANCER CELL
RESISTANCE

Intriguingly, different chemotherapeutic drugs may exert
opposite effects on autophagy, resulting in cell death or cell
survival. Autophagy in cancer cells during stress might emerge
spontaneously due to gene mutations/epigenetic modifications
or due to an imbalance of the cellular capacity to control
its growth during adverse conditions. Moreover, ribosomal
stress, ER stress, or the unfolded protein response (UPR)
can trigger autophagy (180). In the last decade, the role of
autophagy has been reinforced as a protective mechanism to
mediate cell survival during chemotherapy, conferring MDR

(181). For example, ATP-binding cassette (ABC) transporters,
specifically ABCB1, also known as multidrug resistance protein
1 (MDR1), have been associated with MDR against a wide
variety of chemotherapeutic agents (6). The expression in
ABCB1 is positively correlated with autophagic-related genes
Beclin-1, LC3, Rictor, and poor outcome survival of colorectal
cancer patients (182), highlighting an association between
autophagy triggering and MDR. It has been demonstrated that
resistance to FGFR1-targeted therapy promotes autophagy via
the TAK1/AMPK pathway (183).

Furthermore, several studies proved that autophagy
stimulated by anti-cancer drugs probably enable the development
of multiple resistance feature against epirubicin, paclitaxel,
tamoxifen or herceptin, through inhibition of apoptosis in breast
cancer cells (184). Besides, miR-495-3p was found to regulate
autophagy and, consequently, MDR by its interaction with the
GRP78/mTOR axis in gastric cancer (185). Another study showed
that autophagy develops a protective function in multi-drug
resistant ovarian cancer cells mediated by vincristine, and the
inhibition of autophagy resensitizes tumors cells to vincristine
and restore its killing effects (186). Our group demonstrated
that the overexpression of PTOV1, induced resistance in cells
through autophagy activation, a fact appreciated in head and
neck squamous carcinoma cell lines. Also, we observed that
both in cell lines and head and neck cancer patients resistant to
cisplatin, they overexpressed markers of autophagy and PTOV1.
Of interest is that some of these markers had prognostic value

FIGURE 4 | Autophagy vesicles in cancer cells sensitive and resistant to chemotherapy. TEM images showing the presence of autophagy vesicles in JHU029 cell lines

derived from laryngeal cancer, sensitive, and resistant (R) to cisplatin (see arrows). As was demonstrated by our group (187), cancer cells resistant to chemotherapy

generate more autophagy vesicles than sensitive ones, which is correlated with the resistant phenotype developed.
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when correlated with clinical variables (Figure 4). Besides, we
suggested that the acquisition of resistance to cisplatin is related
to the development of 5-fluorouracil resistance, supporting the
presence of a common regulatory resistance pathway (187).

Moreover, it has been described that cisplatin or 5-
fluorouracil promotes cytoprotective autophagy through
upregulation of Beclin-1 in bladder cancer cells (188), an
effect that has also been reported in other tumor cells, such
as laryngeal, ovarian, esophageal, and colon cancer models
(189–191). Upregulation of another autophagy-related gene,
ATG7, also induces autophagy after treatment with cisplatin
or 5-fluorouracil in esophageal cancer cells (192, 193). Of

interest, the chemotherapeutic agents’ cisplatin, temozolomide,
and daunorubicin have been seen to stimulate protective
autophagy by upregulation of the extracellular signal-regulated
kinase (ERK) pathway, a mechanism observed in non-
small cell lung cancer, ovarian cancer, glioma, and myeloid
leukemia (194–198). Also, autophagy stimulation via AMPK,
promoted by the chemotherapeutic agents’ temozolomide,
5-fluorouracil, and docetaxel, confers resistance in different
tumor types, such as prostate cancer, gastric cancer, and glioma
(199–201). Besides, JNK upregulation induces autophagy-
mediated chemoresistance to 5-fluorouracil in colorectal cancer
cells (202).

FIGURE 5 | Anti-autophagic therapy can be efficient in the initial stages of tumors in the presence of resistance or CSCs. In the figure are depicted several scenarios

where acquired or intrinsic resistance is already present in malignant tumors. (A) Acquired resistance appears consequently to the conventional treatment therapy, but

it cannot progress due to the anti-autophagic therapy (e.g., hydroxychloroquine). (B) If resistant cells are present in the tumors, they cannot grow expansively because

of the anti-autophagic therapy. (C) Acquired resistance appears consequently to the conventional chemotherapeutic treatment. Resistant cells survive largely

supported by the activation of autophagy, either from surrounding cancer cells or from CAFs. (D) While conventional chemotherapeutic treatment annihilates the bulk

of cancer cells, it favors the spread of resistant cells, including the CSCs. At a certain time of tumor development, the hypoxic conditions enable EMT process,

allowing cancer cell plasticity to enter into the circulation. CAF, cancer-associated fibroblast; TIL, tumor-infiltrating lymphocyte; CC, cancer cell.
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Furthermore, chemotherapeutic inhibition of the mTOR
pathway induces an autophagy process that, in sensitive
cells and after long-exposure treatment, provokes cell death.
However, if cancer cells have already reached some degree
of resistance, the inhibition of mTOR can also generate
JNK activation, P-ERK upregulation, and Bcl-2/Bcl-xL
phosphorylation in the breast, gastric and esophageal
cancer, with subsequent activation of protective autophagy
(203–205). Overall, while conventional chemotherapy
treatment is used extensively against malignant tumors and
is efficient against the bulk of cancer cells, a certain small
population of cancer cells (resistant cells and CSCs) activates
autophagy to survives therapy. Figure 5 illustrates that a small
quantity of resistant cells or CSCs present in tumors can be
annihilated if a combination of conventional therapy and
anti-autophagic therapy is applied from the beginning of the
treatment (Figure 5).

AUTOPHAGY AS A TARGET FOR
THERAPEUTIC PURPOSES: INHIBITION
OR STIMULATION?

The protective function of autophagy in healthy cells in response
to soft or severe stimuli, such as starvation or hypoxia,
acts as a protective mechanism to ensure cell survival, and
if healthy cells cannot restore the damage, they will die
by apoptosis (48). Thereby, autophagy activation acts as a
tumor suppressor mechanism, preventing tumor initiation by
maintaining metabolic homeostasis and suppressing genomic
instability (Figures 6A,B). We propose a model where, if a
severe stimulus occurs in cancer cells, such as chemotherapy
or radiotherapy, protective autophagy emerges in most cases
when apoptosis is defective (a common feature of cancer cells)
(Figure 6C). Nevertheless, if the stress exceeds a threshold
incompatible with cellular life, autophagy activation can mediate

FIGURE 6 | Distinctive responses of normal and cancer cells to different stimuli. The autophagy response depends on the intensity and duration of the stimuli (external

or internal), highlighting a threshold in the autophagy mechanism that would determine cellular outcome. (A) Normal cells under soft stimuli, such as starvation, will

ensure their survival through protective autophagy. (B) Severe stimuli on normal cells can induce cytotoxic autophagy or apoptosis. (C) In contrast, soft or severe

stimuli over cancer cells (for example, anti-EGFR treatments) will provoke protective autophagy, which will confer survival properties, drug resistance, and metastasis.

In this case, the use of autophagy inhibitors would provoke cell death by autophagy or occasionally by apoptosis. (D) Last, severe stimuli able to reach a threshold

can increase cytotoxic autophagy.
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cell death depending on the genetic background, tumor
evolution, and microenvironment (181). However, as mentioned
above, the lack of consensus of whether there is a cytotoxic form
of autophagy or stimulating autophagy in several tumor models
under some circumstances just promotes or facilitates another
type of cell death is a complex field (40, 206).

By one side, some anticancer treatments trigger autophagy
as a death executioner, causing a cytotoxic effect that ends in
autophagic cell death (30). This therapeutic strategy can be
suitable in tumors with deficiencies in the activation of the
apoptotic programmed cell death pathway, such as tumor cells
lacking functional p53 (207). According to our model, a long-
term autophagy activation strategy, generated by chemotherapy,
radiotherapy, or targeted drugs, can be used to generate cytotoxic
autophagy and cancer cell death (Figure 6D). For example,
long-term treatment of PtAcacDMS, a novel platinum-based

drug, triggers both apoptosis and autophagy, resulting in cell
death in neuroblastoma cells (208). However, stimulation of
autophagic cell death by different targeted drugs has been
considered by researchers as an attractive alternative to treat
some tumors that show some signs of apoptosis. The most
representative example is the inhibition of the mTOR pathway
as the main method to trigger autophagy in preclinical and
clinical studies. For example, rapamycin is a selective inhibitor
of mTORC1 and causes activation of autophagy (209). In several
studies, rapamycin has been demonstrated to suppress cancer
proliferation and induce autophagic cell death in different cancer
models, such as neuroblastoma, osteosarcoma, and sarcoma
(210–212). Rapamycin analogs (rapalogs), such as temsirolimus
and everolimus, also inhibit the mTOR pathway in renal
cancer and breast cancer, among others (213, 214). Other
types of autophagy activators include the BH3 mimetics (e.g.,

FIGURE 7 | Autophagy stimulation and inhibition in cancer cells. During tumor development, autophagy inhibition, by targeting autophagy-related proteins, such as

ATG7, Beclin-1, p62/SQSTM1, and DRAM1, promotes the sensitization of cancer cells to conventional anticancer treatments, such as chemotherapeutic agents,

including CDDP and 5-FU. In contrast, autophagy stimulation, evidenced by overexpression of LC3II and p62/SQSTM1, and by high levels of TGF-β1, provokes

cancer cell resistance to therapies (e.g., chemotherapy and radiation), development of an aggressive phenotype, and increment of migratory and invasive capacities.

In this case, several autophagy inhibitors, such as CQ, HCQ, or 3-MA, can re-sensitize resistant tumors and promote tumor regression and cancer cell death. CQ,

chloroquine; HCQ, hydroxychloroquine; 3-MA, 3-methyladenine; CDDP, cisplatin; 5-FU, 5- fluorouracil.
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TABLE 1 | Anticancer drugs that inhibit autophagy used in combination with chemotherapy.

Autophagy inhibitor Function Tumor type Chemotherapeutic (Pre-)

clinical

phase

NCT number Ref

Chloroquine Inhibits acidification of lysosome

and autophagosome-lysosome

formation

Glioblastoma,

Gliosarcoma

Temozolomide I NCT04397679 –

Glioma, Gliomatosis

Cerebri

Temozolomide III NCT03243461 –

Glioblastoma,

Astrocytoma

Temozolomide II NCT02432417 –

Glioblastoma Temozolomide I NCT02378532 –

Solid Tumors Carboplatin, Gemcitabine I NCT02071537 –

Pancreatic Cancer Gemcitabine I NCT01777477 (227)

Multiple Myeloma Cyclophosphamide II NCT01438177 –

Glioblastoma Not specified III NCT00224978 (228)

Hydroxy Chloroquine Inhibits acidification of lysosome

and autophagosome-lysosome

formation

Osteosarcoma Docetaxel, Gemcitabine I/II NCT03598595 –

Pancreatic Cancer Gemcitabine, Nab-Paclitaxel II NCT03344172 –

Small Cell Lung Cancer Gemcitabine, Carboplatin II NCT02722369 –

Acute Myeloid

Leukemia

Mitoxantrone, Etoposide I NCT02631252 –

Pancreatic Cancer Gemcitabine, Abraxane II NCT01978184 –

Multiple Myeloma Cyclophosphamide I NCT01689987 –

Non-Small Cell Lung

Cancer

Paclitaxel, Carboplatin II NCT01649947 –

Pancreatic Cancer Gemcitabine, Nab-Paclitaxel I/II NCT01506973 (229)

Pancreatic Cancer Capecitabine and Radiation II NCT01494155 –

Colorectal Cancer Oxaliplatin, 5-fluorouracil I/II NCT01206530 –

Pancreatic Cancer Gemcitabine I/II NCT01128296 (230)

Colorectal Cancer Capecitabine, Oxaliplatin II NCT01006369 –

Prostate Cancer Docetaxel II NCT00786682 –

Breast Cancer Ixabepilone I/II NCT00765765 –

Non-Small Cell Lung

Cancer

Carboplatin, Paclitaxel I/II NCT00728845 –

Solid Tumors Temozolomide I NCT00714181 –

Glioblastoma Temozolomide I/II NCT00486603 (231)

Wortmannin Inhibits PI3KC3 complex and

autophagosome formation.

Lung cancer, Prostate

cancer

Docetaxel Pre-clinical NA (232)

Ovarian cancer Cisplatin Pre-clinical NA (233)

3-Methyl Adenine

(3-MA)

Inhibits PI3KC3 complex and

autophagosome formation.

Non-Small Cell Lung

Cancer

Camptothecin Pre-clinical NA (234)

Colon cancer Oxaliplatin Pre-clinical NA (235)

Spautin-1 Enhances Beclin1 ubiquitination

and prevent PI3KC3 complex

formation

Melanoma Cisplatin Pre-clinical NA (236)

Osteosarcoma cells Doxorubicin Pre-clinical NA (237)

LY294002 Inhibits PI3KC3 complex and

autophagosome formation.

Oesophageal

squamous cell

carcinoma

5-fluorouracil Pre-clinical NA (238)

Resveratrol Regulates S6K1, inhibit

ROS/ERK pathway

Glioma Temozolomide Pre-clinical NA (197)
Ehrlich ascitic

carcinoma

Doxorubicin Pre-clinical NA (239)

4-Acetylantroquinonol B Downregulation of ATG-7 and

ATG-5

Ovarian cancer Cisplatin Pre-clinical NA (240)

(–) information available at www.clinicaltrials.gov, NA: Not Apply.
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gossypol, obatoclax), which provoke Bcl-2/Beclin-1 complex
dissociation through interaction with Bcl-2 (215, 216). Histone
deacetylase inhibitors, such as suberoylanilide hydroxamic acid
(e.g., SAHA or Vorinostat), have also been implied in the
activation of apoptosis and autophagy by inactivation of the
PI3K/AKT/mTOR pathway (217, 218). Also, natural compounds
have demonstrated antitumor properties through autophagy
stimulation. For example, curcumin promotes autophagy-
mediated cell death at high doses by the oxidative stress pathway.
However, at low concentrations of curcumin, autophagymediates
cell protection through AMPK and ER stress pathways,
evidencing a dual effect of curcumin, depending on the duration
and concentration administered (219).

It is frequently observed that tumor cells activate autophagy
to protect themselves from the stress caused by anticancer
treatments, such as chemotherapy, radiotherapy, targeted
therapy, or immunotherapy (220, 221). This activation occurs
under prolonged treatments, due to the waiting time for
patients to recover between different chemotherapy sessions;
this process can also be considerably accelerated if the therapies
are not effective. Therefore, upregulation of autophagy due
to chemotherapeutic treatment in some cancer types (e.g.,
pancreatic cancer) or due to specific genetic conditions (e.g., Ras
gene family mutations) promote drug resistance, which permits
tumor recurrence, invasion, andmetastatic development (3, 222).
Our group has suggested that for particularly aggressive tumors,
which might contain many mutations at the genetic and non-
genetic levels, the activation of autophagy is a mechanism used
by cancer cells to acquire an MDR phenotype (223). In this
scenario, the inhibition of the autophagic process concomitantly
to conventional therapy may be the appropriate strategy. The
lysosomal inhibitors chloroquine (CQ) and its analog, HCQ, are
the most extensive autophagy inhibitors in research and clinical
studies (224). CQ and HCQ suppress autophagy via alteration
of lysosomal pH and inactivation of acidic hydrolases, resulting
in blocking of autophagolysosomal formation, accumulation of
autophagosomes, and inactivation of autophagic degradation
(157, 224, 225).

Moreover, the inhibition of the PI3KC3 complex is another
strategy to inhibit autophagy in cancer cells (207). Wortmannin,
3-Methyl Adenine (3-MA), Spautin-1, and LY294002 have shown
promising results in preclinical studies in coadministration with
chemotherapeutics such as docetaxel, cisplatin, doxorubicin,
or 5-fluorouracil (Figure 7). Resveratrol, which controls S6K1
and inhibits the ROS/ERK pathway, and 4-Acetylantroquinonol
B, which reduces ATG-7 and ATG-5 expression, are two
compounds used to reduce the autophagic process with
promising preclinical outcomes. Moreover, HCQ treatment has
been used to treat resistant cells to radiotherapy through in
silico-designed nanoparticles for autophagy inhibition (226).
Many studies in preclinical models (tumor cell lines and animal
models) have demonstrated that CQ and HCQ induces cancer
cell killing through treatment alone or in combination with
targeted agents, radiotherapy, or chemotherapy (1). Besides, CQ
and HCQ have been part, and are currently part, of several
clinical trials in cotreatment with chemotherapeutics of different
types of cancer, including glioblastoma, multiple myeloma, small

and non-small cell lung, colorectal, pancreatic, prostate, and
breast cancers (Table 1). Although clinical results to autophagy
inhibition by CQ or HCQ has not been as consistent as seen
in preclinical studies until now, the overall results published
in clinical trials have proved their safe use as cancer therapy
and their commitment to the biological target. Therefore, these
autophagy inhibitors continue being used in active clinical trials
in cotreatment with target therapy and chemotherapeutic drugs,
including the International Cooperative Phase III Trial (HIT-
HGG-2013) in Glioma and Gliomatosis Cerebri of temozolomide
in cotreatment with valproic acid or CQ (NCT03243461).

Overall, our model proposes that if acquired or intrinsic
resistance is present at the initial stages of a tumor, it is
possible to eradicate aggressive resistant cells by applying
an autophagy inhibitory therapy from the beginning of the
treatment concomitantly to conventional therapy. Personalized
medicine to predict the status of autophagy (activated or
defective) in cancer cells and the presence of specific markers
able to predict the resistance or sensitization of cancer cells
are key factors for predicting and choosing the best treatment
for cancer patients. The incorporation of molecular (e.g., next-
generation sequencing) and pathological (assessment of the
overexpression of autophagy-related proteins or determination
of the lymphocyte infiltration of tumors) techniques would
improve the focus toward the most appropriate therapy.

CONCLUSIONS

- The need to use, in general terms, high doses of conventional
therapy to achieve therapeutic effects is the cause of the severe
side effects of chemotherapies. As a result, chemotherapy
sessions must be spaced to let patients recover from the side
effects. This time-lapse is exploited by tumor cells to recover,
proliferate, develop drug resistance, and create metastases
responsible for most cancer deaths.

- How to tackle the acquisition of therapy resistance by tumors
represents one of the most important challenges in cancer.

- Autophagy seems to favor cancer cells to acquire resistance;
however, autophagy has a context-reliant function in cancer.

- Anti-autophagic treatments (e.g., HCQ) are very tolerable for
patients and rarely cause severe side effects.

- It is of crucial importance that an effective treatment should
be given to each cancer patient as the first therapeutic
choice. Personalized medicine includes (a) the culturing
of patient biopsies using spheroids, organoids, or mouse
models to advance the benefits of a particular treatment
and (b) the identification of genetic alterations by next-
generation sequencing, which would point out specific drugs
for particular mutations.
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Advances in immunotherapy have achieved remarkable clinical outcomes in tumors with

low curability, but their effects are limited, and increasing evidence has implicated tumoral

and non-tumoral components of the tumor microenvironment as critical mediators of

cancer progression. At the same time, the clinical successes achieved with minimally

invasive and optically-guided surgery and image-guided and ablative radiation strategies

have been successfully implemented in clinical care. More effective, localized and safer

treatments have fueled strong research interest in radioimmunotherapy, which has shown

the potential immunomodulatory effects of ionizing radiation. However, increasingly

more observations suggest that immunosuppressive changes, metabolic remodeling,

and angiogenic responses in the local tumor microenvironment play a central role in

tumor recurrence. In this review, we address challenges to identify responders vs.

non-responders to the immune checkpoint blockade, discuss recent developments in

combinations of immunotherapy and radiotherapy for clinical evaluation, and consider

the clinical impact of immunosuppressive changes in the tumor microenvironment in

the context of surgery and radiation. Since the therapy-induced modulation of the

tumor microenvironment presents a multiplicity of forms, we propose that overcoming

microenvironment related resistance can become clinically relevant and represents a

novel strategy to optimize treatment immunogenicity and improve patient outcome.

Keywords: radiotherapy, immunotherapy, tumor microenvironment, surgery, cancer

INTRODUCTION

Cancer treatment modalities vary considerably depending on stage and location, however surgical
excision and radiation therapy are an integral part of treatment for most solid tumors. In an era
of exceptionally dynamic evolution of knowledge, some recently published clinical studies have
reshaped the role of surgery such as neoadjuvant immunotherapy combinations leading to less
invasive surgery for advanced melanoma, antiangiogenics as an alternative to immediate surgery
in renal cell carcinoma or upfront treatments making surgery possible for more patients with
pancreatic cancer (1). Most therapeutic combinations in clinical trials are based on knowledge
of resistance mechanisms and recently immunotherapy, which has revolutionized the clinical
management of multiple tumors, has been included in multiple clinical trials which are mainly
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based on T cell and pursue a maintained antitumor immune
response. Accumulating evidence suggests that conditioning the
tumormicroenvironment (TME) toward an immunomodulatory
state may have a major impact on cancer outcome (2, 3).
However, the TME comprises all the non-malignant cellular and
non-cellular components of the tumor, including the immune
system, blood cells, endothelial cells, fat cells, and the stroma.
The tumor stroma is a critical component of the TME with
cancer-promoting capacity as part of the response to treatments
and leads to cancer resistance. For example, immunosuppressive
cytokine secretion and metabolic alterations strongly participate
in the suppression of host immune responses against tumor
cells facilitating tumor proliferation. Extensive work exploring
the interactions between cancer cells and the TME has been
done but the advancements still require a better understanding
of the potential targets before implementation in conceptual
antitumor strategies. In this regard, recent advances resulting
in more effective and localized radiation treatments (stereotactic
radiosurgery and stereotactic body radiotherapy, SRS/SBRT) can
achieve an effective alteration and ablation of tumor stromal
tissue, which can be a singular advantage against tumoral
immune evasion [reviewed in (4)]. In addition, technological
developments have led to minimally invasive surgery with
evident clinical benefits in terms of less invasiveness, excellent
outcomes, and a shorter hospital stay (5).

In this review, we address challenges to identify responders
vs. non-responders to the immune checkpoint blockade (ICB),

Abbreviations: 4-1BB, tumor necrosis factor receptor superfamily member 9,

CD137; A2AR, adenosine receptor A2; APC, antigen-presenting cells; ATM, ataxia

telangiectasia mutated; ATP, adenosine triphosphate; CAFs, cancer-associated

fibroblasts; CCL2, CC chemokine receptor 2; CD28, cluster of differentiation 28;

CD39, cluster of differentiation 39; CD73, cluster of differentiation 73, ecto-5′-

nucleotidase; CD80, cluster of differentiation 80; CD86, cluster of differentiation

86; cGAS, cyclic GMP-AMP synthase; CHK1, checkpoint kinase 1; CSF-1, colony

stimulating factor 1; CSF-1R, colony stimulating factor 1 receptor; CTLA-4,

CTL antigen 4; CXCL1, C-X-C motif chemokine ligand 1; CXCL2, C-X-C motif

chemokine ligand 2; CXCL10, C-X-C motif chemokine ligand 10; CXCL16, C-

X-C motif chemokine ligand 16; CXCR4, C-X-C chemokine receptor type 4;

DAMPs, damage-associated molecular patterns; DC, dendritic cells; DDR, DNA

damage response; DNA-PK, DNA-dependent protein kinase; ECM, extracellular

matrix; HIF-1α, hypoxia-inducible factor-1α; HLA, human leukocyte antigen;

HMGB1, high mobility group box 1; HSP90, heat shock protein 90; ICB,

immune checkpoint blockade; IFN, interferon; IFN-γ, interferon gamma; IL-4,

interleukin 4; IL-6, interleukin 6; IL-10, interleukin 10; IL-13, interleukin 13; IL-

35, interleukin 35; irAEs, immune-related adverse events; KPNA2, karyopherin

subunit alpha 2; LAG3, lymphocyte-activation gene-3; LUM, LUM imaging

system (Lumicell Inc.); LUM015, cathepsin activatable fluorescent probe; MDSCs,

myeloid-derived suppressor cells; MHC-I, major histocompatibility complex-I;

NF-κβ, nuclear factor-kappa beta; NK, natural killer; nMOFs, nanoscale metal-

organic frameworks; NP, nanoparticles; NSCLC, non-small cell lung cancer;

OX-40, tumor necrosis factor receptor superfamily member 4, CD134; PARP,

poly(ADP-ribose) polymerase; PD-1, programmed death-1; PD-L1, programmed

death-ligand 1; ROS, reactive oxygen species; SBRT, stereotactic body radiotherapy;

SDF-1, stromal cell-derived factor-1; SRS, stereotactic radiosurgery; STING,

stimulator of interferon genes; TAMs, tumor-associated macrophages; TGFβ,

transforming growth factor β; Th1, T helper type 1; Th2, T helper type 2; TIGIT, T

cell immunoglobulin and ITIM domain; TIM-3, T cell immunoglobulin andmucin

domain-3; TLR, toll-like receptors; TLR3, toll-like receptor 3; TLR7/8, toll-like

receptors 7/8; TLR9, toll-like receptor 9; TMB, tumor mutational burden; TME,

tumor microenvironment; TNFα, tumor necrosis factor α; Treg, regulatory T cells;

Trex1, three-prime repair exonuclease 1; VEGF, vascular endothelial growth factor.

discuss recent developments in combinations of immunotherapy
and radiotherapy for clinical evaluation, and consider the clinical
impact of immunosuppressive changes in the TME in the context
of surgery and radiation. Overcoming microenvironment related
resistance may have a fundamental impact on treatment efficacy
and patient outcome.

CHARACTERIZING THE IMMUNE
FUNCTION IN THE RESPONSE TO
CHECKPOINT INHIBITOR
IMMUNOTHERAPY

Combinatorial Approaches to Treat
Differences in the Immune Contexture of
the TME
Immunotherapeutic approaches have transformed treatment and
outcomes for some solid tumors, in particular, melanoma and
non-small cell lung cancer (NSCLC), but do not benefit the
majority of patients with cancer and have failed to induce broadly
durable responses. Immunotherapy with ICB uses monoclonal
antibodies that target the inhibitory proteins CTL antigen 4
(CTLA-4) or programmed death-1/programmed death-ligand 1
(PD-1/PD-L1) on T cells or cancer cells to unleash the immune
response. However, response rates vary widely and predictive
factors of response to ICB remain elusive. It has been suggested
that PD-L1 expression, high tumor mutational burden (TMB)
which is highly influenced by the epitopes displayed in the human
leukocyte antigen (HLA) genes of a tumor, and the presence of
CD8+ T cells are prognostic of clinical response to treatment with
ICB (6).

The distinction between hot, altered (excluded and
immunosuppressed) and cold tumors, based on the cytotoxic
T cell landscape within a tumor, establishes the important role
of the TME but only a thorough profiling of the TME can
analyze the complexity of the tumors and provide dynamic
information about the complex networks operating in the
TME to guide clinical decisions (7, 8). Combining immune
and genomic data has revealed six immune subtypes across
33 different cancer types including immune (macrophage
or lymphocyte signatures, Th1:Th2 cell ratio, expression of
immunomodulatory genes) and non-immune parameters
(intratumoral heterogeneity, aneuploidy, neoantigen load,
overall cell proliferation, and patients’ prognosis) (9). It has
been proposed that an integrative view of the multi-omics
experimental platforms and computational power is required
to identify signatures of immune response with improved
predictive power (10).

It has been clearly established that CD8+ T cells are the
ultimate effectors of tumor rejection and the strongest predictor
of ICB response across tumor types. Significantly, the functional
variability of tumor-infiltrating T cells can influence their
cytotoxicity. Subsets with reactivation of dysfunctional CD8+,
memory-like CD8+TCF7+, CD103+ tumor-resident CD8+, and
Tcf1+PD-1+ CD8+ with stem-like properties T cells have shown
durable responses. CD4+ T cell subpopulations that play a critical
role in immunotherapy include CD4+ Th1 cells that generate
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functional CD8+ T cell responses, CD4+FoxP3+ regulatory T
cells (Treg) generally associated with suppression of antitumor
immune responses in several cancers although responses to
CTLA-4 blockade have been shown, and CD4+FoxP3−PD-1Hi

(4PD-1Hi) T cells can indicate a negative prognosis when there is
persistence after PD-1 blockade (6). Emerging factors associated
with ICB response include B cells and tertiary lymphoid
structures (11, 12). As for innate immune populations, BDCA-
3+CLEC9A+ dendritic cells (DC) and XCL1-producing NK cells
are linked to ICB response (13).

ICB is most efficacious in tumors with a high degree
of T cell infiltration (hot tumors), such as melanomas and
NSCLC. Alternative combinations include other checkpoint
molecules, such as T cell immunoglobulin and mucin domain-
3 (TIM-3), lymphocyte-activation gene-3 (LAG3), and T cell
immunoglobulin and ITIM domain (TIGIT) in the case of T
cell exhaustion; or co-stimulatory checkpoint proteins, including
OX-40, CD28, and 4-1BB ligand receptor to enhance T cell
expansion or effector functions. Preliminary results also suggest
a potential role of microbiome modulation. On the other hand,
immune cold tumors, including pancreatic and prostate cancers,
are not well-infiltrated by immune cells. Therefore, research
efforts have focused on making cold tumors hot by increasing
immune infiltration and activity, such as vascular normalization,
increasing the neoantigen burden, oncolytic therapy, vaccines,
adoptive T cell therapy, T cell immunomodulators, and
radiotherapy. Clinical strategies in immune-altered tumors have
an impact on T cell trafficking, inhibition of hypoxia-associated
pathways, and the immune suppressive microenvironment (14).

As more combinations of immunotherapeutic strategies reach
the clinical arena, two clinical challenges become more relevant.
Checkpoint disruption leads to a wide range of inflammatory
toxicities grouped as immune-related adverse events (irAEs). The
majority occur in barrier tissues (gastrointestinal or pulmonary
mucosa, skin) or in endocrine glands. Although many are
mild, they can carry considerable morbidity, lead to reduced
treatment dosage and/or duration, and on occasions may be
fatal (e.g., in patients with pre-existing autoimmunity) (15, 16).
On the other hand, it has been suggested that irAEs could help
select responders to ICB in bladder cancer (17). Secondly, some
patients experience an acceleration of tumor growth kinetics with
poor survival called hyperprogression which, at present, remains
difficult to characterize (18, 19).

The composition of the TME is dynamic and evolves during
ICB treatment. It has been suggested that the TME evolves
differently between responders and non-responders. Of interest,
stronger differences were found early on-treatment than before
the ICB based on the differences in the densities of CD4+

or CD8+ T cells and the expression of PD-1/PD-L1 after two
or three anti-PD-1 doses than at baseline (20, 21). Another
interesting feature is that PD-1 blockade can induce clonal
replacement preferentially of exhausted CD8+ T cells, meaning
that T cells present at baseline may show reduced proliferation
and that the response to ICB could be due to T cell clones that
enter the tumor during the course of treatment (22).

Clinical relevance of distinctions in the immune contexture
mainly based on the cytotoxic landscape of T cells in tumors has

been established although the potential of analyzing dynamics
and plasticity of TME networks will offer more powerful
stratification systems between responders and non-responders.

Interactions Within the TME
Interactions between malignant and non-malignant cells create
the TME (Figure 1). Non-malignant cells are usually highly
dynamic and display tumor-promoting capabilities. Major
non-malignant cell types found in the TME are immune
cells, vasculature and lymphatic vessels, and fibroblasts. Cell
communication is accomplished by a network of cytokines,
chemokines, and diverse metabolites that reacts to changes in the
physical and chemical characteristics of the tissue (23). Cancer
treatment effects induce a variety of mechanisms which lead to T
cell exclusion and avoidance of their cytotoxic function (24) that
ultimately shift the balance of stromal cell phenotypes in the TME
toward an immunosuppressive state. These pro-tumorigenic
responses to therapy can induce local and/or systemic changes
that underlie tumor recurrence and treatment resistance.

In a broad sense, the mechanisms leading to a pro-
tumorigenic microenvironment can be grouped into three
categories: immune cell regulation, metabolic reprogramming,
and hypoxia (4). The biochemical and physical properties of the
TME undergo substantial changes during tumor evolution and
treatment determined by the increased demand for blood vessels
to endure tumor growth, which requires an adequate supply of
oxygen and nutrients delivered through the blood vasculature.
The resulting abnormal vessels are leaky and compressed which
can induce a dense stromal reaction and reduction of blood flow
that promotes hypoperfusion. The TME then becomes hypoxic
with enhanced potential for tumor progression in multiple ways.
In this situation, hypoxia reduces immune cell activity and the
TME acquires an immunosuppressive phenotype (25). Hence,
better understanding and reprogramming of these components
may greatly influence cancer outcome.

Clinically, this may significantly limit cancer treatment
efficacy and represent a shift in our understanding of tumor
progression and resistance. Major emphasis has been placed on
advancing clinical applications that strengthen the effectiveness
of immunotherapies, leading to rapid regulatory approval of ICB
combined with targeted therapies and/or chemotherapy in large
numbers of patients with cancer, facilitating their incorporation
into clinical practice. However, in spite of the extensive use of
surgery and radiation strategies in cancer, as a definitive strategy
in early or moderately-advanced stages of cancer, as part of a
multimodal strategy in advanced loco-regional disease and, more
recently in selected cases of oligometastatic disease, there is very
limited understanding of the biological changes in the TME
induced by local treatments.

RADIOIMMUNOTHERAPY COMBINATIONS

Radioimmunotherapy is an area of extensive research due to the
potential immunomodulatory effects of ionizing radiation and
has established a new paradigm in which radiation is as efficient
as its capacity to elicit tumor-targeting immune responses (2).
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FIGURE 1 | A schematic representation of the immunosuppressive TME. In a tumor, cancer cells coexist with immune cells, fibroblasts, and blood vessels to form the

TME. Cancer cells can alter the microenvironment and promote cancer growth and dissemination.

Ionizing radiation is able to induce immunogenic cell
death, a form of cell death that promotes a T cell-based
immune response against antigens derived from dying cells,
enhances antigen presentation, and activates cytotoxic T cells.
Cytosolic DNA from dying cells function as neoantigens
that are highly immunogenic. Radiation induces the release
of danger signals, including calreticulin, high mobility
group box 1 (HMGB1), and adenosine triphosphate
(ATP), which are collectively known as damage-associated
molecular patterns (DAMPs), and support the recruitment
and maturation of antigen-presenting cells (APC), migrate
to lymph nodes, and prime a cytotoxic T cell-dependent
immune response.

Critical to the immunogenicity of radiotherapy is the
fragmentation of nuclear DNA from the DNA damage
response (DDR) of radiation, shuttled to the cytoplasm
where it activates cyclic GMP-AMP synthase/stimulator
of interferon genes (cGAS/STING) pathways and induces

transcription of the IFN-stimulated genes. The cytoplasmic
three-prime repair exonuclease 1 (Trex1), induced by
radiation, is a negative regulator of this pathway. The
release of IFN type I from APC supports antigen uptake
by Batf3+ DC and cross-presentation of tumor antigens
to CD8+ T cells. Activated CD8+ T cells are recruited
to the irradiated tumor site by cytokines upregulated by
radiation (CCL2, CXCL1, CXCL10, and CXCL16). In addition,
radiation enhances the expression of major histocompatibility
complex-I (MHC-I) antigens on cancer cells that favor antigen
presentation (4).

DNA Damage Response Following
Radiation and Exposure of Neoantigens
Tumor cell-intrinsic events driven by DNA damage are
central to the immunomodulatory effects of radiotherapy.
Radiation-induced DNA damage alters gene transcription and
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modulates the expression of tumor neoantigens, resulting
in activation of innate and/or adaptive antitumor immune
response (6, 26, 27). The finding that a patient with metastatic,
treatment refractory NSCLC who responded to ipilimumab
plus radiotherapy was carrying a mutation in a KPNA2
gene, upregulated in expression by radiation; tumor-specific
T cell clones were developed in peripheral blood shortly
after completion of radiotherapy and the first dose of
ipilimumab to a metastatic site and remained elevated while
the patient achieved a complete response in all of the non-
irradiated lesions supports the hypothesis of in situ tumor
vaccination (28).

Identification of genetic determinants of radiotherapeutic
efficacy has remained elusive but a recent report identifies
genetic ATM inactivation to be strongly associated with
clinical benefit from radiotherapy. The identification of
a radiosensitive phenotype across multiple cancer types
inaugurates the possibility of further testing in prospective
clinical trials and progress in personalized radiation strategies.
For example, patients with metastatic tumors harboring a
somatic ATM mutation may receive a reduced dose of radiation
with the goal of reducing toxicity and maintaining tumor
control (Pitter et al., accepted).

Defects in DDR have been exploited for drug development as
radiosensitizers including poly(ADP-ribose) polymerase (PARP),
checkpoint kinase 1 (CHK1), DNA-dependent protein kinase
(DNA-PK), or the chaperone HSP90 inhibitors. Radiation
damage in the context of defective DDR pathways generates
micronuclei in cancer cells that activate cGAS/STING pathways
and propagate an inflammatory response that can enhance
radiation effects. Adding ICB to the immunomodulation
induced by DDR inhibitors plus radiotherapy is a new area
of clinical research that can provide additional insights into
the immunomodulatory effects of radiation given that DDR
inhibitors can enhance the immunostimulatory effects of
radiation while ICB can target the immunosuppressive radiation
effects (27).

Central Role of Dendritic Cell Maturation in
Radiation-Induced Immunological
Response
DC are a sparsely distributed immunological component of
the TME with high biological heterogeneity that play a
central role in linking innate and adaptive immune responses.
Therefore, DC are a key element in the immunostimulatory
effect of radiotherapy. It has been recently reported that poorly
radioimmunogenic murine tumors fail to activate DC following
treatment, and that it could be successfully reverted with an
exogenous adjuvant, resulting in tumor cures (29). Therefore,
it could be hypothesized that in patients with a poor TME,
the combination of radiation with adjuvants that promote DC
maturation or target the immunosuppressive TME can improve
tumor control.

Toll-like receptors (TLR) signaling pathways activate innate
immunity and regulate adaptive immune responses. Preclinical
evidence suggests that TLR-agonists targeting TLR3, TLR 7/8 or

TLR9 in combination with radiotherapy can enhance antitumor
immunity with long-term tumor control. Mechanistically, TLR
can enhance DC-mediated cross-presentation and activation of
T cells. Novel formulations of TLR agonists with reduced toxicity
and precise and image-guided radiation techniques are favorable
aspects for this strategy (30, 31).

Addressing the Evasive Objective of
Durable Responses of
Radiation-Immunotherapy Combinations
Studies on resistance to ICB reveal a complex and rapidly
evolving network of mechanisms of immune resistance specific
to each host and tumor (32). The absence of biomarkers that
identify the different types of resistance obliges the use of
empirical approaches to target them.

The immunogenicity of radiation has been approached with
two different strategies, one that emphasizes the local interaction
of radiotherapy and the immune system where the majority of
clinical knowledge has been accumulated, and a second strategy
where focal radiation elicits systemic disease control (abscopal
effect) known as in situ tumor vaccination that has attracted a
lot of attention. The basis for combining ICB with radiotherapy
stems from the fact that radiation upregulates PD-L1, which leads
to CD8+ T cell exhaustion. In addition, many tumors devoid
of T cells at baseline (and secondary lack of PD-L1 expression
on effector T cells) could benefit from the radiation-induced
increase in PD-L1 and the combination (33). In the case of
CTLA-4, upon radiation, it is recruited to the membrane of
activated T cells and binds to the ligands CD80 and CD86,
expressed on DC and other APC, thereby attenuating T cell
activation (34).

Tumor burden has been regarded as a surrogate for
ICB effectivity based on clinical observations that adjuvant
ipilimumab in resected stage III melanomas obtains major
benefits in recurrence-free survival and overall survival (48.3
and 65.4% at 5 years, respectively) (35), and locally advanced
NSCLC treated with definitive chemoradiation followed by
adjuvant durvalumab in the PACIFIC trial with an impressive
prolongation of time to death or distant metastasis from 16.2
to 28.3 months and a favorable toxicity profile (36). Moreover,
in patients that do respond to ICB, failure frequently occurs
in sites of previous disease, with 60% of failures in anti-PD-
1/PD-L1 treated NSCLC and 39% of failures in anti-PD-1 treated
melanoma (37, 38). Although it is not specific criteria, the best
outcome with ablative radiation in oligometastatic clinical trials
has been obtained in patients with low tumor burden and as local
consolidation (39, 40).

While the majority of clinical studies have targeted a single
metastatic site, abscopal responses are relatively rare, and
mainly in melanoma and NSCLC (41). Improved outcomes
have been obtained in several phase 2 clinical trials using
local consolidation with ablative doses of radiation in the
oligometastatic setting (39, 40, 42) while ongoing phase
3 trials are investigating whether this approach may lead
to improve overall survival in a subset of patients with
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limited metastatic disease (NCT02417662, NCT03137771,
NCT02364557, NCT03862911, and NCT03721341).

It has been recently reported that tumor-resident CD8+ T
cells play a significant role in mediating the immune effects
of radiotherapy. Even if proliferation decreases after radiation,
their functionality, measured as production of IFN-γ, augments,
and mediates the early antitumoral effect of local SBRT doses.
Nonetheless, as newly infiltrating CD8+ T cells play a key role in
antitumor immunity, that may also be the case with radiation-
induced immunogenicity (43). If radiation could increase the
population of pro-immunogenic T cell subtypes within the local
TME, it would enhance the response to ICB. This hypothesis
raises the possibility that targeting multiple metastatic sites with
SBRT to achieve complete cytoreduction in the metastatic setting
may become clinically relevant (44). Moreover, the irradiation of
each visible metastasis addresses the challenge of heterogeneity
by attempting to convert each target into an in situ vaccine
(45). Clinical support data comes from a phase 2 clinical trial in
NSCLC with up to 4 metastatic sites (93% had <2 metastases),
which underwent locally ablative treatment with metastasectomy
or multi-site SBRT followed by pembrolizumab, with median
survival of 19.1months (vs. 6.6months in historical controls) and
favorable toxicity profile (46).

Research has been very controversial with variations in dose
or fraction for radiation delivery in the metastatic setting,
where the role of treatment parameters such as duration (more
or <7 days), fraction size (1.8–3 to 8–30Gy) and scheduling
(single or multiple fractions) are largely unknown. While a
short course (1–5 fractions) of high dose radiation can be safely
administered and is able to elicit an immunogenic response
that can benefit from the addition of ICB, the predominance
of the immunosuppressive effects of radiation may limit the
effectiveness of ablative doses of radiation, especially if single
fractions are used (47, 48). Nonetheless, the immune context
of the tumor type or even the metastatic organ may require
a different dose and/or fractionation to elicit an immunogenic
response. This possibility offers the potential to reduce the
dose and volumes of radiation and still prove efficacious.
In the PACIFIC trial (36), immunotherapy was administered
sequentially (i.e., following chemoradiation) with a good toxicity
profile but data on toxicity of concomitant radiation and
immunotherapy in the clinical setting is scarce. Yet the biological
context remains to be proven that would favor multiple rounds
of high-end ablative dose schedules in oligometastatic patient as
advocated by some groups (49). Another concept of potential
clinical relevance that has been put forward is the possibility that
the immunomulatory effect of low-dose radiation for stromal
modulation could favor T cell infiltration and enhance the
immune response (47, 50).

The next generation of clinical trials addressing
radiotherapy-immunotherapy combinations will have to
include immunological read-outs with proper endpoints for
immune monitoring as well as the identification of immune
biomarkers that optimize the selection of treatment strategies
(31, 51).

CLINICAL IMPLICATIONS OF
TECHNOLOGICAL DEVELOPMENTS

Surgery and radiation remain strong curative modalities for
treatment of established solid tumors but treatment failure
continues to be a significant problem. The best established role of
surgical oncology is the complete removal of the tumor, with an
additional strong foundation to question the elective treatment
of uninvolved regional lymph nodes in a large variety of tumor
types and resection of metastatic disease which is increasingly
offered to selected patients with indolent oligometastatic disease
(52). Critical to all of them is securing negative surgical margins.

Less invasive technologies and advances in imaging
leading to minimally invasive and robot-assisted surgeries
are revolutionizing surgical care (5). Likewise, advanced
image guidance and motion management strategies are
shaping new therapeutic radiation strategies enabling the safe
administration of ablative doses of radiation (2). Advanced
imaging is fundamental and uniquely placed to serve both
margin negativity rates and future radiation strategies.

Surgical margin positivity rate (cancer cells at the edge of
tumor resection) has not significantly improved in recent decades
and when it does occur prognosis is significantly affected in many
tumor types. Margin positivity rates across all types of cancer
range from 15 to 60% (53). A recent report on positive surgical
margins in the ten most common solid cancers has identified oral
cavity cancer with the highest rate with up to 25% of cases, no
change over time, with significant effects on tumor relapse and
overall survival. For advanced disease, the rates ranged between
20.9% (breast) and 65.5% (prostate) with related worse outcome
in seven tumor types (54). Although not a true resistance type,
we propose the term “margin-missing” effect to characterize this
situation which leads to treatment failure and resistance.

Fluorescence-guided surgery, which allows intraoperative
visualization of tumors, is an evolving image-guided surgical
strategy to help differentiate tumor cells from normal
surrounding tissues in real time. Near-infrared fluorescence
imaging has a higher tumor to background ratio, high tissue
penetration (5–10mm), and little interference from intrinsic
fluorescence. Indocyanine green is the most widely used probe in
fluorescence-guided surgery although tumor detectability is not
very good and optical technology is still evolving (55).

More than 50% of patients with cancer receive radiotherapy,
which defines its leading role in cancer management, in
particular for several locally advanced solid tumors. The latest
developments in radiotherapy have swiftly enabled local dose
escalation making it possible to deliver high doses of radiation
with incredibly high anatomical precision and reduced risk of
long-term adverse effects. As a consequence, relevant clinical
benefit has been achieved in a variety of cancer types such as
prostate, gynecologic, breast, head and neck cancers, and brain
and lung metastases (2). However, no significant advance has
occurred in the past 30 years in the development of strategies
that enhance radiation effects. On the other hand, due to the
recognition that the immune system can strongly contribute
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to therapeutic responses to radiation, radioimmunotherapy has
become an intensive area of research.

The current challenge in near-infrared fluorescence-guided
surgery is to design probes with high selectivity for tumors and
clear visualization, referred to as smart probes, which are only
activated at the tumor site (turn-on probes). There was a recent
report about the design, synthesis, and characterization of three
novel polymeric turn-on nanoprobes that are activated at the
tumor site by cysteine cathepsins (highly expressed in multiple
tumor types) showing a stable and well-defined signal from the
tumor during the whole surgical procedure in orthotopic breast
cancer and melanoma models resulting in less tumor recurrence
and prolonged survival compared with standard commercial
probes (56). This is a significant lead toward real-time image-
guided tumor margin assessment during surgical oncology.

Emerging approaches seek to integrate analytical tools with
optical technology to help improve the decision-making of
fluorescence-guided surgery to reduce margin positivity rates.
For example, combinations of fluorescence-guided surgery have
been made with mass spectrometry (57), Raman spectroscopy
(58), and hyper spectral imaging (59).

The most clinically advanced nanoprobe is LUM015 (a
pegylated cathepsin-activatable probe) which is undergoing eight
clinical trials, including a pivotal phase 3 study (60). The phase 3
trial is a multicenter study with the primary objective of assessing
the ability of LUM015 and LUM fluorescence-guided surgery
system to detect residual tumors in 250 breast cancer patients
undergoing lumpectomy (NCT03686215).

CLINICAL IMPLICATIONS OF THE
IMMUNOSUPPRESSIVE ENVIRONMENT

It has been traditionally assumed that recurrent tumors arise
from transformed neoplastic clones that are more resistant to
oncological therapies, however, an early experience challenged
this view and hypothesized that primary and recurrent tumors
of equal size did have different microenvironments that
explained their response to therapies. The study found that
while small primary tumors had a healthy population of
antitumor effector CD8+ T lymphocytes, recurrent tumors
had an immunosuppressive condition consisting in expanded
populations of tumor-associatedmacrophages (TAMs), Treg cells,
and pro-tumoral cytokines that inhibited cytotoxic CD8+ T
lymphocytes. These changes were also identified in regional
draining lymph nodes. Disruption of these immunosuppressive
pathways restored the efficacy of the tumor vaccine in recurrent
tumors, as if they were primary tumors (61).

Research in preclinical models has shown that a syringeable
immunomodulatory multidomain nanogel (iGel) containing
gemcitabine, imiquimod, and clodronate locally applied as a
postsurgical treatment is able to deplete immunosuppressive
cells from the TME (myeloid-derived suppressor cells (MDSCs),
M2 macrophages, and Treg cells), increase immunogenicity,
and induce immunogenic cell death. Indeed, it generates
systemic antitumor immunity and a memory T cell that
significantly inhibits tumor recurrence and lung metastases.

Reprogramming the immunosuppressive TME also converts
tumors not responding to ICB to responding ones (62). This
platform may serve to reshape immunosuppressive TME and
synergize with other therapies.

Recent clinical data in melanoma and NSCLC have shown
that response to ICB in individual patients with metastasis
vary depending on the anatomical location of the metastasis,
untangling the importance of the local TME in antitumor
immunity. Of interest, tissue specific response to immune
checkpoint inhibition depends on the cancer type, which implies
that responsive and non-responsive sites are different among
patients with NSCLC ormelanoma (63, 64). These heterogeneous
responses are an evident clinical problem, since patients with
responses to ICB in all lesions survive longer than those with
response in some of the lesions (65). Potential mechanisms
include myeloid cell exclusion and alteration of T cell activation
in response to tumor growth and local factors, but this will
require unraveling a very complex network of interactions
for differential responsiveness across different tissue sites of
tumor deposits.

Regulatory T Cells
Treg cells are a small subset of circulating CD4+ T cells
with potent suppressive functions with a central role in
regulating immune responses and maintaining self-tolerance
although they also impede antitumor immunity. In contrast
with circulating Treg cells, intratumoral Treg cells maintain an
active configuration, suggesting that antigen stimulation may
play an important role in the activation and accumulation of
Treg cells in the TME. The immunosuppression mediated by
Treg cells is mainly mediated by the release of anti-inflammatory
cytokines including IL-10 and transforming growth factor β

(TGFβ), facilitating proliferation of CD4+ T cells to Treg cells,
while suppressing proliferation to CD8+ T cells and NK cells.
In addition, Treg cells can also reprogram macrophages to the
M2 phenotype (via IL-4, IL-10, and IL-13) and favor MDSCs
infiltration (via IL-10 and IL-35) (66).

Immunological cell death induced by radiation upregulates or
releases DAMPs, including ATP, with further recruitment and
activation of DC to initiate the antitumor immune response but
ATP is rapidly catabolized in the TME into adenosine by the
enzymes CD39 and CD73. Local accumulation of extracellular
adenosine suppresses DC and CD8+ T cells and promotes
proliferation of Treg cells, increases the expression of CTLA-4
and adenosine receptor A2 (A2AR) on Treg cells, and enhances
the polarization of macrophages to the M2 phenotype. Radiation
can also induce conversion of ATP to adenosine through the
induction of reactive oxygen species (ROS) and TGFβ. Thus,
targeting of A2AR, CD73, and TGFβ may reduce resistance
to immunotherapy in the radiotherapy setting (33). Blockade
of CD73 plus radiotherapy restored radiation-induced DC
infiltration of tumors in a poor immunogenic setting, and the
addition of CTLA-4 blockade improved control of non-irradiated
lungmetastases inmurinemodels. These findings set the stage for
clinical testing CD73 in patients who carry cGAS/STING tumors
or show upregulation of soluble CD73 following radiotherapy to
determine if CD73 blockade can enhance responses to ICB (67).
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Treg cells also express PD-1 at a low level in the blood and
at a high level in tumors, promoting the suppressive activity
of PD-1-expressing Treg cells upon antibody-mediated PD-1
blockade (68). Recently reported,∼10% of cancer patients treated
with anti-PD-1 antibody develop hyperprogressive disease,
characterized by rapid cancer progression. Treg-specific depletion
prior to, or combined with, an anti-PD-1 antibody may prevent
hyperprogressive disease and enhance the effectiveness of anti-
PD-1 therapy (69).

Macrophages
TAMs account for the largest fraction of the myeloid infiltrate in
the majority of solid tumors. The tumor-associated macrophage
compartment is highly dynamic in time (during tumor
progression and response to treatment) and space (at different
tumor sites) through an extensive remodeling of energy
metabolism. In addition, the tumor-associated macrophage
compartment is highly heterogeneous both within and across
tumors in response to environmental changes ranging from
a pro-inflammatory (M1) to an anti-inflammatory (M2) state.
However, the M1/M2 phenotypes represent the extremes of a
continuum and the plasticity of these cells makes therapeutic
targeting challenging. Solid experimental evidence informs that
the crosstalk between TAMs and the immune cells facilitates
an immunosuppressive environment by supporting angiogenesis
and extracellular matrix (ECM) remodeling, promoting active
recruitment of Treg cells, and expression of PD-L1, paving the
way for metastatic development (70). M2 polarization is mostly
mediated by growth factors and cytokines secreted by cancer cells
that reach M2 cells via exosomes (71). Intriguingly, ontogeny
can influence the functional profile of TAMs, i.e., tissue-resident
vs. circulating macrophages, such that they can have opposing
functions depending on the tumor type (72). Based on these
findings, it has been speculated that macrophage origins may
be important in determining the permissiveness of an organ to
metastatic growth.

Preliminary studies have evaluated the influence of
radiation in macrophage polarization. Macrophages are
highly radioresistant due to high production of anti-oxidative
molecules such as manganese superoxide dismutase by a
mechanism depending on tumor necrosis factor α (TNFα)
signaling and nuclear factor-κβ (NFκβ) activation (73). Early
studies established that radiation exposure recruited bone
marrow-derived CD11b+ monocytes/macrophages to irradiated
sites (74, 75) and related it to the transcription factor hypoxia-
inducible factor-1α (HIF-1α) and effectors stromal cell-derived
factor-1 (SDF-1) and C-X-C chemokine receptor type 4 (CXCR4)
(76, 77). Therapy can polarize macrophages to the M2 phenotype
with very high levels of proangiogenic molecules through the
treatment-induced expression of colony stimulating factor 1
(CSF-1), the ligand for the colony stimulating factor 1 receptor
(CSF-1R) on macrophages, which can be prevented by CSF-1R
antagonists and enhance radiation effects (78, 79).

Ongoing research efforts are directed toward the alteration of
themacrophage phenotype to attenuate immunosuppression and
improve antitumor immunity (80). Current approaches aim to

shift M2 cells to M1 by targeting secreted immunosuppressive
factors released by cancer cells and cells in the TME (Figure 2).

Preclinical studies suggest that macrophage manipulation
to avoid recruitment or prevent M2 polarization produce a
significant enhancement of the radiation effect irregardless
of the tumor model [reviewed in (81)]. The increase in
radiosensitivity with this strategy has been attributed to blockade
of vasculogenesis. If angiogenesis supports the formation of
tumor blood vessels from the sprouting of local vessels, tumors
can also develop or repair blood vessels from circulating
proangiogenic cells mainly from the bone marrow, which is
known as vasculogenesis (82). This effect could be exploited
in radiation treatments, namely if the increase in hypoxia that
occurs at the end of radiation through recruitment of circulating
proangiogenic cells to rescue damaged tumor vasculature and
promote tumor recurrence can be reversed. A first-in-human
clinical trial of glioblastoma examined the effects of CXCR4
blockade through a 4-week continuous infusion of plerixafor,
a small molecule CXCR4 inhibitor, at the end of irradiation
in newly diagnosed glioblastoma and showed high efficacy and
local control with an excellent median survival time of 21.3
months. Unexpectedly, a high proportion of patients had out-of-
field recurrences with local tumor control which deserves further
evaluation (83).

A relevant aspect that remains unanswered is whether the
effect of blocking the CXCR4 pathway could bemore pronounced
with ablative doses of radiation which seems likely since greater
vascular damage would be expected. Furthermore, it is of interest
to know if CXCR4 blockade can enhance tumor immunity. Very
limited information suggests that T cell exclusion from cancer
cell deposits secondary to SDF-1 could be overcome by inhibiting
the CXCR4 axis, improving the effect of checkpoint inhibitors or
stroma normalizing strategies in pancreatic cancer (84, 85) and
triple-negative breast cancer (86) models.

Pre-metastatic Niche and Exosomes
In addition to TAMs, radiation also recruits MDSCs in the
irradiated tumors by tumor-secreted factors like SDF-1. MDSCs
encompass a heterogeneous population of polymorphonuclear
MDSCs and monocytic MDSCs which inhibit the activity of
CD8+ T cells. Moreover, MDSCs play a prominent role in the
establishment of the pre-metastatic niche, promote angiogenesis
and facilitate the development of metastasis (87).

Tumors induce the formation of microenvironments in
distant sites that support future metastatic tumor growth
before their arrival at these sites, known as pre-metastatic
niches. Tumor-secreted factors and tumor-shed extracellular
vesicles promote a sequence of events that start with vascular
leakiness, and are followed by alteration of local cells in
the TME, recruitment of MDSCs, and finally attraction of
circulating tumor cells (88). Following seeding in a secondary
organ, cancer cells interact with their environment to create
the metastatic niche. The microenvironment in pre-metastatic
niches is immunosuppressive and MDSCs are the main cellular
component, however, migration of MDSCs into pre-metastatic
niches and subsequent activation is not well-characterized. More
than 100 different immunosuppressive tumor-secreted proteins
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FIGURE 2 | Macrophage targeting in cancer. Macrophages are primarily recruited to tumors to acquire a pro-tumorigenic phenotype (M2 state). Several strategies

target TAMs aiming to reprogram them into a pro-inflammatory phenotype (M1 state). Most macrophage-targeted therapies are focused on CSF-1R inhibitors.

Another approach is via CXCR4 blockade, which acts on vasculogenesis and has been tested in the clinical setting after radiotherapy in glioblastoma.

have been identified (89). Fibronectin accumulates and anchors
to collagen in the ECM to facilitate the adherence of circulating
tumor cells through high affinity ofmembrane integrins (90). The
vascular changes allow for uptake of tumor-secreted exosomes
by cancer-associated fibroblasts (CAFs) in the local stroma,
which contributes to the formation of a tumor-associated
desmoplastic stroma, characteristic of many carcinomas (91)
(Figure 3). Exosomes are extracellular vesicles released by
exocytosis and essential to intercellular communication. They
can contain genetic material, proteins, and lipids; they can
be found in all body fluids and are considered to be major
drivers of pre-metastatic niche formation (92). Measurement of
exosomal microRNA has been shown to accurately reflect tumor
progression in several cancer types (93, 94) as well as dropping
levels of exosomal microRNA after surgery indicate that the

resected tumor was the main source of exosomal release (95).
However, in animal models of abdominal cancer surgery can
induce increased levels of ROS, that may downregulate tight
junctions in the endothelium and peritoneum, form intercellular
gaps and expose the underlying ECM; which can promote
integrin-binding of circulating tumor cells during surgery, and
result in an excess of liver metastases in a colorectal cancer
model (96).

Research in animal models of breast cancer known to produce
immunosuppressive MDSCs in the spleen and lungs, has shown
that surgical resection of the primary tumor decreased levels
of MDSCs in the spleen but persisted in the lungs for 2 weeks
after resection, indicative of a pro-metastatic environment. Post-
surgical treatment with gemcitabine depleted lung MDSCs and
decreased posterior metastatic disease (97).
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FIGURE 3 | Role of the pre-metastatic niche in cancer metastasis. Primary tumor cells produce soluble factors and exosomes (A) to trigger the formation of an

immature pre-metastatic niche in the target organ (B). Primary tumor conditions (hypoxia, acidity, and interstitial pressure) promote tumor cell migration into the blood

vessels. Tumor-secreted factors and exosomes mobilize bone marrow-derived cells (such as CD11b+ myeloid cells) and suppressive immune cells (such as MDSCs,

Treg, and TAMs) to target organs (C). Interactions with local stroma, hypoxia and active ECM remodeling may create a niche with suitable microenvironment conditions

for tumor cell colonization (D). Surgery, inflammation, and immunosuppression may increase the number and survival of circulating tumor cells and favor the

development of metastasis.

Accumulating evidence indicates that exposure to radiation
induces the release of exosomes (98–100) that could contribute
to radioresistance but additional mechanistic understanding
to define potential interventions is lacking. The potential
role of exosomes has also been explored as biomarkers of
disease outcome in head and neck cancer patients treated with

cetuximab, radiation, and ipilimumab; exosomes were isolated
from plasma and the molecular cargo contents (derived from
Treg cells) could separate patients who remained free 2 years after
treatment from those who did not (101).

An important aspect required to characterize extracellular
vesicles is the development of highly specific detection
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techniques. Since the distribution of extracellular vesicles in the
TME depends on the cellular function, it is highly necessary to
visualize them in freshly resected tissues. There was a recent
report about an intraoperative optical imaging system that was
able to provide rich details and molecular contrast thanks to a
label-free multimodal nonlinear optical technology in human
breast cancer showing good correlation with stained histological
slides. The enriched areas with extracellular vesicles in the
microenvironment correlated with macroscopic tissue deposits
as well as increasing distance from tumor to margin (102).

A recent publication has shown that after surgical removal of
resected primary lung, breast, and esophageal cancer, low-dose
adjuvant therapy with epigenetic therapy can disable the pre-
metastatic niche and inhibit the formation of lung metastases
by avoiding the trafficking of MDSCs and promoting their
differentiation into a macrophage-like phenotype (103). These
preclinical findings represent a novel paradigm to be tested in
clinical trials.

Cancer-Associated Fibroblasts
Fibroblasts, the major cell type in the TME, are critical
determinants of cellular crosstalk (104). CAFs, a subpopulation
of activated fibroblasts, are difficult to identify and in practice,
are described as any mesenchymal cell that lacks lineage markers
for epithelial cells, endothelial cells, and leukocytes. CAFs are
proliferative, migratory, and highly secretory cells that promote
extensive tissue remodeling which influences the physical and
chemical properties of the tumor and increases the ECM stiffness,
which promotes malignancy in experimental models. An
extensive range of functions have also been attributed to CAFs,
including secretion of growth factors, cytokines, and exosomes
that promote tumor growth and alter treatment responses. The
principal effect of CAFs is considered to be immunosuppressive
with IL-6, SDF-1, and TGFβ as well-established mediators (105).
These CAFs contribute to a rigid matrix that creates a physical
barrier that leads to vessel compression and reduces diffusion of
therapeutic agents to cancer cells which are particularly relevant
for colorectal and pancreatic cancer (106, 107). CAFs are also
effective in the remodeling of the tumor vasculature through the
secretion of vascular endothelial growth factor (VEGF), fibroblast
growth factor, and IL-6 to enhance angiogenesis (108, 109)
(Figure 4).

Emerging evidence implicates CAFs in immune escape and
resistance to immunotherapy but not all subpopulations seem
to have the same functions. A comprehensive identification
of specific subsets of CAFs and their function is needed to
become a viable targeting option (110). Currently, several
preclinical strategies that target specific subsets of CAFs are
under development (109).

Two promising strategies are normalization of activated
CAFs, which intends to revert the activated state into a
quiescent state or to induce them to acquire tumor-suppressor
phenotypes (111), and targeting CAF-derived ECM proteins,
either their production or degradation to alleviate the ECM
stiffness (109). Reprogramming of CAFs to enhance immune
responses, normalizing their ECM, is being investigated through
the addition of vitamin D analogs (known to convert them

into a quiescent state) to ICB in pancreatic cancer, and through
TGFβ blockade combined with immune checkpoint inhibition in
multiple tumor types (111).

CLINICAL IMPLICATIONS OF METABOLIC
REMODELING

Metabolic crosstalk across all cellular compartments is
responsible for homeostasis and evolution of the TME. All
cells of the TME, both malignant and non-malignant, compete
for nutrients and oxygen, which are generally limited, especially
in a stiffened and poorly vascularized TME, or secondary to
the accumulation of the excessive production of metabolites by
cancer cells. Additional aspects that influence how the TME
reacts include immune-related substances released by cancer
and/or immune cells, mechanical forces in the ECM, and
reactions to treatment (112).

Although the metabolic pathways are shared between cellular
compartments of the TME, the singularity of the reaction of
stromal cells to energy demands is crucial. TAMs and CAFs are
recruited to the tumor bed and activated in response to different
stressful situations, such as limited nutrient disposal, hypoxia,
and oxidative stress, attracted by cytokines such as TGFβ and
CXCL2 or ROS from cancer cells [reviewed in (113)]. In such
complex interactions, metabolites can serve different roles such
as being a source of energy or communicate signals between
different cellular compartments, and metabolism byproducts
can favor an immunosuppressive phenotype. CAFs can rapidly
adapt to these poor conditions through glycolysis and fatty
acid oxidation in mitochondria. This increased consumption
of glucose is coupled with extensive lactate secretion, which
acidifies the TME and facilitates the activation of TAMs (114).
The result of this swift metabolic adaptation of CAFs is the
secretion of ECM-remodeling enzymes that promote fibrosis and
further limit the availability of nutrients and oxygen, establishing
a dynamic circuit in which lactate accumulation, glucose
deprivation, and hypoxic conditions stimulate the recruitment
and activation of additional stromal cells (113). Hypoxia
supports the stabilization of the transcription factor HIF-1α to
foster glycolysis. In this setting, HIF-1α also mediates CAF-
secretion of proangiogenic factors such as VEGF, and hypoxia
contributes to tumor progression by stimulating CAFs to secrete
immunomodulatorymolecules, growth factors, antioxidants, and
ECM-remodeling enzymes. Taken together, the response of CAFs
under poor nutritional conditions promotes tumor progression
through engagement of endothelial cells. In addition, altered
metabolism of cancer cells can create a gradient of metabolites
around the tumor that can signal the distance to blood vessels
and tailor the secretion of VEGF to match the tumor spatial
organization and optimize the angiogenic response (115), and the
metabolic switch in the TME may add to the disrupted immune
cell metabolism (80).

Amino acids synthesize nucleotides and are also intermediate
metabolites that contribute to other bioenergetic pathways.
Glutamine is an abundant nutrient that provides carbon and
nitrogen for pathways that contribute to energy formation, redox,
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FIGURE 4 | Cancer-associated fibroblasts remodel the tumor stroma. The pro-tumorigenic functions of CAFs are generally associated with their highly secretory

activity. Secretory functions and matrix remodeling contribute to tumor invasion and angiogenesis. In addition, secreted soluble factors also contribute to immune

reprogramming and tumor growth. Metabolic remodeling by CAFs supports an immunosuppressive microenvironment and promotes tumor growth.

homeostasis, macromolecular synthesis and signaling for cancer-
cell growth of particular relevance in hypoxic conditions (116).

Endothelial cells form the lining of blood vessels and
lymphatics and require glycolysis for proliferation and migration
during angiogenesis. As the tumor grows, new vessels are
required to supply the tumor with nutrients and oxygen and
the endothelial cells increase their synthetic and energetic
demands. Sprouting, the formation of new vessels, is a well-
known mechanism in the angiogenic process and an area of
intensive research. Although endothelial metabolism has been
mainly described as glycolytic, recent findings suggest that
mitochondrial oxidative phosphorylation is also required for
endothelial cell proliferation during angiogenesis (117).

The interplay between metabolic remodeling and immune
regulation in cancer is an active area of investigation. Preclinical
models in glioblastoma have identified that tryptophan and
adenosine metabolism result in accumulation of Treg cells
and M2 macrophages, contributing to an immuno-suppressive
phenotype. Future studies will need to define the role of the
intermediary metabolites of these pathways to determine their
therapeutic function (118).

Preclinical results with the prodrug JHU083, a glutamine
antagonist that targets glutaminase and a broad range of
glutamine-requiring enzymes, provide a strong and differentiated
metabolic response in which cancer cells stop growth, through
depletion of glutamine pathways and impairment of glucose
uptake, and in addition stimulates T cell functionality, even
with persistent antitumor memory (119). Disengaging the
metabolism of cancer cells and that of T cells is an evolving
therapeutic concept.

A link has been recently proposed between ECM stiffness and
metabolic transformation that facilitates tumor progression. It
was found that through metabolic crosstalk between CAFs and
cancer cells, aspartate secreted by CAFs maintains cancer cell
proliferation while glutamate secreted by cancer cells balances
the redox state of CAFs to promote ECM remodeling. This
amino acid exchange among glutamate and aspartate offers new
targeting options for both stromal and cancer cells (120).

CLINICAL IMPLICATIONS OF ANGIOGENIC
RESPONSES

An abnormal vasculature is a paramount characteristic of solid
tumors, with suboptimal function resulting from a leaky and
immature vessel network (via overexpression of proangiogenic
molecules such as VEGF), and compression of these anomalous
vessels by physical forces (via TME cells and the ECM
molecules they produce) (121). The resulting hypoxia enforces
the stimulation of immune checkpoints and infiltration of
immunosuppressive cells in the TME (122). Specifically, hypoxia
up-regulates immune checkpoints, reprograms TAMs to an M2
state, may influence the efficacy of antigen presentation by DC,
and affects the function of T cells, while hypoperfusion stiffens
the TME that becomes a physical barrier to T cell infiltration into
the tumor (123).

An emerging field of interest investigates the synergy
of immune-vascular interactions to promote an antitumor
effect (124). The objective of this strategy is to induce
vascular normalization that needs to be coupled to vessel
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decompression (to avoid vessel collapse). Restoring vessel
function by normalizing tumor stroma has been evaluated in
preclinical models through targeting angiotensin signaling with
anti-hypertensive agents (125) or inhibiting SDF-1/CXCR4 (86)
which can target CAFs and collagen/hyaluronan to decompress
tumor vessels and improve perfusion and effect of the ICB.
Vascular normalization can be achieved with antiangiogenic
agents to improve tumor perfusion and treatment delivery, but
it is dose- and time-dependent, making outcome predictions
for combinations of antiangiogenics, stroma normalization and
immune therapies difficult to optimize (126) (Figure 5).

Successful clinical evidence that the combination of ICB with
antiangiogenic drugs has been recently reported in lung (127),
renal (128, 129), and endometrial (130) cancer. However, the
potential to improve the treatment outcome of this approach is
under evaluation in an ongoing clinical trial, which tests the role
of adding losartan (an antihypertensive angiotensin inhibitor)
to chemo-radiation (delivered via SBRT) and nivolumab in
pancreatic cancer patients (NCT03563248).

Apparently, any method that improves tumor perfusion is
likely to enhance immunotherapy. It has been proposed that
strategies that normalize the stroma would be more beneficial
in tumors with abundant compressed vessels, while vascular

normalization should improve perfusion in tumors with leaky
vessels (131), and the combination when both co-exist. However,
addressing the cause of hypoperfusion and identifying the
normalization window for each tumor is challenging (126).

Since tumor perfusion is key for the efficacy of
immunotherapy, perfusion markers could be used as markers for
immunotherapy prediction (132).

FUTURE PERSPECTIVES

While recent studies have improved our understanding of
mechanisms supporting immune resistance, we still have an
incomplete view of how the TME works as a whole. We propose
that advancements in cancer metabolism and nanotechnology
represent promising areas of research that have the potential
to significantly improve our understanding of immune escape
in nutrient- and oxygen-poor environments which may lead to
opportunities for therapeutic intervention.

A comprehensive understanding of the metabolic needs
of cancer cells has been achieved during this past decade.
Significantly, metabolic signatures and hypoxia within the TME
impact the immune function. The fact that these findings have
been translated into actionable anticancer targets provides the

FIGURE 5 | Strategies to improve tumor perfusion increase tumor immunogenicity. Angiogenesis, desmoplasia, and inflammation promote leaky and compressed

tumor vessels. Vascular normalization strengthens the vessel wall reducing intercellular gaps and improving perfusion. Blood vessel decompression by depletion of

CAFs or ECM reperfuses the vessel and augments perfusion. As a result, reprogramming of the TME to an immunomodulatory state enhances antitumor immunity.
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basis for a metabolic characterization of the TME to identify
novel targets and signatures in the future. Indeed, better
technologies to investigate cancer metabolism at the single-cell
level without disrupting the tissue will be required to achieve a
deeper understanding of the role of metabolism in cancer.

Advancements in nanotechnology have been effectively
developed in cancer therapy. Innovative nanomedicines can
use the conditions and characteristics of the TME to deliver
therapeutics with increased precision, while providing for
signal outputs that allow to follow their effects in real time.
Likewise, recent advances in nanotechnology have broadened
opportunities for the development of radiosensitizers in synergy
with other treatment modalities. We highlight recent progress of
nanotechnology between radiotherapy and immunotherapy.

Metabolic Rewiring of the TME
The complex interplay between cellular crosstalk, interactions
in the ECM and the biochemical environment within a tumor
has an impact on the metabolic phenotype and polarization of
immune cells. Thus, the concerted actions of different immune
subsets suppress or promote growth. Solid tumors have a
dynamic oxygen supply with hypoxic regions where interactions
among immune cells are not well understood. Untangling these
interactions might offer new potential for response prediction.
Tumor infiltrating lymphocytes are at a metabolic disadvantage
within the TME since tumor cells impede their access to nutrients
needed for activation and acidify the TME through lactate
accumulation, favoring a Treg phenotype (133).

Targeting specific metabolic alterations shared by tumor
cells and tumor promoting immune populations in the TME
is a new strategy under evaluation. Preclinical research has
focused on fatty acid metabolism as a source of metabolic
plasticity in cancer cells (134), carbon metabolism to stimulate
antitumor activity ofmacrophages (135), or targetingmetabolism
of ferroptosis (a form of death that relies on ROS) in tumors
(136), among others. Strategies that reduce immunomodulatory
metabolites are also under evaluation, which include altering the
acidic microenvironment, blocking the thryptophan metabolism
pathway, inhibition of adenosine within the TME (33), or
avoiding lactate accumulation in the TME (137).

A coordinated approach, which takes into account tumor
types and tumor biology with detailed molecular links between
cancer genotypes and metabolic dependency in a longitudinal
fashion, will be best suited to detect the patient populations that
are most likely to benefit from metabolism-targeted therapies.

Nanoparticle-Mediated Immunogenic Cell
Death
Nanoparticles (NP) have been increasingly studied for
radiosensitization. The combination of hafnium oxide NP

(NBTXR3, a high-Z nanomaterial with high-level electron
density that increases energy dose deposit within cells) plus
radiation vs. radiation alone has recently demonstrated
meaningful clinical benefit in locally advanced soft tissue
sarcoma by doubling pathologic response rates (16 vs. 8%)
(138). Significantly, recent research has reported that radiation-
activated hafnium oxide NP can augment tumor infiltrates of
CD8+ T cells and generate an antitumor immune response, with
systemic effect on untreated tumors on the same animals in a
murine model of colon cancer (139).

Newly designed hafnium-based nanoscale metal-
organic frameworks (nMOFs) have demonstrated effective
radioenhancement for low-dose radiation in preclinical models.
The combination of nMOF-mediated radiotherapy and PD-L1
blockade extended the local therapeutic effects of radiation to
distant tumors via systemic antitumor immunity. This powerful
platform can minimize toxic effects by lowering the administered
dose of radiation; it can be redesigned for rational tuning and
can significantly strengthen the effect of immunotherapy for
treatment of non-immunogenic tumors (140, 141).

CONCLUSION

Evolution in the technological delivery of radiation and precision
surgery parallels the rapid progress in immune biology that
identifies novel strategies to enhance the antitumor immune
response. In this setting, alterations in the TME could become
especially relevant to optimize treatment immunogenicity and
enhance patient outcome.

Defining the individual response of tumors to surgery and
radiation offers the possibility to design innovative treatment
strategies and re-adapt treatment to new emerging targets. This
could have a major impact since it potentially represents a novel
way to enhance local and systemic treatments.
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Cancer remains the second leading cause of mortality worldwide. In the course of this

multistage and multifactorial disease, a set of alterations takes place, with genetic and

environmental factors modulating tumorigenesis and disease progression. Metabolic

alterations of tumors are well-recognized and are considered as one of the hallmarks of

cancer. Cancer cells adapt their metabolic competences in order to efficiently supply their

novel demands of energy to sustain cell proliferation andmetastasis. At present, there is a

growing interest in understanding the metabolic switch that occurs during tumorigenesis.

Together with the Warburg effect and the increased glutaminolysis, lipid metabolism

has emerged as essential for tumor development and progression. Indeed, several

investigations have demonstrated the consequences of lipid metabolism alterations in

cell migration, invasion, and angiogenesis, three basic steps occurring during metastasis.

In addition, obesity and associated metabolic alterations have been shown to augment

the risk of cancer and to worsen its prognosis. Consequently, an extensive collection

of tumorigenic steps has been shown to be modulated by lipid metabolism, not only

affecting the growth of primary tumors, but also mediating progression and metastasis.

Besides, key enzymes involved in lipid-metabolic pathways have been associated

with cancer survival and have been proposed as prognosis biomarkers of cancer. In

this review, we will analyze the impact of obesity and related tumor microenviroment

alterations as modifiable risk factors in cancer, focusing on the lipid alterations co-

occurring during tumorigenesis. The value of precision technologies and its application

to target lipid metabolism in cancer will also be discussed. The degree to which lipid

alterations, together with current therapies and intake of specific dietary components,

affect risk of cancer is now under investigation, and innovative therapeutic or preventive

applications must be explored.

Keywords: lipid metabolism, cancer prognosis, tumor microenviroment (TME), obesity, cancer risk, precision

medicine, precision nutrition

INTRODUCTION

Cancer is a significant public health problem and is the second leading cause of death globally
(1). The World Health Organization (WHO) has indicated that lung, prostate, colorectal (CRC),
stomach, and liver cancers are among the most frequent types of cancer in men, whereas
breast, CRC, lung, cervical, and thyroid cancers are the most frequent among women. Together
with the genetic alterations, environmental factors orchestrate the multifactorial and multistage
characteristics of cancer, modulating the expression of both tumor suppressor genes and oncogenes.
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One of the hallmarks of cancer is the abnormal regulation
of cellular metabolism (2). Tumor cells exhibit high rates
of aerobic glycolysis and an increased anabolism to support
growth, proliferation, and survival. Consequently, metabolism-
related pathways have acquired enormous relevance in cancer
research. Together with the Warburg effect and the increased
glutaminolysis, lipid metabolism plays a key role in cancer
metabolic reprogramming (3). Lipids, a highly diverse class
of biological molecules, exert three main functions in the
cells. First, they are employed for energy storage, principally
as triacylglycerol esters and steryl esters, in lipid droplets
(LDs). In addition, lipids are structural components of
cellular membranes, and they also operate as metabolic
signaling messengers (4). The sterol regulatory element-
binding proteins (SREBPs) are transcription factors that
coordinate and regulate the synthesis of lipids. They act
in response to upstream signaling networks and to the
intracellular nutrient status, to regulate the expression of
enzymes involved in cholesterol and fatty acid (FA) synthesis
and uptake (5).

Together with genetic alterations mediating the
metabolic reprogramming in a cell autonomous manner,
cancer progression and dissemination also depend on
the availability of nutrients and oxygen at the tumor
microenvironment. Tumors communicate with the surrounding
microenvironment, which includes fibroblasts, adipocytes,
immune cells, endothelial cells, and components of the
extracellular matrix—to support cancer proliferation and
dissemination (6).

Furthermore, key lipid metabolism genes have been
proposed as prognostic biomarkers in several types of cancer
associated with tumor recurrence and/or survival (7, 8).
Indeed, the role of lipid metabolism alterations in tumor
cell migration, invasion, and angiogenesis has been clearly
demonstrated (9–11).

The technical improvement and development of “omics”
approaches, together with the availability of large public
accessible databases, have redefined current strategies of cancer
research (12) allowing to reanalyze, recapitulate, and update
our knowledge of the relevance of lipid metabolism–related
genes in cancer. Genomics and transcriptomics are being
applied for precision medicine purposes in cancer. The design,
validation, and use of polygenetic scores open a window of new
opportunities to integrate “omics” technologies into clinical
advice. Moreover, proteomics, metabolomics, lipidomics,
and metagenomics will complete the full scenario (13).
Additionally, clinical trials combining current chemotherapies
with natural bioactive compounds toward altered lipid
metabolism represent a promising strategy to improve cancer
treatment (14).

In this review, we will discuss about the role of lipid
metabolism alterations in cancer. We will explore their
mechanism of action and their oncologic implications. Moreover,
we will analyze current reports and knowledge of lipid
metabolism biomarkers in the most frequent types of cancer.
Finally, we will investigate their emergent use in precision
medicine and precision nutrition strategies.

IMPACT OF OBESITY IN CANCER

In recent years, it has demonstrated that cancer malignancy
not only relays on the genetic factors—oncogenic and tumor
suppressor alterations—from patients, but also on environmental
factors associated with lifestyle (15). In this regard, it has
been shown that up to one-third of cancer deaths could be
prevented by modifying environmental factors related to lifestyle
such as physical activity and diet, alcohol consumption, and
smoking. Unhealthy diets—high consumption of saturated FAs
or high-glucose-content beverages—are also associated with the
development of systemic metabolic alterations including obesity,
insulin resistance, and metabolic syndrome, among others.
Obesity, which is defined as a high body weight with excessive
adipose tissue accumulation, can be considered as a chronic,
multifactorial, and proinflammatory disease (6, 16). Obesity
is a risk factor for several chronic diseases including type 2
diabetes mellitus, cardiovascular diseases, hepatic steatosis, and
cancer initiation and progression (17, 18). In fact, the overall
risk of cancer death is around 1.5- to 1.6-fold in individuals
with a body mass index higher than 40 kg/m2 (19). The
main types of cancer where obesity has been found associated
with are prostate cancer (20), postmenstrual endometrial (21),
breast cancer (22), ovary (23), bladder (24), liver (25), colon
(26), and pancreas (22). During obesity, adipocytes accumulate
in locations not classically associated with adipose tissue. Fat
accumulation in ectopic sites is classified as central adipose
tissue with systemic effects and locally accumulated adipose
tissue supporting tumor microenvironment. The central adipose
tissue leads to alterations in the levels of steroidal sex hormones,
decreased insulin sensitivity, and low-grade inflammation (27),
and it has been associated mainly with CRC (27) and breast
cancer (6, 28). In addition, visceral depots of adipose tissue
may provoke alterations in the cellular composition of cells
surrounding the tumormicroenvironment contributing to tumor
cell proliferation and dissemination such as in the case of tumors
located close to adipose tissues, such as breast, ovary, or colon
tumors (6, 29).

The effects of tumor cells at the tumor microenvironment
has been also found to associate with drug resistance (30).

Cancer-associated adipocytes present metabolic features that
sustain tumor progression and dissemination, because of
the release of FAs and proinflammatory mediators, which
contribute to support the surrounding tumor microenvironment
(6). Thus, ovarian cancer partially relies on lipids provided
by adipocytes at the tumor microenvironment (29, 31).
Moreover, the hyperplasia and hypertrophy of adipose tissue
diminish the levels of oxygen available, promoting angiogenesis,
which may contribute to tumor dissemination (32). In this
regard, breast, gastric, and colon cancers preferentially grow
in adipocyte-enriched environments. In addition, excess of
adipose tissue induces low chronic inflammation augmenting
the circulating levels of proinflammatory interleukins (IL-
6 and IL-8), tumor necrosis factor α, vascular endothelial
growth factor (VEGF), and prostaglandins and leukotrienes,
which have protumorigenic effects. Arachidonic acid (AA)
is the main precursor of proinflammatory lipid mediators,
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such as prostaglandins, thromboxanes, and leukotrienes, which
promote proliferation, cell survival, and dissemination of cancer
cells. Inflammatory prostaglandins, such as prostaglandin E2
produced by COX2 (cyclooxygenase 2), activate epidermal
growth factor receptor cell signaling to promote angiogenesis
and the expression of matrix metalloproteases in colon cancer
(33). Prostaglandins have been shown to inhibit the antitumor
immune response by diminishing the activation of cytotoxic
CD8+ T lymphocytes and the infiltration of natural killer cells
and dendritic cells to the tumor (34). In this regard, COX2
inhibitors have been demonstrated to augment the response to
immune checkpoint inhibitors in melanomas (35, 36).

In addition, it has been described that obese individuals
present an altered gut microbiota and disrupted intestinal
epithelium barrier. Dysbiosis is associated with microbial
diversity together with an increase in proinflammatory species.
Intestinal dysbiosis has been associated with gastric, CRC, and
esophageal cancers (37, 38). Thus, the design of microbiota-
targeting therapies is now considered as a feasible strategy in
the clinic.

Because of the important metabolic link between obesity
and the tumorigenic process (Figure 1), effective control of
the nutritional and metabolic status of individuals (control of
glucose, lipid levels, blood pressure, and chronic inflammation)
might represent a specific and mechanistic approach to prevent
and/or ameliorate cancer progression. In this scenario, precision
nutrition has emerged as a complementary therapeutic tool in
the management of metabolic alterations associated with cancer
prognosis. Personalized nutrition compiles nutrigenetics (genetic
variants and epigenetic signatures), deep phenotyping, and a
wide spectrum of data concerning metabolic personalization
through omics technologies—transcriptomics, metabolomics,
lipidomics, and metagenomics. Importantly, nutritional
interventions based on the knowledge of how nutrients
and bioactive dietary compounds interact with the genome,
metabolism, microbiome, etc., at the molecular level, represent
an effective tool to fight against metabolic alterations.

LIPID METABOLIC REPROGRAMMING OF
ONCOGENIC PATHWAYS IN CANCER

Cancer cells present metabolic alterations to provide the
additional requirements of energy and metabolites for cancer
cell proliferation and dissemination (2). Enormeous diversity
exists between the different types of cancer, and even within
the same tumor. Moreover, cancer cells are characterized by the
continuous capacity to adapt to changes in the levels of nutrients
and oxygen at the tumor microenvironment (6). The altered
tumor metabolism depends not only on the cell autonomous
genetic alterations, but also on additional factors including
diet, food behavior, exercise, and microbiome. All these factors
together will determine the biology of the developing tumor (39)
(Figure 1).

One of the most frequent metabolic alterations observed in
cancer is the increased of the glycolytic pathway, independently
of the oxygen levels (Warburg effect) (40). Aerobic glycolysis

in cancer is coupled to increase glutamine metabolism for the
anaplerosis of intermediated of the tricarboxylic acid (TCA)
cycle (41). In addition, different studies including in vitro,
preclinical, and clinical trials have demonstrated the relevance
of lipid metabolism to sustain cancer initiation and progression
(6). The inhibition of lipid metabolic enzymes has been shown
to induce tumor regression, to inhibit the metastatic spread,
and/or to avoid drug resistance. Lipids not only are structural
components of biological membranes, but also provide energy
by means of β-FA oxidation (β-FAO), control the redox
homeostasis, and act as signaling molecules affecting a plethora
of crucial processes in cancer including proliferation, migration,
invasion, transformation, tumor microenvironment reshaping,
and/or modulation of inflammation (42). Cholesterol is a
key component of the cell membranes affecting its fluidity,
stabilizing specific areas (lipid rafts) to transduce intracellular
cell signaling pathways (43), and being precursor of steroidal
hormones (44). In addition, lipids are also signaling molecules
such as proinflammatory prostaglandins or tromboxanes—
synthesized from omega-6 AA (45), or anti-inflammatory
omega-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid,
which availability depends on lipids provided from diet.

Herein, we describe potential strategies to target the altered
lipid metabolism in cancer. In addition, as the uptake of high
levels of saturated FAs from diet is a risk factor in several types of
cancers, strategies to diminish lipolysis and promotion of healthy
diets should also be considered.

Activation of de novo Lipogenesis and
Cholesterogenesis
Lipid metabolism alterations affect not only tumor cell
proliferation, but also dissemination and resistance to
chemotherapeutic drugs (46). Most of adult tissues obtain
FAs, cholesterol, and lipids from diet; meanwhile, de novo
synthesis of FAs and cholesterol is restricted to the liver
and adipocytes. Tumors frequently present the capability to
activate the de novo synthesis of cholesterol and FAs (47)
making them more independent from externally provided lipids
(48, 49). Importantly, targeting enzymes associated with de novo
lipogenesis and/or the mevalonate pathway has been shown to
inhibit tumor growth (6, 50).

FAs are synthesized from cytoplasmic acetyl-CoA (AcCoA),
generated from citrate produced from glucose, glutamine, or
acetate (48). ATP-citrate lyase (ACLY) generates AcCoA and
oxaloacetate (OAA) from citrate (48, 51). AcCoA carboxylases
(ACC1/2) carboxylase AcCoA to formmalonyl-CoA. Subsequent
condensation steps, catalyzed by FA synthase (FASN), forms the
16-carbon saturated FA palmitate. Palmitate is then elongated
by FA elongases (ELOVL) and desaturated by stearoyl-CoA
desaturase (SCD1) or FA desaturases (FADS) to form other
nonessential FAs, such as the 18-carbon monounsaturated FA
(MUFA) oleate (C18:1) (Figure 2).

Many enzymes implicated in de novo synthesis of FAs and
cholesterol have been proposed as biomarkers for prognosis in
specific types of cancer. FASN is found upregulated in prostate
and breast cancer (47, 52), and ACLY has been shown to support
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FIGURE 1 | Relevance of lipid metabolism alterations in cancer. Illustrated is the crucial role of (i) oncogenic mutations supporting the lipid metabolism reprogramming

in cancer, together with (ii) systemic lipid metabolic alterations associated with obesity—as an environmental modifiable risk factor. Precision interventions should

include therapeutic clinical drugs targeting identified lipid metabolism molecular targets together with nutritional interventions—bioactive compounds, diet-derived

ingredients—considering the nutritional and metabolic status of patients. T2DM, type 2 diabetes mellitus; IR, Insulin Resistance; TME, tumor microenviroment; CAAs,

cancer-associated adipocytes; FAO, fatty acid oxidation; FA, fatty acid.

tumor formation and transformation (51). Inhibition of several
enzymes of de novo lipogenesis, such as FASN, and ACC1 and
ACC2, has been tested in different cancer models showing their
relevance on tumor growth inhibition (53).

Similarly, inhibition of hydroxymethylglutaryl-CoA
(HMGCoA) reductase (HMGCR), by statins, leads to inhibition
of cell proliferation of breast cancer cells (54) and tumor
regression in several preclinical mouse models, and it is being
tested in clinical trials (43). The overexpression of enzymes of the
mevalonate pathway has been proposed as biomarkers of poor
prognosis in breast cancer (55). Cholesterol is generated by the
mevalonate pathway, by condensation of two AcCoA molecules
to form 3-HMGCoA, which is then reduced to form mevalonate,
and then isoprenoid farnesyl-pyrophosphate. Several studies
have shown that targeting the synthesis of cholesterol inhibits
cancer cell proliferation and transformation (56).

De novo synthesis of FAs and cholesterogenesis are
transcriptionally regulated by SREBPs, which are downstream
oncogenic pathways including PI3K/Akt (57) and c-Myc (47)
(Figure 2).

The SREBP family includes three transcription factors:
SREBP1a and SREBP1c, which are derived from SREBF1 gene
by alternative splicing (58), and SREBP2, which is encoded by
SREBF2 gene. SREBPs are bound to the endoplasmic reticulum
(ER) as inactive precursors (59). When the intracellular levels
of cholesterol are high, insulin-induced genes interact with

SREBP-cleavage–activating proteins (SCAPs) to retain SREBP
inactive precursors attached to the ER. When cholesterol levels
are low, SCAPs facilitate the translocation SREBPs to the
Golgi apparatus to be further processed releasing the active
forms (56). SREBP1 promotes the expression of lipogenic
genes; meanwhile, SREBP2 regulates the expression of genes
involved in the synthesis, uptake, and efflux of cholesterol.
Nevertheless, SREBP1 and SREBP2 have overlapping activities.
Both SREBP1 and SREBP2 are found overexpressed in several
cancers. Regulation of the intracellular content of cholesterol
has also been shown crucial for cancer cell survival. The ATP-
binding cassette transporter (ABCA1) controls the efflux of
cholesterol to ApoA-coated lipoproteins (57). Recently, it has
been demonstrated that activation of p53 increases the retrograde
transport of cholesterol from the plasma membrane to the ER, to
prevent SREBP2 maturation (60). In addition, cholesterol levels
are fine tune regulated by microRNA33—encoded by an intron
within the SREBF2 gene (51)—which targets ABCA1. In addition,
the esterification of cholesterol for storage in LDs, by sterol
O-acyltransferase 1 (ACAT1), has been shown to augment the
survival in prostate cancer (61).

Fatty Acid Oxidation in Cancer
In addition to de novo synthesis of FAs and cholesterol, the
mobilization of intracellular FAs for FAO at mitochondria is
crucial for cancer survival and dissemination. It is well-known
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FIGURE 2 | Main metabolic pathways related to lipid metabolism in cancer: Illustration of pathways and genes implicated in de novo lipogenesis—fatty acids and

cholesterol biosynthesis. ABCA1, ATP-binding cassette subfamily A member 1; ABCG1, ATP-binding cassette subfamily G member 1; ABCG4, ATP-binding cassette

subfamily G member 4; ABCG5, ATP-binding cassette subfamily G member 5; ABCG8, ATP-binding cassette subfamily G member 8; ACAT, acetyl-CoA

acetyltransferase; ACC, acetyl- CoA carboxylase; ACLY, ATP citrate lyase; ACSL, acyl-CoA synthetase long chain; AGPAT, 1-acylglycerol-3-phosphate

O-acyltransferase; CD36, CD36 molecule; CPT1, carnitine palmitoyltransferase; DGAT, diacylglycerol O-acyltransferase; FA, Fatty acids; FASN, fatty acid synthase;

GPAT, glycerol-3-phosphate acyltransferase; HDL, high-density lipoprotein; HMGCR: 3-hydroxy-3-methylglutaryl-CoA reductase; HMGCS,

3-hydroxy-3-methylglutaryl-CoA synthase; LDL, low-density lipoprotein; LDLR, low-density lipoprotein receptor; LPIN, Lipin; NR1H2, nuclear receptor subfamily 1

group H member 2; NR1H3, nuclear receptor subfamily 1 group H member 3; PLIN, perilipin; PPARγ, peroxisome proliferator-activated receptor γ; PTGS,

prostaglandin-endoperoxide synthase; SCD1, stearoyl-CoA desaturase; SREBP1, Sterol regulatory element binding transcription factor 1; SREBP2, sterol regulatory

element binding transcription factor 2; TCA, tricarboxylic acid cycle.

that tumor cells present higher levels of reactive oxygen species
(ROS) than not tumor cells, which allow them to activate
prosurvival and epithelial-to-mesenchymal transition programs
to support cancer progression and dissemination. Nevertheless,
excessive ROS may promote apoptotic cell death. It has been
demonstrated that enzymes implicated in the mobilization
of intracellular neutral lipids provide metabolic flexibility to
increase the levels of FAs for oxidation at mitochondria. In
the FAO pathway, acyl-CoAs are cyclically dehydrogenated,
hydrated, and decarboxylated, resulting in the progressive
shortening of the FA, together with the production of NADH and
FADH2 and AcCoA. NADH and FADH2 will be used for ATP
production in the electron transport chain, and AcCoA can enter
the Krebs cycle. AcCoA together with OAA gives rise to citrate,
which after being exported to cytoplasm, can enter two metabolic
pathways to produce cytosolic NADPH (62).

Enhanced mitochondrial β-oxidation of FAs has been
described in pancreatic cancer (63, 64) and in metastatic breast
cancer (65). FAOnot only provides energy when glucose becomes
limiting, but it also contributes to a better control of the oxidative

stress, by augmenting the intracellular levels of NADPH (66).
Increased FAO augments survival in leukemia and gliomas by
counteracting the metabolic oxidative stress. Moreover, FAO has
been shown crucial for the survival of cells from solid tumors
when undergoing loss of attachment, which triggers anoikis or
cell death due to oxidative stress (67, 68).

In addition, FAO is also influenced by the tumor
microenvironment such as in the case of ovarian cancers,
which preferentially metastasizes to the omentum enriched
in adipocytes, which provides lipids for ATP and NADPH
production to control metabolic stress during metastasis.

Regulation of FA Storage and Intracellular
FA Mobilization (Lipolysis and Lipophagy)
De novo synthesis of FAs in cancer cells is coupled to additional
processes to accommodate the increase in the intracellular lipid
content, to preserve the homeostasis between lipid storage
and lipid mobilization (69). FAs from de novo lipogenesis
are accumulated into neutral lipids (stored in LDs) and
phospholipids (in membranes). LDs are complex and dynamic
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organelles consisting of a neutral lipid core surrounded by a
phospholipid monolayer and a complex proteome associated.
LDs itself have been proposed as novel diagnostic biomarkers
for glioblastoma. It has been demonstrated that while they are
not detectable in low-grade gliomas or normal brain tissues, they
are common in glioblastoma, the most lethal brain tumor (70).
Among the LD-associated proteins, there are enzymes of the
sterol biosynthetic pathway, the acyl-CoA metabolism (ACSLs),
and triacylglycerol (TAG) biosynthesis. Structural proteins, such
as perilipins (PLINs) or caveolins, are critical for the integrity
of LDs to avoid collapse and to protect them from lipolysis
(Figure 2). Cancer cells present higher amounts of LDs than
normal cells (71). Increased expression of PLIN2 has been shown
to favor the accumulation of LDs (72), contributing to a better
control of the ER stress, to increase the protection against ROS,
and to augment the resistance to therapeutic drugs in cancer
cells. On the contrary, PLIN2 depletion significantly attenuated
the proliferation of colon cancer cells (73), supporting the LD-
associated proteins as potential druggable targets for cancer
treatment (11).

The increase in de novo synthesis of FAs in cancer cells
requires efficient and complementary lipolytic mechanisms to
accommodate the intracellular lipid content. Thus, lipolysis
allows the stored lipids to be available for the synthesis of
phospholipids and lipid signaling mediators and/or to increase
the levels of ATP or NADPH when required. Several enzymes
involved in lipolysis—adipose TAG lipase (ATGL), hormone-
sensitive lipase (HSL), monoacylglycerol lipase (MAGL)—
have been described to promote tumorigenesis (74). In this
sense, ATGL knockdown in HCT116 CRC cells reduced cell
proliferation (75). Increased levels of MAGL are associated with
aggressive cancer types such as melanoma and ovarian and
breast cancer (74), and inhibition of MAGL suppresses cancer
cell migration, invasion, and survival (76). Recently, it has been
demonstrated that glioblastomas, which acquire large amounts of
free FAs, upregulate diacylglycerol-acyltransferase 1 (DGAT1) to
store the excess FAs into triglycerides and LDs (77). Inhibition of
DGAT1 disrupted lipid homeostasis, resulting in increased levels
of ROS leading to apoptotic cell death.

In addition, a specific function of autophagy associated with
the regulation of the intracellular lipid content—lipophagy—has
been described to augment resistance to cell death in cancer (78).

Extracellular Lipid Uptake
In addition, similar to normal cells, cancer cells can uptake
exogenous lipids when de novo lipogenesis is inhibited.
Upregulation of cell surface receptors, such as cluster of
differentiation 36 (CD36) (Figure 2), has been found to augment
metastasis (79, 80). CD36 inhibition diminished tumor growth
and metastasis in preclinical models of prostate cancer (80).
Moreover, the expression of low-density lipoprotein receptor
(LDLR) for the internalization of low-density lipoproteins
(LDLs) has been found upregulated in renal cell carcinoma
(RCC) cells (81). FA-binding proteins (FABPs) contribute to
augment the lipid uptake, as well as the intracellular lipid
trafficking in cancer cells (82). In breast cancer and glioblastoma
cell lines, it has been shown that the uptake of extracellular

FAs during hypoxia is sustained by the upregulation of FABP3
and FABP7; meanwhile, FABP5 increases cell proliferation and
growth in prostate cancer (83).

Control of Saturated vs. Unsaturated FAs
Depending on the source of FAs, de novo lipogenesis
or extracellular lipid uptake, the levels of saturated FAs
incorporated in the phospholipids of cell membranes are
different. The lipogenic pathway increases the saturation level
of cell membranes with saturated and MUFAs (84), which
are less sensitive to suffer lipid peroxidation compared to
polyunsaturated acyl chains (PUFAs) mainly obtained from
diet. This way, de novo lipogenesis contributes to augment
the resistance to oxidative stress and chemotherapy in cancer
cells (85).

Nevertheless, excessive accumulation of saturated FAs in the
cell membranes can lead to lipotoxicity. In this regard, SCD1
inhibition induces ER stress and apoptosis in cancer cells and
diminishes the tumor growth in xenografts models of colon
and lung cancers (86). During tumor growth, inner parts of the
tumors are faced to hypoxia and reduced nutrient availability.
Tumors have developed different strategies to balance the
levels of saturated vs. unsaturated FAs. Thus, tumors anticipate
lipotoxicity by augmenting the uptake of MUFAs/PUFAs from
plasma, which are further stored into LDs or incorporated
into phospholipids at the cell membranes. As SCD1 activity
requires oxygen, during hypoxia some tumors rely on the activity
of DGATs to incorporate MUFAs into TG, which are further
accumulated into LDs (Figure 2). In addition, tumors balance,
via the Lands cycle, the levels of saturated vs. unsaturated FAs
in the phospholipids at the cell membranes. Recently, a process
known as ferroptosis has been described associated with high
levels of MUFA/PUFAs in the phospholipids of cell membranes,
which induce cell death by means of their oxidation through
the Fenton pathway. Long-chain FA acyl CoA synthetases
(ACSLs)—implicated in the long chain FA activation—may

control ferroptosis, as distinct isoforms use distinct substrates.
Meanwhile, ACSL4 has PUFAS as main substrates such as AA,
ACSL3 can activate both MUFAs and PUFAs, allowing a better
control of the excessive accumulation of PUFAs in phospholipids
(87). In addition, ACSL3 allows a better control of FA distribution
between LD storage or β-FAO, providing a better control of the
oxidative stress (42).

LIPID METABOLISM ALTERATIONS AND
CANCER PROGNOSIS

Alterations of lipid metabolism genes are found in many
tumor types, predominantly, but not exclusively, because lipid
metabolism can modulate different cellular processes that go
from plasmatic and organelle membrane organization and
plasticity (88, 89), substrate supply for ATP synthesis, (62) and
intracellular cell signaling activation (90). Cancer tissues display
abnormal activation of de novo lipogenesis and cholesterogenesis
(91). Extremely proliferative cancer cells exhibit an intense
lipid and cholesterol avidity, which they satisfy by increasing
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TABLE 1 | Prognostic value of lipid metabolism–related genes.
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the uptake of dietary or exogenous lipids and lipoproteins or
activating lipogenesis or cholesterol synthesis (3). Importantly,
this aberrant lipid metabolism does not only influence the
primary tumor, but the exogenous lipids produced by tumor
microenvironment can also influence malignancy (14, 92–95).
Besides, three basic steps during metastasis: migration (96),
invasion (9, 10) and angiogenesis (97, 98), are affected by lipid
metabolism regulation (11).

Nowadays, there are increasing evidences of the role of lipid
metabolism alterations as biomarkers of cancer prognosis and
survival. Here, we are going to review previous knowledge on
the prognostic value of lipid-related genes that belong to FAs
and cholesterol pathways (Figure 2) in the most frequent types of
cancer according to the WHO: lung, CRC, breast, and prostate.

Furthermore, “omics” data publicly available in huge
searchable databases facilitate addressing specific medical issues
in thousands of patients. Remarkably, The Cancer Genome
Atlas (TCGA) gene expression dataset (https://www.cancer.
gov/tcga) and The Human Protein Atlas website together with
The Pathology Atlas online tool (https://www.proteinatlas.org/
humanproteome/pathology), which contains mRNA data from
TCGA study and protein expression data from different forms
of human cancer (99–101), allowing us to obtain a global view
of the putative implications of lipid metabolism–related genes
in cancer prognosis. Data from TCGA visualized using The
Pathology Atlas online tool, are summarized in Table 1.

Fatty Acid–Related Alterations as
Biomarkers of Cancer Prognosis and
Survival
De novo FA biosynthesis occurs in the cellular cytoplasm. FAs
originate from acetyl-coenzyme A, which is mostly provided
by citrate produced by the TCA cycle. Switch of citrate into
AcCoA is catalyzed by ATP citrate lyase (ACLY) (Figure 2).
Consequently, ACLY is a key enzyme connecting carbohydrate
to lipid metabolism by producing AcCoA from citrate for both
FA and cholesterol synthesis (61). Several studies have associated
ACLY expression in tumor tissues with worse prognosis. ACLY
overexpression correlated with stage, differentiation grade, and
a poorer prognosis in non–small cell lung cancer (NSCLC)
(61). Besides, in combination with the glucose transporter
GLUT1, ACLY was also an independent prognostic factor for
overall survival (OS) in node-negative patients with NSCLC
(102). However, one study reports that young NSCLC patients
overexpressing ACLY had longer OS, in contrast to older
patients where overexpression of ACLY appears to predict the
opposite prognosis (103). ACLY also facilitates colon cancer cell
metastasis, and high expression levels of ACLY and Catenin β1
(CTNNB1) protein were positively correlated with metastasis of
colon cancer (104). Data from TCGA showed ACLY as a putative
unfavorable marker of cervical and liver cancer (Table 1).

At the genomic level, single nucleotide polymorphisms (SNPs)
in ACLY gene have been described as independent cancer
prognostic markers in Asiatic populations. SNP rs9912300 in
ACLY gene was significantly associated with OS in lung cancer
patients (165). rs9912300 and rs2304497, both functional ACLY
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SNPs, exhibited a significant association with risks of death and
recurrence in patients with advanced stages of colon cancer (166).

The following step of FA biosynthesis involves the activation
of AcCoA to malonyl-CoA, which is catalyzed by AcCoA
carboxylase (ACC) (Figure 2). ACC is a complex multifunctional
enzyme system. There are two ACC forms, α (ACACA) and
β (ACACB), encoded by two different genes. High phospho-
acetylCoA carboxylase (pACC) was an independent marker for
prediction of better survival in lung adenocarcinoma patients
(105), and low pACC levels detected by immunohistochemistry
were associated both with worse OS and progression-free survival
in advanced stage CRC (167). In the same line, gene expression
analysis reported that patients with upregulation of six of
these hub genes (genes with high correlation in candidate
modules) (ACACB, acyl-CoA dehydrogenase medium chain,
adiponectin, C1Q and collagen domain containing, acyl-CoA
synthetase short-chain family member 2, phosphoenolpyruvate
carboxykinase 1 and PLIN1) displayed improved breast cancer
prognosis (106). In TCGA dataset, ACACA gene expression is
an unfavorable risk factor for liver cancer, whereas ACACB is a
favorable prognostic factor for both renal and pancreas tumors
(Table 1). Finally, it has been described in prostate cancer that
genetic alterations of ACACA, FASN, and SREBF1 predicted
worse overall patient survival (168).

Malonyl-CoA is coupled to themultifunctional enzyme FASN.
Repeated cycles of acetyl group’s condensation produce the
primary FA palmitate that can suffer separate elongation and/or
unsaturation cycles to yield other FA molecules (169) (Figure 2).
FASN is the key enzyme necessary for the de novo synthesis of
long-chain FAs. FASN has been found overexpressed in nearly
all of cancer tissues, and its expression is associated with a
poorer prognosis.

One study reported that FASN gene expression was higher
in the adjacent non-cancer tissue than in the NSCLC tissue,
but authors concluded that it was a weaker predictor of shorter
patient survival (170). However, a correlation analysis between
expression levels of CD276 (B7-H3) and FASN exhibited a
positive correlation with poor prognosis in clinical lung cancer
tissues (107).

FASN levels were clearly upregulated in CRC tissues with
high expression of FASN significantly associated with lymph
node metastasis (108), liver metastasis (109), TNM (tumor,
node, metastasis) stage, and poor prognosis (36). Moreover, a
significant association was shown between FASN and VEGF
expression, suggesting the involvement of FAS in tumor
angiogenesis (110). Interestingly, one study reported that,
among non-obese patients with colon cancer, tumoral FASN
overexpression is associated with better survival, while among
moderately overweight or obese patients, FASN overexpression
may predict a poorer outcome (111). Furthermore, a panel of five
genes including FASN (ACOT8/ACSL5/FASN/HMGBCS2/SCD1)
has been reported to display a improved prognostic performance
than validated clinical risk scales, and it is applicable for early
discovery of CRC and tumor recurrence (112). Finally, FASN
levels in serum were also examined in CRC patients, where
it was associated with tumor stage (171), and high FASN
levels are considered as a promising independent predictor of

CRC with advanced phases, late clinical stages, and shorter
survival (172).

FASN is associated with poor prognosis in breast and prostate
cancer, and its inhibition is selectively cytotoxic to human
cancer cells (113). FASN was found overexpressed in most
of the triple-negative breast cancer (TNBC) patients but not
always correlated with OS or disease-free survival. High FASN
was significantly associated with positive node status (114). A
greater part of clinically HER2-positive tumors was achieved as
FASN overexpressors. Reclassification of HER2-positive breast
tumors based on FASN gene expression predicted a significantly
inferior relapse-free and distant metastasis-free survival in
HER2+/FASN+ patients (115).

A substantial subset of prostatic cancers displays clearly
elevated expression of immunohistochemically detectable FASN,
a feature that has been associated with poorer prognosis (116–
119). Furthermore, high expression level of FASN resulted in
a significantly poor prognosis of pancreatic cancer (173), and
data from TCGA study suggest that FASN expression could be
a marker of bad outcome in cervical and renal cancer (Table 1).

In addition, several genetic changes in FASN gene have been
associated with cancer prognosis. Two SNPs rs4246444 and
rs4485435 were significantly associated with the recurrence of
NSCLC (165). Finally, as it has been previously mentioned in
prostate cancer that genetic alterations of FASN together with
ACACA and SREBF1 predicted worse prognosis (168).

Then, FAs are activated with CoA by fatty acyl-CoA
synthetases (ACSLs) (Figure 2), which is essential for
phospholipid and triglyceride synthesis and lipid modification of
proteins in addition to for FA β-oxidation (169).

Family of long-chain acyl-CoA synthetases has been
extensively proposed as putative prognostic biomarkers of
cancer. ACSL3 is up-regulated in lung cancer compared to
the healthy lung tissue (174), and recently, an association
with ACSL3 expression, NSCLC prognosis, and the efficacy of
statins treatment has been discovered (L. P. Fernandez et al.,
unpublished results). ACSL3 was also found to be overexpressed
in estrogen receptor–negative breast cancer (175) and prostate
cancer (176). ACSL1 and ACSL4 overexpression was associated
with a poor clinical outcome in stage II CRC patients (7–
9, 120, 121). In addition, ACSL4 is considered a biomarker for
liver and breast cancers (122, 177). By contrast, downregulation
of ACSL5 in breast cancer was associated with a poorer prognosis
(121, 123). There have not been reported associations between
ACSL6 and cancer survival (178).

An in silico study (121) also suggested that high ACSL1
expression was associated with worse outcome in lung cancer
patients, and ACSL3 overexpression was associated with worse
survival in patients with melanoma. In contrast, high ACSL3
expression predicted a better prognosis in ovarian cancer. In
the same study, ACSL4 overexpression predicted bad prognosis
in CRC, but good prognosis in breast, brain, and lung cancers.
High expression of ACSL5 predicted good prognosis in breast,
ovarian, and lung cancers. Finally, low ACSL6 predicted a
worse prognosis in acute myeloid leukemia. In silico analysis of
TCGA data (Table 1) suggested that ACSL1, ACSL4, and ACSL5
are associated with favorable outcome in renal, urothelial, and
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endometrial cancers, respectively, whereas ACSL3 expression
predicts poor survival in lung and liver tumors.

Genetically, a 3′-UTR polymorphism in ACSL1 is associated
with ACSL1 expression levels and poor clinical outcome in
CRC patients (14, 120). Patients carrying the ACSL1 rs8086
T/T genotype had significantly reduced disease-free survival
compared with patients carrying the C/T or C/C genotype,
with 3-fold higher risk of recurrences. T/T genotype for rs8086
is correlated with worse clinical outcome and simultaneously
associates with high ACSL1mRNA levels (14, 120).

Stearoyl CoA desaturase 1 (SCD1) catalyzes the rate-limiting
step in the synthesis of MUFAs that are the main components of
tissue lipids. SCD1 has been associated with tumor development,
late stage, and reduced survival in lung adenocarcinoma (124).
Together with other three lipid metabolism–related genes
(ABCA1,ACSL1, and AGPAT1), SCD1 expression separated stage
II colon cancer patients with a 5-fold higher risk of relapse (7).
Moreover, positive associations between SCD1 expression and
CRC patient clinical status and the expression of cancer stem
cell–related genes (WNT and NOTCH signaling) were found
based on TCGA data analysis (125). In the same line, high SCD1
expression is associated with shorter survival in breast cancer
patients (126). Table 1 shows that SCD1 is an unfavorable marker
of survival in renal and urothelial cancer in TCGA tumors. Other
desaturases have also been analyzed as prognostic markers, and,
for example, reduced expression of FADS1 suggests pessimistic
prognosis for NSCLC patients (127).

Glycerol-3-phosphate acyltransferase (GPAT) catalyzes
the first step in the production of almost all membrane
phospholipids. GPAT transfers an acyl group from acyl-CoA
or acyl-ACP at the sn-1 or-2 position of glycerol 3-phosphate
originating lysophosphatidic acids (LPAs) (179). LPA is a
substrate for synthesis of numerous important glycerolipid
intermediates, such as storage lipids, extracellular lipid
polyesters, and membrane lipids (Figure 2). Four GPATs
have been discovered; nevertheless, only GPAT1 (GPAM) has
been related to cancer outcome. High GPAT1 expression has
been associated with reduced OS in ovarian cancer (180).
Data from TCGA suggested that GPAT1 could be a favorable
prognostic marker in renal cancer, while GPAT3 is a putative
biomarker of good prognosis in renal cancer in contrast to
urothelial cancer. Finally, GPAT4 expression could have a risk
effect in ovarian and endometrial cancers, and a protective one
in prostate and urothelial cancer (Table 1).

LPA is further metabolized to phosphatidic acid (PA)
by AGPATs (1-acylglycerol-3-phosphate O-acyltransferases)
(Figure 2). AGPAT1 belongs to previously mentioned
transcriptional signature where combined analysis of four
genes, ABCA1, ACSL1, AGPAT1, and SCD1, is associated with
higher risk of relapse in stage II CRC patients (7). Furthermore,
individuals with upregulation of AGPAT1 expression have an
increased risk of CRC recurrence, independently of tumor stage
(8). Expression of AGPAT2 was significantly related to decreased
OS as well as to shorter progression-free survival in ovarian
cancer patients younger than 60 years (181). When we consider
tumors from TCGA study, several associations were found
(Table 1). AGPAT3 is a marker of good prognosis in renal cancer

and predicts bad outcome in cervical cancer. High expression
levels of AGPAT4 may be associated with poor prognosis in
cervical and renal cancers, whereas AGPAT5 is an unfavorable
prognostic marker in liver cancer and a favorable one in CRC.

Then PA is converted to diacylglycerol (DAG) by LPIN, a
PA phosphatase. Three LPIN isoforms have been described.
LPIN1 is upregulated in lung adenocarcinoma tumor tissues,
and high LPIN1 expression was correlated with poor prognosis
of patients with lung adenocarcinoma (134). In breast cancer,
previous results seem to indicate that the high LPIN expression is
related to a good prognosis (135). However, in basal-like TNBC,
high LPIN1 expression correlates with the poor prognosis of
these patients (136). In TCGA dataset analysis, LPIN2 appears
as a favorable prognostic marker in head and neck cancers,
while LPIN3 could be an unfavorable biomarker of endometrial,
ovarian, and renal tumors (Table 1).

The final step in triacylglycerols synthesis is catalyzed by
DGAT, which esterifies the DAG with a FA. Two human
DGAT isoforms have been described (182). The expression of
DGAT2 in HER2-positive breast cancer was decreased and was
closely related to patient prognosis (140). However, data from
TCGA reported DGAT2 as an unfavorable prognostic factor for
endometrial cancer (Table 1).

Subsequently, TAGs could be stored in LDs, and PLINs,
an LD surface family of proteins, are necessary for optimal
lipid storage and FA release. There are multiple PLIN proteins
encoded by mRNA splice variants of a single PLIN gene.
PLIN1 expression in lung adenocarcinoma is associated with
apocrine-like features and poor clinical prognosis (137). In
contrast, PLIN1mRNA expression is significantly downregulated
in human breast cancer. The reduced expression of PLIN1 is an
independent predictor of OS in estrogen receptor–positive and
luminal A-subtype breast cancer patients (138). Also in breast
cancer, low expression of PLIN2 was associated with favorable
prognosis (139). The prognostic effects of PLINs in several types
of cancer from TCGA analysis are multiple and very diverse
(Table 1).

Eicosanoids are biologically active metabolites of AA and are
produced by cyclooxygenases 1 and 2 (COX1 and COX2) [also
known as prostaglandin-endoperoxide synthase 1 and 2 (PTGS1
and PTGS2)]. They are overexpressed in a variety of malignant
tumors. It has been reported that the mRNA levels of COX-
1 and COX-2 in lung cancer patients were significantly higher
than in normal patients (183). However, another study reports
that in tumor cells COX-2 rather than COX-1 expression may
account for the variable prostanoid production seen in NSCLC
(128). It is clear that multivariate analysis showed that tumoral
COX-2 mRNA expression and lymph node status were the
most important independent prognostic predictors for NSCLC
survival and disease relapse (129). Elevated COX-2 expression in
tumors was significantly associated with lower survival in NSCLC
and might be useful in identifying patients who would benefit
from additional therapies for managing their disease (130).

The same tendency was observed in CRC, where elevated
COX-2 expression, but not that of COX-1, was significantly
associated with reduced survival and recognized as an
independent prognostic factor (131). However, it has been
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reported that COX-1 and COX-2 expression is highly variable in
Dukes’ C tumors, and changes in COX-1 expression may be of
importance in CRC (184).

COX-2 expression level and its prognostic value are also a
matter of debate in breast cancer (185). Nevertheless, at least
eight immunohistochemical reports have explored expression of
COX-2 in a total of 2,392 primary breast carcinomas, of which
40% were found to be COX-2 positive (132). At least, four
studies have detected that overexpression of COX-2 is linked to
poor prognosis in breast cancer. These studies provide the basis
for further estimation of a possible therapeutic effect of COX
inhibitors in therapy of breast cancer.

In prostate cancer, a subset of Chinese patients with high-
COX-2 expression showed minor disease-free and OS rates than
those with low COX-2 expression. In this work, univariate and
multivariate analyses suggested that the status of COX-2 protein
expression was an independent prognostic factor for patients’
survival (133).

Data from TCGA showed COX-1 and COX-2 as unfavorable
markers of renal cancer, whereas only COX-1 was a risk
biomarker of urothelial cancer (Table 1).

Chronic inflammation is a recognized risk factor for CRC,
and polymorphisms in genes regulating inflammatory processes
appear to modify the risk of neoplasia and the efficacy of non-
steroidal anti-inflammatory drugs in CRC chemoprevention.
COX-1 polymorphism G213G was significantly associated with
an increased CRC (186). Finally, another study reports fourCOX-
1 variants that were associated with CRC survival. rs1213266 was
associated with approximately 50% lower CRC mortality. Three
other variants, including L237M, resulted in significantly elevated
CRC mortality risk (187).

Proteins related to FAs transportation are also relevant as
cancer biomarkers. Carnitine palmitoyltransferase, CPT1A, is a
protein that is responsible for the translocation of FAs from
the cytosol to the mitochondrial matrix, where FA oxidation
occurs. Associations of shorter disease-free survival with CPT1A
positivity in invasive lobular carcinoma of the breast have been
found (142).

Another study recognized a gene expression signature
composed of 19 genes associated with FAO that was significantly
associated with breast cancer patient survival. These 19 genes
are referred to as the “fatty acid oxidation (FAO)” signature.
Included in this signature were genes that have previously been
identified as the core components of the FA β-oxidation pathway,
such as CPT1A. Moreover, the expression of CPT1A was elevated
in estrogen receptor–positive, compared to estrogen receptor–
negative tumors and cell lines (143). Data from TCGA clearly
confirm a CPT1A association with poor prognosis in breast
cancer, whereas CPT1A is a marker of good prognosis in renal
cancer and CPT1C in pancreas (Table 1).

Other relevant FA transporter is CD36. CD36, a scavenger
receptor expressed in multiple cell types, mediates lipid uptake,
immunological recognition, inflammation, molecular adhesion,
and apoptosis. CD36 has been continually proposed as a
prognostic marker in diverse cancers, mostly of epithelial
origin (breast, prostate, ovary, and colon) and also for hepatic
carcinoma and gliomas (141). Through systematic analysis of

the multiple omics data from TCGA, it has been found that the
most widely altered lipid metabolism pathways in pan-cancer
are FA metabolism, AA metabolism, cholesterol metabolism,
and peroxisome proliferator-activated receptor (PPAR) signaling.
Genes related to lipid metabolism and immune response that
were associated with poor prognosis were discovered including
CD36 (188).

Cholesterol-Related Alterations as
Biomarkers of Cancer Prognosis and
Survival
First step of cholesterol or mevalonate pathway is catalyzed by
acetyl-coenzymeAACAT1 (Figure 2). ACAT1 is amitochondrial
enzyme that catalyzes the reversible formation of acetoacetyl-
CoA from two molecules of AcCoA. An increased expression of
ACAT1 in intratumor cholesteryl ester–rich breast tumors was
reported (189). Also it has been proposed that ACAT1 expression
could serve as a potential prognostic marker in prostate cancer,
specifically in differentiating indolent and aggressive forms of
cancer (144, 145). Data from TCGA suggest that ACAT1 is a
marker of good prognosis in liver and renal tumors. Interestingly,
isoform 2 (ACAT2) is a marker of good prognosis in CRCs,
whereas in endometrial and renal tumors, ACAT2 has the
opposite effect (Table 1).

Next step in cholesterol synthesis is mediated by 3-hydroxy-
3-methylglutaryl-CoA synthase (HMGCS). This enzyme, with
two isoforms, condenses AcCoA with acetoacetyl-CoA to form
HMG-CoA, which is the substrate for HMG-CoA reductase.
HMGCS2 expression is associated with reduced clinical prognosis
and outcomes in patients with CRC and oral squamous cell
carcinoma. It has been suggested that HMGCS2 may act as
a helpful prognostic marker and essential target for potential
therapeutic strategies against advanced cancer (146). Also, it has
been described that HMGCS2 works as a tumor suppressor and
has a prognostic impact in prostate cancer, capable of predicting
the risk of biochemical recurrence (147). However, in TCGA
population, both isoforms are favorable makers of renal cancer.
Besides, HMGCS2 determines good prognosis in ovarian and
liver cancer (Table 1).

HMGCR is the rate-limiting enzyme of the mevalonate
pathway (Figure 2). HMG-CoA reductase expression in CRC
and breast cancer correlates with favorable clinicopathological
characteristics and an improved clinical outcome (148–150).
Besides, HMCGR expression is a predictor of response to
tamoxifen in breast cancer (190) and also may predict patient
response to radiotherapy in ductal carcinoma in situ (191). In
TCGA subset, HMGCR also is a good prognosis marker of renal
tumors (Table 1). Statins, lipid-lowering compounds commonly
used in cardiovascular disease, are competitive inhibitors of
HMGCR. The value of HMGCR as a predictor of response to
neoadjuvant or adjuvant statin treatment in cancer was also
studied (192).

Once that cholesterol is synthesized, there are several
cholesterol transporter proteins that play key roles in cholesterol
and phospholipids homeostasis. The ATP-binding cassette
transporter ABCA1 is a transmembrane protein responsible
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for the reverse cholesterol transport from the inner cell to
circulatory system. ABCA1 is significantly overexpressed in
patients of all stages of CRC, and its overexpression gives
proliferative advantages together with caveolin-1–dependent
increased migratory and invasive capacities (151). Individuals
with upregulation of ABCA1 expression have an improved
risk of CRC recurrence and OS independently of tumor
stage (8). ABCA1 also forms part of the metabolic-signature
ColoLipidGene able to precisely stratify stage II CRC with 5-
fold higher risk of relapse (7). Moreover, the presence of tumoral
genetic variants located in ABCA1 coding region seems to be
associated with CRC risk of death (8). In other tumor types,
ABCA1 expression was related to positive lymph nodes, but not
significantly associated with tumor recurrence or breast cancer–
specific survival (193).

Together with ABCA1, ATP-binding cassette G1 (ABCG1)
also initiates and propagates cellular cholesterol efflux. Several
genetic variants in ABCG1 have been associated with survival of
NSCLC patients (194). Moreover, ABCG1 expression seems to be
a favorable prognostic marker of renal cancer in data from TCGA
(Table 1).

Other members of the family are the ATP-binding cassettes
G4, G5, and G8. High ABCG4 expression has been associated
with poor prognosis in NSCLC patients treated with cisplatin-
based chemotherapy (152). ABCG5 positivity in tumor buds have
been proposed as an indicator of poor prognosis in node-negative
CRC patients (153), whereas in TCGA tumors, ABCG5 seems to
have a favorable effect in liver prognosis (Table 1).

While cellular cholesterol efflux is mainly performed via
ABCA1, cholesterol uptake is principally executed via the LDLR.
The prognostic value of LDLR expression was analyzed in CRC
where authors found that the absence of LDLR predicts a shorter
survival (154). In the same line, lower LDLR expression was an
independent prognostic factor associated with longer survival in
patients with small cell lung cancer (195). By contrast, TCGA
data suggest that LDLR could be a bad prognostic marker of
pancreatic, renal, and urothelial cancers (Table 1).

Lipid-Related Transcription Factor
Alterations as Biomarkers of Cancer
Prognosis and Survival
Five are the main transcription factors that regulate the
expression of mediators of lipid metabolism: SREBP1, SREBP2,
PPARγ, NR1H3, and NR1H2. Sterol regulatory element-binding
protein 1 (SREBP1) is a known transcription factor of lipogenic
genes, which plays important roles in regulating de novo
lipogenesis. SREBP1 is overexpressed and strongly associated
with worse clinical outcomes in breast cancer (155). Moreover,
SREBP1 also seems to have an essential role in pancreatic
cancer, regulating tumorigenesis and being associated with bad
prognosis (196). However, data from TCGA propose SREBP1
as a favorable prognostic marker in pancreatic and endometrial
cancers (Table 1).

The combined expression of sterol regulatory element-
binding protein 2 (SREBP2) together with HMGCR, NR1H3, and
NR1H2 genes was associated with poor CRC clinical outcome

TABLE 2 | Preclinical and clinical studies with main drugs evaluated to target the

altered lipid metabolism in cancer.

Target Drug Type of cancer Preclinical/clinical trial

FASN Cerulenin Breast Cancer (48)

Ovarian Cancer (201)

C75 Renal Cancer (59)

Breast Cancer (53)

Lung Cancer (43)

Orlistat Melanoma (57,

202)

Prostate Cancer (86)

Fasnall Breast Cancer (87)

C93 NSCLC (42, 43)

C247 Breast Cancer (44)

TV3166 CRC (45)

TVB-2640 NSCLC NCT03808558 (56)

TNBC NCT03179904 (56)

HG Astrocytoma NCT03032484 (203)

Ovarian, Breast

Cancer

NCT02223247 (204)

Triclosan Breast (58, 60)

ACLY SB-204990 NSCLC, Prostate,

Ovarian

(51)

NSCLC (61)

ACC1/2 ND-630 (GS-0976) NASH (71)

TOFA HNSCC (205)

Ovarian (33)

ND-654 HCC (34)

GS-0976 NASH (36)

NCT02856555 (35)

ND-646 NSCL (206)

SCD1 CVT-12 HCC (207)

SSI-4 HCC (208)

Betulinic acid CRC (209)

GBC (210)

MF-438 NSCLC (211)

A939572 NSCLC (212)

ccRCC (213)

Prostate (213)

CPT1A Etomoxir Leukemia (214)

Ranolazine Prostate Cancer (215)

Glioblastoma (216)

Etomoxir,

Ranolazine,

Perhexiline

Prostate Cancer (217)

Perhexiline CLL (218)

Breast Cancer (219,

220)

SREBP Betulin HCC (221)

Melanoma (222)

Fatostatin Prostate (223,

224)

Glioma (225)

HCC (226)

(Continued)

Frontiers in Oncology | www.frontiersin.org 13 October 2020 | Volume 10 | Article 577420126

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

Fernández et al. Lipid Metabolism Alterations in Cancer

TABLE 2 | Continued

Target Drug Type of cancer Preclinical/clinical trial

LXR T0901317/GW3965 BPDCN (227)

LXR623 and

GW3965

Colon/Glioblastoma (228)

GW3965 Glioma (229)

ACAT1 Avasimive Prostate/Colon

Cancer

(230)

GBM (231)

CML (232)

CD36 FA6.152 Oral Cancer (80)

Prostate Cancer (233)

HMGCR Fluvastatin Prostate NCT01992042 (234)

NCT00608595

Simvastatin CRC NCT00994903 (235)

NSCLC NCT00452244 (236)

MAGL URB602 Colon (237)

PTGS2 Celecoxib Lung Cancer (238)

Ovarian Cancer

(HFD)

(239)

NSCLC NCT00046839 (+)

PDAC NCT01111591 (240)

Prostate cancer NCT00073970 (+)

Early CRC NCT00608595 (+)

PPARG VSP-17 Breast Cancer (241)

FABP4 BMS309403 HCC (242)

Prostate Cancer (243)

FABP5 SBFI26 CRPC (244)

(+) Unpublished results.

independent of lymph node metastasis, distant metastasis,
and advanced stage (156). Besides, expression of SREBP-2
was elevated in advanced pathologic grade and metastatic
prostate cancer and significantly associated with poor clinical
outcomes (157).

The PPARγ is a nuclear receptor that controls expression
of mediators of lipid metabolism but also the inflammatory
response. Additionally, it has been demonstrated that PPAR b/d
and a isotypes also have important roles in FAO, FA storage, and
cholesterogenesis (197).

Decreased expression of PPARγ has been observed in many
tumor types. In this sense, reduced PPARγ expression within
the tumor is associated with poor prognosis in lung cancer
patients (158, 159). In the same line, tumor expression of
PPARγ is independently associated with increased survival of
CRC patients (160). Also in patients with breast and prostate
cancer, PPARγ is a marker of better prognosis and is associated
with better survival (161–163). Importantly, one study reports
that cytoplasmic PPARγ expression appeared as an independent
marker of poor prognosis in primary breast cancers (198). TCGA
analysis proposed PPARγ as a favorable prognostic marker for
renal and urothelial cancers (Table 1).

Finally, several studies have also evaluated the association
between PPARγ genetic variants and the risk of CRC (199).

In patients with stages II/III CRC, polymorphism rs1801282 in
PPARγ was significantly associated with tumor recurrence (200).

NR1H3 and NR1H2 encode for liver X receptor (LXR) α

and LXR β, respectively. They are intimately related nuclear
receptors that react to elevated levels of intracellular cholesterol
by enhancing transcription of genes that control cholesterol
efflux and FA biosynthesis. NR1H3 expression was significantly
correlated to better survival in completely resected stages II
and III NSCLC patients (164). Moreover, one study reports that
NR1H3 andNR1H2 belong to a transcription signature associated
with poor CRC clinical outcome independent of lymph node
metastasis, distant metastasis, and advanced stage (156). This
result is validated in TCGA dataset (Table 1) where NR1H2 was
also associated with CRC poor prognosis.

TARGETING THE ALTERED LIPID
METABOLISM IN CANCER

Because of the essential role of FAs for cancer cell proliferation
and progression, drugs to target lipogenic enzymes and/or
transcription factors regulating the intracellular lipid
homeostasis are considering as promising therapeutic strategies
against cancer.

Different drugs have been already evaluated to target (i)
lipogenic enzymes (FASN, ACLY, ACC); (ii) the exogenous
lipid uptake (LXR, CD36, FABP4/5); (iii) inflammatory
signaling pathways (PTGS2); (iv) regulation of intracellular lipid
homeostasis (PPARγ, CPT1a, lipin2, HSL, MAGAT, DAGAT. . . );
and/or (v) saturated vs. unsaturated FAs. Their efficacy has been
demonstrated in numerous models of cancer, including in vitro
preclinical and clinical studies.

In Table 2, we summarize main drugs evaluated in preclinical
and clinical studies. Nevertheless, although the results of
these studies are encouraging, side effects due to the many
different regulatory mechanisms of lipid metabolism are still a
big challenge.

Recently, there is growing interest on complementary
approaches by means of dietary interventions for cancer
treatment. The success of such interventions requires a deep
knowledge of the metabolic requirements of tumors, considering
the nutritional status of the individuals—obesity, metabolic
syndrome and/or insulin resistance, among others—and the
genetic susceptibilities to metabolic alterations. Moreover, the
knowledge of the molecular targets and mechanism of action
of dietary ingredients will be crucial to apply these approaches
with the conventional chemotherapy in order to improve the
responses to the clinical treatments and the well-being of patients.

Precision nutrition should be considered at three levels:
(1) nutritional guidelines based on age, gender, and other
sociocultural factors; (2) individualized recommendations after
refined phenotyping; and a (3) genetic-nutrition based on genetic
variants with high penetrance and on the response to nutritional
interventions (6).

The improvement of the “omics” sciences, including
transcriptomics, proteomics, metabolomics, lipidomics,
and metagenomics, provides a more complete scenario for
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TABLE 3 | Preclinical and clinical studies with bioactive compounds from natural sources to target the altered lipid metabolism and/or associated risk factors (mainly

obesity and T2DM) in cancer.

Family Bioactive compounds Molecular targets, metabolic effects Preclinical/clinical trials References

Polyphenols

Flavonoids Gallic acid and its derivatives

EGCG, gallate, ethyl gallate,

gallocatechin gallate, methyl

gallate, propyl gallate,

theaflavin-3-gallate

↑AMPK, FAO, thermogenesis (258)

↓antiobesity (259)

↓Cholesterol, LDL NCT02147041 (260)

↓lipogenesis, ↓PPARG, LXR, ↑AMPK (261, 262)

↑AMPK, SIRT, PGC1a, FAO, UCP1, CYp7a1 (263)

↓dyslipidemia (264)

↓dyslipidemia NCT02627898 (265)

↑FAO, ↓antiobesity NCT02381145 (266)

↓HOMAIR, T2DM Human study (267)

Citrus flavonoids

Nobilettin ↓HSL, ACC, ↑AMPK, CPT1a, ACOX1, FAO (268)

Naringenin ↑PPARα, CPT-1, UCP-2, FAO, ↓SREBP1c,

3HMGCR, hepatic steatosis

(269–272)

Tangeretin ↑PPARα, FAO (273)

Hesperetin ↑PPARα, PPARγ, AMPK, FAO, ↓lipogenesis (274)

Baicalin ↓SREBP-1c, FASN, ACC (275)

Hispidulin ↑PPARα, CPT1α ↑Acat1, Acad1, HMGCS2 (276, 277)

Mangiferin ↓inflammation, T2DM, steatosis, ACC, DGAT2,

↑ FAO(CPT1a)

Dihydromyricetin ↓hepatic steatosis ChiCTRTRC12002377 (278)

Berberin ↓hepatic steatosis, TG and cholesterol levels NCT00633282 (279)

Luteolin ↑FAO, ↓lipogenesis, cholesterogenesis,

HMGCS1

NCT00633282 (280)

Quercetin ↓ CYP2E1, inflammation, obesity, T2DM (281, 282)

Stilbenos Resveratrol ↓ steatosis, adipogenesis, SREBP1c, lipin1,

ACC, ↑AMPK, SIRT1, FAO

(283–285)

Curcuminoids Curcumin ↓steatosis, adipogenesis, SREBP1c, FASN,

SCD1, GPAT-1, ↑1AMPK, FAO

(286, 287)

Phenolic acids Ellagic acid ↓steatosis, Insulin resistance (288)

Terpenoids

Carnosol ↓hyperglycemia, inflammation, lipogenesis,

anticancer

(289, 290)

Betulinic acid ↓SCD, steatosis, lipogenesis (209)

Ursolic acid ↑AMPK, FAO, ↓lipogenesis (291)

Ginsenoside ↑AMPK, perilipin, FAO (292–294)

Licopene ↓inflammation ISRCTN99660610 (295)

personalized nutritional interventions (13, 245). The main
challenge is to define tumor heterogeneities, which can be
originated by genomic, epigenomic, transcriptomic, and
immune variability. This will lead to patients’ stratification for
personalized treatments in the clinics (246).

Nutrigenetics aims to study the effect of genetic variants
on the dietary response and the risk of several diseases. For
example, SNPs in the CD36 gene associate with dyslipidemia
when high amounts of fats are consumed (247). In addition,
dietary ingredients affect cancer risk and progression affecting

gene expression. Nutrigenomics considers the effect of diet-
derived ingredients on gene expression and, consequently, on the
proteome and metabolome.

Dietary ingredients and nutrients from natural sources,
such as epigallocatechin-3-gallate, curcumin, sulforaphane, and
genistein, have been shown to have anticancer properties
regulating the expression of genes related to cancer.
Polyphenols contribute to the prevention of obesity through the
modulation of genes implicated in adipogenesis, lipolysis, and
FAO (248–251).
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Importantly, in the frame of precision nutrition, dietary
interventions might also provide systemic responses affecting
the antitumoral response of the immune system, as well as
the reduction of low-grade chronic inflammation, dyslipidemia,
insulin resistance, and/or obesity.

The direct association of diet with obesity and dysbiosis
requires further research to understand the impact of diet on
cancer prognosis. High intake of saturated FAs increases the
expression of genes related to inflammation, insulin resistance,
and/or hepatic steatosis. In contrast, Mediterranean diet
downregulates the expression of genes related to oxidative stress,
inflammation, and/or insulin signaling (252, 253). Importantly,
high levels of triglycerides and LDLs have been associated with
CRC prognosis and distant metastasis. Cholesterol in high-fat
diets associates with colorectal tumorigenesis (254). Ceramide
sphingolipids have been shown to be antitumoral in combination
with tamoxifen (255). Phosphatidylcholine is increased in CRC
cells. Increased intake of MUFAs is associated with reduce
inflammation in CRC cancer (256). Energy-restricted diets
supplemented with EPA and α-lipoic acid increase the expression
of FAO genes, diminishing the expression of genes related to de
novo lipogenesis and inflammation (257) (Table 3).

Importantly, the efficacy of fasting cycles or cycles of
fasting mimicking diets in dampening tumor development has
already been established (296), and the implementation of
other dietary approaches for cancer therapy is likely to take a
similar approach.

CONCLUDING REMARKS

Metabolic alterations of tumors have been well-recognized as one
of the hallmarks of cancer. At present, several investigations have
demonstrated the consequences of lipid metabolism deregulation
in cancer not only sustain tumor growth but also promote cell
migration, invasion, and angiogenesis. In this review, we have
discussed about the main lipid metabolism alterations found

in cancer by describing their mechanism of action and their
oncologic implications. Importantly, we emphasize the crucial
role of the aberrant lipid metabolism not only affecting the
primary tumors but also shaping the tumor microenvironment
to promote malignancy and dissemination. Moreover, we have
explored the available public data bases containing mRNA data
(TCGA) and protein expression data (The Human Protein
Atlas) to obtain a global view of the putative implications of
lipid metabolism–related genes in cancer prognosis of the most
frequent types of cancer according to the WHO: lung, CRC,
breast, and prostate cancers.

We also highlight the relevance of “omics” technologies,
including genomic and transcriptomic data, considering the
phenotypic metabolic status (mainly obesity) to define lipid
metabolic scores to be integrated into the clinical advice. Thus,
the use of this knowledge will allow a better stratification of
patients, which will be translated into improvements on the
OS and well-being of the patients. In the frame of precision
medicine, new clinical trials integrating classical chemotherapies
with precision nutrition–based strategies—bioactive products
and diet derived nutrients—will provide an unquestionable line
of research in cancer treatment.
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Breast cancer is the cancer with the most incidence and mortality in women. microRNAs

are emerging as novel prognosis/diagnostic tools. Our aim was to identify a serum

microRNA signature useful to predict cancer development. We focused on studying

the expression levels of 30 microRNAs in the serum of 96 breast cancer patients vs.

92 control individuals. Bioinformatic studies provide a microRNA signature, designated

as a predictor, based on the expression levels of five microRNAs. Then, we tested the

predictor in a group of 60 randomly chosen women. Lastly, a proteomic study unveiled

the overexpression and downregulation of proteins differently expressed in the serum of

breast cancer patients vs. that of control individuals. Twenty-six microRNAs differentiate

cancer tissue from healthy tissue, and 16 microRNAs differentiate the serum of cancer

patients from that of the control group. The tissue expression of miR-99a, miR-497,

miR-362, andmiR-1274, and the serum levels of miR-141 correlatedwith patient survival.

Moreover, the predictor consisting of miR-125b, miR-29c, miR-16, miR-1260, and

miR-451 was able to differentiate breast cancer patients from controls. The predictor was

validated in 20 new cases of breast cancer patients and tested in 60 volunteer women,

assigning 11 out of 60 women to the cancer group. An association of low levels of miR-16

with a high content of CD44 protein in serum was found. Circulating microRNAs in serum

can represent biomarkers for cancer prediction. Their clinical relevance and the potential

use of the predictor here described are discussed.

Keywords: breast cancer, serum, microRNAs, prognosis, diagnosis

INTRODUCTION

Breast cancer is one of the most frequent carcinomas and the second leading cause of death in
women (1). Specifically, in the United States and Europe, about 1 in 8 women (12.5%) will develop
invasive breast cancer over the course of their life. Therefore, comprehensive research should be
devoted to cancer prevention in order to scale down these numbers and reach higher life expectancy
in affected patients, lower mortality rates, and decline socio-economical burdens due to the high
cost of chemotherapeutical treatments.
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Currently there is no precise model to estimate breast cancer
risk. Most of the predictor models consider clinical factors,
including the density of breast tissue, biopsy history, and several
clinical parameters. However, such models are not informative
at an individual level. Predictive tests (i.e., Oncotype DX,
Prosigna, MammaPrint) based on the status of genetic and non-
genetic factors in cancer tissue have proven their prognostic and
predictive ability in a personalized way (2). Currently, the liquid
biopsy is being used to establish the biomarkers that are able
to predict or envisage a potential future cancer development
risk (3).

microRNAs are key factors in oncogenesis because they
contribute to the modulation of key oncogenic and tumor
suppressor proteins. In particular, microRNA expression
profiling can be used to classify human cancer (4). On the
other hand, recent evidence suggests that microRNAs are very
stable molecules in serum and that they have been established
as biomarkers for some cancer types (5). Interestingly, the
level of certain microRNAs in combination with known tumor
markers (e.g., CEA or CA15-3) improves sensitivity to breast
cancer detection (6). Thereby routine monitoring of circulating
microRNAs can result in significant benefits for the prognosis,
diagnosis, and breast cancer treatment (7).

Previously, we identified a molecular signature based on
35 microRNAs that vary significantly in normal tissue vs.
cancer tissue in breast cancer patients (8). According to our
previous work and literature search, we selected 30 cancer-
related microRNAs that could be potentially detected in serum
(miR-96, miR-451, miR-155, miR-195, miR-200c, miR-106b,
miR-141, miR-21, miR-486, miR-16, miR-125b, miR-99a, miR-
497, miR-191, miR-145, miR-100, miR-144, miR-382, miR-29c,
miR-10b, miR-133a, miR-1260, miR-1274a, miR-1274b, miR-
133b, miR-92, miR-376c, miR-411, miR-299, and miR-215) (8–
11). In the present study, we compared the expression of 30
microRNAs in tumor vs. normal tissue and serum from 96 breast
cancer patients (in comparison with control serum). Through
statistical and bioinformatic studies, we determined a predictor,
comprised by five microRNAs, that categorize an individual in
the control group or breast cancer group. The potential benefit
of this classifier and its validation for breast cancer prediction
is discussed.

MATERIALS AND METHODS

Patients and Controls
This study comprises 96 breast cancer patients. For each patient,
we had samples of cancer tissue (CANtum), normal tissue
(CANnorm), and serum (CANse). For comparison purposes, we
had serum from 92 control individuals (CTLse). The method to
select the control group established the following criteria: 20-
to 80-year-old women, non-smokers, non-drinkers, no evidence
of breast cancer in their family history, and healthy women

Abbreviations: CANnorm, normal tissue; CANtum, cancer tissue; CANse, cancer

serum; Ct, cycle threshold; CTLse, control individual serum; dCt, Ct reference

gene – Ct gene of interest; Down, downregulated; FC, Fold change; qRT-PCR,

Quantitative Real-time PCR; RIN, RNA integrity number; Up, upregulated.

that have had no cancer episodes in the past. For the validation
study, we had additional serum from 20 breast cancer patients.
Finally, for the test study, we had serum from 60 volunteer
womenwhere no selection criteria were applied. The pathological
and clinical characteristics of the patients include the presence
of estrogen receptor (ER), progesterone receptor (PR), Ki-67
expression, p53, tumor grade determined by tumor heterogeneity
(low, medium, and high), tumor stage determined by the size
of the tumor and its infiltrating capacity to neighboring local
areas (T1b, T1c, or T2), subtype of breast cancer (molecular
classification), presence of metastasis, disease-free survival, and
overall survival. All patients included in the study were recruited
from the Vall d’Hebron Hospital and selected for primary breast
cancer. Patients were not treated with radio- or chemotherapy
before sample collection. Control individuals were recruited from
the Castilla-La Mancha Blood Bank and the Government of
Catalonia Blood and Tissue Bank. Volunteer women came from
the Primary Care Center (CAP-Vallcarca Sant Gervasi). The
study was conducted in accordance with the instructions and
requirements stated in the Declaration of Helsinki international
standards for studies and approved by the Ethics Committee of
Vall d’Hebron Hospital (CEIC). Informed consent was obtained
from the patients to participate, analyze, and publish their data.

Sample Collection
Serum was collected from each patient prior surgery. Hemolytic
sera (representing 5%) were discarded from the study. Summing
up, blood sample was obtained and centrifuged at 1,300 rpm for
10min and the supernatant fraction (serum) was collected and
stored at−80◦C. The collection and pre-processing of the cancer
samples vs. the healthy ones were treated with the same technical
conditions. Normal and tumor tissue were collected from the
surgery room and stored at −80◦C before RNA extraction.
Hematoxylin and eosin staining of the slides from frozen
biopsies was validated histologically to ensure that the tissue
area had an adequate tumor density (>80%). RNA was isolated
with a MirVana kit (Ambion R© Life Technologies) according
to the manufacturer’s instructions. The RNA concentration
from tissue was quantified using the Nanodrop-2000 UV-Vis
Spectometer (Fisher Scientific) and its quality was determined by
the Bioanalyser (RIN ratio> 8).

On the other hand, to verify that in RNA extractions from sera,
there was enough RNA to analyze the 30 microRNAs considered
in this study, each sample was amplified using RNU and cel-miR-
39-3p probes individually using quantitative real-time qRT-PCR
(data not shown).

qRT-PCR
The reverse transcription was performed on 10 ng of RNA
using specific primers for the 30 selected microRNAs, including
endogenous control RNU6 (ID 00973) and the exogenous control
cel-miR-39-3p (ID 000200) with the TaqMan commercial kit
microRNA Reverse Transcription Kit (Applied Biosystems, Life
Technologies, CA, USA) as described (8). The pre-amplification
reaction was carried out on 5 µl of cDNA product using
a pool containing the specific preamplification primers for
each microRNA with the TaqMan R© PreAmp Master Mix 2×
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solution (Applied Biosystems, Life Technologies, CA, USA).
Reactions were performed in the VeritiTM Thermal Cycler Assays
thermocycler (Applied Biosystems, Life Technologies, CA, USA).
The study of each microRNA levels was conducted by triplicate.
The references used for each microRNA are the following:
mir-125b-5p (ID 000449), mir-99a-5p (ID 000435), mir-100-5p
(ID 000437), mir-497-5p (ID 001043), mir-1274b (ID 002884),
mir-106b-5p (ID 000442), mir-1260a (ID 002896), mir-141-3p
(ID 000463), mir-96-5p (ID 000186), mir-21-5p (ID 000397),
miR-1274a (ID 002883), mir-145-5p (ID 002278), mir-299-5p
(000600), mir-376c-3p (ID 002122), mir-451a (ID 001141), mir-
486-5p (ID 001278), cel-miR-39-3p (ID 000200), U6, miR-
16-5p (ID 000391), mir-195-5p (ID 000494), mir-191-5p (ID
002299), mir-215-5p (ID 000518), mir-382-5p (ID 000572), mir-
411-5p (ID 001610), mir-10b-5p (ID 002218), mir-155-5p (ID
002623), mir-200c-3p (ID 002300), mir-144-5p (ID 002148),
mir-92a-3p (ID 000431), mir-133a-3p (ID 002246), mir-133b
(ID 002247), mir29c-3p (ID 000587), and miR-362 (ID478058).
Supplementary Tables 1, 2 show the raw qRT-PCR data for the
indicated microRNAs in tissue and serum samples, respectively.
Supplementary Tables 3, 4 show the qRT-PCR results for the
indicated microRNAs in tissue and serum samples respectively
upon normalization. The probes cel-miR-39-3p and RNU6 were
used as internal controls, both to monitor the efficiency of RNA
isolation and subsequent retrotranscription and to normalize
possible variations between samples during RNA isolation.
Although RNU6 is used as one of the most frequent endogenous
controls to study profiling microRNA in cell and tissue samples,
it is not a suitable endogenous control to study the expression
of serum microRNAs (12). Therefore, in order to compare the
data, results were normalized using the quantile method (using
the normalized CtData function of the R package HTqRTPCR)
including all patients per sample type.

Proteomic Study
Serum from 70 breast cancer patients and 70 controls was
studied at protein level. Each sample was depleted individually
using the PierceTM Abundant Protein Depletion Spin Columns
kit (ref. 13434319, Thermo ScientificTM) according to the
manufacturer’s instructions. This kit eliminates ∼95% of 12
abundant proteins in serum (α1-Acid Glycoprotein, Fibrinogen,
α1-Antitrypsin, Haptoglobin, α2-Macroglubulin, IgA, Albumin,
IgG, Apolipoprotein A-I, IgM, Apolipoprotein A-II, and
Transferrin), allowing the identification of other proteins in
the samples. The quantitative study of proteins was performed
through Tandem Mass Tag marking as previously described
(13). Then, samples were grouped by pools (nine cancer pools
and nine control pools) for sequencing. Each pool (80 µg of
protein) was composed of equivalent amounts of seven samples
of each type (cancer or control). Sequencing was performed by
quantitative liquid chromatography tandem mass spectrometry
using an LTQ-Orbitrap XL instrument as described above (14).

Statistical Analysis
The study has been conducted using Leave-One-Out Cross
Validation (LOOCV) as cross-validation technique, thus
ensuring greater robustness in the results obtained (15).

Mann–Whitney U-test was used to identify microRNAs
differently expressed between patients and controls. Benjamini–
Hochberg’s false discovery rate (FDR) method was used to
correct for multiple testing. The analysis to select the differently
expressed microRNAs has been based on the fitting of a
linear model.

For the predictor, we considered that the best classification
method was CART (Classification and Regression Trees)
(16). The statistical analyses have been performed using
ExpressionSuite (Life Technologies, CA, USA) (R version 3.5.1,
copyright© 2018, Foundation for Statistical Computing, Vienna,
Austria) and the libraries developed for microRNA-target
analysis by the Bioconductor Project (www.bioconductor.org).
Regarding the validation of the microRNA expression with the
pathological characteristics of the patients, ANOVA and t-test
methods were used (SPSS v9.3). A statistical analysis to determine
differential proteins and peptides was performed using DanteR
software (http://omics.pnl.gov/software/danter). p < 0.05 were
considered significant.

RESULTS

Tumor-Associated microRNAs in Breast
Cancer
For the selection of the microRNAs studied here, they were
selected: (a) the 17 most significantly deregulated microRNAs
in breast cancer based on our previous work (miR-21, miR-96,
miR-141, miR-1274a, miR-1260, miR-1274b, miR-106b, miR-299,
miR-486, miR-376c, miR-497, miR-195, miR-100, miR-145, miR-
99a, miR-451, and miR-125b) and (b) the potentially relevant
microRNAs in the serum of breast cancer patients (miR-155,
miR-200, miR-16, miR-191, miR-144, miR-382, miR-29c, miR-
10b, miR-133a, miR-133b, miR-92, miR-411, and miR-215) (8–
11, 17). The following microRNAs were studied in serum and
cancer tissue in comparison with control individuals: miR-21,
miR-96, miR-141, miR-1274a, miR-1260, miR-106b, miR-1274b,
miR-299, miR-376c, miR-497, miR-195, miR-100, miR-145, miR-
99a, miR-451, miR-125b miR-486, miR-16 (only serum), miR-
191, miR-215, miR-382, miR-411, miR-106, miR-155, miR-200c,
miR-144, miR-92a, miR-133a, miR-133b, miR-29c, and miR-362
(only tissue) (8).

Supplementary Table 5 shows the 26 microRNAs differently
expressed when comparing tumor tissue with normal tissue
in 96 breast cancer patients and 92 control individuals (p <

0.05). The volcano plot shows the most relevant microRNAs
(Figure 1A) (p < 0.01). Supplementary Table 6 shows that
16 microRNAs (out of 30 initially selected) are significantly
deregulated when comparing the serum from cancer patients
vs. the serum from control individuals. The volcano plot shows
the top significant microRNAs (Figure 1B). The miR-125b and
RNU6 levels were validated by another approach based on
the manual performance of the Assays-on-Demand Taqman
Gene Expression Assays according to the procedure previously
described (data not shown) (18). In order to check if the
microRNAs expressed in the tumor reflect the same trend in
the serum of breast cancer patients, we compared significant
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FIGURE 1 | MicroRNAs expression in breast cancer. (A) Volcano plots indicating the top deregulated microRNAs when cancer tissue vs. normal tissue was compared

(green, downregulated microRNAs; red, upregulated microRNAs). (B) Volcano plots indicating the top deregulated microRNAs when the serum of cancer patients was

compared with a group of control serum. (C) Left side: Eleven commonly deregulated microRNAs when tissue and serum samples were compared. Right side: Table

showing the potential association between the expression of 11 microRNAs in tissue and serum. It can be observed that three microRNAs (miR-497, miR-133b, and

miR-96) have a statistically significant correlation coefficient (R) for a 95% confidence interval (CI) (p < 0.05). As indicated in the table, the microRNA values of the

cancer tissue are relativized to normal tissue and the microRNA values of the cancer sera are relativized to the control sera. Up, upregulated; Down, downregulated.

microRNAs in the tumor tissue and serum in all patients.
Eleven out of 16 significant microRNAs were deregulated in both
samples: tumor tissue of cancer biopsies and serum (Figure 1C,
Supplementary Tables 5, 6). Three microRNAs, miR-191, miR-
141, and miR-96, followed the same trend when the tumor and
serum of cancer patients were compared (Figure 1C).

Pathological and Clinic Characteristics of
the Tumors
The pathological characteristics of the patients are shown
(Supplementary Table 7). Supplementary Figure 1 shows
the serum microRNAs that correlate with tumor stage.
Supplementary Figure 2 shows the tumor microRNAs
that correlate with tumor grade. Supplementary Figure 3

shows the tumor microRNAs that correlate with tumor
stage. We found that the expression of miR-99a, miR-497,

miR-62, and miR-1274a correlated with overall survival
(Figure 2A). In addition, miR-362 and miR-133b expression
correlated with disease-free survival (Figure 2A). In addition,
we found that high miR-141 expression in the serum
of breast cancer patients correlated with better survival
(Figure 2B). There is a lack of correlation regarding the
studied microRNAs with the molecular classification of
tumors (19).

Construction of a Predictor
The experimental design of the study is summarized in Figure 3.
In order to establish a microRNA signature designated here as
predictor, statistical and bioinformatic studies were performed
in the serum from 92 control women and 96 breast cancer
patients. Accordingly, the minimal number of microRNAs able
to predict whether a serum sample should be categorized as
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FIGURE 2 | Prognosis-related microRNAs. (A) Kaplan–Meier curves showing that miR-99a, miR-497, miR-362, and miR-1274a levels in the tissue sample correlate

with survival and/or disease-free survival. Up, upregulated; Down, downregulated. (B) Kaplan–Meier curve showing that miR-141 levels in the serum correlate with

survival. Low, low expression; High, high expression.

control or cancer was reduced to five: miR-125b, miR-29c, miR-
16, miR-1260, and miR-451 (Figure 3). The proposed microRNA
signature that derives exclusively from serum samples has the
following percentages of accuracy, sensitivity, and specificity:
90.43, 90.62, and 90.22%, respectively (Figure 3). The internal
classification error was 9.26%.

Later on, in an external validation phase, the predictor was
used to verify the status of the serum from 20 additional
cancer patients plus 60 serum samples from a group of
volunteer women taken randomly to be tested by the predictor.
Supplementary Table 8 shows the raw qRT-PCR data for the
indicated microRNAs in serum samples. Supplementary Table 9

shows the qRT-PCR results for the indicated microRNAs in
serum samples upon normalization. All serum samples were
confirmed as cancer patients (Figure 3). Eleven out of 60 samples
were classified as cancer patients (Figure 3). The percentages
of accuracy, sensitivity, and specificity of this later study are

86.25, 100, and 81.67%, respectively (Figure 3). The internal
classification error was 5.45%.

Proteomic Study
A total of 110 significantly deregulated proteins were found when
comparing the serum of cancer patients vs. the serum of healthy
individuals (Supplementary Table 10). Thirty-five proteins were
selected as the top differently expressed ones between cancer
vs. normal serum using a fold change (FC) ratio above 1.2 or
below 0.8 (Figure 4A). By using the multiMiR Bioconductor’s
package, microRNA–gene target interactions were explored (20).
The search for validated targets was performed across miRecords,
miRBase, and TarBase databases. A total of 3,947 validated
unique target genes were found to the 16 microRNAs deregulated
in serum (data not shown). CD44 protein (upregulated in the
serum pools from breast cancer patients vs. the pools from the
control group patients) was found in the list of the 3,947 validated
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FIGURE 3 | Flow chart of the analysis design in the present study. The expression change-based method pipeline is described (left). The interval validation phase

provides 5 microRNAs revealed by the predictor (middle). The validation and test phase comprises 20 patients and apparently 60 healthy women (right). Indicated

values of accuracy, sensitivity, and specificity are shown for each phase.

targets. CD44 inversely correlates with miR-16 expression, which
appears downregulated in the serum from cancer patients in
comparison with controls (Supplementary Table 10, Figure 4B).
The 35 proteins were classified accordingly to their involvement
in different regulatory pathways (Figure 4C). Among them,
CST3 (Cystatin C) seems to be involved in the modulation of
different pathways (Figure 4D).

DISCUSSION

The final purpose of this research is to establish a microRNA
signature associated with breast cancer to determine molecular
evidence of cancer that will lead to future cancer development
in serum samples. Firstly, we found 26 microRNAs significantly
deregulated in the cancer vs. the healthy tissue from 96
breast cancer patients. Our results corroborate previous studies
showing upregulation of miR-96, miR-200c, and miR-141,

and downregulation of miR-145, miR-99a, and miR-125b in
breast cancer tissue (8, 21–24). Secondly, we found that 16
out of 30 microRNAs were significantly deregulated in the
serum of cancer patients vs. the serum of the control group.
Interestingly, in serum of breast cancer patients, downregulation
of miR-411, miR-376c, miR-16, and miR-155 (9, 17) and
upregulation of miR-125b, miR-1260, and miR-96 had been
previously described, confirming the validation of our results
(9, 17, 21, 25). Some of these 16 microRNAs have been
associated with breast cancer diagnosis includingmiR-125b,miR-
191, miR-411, miR-155, and miR-215 (26, 27). In particular,
11 deregulated microRNAs were found in the serum and
tissue of breast cancer patients (Figure 1C). Most of them
are contrarily overexpressed among both types of samples,
that is, although we found 11 deregulated microRNAs that
are common to serum and tissue, their expression (either
upregulated or downregulated) was inversely correlated when
comparing serum and tissue. The fact that the expression of a
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FIGURE 4 | Proteins deregulated in the serum of breast cancer patients. (A) Proteins significantly deregulated in the serum pools of breast cancer patients vs.

controls (upregulated proteins are indicated in red and those that are downregulated are indicated in green). (B) microRNAs and validated target proteins found in

serum revealed miR-16 and CD44. FC, fold change. (C) Different molecular pathways involving significantly deregulated proteins. (D) Interactions of CST3 with other

proteins which might have a relevant role in cancer.

specific microRNA in different sample types can have inverse
implications in prognosis/diagnosis, has already been described
as well as microRNA deregulation in the opposite direction
when comparing their expression in serum vs. tissue (21, 28–30).
For example, miR-125b, known to be downregulated in breast
cancer tissue (8, 31), is upregulated in the bloodstream of breast
cancer patients (21, 25, 32). Possible explanations include (i)
extracellular and cellular microRNAs profiles differ, and freely
circulating microRNA might not reflect their abundance in
cancer cells (33); (ii) the total level of free microRNAs in the
bloodstream might be masked by certain microRNAs present
into exosomes (34).

In relation with the use of microRNAs as biomarkers, it has
been suggested that the association of miR-99a in breast cancer
tissue with survival differs depending on the molecular subtype
(35). Our study corroborates the fact that high levels of miR-
1274a are associated with worse prognosis and proposes two

novel microRNAs associated with survival in breast cancer: miR-
497 and miR-362 (36). Apart from miR-362, miR-133b correlates
with disease-free survival, the latter already been described
as a diagnostic marker in breast cancer (28). Interestingly,
serum levels of miR-125b and miR-29c (the top 2 in order
of significance; Figure 1C) were associated to tumor stage.
Moreover, high levels of miR-141 in serum were correlated with
better survival. Contrary to our results, Debel et al. found that
miR-141 expression in serum was associated with shorter brain
metastases (37).

Lastly, despite the growing interest in assessing predictive
cancer models based on microRNA signatures, most of the
reported studies need to be further evaluated in larger cohorts
of breast cancer patients (21, 24, 38). In this study, we identified
a predictor (based on the following microRNAs: miR-125b, miR-
29c, miR-16, miR-1260, and miR-451), capable of differentiating
the serum of breast cancer patients from that of control
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individuals with ∼90% of accuracy, sensitivity, and specificity.
The fact that the predictor model includes microRNAs less
statistically significant such as miR-16 and miR-1260 than other
more deregulated microRNAs is because the predictors work by
combining different variables in a unique model to maximize
discrimination between groups. The advantage of using a
combination of variables is that predictive ability is obtained from
the combination of this precise set of variables. That is, although
some variable may show a small difference between groups, it
may be the case that its contribution is different from other
variables, so that including this variable in the model results in
an increase of its global predictive capability. In a second phase,
the predictor was validated and tested in 20 additional breast
cancer cases plus 60 volunteer women, respectively. While the
20 patients were correctly categorized, the predictor included 11
out of 60 women into the cancer group. Although the theoretical
breast cancer risk in the overall women population of Europe and
United States is 12.5%, according to our predictor, we found a
percentage of 18.3%women that will develop cancer in the future.
This percentage (18.3%) represents an increase of ∼1.5 over the
expected values. A possible explanation of this high incidence
could be the fact that, unlike the control group, this group of 60
women were not selected by any criteria; therefore, they could
have a higher risk of developing breast cancer than the control
group. It would be interesting to determine the health condition
of those 60 women in the following 5–10 years with the purpose
of establishing the validation of our predictor in the future.

On the other hand, differently expressed proteins in the serum
of breast cancer patients vs. controls have been described (39).
The deregulated proteins found in the pools of cancer vs. control
serum samples—PEDF, IGKC, CD44, and CST3—have been
previously reported (39–41). High levels of CD44 in serum are an
independent prognosis indicator in primary breast cancer, since
it correlates with overall survival and disease-free survival (42).
Interestingly, we found that lower expression of miR-16 in the
serum of cancer patients correlated with high expression of its
CD44 target protein. Our results reinforce the potential relevance
of CD44 as a potential marker of breast cancer as well as propose
other proteins that might play key roles as biomarkers such as
CST3, which needs to be extensively and individually studied in
the serum of large series of patients (40).

Liquid biopsy (i.e., serum) is gaining importance in the clinical
practice as novel biomarkers (i.e., microRNAs and proteins) are
being considered to monitor healthy individuals. We hope that
the results here reported open new avenues for future cancer
prevention and diagnosis.

Overall, while much effort is being devoted to cancer
predictive methods, it is not yet possible to detect cancer
before the appearance of the first clinical symptoms. A
molecular signature based on the detection in serum of five
microRNAs capable of differentiating breast cancer patients from
healthy individuals was found. The clinical application of the
molecular signature herein described will be determined in large
women’s cohorts.

New microRNAs detected in serum and biopsy from breast
cancer patients have been discovered. An association of low levels
of miR-16 with a higher content of CD44 protein in serum was

identified. This suggests the prognosis value of CD44 protein in
serum as a potential marker of breast cancer. Collectively, our
results support the fact that microRNA detection in serum can
represent a viable predictive method applicable to breast cancer.
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Cancer treatment options have evolved significantly in the past few years. From the initial
surgical procedures, to the latest next-generation technologies, we are now in the position
to analyze and understand tumors in a one-by-one basis and use that to our advantage to
provide with individualized treatment options that may increase patient survival. In this
review, we will focus on how tumor profiling has evolved over the past decades to deliver
more efficient and personalized treatment options, and how novel technologies can help
us envisage the future of precision oncology toward a better management and, ultimately,
increased survival.

Keywords: cancer treatment, omics, profiling, immunotherapy, personalized medicine, precision oncology
INTRODUCTION

Classically, choice of therapy depends mainly on location and grade of the primary tumor (as
ascertained by histology), as well as the stage of the disease. Types of therapies are classically
subdivided into surgery, chemotherapy, radiotherapy, hormonal therapy and immunotherapy,
although the boundaries between these categories are sometimes blurry. Typically, localized tumors
will be selected for resection via surgical procedures, which may be coupled with preceding
(neoadjuvant) therapy to shrink the tumor prior to removal, and/or followed by adjuvant therapy to
reduce the chances of relapse.

Cancer treatments have suffered a considerable revolution in the past few years owing to the
recent development of high-throughput omic technologies. These have constituted the flourishing
of targeted therapies, which can drive the final hurdle from histologic treatments to individualized
treatments that attack each tumor precisely based on its very own molecular features. In this review,
we summarize the road so far, from the earliest treatments to current strategies and what
lies beyond.
CANCER THERAPY

It has been known for many years now that cancer cells have particular features that make them
different to normal cells of the same tissue. Arguably, one of the most remarkable ones is the fact
that tumor cells can obtain their energy through glycolysis instead of oxidative phosphorilation,
January 2021 | Volume 10 | Article 5956131148
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even in the presence of oxygen. This feature is known as the
Warburg effect after the clinician who discovered it (1), and is
one of the biological capabilities acquired during the multistep
development of human tumors, also known as the hallmarks of
cancer (2, 3). The Warburg effect has meaningful implications in
cancer cell metabolism, thereby allowing these cells to gain a
selective advantage when competing for shared and limited
energy resources, which results in them proliferating more
rapidly (4). The same happens to the other features, which
must occur at a certain point in time over the course of cancer
development. Hence, targeting one or several of these features is
key for cancer therapeutic intervention [Figure 1 - (3)].

Cancer therapeutic approaches were initially based on
surgical removal of the tumor, with radiotherapy moving on
quickly in the early 1900s (5). By the 1930s, the field was starting
to point toward novel strategies, based on the findings on tumor
biology provided by Warburg himself and others, and by the
1930s, Paul Ehrlich who coined the term “chemotherapy” to
describe the use of chemical compounds to fight cancer. By 1946,
the first alkylating agent was approved as a chemotherapeutic
agent (6), and since then, several other agents have been used in
the fight against cancer. The common feature that all of these
chemotherapeutics share is their use of these particular
properties of cancer cells to destroy them. For instance,
alkylating agents such as the platins (carboplatin, cisplatin, and
oxaliplatin) and topoisomerase inhibitors like irinotecan produce
DNA damage; alkaloids such as paclitaxel and docetaxel disrupt
cell division and, antimetabolites like 5-fluorouracil, gemcitabine
or methotrexate work by inhibiting cell division (7–9) (Table 1).
Frontiers in Oncology | www.frontiersin.org 2149
In general, traditional chemotherapeutic agents are mainly
cytotoxic (also coined cytostatic), which means they interfere
with and stop cell division. This is primarily aimed to target
highly-proliferating cells, such as neoplastic ones. Cytotoxic agents
may be used alone (monotherapy) or in combination with other
therapies, and up to today, still constitute the backbone of cancer
treatment (10). Nevertheless, there are two main problems with
cytotoxic therapies: response (or sometimes resistance) and
toxicity. For the former, response rates to standard cytotoxic
chemotherapy are varied and depend greatly on tumor site and
stage. For instance, it is well known that advanced pancreatic
tumors only present response rates of about 20% to classical
treatments with gemcitabine and nab-paclitaxel (11, 12).
Moreover, the development of secondary resistance (refractory
response after an initial responsive period) is also common, and is
one of the major causes of failure of cancer treatment. For the
latter, the fact that cytotoxic agents target rapidly dividing cells
may also affect other normal cell types, such as the bone marrow,
hair follicles or digestive tract, thereby resulting in the
development of adverse drug reactions that may result in
discontinuation in the administration of the drug, and therefore,
may compromise its curative purpose (13, 14).
TARGETED THERAPIES

Small Molecules
Regardless of all hallmarks acquired by tumor cells, cancer is
ultimately a genetic disease caused by genomic mutations in
FIGURE 1 | Hallmarks of cancer and therapeutic implications. Adapted from (3).
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genes that allow them to obtain a selective advantage, whether
that is in terms of faster proliferation, nutrient acquisition or
blood vessel formation (15). Research on oncogenes and tumor
suppressor genes (the two main types of genes in which
mutations drive cancer development) has been strongly active
since the first description of a cancer-causing mutation (16–18).

Generic cytotoxic drugs are not enough to target these
changes specifically, and therefore the identification of these
driver mutational events launched for the first time the
possibility to test for and treat against specific mutations
appearing in particular genes and tumors, and hence, provided
the basis for targeted cancer therapies. Indeed, it has been
described that the Warburg effect is possibly an early event in
oncogenesis that is an immediate consequence of an initial
oncogenic mutation, such as that of KRAS in pancreatic cancer
or BRAF in melanoma, and may occur in early stage lesions as
well (19, 20).

Targeted therapies work primarily by attacking deregulated
proteins that support survival of cancer cells (21, 22). There is
quite a variety of small molecules to target these proteins, but
arguably, kinase inhibitors have been the most successful. We
know that in many tumors, signaling pathways regulated by
protein kinases are the frequent targets of somatic mutations,
and indeed of the more than 100 oncogenes known, many
encode kinases (23). These kinases may be led to aberrant
function by several mutational processes, including genomic
rearrangements, gain-of-function mutations, or overexpression
and/or gene amplification, which ultimately result in the
loss of regulatory constraints and a constitutive activation of
the protein.

The first targeted therapy directed against a specific genetic
abnormality was imatinib, a tyrosin-kinase inhibitor (TKI) that
inhibits proliferation of BCR-ABL-expressing hematopoietic
cells by specifically targeting the constitutively active fusion
protein produced by the reciprocal translocation of
chromosomes 9 and 22 (t(9;22)(q34;q11)) (24, 25). The list of
targeted therapies has rapidly expanded ever since its discovery,
Frontiers in Oncology | www.frontiersin.org 3150
and a selection of the most commonly used targeted therapies
and their corresponding molecular changes is represented on
Table 2. Albeit the explosion of targeted therapies, these small-
molecule approaches have been more favorable for cancers like
lung, colorectal, breast, lymphoma and leukemia, as they focus
on particular molecular changes unique to a specific cancer,
whereas other cancer types such as pancreatic or upper
gastrointestinal tumors have experienced less progress in
targeted drug therapy development.

Immunomodulation and Immunotherapy
Another important hallmark of cancer is that, for a tumor to
arise, it must evade the strict control to which malfunctioning
cells are subject by the immune system (3). Although it is still
unclear whether this immune evasion happens as a passive or
active process (or possibly even both), it is however certain that
at some or other point tumors acquire the ability to surpass the
control of the immune system. This observation gave rise to
the field that utilizes the artificial stimulation of the immune
system to treat cancer: immunotherapy. Immunotherapy has
become such an important part of cancer therapy in the past
few decades that it was merited with the Nobel Prize on
Physiology or Medicine to James P. Allison and Tasuku Honjo
for their discovery of cancer therapy by inhibition of negative
immune regulation.

There are two main types of immunotherapies: passive
immunotherapy, which consists in the blocking of cell surface
receptors that are specific to tumor cells, and active
immunotherapy, that aims to stimulate the patient´s immune
system to reactivate the fight against cancer cells (30, 31). For the
former, monoclonal antibodies (mAbs) have been the main
strategy. These antibodies are produced specifically to block
cell surface receptors that are present (ideally) exclusively on
tumor cells and tumor-promoting molecules. They recognize a
tumor antigen and cause cell death through various mechanisms,
including apoptosis or indirect elimination by recruitment of
immune cells with cytotoxic properties, or by activation of the
TABLE 1 | Commonly used chemotherapeutic agents.

Types of chemotherapy Subtype Examples

Alkylating agents Oxazsaphosphorines cyclophosphamide, ifosfamide
Nitrogen mustards busulfan, chlorambucil, melphalan
Hydrazine temozolomide
Platinum-based agents cisplatin, carboplatin, oxaliplatin

Antimetabolites Pyrimidine antagonists cytarabine, 5-fluorouracil, gemcitabine, capecitabine
Purine antagonists fludarabine
Purine analogs 6-mercaptopurine, azathioprine, cladribine
Antifolates methotrexate, pemetrexed, pralatrexate
Ribonucleotide reductase inhibitors hydroxyurea

Topoisomerase inhibitors Topoisomerase I inhibitors irinotecan, topotecan
Topoisomerase II inhibitors etoposide; teniposide; anthracyclines, e.g., idarubicin, daunorubicin, doxorubicin

Mitotic spindle inhibitors Taxanes docetaxel, paclitaxel
Vinca alkaloids vincristine, vinblastine

Other Enzymes l-asparaginase
Tyrosine kinase inhibitors imatinib and erlotinib
Antibiotics bleomycin, actinomycin D, anthracyclines
Proteasome inhibitors bortezomib
Autophagy inhibitors hydroxychloroquine
January 2021 | Volume 10 | Article 595613
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complement cascade. Examples of these mAbs are those directed
toward the vascular endothelial growth factor (VEGF),
interleukins or the macrophage migration inhibitory factor
(MIF) (31–34).

A special type of mAbs that has claimed great benefits in
patient survival over the past ten years are immune checkpoint
inhibitors (ICIs) (35). Their success radicates in the fact that may
be directed to the tumor cells but also to T cells, to reinstate
recognition of tumor cells by the immune system, thereby
relaunching an immune response. The main three ICIs used to
data have been CTLA-4, PD-1 and PD-L1 inhibitors (36) (Figure
2 - www.cancer.gov).

As for small molecules, immunotherapy has also become an
important tool in the development of targeted anticancer
therapies, and there are nowadays numerous mAbs to treat
various types of cancers, with numbers rapidly increasing
(Table 3). Among these, rituximab (anti-CD20 mAb used in
the treatment of non-Hodgkin lymphoma) is possibly the most
extensively used. However, over 2900 clinical trials have been
reported on the use of mAbs in cancer, and many others are
currently ongoing in cancer patients (ClinicalTrials.gov).
Frontiers in Oncology | www.frontiersin.org 4151
Active immunotherapy is composed of CAR-T antibodies,
which are harvested, modified T cells from the patient that are
genetically altered to specifically recognize cancer cells when
infused back into the patient. The features and implications of
CAR-T technologies are extensive and far beyond the scope of
this review, but comprehensive reviews can be found in (41–44).

Molecular Testing for Targeted Therapies
Because targeted therapies are particularly directed toward the
specific changes present in a given tumor’s cells, clinicalmolecular
pathology analysis has therefore become an indispensable
laboratory tool that can be used to characterize tumor biology
and to drive therapeutic decisions (45). This is known as
pharmacodiagnostics and aims to determine whether a patient
will successfully respond to a given therapy, and is therefore an
intrinsic part of personalized medicine approaches. The
indications for molecular testing in the most prevalent tumor
types are summarized in Table 4.

Classical detect ion methods in cancer pathology
include gold standard techniques in molecular biology:
immunohistochemistry (IHC): as for the case of p16 staining for
TABLE 2 | List of common small molecule therapies (26–29).

Target Drug Tumor type

BCR-ABL imatinib; dasatinib; nilotinib; bosutinib; regorafenib; ponatinib CML; ALL; GIST; CRC
PDGFR imatinib; dasatinib; nilotinib; sunitinib; sorafenib; regorafenib; erdafitinib; lenvatinib;

pazopanib
ALL; CML; GIST; RCC; pNET; HCC; thyroid cancer; CRC; UC;
RCC; soft tissue sarcoma

EGFR afatinib; gefitinib; osimertinib; vandetanib; erlotinib; lapatinib; dacomitinib; neratinib NSCLC; PDAC; medullary thyroid cancer; BrCA
FGFR erdafitinib; lenvatinib; pazopanib UC; thyroid cancer, HCC; RCC; soft tissue sarcoma
HER afatinib; osimertinib; neratinib; lapatinib NSCLC; BrCA
CDK 4/6 ribociclib; abemaciclib; palbociclib BrCA
C-KIT imatinib; dasatinib; nilotinib; sunitinib; sorafenib; regorafenib; erdafitinib; lenvatinib;

cabozantinib; pazopanib
CML; ALL; GIST; HCC; pNET; RCC; thyroid cancer; CRC; UC;
soft tissue sarcoma

SCF imatinib CML; ALL; GIST
SRC dasatinib: bosutinib; vandetanib ALL; CML; medullary thyroid cancer
CSF nilotinib; sunitinib; erdafitinib CML; GIST; RCC; pNET; UC
DDR nilotinib; regorafenib CML; CRC
C-MET crizotinib; cabozantinib NSCLC; HCC; RCC
VEGFR sunitinib; sorafenib

axitinib;, vandetanib; regorafenib; erdafitinib; lenvatinib; cabozantinib; pazopanib
RCC; HCC; medullary thyroid cancer; GIST; pNET; thyroid
cancer; CRC; UC; soft tissue sarcoma

RET vandetanib; sunitinib; regorafenib; sorafenib; erdafitinib; alectinib; lenvatinib;
cabozantinib

Medullary thyroid cancer; GIST; RCC; pNET; CRC; HCC;
thyroid cancer; UC; NSCLC

TIE2 vandetanib; regorafenib; cabozantinib Medullary thyroid cancer; CRC; RCC; HCC
RAF vemurafenib; sorafenib; regorafenib; encorafenib; dabrafenib Melanoma; HCC; RCC; thyroid cancer; CRC
PARP olaparib; rucaparib; talazoparib; niraparib ovarian cancer; BrCA
TRK larotrectinib; regorafenib; entrectinib; cabozantinib; lorlatinib solid tumors; CRC; NSCLC; HCC; RCC
BTK ibrutinib MCL; CLL; SLL
MEK cobimetinib;

binimetinib; trametinib
melanoma

FTL sorafenib; sunitinib; erdafitinib; brigatinib; cabozantinib; gilteritinib HCC; RCC; thyroid cancer; GIST; pNET; UC; NSCLC; AML
ROS1 entrectinib; crizotinib; brigatinib; lorlatinib; ceritinib; cabozantinib solid tumors; NSCLC; RCC; HCC
ALK entrectinib; alectinib; crizotinib; brigatinib; lorlatinib; ceritinib solid tumors; NSCLC
IGF-1R brigatinib; ceritinib NSCLC
IDH1 ivosidenib; enasidenib AML
26S
proteasome

bortezomib; carfilzomib; marizomib multiple myeloma; MCL

PI3KCA alpelisib BrCA
PI3K duvelisib; copanlisib CLL, SLL; Follicular lymphoma
CML, chronic myelogenous leukemia; ALL, acute lymphoblastic leukemia; pNET, pancreatic neuroendocrine tumors; NSCLC, non-small-cell lung cancer; PDAC, Pancreatic ductal
adenocarcinoma; UC, urothelial cancer; HCC, hepatocellular carcinoma; RCC, renal cell carcinoma; MCL, Mantle cell lymphoma; CLL, Chronic lymphocytic leukemia; SLL, Small
lymphocytic lymphoma; AML, acute myeloid leukemia; BrCA, breast cancer; CRC, colorectal cancer.
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HPV infection in FFPE tissues (49); fluorescent in-situ
hybridisation, (FISH) to detect chromosomal rearrangements in
hematological malignancies (50, 51), PCR or Sanger sequencing
for point mutations (52).
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These tests are currently essential to classify tumors and decide
on treatment strategies. For example, breast tumor biology has
historically been classified based on immunohistochemical (IHC)
staining of proliferation proteins (Ki-67), hormone receptor status
FIGURE 2 | PD-1/PDL-1 immune checkpoint inhibitor (ICI) mechanisms of action in immunotherapy (adapted from NCI – www.cancer.gov).
TABLE 3 | List of common monoclonal antibody (mAb) therapies (27, 37–40).

Target Drug Tumor type

HER2 adotrastuzumab; trastuzumab; pertuzumab BrCA
EGFR cetuximab; panitumumab; necitumumab CRC, HNSCC; NSCLC; PDAC; glioma; Squamous NSCLC
VEGFR ramucirumab gastric cancer; NSCLC
VEGF bevacizumab CRC; NSCLC; BrCA; Glioblastoma; RCC
CD-20 rituximab; ofatumumab; ibritumomab; tositumomab;

obinutuzumab
Non-Hodgkin lymphoma; CLL; follicular lymphoma

CD-22 inotuzumab ALL
CD-52 alemtuzumab CLL
CD-33 gemtuzumab AML
CD-30 brentuximab Hodgkin lymphoma; anaplastic large cell lymphoma
CD19/CD3 blinatumomab ALL
CD38 daratumumab multiple myeloma
CTLA-4 ipilimumab melanoma; RCC
PD-1 nivolumab melanoma; NSCLC; SCLC; RCC; UC; Hodgkin lymphoma;

HNSCC; MSI-H/dMMR CRC; HCC
PD-L1 atezolizumab; avelumab; cemiplimab; pembrolizumab; durvalumab UC; NSCLC; BrCA; RCC; CSCC; melanoma; NSCLC;

HNSCC; Hodgkin lymphoma; MSI-H cancer; gastric
cancer; cervical cancer; HCC; MCC

RANKL denosumab giant cell tumor of the bone
GD2 dinutuximab pediatric neuroblastoma
PDGFR olaratumab soft tissue sarcoma
SLAMF7 elotuzumab multiple myeloma
BrCA, breast cancer; CRC, colorectal cancer; HNSCC, Head and neck squamous cell carcinoma; NSCLC, non-small-cell lung cancer; PDAC, Pancreatic ductal adenocarcinoma; RCC,
renal cell carcinoma; CLL, chronic lymphocytic leukemia; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; UC, urothelial cancer; MCL, Mantle cell lymphoma; MSI-H,
microsatellite instability-high; dMMR, mismatch repair deficient; MCC, Merkel cell carcinoma; CSCC, cutaneous squamous cell carcinoma.
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(estrogen receptor alpha (ER), progesterone receptor (PR) and/or
androgen receptor (AR), and the presence/absence of specific
cytokeratins (CK). Therapeutic strategies are based on this
histological classification and Ki-67 assays have additional
prognostic value (53).
TUMOR PROFILING TO GUIDE CANCER
THERAPY

Targeted therapies provided the first evidence that treating a
tumor based on its molecular features could result in better
patient outcome in terms of increased survival. However,
molecular testing based on the features provided on Table 4 is
clearly insufficient, particularly for underrepresented tumors that
tend to have worse prognosis, such as pancreatic or endometrial
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cancers. Therefore, there have been extensive efforts to upgrade
our molecular knowledge on cancer to a more comprehensive
view of each individual cancer. Tumor profiling constitutes the
pinnacle of these efforts, where we aim to classify neoplasms into
subgroups that give us information about how the cancer has
evolved, how it can be better treated, and how we should direct
drug design strategies to treat them. Several approaches to tumor
profiling have been undertaken in the past few years that will be
discussed below.

Genomics
The publication of the human genome sequence in 2003 (54) and
the implementation of next-generation sequencing technologies
since the turn of the century has allowed for our knowledge on
germline and somatic tumor genomics to increase tremendously
in the past two decades. This is particularly relevant in the
TABLE 4 | Molecular testing for each tumor type (46–48).

Tumor type Gene Change Treatment Drugs (examples)

NSCLC EGFR mutation TKI gefinitib; erlotinib; afatinib, dacomitinib; osimertinib
ALK translocation TKI crizotinib, ceritinib, alectinib, lorlatinib, brigatinib
ROS1 translocation TKI crizotinib, entrectinib
PD-L1 protein expression PD-1 blocking antibody pembrolizumab
KRAS mutation TKIs
BRAF mutation kinase inhibitors vemurafenib; dabrafenib
HER2 mutation kinase inhibitors afatinib; osimertinib
MET amplification, mutation kinase inhibitors crizotinib; cabozantinib
RET fusion, rearrangement kinase inhibitors alectinib

Melanoma BRAF mutation kinase inhibitors dabrafenib; trametinib, vemurafenib; cobimetinib,
encorafenib; binimetinib

KIT mutation kinase inhibitor imatinib
GIST KIT mutation kinase inhibitors imatinib

PDGFR mutation kinase inhibitors imatinib
HER2 gene amplification HER receptor antagonists trastuzumab
PD-L1 expression PD-1 blocking antibody pembrolizumab

Pancreatic cancer BRCA1/2 mutation PARP-inhibitors olaparib
CRC KRAS/NRAS mutation EGFR antagonists cetuximab; panitumumab

BRAF mutation EGFR antagonist cetuximab; panitumumab
MSI-H or dMMR expression PD-1 blocking antibody nivolumab; ipilimumab

BrCa HER2 amplification HER2‐targeted therapy trastuzumab; lapatinib; pertuzumab
BRCA1/2 mutation PARP inhibitors olaparib, talazoparib, rucaparib
PI3KCA mutation kinase inhibitors alpelisib

OvCa BRCA1/2 mutation PARP-inhibitors olaparib, talazoparib, rucaparib
ATM
BRiP1
CHEK2
PALB2
RAD51C
RAD51D

Sarcoma MDM2, CDK4 amplification CDK4/CDK6 inhibitors palbociclib
IDH1/IDH2 mutation IDH1 inhibitor ivosidenib

Melanoma BRAF mutation kinase inhibitors vemurafenib; encorafenib; dabrafenib
KIT mutation kinase inhibitors imatinib; nilotinib

Head and Neck Cancer PD-L1 protein expression PD-1-blocking antibody pembrolizumab
Solid tumors MMR/MSI expression PD-1-blocking antibody pembrolizumab

TRK fusion kinase inhibitors entrectinib; larotrectinib
Chronic myeloid leukemia BCR/ABL fusion kinase inhibitors imatinib, dasatinib, nilotinib, bosutinib, ponatinib

PI3K mutation kinase inhibitors duvelisib
Acute myeloid leukemia IDH1/2 mutation IDH1 inhibitors ivosidenib, enasidenib

FLT3 mutation kinase inhibitors gilteritinib
Follicular lymphoma PI3K mutation kinase inhibitors copanlisib
Urothelial cancer FGFR2/3 mutation, fusion kinase inhibitors erdafitinib
List of molecular tests currently indicated for the most prevalent tumor types.
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context of targeted cancer treatments, where we aim to achieve
better outcomes by treating tumors with drugs that are specifically
matched to their molecular features. Whole-exome and whole-
genome cancer sequencing initiatives like The Cancer Genome
Atlas (TGGA) (cancergenome.nih.gov/) and the International
Cancer Genome Consortium (icgc.org) have sequenced hundreds
of cancers across 38 tumor types toprovide themost comprehensive
cancer genome database to date (55).

The benefits of these initiatives have been unprecedented and
multiple. Firstly, we have been able to identify a much larger
proportion of cancer driver mutations. These are changes that
give the tumor cell a selective advantage in its microenvironment,
through either increasing its survival or reproduction. Driver
mutations tend to cause clonal expansions and are the
fundamental first step of cancer development. Therefore,
identifying them is key for the design of targeted therapies that
can stop cancer growth and spreading. Driver mutations happen
preferentially in oncogenes and tumor suppressor genes, and hence
the list of cancer genes has increased exponentially in the past few
years (56–59). Moreover, because whole-genome cancer
sequencing provides a more comprehensive assessment of the
mutational spectrum, we can assess not only point mutations on
a large scale, but also other genomic features that can be relevant
drivers, such as mutations in non-coding regions (60–62), CNVs
and structural variations (63).

Secondly, because cancer is highly heritable (64), candidate
driver genes may also be identified by NGS of the patient´s
germline DNA following Knudson´s two hit hypothesis (18).
Since somatic mutation analysis inherently requires the
sequencing of the matching normal tissue, this can be used to
advance into the description of germline variants that confer
cancer predisposition (65). Germline pathogenic mutational
events may have important consequences for cancer treatment,
as it has been proven that both germline and somatic mutations
in the homologous recombination genes BRCA1, BRCA2, PALB2
(also termed “BRCAness”) respond well to treatment with poly-
ADP ribose polymerase (PARP) inhibitors. This is true for
several cancer types, including breast, ovarian, prostate and
pancreatic tumors (66, 67). Another example is that of tumors
arising from germline and/or somatic mutations in polymerases
ϵ and d (POLE and POLD1 genes), which have an indication for
treatment with immunotherapy (68).

In any case, the determination of both germline and somatic
mutation events leading up to cancer has great consequence for
the establishment of actionable mutations. A study performed on
2,520 pairs of primary and metastatic tissue tumors found that
62% of patients presented with genetic variants that could be
used to stratify patients toward either approved therapies or
those in clinical trials (69). Moreover, half of the patients with a
predicted candidate actionable event (31% of total) contained
a biomarker with a predicted sensitivity to a drug at level A
(approved anti-cancer drugs) and lacked any known resistance
biomarkers for the same drug. Hence, big efforts are being made
at current to categorize somatic mutation variants into likely
actionable mutations in order to advance in the design of novel
anticancer drugs (70, 71).
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All of these key features of genomic high-throughput
sequencing are ultimately key for tumor profiling, and have
made it possible to gain a much better insight into the molecular
and genomic features of different tumor types. This has been
particularly relevant for those with less available therapeutic
options (72, 73). Relevant developments in novel targeted
therapies that have sprung thereof are for instance the
treatment of tumors with ARID1A mutations and dasatinib
(74, 75); among many others.

Epigenomics
Carcinogenesis has been shown to be accompanied by widespread
DNAmethylation changes in the tumor cell, that are usually visible
as a globally hypomethylated genome mimicking a stem cell
phenotype (76). These changes in the methylation patterns of
tumor cells can appear as a result of genomic mutations or
constitute neoplastic drivers by themselves (77). For instance, the
germline or somatic methylation of theMLH1 gene promoter is a
well-known epigenetic driver event. Many of these epigenetic
changes occur early in tumorigenesis and are highly pervasive
across a tumor type. Therefore, intensive studies have been
performed to elucidate the methylatory landscape of several
cancer types, including breast (78), lung (79), prostate (80), or
CLL (81), among others (82).

Interestingly, for CRC, a redistribution of methylation sites
has been observed, where there is focal hypermethylation of CpG
islands on tumor suppressor genes. This phenomenon is called
the CpG island methylator phenotype (CIMP) (83), and it has
since been discovered in multiple other tumor types, including
bladder, breast, gastric or pancreatic cancers (84–88). The CIMP
phenotype has been linked to multiple genetic causes, including
at least the BRAF V600E mutation, or pathogenic mutations in
the IDH1 gene (89, 90).

Because epigenetic alterations are reversible, they can be a
substrate for therapy development as well as influence the choice
of treatment. DNA methylation differences have been observed,
for instance, between radio-sensitive and radio-resistant cell lines
(91). Moreover, methylation of the MGMT promoter in gliomas
is a useful predictor of the responsiveness of the tumors to
alkylating agents (92). Differential methylation has also been
associated with increased risk of recurrence in NSCLC and breast
cancers (93, 94), and methylation of a CpG in the transcription
factor FOXP1 is predictive of response to ICB in NSCLC patients
(95). In the case of CIMP tumors, it has been noticed that it
almost invariably results in hypermethylation of the MLH1
promoter, which in turn provokes a MSI phenotype, and has
been shown to correlate with response to immune checkpoint
inhibitors (88, 96).

Nevertheless, data about the relationship between drug
response and the epigenomic variations is still scarce mainly
because the epigenome is highly variable between individuals, and
hence therapeutic choice based on methylation profiling is rare.
Alternatively, other epigenomic events (histone modifications,
chromosome remodeling or RNA editing) have also been
explored to a smaller extent that could also potentially identify
druggable pathways (97).
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Transcriptomics
The study of the genome provides only a steady‐state view of highly
dynamic molecular populations, and the information reflected in
the genomemay not be relevant if, for instance, the gene product is
not expressed in the tissue-of-origin of the tumor. RNA sequencing
(RNA-seq) has also been a relevant source of knowledge to inform
on tumor profiling and therapeutic management. As sequencing
methods became more cost-efficient, there have been large-scale
molecular profiling efforts that have inspected RNA-seq in tumors
(TCGA) and in normal tissues [the Genotype-Tissue Expression
project – GTEx – (98)]. Transcriptome profiling presents several
advantages over genomics and epigenomics studies: first, it is the
most reliable way to detect gene fusions ad hoc and at a great scale,
which may be particularly relevant in some types of tumors (99);
secondly, gene expression signatures can be derived to infer
prognostic and predictive information, and they allow for
refinement of disease subclassification beyond what can be
achieved by currently validated biomarkers (100); thirdly, it can
give us information not only from the tumor, but also from the
microenvironment, including cell composition derivations using
deconvolution strategies [and these may be especially relevant for
targeted immunotherapy strategies (101)]; fourth, gene expression
analyses can be done reliably on a single-cell basis, to target, for
instance, activated pathways in cancer stem cells (102). Lastly,
transcriptome quantification can summarize the effects of known
and unknown driver (epi)genomic events into measurable
phenotypes, and therefore, it has the potential to link tumor
genotypes to their phenotypic consequences (103).

Hence, transcriptomics has been essential in the road toward
a more efficient tumor molecular profiling. There are now four
fully established CRC consensus molecular subtypes (CMS)
based on transcriptomic profiling: CMS1 (MSI), CMS2
(canonical), CMS3 (metabolic) and CMS4 (mesenchymal).
Given the consistent classification, it would be then advisable
to devise therapeutic strategies based on these molecular
profiles, and indeed, CMS1 tumors are indicated to receive
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immunotherapy with ICIs, such as pembrolizumab or
nivolumab. For the other categories however, studies are still
underway to design novel targeted treatment options (104)
[Figure 3 - (105)].

Transcriptomics is also essential in breast cancer, where more
than 15 years ago, profiling of breast tumors revealed a gene set
whose expression varied significantly between tumors 500 gene set
revealed5geneexpressionprofiles,whichwere labeledas luminalA,
luminal B, basal-like, HER2+, and normal-like, a classification that
isused to this day [Figure4 - (106)].This classificationhasbeenalso
relevant for treatment guidance inearly-stagebreast cancer (107), to
predict response to immune checkpoint blockade therapy (108,
109) and to prognosis (110, 111).

Small RNAs
Moreover, transcriptomic studies are not restricted tomRNAs that
are protein-coding.Other sources of RNAmolecules, such asmicro
RNAs (miRNAs) and long non-coding RNAs (lncRNAs) have also
been studied extensively in the context of tumor profiling. For
instance, it is well known that miRNAs are widely dysregulated in
cancers, and that they may also act as signaling molecules between
cancer cells and others in the tumor microenvironment (22, 62,
112), whereas lncRNAs have been involved in cancer immunity,
cancer metabolism and metastasis (113, 114). Small RNAs have
some advantages over protein-coding RNAs: they are more stable
(which is ideal for use in formalin fixed specimens); they can be
routinely assessed sensitively and accurately with high-throughput
technologies; they canbeused asproxies for themutational status of
known, and possibly unknown gene drivers (115); and they may
also be assessed in a circulatory setting (as we will explain later for
liquidbiopsyapproaches).Hence, theyhavebeenhelpful as a source
for biomarkers for cancer risk stratification (116), outcome
prediction (117) and classification of histological subtypes (118,
119). Nevertheless, their potential is yet to be fully exploited in the
years to come, to establish reliable biomarkers tomonitor treatment
response and guidance of therapeutic strategies.
FIGURE 3 | Colorectal cancer consensus molecular subtypes (CMS). CMS showing their main molecular features. Adapted from (105). This subtyping has influence
on choice of therapeutic strategy and also has prognostic value at the therapeutic level. CMS1 cancers have an indication to be treated with immunotherapy and
better prognosis than CMS2-4.
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Proteomics
Proteins represent the clear majority of therapeutic drug targets
in cancer This is due to the fact that many driver mutations result
in the structural modification of proteins, and the fact that these
particles can also act as signaling molecules with other cell types
in the tumor microenvironment (120, 121). Also, the fact that
global transcript levels may poorly reflect global protein-level
data, makes it of obvious importance to study the changes in
proteins occurring in tumor cells that can drive carcinogenesis
and influence disease phenotype, aggressiveness, immune escape,
and therapeutic response (122).

Thus, the novel proteomic methods that have evolved in the
past few years (imaging mass spectrometry, single-cell
proteomics, preanalytical sample processing, such as laser
microdissection), could be uniquely positioned for the study of
cellular populations beyond tumor cells themselves (123). High-
throughput proteomic assessments from reverse‐phase protein
arrays (RPPA) have been undertaken by TCGA and others in
>4000 tumor samples across 11 cancer types (124). Additionally,
more comprehensive unbiased approaches using liquid
chromatography–tandem mass spectrometry (LC–MS/MS)
quantitative analyses have also been performed in the past few
years (125–127). These technologies have the potential to
identify molecular subtypes and associated pathway features
that might be otherwise missed using (epi)genomics and
transcriptomics, and indeed have been able to describe ten
pan-cancer subtypes across tumor lineages (128). Proteomic
studies have also produced significant advances on drug target
identification and therapy management, including the
observation that treatment with avasimibe, an inhibitor of
SOAT1, markedly reduced the size of early-stage hepatocellular
carcinomas (129).

Tumor Microenvironment
Apart from tumor cells, several other cell types are essentially
relevant to cancer development and behavior. Potential targets in
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the TME include the extracellular matrix, cancer-associated
fibroblasts (CAFs), immune cells such as infiltrating T-cells (TILs)
and macrophages (TAMs). These cells participate in a variety of
processes related to tumorigenesis, from immune evasion to
angiogenesis promotion (130–132). Indeed, current therapeutics
such as bevacizumab already target the TME specifically by
inhibiting neoangiogenesis, and the reactivation of lymphocytes is
the basis for current immunotherapeutic approaches.

A positive correlation has been observed between the
increasing number of diverse cellular subpopulations and
patient outcome, which greatly impacts on disease prognosis.
For instance, type, density and location of infiltrating T-cells
within colorectal tumors can greatly predict disease outcome
(133, 134), and the presence of a dense stromal compartment
around pancreatic tumors dramatically affects antitumoral
therapies in pancreatic tumors (135). One advantage of
therapies targeting the microenvironment is that these non-
tumor cells are presumably genetically stable, which is in
contrast to tumor cells that can accumulate adaptive mutations
and rapidly acquire drug resistance (136).

Furthermore, apart from analyzing the heterogeneous
contribution of each cell type to a tumor, these extrinsic cell
types are also susceptible to profiling by omics approaches that
can help refine current therapeutic approaches. For instance,
TME profiling may be useful to sub-stratify tumor types
classified by other omics (137). Additionally, omics such as
RNA-seq or methylation can implement tissue deconvolution
strategies that can quantify the contribution of each cell type
to the tumor phenotype, and hence help identify novel
therapeutic pathways.

Microbiome
The human microbiome community has fundamental
implications in health and disease. In cancer, it has been
estimated that 20% of tumors worldwide are microbially driven
(138). This includes examples such as HPV-related cervical,
FIGURE 4 | Breast cancer subtypes. From morphology, to immunohistochemistry and transcriptomic classifications (106), breast cancer subtypes have also a deep
influence on therapeutic strategy. As reflected in the figure, Luminal A tumors will be treated with endocrine therapy and have the best prognosis among all subtypes,
whereas triple negative cancers have the worst prognosis.
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oropharyngeal and anal cancers, or Helicobacter pilorii-resultant
gastric carcinomas, but actually the interaction between the gut
normal microbiome and cancer is far more complicated (139).
Some cancers appear to be critically dependent on their resident
microbiome to continue to subsist and evade the immune
system, as in the case of Fusiobacterium nucleatum in
colorectal cancer (122). This and other studies have revealed
causal mechanisms for both microbes within tumors and
microbes in other host niches, that can mediate tumor growth
through direct and immunological mechanisms (140, 141).

Furthermore, the gut microbiota can define key aspects of
drug metabolism, pharmacokinetics, effect and toxicity, since the
rate of absorption and bioavailability of many oral drugs depends
on their exposure in the gut to both host and bacterial enzymes
before entering the circulation. The microbiota can also regulate
inflammation and adaptive immunity responses, which in turn
can affect cancer immune therapies (142), and tumor profiling
has shown to date that distinct gut microbiome patterns associate
with consensus molecular subtypes of colorectal cancer (143).

As for examples on the influence of the microbiome
in therapy outcomes, mice harboring members of the
Gammaproteobacteria family in their gut have restored
therapeutic effect of gembitacine if concomitant antibiotic
ciprofloxacin was administered during treatment (144), and
CTLA-4 blockade has been shown to depend on microbiomic
response in murine isograft models (145). Hence, the application
of novel omic technologies can be very useful in assessing the
relevance of these interactions, and the possibilities to address
better therapeutic and prognostic value may inevitably pass
through microbiome profiling (146).

Pan-Omics, Big Data, and Data Integration
Clearly, the advantages offered by novel omic approaches are
large, and will surely have important repercussions in the
development of novel therapeutics in the future. Surely, the
availability of these technologies and its affordable costs have
also resulted in relevant efforts to combine the different data
sources. Emerging systems for better data integration (including
Big Data approaches) have been focused on filling the gap
between generating large volumes of data and our
understanding of biology to reproduce the complexity within
biological systems.

For instance, the PCAWG consortium has produced data on
20,000 samples from 33 tumor types that includes whole-genome
sequencing, DNA methylation, mRNA transcriptomics, miRNA
and protein arrays. With this comprehensive overview, they have
been able to reveal that tumor clustering across these tumor types
is defined primarily by cell-of-origin (147). This has important
repercussions in that perhaps the molecular similarities
among histologically or anatomically related cancer types could
be a basis for pan-cancer therapeutic strategies and drug
development, instead of our current arbitrary decisions based
on location only. The validity of this argument has to some
extent already been validated by the FDA-recommendation to
indicate immunotherapy on all MSI cancers, regardless of site,
and clearly it will suggest future directions for exploiting clinical
actionability in therapeutics.
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Another mentionable effort includes the large panel of
comprehensively characterized human cancer cell lines (Cancer
Cell Line Encyclopedia - CCLE). The CCLE characterized 1,072
tumor lines to include genetic, RNA splicing, DNA methylation,
histone H3 modification, microRNA expression and reverse-
phase protein array data. Downstream from these analyses, they
also performed data integration with functional characterizations
such as drug-sensitivity, short hairpin RNA knockdown and
CRISPR-Cas9 knockouts to reveal potential targets for cancer
drugs and associated biomarkers. The data is publicly available
and could provide a resource for the acceleration of cancer
research using ex vivo models (148).
EFFICIENCY OF TARGETED THERAPIES:
RESPONSE AND RESISTANCE

Choice of therapy is usually undertaken at the moment of
diagnosis and throughout disease progression. Apart from the
histological information available when the tumor is biopsied,
there are two very important factors that determine the
therapeutic strategy: response and resistance. Both of those
could be aided by omic tumor profiling strategies that could
determine the behavior of the tumor prior to drug
administration, but are also dynamic processes over the course
of treatment (particularly as for the development of secondary
resistances). Several examples have been already mentioned in
the paper with regards to how tumor profiling at diagnosis can
help us define the individuals that will best benefit from a given
treatment, with the most prominent likely being the
administration of anti-EGFR drugs to KRAS wild-type only
patients in bowel cancer (149). Currently, further interesting
studies are being made on patients exhibiting exceptional
responses to systemic therapy, that may provide with
unprecedented insights into cancer biology and treatment
tailoring (150).

The case for resistance, however, is more complicated, as
it is a multi-factorial phenomenon: it summarizes the innate
and/or acquired ability of cancer cells to evade the effects of
chemotherapeutics and is one of the most pressing issues in
cancer therapy. Chemotherapy resistance can arise due to several
host or tumor-related factors (151). Resistance can arise at the
macroscopic level, based on human organ and/or tissue function,
particularly ADME (Absorption, Distribution, Metabolism, and
Excretion of drugs) proteins, or at the microscopic level:
microenvironmental resistance (changes in pH, glucose or
oxygen availability, or changes in TME cell-type composition),
or as result of evolutionary resistance. Examples for molecular
changes associated with the development of resistance are, for
instance, the apparition of the EGFR T790M resistance mutation
in NSCLC (152), c-MET mutations and loss of anti-VEGF agent
effectiveness (153), or therapy resistance mediated by lncRNA
inhibition (154), and surely the further is known about the
biological features of extensive tumor datasets the more clues
we will have to the molecular changes underpinning drug
response and resistance.
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LIQUID BIOPSY

One of the main limitations of tumor profiling to guide therapy
comes from the fact that the information we may obtain on
neoplastic features is strictly limited by our capacity to obtain
tumor samples. In clinical practice, tumor biopsies are taken
routinely for diagnosis, but depending on tumor location and
accessibility, obtaining a sample representative enough is
somewhat complicated, invasive (even with patients with good
health status) and costly. Moreover, biopsies are usually taken
from the primary tumor, whereas samples obtained from the
metastases are often scarce and additionally overlooked for the
purpose of treatment decisions.

In the past couple of decades, novel approaches have arisen to
detect tumor products from bodily fluids, including the blood,
urine or saliva. These are the so-called liquid biopsy procedures,
and include the analysis of circulating tumor cells (CTCs),
circulating tumor nucleic acids (ctDNA and ctRNA) or tumor
exosomes, among others (155–157). Liquid biopsies provide with
several advantages over classical approaches, mostly springing
from the fact that they are much less invasive and more
affordable. Firstly, they provide an unbiased overview of the
tumor molecular features, because they are a priori not
dependent on how well the biopsy is taken. Secondly, they can
inform on primary tumor as well as on secondary growths. This is
quite relevant when current therapeutic strategies focus mostly on
the primary tumor, whereas the majority of cancer mortality is
derived from the consequences of tumor spreading. The possibility
to obtain data from the metastases as well could implicate a shift
into how we design therapeutic approaches to treat cancer
patients. Thirdly, they can provide with a dynamic view on
tumor evolution and behavior, because they can be taken
sequentially over the course of disease and treatment (i.e.
monitoring minimal residual disease). This means steady
information that can guide monitoring and therapeutic
strategies and that could potentially improve overall survival rates.

These considerable advantages have started to take over in the
clinics, and there are now FDA-validated blood tests to detect
EGFR mutations as a first approach to NSCLC treatment (158).
Moreover, some studies based on blood biomarker detection have
shown presence of resistance variants even before relapse was
evident by imaging diagnostics in a few cancer types already (159,
160). Additionally, ctDNA sequencing in colorectal and breast
cancer patients can allow for the detection of chromosome copy
number and structural alterations that are therapeutically relevant
(161, 162), or HER2 amplifications in patients with gastric cancer
treated with trastuzumab (163). Moreover, ctDNA sequencing has
also been shown to prove invaluable in order to monitor the
evolution of KRAS of secondary resistance mutations (164).
TUMORHETEROGENEITYANDEVOLUTION,
AND ITS IMPACT INTUMORPROFILING

As we have mentioned before, NGS technologies have
constituted an important leap in our understanding of cancer,
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particularly in our search for better, more individualized
therapies. However, they are not exempt of limitations, some
of which we have already mentioned in the previous sections.
There is also another factor to take into account that has
considerable impact on treatment response, and that derives
from the intrinsic and heterogeneous features of the tumor:
clonality and evolution of the tumor. Heterogeneity obviously
has great impact on treatment decision and disease progression
(165). This evolution is marked by the competition of different
clones that arouse from the original cell and acquired the
necessary driver mutations to fulfill the hallmarks of cancer
and gave rise to the tumor. In this situation, the different clones
compete against each other for resources such as nutrients and
oxygen, and this provokes an accelerated evolution in terms of
the tumor’s intrinsic diversity and heterogeneity (166).

The first implication for this delicately balanced environment
is that, when defining targeted therapies for treatment, we have
to take into account the clonality of the targeted mutations. At
the moment, treatment decisions are based on the rough
presence/absence of the mutation. This relies on the sensitivity
of the technologies used for detection, but no formal studies have
been made to determine if, for instance, the same responses and
increases in survival are observed with patients with 1% or 30%
mutated allele fractions for a given variant. Because current NGS
technologies can give us a more quantifiable overview of how
representative a mutation is within a tumor, trials should be
designed to define the actionability level of the detected
mutations (what is the optimal percentage rate of a mutation
in order for it to produce observable endpoint results)?.
Secondly, treatment administration profoundly changes the
tumor clonality landscape. In other words, when a patient
starts therapy, the tumor suffers from accelerated selective
pressure, which significantly changes the fitness of each clone
and drives heterogeneity variations. This may eradicate major
clones that are sensitive, thereby leaving the chance for other
opportunistic, and perhaps previously less adaptive clones to
flourish, whereas novel mutations may also arise to overcome
sensitivity to treatment. This situation applies to all types of
chemotherapy, but even more so to targeted treatments, which
may well contribute to vanish the responsive clone population at
first instance, but may result in the development of resistance
once the targeted clones disappear. This phenomenon has
been studied extensively by evolutionary geneticists (167–170),
and some models have already been produced by liquid biopsy
approaches, where each tumor is treated sequentially depending
on the dynamic clone proportions that arise over treatment (171,
172) [Figure 5 - (173)].

FUTURE PERSPECTIVES AND THE ROAD
TO CLINICAL IMPLEMENTATION

Tumor profiling has the potential to radically change the way we
treat cancer. Novel omic technologies, as we have shown in this
review, have so far provided us with a considerable amount of
information, some of which has already been translated into
more efficient therapeutic strategies. Nevertheless, there is a lot of
January 2021 | Volume 10 | Article 595613

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Fernandez-Rozadilla et al. Omics in Tumor Profiling and Therapy
potential to improve and there are several fronts in which
profiling could considerably advance therapeutic management
and outcome.

For instance, there has already been a shift between classical
therapeutic designs decided based on organ and histology toward
treatments based on molecular features: immunotherapy is now
indicated for all MSI or TMB-high (>=10mutations/Mb) cancers
regardless of location, and patients with BRCA-positive tumors
of the breast, ovary, prostate and pancreas are treated with PARP
inhibitors (35). Because therapy will tend toward a location-
agnostic approach, so should diagnostic procedures also. NGS
pan-cancer panels have shown to be efficient in detecting
actionable mutations in up to 50% of the patients, while
allowing for a higher throughput and a quicker turnover than
one-by-one IHC approaches (174). Additionally, as often
happens with research, although we are at a point where the
technologies are vastly available, our capacity to interpret the vast
amount of data is limited and overwhelming, and this often
results in scientific production failing to translate into clinical
practice. Some tools to mine the genomic available info (such as
cBio Portal, TCGA database) are already in place, and some will
surely become available in the next few years that could help us
interpret and integrate the results obtained by omic profiling
(175, 176). Moreover, most of the studies on profiling of tumors
have been done a posteriori, which has given us a lot of insight
about tumor molecular features, but may be insufficient to target
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patients prospectively under the limitations imposed by sample
retrieval in the actual clinics. Comprehensive efforts need to be
made to protocolize molecular profiling procedures and utilize
the data to design meaningful clinical trials that can fill the last
step toward clinical implementation of these profiles. Some of
these trials have already started to happen, showing great
promise in their outcome (177). Another important field of
development will be that of broad-spectrum and combined
treatments. Synergistic approaches where more than one
cancer hallmark is targeted as indicated by the tumor’s own
features (anti-angiogenetic factors + different mutation-specific
treatments, immunotherapy…) will be key to subdue tumor
growth and allow for a better patient prognosis (178).

Overall, cancer molecular profiling will surely revolutionize
the way we understand, manage and produce drugs for cancer
treatment, and it will be an invaluable tool toward our goal of
precision medicine and personalized medicine approaches that
guarantee increased patient survival in the near future.
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Objective: Hypoxia is prevalent in tumors and plays a pivotal role in resistance to
chemoradiotherapy. 18F-MISO (18F-labeled fluoromisonidazole) is currently the preferred
choice of PET hypoxia tracers in clinical practice, but has severe disadvantages involving
complex labeling methods and low efficient imaging due to lipophilicity. We aimed to
design a novel nitroimidazole derivative labeled by 18F via a chelation technique to detect
hypoxic regions and provide a basis for planning radiotherapy.

Materials and Methods: First, we synthesized a 2-nitroimidazole precursor, 2-[4-
(carboxymethyl)-7-[2-(2-(2-nitro-1H-imidazol-1-yl)acetamido)ethyl]-1,4,7-triazanonan-1-
yl]acetic acid (NOTA-NI). For 18F-labeling, a 18F solution was reacted with a mixture of
AlCl3 and NOTA-NI at pH 3.5 and 100°C for 20 min, and the radiochemical purity and
stability were evaluated. Biological behaviors of Al18F-NOTA-NI were analyzed by an
uptake study in ECA109 normoxic and hypoxic cells, and a biodistribution study and
microPET imaging in ECA109 xenografted mice.

Results: Al18F-NOTA-NI required a straightforward and efficient labeling procedure
compared with 18F-MISO. The uptake values were distinctly higher in hypoxic tumor
cells. Animal studies revealed that the imaging agent was principally excreted via the
kidneys. Due to hydrophilicity, the radioactivities in blood and muscle were decreased,
and we could clearly distinguish xenografted tumors from para-carcinoma tissue by
PET imaging.

Conclusions: The nitroimidazole tracer Al18F-NOTA-NI steadily accumulated in hypoxic
areas in tumors and was rapidly eliminated from normal tissue. It appears to be a
promising candidate for hypoxia imaging with high sensitivity and resolution.

Keywords: PET tracer, hypoxia, 2-nitroimidazole, chemoradiotherapy resistance, 18F
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INTRODUCTION

Hypoxia associated with tumor resistance to chemoradiotherapy
has been reported to occur in more than 60% of solid tumors.
The unlimited proliferation of tumor cells and the abnormal
distribution of neoplasm vasculature give rise to oxygen supply-
demand disequilibrium. Hypoxia appears in tumor cells that are
beyond the range of effective oxygen diffusion (about 100-200
mm from nutrient vessels) (1). A hypoxic microenvironment
induces a series of self-protection mechanisms, such as apoptosis
inhibition, cell-cycle arrest, increased anaerobic glycolysis and
tumor angiogenesis (2). Furthermore, hypoxia, an independent
prognostic risk factor, triggers resistance to radiotherapy, such
that the lethal radiation dose in hypoxic cells is 3-fold higher
than that in normoxic cells, which contributes to recurrence and
metastasis by reactivating quiescent cells (3–5). Re-oxygenation
should play a crucial role in individualized anti-tumor treatment.
Hypoxia imaging by positron emission tomography (PET)
combined with computed tomography (CT) or magnetic
resonance (MR) is a non-invasive method that could be used
to measure the level of hypoxia in tumor areas and outline
the biological target volume (BTV) to boost the radiation
dose. Furthermore, the variance in the standardized uptake
value (SUV) of hypoxic regions before and after treatment
could be used to evaluate the treatment efficacy and predict
the prognosis.

Although many PET tracers that are specifically designed to
detect hypoxia have been developed, including nitroimidazole
labeled by 18F, 68Ga or ASTM combined with a Cu (62Cu or
64Cu) (6–10), 18F-MISO (18F-labeled fluoromisonidazole) is
currently the most common hypoxia imaging agent used in a
clinical setting. Nitroimidazole may undergo single-electron
reduction by xanthine oxidase. In normoxic cells, the nitro
group can be reoxidized and washed out. However, under
hypoxic conditions, it is further reduced to form highly
reactive intermediates that can bind to cellular macromolecules
and be irreversibly trapped in hypoxic cells (11). Due to its
lipophilicity, 18F-MISO rapidly penetrates both tumors and
normal tissues to provide a robust and reproducible signal, but
this also causes slow clearance kinetics and a low target-to-
background ratio and contrast (12, 13). Furthermore, 18F-
labeling requires time-consuming reactions such as repeated
evaporations, radiolabeling, purification and complex synthesis
conditions that include a high temperature and the presence of a
base catalyst.

We aimed to synthesize a novel hypoxia imaging agent to
overcome these drawbacks. McBride et al. reported a high-
efficiency labeling method in which 18F is first attached to
aluminum as Al18F, which is then bound to a chelate attached
to a foundational structure (14). This one-pot process requires
only 15 min without a heating evaporation step, and has been
used for labeling with positron-emitting nuclides like 18F and
68Ga (15, 16). We used this proven method to design a PET
hypoxia tracer with a stable structure and high hydrophilicity,
where 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) as a
chelate joins Al18F and nitroimidazole.
Frontiers in Oncology | www.frontiersin.org 2166
MATERIALS AND METHODS

Synthesis of NOTA-NI
1) tert-butyl 2-(2-nitro-1H-imidazol-1-yl)acetate (II)

A mixture of 2-nitro-1H-imidazole (I, 1 g, 8.8 mmol), tert-
butyl 2-bromoacetate (1.8 g, 9.2 mmol) and potassium carbonate
(1.3 g, 8.8 mmol) in dry acetonitrile (20 ml) was refluxed under
nitrogen for 3h. The reaction mixture was filtered, and the filtrate
was evaporated. The residue was purified by recrystallization
using ethyl acetate/hexane to give the product as a white solid.
Yield: 1.4 g (71%).
2) N-(2-bromoethyl)-2-(2-nitro-1H-imidazol-1-yl)acetamide (IV)

A solution of compound II (1.32 g, 5.8 mmol) in CH2Cl2
(39 ml) and Tallow Fatty Acid (TFA, 17 ml) was stirred at
room temperature for 3.5 h. After the reaction was completed
(as determined by thin layer chromatography (TLC)),
the filtrate was evaporated, and the residue was used in
the next step without purification. A mixture of 2-(2-nitro-1H-
imidazol-1-yl)acetic acid (III), 2-bromoethanamine hydrobromide
(1.1 g, 5 mmol), 2-(7-azabenzotriazol-1-yl)-N,N,N’,N’-
tetramethyluronium hexafluorophosphate (HATU, 2 g, 5.2
mmol) and N,N-diisopropylethylamine (DIEA, 5 ml) in dry
CH2Cl2 (200 ml) and dry N,N-dimethylformamide (DMF,
20 ml) was stirred at room temperature overnight. After the
reaction was completed (as determined by TLC), the filtrate was
evaporated, and the residue was dissolved in 50 ml of water.
The aqueous layer was extracted with ethyl acetate (50 ml × 3).
The organic layers were collected and washed with 5% aqueous
K2CO3, 5% aqueous HCl and saturated brine. The organic layer
was dried over MgSO4. The crude product was purified by silica
gel column chromatography (petroleum/ethyl acetate = 1:2) to
give the pure product as a solid. Yield: 0.52 g (32%).
3) 1,4-bis(tert-butoxycarbonylmethyl)-1,4,7-triazanonane (VI)

A solution of tert-butyl bromoacetate (21.4 g, 55mmol) in
CHCl3 (100 ml) was slowly added to triazacyclononane (V, 6.5 g,
50 mmol) in CHCl3 (50 ml) over 1 h using a syringe pump. The
resulting mixture was stirred at room temperature for 24 h. The
reaction mixture was then filtered, and the filtrate was evaporated.
The residue was treated with water (30 ml), and the resulting
solutionwas adjusted to pH3using 1MHCl andwashedwith ether
(20ml×3).The aqueous layerwas then adjusted to pH11using1M
NaOH and extracted with CH2Cl2 (20 ml × 3). The organic layers
were collected and evaporated, and dried to obtain a crude product.
Hexane (15 ml) was added to give the disubstituted product as a
solid. Yield: 10.9 g (61%).
4) tert-butyl 2-{4-[2-(tert-butoxy)-2-oxoethyl]-7-[2-(2-(2-
nitro-1H-imidazol-1-yl)acetamido)ethyl]-1,4,7-triazanonan-1-yl}
acetate (VII)

A solution of compound IV (665 mg, 2.4 mmol) in dry
acetonitrile (7 ml) was added dropwise to a mixture of
compound VI (715 mg, 2mmol) and potassium carbonate (331
mg, 2.4 mmol) in dry acetonitrile (10 ml). The reaction was
stirred at room temperature for 24 h. The mixture was filtered,
and the filtrate was evaporated. The residue was purified by silica
gel column chromatography (CH2Cl2/MeOH = 9:1) to give the
purified product as an oil. Yield: 354 mg (32%).
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5) 2-[4-(carboxymethyl)-7-[2-(2-(2-nitro-1H-imidazol-1-yl)
acetamido)ethyl]-1,4,7- triazanonan-1-yl]acetic acid (NOTA-NI)
(Figure 1A).

A solution of compound VII (354 mg, 0.64 mmol) in
trifluoroacetic acid (2 ml) was stirred at room temperature for
4.5 h. The reaction mixture was concentrated to dryness in vacuo
and treated with ether (10 ml), and the ether layer was decanted.
The residue was dissolved in water (2 ml) and washed with
CHCl3 (2-5 ml). The aqueous layer was concentrated to dryness
in vacuo to provide the pure product (254 mg, 90%). 1H NMR
(D2O, 500 MHz): d 7.37 (d, 1H, J = 1.5 Hz), 7.16 (d, 1H, J =
1.5 Hz), 5.36 (s, 1H), 5.18 (s, 2H), 3.75 (s, 4H), 3.65 (t, 2H, J =
6.0 Hz), 3.51 - 3.53 (m, 4H), 3.45 (t, 2H, J = 6.0 Hz), 3.35 (m, 4H),
3.18 (s, 4H). 13C NMR (MeOD, 500 MHz): d 172.8, 167.3, 145.1,
128.0, 127.1, 54.9, 54.3, 51.6, 50.7, 49.9, 35.4.
18F-Labeling
H2

18O was bombarded by protons in a cyclotron to produce a 18F
aqueous solution that was collected under a positive pressure of
helium. The radiation dose offluoride ions was 20 mCi measured
by a CRC-15R activity meter (CAPINTEC, Florham Park, NJ).

A stock solution of AlCl3 (0.005mg) prepared by dissolving
AlCl3·6H2O in AcONa buffer (pH 3.5) and Glacial acetic acid (10
mL) was added to 0.1 mg of the synthesized NOTA-NI in
acetonitrile (200 mL), and specific amounts of glacial acetic
acid, aluminum trichloride, and acetonitrile were added. The
prepared 18F solution (50 mL) was then added to the solution of a
precursor. The reaction mixture was placed on a 100°C heating
block for 20 min. Labeled compounds were passed through an
Alumina-N light cartridge (prewashed with 10 ml of normal
saline) to remove unlabeled Al18F, and washed with normal
saline (5 ml). The collected labeled products were heated to
evaporate the rest of the solution and redissolved in saline. The
radioactive product was analyzed by analytical HPLC and no
impurity was found (Figure 1B).
Stability Study
The stability of the above Al18F-NOTA-NI in phosphate-buffered
solution (PBS) at room temperature and in human serum at
37°C was analyzed by instant thin-layer chromatography-silica
gel (iTLC-SG) [80% methyl cyanide (MeCN) in water] at
approximately 0, 3 and 6 h.
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In Vitro Cell Uptake Study
Cell uptake studies were carried out using the ECA109 cell line
(esophageal squamous cell carcinoma, ESCC). The cells were
seeded into 24-well plates at a density of 1 × 105 cells per well
before overnight incubation in RPMI-1640 culture medium
enriched with 10% fetal bovine serum, and then preincubated
under normoxic or hypoxic (1.0 ± 0.1% pO2) conditions for 4 h.
In the test group, Al18F-NOTA−NI was added to the wells (about
0.15 MBq/well) and cells were incubated for 10, 30, 60, 90 and
120 min (n = 3 per time point). The hypoxia tracer of control
group was 18F-MISO (Figure 1C) with the same dosage. Wells
were then washed with RPMI-1640, and cells were isolated by
tryptic digestion and dissolved in PBS. The cell uptake value was
measured using a g counter.

Biodistribution Study in Xenografted Mice
ECA109 cells were grown in a normal environment. Cells were
harvested after treatment with trypsin and washed with 10 ml of
PBS by centrifugation (3000 rpm). Four-week-old female BALB/
c mice were each injected subcutaneously with 2 × 105/0.1 ml
cancer cells in the right shoulder. At 14 days after the induction
of tumor xenografts, all mice had developed a solid tumor mass
(weight approximately 1.0 g) in which hypoxia essentially built
up. Each xenografted mouse in the test group was administered
Al18F-NOTA-NI (1.85 MBq/0.1 ml) via a tail vein, while each
one in the control group was injected 18F-MISO with the same
dosage. Mice were sacrificed by decapitation at 20, 60 and
120 min after radiotracer administration (n = 3 per time
point). Tumor, muscle and significant organs were excised and
weighed, and blood samples were taken. Counts were obtained
using a g counter. The radioactivity contents of representative
organs are expressed as percentages of injected dose per gram of
tissue (% ID/g). Results are shown as the mean and SD for four
animals. The study was approved by the ethics committee of
Nanjing Medical University (IACUC-1712027).

MicroPET Study of Xenografted Mice
MicroPET scans were performed using an Inveon microPET
scanner (Siemens Medical Solutions, Erlangen, Germany). Al18F-
NOTA-NI (3.7 MBq/0.1 ml) was administered via tail vein
injection to xenografted mice after isoflurane anesthesia.
Pimonidazole (80 mg/kg), a kind of classical hypoxia probe,
was simultaneously injected via a tail vein. Two-hour dynamic
imaging was performed by acquiring 12 × 10-min frames from
A B C

FIGURE 1 | (A) Structures of NOTA-NI. (B) Structures of Al18F-NOTA-NI. (C) Structures of 18F-MISO.
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the start of tracer injection to measure time-activity curves
(TACs) (n = 4). Ten minutes of static microPET images were
acquired at 30, 60, 120 and 240 min after injection (n = 4 per
time point). Image reconstruction was performed by Fourier
rebinning using an ordered subsets expectation maximization
(OSEM) algorithm without attenuation or scatter correction.
Regions of interest (ROIs) over the tumor, normal tissue, and
major organs were drawn on decay-corrected whole-body
coronal images. The radioactivity concentration was obtained
from mean pixel values within the multiple ROI volumes.
Imaging ROI-derived % ID/g was calculated by dividing the
ROIs by the administered activity. Subsequently, animals were
sacrifice and tumors were excised, snap frozen, and embedded in
ornithine carbamyl transferase. Sections of 8-mm thickness were
prepared for fluorescein isothiocyanate (FITC) studies to verify
the intratumoral hypoxia. Sections were exposed to FITC-
conjugated murine antipimonidazole monoclonal antibody
diluted 1:25 for one hour at room temperature, and then
imaged again with the markers visualized by red fluorescence.

Statistical Analysis
Quantitative data are expressed as mean ± SD. Means were
compared using one-way ANOVA and Student’s t-test. For all
hypothesis testing, we used two-sided p-values <0.05. The results
were compared with the data obtained using 18F-MISO under the
same experimental conditions.
RESULTS

Physicochemical Evaluation
The chemical structure of NOTA-NI is described in the Methods
and the synthetic process is summarized in Figure 2. The
reaction time for precursor labeling was shortened to 20 min
with only one step under 100°C heating (labeling rate, 52.6 ±
3.7%). Al18F-NOTA-NI (after purification by HPLC) is a
colorless transparent liquid that is significantly more
hydrophilic (logP: -0.952 ± 0.034, pH 7.4) than 18F-MISO
(logP: -0.353 ± 0.016, pH 7.4) to reduce the duration of
concentration in normoxic cells. The specific activity of either
the novel compound or 18F-MISO was 50 GBq/mmol and
radiochemical purity was more than 95%. In the in vitro
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stability study, more than 99% of the radiochemical purity of
Al18F-NOTA-NI in PBS was retained for 6 h (Figure 3).
Meanwhile, in human serum at 37°C, more than 95, 85, and
80% of the radiochemical purity was retained after incubation for
0, 3 and 6 h, respectively. This good stability ensures adequate
transportation and detection in vivo. Considering 18F is a nuclide
with the short half-life, we suggest that new imaging agents
should be applied in four hours after labeled by 18F.

Cell Uptake Study
Cell uptake in vitro was studied using the cell line ECA109. As
shown in Figure 4, the uptake rate of Al18F-NOTA-NI under
hypoxic conditions gradually reached a peak value of 3.46 ±
0.56% at 120 minutes after administration, which was 2.27-fold
higher than that under normoxia. The hypoxic-to-normoxic
uptake ratio of Al18F-NOTA-NI was increased by 1.53-fold
compared to that of 18F-MISO (P < 0.05) (Table 1).

Biodistribution Study
For both Al18F-NOTA-NI and 18F-MISO, a biodistribution study
was performed at different time points (20, 60 and 120 min)
after intravenous injection of these labeled derivatives into
mice bearing ECA109 xenografts (Figures 5A, B). Figure 5C
and Table 2 show the uptake values in tumor, blood, muscle and
other normal tissues as well as the tumor-to-blood (T/B) and
tumor-to-muscle (T/M) uptake ratios for Al18F-NOTA-NI
and 18F-MISO. For Al18F-NOTA-NI, the highest uptake was
observed in the kidneys (17.90 ± 0.81%ID/g) at 20 min post-
injection (p.i.), and this value rapidly decreased to 4.50 ± 0.89%
ID/g at 120 min, indicating that this drug is principally excreted
via the kidneys. The next highest initial uptake was in blood, and
again the activity rapidly decreased over time (7.38 ± 0.14%ID/g
at 20 min and 1.01 ± 0.44%ID/g at 120 min). Initial uptake in the
liver was similar to that in blood (5.24 ± 0.54%ID/g at 20 min
p.i.), but the activity remained fairly stable (4.76 ± 0.78%ID/g at
60 min and 3.90 ± 0.55%ID/g at 120 min). In tumor tissue, the
initial uptake promptly reached (3.61 ± 0.22%ID/g at 20 min),
and moderately declined over time (2.51 ± 0.99%ID/g at 60 min
and 2.16 ± 0.24%ID/g at 120 min). 18F-MISO showed a higher
initial uptake in the liver, intestine and muscle compared to
Al18F-NOTA-NI. Normal organs showed slower depuration, and
the specific activities in the liver and kidneys at 120 min p.i. were
FIGURE 2 | Synthesis pathways of NOTA-NI, a 2-nitroimidazole derivative.
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5.74 ± 0.33%ID/g and 2.57 ± 0.16%ID/g, respectively. According
to the literature, 18F-MISO is excreted through both the urinary
and hepatobiliary tracts (15). Although tumor had a higher
uptake of 18F-MISO, more drug penetrated into surrounding
soft tissues and blood at the same time point. T/B and T/M of
Al18F-NOTA-NI gradually increased, and were apparently
higher at 120 min than those for 18F-MISO (T/B: 2.32 ± 0.53
vs. 1.70 ± 0.39, p = 0.253; T/M: 2.67 ± 0.08 vs. 1.58 ± 0.24, p =
0.004). Statistically significant differences between T/M of the
two agents could probably be attributed to the rapid clearance of
the highly hydrophilic Al18F-NOTA-NI.

MicroPET Imaging Study
MicroPET imaging studies were also conducted in ECA109
xenografted mice. Images were obtained from a two-hour
dynamic scan and a series of static images were obtained at
Frontiers in Oncology | www.frontiersin.org 5169
30, 60 and 120 min after injection (Figures 6A, B). In the
dynamic scan, the uptake of Al18F-NOTA-NI in kidney was
higher than that in liver and decayed with time, whereas
radiotracer was accumulated in the bladder and intestine since
20 min p.i. The peak value of imaging ROI-derived SUV for
tumor was 2.80 ± 0.24 at approximately 30 min, and the tumor
region was visualized with good tumor-to-muscle contrast as
early as 30 min p.i., corresponding to the findings of the
biodistribution study. In static images, T/M SUV ratios were
4.09 ± 0.59, 4.37 ± 0.94 and 4.53 ± 0.20 at 30, 60, and 120 min,
respectively. By pimonidazole labeling and immunofluorescence
imaging, we detected hypoxic regions in xenograft tumors
(Figure 6C).
DISCUSSION

Rasey et al. assessed pretreatment hypoxia in a variety of tumors
using 18F-MISO PET (17). In their study, hypoxia was
heterogeneously distributed in 97% of the tumors studied, and
tumor fractional hypoxic volume (FHV) (range 0 to 94.7%) did
not correlate with the size, histology, or site. Hypoxic imaging is
mainly used to detect tumor regions with hypoxia-related
resistance to assess the prognosis. Qian et al (18). stated that
the presence of hypoxia in imaging was associated with worse
local recurrence, with a cumulative incidence of local recurrence
at 12 months of 0% for patients without hypoxia versus 30% for
patients with hypoxia (P <0.01). Since re-oxygenation strongly
affects radiotherapy, the detection of hypoxia is needed to predict
radiosensitivity, evaluate the therapeutic effect, and delineate the
target volume. Generations of hypoxic tracers have been
subjected to clinical tests and used in applications that lay the
foundation for biological target volume (BTV) and biological
intensity-modulated radiotherapy (BIMRT) (19–23). 18F-MISO,
a classical nitroimidazole agent, has the disadvantage of
requiring a complex labeling method and the pharmacokinetics
(tumor-nonspecific accumulation and washout) cause
background impurities. To explore more efficient production
processes and more sensitive hypoxic tracers, we designed and
synthesized a novel nitroimidazole agent, Al18F-NOTA-NI. In
this compound, we added an amide bond at the linker between
nitroimidazole and NOTA to produce a more hydrophilic agent.
NOTA-NI was then labeled by 18F with high efficiency in one
FIGURE 4 | Cell uptake of Al18F-NOTA-NI under hypoxic and normoxic
conditions (n = 4 per time point).
FIGURE 3 | Radiochemical purities determined by iTLC-SG at 0, 3 and 6 h.
TABLE 1 | Hypoxia/normoxia uptake ratios of Al18F-NOTA-NI and 18F-MISO
(p < 0.05).

Agent Uptake Rate (mean ± SD, N = 3)

Al18F-NOTA-NI 2.268 ± 0.353
18F-MISO 1.533 ± 0.182
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step at 100°C for 20 min. Our study showed that this tracer was
stable at room temperature in PBS and at 37°C in human serum.

Esophageal cancer is an aggressive tumor with a poor
prognosis and the 5-year survival rate for unresectable patients
with concurrent chemoradiotherapy remains less than 20% (24).
Overexpression of hypoxia-inducible-factor 1a (HIF-1a)
strongly influence both tumor proliferation and lymph node
metastasis in ESCC (25). So hypoxic detection was performed in
esophageal carcinoma cell lines and xenografts. In vitro, we
observed 2.27-fold greater contrast enhancement in hypoxic
compared to normoxic esophageal squamous carcinoma cells
ECA109, suggesting that this novel tracer is highly sensitive for
detecting hypoxic tissue.

In contrast to the results in the in vitro uptake study, which
depended on the oxygen partial pressure, in in vivo studies, the
tracer’s efficiency could be influenced by factors such as
biodistribution and elimination. Hydrophilic agents have
generally been demonstrated to exhibit reduced liver uptake
and increased kidney excretion. The introduction of amide
bonds would make the product more negatively charged and
hence may facilitate rapid clearance through the kidneys (26).
The biodistribution study showed that the kidneys had the
highest uptake of Al18F-NOTA-NI (17.90 ± 0.81%ID/g)
20 min p.i., while the liver had the highest concentration of
18F-MISO (9.16 ± 0.81%ID/g). After the distribution of the drugs
stabilized in each tissue, the tumor-to-kidney uptake ratios for
Al18F-NOTA-NI and 18F-MISO were 0.48 ± 0.05 and 0.88 ± 0.37,
respectively. The tumor to liver and intestines ratios were 0.36 ±
0.10 and 0.28 ± 0.12, respectively. 18F-MISO was eliminated
mostly through the entero-hepatic pathway, Al18F-NOTA-NI
was mainly washed out via the kidneys. Notably, the high
concentration in the bladder and the low uptake in the
intestine would obscure masses located in the abdominal area,
while the tumor-to-nontumor (liver) ratios gradually increased.
Due to its hydrophilicity, Al18F-NOTA-NI hardly diffused into
cells and showed lower uptake than 18F-MISO in tumors, as well
as in normal organs. The initial uptake values for the novel tracer
in tumors and other normal tissues were 3.61 ± 0.22%ID/g and
48.00 ± 1.52%ID/g, while the values for 18F-MISO were 4.45 ±
0.56%ID/g and 62.80 ± 2.17%ID/g. At two hours p.i., the uptake
values for Al18F-NOTA-NI in tumors and normal tissues
Frontiers in Oncology | www.frontiersin.org 6170
decreased to 2.16 ± 0.24%ID/g and 15.84 ± 1.20%ID/g, and the
values for 18F-MISO fell to 2.26 ± 0.94%ID/g and 21.39 ± 0.71%
ID/g, respectively. In this period of time, the uptake values in
normal tissues for Al18F-NOTA-NI and 18F-MISO had
statistically significant difference (p = 0.002), but there was no
difference in tumor uptake values (p > 0.05). The novel tracer was
eliminated more rapidly from surrounding tissues but was
retained in hypoxic tumor cells, resulting in higher tumor-to-
blood and tumor-to-muscle ratios. We analyzed the results by
students t-test and demonstrated T/M ratio for Al18F-NOTA-NI
was statistically higher than that for 18F-MISO, but the difference
of T/B ratios had no statistical significance. Considering the
small number of experimental mice, we will further expand the
sample size to confirm the imaging characteristics of the new
drug. Our results in PET imaging studies with ECA109
xenografted mice demonstrated that promising contrast
between tumors and normal tissues appeared at 60 min after
injection, and T/M SUV ratios continued to rise for two hours
p.i. We have proved the presence of hypoxic regions in xenograft
tumors by pimonidazole probe. Subsequently, we will further
contrast the PET images with the immunofluorescence images
on the same cross-section of the tumor, so as to estimate the
correlation between the intratumoral uptake of the novel tracer
and the hypoxia degree in a single xenograft tumor.

To improve the signal-to-background ratio of 18F-MISO PET,
alternative hypoxia tracers, such as 18F-flortanidazole (18F-HX4),
have been proposed and subjected to preclinical and clinical
trials. 18F-HX4 is more water-soluble than 18F-MISO (logP: -0.69
vs logP: -0.4) (27). In Carlin et al.’s comparative study in animal
models, tumor uptake of 18F-HX4 appeared to be broadly similar
to that of 18F-MISO, but with more prominent renal uptake and
less liver accumulation at this time point (28). Wack et al (29).
demonstrated that 18F-HX4 showed a six-fold higher clearance
than 18F-MISO in clinical tests. Although the absolute tracer
activity for 18F-HX4 was lower at four hours p.i., 18F-HX4
showed significantly higher median contrast (2.08, range 1.87-
2.73) over all patients than 18F-MISO (1.58, range 1.54-1.64).
Another study in head and neck squamous cell carcinoma
(HNSCC) patients showed that 18F-HX4 had faster clearance
and a shorter injection-acquisition time, to give a T/M ratio
similar to that of traditional 18F-MISO (1.5 h vs. 2 h p.i.) (30).
TABLE 2 | Organ uptake, tumor uptake, tumor/blood ratio and tumor/muscle ratio of Al18F-NOTA-NI and 18F-MISO.

Organ (Mean ± SD, %ID/g) 20 min 60 min 120 min

Al18F-NOTA-NI 18F-MISO p-value Al18F-NOTA-NI 18F-MISO p-value Al18F-NOTA-NI 18F-MISO p-value

Liver 5.24 ± 0.54 9.16 ± 0.16 <0.001* 4.76 ± 0.78 6.08 ± 0.76 0.104 3.90 ± 0.55 5.74 ± 0.33 0.008*
Intestine 2.67 ± 0.37 2.67 ± 0.37 0.002* 1.91 ± 0.40 1.91 ± 0.40 0.114 2.21 ± 0.65 2.41 ± 0.10 0.648
Liver+ Intestine 7.91 ± 0.84 15.16 ± 0.57 <0.001* 6.67 ± 1.02 9.21 ± 0.74 0.025* 6.11 ± 0.98 8.14 ± 0.30 0.026*
Kidney 17.90 ± 0.81 7.49 ± 0.17 <0.001* 6.75 ± 1.31 3.29 ± 0.81 0.018* 4.50 ± 0.89 2.57 ± 0.16 0.060
Blood 7.38 ± 0.14 5.94 ± 1.24 0.180 1.53 ± 0.03 1.58 ± 0.31 0.811 1.01 ± 0.44 1.30 ± 0.21 0.361
Muscle 2.71 ± 0.18 6.03 ± 0.72 0.011* 1.13 ± 0.03 2.04 ± 0.37 0.013* 0.81 ± 0.11 1.40 ± 0.45 0.088
Tumor 3.61 ± 0.22 4.45 ± 0.56 0.072 2.51 ± 0.99 2.78 ± 0.56 0.705 2.16 ± 0.24 2.26 ± 0.94 0.862
Tumor/Blood Ratio 0.49 ± 0.03 0.76 ± 0.05 0.002* 1.63 ± 0.51 1.76 ± 0.12 0.743 2.32 ± 0.53 1.70 ± 0.39 0.253
Tumor/Muscle Ratio 1.33 ± 0.10 0.74 ± 0.01 0.013* 2.21 ± 0.70 1.37 ± 0.16 0.174 2.67 ± 0.08 1.58 ± 0.24 0.004*
Fe
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FIGURE 6 | (A) MicroPET images of Al18F-NOTA-NI for tumor-bearing mice at 60 min after radiotracer administration (white arrows indicate tumors). (B) ROI-derived
%ID/g for tumor and muscle, respectively (n = 4 per time point). (C) Immunofluorescence images of Pimonidazole in tissue sections of xenograft tumors (red).
A

B

C

FIGURE 5 | (A) Percentages of injected dose per gram of tissue (%ID/g ± SD) in major organs of xenografted mice at 20, 60, and 120 min p.i. for Al18F-NOTA-NI
(n = 3 per time point). (B) Percentages of injected dose per gram of tissue (%ID/g ± SD) in major organs of xenografted mice at 20, 60, and 120 min p.i. for Al18F-
NOTA-NI (n = 3 per time point). (C) Uptake value (%ID/g ± SD) of Al18F-NOTA-NI in comparison with that of 18F-MISO in the same kind of organ at 20, 60, and
120 min p.i (n = 3 per time point).
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The peculiarities of 18F-HX4, as a hydrophilic drug, were in line
with those of our tracer. We found that the contrast ratios for all
tracers continued to increase over time, and an increase in
hydrophilicity accelerated the appearance of obvious contrast
between hypoxic tumors and nontarget tissues, due to the faster
elimination of free tracer and the resulting decrease in
background signal. However, we should not ignore the fact
that nitroreductase, the target of nitroimidazole derivatives, is
an intracellular enzyme. More hydrophilic tracers tend to have
lower tumor uptake because there is insufficient agent to freely
diffuse into cells. Therefore, we sought to weigh the pros and
cons of reducing lipophilicity. The current experimental results
showed that Al18F-NOTA-NI had an ideal detection result in this
aspect and significantly improved the contrast between tumor
and background compared with 18F-MISO. We can further
compare it with 18F-HX4 which is more hydrophilic.

A study indicated that fluorinated nitroimidazoles showed
increased radiotracer uptake with not only pimonidazole but
also CAIX staining, compared to the use of 64Cu-ATSM to
observe hypoxic regions with low staining (28). Dubois et al
(31). showed that 18F-HX4 imaging was highly correlated with
the endogenous hypoxic marker CAIX so that it could reflect
the tumor hypoxic state more accurately than 18F-MISO. Further
studies should perform immunofluorescence staining to
evaluate the relationship between novel tracer distribution
and the mechanism of hypoxia. Furthermore, additional
preclinical research and clinical applications should be carried
out to better understand individual variations in clearance
and distribution.
CONCLUSIONS

We designed and synthesized an 18F-radiolabeled 2-
nitroimidazole derivative conjugated with the bifunctional
chelating agent NOTA. We testified the radiochemical purity,
stability, uptake by hypoxic cells, and target-to-background ratio
in in vitro and in vivo experiments. This imaging agent was
principally excreted via the kidneys and xenografted tumors
Frontiers in Oncology | www.frontiersin.org 8172
were distinguished from para-carcinoma tissue. Our results
revealed that this hydrophilic tracer was suitable for hypoxia
imaging due to its outstanding pharmacokinetic properties, such
as ideal infiltration into hypoxic tumors, fast clearance of free
tracer and low uptake into normal tissues.
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