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Editorial on the Research Topic

Intracellular Mechanisms of α-Synuclein Processing

The aggregation of the protein α-synuclein (aSyn) is the pathological hallmark of the group of
neurodegenerative disorders, collectively known as synucleinopathies. These include Parkinson’s
disease (PD), PD-Dementia, Dementia with Lewy Bodies (DLB), and Multiple Systems Atrophy
(MSA). While all of these neurodegenerative disorders present with distinctive clinical features,
they all converge in one pathological characteristic: intracellular aSyn aggregation into Lewy Bodies
(Mezey et al., 1998; Spillantini et al., 1998; Goedert et al., 2017; Riederer et al., 2019). Lewy
Body pathology can occur at the soma and neurites of neurons, but it can also occur within
glial cells as in MSA [called glial cytoplasmic inclusions (GCI)]. To complicate matters, there is
increasing evidence for extracellular aSyn conformers, that might be responsible for the spreading
of pathological protein aggregates and hence disease pathology (Kordower et al., 2008; Li et al.,
2008), as first demonstrated in patients following fetal midbrain transplants. This findings have led
to the hypothesis that sporadic PD might progress in six states that follow a caudo-rostral pattern
(Braak et al., 2003), with peripheral non-motor symptoms occurring before the diagnosis of the full
blown disease. Despite the central role of aSyn in all of these disorders, little is known about the
initial mechanisms that lead to its aggregation, disruption of cellular functions and extracellular
spread, as suggested via the gut-brain axis (Kim et al., 2019; Derkinderen et al., 2020). Articles
within this Research Topic seek to shed light into these mechanisms.

aSyn is typically degraded by both the lysosome and the proteasome (Cuervo et al., 2004; Shin
et al., 2005). It is of no surprise that mutations in genes associated with lysosomal pathways are
major genetic risk factors for the development of PD (Klein and Mazzulli, 2018). These include the
lysosomal enyzmes β-glucocerebrosidase (GBA1), galactocerebrosidase (GALC), and the lysosomal
cathepsins (CTSD and CTSB), as well as lysosomal membrane proteins like SCARB2, TMEM175,
LAMP3, and components of the lysosomal acidification machinery (ATP13A2 and ATP6V0A1)
(Sidransky et al., 2009; Chang et al., 2017; Robak et al., 2017). As shown in longitudinal studies,
GBA1-associated PD patients undergo faster disease progression and shorter survival, underlying
the need for novel and genotype-specific therapeutic strategies (Brockmann).

GBA1 degrades the lysosomal sphingolipid glucosylceramide into glucose and ceramide.
Mutations in GBA1 linked to PD, yield deficits in ceramide metabolism and result in inefficient
aSyn degradation within the lysosome. Accumulation of the GBA1 substrate, glucosylceramide can
lead to the conversion of physiologic to pathologic aSyn (Zunke et al., 2018), indicating lipids as
one of the key factors in aSyn conformation (Kiechle et al.) (Figure 1, no. 1, 5).
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FIGURE 1 | Overview of intra- and extracellular routes of aSyn aggregation and pathology pathways as highlighted within this Research Topic: (1) Intracellular aSyn

aggregation can be triggered by overexpression, post translational modifications (PTMs), or mutations within aSyn (e.g., A53T, A30P). (2–5) Pathological aSyn

conformers comprising oligomers and fibrils block the autophagic/lysosomal pathway by interfering with BAG5 and the autophagic adaptor protein p62 (2), the

lysosomal enzymes β-glucocerebrosidase (GBA1; 3) and cathepsin D (CTSD; 4), all critical for aSyn degradation. Dysfunction of GBA1 causes glycosphingolipids

(glucosylceramide, GluCer) to increase (5). These lipids further drive aSyn aggregation. Pathological aSyn conformers also affect mitochondrial function, the

lysosomal-mitochondrial crosstalk (6), vesicle recycling, and endocytosis (7), as well as formation and function of the actin cytoskeleton (8). Moreover, aSyn

accumulation induces microRNAs involved in cell cycle activation (9). (10) Effects of aSyn-mediated pathologies were analyzed and summarized within different

models (human, murine, C. elegans), exhibiting important roles of aSyn within the hippocampus. Additionally, aSyn is capable of escaping neurons causing cell-to-cell

propagation and hence spreading of disease, which causes pathological effects on peripheral immune cells (11) and the gastro intestinal tract (GIT). The gut-brain-axis

contributes to the spread of pathological aSyn conformers and disease pathology (12, 13). This illustration contains images from Servier Medical Art

(smart.servier.com).

Further emphasizing the importance of lysosomal
degradation processes in synucleinopathies (Figure 1, no.
2-5), as well as the bidirectional loop between degradative
function of lysosomes and aSyn proteoforms (Wildburger
et al.), lysosomal cathepsin D variants associated with
neurodegenerative disorders were analyzed (Bunk et al.)
(Figure 1, no. 4). Given that lysosomal cathepsins have
been shown to directly process aSyn (Mcglinchey and Lee,
2015), the study of Bunk et al. also suggests enhanced aSyn
proteolysis as a potential therapeutic strategy. Since the
lysosome is the key organelle involved in autophagy, defects
in autophagic function have been implicated in numerous
neurodegenerative diseases including synucleinopathies.
Highlighting the link between lysosomal autophagic pathways
and aSyn accumulation, Friesen et al. describe that the co-
chaperone BAG5 can promote aSyn oligomer formation, as well

as regulate the levels and subcellular distribution of p62, an
important autophagic adaptor protein (Friesen et al.) (Figure 1,
no. 2).

The structural properties and posttranslational modifications
(PTMs) of aSyn play an important role in toxicity and its seeding
capacity (Figure 1, no. 1, 12). To this end, Ray et al. revises the
importance of aSyn structure and mutations on the biophysics
of its aggregation, cell autonomous pathobiology, as well as
spreading of disease (Ray et al.). Consequences of two common
familial-associated mutations (A30P and A53T) were evaluated
on protein aggregation and locomotor behavior in a C. elegans
model (Perni et al.). Furthermore, Fouka et al. summarizes
potential treatment strategies aiming at preventing both protein
aggregation and cell-to-cell propagation via utilization of
antibodies against aSyn (Fouka et al.). Moreover, lysosomal as
well as mitochondrial pathways are highlighted for therapeutic
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strategies via calcium and iron modulation among others
(Minakaki et al.).

Once in the pathogenic form (Figure 1, no. 1), aSyn can
lead to several cellular and functional defects. These cellular
deficits range from epigenetic changes through an induction
of microRNAs involved in cell cycle activation with deleterious
consequences for dopaminergic neurons (Findeiss et al.)
(Figure 1, no. 9), to changes directly affecting synapse dynamics.
These include changes in vesicle recycling (Soll et al.) (Figure 1,
no. 7), as well as defects in the actin cytoskeleton (Oliveira da
Silva and Liz) (Figure 1, no. 8). Along the lines of synaptic
perturbances caused by aSyn are the findings of Regensburger
et al. Using a transgenic mouse model of pathogenic aSyn, they
find impaired postsynaptic integration of adult hippocampal
newborn neurons, underlining the role of postsynaptic
degeneration as an early feature in synucleinopathies
(Regensburger et al.). Reinforcing the role of aSyn in the adult
hippocampus, an increase in the number of early stage neuronal
progenitors in a human aSyn transgenic mouse model was shown
(Bender et al.) (Figure 1, no. 10). These studies uncover novel
aspects of aSyn pathology in adult neurogenesis and suggest
a mechanism that might explain the early cognitive deficits
observed in both DLB and PD-dementia (Aarsland, 2016).

Finally, the aggregation properties aSyn and cellular defects
are not locally confined, but appear to be global too. Altered
immune cell phenotypes have been reported in aSyn animal

models as well as in human disease (Cao et al., 2011; Grozdanov
and Danzer) (Figure 1, no. 11). Recently, a strong association
between clinical manifestations within the gastrointestinal tract
(GIT) and PD has been described (Schaeffer et al.). A better
comprehension of aSyn function and structure within the GIT
will be crucial to understand its role in the enteric nervous system
and its role in spreading from the gut to the brain (Figure 1, no.
12, 13).

In summary, the articles within this Research Topic provide
an overview of intracellular mechanisms that mediate the
conversion from physiologic to toxic aSyn conformations,
the intracellular consequences of toxic aSyn, as well as
spreading mechanisms that accelerate pathology in nearby
cells and other tissues (Figure 1). A better understanding of
the pathological events leading to synucleinopathies will be
critical to design targeted therapeutic strategies to combat these
devastating neurodegenerative disorders for which no cures
exist yet.
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Synucleinopathies are neurological disorders associated with α-synuclein
overexpression and aggregation. While it is well-established that overexpression
of wild type α-synuclein (α-syn-140) leads to cellular toxicity and neurodegeneration,
much less is known about other naturally occurring α-synuclein splice isoforms. In
this study we provide the first detailed examination of the synaptic effects caused by
one of these splice isoforms, α-synuclein-112 (α-syn-112). α-Syn-112 is produced by
an in-frame excision of exon 5, resulting in deletion of amino acids 103–130 in the
C-terminal region. α-Syn-112 is upregulated in the substantia nigra, frontal cortex,
and cerebellum of parkinsonian brains and higher expression levels are correlated
with susceptibility to Parkinson’s disease (PD), dementia with Lewy bodies (DLB),
and multiple systems atrophy (MSA). We report here that α-syn-112 binds strongly to
anionic phospholipids when presented in highly curved liposomes, similar to α-syn-140.
However, α-syn-112 bound significantly stronger to all phospholipids tested, including
the phosphoinositides. α-Syn-112 also dimerized and trimerized on isolated synaptic
membranes, while α-syn-140 remained largely monomeric. When introduced acutely to
lamprey synapses, α-syn-112 robustly inhibited synaptic vesicle recycling. Interestingly,
α-syn-112 produced effects on the plasma membrane and clathrin-mediated synaptic
vesicle endocytosis that were phenotypically intermediate between those caused by
monomeric and dimeric α-syn-140. These findings indicate that α-syn-112 exhibits
enhanced phospholipid binding and oligomerization in vitro and consequently interferes
with synaptic vesicle recycling in vivo in ways that are consistent with its biochemical
properties. This study provides additional evidence suggesting that impaired vesicle
endocytosis is a cellular target of excess α-synuclein and advances our understanding
of potential mechanisms underlying disease pathogenesis in the synucleinopathies.
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INTRODUCTION

Synucleinopathies are a class of neurological disorders linked to
overexpression and aggregation of α-synuclein, and they include
Parkinson’s disease (PD), Dementia with Lewy Bodies (DLB), and
Multiple Systems Atrophy (MSA). In these diseases, α-synuclein
aggregates throughout neurons, including axons and synapses,
leading to cellular toxicity and neurodegeneration (Kramer and
Schulz-Schaeffer, 2007; Schulz-Schaeffer, 2010; Scott et al., 2010;
Burre et al., 2018; Sulzer and Edwards, 2019). Multiplication
(duplication and triplication) of the α-synuclein gene (SNCA)
and a number of point mutations in exons 2 and 3 lead to
aberrant α-synuclein aggregation and are genetically linked to
familial PD (Kruger et al., 1998; Singleton et al., 2003; Nussbaum,
2018). In addition, differential expression of several α-synuclein
splice variants is observed in PD, DLB, and MSA (Beyer et al.,
2004, 2008; McLean et al., 2012; Cardo et al., 2014). Thus, it is
increasingly important to understand how different α-synuclein
variants impact neuronal function, as well as disease pathogenesis
and progression.

The wild type α-synuclein gene, SNCA, comprises six exons,
which translates into a protein of 140 amino acids. To date,
four additional splice isoforms have been identified: α-syn-126,
α-syn-112, α-syn-98, and α-syn-41. α-Syn-126, α-syn-112, and α-
syn-98 comprise in-frame deletions of exon 3, exon 5, or both,
respectively, resulting in shorter protein products (Ueda et al.,
1994; Beyer et al., 2008; McLean et al., 2012). α-Syn-41 lacks
exons 3 and 4, generating an early stop codon and resulting in
a truncated N-terminal peptide (Vinnakota et al., 2018). All of
these splice isoforms are expressed in control brains and exhibit
differential expression in PD, DLB, and Alzheimer’s disease,
with levels generally being higher in the diseased brains (Beyer
et al., 2004, 2008; McLean et al., 2012; Cardo et al., 2014). In
comparison to wild type α-syn-140, surprisingly little is known
about its splice isoforms and how they affect neuronal functions.

In this study, we focus on the splice isoform α-syn-112, a
12-kDa protein comprising a deletion of 28 amino acids (a.a.
103–130) near the C-terminus (Ueda et al., 1994). α-Syn-112
is normally expressed in low levels in many human tissues,
including skin, lung, kidney, and heart, with highest expression
in the brain (Beyer et al., 2008). However, in parkinsonian, DLB
and MSA brains, α-syn-112 is overexpressed in the substantia
nigra, frontal cortex, and cerebellum (Beyer et al., 2004; Brudek
et al., 2016). In addition, increased α-syn-112 levels are associated
with PD risk (McCarthy et al., 2011). Compared to α-syn-
140, α-syn-112 exhibits enhanced aggregation and fibrillation
in vitro (Manda et al., 2014). While it is clear that excess
α-syn-112 is associated with a number of neurodegenerative
diseases, very little is known about its biochemical properties or
neuronal functions.

We therefore set out to perform a more detailed
characterization of α-syn-112, focusing on its possible roles
at synapses. Under physiological conditions, α-syn-140 is
expressed at the presynapse where it regulates synaptic vesicle
clustering and trafficking (Bendor et al., 2013; Vargas et al.,
2014; Logan et al., 2017; Atias et al., 2019). When overexpressed
at mammalian synapses to levels comparable to those in

familial PD, α-syn-140 impaired synaptic vesicle trafficking
(Nemani et al., 2010; Scott et al., 2010), and altered the
composition of presynaptic proteins (Scott et al., 2010). In
line with these findings, we previously reported that acute
introduction of α-syn-140 at a classical vertebrate synapse,
the lamprey reticulospinal (RS) synapse, impaired synaptic
vesicle recycling mediated by clathrin-mediated endocytosis
and possibly bulk endocytosis (Busch et al., 2014; Medeiros
et al., 2017; Banks et al., 2020). Similarly, acute introduction
of α-syn-140 at mammalian synapses also impaired vesicle
endocytosis with no observable effects on exocytosis (Xu
et al., 2016; Eguchi et al., 2017). The synaptic deficits induced
by α-syn-140 require proper membrane binding because
point mutants with reduced lipid binding capacity exhibited
greatly reduced effects on SV trafficking (Nemani et al.,
2010; Busch et al., 2014). In comparison, there are no studies
to date that have investigated how any of the related α-
synuclein splice isoforms affect presynaptic functions, prompting
this work.

Here we describe the membrane binding properties of α-
syn-112 and its corresponding effects at synapses. It is well-
established that α-syn-140 binds to anionic phospholipids, such
as phosphatidic acid (PA) and phosphatidylserine (PS), especially
when presented in small, highly curved liposomes (Davidson
et al., 1998; Burre et al., 2010, 2012; Busch et al., 2014).
In comparison to α-syn-140, α-syn-112 bound more strongly
in vitro to all phospholipids tested, including phosphoinositides
that regulate synaptic vesicle trafficking such as PI(4)P and
PI(4,5)P2 (Di Paolo and De Camilli, 2006; Saheki and De
Camilli, 2012). In addition, α-syn-112 had a greater propensity
for oligomerization on purified synaptic membranes. Consistent
with enhanced membrane binding and oligomerization, α-syn-
112 inhibited synaptic vesicle recycling at lamprey synapses and
produced a phenotype that was intermediate between monomeric
and dimeric α-syn-140 (Busch et al., 2014; Medeiros et al., 2017,
2018; Banks et al., 2020). These findings implicate α-syn-112 in
inducing defective synaptic vesicle trafficking, which may lead to
cellular toxicity in the synucleinopathies.

MATERIALS AND METHODS

SDS-PAGE and Western Blotting
Recombinant human α-syn-140 and α-syn-112 were purchased
from rPeptide (Bogart GA). Proteins were run on 12% SDS-
PAGE gels and then stained with Coomassie or transferred to
nitrocellulose for Western blotting. For Coomassie gels, 2–3 µg
of protein was loaded per lane. For Western blots, 0.2–0.3 µg
of protein, or 20 µL of liposome binding assay samples, were
loaded. Western blots were performed using standard procedures
(Busch et al., 2014). After blocking in TBST buffer (20 mM Tris
pH 7.6, 150 mM NaCl, 0.1% Tween 20) with 1% dry milk, the
membranes were incubated for 2 h with a rabbit polyclonal pan-
synuclein antibody (1:1000; ab53726; Abcam, Cambridge, MA,
United States). After washing in TBST, the blots were incubated
for 1 h with goat anti-rabbit HRP conjugated IgG (H + L) (1:1000;
Thermo Scientific, Waltham, MA, United States). PierceTM ECL
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Western blotting substrate (Thermo Scientific, Waltham, MA,
United States) was used to develop blots.

Liposome Binding Assays
The lipids acquired from Avanti Polar Lipids, Inc.
(Alabaster, AL, United States) included 16:0–18:1
phosphatidylcholine (PC), 18:1–12:0 nitrobenzoxadiazole-
PC (NBD-PC), 16:0–18:1 1-phosphatidic acid (PA), 16:0–18:1
phosphatidylethanolamine (PE), and porcine brain total
lipid extract (BTLE). Phosphoinositides were acquired from
Echelon Biosciences, Inc. (Salt Lake City, UT, United States):
phosphatidylinositol diC16 (PI), phosphatidylinositol 3-
phosphate diC16 [PI(3)P], phosphatidylinositol 4-phosphate
diC16 [PI(4)P], phosphatidylinositol 5-phosphate diC16 [PI(5)P],
phosphatidylinositol 3,4-bisphosphate diC16 [PI(3,4)P2],
phosphatidylinositol 3,5-bisphosphate diC16 [PI(3,5)P2],
phosphatidylinositol 4,5-bisphosphate diC16 [PI(4,5)P2], and
phosphatidylinositol 3,4,5- triphosphate diC16 [PI(3,4,5)P3].

Liposome binding assays were performed as previously
described (Burre et al., 2012; Busch et al., 2014; Medeiros
et al., 2017). Artificial liposomes were generated by mixing
lipids (1.0 mg total) in the desired proportions in 200 µL of
2:1 chloroform:methanol and then dried into a monolayer by
a stream of nitrogen. All liposomes contained 1% fluorescently
labeled NBD-PC. After drying, sucrose (1 mL; 300 mM) was
added, and lipids were incubated at 37◦C for 20 min to swell the
membranes, followed by vortexing for 1 min to generate large,
heterogeneous liposomes. Small unilamellar vesicles (SUVs; 30–
50 nm) were generated by probe sonication for 5 s at 15 s intervals
for 2 min at room temperature (RT). Liposomes were then
centrifuged at 80,000 × g for 20 min at RT and the supernatant,
containing the SUVs, was isolated for the liposome binding assay.

α-Syn-140 or α-syn-112 (5 mg) was incubated for 2 h at
RT with liposomes (∼34–36 µL), in HKE buffer (25 mM
HEPES, pH 7.4, 150 mM KCl, 1 mM EDTA) in a 100 µL
total volume. Samples were then added to the bottom of an
Accudenz gradient (40%, 35%, 30%, 0%, in 800 µL total volume).
Columns were centrifuged at 280,000 × g for 3 h at RT. After
ultracentrifugation, columns were separated into eight fractions
(100 µL each). The presence of liposomes was determined in each
fraction by quantifying NBD fluorescence using a NanoDrop
3300 fluorospectrometer (Thermo Fisher Scientific). In parallel,
the α-synuclein distribution in each fraction was determined by
Western blotting. Quantification of α-synuclein band intensities
was performed using ImageJ. Lipid bound protein (%) was
calculated as the amount of protein in the first 3 fractions
divided by the total protein in all 8 fractions. Data shown are
representative of n = 3–5 independent experiments. GraphPad
Prism 8 (GraphPad Software, Inc., La Jolla, CA, United States)
was used to perform statistical analyses and generate graphs.

Membrane Recruitment Assays
Membrane recruitment assays were performed as described
(Shetty et al., 2013). First, crude synaptosomes were prepared
from two mouse brains, resuspended in 6 mL homogenization
buffer (25 mM Tris-HCl; pH 8.0, 500 mM KCl, 250 mM sucrose,
2 mM EGTA), then added to the top of freshly prepared 0.65,

0.85, 1.00, 1.20M sucrose gradients and centrifuged at 100,000× g
for 2 h. Synaptosomes were collected from the 1/1.2M interface
and resuspended in 20 mL buffer. Pure synaptosomes were
centrifuged at 100,000× g for 20 min. The pellet was resuspended
in 4 mL ice-cold deionized water, and 250 mM HEPES-NaOH,
pH 7.4 was added to a final concentration of 7.5 mM. The
suspension was incubated on ice for 30 min and centrifuged at
100,000 × g for 20 min. The pellet was resuspended in 4 mL of
0.1M Na2CO3 to strip peripheral proteins, incubated for 15 min
at 37◦C, and centrifuged at 100,000 × g for 20 min. Pellet was
resuspended in 2 mL cytosolic buffer (25 mM HEPES-NaOH, pH
7.4, 120 mM potassium glutamate, 2.5 mM magnesium acetate,
20 mM KCl, and 5 mM EGTA-NaOH, pH 8.0, filtered and
stored at 4◦C), centrifuged again at 100,000 × g for 20 min, and
resuspended in 2 mL of cytosolic buffer. Proteins were quantified
using BCA. Mini cOmpleteTM protease inhibitors (Roche) were
added, and aliquots of purified membranes were flash frozen and
stored at−80◦C until use.

Next, cytosol preparations were made from two mouse brains.
To do that, brains were first washed and then homogenized
with 2 mL of homogenization buffer (25 mM Tris-HCl, pH
8.0, 500 mM KCl, 250 mM sucrose, 2 mM EGTA, and 1 mM
DTT) using 10 strokes at 5,000 rpm. The homogenate was
transferred to a 3.5 mL ultracentrifuge tube and centrifuged at
160,000 × g for 2 h at 4◦C. The supernatant was exchanged into
3.5 mL cytosolic buffer. After measuring protein concentration
and adding protease inhibitors, 100 µL aliquots were flash frozen
and stored at−80◦C until use.

For the membrane recruitment assays, synaptic membranes
(200 µg) were mixed with 250 µg brain cytosol proteins
in 500 µl cytosolic buffer and supplemented with different
concentrations of recombinant human α-syn-140 and α-syn-112
(rPeptide). A control experiment was prepared with only synaptic
membranes and cytosolic buffer. Mixtures were incubated at
37◦C for 15 min. The samples were immediately centrifuged
at 100,000 × g for 30 min at 4◦C. Pellets, now containing the
synaptic membranes with bound proteins, were resuspended
in 500 µL of cytosolic buffer at 4◦C. The resuspension was
centrifuged at 100,000 × g for 30 min at 4◦C and resuspended
in 90 µL of cytosolic buffer. For each sample, 20 µL aliquots
were mixed with 5x loading buffer, run on 12% reducing
SDS-PAGE gels, transferred to nitrocellulose membranes, and
processed via Western blotting. Levels of α-synuclein recruited
to synaptic membranes were detected for each condition by
Western blot with a rabbit polyclonal pan-synuclein antibody
(1:1000; Abcam ab53726; Cambridge, MA, United States) and
quantified using ImageJ.

Microinjections and Stimulation
Recombinant human α-syn-140 and α-syn-112 were obtained
from rPeptide, Inc. The recombinant α-syn-140 dimer (NC
dimer) used in this study was a single polypeptide comprising two
full-length copies of α-syn-140, as previously described (Pivato
et al., 2012; Medeiros et al., 2017). All animal procedures were
conducted in accordance with standards set by the National
Institutes of Health and approved by the Institutional Animal
Care and Use Committee at the Marine Biological Laboratory.
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Tricaine-S (MS-222; 0.1 g/L; Western Chemical, Inc., Ferndale,
WA, United States) was used to anesthetize late larval lampreys
(Petromyzon marinus; 11–13 cm; M/F). Next, spinal cords were
dissected into 2–3 cm segments, pinned in a Sylgard lined
dish, and prepared for microinjection, as previously described
(Morgan et al., 2004; Busch et al., 2014; Walsh et al., 2018). Using
a glass microelectrode, α-syn-140 or α-syn-112 (120–200 µM)
dialyzed in lamprey internal solution (180 mM KCl, 10 mM
HEPES K+, pH 7.4) was injected into reticulospinal axons using
small pulses of N2 (4–20 ms, 30–50 psi, 0.2 Hz), which were
delivered using a Toohey spritzer. We estimate that proteins
were diluted 10–20x in the axon based on the fluorescence
of a co-injected dye (fluorescein dextran 100 µM; 10 kDa),
resulting in a final axonal concentration of 7–16 µM. This
concentration is 2–5 times above the estimated endogenous levels
and within range of overexpression levels for animal models of
PD (Nemani et al., 2010; Scott et al., 2010; Westphal and Chandra,
2013) and human patients (Singleton et al., 2003). After protein
injection, short, depolarizing current pulses (30–50 nA; 1 ms)
were delivered to the axons to stimulate action potentials (20 Hz,
5 min). Immediately following the stimulation period, spinal
cords were fixed in 3% glutaraldehyde, 2% paraformaldehyde in
0.1M Na cacodylate, pH 7.4 for standard transmission electron
microscopy.

Electron Microscopy and Imaging
After fixation (overnight to 2 days), spinal cords were processed
in 2% osmium, stained en bloc with 2% uranyl acetate, and
embedded in Embed 812 resin, as previously described (Busch
et al., 2014; Medeiros et al., 2017; Walsh et al., 2018). Ultra-
thin sections (70 nm) were counterstained with 2% uranyl
acetate followed by 0.4% lead citrate. A JEOL JEM 200CX
transmission electron microscope was used to acquire images
of individual synapses at 37,000x magnification. For each
experimental condition, images were acquired from at least
n = 10–20 synapses collected from n = 2 axons/animals at
distances of 25–150 µm from the injection site, which is where
the protein had diffused based on the co-injected fluorescent dye.
Images of control synapses were acquired from the same axons,
but at greater distances from the injection site (>350 µm) in
regions where the injected proteins had not diffused, providing
an internal control for each experiment.

A morphometric analysis was performed on all synaptic
membranes within 1 µm of the active zone, as previously
described (Busch et al., 2014; Medeiros et al., 2017; Walsh et al.,
2018; Banks et al., 2020). Image analysis was performed in
FIJI 2.0.0. by a researcher blinded to experimental conditions.
Measurements included the number of synaptic vesicles
per synapse (per section), size of plasma membrane (PM)
evaginations, number and size of large (>100 nm) irregularly
shaped intracellular membranous structures (“cisternae”), and
number and stage of clathrin coated pits (CCPs) and clathrin
coated vesicles (CCVs). The sizes of PM evaginations were
measured by first drawing a straight line (1 µm) laterally from
the edge of the active zone to the nearest point on the axolemmal
surface and then measuring the curved distance between these
two points. Additionally, we also quantified the depth of the PM

evaginations from the axolemmal surface to the deepest point
within the evagination. CCP/V stages were defined as: stage 1 –
initial clathrin coated bud; stage 2 – invaginated CCP without
constricted neck; stage 3 – invaginated CCP with constricted
neck; stage 4 – free CCV. GraphPad Prism 8 was used to generate
graphs and for all statistical analyses.

Reconstruct software (Fiala, 2005) was used to generate a
three-dimensional reconstruction of single synapses from four or
five serial images. Fiduciary markers were used to align the serial
images. Synaptic structures were added using trace slabs for PM
and cisternae, spheres for synaptic vesicles (50 nm) and clathrin-
coated pits and vesicles (90 nm), and a Boissonnat surface for
the active zone.

RESULTS

α-Syn-112 Exhibits Enhanced Binding to
Liposomes Containing Anionic
Phospholipids
We began by comparing the lipid binding properties of α-syn-
112 and α-syn-140. α-Syn-140 comprises an amphipathic alpha-
helical region that is involved in lipid binding (a.a. 1–101); a
non-amyloid component (NAC) domain that is involved in self-
association (a.a. 61–95); and a less structured acidic C-terminal
domain (a.a. 102–140) (Figure 1A). It is well-established that
the N-terminal alpha helical domain of α-syn-140 (a.a. 1–
95), which includes the NAC domain, is responsible for its
strong binding to liposomes containing anionic phospholipids
(Davidson et al., 1998; Chandra et al., 2003; Burre et al., 2012;
Busch et al., 2014) and that this binding is modulated by
the C-terminus (Lautenschlager et al., 2018). In α-syn-112, the
removal of exon 5 brings together amino acids 102 and 131
into a single polypeptide, generating a shorter 112-amino acid
protein (Figure 1A). Compared to the known NMR structure
of folded, liposome-bound α-syn-140 (Ulmer et al., 2005), the
predicted structure of α-syn-112 suggests that the deletion results
in additional alpha-helical content in the C-terminal domain
(Figure 1B) (SWISS-MODEL1). The size difference between α-
syn-140 (14 kDa) and α-syn-112 (12 kDa) is apparent by SDS-
PAGE gel and Western blot (Figure 1C).

Though it is well-established that α-syn-140 binds to
anionic phospholipids such as phosphatidic acid (PA) and
phosphatidylserine (PS), the lipid binding properties of α-syn-
112 are undetermined. We therefore used a well-established
liposome floatation assay to compare the binding of α-syn-
140 and α-syn-112 to standard anionic lipids, starting with
PA. Figures 2A–C illustrates the basic assay with α-syn-140.
Briefly, small unilamellar vesicles approximating the size of
synaptic vesicles (30–50 nm) are incubated with α-synuclein
protein and loaded into an Accudenz gradient (Figure 2A). After
ultracentrifugation, the vast majority (>90%) of liposomes float
to the top of the column in fractions 1–3 (Figure 2A), carrying
along any liposome-bound α-synuclein, while unbound protein
remains lower in the column in fractions 4–8 (Figure 2B). Under

1https://swissmodel.expasy.org/
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FIGURE 1 | α-Syn-112 splice isoform. (A) Domain diagram of α-syn-140 and
α-syn-112 showing the result of exon 5 deletion. (B) (top) The NMR structure
of human α-syn-140 bound to lipid micelles (Ulmer et al., 2005), and (bottom)
predicted structure of α-syn-112 (UCSF Chimera software). α-Syn-112 is
predicted to have a slightly extended alpha helix. (C) Coomassie-stained
SDS-PAGE gel and Western blot showing the size difference between
α-syn-140 (14 kDa) and α-syn-112 (12 kDa). In the Western blot, the higher
molecular weight bands represent minor fractions of dimeric α-syn-140 and
α-syn-112.

standard conditions, greater than 95% of total α-syn-140 binds
to liposomes containing 1:1 phosphatidylcholine (PC):PA, while
negligible binding occurs to PC only liposomes (Figures 2B,C)
(PC: 4.98 ± 2.27%, n = 3; PC/PA: 98.29 ± 0.72%, n = 3;
p < 0.0001; Student’s t-test). To compare binding of α-syn-
112 and α-syn-140, we tested varying concentrations of PA,
ranging from 0 to 50%. Surprisingly, α-syn-112 partially bound
to liposomes containing only PC (0% PA), a condition in which
α-syn-140 binding is negligible (Figures 2D,E). At 0.5, 1, 5,
and 10% PA, α-syn-112 displayed enhanced liposome binding
compared to α-syn-140, while no difference was detected at
50% PA where protein binding was saturated (Figures 2D,E).
Analysis of the binding curves revealed that α-syn-112 had
a 10-fold higher affinity for PA than α-syn-140 (α-syn140:
EC50 = 9.56% PA, R2 = 0.96; α-syn112: EC50 = 0.94%
PA, R2 = 0.84; non-linear fit: dose–response). Thus, α-syn-
112 exhibits much stronger binding to PC/PA liposomes than
α-syn-140.

We next investigated whether α-syn-112 also bound
better to other anionic phospholipids, including PS and
several of the phosphoinositides: phosphatidylinositol (PI),

phosphotidylinositol 3-phosphate [PI(3)P], phosphotidylinositol
4-phosphate [PI(4)P], phosphotidylinositol 4,5-bisphosphate
[PI(4,5)P2], and phosphotidylinositol 3,4,5-triphosphate
[PI(3,4,5)P3]. PI(4)P and PI(4,5)P2 are of particular interest to
this study because of their known roles in regulating synaptic
vesicle exocytosis and endocytosis (Wenk et al., 2001; Di Paolo
and De Camilli, 2006; Saheki and De Camilli, 2012). For
these experiments, we used 5% of the anionic phospholipids
because this was the sub-saturating condition with the greatest
differential binding in the PS concentration series (see Figure 2).
For all lipids tested, PS, PI, PI(3)P, PI(4)P, PI(4,5)P2, and
PI(3,4,5)P3 alike, α-syn-112 bound significantly better than
α-syn-140 (Figure 3A). Quantification of band intensities
from 3 to 6 replicates revealed that in most cases α-syn-112
binding to the anionic phospholipids was at least twofold greater
than α-syn-140 (Figure 3B). Taken together, these data reveal
that α-syn-112 binds significantly better than α-syn-140 to all
negatively-charged anionic phospholipids tested.

Enhanced Binding of α-Syn-112 to
Liposomes Generated From Total Brain
Lipids
We next wanted to evaluate binding of α-syn-140 and α-syn-
112 to a complex mixture of lipids that is more physiologically
relevant. We therefore tested binding to liposomes made from
purified brain total lipid extracts (BTLE). HPLC analysis provided
by the manufacturer (Avanti Polar Lipids, Inc.) indicates that
∼24% of the BTLE comprises PC, PA, PS, and PI, lipids we
have already tested individually, as well as ∼17% PE and ∼59%
unknown lipids (Figure 4A). After ultracentrifugation in the
Accudenz gradient, > 80% of BTLE liposomes floated to the
top of the column (Figure 4B). As was observed with the
individual anionic lipids, α-syn-112 also exhibited a > 2-fold
greater binding to BTLE liposomes compared to α-syn-140
(Figures 4C,D) (α-syn-140: 36.46 ± 11.56, n = 3; α-syn-112:
87.21 ± 4.096, n = 3; p = 0.0144; Student’s t-test). Thus, α-syn-
112 still binds significantly better than α-syn-140 when presented
with a complex mixture of brain-derived liposomes.

α-Syn-112 Exhibits Enhanced
Oligomerization on Synaptic Membranes
We next examined how α-syn-140 and α-syn-112 interact
with physiological synaptic membranes using an established
membrane recruitment assay (Shetty et al., 2013). First,
synaptosome membranes were isolated from mouse brains and
stripped of all associated proteins. Endogenous α-syn-140 was
not detected on the stripped membranes, while transmembrane
proteins such as N-cadherin were retained (Figure 5A). The
stripped membranes were then incubated with cytosolic proteins
alone or supplemented with 2 µM recombinant human α-
syn-140 or α-syn-112. Under these conditions, we observed
robust recruitment of both isoforms to synaptic membranes,
but with different patterns (Figure 5B). α-Syn-140 was recruited
predominantly in the monomeric form (76.6 ± 1.7%, n = 4),
and its oligomerization into dimers and trimers comprised
a small fraction (dimer: 22.6 ± 1.8%; trimer: 0.79 ± 1.8%;
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FIGURE 2 | Compared to α-syn140, α-syn-112 exhibits enhanced binding to PC/PA liposomes. (A) (left) Diagram showing the liposome binding assay. (right) After
ultracentrifugation, liposomes float to the top of the gradient (fractions 1–3), carrying along any bound α-synuclein while free α-synuclein remains in the bottom
fractions (4–8). (B) Representative Western blots showing α-syn-140 binding to PC or PC/PA liposomes. α-Syn-140 binds strongly to anionic phospholipids such as
PA. (C) Quantification of lipid bound α-syn-140 in the presence of PC or PC/PA liposomes. Bars indicate mean ± SEM from n = 3 to 4 independent
experiments.*p < 0.0001; Student’s t-test. (D) Representative Western blots showing α-syn-140 and α-syn-112 binding to liposomes containing varying amounts of
PA. Red box indicates liposome-containing fractions. α-Syn112 exhibited enhanced binding to PC/PA liposomes. (E) Quantification of lipid bound protein (0%
PA = α-syn-140: 3.03 ± 1.86, n = 3; α-syn-112: 34.42 ± 8.28, n = 3; p < 0.001) (0.5% PA = α-syn-140: 5.76 ± 1.89, n = 4; α-syn-112: 37.697 ± 4.95, n = 3;
p < 0.001) (1% PA = α-syn-140: 11.74 ± 0.93, n = 3; α-syn-112: 65.08 ± 3.98, n = 3; p < 0.0001) (5% PA = α-syn-140: 28.21 ± 5.14, n = 4; α-syn-112:
81.46 ± 11.32, n = 3; p < 0.0001) (10% PA = α-syn-140: 56.31 ± 5.85, n = 4; α-syn-112: 93.53 ± 3.02, n = 3; p = 0.0002) (50% PA = α-syn-140: 96.70 ± 0.00,
n = 3; α-syn-112: 92.67 ± 5.87, n = 3; p = 0.54). Data points indicate mean ± SEM. Asterisks indicate statistical significance using ANOVA (Sidak’s post hoc).
*p < 0.001. Data were best fit by a non-linear dose-response curve (R2

(Syn140) = 0.96; R2
(Syn112) = 0.84).

n = 4). In contrast, after membrane recruitment, α-syn-112
was mostly dimeric and trimeric under the same conditions
(monomer: 34.6± 5.8%; dimer: 56.4± 4.2%; trimer: 9.0± 1.9%;
n = 4), indicating that α-syn-112 is prone to oligomerization on
synaptic membranes (Figures 5B,C). This oligomerization was
triggered by the interaction with synaptic membranes since both
recombinant α-syn-140 and α-syn-112 were > 90% monomeric
in the starting material, or “input” (Figures 5B,C, left lanes) [(α-
syn-140 – monomer: 92.9 ± 2.3%; dimer: 5.7 ± 2.3%; trimer:
1.3 ± 0.2%; n = 9) (α-syn-112 – monomer: 91.7% 5.8; dimer:
6.8± 2.9%; trimer: 1.3± 0.3%; n = 9)]. Further demonstrating the
enhanced oligomerization of α-syn-112, the oligomer/monomer
ratio for α-syn-112 was sevenfold greater than that of α-syn-140
(Figure 5D) (α-syn-140 = 0.31 ± 0.03; α-syn-112 = 2.16 ± 0.53,
n = 4; p = 0.0067, Student’s t-test). When the membrane
recruitment assay was repeated using varying concentrations of
α-synuclein, α-syn-140 bound synaptic membranes primarily in
the monomeric form with only ∼30% oligomerization observed
at the highest concentrations (Figure 5E). In contrast, at

all concentrations tested, where detectable, α-syn-112 bound
to synaptic membranes as monomers, dimers, and trimers,
with the proportion of oligomeric species exceeding that of
monomeric α-syn-112 (Figure 5F). Thus, α-syn-112 exhibits
greater oligomerization on purified synaptic membranes.

Excess α-syn-112 Impairs Synaptic
Vesicle Recycling, Producing Effects
Consistent With Enhanced Dimerization
We previously reported that acute introduction of α-syn-
140 severely impaired synaptic vesicle endocytosis at lamprey
synapses (Busch et al., 2014; Medeiros et al., 2017; Banks et al.,
2020), a finding that was corroborated at mammalian synapses
(Xu et al., 2016; Eguchi et al., 2017). In contrast, α-synuclein
mutants with reduced membrane capacity, such as the point
mutant A30P, produce little to no deficits in synaptic vesicle
trafficking (Nemani et al., 2010; Busch et al., 2014), suggesting
that lipid binding capacity is a strong predictor of the severity
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FIGURE 3 | α-Syn-112 exhibits enhanced binding to anionic phospholipids.
(A) Representative Western blots showing α-syn-140 and α-syn-112 binding
to liposomes containing 5% PS, PI, PI(3)P, PI(4)P, PI(4,5)P2, and PI(3,4,5)P3.
Red box indicates liposome-containing fractions. α-Syn-112 bound with
increased efficacy to all liposomes containing anionic phospholipids.
(B) Quantification of lipid bound protein show enhanced binding to all anionic
phospholipids tested. (PS = α-syn-140: 34.42 ± 10.07, n = 5; α-syn-112:
71.50 ± 2.76, n = 5; p = 0.0038) (PI = α-syn-140: 24.90 ± 10.73, n = 3;
α-syn-112: 71.78 ± 5.91, n = 3; p = 0.0187) (PI(3)P = α-syn-140:
22.83 ± 9.1, n = 3; α-syn-112: 66.86 ± 3.78, n = 4; p = 0.0014)
(PI(4)P = α-syn-140: 20.91 ± 6.05, n = 3; α-syn-112: 57.07 ± 8.83, n = 4;
p = 0.0264) (PI(4,5)P2 = α-syn-140: 43.68 ± 3.00, n = 4; α-syn-112:
67.50 ± 2.48, n = 4; p = 0.0009) (PI(3,4,5)P3 = α-syn-140: 35.02 ± 1.457,
n = 3; α-syn-112: 87.84 ± 6.33, n = 3; p = 0.0012). Data points indicate
mean ± SEM. Asterisks indicate statistical significance by Student’s t-test.
*p < 0.05, **p < 0.01, ***p < 0.001.

of synaptic defects. We therefore hypothesized that α-syn-112
would similarly induce synaptic vesicle recycling defects that were
as or more robust than those reported for α-syn-140. To test
this, giant RS axons were microinjected with recombinant human
α-syn-112 (120–200 µM pipet concentration), as was done for
α-syn-140 in our prior studies (Busch et al., 2014; Medeiros
et al., 2017; Banks et al., 2020), thus delivering the protein
directly to the presynapses (Walsh et al., 2018). Upon axonal
injection, the protein is diluted 10–20x for a final concentration of
7–16 µM, which is 2–3 times the estimated endogenous levels of
α-synuclein at mammalian synapses (Westphal and Chandra,
2013) and consistent with overexpression levels observed in

FIGURE 4 | α-Syn-112 exhibits enhanced binding to total brain lipids. (A) Pie
chart showing the percentages of known phospholipids in brain total lipid
extracts (BTLE) from porcine brain, which were used to make liposomes.
(B) Distribution of BTLE liposomes after ultracentrifugation. (C) Representative
Western blots showing α-syn-140 and α-syn-112 binding to liposomes. Red
box indicates liposome-containing fractions. (D) Quantification of lipid bound
protein indicates that α-syn-112 has enhanced binding to BTLE liposomes.
Bars indicate mean ± SEM from n = 3 experiments. Asterisk indicates
p = 0.0144 by Student’s t-test.

PD brains (Singleton et al., 2003). After injection, axons were
stimulated (20 Hz, 5 min), fixed and processed for standard
transmission electron microscopy, as previously described
(Busch et al., 2014; Medeiros et al., 2017; Walsh et al., 2018).
Images of control synapses were obtained from the α-synuclein-
injected axons but at distances beyond where the protein diffused
(based on a co-injected fluorescent dye), thus providing an
internal control for each experiment.

Giant RS synapses are en passant glutamatergic synapses that
reside along the perimeter of the giant RS axons (Wickelgren
et al., 1985; Brodin and Shupliakov, 2006). Stimulated control
synapses exhibit a large and localized synaptic vesicle cluster,
shallow plasma membrane (PM) evaginations, few clathrin-
coated pits (CCPs) and clathrin-coated vesicles (CCVs), and
only a few cisternae, which are defined as large vesicular
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FIGURE 5 | Enhanced oligomerization of α-syn-112 on synaptic membranes. (A) Purified synaptic membranes from mouse brain are efficiently stripped of
membrane associated proteins such as endogenous α-synuclein, while transmembrane proteins like N-cadherin remain. (B,C) Recruitment of recombinant
α-syn-140 and α-syn-112 to stripped synaptic membranes in the presence of brain cytosol. Compared to α-syn-140, which was recruited to synaptic membranes
predominantly as a 14 kDa monomer (M), α-syn-112 bound predominantly as a 25 kDa dimer (D) or trimer (T). (–) indicates the cytosol only control. (D) α-Syn-112
shows a sevenfold increase in the oligomer/monomer ratio compared to α-syn-140. Bars indicate mean ± SEM from n = 3 to 4 experiments. Asterisks indicate
statistical significance using Student’s t-test (**p < 0.01). (E,F) Concentration curve for α-syn-140 and α-syn-112 binding to synaptic membranes. α-Syn-112
oligomerized more at all concentrations tested. Red indicates the most abundant molecular species.

structures with a diameter > 100 nm (Figure 6A). While
we do not yet know the precise identities of cisternae,
their morphologies are consistent with bulk and/or recycling
endosomes (Morgan et al., 2013; Chanaday et al., 2019). By
comparison, synapses treated with recombinant human α-
syn-112 exhibited a drastic change in morphology, indicated
by a loss of the synaptic vesicle cluster, large extended PM
evaginations, and accumulation of cisternae and clathrin-coated

pits and vesicles (Figure 6B). Three-dimensional reconstructions
show clearly the morphological alterations caused by α-syn-
112, especially the loss of vesicles (blue) and buildup of PM
(green) and cisternae (magenta) (Figures 6C,D). In addition,
there were obvious changes in the number of CCPs and
CCVs. Whereas stimulated control synapses have only a
few CCPs, those treated with α-syn-112 have more CCPs
and CCVs, suggesting deficits in vesicle fission and clathrin
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FIGURE 6 | α-Syn-112 impairs synaptic vesicle recycling. (A,B) Electron micrographs showing a stimulated (20 Hz, 5 min) control synapse and a synapse treated
with recombinant human α-syn-112. While control synapses have a large pool of synaptic vesicles (SVs), moderate plasma membrane (PM) evaginations (red dotted
line), and few cisternae (C) or clathrin coated structures (circles), those treated with α-syn-112 are dramatically altered with a notable loss of SVs and buildup of PM.
Asterisk marks the post-synaptic dendrite. (C,D) 3D reconstructions reveal that excess α-syn-112 induces a substantial loss of SVs, which was compensated by an
extensive build up of PM (green), as well as increased numbers of cisternae (magenta) and clathrin-coated pits (CCPs; yellow) and clathrin-coated vesicles (CCVs;
white), indicating impaired vesicle endocytosis. (E–G) Micrographs showing effects of α-syn-112 on clathrin- mediated endocytosis. Control synapses have only few
CCPs (red circles), while α-syn-112 treated synapses have many CCPs and CCVs (blue circles). Scale bar in (E) applies to (F,G). (H–M) Morphometric analyses
showing differences between control and α-syn-112 treated synapses, which are consistent with defects in synaptic vesicle endocytosis. Increase in stage 3 CCPs
and stage 4 CCVs (M) indicates impaired vesicle fission and clathrin uncoating, respectively. Bars indicate mean ± SEM from n = 25 to 26 synapses, 2
axons/animals. Asterisks indicate p < 0.05 by Student’s t-test. (N) Total membrane analysis shows redistribution of synaptic membranes by α-syn-112. n.s. = not
significant.
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FIGURE 7 | α-Syn-112 induces large PM evaginations intermediate to
monomeric and dimeric α-syn-140. (A,B) Electron micrograph (left) and 3D
reconstruction of PM (right) at a control synapse. PM evaginations are small
(red dotted line in micrograph; green ribbon in 3D reconstruction). Asterisks in
(A,C,E,G) indicate the post-synaptic dendrite. Arrows in (B,D,F,H) indicate
the deepest point in each evagination. (C,D) In comparison to controls, acute

(Continued)

FIGURE 7 | Continued
introduction of α-syn-112 induced PM evaginations that were much larger and
deeper. (E–H) PM evaginations produced by monomeric α-syn-140 (E,F) and
dimeric α-syn-140 (G,H) were also enlarged compared to controls.
(I) Quantification of the depth of PM evaginations reveals that α-syn-112 has
an intermediary phenotype to monomeric and dimeric α-syn-140, consistent
with its ability to dimerize on synaptic membranes. Bars indicate mean ± SEM
from n = 21 to 26 synapses, 2 axons/animals. Asterisks indicate statistical
significance by one-way ANOVA ** (p < 0.01); **** (p < 0.0001); n.s. = not
significant.

uncoating (Figures 6E–G). A quantitative analysis revealed
that introduction of excess α-syn-112 significantly reduced the
average number of synaptic vesicles per synapse (per section)
by almost 70% (Figure 6H) (Control: 133.2 ± 12.94 SVs,
n = 25 synapses, 2 axons/animals; α-syn-112: 42.58 ± 4.175
SVs, n = 24 synapses, 2 axons/animals; p < 0.0001; Student’s
t-test). The remaining synaptic vesicles had larger diameters
(Control: 50.6 ± 0.5 nm, n = 200 SVs, five synapses;
α-syn-112: 53.0 ± 0.9 nm, n = 200 SVs, five synapses;
p < 0.0001; Student’s t-test). The loss of synaptic vesicles
was compensated by a significant increase in the size of
the PM evaginations, indicating a defect in synaptic vesicle
endocytosis (Figure 6I) (Control: 2.417 ± 0.1898, n = 25;
α-syn-112: 3.951 ± 0.1947, n = 24; p < 0.0001; Student’s
t-test). Consistent with endocytic defects, the number and size
of cisternae were also increased (Figures 6J–K) [(# Cisternae:
Control: 2.440 ± 0.3655, n = 25; α-syn-112: 8.167 ± 1.324,
n = 24; p = 0.0001; Student’s t-test) (Cisternae Size: Control:
0.3830 ± 0.01850, n = 68; α-syn-112: 0.4908 ± 0.02044,
n = 196; p = 0.0033; Student’s t-test)]. The total number of
combined CCP/Vs also increased more than twofold (Figure 6L)
(Control: 1.680 ± 1.249, n = 25; α-syn-112: 3.417 ± 2.376,
n = 24; p = 0.0023; Student’s t-test). Analysis of the progressive
stages of clathrin-mediated endocytosis revealed that α-syn-
112 induced more constricted CCPs (stage 3) and free CCVs
(stage 4), indicating that both fission and clathrin uncoating
were impaired (Figure 6M) (Stage 1 Control: 0.1200 ± 0.3317
CCPs/section/synapse (n = 25), α-Syn-112: 0.08333 ± 0.2823
CCPs/section/synapse (n = 24); Stage 2 Control: 0.2800 ± 0.4583
CCPs (n = 25), α-Syn-112: 0.1250 ± 0.3378 CCPs (n = 24);
Stage 3 Control: 0.9600 ± 0.9345 CCPs (n = 25), α-Syn-
112: 1.667 ± 1.435 CCPs (n = 24); p < 0.0001; ANOVA
Sidak’s Post hoc; Stage 4 Control: 0.3200 ± 0.6904 CCVs
(n = 25), α-Syn-112: 1.542 ± 1.474 CCVs (n = 24);
p< 0.0001; ANOVA Sidak’s Post hoc). A total membrane analysis
indicates that synaptic vesicle membrane was redistributed
to PM, cisternae, and CCP/Vs in α-syn-112 treated synapses
(Figure 6N). These EM data indicate that like α-syn-140, α-
syn-112 robustly impairs synaptic vesicle recycling consistent
with effects on clathrin-mediated endocytosis and possibly bulk
endocytosis (Busch et al., 2014; Medeiros et al., 2017, 2018;
Banks et al., 2020).

While the synaptic phenotype produced by α-syn-112
overlaps substantially with that previously reported for α-
syn-140 (Busch et al., 2014; Medeiros et al., 2017; Banks
et al., 2020), we also noted some distinct differences.
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Monomeric α-syn-140 induces CCV uncoating defects
with no effect on earlier stages of CCP formation, while
dimeric α-syn-140 primarily impairs fission of CCPs from
the plasma membrane (Medeiros et al., 2017, 2018). In
comparison, α-syn-112, which was initially injected in the
monomeric form (see Figure 1C), induced deficits in both
CCP fission and CCV uncoating, demonstrated by the
increase in stages 3 and 4 clathrin coats, suggesting some
dimerization in vivo (Figure 6M). In addition, α-syn-112
induced atypically deep PM evaginations around the active
zone (Figures 7A–D). These PM evaginations appeared deeper
than those at α-syn-140 treated synapses (Figures 7E,F)
and more similar to those produced by dimeric α-syn-
140 (Figures 7G,H) (Medeiros et al., 2017). To quantify
this effect, we measured the depth of the PM evaginations
from the axolemmal surface to the deepest point within
each evagination. Compared to control synapses, the PM
evaginations produced by α-syn-112 were ∼2-fold deeper
(Figure 7I), and they were quantitatively intermediate
to those induced by monomeric and dimeric α-syn-140
(Figure 7I) (Control: 1.00 ± 0.07, n = 79 synapses, 2
axons/animals; α-Syn-112: 1.97 ± 0.12, n = 24 synapses,
2 axons/animals; α-Syn-140: 1.49 ± 0.16, n = 26 synapses,
2 axons/animals; α-Syn-140 Dimer: 2.40 ± 0.21, n = 21,
2 axons/animals; ANOVA, p < 0.0001). Thus, consistent
with its in vitro biochemical properties, α-syn-112 also
produced striking phenotypes on synaptic membranes in vivo
that are consistent with enhanced membrane binding and
oligomerization.

DISCUSSION

This is the first study to investigate the lipid binding
properties and synaptic effects of α-syn-112, which is
both naturally occurring and overexpressed in multiple
neurodegenerative diseases. We show here that α-syn-112
exhibits enhanced membrane binding in vitro compared to
wild type α-syn-140 (Figures 2–4), including to synaptically
relevant phosphoinositides such as PI(4)P and PI(4,5)P2
(Figure 3). α-Syn-112 also exhibits enhanced oligomerization
(dimerization and trimerization) on synaptic membranes
(Figure 5) and impairs synaptic vesicle recycling when
acutely introduced in excess (Figures 6, 7). In our previous
studies, we showed that excess monomeric α-syn-140
impaired CCV uncoating at lamprey synapses (Medeiros
et al., 2017; Banks et al., 2020), while dimeric α-syn-
140 impaired an earlier stage of CCP fission (Medeiros
et al., 2017, 2018). Interestingly, although we injected
recombinant α-syn-112 in the monomeric form (Figure 1C),
the resulting synaptic phenotype was indicative of deficits
in both CCP fission and CCV uncoating (Figure 6),
which is consistent with its enhanced ability to dimerize
on synaptic membranes (Figure 5). Further underscoring
this result is that the depth of PM evaginations produced
by α-syn-112 was also intermediate between monomeric

and dimeric α-syn-140. We do not yet fully understand
the oligomerization status of α-syn-112 once it enters the
synaptic environment. However, this study nonetheless further
emphasizes that different molecular species of α-synuclein can
produce distinct effects at synapses (Medeiros et al., 2018),
potentially compounding the cellular deficits if expressed
in combination.

A key biochemical feature of α-syn-112 is its ability to
bind phospholipid membranes with increased efficacy, as
compared to wild type α-syn-140. In every example tested,
α-syn-112 exhibited enhanced binding in vitro to anionic
phospholipids, including many of the phosphoinositides and
total brain lipids (Figures 2–4). The predicted structure for
α-syn-112 involves a deletion of 28 amino acids (a.a. 103–
130) in the C-terminal domain, which may result in an
extended alpha helical region (Figure 1B). Given that the
membrane binding capacity of α-syn-140 is fairly evenly
distributed throughout the alpha helical N-terminal domain
(Davidson et al., 1998; Chandra et al., 2003; Burre et al.,
2012), extending the alpha helix could result in the enhanced
lipid binding that was observed. Additionally, we show
that α-syn-112 also binds more strongly to a number of
phosphoinositides, including PI, PI(3)P, PI(4)P, PI(4,5)P2,
and PI(3,4,5)P3, though we did not detect any preferential
selectivity amongst them (Figure 3). While interactions between
α-syn-140 and PI(4,5)P2 have been reported using giant
unilamellar vesicles (Narayanan et al., 2005; Stockl et al.,
2008), to our knowledge this is the first study that provides
a more comprehensive and comparative assessment of α-
synuclein binding to phosphoinositides. It is notable that
such strong binding was observed when the phosphoinositide
concentrations were only 5% of the total lipid composition
(Figure 2), which is much less than the 30–50% anionic lipids
normally used in these in vitro assays (Burre et al., 2012;
Busch et al., 2014; Medeiros et al., 2017). Phosphoinositides
are present in limiting amounts and tightly-controlled on
cellular membranes (Di Paolo and De Camilli, 2006; Takamori
et al., 2006; Balla, 2013; Schink et al., 2016), including
on synaptic vesicles where they likely comprise < 10% of
the total phospholipids (Takamori et al., 2006). Thus our
results may be more reflective of what happens intracellularly
and suggest that α-syn-112 binds to physiological synaptic
membranes better than α-syn-140, which has implications for its
potential toxicity.

PI(4,5)P2 is enriched on the PM and helps to recruit clathrin
adaptor proteins to the membrane during initiation of clathrin-
mediated synaptic vesicle endocytosis (Ford et al., 2001; Di Paolo
and De Camilli, 2006; Saheki and De Camilli, 2012). Thus, the
strong binding of α-syn-140 and α-syn-112 to PI(4,5)P2 may
mask sites for clathrin coat initiation and inhibit early stages
of vesicle endocytosis, which is consistent with the expanded
PM evaginations observed after introducing either isoform to
synapses (Figures 6, 7) (Busch and Morgan, 2012; Medeiros et al.,
2017; Banks et al., 2020). Stronger binding to PI(4,5)P2 may also
explain in part why α-syn-112 has greater effects than α-syn-
140 on the depth of PM evaginations (Figure 7). In addition,
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it is thought that PI(4,5)P2 remains on the endocytic vesicle
throughout CCP and CCV formation until it is dephosphorylated
to PI(4)P by the uncoating protein, synaptojanin (Cremona
et al., 1999; Saheki and De Camilli, 2012). Thus, strong binding
of α-syn-140 and α-syn-112 to PI(4,5)P2 and PI(4)P may also
mask these lipids and alter the dynamics of the late stages of
clathrin-mediated endocytosis and contribute to the fission and
uncoating defects observed, along with mislocalization of the
CCV uncoating protein (Hsc70), which we recently reported
(Banks et al., 2020). Going forward, it will be important
to advance our understanding of α-synuclein interactions
with phosphoinositides, since misregulation of phosphoinositide
levels and phosphoinositide-mediated membrane trafficking may
contribute to neurodegenerative diseases (Fabelo et al., 2011;
Nadiminti et al., 2018).

Another interesting finding is that α-syn112 has increased
propensity for oligomerization on synaptic membranes
(Figure 5). Like monomeric α-syn-140, dimeric α-syn-140
undergoes alpha helical folding in the presence of SDS micelles,
binds strongly to PA-containing liposomes, and exhibits time-
dependent aggregation and fibrillation in vitro in biochemical
assays (Pivato et al., 2012; Medeiros et al., 2017; Dong et al., 2018).
α-Synuclein rapidly dimerizes and aggregates on membranes
containing PS (Lv et al., 2019), which is one of the major anionic
lipids comprising synaptic vesicles (Takamori et al., 2006).
Under physiologic conditions, α-syn-140 multimers exist at
synapses and participate in synaptic vesicle clustering, restricting
vesicle motility during trafficking (Wang et al., 2014). When
introduced in excess to synapses, dimeric α-syn-140 inhibited
synaptic vesicle recycling and impaired CCP fission (Medeiros
et al., 2017, 2018). Because excess α-syn-112 also interfered
with CCP fission (Figure 6), this suggests that the injected
monomeric α-syn-112 protein dimerized upon interaction with
synaptic membranes in vivo, consistent with its in vitro effects
(Figure 5). In future experiments, it will be interesting to
determine the impacts of dimeric α-syn-112 on synaptic vesicle
trafficking. Since oligomerization on membranes is associated
with membrane penetration and toxicity (Tsigelny et al., 2012,
2015), formation of α-syn-112 or α-syn-140 dimers may be an
important rate-limiting step in the early pathogenesis of the
synucleinopathies.

In summary, like α-syn-140, α-syn-112 avidly binds
phospholipid membranes and, when in excess, impairs
synaptic vesicle recycling producing distinct effects on clathrin-
mediated endocytosis. Despite these similarities, α-syn-112’s
enhanced membrane binding properties and propensity for
oligomerization may underlie the greater effects on synaptic
membranes. In addition to providing the first insight into

the synaptic toxicity caused by α-syn-112, this study further
emphasizes the need for investigating the impacts of different
α-synuclein isoforms and conformations on neuronal function,
since doing so may help us better understand the cellular
pathways leading to neurodegeneration.
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Molecular chaperones are critical to maintaining intracellular proteostasis and have
been shown to have a protective role against alpha-synuclein-mediated toxicity. Co-
chaperone proteins regulate the activity of molecular chaperones and connect the
chaperone network to protein degradation and cell death pathways. Bcl-2 associated
athanogene 5 (BAG5) is a co-chaperone that modulates proteostasis by inhibiting the
activity of Heat shock protein 70 (Hsp70) and several E3 ubiquitin ligases, resulting in
enhanced neurodegeneration in models of Parkinson’s disease (PD). Here we identify a
novel interaction between BAG5 and p62/sequestosome-1 (SQSTM1), suggesting that
BAG5 may bridge the chaperone network to autophagy-mediated protein degradation.
We found that BAG5 enhanced the formation of pathogenic alpha-synuclein oligomers
and regulated the levels and subcellular distribution of p62. These results extend the
role of BAG5 in alpha-synuclein processing and intracellular proteostasis.

Keywords: alpha-synuclein, chaperones, bcl-2 associated athanogene, BAG5, proteostasis, p62,
sequestosome-1

INTRODUCTION

Parkinson’s disease (PD) is an incurable neurodegenerative disease which affects 1–2% of the
population over the age of 60 (Kalia and Lang, 2015). PD is characterized by a significant loss
of dopaminergic neurons within the substantia nigra pars compacta as well as the presence
of Lewy bodies (LBs), intracellular inclusions comprised largely of aggregated alpha-synuclein
(Kalia et al., 2013). While the exact mechanisms are still unknown, oligomeric species of alpha-
synuclein are strongly believed to contribute to the cell death observed in PD and other diseases
associated with LBs including dementia with LBs, multiple system atrophy, and Alzheimer’s disease
(Kim et al., 2014).

Abbreviations: ALP, autophagy lysosome pathway; BAG, bcl-2 associated athanogene; GST, glutathione S-transferase; Hsp,
heat shock protein; IP, immunoprecipitation; KD, knockdown; LRRK2, leucine-rich repeat kinase 2; MS, mass spectrometry;
PCA, protein complementation assay; PINK1, PTEN-induced putative kinase 1; siRNA, small interfering RNA; UPS,
ubiquitin–proteasome system.
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Various factors modulate alpha-synuclein processing and
aggregation including molecular chaperones. Chaperones serve
to fold nascent proteins, refold misfolded proteins, or direct
misfolded proteins for degradation via either the ubiquitin-
proteasome system (UPS) or autophagy lysosome pathway (ALP)
(Friesen et al., 2017). Heat shock protein 70 (Hsp70) is a
chaperone which has been shown to be involved in alpha-
synuclein processing and preferentially binds to alpha-synuclein
fibrils (Aprile et al., 2017). Hsp70 can reduce levels of misfolded
and aggregated alpha-synuclein, and protect against alpha-
synuclein-mediated toxicity (Auluck et al., 2002; Klucken et al.,
2004; Dedmon et al., 2005; Flower et al., 2005; Huang et al., 2006).

Co-chaperones are proteins that regulate the function of
chaperones by modulating their ATPase activity. One such family
of co-chaperones is the BAG family of co-chaperones which act as
nucleotide exchange factors that promote ADP release (Höhfeld
and Jentsch, 1997; Arakawa et al., 2010; Rampelt et al., 2012;
Friesen et al., 2017). The bcl-2 associated athanogene (BAG)
co-chaperone family includes six members that are defined
by the presence of a C-terminal BAG domain (Kabbage and
Dickman, 2008). The BAG domain consists of three amphipathic
alpha helices and ranges from 74 to 112 amino acids in size
(Arakawa et al., 2010). This domain is responsible for a physical
association with Hsp70, dimerization with other BAG proteins
(Takayama et al., 1997), and other interactions critical for cell
function. BAG co-chaperones not only regulate Hsp70 folding
activity but also interact with proteins within the UPS and
ALP, which together facilitate the degradation of Hsp70 client
proteins (McDonough and Patterson, 2003; Xilouri and Stefanis,
2015), and function in other processes including cell division and
apoptosis (Kalia et al., 2010; Friesen et al., 2017). For example,
BAG1 contains a ubiquitin-like domain, which interacts with the
26S proteasome and thereby facilitates a physical link between
Hsp70 and the UPS (Lüders et al., 2000). BAG1 is also a Bcl-2
interacting protein with anti-apoptotic activity (Takayama et al.,
1995). BAG3 interacts with p62 [or sequestosome-1 (SQSTM1)],
an ALP “adaptor” protein, which promotes proteostasis by
facilitating increased protein degradation via the ALP as cells age
(Gamerdinger et al., 2009).

BAG5 is unique among the BAG co-chaperones in that it
contains five BAG domains rather than one. BAG5 interacts with
Hsp70 and inhibits its folding activity (Kalia et al., 2004). BAG5
also interacts with and inhibits the ubiquitin E3 ligase activities of
parkin and C-terminal Hsp70 interacting protein (CHIP) (Kalia
et al., 2004, 2011). The inhibition of Hsp70, parkin, and CHIP
by BAG5 disrupts proteostasis, mitophagy (De Snoo et al., 2019),
and promotes the formation of alpha-synuclein oligomers, as well
as other protein aggregates, which contribute to neuronal death
(Kalia et al., 2013). Consistent with these findings, BAG5 was
found to promote dopaminergic neuron death in the substantia
nigra in rodent models of PD (Kalia et al., 2004) and interact with
other PD relevant proteins including LRRK2, PINK1, and DJ-1
(Beilina et al., 2014; Wang et al., 2014; Qin et al., 2017; Tan et al.,
2019; De Snoo et al., 2019).

Considering that BAG5 negatively regulates multiple
cell protective mechanisms involving intracellular alpha-
synuclein processing, we wanted to further investigate the

molecular pathways in which BAG5 may function to advance
our understanding of BAG5 as a potential modulator of
synucleinopathies. We therefore used a mass spectroscopy screen
to find potential BAG5 interacting proteins. Here we identify
and validate a functional interaction between BAG5 and p62,
a protein with important functions in the ALP (Gamerdinger
et al., 2009) previously shown to protect against alpha-synuclein
pathology (Tanji et al., 2015). We subsequently assess the effects
of BAG5 and p62 on alpha-synuclein oligomer levels and find
that BAG5 can enhance oligomer formation as well as regulate
p62 levels and subcellular distribution.

MATERIALS AND METHODS

Cell Culture
H4 and HEK293 cells were cultured in Dulbecco’s Modified Eagle
Medium (DMEM, Gibco) supplemented with 10% fetal bovine
serum (Gibco), 1% antibiotic/antimycotic (Gibco), and incubated
at 37◦C with 5% CO2. H4 cells were exclusively grown on cell+
plates (Sarstedt, Inc.).

Generation of Stable Cell Lines
Wild-type H4 neuroglioma cells were stably transfected with GFP,
GFP-BAG5, or GFP-BAG5DARA plasmids using Lipofectamine
2000 (Thermo Fisher Scientific) according to the manufacturer’s
protocol. The GFP-BAG5 and GFP-BAG5DARA plasmids were
originally developed by Kalia et al. (2004) by inserting BAG5
and BAG5DARA into the pEGFP-C1 plasmid (Clontech, U55763),
which contains an N-terminal GFP tag and a eukaryotic G418
resistance gene. 24 h post-transfection, cells were incubated
in selection media containing 700 µg/mL G418 for 14 days.
Cell colonies that reached a size of 100–200 cells were assessed
for GFP-transgene incorporation using fluorescence microscopy.
Those colonies stably expressing the transgene were transferred
to a 96-well plates and propagated for further characterization of
transgene expression.

Immunoprecipitation of GFP-Fusion
Proteins
H4 GFP, GFP-BAG5, and GFP-BAG5DARA cell lines were plated
in 10 cm plates. 24 h after plating the cells were washed with 5 mL
Dulbecco’s phosphate buffered saline (PBS) without calcium or
magnesium and lysed in radioimmunoprecipitation assay (RIPA)
buffer composed of 50 mM Tris, 150 mM NaCl, 0.5% sodium
deoxycholate, 1% Triton X-100 and protease inhibitor cocktail
(cOmpleteTM, Roche). For the immunoprecipitation, 1 mg of
protein lysate from each cell line was combined with 25 µL of pre-
washed GFP-trap bead slurry (Chromotek, gta-10) and rotated at
4◦C for 2 h. Beads were subsequently washed three times with
1 mL of RIPA buffer, and protein samples were transported to
the SPARC BioCentre Molecular Analysis, The Hospital for Sick
Children, Toronto, ON, Canada for mass spectrometry analysis.

Mass Spectrometry
Mass spectrometry was performed by SPARC BioCentre
Molecular Analysis, The Hospital for Sick Children, Toronto,
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ON, Canada. Samples were prepared for analysis by suspending
immunoprecipitation samples in 50 mM NH4HCO3.
Dithiothreitol (DTT) was added to a final concentration of
10 mM and samples were heated at 60◦C for 30 min. After the
samples returned to room temperature, iodoacetamide was added
to a final concentration of 10 mM and samples were incubated
at room temperature in the dark for 15 min. Iodoacetamide was
inactivated by adding DTT to a final concentration of 40 mM.
Trypsin was then added to the sample to a protease:protein
ratio of 1:50 (w/w) and digestion took place overnight at 37◦C.
Samples were analyzed on a linear ion trap-Orbitrap hybrid
analyzer (LTQ-Orbitrap, Thermo Fisher Scientific, San Jose, CA,
United States) outfitted with a nanospray source and EASY-nLC
split-free nano-LC system (Thermo Fisher Scientific, San Jose,
CA, United States). Lyophilized peptide mixtures were dissolved
in 0.1% formic acid and loaded onto a 75 µm × 50 cm PepMax
RSLC EASY-Spray column filled with 2 µm C18 beads (Thermo
Fisher Scientific, San, Jose, CA, United States) at a constant
pressure of 800 BAR. Peptides were eluted over 60 min at
a rate of 250 nl/min using a 0–35% acetonitrile gradient in
0.1% formic acid.

Peptides were introduced by nanoelectrospray into an LTQ-
Velos-Orbitrap Elite hybrid mass spectrometer (Thermo Fisher
Scientific). The instrument method consisted of one MS full scan
(400–1500 m/z) in the Orbitrap mass analyzer, an automatic
gain control target of 1e6 with a maximum ion injection of
100 ms, one microscan, and a resolution of 240,000. Ten
data-dependent MS/MS scans were performed in the linear
ion trap using the ten most intense ions at 35% normalized
collision energy. The MS and MS/MS scans were obtained in
parallel fashion. In MS/MS mode automatic gain control targets
were 30,000 with a maximum ion injection time of 50 ms.
A minimum ion intensity of 1000 was required to trigger an
MS/MS spectrum. Normalized Collision Energy was set at 35. The
dynamic exclusion was applied using a maximum exclusion list
of 500 with one repeat count with a repeat duration of 30 s and
exclusion duration of 15 s.

Tandem mass spectra were extracted, charge state
deconvoluted and deisotoped by Xcalibur version 2.2. All MS/MS
samples were analyzed using PEAKS Studio [Bioinformatics
Solutions, Inc., Waterloo, ON, Canada; version 8.0 (2016-06-21)]
and X! Tandem [The GPM1; version CYCLONE (2010.12.01.1)].
Data was searched with a fragment ion mass tolerance of 0.60 Da
and a parent ion tolerance of 10.0 PPM.

Scaffold (version Scaffold_4.8.1, Proteome Software, Inc.,
Portland, OR, United States) was used to validate MS/MS based
peptide and protein identifications. Peptide identifications were
accepted if they could be established at greater than 95.0%
probability. Peptide Probabilities from X! Tandem were assigned
by the Scaffold Local FDR algorithm. Peptide Probabilities
from PEAKS Studio were assigned by the Peptide Prophet
algorithm (Keller et al., 2002) with Scaffold delta-mass correction.
Protein identifications were accepted if they could be established
at greater than 95.0% probability and contained at least five
identified peptides. Protein probabilities were assigned by the

1https://thegpm.org/

Protein Prophet algorithm (Nesvizhskii et al., 2003). Proteins that
contained similar peptides and could not be differentiated based
on MS/MS analysis alone were grouped to satisfy the principles
of parsimony. The mass spectrometry proteomics data have been
deposited to the ProteomeXchange Consortium via the PRIDE
(Perez-Riverol et al., 2019) partner repository with the dataset
identifier PXD019473 and doi: 10.6019/PXD019473.

GST-Pull-Down Assays
Full length p62-HA was a gift from Qing Zhong (Addgene
plasmid #28027) and deletion constructs for: (1) “p62-N-HA”
(aa1-102 including PB1 domain) and (2) “p62-C-HA” [aa103-440
including LC3 interacting region (LIR) and ubiquitin associated
(UBA) domains] were generated using the Q5 Site-Directed
Mutagenesis Kit (NEB) as per the manufacturer’s protocol.

GST, GST-BAG5, and GST-BAG5DARA recombinant proteins
were generated in Escherichia coli using pGEX, pDEST-15-
BAG5, and pDEST-15-BAG5DARA (Gateway cloning system,
Thermo Fisher Scientific), respectively. Recombinant proteins
were conjugated to Glutathione Sepharose 4B (GE Healthcare)
beads by rotating recombinant protein with bead slurry overnight
at 4◦C in PBS.

H4 cells were transiently transfected with p62-HA, p62-N-
HA, and p62-C-HA using Lipofectamine 2000 (Thermo Fisher
Scientific) according to the manufacturer’s protocol and lysed
with RIPA buffer. 500 µg of cell lysate was incubated with
10 µg of conjugated GST-fusion protein beads overnight at
4◦C with rotation. Beads were subsequently washed three times
with 1 mL RIPA buffer, and protein was recovered from
the bead slurry by adding 50 µL SDS-PAGE sample buffer
(with beta-mercaptoethanol) and heat denaturing the sample at
95◦C for 10 min.

Alpha-Synuclein Protein
Complementation Assay
Alpha-synuclein luciferase constructs were generated as
previously described (Outeiro et al., 2008; Kalia et al., 2011).
syn-N and syn-C were transfected into HEK293 cells in 6-well
plates using Lipofectamine 2000 (Thermo Fisher Scientific) as
per the manufacturer’s protocol. 24 h post-transfection, cells
were scraped in 600 µL cold PBS and 100 µL of cells were
transferred in triplicate to an opaque flat-bottomed 96-well plate
(Grenier). The other 300 µL of cells were saved for western
blot analyses. The plate was then analyzed on a CLARIOstar
plate-reader (BMG Labtech), which injected 100 µL of 40 µM
coelenterazine into each well and shook the plate for 2 s prior to
reading the bioluminescent signal. Coelenterazine (303-5) was
obtained from NanoLight Technology.

Western Blotting
H4 cells were lysed with RIPA buffer containing protease
inhibitor cocktail (Roche). The triton X-100 soluble fraction
was then separated from the insoluble pellet by centrifugation.
Protein concentration was quantified using the DC (Bradford)
protein assay (BioRad). For each condition, 20 µg of protein
lysate was run on 4–15% acrylamide gels (BioRad) and
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subsequently transferred onto a polyvinylidine fluoride (PVDF)
membrane. Blots were blocked with 5% skim milk in TBS +
0.01% Tween-20 (TBS-T) for 30 min prior to incubation with
primary antibody for either 1 h at 21◦C or overnight at 4◦C.
Western blot and immunostaining antibodies were purchased
from the following suppliers: anti-alpha-synuclein (610786) and
anti-p62/SQSTM1 (610833) were obtained from BD biosciences.
Anti-actin (A2066) was obtained from Sigma-Aldrich. Anti-
BAG5 (CSB-PA890743ESR1HU) was obtained from Cusabio.
Anti-GFP (A11122) was obtained from Invitrogen. Anti-
HA (11867423001) was obtained from Roche. Blots were
subsequently washed three times in TBS-T for 10 min per
wash, incubated in species specific secondary antibody for
1 h at 21◦C, washed again, and then developed using ECL
western blotting substrate (Pierce) and visualized on HyBlot CL
autoradiographic film (Denville Scientific, Inc.). Band intensity
quantification was performed on ImageJ software by inverting the
Western blot image, measuring light intensity of the band and
subtracting the light intensity of the background. Band intensity
was subsequently normalized to the band intensity of actin in the
corresponding well.

Immunocytochemistry
Wild-type H4 cells were plated at 70–80% confluency in
24-well plates containing poly-D lysine treated glass cover
slips. For knockdown experiments, cells were transfected with
siRNAs either targeting BAG5 (siBAG5, Thermo Fisher Scientific
4392420) or non-targeting control (siNTC, Thermo Fisher
Scientific 4390843) at the time of plating using Lipofectamine
RNAiMAX (Thermo Fisher Scientific) as per the manufacturer’s
protocol. 48 h after transfection, cells were washed once with
PBS and treated with 4% paraformaldehyde (PFA) for 15 min
at room temperature. The PFA was washed off with three
sequential 5 min PBS washes and the cells were subsequently
treated with 0.2% triton X-100 diluted in PBS for 15 min at
room temperature. Cells were then washed another three times in
PBS and blocked with 5% weight/volume bovine serum albumin
(BSA) diluted in PBS for 45 min. BAG5 and p62 antibodies
were diluted 1:1000 in 5% BSA/PBS and incubated with the
cells overnight at 4◦C with gentle rocking. Cells were washed
in PBS, incubated in species specific Alexa Fluor 488 and 555
(Thermo Fisher Scientific A11034 and A21424, respectively), and
washed again in PBS containing 4′,6-Diamidino-2-Phenylindole,
Dihydrochloride (DAPI). Finally, the coverslips were mounted
onto slides with fluorescent mounting media (Dako, S3023).

RESULTS

Screen for BAG5 Interacting Proteins
To explore potential BAG5 interacting proteins, we created H4
cell lines stably expressing GFP-BAG5 or GFP as a negative
control. The H4 neuroglioma cell line was chosen because
it has been previously used to interrogate BAG5 function
and PD-relevant molecular pathways, including alpha-synuclein
aggregation (McLean et al., 2002, 2004; Klucken et al., 2006,
2012; Kalia et al., 2011; Danzer et al., 2012). We made an
additional cell line stably expressing GFP-BAG5DARA, a BAG5

mutant we previously demonstrated to have limited ability to
bind Hsp70 due to mutation of key aspartate and arginine
residues in the BAG domain (Kalia et al., 2004, 2011). This GFP-
BAG5DARA cell line allowed us to identify those proteins that
likely bind to BAG5 independently of Hsp70. We isolated in vitro
protein complexes by immunoprecipitation (IP) with an anti-
GFP antibody and screened for co-immunoprecipitated proteins
using mass spectrometry (MS). This screen identified 198 BAG5
interacting proteins of which 89 bound to GFP-BAG5, 43 bound
to GFP-BAG5DARA, and 66 bound to both (Figure 1A and
Supplementary Table S1). The top 10 proteins identified in the
BAG5 IP complexes, as well as those found in both the BAG5 and
BAG5DARA IP complexes are listed in Figure 1B. Hsp70 family
members, such as HSPA8 and HSPA1A, were more abundant
in the BAG5 IP condition relative to the GFP-BAG5DARA IP
condition, as gauged by total spectral counts, providing internal
validation of our technique. We focused on the latter since they
represent proteins that interact with BAG5 but likely do not
require Hsp70 to mediate the interaction. We reasoned that
these proteins would be less likely to form a complex with
BAG5 through non-specific interactions with the protein binding
domain of Hsp70 which binds misfolded or unfolded protein
clients of Hsp70.

BAG5 Interacts With p62
p62 was one of the top 10 proteins identified in both the
BAG5 and BAG5DARA IP complexes (Figure 1B). p62 has
important functions in autophagy whereas the function of BAG5
in autophagy is poorly understood and has only been indirectly
investigated (Beilina et al., 2014). p62 is a multidomain protein
(Figure 2A) containing a N-terminal Phox and Bem1p (PB1)
domain which supports the capacity of p62 to self-associate and
facilitates the formation of protein aggregates. The C-terminal
LIR and UBA domains of p62 allow it to link ubiquitinated
protein aggregates to the autophagy machinery for subsequent
degradation (Bitto et al., 2014; Liu et al., 2017).

We first confirmed the interaction between BAG5 and
p62 using GST pull-down assays in which recombinant GST-
BAG5 or GST-BAG5DARA was incubated with H4 cell lysates
transfected with HA-tagged p62 (p62-HA). Both GST-BAG5
and GST-BAG5DARA, but not GST alone, pulled down p62-
HA (Figure 2B). Consistent with our previous findings (Kalia
et al., 2004, 2011) and our interactome analysis, Hsp70 was not
pulled down by GST-BAG5DARA or GST alone (Figure 2B),
demonstrating that the BAG5-p62 interaction is not dependent
on Hsp70. To confirm the interaction between p62 and BAG5
in a separate assay, we next performed IPs using lysates
from H4 cells expressing p62-HA with FLAG-BAG5, and
we found that p62-HA co-immunoprecipitated with FLAG-
BAG5 (Figure 2C).

To determine which region of p62 mediates the p62-BAG5
interaction, we generated deletion constructs containing either
the PB1 domain alone (p62-N-HA) or the LIR and UBA domains
with the PB1 domain deleted (p62-C-HA) which we used in pull-
down assays (Figure 2A). We found that GST-BAG5 pulled down
p62-C-HA but not p62-N-HA (Figure 2D). Thus, using both
pull-down and co-immunoprecipitation assays, we confirmed
the BAG5-p62 interaction that was identified from our MS
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FIGURE 1 | Mass spectrometry screen for GFP-bcl-2 associated athanogene 5 (BAG5) and GFP-BAG5DARA interacting proteins. (A) Venn diagram illustrating the
proteins identified in the screen for BAG5 interacting proteins in H4 cells. 198 proteins were identified in total, 89 were found to be in complex with GFP-BAG5 (red),
43 with GFP-BAG5DARA (GFP-DARA, blue), and 66 with both. (B) List of the top 10 proteins identified to co-immunoprecipitate with GFP-BAG5 alone (top) and the
top 10 proteins identified to co-immunoprecipitate with both GFP-BAG5 and GFP-BAG5DARA (bottom).

screen. Furthermore, we determined that the C-terminal region
of p62, containing the UBA and LIR domains, is sufficient for
binding to BAG5.

BAG5 Regulates p62 Protein Levels
To investigate the functional consequences of the interaction
between BAG5 and p62, we investigated the effects of BAG5
on p62 protein levels. Homeostatic levels of p62 have been
shown to be important for its function in protein aggregation
and autophagy (Komatsu et al., 2007; Gamerdinger et al., 2009).
BAG3 was previously shown to associate with p62 and support
its stability, which promotes autophagy-mediated proteostasis in
aging cells (Gamerdinger et al., 2009). In H4 cells, we found
that targeted knockdown (KD) of BAG5 using siRNA reduced
endogenous p62 protein levels by 60.8% (SEM = 4.6%) relative
to the non-targeting control siRNA (p < 0.001, Figures 3A,B),
suggesting that, similar to BAG3, BAG5 may support p62
stability. In contrast, overexpression of FLAG-BAG5 did not
have a significant effect on endogenous p62 protein levels
(Figures 3C,D).

p62 is known to associate with and coordinate the formation
of protein aggregates that are destined for autophagic degradation
(Bjørkøy et al., 2005). Using immunofluorescence to determine
the cellular localization of both BAG5 and p62, we found that p62
was largely excluded from the nucleus but substantially enriched
in perinuclear puncta (Figure 3E), similar to previously described
subcellular localization of p62 protein aggregates (Watanabe
and Tanaka, 2011). BAG5 exhibited a more diffuse distribution,
including in the cytoplasm, perinuclear region, and nucleus as
we have shown previously (Kalia et al., 2004). Notably, BAG5
was also observed in the perinuclear aggregates and co-localized
with p62 (Figure 3E). Given that BAG5 KD reduced levels
of soluble p62, we next tested the effect of BAG5 KD on
the subcellular distribution of p62. We found that BAG5 KD
reduced the proportion of H4 cells demonstrating perinuclear
p62 puncta from 31.6% (SEM = 4.4%) to 17.9% (SEM = 0.9%,
p< 0.05, Figures 3F,G), suggesting that BAG5 supports either the
formation or stability of these structures. Together these results
indicate that BAG5 appears to be important for maintaining
levels of triton-soluble p62 as well as p62-associated protein
aggregates, which may be through stabilization of p62.
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FIGURE 2 | BAG5 interacts with p62. (A) Domain structure of p62 and the deletion constructs (p62-N-HA and p62-C-HA) generated to map its interaction with
BAG5. PB1, Phox and Bem1p; ZZ, ZZ-type zinc finger; TB, TRAF6 binding; LIR, LC3 interacting region; KIR, keap-1 interacting region; UBA, ubiquitin-associated.
All p62 constructs contained a C-terminal hemagglutinin (HA) tag. (B) Pull-down assays were performed with GST fusion proteins and lysates from H4 cells
transfected with p62-HA to validate the interaction between BAG5 and p62. Proteins were probed with anti-p62 (upper) and anti-heat shock protein 70 (Hsp70;
middle) antibodies. GST fusion proteins were stained with Ponceau S (bottom). Input was 10% of the total protein used for each condition in the pull-down assays.
Molecular weight markers are indicated on the left. Results are representative of three independent experiments. (C) Immunoprecipitation (IP) of FLAG-BAG5 using
lysates from H4 cells transfected with FLAG-BAG5 and/or p62-HA. Input was 10% of the total protein used for each IP (top two panels). Immunoprecipitants were
sequentially probed with anti-HA and anti-FLAG antibodies (bottom two panels). * indicates the heavy chain of the IP antibody. Similar results were observed in three
separate experiments. (D) Pull-down assays were performed with GST fusion proteins and lysates from H4 cells transfected with constructs shown in (A) to map the
BAG5-p62 interaction. Input was 10% of the total protein used for each condition in the pull-down assays (left). Proteins were probed with anti-HA antibody (right).
GST fusion proteins were stained with Ponceau S (bottom). Molecular weight markers are indicated on the left. Results are representative of three independent
experiments.

BAG5 Regulates Levels of
Alpha-Synuclein Oligomers and p62
The interaction of BAG5 with the region of p62 containing
the UBA and LIR domains suggests that the BAG5-p62
interaction is relevant to protein aggregation and/or degradation.
BAG5 is known to indirectly enhance alpha-synuclein oligomer
formation, whereas p62 is known to facilitate alpha-synuclein
aggregate degradation (Kalia et al., 2011; Watanabe et al.,
2012; Tanji et al., 2015). Thus, we tested how BAG5 and p62
may modulate alpha-synuclein oligomers using a previously
characterized luciferase reporter protein complementation assay
(PCA) that allows for the analysis of alpha-synuclein oligomer
levels in living HEK293 cells (Outeiro et al., 2008; Kalia
et al., 2011). This model makes use of two alpha-synuclein
constructs that each contains full-length alpha-synuclein fused
to either the N-terminal or C-terminal half of Gaussia princeps

luciferase (termed syn-N and syn-C, respectively). When alpha-
synuclein oligomers form, the luciferase halves come in close
proximity to reconstitute a fully active luciferase that can
generate a measurable bioluminescent signal (Figures 4A,B).
PCA bioluminescence is therefore a surrogate measure of alpha-
synuclein oligomer levels as we and others have previously shown
(Kalia et al., 2011).

Using this luciferase PCA to measure alpha-synuclein
oligomers, we found that siRNA-mediated KD of BAG5 reduced
the luciferase signal by 31.1% (SEM = 2.4%) relative to the
non-targeting control siRNA (p < 0.0001, Figure 4E), without
lowering the levels of soluble alpha-synuclein (Figures 4C,D).
BAG5 KD also resulted in a substantial reduction in endogenous
p62 (Figures 3A,B), suggesting a potential mechanism by
which BAG5 modifies alpha-synuclein oligomer levels. p62
knockout has previously been shown to reduce the formation of
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FIGURE 3 | BAG5 regulates p62 protein levels. (A) Western blots of lysates from H4 cells treated with either siNTC or siBAG5. Proteins were sequentially probed
with anti-p62, anti-BAG5, and anti-actin antibodies. Actin served as the loading control. * indicates a non-specific band. Three independent experiments are
included on the blot. (B) Densitometric quantification of the change in endogenous p62 elicited by BAG5 KD from the immunoblots in (A). p62 band intensity was
normalized to actin and siNTC condition (***p < 0.001, independent samples t-test, n = 3). (C) Western blots of lysates from H4 cells transfected with either pcDNA
control plasmid or FLAG-BAG5. Proteins were sequentially probed with anti-p62, anti-BAG5, and anti-actin antibodies. Actin served as the loading control. Three
independent experiments are included on the blot. (D) Densitometric quantification of endogenous p62 from the immunoblots in (C). p62 band intensity was
normalized to actin and siNTC condition (ns, no significance, independent samples t-test, n = 3). (E) Endogenous BAG5 (green) and p62 (red) were visualized in H4
cells using immunofluorescent staining. Cell nuclei were visualized with 4’,6-Diamidino-2-Phenylindole (DAPI) (blue). BAG5 demonstrated nuclear and cytoplasmic

(Continued)
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FIGURE 3 | Continued
staining, while p62 was largely excluded from the nucleus and clustered into small puncta in the perinuclear space. BAG5 co-localized with most, but not all, of
these puncta (yellow). Scale bar represents 20 µm. Results are representative of three independent experiments. (F) Endogenous p62 (red), including p62 in
perinuclear puncta, was visualized using immunofluorescent staining in H4 cells treated with siNTC or siBAG5. Cell nuclei were visualized with DAPI (blue). Scale bar
represents 50 µm. Representative image from three independent experiments. (G) Quantification of the percentage of cells with visible perinuclear p62-containing
puncta (p62 puncta+) using the immunofluorescence images pictured in (F). A minimum of 200 cells were counted blinded. Data are representative of three
independent experiments (*p < 0.05, independent samples t-test, n = 3). All graphs represent mean ± SEM.

neuronal protein aggregates (Komatsu et al., 2007) and thus we
hypothesized that BAG5 KD decreases alpha-synuclein oligomers
by reducing p62 levels. To directly test whether reduction in
p62 levels is associated with decreased alpha-synuclein oligomers,
we performed targeted KD of p62 with siRNA. We found that
siRNA-mediated p62 KD had no significant effect on luciferase
signal in the PCA (Figure 4H), despite reducing the levels of
total soluble alpha-synuclein (Figures 4F,G). We also examined
the effects of enhancing exogenous p62 levels on luciferase PCA.
Overexpression of p62 significantly reduced levels of soluble
alpha-synuclein (p< 0.04, Figures 4I,J) as well as luciferase signal
by 68.8% (SEM = 0.8%) relative to pcDNA control (p < 0.0001,
Figure 4K). Taken together, these findings demonstrate that
p62 overexpression reduces alpha-synuclein oligomer levels and
that the effect of BAG5 on alpha-synuclein oligomers is not
mediated through a reduction of p62 levels but through an
alternative mechanism.

DISCUSSION

Using a mass spectrometry-based screen for BAG5 interacting
proteins, we found that BAG5 interacts with a rich network of
chaperones as well as numerous proteins that function within
the UPS and ALP. A novel Hsp70-independent interaction
between BAG5 and p62 was identified and verified. These results
suggest that BAG5 can interact with the ALP in an Hsp70-
independent manner and may therefore serve as a molecular
bridge between the chaperone network and the ALP. BAG5 has
previously been implicated in autophagy as it forms a complex
with the PD-relevant proteins LRRK2, Rab7L1, and cyclin-G-
associated kinase (GAK) to promote turnover of the trans-
Golgi network (TGN), an activity that impacts ALP function
(Beilina et al., 2014). Interestingly, unlike the interaction between
BAG5 and p62, the association of BAG5 with this complex
was at least partially facilitated by Hsp70 (Beilina et al., 2014).
More recently, we have demonstrated that BAG5 also modulates
parkin-dependent mitophagy suggesting that this co-chaperone
may have a more general role in regulating these processes
(De Snoo et al., 2019). Further investigation will be required to
understand the mechanisms by which this occurs and the role
that other BAG proteins may play in these complex intracellular
processes required to maintain proteostasis. In addition, while
the H4 neuroglioma cell line used in this study is an accepted
in vitro model for the interrogation of PD-relevant molecular
pathways, the function of the BAG5-p62 interaction merits
further investigation in vivo.

p62 is known to regulate the aggregation and degradation
of proteins associated with neurodegenerative disease including

alpha-synuclein as well as tau (which aggregates in Alzheimer’s
disease), and huntingtin (which aggregates in Huntington’s
disease) (Babu et al., 2005; Watanabe et al., 2012; Kurosawa
et al., 2015; Tanji et al., 2015). Moreover, p62 is often
co-localized with the protein aggregates observed in these
neurodegenerative proteinopathies (Zatloukal et al., 2002).
Therefore, the observations that BAG5 interacts with p62,
promotes soluble p62 levels, and co-localizes with and supports
the stability of p62 perinuclear aggresomes, suggest that
this interaction may have important implications in disease-
associated disturbances of proteostasis.

Using the luciferase PCA, we found that BAG5 enhanced both
alpha-synuclein oligomer and p62 protein levels. Considering
that p62 has previously been shown to support the formation
of neuronal protein aggregates (Komatsu et al., 2007), we
hypothesized that the effect of BAG5 on alpha-synuclein
oligomers was mediated by its effect on p62 protein levels.
However, targeted p62 KD on its own was not sufficient
to reduce alpha-synuclein oligomers in our model although
there was a significant reduction in alpha-synuclein levels.
Therefore, it is likely that the effect of BAG5 on alpha-
synuclein oligomerization in this study was mediated through
alternative p62-independent pathways. For example, BAG5 is
known to inhibit the E3 ligase activity of CHIP, which, in
turn, inhibits CHIP-mediated proteasomal degradation of alpha-
synuclein and enhances alpha-synuclein oligomerization (Kalia
et al., 2011). This could partially explain how BAG5 can
enhance alpha-synuclein oligomerization in a p62-independent
manner. Moreover, the numerous proteins involved in the UPS
and ALP that were identified as putative BAG5 interactors
in our proteomic screen indicates that further research is
required to dissect the complex molecular mechanisms that
mediate the effect of BAG5 on alpha-synuclein oligomerization
and degradation.

Given the well-characterized role of p62 in the formation and
subsequent degradation of protein aggregates, it was surprising
that p62 KD alone did not reduce alpha-synuclein oligomers.
However, only two previous studies have directly assessed the
effect of p62 on alpha-synuclein aggregation and suggested
that p62 supports the lysosomal degradation of larger alpha-
synuclein aggregates (Watanabe et al., 2012; Tanji et al., 2015).
Therefore, it is possible that p62 has more of an impact
on larger alpha-synuclein aggregates that may not be directly
measured by the PCA, particularly fibrils. Consequently, the
effect of BAG5 on p62 may only be relevant to these other
forms of aggregated alpha-synuclein and future studies will
benefit from assessing the functional relevance of the BAG5-
p62 interaction on the aggregation and degradation of these
larger alpha-synuclein aggregates. Another possible explanation
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FIGURE 4 | p62 and BAG5 modulate alpha-synuclein oligomerization. (A) Western blot illustrating the presence of the two alpha-synuclein constructs fused to either
the N-terminus (syn-N) or the C-terminus (syn-C) of Gaussia princeps luciferase for the luciferase protein complementation assay (PCA) results presented in (B).
(B) Luminescent signal is only generated when both syn-N and syn-C are present. (**p < 0.01, independent samples t-test, n = 3). (C) Western blot illustrating the

(Continued)

Frontiers in Cell and Developmental Biology | www.frontiersin.org 9 August 2020 | Volume 8 | Article 71631

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00716 August 2, 2020 Time: 18:9 # 10

Friesen et al. BAG5 Regulates Alpha-Synuclein and p62

FIGURE 4 | Continued
levels of BAG5 and syn-N/syn-C for the PCA presented in (E). Representative of three independent studies. * indicates a non-specific band. (D) Densitometric
quantification of alpha-synuclein protein in (C) [not significant (ns), independent samples t-test, n = 3]. (E) PCA illustrating the effect of small interfering RNA
(siRNA)-mediated BAG5 knockdown (KD) on alpha-synuclein oligomer formation. (****p < 0.0001, independent samples t-test, n = 3). (F) Western blot illustrating the
levels of p62, BAG5, and syn-N/syn-C for the PCA presented in (H). Representative of three independent studies. * indicates a non-specific band. (G) Densitometric
quantification of alpha-synuclein protein in (F) (*p < 0.05, independent samples t-test, n = 3). (H) PCA illustrating the effect of siRNA-mediated p62 KD on
alpha-synuclein oligomer formation. [not significant (ns), independent samples t-test, n = 3] (I) Western blot illustrating the levels of p62 and syn-N/syn-C for the PCA
presented in (K). Representative of three independent studies. (J) Densitometric quantification of alpha-synuclein protein in (I) (*p < 0.05, independent samples
t-test, n = 3). (K) PCA illustrating the effect of p62 overexpression on alpha-synuclein oligomer formation. (****p < 0.0001, independent samples t-test, n = 3). All
graphs represent mean ± SEM.

of this finding is that other autophagy adaptor proteins, such
as NBR1, compensate for the loss of p62 by promoting the
oligomerization of alpha-synuclein. Indeed, NBR1 has been
previously shown to co-localize with alpha-synuclein aggregates
in PD subjects and support alpha-synuclein aggregation in vitro
(Odagiri et al., 2012). Interestingly, overexpression of p62
reduced both oligomeric forms and total soluble alpha-synuclein.
This effect may be through p62-mediated aggregation of
ubiquitinated proteins, followed by subsequent targeting of
aggregates for degradation via the ALP (Komatsu et al., 2007;
Pankiv et al., 2007).

Considering that BAG5 functionally interacts with LRRK2
to promote turnover of the TGN (Beilina et al., 2014) and
inhibits parkin-mediated mitophagy (De Snoo et al., 2019), it
may also be possible that BAG5 has a downstream inhibitory
effect on autophagic flux, which, in turn, slows the degradation
of p62 and alpha-synuclein via the ALP and promotes the
accumulation of p62 and alpha-synuclein aggregates (Wu et al.,
2015). This notion is supported by the reduction in alpha-
synuclein oligomers, soluble p62 protein levels, and perinuclear
p62 aggregates following BAG5 KD. However, BAG5 KD
did not have a significant effect on soluble alpha-synuclein
protein levels. It is alternatively possible that BAG5 promotes
the homo- and hetero-oligomerization of p62 or its capacity
to interact with ubiquitinated protein aggregates (Liu et al.,
2016), in turn explaining the reduction of p62 positive protein
aggregates following BAG5 KD. Importantly, however, the
complex interplay between p62, BAG5, alpha-synuclein, the UPS,
and the ALP is likely not captured by any of these mechanisms
in isolation. Indeed, p62 acts as a molecular bridge between the
UPS and ALP and facilitates the upregulation of ALP activity
following UPS inhibition (Lim et al., 2015; Liu et al., 2016), BAG5
has modulatory effects on the ALP and UPS via its interaction
with CHIP (Kalia et al., 2011), LRRK2 (Beilina et al., 2014),
and parkin (Kalia et al., 2004), and misfolded alpha-synuclein is
known to induce dysfunction in both the UPS and ALP (Winslow
et al., 2010; McKinnon et al., 2020). Furthermore, while the
interaction between BAG5 and p62 does not appear to require
Hsp70, it is possible that both Hsp70-dependent and independent
pathways are relevant to the function of a BAG5-p62 interaction
given the known co-chaperone activity of BAG5 (Kalia et al.,
2004). Therefore, further work will be needed to understand
the functional impact of the BAG5-p62 interaction on processes
such as autophagic flux and UPS function in order to untangle
the complexities of this interaction in the context of alpha-
synuclein aggregation. Previous investigations of BAG5 function

have demonstrated its interaction with both Hsp70 and members
of the UPS (Kalia et al., 2004, 2011). Our results demonstrate
that BAG5 also associates with the ALP in an Hsp70-independent
manner via its interaction with p62. This extends the role of
BAG5 in proteostasis pathways and suggests that understanding
the relationship between BAG5 and autophagy is an important
avenue of future investigation. We also demonstrate that BAG5
promotes alpha-synuclein oligomer formation through a p62-
independent mechanism. This suggests a more complicated
mechanistic relationship of how p62 may modulate alpha-
synuclein processing. Taken together, BAG5 appears to be a
molecular hub that facilitates a functional association between
multiple cellular processes including the chaperone network,
apoptosis, and protein degradation and may serve as a potential
modulator of alpha-synuclein oligomerization.
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Alpha-Synuclein (αSyn), a protein highly enriched in neurons where it preferentially
localizes at the pre-synapse, has been in the spotlight because its intraneuronal
aggregation is a central phenomenon in Parkinson’s disease. However, the
consequences of αSyn accumulation to neuronal function are not fully understood.
Considering the crucial role of actin on synaptic function and the fact that dysregulation
of this cytoskeleton component is emerging in neurodegenerative disorders, the impact
of αSyn on actin is a critical point to be addressed. In this review we explore the link
between αSyn and actin and its significance for physiology and pathology. We discuss
the relevance of αSyn-actin interaction for synaptic function and highlight the actin-
depolymerizing protein cofilin-1 as a key player on αSyn-induced actin dysfunction in
Parkinson’s disease.

Keywords: alpha-Synuclein, Parkinson’s disease, actin cytoskeleton, actin-binding proteins, cofilin-1

INTRODUCTION

In the last years, a large body of evidences point to the neuronal cytoskeleton damage as a major
contributor to neurodegeneration (Eira et al., 2016). From the various cytoskeleton dysfunctions,
alterations in microtubule (MT) stability are a main causative agent in several neurodegenerative
disorders and include: (i) variations in the levels of tubulin post-translational modifications with
a consequent impact on axonal transport (Dompierre et al., 2007; d’Ydewalle et al., 2011; Zhang
et al., 2014; Qu et al., 2017; Magiera et al., 2018), and (ii) dysregulation of MT associated
proteins, such as the key example of tau hyperphosphorylation. This modification promotes
tau detachment from MTs, what either impacts on axonal transport (Alonso et al., 1997) or
leads to recruitment of MT severing enzymes causing axon degeneration (Qiang et al., 2006).
Concerning the actin cytoskeleton, dysregulation of this component causing neurodegeneration
mostly derives from actin accumulations as the case of cofilin-actin rods (Minamide et al., 2000;
Munsie and Truant, 2012).

In the case of Parkinson’s disease (PD), the most common synucleinopathy, characterized
by the intraneuronal accumulation of aggregated αSyn, several reports demonstrated αSyn-
induced alterations of the microtubule cytoskeleton dynamics and axonal transport defects
(Carnwath et al., 2018; Prots et al., 2018). As αSyn is a protein that impacts on the synapse both
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physiologically and pathologically, an association between the
protein and the actin cytoskeleton, a cell component crucial for
synaptic function, has been suggested. This review will focus on
the current knowledge on the interaction between αSyn and actin
and actin-binding proteins (ABPs) concluding with a critical
perspective of the implication of these interactions in health
and disease. Addressing this topic will certainly contribute with
new insights into αSyn-related pathology opening new lines of
research targeting neurodegeneration.

ALPHA-SYNUCLEIN: FROM
PHYSIOLOGY TO PATHOLOGY

αSyn was originally identified in the Torpedo electric organ
and is one of the most abundant proteins in the brain
(Maroteaux and Scheller, 1991). It belongs to the synuclein
family of proteins, a group of small soluble proteins that
transiently bind to neuronal membranes, which also includes
β-Synuclein and γ-Synuclein (Clayton and George, 1998).
αSyn is a 140 amino-acid protein containing three distinct
motifs (Maroteaux et al., 1988): the N-terminal contains
seven repeats of a 11-residue sequence (XKTKEGVXXXX)
responsible for αSyn interaction with vesicles containing
phospholipids, the central region contains a non-amyloid
component (NAC) sequence which is relatively hydrophobic
and prone to aggregation, and the intrinsically unstructured
C-terminus region, responsible for multiple protein interactions
(Emamzadeh, 2016). αSyn is a natively unfolded protein implying
that it lacks a secondary organized structure (Weinreb et al.,
1996), what enables the protein to adopt several conformations
comprising an unstructured soluble cytosolic form, an α-helical
membrane bound structure or a β-sheet-like prone to aggregate
conformation (Burre et al., 2013).

αSyn is ubiquitously expressed but highly enriched in the
nervous systems (Lavedan, 1998). In neurons, αSyn is enriched
in the pre-synaptic terminals where it interacts with synaptic
vesicles and participates in several steps of the vesicle cycle
comprising trafficking, docking, fusion, and recycling after
exocytosis, therefore playing a central role in the regulation of
the synaptic transmission (Scott and Roy, 2012; Diao et al., 2013;
Wang et al., 2014). Notably, synuclein proteins were proposed
to have a major impact in the long-term function of synaptic
transmission, as αβγ-Syn triple-knockout mice showed reduced
SNARE (SNAP REceptor)-complex assembly, and presented
neuropathological signs and shortened lifespan (Burre et al.,
2010). Interestingly, although αSyn plays an important role at
the pre-synapse, it is one of the last proteins to be targeted to
the synapse during development, suggesting that its physiologic
function is not focused on the synapse formation but more
directed to its maintenance (Cheng et al., 2011). Although αSyn
role at the synapse is the most well studied physiological function,
a number of additional cellular localizations have been described,
including mitochondria, nucleus, endoplasmic reticulum, Golgi
complex, and cytoskeleton components, suggesting that the
protein contributes to the regulation of innumerous cellular
processes (Burre et al., 2018).

αSyn is a protein deeply associated with disease since it was
described as the main component of Lewy Bodies (LBs), the
pathological hallmark of synucleinopathies (Spillantini et al.,
1997), a group of diseases caused by αSyn aggregation and
pathology from which PD is the most common one. Although
being a cytosolic protein, and its intra-neuronal accumulation
resulting in neurodegeneration, it is now known that cell-to-cell
transmission of αSyn aggregates also occurs contributing to the
progression and propagation of the disease (Karpowicz et al.,
2019). Further supporting αSyn link with pathology, familial
forms of PD are related with duplication, triplications and point
mutations (mainly A30P and A53T mutations) in the SNCA gene,
encoding for αSyn, which increase the aggregation potential of
the protein (Burre et al., 2018).

αSyn aggregated species were shown to induce
neurotoxicity through several processes: (i) affecting membrane
permeabilization of several cell components, including plasma
membrane and endoplasmic reticulum (Colla et al., 2012),
mitochondria (Parihar et al., 2009), and vesicle membranes
(Volles and Lansbury, 2002; Burre et al., 2018); (ii) increasing
reactive oxygen species (ROS) production (Parihar et al., 2009)
and Ca2+ influx (Danzer et al., 2007); and (iii) disrupting
protein synthesis machinery and degradation systems, namely
the autophagy-lysosomal and the ubiquitin-proteasomal systems
(Lindersson et al., 2004; Garcia-Esparcia et al., 2015). αSyn
accumulation was also shown to negatively affect SNARE-
complex assembly and disassembly impairing neurotransmitter
release and leading to decreased neuronal excitability and
synaptic firing, what culminates in synaptotoxicity (Vekrellis
et al., 2011). In the same line, αSyn overexpression in neurons
decreased spine density and impaired spine dynamics
(Blumenstock et al., 2017). Interestingly, synaptic structure
and function is highly dependent on actin dynamics, suggesting
an impact of αSyn on that cytoskeleton component.

ACTIN CYTOSKELETON: A CRITICAL
COMPONENT FOR NEURONAL
FUNCTION

The integrity of the cytoskeleton is crucial for neuronal
maintenance and function and depends on a critical regulation of
its components: actin filaments, microtubules and intermediate
filaments. The actin cytoskeleton, the component of interest
in this review, is composed of actin filaments (F-actin) that
are formed by the association of globular actin (G-actin)
to a growing polymer (Mitchison and Cramer, 1996). Actin
monomers polymerize/depolymerize from the actin filament
constituting the fundamental process driving actin dynamics
(Carlier, 1998). There is a considerable number of ABPs
regulating actin dynamics among which are: (i) nucleation factors
(formins and Arp2/3) that promote the assembly of G-actin
into filaments and the development of branched networks
(Bugyi et al., 2006; Korobova and Svitkina, 2008); (ii) actin-
monomer binding proteins (profilin) that provide new subunits
to the filament enhancing the assembly of G-actin into F-actin
(Mockrin and Korn, 1980); (iii) proteins that bundle (fascin)
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or crosslink (α-actinins and filamins) the actin filaments (Tseng
et al., 2004); (iv) tropomyosins which are able to regulate
actin dynamics through binding along F-actin and interaction
with other ABPs or by direct contact of F-actin with different
tropomyosin isoforms (Gunning et al., 2008; Schevzov et al.,
2012); (v) spectrins that are localized at subcortical regions
linking actin cytoskeletal meshwork to membrane receptors
(Burridge et al., 1982); (vi) capping proteins (adducin) which
bind to actin filaments blocking their growth (Matsuoka et al.,
2000) and (vii) severing proteins (actin depolymerizing factor
(ADF)/cofilin-1 and gelsolin) which control the rate of actin
polymerization (Weeds et al., 1991; Andrianantoandro and
Pollard, 2006).

In neurons, actin acquires several structural rearrangements
that are differentially distributed in the cell. Lamellipodia is an
actin structure characterized by a branched network of short
actin filaments while filopodia is composed of long parallel
bundles of actin filaments (Neukirchen and Bradke, 2011).
Lamellipodia and filopodia are actin arrangements enriched in
the more dynamic neuronal structures including the growth
cone, dendrites and dendritic spines. In the growth cones,
besides filopodia and lamellipodia, there is, in the transition
zone, an actomyosin contractile structure named actin arcs
which are perpendicular to F-actin and are suggested to
interact with microtubules and allow them to invade the
growth cone (Schaefer et al., 2002). In dendritic spines,
actin is the core structure providing the architecture for the
formation, stability, motility, and morphology of the spines (Basu
and Lamprecht, 2018). Actin patches are structurally similar
to lamellipodia and are found in the axons and dendrites
(Korobova and Svitkina, 2010; Spillane et al., 2011). It is
suggested that they promote locally actin filopodia formation,
as these actin patches are not motile structures (Spillane
et al., 2011). More recently, a component of the neuronal
subcortical cytoskeleton was described, the actin rings (Xu
et al., 2013). This structure is along the axon and dendrites
and is composed by a ring of short actin filaments capped by
adducin and distanced by ∼190 nm by spectrin (Xu et al.,
2013). More recently, non-muscle myosin II was proposed
to regulate the axonal actin ring contraction and expansion
(Costa et al., 2020). While actin rings are considered to give
mechanical support to neurons, there is a dynamic pool of
actin in the structure of the axon, termed actin trails, which
have been suggested to be composed of actin “hotspots” and
provide for a flexible actin cytoskeleton network in the axon
(Ganguly et al., 2015).

In mature neurons a dysregulation of the actin cytoskeleton
has tremendous implications for spine density, morphology and
function (Zhang and Benson, 2001). An emergent number of
studies have also reported the abundance and relevance of actin
and ABPs in the pre-synaptic terminals, where actin dynamics
plays essential functions on the vesicle pool organization,
synaptic vesicle mobilization and exocytosis and posterior
endocytosis (Rust and Maritzen, 2015). The crucial roles of
actin at the synapse turns it an important protein to study
in the context of neurodegenerative disorders where synaptic
dysfunction is a central causing agent.

αSYN-ACTIN CYTOSKELETON LINK:
IMPACT ON NEURONAL HEALTH AND
DISEASE

Evidences of αSyn Interaction With Actin
and Actin-Binding Proteins
The most αSyn recognized physiological function is on the
synaptic vesicle cycle, a process where actin plays a key role.
This functional “proximity” between αSyn and actin boosted
the research on identifying an interaction between the two
proteins. This interaction was investigated mainly in in vitro
assays, either with cell-free or with cell-line approaches, which
although were critical for the demonstration of the interaction
of αSyn with actin and actin-binding proteins (Zhou et al.,
2004; Peng et al., 2005; Esposito et al., 2007; Sousa et al., 2009;
Welander et al., 2011; Lee et al., 2012), lack the validation in
primary neuronal cultures which would be a more relevant
scenario. In this respect, in a cellular PD model using rotenone-
treated dopaminergic neurons, it was observed an increase in
the expression levels of F-actin and αSyn. However, a putative
interaction between the two proteins was not explored in that
context (Mattii et al., 2019). Further supporting an interaction,
αSyn and actin co-immunoprecipitated in rat brain homogenates
under physiological conditions (Sousa et al., 2009).

Additionally, proteomic studies demonstrated alterations on
the expression levels of several ABPs in models of αSyn
overexpression in D. melanogaster (Xun et al., 2007a,b) and
C. elegans (Ichibangase et al., 2008). Moreover, gelsolin was found
in LBs from PD and Dementia with Lewy Bodies (DLB) patients
and was shown to have a positive effect on αSyn aggregation in the
presence of high Ca2+ concentrations (Welander et al., 2011).

αSyn Impact on Actin Dynamics:
Cofilin-1 Involvement
Based on the data demonstrating a putative interaction between
αSyn and actin, it was investigated whether αSyn directly binds to
actin modulating actin dynamics. In vitro cell-free assays showed
that WT αSyn decreased the rate of polymerized actin, an effect
suggested to occur due to the αSyn-mediated sequestration of the
actin monomers. Interestingly, this effect was decreased in the
presence of high concentrations of Ca2+, a scenario mimicking
a stimulated state of neurons. In opposite, A30P aSyn, increased
actin polymerization and stabilization of the actin filaments
(Sousa et al., 2009). Validation of the impact of αSyn on actin
dynamics was performed in studies with neuronal cell lines and
primary cultures of hippocampal neurons, expressing either WT
or A30P αSyn, which demonstrated that physiologically WT
αSyn regulates actin dynamics, while the pathologic A30P aSyn
disrupts the actin cytoskeleton (Sousa et al., 2009).

The proposed physiologic impact of WT αSyn on actin
dynamics, and the fact that both αSyn and actin play a role on
the synapse, raise the question of whether αSyn-actin interaction
might regulate neurotransmitter homeostasis. Supporting this
hypothesis, a report demonstrated a critical dependence of
the interaction of αSyn with the actin cytoskeleton for the
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trafficking and transport activity of norepineprhine transporters
(Jeannotte and Sidhu, 2008).

Concerning the pathological impact of αSyn on the actin
cytoskeleton, further studies showed that the extracellular
addition of high concentrations of WT or A30P αSyn to
hippocampal neurons induced a stabilization of the actin
cytoskeleton, by increasing the number of lamellipodia and
filopodia and resistance to depolymerization, with the mutant
protein having a more pronounced effect. These αSyn-induced
actin alterations were mediated by the activation of the actin
signaling pathway Rac1/PAK2/LIMK/cofilin-1 and to require
GRP78, an endoplasmic reticulum chaperone present at the cell
membrane of several cell types (Bellani et al., 2014). Cofilin-1
is an actin depolymerizing protein which activity is negatively
regulated by phosphorylation in the Serine 3 residue, promoted
by several kinases, including LIMK (Arber et al., 1998). As such,
pathologic αSyn induced cofilin-1 phosphorylation leading to
inactivation of its depolymerizing action and consequently to
actin stabilization. Importantly, this outcome was recapitulated
using fibroblasts from PD patients carrying multiplications
of the SNCA gene (Bellani et al., 2014), which presented a
threefold increase in the phospho-cofilin 1/cofilin 1 ratio and an
increased number and thickness of actin stress fibers structures
(Bellani et al., 2014).

Additional work with primary hippocampal neurons
confirmed a negative effect of pathologic αSyn on actin
dynamics, mediated by cofilin-1 inactivation, which impacted on
neuronal functions such as axon elongation and migration (Tilve
et al., 2015). Additionally, and also supporting αSyn-induced
cofilin-1 inactivation, in a glaucoma animal model, consisting
on elevated intraocular pressure which results in retinal
neurodegeneration, the intravitreal injection of αSyn antibodies
hampered neurodegeneration, an effect that was suggested to
involve upregulation of cofilin-1 (Teister et al., 2017).

The presented studies claim that pathologic concentrations of
αSyn induce cofilin-1 inactivation resulting on actin stabilization
and neuronal dysfunction. However, cofilin-1 was also placed
in the context of αSyn-induced neurodegeneration in a
different scenario. In a study addressing the mechanisms of
protein aggregates entry in cells, downregulation of cofilin-1
decreased αSyn aggregates entry, while both, the silencing of
ROCK1 and the pharmacological inhibition of Rho, increased
aggregate entry (Zhong et al., 2018). These observations
suggested Rho-ROCK1-LIMK-Cofilin-1 pathway as a relevant
signaling cascade triggering αSyn aggregates entry in the host
cells (Zhong et al., 2018). Regardless of the context, it is
remarkable the impact of αSyn in the actin cytoskeleton
through cofilin-1.

αSyn-Induced Disruption of the Actin
Cytoskeleton in in vivo Models of PD
In the previous sections the analysis of the effect of αSyn on the
actin cytoskeleton was mainly derived from cell-based studies.
It is important to understand what happens in vivo by using
disease models. In this respect, a report using a PD Drosophila
model based on the neuronal overexpression of αSyn, validated

the pathologic impact of the protein on the actin cytoskeleton, as
αSyn transgenic flies showed increased F-actin and the presence
of rod-shaped actin-cofilin rich inclusions in whole-mounted
brains (Ordonez et al., 2018). Rod structures were also observed
in the brainstem region of a PD mouse model expressing the
A53T mutant form of αSyn, and in the cingulate cortex region
of a DLB patient (Ordonez et al., 2018). Following experiments
in fly demonstrated that the disruption of the actin cytoskeleton
induced by αSyn was mediated by its interaction with α-spectrin,
and resulted on the mislocalization of the mitochondrial
fission protein Drp1 and subsequent mitochondrial dysfunction
(Ordonez et al., 2018). This study pointed to a critical interaction
between αSyn and α-spectrin resulting in actin dysfunction which
consequently affects mitochondria. Additionally, and although
not highly explored, the study also shows the scenario of αSyn
induction of cofilin-actin rods. These are structures formed
upon localized cofilin-1 activation (by dephosphorylation),
leading to its association to F-actin and promoting the
formation of short actin filaments saturated with cofilin-1.
Rod formation has been mainly studied in the context of
Alzheimer’s disease (AD) and shown to have a tremendous
impact in neurons causing synaptic dysfunction, blocking axonal
transport, and exacerbating mitochondrial membrane potential
loss what culminates in cognitive impairment (Bamburg and
Bernstein, 2016). Considering the impact of cofilin-actin rods
on neurodegeneration, the pathologic relevance of rod formation
upon αSyn overexpression should be further addressed. In this
respect, one study reported the presence of oxidized γ-Synuclein
in cofilin-actin rods in the thalamus of mice subjected to
traumatic brain injury (Surgucheva et al., 2014).

DISCUSSION

The current revision summarizes the studies supporting the
link between αSyn and the actin cytoskeleton. This is an
important topic as while the interplay between αSyn and the
microtubules was recently reviewed (Carnwath et al., 2018;
Calogero et al., 2019), the link αSyn-actin was less explored.
Considering the αSyn structural features responsible for the
interaction with cytoskeleton components, it was described that
αSyn is a functional microtubule-associated protein with its
C-terminal region suggested to be responsible for the interaction
with microtubules (Alim et al., 2004; Cartelli et al., 2016). In
the case of αSyn interaction with actin, although it is implied
by the available literature, no structural features underlying
this interaction have been explored to date what deserves
future investigation.

One important question raised by this review is whether
physiologically αSyn, by regulating actin dynamics, impacts on
the actin-derived functions on synaptic transmission. In this
respect, while there are studies with αSyn KO mice showing
decreased SNARE-complex assembly and changes in synaptic
structure and size (Burre et al., 2010; Greten-Harrison et al.,
2010), other reports showed no major defects in synaptic function
in αSyn KO mice (Abeliovich et al., 2000; Chandra et al., 2004;
Chadchankar and Yavich, 2011). Taking this into consideration,
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it would be important to explore neuronal actin dynamics and
actin organization in synaptic structures in αSyn KO mice.
This would clarify whether the αSyn-actin link acts on the
physiology of the synapse, what could explain the impairment of
synaptic activity in PD.

The most striking point of the present review is the highlight
of cofilin-1 as a central player in αSyn-induced neuronal
dysfunction. Cofilin-1 depolymerizing activity upon actin is
crucial for synaptic function since the remodeling of the
pre- and post-synapses intimately relies on actin dynamics
(Pontrello et al., 2012). As such, we might hypothesize that
the reported αSyn-activation of the actin signaling pathway
Rac1/PAK2/LIMK/cofilin-1 via GRP78 (Bellani et al., 2014)
which results on cofilin inactivation, and consequent blockage
of actin dynamics (Sousa et al., 2009; Bellani et al., 2014)
occurs at the pre-synapse, and might contribute for the synaptic
dysfunction observed in the several synucleinopathies. An
additional pathway by which pathogenic αSyn might cause
synaptic dysfunction is via the induction of cofilin-actin rods
formation (Cichon et al., 2012), which was observed in a PD
Drosophila model (Ordonez et al., 2018). In AD, Aβ-induced
formation of rods occurs through a pathway involving the
cellular prion protein (PrPC) and NADPH oxidase (NOX)

(Walsh et al., 2014), which results in the dysregulation of cofilin
activity via oxidation and dephosphorylation, and consequent
formation of cofilin-actin rods. Interestingly, αSyn was shown
to interact with PrPC to induce synaptic dysfunction (Ferreira
et al., 2017). This finding raises the question of whether, similarly
to what occurs in AD, αSyn-induced rod formation is mediated
through a PrPC-dependent pathway culminating on disruption
of synaptic activity.

While the literature suggests that αSyn might impact on
neuronal function, through modulation of cofilin-1 activity, is
still unclear whether αSyn induces an activation or inactivation
of the ABP. Interestingly, a similar scenario was seen in AD
where cofilin-1 activity was shown to be regulated in multiple
ways depending on the pathogenesis context (Kang and Woo,
2019). Importantly, inhibition of cofilin activity or expression
was shown to have ameliorative effects in AD (Deng et al.,
2016). In the case of αSyn-induced neurodegeneration, it will
be important to analyze the phosphorylation status of cofilin-1
in different pathological scenarios and cellular contexts, as well
as the impact of cofilin-actin rods formation for neuronal
function. These studies will be critical to point cofilin-1
as novel therapeutic target to prevent neurodegeneration
in synucleinopathies.

FIGURE 1 | Schematic representation of the link between αSyn and actin. Under physiologic conditions αSyn is mainly concentrated at the pre-synapse and
interacts with synaptic vesicles at the several stages of the vesicle cycle. At the pre-synapse αSyn-actin interaction was described as being crucial for the trafficking
and transport activity of neurotransmitter transporters (Physiologic, Panel 3; A). Additionally, we suggest that the reported αSyn regulation of actin dynamics might
contribute for the proper actin-derived functions at the pre-synapse (Physiologic, Panel 3; B). Under pathologic conditions, overexpression and misfolding of αSyn
affects several cellular processes. At the cell membrane, extracellular misfolded αSyn uses a pathway culminating in cofilin-1 activation and actin remodeling to enter
the cells (Pathologic, Panels 1–3; C). Intracellularly, synaptic dysfunction might occur due to the αSyn-induced stabilization of the actin cytoskeleton (Pathologic,
Panel 3; D), through inactivation of cofilin-1 or αSyn-induced cofilin-actin rod formation (Pathologic, Panel 1; E), that also affects axonal transport. Additionally, αSyn
interaction with spectrin (Pathologic, Panel 2; F), disrupts the actin cytoskeleton with consequent mislocalization of Drp1 and mitochondrial impairment.
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Another point that stands out from the studies reported
in this review is that the few reported experiments in
primary neurons were performed with cultures of hippocampal
neurons (Sousa et al., 2009; Bellani et al., 2014; Tilve et al.,
2015). Although this observation suggests that additional
studies should be performed with primary cultures of
dopaminergic neurons, the cell type mainly affected in
typical motor PD, research on the impact of αSyn on actin
in hippocampal neurons is also essential considering the
symptomology of dementia which has been linked to Syn
pathology in the hippocampus leading to neuronal dysfunction
(Hall et al., 2014).

In summary, this review presents a critical perspective in the
αSyn impact on the actin cytoskeleton. The literature here revised
strongly suggests that αSyn interacts/modulates actin and ABPs
what has consequences to pathophysiology, as summarized in
Figure 1. Nevertheless, this topic requires further investigation
what might be of extremely importance in the context of both
health and disease.
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Parkinson’s disease (PD), multiple system atrophy (MSA) and Dementia with Lewy
bodies (DLB) represent pathologically similar, progressive neurodegenerative disorders
characterized by the pathological aggregation of the neuronal protein α-synuclein.
PD and DLB are characterized by the abnormal accumulation and aggregation of α-
synuclein in proteinaceous inclusions within neurons named Lewy bodies (LBs) and
Lewy neurites (LNs), whereas in MSA α-synuclein inclusions are mainly detected
within oligodendrocytes named glial cytoplasmic inclusions (GCIs). The presence
of pathologically aggregated α-synuclein along with components of the protein
degradation machinery, such as ubiquitin and p62, in LBs and GCIs is considered to
underlie the pathogenic cascade that eventually leads to the severe neurodegeneration
and neuroinflammation that characterizes these diseases. Importantly, α-synuclein is
proposed to undergo pathogenic misfolding and oligomerization into higher-order
structures, revealing self-templating conformations, and to exert the ability of “prion-
like” spreading between cells. Therefore, the manner in which the protein is produced,
is modified within neural cells and is degraded, represents a major focus of current
research efforts in the field. Given that α-synuclein protein load is critical to disease
pathogenesis, the identification of means to limit intracellular protein burden and halt α-
synuclein propagation represents an obvious therapeutic approach in synucleinopathies.
However, up to date the development of effective therapeutic strategies to prevent
degeneration in synucleinopathies is limited, due to the lack of knowledge regarding
the precise mechanisms underlying the observed pathology. This review critically
summarizes the recent developed strategies to counteract α-synuclein toxicity, including
those aimed to increase protein degradation, to prevent protein aggregation and cell-
to-cell propagation, or to engage antibodies against α-synuclein and discuss open
questions and unknowns for future therapeutic approaches.

Keywords: α-synuclein, autophagy, immunotherapy, propagation, protein aggregation, proteasome,
synucleinopathies, therapeutics

INTRODUCTION

α-synuclein is a neuronal presynaptic protein, which physiologically regulates neurotransmitter
release, whereas its pathological accumulation is the key histopathological hallmark of certain
neurodegenerative disorders with similar clinical phenotypes, designated as synucleinopathies
(Spillantini and Goedert, 2000). Specifically, in Parkinson’s disease (PD) and dementia with Lewy
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bodies (DLB), α-synuclein mostly accumulates in Lewy bodies
(LBs) and Lewy neurites (LNs) in neurons (Spillantini et al., 1997,
1998), whereas in multiple system atrophy (MSA) α-synuclein
deposits mostly within the cytoplasm of oligodendrocytes
forming glial cytoplasmic inclusions (GCIs) (Wakabayashi et al.,
1998a,b; Nakamura et al., 2015). It is widely accepted that PD,
DLB and MSA pathogenesis is the result of complex molecular
events and that common pathogenic mechanisms may lead to α-
synuclein deposition in these disorders. However, the diversity
of α-synuclein pathology observed in α-synucleinopathies is
attributed to various events, such as the presence of more than
one α-synuclein strain, the intracellular milieu, the interaction
of α-synuclein with multiple molecular partners, and the
propagation of α-synuclein within different brain regions (Peng
et al., 2018b; Longhena et al., 2019). The precise genetic
and/or environmental trigger for α-synuclein misfolding still
remains unknown; however, genetic mutations, mitochondrial
dysfunction, proteolytic systems failure and neuroinflammation
have been proposed to facilitate α-synuclein spread in the
diseased brain (Polymeropoulos et al., 1997; Bose and Beal, 2016;
Rocha et al., 2018). Under physiological conditions, neuronal α-
synuclein is found either in the cytosol in a soluble and natively
unfolded monomeric or tetrameric form (Weinreb et al., 1996;
Bartels et al., 2011; Wang et al., 2011; Fauvet et al., 2012) or in
a membrane-bound or vesicle-associated state (Pirc and Ulrih,
2015; Gustafsson et al., 2018; Lautenschlager et al., 2018). On the
other hand, pathological α-synuclein in oligomeric, pre-fibrillar
and fibrillar form can spread within the diseased brain via various
cell-to-cell transmission mechanisms, which are responsible
either for its release from neurons or its uptake by neighboring
cells. The tendency of α-synuclein to form aggregates lies in the
core of its neurotoxic potential and strategies seeking to alleviate
the total protein load represent an obvious therapeutic approach.

Current therapeutic approaches for PD and related
synucleinopathies can provide only palliative treatment, aiming
to control the motor symptoms and delay disease progression.
The lack of reliable in vivo markers and appropriate animal
models to recapitulate the symptoms of these diseases challenge
therapy development; however numerous studies have suggested
various therapeutic efforts to counteract α-synuclein-related
pathology. In the current review, we summarize advances in
understanding the pivotal role of α-synuclein in the pathogenesis
of synucleinopathies and critically discuss the potential of current
therapeutic approaches favoring pathology amelioration with the
pros and cons of each strategy.

THE STRUCTURE, FUNCTION AND
AGGREGATION OF α-SYNUCLEIN

The synuclein protein was originally identified through several
and independent lines of investigation. In 1985, a neuron-specific
protein of 143 amino acids (aa) was identified in Torpedo
californica cholinergic synaptic vesicles (Maroteaux et al., 1988).
Later studies in amyloid plaques from an Alzheimer’s disease
(AD) brain discovered two unknown peptides, in addition to the
major amyloid beta fragment, which were named NAC (non-A

beta component of AD amyloid) peptide and its precursor, NACP
(Ueda et al., 1993) and identified two proteins of 140 and 134
aa, which were highly expressed in the human brain (Jakes et al.,
1994). These results revealed the existence of a new protein family
expressed predominantly in presynaptic nerve terminals. The 140
aa protein was named α-synuclein, while the 134 aa protein β-
synuclein (Jakes et al., 1994). The third and last protein of the
family, γ-synuclein, was found to be highly expressed in ovarian
and breast carcinomas (Ji et al., 1997; Bruening et al., 2000).

Structurally, α-synuclein encoded by the SNCA gene, lacks a
single stable 3D structure in aqueous solutions, transmembrane
domain or lipid anchor, concluding that it may behave as a
peripheral membrane protein (Weinreb et al., 1996). α-synuclein
is composed of three distinct domains namely N-terminal lipid-
binding domain, amyloid-binding central region (NAC) and
C-terminal binding domain (Figure 1). The N-terminal domain
is a positively charged lysine-rich region characterized by the
presence of a series of seven imperfect amphipathic 11 aa repeats
containing a highly conserved KTKEGV hexameric motif, which
enable the protein to acquire alpha-helical structure, thus
reducing the tendency to form ß-structure and modulating the
interactions with membranes (Chandra et al., 2003; Ulmer et al.,
2005; Sode et al., 2006). The central NAC region is composed of
nonpolar side-chains and assembles cross b-structures, which are
involved in fibril formation and aggregation. Based on that, it has
been proven that the deletion of specific residues (74–84) within
the core region can abolish α-synuclein aggregation (Giasson
et al., 2001; Rodriguez et al., 2015). Lastly, the C-terminal domain
is a highly acidic tail reported to interact with metals, small
molecules, proteins and other α-synuclein domains (Kim et al.,
2002; Ly and Julian, 2008).

Even though α-synuclein is considered a natively unfolded,
intrinsically disordered amyloid protein, it can adopt an a-helical
conformation in the presence of membranes enriched with
acidic phospholipid headgroups and high curvature (Davidson
et al., 1998; Pirc and Ulrih, 2015) and form fibrillar assembles
by converting soluble monomers into β-sheet-like secondary
structures. The existence of the protein above a crucial
concentration, along with its thermodynamically unstable innate
behavior, favors the aggregation and accumulation process, which
is closely related to its neurotoxic potential (Ferreon and Deniz,
2007; Afitska et al., 2019). Up to date the native state of α-
synuclein remains controversial. Although some studies have
reported that α-synuclein purified from human cells is a helically
folded dynamic tetramer (Bartels et al., 2011; Wang et al., 2011;
Gould et al., 2014) that resists aggregation (Bartels et al., 2011),
other studies suggested that α-synuclein exists predominantly
as an unfolded monomer (Fauvet et al., 2012). Interestingly, it
was suggested that the PD-linked mutations A53T and E46K
shift native tetramers to monomers and this underlies the
disease initiation (Dettmer et al., 2015). Nonetheless, it is widely
accepted that α-synuclein in the cellular milieu exists in various
conformations and oligomeric states in a dynamic equilibrium,
which can be affected by factors that alter the aggregation process
(Cremades et al., 2012). Which particular species of α-synuclein
are toxic has been debated, since some consider the amyloid-like
insoluble fibrils as the mediators of α-synuclein-induced toxicity
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FIGURE 1 | Structure of α-synuclein. The N-terminal domain of α-synuclein is characterized by the presence of repeated lipid-binding sequences and contains the
mutation sites linked with familial PD. The central NAC domain is mainly hydrophobic and favors the aggregation process of the protein. The C-terminal acidic tail
carries the majority of α-synuclein phosphorylation sites.

(Conway et al., 1998), whereas others suggest that oligomers or
protofibrils are the toxic ones (Danzer et al., 2007; Karpinar et al.,
2009; Winner et al., 2011).

Slight alterations in the physicochemical features of
α-synuclein via post-translational modifications (PTMs),
truncations and solution condition modifications could favor
the aggregation process (Uversky et al., 2001). Interestingly,
the majority of PTMs occur in the acidic tail of the protein
(Figure 1) and the serine (Ser) and tyrosine phosphorylation
are the most extensively studied ones. Experiments utilizing
ESI-MS (electrospray ionization mass spectrometry) technology
revealed several modifications of α-synuclein in PD brains,
such as N- or C-terminal truncations and phosphorylation
at Ser129 (Kellie et al., 2014). In healthy brain, only a small
proportion of α-synuclein is phosphorylated (Gonzalez et al.,
2019), whereas under pathological conditions phosphorylated
α-synuclein -mostly at Ser129- is increased in the majority of
pathological inclusions, including LBs in PD and DLB, GCIs
in MSA and LB-type inclusions of AD (Fujiwara et al., 2002;
Saito et al., 2003; Nishie et al., 2004; Waxman et al., 2009). Even
though initially phosphorylation of α-synuclein was considered
to act prophylactically to protein aggregation, it is now widely
accepted that it precedes fibril formation (Shahpasandzadeh
et al., 2014; Tenreiro et al., 2014; Oueslati, 2016). Another
common phosphorylation site is at Ser87, which is also found
to be increased in synucleinopathies (Paleologou et al., 2010).

Tyrosine phosphorylation of α-synuclein (Y39) seems to have
both prophylactic and harmful effects (Mahul-Mellier et al.,
2014; Brahmachari et al., 2016) and phosphorylation at Y125 and
Y133 has been suggested to be protective against α-synuclein
toxicity (Kleinknecht et al., 2016; El Turk et al., 2018). Beyond
phosphorylation, other posttranslational modifications have
been shown to affect the aggregation process of α-synuclein,
such as nitration, oxidation, acetylation and SUMOylation,
but possibly with a protective manner (Krumova et al., 2011;
Dikiy and Eliezer, 2014; Vinueza-Gavilanes et al., 2020).
Regarding truncation, it is known that truncated forms of α-
synuclein account for 10–30% of total protein in patient-derived
LB inclusions. In comparison with the full-length protein,
C-truncated α-synuclein forms fibrils more rapidly, with distinct
coil structures than the linear fibrils formed by the full-length
protein. Additionally, α-synuclein can be oxidized through
interaction with dopamine, generating dopamine-modified
α-synuclein adducts, leading to a decrease in fibril formation and
a subsequent increase in protofibril accumulation (Conway et al.,
2001), which may enhance toxicity (Norris et al., 2003). Up to
date, the physiological or pathological significance of α-synuclein
cleavage remains unclear.

The physiological role of α-synuclein is still poorly understood
and only its contribution to certain cellular functions is known
so far. The presence of α-synuclein in the presynaptic terminals
denotes a potential role of the protein in synaptic function
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and vesicle trafficking (Jensen et al., 1998). The ability of α-
synuclein to promote, as well as to sense, membrane curvature
immediately suggested a possible relationship of the protein with
the synaptic vesicle cycle. Overexpression of human α-synuclein
was found to induce loss of synaptic vesicles and expansion
of the plasma membrane through inhibition of both slow and
fast vesicle endocytosis (Busch et al., 2014; Xu et al., 2016)
and to promote dilation of the fusion pore, thereby accelerating
the discharge of cargo (Logan et al., 2017). Importantly, α-
synuclein interacts with the soluble N-ethylmaleimide-sensitive
factor attachment protein receptor (SNARE) complex, while
the loss or overexpression of the protein causes reduction or
redistribution of the complex, respectively (Burre et al., 2010,
2014; Garcia-Reitbock et al., 2010) α-synuclein was also reported
to promote vesicle clustering through its interaction with vesicle
associated membrane protein 2 (VAMP2)/ synaptobrevin-2 and
phospholipids (Diao et al., 2013).

Through its predominant role in vesicle trafficking α-
synuclein can affect neurotransmitter release and particularly
dopamine neurotransmission (Butler et al., 2017), via
regulation of dopamine biosynthesis and trafficking of
dopamine transporter (DAT), as well as, via modulation of
DAT-mediated dopamine efflux (Butler et al., 2017). More
specifically, α-synuclein was found to down-regulate indirectly
the activity of tyrosine hydroxylase (TH) via inhibition of PP2A
phosphatase, thus modulating dopamine production (Peng et al.,
2005). However, the main effect of α-synuclein involves the
regulation of DAT, where overexpressed α-synuclein enhances
its interaction with DAT, altering the ionic conductance of the
transporter and influencing the action potential-independent
dopamine release, thus resulting in overall decrease of dopamine
uptake (Swant et al., 2011; Butler et al., 2015). α-Synuclein
also develops physical and functional interactions with other
monoamine transporters (MATs), such as NET and SERT. In
both cases, α-synuclein has been shown to negatively modulate
the cell-surface expression and uptake activity of the transporters
in a NAC-domain dependent manner (Wersinger et al., 2006a,b;
Jeannotte and Sidhu, 2007). This finding indicates that α-
synuclein may exert a homeostatic role, thus supporting that
normal MAT expression may depend upon a certain baseline
level of α-synuclein–MAT interaction. However, the mechanism
by which α-synuclein expression alters MAT distribution
should be further investigated. An opposite reported effect of
α-synuclein on the dopaminergic pathway is the suppression of
apoptosis of dopaminergic neurons (Jin et al., 2011). Supportive
of a protective role of α-synuclein at the synapse are also findings
showing a cooperative function of the protein with the synaptic
vesicle protein cysteine-string protein-alpha (CSPalpha) and
SNARE proteins, resulting in protection of nerve terminals
against injury (Chandra et al., 2005).

Furthermore, α-synuclein can also act as a molecular
chaperone, due to its high homology and interaction with the
14-3-3 proteins and their ligands, such as molecules of the Ras
signaling pathway (Xu et al., 2013), thus possibly contributing to
neuronal differentiation (Fu et al., 2000). Moreover, α-synuclein
is part of a chaperone complex containing the Hsc70/Hsp70
chaperones, participating in the efficient neurotransmitter release

(Witt, 2013). The chaperone activity of α-synuclein operates via
its N-terminal interaction with the substrate protein, whereas
the C-terminal region is responsible for the solubilization of the
chaperone complex (Park et al., 2002).

α-SYNUCLEIN AS THE PRIMARY
CULPRIT FOR SYNUCLEINOPATHIES

Substantial genetic, neuropathological and biochemical evidence
implicates α-synuclein in the pathogenesis of PD and related
synucleinopathies. Copy number variations, such as duplication
or triplications of the SNCA gene encoding for α-synuclein, as
well as point mutations and single nucleotide polymorphisms
(SNPs) cause PD and DLB or increase the risk of developing
the disease (Singleton et al., 2003; Chartier-Harlin et al., 2004;
Zarranz et al., 2004; Nalls et al., 2014; Orme et al., 2018). Up to
date six missense mutations in the SNCA gene are associated with
autosomal dominant PD (Figure 1): Ala53Thr (A53T), Ala30Pro
(A30P), Glu46Lys (E46K), His50Gln (H50Q), Gly51Asp (G51D),
and Ala53Glu4 (A53E) (Polymeropoulos et al., 1997; Kruger
et al., 1998; Zarranz et al., 2004; Kiely et al., 2013; Proukakis
et al., 2013; Pasanen et al., 2014). The PD-linked mutations
identified so far are located in the N-terminus of α-synuclein
further underscoring the contribution of this region to protein
aggregation. Most of them are described to cause early onset PD
with rapid disease progression and additional clinical features,
such as hallucinations, dementia, pyramidal tract impairment,
and autonomic failure. Both mutant A53T and A30P α-synuclein
mutations are disordered in dilute solution (like the wild-type
protein). However, at higher concentrations, LB-like fibrils and
discrete spherical assemblies are formed most rapidly by the
A53T mutant (Conway et al., 1998). The A53T mutation has a
moderate effect in a small region around the site of mutation,
resulting in a local structural tendency for oligomerization
(Conway et al., 2000; Bussell and Eliezer, 2001). On the other
hand, the A30P mutation is associated with reduced formation of
LB inclusions and it seems to promote formation of oligomers,
rather than fibrils (Conway et al., 2000; Lazaro et al., 2014).
The E46K mutation, through its conformational changes in
the monomeric protein enhances the contacts between N- and
C-terminus of the protein and promotes fibrillization with an
increased tendency to inclusion formation (Fredenburg et al.,
2007; Rospigliosi et al., 2009; Lazaro et al., 2014). The H50Q
point mutation was discovered at the same year with the G51D
and was linked with a late-onset phenotype of PD. H50Q was
directly associated with increased α-synuclein aggregation and
toxicity (Khalaf et al., 2014). Some of the families harboring these
rare mutations have clinical manifestations or neuropathological
features of both PD and MSA (Fanciulli and Wenning, 2015;
Kiely et al., 2015). In particular, the A53T, A53E and G51D
mutations, as well as the SNCA gene triplications are associated
with a more aggressive MSA-like clinical and pathological
phenotype (Kiely et al., 2015).

The genetic link between mutations and copy number
variations of the SNCA locus and MSA is still controversial, given
that common variation in the SNCA gene was first identified
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as a risk factor for MSA in 2009 (Scholz et al., 2009), but
this association was not confirmed in subsequent genome-wide
association studies (GWAS) (Chen et al., 2015; Sailer et al.,
2016). It is interesting to note that the G51D and A53E α-
synuclein mutations seem to play an essential role in the inclusion
formation in both neuronal and oligodendroglial cells (Pasanen
et al., 2014; Whittaker et al., 2017). During the last decade,
GWAS of risk in idiopathic PD revealed that SNCA is the major
contributor (Satake et al., 2009). However, variability in LRRK2
(leucine-rich repeat kinase 2), GAK (cyclin G-associated kinase)
and MAPT (microtubule-associated protein tau) has been also
implicated, with variants in SNCA and MAPT found to represent
also risk factors for MSA (Scholz et al., 2009; Simon-Sanchez
et al., 2009; Vilarino-Guell et al., 2011). Overall, it is apparent that
all point mutations of α-synuclein alter its secondary structure,
indicating that a single mutation in the SNCA gene is adequate
for the development of a PD-like phenotype.

α-synuclein is the main component of the proteinaceous
inclusions that represent the main histopathological hallmark of
synucleinopathies, designated as LBs and LNs in PD and DLB
(Spillantini et al., 1997, 1998) and GCIs in MSA (Wakabayashi
et al., 1998a,b). Moreover, in vitro and in vivo overexpression of
wild-type or mutant α-synuclein in neurons results in protein
aggregation and toxicity, thus leading to phenotypes resembling
PD (Giasson et al., 2002; Kirik et al., 2002; Lo Bianco et al.,
2002; Vekrellis et al., 2009). Similarly, overexpression of human
wild-type α-synuclein in oligodendroglial cell lines (Stefanova
et al., 2005; Kragh et al., 2009) or in vivo (Kahle et al., 2002;
Shults et al., 2005; Yazawa et al., 2005; Stemberger et al., 2010)
results in the formation of fibrillar α-synuclein forms, which
may cause toxicity in oligodendrocytes and/or in neurons (in
the animal models) or increase cell susceptibility to oxidative
stress, thus recapitulating many features of MSA. Such data
clearly demonstrate that the total protein load and aggregation
of α-synuclein is a critical determinant of its neurotoxic
potential, giving rise to the “α-synuclein burden hypothesis”
which pinpoints a critical role of the protein in idiopathic
PD pathogenesis, either through enhanced transcription or
through impaired degradation (Vekrellis and Stefanis, 2012).
There are conflicting results regarding the mRNA levels of α-
synuclein in PD and MSA brains, probably due to the difficulty
to maintain a proper RNA integrity in tissues undergone
extensive neurodegeneration. Even though the factors controlling
SNCA transcription in vivo remain largely unknown, a number
of regulatory transcriptional elements have been identified in
neuronal cells, such as the GATA-1 and -2 transcription factors
that enhance SNCA transcription through binding in the Intron
1 region of SNCA gene (Scherzer et al., 2008). Subsequent
studies surmised that a signal transduction pathway involving
the MAPK 3 and PI3K pathways could be important for
controlling SNCA transcription (Clough and Stefanis, 2007)
and that the transcription factor ZSCAN21 (Zipro1) could play
a significant role (Clough et al., 2009; Brenner et al., 2015;
Dermentzaki et al., 2016; Lassot et al., 2018). Recently, the
CCAAT/enhancer binding protein (C/EBP) δ was identified as
a novel repressor of α-synuclein transcription, following its
binding to the SNCA genomic region in both mice and humans

(Valente et al., 2020). Post-transcriptional regulation through
microRNAs (Junn et al., 2009; Doxakis, 2010; Surgucheva et al.,
2013; Choi D.C.et al., 2018; Kim et al., 2018) or lncRNAs (Lin
D.et al., 2018; Elkouris et al., 2019; Zou et al., 2020) has also been
reported to alter SNCA mRNA levels.

The pathological effects of misfolded α-synuclein involve,
amongst others, dysregulation of mitochondrial activity
and endoplasmic reticulum (ER)-Golgi trafficking, plasma
membrane integrity, synaptic vesicle trafficking and function of
the ubiquitin-proteasome (UPS) and the autophagy-lysosome
pathway (ALP) (Vekrellis et al., 2011). Overexpression of
α-synuclein causes mitochondrial fragmentation (Kamp et al.,
2010), event that is associated with an increase in mitochondrial
fission rather than a fusion deficiency (Nakamura et al., 2011).
Recently, it was reported that α-synuclein is normally localized at
mitochondrial-associated membranes, while under pathological
conditions α-synuclein dislocates from its sites and affects
mitochondrial morphology (Guardia-Laguarta et al., 2014).
Another study showed that under pathological conditions and
in contrast with the native monomeric α-synuclein, aggregated
forms of the protein preferentially bind to mitochondria, leading
to mitochondrial dysfunction and cellular respiration limitation
(Wang et al., 2019). Moreover, aggregated α-synuclein alters
the membrane fusion and fission processes of mitochondria,
resulting in fragmentation of the organelle and mitophagy
inhibition (Chen and Chan, 2009). This mitochondrial damage
is followed by a series of events, such as reactive oxygen species
(ROS) production, electron leakage and caspase activation
leading eventually to neuronal death (Ganjam et al., 2019). It
has also been proposed that ROS production leads to a LRKK2-
mediated impairment of endosomal and lysosomal function,
resulting in pSer129 α-synuclein accumulation (Di Maio et al.,
2018). Since pSer129 α-synuclein is considered an inhibitor
of mitochondrial protein import, its aggregation is directly
linked to mitochondrial senescence and ROS production, thus
creating a positive feedback loop (Di Maio et al., 2018). Along
with the mitochondrial dysfunction, α-synuclein aggregation
also affects the activity of the ER, inducing protein-folding
abnormalities, impaired ER-Golgi transport and calcium leakage,
which ultimately lead to further aggregation of the protein
(Volles and Lansbury, 2002; Thayanidhi et al., 2010; Colla et al.,
2012; Colla, 2019). However, one of the main mechanisms
through which α-synuclein causes neurotoxicity is the abnormal
interaction of various protein assemblies with membranes,
causing membrane disruption, lipid bilayer thinning and vesicle
trafficking dysregulation (Hellstrand et al., 2013; Wang and
Hay, 2015; Fusco et al., 2017). In the healthy brain, monomeric
α-synuclein plays an important role in synaptic function;
however, in pathological conditions, α-synuclein aggregation
impairs the SNARE complex assembly, through its abnormal
interaction with essential proteins for the synaptic vesicle cycle
function (Dalfo et al., 2004; Gitler et al., 2008; Choi et al., 2013).
It has been also shown that fibrillar α-synuclein may induce
synaptic vesicle endocytosis and blockage of vesicle recycling,
further contributing to the development of synaptopathy,
which characterizes PD and related synucleinopathies (Nemani
et al., 2010; Busch et al., 2014; Xu et al., 2016). Formation of
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aberrant α-synuclein species has been widely shown to impair the
function of the UPS and the ALP pathway, as discussed below.
Similar effects are observed in MSA where the pathological
accumulation of α-synuclein in oligodendrocytes causes severe
disruption of most cellular functions, with the myelination
process being a major target of the protein’s aberrant effects. The
demyelination, along with the reduction of trophic factors, leads
to a secondary neuronal cell loss (Shults et al., 2005; Ubhi et al.,
2010; Stefanova and Wenning, 2016).

Emerging evidence also suggest that activation of the
inflammatory process due to the presence of abnormal α-
synuclein species plays a central role in the development
of synucleinopathies. Postmortem brain examination, brain
imaging and animal studies converged that both the innate
and adaptive immune systems are activated in PD contributing
to disease progression (Tansey and Romero-Ramos, 2019).
Activated microglia, which are considered the most efficient
scavengers of extracellular α-synuclein aggregates (Lee et al.,
2008b), increase the production of pro-inflammatory cytokines
and induce an oxidative stress response (Klegeris et al., 2008;
Su et al., 2008; Couch et al., 2011) even in the absence
of neuronal loss (Sanchez-Guajardo et al., 2010; Barkholt
et al., 2012; Watson et al., 2012). Increased pro-inflammatory
mediators such as tumor necrosis factor alpha (TNF-α),
interleukin-1-β (IL-1β), interleukin-6 (IL-6) have been shown
in the cerebral spinal fluid (CSF) and in the striatum of
human PD brains (Mogi et al., 1994a,b; Vawter et al., 1996;
Nagatsu et al., 2000), supporting a chronic pro-inflammatory
milieu in the brain of PD patients. Apart from α-synuclein
mediated activation of microglia in the CNS, a more complex
relationship between gut microbial-induced inflammation and
α-synuclein expression and aggregation has been proposed to
occur in the periphery (Chen S.G.et al., 2016; Choi J.G.et al.,
2018). Clinical, epidemiological and animal studies suggest a
complex cross-talk between intestinal inflammation and PD
pathology initiation and progression (Houser and Tansey, 2017;
Chen et al., 2019). Similarly, α-synuclein-evoked microglial
activation is commonly detectable in the brains of MSA patients
(Ishizawa et al., 2004) and MSA experimental models (Stefanova
et al., 2007; Vieira et al., 2015; Monzio Compagnoni and Di
Fonzo, 2019). Even though the activation of the inflammatory
cascade in synucleinopathies may not represent a primary
event but a secondary in response to other phenomena,
it definitely contributes to the neuronal degeneration that
characterizes these diseases.

α-SYNUCLEIN AND
PROTEIN-DEGRADATION PATHWAYS: A
COMPLICATED RELATIONSHIP

Unraveling the pathway involved in the degradation of
α-synuclein is crucial in understanding the pathogenetic
mechanisms underlying its aberrant accumulation in
synucleinopathies. Both the UPS and the ALP have been
proposed to clear α-synuclein (Figure 2); however to a different
extent and in a cell-, conformation- and tissue- specific manner

(Bennett et al., 1999; Webb et al., 2003; Vogiatzi et al., 2008).
Initial studies in purified systems and in neuronal cells, have
demonstrated that α-synuclein can undergo both ubiquitin-
dependent (Rott et al., 2011; Haj-Yahya et al., 2013) and
ubiquitin-independent (Tofaris et al., 2001; Liu et al., 2003)
degradation via the 26S/20S proteasome. Additional studies
performed in PC12, HEK293 and primary mesencephalic cells
failed to detect significant α-synuclein accumulation following
pharmacological proteasomal inhibition (Rideout et al., 2001;
Rideout and Stefanis, 2002; Vogiatzi et al., 2008). Others have
found that only a small proportion of soluble-cell-derived
intermediate α-synuclein oligomers, not including monomeric
α-synuclein, are targeted to the 26S proteasome for degradation
(Emmanouilidou et al., 2010b). In an elegant in vivo study it
was shown that the UPS is the main degradation pathway for
α-synuclein under normal conditions, while with increased
α-synuclein burden the ALP is recruited (Ebrahimi-Fakhari
et al., 2011). We and others have shown that only the wild-type
α-synuclein and not the PD-linked A53T and A30P forms,
the phosphorylated or the dopamine-modified α-synuclein,
is degraded via the selective process of chaperone-mediated
autophagy (CMA) (Cuervo et al., 2004; Martinez-Vicente et al.,
2008; Vogiatzi et al., 2008; Mak et al., 2010). CMA can degrade
only monomeric or dimeric forms of the protein, whereas
macroautophagy is the only process that can clear oligomeric
α-synuclein (Xilouri et al., 2013b). Not only mutations but
also post-translational modifications such as phosphorylation,
sumoylation and ubiquitination may also alter the partitioning
of α-synuclein to proteasomal or lysosomal degradation
(Xilouri et al., 2016b).

The UPS and the ALP not only degrade α-synuclein but can
also be a direct target of the protein’s aberrant effects (Xilouri
et al., 2016b; Zondler et al., 2017). Initial studies indicated
that overexpression of the A30P and A53T mutants make cells
more vulnerable to proteasomal inhibition-mediated cell death
compared to cells overexpressing the wild-type protein (Tanaka
et al., 2001). Additional evidence suggested that overexpression
of mutant α-synuclein variants inhibits the activity of the 20S/26S
proteasome leading to UPS failure thus, contributing to α-
synuclein aggregation (Stefanis et al., 2001), although another
study showed that overexpression of wild-type or mutant (A30P,
A53T) α-synuclein in PC12 cells or in transgenic mice did not
significantly affect proteasomal function (Martin-Clemente et al.,
2004). More recently, it was shown that the function of the 20S
proteasome was not affected upon administration of recombinant
α-synuclein oligomers and fibrils or upon transient expression of
wild-type or mutant α-synuclein (Zondler et al., 2017).

Studies in human post-mortem material also indicate that
proteasome function is impaired in the substantia nigra of PD
patients (Bentea et al., 2017), further cementing a role of a proper
UPS function in PD pathogenesis. Beyond the UPS, increased
α-synuclein has been reported to impair macroautophagy both
in vitro and in vivo (Winslow et al., 2010), possibly through
its interaction with Rab1a, which causes the mislocalization of
Atg9, an autophagosome formation-related protein (Winslow
et al., 2010). Similarly, Atg9 mislocalization and impaired
autophagosome formation has been observed in cells expressing
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FIGURE 2 | α-synuclein degradation pathways and reported therapeutic approaches to enhance protein clearance. A schematic representation of the main
proteolytic pathways implicated in α-synuclein clearance and the proposed targets for potential therapeutic interventions (highlighted in dark grey and green). Wild
type and mutant α-synuclein can undergo both ubiquitin-dependent (A) and ubiquitin-independent (B) degradation via the 20S/26S proteasome. Monomeric
wild-type α-synuclein is degraded via CMA, following its binding to the CMA-specific receptor, LAMP2A (C). Molecular upregulation of LAMP2A expression or
chemical enhancement of CMA through retinoic acid receptor alpha (RARα) antagonists has been proven successful in alleviating α-synuclein-associated toxicity.
Macroautophagy has been also proposed to degrade mutant and aggregated forms of α-synuclein (D). Boosting macroautophagy via mTOR-dependent (rapamycin)
or mTOR-independent pharmacological and nutritional modulators (Metformin, Nilotinib, AICAR, Trehalose, Resveratrol, Pomegranate, C1) enhance autophagosome
formation, lysosome biogenesis, and lysosome function thus promoting α-synuclein clearance (E). Molecular modulation of macroautophagy via Atg7, Beclin1 or
TFEB overexpression is also reported to exert beneficial effects on α-synuclein-related toxicity (E). Lastly, restoration of proper enzymatic activity of GCase has been
shown to improve lysosomal function and lessen α-synuclein levels (F).

the PD-linked mutant form of the retromer protein VPS35
(Zavodszky et al., 2014). There is also evidence suggesting that
the PD-linked α-synuclein mutations could have a different
impact on macroautophagy machinery. In particular, the E46K
α-synuclein mutation impairs autophagy at an early stage of
autophagosome formation via dysregulation of the JNK1/Bcl2,
an mTOR-independent pathway (Yan et al., 2014). Also, the
A30P mutant α-synuclein inhibits autophagosome formation via
activation of the autophagy transcriptional repressor ZKSCAN3
in a JNK-dependent manner (Lei et al., 2019). Furthermore,
the A53T mutation has been shown to dysregulate mitophagy
(Choubey et al., 2011), resulting in massive mitochondrial

removal accompanied by bioenergetics deficits and neuronal
degeneration. However, another study in A53T α-synuclein
transgenic mice showed that α-synuclein accumulation leads
to activation of the p38 MAPK pathway, which in turn
directly phosphorylates Parkin thus inhibiting Parkin-mediated
mitophagy (Chen et al., 2018). Several independent studies
have proposed that autophagy is controlled by the GTP-ase–
p38 MAPK signaling (Obergasteiger et al., 2018), a pathway
that may be disturbed in PD. Additionally, mutations in
the GBA1 gene, which encodes for the lysosomal enzyme β-
glucocerebrosidase (GCase) and cause Gaucher’s disease (GD),
are among the most common known genetic risk factors for
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PD and DLB (Mata et al., 2008; Clark et al., 2009). Various
studies in cell culture and animal models and in human post-
mortem material suggest an inverse relationship between α-
synuclein accumulation and GCase protein levels and activity
where reduced GCase activity coincides with increased levels of
α-synuclein (Mazzulli et al., 2011; Osellame et al., 2013; Sardi
et al., 2013; Murphy et al., 2014; Du et al., 2015; Liu et al., 2015;
Rocha et al., 2015; Chen M.et al., 2016).

The first connection between CMA and PD was established
in 2004, where monomeric and dimeric wild-type α-synuclein
species were shown to be CMA substrates, whereas the A30P
and A53T PD-linked mutant α-synuclein forms bound more
tightly to LAMP2A, CMA’s specific receptor, but were not up
taken and degraded within lysosomes, thus becoming toxic by
inhibiting the CMA-mediated degradation of other cytosolic
substrate proteins (Cuervo et al., 2004). Subsequently, it was
shown that post-translational modifications of wild-type α-
synuclein, such as oxidation and nitration of the protein, alter its
binding and uptake into lysosomes, while phosphorylation and
dopamine-modification almost completely prevents its CMA-
dependent degradation (Martinez-Vicente et al., 2008; Xilouri
et al., 2009). Reciprocally, CMA inhibition is reported to lead to
the formation of detergent-insoluble or high molecular weight
oligomeric α-synuclein conformations in vitro (Vogiatzi et al.,
2008; Xilouri et al., 2009), or to increased intracellular α-
synuclein accumulation in nigral neurons in vivo (Xilouri et al.,
2016b). Furthermore, the protein levels of the two key CMA
markers LAMP2A and HSC70, were reported to be decreased in
the human substantia nigra and amygdala of PD brains compared
to controls (Alvarez-Erviti et al., 2010), while, more recently,
decreased protein levels of LAMP2A correlated with increased
α-synuclein accumulation were found in PD brain regions
harboring α-synuclein pathology (anterior cingulate cortex) and
not in other regions that are spared (occipital cortex) (Murphy
et al., 2014). Importantly, these decreases correlated directly to
CMA activity, since the protein levels of the other two LAMP2
isoforms (2B and 2C) that do not participate in CMA, were
found unaltered between PD and control brains (Murphy et al.,
2015). Macroautophagy alterations have also been found in nigral
neurons of PD brains (Anglade et al., 1997).

Beyond PD, evidence from human postmortem material
from MSA brains suggests the possibility of macroautophagic
alterations linked to α-synuclein accumulation in GCIs. More
particularly, the detection of SQSTM1/p62 and, in some
cases, of LC3 (but not of more mature lysosomal markers)
and of the autophagic adaptor protein NBR1 within GCIs
together with α-synuclein suggests a possible initial induction
of macroautophagy and a subsequent defect in macroautophagy
maturation in MSA brains (Chiba et al., 2012; Odagiri et al.,
2012; Schwarz et al., 2012; Tanji et al., 2013). In addition,
the FBXO27 gene, which encodes a protein associated with
ubiquitination and protein degradation, was identified in a
recent GWAS as a potential risk factor for MSA (Sailer et al.,
2016). These neuropathological studies have also suggested the
possibility of impaired proteasomal function as a driving force
for GCI formation. Studies in oligodendroglial cells showed that,
upon pharmacological proteasomal inhibition, p62 and LC3

accumulate in forming aggregates, in an apparent compensatory
response of macroautophagy activation (Schwarz et al., 2012).
In addition, dysfunctional macroautophagy evoked through
mitochondrial impairment or macroautophagy inhibition
resulted in the accumulation of α-synuclein in oligodendroglial
cells (Pukass et al., 2015), whereas more recently it was reported
that macroautophagy block through genetic or pharmacological
inhibition of autophagy was inefficient to increase intracellular
accumulation of α-synuclein in oligodendrocytes exposed
to monomeric or fibrillar α-synuclein (Fellner et al., 2018).
Nonetheless, additional work is needed to elucidate the precise
role of UPS and ALP dysfunction in the accumulation of
α-synuclein-rich GCIs in MSA brains.

CELL-TO-CELL PROPAGATION OF
α-SYNUCLEIN PATHOLOGY IN
SYNUCLEINOPATHIES: THE STRAIN
HYPOTHESIS

According to Braak staging, Lewy pathology manifested by
positive α-synuclein inclusions spreads throughout the brain
as PD progresses, primarily affecting the brainstem and
olfactory system, thereafter gradually invading the neocortex
(Braak et al., 2003). Amongst numerous studies that have
tested this hypothesis (Braak et al., 2006; Lebouvier et al.,
2010; Pouclet et al., 2012; Grathwohl et al., 2013; Paillusson
et al., 2013; Holmqvist et al., 2014), recently it was shown
that α-synuclein pre-formed fibrils (PFFs) injected into the
duodenal and pyloric muscularis layer evoked a spread of
pathologic Ser129 phosphorylated α-synuclein in various brain
regions. Interestingly, truncal vagotomy prevented the gut-to-
brain transmission of α-synuclein pathology, supporting the
Braak hypothesis of a prion-like templating mechanism (Kim
et al., 2019). Similarly, a cohort study of vagotomized patients
supported that the vagus nerve is involved in the development
of PD (Svensson et al., 2015). Recently, α-synuclein inclusions
were detected in stomach and heart of a bacterial artificial
chromosome (BAC) transgenic rat model injected into the gut
wall of the pylorus and duodenum with α-synuclein PFFs. Their
findings suggest a secondary anterograde (Dorsal Motor nucleus
of the Vagus [DMV]-to-stomach) spreading of α-synuclein
pathology, followed by a primary retrograde (duodenum-to-
DMV) spreading (Van Den Berge et al., 2019).

However, there are studies presenting controversial results,
suggesting that α-synuclein transmission from a peripheral
injection site reaches the dorsal nucleus of vagus nerve, but
does not further spread in the CNS (Manfredsson et al., 2018;
Uemura et al., 2018). The hypothesis of α-synuclein prion-like
propagation has gained attention in the recent years, since it has
been shown that transplantation of healthy fetal mesencephalic
neurons in PD patients led to the formation of LB-like inclusions,
indicating the direct transfer of pathogenic α-synuclein from host
brain to grafted neurons (Kordower et al., 2008; Li et al., 2008).
Similar studies have verified that neurons inside the grafts were
positive for LB-like α-synuclein aggregates (Li et al., 2008, 2010;
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Kordower et al., 2011; Kurowska et al., 2011). Moreover,
inoculation of brain extracts from PD and DLB patients into the
striatum and substantia nigra of mice (Masuda-Suzukake et al.,
2013) and non-human primates induced α-synuclein aggregation
and neurodegeneration (Recasens et al., 2014).

The first clinical evidence to support α-synuclein spread
throughout the nervous system was the detection of the protein
in human CSF, indicating that α-synuclein can be released into
the extracellular space (El-Agnaf et al., 2003). Subsequent studies
verified the secretion of α-synuclein from neuronal cells, in part
via vesicle- and exosomal-related trafficking (Lee et al., 2005;
Emmanouilidou et al., 2010a; Jang et al., 2010; Danzer et al.,
2012). On the other hand, conventional endocytosis (Sung et al.,
2001; Lee et al., 2008a; Desplats et al., 2009; Hansen et al., 2011;
Angot et al., 2012), exosomal transport (Emmanouilidou et al.,
2010a; Delenclos et al., 2017), receptor-mediated internalization
(Shrivastava et al., 2015; Mao et al., 2016; Ihse et al., 2017),
passive diffusion (Ahn et al., 2006), or even direct penetration of
the plasma membrane (Kayed et al., 2004; Jao et al., 2008; Lee
et al., 2008a; Tsigelny et al., 2012) have been proposed as the
main pathways for α-synuclein uptake (Figure 3). Amongst the
receptors that have been proposed to mediate the uptake of the
protein by neurons is the FcγRIIB inhibitory Fc receptor, which
has been shown to be responsible for fibrillar α-synuclein cell-
to-cell transmission mediated by the FcgRIIB-SHP-1/2 signaling
(Choi Y.R.et al., 2018) and the LAG3 receptor reported to
interact with fibrillar but not monomeric α-synuclein (Mao et al.,
2016). Moreover, heparan sulfate proteoglycans (HSPGs) seem
to regulate α-synuclein uptake via macropinocytosis in neurons,
whereas GM1 ganglioside is responsible for α-synuclein entry in
microglial cells (Park et al., 2009; Holmes et al., 2013). Fibrillar
α-synuclein has been shown to interact in vitro with HSPGs
via specific sequence motifs and thus be effectively endocytosed
(Zhang et al., 2020). Recent data revealed that N-linked glycans
on the cell surface of neurons interact with acetylated α-synuclein
and mediate its internalization and subsequent pathological
aggregation (Birol et al., 2019).

It has also been reported that neurons can take up
naked α-synuclein following it’s binding to specific membrane
proteins, which are then partially localized within the lysosomal
compartment (Lee et al., 2008a; Karpowicz et al., 2017).
Disruption of the lysosomal function has been shown to play
an important role in the transmission of α-synuclein pathology
and the subsequent neurodegeneration (Xilouri et al., 2016a;
Jiang et al., 2017; Klein and Mazzulli, 2018; Minakaki et al.,
2018). Importantly, in cases of compromised cell proteolytic
machineries, vesicle-associated α-synuclein release seems to be
enhanced (Jang et al., 2010; Alvarez-Erviti et al., 2011; Danzer
et al., 2012; Lee et al., 2013; Fussi et al., 2018). However, cell-to-
cell spread of α-synuclein pathology does not necessarily require
cell contacts, since tunneling nanotubes may also represent a
possible transmission mechanism (Abounit et al., 2016; Figure 3).
Exogenous α-synuclein, once taken up by neuronal or glial cells
is directed to their cytosol where it recruits the aggregation of the
endogenous α-synuclein into the formation of aberrant species,
via an up-to-date unknown mechanism (Volpicelli-Daley et al.,
2014; Rey et al., 2016; Karampetsou et al., 2017; Karpowicz et al.,

2017; Kaji et al., 2018; Luna et al., 2018; Mavroeidi et al., 2019).
Many in vitro and in vivo studies have proposed that exogenously
added human α-synuclein PFFs are used as a template and
recruit the endogenous soluble monomeric α-synuclein into
the formation of insoluble LB-like inclusions (Luk et al., 2009,
2012a; Volpicelli-Daley et al., 2011; Masuda-Suzukake et al., 2013;
Sacino et al., 2013a, 2014a,b; Wu et al., 2019). Similar results were
obtained in vivo when PD brain- or symptomatic α-synuclein
transgenic mice-derived homogenates were delivered in the living
brains of mice and monkeys (Mougenot et al., 2012; Recasens
et al., 2014; Schweighauser et al., 2015).

Two seeding processes have been demonstrated to govern
the aggregation of the endogenous α-synuclein: homotypic (or
self-seeding) and heterotypic seeding. The term “homotypic
seeding” is referred to the sequence-specific templating of α-
synuclein that requires the presence of the hydrophobic NAC
region (El-Agnaf et al., 1998; Giasson et al., 2001). On the
other hand, heterotypic seeding is a process that involves other
proteins (such as tau, huntingtin and Aβ) in the initiation of
α-synuclein recruitment and fibrillization (Charles et al., 2000;
Masliah et al., 2001; Giasson et al., 2003; Pletnikova et al.,
2005; Badiola et al., 2011; Tomas-Zapico et al., 2012). Many
studies utilizing the α-synuclein PFF-brain inoculation as a PD
model, suggest the “connectomic” transmission of pathological α-
synuclein from the injection site to various interconnected brain
regions (Luk et al., 2012a; Masuda-Suzukake et al., 2013, 2014;
Paumier et al., 2015; Peelaerts et al., 2015; Ulusoy et al., 2015;
Rey et al., 2016) and that this α-synuclein spread based on the
anatomical connections between brain areas (Luk et al., 2012b;
Rey et al., 2013, 2016; Peelaerts et al., 2015), party occurs via
gap junction channels composed of connexins, formed between
adjacent cells (Diaz et al., 2019; Reyes et al., 2019). Finally, a
recent study pinpoints 14-3-3 proteins as potential regulators of
α-synuclein transmission, proposing that they normally prevent
α-synuclein oligomerization and resultant toxicity, whereas 14-3-
3 protein dysfunction mediates α-synuclein oligomerization and
seeding, that govern PD pathology (Wang et al., 2018). Numerous
in vitro and in vivo studies utilizing α-synuclein PFFs as seeds,
have proposed an induction in the endogenous neuronal α-
synuclein aggregation, thus favoring the prion-like hypothesis of
α-synuclein spread (Luk et al., 2009, 2012a; Volpicelli-Daley et al.,
2011; Masuda-Suzukake et al., 2013; Sacino et al., 2014b; Paumier
et al., 2015; Peelaerts et al., 2015; Abdelmotilib et al., 2017).
Interestingly, not only PFFs but also isolated exosomes from the
CSF of PD and DLB patients, containing pathological species of
α-synuclein, were able to transfer the disease pathology when
applied in human H4 neuroglioma cells (Stuendl et al., 2016).

Beyond PD, the self-propagation of α-synuclein resulting
in the formation of insoluble aggregates within the cytoplasm
of oligodendrocytes termed MSA also as a prion-like disease.
Prusiner et al. originally reported that TgM83+/− mice
expressing human A53T α-synuclein when inoculated with MSA,
but not PD, brain homogenates developed neurodegeneration,
suggesting that a distinct strain of α-synuclein displays prion
characteristics during the development of MSA (Watts et al.,
2013; Prusiner et al., 2015). Accordingly, treatment of HEK293T
cells stably expressing fluorescently-tagged α-synuclein with
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FIGURE 3 | Proposed mechanisms of α-synuclein cell-to-cell propagation and application of candidate therapeutic strategies. A schematic representation of
α-synuclein transfer from neurons to neurons (purple) or to oligodendrocytes (blue) via various mechanisms: (A) Neuronal receptors (i.e., LAG3) interact with
extracellular α-synuclein and mediate its internalization via endocytosis. Antibodies against these receptors effectively inhibit α-synuclein propagation. (B)
Neuronally-derived, free or exosomal-bound α-synuclein enters neighboring neurons or oligodendrocytes. (C) α-synuclein is taken-up by cells via passive diffusion or
direct penetration of their plasma membrane. (D) Clathrin- or dynamin- mediated endocytosis is responsible for α-synuclein internalization in neurons and
oligodendrocytes. Inhibitors targeting these endocytic pathways have been effectively used. (E) Heparan Sulfate ProteoGlycans (HSPGs) regulate α-synuclein uptake
via macropinocytosis in neurons and oligodendrocytes. Disruption of HSPGs by chemical molecules (heparin or chloral hydrate) inhibits α-synuclein uptake by cells.
(F) Tunneling nanotubes (thin membranous bridges) have been also proposed as a possible cell-to-cell transmission mechanism of α-synuclein. (G) siRNAs (small
interfere RNAs) designed against α-synuclein mRNA are used for the reduction of α-synuclein production as an effective therapeutic strategy. (H) α-synuclein
entrance in neuronal or oligodendroglial cells is followed by its aggregation and the spread of α-synuclein pathology (seeding), finally leading to the formation of
aberrant protein species. Various antibodies targeting the NAC or the C-terminal region of α-synuclein and chemical molecules and compounds (i.e., NPT200–11,
NPT100-18A, NPT088 etc.) inhibiting α-synuclein aggregation have been used to prevent α-synuclein misfolding.

either healthy-control brain extracts or brain samples derived
from PD or MSA patients, revealed that only in the case of
MSA-added material, cells developed α-synuclein accumulation
(Woerman et al., 2015). The prion-like transmission of α-
synuclein pathology was further supported by intrastriatal

delivery of MSA homogenates in the brain of human-wild type
α-synuclein-expressing mice and detection of pathological α-
synuclein aggregates formed in many brain regions (Bernis et al.,
2015). Two possible scenarios have been proposed to explain the
origin of α-synuclein in oligodendrocytes and the mechanisms
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underlying α-synuclein accumulation in GCIs present in MSA
brains: either oligodendrocytes pathologically overexpress α-
synuclein in the context of MSA (Asi et al., 2014) or they take
up neuronally derived protein from their environment (Kisos
et al., 2012; Konno et al., 2012; Rockenstein et al., 2012; Ettle
et al., 2014; Pukass and Richter-Landsberg, 2014; Reyes et al.,
2014; Pukass et al., 2015; Kaji et al., 2018). We have recently
suggested that the presence of endogenous oligodendroglial α-
synuclein, however minute in amount, is a critical factor for the
generation of pathological GCI-like α-synuclein structures within
oligodendrocytes and myelin dysregulation evoked by PFF-
administration both in vitro and in vivo (Mavroeidi et al., 2019).

Furthermore, as already mentioned, neuroinflammation is
a key mediator of α-synuclein-related toxicity, since microglia
and astroglia activation, gliosis and increased secretion of pro-
inflammatory factors are often observed in synucleinopathies
(Nagatsu and Sawada, 2005; Politis et al., 2012; Tufekci et al.,
2012; Fellner and Stefanova, 2013; Kaufman et al., 2013). Many
studies focused on α-synuclein transfer between neurons and
glial cells (Lee et al., 2010; Sacino et al., 2013b; Reyes et al.,
2014). It has been proposed that α-synuclein attracts and activates
microglia; however these cells fail to clear α-synuclein, thus
leading to an excessive pro-inflammatory response via Toll-
like receptor (TLR) and finally to neurodegeneration (Stefanova
et al., 2011; Kim et al., 2013; Roodveldt et al., 2013; Tang
and Le, 2016). A recent study suggests that the differential
activation state of microglial cells plays a crucial role in neuron-
to-neuron α-synuclein spread and that IL-4-activated microglia
seems to engulf extracellular α-synuclein, thus reducing neuron-
to-neuron α-synuclein transmission (George et al., 2019). Others
have suggested that pathological α-synuclein spreads through
tunneling nanotubes in macrophages and possibly in microglial
cells as well (Onfelt et al., 2004). The neuron-to-astrocyte
and astrocyte-to-astrocyte transmission of α-synuclein has been
shown both in in vitro and ex vivo experiments, however α-
synuclein aggregates are preferably formed within neurons rather
than in astrocytes (Lee et al., 2010; Loria et al., 2017). This fact
could be attributed to the protective role of astrocytes against
α-synuclein aggregation, via enhanced proteolytic processing of
exogenously added PFFs (Loria et al., 2017).

Interestingly, it has been proposed that α-synuclein joins
into distinct polymorphisms possibly responsible for the variety
of disease phenotypes giving rise to the strain hypothesis,
underlying the pathogenesis of synucleinopathies. Based on this
scenario, the central idea is that α-synuclein fibrils behave as
strains with discrete biochemical and structural characteristics,
into distinct brain regions and cell types (Cremades et al., 2012;
Bousset et al., 2013; Kim et al., 2016; Ma et al., 2016; Pieri et al.,
2016; Lau et al., 2020). Supportive of this hypothesis are findings
showing that pathological α-synuclein in PD and MSA inclusions
is conformationally and biologically distinct and different α-
synuclein strains are generated in discrete intracellular milieus
(Peng et al., 2018a). We have also shown that the pathology-
related S129 α-synuclein phosphorylation in primary cultures
and human post-mortem brain material might involve different
α-synuclein strains present in oligodendroglial and neuronal
synucleinopathies (Mavroeidi et al., 2019).

Most importantly, it is reported that α-synuclein fibrils
amplified from the brains (Strohaker et al., 2019) or CSF
(Shahnawaz et al., 2020) of PD patients are structurally
different than those from MSA, further suggesting that distinct
conformational strains of α-synuclein may underlie the different
pathology detected in two synucleinopathies. Therefore, it
is surmised that based on the diversity of the human
strains and via the protein misfolding cyclic amplification
(PMCA) technique, we can discriminate between PD and
MSA pathology in patient-derived CSF samples with high
sensitivity (Shahnawaz et al., 2020). These strains can recruit
and seed endogenous α-synuclein, and also propagate by
imprinting their unique structural properties on its non-
pathogenic counterpart (Bousset et al., 2013; Peelaerts et al.,
2015; Mavroeidi et al., 2019). Through their neurotoxic behavior
as oligomeric or fibrillar assemblies, α-synuclein strains are
the crucial pathogens responsible for the induction of α-
synuclein - and tau-specific disease phenotypes (Guo et al.,
2013; Peelaerts et al., 2015; Candelise et al., 2019). In addition,
it has been recently reported that MSA strains show several
similarities with PD strains, but are significantly more potent
in inducing motor deficits, nigrostriatal neurodegeneration, α-
synuclein pathology, spreading, and inflammation, reflecting
the aggressive nature of this disease (Van der Perren et al.,
2020). In contrast, DLB-amplified strains displayed very modest
neuropathological features.

THERAPEUTIC APPROACHES TO HALT
α-SYNUCLEINOPATHY

Unfortunately, up-to-date no disease-modifying therapies exist
for α-synucleinopathies only symptomatic therapies to relief
motor impairment, including dopamine replacement, deep
brain stimulation and pharmacological treatment of non-motor
symptoms (Aarsland et al., 2002; Fahn et al., 2004; Ravina et al.,
2005; Burn et al., 2006; Okun, 2012). Given the critical role of α-
synuclein levels to disease pathogenesis, one obvious approach
is to curtail total protein levels, either by reducing protein
production or by enhancing protein degradation. Another
approach would be to inhibit protein aggregation and misfolding
or to alter α-synuclein post-translational modifications such as
phosphorylation, which are suggested to affect the aggregation
process and the development of toxic species. Targeting the
extracellular levels of the protein with antibodies and intervening
in the proposed mechanisms of uptake is also an attractive
approach, since this may combat α-synuclein propagation and
disease progression.

REDUCING α-SYNUCLEIN PRODUCTION

Decreasing the production and the cytoplasmic levels of
α-synuclein with the use of RNA interference (RNAi)
technology represents an attractive approach for therapy in
synucleinopathies (Figure 3). Specifically, there are in vivo
studies showing that delivery of either naked small interfering
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RNAs (siRNAs) or lentiviral-mediated RNAi for SNCA silencing
in the rodent brain, can effectively reduce α-synuclein levels
(Sapru et al., 2006; Lewis et al., 2008). Accordingly, similar
siRNA delivery in the substantia nigra of squirrel monkeys
led to a significant suppression of α-synuclein expression with
no toxic effects in the animal physiology (McCormack et al.,
2010). Another study also suggested a non-toxic but rather a
neuroprotective role of α-synuclein reduction in rats injected
with shRNAs against SNCA via adeno-associated virus (AAV)
(Zharikov et al., 2015).

In vitro and in vivo experiments using an amido-bridged
nucleic acid (AmNA)-modified antisense oligonucleotide (ASO)
resulted in decreased mRNA and protein levels of α-synuclein
and improved motor deficits in a PD mouse model (Uehara
et al., 2019). In addition, AAV-mediated delivery of an anti- α-
synuclein ribozyme (rAAV-SynRz) prevented the death of the
nigral dopaminergic neurons in the rat MPTP intoxication model
(Hayashita-Kinoh et al., 2006). The rescue of dopaminergic cells
loss via gene silencing has also been studied using an AAV
harboring a short-hairpin (sh)RNA targeting human SNCA in the
rat striatum, previously injected with AAV-hSNCA for human
α-synuclein overexpression (Khodr et al., 2011). In vitro studies
from the same group revealed that the miR-30-embedded shRNA
silencing vector successfully decreased α-synuclein levels (Han
et al., 2011); yet delivery of AAV-mir30-hSNCA in the rat brain
did not produce encouraging results towards a potential PD
therapy (Khodr et al., 2014).

However, there are controversial studies that present
degenerative outcomes following a reduction of α-synuclein
levels in the substantia nigra of rats and non-human primates
(Gorbatyuk et al., 2010; Kanaan and Manfredsson, 2012;
Collier et al., 2016; Teki and Griffiths, 2016; Benskey et al.,
2018). siRNA-mediated reduction of α-synuclein has been also
shown to regulate dopamine release in SH-SY5Y cells and to
be used as a protective mechanism against MPP+-induced
neurotoxicity (Fountaine and Wade-Martins, 2007). Moreover,
exosomal-associated siRNA intravenous-delivery targeting
α-synuclein mRNA in both wild type and α-synuclein transgenic
mice, prevented protein aggregation (Cooper et al., 2014).
Additionally, α-synuclein knockdown in the brain of wild-type
mice, using siRNAs and an anti-sense oligonucleotide molecule
(ASO), did not display any harmful effects on neuronal function
(Alarcon-Aris et al., 2018). Finally, beta-2-adrenoreceptor
(beta-2AR) ligands were shown to modulate SNCA transcription
through histone 3 lysine 27 acetylation of SNCA promoter and
enhancers. Beta-2AR agonists (clenbuterol and salbutamol)
when used in various cellular and in vivo models, led to
the reduction of α-synuclein expression, whereas beta-2AR
antagonist propranolol increased SNCA transcription and
α-synuclein production (Mittal et al., 2017).

ENHANCING α-SYNUCLEIN
DEGRADATION

Given the well-recognized role of ALP in α-synuclein degradation
(Figure 2) the mammalian target of rapamycin (mTOR) has

emerged as a therapeutic target for PD. Towards this direction,
rapamycin, an inhibitor of mTOR, was shown to reduce α-
synuclein accumulation in WT, A30P and A53T α-synuclein-
overexpressing PC12 cells (Webb et al., 2003), to attenuate
dopaminergic degeneration in neurotoxin-induced (Dehay et al.,
2010; Malagelada et al., 2010; Liu et al., 2013) and α-synuclein-
overexpressing PD models (Crews et al., 2010) and to improve
motor function in A53T α-synuclein transgenic mice (Bai et al.,
2015). However, a considerable limitation of rapamycin is
that it interferes with numerous other autophagy independent
pathways, including immunosuppression (Staats et al., 2013)
and that prolonged exposure to rapamycin inhibits mTORC2
(Schreiber et al., 2015), thus leading to the stimulation of other
important cellular pathways. To overcome these unwanted side
effects, studies focused on TFEB, a down-stream target of mTOR,
and showed that TFEB overexpression promoted the clearance
of pathologic α-synuclein and restored neurodegeneration in
PD animal models (Dehay et al., 2010; Decressac et al.,
2013). Similarly, oligodendroglial-targeted TFEB overexpression
efficiently prevented α-synuclein accumulation and rescued
nigrostriatal neurodegeneration in the PLP-α-synuclein MSA
mouse model (Arotcarena et al., 2019).

Moreover, several compounds associated with the activation
of the AMP-activated protein kinase (AMPK)-dependent
autophagy, such as metformin (Dulovic et al., 2014; Patil
et al., 2014; Lu et al., 2016), or nilotinib (Hebron et al., 2013;
Karuppagounder et al., 2014; Mahul-Mellier et al., 2014), have
been reported to inhibit α-synuclein accumulation and to exert
neuroprotection in several PD models. The tyrosine-kinase
inhibitor nilotinib -a medication widely used for the treatment
of chronic myelogenous leukemia- has now been repurposed
for the treatment of PD and a Phase 1 clinical trial in 11 PD
and DLB patients showed cognitive and motor improvement
following nilotinib administration (NCT02281474). A larger
Phase 2 clinic trial including 75 PD patients is currently being
conducted with so far promising results (NCT02954978).
Comparable findings have been reported upon application of
5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) (a
drug used for the treatment of acute lymphoblastic leukemia)
in various PD models (Ng et al., 2012; Dulovic et al., 2014).
Trehalose, also leads to an AMPK-dependent and mTOR-
independent induction of autophagosome biogenesis and has
been also shown to exert beneficial effects on cell survival and
autophagy-dependent α-synuclein clearance in cellular (Sarkar
et al., 2007; Casarejos et al., 2011; Lan et al., 2012) and animal
PD models (Sarkar et al., 2014; Tanji et al., 2015; Wu et al., 2015;
He et al., 2016). Collectively, given the pleiotropic actions and
the limited specificity of these agents for the autophagic process,
it’s challenging to determine whether the observed beneficial
effects are mediated by AMPK activation or are a result of other
off-target effects, which limit their potential therapeutic utility
in synucleinopathies.

In search of non-chemical methods to modulate autophagy,
experimental evidence shows that the natural inducer of
autophagy curcumin, counteracted the accumulation of the A53T
α-synuclein through down-regulation of the mTOR/p70S6K
signaling pathway in SH-SY5Y cells (Pandey et al., 2008;
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Jiang et al., 2013) and conferred neuroprotection in rotenone-
treated dopaminergic neurons (Satish Bollimpelli and Kondapi,
2015). A curcumin analog, C1, has been recently identified
as a novel mTOR-independent activator of TFEB (Song et al.,
2016), resulting in enhanced autophagy and increased lysosome
biogenesis in the rat brain (Song et al., 2016). Likewise, the
natural compound pomegranate has been shown to enhance
TFEB activity and activate mTOR-independent autophagy and
mitophagy (Tan et al., 2019). The natural plant phenol resveratrol,
possibly following the interaction with its direct target SIRT1,
was also shown to induce an AMPK-dependent autophagy and
exert beneficial effects in several in vitro and in vivo PD models
(Wu Y. et al., 2011; Ferretta et al., 2014; Lin et al., 2014;
Guo et al., 2016; Ur Rasheed et al., 2016). A major concern
of broad macroautophagy enhancement is the multifunctional
role and status of activation in different cell types and tissues
and the fact that excessive stimulation of macroautophagy
under specific circumstances can exert detrimental effects (Yang
et al., 2007; Choi et al., 2010; Xu et al., 2014). We have
previously shown that CMA inhibition conferred by aberrant
α-synuclein overexpression in neuronal cells resulted to a
compensatory induction of macroautophagy and subsequent
death, whereas pharmacological and molecular macroautophagy
inhibition exerted a protective effect (Xilouri et al., 2009).
Furthermore, the activation of mitophagy in primary cortical
neurons overexpressing A53T α-synuclein caused mitochondrial
destruction and neuronal degeneration that could be rescued by
inhibition of macroautophagy (Choubey et al., 2011).

Another promising approach implicates the restoration
of proper GCase activity as means to facilitate α-synuclein
degradation. In vivo studies demonstrated that enhancing GCase
activity (either pharmacologically or molecularly) could prevent
or diminish formation of toxic α-synuclein species and related
toxicity (Sardi et al., 2011, 2013). Enzyme-replacement therapies
for GD showed that GCase does not cross the blood-brain barrier
(BBB), therefore, recent strategies focused on the development
of small-molecule chaperones to correct the folding of GCase,
enhance GCase activity and restore lysosomal function to
facilitate α-synuclein clearance (Schapira and Gegg, 2013; Blanz
and Saftig, 2016). Ambroxol is a drug commonly used as an
anti-mucolytic respiratory agent (Malerba and Ragnoli, 2008)
and has been shown to restore lysosomal function and reduce
oxidative stress in GBA1 mutant fibroblasts (McNeill et al.,
2014; Ambrosi et al., 2015). More recently, ambroxol treatment
was found to increase GCase levels, improve autophagy and
decrease α-synuclein levels in neural crest stem cell-derived
dopaminergic neurons from GBA1 mutation patients (Yang
et al., 2017) and α-synuclein transgenic mice (Migdalska-
Richards et al., 2016). The same group reported that oral
administration of ambroxol increased GCase activity in the non-
human primate brain indicating that ambroxol represents a
promising novel disease modifying therapy for the treatment
of PD and neuropathic GD (Migdalska-Richards et al., 2017).
A phase 2 clinical trial assessing the safety and efficacy of
ambroxol to improve motor and cognitive features of PD-
GD patients has been recently completed (NCT02914366)
(Silveira et al., 2019). Moreover, another clinical trial of PD

patients (with or without GBA1 mutations) treated with up
to 420 mg/day of ambroxol at 5 intra-dose escalations over
the course of 6 months, confirmed the safety, tolerability and
CSF penetration of this drug (NCT02941822) (Mullin et al.,
2020). Furthermore, treatment with LTI-29, another activator
of GCase activity, has been shown to reduce glucosylceramide
levels in vivo1 and the safety and tolerability of this therapeutic
candidate are being tested in a phase 1 clinical trial in GBA-
PD patients (NTR6960, EudraCT2017 004086 27). Finally, new
glucosylceramide synthase inhibitors capable of crossing the BBB
and prevent the substrate buildup in mouse models have arisen
as another strategy for intervention (Sardi et al., 2017, 2018).
Toward this direction, a phase 1 clinical trial assessing the safety
and tolerability of the glycosylsynthase inhibitor Venglustat
(GZ/SAR402671) in GBA-PD patients has successfully been
completed (NCT02906020) and this therapeutic approach is
currently into phase 2 (Judith Peterschmitt et al., 2019).

Restoration of CMA activity could also provide therapeutic
benefit in synucleinopathies, by not only promoting the clearance
of α-synuclein, but also by mitigating its detrimental effects
on lysosomal function. To this end, we have shown that
overexpression of LAMP2A, CMA’s rate-limiting step in human
neuroblastoma SH-SY5Y cells, rat primary cortical neurons
and nigral dopaminergic neurons in vivo, was capable of
alleviating α-synuclein-related toxicity (Xilouri et al., 2013a).
Similarly, LAMP2A overexpression promoted autophagic flux
and prevented α-synuclein-induced PD-like symptoms in the
Drosophila brain (Issa et al., 2018). Moreover, pharmacological
manipulation of the CMA pathway using AR7, a retinoic acid
receptor alpha (RARα) antagonist, in LRRK2R1441G mutant
mouse fibroblasts restored the impaired lysosomal function and
attenuated the progressive accumulation of both intracellular
and extracellular α-synuclein oligomers, surmising that CMA
activation could successfully prevent the accumulation of such
species (Ho et al., 2020). Based on the findings supporting
that pathogenic forms of α-synuclein lead to abnormal
LAMP2A binding and disruption of the receptor’s assembly
(Cuervo et al., 2004; Martinez-Vicente et al., 2008) modulation
of LAMP2A dynamics at the lysosomal membrane may
also represent a fruitful strategy. CMA activity is regulated
by the lysosomal mTORC2/PHLPP1/Akt axis (Arias et al.,
2015), suggesting that available drugs acting as inhibitors
of mTORC2 or Akt, or as activators of PHLPP1 that can
modulate the assembly/disassembly rate of the LAMP2A
translocation complex could become attractive targets for
selective modulation of CMA.

INHIBITING α-SYNUCLEIN
AGGREGATION

Prevention of α-synuclein aggregation and misfolding is a key
player in disease confronting (Figure 3). The selective specificity
of intrabodies/nanobodies allows them to bind to specific regions
of different α-synuclein species (monomers, oligomers, fibrils)

1https://lti-staging.squarespace.com/our-science/#lti-291
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and modulate aggregation, therefore attenuating the disease
pathology (Bhatt et al., 2013). The nanobodies VH14∗PEST and
NbSyn87∗PEST target the NAC and the C-terminal regions of α-
synuclein, respectively, and have been efficiently used against the
formation of pathological pSer129 α-synuclein species following
their delivery using viral vectors in the rat substantia nigra
(Chatterjee et al., 2018). Three small molecules, NPT200–11,
NPT100-18A and NPT088 have been reported as inhibitors
of either oligomeric or proteinase K-resistant α-synuclein
aggregates, both in vitro and in vivo (Krishnan et al., 2014;
Wrasidlo et al., 2016; Price et al., 2018). Moreover, an emerging
number of compounds tested in cellular and mouse models
of PD exerted a protective role against α-synuclein pathology.
Specifically, polyphenol (-)-epi-gallocatechin-3-gallate (EGCG) is
used in both AD and PD cases and acts as an inhibitor of α-
synuclein and amyloid beta fibril-maturation, by converting large
amyloid fibrils into smaller non-toxic aggregates (Bieschke et al.,
2010). Anle138b [3-(1,3-benzodioxol-5-yl)-5-(3-bromophenyl)-
1H-pyrazole] is an oligomer modulator shown to prevent the
formation of pathological aggregates in vitro and in vivo of
both prion protein PrP(Sc) and α-synuclein (Wagner et al.,
2013; Levin et al., 2014). Behavioral and histological analysis
of the PLP-α-synuclein transgenic mice treated with anle138b
revealed that this aggregation inhibitor effectively attenuated
the progression of the MSA-like pathology (Fellner et al., 2016;
Heras-Garvin et al., 2019). Interestingly, this compound has
gained attention as a promising fluorescent biomarker for the
detection of aggregation-related epitopes (Deeg et al., 2015).

CLR01, another aggregation-inhibitor, prevented the
formation of β-sheet-rich fibrils and had beneficial effects on
the health and survival of a zebrafish model of α-synuclein
toxicity (Prabhudesai et al., 2012). Moreover, when PLP- or
Thy1-α-synuclein transgenic mice received treatment with
CLR01, they displayed amelioration of the α-synuclein-related
brain pathology and behavioral deficits (Richter et al., 2017;
Herrera-Vaquero et al., 2019). Furthermore, KYP-2047, a
prolyl oligopeptidase inhibitor, has also been effectively
used against α-synuclein aggregation in both cellular and
mouse models of PD (Myohanen et al., 2012), whereas
porphyrin phthalocyanine tetrasulfonate, an inhibitor of
protein aggregation through binding to vesicle-associated
α-synuclein, is suggested to modulate α-synuclein misfolding
and toxicity (Fonseca-Ornelas et al., 2014). There are also
numerous chemical compounds belonging to polyphenols,
phenothiazines, polyene macrolides, porphyrins, rifamycins,
Congo red (and its derivatives) and terpenoids, that have been
shown to decrease α-synuclein fibrillization (Masuda et al.,
2006). Baicalein (flavone), delphinidin (anthocyanidin) and
methylthioninium (monoamine oxidase inhibitor) are chemical
molecules with inhibitory properties against α-synuclein filament
formation (Zhu et al., 2004; Hung et al., 2016; Schwab et al.,
2017; Javed et al., 2018) as proposed by in vitro and in vivo
experiments. Similarly, mannitol, catechol-o-methyltransferase
inhibitors, cinnamon extract, and ring-fused pyridones have
anti-aggregatory properties and provide protection against
α-synuclein toxicity (Di Giovanni et al., 2010; Shaltiel-Karyo
et al., 2012, 2013; Horvath et al., 2013).

Synthetic peptides are also another therapeutic approach
developed for β-sheet structure disruption and inhibition of
α-synuclein accumulation (El-Agnaf et al., 2004; Kim et al.,
2009; Shaltiel-Karyo et al., 2010). Moreover, the antibiotic
rifampicin has been used as a destabilizer of α-synuclein fibrils
(Li et al., 2004) and a reduction in monomeric, oligomeric
and pathological pSer129 α-synuclein has been reported in a
rifampicin-treated transgenic MSA mouse model (Ubhi et al.,
2008). Rifampicin has been also tested in a clinical trial where
50 participants received a 12-month treatment with rifampicin
(600 mg/day), with however, negative results (Low et al., 2014).
Another anti-aggregation therapeutic strategy in the context
of MSA would be the inhibition of β-III tubulin and the
oligodendroglial-specific phosphoprotein TPPP/p25α, since both
proteins are implicated in α-synuclein accumulation (Lindersson
et al., 2005; Nakayama et al., 2012; Mavroeidi et al., 2019).
Nocodazole, a synthetic tubulin-binding agent that inhibits
tubulin polymerization, prevented α-synuclein accumulation in
primary neuronal and glial cultures, pinpointing the crucial role
of β-III tubulin/α-synuclein interaction in MSA pathogenesis
(Nakayama et al., 2012). Unfortunately, up-to-date there are no
available p25α inhibitors, although such an approach may exert
beneficial effects against MSA.

TARGETING α-SYNUCLEIN
POST-TRANSLATIONAL
MODIFICATIONS

Taking into account that post-translational modifications
of α-synuclein, such as phosphorylation, truncation or
oxidation/nitration, are tightly associated with the development
of neuropathology (Oueslati et al., 2010; Barrett and Timothy
Greenamyre, 2015), modulating these modifications is another
viable approach. Although the majority of studies link pSer129-
α-synuclein with neuropathology (Smith et al., 2005; Chau
et al., 2009; Ma et al., 2016; Grassi et al., 2018), others support
that α-synuclein phosphorylation and the subsequent inclusion
formation protects cells from toxicity (Chen and Feany, 2005;
Paleologou et al., 2008; Wu B.et al., 2011; Kuwahara et al.,
2012). Therefore, regulation of the expression and/or activity of
kinases and phosphatases responsible for phosphorylation and
de-phosphorylation of α-synuclein at Ser129 represent a main
target. Specifically, overexpression of G-protein-coupled receptor
kinase 6 (GRK6) proposed to phosphorylate α-synuclein via
AAVs in the rat substantia nigra, led to extensive degeneration
of dopaminergic neurons (Sato et al., 2011). Towards the same
direction, mutation of Ser129 to alanine inhibited the G protein-
coupled receptor kinase 2 (Gprk2)-mediated phosphorylation
of α-synuclein and attenuated α-synuclein toxicity in a PD
transgenic fly model (Chen and Feany, 2005). Moreover, in vitro
and in vivo enhancement of α-synuclein de-phosphorylation via
the phosphoprotein phosphatase-2A (PP2A) protected neurons
against α-synuclein pathology (Lee et al., 2011).

Many studies have also proposed that both C- and
N-terminal truncations of α-synuclein facilitate α-synuclein
aggregation and misfolding and exhibit pathological properties
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(Ulusoy et al., 2010; Hall et al., 2015; Wang et al., 2016;
Iyer et al., 2017; Ma et al., 2018; Terada et al., 2018). Monoclonal
antibodies against the C-terminal truncation (1H7, 5C1, and
5D12) have been tested in a PD mouse model and the results
showed reduced aggregation of α-synuclein and improved
neurotoxic and behavioral deficits upon immunotherapy (Games
et al., 2014). Other studies focused on calpain targeting by
using specific calpain inhibitors in vivo, a strategy that resulted
in amelioration of α-synuclein pathology (Diepenbroek et al.,
2014; Hassen et al., 2018). However, enhancement of calpain
activity did not result in the expected exacerbation of α-synuclein
pathology (Diepenbroek et al., 2014).

REDUCING UPTAKE AND
CELL-TO-CELL TRANSMISSION OF
α-SYNUCLEIN

As mentioned above, one proposed mechanism for α-synuclein
uptake is endocytosis and inhibiting the protein endocytosis
represents another strategy against α-synuclein propagation and
spread (Figure 3). For example, experiments in α-synuclein-
treated cells have shown that deletion of LAG3 or use of
antibodies raised against this neuronal receptor effectively
inhibits α-synuclein cell-to-cell transfer (Anderson et al., 2016;
Mao et al., 2016). Moreover, heparin or chloral hydrate can
also act as α-synuclein fibril uptake inhibitors, via disruption
of heparan sulphate proteoglycans that normally bind amyloid
proteins (Holmes et al., 2013; Karpowicz et al., 2017). Taking into
consideration the fact that prion protein (PrPC) is suggested to
be implicated in amyloid α-synuclein uptake and neurotoxicity,
genetic knockout of PrPC in primary neurons and mice
effectively reduced the uptake and aggregation of α-synuclein
(Aulic et al., 2017; Ferreira et al., 2017).

Another therapeutic approach to combat α-synuclein cell-to-
cell transmission is to target the signaling pathway downstream
of the receptor responsible for α-synuclein uptake. For example,
the inflammatory response of microglial cells to pathological α-
synuclein via TLR signaling can be ameliorated by using TLR4
signaling inhibitors, such as resatorvid (TAK242) (Ii et al., 2006;
Kawamoto et al., 2008). In another study, treatment of cells
with TAK242 or RSLA (another TLR4 inhibitor) resulted in
reduction of TNFα secretion from microglial cells and protection
of neuronal cells against α-synuclein neurotoxicity (Hughes
et al., 2019). However, when TAK242 was tested in a clinical
trial, it failed to reduce serum cytokine levels in patients with
severe sepsis and shock or respiratory failure (Rice et al., 2010).
Finally, CU-CPT22 (another selective inhibitor for TLR1/2) also
reduced TNFα production in primary microglia cells treated with
oligomeric α-synuclein and blocked NF-κB nuclear translocation
(Daniele et al., 2015). Although most of the existing therapeutic
approaches target PD, one of the most promising strategies
against MSA is the use of sertraline, a second-generation selective
serotonin reuptake inhibitor (SSRI). Sertraline inhibits dynamin
1 and 2 thus blocking the endocytic pathway and it has been
shown to inhibit α-synuclein uptake by oligodendrocytes and
to prevent pathological α-synuclein spread (Konno et al., 2012).

Another SSRI, paroxetine, has already been clinically tested
at doses of 30 mg for 2 weeks in 20 patients with MSA
and resulted into statistically significant motor improvement
(Friess et al., 2006).

IMMUNOTHERAPY

The role of the immune system and neuroinflammation in
the pathophysiology of PD and related synucleinopathies,
along with the specificity of antigen-antibody binding, render
immunotherapy (active and passive) one of the most promising
therapeutic approaches (Figure 4). The first study of active
immunization against α-synuclein utilized full-length α-
synuclein vaccination in the PDGF transgenic α-synuclein mice
and resulted in decreased α-synuclein accumulation in neuronal
cell bodies and synapses (Masliah et al., 2005). Active vaccination
of the PDGF and the Thy1 transgenic α-synuclein mice with
the PD01A and PD03A vaccines (also known as AFFITOPE)
reduced α-synuclein oligomers in axons and synapses, decreased
caudo-putamen nucleus degeneration and memory deficits in
both mouse models (Mandler et al., 2014). The same results,
along with reduced demyelination were observed in an MSA
transgenic mouse model (Mandler et al., 2015). Recently, the
AFFITOPE was tested and successfully passed into the Phase
1 clinical trial in MSA patients, whereas the clinical trial for
PD patients is ongoing2. More recently, it was shown that a
novel vaccination modality combining an antigen-presenting
cell-targeting glucan particle (GP) vaccine delivery system with
encapsulated antigen (α-synuclein) plus rapamycin induced both
strong anti-α-synuclein antibody titers and neuroprotective T
regulatory (Tregs) responses in synucleinopathy models, being
more effective than the humoral or cellular immunization alone
(Rockenstein et al., 2018). In the same concept, prophylactic
vaccinations with full-length recombinant α-synuclein in rats,
which subsequent receive AAV-α-synuclein, prevented the
accumulation of α-synuclein through the induction of Tregs and
microglia activation (Christiansen et al., 2016).

Passive immunization with monoclonal antibodies targeting
mostly the C- and N-terminal region of α-synuclein have been
also used as means to sequester the extracellular protein, thus
inhibiting the propagation of the disease (Masliah et al., 2011;
Games et al., 2014; Tran et al., 2014; Shahaduzzaman et al.,
2015). The first passive immunotherapy using the PRX002 or 9E4
antibody was tested in 2011, in the PDGF-α-synuclein transgenic
mice, and resulted in reduced α-synuclein accumulation in axons
and synapses, enhanced lysosomal degradation and improved
behavioral and motor defects (Masliah et al., 2011). The
promising preclinical results of two antibodies, the PRX002 and
the BIIB054 (Weihofen et al., 2019), led to their testing in
clinical trials where both of them were found safe and effective
in preventing α-synuclein spread. Specifically, PRX002 (PRX002,
initially developed by Perrigo, Allegan, MI, United States; patent
number US7910333; NCT02157714 and NCT02095171) is a
humanized IgG1 monoclonal antibody that resulted in 96.5%

2http://sympath-project.eu/wp-content/uploads/PR_AFF009_V1.pdf
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FIGURE 4 | Immunotherapy approaches against α-synuclein. (A) Thermodynamically unstable monomers of α-synuclein misfold and aggregate into pathological
species. The release of oligomeric and fibrillar α-synuclein into the extracellular space triggers α-synuclein propagation into non-affected cells, microglial activation
and neuroinflammation. (B) Active or passive immunization mainly aims to lower the extracellular α-synuclein by microglial-mediated degradation and to prevent
pathology propagation via antibody binding on receptors facilitating α-synuclein endocytosis. (C) The effective targeting of intracellular α-synuclein is achieved by
antibody fragments paired with signaling peptides for endocytosis, or viral vector-derived antibody constructs, which are expressed within the cells. (D) The
engineered intrabodies bind to α-synuclein toxic species and lead them to degradation through proteasomal or autophagic pathways. (E ) Antibodies against
immune system activation is another immunotherapy approach, which aims to reduce pro-inflammatory cytokine release, enhance anti-inflammatory microglial
activity and, by that, prevent α-synuclein pathology progression.

decrease of free serum α-synuclein in phase 1a clinical trial
(Schenk et al., 2017) and 97% decrease following a single
intravenous infusion of the highest dose (60 mg/kg) in phase
1b and these findings prompted the design of an ongoing phase
2 clinical trial (NCT03100149) (Jankovic et al., 2018). BIIB054
(licensed by Biogen) is a fully human-derived monoclonal
antibody specifically raised against aggregated and fibrillar α-
synuclein that displayed beneficial effects regarding α-synuclein
aggregation in the PFF-inoculated PD mouse model (Weihofen
et al., 2019). The results from phase 1 clinical trial in PD and
healthy patients revealed that BIIB054 is safe and tolerable and
have allowed the initiation of phase 2 trial (NCT03318523)
(Brys et al., 2019). Finally, other monoclonal antibodies raised
against misfolded α-synuclein (Syn211 and Syn303) have been
efficiently used in vivo and inhibited α-synuclein uptake and
pathology transmission (Tran et al., 2014). Other C-terminal
targeting α-synuclein antibodies, such as 1H7, 5C1, A1-A6 and
ab274 antibodies, were efficiently shown to decrease protein

aggregation and exert neuroprotective effects (Bae et al., 2012;
Games et al., 2014; Sahin et al., 2017).

The first reported N-terminal targeting antibody, AB1,
prevented dopaminergic neuron loss and microgliosis in an
AAV-α-synuclein rat model of PD (Shahaduzzaman et al.,
2015). Subsequently, the aggregate-selective BIIB054 human α-
synuclein antibody was reported to attenuate the spreading of α-
synuclein pathology, to rescue motor impairments and to reduce
the loss of dopamine transporter density in the nigrostriatal
terminals in three different PFF-inoculated mouse models
(Weihofen et al., 2019). BIIB054 was originally licensed by Biogen
in 2010 and it was first tested in healthy volunteers in 2015.
Since then, BIIB054 successfully passed through Phase 1 clinical
testing for safety and tolerability and a Phase 2 clinical trial in
311 PD patients is ongoing3 (Brys et al., 2019). The aggregated
forms of α-synuclein are also the target of the monoclonal

3https://www.alzforum.org/therapeutics/biib054

Frontiers in Cell and Developmental Biology | www.frontiersin.org 16 September 2020 | Volume 8 | Article 55979158

https://www.alzforum.org/therapeutics/biib054
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-559791 September 4, 2020 Time: 14:44 # 17

Fouka et al. Therapeutic Strategies Against α-Synuclein

antibodies Syn211 and Syn303, with promising reported results
in cellular and animal α-synuclein PFF-models (Tran et al., 2014).
Antibody targeting of the NAC region is another approach.
As such, administration of the NAC32 antibody decreased
formation of aberrant species and mitigated α-synuclein-related
toxicity by 75% in an A53T mutant α-synuclein neuronal cell
line. Importantly, the NAC32 established the prime basis of
intrabodies manufacture, and open up new opportunities for
intracellular α-synuclein targeting (Lynch et al., 2008). Direct
targeting of oligomers is another way to inhibit further the
aggregation process and promote the clearance of pathological α-
synuclein assemblies. In vitro [D5 antibody, (Emadi et al., 2007)]
and in vivo [Syn-10H antibody, (Emadi et al., 2009)] studies
using such oligomer-specific antibodies reported promising anti-
aggregation effects. In addition, the D5 antibody paired with
the LDL receptor-binding domain of apolipoprotein B resulted
in increased penetration of the construct intrabody through
the endosomal sorting complex required for transport (ESCRT)
and resulted in enhanced α-synuclein oligomer degradation
in vivo (Spencer et al., 2014). Based on this, the combined
administration of a CD5-D5 single-chain antibody prevented
astrogliosis, microgliosis and α-synuclein aggregation in a mouse
model of MSA (Valera et al., 2017).

Likewise, in the PLP-α-synuclein MSA mouse model,
administration of the Rec47 antibody led to enhanced α-
synuclein clearance, reduced intracellular seeding of the
protein and limited microglial activation (Kallab et al.,
2018). Furthermore, the oligomer-specific mAb47 antibody
successfully prevented α-synuclein assembly formation in
murine co-cultures of astrocytes, oligodendrocytes and neurons
and, interestingly, protected astroglia from an oligomeric
α-synuclein-mediated mitochondrial dysfunction (Gustafsson
et al., 2017). Moreover, MEDI1341, a high affinity α-synuclein
antibody that crosses the BBB and binds monomeric and
aggregated α-synuclein, prevented cell-to-cell transmission
of α-synuclein in PFF-treated neuronal cells and is currently
tested in a Phase 1 clinical trial for α-synucleinopathies
(ClinicalTrials.gov identifier NCT03272165) (Schofield et al.,
2019). A phase 1 clinical study with the monoclonal antibody
ABBV-0805 (or BAN0805) that selectively targets oligomeric
and protofibrilar forms of α-synuclein has initiated, however
no results have been published yet. A variety of antibodies
against oligomeric and fibrillar forms of α-synuclein were
recently reported. Syn-O1, Syn-O2 and Syn-O4 target
oligomers and Syn-F1 and Syn-F2 recognize the fibrillar
assemblies. Syn-O1, Syn-O4 and Syn–F1 antibodies limited
α-synuclein aggregation with higher efficacy than the other
constructs when tested in the PDGF α-synuclein mouse model
(El-Agnaf et al., 2017).

Finally, many current immunotherapeutic approaches aim to
modulate the immune system imbalance evoked by misfolded
α-synuclein accumulation by promoting anti-inflammatory and
neuroprotective conditions (Reynolds et al., 2010). Therapies,
including administration of the granulocyte macrophage-colony
stimulating factor (GM-CSF) and the vasoactive intestinal
peptide (VIP), avert the inflammatory role of effector T cells
(Teff) by inducing T regulatory cells (Tregs), which are severely

diminished in PD patients (Saunders et al., 2012). The GM-
CSF stimulating factor, sargramostim, is already in clinical trial
phase 1 for PD providing promising results in motor defects
improvement (Gendelman et al., 2017). Unfortunately, VIP is
rapidly metabolized; hence a VIPR2 agonist, LBT3627, has been
designed and used in α-synuclein overexpression rats and MPTP-
intoxicated mice with beneficial results (Olson et al., 2015, 2016;
Mosley et al., 2019). Therefore, its promising outcome in animal
models renders VIP agonist as a therapeutic candidate for clinical
testing in the future.

TARGETING THE GUT

α-synuclein spread via the gut-brain axis has gained attention
in the last years as a potential therapeutic target against α-
synucleinopathies (Holmqvist et al., 2014; Lee et al., 2018;
Manfredsson et al., 2018). Many studies have focused on
gut microbiota as a regulator of α-synuclein misfolding and
transmission towards the brain via the vagus nerve (Sampson
et al., 2016; Bhattacharyya et al., 2019; Chiang and Lin, 2019)
and results have revealed differences in gut microbiota between
PD patients and healthy controls suggesting a role of the
gut microbiome in PD pathogenesis (Scheperjans et al., 2015;
Unger et al., 2016; Lin A.et al., 2018). To this end, the
generation of a germfree α-synuclein PD mouse model resulted
in decreased α-synuclein toxicity and neuroinflammation;
however when the same mice received gut microbiota from
PD patients, they exhibited motor impairment (Sampson et al.,
2016). Gastrointestinal dysfunction is connected to PD and
several approaches have been developed to alleviate α-synuclein
pathological effects, such as therapeutic strategies to stimulate
gastric motility (Moore et al., 2018), use of antibiotics and
microbiota replacement (Fasano et al., 2015; Felice et al., 2016).

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Undoubtedly, α-synuclein plays a crucial role in the initiation
and progression of the neurodegenerative cascade characterizing
PD and related synucleinopathies. Candidate attractive options
for therapy aim to reduce protein production or enhance protein
degradation, to inhibit protein aggregation and misfolding, to
alter α-synuclein post-translational modifications or to target
the extracellular levels of the protein with antibodies, thus
intervening in the protein uptake and cell-cell propagation
mechanisms. All approaches should be handled with caution,
since uncontrolled manipulation of the global α-synuclein
levels may lead to neurotoxicity, due to the prevailing role
of the protein in synaptic neurotransmission. Regarding the
degradation strategies, experimental findings surmise that
such strategies imply extensive knowledge about dosage and
timing of application, a fact that may limit their current
therapeutic applicability. Others and we have found that under
specific circumstances induction of macroautophagy can have
detrimental effects, thus the therapeutic utility of chemical
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modulators of macroautophagy or even CMA should be
examined with caution given that they may be involved in
diverse range of processes. Our experience in regards to CMA
enhancement showed that this approach represents a fruitful
strategy for synucleinopathies, at least in rodent cellular and
animal models. This therapeutic modality is currently being
tested in a non-human primate model of α-synucleinopathy and
if proven successful it may pave the way for its possible clinical
utility for the treatment of PD and related synucleinopathies.
In regards to the approaches targeting extracellular α-synuclein,
they seem to represent a compelling strategy to slow or halt
disease progression, by interfering to the cell-cell transmission
mechanisms. However, it still remains to be elucidated whether
this transmission involves only the neuronal connectome and,
most importantly, which species or strains of the protein are the
main culprits for the pathology transmission.

In addition, a growing body of evidence suggests that
an underlying cause of the heterogeneity characterizing
synucleinopathies is the presence of distinct α-synuclein strains
in patient samples. As such, PD- and MSA- derived patient
α-synuclein strains exhibit different biophysical/biochemical
properties and evoke different responses in cultured cells and
animal models. Furthermore, the cellular milieu seems to
affect the pathogenetic properties of the engendered strains,
suggesting that other co-factors may alter disease initiation and
progression. Hence, the aforementioned therapeutic strategies
targeting the degradation, modification, secretion and seeding
of the distinct strains may result in different outcomes in
neurons and oligodendrocytes, raising the possibility of the
application of a precision medicine in synucleinopathies in

the near future. By utilizing advanced structural biology
techniques and cryo-electron microscopy we may attain a
better understanding of the clinical heterogeneity amongst
α-synucleinopathies, thus offering the opportunity for the
future development of strain-specific therapies to halt or delay
disease progression.

Collectively, we believe that further research is needed to
better understand the precise mechanisms underlying the α-
synuclein pathology enigma and to pinpoint the factors that
differentiate the pathology observed in synucleinopathies.
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Parkinson’s disease (PD) is marked by different kinds of pathological features, one
hallmark is the aggregation of α-synuclein (aSyn). The development of aSyn pathology
in the substantia nigra is associated to the manifestation of motor deficits at the time of
diagnosis. However, most of the patients suffer additionally from non-motor symptoms,
which may occur already in the prodromal phase of the disease years before PD
is diagnosed. Many of these symptoms manifest in the gastrointestinal system (GIT)
and some data suggest a potential link to the occurrence of pathological aSyn forms
within the GIT. These clinical and pathological findings lead to the idea of a gut-brain
route of aSyn pathology in PD. The identification of pathological aSyn in the intestinal
system, e.g., by GIT biopsies, is therefore of highest interest for early diagnosis and
early intervention in the phase of formation and propagation of aSyn. However, reliable
methods to discriminate between physiological and pathological forms of enteral aSyn
on the cellular and biochemical level are still missing. Moreover, a better understanding of
the physiological function of aSyn within the GIT as well as its structure and pathological
aggregation pathways are crucial to understand its role within the enteric nervous
system and its spreading from the gut to the brain. In this review, we summarize
clinical manifestations of PD in the GIT, and discuss biochemical findings from enteral
biopsies. The relevance of pathological aSyn forms, their connection to the gut-brain
axis and new developments to identify pathologic forms of aSyn by structural features
are critically reviewed.

Keywords: Parkinson’s disease, alpha synuclein, ultra-structural analysis, gastrointestinal tract, gut-brain axis

INTRODUCTION

Alpha synuclein (aSyn) is a small protein that consists of 140 amino acids and is primarily
found as a monomer in the cellular cytosol. Here, it plays a role in synaptic plasticity and
interacts with presynaptic vesicles (Lashuel et al., 2013). Under pathological conditions, aSyn
monomers aggregate and form amyloids, which have been shown to exert neurotoxic properties
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(Lashuel et al., 2013; Riederer et al., 2019). These aSyn amyloids
can be found in patients suffering from neurodegenerative
disorders collectively known as synucleinopathies, comprising
Parkinson’s disease (PD), multiple system atrophy (MSA) and
dementia with Lewy bodies (DLB) (Spillantini et al., 1997;
Goedert et al., 2017; Riederer et al., 2019).

In PD patients, aSyn aggregates form Lewy bodies and Lewy
neurites and are detected in post-mortem brains (Spillantini
et al., 1997; Braak et al., 2003). Dopaminergic neurons residing
in the substantia nigra pars compacta are the most affected
central nervous system (CNS) cell population during the disease
course. A loss of these neurons leads to a reduction of the
neurotransmitter dopamine, thereby influencing feedback loops
within the basal ganglia, resulting in clinical symptoms including
rigidity, bradykinesia and tremor (Kalia and Lang, 2015).
However, in recent years, aSyn and its aggregates were also
found in the gastro-intestinal tract (GIT) of PD patients and
symptoms outside the CNS were described including obstipation
and reduced peristalsis (Braak et al., 2006; Postuma et al.,
2012; Beach et al., 2016). This gave rise to the hypothesis that
manifestations in the brain and in the gut are two sides of
the same coin. Some researchers even favor the idea that PD
pathology can spread from the gut to the brain and/or vice versa
(Braak et al., 2006; Breen et al., 2019; Leclair-Visonneau et al.,
2020) and a transmission of aSyn pathology via the vagal nerve
was suggested at least in an animal model (Kim S. et al., 2019;
Challis et al., 2020).

At the cellular level, different compartments are of interest
when looking at aSyn homeostasis and pathological aggregation
pathways. aSyn can be degraded via the proteasomal or via the
lysosomal system, where different cathepsins have been proposed
to mediate aSyn degradation (Webb et al., 2003; Sevlever et al.,
2008; Cullen et al., 2009; Mak et al., 2010; Xilouri et al., 2013).
Elevation of the physiological aSyn level via increased production
(e.g., gene duplication or triplication) or reduced degradation
leads to an accumulation of intracellular aSyn. This accumulation
results in the aggregation of the aSyn protein leading to the
formation of different conformers, including toxic and non-toxic
oligomers, tetramers and fibrils (Bartels et al., 2011; Lashuel
et al., 2013; Wong and Krainc, 2017; Zunke et al., 2018), with
β-sheet rich fibrils being the endpoint of the aggregation process
(Cremades et al., 2012; Lashuel et al., 2013). Aggregated aSyn
was also shown to escape from the lysosome to the cytosol via
still not well understood pathways (Jiang et al., 2017; Karpowicz
et al., 2019). Moreover, aSyn conformers can be released from
the entire cell, most importantly not only from dying cells, but
also within CNS-derived extracellular vesicles (exosomes), which
can be found in the blood and CSF (Shi et al., 2014; Fussi et al.,
2018; Parnetti et al., 2019; Jiang et al., 2020; Figure 1). These
peripheral aSyn species can be taken up by cells for degradation,
but have also be shown to act as aggregation seeds, leading to
an accelerated aggregation of toxic aSyn species, explaining the
spreading and seeding capacity of the protein (Wood et al., 1999;
Luk et al., 2009, 2012; Rey et al., 2019).

In this review, we highlight different aspects of aSyn pathology
in PD patients, with an emphasis on the GIT. We will cover
clinical aspects, look at basic findings that connect the GIT to

PD development, discuss the role of enteral aSyn as a biomarker
in PD, and evaluate methods to differentiate aSyn species on the
cellular and structural level. At the end, we will conclude how
these different research areas could be brought together for a
better understanding of especially early PD stages.

ASYN IN THE GASTRO-INTESTINAL
SYSTEM: PHYSIOLOGICAL
EXPRESSION AND FUNCTION

While aSyn is well known for its pathological features, its
physiological expression and function in the CNS as well as in
the enteric nervous system (ENS) is not fully understood yet.

Physiological aSyn expression, including its phosphorylated
forms, has been observed not only in the CNS, but also other
peripheral tissues including the GIT (Bottner et al., 2012;
Visanji et al., 2015; Barrenschee et al., 2017). Until now, our
understanding of the physiological functions of aSyn in the CNS
is incomplete, but even less is known about its impact and
properties within the ENS. Whereas aSyn aggregates were first
reported in vasoactive intestinal peptide (VIP)-positive neurons
in humans (Wakabayashi et al., 1990), expression in both, VIP-
positive (Chen et al., 2018) and cholinergic enteric neurons,
potentially influencing cholinergic synaptic transmission, has
been described in rodents (Wang et al., 2012; Swaminathan et al.,
2019). A morphological and a co-localizing study gave evidence
that aSyn is physiologically associated to the synaptic vesicle
apparatus of enteric neurons (Böttner et al., 2015). Expression of
aSyn is regulated by cyclic AMP (Paillusson et al., 2010) and aSyn
secretion is activity-dependent in enteric neurons (Paillusson
et al., 2012). Despite these interesting first findings, there is
still a crucial lack of information regarding aSyn regulation and
functions in the GIT under physiological conditions.

GASTROINTESTINAL SYMPTOMS IN PD:
INDICATIONS FOR A START OF ASYN
PATHOLOGY IN THE GUT

The occurrence of cardinal motor symptoms in PD is
accompanied by aSyn aggregation in the substantia nigra,
leading to the conclusion that aSyn pathology plays a pivotal
role in PD. However, the disease is also characterized by a
variety of non-motor symptoms. Amongst them, symptoms
of impaired gastrointestinal function are very common, with
approximately 80% of PD patients being affected by at least
one gastrointestinal symptom during the course of the disease,
indicating an additional (aSyn) pathology in the GIT (Edwards
et al., 1991; Cersosimo et al., 2013). These symptoms do not only
play an important role in the disease burden for the patient, but
also affect treatment of the disease, as medication is less regularly
absorbed. Additionally, gastrointestinal affection also gives an
important insight into underlying pathological mechanisms and
etiologic factors.

Already in his first description of PD, James Parkinson
mentioned the severe symptom of reduced bowel movements
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FIGURE 1 | Summarizing figure. To analyze PD progression during the disease course, patient samples have to be taken from appropriate sources to allow multiple
sampling of the same patient. These include biopsies (e.g., rectal biopsies during colonoscopy for cancer screening), serum, plasma or exosomes from blood
samples and CSF from lumbar puncture. Biochemical and structural analysis could then link the different aSyn species to different cell types either via structure
determination after (multiple rounds of) amplification by PMCA or through the purification of cell-type specific exosomes. Identification of markers that discriminate
patients from each other or patients from control individuals could then be mirrored into clinical practice and be linked to patient outcome. Also, the gut microbiome
has been shown to be involved in disease pathology and further studies will have to untangle the relationship between PD, aSyn aggregation and gut dysbiosis.

with a frequent need for pharmacological or even physical
intervention (Palacios-Sanchez et al., 2017). Since then, several
gastrointestinal symptoms have been identified, affecting nearly
all parts of the gastrointestinal system starting from the
salivary glands and esophagus (hypersalivation and dysphagia),
including the stomach (gastroparesis/delayed gastric emptying),
the small intestine and colon (constipation) and the rectum
and anus (anorectal/defecatory dysfunction) (Pfeiffer, 2018).
These symptoms reveal that besides neurons of the CNS, also
large parts of the peripheral nervous system (PNS), including
the parasympathetic (Nervus vagus), the sympathic (Nervi
splanchnici) nervous system and the ENS are affected in PD.

The individual description of gastrointestinal symptoms by
PD patients has been complemented by a variety of objective
imaging techniques. Methods to quantify functional impairments
of the gastrointestinal system include esophageal and gastric
scintigraphy to display dysphagia and delayed gastric emptying
(Hardoff et al., 2001; Potulska et al., 2003), MRI (magnetic
resonance imaging) techniques to measure colonic enlargement
(Knudsen et al., 2017a) and Donepezil PET to display cholinergic
denervation of the gut (Gjerloff et al., 2015). Recent studies

with ingestible capsule systems using the radio opaque marker
technique or SPECT/CT confirmed a high prevalence of
reduced intestinal transit time in PD (Sakakibara et al., 2003;
Dutkiewicz et al., 2015; Knudsen et al., 2017b). Interestingly,
objective imaging techniques were found to be more sensitive
than subjective ratings of patients (Knudsen et al., 2017a).
Additionally, sonographic studies confirm a direct impairment of
the vagal nerve by displaying nerve atrophy with high-resolution
ultrasound (Pelz et al., 2018; Walter et al., 2018).

Importantly, clinical symptoms of gastrointestinal
dysfunction, particularly constipation, are not only an expression
of advanced disease, but occur also in very early phases, often
years before the onset of the typical motor symptoms. The phase
of ongoing neurodegeneration preceding the clinical diagnosis is
defined as the prodromal phase of PD, with constipation being
one of the most important prodromal symptoms. Findings of
large retro- and prospective studies showed that constipation
is also one of the earliest prodromal symptoms, occurring up
to twenty years before cardinal motor signs manifest (Abbott
et al., 2001; Gao et al., 2011; Ross et al., 2012). This clinical
observation, together with the breakthrough pathological
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findings of Braak et al. (2003), who histologically described
ascending aSyn pathology, led to the hypothesis that pathology
in PD may start in and spread from the gut at least in a
subpopulation of patients (Figure 1). The Braak staging system
proposed a first conceptual link between the presence of aSyn in
the GIT and its spreading via the vagal nerve to its dorsal motor
nucleus (DMV) in the brainstem. This presumed ascending
propagation of aSyn pathology via the vagal nerve was clinically
reassured by findings of lower incidence of PD in individuals
receiving vagotomy (Svensson et al., 2015). However, Braak et al.
already assumed in their dual-hit hypothesis that pathology does
not always follow the gut-brain route and proposed a secondary
propagation path via the olfactory bulb (Hawkes et al., 2007).
Indeed, in recent years, evidence is slowly emerging that the
gut-brain-propagation in PD may define a subtype of the disease,
with distinct underlying pathological mechanism and clinical
phenotypes (Figure 1). One approach to identify subtypes of PD
already in the prodromal phase is the clinical identification of
different non-motor symptom clusters (Marras and Chaudhuri,
2016), not only comprising gastrointestinal dysfunction, but also
the occurrence of REM sleep behavior disorder (RBD). This
parasomnia is associated with neuronal damage in the brainstem
and individuals with idiopathic RBD have an over 80% risk of
developing PD in the future (Romenets et al., 2012; Iranzo et al.,
2014; Postuma et al., 2019).

Knudsen et al. (2018) were recently able to show in
RBD patients both, cholinergic denervation of the gut using
Donepezil PET and cardiac sympathetic denervation using
metaiodobenzylguanidine (MIBG) scintigraphy. Additionally,
the lower brainstem (as shown by neuromelanin-MRI) but not
(yet) the nigrostriatal system (displayed using F-DOPA PET)
were affected by the neurodegenerative process.

Taken together, affection of the GIT is not only relevant for
patients and the basis for clinical and imaging markers, but may
also serve as a source for the identification of molecular markers
within the GIT, which is far easier to access than the CNS. It is
therefore of highest interest to understand the role of pathological
aSyn as potential molecular marker in the GIT.

ASYN IN THE GASTRO-INTESTINAL
SYSTEM: PATHOLOGICAL
IMPLICATIONS

First characterizations of aSyn aggregates in the ENS of PD
patients has been performed on autopsied specimens in the late
80’s by the group of Wakabayashi et al. (1988). Twenty years
later, Lebouvier and co-workers characterized the presence of
phosphorylated aSyn in routine colorectal biopsies of PD patients
(Lebouvier et al., 2008). Since then, an increasing number of
studies has aimed at evaluating the use of aSyn detection in
the GIT as a potential biomarker for PD development (Tsukita
et al., 2019). It is important to note that aSyn was not only
detected in the colon and rectum, but also in other parts of
the gastrointestinal system, including the salivary glands, lower
parts of the esophagus and the stomach, corresponding to the
above-mentioned clinical manifestations (Fayyad et al., 2019). In

fact, many studies confirmed a rostro-caudal gradient of aSyn
aggregates, questioning the colon and rectum as most suitable
regions for biopsy studies (Braak et al., 2006; Beach et al., 2010;
Adler et al., 2014). However, apart from the easy accessibility
(e.g., in routine colonoscopies), the idea of dysbiosis as potential
trigger of neurodegeneration still argues for colorectal biopsies to
detect pathological changes of PD at the very beginning (Pietrucci
et al., 2019; Nishiwaki et al., 2020).

One major issue regarding the development of aSyn as a
biomarker for PD suitable for use in GIT-samples has been the
difficulty to discriminate between native and pathologic forms of
this protein in intestinal tissues. Indeed, native or phosphorylated
forms of aSyn, as well as proteinase-K-resistant aggregates of
aSyn have been detected in intestinal samples of PD patients,
but no clear consensus has yet emerged about a detection
method of pathological aSyn aggregates in the GIT (Beach
et al., 2018). Despite these controversies, two independent studies
reported increased aSyn deposits in early and prodromal PD
patients (Shannon et al., 2012; Stokholm et al., 2016). One study
performed by the multi-center Systemic Synuclein Sampling
Study (S4) consortium demonstrated that aSyn expression
patterns in the sigmoid colon can be used to distinguish
between PD and healthy controls by trained neuropathologists
with a sensitivity and specificity of almost 100% on a small
cohort of 3 PD patients (Beach et al., 2018). Although globally
encouraging, none of the methods published so far has reached
sufficient specificity, sensitivity or reproducibility to serve as
the basis for a potent biomarker for clinical diagnosis. On the
contrary: characterization of aSyn pathological aggregates in
human intestinal tissues is still the focus of vivid debates in
literature (Schneider et al., 2016; Scheperjans et al., 2018; Bu et al.,
2019; Tsukita et al., 2019).

Apart from intestinal tissues, the involvement of the vagal
nerve in the spreading of PD from the gut to the brain has
gained further support from animal models, following the above-
mentioned hypothesis of Braak et al., For instance, either human
pathologic or human recombinant aSyn was detected in the DMV
of rats six days after its first introduction in the GIT (Holmqvist
et al., 2014). Similar propagation of pathological aSyn to the
CNS after injection in the GIT was confirmed in recent studies
(Kim J. Y. et al., 2019; Van Den Berge et al., 2019; Challis
et al., 2020). In these studies, injection of aSyn fibrils in the
GIT even led to the development of PD-like symptoms. Both,
spreading of aSyn accumulation and resulting symptoms were
shown to depend on the integrity of the vagal nerve, as well as
on the expression of endogenous aSyn in these models (Kim S.
et al., 2019; Figure 1). Additionally, it was shown that injection
of aSyn fibrils in the duodenal mucosa led to pathological
aggregations of aSyn within the ENS, accompanied by intestinal
inflammation, altered intestinal motility and further propagation
of the disease to the CNS in aged mice (Challis et al., 2020).
Interestingly, neuronal GBA1 [encoding for β-glucocerebrosidase
(GCase)] overexpression partially rescued the induced aSyn
accumulation and GIT dysfunction observed in these mice,
indicating that GCase may play an important role in the
regulation of aSyn life-cycle and pathological aggregation in
enteric neurons (Challis et al., 2020). Here, the enzymatic
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substrate of GCase, β-glucosylceramide, might play an important
role as it was shown to stabilize pathologic forms of aSyn (Zunke
et al., 2018). Additionally, caudo-rostral propagation of aSyn was
detected in rats after expression of human aSyn in the medulla
oblongata via adeno-associated viral vectors toward the pons,
midbrain and forebrain (Ulusoy et al., 2013).

Until now, little is known about the mechanisms regulating
the formation of pathological aSyn species in the GIT.
Proteinase-K-resistant aSyn aggregates were also observed in
the vermiform appendix of healthy humans (Killinger et al.,
2018). Appendectomy was associated with a decreased risk to
develop PD, suggesting that pathological forms of aSyn in the
vermiform appendix may contribute to spreading of the disease
(Killinger et al., 2018). Further, recent evidence indicates that
aSyn regulation and inflammatory processes are remarkably
linked to each other, although a clear picture about their mutual
imbrication is still missing [see for reviews (Rolli-Derkinderen
et al., 2019; Tan et al., 2020)]. For instance, it was shown
that a common infection in the human GIT results in an
upregulation of aSyn expression in enteric neurons that positively
correlated with the degree of acute and chronic inflammation
in the intestinal wall and that monomeric and oligomeric aSyn
have chemoattractant activity causing the migration of immune
cells (Stolzenberg et al., 2017). Additionally, aSyn expression,
but not its pathologic aggregation, is increased in the ENS
of patients with Crohn’s disease (Prigent et al., 2019b) and
inoculation of aSyn fibrils in the GIT is associated with an
increased expression of inflammatory mediators in intestinal
tissues (Challis et al., 2020). However, by contrast, it was
seen that acute inflammatory stress inhibits aSyn expression in
primary enteric neurons (Prigent et al., 2019a). Interestingly,
inflammatory parameters, pathological aSyn aggregation and
motor deficits were demonstrated to be regulated by microbiota
in aSyn overexpressing mice (Sampson et al., 2016). The same
group demonstrated that curly fibers derived from the bacterial
amyloid CsgA, regulate not only the pathological aggregation
of aSyn, but also the further development of intestinal and
motor symptoms and inflammation in a similar mouse model
(Sampson et al., 2020). Expression of aSyn in the intestinal
mucosa does not seem to be limited to the ENS, but was also
found in enteroendocrine cells (EECs) and in transit between
enteric neurons and EECs through their neuropods (Chandra
et al., 2017). Although the contribution of ECCs to PD pathology
remains largely unclear, these cells are also interconnected to
vagal efferents (Kaelberer et al., 2018), offering a direct potential
road for the propagation of PD pathology from the intestinal
mucosa to the brain, which may even bypass the ENS.

STRUCTURAL ASPECTS OF ASYN
PATHOLOGY

As described in the previous parts, there are good arguments
that favor the onset and manifestation of PD in the GIT at
least in a subpopulation of patients. The challenge is still the
discrimination of patients and controls utilizing GIT-derived
samples and an aSyn specific detection system. From a clinical

but also cell-biological and biochemical view there are some
arguments that favor GIT-specimens (especially from the colon)
over other described sources as e.g., skin or blood (Fayyad
et al., 2019; Ma et al., 2019). Interestingly, mice overexpressing
human aSyn in neuronal cells (CNS and ENS), exhibit intestinal
dysfunction besides the motor impairments (Chesselet et al.,
2012). This indicates that aSyn aggregation has the ability and
potential to cause gastrointestinal impairments. The cell type
affected by aberrant protein accumulation in the GIT (enteric
neurons) is post-mitotic as neurons from the CNS. This allows
for a similar aggregation time of pathological aSyn species in both
cell-types which is presumably years in PD patients. Although
aSyn was also detected in erythrocytes (Barbour et al., 2008;
Tian et al., 2019), these cells are short lived and might not
display the same aggregation mechanism as long-lived neuronal
cells. In colon samples the influence of dysbiosis can also be
evaluated as the colon forms the interface to most commensal or
pathologic bacteria.

In recent years, a better understanding of cellular processes
involved in aSyn processing has helped to identify specific aSyn
conformers in vitro and in vivo. As brain samples and aSyn
structure can only be collected and characterized post-mortem,
exclusively endpoint measurements of PD can be made. Here,
samples from the GIT that can be taken at different stages of the
disease might also show transient forms of aSyn aggregation. To
study aSyn structure and mechanistic of aggregation, there are in
principle three sources for aSyn species: (i) protein isolated from
patients/animals/cells, (ii) in vitro aggregated aSyn conformers
and (iii) amplified aSyn species from patient samples by utilizing
a protein-misfolding cyclic amplification assay (PMCA) (Paciotti
et al., 2018), which was initially established for prion protein
analysis (Saborio et al., 2001).

The use of recombinant aSyn monomers purified from E. coli
(Huang et al., 2005) enables studying and inducing aSyn fibril
formation in a very controlled and clean environment. For
this, different protocols can be applied, however, many involve
constant agitation (120–1,000 rpm) for different timeframes in
different buffer systems (Narkiewicz et al., 2014; Candelise et al.,
2020). It was also described, that the addition of a single glass
or PTFE (poly tera-flour-ethylene) bead enhances the formation
of aSyn fibrils (Buell et al., 2014; Narkiewicz et al., 2014). Using
transmission electron microscopy and single particle analysis
helped to produce near atomic resolution structures of such an
aSyn fibril (Guerrero-Ferreira et al., 2018; Li et al., 2018). This
fibril consists of aSyn dimers that form an antiparallel β-sheet
at the contact site with the core part ranging from amino acid
50–57. Stacking of these dimers results in the formation of
amyloid fibrils that report with a pitch of 239 nm and a width
of 10 nm (compared to 5 nm for an aSyn proto-fibril). A high
resolution (1.4Å) structure of the NAC core domain (forms
the interface of both aSyn monomers in a fibril) determined
by micro electron-diffraction electron microscopy reveals the
molecular interface and shows that the two aSyn monomers
are not within one plane (Rodriguez et al., 2015). They are
shifted upward/downward by 2.4Å. Two aSyn monomers are
stacked in a distance of 4.8Å. There were also structures described
for aSyn monomers carrying single amino acid exchanges also
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found in PD patients (Guerrero-Ferreira et al., 2019). The main
question is of course, how well do these fibrils represent
structures that form in patients’ brains or GIT as agitation
at 1,000 rpm is not physiological. ‘Natural’ aSyn aggregates
can be characterized from PD patient samples, as shown in a
study analyzing aSyn fibrils derived from the CSF (Shahnawaz
et al., 2020). To obtain these fibrils, CSF was taken from PD
patients and the pathological aSyn species were amplified by
PMCA. For this, small amounts of patient material were used
as a seed and a large surplus of monomeric aSyn was added
and samples were agitated to induce attachment of monomeric
aSyn to the pathological aggregates adopting their conformation
[PMCA; (Paciotti et al., 2018)]. Applying negative stain, cryo-
tomography on the resulting conformers, revealed fibrils with
a pitch of ∼260 nm and a width of 9 nm for PD patients
(Shahnawaz et al., 2020). Both aSyn fibrils, recombinantly
produced and amplified from patient CSF, show a similar pitch
and width, and therefore, at least at the present resolution,
recombinantly generated fibrils might resemble a pathological
form present in PD patients. Interestingly, a different fibrillary
architecture was found for MSA patients, where the cellular
source of aggregated aSyn is not neuronal, but stems from
oligodendrocytes (Shahnawaz et al., 2020). Hence, the cellular
environment seems to influence the aggregation pattern and
fibrillary structure of aSyn significantly (Candelise et al., 2020).
Thus, high-resolution structural comparison of GIT- and CNS-
derived aSyn conformers could help to better understand the role
of the gut-brain axis in PD.

Other methods to study aSyn oligomerization and amyloid
formation within GIT samples could imply fluorescent
complementation assays (Herrera et al., 2012) or intercalating
dyes, like Thioflavin (Vassar and Culling, 1959; Hashimoto
et al., 1998; Wordehoff and Hoyer, 2018). Moreover, analysis
of density and stability of different purified aSyn strains, e.g.,
from gastro-intestinal samples, proteinase-K, SDS or formic
acid treatment could be applied (Takeda et al., 1998; Lashuel
et al., 2013). The proteinase-K serine protease exerts endo- and
exopeptidase activity and after aggregation of aSyn some of the
cleavage sites are inaccessible for the protease resulting in an
incomplete digestion, which can be visualized using coomassie
stained SDS-PAGE (Cremades et al., 2012; Zunke et al., 2018).
For different amyloid aSyn species, structure-specific antibodies
have been raised over the last years that could be very useful for
a better understanding of aSyn conformation within the GIT
and disease pathology (for a comprehensive list see Harsanyiova
et al., 2020). Native dot blot analysis enables the detection of
folded/aggregated protein species and might help to identify
conformations in patient samples of the GIT (or other sources)
that are absent in controls. Characterization of GIT-derived aSyn
from different PD stages by biochemical (conformation-specific
aSyn antibodies) and structural (PMCA with subsequent TEM
analysis) analyses as above mentioned might help to identify
aggregation pathways in patients. This understanding will help
to identify and characterize clinically relevant aSyn aggregates
and serve as a basis to develop recombinant/cellular/animal
models that can be utilized in pre-clinical intervention studies as
discussed in the following paragraph.

IMPLICATION FOR THERAPEUTIC
STRATEGIES IN PD

Recent years brought increasing evidence that the reciprocal
connection between gut and brain may have a decisive influence
on symptomatic treatment. On the one hand, it became
evident that dopaminergic medication, especially Levodopa,
used to improve motor function, did not improve and instead
sometimes even worsens gastrointestinal symptoms such as
constipation (Schaeffer and Berg, 2017). On the other hand,
gastrointestinal dysfunction may affect the bioavailability and
efficacy of Levodopa and therefore has a direct effect on motor
function. Evidence in this respect has been seen for impaired
gastric emptying (Muller et al., 2006; Doi et al., 2012) and
small intestinal bacterial overgrowth as an expected result from
impaired motility of the small intestine (Gabrielli et al., 2011;
Fasano et al., 2013; Tan et al., 2014).

However, apart from symptomatic therapy, the
gastrointestinal system might also be an important target
for future disease-modifying treatment strategies. Of high
interest is the possibility of influencing the microbiome
in the gut (Figure 1). An increasing number of studies
indicates that dysbiosis in the gastrointestinal system may
play a crucial role for the pathogenesis of PD by promoting
intestinal permeability, gastrointestinal inflammation and aSyn
aggregation and propagation (Lubomski et al., 2019). Nutrition-
based components, such as probiotics, might be able to alter
enteral dysbiosis as part of pathology in PD very early in the
disease. Moreover, the concept of a gut-brain route of aSyn
pathology, may provide great opportunities to intervene in the
earliest phase of formation and propagation of aSyn. Several
compounds to modulate aSyn accumulation, aggregation and
propagation are currently being investigated (Deeg et al., 2015;
Wrasidlo et al., 2016; Jankovic et al., 2018). However, clinical
studies still have two major short comings: first, the compound
is administered in the clinical stages of the disease, in which the
synucleinopathy has already wide spread and second, there is a
lack of sensitive outcome parameters to verify treatment effects,
as they are still mainly limited to clinical symptoms. The fairly
easy accessibility of the gastrointestinal system, e.g., for biopsy
studies to detect and quantify aSyn, and the development of
imaging techniques to visualize gastrointestinal function and
pathology, may therefore not only be of significant importance
to detect individuals in the earliest phase of the disease, but also
to evaluate treatment effects of disease-modifying therapies.

QUESTIONING THE GUT-BRAIN AXIS IN
PD – WEAKNESSES AND CHALLENGES
OF THE HYPOTHESIS

Although the above-mentioned points argue in favor
of a gut-brain route as pathological basis in PD, this
hypothesis is still subject of controversial debate, following
contradictory results of clinical, pathological and animal studies
[reviewed in Lionnet et al. (2018); Scheperjans et al. (2018);
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Leclair-Visonneau et al. (2020)]. In this respect, it is especially
important to critically review the pathological findings of Braak
et al., which were an important trigger for many following studies
investigating the gut as primary starting point of pathology
in PD. However, it must be noted that a variety of following
autopsy studies could not confirm the proposed caudo-to-rostral
propagation and showed that aSyn pathology in the CNS is quite
often present without the occurrence of aSyn in the ENS or
the vagal nerve (Jellinger, 2019). Equally, the above-mentioned
studies investigating the association of vagotomy and future risk
of PD were questioned by following studies, which could not
find a lower PD risk in individuals receiving vagotomy (Tysnes
et al., 2015; Liu et al., 2017). Additionally, the hypothesis of an
exclusively caudo-rostral aSyn dissemination is questioned by
both pathological findings and clinical presentation of Dementia
with Lewy bodies (DLB). There is increasing consensus in the
scientific community that PD and DLB belong to the same
disease spectrum (Kosaka, 2014), whereby the early occurrence of
cognitive dysfunction together with necortical/limbic pathology
in DLB (preceding pathology in the SN) point to a rostral to
caudal spread of the disease.

The alternative hypothesis of a central to peripheral spread of
a-syn pathology has also been reinforced by results from animal
studies, showing for example a transmission of aSyn from the
midbrain via the vagus nerve into the stomach, following a CNS
to PNS route (Ulusoy et al., 2017). Moreover, a recent study could
show that injection and consecutive overexpression of adeno-
associated aSyn in the SN lead to neuronal loss and functional
alterations in the ENS, even without detectable spreading of the
exogenous aSyn to the gut (O’Donovan et al., 2020). Moreover,
in this study changes in the microbiome followed aSyn pathology
in the SN, questioning the role of the microbiome in etiology of
PD. In fact, although many studies confirmed alterations of the
microbiome in PD patients, the results have to be interpreted with
caution regarding potential confounders in already manifested
clinical PD, such as dopaminergic medication and impaired
gastrointestinal motility. More studies in prodromal cohorts and
longitudinal observations are still warranted to clarify the role of
the microbiome (Keshavarzian et al., 2020).

Taken together, the gut-brain hypothesis is challenged by a
variety of studies in favor for a brain-to-gut transmission of
aSyn pathology in PD. However, how can these two competing
hypotheses be brought together? One possible way is to
acknowledge possible subtypes in PD, with different ways of aSyn
propagation, following either a PNS-first or CNS-first route, as
proposed by Borghammer and Van Den Berge (2019). Another
possible explanation was given by the Threshold theory from
Engelender et al., proposing the parallel occurrence of pathology
in the CNS and PNS (Engelender and Isacson, 2017). Either
way, it remains of high importance to further elucidate the
interaction of gastrointestinal dysfunction with aSyn formation

and propagation to understand the role of the gastrointestinal
system for the pathophysiology in PD.

CONCLUSION

In the past years, progress has been made in understanding
PD as a disease with many faces and one of these faces are
alterations in the GIT homeostasis. As patient material from the
CNS is limited to post-mortem samples, other sources have to
be exploited. Here, samples from the GIT that contain enteric
neurons might be of paramount importance. They can be taken
during colonoscopy from the same patient at different stages
of the disease. Enteric neurons in these samples constitute a
post-mitotic neuronal cell population and with a direct interface
to microbiota they might also show differences in patients
with dysbiosis (Figure 1). Especially the identification of early
biomarkers for the prodromal phase of PD is highly desired and
these markers can only come from a non-CNS source. As GIT
symptoms such as constipation often manifest years before the
appearance of cardinal motor symptoms, enteric neurons might
be a good cellular source for in vivo aggregated aSyn conformers.
However, clear data to separate patient and control individuals
is still missing. Importantly, amplification of pathological aSyn
forms (PMCA) can generate aSyn conformers suitable for
structure determination (and maybe antibody generation) to
provide a better understanding of aSyn aggregation in patients.
Demonstrating these aggregates in patients could well be circled
back into clinical practice and might help to better define
disease stages. In the future, a close collaboration between
different clinical disciplines (e.g., neurology, gastroenterology,
and radiology) and basic researchers (biochemists, structural
biologist) will help to better understand PD on the macroscopic
clinical and microscopic/biochemical level and hopefully enable
new approaches toward clinical intervention studies.
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The aggregation of α-synuclein (α-syn) is inseparably connected to Parkinson’s disease
(PD). It is now well-established that certain forms of α-syn aggregates, oligomers
and fibrils, can exert neurotoxicity in synucleinopathies. With the exception of rare
familial forms, the vast majority of PD cases are idiopathic. Understanding the earliest
molecular mechanisms that cause initial α-syn misfolding could help to explain why
PD affects only some individuals and others not. Factors that chaperone the transition
of α-syn’s physiological to pathological function are of particular interest, since they
offer opportunities for intervention. The relationship between α-syn and lipids represents
one of those factors. Membrane interaction is crucial for normal cellular function, but
lipids also induce the aggregation of α-syn, causing cell toxicity. Also, disease-causing
or risk-factor mutations in genes related to lipid metabolism like PLA2G6, SCARB2 or
GBA1 highlight the close connection between PD and lipids. Despite the clear link, the
ambivalent interaction has not been studied sufficiently so far. In this review, we address
how α-syn interacts with lipids and how they can act as key factor for orchestrating
toxic conversion of α-syn. Furthermore, we will discuss a scenario in which initial α-syn
aggregation is determined by shifts in lipid/α-syn ratio as well as by dyshomeostasis of
membrane bound/unbound state of α-syn.

Keywords: alpha synuclein (α-syn), alpha synuclein accumulation, Parkisnon’s disease, lipid turnover, alpha
synuclein oligomers

INTRODUCTION

The abnormal aggregation of α-synuclein (α-syn) in the central nervous system defines
neurodegenerative diseases such as Parkinson’s disease (PD), Dementia with Lewy bodies (DLB)
and Multiple system atrophy (MSA) (Spillantini and Goedert, 2000). They all share common
neuropathological hallmarks as a result of α-syn accumulation, known as Lewy bodies (LBs) and
Lewy neurites (LNs). Although these age-related diseases are predominantly idiopathic, genetic
studies demonstrate that the protein α-syn can directly contribute to pathologic events (Stefanis,
2012). However, initial mechanisms of α-syn misfolding that precede LB and LN formation remain
elusive. This review summarizes recent advances in understanding the causes of α-syn aggregation.

α-Syn is an abundant protein in brain cells and is found alongside its nuclear localization mainly
at the synapse of neurons (Iwai et al., 1995; Kahle et al., 2000; Pinho et al., 2018). About 3,000
α-syn molecules are present within a single synaptic bouton of a cortical rat neuron, highlighting
its enormous concentration at synaptic terminals (Wilhelm et al., 2014). Since α-syn localizes to
the synaptic compartment at a very late stage of synapse development, it was thought early on
that it functions as a modulator of synaptic plasticity rather than taking part in synaptogenesis
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(Withers et al., 1997). Currently, we are in the process of
deciphering the physiological functions of α-syn. Although there
is no universal consensus, its function has increasingly been
associated with regulating synaptic vesicle exo- and endocytosis
(reviewed recently in Sulzer and Edwards, 2019). However, it
was only in the last decade that we learned that α-syn can
adopt a multimeric state at the presynapse, e.g., for promoting
the SNARE complex formation or clustering synaptic vesicles
and thereby attenuating neurotransmitter release (Burre et al.,
2014; Wang et al., 2014). Studies showing that monomeric
α-syn is the predominant species in the cytoplasm of cells were
often carried out in (neuronal) cell lines that do not form a
synaptic compartment (Theillet et al., 2016). However, (synaptic)
membrane binding may be crucial for the temporal higher-
order multimeric conformation and phospholipids seem to bear
chaperone-like characteristics in this process. α-Syn is thereby
in a dynamic conformational transition between α-helically
structured in the membrane-bound situation – and monomeric,
natively unfolded in the unbound state (Rovere et al., 2018).
The classic paradigm, that α-syn is a natively unfolded protein
has therefore been broadened by various findings in recent years
(Cole et al., 2002; Bartels et al., 2011; Dettmer et al., 2013; Gould
et al., 2014). The behavior of α-syn at the synapse is distinct from
other proteins that also associate with the vesicle surface, such as
synapsin I. In contrast to synapsin I, α-syn is highly mobile and
binds synaptic vesicles only transiently as shown by fluorescence
recovery after photobleaching (FRAP) experiments using GFP-
tagged α-syn (Fortin et al., 2005). Remarkably, the localization of
α-syn to the bouton was thereby dependent on neural activity,
and α-syn quickly dispersed after strong stimulation.

THE STRUCTURE OF α-SYNUCLEIN
DETERMINES ITS LIPID BINDING
CHARACTERISTICS

The observation that α-syn is not tightly associated with
synaptic vesicles might explain why it is usually purified as
(monomeric) cytosolic protein from brain extracts, and not as
constituent of the synaptic vesicle fraction (Takamori et al.,
2006). However, isolation of synaptosomes under physiological
salt conditions and immunoelectron microscopy verified the
vesicle-binding properties of α-syn and showed that the majority
(74.2%) of immunogold-labeled α-syn molecules were found
on the surface of synaptic vesicles throughout the terminals
(Vargas et al., 2017). But how is this transient affinity of α-syn
to lipid membranes accomplished? The answer to this may
lie in the structure of α-syn. Firstly, the primary structure
of the 140 amino acids-long protein α-syn can be divided
in three distinct regions. The N-terminal region (aa 1–60)
contains imperfect repeats of 11 amino acids with a KTKEGV
consensus sequence, predicted to form an amphipathic α-helix
that resembles those found in apolipoproteins and known to
bind and penetrate membranes (Clayton and George, 1998; Ahn
et al., 2006). Secondly, the central domain (aa 61–95), also
known as NAC domain (non-Aβ component of AD amyloid),
is hydrophobic and prone to aggregation due to its propensity

to form β-sheet-rich oligomeric conformations (Ueda et al., 1993;
Giasson et al., 2001; Stefanis, 2012). This region further contains
elements of the KTKEGV consensus sequence and together
with the N-terminal domain, approximately two-thirds of
the whole protein can form α-helices upon lipid binding.
Thirdly, the negatively charged C-terminal domain (aa 96–
140) is characterized by 33% acidic amino acids (Asp/Glu)
and a proline-rich region that is responsible for the disordered
C-terminal structure. However, not so long ago it was also
suggested that the C-terminus associates with membranes in
the presence of calcium (Lautenschlager et al., 2018). These
intrinsic preconditions of the α-syn sequence as well as the
lipid composition of the membrane to be bound including
hydrophobicity, charge, or membrane curvature, most likely
modulate membrane binding of α-syn. By mimicking synaptic-
like lipid membranes in a solid-state and solution NMR
spectroscopy approach, it was found that three different
domains within the α-syn sequence interact differently with
lipid membranes (Fusco et al., 2014). The most N-terminal
α-helix (aa 6-25) anchored α-syn to the membrane surface
with high affinity upon first contact, without being particular
about lipid composition. In contrast, a central domain (aa 26-
97) bound membranes with different intensities depending on
lipid composition, suggesting a potential role as “modulating
membrane sensor.” The C-terminal region (98-140) interacted
only weakly with the membrane and behaved highly dynamic and
independent from the other domains. It is therefore suggested
that the central domain (aa 26-97) dictates whether to bind,
or not to bind the lipid. Intriguingly, all familial mutations
causing early- or late-onset PD (A30P, E46K, H50Q, G51D,
A53T, A53E) are located within this crucial sequence, which
could affect the specificity of membrane affinity or influence the
N-terminal anchor. It was indeed found that some pathogenic
α-syn mutants reduce lipid binding behavior, of which G51D
and especially the helix-breaker mutation A30P had the strongest
effect (Ruf et al., 2019). The A30P mutation was further found
to negatively influence the N-terminal anchor, reasoning the
substantial reduction in binding affinity of α-syn to small
unilamellar vesicles (Fusco et al., 2016). However, for the early
onset PD variant E46K, exactly the opposite was observed. The
N-terminal anchor region (aa 6-25) was extended to aa 42,
thereby increasing the membrane affinity.

LIPID BINDING MODULATES INITIAL
α-SYNUCLEIN AGGREGATION

Does decreased or enhanced membrane affinity, based on amino
acid exchange influence the propensity of α-syn to form abnormal
aggregates? First of all, the aggregation kinetics of α-syn depend
on a range of different solution conditions, of which the pH
has the strongest impact (Buell et al., 2014). Aggregation kinetic
experiments carried out at pH 6.5 in the presence of negatively
charged lipid vesicles demonstrated that the rate of lipid-induced
aggregation is indeed different for disease-associated α-syn
mutations (Flagmeier et al., 2016). In this set of experiments,
only the A53T mutation showed a clear enhancement for initial
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aggregate formation, whereas A30P was only slightly increased
and E46K was much slower compared to wild type. In addition,
the process of fibril elongation was only weakly affected by the
mutants. Most importantly, Galvagnion et al. suggested that
under quiescent conditions, the lipid-to-α-syn ratio is the most
determinant factor for α-syn misfolding (Galvagnion et al., 2015).
At high ratios of lipid/α-syn, only very little free, monomeric
α-syn was present since the large excess of lipid resulted in
all α-syn molecules being bound α-helically to the surface of
membranes. In this experimental condition, α-syn aggregation
was below the detection limit. A decrease in lipid concentration
(low lipid/α-syn ratio), however, caused that α-syn was only
partially bound to membranes and that a substantial proportion
was freely available as a monomer in solution. This condition
greatly favored the essential primary nucleation step on the lipid
surface that gives rise to fibril formation. By using atomic force
microscopy, Galvagnion et al. further found that only a fraction
of vesicle-bound α-syn was able to serve as active nucleation
seed, from which fibrils could sprout. Through these experiments,
one could set up a hypothesis that in the situation where α-syn
is bound to the membrane or is in the process of forming
the α-helical structure, an aggregation-susceptible intermediate
conformation could occur, which freely, unfolded monomeric
α-syn could bind if available, resulting in abnormal aggregation
(Figure 1). Since natively unfolded proteins hold heterogeneous
conformational states per se and the free energy landscape of
α-syn is highly dynamic, the existence of such an intermediate
conformation is likely (Allison et al., 2009). Indeed, the presence

of a partially folded intermediate conformation of α-syn has been
suggested many years back (Uversky et al., 2001). A decrease
in pH or increase in temperature resulted in a partially folded
intermediate conformation of α-syn. The concentration of lipids
could therefore represent an additional intracellular factor that
shifts the equilibrium of α-syn between an aggregation-prone
intermediate conformation and its natively folded/unfolded state.
Future cryo-electron microscopy experiments could provide
insights into such a state and deliver a complete view of
membrane-induced α-syn folding. The lipid-water interface
would be vital for primary nucleation, since it is known that
interfaces play important roles in the aggregation of α-syn
(Campioni et al., 2014). This simplified scenario for initial
aggregate formation determined by a low lipid/α-syn ratio as well
as altered concentrations of α-synlipid−bound and α-synfree could
explain several PD-associated findings, like the α-syn-dosage
effect for the development of PD. Increased α-syn expression
levels by genetic locus duplication/triplication, variabilities in
SNCA-promoter region REP1 or somatic copy number gains of
α-syn all demonstrate the close relation of α-syn concentration
and PD age of onset (Singleton et al., 2003; Chartier-Harlin et al.,
2004; Maraganore et al., 2006; Fuchs et al., 2008; Mokretar et al.,
2018). The lipid/α-syn ratio is likely to be lowered by elevated
levels of α-syn at the synapse, thereby increasing the chance for
lipid-induced spontaneous aggregation events. Another factor
responsible for a shift in the lipid/α-syn ratio could be aging,
which remains the highest risk factor for the development and
progression of PD (de Lau and Breteler, 2006; Collier et al., 2011).

FIGURE 1 | Schematic illustration of the discussed conformational states of α-syn. The unfolded, unbound and monomeric α-syn adopts a partially folded
intermediate conformation at its very N-terminus upon membrane binding, leaving the NAC domain exposed for potential primary nucleation. Freely available
monomeric α-syn could bind to the hypothesized intermediate conformation, facilitating initial lipid-induced amyloid oligomer and fibril formation. Under physiological
conditions, α-syn quickly adopts an extended α-helical or a broken-helix conformation, which can also form physiological multimers that cluster synaptic vesicles.
A change in the lipid/α-syn ratio, the lipid composition or the fraction of membrane bound vs. unbound α-syn could shift the balance between physiological and
pathological paths.
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More than half of the human brain’s dry weight is made up
of lipids, and the incredible heterogeneous lipid composition
of the brain changes significantly with age (Naudi et al., 2015).
Depending on the class of lipids and the area of the brain, the
concentration of some lipids increases with age, but the majority
is substantially decreased. In particular, levels of cholesterol,
gangliosides or glycerophospholipids, all enriched at synapses,
are reduced with age (Rappley et al., 2009; Ledesma et al., 2012).
Age-related lipid alterations in the brain could therefore lower
the local lipid/α-syn ratio and increase the primary nucleation
rate. It is worth mentioning that α-syn aggregation is not only
triggered by phospholipids with small acidic headgroups, but also
by anionic lipids that contain larger oligosaccharide headgroups
like gangliosides (Gaspar et al., 2018). It was found that all
major brain gangliosides were significantly decreased in male
PD patients compared to healthy controls (Seyfried et al., 2018).
Pilot studies further showed that treating PD Patients with GM1
ganglioside could provide a disease modifying therapy and that
GM1 administration reduced the size of α-syn aggregates in a
rodent AAV-α-syn overexpression model (Schneider et al., 2013,
2015, 2019). However, research of human brain lipidomics of
different brain areas or cell types during aging in health and
disease is limited. Prospective studies could provide exciting
insights into whether lipid alterations (at the synapse) in the
aged-brain modify the behavior of α-syn.

Aberrant interaction of α-syn with biological membranes
like enhanced membrane-binding also fits in the concept of
lipid/α-syn ratio induced aggregation. As previously mentioned,
the E46K mutation has a greatly increased membrane affinity.
This mutation disrupts an N-terminal KTKEGV motif to
KTKKGV and drastically destabilizes physiological aggregation-
resistant multimers of α-syn, leading to enhanced levels of
aggregation-prone monomeric α-syn (Dettmer et al., 2015). In
addition, a recent report argues for a loss of α-syn’s membrane
curvature-sensing ability due to E46K mutation, thereby
misdirecting α-syn to non-physiological lipid interactants
(Rovere et al., 2019). By introducing two additional E > K
mutations in other KTKEGV motifs (E35K and E61K, termed
“3K” with the E46K mutation), this effect was dose-dependently
amplified, resulting in increased monomeric conformations of
α-syn and induction of neurotoxic inclusions. By increasing
monomeric α-syn, which additionally shows an increased spatio-
temporal membrane binding behavior, the probability of primary
nucleation on the surface of lipids would be greatly increased.
Generation of a 3K α-syn mouse model strengthened the in vitro
findings and impressively mirrored key characteristics of PD
(Nuber et al., 2018). Due to increased membrane affinity and
potentially an increase in the partially folded intermediate state,
3K α-syn accumulated extensively at presynaptic vesicles and
formed Proteinase-K resistant, phosphorylated, and truncated
α-syn deposits. Even young 3K mice showed large neuronal
lipofuscin-like autofluorescent, but α-syn-positive deposits that
increased with age and evolved into huge spherical aggregates
with filamentous structures and a lipofuscin-rich center. This
finding in particular is interesting in the light of the recent
report, that LBs in the brain of PD patients consisted largely of
fragmented lipids, vesicles and organelles (Shahmoradian et al.,

2019). The combination of enhanced membrane association,
the inability to form physiological multimers, and the low
lipid/α-syn ratio by α-syn overexpression could reason the
striking phenotype of the 3K model. But how do the familial
α-syn mutations A30P and G51D fit into the picture? To start
with, the reduced lipid binding properties of A30P and G51D do
not mean that lipid binding is completely abolished, but rather
that the affinity is reduced compared to wildtype α-syn. Since
they also destabilize physiological multimers and thereby increase
the moiety of aggregation-prone monomeric α-syn, in theory
only the rate of primary nucleation would be slower. Indeed,
A30P as well as G51D were found to attenuate aggregation,
although inconsistent reports for A30P exist (Lemkau et al.,
2012; Fares et al., 2014). In addition, elevated levels of a specific
conformation of the N-terminal amphipathic α-helix termed
SL1 has been observed for A30P, E46K and A53T compared
to wildtype (Bodner et al., 2010). Here, only a short α-helix
comprising residues 3–25 was membrane-bound, leaving the
hydrophobic NAC region dynamically disordered and prone for
disease-associated aggregate formation. However, an alternative
pathologic loss of function mechanism for A30P and G51D,
independent of lipid-induced aggregation, cannot be excluded.

THE LIPID COMPOSITION ALTERS
α-SYNUCLEIN AGGREGATION

Membrane-interaction is part of the physiological function of
α-syn. The lipid-binding properties are predefined by the first 60
amino acids of the N-terminal sequence with its 18% positively
charged lysine residues, directing the affinity for anionic lipids.
Upon membrane binding, α-syn forms amphipathic α-helices.
Several conformations have been observed, like a single extended
α-helix that is over 90 aa long, the previously mentioned
short α-helix comprising residues 3–25 or two α-helices
interrupted by a short break (Chandra et al., 2003; Jao et al.,
2004, 2008; Bodner et al., 2010). Moreover, α-syn was found
to be a membrane curvature-sensing protein, preferentially
binding to small unilamellar vesicles with diameters similar
to those of synaptic vesicles (Middleton and Rhoades, 2010).
The mechanisms by which lipids orchestrate the physiological
multimerization or induce pathological aggregation of α-syn,
however, have yet to be clarified. Several studies analyzed physical
and chemical properties of biological membranes or lipids
and how they influence the aggregation propensity of α-syn.
Amyloid fibril formation of α-syn has been observed for lipids
with high solubility in aqueous solution and short hydrocarbon
chains (Galvagnion et al., 2016). It was further discovered
that exosomes with their high GM1 and GM3 ganglioside
concentration provide an environment for accelerated α-syn
aggregation, an interesting finding considering exosomal cell-
to-cell transmission of α-syn oligomers (Danzer et al., 2012;
Grey et al., 2015). Likewise, oxidized cholesterol metabolites,
that were found to be increased in brains of patients with
LBD, induced fibrillation of α-syn (Bosco et al., 2006). In vitro
experiments also showed that polyunsaturated fatty acids (like
α-linolenic acid or eicosapentaenoic acid) alone or esterified with
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phospholipids promote the formation of α-syn oligomers along
with cytotoxicity, whereas saturated fatty acids (like stearic acid
or arachidic acid) decreased levels of α-syn oligomers (Perrin
et al., 2001; Sharon et al., 2003; Snead and Eliezer, 2014).
These data, showing that lipids of different classes are able to
induce disease-associated misfolding of α-syn, favor a model
in which lipids play a significant role for the development of
synucleinopathies, although the context of a relevant biological
setting was mostly missing. Overexpression of α-syn in several
PD-related cell culture systems and in vivo led to higher levels
of di-/triglycerides with increased concentrations of unsaturated
fatty acids, especially oleic acid (Fanning et al., 2019). This
change in lipid class composition was accompanied by buildup
of aggregated and phosphorylated α-syn species along increased
cytotoxicity. The enrichment of oleic acid-containing lipids in
membranes most likely enhances membrane fluidity and affects
its curvature. The authors suggested that the rate of membrane-
associated α-syn is enhanced by increased oleic acid levels, which
mediated α-syn toxicity. Although the origin of higher amounts
of oleic acid is unknown, decreasing the levels by inhibiting
its rate-limiting enzyme stearoyl-CoA desaturase (SCD) proved
to be protective and broke the vicious pathological circle
(Fanning et al., 2019). Targeting SCD is a promising therapeutic
strategy, which was also found independently by Vincent et al.
Here, inhibiting SCD reduced α-syn toxicity in human induced
pluripotent stem cell neuronal models (Vincent et al., 2018).
These studies were the first to target α-syn oligomerization by
exploiting its membrane-binding nature.

RELATION BETWEEN LIPIDS,
DIFFERENT OLIGOMERIC α-SYNUCLEIN
SPECIES AND TOXICITY

From what it described above, it is clear that lipids can act
as trans-factors and modulate α-syn aggregation. However,
different trans-factors favor the formation of different oligomeric
species with distinct physico-chemical and toxic characteristics
(Bousset et al., 2013). It is therefore only logical to ask if
lipid binding favors the formation of specific oligomeric species
with distinct toxicity. To date, this question remains to be
answered. Suzuki et al. employed a GBA1 knockout model
to demonstrate that disbalance of glycosylceramide results in
the accumulation of PKA-resistant α-syn (Suzuki et al., 2015).
However, the exact species of α-syn remained unspecified.
The spectrum of different oligomeric α-syn species is rapidly
growing and populated by a very high number of small to
intermediate molecular-weight α-syn oligomers and different
strains of high molecular-weight fibrils. Virtually all of the
characterized species have been ascribed some toxic function
(for an exhaustive review, see Ingelsson, 2016; Alam et al.,
2019). Oligomers can induce cytoskeletal perturbances, ER
stress, mitochondrial dysfunction, increased ROS production,
ion flux dysbalance, synaptotoxicity and inhibition of the
cellular protein synthesis and degradation (Lindersson et al.,
2004; Danzer et al., 2007, 2009; Vekrellis et al., 2011; Colla
et al., 2012; Choi et al., 2013; Deas et al., 2016). Lipid binding

itself is required for some of these observed toxic effects:
small, β-sheet-rich oligomers form pores in lipid bilayer
membranes and result in detrimental ion flux and vesicle
rupture (Danzer et al., 2007; Flavin et al., 2017). Furthermore,
α-syn oligomers and fibrils have differential, detrimental effects
on anterograde axonal transport (Prots et al., 2013). Large,
fibrillar aggregates of α-syn show less direct toxicity to cells;
however, they are unique in their capability to propagate
α-syn aggregation by recruiting endogenous α-syn and result
in complex synucleinopathies in animal models (Alam et al.,
2019). Importantly, the toxic effects of oligomeric α-syn species
are observed not only in vitro, but also in vivo (Winner et al.,
2011). The traditional view on α-syn oligomers suggests the
physiological existence of soluble, endogenous non-toxic α-syn
oligomers that are converted to toxic species by pathologic
mechanisms. These “physiological” oligomers were recently
joined by the stable, membrane-bound tetramers described
above. In this view, the (pathologic) binding of α-syn to lipids
may stabilize aggregation-prone conformations and thus favor
or inhibit the formation of toxic soluble oligomers. However,
Killinger and colleagues recently challenged this traditional
view by suggesting an alternative, monomer-only and lipid-
centric hypothesis postulating that the apparent, soluble α-syn
oligomers are in fact conformations of membrane-bound α-syn
(Killinger et al., 2019). In this model, the formation of any
α-syn oligomers is detrimental and the critical pathological step
is the conversion of monomers into oligomers. The distinction
between these two models remains technically challenging, but
it will have tremendous impact on the choice of appropriate
therapeutic strategy.

THE SYNAPSE AS EARLY POINT OF
DEPARTURE FROM PHYSIOLOGICAL TO
PATHOLOGICAL

Different anatomical sites and cell types have been proposed
to be the site of initial α-syn aggregation. Indeed, α-syn is
expressed at relatively high levels even in peripheral tissues.
Erythrocytes, immune cells and fibroblasts are several cell types
that can contain high levels of endogenous (and probably
oligomeric) α-syn (Nakai et al., 2007; Hoepken et al., 2008).
Interestingly, most of the observations of α-syn in peripheral cell
types include processes with increased membrane dynamics. For
example, α-syn expression and localization at cellular membranes
is increased during the enucleation of erythrocyte precursors and
during the phagocytosis of extracellular material (Nakai et al.,
2007; Gardai et al., 2013; Abd-Elhadi et al., 2015). However,
several factors may render CNS neurons specifically vulnerable
to initial α-syn aggregation: different abundance of β-synuclein
and molecular chaperones, increased metabolic rate, increased
melanin and ROS, high turnover of membranes. Since α-syn
localizes largely to the synapse of neurons, it is worth thinking
about which synaptic membranes contain large amounts of di- or
triglycerides. Lipidome analysis found porosomes, a domain of
the presynaptic synaptosome, to be enriched in diglycerides, and
that synaptic vesicles have high concentrations of triglycerides
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and sphingomyelins compared to the surrounding synaptosomal
membrane (Lewis et al., 2014, 2017). Moreover, it is known
for a long time that sphingomyelins are enriched in Lewy
bodies, and that the activity of enzymes related to sphingolipid
metabolism in the brain changes with age (den Jager, 1969;
Sacket et al., 2009). An emerging consensus from various
laboratories suggest the synapse as starting point for pathologic
events in PD with axon terminals representing the initial site
for α-syn aggregate formation. From a genetic perspective,
several genes implicated in PD pathogenesis code for proteins
related to synapse function (Soukup et al., 2018). First α-syn-
related dysfunctions in rodent models were detected at the
synapse, such as altered synaptic vesicle pool, deficits in
neurotransmitter release or even redistribution of SNARE
proteins (Garcia-Reitbock et al., 2010; Nemani et al., 2010;
Scott et al., 2010; Phan et al., 2017). A substantial loss of
synaptic terminals that preceded the death of dopaminergic
neurons was observed in a mouse model with overexpression
of mutant α-syn in the background of elevated dopamine
(Mor et al., 2017). This state is reminiscent of human
post-mortem brain studies that suggested synaptic decay as
earliest pathology in PD (Beach et al., 2008; Cheng et al.,
2010). In DLB patients, synaptic terminals were suggested
to be the loci for α-syn aggregation and axonal retrograde
transport with LB formation is the cellular counteracting strategy
(Kramer and Schulz-Schaeffer, 2007). Using protein-fragment

complementation assays in vivo, we have recently provided
additional evidence that α-syn oligomerizes at the presynapse,
giving rise to pathologically relevant α-syn species (Kiechle et al.,
2019). Understanding how lipids are involved in synaptic α-syn
aggregation during the aging process could hold promising
treatment opportunities. The possibility that lipids act as effectors
causing distinct α-syn strain variants is also currently being
contemplated in the field of synucleinopathies (Ikenaka et al.,
2019). Hence, modulating neuronal lipid synthesis in the brain
could protect the synapse as most vulnerable compartment of
neurons and allows to explore new therapeutic avenues for
PD, DLB and MSA.
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With disease-modifying compounds targeting alpha-synuclein available in clinical trials,
patient stratification according to alpha-synuclein-specific enrichment strategies is a
much-needed prerequisite. Such a scenario will be exemplified for GBA, one major
genetic risk factor that is specifically associated with the alpha-synucleinopathies:
Parkinson’s disease and dementia with Lewy bodies.

Keywords: GBA, alpha-synuclein, dementia, GCase, Parkinson

INTRODUCTION

Due to genetic studies in rare Mendelian cases of Parkinson’s disease (PD) 25 years ago, it
became clear that the alpha-synuclein protein is the major component of Lewy bodies and
Lewy neurites (Spillantini et al., 1997). It therefore plays a pivotal role in the pathogenesis
of alpha-synucleinopathies such as PD and dementia with Lewy bodies (DLB). Subsequently,
molecular pathways associated with alpha-synuclein clearance, aggregation, and propagation have
been detected. Next to defects in vesicular trafficking, mitochondrial and importantly lysosomal
dysfunction represent the most relevant pathways (Jankovic and Tan, 2020). Studying these likely
early and initiating events provides “entry points” to develop novel therapeutic targets on an
individualized basis.

Notably, histopathology in genetically associated forms of PD can differ. PD patients with
LRRK2 mutations show the typical Lewy-body pathology with alpha-synuclein aggregation but also
tau aggregation or even nigral degeneration without distinctive histopathology. Nigral degeneration
without Lewy body formation is also often seen in PD associated with biallelic mutations in
the genes parkin or PINK1 (Schneider and Alcalay, 2017; Henderson et al., 2019). With disease-
modifying treatment options targeting alpha-synuclein under way, patient stratification according
to alpha-synuclein-specific enrichment strategies as well as knowledge of the disease course and
trajectories to disease-related milestones is a much-needed prerequisite to introduce patients to
specific therapies. This will be exemplified for the gene glucocerebrosidase (GBA), a major genetic
risk factor for PD that is specifically associated with alpha-synuclein pathology.

GBA Mutations Are a Major Genetic Risk Factor for PD
Biallelic mutations in the gene GBA cause Gaucher’s disease (GD), the most common lysosomal
storage disorder with tissue accumulation of glucosylceramides due to deficiency of the lysosomal
enzyme glucocerebrosidase (GCase). Interestingly, about 25% of GD patients report a first-
or second-degree relative to present with typical Parkinsonism (Goker-Alpan et al., 2004;
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Halperin et al., 2006). This important clinical observation was
the hint that heterozygous mutations in the GBA gene might
be associated with PD. Subsequently, a large multi-center study
across four continents analyzed 5691 PD patients of different
ethnic origin compared to 4898 controls and confirmed that with
an overall odds ratio (OR) of 5.43, heterozygous mutations in the
GBA gene represent a major genetic risk factor for PD (Sidransky
et al., 2009). This has now been confirmed across different ethno-
racial populations with Caucasian, Asian (Japanese, Chinese,
Taiwanese), Hispanic, and African ancestry (Neumann et al.,
2009; Lesage et al., 2011; Chen et al., 2014; den Heijer et al., 2020;
Mahungu et al., 2020).

Interestingly, some variants that have been reported as non-
relevant for Gaucher disease (GD) have been proven to increase
the risk for PD, e.g., p.E326K and p.T369M (Zhang et al., 2018;
Iwaki et al., 2019). Consequently, GBA-subgroup classification
for PD patients is often based on variant severity according to
established genotype risks reported for PD.

Moreover, sequencing the GBA gene is very challenging due
to the pseudogene. Further, one of the most common severe
variants, p.L444P, is not covered well by standard genome-
wide arrays such as Neurochip or NeuroXChip. Therefore,
interpretation across different studies has to be done carefully,
and the most comprehensive analyses are those done by whole
gene Sanger sequencing.

GBA Mutations and Parkinson
Manifestation
GBA-Associated PD Presents With Non-motor
Characteristics
Detailed investigation of the phenotypical spectrum of motor
and non-motor symptoms is of utmost importance in order
to design studies for disease-modifying therapies. PD patients
with GBA mutations (PDGBA) show a younger age at onset
with a median onset in the early fifties (Sidransky et al., 2009;
Blauwendraat et al., 2019). Of note, this effect is not only
attributable to GBA variants in general but is further driven by
GBA mutation severity and mutation burden with most severe
mutations as well as homozygous and compound heterozygous
variants predisposing to the youngest age at onset (Thaler et al.,
2017; Malek et al., 2018).

This is of importance as, in general, a younger age and age
at onset are typically associated with a more benign disease
course, especially in terms of cognitive decline (Forsaa et al.,
2010). Keeping this in mind, other important clinical aspects
have come to attention in PDGBA. Compared to sporadic
PD patients without GBA mutation (PDGBA_wild type), PDGBA
present with a higher prevalence of cognitive impairment and
more frequently suffer from additional non-motor symptoms
including neuropsychiatric disturbances (depression, anxiety,
hallucination), autonomic dysfunction, and sleep disturbances
such as REM-sleep-behavior disorder (RBD) (Brockmann et al.,
2011; Barrett et al., 2014). These findings have been replicated
consistently over a the following years in other PD cohorts
worldwide, the latest large clinical genome-wide association study
in 4093 PD patients (Iwaki et al., 2019). Interestingly, variants

that are classified as severe mutations (GBAsevere) have been
associated with a more aggressive clinical phenotype suggesting a
relevant effect depending on GBA mutation severity (Cilia et al.,
2016; Thaler et al., 2018; Petrucci et al., 2020).

Taken together, these clinical findings are of importance for
the following reasons:

(1) In addition to demographics (age, age at onset, gender)
and co-morbidities, they might offer explanations for the
variability of the clinical phenotype in PD.

(2) They might provide defined temporal windows
of phenotypical milestones to be addressed in
disease-modifying trials beyond pure motor impairment.

GBA-Associated Parkinson’s Disease: More Rapid
Progression and Shorter Survival in Prospective
Longitudinal Studies
When it comes to clinical trials aiming at disease modification
and not just pure symptomatic improvement, the rate of
progression is crucial in order to estimate effect sizes and plan
study designs (duration, sample sizes, etc.). Following up on these
aspects, longitudinally investigated cohorts of PDGBA revealed
that this patient group, although younger in age and age at onset,
present with an accelerated disease progression in terms of motor
impairment, disease staging and cognitive decline. Moreover,
survival rates are shorter when compared to PDGBA_wild type
(Brockmann et al., 2015b; Stoker et al., 2020).

Shorter and More Prominent Prodromal Phase in
GBA-Associated PD
The typical motor manifestation of PD is preceded by a
prodromal phase that is characterized by a variety of non-
motor and early motor signs (Berg et al., 2015). Non-
motor symptoms include amongst others hyposmia, autonomic
dysfunction, and neuropsychiatric symptoms, whereas reduced
arm swing and bradykinesia indicate early motor signs. However,
type, prevalence, time of occurrence, and rate of progression
of these prodromal symptoms vary between patients. Given
the findings from the manifest disease phase in PDGBA with
pronounced non-motor symptoms and a more rapid disease
progression, we retrospectively focused on patient’s perception
regarding their individual prodromal phase before PD diagnosis.
Comparing PDGBA and PDGBA_wild type, we could show that:
(1) prevalence and time of occurrence of prodromal symptoms
seem more pronounced in PDGBA. They reported a shorter
prodromal phase with almost parallel beginning of non-
motor and early motor signs before PD diagnosis. Contrarily,
PDGBA_wild type showed a long prodromal interval starting
with non-motor symptoms long before early motor signs
manifested. (2) Patients carrying severe GBA mutations reported
the highest total amount of prodromal signs. These findings
suggest that clinical trajectories known from the manifest
disease might be present already in the prodromal phase
(Zimmermann et al., 2018). Indeed, prospective studies found
that asymptomatic GBA mutation carriers present with parallel
deterioration of non-motor and motor sign when compared
to healthy controls without GBA mutation (Beavan et al., 2015;
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Avenali et al., 2019). There is only one prospective longitudinal
study available in patients with RBD that monitored the
prodromal phase until phenoconversion to manifest PD. While
there were no differences in the severity of prodromal motor
and non-motor markers, GBA mutation status was associated
with accelerated phenoconversion to PD and/or dementia
(Honeycutt et al., 2019).

GBA Mutations and Dementia With Lewy
Bodies
The important finding that PDGBA more frequently develop
dementia earlier in the disease course than PDGBA_wild type
prompted the community to perform a large multicenter analysis
across 11 centers evaluating GBA mutations in 721 cases with
DLB, which represents a clinico-histopathological continuum to
PD. With an even higher OR of 8.28, GBA mutations are also
strongly associated with DLB. Similar to PD, GBA mutations
also predispose to an earlier age at onset and more pronounced
disease severity/progression in DLB (Nalls et al., 2013). This
study further supported GBA mutations as a significant genetic
risk factor for synucleinopathies and confirmed the overall
impression that GBA-related Parkinsonism predisposes to an
increased incidence of dementia.

GBA Mutations and Multisystem Atrophy
The higher prevalence of autonomic dysfunction and the link to
alpha-synuclein pathology as discussed further on raised the idea
that GBA variants might also be associated with increased risk
to develop MSA. However, studies in MSA revealed conflicting
results, both in clinically diagnosed as well as in autopsy-
confirmed cases. One large study investigated 969 MSA patients
with Japanese, European, and North American background and
found an overall OR of 2.44. Notably, the authors reported
a significant association between GBA variants and MSA-C
phenotype (Mitsui et al., 2015). Another study with autopsy-
confirmed MSA and Alzheimer patients reported a higher
frequency ofGBA variants in the MSA group compared to the AD
group (Sklerov et al., 2017). However, a larger study with autopsy-
proven MSA cases could not show an association of GBA variants
with MSA (Segarane et al., 2009). Moreover, several studies with
clinical diagnosis of MSA also found no clear association (Srulijes
et al., 2013; Sun et al., 2013; Asselta et al., 2014).

GBA-Associated Pathomechanism and
Histopathology
Evidence from cell models favors the hypothesis that GBA
mutations result in disrupted trafficking of GCase from the ER
to Golgi and in lower lysosomal GCase enzyme activity which in
turn cause a build-up of lysosomal glucosylceramides and impair
alpha-synuclein degradation (Mazzulli et al., 2011). Highlighting
the role of lysosomal dysfunction in the pathogenesis of PD,
results from postmortem brain tissue and IPS cell-derived
neurons show that reduced lysosomal GCase activity is paralleled
by increased levels of alpha-synuclein, not only in PDGBA but, to
a lesser degree, also in cases with PDGBA_wild type (Gegg et al.,
2012; Murphy et al., 2014; Schondorf et al., 2014; Moors et al.,

2019). Moreover, recent data in human midbrain dopaminergic
neurons suggest that conformational changes of alpha-synuclein
toward an aggregation-prone pattern can be even induced by
the presence of glycosphingolipids irrespective of an underlying
mutation in the GBA gene (Zunke et al., 2018). More specifically,
it was suggested that lysosomal GCase and alpha-synuclein are
linked in a bidirectional pathogenic loop in synucleinopathies
as shown in cell cultures and in induced-pluripotent stem (IPS)
cell-derived dopaminergic midbrain neurons: (1) Functional
loss of GCase activity compromises lysosomal degradation of
alpha-synuclein and causes its aggregation due to reduced
lysosomal chaperone-mediated autophagy. (2) Alpha-synuclein
itself inhibits the activity of GCase (Mazzulli et al., 2011;
Schondorf et al., 2014). Consequently, PDGBA fulfill both
conditions of this bidirectional loop in parallel leading to a self-
reinforcing mechanism. Thereby, alpha-synuclein aggregation
and propagation might be enhanced which possibly explains
the wide-spread neocortical Lewy body pathology observed in
postmortem brain tissue of PDGBA (Neumann et al., 2009;
Gundner et al., 2019; Moors et al., 2019). These pathomechanistic
aspects in turn offer a reasonable explanation for the more severe
and more rapid disease progression seen in the prodromal and in
the manifest phase in PDGBA (Figure 1).

GBA-Associated Biomarker Profiles in
Patient-Derived Biofluids
Despite this clear experimental evidence, we often fail to translate
these findings into clinical research with patient cohorts, and we
lack to confirm the impact of genetic mutations on biochemical
profiles in patient-derived biomaterial. Moreover, we need to
evaluate whether such profiles might be suitable as biochemical
readout for target engagement.

Heterozygous variants in the GBA gene are associated with
lower levels of lysosomal GCase enzyme activity using a variety of
assays in different patient-derived biofluids including blood and
CSF (Schondorf et al., 2014; Alcalay et al., 2015; Paciotti et al.,
2019). Similar to the findings in brain tissue, GCase activity is
also reduced in PD patients without GBA variant, albeit to a lesser
degree (Parnetti et al., 2017).

As we have no reliable imaging marker available to assess the
cerebral load of alpha-synuclein in vivo, research has focused on
CSF. Importantly, it is widely discussed whether CSF profiles
of alpha-synuclein species reflect alpha-synuclein pathology in
the brain. Analyses in sporadic PD demonstrated CSF levels
of total alpha-synuclein to be decreased in PD compared to
healthy controls (Malek et al., 2014; Mollenhauer et al., 2019).
However, CSF levels of total alpha-synuclein do not correlate
with motor-associated disease progression. These findings imply
that CSF levels of total alpha-synuclein are not suitable to
monitor motor progression in the clinically manifested disease
phase and/or that the nature of progression is too slow.
Since prodromal PD subjects with hyposmia and/or REM-sleep
behavior disorder already show decreased CSF levels of alpha-
synuclein (Mollenhauer et al., 2019), one might argue that this
phenomenon develops early in the disease and does not parallel
with the manifest disease phase.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 September 2020 | Volume 8 | Article 56252297

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-562522 September 24, 2020 Time: 19:52 # 4

Brockmann GBA and Alpha-Synuclein Targeting Compounds

FIGURE 1 | PD patients carrying pathogenic GBA mutations show a more rapid progression of motor symptoms, specifically of cognitive decline. These clinical
characteristics seem to be driven by accelerated alpha-synuclein aggregation and propagation due to a self-inforcing bidirectional pathogenic loop between GCase
deficiency and alpha-synuclein accumulation. Especially the high risk of cognitive decline in yet cognitively intact PDGBA patients provides a defined window of
opportunity for modifying treatment options targeting alpha-synuclein.

Given the specific mechanistic link between GBA and alpha-
synuclein, it is tempting to speculate whether PDGBA represent a
proxy for alpha-synuclein-driven CSF profiles. Indeed, we could
show that PDGBA present with lower CSF levels of total alpha-
synuclein compared to healthy controls and also compared to
PDGBA_wild type. Importantly, PDGBA with severe variants show
the lowest mean values (Lerche et al., 2020).

As PDGBA present accelerated cognitive decline, this subgroup
of PD patients represent a good model to study biochemical
profiles in CSF that might be associated with cognitive
impairment. In general, limbic and/or cortical Lewy body
pathology is hypothesized to be the main substrate driving
cognitive decline in sporadic PD (Aarsland et al., 2005). In more
recent years, it became clear that a considerable proportion of
sporadic PD patients who developed dementia in their disease
course show concomitant amyloid-beta and tau pathology at
autopsy in addition to the typical Lewy-body pathology (Halliday
et al., 2008; Compta et al., 2011). Correspondingly, reduced CSF
levels of amyloid-beta1_42 and/or elevated CSF levels of total-
tau and phospho-tau have been reported to be associated with
cognitive impairment in sporadic PD (Brockmann et al., 2015a,
2017; Kang et al., 2016; Lerche et al., 2019b). However, this seems
not to be the case in PDGBA as CSF levels of Aβ1−42, t-TAU, and
p-Tau are similar to those seen in healthy control individuals,
whereas levels of alpha-synuclein were lower. These findings
suggest that the prominent cognitive impairment in PDGBA is
not associated with amyloid-beta or tau pathology but might be
driven by alpha-synuclein aggregation.

Based on the genetic link between GBA mutations and DLB,
it was tempting to speculate whether findings of CSF alpha-
synuclein profiles in PDGBA patients can be also detected in DLB
patients carrying a GBA mutation. Similar to PD, GBA mutations
are associated with decreased CSF levels of total alpha-synuclein
in DLB patients. Again, these findings seem dependent on GBA
mutation severity and were most pronounced in DLBGBA patients
with severe mutations (Lerche et al., 2019a).

These in vivo data seem to confirm findings from cell models
and postmortem analysis: lower GCase activity is associated with
prominent CSF profiles of total alpha-synuclein representing a
mirror of greater cerebral Lewy pathology in PDGBA and DLBGBA
patients (Neumann et al., 2009; Gundner et al., 2018; Moors et al.,
2018). Yet, a substantial inter-individual variability and overlap
with healthy controls is seen so that CSF levels of total alpha-
synuclein are not ideal to be used as a single biomarker. More
recently, real−time quaking−induced conversion (RT−QuIC)
and protein misfolding cyclic amplification (PMCA) have been
successfully implemented to evaluate alpha-synuclein seeding
capacities. These assays are based on the conversion of
monomeric substrate protein into β−sheet−rich aggregates by
seeding with small amounts of protein aggregates (Fairfoul
et al., 2016; Shahnawaz et al., 2017). As this method is highly
sensitive and specific for alpha-synuclein aggregation, PD and
DLB patients with GBA mutations would be prime candidates to
be assessed with this assay.

DISCUSSION AND OUTLOOK

PD patients carrying pathogenic GBA mutations show a faster
motor progression and cognitive decline. Importantly, the higher
risk of cognitive decline is not associated with amyloid-β
pathology (e.g., CSF Abeta1_42 levels) as shown instead in
sporadic PD without GBA mutations. Postmortem studies show
that lower levels of lysosomal GCase activity are associated
with greater alpha-synuclein pathology in PD, PDD, and PDGBA
brains. This has been confirmed by in vivo studies showing
that PD and DLB patients carrying pathogenic GBA mutations
had reduced levels of lysosomal GCase activity paralleled by
lower CSF levels of total alpha-synuclein (possibly mirroring
greater Lewy pathology in the brain). Based on these results, high
amounts of aggregated alpha-synuclein could play a pivotal role
in cognitive decline in PDGBA (Figure 1).
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So far, drugs aiming at slowing disease progression in
neurodegenerative diseases failed. One reason that could be
discussed is that they were administered in manifest disease
stages where brain pathology is too advanced. PDGBA patients
who are cognitively intact represent a high-risk population to
develop PD-associated dementia and thus provide a defined
window of opportunity for treatment aiming to delay cognitive
decline. Thereby, starting a treatment able to reduce the
propagation of aggregated alpha-synuclein in this population
would overcome the challenge of starting intervention early
enough. As alpha-synuclein aggregation seems to be the main
driver of dementia in PDGBA, this specific population represents
a role model to study the effect of alpha-synuclein lowering
treatment strategies such as monoclonal antibodies targeting
aggregated alpha-synuclein.

A more complex picture is now beginning to emerge and
points toward a central role for GCase activity not only in
GBA-associated PD but also in sporadic as well as other genetic
forms. Postmortem brain tissue analyses, patient-derived IPS-
cell models, and CSF studies show decreased levels of GCase
activity paralleled by alpha-synuclein accumulation in wild-type
PD patients and in PD patients with mutations in LRRK2,
parkin, and DJ-1. Interestingly, LRRK2 kinase activity seems
to regulate GCase activity in an inverse pattern (Parnetti
et al., 2017; Burbulla et al., 2019; Ysselstein et al., 2019).
These recent findings highlight not only the importance of
lysosomal dysfunction in the pathophysiology of PDGBA but the

significance of this pathway for PD in general. Thereby, one could
imagine that lysosomal-targeted treatment options developed for
PDGBA (Mullin et al., 2020) might be also beneficial for other
PD subgroups in which lysosomal dysfunction driving alpha-
synuclein accumulation plays a major role. However, at this point
we lack direct comparisons with the same assay/methodology
evaluating the degree of GCase activity reduction, lysosomal
dysfunction, and consecutive alpha-synuclein accumulation
between wild-type and different genetic forms of PD (GBA,
LRKK2, Parkin, PINK, etc.).

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

FUNDING

KB has received a research grant from the University of Tübingen
(Clinician Scientist) and the German Society of Parkinson’s
Disease (dPV), funding from the Michael J. Fox Foundation
(MJFF) and the German Centre for Neurodegenerative Diseases
(DZNE, MIGAP), travel grants from the Movement Disorders
Society, and speaker honoraria from Abbvie, Lundbeck,
UCB, and Zambon.

REFERENCES
Aarsland, D., Perry, R., Brown, A., Larsen, J. P., and Ballard, C. (2005).

Neuropathology of dementia in Parkinson’s disease: a prospective, community-
based study. Ann. Neurol. 58, 773–776. doi: 10.1002/ana.20635

Alcalay, R. N., Levy, O. A., Waters, C. C., Fahn, S., Ford, B., Kuo, S. H., et al.
(2015). Glucocerebrosidase activity in Parkinson’s disease with and without
GBA mutations. Brain 138, 2648–2658.

Asselta, R., Rimoldi, V., Siri, C., Cilia, R., Guella, I., Tesei, S., et al.
(2014). Glucocerebrosidase mutations in primary parkinsonism.
Parkinsonism. Relat. Disord. 20, 1215–1220. doi: 10.1016/j.parkreldis.2014.
09.003

Avenali, M., Toffoli, M., Mullin, S., Mcneil, A., Hughes, D. A., Mehta,
A., et al. (2019). Evolution of prodromal parkinsonian features in a
cohort of GBA mutation-positive individuals: a 6-year longitudinal study.
J. Neurol. Neurosurg. Psychiatry 90, 1091–1097. doi: 10.1136/jnnp-2019-32
0394

Barrett, M. J., Shanker, V. L., Severt, W. L., Raymond, D., Gross, S. J., Schreiber-
Agus, N., et al. (2014). Cognitive and Antipsychotic Medication Use in
Monoallelic GBA-Related Parkinson Disease. JIMD Rep. 16, 31–38. doi: 10.
1007/8904_2014_315

Beavan, M., Mcneill, A., Proukakis, C., Hughes, D. A., Mehta, A., and Schapira,
A. H. (2015). Evolution of prodromal clinical markers of Parkinson disease
in a GBA mutation-positive cohort. JAMA Neurol. 72, 201–208. doi: 10.1001/
jamaneurol.2014.2950

Berg, D., Postuma, R. B., Adler, C. H., Bloem, B. R., Chan, P., Dubois, B., et al.
(2015). MDS research criteria for prodromal Parkinson’s disease. Mov. Disord.
30, 1600–1611. doi: 10.1002/mds.26431

Blauwendraat, C., Heilbron, K., Vallerga, C. L., Bandres-Ciga, S., Von Coelln,
R., Pihlstrom, L., et al. (2019). Parkinson’s disease age at onset genome-
wide association study: defining heritability, genetic loci, and alpha-synuclein
mechanisms. Mov. Disord. 34, 866–875.

Brockmann, K., Lerche, S., Dilger, S. S., Stirnkorb, J. G., Apel, A., Hauser, A. K.,
et al. (2017). SNPs in Abeta clearance proteins: lower CSF Abeta1-42 levels and
earlier onset of dementia in PD. Neurology 89, 2335–2340. doi: 10.1212/wnl.
0000000000004705

Brockmann, K., Schulte, C., Deuschle, C., Hauser, A. K., Heger, T., Gasser,
T., et al. (2015a). Neurodegenerative CSF markers in genetic and
sporadic PD: classification and prediction in a longitudinal study.
Parkinsonism. Relat. Disord. 21, 1427–1434. doi: 10.1016/j.parkreldis.2015.
10.008

Brockmann, K., Srulijes, K., Pflederer, S., Hauser, A. K., Schulte, C., Maetzler, W.,
et al. (2015b). GBA-associated Parkinson’s disease: reduced survival and more
rapid progression in a prospective longitudinal study.Mov. Disord. 30, 407–411.
doi: 10.1002/mds.26071

Brockmann, K., Srulijes, K., Hauser, A. K., Schulte, C., Csoti, I.,
Gasser, T., et al. (2011). GBA-associated PD presents with nonmotor
characteristics. Neurology 77, 276–280. doi: 10.1212/wnl.0b013e318225
ab77

Burbulla, L. F., Jeon, S., Zheng, J., Song, P., Silverman, R. B., and Krainc, D. (2019).
A modulator of wild-type glucocerebrosidase improves pathogenic phenotypes
in dopaminergic neuronal models of Parkinson’s disease. Sci. Transl. Med.
11:eaau6870. doi: 10.1126/scitranslmed.aau6870

Chen, J., Li, W., Zhang, T., Wang, Y. J., Jiang, X. J., and Xu, Z. Q. (2014).
Glucocerebrosidase gene mutations associated with Parkinson’s disease: a meta-
analysis in a Chinese population. PLoS One 9:e115747. doi: 10.1371/journal.
pone.0115747

Cilia, R., Tunesi, S., Marotta, G., Cereda, E., Siri, C., Tesei, S., et al. (2016). Survival
and dementia in GBA-associated Parkinson’s disease: the mutation matters.
Ann. Neurol. 80, 662–673. doi: 10.1002/ana.24777

Compta, Y., Parkkinen, L., O’sullivan, S. S., Vandrovcova, J., Holton, J. L., Collins,
C., et al. (2011). Lewy- and Alzheimer-type pathologies in Parkinson’s disease
dementia: which is more important? Brain 134, 1493–1505. doi: 10.1093/brain/
awr031

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 September 2020 | Volume 8 | Article 56252299

https://doi.org/10.1002/ana.20635
https://doi.org/10.1016/j.parkreldis.2014.09.003
https://doi.org/10.1016/j.parkreldis.2014.09.003
https://doi.org/10.1136/jnnp-2019-320394
https://doi.org/10.1136/jnnp-2019-320394
https://doi.org/10.1007/8904_2014_315
https://doi.org/10.1007/8904_2014_315
https://doi.org/10.1001/jamaneurol.2014.2950
https://doi.org/10.1001/jamaneurol.2014.2950
https://doi.org/10.1002/mds.26431
https://doi.org/10.1212/wnl.0000000000004705
https://doi.org/10.1212/wnl.0000000000004705
https://doi.org/10.1016/j.parkreldis.2015.10.008
https://doi.org/10.1016/j.parkreldis.2015.10.008
https://doi.org/10.1002/mds.26071
https://doi.org/10.1212/wnl.0b013e318225ab77
https://doi.org/10.1212/wnl.0b013e318225ab77
https://doi.org/10.1126/scitranslmed.aau6870
https://doi.org/10.1371/journal.pone.0115747
https://doi.org/10.1371/journal.pone.0115747
https://doi.org/10.1002/ana.24777
https://doi.org/10.1093/brain/awr031
https://doi.org/10.1093/brain/awr031
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-562522 September 24, 2020 Time: 19:52 # 6

Brockmann GBA and Alpha-Synuclein Targeting Compounds

den Heijer, J. M., Cullen, V. C., Quadri, M., Schmitz, A., Hilt, D. C., Lansbury, P.,
et al. (2020). A Large-Scale Full GBA1 Gene Screening in Parkinson’s Disease in
the Netherlands. Mov Disord. doi: 10.1002/mds.28112 [Epub ahead of print].

Fairfoul, G., Mcguire, L. I., Pal, S., Ironside, J. W., Neumann, J., Christie, S.,
et al. (2016). Alpha-synuclein RT-QuIC in the CSF of patients with alpha-
synucleinopathies. Ann. Clin. Transl. Neurol. 3, 812–818. doi: 10.1002/acn3.
338

Forsaa, E. B., Larsen, J. P., Wentzel-Larsen, T., and Alves, G. (2010). What predicts
mortality in Parkinson disease: a prospective population-based long-term
study. Neurology 75, 1270–1276. doi: 10.1212/wnl.0b013e3181f61311

Gegg, M. E., Burke, D., Heales, S. J., Cooper, J. M., Hardy, J., Wood, N. W., et al.
(2012). Glucocerebrosidase deficiency in substantia nigra of parkinson disease
brains. Ann. Neurol. 72, 455–463. doi: 10.1002/ana.23614

Goker-Alpan, O., Schiffmann, R., Lamarca, M. E., Nussbaum, R. L., Mcinerney-
Leo, A., and Sidransky, E. (2004). Parkinsonism among Gaucher disease
carriers. J. Med. Genet. 41, 937–940. doi: 10.1136/jmg.2004.024455

Gundner, A. L., Duran-Pacheco, G., Zimmermann, S., Ruf, I., Moors, T.,
Baumann, K., et al. (2018). Path mediation analysis reveals GBA impacts Lewy
body disease status by increasing alpha-synuclein levels. Neurobiol. Dis. 121,
205–213. doi: 10.1016/j.nbd.2018.09.015

Gundner, A. L., Duran-Pacheco, G., Zimmermann, S., Ruf, I., Moors, T.,
Baumann, K., et al. (2019). Path mediation analysis reveals GBA impacts Lewy
body disease status by increasing alpha-synuclein levels. Neurobiol. Dis. 121,
205–213. doi: 10.1016/j.nbd.2018.09.015

Halliday, G., Hely, M., Reid, W., and Morris, J. (2008). The progression of
pathology in longitudinally followed patients with Parkinson’s disease. Acta
Neuropathol. 115, 409–415. doi: 10.1007/s00401-008-0344-8

Halperin, A., Elstein, D., and Zimran, A. (2006). Increased incidence of Parkinson
disease among relatives of patients with Gaucher disease. Blood Cells Mol. Dis.
36, 426–428. doi: 10.1016/j.bcmd.2006.02.004

Henderson, M. X., Sengupta, M., Trojanowski, J. Q., and Lee, V. M. Y. (2019).
Alzheimer’s disease tau is a prominent pathology in LRRK2 Parkinson’s disease.
Acta Neuropathol. Commun. 7:183.

Honeycutt, L., Montplaisir, J. Y., Gagnon, J. F., Ruskey, J., Pelletier, A., Gan-Or, Z.,
et al. (2019). Glucocerebrosidase mutations and phenoconversion of REM sleep
behavior disorder to parkinsonism and dementia. Parkinsonism. Relat. Disord.
65, 230–233. doi: 10.1016/j.parkreldis.2019.04.016

Iwaki, H., Blauwendraat, C., Leonard, H. L., Liu, G., Maple-Grodem, J., Corvol,
J. C., et al. (2019). Genetic risk of Parkinson disease and progression:: an analysis
of 13 longitudinal cohorts. Neurol. Genet. 5:e348.

Jankovic, J., and Tan, E. K. (2020). Parkinson’s disease: etiopathogenesis and
treatment. J. Neurol. Neurosurg. Psychiatry 91, 795–808.

Kang, J. H., Mollenhauer, B., Coffey, C. S., Toledo, J. B., Weintraub, D., Galasko,
D. R., et al. (2016). CSF biomarkers associated with disease heterogeneity in
early Parkinson’s disease: the Parkinson’s Progression Markers Initiative study.
Acta Neuropathol. 131, 935–949.

Lerche, S., Machetanz, G., Wurster, I., Roeben, B., Zimmermann, M., Pilotto, A.,
et al. (2019a). Dementia with lewy bodies: GBA1 mutations are associated
with cerebrospinal fluid alpha-synuclein profile. Mov. Disord. 34, 1069–
1073.

Lerche, S., Wurster, I., Roben, B., Machetanz, G., Zimmermann, M., Bernhard, F.,
et al. (2019b). Parkinson’s disease: evolution of cognitive impairment and CSF
Abeta1-42 profiles in a prospective longitudinal study. J. Neurol. Neurosurg.
Psychiatry 90, 165–170. doi: 10.1136/jnnp-2018-318956

Lerche, S., Wurster, I., Roeben, B., Zimmermann, M., Riebenbauer, B., Deuschle,
C., et al. (2020). Parkinson’s disease: Glucocerebrosidase 1 mutation severity
is associated with CSF Alpha-Synuclein profiles. Mov. Disord. 35, 495–499.
doi: 10.1002/mds.27884

Lesage, S., Anheim, M., Condroyer, C., Pollak, P., Durif, F., Dupuits,
C., et al. (2011). Large-scale screening of the Gaucher’s disease-related
glucocerebrosidase gene in Europeans with Parkinson’s disease. Hum. Mol.
Genet. 20, 202–210.

Mahungu, A. C., Anderson, D. G., Rossouw, A. C., Van Coller, R., Carr, J. A.,
Ross, O. A., et al. (2020). Screening of the glucocerebrosidase (GBA) gene in
South Africans of African ancestry with Parkinson’s disease. Neurobiol. Aging
88, 156.e11-156.e14.

Malek, N., Swallow, D., Grosset, K. A., Anichtchik, O., Spillantini, M., and Grosset,
D. G. (2014). Alpha-synuclein in peripheral tissues and body fluids as a

biomarker for Parkinson’s disease - a systematic review. Acta Neurol. Scand.
130, 59–72. doi: 10.1111/ane.12247

Malek, N., Weil, R. S., Bresner, C., Lawton, M. A., Grosset, K. A., Tan, M., et al.
(2018). Features of GBA-associated Parkinson’s disease at presentation in the
UK Tracking Parkinson’s study. J. Neurol. Neurosurg. Psychiatry 89, 702–709.

Mazzulli, J. R., Xu, Y. H., Sun, Y., Knight, A. L., Mclean, P. J., Caldwell, G. A.,
et al. (2011). Gaucher disease glucocerebrosidase and alpha-synuclein form
a bidirectional pathogenic loop in synucleinopathies. Cell 146, 37–52. doi:
10.1016/j.cell.2011.06.001

Mitsui, J., Matsukawa, T., Sasaki, H., Yabe, I., Matsushima, M., Durr, A., et al.
(2015). Variants associated with Gaucher disease in multiple system atrophy.
Ann. Clin. Transl. Neurol. 2, 417–426.

Mollenhauer, B., Caspell-Garcia, C. J., Coffey, C. S., Taylor, P., Singleton, A., Shaw,
L. M., et al. (2019). Longitudinal analyses of cerebrospinal fluid alpha-Synuclein
in prodromal and early Parkinson’s disease. Mov. Disord. 34, 1354–1364. doi:
10.1002/mds.27806

Moors, T. E., Paciotti, S., Ingrassia, A., Quadri, M., Breedveld, G., Tasegian,
A., et al. (2018). Characterization of Brain Lysosomal Activities in
GBA-Related and Sporadic Parkinson’s Disease and Dementia with
Lewy Bodies. Mol Neurobiol. 56, 1344–1355. doi: 10.1007/s12035-018-
1090-0

Moors, T. E., Paciotti, S., Ingrassia, A., Quadri, M., Breedveld, G., Tasegian, A.,
et al. (2019). Characterization of Brain Lysosomal Activities in GBA-Related and
Sporadic Parkinson’s Disease and Dementia with Lewy Bodies. Mol. Neurobiol.
56, 1344–1355. doi: 10.1007/s12035-018-1090-0

Mullin, S., Smith, L., Lee, K., D’souza, G., Woodgate, P., Elflein, J., et al. (2020).
Ambroxol for the treatment of patients with Parkinson disease with and
without glucocerebrosidase gene mutations: a nonrandomized. Noncontrolled
Trial. JAMA Neurol. 77, 427–434. doi: 10.1001/jamaneurol.2019.
4611

Murphy, K. E., Gysbers, A. M., Abbott, S. K., Tayebi, N., Kim, W. S., Sidransky,
E., et al. (2014). Reduced glucocerebrosidase is associated with increased alpha-
synuclein in sporadic Parkinson’s disease. Brain 137, 834–848. doi: 10.1093/
brain/awt367

Nalls, M. A., Duran, R., Lopez, G., Kurzawa-Akanbi, M., Mckeith, I. G., Chinnery,
P. F., et al. (2013). A multicenter study of glucocerebrosidase mutations in
dementia with Lewy bodies. JAMA Neurol. 70, 727–735.

Neumann, J., Bras, J., Deas, E., O’sullivan, S. S., Parkkinen, L., Lachmann, R. H.,
et al. (2009). Glucocerebrosidase mutations in clinical and pathologically
proven Parkinson’s disease. Brain 132, 1783–1794. doi: 10.1093/brain/aw
p044

Paciotti, S., Gatticchi, L., Beccari, T., and Parnetti, L. (2019). Lysosomal enzyme
activities as possible CSF biomarkers of synucleinopathies.Clin. Chim. Acta 495,
13–24. doi: 10.1016/j.cca.2019.03.1627

Parnetti, L., Paciotti, S., Eusebi, P., Dardis, A., Zampieri, S., Chiasserini, D.,
et al. (2017). Cerebrospinal fluid beta-glucocerebrosidase activity is reduced in
parkinson’s disease patients. Mov. Disord. 32, 1423–1431. doi: 10.1002/mds.
27136

Petrucci, S., Ginevrino, M., Trezzi, I., Monfrini, E., Ricciardi, L., Albanese, A., et al.
(2020). GBA-Related Parkinson’s disease: dissection of genotype-phenotype
correlates in a Large Italian Cohort. Mov Disord. doi: 10.1002/mds.28195 [Epub
ahead of print].

Schneider, S. A., and Alcalay, R. N. (2017). Neuropathology of genetic
synucleinopathies with parkinsonism: review of the literature. Mov. Disord. 32,
1504–1523. doi: 10.1002/mds.27193

Schondorf, D. C., Aureli, M., Mcallister, F. E., Hindley, C. J., Mayer, F., Schmid, B.,
et al. (2014). iPSC-derived neurons from GBA1-associated Parkinson’s disease
patients show autophagic defects and impaired calcium homeostasis. Nat.
Commun. 5:4028.

Segarane, B., Li, A., Paudel, R., Scholz, S., Neumann, J., Lees, A., et al. (2009).
Glucocerebrosidase mutations in 108 neuropathologically confirmed cases
of multiple system atrophy. Neurology 72, 1185–1186. doi: 10.1212/01.wnl.
0000345356.40399.eb

Shahnawaz, M., Tokuda, T., Waragai, M., Mendez, N., Ishii, R., Trenkwalder, C.,
et al. (2017). Development of a Biochemical Diagnosis of Parkinson Disease
by Detection of alpha-Synuclein Misfolded Aggregates in Cerebrospinal Fluid.
JAMA Neurol. 74, 163–172. doi: 10.1001/jamaneurol.2016.4547

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 September 2020 | Volume 8 | Article 562522100

https://doi.org/10.1002/mds.28112
https://doi.org/10.1002/acn3.338
https://doi.org/10.1002/acn3.338
https://doi.org/10.1212/wnl.0b013e3181f61311
https://doi.org/10.1002/ana.23614
https://doi.org/10.1136/jmg.2004.024455
https://doi.org/10.1016/j.nbd.2018.09.015
https://doi.org/10.1016/j.nbd.2018.09.015
https://doi.org/10.1007/s00401-008-0344-8
https://doi.org/10.1016/j.bcmd.2006.02.004
https://doi.org/10.1016/j.parkreldis.2019.04.016
https://doi.org/10.1136/jnnp-2018-318956
https://doi.org/10.1002/mds.27884
https://doi.org/10.1111/ane.12247
https://doi.org/10.1016/j.cell.2011.06.001
https://doi.org/10.1016/j.cell.2011.06.001
https://doi.org/10.1002/mds.27806
https://doi.org/10.1002/mds.27806
https://doi.org/10.1007/s12035-018-1090-0
https://doi.org/10.1007/s12035-018-1090-0
https://doi.org/10.1007/s12035-018-1090-0
https://doi.org/10.1001/jamaneurol.2019.4611
https://doi.org/10.1001/jamaneurol.2019.4611
https://doi.org/10.1093/brain/awt367
https://doi.org/10.1093/brain/awt367
https://doi.org/10.1093/brain/awp044
https://doi.org/10.1093/brain/awp044
https://doi.org/10.1016/j.cca.2019.03.1627
https://doi.org/10.1002/mds.27136
https://doi.org/10.1002/mds.27136
https://doi.org/10.1002/mds.28195
https://doi.org/10.1002/mds.27193
https://doi.org/10.1212/01.wnl.0000345356.40399.eb
https://doi.org/10.1212/01.wnl.0000345356.40399.eb
https://doi.org/10.1001/jamaneurol.2016.4547
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-562522 September 24, 2020 Time: 19:52 # 7

Brockmann GBA and Alpha-Synuclein Targeting Compounds

Sidransky, E., Nalls, M. A., Aasly, J. O., Aharon-Peretz, J., Annesi, G., Barbosa,
E. R., et al. (2009). Multicenter analysis of glucocerebrosidase mutations in
Parkinson’s disease. N. Engl. J. Med. 361, 1651–1661.

Sklerov, M., Kang, U. J., Liong, C., Clark, L., Marder, K., Pauciulo, M.,
et al. (2017). Frequency of GBA variants in autopsy-proven multiple
system atrophy. Mov. Disord. Clin. Pract. 4, 574–581. doi: 10.1002/mdc3.
12481

Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R., and
Goedert, M. (1997). Alpha-synuclein in Lewy bodies. Nature 388, 839–840.

Srulijes, K., Hauser, A. K., Guella, I., Asselta, R., Brockmann, K., Schulte, C., et al.
(2013). No association of GBA mutations and multiple system atrophy. Eur. J.
Neurol. 20, e61–e62.

Stoker, T. B., Camacho, M., Winder-Rhodes, S., Liu, G., Scherzer, C. R., Foltynie,
T., et al. (2020). Impact of GBA1 variants on long-term clinical progression
and mortality in incident Parkinson’s disease. J Neurol Neurosurg Psychiatry.
91:jnnp-2020-322857.

Sun, Q. Y., Guo, J. F., Han, W. W., Zuo, X., Wang, L., Yao, L. Y., et al.
(2013). Genetic association study of glucocerebrosidase gene L444P mutation
in essential tremor and multiple system atrophy in mainland China. J. Clin.
Neurosci. 20, 217–219. doi: 10.1016/j.jocn.2012.01.055

Thaler, A., Bregman, N., Gurevich, T., Shiner, T., Dror, Y., Zmira, O., et al. (2018).
Parkinson’s disease phenotype is influenced by the severity of the mutations in
the GBA gene. Parkinsonism. Relat. Disord. 55, 45–49. doi: 10.1016/j.parkreldis.
2018.05.009

Thaler, A., Gurevich, T., Bar Shira, A., Gana Weisz, M., Ash, E., Shiner, T., et al.
(2017). A "dose" effect of mutations in the GBA gene on Parkinson’s disease

phenotype. Parkinsonism. Relat. Disord. 36, 47–51. doi: 10.1016/j.parkreldis.
2016.12.014

Ysselstein, D., Nguyen, M., Young, T. J., Severino, A., Schwake, M., Merchant, K.,
et al. (2019). LRRK2 kinase activity regulates lysosomal glucocerebrosidase in
neurons derived from Parkinson’s disease patients. Nat. Commun. 10:5570.

Zhang, Y., Shu, L., Sun, Q., Zhou, X., Pan, H., Guo, J., et al. (2018). Integrated
genetic analysis of racial differences of common GBA variants in Parkinson’s
disease: a meta-analysis. Front. Mol. Neurosci. 11:43. doi: 10.3389/fnmol.2018.
00043

Zimmermann, M., Gaenslen, A., Prahl, K., Srulijes, K., Hauser, A. K., Schulte, C.,
et al. (2018). Patient’s perception: shorter and more severe prodromal phase in
GBA-associated PD. Eur. J. Neurol. 26, 694–698. doi: 10.1111/ene.13776

Zunke, F., Moise, A. C., Belur, N. R., Gelyana, E., Stojkovska, I., Dzaferbegovic,
H., et al. (2018). Reversible CONFORMATIONAL CONVERSION of alpha-
Synuclein into toxic assemblies by glucosylceramide. Neuron 97:e110.

Conflict of Interest: The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Brockmann. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 September 2020 | Volume 8 | Article 562522101

https://doi.org/10.1002/mdc3.12481
https://doi.org/10.1002/mdc3.12481
https://doi.org/10.1016/j.jocn.2012.01.055
https://doi.org/10.1016/j.parkreldis.2018.05.009
https://doi.org/10.1016/j.parkreldis.2018.05.009
https://doi.org/10.1016/j.parkreldis.2016.12.014
https://doi.org/10.1016/j.parkreldis.2016.12.014
https://doi.org/10.3389/fnmol.2018.00043
https://doi.org/10.3389/fnmol.2018.00043
https://doi.org/10.1111/ene.13776
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-562692 October 10, 2020 Time: 18:41 # 1

MINI REVIEW
published: 15 October 2020

doi: 10.3389/fcell.2020.562692

Edited by:
Beate Winner,

University of Erlangen–Nuremberg,
Germany

Reviewed by:
Andrew West,

Duke University, United States
Dilshan Shanaka Harischandra,

Covance, United States
R. Lee Mosley,

University of Nebraska Medical
Center, United States

*Correspondence:
Veselin Grozdanov

veselin.grozdanov@uni-ulm.de

Specialty section:
This article was submitted to

Molecular Medicine,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 15 May 2020
Accepted: 24 September 2020

Published: 15 October 2020

Citation:
Grozdanov V and Danzer KM

(2020) Intracellular Alpha-Synuclein
and Immune Cell Function.

Front. Cell Dev. Biol. 8:562692.
doi: 10.3389/fcell.2020.562692

Intracellular Alpha-Synuclein and
Immune Cell Function
Veselin Grozdanov* and Karin M. Danzer

Department of Neurology, Ulm University, Ulm, Germany

Intracellular alpha-synuclein has numerous effects on different functions of the cell.
Although it is expressed in a wide spectrum of cell types from different lineages, most of
our knowledge about it was generated by studying neuronal or glial cells. However, the
role of immune cells in Parkinson’s disease and related synucleinopathies has recently
emerged. Altered immune cell phenotypes and functions have been reported not only
in animal models, but also in human disease. While the response of immune cells to
extracellular alpha-synuclein has been thoroughly studied, insights into the effects of
endogenously expressed or taken-up alpha-synuclein on the function of immune cells
remain scarce. Such insights may prove to be important for understanding the complex
cellular and molecular events resulting in neurodegeneration and aid the development of
novel therapies. We review the current state of knowledge about how alpha-synuclein
and its pathologic manifestations affect the phenotype and function of peripheral and
central nervous system (CNS) immune cells, and discuss the potential of this topic for
advancing our understanding of synucleinopathies.

Keywords: alpha-synuclein, Parkinson’s disease, immune cell function, microglia, monocytes

INTRODUCTION

Alpha-synuclein, the protein central to the pathology of several neurodegenerative diseases, is well-
conserved in mammals and expressed in many different tissues and cell types besides neurons of
the central nervous system (CNS) (Shin et al., 2000). Although its function in the cell remains
unclear – or rather not precisely defined – its effects on a plethora of cell functions have been
described in detail. They include a role in synaptic plasticity, vesicle organization and release,
neurotransmitter release, chaperone functions, membrane regulation and even regulation of gene
expression (Emamzadeh, 2016; Surguchev and Surguchov, 2017). Almost all of this knowledge
has been generated with focus on neurons and oligodendrocytes, which are the cell types mostly
affected in synucleinopathies. However, the fact that alpha-synuclein is well-conserved (George,
2002), expressed in immune cells (Shin et al., 2000) and important for hematopoiesis (Xiao et al.,
2014) suggests that its functions reach well beyond CNS neurons and oligodendrocytes. Similarly
to those cell types, immune cells may be affected by a loss of function and/or a gain of toxic
mechanism that are well-described for different pathologic manifestations of alpha-synuclein:
increased concentrations of the protein, mutant forms, low- and high-molecular oligomers, large
aggregates, protein fragments and post-translationally modified forms. Indeed, the discovery that
alpha-synuclein and its pathologic forms are released into the extracellular space has led to an
increased attention to its effects on surrounding immune cells (Ferreira and Romero-Ramos, 2018).
The investigation of immune activation by extracellular alpha-synuclein now spans almost two
decades of intense research and has provided very valuable insights into the mechanisms that
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drive and modulate neuroinflammation and cell-to-cell
spreading of alpha-synuclein pathology. The recognition
and processing of extracellular alpha-synuclein by immune cells
can trigger their activation, proliferation, secretion of cytokines
and other immune mediators, and phagocytosis (Figure 1, in
red). However, very few studies have focused on the effects
of intracellular alpha-synuclein (and its pathologic forms) on
immune cells. Several observations suggest that such effects
may take place and be relevant for disease: (i) some studies
have shown that the local environment may be at least partly
responsible for alpha-synuclein pathology, which can therefore
take place also in immune cells (Candelise et al., 2020) (ii)
genetic aberrations such as point mutations, duplications, and
triplications are systemic and found also in immune cells (Gardai
et al., 2013; Haenseler et al., 2017) (iii) alpha-synuclein is capable
of escaping into the intracellular space after uptake by cells
(Freeman et al., 2013; Flavin et al., 2017). The detailed study
of the effects of intracellular alpha-synuclein on immune cells
bears potential in two main aspects: It may reveal so-far-overseen
mechanisms of neuroinflammation, and can hold diagnostic
value, as peripheral immune cells are easily accessible.

Two main categories of immune cells can be distinguished in
the context of synucleinopathies: CNS and peripheral immune
cells. CNS immune cells comprise mainly microglia, with some
functional overlap to astrocytes. While the contributions of these
cell types to neurodegeneration is widely described, peripheral
immune cells have just recently emerged as contributors to
degenerative processes, rather than just passive bystanders.
In Parkinson’s disease, a role for monocytes and T cells
have recently received strong support by findings in animal
models and the human disease (Harms et al., 2017a,b; Sulzer
et al., 2017; Sommer et al., 2018; Grozdanov et al., 2019;
Lindestam Arlehamn et al., 2020).

INTRACELLULAR ALPHA-SYNUCLEIN
POOL

Two main mechanisms can contribute to the pool of intracellular
alpha-synuclein: expression and uptake from the extracellular
space (Figure 1, in black). Compared to neuronal cells, the
expression in non-neuronal CNS cells is relatively low (see e.g.,
www.brainrnaseq.org). In mice, the expression in neurons is
>10-fold higher than in all other brain cell types, except for
oligodendrocyte precursor cells (Tabula Muris Consortium et al.,
2018; Li et al., 2019). In human, single-cell transcriptomics show
that microglia and brain macrophages express detectable levels
of alpha-synuclein, however, still much lower than neurons and
oligodendrocytes (Zhang et al., 2016). In peripheral immune
cells, expression of alpha-synuclein is highest in classical
monocytes and non-classical monocytes and almost negligible
in T cells, B cells and other immune cell types (see e.g.,
https://dice-database.org/). Interestingly, expression of alpha-
synuclein is relatively strong in hematopoietic precursor cells
and mature erythrocytes, suggesting a role in hematopoiesis
and differentiation (see below). The relative levels of alpha-
synuclein expression in microglia and peripheral immune cells

are hard to compare directly, but it appears that expression
is stronger in inflammatory monocytes (Zhang et al., 2016; Li
et al., 2019). An increased expression in microglia cannot be
deduced from the expression in monocytes, as these cells behave
differently in the CNS in vivo (Yamasaki et al., 2014). Apart
from expression, intracellular alpha-synuclein can also originate
from the extracellular space. Different routes of uptake have been
described, including passive entry, pinocytosis and phagocytosis
(for extensive review, see Tyson et al., 2016 and Grozdanov
and Danzer, 2018). Aggregated alpha-synuclein can escape lyso-
phagosomal compartments by vesicle rupture and gain access to
the intracellular space (Freeman et al., 2013). Intracellular alpha-
synuclein can affect the function of immune cells over several
putative mechanisms (Figure 1, blue), e.g., generation of reactive
oxygen species, modulation of gene expression, modulation of
vesicle dynamics, and accumulation at the phagocytic cup.

INTRACELLULAR ALPHA-SYNUCLEIN
AND MICROGLIA FUNCTION

Main functions of microglia include phagocytosis of extracellular
material and apoptotic cells, surveillance and maintenance of
the extracellular space, synaptic pruning, fighting off pathogens,
recruitment and coordination of peripheral immune cells, self-
renewal and regeneration (Li and Barres, 2018). Almost all
of these functions have been shown to be affected by alpha-
synuclein. Studying intracellular alpha-synuclein in microglia
has been limited by two main factors: first, primary microglial
cells, and to some extent microglial cell lines, are relatively
hard to transfect and mostly react unspecific to the genetic
manipulation, so that specific effects of the transgene are
hard to differentiate. Second, most transgenic models in vivo
target specifically neurons and do not manipulate alpha-
synuclein expression in microglia. This obstacle can be overcome
by the employment of universal promoters, alpha-synuclein’s
own promoter or by global knockouts. Gardai et al. (2013)
employed a bacterial artificial chromosome (BAC) model with
overexpression of wild-type and mutant (E46K) alpha-synuclein
under its own promoter and surrounding regulatory regions
in mice. Purified microglia from these transgenic animals
secreted significantly lower amounts of IL-6 and TNF-α despite
similar endogenous expression, an effect attributed to impaired
vesicle dynamics. Furthermore, isolated microglia and peritoneal
macrophages displayed markedly reduced in vitro and in vivo
phagocytosis of latex beads, red blood cells and apoptotic cells,
which could also be linked to impaired membrane traffic and
recruitment of alpha-synuclein to the phagocytic cup (Gardai
et al., 2013). Further insights come from a series of studies by
Combs and colleagues, who investigated the effects of alpha-
synuclein knockout and overexpression on microglia (Austin
et al., 2006, 2011; Rojanathammanee et al., 2011). Purified
postnatal microglia from Snca−/− mice presented with reactive
morphology, increased basal and induced release of IL-6 and
TNF-α, and a severe deficit in phagocytosis of E. coli bioparticles
(Austin et al., 2006). Further changes in Snca−/− microglia
included increased levels of phospholipase D (PLD2), cytosolic
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FIGURE 1 | Alpha-synuclein and immune cell function. Different mechanisms can contribute to the pool of intracellular α-synuclein (black arrows). Alpha-synuclein is
weakly expressed in immune cells, most notably microglia, macrophages and inflammatory monocytes (panel sizes correspond to estimated relative expression).
Extracellular alpha-synuclein can also contribute to the intracellular pool after uptake. Extracellular alpha-synuclein can induce the immune response by binding to
molecular pattern receptors on the cell surface or the lumen of endocytic vesicles (red). Different putative mechanisms can contribute to the effects of intracellular
alpha-synuclein on immune cell function (blue arrows). NK, natural killer cells; ROS, reactive oxygen species; SNCA, alpha-synuclein gene.

phospholipase (cPLA2), Cox-2 and prostaglandins PGD2 and
PGE2 and, importantly, increased neurotoxicity in a co-culture
system (Austin et al., 2011). In a complementary approach
with the murine BV-2 microglial line, transient overexpression
of wild-type and mutant (A30P, A53T) human alpha-synuclein
resulted in similar changes in microglia: increased levels of
Cox-2, decreased phagocytosis and reduced lysosomal protein
expression, but increased basal and LPS-induced IL-6, TNF-
α, and NO-release. In contrast to Snca−/− microglia, BV-2
cells overexpressing wild-type and mutant alpha-synuclein were
not neurotoxic and did not display elevated levels of PLD2
and cPLA2 (Rojanathammanee et al., 2011). Interestingly, the
authors observed an accumulation not only of monomeric
alpha-synuclein, but also of SDS-resistant oligomeric species.
Another study by Kim et al. (2009) demonstrated increased
expression of CD44 and MT1-MMP by BV-2 cells transiently
overexpressing human alpha-synuclein (wild-type, A30P, A53T),
as well as increased migration upon overexpression of A53T.
These findings clearly demonstrate that pathologic alterations
in alpha synuclein interfere with murine microglial function.
However, it cannot be ruled out that the observed changes in
the microglial phenotype with alpha-synuclein overexpression
do not result from the endogenous alpha-synuclein, but from
the exposure to extracellular alpha-synuclein released from

microglia and other cell types. Indeed, Haenseler et al. (2017)
have demonstrated that conditioning of iPSC-derived microglia
(pMac) with exogenous alpha-synuclein decreases phagocytosis
in the same fashion as increased endogenous levels, while Kim
et al. (2009) demonstrated the same effects of intracellular and
extracellular alpha-synuclein on microglial migration.

Studies with human microglia are largely absent, but critical
for the translation of insights generated with animal models.
The major hurdle comes from the difficulties in obtaining and
maintenance of human microglia and the limitations of cell
lines (Stansley et al., 2012). However, recent advancements with
the generation of microglia from peripheral blood monocytes
(Etemad et al., 2012) and iPSCs (Haenseler et al., 2017) may
prove useful in overcoming these limitations. Haenseler et al.
(2017) generated PSC-macrophages (pMac) from PD patients
with A53T mutation or triplication of alpha-synuclein, which
are highly similar to brain-resident microglia. pMac from alpha-
synuclein triplication, but not A53T mutation, showed increased
intracellular levels of alpha-synuclein and associated reduction
in phagocytosis activity and release of CXCL1, IL-18, and IL-
22 (Haenseler et al., 2017). However, caution is warranted when
translating findings from monocyte-derived cells to microglia, as
these cells have differential roles in the CNS in health and disease
(Yamasaki et al., 2014).
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INTRACELLULAR ALPHA-SYNUCLEIN
AND PERIPHERAL IMMUNE CELL
FUNCTION

Contrary to microglia studies, insights about intracellular alpha-
synuclein on peripheral immune cell function stem mostly from
human studies, due to the limited availability of human microglia
and rodent peripheral immune cells. Such studies are further
complicated by the difficulties in genetic manipulation and
maintenance of primary cells and the therefrom-derived cell
lines. Tashkandi et al. (2018) reported ultrastructural changes in
peripheral blood leukocytes from a Snca−/− mouse model. The
findings included changes in size and shape of secretory particles,
increase in smooth-endoplasmic reticulum, specific granules
and inclusions (Tashkandi et al., 2018). Maitta et al. (2011)
have further demonstrated a critical role for alpha-synuclein
in hematopoiesis using an alpha-synuclein knockout model.
Snca−/− mice displayed anemia, smaller platelets, reduced B-
cell maturation and defects in the generation of IgG, but
not IgM (Xiao et al., 2014), as well as impaired maturation
of T cells and significant reduction of total T cells (Shameli
et al., 2016). Furthermore, T cells were hyperactive and released
increased levels of IL-2 and decreased levels of IL-4. Together,
these studies strongly suggest a critical role for alpha-synuclein
in hematopoiesis. Interestingly, alpha-synuclein expression has
been linked not only to physiological hematopoiesis, but also to
neoplastic conditions (Maitta et al., 2011).

A valuable tool for human studies is provided by cases
of familial disease, as exemplified by numerous studies
with patients with a LRRK2 mutation (Speidel et al., 2016).
However, alpha-synuclein-linked familial PD is very rare
compared to LRRK2 familial PD (Klein and Westenberger,
2012) and only a few studies have been conducted. Gardai
et al. (2013) demonstrated that the deficit in phagocytosis
found in microglia from transgenic mice are reflected by
fibroblasts and peripheral blood monocytes from a PD patient
with triplication of the alpha-synuclein gene (SNCA) and
increased intracellular levels of alpha-synuclein. Moreover,
the same was also observed in fibroblasts and PBMCs from
a cohort of patients with sporadic PD, where phagocytosis
ability correlated negatively with intracellular levels of alpha-
synuclein (Gardai et al., 2013). We have previously also
reported a decrease of phagocytosis in peripheral blood
monocytes from PD patients, but did not investigate alpha-
synuclein levels (Grozdanov et al., 2014). A further study on
PBMCs from PD patients confirmed increased expression
of alpha-synuclein and showed increased propensity for
apoptosis, increased expression of glucocorticoid receptor,
activation of caspase-8 and caspase-9, upregulation of
CD95 and increased production of reactive oxygen species
(Kim et al., 2004).

DISCUSSION

The studies described above utilize different approaches to
investigate alpha-synucleins’ role in immune cell function.

Interestingly, loss of alpha-synuclein and overexpression/
mutations show similar detrimental effects on immune cell
function, similarly to the effects observed in other cell types.
These observations suggest that the impairment in immune
cell function result at least partially from a loss of function
of intracellular alpha-synuclein. Furthermore, Gardai et al.
(2013) demonstrated that the effect of alpha-synuclein on
phagocytosis in postnatal microglia is direct and not the result
of a developmental failure. It remains almost unexplored
whether alpha-synuclein can aggregate also in microglia
and what contribution microglial alpha-synuclein has to
the initiation and spread of aggregation. Such studies are
hindered by the inability to differentiate between alpha-
synuclein originating from microglia or endocytosed from
the extracellular space. We have recently developed an in vivo
model which utilizes bimolecular fluorescence complementation
and demonstrated the spread of neuronal alpha-synuclein
from cell to cell (Kiechle et al., 2019). Such models could
be modified with the use of microglia-specific promoters to
investigate the dynamics of microglial alpha-synuclein and its
aggregation. A further interesting paradigm emerges from the
relation between inflammatory stimulation and alpha-synuclein
expression. Several studies have suggested increased expression
of alpha-synuclein in macrophages and astrocytes (Tanji
et al., 2001, 2002) after stimulation with lipopolysaccharide
and interleukins. However, it remains uninvestigated if such
an increase in alpha-synuclein expression can contribute to
the aggregation and cell-to-cell spread. If confirmed, this
could provide a link between alpha-synuclein pathology and
the association of PD with inflammatory processes. Many
studies have addressed neuroinflammation in animal models
of synucleinopathies, and some of them have utilized systemic,
not neuron-limited approaches (Cicchetti et al., 2002; Qin
et al., 2007; Gao et al., 2011). However, the insights about
endogenous intracellular alpha-synuclein effects on immune
cells from the latter are hard to distinguish from the effects
of extracellular alpha-synuclein expressed and released by
other cell types. As much as this is an obstacle, it also presents
as an opportunity, as isolated effects of intracellular alpha-
synuclein on immune cells may have remained so far obscured
from our attention.

The deficits in phagocytosis observed in the disease models
and patients with PD are, in contrast to activation and
cytokine release, clearly detrimental and can be addressed
therapeutically. McConlogue and colleagues have developed
small molecule drug-like compounds, which effectively inhibit
alpha-synuclein aggregation and recruitment to the phagocytic
cup and employed them to overcome phagocytosis deficits
resulting from alpha-synuclein overexpression (Toth et al., 2014,
2019). Such compounds are more appropriate for targeting
intracellular alpha-synuclein than antibodies that target mostly
(but not exclusively) extracellular alpha-synuclein and over
therapies directed against alpha-synuclein expression, which may
interfere with its physiological functions. The measurement of
total alpha-synuclein in peripheral immune cells emerges as
a promising diagnostic tool (Kim et al., 2004; Gardai et al.,
2013; Limgala and Goker-Alpan, 2019). Human white blood
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cells are easily accessible, can be obtained as parallel
samples for validation and longitudinally over long periods.
However, measuring alpha-synuclein levels in white blood
cells and its diagnostic potential has to be validated
in different centers and settings, and most importantly,
specificity and sensitivity have to be determined. In
conclusion, the dissection of intracellular alpha-synucleins’
effects on immune cell function offers several interesting
diagnostic and therapeutic possibilities and will deepen our
understanding of the complex cellular events that lead to
neurodegenerative diseases.
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Dendritic dysfunction is an early event in α-synuclein (α-syn) mediated
neurodegeneration. Altered postsynaptic potential and loss of dendritic spines
have been observed in different in vitro and in vivo models of synucleinopathies.
The integration of newborn neurons into the hippocampus offers the possibility to
study dendrite and spine formation in an adult environment. Specifically, survival of
hippocampal adult newborn neurons is regulated by synaptic input and was reduced
in a mouse model transgenic for human A53T mutant α-syn. We thus hypothesized
that dendritic integration of newborn neurons is impaired in the adult hippocampus
of A53T mice. We analyzed dendritic morphology of adult hippocampal neurons 1
month after retroviral labeling. Dendrite length was unchanged in the dentate gyrus
of A53T transgenic mice. However, spine density and mushroom spine density of
newborn neurons were severely decreased. In this mouse model, transgenic α-syn was
expressed both within newborn neurons and within their environment. To specifically
determine the cell autonomous effects, we analyzed cell-intrinsic overexpression of
A53T α-syn using a retrovirus. Since A53T α-syn overexpressing newborn neurons
exhibited decreased spine density 1 month after labeling, we conclude that cell-intrinsic
A53T α-syn impairs postsynaptic integration of adult hippocampal newborn neurons.
Our findings further support the role of postsynaptic degeneration as an early feature in
synucleinopathies and provide a model system to study underlying mechanisms.

Keywords: A53T alpha-synuclein, cell autonomous, adult neurogenesis, hippocampus, spines

INTRODUCTION

Accumulation of α-synuclein (α-syn) is the neuropathological hallmark of synucleinophathies like
Parkinson’s disease (PD), resulting in cytoplasmic inclusions called Lewy bodies (Spillantini et al.,
1997; Goedert et al., 2012). While the precise mechanisms of α-syn mediated neurodegeneration
are incompletely understood, impaired synaptic transmission was related to axonal degeneration
in PD (Chung et al., 2009; Prots et al., 2018).
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The A53T α-syn mutation causes early-onset familial PD
(Polymeropoulos et al., 1996). Increased α-syn toxicity conferred
by this variant was linked to a higher propensity for aggregation
when compared to wild-type α-syn and to A30P α-syn (Conway
et al., 2000b; Ostrerova-Golts et al., 2000). Specifically, the
A53T mutation increases levels of oligomeric α-syn species
(Conway et al., 2000a; Winner et al., 2011a; Zambon et al., 2019).
In A53T-linked familial PD, non-motor symptoms including
cognitive impairment were reported (Puschmann et al., 2009).
Post-mortem analyses of A53T PD cases revealed widespread
accumulation of insoluble α-syn, including the hippocampus
(Duda et al., 2002; Kotzbauer et al., 2004).

Transgenic (tg) animal models overexpressing α-syn
have improved the understanding of neurodegeneration in
synucleinopathies. Different tg models overexpressing A53T
α-syn have been shown to recapitulate parts of the A53T
phenotype in vivo (Hashimoto et al., 2003; Visanji et al., 2016).

In the mammalian brain, neurogenesis persists throughout
adulthood within the so-called neurogenic niches, i.e., the
hippocampus and the subventricular zone/olfactory bulb system.
This offers the unique opportunity to study the integration of
birthdated newly generated neuroblasts into an existing local
microcircuitry (Gonçalves et al., 2016). Survival and dendritic
integration of newborn neurons are impaired in mice tg for
human wildtype α-syn (Winner et al., 2004, 2012; Regensburger
et al., 2018). Previously, we have also shown that survival
of newborn neurons is significantly reduced in the adult
hippocampus of A53T-tg mice which was related to altered cell
intrinsic expression of the Notch signaling pathway (Crews et al.,
2008; Kohl et al., 2012). In addition, serotonergic innervation was
reduced in the A53T-tg mouse model within specific subregions
of the prefrontal cortex and the hilus of the hippocampal dentate
gyrus, correlating with reduced serotonergic imaging markers in
presymptomatic A53T mutations carriers (Deusser et al., 2015;
Wihan et al., 2019; Wilson et al., 2019).

The integration of adult newborn neurons provides a useful
model to study the effects of disease related proteins on synapse
formation in an aging brain (Mu et al., 2010). Our previous
data indicate both serotonergic degeneration and impaired
neurogenesis in the A53T-tg mouse model. We here aimed
to analyze newborn neuron integration within the molecular
layer of the adult dentate gyrus. We demonstrate a synaptic
integration deficit at the level of spines and mushroom spines.
Importantly, we show that cell-intrinsic A53T α-syn is sufficient
to impair spine density in non-tg mice. Our findings support
emerging evidence about a pathogenic role of α-syn in the
postsynaptic compartment.

MATERIALS AND METHODS

Animals
Animal experiments were conducted in accordance with the
European Communities Council Directive of 24th Nov. 1996 and
were approved by the local governmental administrations for
animal health (Animal Care Use Committee of the University
of California, San Diego, CA, United States and Government
of Lower Frankonia, Würzburg, Germany, “TS–9/11”). A53T-tg

mice overexpress human α-syn carrying the A53T mutation
under the regulatory control of the PDGFβ promoter (Hashimoto
et al., 2003). A53T-tg mice were kept group-housed with non
transgenic littermates (non-tg) under a 12 h light dark cycle with
free access to food and water. Newborn neurons were labeled
with the respective retrovirus at 4 months of age (n = 4 animals
per group) when survival and proliferation of newborn neurons
is impaired (Kohl et al., 2012). For the analysis of the effects
of cell-intrinsic overexpression of A53T-mutant α-syn, newborn
neurons were labeled in C57Bl/6 mice at the young adult age of 6
weeks (n = 4 animals per group).

Labeling of Newborn Neurons
A Moloney murine leukemia retrovirus-based CAG-GFP
plasmid was used as described earlier (Zhao et al., 2006;
Winner et al., 2012; Regensburger et al., 2018). To selectively
overexpress A53T-mutant α-syn within newborn neurons, the
retrovirus CAG-A53T-GFP was cloned where A53T-mutant
α-syn is C-terminally fused with GFP. To this end, GFP cDNA
was ligated to the 3′ end of A53T-mutant α-syn cDNA in a
Bluescript cloning vector (Invitrogen) and subsequently cloned
into the CAG-GFP vector. Correct structure of the construct
was confirmed by sequencing. A concentrated viral solution
(108 pfu/ml) was prepared with human embryonic kidney 293T
packaging cells (Tashiro et al., 2006). Mice were anesthetized
using a weight-adjusted i.p. dose of Xylazine/ Ketamine.
A stereotaxic frame (Kopf Instruments) was used for sequential
bilateral infusion into the dentate gyrus (AP−2.00 mm, ML+/−
1.6 mm from bregma, DV −2.3 mm from skull). A total volume
of 1.5 µl was slowly infused (0.3µl/min) followed by wound
closure and a survival period of 31 days.

Tissue Processing
Animals were sacrificed 31 days after stereotactic surgery.
Euthanasia with Xylazine/Ketamine i.p. was followed by
transcardial perfusion with PBS and 4% paraformaldehyde for
tissue fixation. Brains were dissected, postfixed for 6 h in 4%
paraformaldehyde and stored in 30% sucrose in 0.1 M phosphate
buffer at 4◦C. 40 µm coronal brain sections were stored in
cryoprotectant solution (25% ethylene glycol, 25% glycerol in 0.1
M phosphate buffer) at−20◦C.

Immunohistochemistry
The following primary antibodies were used: rat-anti-α-synuclein
(15G7, Enzo Life Science, Germany, 1:50), ch-anti-GFP (Abcam,
1:500), rb-anti-SERT (ImmunoStar, Hudson, WI, United States;
1:2,000), gt-anti-DCX (C18, Santa Cruz, TX, United States).
Secondary antibodies were donkey-derived and conjugated
with Alexa-488 (1:1,000; Life Technologies, Carlsbad, CA,
United States), Alexa-647, or Rhodamine Red-X (1:1,000;
Dianova). Immunofluorescence was conducted as described
previously (Winner et al., 2012; Deusser et al., 2015). Sections
were blocked in 3% donkey serum/0.1% TritonX100 in TBS,
and incubated with primary antibodies at 4◦C, with secondary
antibodies at room temperature, and washed again in TBS. Nuclei
were counterstained with DAPI (Thermo Fisher Scientific, final
concentration 1:2,000) and mounted on object glasses (Superfrost
Slides, Menzel).
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Microscopy
Microscopy and dendrite analyses were performed as reported
previously (Regensburger et al., 2018). Recordings were
performed on a fluorescence microscope (Observer.Z1, Zeiss,
for dendrite growth analysis) and on a confocal laser scanning
microscope (LSM710, Zeiss for spine analysis and coexpression
studies) using ZEN software. For dendrite growth analyses, on
average 6 GFP-positive newborn neurons in the dentate gyrus
of each animal were imaged resulting in a cell number of 24 per
group. For each neuron, z-series of antibody-enhanced GFP-
signal at 1.5 µm were acquired spanning the whole extent of the
neuron within the section. Maximum intensity projections were
then analyzed with the ImageJ plugin “Simple Neurite Tracer.”
Primary, secondary, tertiary and quaternary dendrites were
labeled semiautomatically. As readouts, the plugin determined
total dendritic length, number of branching points and number
of each suborder of dendrites. On a thresholded image of
the rendered path of each neuron, dendrite complexity was
determined using the “Sholl analysis” plugin, with a step radius
of 12.5 µm from soma and a maximum radius of 250 µm.

Spine recordings were performed on dendritic sections
localized within the molecular layer, using unstained mounted
sections and the 60x object lens. Six newborn neurons were
analyzed per group. The field of view was placed on the molecular
layer and all dendritic segments of one positive neuron localized
within this area were imaged. Upon morphological appearance,
spines were classified into thin/stubby spines and the small
subpopulation of mushroom spines. The estimated surface area
of each spine was calculated as 0.785 × Dmajor × Dminor with
Dmajor as the biggest diameter and Dminor as the smallest diameter
of the respective spine. Mushroom spines exhibit a surface area
of at least 0.4 µm2 which was measured for each (suspected)
mushroom spine (Zhao et al., 2014).

To determine the density of SERT-positive fibers, stacked
images of the molecular layer were scanned, spanning a z-axis
of 11 µm at 1 µm distance. On maximum intensity projection
images, SERT-positive fibers were manually traced within the
molecular layer using the multipoint line tool in ImageJ. Density
was calculated by division of the total SERT length by analyzed
area and 11 µm.

Statistics
All data are shown as mean± standard deviation except for Sholl
analyses (mean ± SEM). Statistical analyses were performed
using Graph Pad Prism (GraphPad Software, La Jolla, CA,
United States). Statistical significance was indicated by ∗P< 0.05,
∗∗P < 0.01, and ∗∗∗P < 0.001, as determined by unpaired,
two-sided t-tests.

RESULTS

Impaired Spine Morphology of Adult
Newborn Neurons in A53T-tg Mice
It was previously shown that at the age of 4 months,
proliferation and survival of newborn neurons are impaired

in A53T-tg mice (Kohl et al., 2012). Thus, we asked whether
the morphology of newborn neurons within the A53T-tg α-syn
overexpressing microenvironment was changed. To this end,
newborn neurons were labeled by stereotactic injection of a GFP
overexpressing retrovirus into the dentate gyrus of 4 months
old mice (Figures 1A,B). After a survival period of 1 month,
newborn neurons were visualized by fluorescence microscopy
for GFP (Zhao et al., 2006). Using an antibody specific for
human α-syn, we found that transgenic A53T α-syn was widely
expressed in the dentate gyrus, including GFP positive newborn
neurons (Figure 1A).

We observed no significant differences in the total
dendritic length of newborn neurons, comparing A53T-
tg and non-tg (Figures 1C,E and Table 1). Similarly,
there were also no differences in dendritic complexity, as
measured by the number of branching points (Figure 1F)
and the subquantification of the numbers of primary,
secondary, tertiary and quaternary dendrites (Figure 1G).
Sholl analysis showed a significant reduction of dendrite
complexity at 25.0 µm distance from soma, but was otherwise
unchanged (Figure 1H).

As an indicator of postsynaptic integration of newborn
neurons, we next visualized dendritic spines of GFP labeled
newborn neurons in the molecular layer of A53T-tg and non-tg
(Figure 1D). Upon quantification, there was a significant, 24%
decrease of the density of spines per dendrite length in A53T-
tg as compared to non-tg (Figure 1I), indicating an integration
deficit of adult newborn neurons in A53T-tg. Since there are
only few filopodia and stubby spines on adult newborn granule
cells, dendritic spines can be subdivided into thin spines and
a smaller proportion of mushroom spines, based upon their
morphology (Zhao et al., 2006). Indeed, also the density of
mushroom spines was significantly reduced by 48% in A53T-
tg (Figure 1J).

In summary, adult newborn neurons were unchanged
in A53T-tg regarding dendrite outgrowth, but postsynaptic
integration was impaired as marked by decreased densities of
overall spine density and mushroom spine density.

Intact Serotonergic Innervation of the
Molecular Layer of A53T-tg Mice
Serotonergic degeneration is a widespread feature in adult
A53T-tg mice, including specific layers of the prefrontal cortex
and the hilus of the dentate gyrus (Deusser et al., 2015;
Wihan et al., 2019). In light of the reduced spine density of
newborn neurons, we investigated alterations of presynaptic
serotonergic fibers within the molecular layer of adult A53T-
tg mice. In accordance with previously published data in
a C57Bl/6 based reporter model (Migliarini et al., 2013),
there was a dense innervation of the molecular layer both
in non-tg mice and in A53T-tg mice (Figure 2A). Upon
quantification of the density of serotonergic fibers per volume,
no significant differences between A53T-tg and non-tg were
present (Figure 2B). This suggests that there is no degeneration
of serotonergic fibers within the molecular layer of A53T-tg
at this age.
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FIGURE 1 | Impaired postsynaptic integration of adult newborn neurons in A53T-transgenic mice. (A) In PDGF::A53T-α-syn transgenic animals, A53T-tg α-syn was
present in the granule cell layer and colocalized with GFP-positive newborn neurons (arrow). (B) Experimental paradigm: in A53T-tg vs. non-transgenic mice,
newborn neurons were stereotactically labeled with a GFP expressing retrovirus at the age of 4 months. Perfusion was performed after 31 days. (C) Sample tracings
of newborn neurons in non-tg and A53T animals. (D) Sample micrographs of dendritic spines of newborn neurons. Magnifications show mushroom spines. (E–G)
Dendrite length, the number of branching points and a quantification of different orders of dendritic branches were unchanged in A53T-tg animals. (H) Sholl analysis
of dendrite complexity was slightly decreased in A53T-tg at 25 µm from soma, but otherwise unchanged. (I) Significant reduction of dendritic spine density in
A53T-tg animals. (J) Significant reduction of mushroom spine density in A53T-tg animals. For statistical analysis, refer to Table 1. Graphs show mean ± standard
deviation except for (H) (mean ± SEM). Scale bars 25 µm (A,C), 10 µm (fluorescent images in D).

Specific Effects of Cell-Intrinsic
Overexpression of A53T α-Syn on
Neuronal Integration
In order to dissect the role of cell-intrinsic presence of tg A53T
α-syn vs. an effect of the transgene within the microenvironment,

we next overexpressed A53T α-syn specifically within newly
generated neurons. To this end, human A53T α-syn cDNA
was cloned into the CAG-GFP retroviral construct. Stereotactic
injections of either CAG-GFP or CAG-A53T-GFP were
performed in adult wildtype mice, targeting the dentate gyrus
of the hippocampus to label newly generated cells (Figure 3A).
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FIGURE 2 | Serotonergic innvervation of the molecular layer of the hippocampus. (A) Localization of serotonergic fibers within the molecular layer of the dentate
gyrus. (B) Quantification of the density of serotonergic fibers within the molecular layer showed no significant differences between non-tg and A53T-tg animals (data
included in Table 1). Scale bars 50 µm. GCL granule cell layer of the dentate gyrus.

Perfusion was performed after 31 days. Using a human specific
α-syn antibody, we observed that the A53T α-syn GFP fusion
protein was localized within the somal, axonal and dendritic
compartments of newborn neurons (Figure 3B).

Following the strategy described above for the analysis
of A53T-tg mice, we first investigated dendritic morphology
(Figure 3C). Cell-autonomous overexpression of A53T-GFP
caused no significant differences in dendrite outgrowth, the
number of branching points and the number of primary,
secondary, and tertiary dendrites when compared to GFP only
(Figures 3E–G). Sholl analysis showed that dendrite complexity
was unchanged between groups (Figure 3H). This indicates that
neurite outgrowth is not impaired by cell-intrinsic presence of
A53T α-syn. However, analyzing spine density in CAG-A53T-
GFP, we found a significant reduction by 31% as compared
to CAG-GFP (Figures 3D,I) which was comparable to the
A53T-tg model. Interestingly, mushroom spine density was
not significantly reduced upon cell-autonomous A53T-GFP
overexpression, although there was a trend (Figure 3J). To
sum up, retrovirus based cell-autonomous overexpression of
A53T α-syn within the dentate gyrus resulted in decreased
overall spine density, but mushroom spine density was not
significantly altered.

DISCUSSION

We report reduced spine density of adult hippocampal newborn
neurons (i) in the A53T-tg mouse model and (ii) upon
cell-intrinsic overexpression of A53T α-syn. There were no
indications of serotonergic axonal degeneration in the molecular
layer of A53T-tg mice at this stage. Since we observed early
expression of tg A53T α-syn within newborn neurons, our
findings suggest the involvement of cell-autonomous effects of
A53T α-syn on the impaired postsynaptic integration of newborn
neurons into the adult environment.

The observed transgene expression in adult newborn neurons
of the A53T-tg model 1 month after labeling matches with
previous findings. In A53T-tg mice, α-syn was shown to
accumulate within GFAP/ Sox2-positive adult stem cells,
within DCX positive neuroblasts and within mature NeuN
positive neurons (Crews et al., 2008; Winner et al., 2008;
Kohl et al., 2012).

Our results add to previous in vitro studies showing
negative effects of A53T α-syn on neurite growth and synapse
formation. Lentiviral overexpression of A53T α-syn in mouse
embryonic stem cell derived neurons resulted in reduced
neurite growth and reduced levels of β3-tubulin along with

TABLE 1 | Analysis of neurite morphology of adult newborn neurons in human A53T α-syn transgenic animals (A53T-tg) vs. non-transgenic controls (non-tg), and in
C57Bl/6 animals (cell-intrinsic overexpression of A53T α-syn GFP vs. GFP only).

Non-tg A53T-tg P CAG-GFP CAG-A53T-GFP P

Animals per genotype 4 4 4 4

Age at injection (months) 4 4 1.5 1.5

Dendritic length (µm) 462 ± 211 461 ± 189 0.99 631 ± 175 637 ± 214 0.92

Branching points (per cell) 5.25 ± 1.3 5.17 ± 2.0 0.92 6.54 ± 2.19 7.08 ± 1.82 0.35

Spine density (per µm) 1.40 ± 0.29 1.07 ± 0.28 0.0005 1.87 ± 0.59 1.29 ± 0.38 0.004

Density of mushroom spines (per µm) 0.077 ± 0.042 0.040 ± 0.026 0.0008 0.047 ± 0.018 0.035 ± 0.020 0.15

Density of SERT-positive fibers (per µm3) 0.019 ± 0.0016 0.018 ± 0.0023 0.43

Numbers are given as mean ± SD and respective P-values.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 November 2020 | Volume 8 | Article 561963112

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-561963 November 5, 2020 Time: 14:17 # 6

Regensburger et al. A53T α-Synuclein Impairs Neuronal Integration

FIGURE 3 | Cell-intrinsic effects of A53T-mutant α-syn on adult newborn neurons. (A) Wildtype mice were stereotactically injected into the dentate gyrus, with a
CAG retrovirus overexpressing either GFP only or A53T-mutant α-syn and GFP. Perfusion was performed 31 days later. (B) Staining with a human specific α-syn
antibody showed that overexpressed A53T-mutant α-syn was present within the neuronal soma and the dendritic compartment. (C) Sample micrographs of
dendritic morphology of GFP labeled newborn neurons. (D) Sample micrographs of spines (left) and mushroom spines (magnification on the right) in both groups.
(E–G) Dendritic length, the number of branching points and numbers of dendrite segments according to order were unchanged in A53T overexpressing neurons.
(H) Sholl analysis showed no changes upon CAG-A53T-GFP expression. (I) Upon cell-intrinsic overexpression of A53T α-syn, the density of spines was significantly
reduced. (J) Mushroom spine density was not significantly changed. For statistical analysis, refer to Table 1. Graphs show mean ± standard deviation except for (H)
(mean ± SEM). Scale bars 25 µm (B,C), 10 µm (D).

increased levels of cell death (Schneider et al., 2007; Crews
et al., 2008). In neurons derived from A53T PD patients’
induced pluripotent stem cells, neurite length and the number
of synapses was significantly decreased, which might also
be caused by postsynaptic presence of α-syn in this model
(Kouroupi et al., 2017).

While we have previously described an impaired dendrite
growth and dendrite branching upon in vivo transduction of

newborn neurons with human wildtype α-syn (Winner et al.,
2012), our results here show that A53T α-syn specifically
impaired spine density. These discrepancies may be caused
by different intracellular expression levels of α-syn, e.g.,
by altered degradation of A53T α-syn when compared
to the wildtype form (Stefanis et al., 2001; Cuervo et al.,
2004). Alternatively, surviving neurons with unaffected
dendritic development may have been selected by early
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cell death of adult neuroblasts with high levels of A53T
α-syn expression (Winner et al., 2008). Due to low infection
numbers to enable labeling of single cells, cell survival could
not be directly analyzed in our experiments. Since negative
effects on dendrite outgrowth and spine formation of adult
newborn neurons were also present in a LRRK2G2019S-tg
mouse model, overlapping mechanisms may be involved
(Winner et al., 2011b). Atrophy of dendritic spines due to
presynaptic α-syn aggregation is well described in PD brains
(Kramer and Schulz-Schaeffer, 2007).

As dendritic spines reflect sites of strongest synaptic input, our
data suggest a reduced number and strength of synapses upon
cell-autonomous expression of A53T α-syn (Harris and Stevens,
1988). However, a preserved density of synapses despite spine loss
cannot be fully excluded based upon our data.

Under physiological conditions, intraneuronal α-syn is mainly
localized within axonal presynaptic terminals in fully mature
neurons (Withers et al., 1997). During neuronal maturation and
under pathological circumstances, however, endogenous α-syn is
also located in the somal, nuclear and dendritic compartments
(Withers et al., 1997; McLean et al., 2000; Miraglia et al., 2018;
Teravskis et al., 2018). Interestingly, the A53T mutation slows
axonal transport of α-syn to the presynapse in vitro (Yang
et al., 2010). Moreover, in A53T-tg mice, dendritic localization
of α-syn was ultrastructurally confirmed within the dendrites of
mature neurons, predominantly within inclusions (Martin et al.,
2006). Thus, the observed dendritic localization of the A53T-GFP
fusion protein may also be a result of pathogenic functions of
α-syn.

In this study, we specifically analyzed adult newborn
neuron integration 1 month after labeling, i.e., shortly after
the peak of spine morphogenesis and dendrite growth (Zhao
et al., 2006). However, newborn neurons’ spines are constantly
generated for at least 2 more months and remain mobile,
along with differential synaptic connectivity when compared
to fully mature granule cells (Toni and Sultan, 2011; Lemaire
et al., 2012; Cole et al., 2020). Thus, we cannot exclude
that the observed effects may become more or less severe
at later timpoints. However, the 4 weeks timepoint has
been commonly used to analyze newborn neuron integration
because the selection of surviving newborn neurons is mostly
completed (Biebl et al., 2000; Winner et al., 2002; Dayer
et al., 2003; Kim et al., 2011; Llorens-Martín et al., 2016).
In addition, we have previously shown that altered dendrite
and spine morphology upon cell-autonomous overexpression
of wildtype α-syn were still present 3 months after labeling
(Winner et al., 2012).

A recent long-term follow-up of dendritic trees indicated that
hippocampal adult newborn neurons tend to acquire one or
more additional primary dendrites after several weeks, probably
via displacement of the first branch point of the primary
dendrite (Cole et al., 2020). Overexpression of A53T α-syn
increased the number of primary neurites in rat midbrain
neurons (Koch et al., 2015). In both of the A53T models
presented herein, we did not detect changes in the number of
primary neurites. In addition, there were no overall changes in
dendrite complexity.

The microtubule associated protein tau interacts with
α-syn and there is a substantial overlap of tauopathies with
synucleinopathies (Moussaud et al., 2014). Of note, A53T α-syn
altered the localization of tau within postsynaptic spines of
cultured primary neurons (Teravskis et al., 2018). Moreover,
memory deficits of A53T-tg mice were absent in a tau-null
background (Singh et al., 2019). Tau accumulation was also
observed in post-mortem analyses of A53T PD patients (Duda
et al., 2002; Kotzbauer et al., 2004). Thus, the observed
impairment of spine density and mushroom spine density
in A53T-tg mice might be mediated by tau accumulation.
Alternatively, increased intracellular levels of A53T α-syn may
disrupt spine formation by promoting neuritic mitochondrial
dysfunction (Ryan et al., 2013; Kouroupi et al., 2017; Hu
et al., 2019). Finally, decreased axonal transport and microtubule
stability due to oligomeric α-syn species might have impaired
spine genesis or stability (Prots et al., 2013, 2018).

CONCLUSION

In summary, we here show that intracellular A53T α-syn
disrupts dendritic spine density of newborn neurons in the adult
dentate gyurs. As spine morphogenesis and stability are critical
for neuronal function, intracellular A53T α-syn may promote
dendritic dysfunction by a cell-intrinsic mechanism.
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Cumulative evidence collected in recent decades suggests that lysosomal dysfunction
contributes to neurodegenerative diseases, especially if amyloid proteins are involved.
Among these, alpha-synuclein (aSyn) that progressively accumulates and aggregates
in Lewy bodies is undisputedly a main culprit in Parkinson disease (PD) pathogenesis.
Lysosomal dysfunction is evident in brains of PD patients, and mutations in lysosomal
enzymes are a major risk factor of PD. At first glance, the role of protein-degrading
lysosomes in a disease with pathological protein accumulation seems obvious and
should guide the development of straightforward and rational therapeutic targets.
However, our review demonstrates that the story is more complicated for aSyn. The
protein can possess diverse posttranslational modifications, aggregate formations, and
truncations, all of which contribute to a growing known set of proteoforms. These
interfere directly or indirectly with lysosome function, reducing their own degradation,
and thereby accelerating the protein aggregation and disease process. Conversely,
unbalanced lysosomal enzymatic processes can produce truncated aSyn proteoforms
that may be more toxic and prone to aggregation. This highlights the possibility of
enhancing lysosomal function as a treatment for PD, if it can be confirmed that this
approach effectively reduces harmful aSyn proteoforms and does not produce novel,
toxic proteoforms.

Keywords: alpha-synuclein, proteoforms, lysosome, Parkinson disease, GCase

PARKINSON DISEASE

Parkinson disease (PD) is the second most common neurodegenerative disorder after Alzheimer
disease (AD) and is the most common movement disorder (de Lau and Breteler, 2006).
Clinically, patients present with four main motor symptoms—resting tremor, bradykinesia
(slowness of voluntary movement), rigidity, and loss of postural reflexes—as first described by
English physician James Parkinson (Parkinson, 1817; Fahn and Sulzer, 2004). These symptoms
and related exclusionary criteria comprise the differential diagnosis of PD in the clinic today
(Poewe et al., 2017).
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Globally, PD currently affects 6.1 million individuals
(Collaborators, 2018) or ∼2% of the population older than
65 (de Lau and Breteler, 2006; Poewe et al., 2017). PD before
age 50 is rare (Twelves et al., 2003; Pringsheim et al., 2014;
Poewe et al., 2017), but the incidence increases with age
by ∼5–10-fold starting in the sixth decade of life (Twelves
et al., 2003; Van Den Eeden et al., 2003; Savica et al., 2013;
Pringsheim et al., 2014; Poewe et al., 2017) when individuals
are still professionally engaged with many more active years.
After diagnosis, individuals face a prolonged 7–15-year
period of increasing disability (Golbe and Leyton, 2018).
Age is the greatest risk factor for PD, so as the lifespan
of the population continues to increase, so too will the
frequency of PD (Dorsey et al., 2007). Beyond age, non-genetic
aspects such as sex and environmental factors influence the
lifetime risk of PD (de Lau and Breteler, 2006; Poewe et al.,
2017), but the precise etiology of ∼90% of all PD cases is
largely unknown.

It was nearly a century after Parkinson’s clinical description
before Fritz Heinrich Lewy published findings of proteinaceous
aggregations or “Lewy bodies” (LBs) in the PD brain (Lewy,
1912) later named after him (Trétiakoff, 1919). Braak and
Braak subsequently used LBs to develop the widely accepted
staging system of PD progression (Braak et al., 2003). The
staging system is based on the stereotypical spread of LBs
throughout brain and is currently used in research and clinics
to provide a definitive diagnosis of PD (Dickson et al.,
2009). Cellular and molecular PD investigations began in 1960
when it was discovered that PD brains exhibited dramatic
reduction in dopamine (DA) levels (Ehringer and Hornykiewicz,
1960). The motor symptoms that typify PD manifest after
a ∼50–60% loss of substantia nigra dopaminergic neurons
(Kirik et al., 2002). As a result, the DA precursor L-3,4-
dioxyphenylalanine (L-DOPA) became the first therapeutic
agent aimed at compensating for the loss of endogenous DA
(Birkmayer and Hornykiewicz, 1962).

The current standard of care is still DA replacement therapy,
but this does not always improve motor and/or non-motor
symptoms and cannot halt PD progression. The utility of
L-DOPA and similar therapeutics is limited since all exhibit
a “wearing-off” phenomenon and are associated with motor
and non-motor side effects (e.g., hallucinations) (Cacabelos,
2017). Furthermore, it is widely acknowledged that by the
time motor symptoms appear, there is little that can be done
to halt or reverse disease pathogenesis. This is reinforced by
pathological studies by Braak and colleagues who showed that
LB brain lesions were evident long before the first motor
symptoms can be clinically detected (Braak et al., 2003).
However, the first significant breakthrough in several decades
came in 1997 Spillanti and colleagues showed that LBs were
strongly reactive to alpha-synuclein (aSyn) antibodies (Spillantini
et al., 1997, 1998). This connected the pathophysiological
finding of LBs in PD patients to the small presynaptic
protein aSyn. Contemporaneous genetic studies reinforced that
hypothesis by linking a missense point mutation in aSyn to
familial PD (Polymeropoulos et al., 1997). As a result, PD
came to be characterized as a neurodegenerative disease with

abnormal accumulation of insoluble aSyn—a synucleinopathy
(McCann et al., 2014).

aSYN: SMALL PROTEIN, ENIGMATIC
FUNCTION, AND MANY DISEASES

Synuclein was discovered as a 143 amino-acid-long, neuron-
specific presynaptic protein in Torpedo californica (an electric
ray) (Maroteaux et al., 1988) and was found to have a
highly homologous cDNA counterpart in rat brain (Maroteaux
et al., 1988). Studies in AD brain revealed the human
homolog of this protein, which was termed “non-Aβ component
of AD amyloid precursor” (NACP) (Ueda et al., 1993).
The group also purified a second, nearly identical but
smaller protein called NAC from AD brain (Ueda et al.,
1993). NACP later became known as aSyn, and the smaller
protein NAC was termed beta-synuclein (bSyn) (Jakes et al.,
1994). The last member of the synuclein family is BCSG1,
now known as gamma-synuclein (gSyn) (Ji et al., 1997;
Lavedan et al., 1998).

Despite its well-known role in synucleinopathies such as
PD, dementia with LBs, and multiple system atrophy, the
physiological function of aSyn remains enigmatic. The high
concentrations of aSyn at presynaptic terminals suggest a
role in synaptic release and plasticity, but genetic ablation
of both aSyn and bSyn (Chandra et al., 2004) or all three
synucleins (Anwar et al., 2011) in mice did not have profound
effects in synaptic ultrastructure, plasticity, or phenotype.
Electrochemical experiments in the triple knock-out model
showed that DA release was specifically elevated in the dorsal
striatum (Anwar et al., 2011), while DA levels were decreased
in the double knock-out model (Abeliovich et al., 2000;
Chandra et al., 2004). While its precise function is unknown,
the current evidence suggests that synucleins are necessary
for neurotransmitter release—particularly DA—and synaptic
vesicle recycling.

Since aSyn is the main component in LBs (Spillantini et al.,
1997, 1998) that neuropathologically characterize PD and other
synucleinopathies, aberrant accumulation rather than ablation
of the protein is likely what leads to a pathological phenotype.
The genetic link between the aSyn missense A53T mutation
and a heritable form of PD (Polymeropoulos et al., 1997)
strengthened the hypothesis that aSyn is a key player in PD.
Since then, research efforts by many groups identified five
additional point mutants (E46K, A30P, H50Q, G51D, and A53E)
linked to familial PD (Eriksen et al., 2005; Reed et al., 2019),
followed by the discovery of a triplication mutation in the
aSyn gene (SNCA) (Singleton et al., 2003), and then SNCA
duplications (Chartier-Harlin et al., 2004). These discoveries
drew attention to the gene dosage of SNCA and its effects on
age of onset and disease severity. These point mutations in
aSyn ultimately result in aberrant protein accumulation, but
likely through different mechanisms such as faster aggregation
kinetics and perturbations in the cellular machinery responsible
for protein turnover (Eriksen et al., 2005; Xilouri et al., 2016).
However, SNCA mutations are rare. Most cases of PD are
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idiopathic (onset > 60 years of age) but largely present with
the same clinical and neuro-pathological features as familial PD
(onset< 50 years of age).

Since PD is a progressive disease and the greatest risk
factor is age, the combination of gradual modifications in
aSyn and age-related deterioration of cellular degradation
machinery may underlie the late-onset pathology of sporadic
PD (Xilouri et al., 2016). Modified aSyn may impair protein
degradation, and deficits in protein degradation machinery due
to aging may result in accumulation of aSyn that can undergo
modification or aggregation into toxic species that inhibit their
own degradation or that of other substrates (Cuervo et al.,
2004; Xilouri et al., 2016). In this review, we will examine
what is currently known about the complex interplay between
aSyn, its many proteoforms (Smith et al., 2013), and lysosomal
protein degradation.

CELLULAR DEGRADATION IN THE
LYSOSOME

The proteasome system typically degrades proteins with short
half-lives (Etlinger and Goldberg, 1977; Bigelow et al., 1981;
Glickman and Ciechanover, 2002), while proteins with half-
lives > 10 h are degraded by the autophagy-lysosomal pathway
(ALP) (De Duve et al., 1955; Dice, 2000; Klionsky and Emr, 2000).
The ALP comprises three distinct pathways: macroautophagy,
which we will refer to as autophagy throughout this review;
chaperone-mediated autophagy (CMA); and microautophagy.
All three deliver intracellular and internalized extracellular
constituents to the lysosome for degradation (Figure 1).
Lysosomes are acidic (pH 4.6) cytoplasmic organelles containing
hydrolytic enzymes that degrade intracellular components and
are responsible for maintaining an appropriate balance between
protein synthesis and degradation (De Duve et al., 1955).

The lysosome directly mediates microautophagy through
membrane invaginations and uptake of proximal cytoplasmic
material (Muller et al., 2000). This mechanism is seemingly
random and poorly understood. There is no evidence that aSyn
is degraded by microautophagy, and this component will not be
discussed further (Xilouri et al., 2016). Conversely, autophagy
and CMA are complex multistep processes requiring extensive
intracellular signaling and synchronization to deliver their cargo
to the lysosome in an ATP-dependent manner (Schellens et al.,
1988; Arias and Cuervo, 2011; Kaushik and Cuervo, 2012).
aSyn degradation occurs through both mechanisms (Webb et al.,
2003; Cuervo et al., 2004; Lee et al., 2004). Autophagy begins
with engulfment of cytoplasmic material in a double membrane
structure called an autophagosome that ultimately fuses with
the lysosome to deliver its contents. CMA does not require
double membrane vesicle formation, but instead chaperone-
mediated protein unfolding and trafficking to the lysosome via
binding to a KFERQ-like CMA targeting motif. aSyn contains
a pentapeptide sequence (95VKKDQ99) that is consistent with
a CMA recognition motif (Dice, 1990; Cuervo et al., 2004).
A review by Finkbeiner presents a detailed account of the ALP
and its mechanisms (Finkbeiner, 2020).

LYSOSOMAL LINKAGES TO PD

ALP impairment is increasingly recognized as a key pathological
event in neurodegenerative disorders. Genetic studies strengthen
the connection between PD and ALP as the majority of PD-
associated genes are linked to lysosomal protein trafficking or
lysosomal function (Chang et al., 2017; Klein and Mazzulli, 2018).
Among these risk-enhancing genes, mutations in GBA1, the gene
for the lysosomal hydrolase acid β-glucosidase (GCase), are the
most common known genetic risk factor for PD (Sidransky
et al., 2009; Bultron et al., 2010). Mutations in this gene are
the main cause of a rare autosomal-recessive genetic disorder
known as Gaucher disease (GD). The first association between
GCase and PD was made when clinicians noted that patients with
GD and carrier relatives developed parkinsonism (Goker-Alpan
et al., 2004). A 2009 international multicenter study led by Ellen
Sidransky established the high frequency of GBA1 mutations in
PD (Sidransky et al., 2009). Today, the estimated prevalence of
GBA1 mutations in PD patients ranges from 5 to 25%, and their
presence increases the risk for PD by up to 20 times, depending
on ethnicity (Lesage et al., 2010; Beavan and Schapira, 2013; Zhao
et al., 2016) despite a low penetrance (Rosenbloom et al., 2011).

Mechanistically, loss of GCase function leads to accumulation
of its substrates and metabolites, and these directly interfere with
aSyn by promoting its toxic structural conversion to oligomers
and amyloid fibrils (Zunke et al., 2018). However, these studies
generally model total loss of GCase activity (i.e., Gaucher disease),
but most GCase mutations linked to PD are heterozygotes.
This reduces the total accumulation of substrates resulting from
mutations in GBA1. Some mutations, like the intriguing case of
E326K do not cause substrate accumulation or GD despite a high
prevalence in PD patients (Nichols et al., 2009; Pankratz et al.,
2012).

Concurrent with ALP dysfunction, aSyn accumulates and
forms toxic species that further interfere with lysosomal function
and neuronal health. It is conceivable that even in absence of
GBA1 mutations, aSyn accumulation and pathology interferes
with lysosomal function to create a pathogenic loop (Cookson,
2011; Dawson and Dawson, 2011; Mazzulli et al., 2011; Yap
et al., 2013). Recent evidence suggests that alteration in GCase
protein levels or enzyme activity is not a prerequisite for PD.
Pharmacological inhibition of GCase exacerbates pathology in
various primary cell lines and animal models, but alone cannot
cause aSyn aggregation (Henderson et al., 2020). Misfolded and
aggregated aSyn in the form of pre-formed fibrils (PFFs)—even
at low levels—was sufficient to cause PD-like pathology. The
results suggest that aSyn aggregation is a first step independent
of GCase (Henderson et al., 2020), but that GCase modulates
the vulnerability of cells to low levels of recombinant or
native PFFs. GCase enzyme activity declined in the presence of
PFFs. In a similar study, PFFs reduced GCase activity in vitro
(Gegg et al., 2020).

Importantly, studies in postmortem brain samples support
a role of lysosome dysfunction in PD. Key lysosomal enzymes
such as Cathepsin D (CtsD) and lysosomal-associated membrane
protein (LAMP)-2A are reduced in nigral neurons of subjects
with PD, especially those containing aSyn inclusions (Chu et al.,
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FIGURE 1 | Autophagy-lysosomal pathway (ALP). The lysosome is a key cellular organelle for the degradation of proteins maintaining a balance between synthesis
and clearance. Three pathways—macroautophagy, chaperone-mediated autophagy (CMA), and microautophagy—converge on this central hub to deliver cargo for
degradation. The lysosome is a central mechanism by which the production of aSyn in the brain is controlled (see text for details). LAMP-2A, Lysosome-associated
membrane glycoprotein 2; HSC70, heat shock cognate 70; CtsL, Cathepsin L; CtsD, Cathepsin D; CtsB, Cathepsin B; GCase, Glucocerebrosidase.

2009). LBs are strongly immunoreactive for autophagosome
markers, and lysosomal breakdown and autophagosome
accumulation are evident in PD brain samples (Dehay et al.,
2010). More specifically, GCase activity and protein levels are
reduced in postmortem tissue. The most pronounced reduction
is in the substantia nigra, and in GBA1 mutation carriers (GCase
activity loss of 58% in GBA1 mutation carriers vs. 33% in
sporadic PD) (Gegg et al., 2012). Interestingly, GCase is present
in aSyn inclusions in other synucleinopathies such as Lewy body
dementia (Goker-Alpan et al., 2011).

Further supporting the linkage between PD and lysosomal
dysfunction is the association of deleterious lysosomal storage
disorder (LSD) gene variants (excluding GBA1). Whole exome

sequencing revealed that of the 54 genes examined, 56% of
all PD cases at least one LSD causative gene variant alleles
(e.g., SMPD1, SLC17A5, ASAH1, and CTSD) and 21% had
multiple (Robak et al., 2017). Interestingly, several studies already
implicate CTSD in PD for aSyn degradation (see section “aSyn
Proteoforms: From Partial Proteolytic Degradation to Effects on
Lysosomal Function” for aSyn proteoforms in the lysosome). The
discovery sample set contained younger-onset PD patients (mean
age∼41 years); however, the authors replicated the results in two
independent cohorts that had a mean onset of ∼62 years, which
represents the adult population and the age-associated risk for
PD (Robak et al., 2017). A more recent study examining 23 LSD
genes in a population with a mean onset age∼60 years confirm
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the significance of GBA1 (Hopfner et al., 2020). The study found
CTSD to be significant only prior to Bonferroni correction and
did not replicate the SMPD1 finding from previous reports
(Robak et al., 2017; Alcalay et al., 2019).

The ATP13A2 gene while significantly associated with PD risk
(Hopfner et al., 2020) did not meet the significance criteria in the
earlier study (Robak et al., 2017). Interestingly, another enzyme,
ATP10B, involved in lysosomal membrane transport was recently
reported as a PD risk via exome sequencing (Martin et al.,
2020). ATP10B and ATP13A2 mutations result in loss-of-function
(Ramirez et al., 2006). The role of ATP13A2 is unclear, but
ATP10B appears to be involved in lipid export from the lysosome
like GCase. Such loss-of-function mutations would result in
an accumulation of glucosylceramide in the lysosome similar
to GBA1 mutations that lead to GD. Supporting this, ablation
of ATP10B in mouse cortical neurons elevated caspase-3 and
following exposure to either 50 nM rotenone or 500 mM MnCl2,
neuronal cell death increased (Martin et al., 2020). Finally, LSD
genes with membrane function or localization, not examined by
Robak and colleagues—LAMP1, TMEM175, and VPS13C—had a
significant association with PD (Hopfner et al., 2020). Specifically,
variants of LAMP1 and TMEM175 were predicted to be the most
damaging in the context of PD (Hopfner et al., 2020).

Lysosomal dysfunction may be the link connecting specific
neuronal susceptibility, amyloidosis, and aging in PD. As
postmitotic cells, neurons heavily depend on efficient lysosomal
degradation to prevent build-up of unfavorable protein species.
Lack of efficient autophagy results in massive neuronal loss
and formation of inclusion bodies that increase in size and
number with aging (Komatsu et al., 2006). This complex
interaction between aSyn and lysosomes likely originates from
the complexity of this protein, which has highly diverse variants,
as discussed below.

PROTEOFORMS

It was highly anticipated that the Human Genome Project
would identify ∼100,000 genes, but the final number was
closer to ∼20,000. Unexpectedly, the complexity of biological
processes including aging and age-related diseases is driven
by variations in protein levels. Proteins are the workhorse
molecules of the cell, and the term proteoform encapsulates their
numerous variations. Proteoform describes all protein variants of
a single gene including posttranslational modifications (PTMs)
and sequence variants (Smith et al., 2013; Aebersold et al., 2018;
Smith and Kelleher, 2018). In the context of this review and
for the field of neurodegeneration, we also include aggregates or
multimers of aSyn and other aggregate-prone proteins within the
scope of the term.

Modifications change proteins’ physicochemical and
biochemical properties to produce a wide array of biomolecules
that increase the range of functional outcomes in a biological
system (Lichti et al., 2014; Aebersold et al., 2018; Smith and
Kelleher, 2018). These proteoforms are either stable or dynamic
and can locally or globally change in response to developmental
signals, normal stimuli, aging, or disease—and in many cases

the modifications drive these processes. One important example
is the prion protein (PrPC) responsible for Creutzfeldt–Jakob
disease in humans (Prusiner, 1982; Prusiner et al., 1993). PrPC is
present in normal healthy humans, but by mechanisms that are
still not clear, it undergoes a structural transformation into the
neurodegenerative PrPSc form that is capable of propagating and
converting PrPC to PrPSc (Bessen et al., 1995; Zabel and Reid,
2015).

Several studies have described the heterogeneity of amyloid-
beta proteoforms in AD plaques (Mori et al., 1992; Roher et al.,
1993a,b; Saido et al., 1995; Kuo et al., 1997; Portelius et al., 2010)
and more recently oligomers or soluble high-molecular-weight
aggregates (Brody et al., 2017; Wildburger et al., 2017). However,
beyond influencing aggregation kinetics, the implications of
these proteoforms remain to be elucidated. Likewise, research
has identified several proteoforms of N-terminal-acetylated aSyn
in both neuronal and non-neuronal cell lines (Bartels et al.,
2011; Theillet et al., 2016) and human brain (Sarafian et al.,
2013; Kellie et al., 2014). Phosphorylation of serine 87 and
129 have been reported in animals and human, respectively
(Anderson et al., 2006; Oueslati et al., 2012). Phosphorylation
of serine 129 (pS129) is a hallmark of LBs and Lewy neurites
(Fujiwara et al., 2002; Saito et al., 2003) and thought to promote
aSyn aggregation (Walker et al., 2013). However, another group
suggested that pS129 inhibits aggregation (Paleologou et al.,
2008) and pS129 is present in normal control brains, albeit at
lower levels (Anderson et al., 2006; Kellie et al., 2014). Other
PTMs include DA adducts (Conway et al., 2001), nitration
(Giasson et al., 2000; Takahashi et al., 2002; Yamin et al., 2003;
Chavarría and Souza, 2013), oxidation (Chavarría and Souza,
2013), deamidation (Kellie et al., 2014), and ubiquitination
(Anderson et al., 2006). N- and C-terminal truncations have also
been described (Li et al., 2005; Kellie et al., 2014), and loss of the
hydrophilic C-terminal domain present at higher levels than full-
length aSyn in LBs and synaptosomes (Li et al., 2005; Sarafian
et al., 2013), though truncations may be part of normal aSyn
metabolism (Anderson et al., 2006).

aSyn PROTEOFORMS AND THEIR
IMPACT ON LYSOSOMAL FUNCTION

aSyn is degraded by both the ALP and proteasome pathways
(Webb et al., 2003), and the preferred mechanism may be
dependent on cellular burden or accumulation as well as specific
proteoforms (e.g., mutations, folding state, and PTMs) (Dehay
et al., 2013; Moors et al., 2016). In this section, we will focus on the
effects of aSyn proteoforms on lysosomal integrity and function.

Phosphorylation
The addition of a phosphoryl group (PO3

−) to biomolecules
is the one of the most well-studied PTMs. Phosphorylation
can occur on serine (S), threonine (T), and tyrosine (Y) side
chains and is traditionally viewed as a molecular on/off switch,
but it can also have consequences for protein-protein binding
characteristics and/or subcellular localization (Lichti et al., 2014).
aSyn has a number of available phosphorylation sites (18 in
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total; 4 S, 4 T, and 10 Y), but only a few have been described
and investigated. S129 phosphorylation (pS129) is thought to be
the most important, as early immunohistologic studies of PD
brains estimated that ∼90% of aSyn in LBs is phosphorylated at
this residue in humans (Fujiwara et al., 2002; Saito et al., 2003;
Anderson et al., 2006) and animals models (Neumann et al., 2002;
Takahashi et al., 2003). In the normal brain, pS129 is present, but
to a much lesser extent (Anderson et al., 2006; Muntane et al.,
2012; Kellie et al., 2014), suggesting a close association between
this PTM and aSyn aggregation (Smith et al., 2005).

Martinez-Vicente et al. investigated the effects of
pS129 phosphorylation using an in vitro model of CMA-
mediated transport (Martinez-Vicente et al., 2008). A S129E
phosphomimetic aSyn bound to—but was unable to cross—the
membranes of isolated lysosomes (Martinez-Vicente et al.,
2008). In vitro phosphorylated aSyn recapitulated these results
although with more variability owing to the presence of
phosphatases. Neither the presence of phosphomimetic nor
in vitro phosphorylated aSyn at the lysosomal membrane
impeded the binding and degradation of other CMA substrates
such as glyceraldehyde 3-phosphate dehydrogenase (GAPDH),
indicating a functional lysosome (Martinez-Vicente et al., 2008).
Interestingly, lysosomal matrix components could degrade S129E
aSyn upon exposure, suggesting that the lysosomal enzymes
are capable of degrading modified aSyn, yet they were unable
to do so because of a lack of membrane translocation. Clue to
this translocation failure come from experiments using a 2 M
excess of GAPDH, a well-characterized CMA substrate (Aniento
et al., 1993). GAPDH displaced lysosomal bound S129E aSyn,
suggesting that CMA failure for this proteoform is due to low
binding affinity to CMA receptors at the lysosomal membrane
(Martinez-Vicente et al., 2008). Based on these results, it would
appear that this aSyn proteoform prevents its own degradation
(Martinez-Vicente et al., 2008). Inhibition of autophagy with
chloroquine increased pS129 aSyn levels by 2-fold in SH-SY5Y
human neuroblastoma cells, suggesting that autophagy plays
a role in elevated aSyn as a substrate for phosphorylation,
albeit to a lesser extent then CMA (Machiya et al., 2010). It is
reasonable to conclude that deficits in these pathways would lead
to elevated pS129 aSyn levels and ultimately aggregation and
deposition into LBs.

If CMA or autophagy does not degrade pS129 or S129E,
one would expect its phosphosilent counterpart, S129A, to be
effectively processed by these pathways. Yet Tenreiro et al. (2014)
found that phosphosilent S129A aSyn failed to activate autophagy
in budding yeast. As a result, there was a significant increase
in Triton X-100 insoluble aggregates and oligomers (Tenreiro
et al., 2014). In line with this result, evidence suggests that pS129
may promote or activate autophagy through Polo-like kinase 2
(PLK2)-mediated phosphorylation of monomeric aSyn (Oueslati
et al., 2013). PLK2 binds to aSyn in an ATP-dependent manner
in HEK cells and promotes the clearance of aSyn and pS129 aSyn
via autophagy (Oueslati et al., 2013).

Protein kinases are a superfamily of ∼500 proteins (3% of
the human genome) (Manning et al., 2002). Screening all known
kinases for similar effects on aSyn is impractical, but studies have
examined G protein-coupled receptor kinases (GRKs). Previous

reports describe aSyn as a GRK substrate (Pronin et al., 2000;
Sakamoto et al., 2009). Expression of GRK family members did
not recapitulate the effect of PLK2 on aSyn, suggesting that
S129 phosphorylation and subsequent autophagy of aSyn is a
specific feature of PLK2. In a genetic PD rat model, PLK2 adeno-
associated virus (AAV) overexpression of PLK2 reduced aSyn
accumulation by 55.8% compared to kinase dead PLK2, resulting
in reduced dopaminergic neurodegeneration and associated
motor symptoms (Oueslati et al., 2013). However, the S129A
phosphosilent proteoform of human aSyn accumulated in rat
brain neurons even with PLK2 overexpression, failing to activate
autophagy, which is similar to the results in yeast described
by Oueslati et al. (2013) and Tenreiro et al. (2014). Based on
these findings, we can conclude that phosphorylation of S129
aSyn plays a key role in autophagy, but whether phosphorylation
activates or inhibits autophagy remains unclear.

Finally, other aSyn phosphorylation sites may also affect
its turnover by lysosomal degradation. Using site-directed
mutagenesis to individually silence all four Y residues (Y→A),
Choi and colleagues determined that phosphorylation of Y136 (a
CtsD cleavage site) (Hossain et al., 2001; Choi et al., 2012) was
most effective at promoting binding to Hsc70, a critical mediator
of CMA, compared to unphosphorylated GST-aSyn and the other
three aSyn Y residues (Choi et al., 2012).

Oxidation
Oxidation is a covalent modification that can modify numerous
amino acids reversibly (oxidation or sulfoxide) or irreversibly
(sulfone). Oxidation modifies proteins either directly by reactive
oxygen species or indirectly by oxidative stress reactions, leading
to numerous structural and functional consequences. Protein
oxidation is associated with age, and accumulation of oxidized
proteins is involved in numerous diseases (Berlett and Stadtman,
1997; Li et al., 2004). Martinez-Vicente et al. used isolated rat
liver lysosomes to directly test the effects of oxidized aSyn on
CMA binding, uptake, and degradation (Martinez-Vicente et al.,
2008). Binding of oxidized aSyn to lysosomal membranes was not
significantly different from its wild-type (WT) or phosphomimic
(S129E) counterparts (Martinez-Vicente et al., 2008). Oxidized
aSyn induced only a modest decrease in CMA uptake without
affecting CMA function. GAPDH could displace oxidized aSyn,
but oxidized aSyn was able to successfully compete with
GAPDH for CMA degradation (identified by percent inhibition
of GAPDH degradation) at levels similar to that of WT aSyn
(Cuervo et al., 2004; Martinez-Vicente et al., 2008). It is important
to note that due to the lack of mass spectrometry protein
sequencing, the amino acid residues oxidized after 90 min (longer
periods resulted in aggregation) in vitro remain undetermined.

DA Modification
DA is a key neurotransmitter involved in several distinct
dopaminergic pathways in the brain. In the context of PD,
DA is the primary neurotransmitter responsible for motor
modulation in the basal ganglia. Loss of dopaminergic neurons
in the substantia nigra pars compacta (SNpc), a component of
the basal ganglia, results in the clinical features of PD. DA is
normally contained within the synaptic vesicles of neurons and
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upon stimulation is released into the cytosol where it binds
to postsynaptic receptors. Cytosolic DA can readily oxidize to
dopaminochrome, even without the aid of metal-ion catalysis
(Linert et al., 1996; Munoz et al., 2012). Consequently, DA release
and re-uptake are tightly controlled.

aSyn exposure to DA or dopaminochrome (oxidized DA
and the precursor to neuromelanin) (Conway et al., 2001;
Norris et al., 2005) increased protein binding to the lysosomal
membrane compared to unmodified aSyn (Martinez-Vicente
et al., 2008). The translocation of DA- and dopaminochrome-
modified aSyn were similarly impaired to the phosphorylated
and phosphomimic proteoforms, but unlike the phosphorylated
and oxidized aSyn proteoforms, the binding affinities of both
DA-modified aSyns were sufficient to prevent displacement
by a 2 M excess of GAPDH. It also inhibited the CMA
of GAPDH, suggesting that it inhibited its own degradation
and that of other proteins (Martinez-Vicente et al., 2008). In
contrast, phosphorylated and oxidized aSyn could inhibit their
own degradation but not that of other substrates (Martinez-
Vicente et al., 2008). This behavior of DA- and dopaminochrome-
modified aSyn is strikingly similar to that of mutated A53T
and A30P aSyn implicated in familial PD (Cuervo et al., 2004;
Martinez-Vicente et al., 2008) in that they show: (1) tight
binding to the lysosomal membrane, (2) lack of translocation into
lysosomes, and (3) CMA inhibition of other biological substrates
(Martinez-Vicente et al., 2008) (see section “Mutations”). These
effects were specific to DA-modified aSyn, as mutation of DA-
sensitive residues Y125EMPS129 to F125AAFA129, respectively
(Norris et al., 2005), did not affect lysosomal binding or uptake
(Martinez-Vicente et al., 2008).

Given the drastic change in aSyn induced by DA or
dopaminochrome, the authors sought to verify these effects in
primary ventral midbrain (VM) neurons. They used L-DOPA to
increase cytosolic DA to levels required for adduct formation on
aSyn as previously determined from their in vitro data. CMA
was inhibited by nearly 50% in a cell culture population that was
only 40% dopaminergic (Martinez-Vicente et al., 2008). The effect
was dependent on endogenous aSyn expression, as CMA in VM
cultures from aSyn-/- mice was unimpaired. L-DOPA (increases
DA levels) (Martinez-Vicente et al., 2008) and the tyrosine
hydroxylase (TH) inhibitor α-methyl-p-tyrosine (αMT, decreases
DA levels) (Xu et al., 2002) had no effect on primary cortical
neurons and completely inhibited aSyn-induced apoptosis in
dopaminergic neurons, respectively. Blocking CMA with RNA
interference (RNAi) against LAMP-2A decreased cell viability,
but no more than the addition of L-DOPA (Martinez-Vicente
et al., 2008). Finally, DA-modified aSyn accumulated in the
lysosomes of retinoic acid (RA)-differentiated SH-SY5Y cells but
not DA-insensitive aSyn mutants (Martinez-Vicente et al., 2008).
These results suggest that high concentrations of endogenous DA
were required in addition to aSyn (Xu et al., 2002; Martinez-
Vicente et al., 2008). However, the nature of the species that
inhibits CMA remains unclear (Martinez-Vicente et al., 2008).

Using the familial mutant A53T, Conway and colleagues
screened a commercially available compound library for
inhibitors of aSyn fibrilization, and some were validated against
WT aSyn (Conway et al., 2001). Intriguingly, DA and L-DOPA

inhibited monomeric WT aSyn fibrillation (i.e., stabilized aSyn
oligomers called protofibrils in that study), while the effect was
reversed by antioxidants (e.g., Na2S2O5, N-acetyl cysteine, and
deferoxamine) (Conway et al., 2001; Norris et al., 2005). The level
of DA-adducted aSyn was determined to be ∼10% of total aSyn
by both mass spectrometry and gel filtration. Yet as little as 1–3%
DA-aSyn was sufficient to promote aSyn oligomer stabilization
(Conway et al., 2001). DA also inhibited fibril formation of aSyn
A53T at an equimolar ratio (Norris et al., 2005).

Evidence of this DA-mediated effect on aSyn was lacking until
Mazzulli and colleagues used TH mutants in WT and A53T aSyn-
expressing RA-differentiated SH-SY5Y cells. TH mutants lack the
catecholamine feedback inhibition binding site (37RR38→GG or
37RR38→EE), which results in elevated cytosolic L-DOPA, DA,
and 3,4-dihydroxyphenylacetic acid (DOPAC, a DA metabolite)
without increasing total TH protein levels (Mazzulli et al.,
2006). The numbers of thioflavin S aggregates visualized by
immunofluorescence decreased in both WT and A53T aSyn-
expressing cells. In the latter cells, the amount of Triton X-100-
insoluble aggregates declined significantly. Using size-exclusion
chromatography and western blotting, the authors confirmed
that the decrease in A53T aSyn fibrillary aggregates was due to
an increase in higher molecular weight aSyn oligomers in TH
mutants. This effect occurred at the cellular level because the
addition of DA during cell lysis did not promote aSyn oligomer
formation. Inhibition of TH and thus DA synthesis with either
αMT (0.5 mM) or NSD 1015 also abrogated oligomer formation,
suggesting the effects were DA-dependent. Interestingly, in the
study by Mazzulli et al. (2006), the increase in aSyn oligomers
was innocuous to cell viability. In contrast, DA-modified aSyn
was toxic, but with αMT (1 mM), survival of RA-differentiated
SH-SY5Y expressing WT aSyn improved with lysosomal function
(Xilouri et al., 2009). Xilouri et al. did not examine the effects
of αMT on A53T aSyn, but it would seem that DA-modified
WT aSyn, perhaps stabilized in an oligomeric form as suggested
by others (Conway et al., 2001; Norris et al., 2005; Mazzulli
et al., 2006), is responsible for reduced CMA function and
increased toxicity.

Since aSyn lacks cysteine and tryptophan residues, Conway
et al. speculated that DA adducted non-covalently to aSyn
via tyrosine-derived radical coupling (Conway et al., 2001).
Site-directed mutations of the four tyrosines, one histidine,
and three of the four methionines (methione-1 is needed for
bacterial protein expression) of aSyn demonstrated that DA
stabilization of oligomers is independent of single or multiple
residues (Norris et al., 2005). Yet, mutation of all five amino
acid residues, Y125EMPS129 that contain one tyrosine and one
methionine at the C-terminus was sufficient to counteract DA’s
inhibitory effects (Norris et al., 2005). Further investigations
by Norris et al. revealed that the oxidation product of DA,
dopaminochrome, was just as effective at inhibiting fibrilization
(Norris et al., 2005). These aSyn modifications are reversible
under strongly denaturing conditions in vitro, though how this
would be possible in vivo is unclear. The observations of DA-
and dopaminochrome adduct-mediated stabilization of aSyn
oligomers provide a possible mechanistic link between CMA
impairment and DA-aSyn proteoforms. The brain contains high
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levels of aSyn (∼1% of total brain protein), and the SNpc
has high DA levels. These results offer a possible explanation
for the particular vulnerability of the SNpc to aSyn toxicity
and the relative sparing of the ventral tegmental area in PD
(Conway et al., 2001; Xu et al., 2002; Martinez-Vicente et al.,
2008). As noted previously, the killer may well be in the house
(Chesselet, 2003).

Aggregates
While aSyn has been considered an intrinsically disordered
monomer in vivo (Weinreb et al., 1996; Davidson et al., 1998;
Fauvet et al., 2012; Theillet et al., 2016) recent reports have
challenged this notion. They describe aSyn as a stable, spherical
homo-tetramer (∼55 kDa) 3–3.5 nanometers in diameter (Bartels
et al., 2011; Dettmer et al., 2013). Despite uncertainty about
its native conformation, the general consensus is that aSyn
aggregates, whether they be dimers, trimers, or higher-order
aggregates (e.g., oligomers and fibrils), are the pathological
species in PD (Winner et al., 2011). How these various assemblies
influence and disrupt lysosomal function is only beginning to be
uncovered after recent discoveries linking lysosomal genes to PD
(Plotegher and Duchen, 2017; Klein and Mazzulli, 2018).

Like their monomer and dimer counterparts, both nitrated
and non-nitrated aSyn oligomers bind to the lysosomal
membrane but do not translocate into the lysosome (Martinez-
Vicente et al., 2008). A 2 M excess of GAPDH could
displace non-nitrated but not nitrated aSyn aggregates from
the lysosomal membrane (Martinez-Vicente et al., 2008). This
suggests nitrated and aggregated aSyn bind with high affinity to
lysosomal membranes and prevent their own degradation. Even
with degradation inhibited, aggregated aSyn does not reduce
lysosomal CMA activity (Martinez-Vicente et al., 2008).

In contrast, COS-7 cells can effectively clear aSyn aggregates
induced by the mitochondrial inhibitor rotenone. After COS-
7 cells expressing aSyn are exposed to rotenone for ≥ 72 h,
the clearance of these aggregates diminishes substantially (Lee
et al., 2004). Using a centrifugation process, Lee and colleagues
determined that fibrils, but not oligomers, are resistant to
clearance. The mechanism of aSyn oligomer clearance in COS-
7 cells appears to be mediated by lysosomes due to dose-
dependent inhibition of oligomer removal upon treatment with
bafilomycin (Baf) (Lee et al., 2004), which inhibits autophagy
by disrupting the lysosomal pH gradient (Bowman et al., 1988).
Supporting this data, E64, an irreversible cysteine-protease
inhibitor that affects lysosomal proteases, also dose-dependently
inhibits aSyn oligomer degradation. Imaging the lysosome
with immunofluorescence and electron microscopy, the authors
identified aSyn aggregates inside the lysosome, suggesting that
they are able to translocate across the membrane unlike the
aggregates described by Martinez-Vicente et al. (2008). The
oligomers described in this work range from ∼50 to 200 kDa
on western blot analysis, whereas the size range of oligomers
described by Martinez-Vicente and colleagues is unclear.

While these studies indicate that the lysosome is still intact,
others have reported that a heterogeneous combination of
in vitro-produced aSyn aggregates ruptures intracellular vesicles
(Freeman et al., 2013). This was evident by the relocalization

of galectin 3, a sugar-binding protein present on the interior
membrane of vesicles (Ray et al., 2010), in both human SH-SY5Y
neuroblastoma cells and rat dopaminergic neuronal N27 cell lines
expressing mCherry-Galectin3 (chGal3). Since aSyn aggregated
in vitro, monomers were not likely responsible for the measured
effect. This was confirmed by the addition of freshly resuspended
aSyn that failed to induce any vesicle rupture (Freeman et al.,
2013). To identify which type of intracellular vesicle ruptured,
the authors used immunofluorescence microscopy and found
that the lysosomal marker LAMP-2 colocalized with galectin 3
after aSyn aggregate treatment of SH-SY5Y cells (Freeman et al.,
2013). aSyn typically but not always associated with the lysed
vesicle. In N27 cells, this association was at the periphery of the
ruptured vesicle.

To investigate the species responsible for vesicle rupture,
Flavin et al. (2017) produced in vitro aggregates consisting of
oligomers and fibrils and several other structural forms using
recombinant WT and mutant aSyn (A30P, E46K, G51D, and
A53T). Treating SH-SY5YchGal3 cells with fibrils of these aSyn
proteoforms showed that they all induced vesicle rupture to the
same extent. Not unexpectedly, aSyn oligomers were unable to
rupture SH-SY5Y vesicle membranes (Flavin et al., 2017) as they
can bind to the lysosomal membrane (Martinez-Vicente et al.,
2008) and are internalized (Lee et al., 2004). Yet, in human
induced pluripotent stem cell (hiPSC)-derived dopaminergic
neurons, PFFs (commonly used to describe aSyn oligomers) were
capable of inducing vesicle lysis (Flavin et al., 2017). aSyn fibrils
were not tested in hiPSC cells. It is important to note that what
the authors refer to as oligomers and PFFs appear to describe
two distinct structure conformations of aSyn, even though PFFs
usually refer to aSyn oligomers.

In human neuroglioma H4 cells and differentiated human
mesencephalic cells, the propensity of extracellularly added aSyn
to accumulate intracellularly along different lysosomal routes
increased with greater size (fibrils > oligomers > monomers).
All aggregated forms of aSyn colocalized with lysosomal
markers (LAMP-1 and LAMP-2A), but oligomers and fibrils
had a lower degree of association with LysotrackerRed and
p62 (Hoffmann et al., 2019). Decreased colocalization with
the Lysotracker indicates a low degree of association with
the lysosomal compartment. Levels of p62 reflect lysosome
degradation efficiency after autophagosome fusion (Klionsky
et al., 2008). Morphologically, aSyn oligomers and fibrils caused
lysosome enlargement similar to observations by Flavin et al.
(2017). To confirm functional impairment, activity levels of the
lysosomal enzyme CtsD decreased significantly in oligomer- and
fibril-treated H4 cells (Hoffmann et al., 2019). These data indicate
reduced aSyn degradation by autophagy (Hoffmann et al., 2019).

RA-differentiated SH-SY5Y cells resemble postmitotic
neuron-like cells and do not require rotenone for aSyn
aggregation like COS-7 cells. Aggregate formation increased
when aSyn expression was induced at later days in vitro, linking
cellular age with the propensity to form aggregates (Lee et al.,
2004). In a similar vein, using a HEK293 aSyn-overexpressing
line transduced with PFFs, Tanik et al. (2013) found that
aSyn aggregates inhibit autophagy. In contrast to the work
of Lee et al. (2004) but in agreement with Hoffmann et al.
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(2019), aSyn aggregates colocalized with the early markers
of autophagy, p62 and LC3. However, aSyn aggregates did
not co-localize with the lysosomal marker LAMP-1 (Tanik
et al., 2013) as they did in H4 cells (Hoffmann et al., 2019),
an effect recapitulated in primary neurons. This would
suggest that the cells initiated the early steps of autophagy
to clear aSyn aggregates, but these aggregates never arrived
at the lysosome. Treatment with inhibitors and promotors
of autophagy (3-MA and rapamycin, respectively), did not
change intracellular aggregate levels (Tanik et al., 2013). Levels
of intracellular aSyn remained constant after PFF treatment
in a doxycycline-inducible promoter experiment compared to
phosphate-buffered saline-treated cells. More importantly, the
ratio of Triton X-100 soluble to insoluble aSyn decreased (Tanik
et al., 2013). This effect was absent in primary neurons from
aSyn knockout mice, demonstrating the result is dependent
on the aggregation of endogenous aSyn and not exclusively
exogenous PFF addition. Notably, the lysosome remained
functional with a normal pH and the ability to degrade substrates
(Tanik et al., 2013). In the context of this study, aggregates
did not inhibit autophagy at the level of the lysosome but
rather affected the earlier stages of autophagosome maturation
(Tanik et al., 2013).

There are many documented aSyn proteoforms (Oueslati
et al., 2010), but the impacts of these proteoforms on the
ALP are still being elucidated. While the data conflict in some
cases, likely due to the use of different cell lines, a pattern
of overall ALP dysfunction emerges. It would appear that
PTM-modified aSyn is resistant to degradation via CMA and
in some instances autophagy. In other cases, PTMs stabilize
aSyn oligomers (e.g., DA). Oligomers and other aggregates
appear to disrupt autophagy and CMA to minor extents.
However, the stage when this takes place and whether or not
they enter or rupture the lysosome is still unclear. Precisely
defining the mechanism of ALP disruption via aSyn proteoforms
will require further investigation accounting for cellular and
genetic background, mechanism of aSyn overexpression, and
most importantly, unifying or standardizing the studied aSyn
assemblies.

MUTATIONS

Currently there are six known SNCA missense mutations (A30P,
E46K, A53T, H50Q, G51D, and A53E) that directly implicate
aSyn as a causative agent in PD (Eriksen et al., 2005; Reed et al.,
2019). Duplications and triplications of the SNCA gene also occur
(Eriksen et al., 2005; Reed et al., 2019), but their effects on early
onset PD are largely attributed to an increased “gene dosage”
of aSyn. This rationale parallels that of APP gene triplication in
Trisomy 21, which is considered to be the reason why nearly
all individuals with Down syndrome develop neuropathology
consistent with AD (Burger and Vogel, 1973; Wisniewski et al.,
1985; Lai and Williams, 1989). In contrast, point mutations
alter the primary structure of aSyn rather than increasing the
genetic dose. Though rare, these single point mutations have
profound consequences, particularly on the lysosome. Here we

will review what is known about the direct or indirect effects of
aSyn missense mutations on the ALP and potential mechanisms.

A53T
The discovery of the first missense mutation in aSyn—A53T
(Polymeropoulos et al., 1997)—led to the first animal models
of PD and is the most well-studied PD-linked mutation. A53T
exhibits a longer half-life than WT aSyn in RA-differentiated SH-
SY5Y cells (74 h vs.∼50 h), PC12 cells (∼60 h vs.∼30 h) (Cuervo
et al., 2004), and aged transgenic mice (Li et al., 2004). Critically,
the increased measured half-life was not due to differential
aggregation of A53T over WT aSyn, suggesting that the missense
mutation either directly stabilizes the protein posttranslationally
or that its functional (i.e., degradation) characteristics are altered.

In support of the latter hypothesis, A53T aSyn binds to
intact lysosomes with a higher affinity than WT aSyn but is
poorly internalized (Cuervo et al., 2004). Similar to studies in
PC12 cells, A53T aSyn failed to interact directly with lysosomal
enzyme CtsD, suggesting that A53T is not present within the
lysosome (Stefanis et al., 2001). The binding of A53T aSyn
occurred even at lower temperatures, which typically blocks
binding and uptake of nearly all CMA substrates (Cuervo et al.,
2004). Increased LAMP-2 co-immunoprecipitation with A53T
aSyn compared to WT indicates high binding affinity of mutant
aSyn to lysosomal membranes. A53T aSyn inhibited GAPDH
degradation without impairing lysosomal function; lysosomal
enzymes from disrupted lysosomes were still active and could
degrade GAPDH (Cuervo et al., 2004). This suggests that like DA-
aSyn, A53T aSyn blocks its own degradation and that of other
CMA substrates (Cuervo et al., 2004) by occupying lysosomal
binding sites with high affinity, preventing translocation of other
substrates for degradation. In PC12 cells, mutant aSyn impaired
CMA protein degradation as in isolated lysosomes (Cuervo
et al., 2004). However, other data in PC12 cells showed that
A53T reduced lysosome acidification (Stefanis et al., 2001). The
presence of a high level of internalized substrate indicates cellular
debris accumulation in non-functional lysosomes (Stefanis et al.,
2001; Webb et al., 2003).

Xilouri et al. (2009), used undifferentiated PC12 cells
expressing either A53T aSyn or mutant aSyn lacking the CMA-
binding motif (DDQ/A53T aSyn) to examine the mechanisms
of lysosomal dysfunction. The A53T mutant reduced total
lysosomal degradation by 30%, whereas the DDQ/A53T mutant
was similar to WT aSyn and control bgal-expressing cell (Xilouri
et al., 2009). Further confirming that this reduction in protein
degradation was due to CMA and not autophagy, the authors
treated cells with 3-MA and found no difference between A53T
and DDQ/A53T aSyn degradation (Xilouri et al., 2009). In
SH-SY5Y cells, A53T reduced lysosomal degradation by ∼40%,
but mutant aSyn lacking the CMA motif was similar to WT aSyn
and control (Xilouri et al., 2009). In differentiated, postmitotic
SH-SY5Y cells, A53T aSyn inhibited lysosomal degradation more
markedly than in cycling PC12 and SH-SY5Y cells. Since both
A53T and DDQ/A53T aSyn decreased lysosomal degradation,
the impairment extended beyond CMA and affected autophagy
(Xilouri et al., 2009).
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Autophagy impairment resulted in elevated LC3-II levels,
although this was limited to A53T not DDQ/A53T. The effect
was similar in primary cortical cultures. Elevated levels of LC3-
II suggest autophagosome accumulation (Xilouri et al., 2009).
This would indicate a lack of autophagosome fusion with the
lysosome or increased autophagy-mediated degradation as a
cellular mechanism to remove mutant aSyn. However, in both
differentiated SH-SY5Y cells and primary cortical neurons, the
authors ascribe increased cell death to increased autophagy due
to higher LC3-II levels (Xilouri et al., 2009).

E46K
E46K was one of the SNCA missense mutations identified shortly
after the discovery of A53T, further linking aSyn to familial
PD (Zarranz et al., 2004). However, less is known about the
role of this mutant in PD pathogenesis and ALP dysfunction.
Evidence that the E46K aSyn mutant inhibits autophagy
comes from studies of PC12 and HEK293 cells expressing the
mutant protein (Yan et al., 2014). The authors found that
total p62 levels, a reliable reporter for assessing autophagy
activity, increased ∼24% compared to green fluorescent protein-
expressing controls, and insoluble p62 levels increased nearly
200% (Yan et al., 2014). Accumulation of insoluble p62 is the
most significant indicator of impaired autophagy. On confocal
microscopy, p62 accumulation was clearly observed as discrete
puncta throughout the cell cytoplasm. p62 exhibited reduced
protein turnover after cycloheximide treatment (Yan et al., 2014,
2018). Most significantly, treatment with the autophagy inhibitor
3-MA equally increased p62 levels in control and E46K cells,
demonstrating that the effect of this mutant was autophagy
dependent (Yan et al., 2014). The lysosomes themselves were
functional even with E46K aSyn colocalizing with Lysotracker
(Yan et al., 2014). The E46K examined in the PC12 and
HEK293 cells was presumably monomeric (Yan et al., 2014)
since aggregated E46K in differentiated SH-SY5Y and N27 cells
ruptured lysosomes after endocytosis (Freeman et al., 2013).

Autophagy is a multistep process, and deficiencies induced
by monomeric E46K might occur further upstream compared to
aggregated aSyn. Autophagosomes were significantly decrease in
both E46K-expressing PC12 and HEK293 cells due to decreased
synthesis rather than increased lysosomal degradation. The
decline in LC3-II suggests that E46K inhibition of autophagy
is due to reduced autophagosome formation (Yan et al., 2014).
Interestingly, subsequent work by the same group demonstrated
that E46K aSyn was present inside the lysosomes of PC12 cells
as it colocalized with Lysotracker (Yan et al., 2018), raising the
question of how mutant aSyn can enter the lysosome when
autophagosomes are inhibited (Yan et al., 2014, 2018). One
might speculate that E46K enters the lysosome via CMA as ALP
activity increased (Yan et al., 2014), and perhaps this proteoform
internally (rather than externally, like DA-modified aSyn) inhibits
the degradation of other cellular substrates (Martinez-Vicente
et al., 2008; Decressac et al., 2013). Studies in a Drosophila
model of PD using pan-neuronal expression of E46K showed
that this mutant is resistant to degradation (Sakai et al., 2019).
E46K accumulated in both total protein and Triton X-100-
soluble fractions (Sakai et al., 2019). While it was unclear where

aSyn E46K accumulated in the work by Sakai and colleagues,
it is possible that it occurred in the lysosome (Yan et al.,
2018) reducing its own degradation and that of other substrates
(Martinez-Vicente et al., 2008; Yan et al., 2014).

Mechanistically, E46K aSyn reduced JNK1 phosphorylation,
which led to a downstream cascade effect of reduced Bcl-2
phosphorylation and increased association of Bcl-2 with Beclin 1
(Yan et al., 2014). As Beclin 1 remains bound to Bcl-1, it does not
complex with hVps34 to stimulate autophagy. Pharmacological
inhibition of JNK1 led to similar effects seen with E46K,
suggesting this is indeed JNK1-dependent autophagy and the
mammalian target of rapamycin (mTOR) pathway is not involved
(Yan et al., 2014). How E46K aSyn inhibits JNK1 phosphorylation
is unclear. Direct binding to Beclin 1 may be possible, as WT aSyn
is capable of interacting with Beclin 1 (Decressac et al., 2013).
Interestingly, CMA activity (measured by GAPDH activity) is
increased in E46K-expressing cells, perhaps as a compensatory
effect (Yan et al., 2014).

A30P
The half-life of A30P aSyn is comparable to WT aSyn both in vitro
and in vivo (Li et al., 2004), but it has an impact on the ALP
system that may make this missense mutation causative for early
onset familial PD. Like A53T, the A30P mutant impairs CMA
(Cuervo et al., 2004). A30P blocks CMA due to its high binding
affinity to the lysosomal membrane that prevents degradation of
itself and other substrates. In this way, A30P aSyn behaves like
A53T aSyn and DA-aSyn (Cuervo et al., 2004), although an earlier
study showed that A30P colocalized with lysosomes in PC12 cells
(Webb et al., 2003). The effects of A30P on autophagy mirror that
of the E46K mutant.

In primary VM neurons transfected with A30P aSyn AAV
vectors, aggregated p62 increased in a manner similar to that
of the E46K mutant aSyn (Yan et al., 2014; Lei et al., 2019).
A30P did not alter p62 mRNA levels, and 3-MA treatment
increased p62 in both the mutant and empty AAV vector cells,
supporting the conclusion that the insoluble aggregates were due
to A30P-mediated autophagy inhibition (Lei et al., 2019). Like
E46K, A30P also reduced LC3-II synthesis (but not degradation),
suggesting a similar mechanism of impaired autophagosome
formation (Yan et al., 2014; Lei et al., 2019). However, Baf
treatment increased LC3-II levels, indicating that A30P inhibits
autophagosome fusion with the lysosome (Lei et al., 2019).

Mechanistically, A30P increases the transcription factor
ZKSCAN3 associated with genes responsible for autophagosome
formation. This increase is paralleled by inhibition of autophagy.
A30P-expressing VM neurons treated with short hairpin RNA
(shRNA) against ZKSCAN3 had restored levels of LC3-II and
less p62 aggregation. This suggests that A30P expression inhibits
autophagy via ZKSCAN3; this is independent of the mTOR
pathway, as rapamycin was unable to antagonize the effects of
mutant aSyn. However, the decrease in phosphorylated JNK1
is similar to the effect of the E46K mutant. The data suggest
that inactivation of JNK1 by A30P increases the activity of
ZKSCAN3, which then translocates to the nucleus (Lei et al.,
2019). Yet, as with E46K, there are several missing links in this
mechanistic pathway.
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Taken together, the existing data indicate that aSyn missense
mutations result in a toxic gain of function, that is partly
reflected by the effects of mutant aSyn on ALP. Despite being the
first identified familial PD mutation, evidence for the signaling
mechanisms of A53T toxicity toward the ALP is lacking. What is
clear is that A53T inhibits CMA with some additional effects on
autophagy in differentiated SH-SY5Y cells (Xilouri et al., 2009),
which may include elevated lysosomal pH (Cuervo et al., 2004).

The mechanistic evidence for autophagy impairment is most
complete for A30P and E46K. Autophagy inhibition by these
mutants is mTOR independent and instead relies on inhibition of
JNK1 phosphorylation upstream of autophagosome formation.
The A30P mutant appears to prevent autophagosome fusion with
the lysosome, whereas the E46K mutant prevents autophagosome
formation. Both A30P and E46K localize inside lysosome as
observed with fluorescence microscopy; however, evidence for
CMA inhibition by A30P argues against this. CMA inhibition
in vitro suggests that A30P, like A53T, binds with high affinity to
the lysosomal membrane but does not translocate or allow other
proteins to enter the lysosome. While there is some evidence
for CMA alteration in E46K mutants, we will have to wait for
clarifying studies. However, care must be taken in designing
future studies and interpreting the findings, as different cellular
background and differentiation states can yield variable results
(Xilouri et al., 2009).

aSyn PROTEOFORMS: FROM PARTIAL
PROTEOLYTIC DEGRADATION TO
EFFECTS ON LYSOSOMAL FUNCTION

The lysosome has a role in removing aSyn from the cytoplasm
to maintain the homeostatic balance between production and
clearance. There is compelling evidence that aSyn proteoforms
modulate detrimental effects on the ALP system, precipitating
dysfunction and ultimately disease. However, incomplete
lysosomal proteolysis of aSyn may be responsible for generating
disease-associated proteoforms that could further impair the
lysosome, leading to broader perturbations at the cellular
level. We know less about how the lysosome can influence
the emergence of non-canonical aSyn proteoforms. In this
section, we review the existing data on lysosomal-induced
aSyn proteoforms, discuss the questions and implications, and
propose how this nascent area of research could move forward.

The lysosomal enzyme CtsD—and risk allele for PD (Robak
et al., 2017) —degrades aSyn, but only at the hydrophilic
C-terminus (Sevlever et al., 2008). CtsD removal of this
section increases aSyn’s net hydrophobicity and aggregation
potential (Liu et al., 2005; Ulusoy et al., 2010). In an acidic
environment such as the lysosome, the C-terminally truncated
aSyn proteoform is susceptible to amyloid formation (Uversky
et al., 2001; McGlinchey and Lee, 2015). Pharmacological
treatments that increase lysosomal pH from its more acidic basal
state suppress aSyn aggregate formation (Tsujimura et al., 2015).

Evidence from neural crest cell-derived dopaminergic neurons
suggests that glucocerebrosidase (GCase) is required for normal
CtsD function (Heinrich et al., 1999; Yang et al., 2020). GCase

mutations are the most common risk factor for PD, and
the mutations studied by Yang and colleagues reduced both
CtsD protein levels and enzymatic activity. The consequence of
functionally impaired CtsD was increased monomeric aSyn levels
(Crabtree et al., 2014; Yang et al., 2020). Yang and colleagues
found no evidence of higher-order aggregates despite a ∼48%
increase in aSyn relative to controls. However, oligomer levels
increased in undifferentiated SH-SY5Y lines expressing inactive
mutant CtsD (Crabtree et al., 2014) and CtsD knock-out mouse
brain (Cullen et al., 2009). Similar results were found in primary
cortical neurons and H4 neuroblastoma cells with shRNA-
mediated knockdown of GCase, as well as in hiPSC-derived
dopaminergic cells from mutation carriers (Mazzulli et al., 2011).
The only exception to this was a study using 3D5 human B-cells
under iron-induced oxidative stress that reported increases in
aggregates containing a C-terminally truncated aSyn proteoform
and a concomitant increase in CtsD activity (Takahashi et al.,
2007).

Together the data suggest that impaired GCase limits
CtsD functionality, which in turn promotes aSyn accumulation
and aggregation due to insufficient proteolysis (Figure 2).
Interestingly, high levels of aSyn (i.e., 10 mM) inhibit GCase
in vitro through physical interactions in lipid vesicles (Yap et al.,
2013) and under lysosomal conditions (i.e., pH 5) (Yap et al.,
2011). GCase inhibition would ultimately lead to inhibition of
CtsD and elevated aSyn levels in a reciprocal feedback loop (in
line with evidence by Yang et al., 2020) or reduced aggregated
and truncated aSyn (based on data from Takahashi et al., 2007).
However, supporting the work of Yang et al. (2020), PD brain and
cerebrospinal fluid (CSF) have decreased CtsD levels irrespective
of GCase mutation status (Parnetti et al., 2017; Moors et al.,
2019). Mazzulli and colleagues reported that increased levels of
aSyn depleted GCase, and GCase functional deficiences could
also increase aSyn in a vicious, self-propogating feedback loop
(Mazzulli et al., 2011).

It is important to emphasize that nearly all these studies
were conducted in aSyn overexpressing cell lines. In non-
over expressing lines, heterozygous CtsD was sufficient to
degrade aSyn (Bae et al., 2015). However, if endogenous levels
of aSyn are high, a partial CtsD deficiency increases aSyn
aggregation via reduced lysosomal degradation (Bae et al.,
2015). Yet, if the inhibition of CtsD—through GCase or CtsD
mutations—promotes aSyn accumulation, how does CtsD that
can only partially degrade aSyn produce an aggregation-prone
C-terminally truncated species (Sevlever et al., 2008; McGlinchey
and Lee, 2015) not adversely affect the lysosome or cell?

The answer appears to be through the concerted actions
of other lysosomal enzymes (Figure 1). Cathepsin B (CtsB), L
(CtsL), and K (CtsK) degrade aSyn, inhibiting its aggregation
in vitro (McGlinchey and Lee, 2015; McGlinchey et al., 2020).
Using recombinant aSyn monomers and fibrils, McGlinchey
and colleagues mapped the CtsL cleavage sites. Compared to
monomeric aSyn, fibrillar aSyn took much longer to degrade, and
this only occurred after the enzyme removed significant portions
of the hydrophilic C-terminus (McGlinchey et al., 2017). CtsK
was superior at degrading recombinant aSyn PFFs compared to
CtsL and removed both the N- and C-terminal portions of aSyn
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FIGURE 2 | Reciprocal feedback loop of GCase inhibition and aSyn accumulation. CtsD functionality depends on GCase activity. When GCase activity is diminished,
the lysosomal enzyme CtsD, which plays a role in aSyn degradation becomes limited. This leads to the accumulation of aSyn in cells. Likewise, elevated levels of
aSyn (via multiple mechanisms) inhibits GCase to either initiate or enhance the destructive positive feedback loop of lysosomal impairment and aSyn accumulation
(see text for details).

before full degradation could occur (McGlinchey et al., 2020).
Using aggregation-prone proteoforms aSyn1-122 found in LBs
(McGlinchey et al., 2019) and A53T, which is partially resistant
to cathepsins (McGlinchey et al., 2020).

In this context, CtsD may even initiate degradation limited
to the C-terminus (Sevlever et al., 2008), particularly in the
presence of lipids (McGlinchey and Lee, 2015), leaving CtsL
to complete the degradation process or CtsK may act alone
in vivo, both possibilities would need to be tested in future
investigations. By comparison, monomeric aSyn had an even
distribution of CtsL cleavage across its primary sequence after just
minutes. Remaining monomer and fibril aSyn peptides lose their
amyloidogenic capacity after CtsL or CtsK digestion (McGlinchey
et al., 2017, 2020). Still, rat liver lysosome extracts only had
a limited capacity to degrade aSyn fibrils, even though CtsL
concentrations were comparable between ex vivo and in vitro
experiments (McGlinchey and Lee, 2015).

CtsB is a risk allele for PD (Chang et al., 2017) that degrades
aSyn fibrils in vitro, but only to a modest extent (McGlinchey and
Lee, 2015). Inhibition of CtsB in aSyn-expressing HEK293 cells
significantly blocked aggregate formation (Tsujimura et al., 2015).
In this model, proteinase K (PK) was able to degrade in vitro-
prepared aSyn fibrils, but in vitro CtsB digestion enhanced
aggregation (Tsujimura et al., 2015). While the PK susceptibility
of these fibrils suggests they do not mimic the PK-resistant
versions found in the PD brain, it is nonetheless intriguing

that CtsB enhanced aSyn aggregation in the lysosome in this
cell-based assay (Tsujimura et al., 2015). The species generated
from this were presumably C-terminally truncated, as western
blotting with the C20 antibody (C-terminal epitope) was unable
to recognize the protein represented on a Coomassie-stained
gel (Tsujimura et al., 2015). These data seem to suggest that
the moderate fibril-degrading activity measured by McGlinchey
and Lee (2015) is responsible for generating aggregate-prone
C-terminally truncated aSyn if other lysosomal enzymes do
not assist in lysosomal degradation (McGlinchey and Lee,
2015; Tsujimura et al., 2015). In support of this, evidence
from a Caenorhabditis elegans model demonstrated that CtsB
overexpression was not protective (Qiao et al., 2008).

Studying C-terminally truncated aSyn in an A53T transgenic
model of PD, McGlinchey et al. assessed whether it was present
in the lysosomal contents of symptomatic and age-matched
asymptomatic mice (McGlinchey et al., 2019). Symptomatic
transgenic mice (∼16 months) had increased levels of full-length,
pS129, and C-terminally truncated aSyn. The authors ascribed
this to an overburdened lysosome unable to degrade excess and
aggregated (due to the pS129 finding) aSyn since lysosomal
enzyme activity was unchanged (McGlinchey et al., 2019). To
confirm that the lysosome incompletely degraded fibrillar aSyn to
produce C-terminally truncated species, the authors treated N27
cells with recombinant aSyn fibrils. The lysosomes extracted from
cells exogenously treated with aSyn fibrils contained full-length
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aSyn and two proteoforms of C-terminally truncated aSyn at
∼12 and 8 kDa (McGlinchey et al., 2019). Most compellingly,
full-length aSyn was diminished when N27 lysosomes were
sampled 20 h later, but the 12 kDa band and other higher-
order aggregates remained. These proteoforms aggregated much
more rapidly than full-length aSyn and had more potent seeding
capacity (McGlinchey et al., 2019). Supporting the role of
C-terminally truncated aSyn, the MI2 mice containing the
transgene of human truncated 1–120 aSyn and knockout of
mouse aSyn showed aggregation and progressive dopaminergic
deficit (Wegrzynowicz et al., 2019).

Lasmézas and colleagues observed a ∼12 kDa aSyn species in
primary neurons, mouse brains, and PD patient brains (Grassi
et al., 2018). The authors referred to this less abundant species
as “pα-syn STAR” (α-synuclein truncated adamant and reactive).
The lower molecular weight of pα-syn∗ was due to a 10-amino
acid truncation at the C-terminus and a 15-amino acid loss at
the N-terminus based on antibody epitope recognition. They
found that full-length fibrils localized to the autophagosome,
and pα-syn∗ was present inside LAMP1-positive lysosomes
(Grassi et al., 2018). The authors propose that this novel
proteoform arose due to incomplete proteolytic degradation
within the lysosome. Furthermore, lysosomes that contain
pα-syn∗ lost their acidic internal environment. Treatment with
rapamycin enhanced pα-syn∗ levels, which were decreased
with chloroquine (Grassi et al., 2018). Since rapamycin is an
enhancer (and chloroquine an inhibitor) of autophagy, this
confirms that pα-syn∗ is a product of incomplete degradation
by lysosomal enzymes that are only enzymatically active at low
pH. Since lysosomes containing pα-syn∗ lost their acidic pH, the
sequence of events is clear: (1) the cellular autophagy machinery
transports full-length aSyn to the lysosome; (2) lysosomal
enzymes incompletely degrade aSyn, producing pα-syn∗; (3)
and the presence of pα-syn∗ causes lysosomal dysfunction as
evidenced by loss of the lysosomal pH gradient. Ultimately, this
proteoform leaves the lysosome and enters the cytoplasm, where
it is mitotoxic (Grassi et al., 2018). These findings agree with those
of McGlinchey et al. (2019), as the authors treated neurons and
mice with high levels of exogenous PFFs, but lysosomal enzyme
activity was not measured. Another unexplored possibility is
that even if enzyme activity remains the same, in the presence
of excess aSyn, the lysosomal enzymes have lost harmonization
with one another. The work of Martinez-Vicente and colleagues
suggests this may be the case, as the matrix components of
isolated rat lysosomes could degrade aSyn in vitro given sufficient
time (Martinez-Vicente et al., 2008).

Overall, the evidence suggests interplay among lysosomal
enzyme activities. Inconsistencies or breakdowns in this interplay
appear to result in increased aSyn levels. Based on molecular
weights, the canonical monomeric proteoform is present, as
well as aggregated proteoforms. Most notable is the consistent
presence of C-terminally truncated forms and a novel ∼12 kDa
proteoform detected by multiple groups (Takahashi et al., 2007;
Grassi et al., 2018; McGlinchey et al., 2019). However, it seems
in all these studies that elevated aSyn is a prerequisite for this
effect given the use of overexpressing cell and animal models.
The use of overexpression models is important for two reasons: it

elicits effects that enable in vitro and in vivo study but also mimics
the high cellular concentration of aSyn found in the PD brain.
However, excessive a Syn accumulation represents a later and
often symptomatic stage of PD. This confounds the origin of non-
canonical aSyn proteoforms. Is excess aSyn truly a prerequisite to
overwhelm lysosomes resulting in reduced proteolytic efficiency
and toxic aSyn? Are lysosomes in the aging brain no longer
efficient? If so, does this inefficiency yield toxic proteoforms that
further damage the lysosome in a reciprocal feedback loop?

Investigations into how the lysosome may be a production
center for toxic non-canonical aSyn proteoforms have only
begun to emerge in the last 5 years. More work is need to:
(1) identify other additional species using methods such as
top-down mass spectrometry (Patrie, 2016; Wildburger et al.,
2017; Smith and Kelleher, 2018; Schaffer et al., 2019); (2)
understand mechanisms of formation; and (3) determine how
aSyn escapes the lysosome. Importantly, these studies need to
be done comparing physiological vs. increased aSyn levels to
address the critical question of whether excess aSyn is necessary
to prompt lysosome-generated non-canonical aSyn. Answering
these questions will allow us to move forward and examine
commonalities shared with other synucleinopathies.

THERAPEUTIC STRATEGIES
TARGETING LYSOSOMAL FUNCTIONS

As previously mentioned, there is no effective treatment to
stop or halt PD progression and neurodegeneration. Therefore,
developing novel therapeutics aimed at disease modification is a
great medical need and the main research focus in PD (Richter,
2019). The above-described interplay between aSyn proteoforms
and the lysosome suggests using a two-pronged approach for
therapeutic strategies (Table 1). There are several approaches
to combat aSyn pathology; reducing expression, inhibiting or
reducing its aggregation, preventing its spreading, and enhancing
its degradation are major aspects under investigation by several
groups (Dehay et al., 2016; Wong and Krainc, 2017; Richter,
2019). Due to the wide spectrum of aSyn proteoforms, it is
impractical to individually target each one. Deciphering those
that are most relevant to PD is a more viable alternative strategy,
but would require: (1) unbiased methods to screen all potential
aSyn proteoforms, (2) methodical evaluation of proteoform
toxicity in vitro and in vivo (assays of disease-relevant activity)
(Hong et al., 2018), and (3) targeted drug development toward
the implicated proteoform(s). Methods such as top-down mass
spectrometry have greatly matured over the last 10 years and
may well be sufficient for the challenge of unbiased screening
of all aSyn proteoforms (i.e., proteins < 30 kDa). Even so,
time is a limited factor of this strategy. Identifying all or nearly
all species most relevant to PD is a monumental task that
will not deliver novel therapeutics in a reasonable timeframe—
though with biomarkers it could. We therefore hypothesize
that future therapies toward PD and other neurodegenerative
diseases will be at least in part molecular. A feasible means to
reduce or eliminate aSyn and its diverse proteoforms is through
RNAi-mediated strategies (Helmschrodt et al., 2017). Such an
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TABLE 1 | Examples of preclinical therapeutic strategies targeting lysosomal function.

Strategy Target Agent Application
route

Main effect PD model References

Chaperone GCase Isofagomine Oral Improved motor and
non-motor function, less
neuroinflammation,
increased aSyn clearance,
fewer olfactory deficits

SNCA transgenic mice
(Thy1-aSyn, line 61)

Richter et al., 2014

Chaperone GCase Ambroxol Oral Increased GCase activity,
reduction of aSyn levels

SNCA transgenic mice
with absence of mouse
snca

Migdalska-Richards
et al., 2016

Chaperone GCase Ambroxol Oral Improved motor function,
dopaminergic system
recovery, reduction of aSyn
pathology

6-OHDA rat model Mishra et al., 2018

Chaperone GCase Ambroxol Oral Increased GCase activity Healthy non-human
primates

Migdalska-Richards
et al., 2017

Small molecule GCS GZ667161 Oral Reduction of
glucosylceramide levels,
amelioration of memory
deficit, reduction of
hippocampal aSyn
aggregates

GbaD409V /D409V and
A53T–SNCA mice

Sardi et al., 2017

Viral vector TFEB AAV-TFEB Intracerebral Prevention of behavioral
impairment, protection of
nigral DA neurons

AAV-aSyn rat model Decressac et al., 2013

Viral vector Beclin 1 AAV-Beclin 1 Intracerebral Prevention of behavioral
impairment, protection of
nigral DA neurons

AAV-aSyn rat model Decressac et al., 2013

Viral vector LAMP-2A AAV-LAMP-2A Intracerebral Amelioration of
dopaminergic
neurodegeneration,
reduction in total aSyn
levels

AAV-aSyn rat model Xilouri et al., 2013

Nanoparticles Lysosome Acidic
nanoparticles

Intracerebral Restored lysosomal pH and
lysosomal function (all
models), inhibited
dopaminergic cell death
(MPTP-treated mice)

MPP+-treated cells,
ATP13A2 mutant
fibroblasts, and
MPTP-treated mice

Bourdenx et al., 2016

Nanoemulsions Lysosome Acidic
nanoemulsions

Intracerebral,
retro-orbital
injections

Restored lysosomal pH and
lysosomal function (in vitro),
biodistribution into the SNc
and VTA (WT mice)

ATP13A2- mutant M17
cells, and WT mice

Prevot et al., 2018

AAV, adeno-associated virus; aSyn, alpha synuclein; DA, dopamine; GCase, β-glucosidase; GCS, glucosylceramide synthase; LAMP, lysosomal-associated membrane
protein; MPP+, 1-methyl-4-phenylpyridinium; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; 6-OHDA, 6-hydroxydopamine; TFEB, transcription factor EB; VTA,
ventral tegmental area.

approach should reduce aSyn concentrations, thus limiting the
potential for aggregation and minimizing PTMs that confer
or enhance toxicity. One recent line of evidence in support
of this approach comes from a study by Izco et al. (2019),
showing that anti-aSyn short hairpin RNA delivered in RVG-
exosomes reduced pathology in a PFF-induced mouse model for
up to 6 weeks. Initial behavioral evaluations showed reduced
motor deficits in treated mice, but other unanticipated outcomes
cannot be excluded. We can speculate, that due to the high
level of homology of aSyn with bSyn and even gSyn (see section
“aSyn: Small Protein, Enigmatic Function, and Many Diseases”
above), the impact of RNAi on a biological system might not
be harmful, but only well-designed pre-clinical and clinical tests
could confirm this.

A second and possibly concurrent therapeutic approach would
employ strategies that enhance lysosomal function to counteract
aSyn (Spencer et al., 2009; Mazzulli et al., 2011, 2016a; Xilouri
et al., 2016). This would require a firm understanding of which
ALP mechanisms are altered by aSyn. However, as there is now
evidence that the lysosome may in fact be partly responsible for
generating toxic aSyn proteoforms, such an approach must be
carefully titrated and validated due to the risk of exacerbating
disease pathogenesis. Below we describe examples of therapeutic
strategies targeting lysosomal function (Table 1).

One recently proposed strategy is the use of small-molecule
chaperones such as isofagomine and ambroxol. These are orally
available and specifically target the misfolded GCase, thus
increasing its trafficking to lysosomes (Sawkar et al., 2006;
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Valenzano et al., 2011). For example, isofagomine can increase
GCase activity both in vitro and in vivo (Sun et al., 2012;
Richter et al., 2014; Sanchez-Martinez et al., 2016). Chronic
oral administration of isofagomine to mice overexpressing
human wild-type aSyn improved motor and non-motor function,
abolished microglial inflammatory response in the SNpc,
decreased aSyn expression, and reduced the number of small
aSyn aggregates (Richter et al., 2014).

Marketed as an expectorant since the 1970s, ambroxol
first demonstrated its beneficial effects by increasing GCase
activity and restoring lysosomal function in GBA1 mutant
fibroblasts (McNeill et al., 2014; Ambrosi et al., 2015). In
the 6-hydroxydopamine rat model, chronic oral ambroxol
administration improved motor functions, recovered the
dopaminergic system, and reduced aSyn pathology (Mishra et al.,
2018). After showing that daily oral administration reduced
aSyn levels in transgenic mice and increased GCase activity
in healthy non-human primates (Migdalska-Richards et al.,
2016, 2017), thereby confirming that it crosses the blood-brain
barrier (BBB) in different species, the way was paved for clinical
trials. The initial results suggested that ambroxol was safe and
well tolerated in 18 patients with moderate PD. Ambroxol
showed CSF penetration and target engagement, and aSyn
levels were increased in CSF (Mullin et al., 2020). There is
an ongoing placebo-controlled clinical trial testing the effect
of ambroxol on cognitive and motor symptoms in 75 PD
dementia patients (ClinicalTrials.gov identifier: NCT02914366)
(Silveira et al., 2019).

Chaperones potentially inhibit enzyme function and therefore
require specifically titrated dosing regimens. NCGC00188758,
a small molecule which directly activates GCase, was recently

demonstrated to partially reverse aSyn-induced cellular
pathology and neurotoxicity in hiPSCs from PD patients
(Mazzulli et al., 2016b).

Beyond targeting GCase itself, therapeutic inhibition of the
enzyme glucosylceramide synthase (GCS) that catalyzes the
synthesis of GCase’s substrate glucosylceramide (GlcCer) is
a promising approach to increase lysosomal activity. There
are currently two FDA-approved GCS inhibitors for treating
GD (miglustat and eliglustat), but they have no effect on
central nervous system pathology due to poor entry into
the brain. Therefore, a novel orally available inhibitor of
GCS named GZ667161 has been tested in preclinical models.
GZ667161 was able to cross the BBB and reduced the substrate
GlcCler as well as glucosylsphingosine in a mouse model of
type 2 GD (Cabrera-Salazar et al., 2012). Moreover, chronic
oral administration of GZ667161 in two mouse models of
synucleinopathy reduced GlcCer levels, ameliorated memory
deficits, and reduced hippocampal aSyn aggregates (Sardi et al.,
2017). Venglustat, another brain-penetrant allosteric inhibitor of
GCS, is currently being tested in a global Phase 2 trial to evaluate
safety and efficacy in PD patients who are heterozygous for
a GBA1 mutation (ClinicalTrials.gov identifier: NCT02906020),
supporting this promising strategy of targeting GCS.

As detailed above, ALP dysfunction contributes to PD
pathogenesis. Therefore, viral vector-mediated overexpression
of ALP regulators such as the transcription factor EB (TFEB)
and Beclin 1 is another strategy to develop disease-modifying
therapies for PD. Overexpression of TFEB or Beclin 1 prevented
behavioral impairment and protected nigral DA neurons in rats
with AAV vector-mediated overexpression of human wild-type
aSyn, a well-established PD model (Decressac et al., 2013).

FIGURE 3 | Impair lysosomal degradation produces a spectrum of aSyn proteoforms. “Canonical” full-length aSyn is degraded via the autophagy lysosomal
pathway. However, disruptions in lysosomal pH, enzyme activity or harmonization, lead to the incomplete digestion of the canonical aSyn proteoform. The resulting
novel or non-canonical proteoforms, typically truncated one or both termini, may either accumulate in the lysosome further impairing functionality or escape into the
cellular milieu.
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Similar positive results including amelioration of dopaminergic
neurodegeneration and lower total aSyn levels were observed
when overexpressing LAMP-2A via a viral vector in the same
animal model (Xilouri et al., 2013). In an MPTP-induced mouse
model of PD, TFEB-AAV vector delivered stereotaxically to the
right SNpc increased autophagy markers LAMP-1, CtsD, and
LC3-II/LC3-I ratio ∼57–133% and activated protein synthesis
and pro-survival pathways. Concurrently, SNpc volume, area,
and intracellular TH increased, but whether this also reflected
improved motor function is unknown (Torra et al., 2018).
Similar results were achieved in rats with AAV vector-delivered
overexpression of human A53T aSyn to the SNpc (Arotcarena
et al., 2019). In this study, treatment was able to prevent
behavioral impairments in the ipsilateral rotations and left paw
use examinations. While the study highlights the importance
of neuronal-specific targeting of TFEB more behavioral analysis
is needed. It is also unclear if AAV-TFEB is able to prevent
aSyn pathology and motor deficits after aSyn accumulation
since both AAV-A53Tα-syn/AAV-TFEB were co-administered
1:1 unilaterally (Arotcarena et al., 2019).

Besides the aforementioned approaches, directly targeting
lysosomal activity appears to be an encouraging disease-
modifying strategy. FDA-approved acidic nanoparticles (aNPs)
have been reported to traffic to lysosomes and affect lysosomal
pH (Baltazar et al., 2012). Bourdenx et al. (2016) tested the
effect of aNPs in MPP+ (1-methyl-4-phenylpyridinium)-treated
cells, ATP13A2 mutant fibroblasts, and MPTP (1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine)-treated mice. aNPs restored
lysosomal pH and function in all three models. Additionally,
aNPs inhibited dopaminergic cell death in MPTP-treated mice.
In a more recent development, Poly(DL-lactide-co-glycolide)
(PLGA) nanoemulsions were able to restore lysosomal pH with
better brain distribution compared to previous iterations (i.e.,
acidic nanoparticles) (Prevot et al., 2018). Of course, therapeutic
approaches to PD are not limited to aSyn RNAi and lysosomal
enhancement (see also other contributions to this special issue).
What is clear is that a multitargeted approach with early
intervention is required.

CONCLUSION AND FUTURE
DIRECTIONS

Collectively, these results indicate that there is a significant
bidirectional relationship between the lysosome and aSyn

(Figure 3), which appear locked in a maladaptive feedback loop.
Existing proteoforms (non-ALP generated) directly damage the
lysosome, but the lysosome itself is responsible for producing
toxic aSyn proteoforms that remain internalized in the organelle
or are released into the cellular milieu (Dehay et al., 2012;
Bourdenx et al., 2014; Grassi et al., 2018). The latter half of this
pathological loop has emerged within the last 5 years thanks
to several exciting studies (Cullen et al., 2009; Mazzulli et al.,
2011; Crabtree et al., 2014; Grassi et al., 2018; McGlinchey et al.,
2019; Yang et al., 2020), but more remains to be elucidated in
this nascent research area. One of the most remarkable emerging
features is the surprising diversity in aSyn proteoforms, which is
likely still underappreciated as other PTMs may be involved in
lysosomal dysfunction. While the catalog of aSyn proteoforms is
large and continually increasing, characterizing their impacts on
disease progression is critical for developing rational and urgently
needed treatment targets. Therapeutic development must go
hand-in-hand with the identification of suitable biomarkers
for clinical trial screening, diagnosis, prognosis, and response
to interventions (i.e., companion diagnostic tests). Unbiased
discovery of aSyn proteoforms will reveal which are associated
with pathological and molecular changes that correlate with PD
progression and severity. These proteoforms—especially if they
are unique to PD and not seen in other synucleinopathies—
would serve as templates for novel, specific positron emission
tomography ligands for diagnostic imaging. In summary, a
closer look at aSyn proteoforms and lysosome dysfunction in
PD has revealed a complex, unsteady pathogenic loop that
could very well be driving this multifaceted and progressive
neurodegenerative disease.
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Parkinson’s disease (PD) is the second most common neurodegenerative disease,
characterized by progressive bradykinesia, rigidity, resting tremor, and gait impairment,
as well as a spectrum of non-motor symptoms including autonomic and cognitive
dysfunction. The cardinal motor symptoms of PD stem from the loss of substantia
nigra (SN) dopaminergic (DAergic) neurons, and it remains unclear why SN DAergic
neurons are preferentially lost in PD. However, recent identification of several genetic
PD forms suggests that mitochondrial and lysosomal dysfunctions play important roles
in the degeneration of midbrain dopamine (DA) neurons. In this review, we discuss the
interplay of cell-autonomous mechanisms linked to DAergic neuron vulnerability and
alpha-synuclein homeostasis. Emerging studies highlight a deleterious feedback cycle,
with oxidative stress, altered DA metabolism, dysfunctional lysosomes, and pathological
alpha-synuclein species representing key events in the pathogenesis of PD. We also
discuss the interactions of alpha-synuclein with toxic DA metabolites, as well as the
biochemical links between intracellular iron, calcium, and alpha-synuclein accumulation.
We suggest that targeting multiple pathways, rather than individual processes, will be
important for developing disease-modifying therapies. In this context, we focus on
current translational efforts specifically targeting lysosomal function, as well as oxidative
stress via calcium and iron modulation. These efforts could have therapeutic benefits for
the broader population of sporadic PD and related synucleinopathies.

Keywords: alpha-synuclein, calcium, dopamine, mitochondria, iron, Parkinson’s disease, synapse

GENETIC LINKS TO PATHWAYS OF PARKINSON’S DISEASE
VULNERABILITY

Parkinson’s disease (PD) is the most common movement disorder, with a late onset for the majority
of cases, affecting 1–2% of the population ≥65 years old (Poewe et al., 2017). The cardinal motor
symptoms of PD are bradykinesia, rigidity, and resting tremor, leading to gait impairment and
dynamic postural control dysfunction that compromise the quality of life for patients (Kalia and
Lang, 2015). The onset of PD motor deficits is largely attributed to dopamine (DA) deficiency
within the basal ganglia, due to the deterioration of substantia nigra pars compacta (SNpc) neurons
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(Damier et al., 1999). The hallmark cellular pathology of most but
not all PD cases consists of intraneuronal eosinophilic inclusions,
namely, Lewy bodies and Lewy neurites, depending on their
localization (Goedert et al., 2013; Surmeier et al., 2017). Despite
being linked to PD, the timing and dynamics of the formation
of Lewy bodies/neurites over the course of the disease remain
enigmatic. Biochemical and ultrastructural evidence suggests that
aggregated/fibrillar alpha-synuclein (aSyn), encoded by SNCA,
is a defining feature of Lewy pathology in PD and Dementia
with Lewy bodies, as well as intraglial inclusions in Multiple
System Atrophy, diseases referred to as alpha-synucleinopathies
(Spillantini et al., 1997; Braak et al., 2003; Goedert et al., 2013;
Lashuel, 2020). Lipids and membranous organelles have also
been documented in Lewy body structures (Lashuel, 2020).
A recent ultrastructural study using correlative and multi-
imaging approaches demonstrated that aSyn-immunopositive
Lewy inclusions also consist of lipid membranes and apparently
damaged mitochondrial and lysosomal organelles with variable
spatial organization (Shahmoradian et al., 2019). This study
is contemporary with the increasing genetic evidence for
the contribution of mitochondrial and lysosomal processing
pathways, converging with aSyn homeostasis in PD pathogenesis
(Mazzulli et al., 2011; Burbulla et al., 2017; Wong and Krainc,
2017). Thus, elucidating the interactions between aSyn and
mitochondrial, lysosomal, and lipid homeostasis pathways in
SNpc dopaminergic (DAergic) neurons will help understand PD
progression and may be beneficial for the discovery of new
therapeutic targets to develop novel therapeutic strategies.

PD is a predominantly sporadic disease with aging
representing the greatest risk factor, whereas up to 10% of
cases occur in a familial manner with both autosomal dominant
and recessive transmission (Hernandez et al., 2016). It is also
likely that genetic as well as environmental causes contribute
to both familial and sporadic PD, albeit to different extents
(Singleton et al., 2013). SNCA was the first gene with mutations
reported to cause autosomal dominant PD (A53T missense
mutation), and to date, additional five missense SNCA mutations
have been identified (A30P, A53E, E46K, G51D, and H50Q)
(Polymeropoulos et al., 1997; Kruger et al., 1998; Zarranz et al.,
2004; Appel-Cresswell et al., 2013; Lesage et al., 2013; Proukakis
et al., 2013; Pasanen et al., 2014). Other genes have also been
considered causal in autosomal dominant PD (including LRRK2,
VPS35). Genes associated with autosomal recessive inheritance
patterns are implicated in typical, early onset disease (PARKIN,
PINK1, DJ-1, FBXO7) (Blauwendraat et al., 2020) and point
toward functional implications for, but not limited to, the
mitochondrial clearance pathway. Further atypical forms of
parkinsonism, with juvenile onsets, include genes implicated in
lysosomal function (ATP13A2) and synaptic vesicle endocytosis
(SVE) pathway (DNAJC6 and SYNJ1). Among several other
genes, LRRK2, SNCA, GBA1, CTSB, and SH3GL2 are associated
with PD risk, as validated in the largest meta-analysis of genome-
wide association studies (GWASs) to date (Nalls et al., 2019).
Collectively, genetic evidence suggests that in both sporadic and
familial PD, mitochondrial, endolysosomal, and synaptic vesicle
homeostasis are compromised (Hardy, 2010; Burbulla et al.,
2017; Nalls et al., 2019; Nguyen et al., 2019).

Understanding the molecular mechanisms underlying the
preferential susceptibility of SNpc DAergic neurons in PD
remains a major focus of research. Because most currently
available PD animal models do not manifest key pathogenic
phenotypes of human pathology (Dawson et al., 2018), it has
been difficult to study these mechanisms in vivo, representing
a major caveat in modeling the disease. Furthermore, the
increasing appreciation of multiple genetic “hits” contributing to
PD raises the importance of addressing mechanistic interactions
and potential pathway intersections using models representative
of patient genetic heterogeneity. A significant development in
this direction has been the establishment of human induced
pluripotent stem cell (iPSC) technology allowing for long-term
cultures of highly enriched patient-derived DAergic neurons
(Kriks et al., 2011; Mazzulli et al., 2011; Burbulla et al., 2017).
Using this technology, neurons from patients with various PD
genetic backgrounds have been studied addressing oxidative
stress levels, mitochondrial function, and lysosomal and calcium
homeostasis, whereas pathological aSyn remains a central aspect
of investigation. aSyn plays a multifaceted pathological role in
PD and related synucleinopathies, with aSyn-dependent toxicity
impacting various cellular pathways (Wong and Krainc, 2017).
Here, we focus on studies providing mechanistic insight into
how interactions between aSyn, mitochondrial, endolysosomal,
and synaptic pathways may be linked to DAergic vulnerability in
PD. When feasible, emphasis is given to evidence derived from
primary neurons and iPSC-derived DAergic neuronal models.

ALPHA-SYNUCLEIN AND MAJOR
DETERMINANTS OF PD DOPAMINERGIC
VULNERABILITY

The neuromelanin-containing SNpc neurons, sending DAergic
projections to the dorsal striatum, are preferentially vulnerable
in PD (Hirsch et al., 1988; Damier et al., 1999). A major
concept is that degeneration is initiated at DAergic terminals,
followed by the soma (Cheng et al., 2010; Grosch et al., 2016).
Quantification of DAergic phenotype deterioration using human
post mortem tissue estimated that clinical PD manifestations
are paralleled by ∼50% reduction of putaminal expression of
tyrosine hydroxylase (TH), the rate limiting enzyme in DA
production (Kordower et al., 2013). Interestingly, while the
putaminal TH and DA transporter (DAT) expressions are lost
within 4 years of diagnosis, a small number of residual TH and
neuromelanin-containing SNpc neurons may persist even after
27 years (Kordower et al., 2013).

A major focus is placed on the distinct anatomical and
functional features of SNpc DAergic neurons, linked to cell-
autonomous pathways of vulnerability (Surmeier et al., 2017;
Wong et al., 2019). Firstly, single-cell tracing followed by
digital reconstruction indicated that rat SNpc DAergic neurons
possess widely spread and highly dense axonal arborization
within the striatum (Matsuda et al., 2009). Such an architecture
can give rise to numerous synaptic connections and leads
to high bioenergetic demands (Matsuda et al., 2009; Bolam
and Pissadaki, 2012). Assuming a similar nigrostriatal system
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FIGURE 1 | PD-linked SNCA mutations and interactions with DA metabolites, calcium, or iron promoting pathological aSyn oligomerization and/or aggregation.
PD-linked SNCA missense mutations that increase the oligomerization and/or fibrillization of aSyn in vitro are shown in red (otherwise black). DA and oxidation
derivatives bind non-specifically to the C-terminus (aa 125–129), further stabilized by long-range electrostatic interactions with E83 of the NAC region (intermittent
gray line). Also, DOPAL/DOPAL-Q adducts with N-terminal aSyn lysines are formed at the 1–60 domains (purple line). Fe2+ (ferrous) and Fe3+ (ferric) iron bind to
adjacent regions at the C-terminus of aSyn (blue line; Fe2+: aa P120-A124 and P128-S129; Fe3+: aa P120-M127). Moreover, a calcium-binding motif has been
mapped to the C-terminus of aSyn (green line; aa 109–140). Calcium also promotes calpain I-mediated cleavage of aSyn, with three major cleavage sites depicted
(green arrows; monomeric aSyn: after aa 57; fibrillar aSyn: after aa 114 and 122).

architecture, human SNpc DAergic neurons were estimated to
form even more synaptic connections, linked to even higher
bioenergetic demands (Bolam and Pissadaki, 2012). Based on
computational modeling, larger size and axonal arbor complexity
significantly increase the energetic cost for maintaining axon
potential propagation and recovering the resting membrane
potential (Pissadaki and Bolam, 2013). Secondly, free cytosolic
DA and DA metabolites are prone to oxidation, generating
reactive quinones that can be neurotoxic and able to readily
modify proteins causing protein aggregation (Sulzer and Zecca,
1999). Thirdly, midbrain DAergic neurons are autonomous
pacemakers, involving spontaneous action potentials firing in a
regular rhythmic manner (Bean, 2007). The accompanying entry
of calcium during repolarization, which supports pacemaking,
DA synthesis, and ATP production, also increases mitochondrial
oxidative stress (Bean, 2007). Notably, while SNpc neurons are
lost in PD, the neighboring ventral tegmental area (VTA) DAergic
neurons are more resilient—a fact that has been partly attributed
to the less extensive arborization and synaptic network, lower
somatodendritic density of calcium channels (L-type), and higher
endogenous expression of calcium buffering proteins (Surmeier
and Schumacker, 2013). In addition, DA metabolism may be
different between SNpc and VTA neurons, possibly leading to
higher levels of toxic intermediates of DA catabolism in PD
(Galter et al., 2003), as will be discussed in more detail.

Alpha-Synuclein and the Synaptic
Compartment
Dysregulation of aSyn homeostasis has detrimental consequences
for many pathways implicated in PD DAergic system
vulnerability. aSyn is a 140 amino acid protein ubiquitously

expressed in the central nervous system, predominately
localized at the presynaptic compartment (Maroteaux et al.,
1988; Iwai et al., 1995). The primary amino acid sequence
can be divided into three domains (Figure 1): the N-terminal
domain (amino acid 1–60), the central domain also termed
non-amyloid component of Aβ plaques (NAC; 61–95), and the
C-terminal domain (96–140). The N-terminal domain mediates
the association of aSyn with anionic phospholipids and shows
preferential binding to smaller (∼45 µm diameter) vesicles
(Middleton and Rhoades, 2010). Accordingly, biochemical and
ultrastructural analyses indicated that aSyn associates with
the membrane of synaptic vesicles (Maroteaux et al., 1988;
Emmanouilidou et al., 2016; Vargas et al., 2017). aSyn oligomers
are considered as primary pathogenic species in PD and related
synucleinopathies. Interaction of aSyn oligomers with synaptic
vesicle-like membranes demonstrated that N-terminus-mediated
binding to membranes allows the rigid oligomeric core to be
inserted into membranes and disrupt their integrity (Fusco
et al., 2017). Interestingly, all familial PD SNCA mutations
are localized in the N-terminal region of aSyn (A30P, A53E/T,
E46K, G51D, and H50Q) (Polymeropoulos et al., 1997; Kruger
et al., 1998; Zarranz et al., 2004; Appel-Cresswell et al., 2013;
Lesage et al., 2013; Proukakis et al., 2013; Pasanen et al.,
2014), and with the exception of G51D and A53E potentiate
aSyn oligomerization and/or fibrillization in vitro, but exhibit
differential propensity of forming inclusions within cells
(Conway et al., 2000; Fares et al., 2014; Lazaro et al., 2014,
Lázaro et al., 2016). In particular, a physiological role of aSyn
in neurotransmission and synaptic vesicle trafficking has been
demonstrated (Wong and Krainc, 2017). aSyn interacts with the
vesicle-associated membrane protein (VAMP) 2 and promotes
SNARE (Soluble N-ethylmaleimide-sensitive factor Attachment
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Protein Receptor) complex assembly (Burre et al., 2010),
which enables neurotransmitter release via synaptic vesicle
exocytosis. However, germline Snca-knockout mouse studies
suggested that aSyn is not essential for basal neurotransmission
in DAergic neurons, but rather plays a regulatory role in activity-
dependent DA release (Abeliovich et al., 2000; Cabin et al., 2002;
Chandra et al., 2004). Nevertheless, the specific physiological
function of aSyn within the central nervous system requires
further elucidation.

Aggregated pathological forms of aSyn at both presynaptic
terminals (Kramer and Schulz-Schaeffer, 2007) and along
the axon (Braak et al., 1999) have been described in post
mortem patient tissue, implicating aSyn pathology in synaptic
deterioration. SNCA overexpression in transgenic mouse models
has been linked to nigrostriatal terminal loss (Masliah et al.,
2000), DA release deficits, and changes in synaptic vesicle
clustering (Janezic et al., 2013). aSyn overexpression in ventral
midbrain primary neuron cultures was linked to inhibition of
the SVE pathway, attributed to a reduced recycling vesicle pool
and defective reclustering after endocytosis (Nemani et al., 2010).
Interestingly, SVE coordinates the replenishment of synaptic
vesicles following neurotransmission and has emerged as a
pathway of PD vulnerability, with SYNJ1 (synaptojanin 1) and
DNAJC6 (auxilin) implicated as causal (Blauwendraat et al., 2020)
or SH3GL2 (endophilin A1) as risk factor in PD (Nalls et al., 2019;
Nguyen et al., 2019). Briefly, SVE begins with the invagination
of a new clathrin-coated vesicle from the plasma membrane,
with the participation of endophilin A1 and synaptojanin 1.
Subsequently, auxilin-mediated removal of the clathrin lattice
allows for the refilling with neurotransmitters, such as DA.
LRRK2 mutations, leading to hyperactivation of LRRK2 kinase,
are linked to SVE deficits since endophilin A1, synaptojanin 1,
and auxilin are LRRK2 phosphorylation substrates (Matta et al.,
2012; Islam et al., 2016; Nguyen and Krainc, 2018). Using LRRK2
PD iPSC-derived DAergic neurons, it was demonstrated that
increased phosphorylation in the clathrin-binding domain of
auxilin (S627) by LRRK2 impaired clathrin uncoating (Nguyen
and Krainc, 2018). This mechanism was linked to the reduced
density of synaptic vesicles at terminals, which concurred with
oxidized DA accumulation and increased aSyn levels (Nguyen
and Krainc, 2018). Based on this evidence, a synergistic effect of
LRRK2 and aSyn on SVE could lead to decreased DA packaging
into synaptic vesicles, thus contributing to PD vulnerability
(Figure 2). In addition to synaptic deficits, axonopathy has
also been reported in iPSC-derived neuronal cultures from
A53T SNCA patients (Kouroupi et al., 2017). These cultures
showed swollen varicosities immunopositive for aSyn, which
were improved by small molecules targeting aSyn aggregation
(Kouroupi et al., 2017).

Alpha-Synuclein and Mitochondria
Mitochondria are present in the synaptic compartment
(Graham et al., 2017; Reeve et al., 2018) and crucial for
maintaining synaptic activity and neuronal homeostasis by ATP
production, calcium storage, and lipid metabolism (Nunnari and
Suomalainen, 2012). Genetic evidence suggests that the pathways
of mitochondrial quality control (PARKIN, PINK1, DJ-1,

FBOX7) and mitochondrial fusion/fission dynamics (OPA1) are
implicated in PD and parkinsonism (Carelli et al., 2015; Lynch
et al., 2017). Further biochemical studies showed mitochondrial
respiratory chain complex I deficiency in PD SN tissue (Schapira
et al., 1990). Hampering local energy support of DAergic synapses
due to mitochondrial dysfunction could significantly contribute
to progressive loss of nigrostriatal connections. Supporting this
notion, post mortem immunofluorescence analysis showing
putaminal loss of DAergic synapses in PD patients reported
higher mitochondrial marker per axon volume (Reeve et al.,
2018), which may reflect compensatory increased trafficking
for energy support.

Aberrant aSyn–mitochondria interactions resulting in
oxidative/nitrosative stress, as well as mitochondrial trafficking
and respiration defects, can render DAergic synapses vulnerable.
Application of recombinant oligomeric aSyn species to
neuroblastoma cells and primary cortical neurons disrupted
plasma membrane integrity, significantly increased intracellular
reactive oxygen species (ROS), and reduced mitochondrial
activity (Fusco et al., 2017). Formation of pathological oligomeric
aSyn species within neurons, resulting from wild-type aSyn
overexpression or expression of mutant aSyn, has been associated
with reduced anterograde mitochondria trafficking (Prots et al.,
2018) and mitochondrial fragmentation (Kamp et al., 2010;
Nakamura et al., 2011; Cali et al., 2012; Guardia-Laguarta et al.,
2014; Menges et al., 2017). Mitochondrial transport defects
were paralleled by reduced axonal fiber density and decreased
synaptic robustness (Prots et al., 2018). Microfluidic cultures
of iPSC-derived neurons modeling DAergic-medium spiny
neuron synapse showed that PD OPA1 mutant iPSC-derived
DAergic neurons had impaired anterograde mitochondrial
trafficking leading to progressive synaptic loss (Iannielli
et al., 2019). Mitochondria within OPA1 mutant neurons
exhibited a fragmented phenotype, and it is not known whether
fragmentation may per se reduce mitochondrial trafficking. If
so, the role of aSyn in the regulation of mitochondrial dynamics
could be crucial, and further investigation is required. Direct
interaction of both wild-type and mutant (A53T, A30P) aSyn has
been shown at mitochondria-associated membranes (MAMs)
(Guardia-Laguarta et al., 2014), domains of endoplasmic
reticulum (ER)–mitochondria contact, relevant for the exchange
of ions and lipids. The aSyn–MAMs interaction has been
suggested to enhance mitochondrial calcium uptake from the ER
(Cali et al., 2012), which could in turn affect ATP production and
oxidative stress. Furthermore, aSyn accumulation in association
with mitochondria can reduce complex I activity and elevate
mitochondrial ROS production in DAergic neurons (Devi et al.,
2008; Chinta et al., 2010). Proximity ligation assays in human
post mortem PD and rat SN tissue indicated binding of aSyn
to TOM20 (translocase of the outer membrane receptor 20),
which can be a crucial interaction underlying aSyn-dependent
complex I deficiency and oxidative stress (Di Maio et al., 2016).
Specifically, it was shown that via TOM20 binding, oligomeric,
DA-modified, and phosphorylated (S129E phosphomimetic
mutant) aSyn species could hamper the mitochondrial import of
the complex I subunit Ndufs3, linked to lower basal respiration
and oxidative damage (Di Maio et al., 2016). The aSyn–TOM20
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FIGURE 2 | Potential model of the intersection of PD vulnerability pathways with DA metabolism at presynapse, promoting aSyn aggregation. Pre-synaptic calcium
influx (via Cav1.3 calcium channels) drives mitochondrial oxidative phosphorylation (OxPhos), energetically supporting DA sequestration (thick green arrow) and
consecutively neurotransmission. Synaptic vesicles (SVs) are loaded with DA neurotransmitter by VMAT-2, which transports cytosolic DA into the SV in exchange of
H+ provided by the action of the H+-ATPase. Following release, synaptic vesicle endocytosis (SVE) replenishes SVs; however, PD-linked deficits in this pathway can
limit the SV availability (thick red line). Because of ongoing DA biosynthesis (TH-catalyzed conversion of tyrosine to L-DOPA), impairment of DA sequestration into
SVs leads to the accumulation of DA in the cytosol (thick red line). Subsequent build-up of oxidized DA metabolites (yellow highlight) in the cytosol disturbs aSyn
homeostasis and leads to neurotoxicity. Specifically, cytosolic DA oxidation, catalyzed by iron (Fe3+), can lead to increased oxidized DA derivatives (oxDA), as well as
increased levels of the neurotoxic metabolite DOPAL, catalyzed by MAO, further oxidized to DOPAL-Q (thick red arrows). aSyn oligomerization by DOPAL/-Q entails
formation of adducts, whereas binding of DA-Q, calcium, and iron also promote the formation of aSyn oligomers/aggregates. Neuronal detoxification from DOPAL is
mediated by ALDH1A1, which catalyzes its conversion to the non-toxic metabolite DOPAC (thin green arrow). Moreover, DA-Q and iron are removed from the cytosol
over time by sequestration to the dark pigment neuromelanin at the soma (black intermittent arrow), enclosed within membranes, which can be neuroprotective
under physiological conditions.

interaction has also been demonstrated in iPSC-derived DAergic
neurons, possibly contributing to mitochondrial dysfunction in
A53T and SNCA triplication PD neurons (Zambon et al., 2019).
Compared with isogenic controls, A53T SNCA pluripotent stem
cell-derived DAergic neurons showed exacerbated ROS/reactive
nitrogen species (RNS) production and higher susceptibility
upon exposure to mitochondrial toxins (Ryan et al., 2013).
Furthermore, gene expression analysis in sporadic PD SNpc
tissue, and comparison between A53T SNCA and isogenic
pluripotent stem cell-derived DAergic neurons, has linked

axodendritic pathology to an impaired antioxidative stress
response (Czaniecki et al., 2019).

Alpha-Synuclein and Dopamine
DA signaling and metabolism are regulated by the coordinated
actions of enzymes and transporters responsible for DA
synthesis, packaging into vesicles and re-uptake following
release, or for degradation of cytosolic DA. Sequestration or
degradation is particularly important as the accumulation
of DA in the cytosol generates ROS and oxidizes DA
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by-products (Figure 2). TH converts dietary tyrosine to
L-dihydroxyphenylalanine (L-DOPA), which is ultimately
converted to DA by aromatic amino acid decarboxylase
(Molinoff and Axelrod, 1971). Following synthesis, the
vesicular monoamine transporter (VMAT)-2 uses ATP-driven
vesicular electrochemical gradient to package cytosolic DA
into vesicles along the axon and pre-synapses, but also into
tubular structures at the somatodendritic compartment (Li
et al., 2005; Figure 2). Neurotransmission is terminated by
high-affinity DA reuptake through DAT at the pre-synapse,
where DA can be recycled for exocytosis (Figure 2). At this
stage, deficits in the SVE pathway, as reported in LRRK2
PD iPSC-derived DAergic neurons (Nguyen and Krainc,
2018) among other cellular and in vivo models (Nguyen
et al., 2019), can lead to DA accumulation in the cytosol.
Preventing the potentially neurotoxic effects of cytosolic build-
up, the main degradation route begins with DA oxidative
deamination to 3,4-dihydroxyphenylacetaldehyde (DOPAL),
concurring with H2O2 (hydrogen peroxide) generation, by the
outer mitochondrial membrane monoamine oxidase (MAO)
(Masato et al., 2019). Furthermore, the DOPAL metabolite is
potentially toxic for DAergic cells and is by far more potent
than DA in both oligomerizing and forming quinone protein
adducts with aSyn (Burke et al., 2008; Goldstein et al., 2012;
Jinsmaa et al., 2020). Therefore, the route of conversion to
the corresponding non-toxic 3,4-dihydroxyphenylacetic acid
(DOPAC), catalyzed by aldehyde dehydrogenase ALDH1A1
(Masato et al., 2019), is an important detoxification mechanism
(Figure 2). Subsequently, DOPAC is degraded mainly to
homovanillic acid by catechol−O−methyltransferase (Masato
et al., 2019). Dysregulated DA metabolism has been linked to
SNpc vulnerability in PD since post mortem analyses showed
decreased ALDH1A1 mRNA in PD SNpc but not VTA (Liu
et al., 2014) and higher DOPAL:DOPAC and DOPAL:DA ratios
in PD putamen (Goldstein et al., 2011, 2013). In addition,
theoretical indices derived from DA/metabolites relative ratios
have suggested that both reduced vesicular DA uptake and
ALDH1A1 activity accounted for DOPAL accumulation in
PD putamen (Goldstein et al., 2013). Quantitative proteomics
and transcriptomics highlighted mitochondrial and lysosomal
dysregulation and differential vulnerability of DAergic neurons
derived from several isogenic PD gene knockout pluripotent
stem cell lines (Ahfeldt et al., 2020).

Mechanistically, dysregulated DA metabolism has emerged
as a significant SNpc vulnerability pathway, converging
with mitochondrial oxidative stress, with implications
for both lysosomal dysfunction and aSyn pathology
(Figure 3). In line with this, iPSC-derived DAergic neurons
from an SNCA duplication patient showed higher aSyn
aggregation/phosphorylation as well as higher ROS/RNS levels
than cortical neurons derived from the identical iPSC line,
although the underlying mechanisms require elucidation
(Brazdis et al., 2020). Cytosolic DA can be non-enzymatically
converted to reactive DA-o-quinone (DA-Q), catalyzed by
Fe3+ (ferric) iron (Zucca et al., 2017). Additional quinones
and semiquinones are sequentially formed, thus aggravating
oxidative stress (Zucca et al., 2017). Importantly, accumulation

of oxidized DA/DA-Q represents a key phenotype developing
over time in human iPSC-derived DAergic neurons from genetic
PD forms related to mitochondrial (PARKIN, PINK1, DJ-1)
and endolysosomal pathways (LRRK2, GBA1) or sporadic PD
(Burbulla et al., 2017, 2019; Ysselstein et al., 2019; Laperle
et al., 2020). DA promotes the accumulation of pathological
aSyn protofibril intermediates, involving oxidation to DA-Q
(Conway et al., 2001). Moreover, elevation of DA in mouse
SN neurons by lentiviral overexpression of catalytically
hyperactive TH promoted the formation of pathological
aSyn oligomers and accelerated the DAergic deterioration of
A53T aSyn overexpressing mice (Mor et al., 2017). Another
potential DAergic vulnerability mechanism linked to the
aSyn–DA interaction is the impaired lysosomal degradation
of proteins cleared via chaperone-mediated autophagy. DA-
/autoxidized DA-modified aSyn was shown to bind to the
lysosomal membrane, but was not efficiently taken up and
degraded within the lumen (Martinez-Vicente et al., 2008). In
addition, elevation of cytosolic DA in mouse primary ventral
midbrain neurons by L-DOPA administration inhibited protein
degradation via chaperone-mediated autophagy in wild-type
but not aSyn null neurons (Martinez-Vicente et al., 2008).
Based on molecular dynamic simulations, DA and oxidation
derivatives non-specifically bind to the C-terminus of aSyn
(aa 125–129), further stabilized by long-range electrostatic
interactions with the NAC region (aa E83) (Herrera et al., 2008;
Figure 1). An additional mechanism of DA-related toxicity is
the modification of proteins by DA-Q, with adducts formed by
the catechol moiety reacting with thiols of cysteines (Masato
et al., 2019). Two examples of DA-Q modified proteins are
parkin and the lysosomal glucocerebrosidase (GCase). In
neuronal cell lines, DA-Q-modified parkin showed lower E3
ubiquitin ligase activity and decreased solubility (LaVoie et al.,
2005). Moreover, catechol-modified parkin was detected in
human control SNpc (LaVoie et al., 2005). In addition, DA-Q
modification of cysteines at the GCase catalytic site leads to
decreased lysosomal GCase activity in iPSC-derived DAergic
neurons, thus contributing to lysosomal dysfunction (Burbulla
et al., 2017). The primary DA metabolite DOPAL is highly
neurotoxic in vitro and in vivo. Like DA, DOPAL is auto-oxidized
to quinones (DOPAL-Q) with concomitant generation of ROS.
In addition to the reported general increase in cellular oxidative
stress linked to DOPAL and other DA oxidation derivatives,
mitochondria can also be specifically impacted. Use of H2O2-
sensitive genetically encoded thiol redox sensors indicated
that short-term L-DOPA treatment of DAergic neurons induces
MAO activity for catabolism of DA to DOPAL and concomitantly
increases oxidative stress specifically within axonal mitochondria
(Graves et al., 2020). Although this mechanism was shown
to be physiologically relevant for supporting ATP production
(Graves et al., 2020), it may also represent an additional source
of mitochondrial stress in the PD milieu, accentuating DAergic
neuron axonal/synaptic vulnerability. DOPAL is also linked
to aSyn pathology, with injection into rat SN resulting in
high molecular weight aSyn species and loss of TH+ neurons
(Burke et al., 2008). DOPAL/DOPAL-Q modify aSyn via the
formation of adducts between DOPAL/DOPAL-Q aldehyde
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FIGURE 3 | Mitochondrial oxidative stress, lysosomal dysfunction, and pathological aSyn are major converging pathways in the vulnerability of SNpc DAergic
neurons in PD. Calcium influx via Cav1.3 channels during pacemaking and the metabolism of DA to DOPAL by mitochondrially-anchored MAO support mitochondrial
energy production under physiological conditions. However, these mechanisms could also represent a dual source of sustained mitochondrial oxidative stress (mito
ROS) over a long period, contributing to PD SNpc vulnerability. Moreover, DA metabolism and neurotoxic DA metabolites including DA/DOPAL quinones exacerbate
oxidative stress and are linked to pathological aSyn modifications and GCase inhibition (green arrows). In turn, GCase is reciprocally linked to pathological aSyn via
its lipid substrate glucosylceramide (GluCer). GCase deficiency increases GluCer levels, therefore stabilizing oligomeric aSyn intermediates (red arrow), whereas
pathological aSyn inhibits GCase lysosomal activity or trafficking (blue arrow). As part of this vicious feedback cycle, both GCase and pathological aSyn contribute to
oxidative stress (intermittent red arrow) via intersecting with DA metabolism. These major pathways may render SNpc DAergic neurons more vulnerable to the
influence of PD-linked factors, such as aging, environment, and genetics.

moiety and N-terminal aSyn lysines (domain of aa 1–60), thus
increasing aSyn oligomerization (Follmer et al., 2015). aSyn
modification by DOPAL could lead to loss of aSyn function
at the presynapse, since it was shown that DOPAL-modified
aSyn has reduced affinity for synaptic vesicle-like membranes
(Follmer et al., 2015), and that DOPAL-aSyn oligomers have
been shown to permeabilize lipid membranes leading to DA
leak (Plotegher et al., 2017). This leads to a vicious cycle of
cytosolic DA/DOPAL accumulation, oxidative stress, toxic
protein modifications promoting pathological aSyn, and
lysosomal dysfunction via GCase. Addressing DOPAL build-up
mechanisms in detail using iPSC-derived DAergic neurons
will provide further insight into how DA release/metabolism
equilibrium may be altered in PD. Importantly, such studies
could open new venues for DA detoxification approaches, as an
early intervention in PD.

Oxidized DA and derivatives also constitute the basis for
the formation of neuromelanin, a dark polymeric pigment,
which accumulates over a lifetime in human SN neurons and
is considered as detoxifying under physiological conditions
(Zucca et al., 2018). Neuromelanin has been observed in DJ-
1 PD iPSC-derived DAergic neurons (Burbulla et al., 2017)
and iPSC-derived midbrain-like organoids treated with DA or
L-DOPA (Jo et al., 2016). Electron microscopy of human SN
revealed neuromelanin-containing organelles enveloping dark
proteinaceous granular aggregates and lipid bodies (Zucca

et al., 2018). Moreover, biochemical analyses indicated a high
representation of endolysosomal pathway proteins, as well as
higher molecular weight aSyn species, within neuromelanin
organelles (Zucca et al., 2018). In addition to proteins and
lipids, metals, such as Fe3+ (ferric) iron, which catalyzes DA
oxidation, are bound to neuromelanin. Indeed, neuromelanin’s
composition is indicative of the intersection between DA
metabolism and aSyn-related pathways, with iron playing a
significant modulatory role. Iron is enriched in the basal
ganglia and SN (Hallgren and Sourander, 1958), whereas
specifically in the putamen, iron levels increase with age
reaching maximum concentration at 50–60 years (Hallgren
and Sourander, 1958). Interestingly, another group of diseases
shares the feature of high brain iron in the basal ganglia and
progressive neurodegeneration with PD. This is the very rare
and heterogeneous group of neurodegeneration with brain iron
accumulation (NBIA) disorders, characterized by young onset
and progressive extrapyramidal dysfunction (Neumann et al.,
2000). Furthermore, certain NBIA cases show extensive Lewy
pathology in the SN, and specifically SNpc, as well as the cerebral
cortex (Arawaka et al., 1998; Neumann et al., 2000; Tofaris
et al., 2007). Importantly, accumulation of iron in the SN of PD
patients has been reported by several studies (Dexter et al., 1991;
Griffiths et al., 1999; Graham et al., 2000). It is also possible that
regulation of iron metabolism in the periphery is altered in PD
as in the case of ceruloplasmin, a liver-synthesized enzyme that
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converts Fe2+ (ferrous iron) to Fe3+, thus facilitating peripheral
iron transportation. Reduced ceruloplasmin activity has been
reported in the SN and biofluids of some PD patients, and
missense variations in the ceruloplasmin-encoding gene showed
a possible link with SN iron deposition in few PD patients
(Ward et al., 2014). Iron can contribute to the pathways of
oxidative stress and aSyn pathology (Figure 2). After reduction
from the Fe3+ to the Fe2+ state, iron can participate in Fenton
reactions that liberate radicals and can result in neurotoxic
protein oxidation or lipid peroxidation (Halliwell and Gutteridge,
1984; Winterbourn, 1995). Furthermore, iron binds to the
C-terminus of aSyn (Figure 1; Fe2+: aa P120-A124 and P128-
S129; Fe3+: aa P120-M127), increased by S129 phosphorylation
(Lu et al., 2011), a post-translational modification identified in
Lewy bodies (Fujiwara et al., 2002). The aSyn–iron interaction
is potentially toxic, since iron alone or in concert with DOPAL
promotes aSyn oligomerization (Hashimoto et al., 1999; Uversky
et al., 2001; Jinsmaa et al., 2014). Conversely, aSyn can enhance
iron toxicity via conversion of Fe3+ to Fe2+, leading to higher
DOPAL susceptibility in neuronal cells (McDowall et al., 2017).
Such activity has also been demonstrated in vivo following viral
overexpression of human aSyn in the rat SN, leading to TH
neuron loss (McDowall et al., 2017). Consequently, aSyn–iron
interactions can aggravate oxidative stress and contribute to
DAergic neuron vulnerability.

Mitochondrial antioxidants including N-acetylcysteine
(precursor to glutathione synthesis) have also been shown to
prevent the accumulation of oxidized DA and aSyn in iPSC-
derived DAergic cultures (Burbulla et al., 2017). Furthermore,
antioxidant polyamines have recently been identified as
substrates of the PD-linked lysosomal ATPase ATP13A2 (van
Veen et al., 2020). Although the mechanisms are unclear,
polyamine metabolism may be altered during aging but also
in PD. Post mortem examinations have indicated a decrease
of polyamines in basal ganglia (Vivó et al., 2001), and in PD,
there appears to be a reduced expression of the catabolic
enzyme spermidine/spermine N1-acetyltransferase 1 (SAT1)
(Lewandowski et al., 2010). Further elucidation of functional
interactions between modulators of oxidative stress and
PD-linked genes will be important for novel, targeted PD
antioxidant therapies.

Alpha-Synuclein and Calcium
aSyn and calcium homeostasis appear to be reciprocally
regulated. Calcium binds to aSyn at a 32-aa C-terminal domain
(Figure 1; Nielsen et al., 2001). This interaction promotes
aSyn aggregation and can potentiate the interaction between
aSyn and synaptic vesicles (Nielsen et al., 2001; Lautenschläger
et al., 2018). Calcium can also affect aSyn conformation via
the calcium-activated protease calpain I. Using recombinant
aSyn, one major cleavage site for monomeric (after aa 57) and
two additional major sites for fibrillary aSyn (after aa 114 and
122) have been identified (Mishizen-Eberz et al., 2003). In vivo
calpain inhibition via overexpression of the natural inhibitor
calpastatin abolished aSyn truncation and could significantly
reduce aSyn aggregation in A30P aSyn overexpressing mice

(Diepenbroek et al., 2014). Moreover, deficient extracellular
vesicle release, a calcium-dependent process partly mediating
aSyn secretion (Emmanouilidou et al., 2010; Tsunemi et al.,
2014), has been related to progressive aSyn accumulation in
ATP13A2 iPSC-derived DAergic neurons (Tsunemi et al., 2019).
Conversely, aSyn can affect intraneuronal calcium homeostasis,
with overexpression leading to a sustained elevation of basal
calcium levels (Caraveo et al., 2014; Angelova et al., 2016).
Specifically, oligomeric aSyn can induce channel formation on
artificial membranes leading to irregular calcium influx, which
can result in calcium-dependent cellular toxicity (Angelova et al.,
2016). Also, SNCA triplication iPSC-derived cortical neurons
were shown to exhibit abnormal patterns of Ca2+ influx upon
depolarization, attributed to the integration of oligomeric aSyn
species into membranes (Angelova et al., 2020).

In addition, calcium dynamics can contribute to the
vulnerability of SNpc neurons, acting in concert with aSyn and
DA (Figure 2). Calcium enters DAergic neurons via voltage-
gated calcium channels (Cav), residing at the axon terminals
as well as at the soma and proximal dendrites (Lai and Jan,
2006). The pacemaking activity of SNpc DAergic neurons is
accompanied by calcium influx via L-type (Cav1.3 subtype)
calcium channels, which are activated at relatively negative
membrane potential (Surmeier et al., 2017). Measurements using
a mitochondrial matrix-targeted indicator showed that L-type
channel-mediated calcium influx during pacemaking is linked
to mitochondrial calcium influx via ER receptors and leads to
increased basal levels of mitochondrial oxidative stress (Guzman
et al., 2010). This calcium-dependent feed forward mechanism
drives oxidative phosphorylation, but also constitutes sustained
mitochondrial oxidative stress with a key role in SN DAergic
vulnerability (Surmeier et al., 2017). SN mouse primary neurons
treated with the Cav1.2/Cav1.3 negative allosteric modulator
nimodipine were significantly more resilient to L-DOPA, a
treatment that raises cytosolic DA and leads to neurotoxicity
(Mosharov et al., 2009). Along this line, application of L-type
calcium channel negative allosteric modulators (nimodipine
and isradipine) could prevent the exacerbated elevation of
cytosolic calcium and reduce susceptibility of SN neurons, as
compared with VTA, in a Parkinsonian MPP + (1-methyl-4-
phenylpyridinium) neurotoxin model (Lieberman et al., 2017).
aSyn knockout neurons did not show elevation of cytosolic
calcium following MPP + treatment and were less sensitive to
either L-DOPA or MPP+ (Mosharov et al., 2009; Lieberman
et al., 2017). Furthermore, GBA1-PD and ATP13A2-PD iPSC-
derived DAergic neurons showed elevated basal calcium levels
(Schondorf et al., 2014; Tsunemi et al., 2019), and importantly,
inhibition of calcium influx and downstream signaling in
long-term DJ-1 iPSC-derived DAergic neuron cultures could
significantly reduce DA oxidation (Burbulla et al., 2017).
Collectively, Cav1.3-mediated calcium influx (Guzman et al.,
2010) and MAO-mediated DA metabolism (Graves et al., 2020)
represent a dual source of sustained oxidative stress in DAergic
neuron mitochondria and are reciprocally linked to aSyn and
lysosomal homeostasis pathways (Figure 3). Additional calcium
channels may play a role in calcium influx-related DAergic
toxicity. For instance, single-cell mRNA and protein expression
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analyses indicated that the Cav2.3 channel subtype is most
highly abundant in mature mouse SN DAergic neurons (Benkert
et al., 2019). In this study, Cav2.3 channels were shown to
contribute to activity-related calcium oscillations, and their
knockout protected against MPTP (1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridin)-induced SNpc DAergic cell death in mice.
Importantly, Cav2.3 expression was readily detected in GBA1-
PD and healthy control iPSC-derived DAergic neurons (Benkert
et al., 2019). These findings corroborate the importance of
investigating further molecular players in calcium signaling
dysregulation and suggest their contribution to the vulnerability
of human DAergic neurons, for revealing new therapeutic targets.

LYSOSOMAL DYSFUNCTION AND
ALPHA-SYNUCLEIN LINKED BY
GLUCOCEREBROSIDASE

Inefficient clearance via the autophagy–lysosome pathway has
long been linked to PD (Anglade et al., 1997), and pathological
aSyn can interfere with, and compromise, several stages of
this pathway (Xilouri et al., 2016). In more recent years, the
increasing understanding of the key role of specifically lysosomal
dysfunction in PD (Nalls et al., 2019) has highlighted GBA1
as a crucial molecular player with direct implications for aSyn
homeostasis. The gene GBA1 is the most common PD risk
factor and encodes for the lysosomal enzyme GCase (Sidransky
et al., 2009). GCase is active in the acidic endolysosomal
lumen, hydrolyzing glucose moieties from the glucolipids
glucosylceramide (GluCer) and glucosylsphingosine (GluSph)
(Do et al., 2019). Homozygous GBA1 loss-of-function mutations
lead to the lysosomal storage disorder Gaucher’s disease,
characterized by accumulation of GluCer and GluSph within
the lysosomes of macrophages. In some Gaucher patients,
manifestations of parkinsonism and dementia, as well as
Lewy pathology, have been described (Wong et al., 2004).
Heterozygous GBA1 mutations are encountered in 7–12% of PD
patients (GBA1-PD) (Do et al., 2019) and shown to increase
risk for motor symptom severity and dementia progression
(Winder-Rhodes et al., 2013).

GCase function is strongly and reciprocally connected to
aSyn homeostasis (Figure 3), but GCase has also emerged
as a molecular convergence target of pathways associated
with multiple genetic or idiopathic PD forms. A Gaucher’s
disease mouse model expressing mutant GCase showed
hippocampal aSyn aggregation and memory deficits, and
phenotypes significantly improved by adeno-viral wild-type
GBA1 overexpression (Sardi et al., 2011). Generally, GCase
deficiency is associated with higher intracellular aSyn levels,
in neuronal models and iPSC-derived DAergic neurons from
Gaucher’s disease and GBA1-PD patients (Mazzulli et al., 2011;
Schondorf et al., 2014; Aflaki et al., 2016; Kim et al., 2018;
Burbulla et al., 2019). In particular, the buildup of GluCer
on endolysosomal membranes promotes the formation of
pathological high molecular weight aSyn species, further
converted to insoluble species (Mazzulli et al., 2011; Zunke
et al., 2018). Moreover, increased GluCer was also shown to

de-stabilize aSyn tetramers (Kim et al., 2018), which in contrast
to oligomers are proposed to represent physiological multimeric
forms less prone to aggregate (Bartels et al., 2011; Dettmer
et al., 2015), although this is still controversial. GluCer-induced
aSyn forms have also been directly associated with endogenous
neurotoxicity, as well as decreased neuronal viability upon
endocytosis from healthy DAergic neurons (Zunke et al., 2018).
An equally important aspect of the aSyn–GCase interaction is
that increased aSyn levels can per se impair lysosomal GCase
activity via improper enzyme maturation and trafficking, an
effect that also disrupts other lysosomal enzymes (Mazzulli
et al., 2016a; Cuddy et al., 2019). Specifically, aSyn disrupts
the association between the SNARE protein ykt6, implicated
in ER–Golgi trafficking, and membranes, validated in iPSC-
derived DAergic neurons from SNCA triplication- or A53T
aSyn PD patients (Cuddy et al., 2019). Further mechanistic
investigations in iPSC-derived DAergic neurons have revealed
that some PD-associated proteins exert an inhibitory effect on
GCase activity that can, at least partly, be attributed to DA
oxidation. In long-term cultures of DJ-1-deficient iPSC-derived
DAergic neurons, a time-dependent pathogenic cascade has
been discovered that started with mitochondrial oxidative stress
promoting the generation of DA-Qs (Burbulla et al., 2017).
These species of oxidized DA led to disruption of GCase activity
through modification of cysteine residues at the GCase catalytic
center (Burbulla et al., 2017). A similar concurrent elevation of
oxidized DA and reduced GCase activity was also observed in
PINK1, PARKIN, LRRK2, and SNCA triplication iPSC-derived
DAergic neurons (>90 days of neurons in culture), but also
in sporadic PD iPSC-derived DAergic neurons at later time
points (>180 days) (Burbulla et al., 2017). Further studies
will be important to identify additional pathways affecting
GCase activity in different PD forms beyond DA metabolism
(Laperle et al., 2020).

DISEASE-MODIFYING THERAPIES
FOR PD

Thus far, there is strong evidence indicating that lysosomal
dysfunction and mitochondrial oxidative stress are key factors
for DAergic neuron vulnerability and tightly connected to aSyn
homeostasis in PD etiopathology. Moreover, calcium and iron
can have a significant contribution in pathways related to
oxidative stress and pathological aSyn formation. Consequently,
in this section, we discuss therapeutic approaches and clinical
studies focusing on the molecular target GCase, as well as calcium
and iron, as three important factors with high relevance for
aSyn homeostasis. Notably, such therapeutic approaches are not
directly targeting pathological aSyn, but could possibly restore
the unbalanced equilibrium between aSyn, mitochondrial, and
lysosomal pathways (for aSyn-targeted therapies, see Charvin
et al., 2018).

The function of GCase is crucial for both glucolipid
metabolism and aSyn homeostasis. Increasing GCase activity is,
at present, the overarching aim of translational efforts specifically
targeting PD lysosomal dysfunction. To this end, one major
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emerging approach in GBA1-PD is promoting mutant lysosomal
GCase translocation to the lysosome via small molecule
modulators, validated in iPSC-derived DAergic culture studies.
For instance, long-term cultured (>100 days) iPSC-derived
DAergic neurons from Gaucher patients exhibited key disease-
related phenotypes of GluCer/GluSph and aSyn accumulation
(Aflaki et al., 2016). Treatment with a GCase modulator
(21 days, compound NCGC607) improved both phenotypes
(Aflaki et al., 2016). Importantly, small molecule enhancement
of GCase activity (8 days, compound NCGC00188758) could
also reduce aSyn in SNCA- and ATP13A2/PARK9-PD iPSC-
derived DAergic long-term cultured neurons (>90 days), which
also showed reduced GCase activity (Mazzulli et al., 2016b).
Alternatively, promoting wild-type GCase activity (10 days,
compound S-181) successfully reduced glucolipids and DA/aSyn
pathological phenotypes in LRRK2, DJ-1, and PARKIN as well
as sporadic PD long-term iPSC-derived DAergic cultures (up
to day 160) (Burbulla et al., 2019). Furthermore, application of
a farnesyltransferase inhibitor (LNK-754) could also promote
GCase lysosomal translocation by promoting the ykt6–Golgi
membrane interaction, reducing pathological aSyn in SNCA-
PD DAergic neurons (Cuddy et al., 2019). Indirect targeting
of GCase activity includes pharmacological or genetic LRRK2
inhibition, assessed in GBA1- and LRRK2-PD iPSC-derived
DAergic neurons (Nguyen and Krainc, 2018; Ysselstein et al.,
2019). This approach could significantly improve the pathological
accumulation of oxidized DA and aSyn (including pS129-aSyn)
(Ysselstein et al., 2019). Currently, the two main approaches
to increase GCase activity in GBA1-PD patients that reached
clinical trials are either compounds aiming to enhance the activity
of mutant GCase function or targeted gene therapy. The small
molecule chaperone ambroxol has been successfully used to
enhance mutant GCase activity and reduce pathological aSyn
in GBA1 and SNCA mouse models (Migdalska-Richards et al.,
2016). Results from a Phase 2 clinical trial using ambroxol
in a small patient cohort with and without GBA1 mutations
(NCT02941822) suggested that the compound penetrated the
CSF and targeted GCase, leading to increased total aSyn levels
in the cerebrospinal fluid (CSF) (Mullin et al., 2020). However,
the mechanisms underlying the effect of GCase targeting on
total aSyn in CSF are not clear. Concerning gene therapy,
a Phase 1/2a addresses the AAV (adeno-associated virus)9-
mediated delivery of wild-type GBA1 into the central nervous
system (NCT04127578). Biochemical assessments include GCase
activity and GluCer/GluSph levels in the blood and CSF biofluids
of GBA1-PD patients.

Voltage-gated calcium channels are targets for PD
pharmacological interventions. The effects of isradipine, an
L-type (Cav1) channel antagonist of the dihydropyridine
class, have been more extensively studied with promising
in vitro and in vivo results (Leandrou et al., 2019). Moreover,
epidemiological studies suggested that dihydropyridine use was
associated with reduced PD risk (Ritz et al., 2010; Pasternak
et al., 2012). However, results from the completion of a Phase
3 clinical study of 3-year duration, in previously untreated
early PD patients (NCT02168842), indicated that isradipine
did not slow the rate of clinical PD progression, as measured
by UPDRS (Unified Parkinson’s Disease Rating Scale) scores

(parts I–III, corresponding to mental function, daily living,
and motor function) (Parkinson Study Group Steady-Pd Iii
Investigators, 2020). It thus remains to be examined whether
a highly selective antagonist of Cav1.3 channels, linked to the
pacemaking activity-induced oxidative stress in SNpc DAergic
neurons (Guzman et al., 2010), may show disease-modifying
potential. An additional challenge in objectively assessing efficacy
of calcium-targeting approaches is the identification of specific
target engagement markers.

Targeting iron in PD aims at alleviating DAergic neurons
from an agent that can enhance oxidative stress and aSyn
pathology. To this end, administration of the iron chelator
deferiprone to mice prior to neurotoxic lesion was shown
to protect them from nigrostriatal DAergic loss and mitigate
oxidative stress (Devos et al., 2014). A 2-year pilot, double-blind,
placebo-controlled randomized clinical trial using deferiprone
in early stage PD (NCT00943748), in addition to DAergic
therapy, indicated reduction of SN iron deposition and some
improvement of motor symptoms based on UPDRS score (Devos
et al., 2014). However, cessation of deferiprone treatment led
to reappearance of SN iron deposition and waned clinical
improvement (Devos et al., 2014). Moreover, PD patients with
lower ceruloplasmin activity in the CSF showed a greater
reduction of SN iron levels within a 1-year deferiprone regimen
(Grolez et al., 2015). Therefore, efficacy of iron chelation may
vary between individuals, due to underlying differences in iron
metabolism in the periphery. A follow-up Phase 2 clinical trial
for 9 months (NCT02655315) and an additional 9-month Phase 2
study specifically in early stage PD (NCT02728843) further assess
deferiprone for motor and non-motor symptoms (Movement
Disorder Society-UPDRS scores).

The diverse genetic background of PD patients places a
variable burden on the aSyn, mitochondrial, and lysosomal
pathways of DAergic susceptibility, likely contributing to
the heterogeneous clinical presentation. This realization
intensifies the need for specific and sensitive biomarkers
allowing for distinguishing disease stages, thus optimizing
patient stratification. Such biomarkers could improve the
evaluation or possibly predict patient responses to different
therapies in the endeavor for personalized medicine. Under
this scope, a thorough understanding of interactions between
DAergic vulnerability pathways, aging, and environmental
and genetic factors (Figure 3) can be instrumental to
emerging strategies involving implantation of iPSC-derived
DAergic progenitors from autologous sources into PD patients
(Schweitzer et al., 2020).

CONCLUSION AND PERSPECTIVES

Developments in the field of genetics have revealed a strong
genetic component underlying familial and sporadic forms
of PD. Mechanistic evidence has highlighted a deleterious
feedback cycle whereby mitochondrial, lysosomal, and aSyn
pathways converge and lead to DAergic susceptibility. In
this feedback loop, calcium and iron can have a significant
contribution as modulators exacerbating synaptic vulnerability.
So far, the use of iPSC technology has helped to demonstrate
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that lysosomal dysfunction, accumulation of oxidized DA,
and pathological aSyn represent shared iPSC-derived DAergic
neuron phenotypes, despite the heterogeneity of PD genetic
backgrounds. The concept of mechanistic convergence in
DAergic vulnerability suggests that disease-modifying therapies
require specific molecular targets able to restore equilibrium
between individual pathways. Ideally, novel biomarkers
reflecting the pathological status of PD-related pathways
will optimize patient stratification for testing therapeutic
responses and potentially increasing benefits for specific PD
subpopulations. Furthermore, considering the wide use of
DAergic medication for relieving PD motor symptoms, it will be
crucial to investigate in detail DA metabolism and particularly
DOPAL build-up mechanisms using iPSC-derived DAergic
neurons. Such studies will provide novel insight into how DA
release/metabolism equilibrium is altered in PD and open new
venues for DA detoxification approaches, potentially as early
interventions in PD.

iPSC-derived DAergic neurons used for in vitro modeling
of PD represent a platform for investigating mechanisms
of PD etiopathology and facilitate early phases of drug
discovery. This technology, however, also presents limitations
for studying PD biology, and several crucial questions remain
to be elucidated. For example, interpretation and comparison
of findings among different studies can be complicated by
the fact that DAergic neuron cultures were obtained with
variable purity and analyses were performed at different in vitro
ages. Therefore, establishing conditions for culturing iPSC-
derived DAergic neurons from different genetic backgrounds
over longer periods would have to be standardized to
accurately monitor the manifestation of different phenotypes
including aSyn accumulation, lysosomal function, and oxidative

stress. Moreover, iPSC-derived DAergic neuron cultures are
especially suitable for studying cell-autonomous pathways of
PD vulnerability. Yet, experimental disease modeling paradigms
using additional cell types, including but not limited to glial cells,
are required to better recapitulate the cell-to-cell interactions
of the midbrain milieu. To this end, utilizing iPSC technology
allowing for neuron–glia co-cultures as well as midbrain
organoids may provide important answers. Patient-specific
iPSC-derived models will serve as a resource for in vitro
and in vivo disease modeling and drug screening, with the
goal of testing neuroprotective compounds and developing
therapeutic interventions.
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Cathepsin D (CTSD) is a lysosomal protease important for the degradation of various
substrates, including disease-associated proteins like α-synuclein (a-syn), amyloid
precursor protein (APP) and tau, all of which tend to aggregate if not efficiently degraded.
Hence, it is not surprising that genetic variants within the CTSD gene have been
linked to neurodegenerative diseases, like Parkinson’s and Alzheimer’s disease (PD,
AD), as well as the lysosomal storage disorder neuronal ceroid lipofuscinosis type-10
(NCL10). Although recent studies have shown the molecular dependence of substrate
degradation via CTSD within autophagic pathways, only little is known about the
precise role of lysosomal CTSD function in disease development. We here performed
biochemical, cellular and structural analyses of eleven disease-causing CTSD point
mutations found in genomic sequencing data of patients to understand their role
in neurodegeneration. These CTSD variants were analyzed for cellular localization,
maturation and enzymatic activity in overexpression analyses. Moreover, for PD-
associated mutants, intracellular degradation of a-syn was monitored. In summary,
our results suggest that NCL10-associated CTSD variants are significantly impaired
in lysosomal maturation and enzymatic activity, whereas the AD- and PD-associated
variants seemed rather unaffected, indicating normal maturation, and lysosomal
presence. Interestingly, a PD-associated CTSD variant (A239V) exhibited increased
enzymatic activity accompanied by enhanced a-syn degradation. By structural analyses
of this mutant utilizing molecular dynamics simulation (MDS), we identified a structural
change within a loop adjacent to the catalytic center leading to a higher flexibility and
potentially accelerated substrate exchange rates. Our data sheds light onto the role
of CTSD in disease development and helps to understand the structural regulation of
enzymatic function, which could be utilized for targeted CTSD activation. Because of
the degradative function of CTSD, this enzyme is especially interesting for therapeutic
strategies tackling protein aggregates in neurodegenerative disorders.

Keywords: lysosomal degradation, molecular dynamics simulation, Parkinson’s disease, neuronal ceroid
lipofuscinoses, lysosomes, alpha-synuclein, cathepsin D
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INTRODUCTION

The aspartic protease Cathepsin D (CTSD) is involved in
the lysosomal recycling and degradation of many substrates,
including the Parkinson’s disease (PD)-associated protein
α-synuclein (a-syn) (Sevlever et al., 2008). CTSD is ubiquitously
expressed, being particularly abundant in the brain (Stoka et al.,
2016). Several genomic variants of CTSD, like coding missense
mutations, seem to be related to neurodegenerative diseases, such
as neuronal ceroid lipofuscinosis (NCL), Alzheimer’s disease
(AD), and PD, all progressive disorders involving the central
nervous system (CNS) and aggregation of misfolded proteins
(Siintola et al., 2006; Steinfeld et al., 2006; Fritchie et al., 2009;
Hersheson et al., 2014; Robak et al., 2017). Interestingly, the
exact role of CTSD dysfunction in disease progression as well as
its therapeutic potential in neurodegenerative disorders is not
well understood.

Numerous studies highlight the functional role of CTSD
in neurogenesis and neuronal communication (Partanen et al.,
2008; Koch et al., 2011), as well as its pivotal role in lysosomal
proteolysis, since CTSD dysfunction has been shown to lead to
the accumulation of non-degraded substrates in the lysosomes
(Cullen et al., 2009; Bae et al., 2015; Marques et al., 2019). As
lysosomal dysfunction and substrate aggregation is especially
toxic to postmitotic cells, like neurons, it is not surprising
that many lysosomal storage disorders present with neurological
impairments and vice versa, many neurodegenerative diseases
are characterized by lysosomal dysfunction (Klein and Mazzulli,
2018; Wallings et al., 2019; Zunke, 2020). This underlines
the importance of intact lysosomal enzyme function especially
within neuronal cells.

Before CTSD can act as lysosomal protease, it undergoes a
gradual maturation via the secretory pathway, being synthesized
as an inactive precursor pro-enzyme comprising 412 amino acids
(aa). After removal of the N-terminal signal peptide within the
endoplasmic reticulum (ER), the inactive proCTSD (∼52 kDa)
is glycosylated and transported to the Golgi compartment,
where the mannose residues are phosphorylated for targeting
to lysosomes via the mannose-6-phosphate pathway. An acidic
environment is crucial for proteolytic processing and maturation
of CTSD. Once in the endosomes, the phosphate groups and pro-
peptide of 44 aa are removed to generate an active intermediate
(∼48 kDa). In the lysosomal compartment, this single-chain
intermediate is further processed into a double-chain mature
form consisting of an N-terminal light chain (∼14 kDa) and
a C-terminal heavy chain (∼34 kDa), which both remain non-
covalently associated (Zaidi et al., 2008). This highly complex
CTSD processing pathway depicts its vulnerability and potential
effect of CTSD mutations on maturation and enzymatic function.

NCLs are a group of autosomal recessive neurodegenerative
lysosomal storage disorders, and are the most common cause
of pediatric neurodegenerative disease (Vidoni et al., 2016). The
pathological features include the presence of autofluorescent
storage bodies consisting of lipofuscin in lysosomes of neuronal
and glial cells (Koike et al., 2000), resulting in a severe
and progressive loss of motor and psychological abilities
(Mink et al., 2013).

Congenital NCL type-10 (NCL10), the most severe form of the
disease, is caused by mutations within the CTSD gene (Siintola
et al., 2006). Moreover, increasing evidence suggests that CTSD
is also implicated in processing of amyloid precursor protein
(APP) (Zhou et al., 2006) and the tau protein (Ladror et al., 1994;
Kenessey et al., 1997; Vidoni et al., 2016). Both proteins are linked
to AD progression, which is characterized by the extracellular
deposits of the amyloid β-protein (proteolytically processed APP)
and intracellular neurofibrillary tangles of hyperphosphorylated
tau protein (Selkoe, 2001).

Moreover, in vitro and in vivo studies demonstrated that
under physiological conditions, CTSD mediates the lysosomal
proteolysis of a-syn (Sevlever et al., 2008; Cullen et al., 2009;
McGlinchey and Lee, 2015). It was shown that CTSD deficiency
facilitates a-syn-dependent toxicity (Cullen et al., 2009). a-Syn
aggregation is major hallmark of PD, the second most common
neurodegenerative disorder (Kalia and Lang, 2015; Riederer et al.,
2019). Recently, damaging variants of CTSD were found to be
genetically linked to lysosomal dysfunction and PD pathology
in a large screening of PD patients (Robak et al., 2017), further
emphasizing the importance of its lysosomal clearance function
(Klein and Mazzulli, 2018; Zunke, 2020).

In this study, we characterize eleven CTSD variants associated
with neurodegenerative diseases by analyzing their cellular
localization, maturation, enzymatic activity, a-syn degradation
capacity and structural properties. Our findings contribute to a
better understanding of CTSD regulation as well as its role in
disease pathology and a-syn degradation pathways.

MATERIALS AND METHODS

cDNA Constructs and Cloning
Expression plasmids of human (h) CTSD wildtype (wt), the
disease-associated CTSD mutants (A58V, S100F, G149V, F229I,
Y255X, W383C, R399H, V95I, G145V, A239V, and R266H) as
well as the inactive control D97S were cloned via site-directed
mutagenesis PCR utilizing the hCTSD in the pCMV6/pcDNA3.1
vector as a template. All plasmids were verified by DNA
sequencing (GATC Biotech). A plasmid of hα-syn (pcDNA3.1)
was used for co-transfection together with CTSD plasmids for
further analyses of CTSD activity.

Cell Culture
SH-SY5Y neuroblastoma wt and CTSD KO cells were maintained
in advanced Dulbecco’s Modified Eagle’s medium/F12 (DMEM)
(Thermo 611 Fisher Scientific; #12634010) containing 10% heat-
inactivated fetal calf serum (FCS) and 1% penicillin/streptomycin
(Pen/Strep) (PAA Laboratories GmbH; #P11-010). The human
neuroglioma (H4) and the H4 CTSD KO cell line, both expressing
a-syn under the control of a tetracycline inducible promoter
(tet-off system), were cultured in OptiMEM media (Thermo
Fisher Scientific; #31985070) containing 5% FCS, 200 µg/ml
Geneticin (Thermo Fisher Scientific; #10131035) Hygromycin
(Sigma-Aldrich, #H7772-1g), and 1% Pen/Strep.
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iPS Cells Cultivation (2135) and
Differentiation Into Dopaminergic
Neurons
Human induced pluripotent stem (iPS) cell line (2135) from
a healthy control donor was established and characterized
previously (Seibler et al., 2011). iPS cells were maintained
on matrigel (Corning; #354234)-coated dishes with mTeSR1
media (Stemcell Technologies; #85850) and passaged once per
week. iPS cells were differentiated into midbrain dopaminergic
(DA) neurons (iPSn) by using a mixture of growth factors
as described previously (Kriks et al., 2011). In brief, iPS
cell colonies were enzymatically dissociated and seeded onto
matrigel-coated 12 well dishes. When cells reach a confluency
of 80%, the differentiation protocol was initiated by adding
knockout serum replacement (KSR) media with dual SMAD
inhibitors and carried out for 15 days with the addition of
growth and differentiation factors as depicted in detail in
Kriks et al. (2011). Between day 10 and 15, cell layers were
mechanically dissociated into small squares of ca. 2 mm2 and
plated onto a 6-well dish, coated with poly-d-lysine (PDL,
33 µg/mL) and 5 µg/mL laminin. After 25–30 days, the cells
were detached by accutase (Corning; #25-085-Cl), counted, and
plated at a cell number of 4 × 105 cells for western blot
analysis on PDL/laminin-coated 24-well plates. The growth
factors were withdrawn at day 40–50 and cells were aged
until day > 80. iPS-derived DA neurons were maintained in
neurobasal media (Thermo 611 Fisher Scientific, #21103-049)
containing NeuroCult SM1 supplement (Stemcell Technologies,
612 #05711), 1% L-Glutamine (200 mM stock, Gibco; #25030-
081), and 1% Pen/Strep (Sigma-Aldrich; 613 #P0781). The
quality of DA neurons was regularly validated by the presence
of neuronal and midbrain dopamine markers (FOXA2, β-iii-
tubulin, tyrosine hydroxylase and synapsin) by immunostaining
and western blot.

Generation of CTSD Knockout (KO) in
SH-SY5Y and H4 Cells by CRISPR/Cas9
SH-SY5Y neuroblastoma cells and H4 neuroglioma cells were
seeded 2 days before transfection, so that 70–80% confluency
was reached on the day of transfection. Cells were washed
with PBS and were dissociated from the plate by trypsinization
(0.5% Trypsin-EDTA, Gibco, #25300-054). The reaction was
neutralized by adding the 2X volume of normal growth medium.
Cell density was determined by using a cell counter (Nexcelom
Bioscience; #SD100) and cells were transferred to a sterile 1.5 mL
microfuge tube after counting. Each transfection required 50,000
cells. Cells were centrifuged at 500 × g for 5 minutes and
washed again with PBS. After repeated centrifugation, cells were
resuspended in 5 µL resuspension buffer R (Neon Transfection
System 10 µL-Kit; Invitrogen; #MPK1025) per transfection. RNP
(ribonucleoprotein) complexes of CTSD multi RNA guides and
Cas9 protein were assembled as given in the manufacturer’s
protocol (Gene Knockout Kit v2; Synthego; United States). The
multi RNA guides used in this study target the exon 2 of theCTSD
gene. Guide RNA (gRNA) 1: 5′-UAGUUCUUGAGCACCUC-
3′, gRNA 2: 5′-CUCAAAGUACUCCCAGG-3′, and gRNA 3:

5′-ACCAUGUCGGAGGUUGG-3′. 5 µL of cell suspension
was added to each RNP solution. 10 µL of total cell-RNP
solution was filled into a 10 µL Neon tip (Neon Transfection
System 10 µL-Kit; Invitrogen; #MPK1025) and transfected
via electroporation (Neon Transfection System; Invitrogen)
at 1200 V; 20 ms and 3 pulses. Cells were transferred
immediately to a pre-warmed 6-well dish contanining growth
media without antibiotics and incubated until analysis of
mixed pooled CTSD KO cells. Successful editing efficiency was
determined by western blot analysis and Sanger sequencing
of CTSD exon 2. For Sanger sequencing analysis, genomic
DNA was isolated by DNeasy Blood and Tissue Kit from
Qiagen (Qiagen; #69504). Following primers were used to
amplify CTSD exon 2 of pooled CTSD KO cells and
wt cells: forward 5′-GCAGGAGTTTGGTTTTGGCT-3′ and
reverse 5′-ACTCCCAATCACCCTCCCAG-3′. Genomic DNA
was amplified using Q5 High-Fidelity DNA polymerase (New
England Biolabs; # M0491L) by the following PCR protocol:
98◦C for 30 s, 35 cycles of (98◦C for 10 s, 65◦C for 40 s,
72◦C for 30 s), and 72◦C for 5 min. The PCR product was
analyzed by agarose gel electrophoresis using ethidium bromide-
stained 1.5% agarose gel. The PCR product of the correct size
was excised from the gel and DNA was extracted by using
a GeneJET Gel-Extraction Kit (Thermo Scientific; #K0692).
For Sanger sequencing, the following primers were used: 5′-
GCAGGAGTTTGGTTTTGGCT-3′. In order to get single cells,
CTSD KO cells were diluted and seeded at one cell per 96-
well plate. Single CTSD KO cells were grown and expanded
for western blot and Sanger sequencing analysis. The same
procedure was performed to check successful genome editing in
single cell clones.

Transfection and Inhibitor Treatment
In order to ensure reproducibility, the cell count was determined
prior to each transfection by Cellometer R© Auto T4 Plus
(Nexcelom Bioscience; #SD100). SH-SY5Y CTSD KO cells
were seeded into 6-well plates at 2 × 105 cells per well
for western blot analysis and in same density onto 12 mm
cover glasses for immunofluorescence analyses. After 24 h of
expression, cells were transiently transfected with Lipofectamine
2000 (Thermo 611 Fisher Scientific; #11668027) following
the manufacturer’s protocol. Cells were washed in PBS and
harvested for experimental analysis after 48 h and a-syn co-
transfected cells were harvested after 72 h of expression.
H4 CTSD KO cells were plated at a density of 4 × 105

per well (6-well plate) and transfected 24 h later using
Effectene transfection reagent (Qiagen; #301425) according
to the manufacturer’s instructions. H4 CTSD KO cells were
harvested after 48 h of expression. For CTSD inhibition,
pepstatin A (PepA; Sigma-Aldrich; #508437) was diluted in
cell culture media to a final concentration of 100 µM
and incubated for 2 days after transfection. Bafilomycin A1
(BafA1) was used to inhibit the lysosome. BafA1 (Santa
Cruz; #sc-201550A) was dissolved in DMSO and diluted
in cell culture media to a final concentration of 0.2 µM.
Cells were treated with BafA1 one day after transfection
for 16 h.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 3 February 2021 | Volume 9 | Article 581805156

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-581805 June 19, 2021 Time: 20:4 # 4

Bunk et al. Analysis of CTSD Variants

Immunofluorescence Analysis
SH-SY5Y CTSD KO cells were fixed in 4% paraformaldehyde
(PFA) for 15 min at 37◦C, permeabilized with 0.3% Triton X-
100 (Roth; #3051.2) in PBS-Triton for 30 min, then blocked
in 2% BSA, 5% heat-inactivated FCS in PBS-Triton (blocking
buffer) for 1 h. The primary antibodies were diluted in
blocking buffer to their working concentration (see below)
and incubated at 4◦C overnight. Cells were washed three
times with PBS-Triton and incubated with secondary antibodies
diluted 1:500 in blocking buffer. Afterwards, cells were washed
three times with PBS-Triton, once with PBS and stained
with DAPI Fluoromount-G (SouthernBiotech; #SBA-0100-20).
Immunofluorescence analyses were performed with a confocal
laser scanning microscope (IX83, Olympus) equipped with a
U Plan S Apo 100X oil immersion objective. Digital images
were processed and analyzed using Inspector Image Acquisition
and Analysis Software (Abberior Instruments). The Pearson’s
correlation coefficient was used to express co-localization of two
stainings. Transfected SH-SY5Y CTSD KO cells were marked
by a region of interest and co-localization of two stainings was
determined with the ImageJ software, resulting in values ranging
from −1 to +1. Positive values describe a positive correlation
between both signals (co-localization), negative values describe
a negative correlation and a value of 0 indicates random
distribution of both signals (Pearson, 1909). Quantification of
LAMP2 was done semiautomatically by thresholding to a similar
intensity for count and length measurement of LAMP2-positive
vesicles in mock and transfected cells.

Primary antibodies used: anti-CTSD (1:100 BD Biosciences;
#610801), anti-LAMP2 (1:250, DSHB, #H4B4). Secondary
antibodies: goat-anti-mouse Alexa Fluor 594 (1:500, Thermo
Fisher Scientific; #A11032) and goat-anti-rabbit Alexa Fluor 488
(1:500, Thermo Fisher Scientific; #A11037).

Western Blot Analysis
All cells were mechanically detached and washed with ice-
cold PBS. SH-SY5Y CTSD KO cell and H4 CTSD KO cell
pellets were extracted in a Triton-based buffer (1% Triton X-
100, 20 mM HEPES pH 7.4, 150 mM NaCl, 10% glycerol,
1 mM EDTA, 1.5 mM MgCl2) supplemented with 1 mM
phenylmethanesulfonyl fluoride (PMSF), 50 mM sodium fluoride
(NaF), 2 mM sodium orthovanadate (NaVO3), and a protease
inhibitor cocktail (Roche) by incubation in an ice-water slurry
for 20 min, followed by two freeze and thaw cycles, and
ultracentrifugation at 100,000 × g, 4◦C for 30 min. The soluble
supernatant was then further analyzed. The amount of total
protein was determined by bicinchoninic acid assay (BCA)
(Thermo Fisher; #23227). Samples were denatured with 5 X
Laemmli buffer (0.3 M Tris–HCl, pH 6.8, 10% SDS, 50%
glycerol, 5% β-mercaptoethanol, 5% bromophenol blue) and
heat inactivated at 95◦C for 10 min. Equal amounts of protein
(40 µg) were separated by electrophoresis on a 12% SDS-PAGE
gel and transferred to PVDF-membranes (Merck Millipore;
#IPFL00010). Membranes were blocked in a 1:1 mixture of TBS
and blocking buffer (LI-COR Bioscience; #927-50003) for 1 h. For
a-syn analysis, membranes were fixed in 0.4% PFA for 20 min
before blocking. Primary antibodies were incubated overnight
at 4◦C. Detection was carried out with fluorescence-conjugated

secondary antibodies (LI-COR Biosciences) and detected by an
imaging system (Amersham Typhoon, GE Life Sciences).

Following antibodies were used for detection: anti-CTSD
(1:500; BD Biosciences; #610801), anti-α-syn (Synuclein-1;
1:1000; BD Biosciences; #610787), and anti-GAPDH (1:1,000,
Cell Signaling; #2118).

Cell Lysate CTSD Activity Assay
SH-SY5Y CTSD KO and H4 CTSD KO cells overexpressing
NCL10/AD- and PD-associated CTSD variants were lysed in
a Triton-based buffer (50 mM sodium acetate, 0.1 M NaCl,
1 mM EDTA, 0.2% Triton X-100, pH 4.5) by shaking for 1 h at
4◦C. Lysates were obtained by centrifugation and immediately
used for determination of activity. 2 µl of cell lysates were
incubated in lysis buffer containing 0.1 µM quenched fluorogenic
peptide (Enzo; #BML-P145) and 0.05 mM Leupeptin (Enzo;
#ALX-260-009-M025) at 37◦C for 30 min. Recombinant CTSD
[produced in-house, as recently described (Marques et al., 2019)]
and samples treated with CTSD inhibitor pepstatin A (Sigma-
Aldrich; #P5318-5MG) were used as positive and negative assay
controls, respectively. CTSD activity was measured with an
Infinite R© 200 PRO M Plex multimode microplate reader (ex.:
360 nm; em.: 440 nm; Tecan Trading AG; #TEC006418I). For
every CTSD activity assay, expression of CTSD variants was
verified by western blot. CTSD activity values were normalized
to protein expression level and expressed relative to CTSD wt.
Also, a catalytically inactive CTSD variant was established as
control, replacing one of the aspartic acids (D) comprising
the active site of the enzyme with a serine (S; D97S). This
exchange of a carboxyl group with a hydroxyl group results in an
enzymatically inactive CTSD that still showed normal maturation
and lysosomal localization.

Cell Lysate Cathepsin B (CTSB) Activity
Assay
Cell lysates were produced as described above. 2 µl of the cell
lysates were incubated with 20 µM fluorogenic CTSB substrate
(Z-RR-AMC; Enzo; #BML-P137-0010) diluted in lysis buffer
(50 mM sodium acetate, 0.1 M NaCl, 1 mM EDTA, 0.2%
Triton X-100, pH 4.5) at 37◦C for 30 min. Recombinant CTSB
[produced in-house, as recently described for CTSD (Marques
et al., 2019)] and the addition of the CTSB inhibitor Leupeptin
(Enzo; #ALX-260-009-M025), were used as positive and negative
controls. Detection was performed with an Infinite 200 PRO M
Plex multimode microplate reader (ex.: 360 nm; em.: 440 nm;
Tecan Trading AG; #TEC006418I).

Cell Lysate β-Glucocerebrosidase
(GCase) Activity Assay
Cell lysate extractions were carried out as described above.
Next, 2 µl of the cell lysates were incubated with 1 mM
fluorogenic substrate 4-methylumbellifery-β-D-glucopyranoside
(4MU; Sigma-Aldrich; #M3633) diluted in 4MU buffer (150 mM
citrate/phosphate, 0.25% sodium taurocholate, 0.25% Triton X-
100, pH 5.4) at 37◦C for 1 h. After incubation, equal amounts of
stop solution (0.4 M Glycerol, pH 10,4) were added to the wells.
Fluorescence signal was measured with an Infinite R© 200 PRO M
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Plex multimode microplate reader (ex.: 365 nm; em.: 445 nm;
Tecan Trading AG; #TEC006418I).

Lysosomal Staining
H4 CTSD KO cells (4 × 105 cells) were seeded onto a 6-well
and transfected on the following day (see protocol above). After
24 h of expression, cells were trypsinized and seeded onto a 96-
well plate (3 × 104 cells per 96 well). The next day, the cells
were treated with 1 mg/ml Dextran, Cascade BlueTM (Thermo
Fisher Scientific; #D1976). The day after, cells were washed with
PBS and the media was replaced by OptiMEM media without
phenol red (Thermo Fisher Scientific; #11520386). Dextran blue
signal, which indicates the lysosomal volume, was quantified at
an excitation wavelength of 400 nm and emission wavelength of
430 nm. In order to get an accurate normalization of the Dextran
blue signal, normalization to the cell marker celltag700 (LI-COR;
# 926-41090) was performed. For this, cells were washed in PBS
and fixed in 4% PFA for 20 min at RT. Afterwards, cells were
washed again in PBS, permeabilized in 0.3% Trition X-100 in PBS
and blocked in blocking buffer (see section “Immunofluorescence
Analysis”). Next, celltag700 was added at a dilution of 1:500 in
blocking buffer for 1 h at RT. The plate was then washed three
times in 0.1% Tween20 in PBS. The last wash was conducted
in PBS and celltag700 signal was detected by an imaging system
(Amersham Typhoon; GE Life Sciences).

Structural Analysis
As a template for structural analysis, the available structure of a
CTSD dimer with inhibitor 2-(3,4-dimethoxyphenyl)-N-[N-(4-
methylbenzyl)carbamimidoyl]acetamide was used (PDB: 4OBZ).
For the model, only one CTSD molecule was used and the
inhibitor was removed. Moreover, the light chain was colored
light blue and the heavy chain was colored gray. The active
site was highlighted red. Mutated amino acids were marked in
different colors.

Molecular dynamics simulation (MDS) was performed as
described before (Schneppenheim et al., 2017). In short, after
removal of the inhibitor from the CTSD wt structure (PDB:
4OBZ), UCSF Chimera (Pettersen et al., 2004) was used to
exchange alanine 239 to a valine (swapaa) and produce the
A239V-CTSD. VMD (Humphrey et al., 1996) was used to prepare
the structure for MDS in NAMD (Phillips et al., 2005). This
preparation in VMD included the addition of a water box
and the addition of NaCl-ions to neutralize the system. After
100,000 steps of minimization, 1,000,000 steps of simulation
were calculated in NAMD. For CTSD wt and CTSD A239V,
three independent approaches were calculated to assess structural
differences between wt- and A239V-CTSD. All imaging was
performed in UCSF Chimera.

Data Analysis and Statistics
All values are expressed as mean ± SEM. For data analyses,
Excel (Microsoft, Seattle, WA, United States) and GraphPad
Prism version 7 (GraphPad Software for Mac, San Diego, CA,
United States) were used. Differences among mean values were
analyzed by one-way ANOVA, followed by a Tukey’s multiple
comparison test. In all analyses, the null hypothesis was rejected
at p< 0.05 with ∗ <0.05, ∗∗ <0.01, ∗∗∗ <0.001, ∗∗∗∗ <0.0001.

RESULTS

To gain a better understanding of the role of CTSD in disease
development, eleven CTSD point mutations found by genome
sequencing analyses of NCL10, AD or PD patients were analyzed
in overexpression studies by structural and functional readouts.
In order to examine CTSD variants in neural-like cells, a
CTSD knockout (KO) was established in human neuroblastoma
(SH-SY5Y) and neuroglioma (H4) cell lines by CRISPR/Cas9
technology (Supplementary Figures 1A,B). Both cell lines are
frequently used to study neurodegenerative disease pathways.
Interestingly, SH-SY5Y and H4 cells exhibit much higher levels
of endogenous CTSD in comparison to human embryonic kidney
cells (HEK293T), but similar CTSD level as found within human
dopaminergic (DA) neurons derived from induced pluripotent
stem cells (iPSn) (Supplementary Figure 1B). CTSD protein
level and cellular localization was similar and not significantly
altered after overexpression in CTSD-deficient SH-SY5Y cells
(CTSD KO) in comparison to endogenous CTSD within SH-
SY5Y wt cells (Supplementary Figure 1C).

NCL-Associated CTSD Variants Show
Impaired Protein Maturation and
Enzymatic Activity
Mutations within the CTSD gene have been linked to the
severe neuropathic lysosomal storage disorder NCL10 (Siintola
et al., 2006; Steinfeld et al., 2006; Fritchie et al., 2009; Doccini
et al., 2016). For instance, a complete loss of CTSD function
causes an early death of newborns, emphasizing the vital role
of CTSD function (Siintola et al., 2006). A point mutation
within the CTSD gene was also linked to the neurodegenerative
disorder AD (Riemenschneider et al., 2006; Ehling et al., 2013).
Interestingly, the course and severity of disease varies between
the different genetic variants. To learn more about the effect of
each CTSD point mutation, we characterized six NCL10- and
one AD-linked CTSD mutation under the same experimental
conditions by overexpression analyses (Figures 1A,B). The AD-
associated CTSD mutant A58V is the only mutant found in
the pro-peptide of CTSD (Figure 1A, pink), which gets cleaved
during maturation and is not found within the mature protein.
NCL-linked CTSD mutations are found within the light chain
[S100F (yellow), G149V (orange)] and heavy chain [F229I
(cyan), Y255X (green), W383 (blue), R399H (purple)] of the
mature enzyme (Figures 1A,B). The structural representation
of CTSD illustrates the localization of the S100F mutation in
close proximity to the active site amino acid D97 (Figure 1B).
In general, amino acid orientation of all here analyzed CTSD
mutations are facing towards the inside of the protein, which
might explain destabilizing effects on the protein (Figure 1B). For
further analyses, a catalytically inactive CTSD mutant (D97S) was
included as a control.

NCL10- and AD-associated CTSD variants were
overexpressed in SH-SY5Y cells deficient for CTSD (CTSD
KO) and immunoblot analyses were performed to analyze
protein expression, stability as well as CTSD maturation: pro-
(∼52 kDa) and intermediate form (∼48 kDa) were analyzed
together as immature CTSD (Figure 1C). CTSD wt-transfected
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FIGURE 1 | Characterization of CTSD variants associated with neurodegenerative diseases in SH-SY5Y CTSD KO cells. (A) Schematic overview of NCL- and
AD-associated CTSD variants analyzed in this study. During protein maturation, the signal peptide (20 aa) and the propeptide (44 aa) are removed, generating an
intermediate form (∼48 kDa) that is further processed in the lysosome into a double-chain mature form comprised of a light chain (∼14 kDa) and a heavy chain (∼34
kDa; symbolized by scissor symbol). Both chains remain associated by hydrophobic interactions. Point mutations found in NCL- and AD- patients located within
different protein parts are shown in different colors (A58V, pink, propeptide; S100F, yellow, light chain; G149V, orange, light chain; F229I, light blue, heavy chain;
Y255X, green, heavy chain; W383C, dark blue, heavy chain; R399H, purple, heavy chain). Aspartates D97 and D295 as part the catalytic site are highlighted

(Continued)
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FIGURE 1 | Continued
in red. (B) Crystal structure model of mature CTSD consisting of the light chain (blue) and the heavy chain (gray) [PDB-ID: 4OBZ (Gradler et al., 2014)]. The
active site, consisting of the two aspartates D97 and D295, is shown in red. Other colors indicate disease-associated point mutations within the CTSD protein (same
color code as in A). (C) Representative immunoblot of transiently overexpressed CTSD wildtype (wt) and NCL-/AD-associated CTSD variants, as well as enzymatically
inactive control (D97S) in SH-SY5Y CTSD KO cells. An anti-CTSD antibody was used for the detection of immature (pro- and intermediate form) as well as mature
CTSD (heavy chain, 34 kDa). GAPDH and coomassie brilliant blue (CBB) were used as a loading control. (D) Quantification of western blot signal intensity of mature
CTSD (heavy chain) normalized to GAPDH and expressed relative to CTSD wt (n = 4). (E) Analysis of CTSD activity assessed in whole cell lysates utilizing a fluorogenic
CTSD peptide cleavage assay. The activity was normalized to CTSD wt (n = 4). (F) Representative immunofluorescence pictures of SH-SY5Y CTSD KO cells
expressing CTSD wt or NCL-/AD-associated variants. Cells were visualized by staining of CTSD (green), the lysosomal associated membrane protein LAMP2 (red), and
DAPI as nuclear staining (blue). Scale bar: 20 mm. Confocal images showing the single channels can be found in Supplementary Figure 2. All statistical analyses were
performed using a one-way ANOVA followed by a Tukey’s multiple comparison test. *p < 0.05, **p < 0.01, ****p < 0.0001, n.s., not significant in comparison to wt.

cells expressed the mature form of CTSD as depicted by the
presence of the heavy chain (∼34 kDa) (Figure 1C). Only the
AD-variant A58V, S100F and the inactive CTSD control (D97S)
showed similar levels of the heavy chain compared to CTSD
wt (Figures 1C,D). All other NCL-associated CTSD variants
exhibited a significant reduction (F229I) or complete absence
of mature CTSD (G149V, Y255X, W383C, R399H), indicating
impaired protein maturation (Figures 1C,D). Next, the effects
of the NCL- and AD-associated point mutations on enzymatic
CTSD activity were assessed by a fluorogenic peptide cleavage
assay of cell lysates (Figure 1E). All NCL-associated CTSD
variants showed a significantly reduced enzymatic activity in
comparison to CTSD wt, similar to the inactive CTSD control
D97S (Figure 1E). In contrast, CSTD A58V exhibited similar
enzymatic activity as the CTSD wt (Figure 1E).

Since lysosomal localization is crucial for CTSD maturation
as well as for enzyme function, immunofluorescence studies
were performed to analyze cellular localization of CTSD
mutants. SH-SY5Y CTSD KO cells were transfected with
respective CTSD variants and co-stained for CTSD (green) and
lysosomal-associated membrane protein type 2 (LAMP2; red)
as lysosomal marker (Figure 1F and Supplementary Figure 2).
Co-localization and hence lysosomal localization of the CTSD
variants was indicated by overlapping signals (yellow) (Figure 1F
and Supplementary Figure 2). Calculating the co-localization
of CTSD and LAMP2 via the Pearson’s correlation coefficient
revealed no changes in lysosomal localization for CTSD A58V,
S100F, and inactive D97S control (Supplementary Figure 3A).
Confirming the immunoblot (Figures 1C,D), significantly
reduced lysosomal localization was found for all NCL10-
associated CTSD variants with the exception of CTSD S100F,
indicating unimpaired maturation, and lysosomal localization
(Figure 1F). Still, there was no enzymatic activity measured
for the CTSD variant S100F (Figure 1E). Interestingly, the
number of LAMP-2 positive vesicle was increased for the S100F
mutant in comparison to the CTSD wt, whereas all other
CTSD variants did not show any change in vesicle number
(Supplementary Figure 3B). The average size of LAMP2 positive
vesicles was increased for all CTSD variants located within the
heavy chain of the CTSD protein (F291I, Y255X, W383C, R399H)
in comparison to the wt (Supplementary Figure 3C).

Taken together, our results suggest that the AD-associated
variant A58V follows a regular CTSD maturation and is
enzymatically active, whereas all NCL10-associated variants
exhibited impairments of either CTSD maturation and/or

enzymatic function. Moreover, increased size of LAMP2-positive
vesicles for the majority of NCL-associated CTSD variants
indicates severe effects on lysosomal function.

PD-Associated CTSD Variants Follow
Unimpaired Protein Maturation and
Enzymatic Activity
A recent whole exome sequencing analysis in 1156 PD cases and
1670 control subjects discovered four coding point mutations
within the CTSD gene in PD patients (Robak et al., 2017). We
here examined cellular and biochemical characteristics of those
CTSD variants, found in the light chain (V95I, G145V) and heavy
chain (A239V, R266H) of the mature enzyme (Figures 2A,B).

As CTSD is highly expressed in neuronal cell lines
(Supplementary Figure 1B), where it degrades disease-
associated substrates like a-syn and APP (Zhou et al., 2006;
Sevlever et al., 2008; Cullen et al., 2009), we analyzed PD-
associated CTSD variants in SH-SY5Y (Figure 2) as well as H4
cells (Figure 3) deficient for CTSD (CTSD KO). In SH-SY5Y
CTSD KO, no significant difference in protein maturation was
observed for the PD-associated CTSD variants in western blot
analysis in comparison to wt, although mature protein level
were less for the A239V CTSD variant (Figures 2C,D). Next,
enzymatic activity of PD-associated CTSD variants was examined
and no functional impairment could be detected (Figure 2E).
Surprisingly, the CTSD A239V variant showed a 2.5-fold
increased activity compared to CTSD wt (Figure 2E). In line
with the western blot analyses (Figure 2C), immunofluorescence
studies showed lysosomal localization of all PD-associated
CTSD variants as indicated by co-localization with lysosomal
marker LAMP2 (Figure 2F and Supplementary Figure 4), also
confirmed by Pearson’s correlation analysis assessing overlay
of LAMP2 and CTSD signal (Supplementary Figure 5A).
Moreover, there was no change in number or average size
of LAMP2-positive vesicles between wt and CTSD variants
(Supplementary Figures 5B,C).

Overexpression of CTSD PD-mutants in H4 CTSD KO
cells exhibited similar expression and maturation patterns as
observed in SH-SY5Y CSTD KO cells (Figure 3A). However,
in this cell line, the A239V variant showed a significant
reduction of mature protein in comparison to the CTSD wt
(Figures 3A,B). Yet, mature CTSD protein normalized to
immature CTSD level did not exhibit any differences within
PD-associated CTSD variants in both cell lines (SH-SY5Y
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FIGURE 2 | Structural and functional analyses of PD-associated CTSD variants in SH-SY5Y CTSD KO cells. (A) Schematic overview of the CTSD protein (412 aa)
and its maturation intermediates (pro- and intermediate form, together referred to as immature form). Mature CTSD consists of a light chain (∼14 kDa) harboring two
of the total four analyzed PD-associated mutations (V95I and G145V) and the heavy chain containing the A239V and R266H mutation. The aspartates D97 and
D295 of the active site are shown in red. (B) Crystal structure model of mature CTSD protein consisting of the light chain (blue) and the heavy chain (gray) [PDB-ID:
4OBZ (Gradler et al., 2014)]. Active site residues (D97, D295) are shown in red. Other colors indicate PD associated point mutations (V95, black, light chain; G145,
orange, light chain; R266, green, heavy chain; A239, purple, heavy chain). (C) Representative immunoblot of transiently overexpressed CTSD wildtype (wt),
enzymatically inactive control (D97S), and PD-associated CTSD variants in SH-SY5Y CTSD KO cells. An anti-CTSD antibody was used for the detection of immature
(pro- and intermediate form) as well as mature CTSD (heavy chain, 34 kDa). GAPDH and CBB were used as loading control. (D) Quantification of mature CTSD
western blot signal intensity of CTSD variants normalized to loading control GAPDH and expressed relative to CTSD wt (n = 4). (E) CTSD activity was assessed in
whole cell lysates by fluorogenic peptide cleavage assays and normalized to CTSD wt (n = 7). (F) Immunostaining analysis of CTSD (green) and lysosomal protein
LAMP2 (red) in SH-SY5Y CTSD KO cells overexpressing CTSD wt or PD-associated variants. Nuclei are stained with DAPI (blue). Scale bar: 20 µm. More confocal
images also showing single channels can be found in Supplementary Figure 4. All statistical analyses were performed by using a one-way ANOVA followed by a
Tukey’s multiple comparison test. *p < 0.05, ***p < 0.001; n.s., not significant.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 8 February 2021 | Volume 9 | Article 581805161

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-581805 June 19, 2021 Time: 20:4 # 9

Bunk et al. Analysis of CTSD Variants

FIGURE 3 | Cellular and functional analyses of PD-associated CTSD variants in H4 CTSD KO cells. (A) Representative immunoblot of CTSD wt, PD-associated
CTSD variants (V95I, G145V, A239V, and R266H) and catalytically inactive mutant D97S overexpressed in neural-like H4 cells deficient for CTSD (CTSD KO). GAPDH
and CBB were used as a loading control. (B) Analysis of CTSD protein expression by quantification of signal intensities of mature CTSD protein bands normalized to
loading control (GAPDH) and expressed relative to CTSD wt (n = 4). (C) CTSD activity assay measured within H4 CTSD KO cell extracts and normalized to CTSD wt
(n = 4). (D) Cathepsin B activity measured in whole cell lysates by fluorogenic peptide cleavage assays and normalized to CTSD wt (n = 3). (E) β-Glucocerebrosidase
(GCase) activity measured in whole cell lysates and normalized to CTSD wt (n = 3). (F) Lysosomal homeostasis was assessed by measuring lysosomal mass using
dextran blue (DexBlue) in a plate reader approach normalized to the cell marker celltag700. The values are shown as ratio to CTSD wt (n = 4). All statistical analyses
were performed by using a one-way ANOVA followed by a Tukey’s multiple comparison test. *p < 0.05, **p < 0.01, ****p < 0.0001.

CTSD KO and H4 CTSD KO; Supplementary Figures 5D,E).
This suggests unimpaired maturation of all PD-CTSD variants.
In line with the results in SH-SY5Y CTSD KO cells, a
significant increase (2-fold) in enzyme activity was also
measured in H4 CTSD KO cells transfected with the A239V
mutant (Figure 3C).

To analyze possible cellular effects of CTSD variants on
general cell and lysosomal homeostasis, activity of two other
lysosomal enzymes, comprising cathepsin B (CTSB), and
β-glucocerebrosidase (GCase) were measured in cell lysates. For
CTSB, only the inactive CTSD D97S variant showed a significant
reduction in CTSB activity in comparison to the wt (Figure 3D).
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Also, the GCase activity assay revealed no differences for PD-
associated CTSD variants (Figure 3E). Lysosomal mass as marker
for lysosomal dysfunction was determined by Dextran blue
staining in a live cell plate reader assay, exhibiting no differences
between the different CTSD variants (Figure 3F).

Collectively, these findings demonstrate that protein
maturation, lysosomal localization, as well as enzymatic activity
are not significantly impaired in PD-associated CTSD variants
in SH-SY5Y CTSD KO and H4 CTSD KO cells. Moreover, no
impairment in other lysosomal enzyme function and lysosomal
homeostasis was observed in the H4 CTSD KO cell system
after overexpression of any CTSD variant (wt, PD-associated
or inactive control). Remarkably, CTSD variant A239V leads to
an enhanced activity, suggesting a structural change within the
protein, which will be analyzed in more detail in the following.

PD-Associated CTSD A239V Shows
Enhanced α-Synuclein Degradation
Since a-syn aggregation is a major hallmark of PD, and since
CTSD is responsible for a-syn degradation within lysosomes,
a-syn degradation properties of PD-linked CTSD variants
were analyzed. Within SH-SY5Y CTSD KO cells, the effect
of PD-CTSD variants on a-syn was studied after 72 h of
overexpression by immunoblot analyses (Figure 4A; whole
a-syn western blot: Supplementary Figure 6A). Remarkably,
the CTSD variant A239V was able to decrease a-syn to a
significantly higher degree compared to the CTSD wt (∼25%
less a-syn; Figure 4B). Since all CTSD variants revealed similiar
expression level as exhibted in the western blot (Figure 4A),
this indicates that the point mutation A239V results in an
enhanced a-syn proteolysis, being in line with higher enzymatic
activity measured in SH-SY5Y CTSD KO and H4 CTSD KO
cell lysates for this mutant (Figures 2E, 3C). Moreover, a-syn
level increased after lysosomal (Bafilomycin A1) or CTSD
(pepstatin A) inhibition in SH-SY5Y cells expressing CTSD wt
(Supplementary Figure 6B). This indicates a crucial role of
CTSD in a-syn homeostasis.

Structural Analysis of CTSD A239V
Variant
To gain structural insight into a possible mechanism responsible
for this gain of activity of the CTSD A239V variant, molecular
dynamics simulation (MDS) was applied. For this, the crystal
structure of CTSD bound to the 2S4 inhibitor was used
(Supplementary Figure 7A; PDB-ID: 4OBZ). As a start model
for MDS, the inhibitor was removed (Supplementary Figure 7B)
and alanine 239 was exchanged to a valine (UCSF Chimera;
swapaa). Both, CTSD wt and CTSD A239V were simulated
three times and largest movements were detected for two
helices (indicated by arrows) that closed into the cavity formerly
occupied by the inhibitor (Figures 4C,D). This movement was
detected for both variants. Comparison of the three structures
post-MDS revealed very little movement for CTSD wt in the
loop carrying alanine 239 (filled black arrow) or the adjacent
loop formed by amino acids 75–77 from the light chain (empty
black arrow; Figure 4C). This was different for the A239V variant.

Here, a larger deviation between the three resulting post-MDS
structures was found (Figure 4D). A direct comparison of both
variants from two different directions illustrates this difference
in variability (Supplementary Figures 7E,F). Thus, insertion of
valine at position 239 seems to destabilize not only the loop
carrying the amino acid exchange itself, but also the neighboring
loop formed by amino acids 75–77. This additional instability
might also induce a higher flexibility and thereby accelerate
substrate exchange rates.

Overall, we found strong impairments in the enzymatic
function of NCL-associated CTSD variants, but not in AD- and
PD-linked mutants. These functional differences are surprising
since mutations occur in the same gene and in a linear overview
of the CTSD protein, NCL-/AD- and PD-mutations are found
in close proximity (Figure 5A). Two regions within the light
and heavy chain of the mature CTSD appear to be frequently
affected by mutations: aa 95 – aa 149 (V95I, S100F, G145V,
and G149V) and aa 229 – aa 266 (F229I, A239V, Y255X and
R266H). This could indicate that both regions are crucial for
proper CTSD function. As summarized in Figure 5B, NCL10-
associated CTSD variants G149V, F229I, Y255X, W383C and
R399H (all gray) do not mature, are less active and are not
localized in the lysosome. Interestingly, the S100F mutant
showed unimpaired maturation and lysosomal localization but
no catalytic activity. The AD-associated variant A58V and PD-
associated variants V95I, G145V, A239V, and R266H reach the
lysosome and are enzymatically active. Surprisingly, the A239V
mutant exhibited increased enzymatic activity, that also led to a
higher a-syn turnover compared to the wt, as well as the other
CTSD variants. By further analyzing this mutation, the structural
properties of CTSD activation and substrate turnover can now
be studied, helping in the design of therapeutic approaches
targeting CTSD function.

DISCUSSION

To date, numerous studies emphasize the link between lysosomal
dysfunction and neurodegenerative diseases (Nixon, 2013;
Fraldi et al., 2016; Klein and Mazzulli, 2018; Zunke, 2020).
The efficient degradation of lysosomal substrates (proteins,
lipids, carbohydrates, etc.) is essential for neuronal survival.
The aspartic protease CTSD is a major component of the
lysosome and malfunction of the enzyme has been associated
with severe neurodegenerative disorders, like the neuronal
ceroid lipofuscinosis type 10 (NCL10), but also AD and PD
(Vidoni et al., 2016).

In this study, we show that NCL10- and AD/PD-associated
CTSD point mutants behaved completely different in comparable
overexpression analyses. Whereas all NCL10-CTSD variants
lack maturation and/or enzymatic activity, AD/PD-associated
CTSD variants did not show major impairments in our
experimental set-up. Corresponding to our immunofluorescence
analysis, we speculate that NCL10-CTSD variants (except
S100F) accumulate within the secretory pathway and do not
reach lysosomal structures. The resulting absence of lysosomal
CTSD corresponds to the severe pathology found in NCL10
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FIGURE 4 | Functional and structural impact of PD-associated CTSD A239V mutation. (A) Immunoblot of CTSD variants co-expressed with a-syn in SH-SY5Y
CTSD KO cells. Synuclein-1 (Syn-1) was used for a-syn detection and GAPDH and CBB as loading control. The corresponding whole a-syn western blot can be
found in Supplementary Figure 6A. (B) Quantification of a-syn signal intensity after normalization to loading control, shown relative to CTSD wt (n = 4–7). Statistical
analysis was performed using a one-way ANOVA followed by a Tukey’s multiple comparison test. Significances were tested against CTSD wt (*p < 0.05).
(C) Superimposed image of three CTSD wt structures post MDS. The active site residues are shown in red (spacefill) and amino acid A239 is shown in cyan (ball and
stick). The loop carrying A239 is marked with a black arrow (filled) and the neighboring loop formed by amino acids 75–77 is marked with an arrow (black unfilled).
(D) Superimposed image of three A239-CTSD structures post-MDS. Coloring and annotation with arrows as in (C). Note the stronger deviation of the two loops
when comparing to CTSD wt.

patients (Siintola et al., 2006; Steinfeld et al., 2006; Fritchie
et al., 2009; Hersheson et al., 2014; Kohlschutter et al., 2019;
Regensburger et al., 2020). This course of disease is also partly

recapitulated by the progressive phenotype of a CTSD-deficient
mouse model, that dies prematurely at day 26 ± 1 (Saftig et al.,
1995; Cullen et al., 2009; Marques et al., 2019).
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FIGURE 5 | Summary figure of all in this study investigated disease-associated CTSD variants. (A) Schematic overview of localization of disease-associated CTSD
variants. AD- and NCL-associated CTSD point mutation are shown in gray and PD-associated CTSD variants highlighted in red. Active site residues D97 and D295
are also depicted in gray. (B) Summary table of functional analyses of CTSD variants analyzed in this study. The CTSD wt is shown as reference and + and – symbols
indicate deviation of each CSTD variant from the characteristic/behavior of CTSD wt within individual analyses: (1) maturation of enzyme (immunoblot analysis), (2)
lysosomal localization (immunofluorescence analyses), (3) enzymatic activity (fluorogenic peptide cleavage assay), (4) a-syn degradation (overexpression and
immunoblot analysis). The catalytically inactive CTSD variant (D97S) shows normal maturation and lysosomal localization, but no enzymatic activity. NCL- and
AD-associated CTSD point mutations were not analyzed for a-syn degradation.

In earlier studies, NCL10 patients were clinically examined
and patient’s fibroblasts analyzed for CTSD maturation and
activity. In Steinfeld et al. (2006), a compound heterozygous
patient, carrying the biallelic missense mutations p.F229I
(c.685T > A) and p.W383C (c.1149G > C), was reported
with early blindness and progressive psychomotor retardation.
Analysis of patient’s fibroblasts revealed less mature CTSD and
a significant loss of enzymatic activity. Moreover, analyses of the
individual point mutations in overexpression studies exhibited
a significant decrease in mature CTSD in comparison to the
wt for the F229I variant and absence of mature CTSD for
the W383C variant (Steinfeld et al., 2006). This, together with
a significant reduction of both CTSD variants in enzymatic
activity, is in line with our data. Also, CTSD activity in
fibroblasts of patients expressing the CTSD G149V as well
as the R399H variant was found to be significantly reduced
(Hersheson et al., 2014). Patients carrying the homozygous
missense mutations p.G149V and p.R399H presented with ataxia,
cognitive decline and retinitis pigmentosa at an age of 15 and
8 years, respectively (Hersheson et al., 2014). The homozygous
mutations p.S100F (c.299C > T) and p.T255X (c.764dupA)
resulted in premature death after 2 and 1 days after birth
(Siintola et al., 2006; Fritchie et al., 2009). Interestingly, the
CTSD S100F variant exhibited only marginal CTSD activity in
patient fibroblasts, but the mature protein seemed to be stable in
overexpression studies (Fritchie et al., 2009), which could both
be confirmed in our study. Taken together, all here analyzed
NCL10-CTSD variants show impaired CTSD maturation and/or
enzymatic function, corresponding to the severe symptoms
found in patients.

In contrast, the AD-associated A58V variant reached the
lysosome and showed similar level of mature enzyme as well as
comparable activity to the CTSD wt. In difference to all other
here analyzed CTSD mutants, the A58V variant is located within
the pro-peptide (A58V), which gets cleaved during maturation
and is not present within the mature enzyme. This might
explain why this CTSD variant does not show any cellular or
functional impairments. In patients, CTSD A58V has been found
to be associated with general intelligence in healthy older people
(Payton et al., 2003). Moreover, AD patients expressing this
CTSD mutation showed higher levels of amyloid β-protein as
well as tau protein in the brain (Papassotiropoulos et al., 2002;
Davidson et al., 2006; Riemenschneider et al., 2006). However,
there is still controversy about the association and significant
correlation between the expression of the A58V variant and
the risk of developing AD [pro: (Papassotiropoulos et al., 2000;
Mariani et al., 2006; Albayrak et al., 2010; Schuur et al., 2011;
Sayad et al., 2014); contra: (Bagnoli et al., 2002; Mateo et al., 2002;
Li et al., 2004; Mo et al., 2014)]. Nonetheless, CTSD has been
discussed as therapeutic target in AD (Di Domenico et al., 2016).

Whereas clinical characterization of patients carrying NCL-
/AD-associated CTSD mutations are available (Riemenschneider
et al., 2006; Siintola et al., 2006; Steinfeld et al., 2006; Fritchie
et al., 2009; Ehling et al., 2013; Hersheson et al., 2014), there is no
clinical data on the here analyzed PD-associated CTSD variants,
as they were found in a large genetic-meta analysis (Robak et al.,
2017). PD is characterized by a-syn aggregation within the CNS.
In vitro and in vivo mouse studies demonstrated that proteolysis
of a-syn is mediated by the lysosomal protease CTSD (Sevlever
et al., 2008) and vice versa, the loss of function of CTSD facilitates
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a-syn toxicity (Cullen et al., 2009). However, it is still not well-
understood to what extend CTSD is involved in a-syn turnover
in human neurons. Interestingly, it was shown recently that a-syn
aggregates faster, creating a more toxic form under lysosomal
pH conditions (Eymsh et al., 2020). This points to a critical
role of CTSD in decreasing a-syn level within lysosomes by its
degradative function.

In our study, the four PD-associated CTSD variants resulted
in a similar maturation pattern and were correctly targeted to the
lysosome, similar to CTSD wt in two different cell lines. Testing
for a-syn degradation, we co-transfected cells with a-syn and
the respective CTSD mutants. To our surprise, the proteolytic
capacity of CTSD mutant A239V was enhanced ∼2.0 – 2.5-
fold, which resulted in a more efficient clearance of the a-syn
protein in comparison to the wt (∼25% less a-syn). For structural
analyses, we utilized MDS and found structural changes within
two loop regions that might be responsible for the increase in
activity found in CTSD A239V. The higher flexibility of this
region was deduced from the different conformations received
after MDS. Enzyme activity is always balanced between flexibility
to interact with the substrate and rigidity to ensure stability
of the enzyme (Shoichet et al., 1995). For NADH oxidase of
Thermus thermophilus with a temperature optimum around
70◦C, induction of flexibility can also be achieved by the addition
of 1.0–1.3 M urea at ambient temperature (Zoldak et al., 2003).
In our case, the insertion of a slightly larger amino acid (alanine
to valine) might induce this bit of flexibility, that accounts
for the increase in activity. Interestingly, this mutation was
expressed to a reduced extent than other here analyzed disease-
associated CTSD variants. The increased flexibility of the loop
might also result in a less stable protein that is more prone to
degradation. To further validate the role of the two loops within
the CTSD protein, additional experiments using recombinant
enzyme have to be carried out. Nonetheless, this opens novel
possibilities for treatment strategies targeting protein aggregation
in neurodegenerative disorders. Hence, the use of recombinant
CTSD as therapeutic approach has been shown by an enzyme
replacement approach within a mouse model lacking CTSD.
Marques et al. (2019) provide evidence that the treatment with
recombinant CTSD corrects defective proteolysis and autophagy
in a murine NCL10 model.

Nevertheless, the question about the role and impact of CTSD
mutations on the pathology of neurodegenerative diseases is still
elusive. Since AD- and PD-associated CTSD variants did not
exhibit major impairments in maturation and enzymatic activity
in our overexpression analyses, it could be the case that our
experimental set-up is not sensitive enough to pick up small
functional changes. Since AD and PD usually present at higher
ages, post-mitotic neuronal cells might enrich small amounts
of accumulating substrates over time until reaching critical
concentrations causing neurotoxicity, neuronal cell death and
pathology (Hara et al., 2006; Komatsu et al., 2006). Moreover, it is
possible that other lysosomal cathepsins, which have also been
shown to be involved in lysosomal a-syn degradation (CTSB,
CTSL) (McGlinchey and Lee, 2015; McGlinchey et al., 2019), are
able to compensate for CTSD deficiencies.

The role of the more active CTSD A239V mutant seems
-on first glance- difficult to explain. However, a recent study
by McGlinchey et al. (2019) showed that C-terminal a-syn
truncations are linked to the enzymatic activity of lysosomal
cathepsins. Importantly, these C-terminally truncated a-syn
forms have been shown to promote aggregation and fibril
formation (Crowther et al., 1998; Hoyer et al., 2004; Levitan et al.,
2011; van der Wateren et al., 2018). In this regard, CSTD has also
been shown to generate C-terminally truncated a-syn variants
(McGlinchey and Lee, 2015). This might explain why this more
active CTSD variant potentially drives a-syn aggregation and
disease pathology. In a follow-up study, this needs to be further
validated by in vitro studies analyzing the cleavage fragments of
a-syn after incubation with the disease-associated CTSD variant.
Moreover, it is also possible that other concomitant genomic
variants represent the primary cause of disease, and that CTSD
mutations are “only” supporting, but not the cause of disease
pathology. This might also be the case for PD patients carrying
the CTSD A239V mutation. Here, follow-up studies are needed to
examine the patients for further genetic variations. For instance,
some AD patients carrying the CSTD A58V variant were also
affected by a mutation within Presenilin 1, which is known
to be associated with early onset AD (Ehling et al., 2013). To
analyze the effect of each individual CTSD point mutation in
disease, analyses of CTSD homeostasis within patient material
(e.g., fibroblasts) should be performed in future studies.

Summarizing, our study sheds light into the structure and
regulation of enzymatic CTSD function as well as a-syn
degradation. This better understanding might enable us in the
future to design treatment strategies targeting CTSD function in
order to reduce abnormal protein aggregation in PD and other
neurodegenerative disorders.
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Supplementary Figure 1 | Generating CTSD deficient cell lines (SH-SY5Y and
H4). (A) A CRISPR/Cas9 RNP (Ribonucleoprotein) approach by using three guide
RNA (gRNA, green arrows and sequence) targeting the CTSD gene at exon 2 was
used. Sanger sequencing analysis from CTSD wt (same sequence for SH-SY5Y
and H4 cells), SH-SY5Y CTSD KO clone 10 (Cl. 10) and H4 CTSD KO clone 2 (Cl.
2) is shown by the corresponding chromatogram of the CTSD exon 2 gene.
RNP-mediated editing resulted in a deletion of 91bp for exon 2 in SH-SY5Y cells
(Cl.10) and a deletion of 106 bp for exon 2 in H4 cells (Cl. 2). (B) Representative
immunoblot of different cell systems comparing endogenous CTSD levels. (C)
Confocal microscopy images of CTSD (green) and lysosomal marker [LAMP2
(red)] in SH-SY5Y cells deficient for CTSD (CTSD KO), CTSD KO reconstituted
with CTSD wt and wt cells exhibiting endogenous CTSD. Analysis of CTSD signal
intensity indicates non-significant (n.s.) higher CTSD level after overexpression in
SH-SY5Y cells in comparison to endogenous CTSD level within SH-SY5Y wt cells
(n = 15 cells). Scale bar: 20 µm. Statistical analyses were performed by using a
one-way ANOVA followed by a Tukey’s multiple comparison test.

Supplementary Figure 2 | Cellular localization of AD-/NCL-associated CTSD
variants in SH-SY5Y CTSD KO cells. Representative confocal microscopy images
of immunofluorescence stainings of CTSD variants overexpressed in SH-SY5Y
CTSD KO cells. Cells were stained for CTSD (green), the lysosomal marker
LAMP2 (red) and DAPI as nuclear stain (blue). Yellow staining indicates lysosomal
localization of CTSD variant. Scale bar: 20 µm.

Supplementary Figure 3 | Analyses of confocal images for CTSD localization,
lysosomal vesicle number and vesicle size. (A) Analysis of intracellular
co-localization of AD-/NCL-associated CTSD variants in SH-SY5Y cells deficient
for CTSD (CTSD KO). The Pearson’s correlation coefficient was used to determine
the co-localization of AD-/NCL-CTSD mutants with lysosomal marker LAMP2
(n = 11–15, derived from cell from three independent experiments). (B)
Quantification of LAMP2-positive vesicle number per cell (n = 11–19, derived from
three independent experiments). (C) Analyses of average LAMP2-positive vesicle
size per cell (n = 12–19, derived from three independent experiments). All
statistical analyses were performed by using a one-way ANOVA followed by a
Tukey’s multiple comparison test. ∗p < 0.05, ∗∗∗p < 0.0001, ∗∗∗∗p < 0.0001,
n.s., not significant in comparison to the wt.

Supplementary Figure 4 | Cellular localization of PD-associated CTSD variants
in SH-SY5Y CTSD KO cells. Representative confocal microscopy images of
immunofluorescence stainings of PD-CTSD variants, overexpressed in SH-SY5Y
cells deficient for CTSD (CTSD KO). Cells were stained for CTSD (green), the
lysosomal marker LAMP2 (red), and DAPI as nuclear stain (blue). Yellow staining
indicates lysosomal localization of CTSD variant. Scale bar: 20 µm.

Supplementary Figure 5 | Analyses of confocal images for CTSD localization,
lysosomal vesicle number, and size as well as maturation of PD-associated CTSD
variants. (A) Analysis of intracellular co-localization of PD-associated CTSD
variants in SH-SY5Y cells deficient for CTSD (CTSD KO). The Pearson’s
correlation coefficient was used to determine the co-localization of PD-CTSD
mutants with lysosomal marker LAMP2 (total n = 11–15 in three independent
experiments). (B) Quantification of LAMP2-positive vesicle number per cell
(n = 11–19, derived from cells from three independent experiments). (C) Analyses
of average LAMP2-positive vesicle size per cell (n = 12–19, derived from three
independent experiments). (D,E) Analysis of protein maturation of PD-CTSD
mutants: ratio of mature CTSD divided by immature CTSD level in SH-SY5Y CTSD
KO cells (D) and H4 CTSD KO cells (E) both normalized to CTSD wt (n = 4–8). All
statistical analyses were performed by using a one-way ANOVA followed by a
Tukey’s multiple comparison test. ∗∗p < 0.01, ∗∗∗∗p < 0.0001.

Supplementary Figure 6 | a-Syn western blot and level after lysosomal inhibition.
(A) Whole immunoblot of Figure 4A exhibiting no a-syn bands at higher molecular
weight (a-syn antibody: Syn-1). (B) Representative immunoblot of SH-SY5Y CTSD
KO cells transfected with CTSD wt co-expressing a-syn. Cells were treated with
lysosomal inhibitor bafilomycin A1 (BafA1) or cathepsin D inhibitor pepstatin A
(PepA), resulting in increased a-syn level (a-syn antibody: Syn-1). Analysis of a-syn
signal after normalization to loading control indicating a significant increase of
a-syn level after treatment of cells with BafA1 and PepA. Statistical analysis was
performed using a one-way ANOVA followed by a multiple comparison test.
Significances were tested against CTSD mock (∗p < 0.05, ∗∗p < 0.01).

Supplementary Figure 7 | Molecular dynamics simulation (MDS) of the A239V
variant of CTSD. (A) Original crystal structure of CTSD (PDB-ID: 4OBZ) bound to
the 2S4 inhibitor. The light chain is displayed in blue, the heavy chain in gray. Active
site residues are shown in spacefill red with 2S4 in orange (ball and stick). Alanine
239 is shown in cyan (ball and stick). (B) As a start conformation for MDS, the 2S4
inhibitor was removed to allow conversion of the structure into an unbound state.
The single amino acid exchange was introduced using UCSF Chimera (swapaa).
Coloring as in (A). (C) Superimposed image of the start conformation (coloring as
in A) and the three end conformations post-MDS (green) for CTSD wt. (D)
Superimposed image of the start conformation (coloring as in A) and the three end
conformations post-MDS (orange) for A239V-CTSD. (E) Superimposed image of
the three end-conformations post-MDS for CTSD wt (green) and CTSD A239V
(orange). The insert shows the loop carrying the A239V variant (filled black arrow)
and the loop formed by amino acids 75–77 located within the light chain (empty
black arrow). (F) As in (E), but with the structures turned by 90◦ around the
y-axis.
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A Corrigendum on

Cathepsin D Variants Associated With Neurodegenerative Diseases Show Dysregulated

Functionality and Modified α-Synuclein Degradation Properties

by Bunk, J., Prieto Huarcaya, S., Drobny, A., Dobert, J. P., Walther, L., Rose-John, S., et al. (2021).
Front. Cell Dev. Biol. 9:581805. doi: 10.3389/fcell.2021.581805

In the original article, there was a mistake in Figure 1C as published. In the Coomassie brilliant
blue (CBB) protein staining, which was used as additional loading control (besides GAPDH), 11
instead of 10 sample lanes (+ protein ladder) were shown in the original Figure 1C. This mistake
resulted from an additional sample (transfection control), that was loaded on the far right. This
lane was not shown in both immunoblots (CTSD and GAPDH), but accidentally was still shown in
the CBB control. The corrected Figure 1C appears below.

The authors apologize for this error and state that this does not change the scientific conclusions
of the article in any way. The original article has been updated.
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FIGURE 1 | Characterization of CTSD variants associated with neurodegenerative diseases in SH-SY5Y CTSD KO cells. (A) Schematic overview of NCL- and

AD-associated CTSD variants analyzed in this study. During protein maturation, the signal peptide (20 aa) and the propeptide (44 aa) are removed, generating an

intermediate form (∼48 kDa) that is further processed in the lysosome into a double-chain mature form comprised of a light chain (∼14 kDa) and a heavy chain (∼34

kDa; symbolized by scissor symbol). Both chains remain associated by hydrophobic interactions. Point mutations found in NCL- and AD- patients located within

different protein parts are shown in different colors (A58V, pink, propeptide; S100F, yellow, light chain; G149V, orange, light chain; F229I, light blue, heavy chain;

Y255X, green, heavy chain; W383C, dark blue, heavy chain; R399H, purple, heavy chain). Aspartates D97 and D295 as part the catalytic site are highlighted

(Continued)
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FIGURE 1 | in red. (B) Crystal structure model of mature CTSD consisting of the light chain (blue) and the heavy chain (gray) [PDB-ID: 4OBZ (Gradler et al., 2014)]. The

active site, consisting of the two aspartates D97 and D295, is shown in red. Other colors indicate disease-associated point mutations within the CTSD protein (same

color code as in A). (C) Representative immunoblot of transiently overexpressed CTSD wildtype (wt) and NCL-/AD-associated CTSD variants, as well as enzymatically

inactive control (D97S) in SH-SY5Y CTSD KO cells. An anti-CTSD antibody was used for the detection of immature (pro- and intermediate form) as well as mature

CTSD (heavy chain, 34 kDa). GAPDH and coomassie brilliant blue (CBB) were used as a loading control. (D) Quantification of western blot signal intensity of mature

CTSD (heavy chain) normalized to GAPDH and expressed relative to CTSD wt (n = 4). (E) Analysis of CTSD activity assessed in whole cell lysates utilizing a fluorogenic

CTSD peptide cleavage assay. The activity was normalized to CTSD wt (n = 4). (F) Representative immunofluorescence pictures of SH-SY5Y CTSD KO cells

expressing CTSD wt or NCL-/AD-associated variants. Cells were visualized by staining of CTSD (green), the lysosomal associated membrane protein LAMP2 (red), and

DAPI as nuclear staining (blue). Scale bar: 20 mm. Confocal images showing the single channels can be found in Supplementary Figure 2. All statistical analyses were

performed using a one-way ANOVA followed by a Tukey’s multiple comparison test. *p < 0.05, **p < 0.01, ****p < 0.0001, n.s., not significant in comparison to wt.
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Growing evidence suggests that epigenetic mechanisms like microRNA-mediated
transcriptional regulation contribute to the pathogenesis of parkinsonism. In order to
study the influence of microRNAs (miRNAs), we analyzed the miRNome 2 days prior to
major cell death in α-synuclein-overexpressing Lund human mesencephalic neurons, a
well-established cell model of Parkinson’s disease (PD), by next-generation sequencing.
The expression levels of 23 miRNAs were significantly altered in α-synuclein-
overexpressing cells, 11 were down- and 12 upregulated (P < 0.01; non-adjusted). The
in silico analysis of known target genes of these miRNAs was complemented by the
inclusion of a transcriptome dataset (BeadChip) of the same cellular system, revealing
the G0/G1 cell cycle transition to be markedly enriched. Out of 124 KEGG-annotated
cell cycle genes, 15 were present in the miRNA target gene dataset and six G0/G1
cell cycle genes were found to be significantly altered upon α-synuclein overexpression,
with five genes up- (CCND1, CCND2, and CDK4 at P < 0.01; E2F3, MYC at P < 0.05)
and one gene downregulated (CDKN1C at P < 0.001). Additionally, several of these
altered genes are targeted by miRNAs hsa-miR-34a-5p and hsa-miR-34c-5p, which
also modulate α-synuclein expression levels. Functional intervention by siRNA-mediated
knockdown of the cell cycle gene cyclin D1 (CCND1) confirmed that silencing of cell
cycle initiation is able to substantially reduce α-synuclein-mediated cytotoxicity. The
present findings suggest that α-synuclein accumulation induces microRNA-mediated
aberrant cell cycle activation in post-mitotic dopaminergic neurons. Thus, the mitotic cell
cycle pathway at the level of miRNAs might offer interesting novel therapeutic targets
for PD.

Keywords: Parkinson’s disease, alpha-synuclein, microRNA, next-generation sequencing, cell cycle, cyclin D
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INTRODUCTION

In recent years, epigenetic regulation by microRNAs (miRNAs)
has been linked to the pathogenesis of Parkinson’s disease
(PD) (Goodall et al., 2013; Singh and Sen, 2017; Goh et al.,
2019; Ravanidis et al., 2020). PD is primarily characterized
by the progressive loss of dopaminergic neurons in distinct
midbrain regions. A neuropathological hallmark of PD is the
formation of intraneuronal protein inclusions, predominantly
comprising the protein α-synuclein (αSyn) (Spillantini et al.,
1997; Lees et al., 2009), which is encoded by the SNCA gene
on chromosome 4. There are different approaches to model
synucleinopathies in vitro. We chose a robust PD model
with adenoviral overexpression of human wild-type αSyn in
post-mitotic Lund human mesencephalic (LUHMES) neurons
(Lotharius et al., 2005; Höllerhage et al., 2014).

Epigenetic mechanisms such as miRNA-mediated regulation
of gene expression have been suggested to be involved in the
etiology of PD (Goh et al., 2019). miRNAs are endogenous
single-stranded non-coding RNAs with a size of∼23 nucleotides
and known to play a key role as post-transcriptional regulators
through binding to messenger RNAs (mRNA) (He and Hannon,
2004). The diverse roles of miRNAs have been extensively
studied in the context of PD (Goodall et al., 2013; Singh
and Sen, 2017). In fact, several PD-related processes, such
as apoptosis and mitochondrial integrity, have been reported
to be modulated by differential miRNA expression (Minones-
Moyano et al., 2011; Wang et al., 2016). Furthermore, the
study of in vitro and in vivo PD models revealed a link
between several miRNAs and PD pathology, such as miR-7
and miR-153 (Je and Kim, 2017; Titze-de-Almeida and Titze-
de-Almeida, 2018). Both have been shown to regulate SNCA
mRNA and the αSyn protein levels in mouse models of PD
(Junn et al., 2009; Doxakis, 2010). Additionally, the analysis
of miRNA levels in PD patients revealed a clear dysregulation
of several members of the miRNA family let-7, miR-92, and
miR-184 in peripheral blood and in distinct brain regions, e.g.,
the substantia nigra (Martins et al., 2011; Briggs et al., 2015;
Tatura et al., 2016). One single miRNA might regulate the
expression of multiple target genes (Cai et al., 2009). Therefore,
alterations of a few miRNAs can affect a multitude of genes,
thus influencing PD pathology in multiple steps by targeting
different pathways (Martinez and Peplow, 2017). It is currently
unknown whether certain miRNAs are involved in biological
compensation processes at an early stage of αSyn upregulation
and could therefore be used as novel drug targets to attenuate
synucleinopathies.

Adenoviral SNCA overexpression results in increased
intracellular αSyn protein levels and ∼ 50% cytotoxicity levels
at day 6 post transduction in differentiated LUHMES neurons
(Höllerhage et al., 2014; Chakroun et al., 2020). In the present
study, we performed a miRNome-wide screen in SNCA-
overexpressing LUHMES neurons at day 4 post transduction and
focused on (1) altered levels of miRNAs and their target genes
and (2) identifying a functional involvement of dysregulated
biological pathways. This time point was chosen to observe

αSyn-mediated effects since it represents a phase in which the
cells are challenged with a significant increase of intracellular
αSyn levels, whereas cytotoxicity remains limited.

MATERIALS AND METHODS

Cell Culture
Lund human mesencephalic cells were cultured as described
previously (Höllerhage et al., 2017). Briefly, cells were
plated in T75 flasks (EasYFlasks, Nunclon DELTA, Thermo
Fisher Scientific, Waltham, MA, United States) coated with
50 µg/mL poly-L-ornithine (Sigma-Aldrich, St. Louis, MO,
United States) in DMEM/F12 growth medium (Sigma-Aldrich)
with 1% N2-supplement (Life Technologies, Carlsbad, CA,
United States) and 0.04 µg/mL human basic fibroblast growth
factor (bFGF; PeproTech, Rocky Hill, CT, United States).
Multi-well dishes and flasks (Nunc MicroWell plates, Thermo
Fisher Scientific, Waltham, MA, United States) were coated
with 50 µg/mL poly-L-ornithine (Sigma-Aldrich) at 37◦C
overnight and washed three times with phosphate-buffered
saline (PBS; LifeTechnologies) followed by coating with 5 µg/mL
fibronectin (Sigma-Aldrich) for 24 h in the incubator (37◦C,
5% CO2). For experiments, cells were plated at a density of
110,000 cells/cm2 in differentiation medium [DMEM/F12
with 1% N2-supplement, 1 µg/mL tetracycline, 0.49 mg/mL
dibutyryl cyclic-AMP (Sigma-Aldrich), and 2 ng/mL human
glial cell-derived neurotrophic factor (GDNF; R&D Systems,
Minneapolis, MN, United States)]. Cells were routinely tested for
mycoplasma contamination.

Virus Transduction
Adenoviral vectors (AV) harboring the complementary DNA
of human wild-type α-synuclein (SNCA) or green fluorescent
protein (GFP) under cytomegalovirus (CMV) promoter and
enhancer (BioFocus DPI, Leiden, Netherlands) were added at a
multiplicity of infection (MOI) of two to LUHMES cells 48 h after
differentiation started (Höllerhage et al., 2017). After 24 h, cells
were washed three times with PBS to remove adenoviral particles.
Fresh differentiation medium was supplemented and cells kept in
culture until readout. The control cells were treated in the same
manner without the addition of virus.

Immunocytochemistry
Cells were plated on 8-well ibidi µ-slides (ibidi, Gräfelfing,
Germany). After 8 days of differentiation, cells were fixated
with 4% PFA, followed by blocking and permeabilization in 5%
horse serum with 0.1% Triton X-100 in PBS. Then, the cells
were incubated with primary antibodies [mouse monoclonal
anti MAP2 (clone AP20, Millipore MAB3418); rabbit anti β-III-
tubulin (clone 9F3, Cell signaling #2128)] for 2 h at room
temperature and washed three times with PBS. Incubation
with fluorescently labeled secondary antibodies [anti rabbit
Alexa 594-conjugated (Thermo Scientific), anti mouse Alexa
488-conjugated (Thermo Scientific)], for 1 h, was followed
by 4′,6-diamidino-2-phenylindole (DAPI) staining. Cells were

Frontiers in Cell and Developmental Biology | www.frontiersin.org 2 March 2021 | Volume 9 | Article 561086174

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-561086 February 26, 2021 Time: 20:14 # 3

Findeiss et al. Cell Cycle Involvement in Synucleinopathies

incubated with 1 µg/mL DAPI in PBS for 5 min, and washed
three times with PBS. Images were subsequently taken using
an inverted microscope (DMI6000, Leica Microsystems) using
a 40x objective and the corresponding Leica Software (Leica
microsystems, Wetzlar).

Total RNA and miRNA Isolation
On day 4 post transduction, the cells were washed with PBS
once and detached mechanically. After spinning down (300 g
for 5 min at 4◦C) the biomaterial was briefly stored at −80◦C
until RNA was isolated. For total RNA extraction the RNeasy
Plus Kit was used strictly according to manufacturer‘s protocol
(Qiagen, Hilden, Germany). In brief, 350 µL of buffer RLT
Plus were added to the collection tube containing the defrosted
biomaterial and subsequently vortexed for 30 s. The transfer
of the lysate to a gDNA eliminator spin column was followed
by centrifugation for 30 s at 8,000 g. The flow-through was
mixed with 350 µL of 70% ethanol (v/v) and transferred to an
RNeasy spin column. After centrifugation for 15 s at 8,000 g,
the column was washed by adding 700 µL of buffer RW1 to
the column, followed by another centrifugation step for 15 s at
8,000 g. Thereafter, the column was washed twice with 500 µL
of buffer RPE by centrifugation at 8,000 g, for 15 s and 2 min,
respectively. After drying the membrane by centrifugation at full
speed for 1 min, the column was placed into a new 1.5 mL
collection tube. RNA was eluted by adding 30 µL of RNase-free
water directly to the spin column membrane and centrifugation
for 1 min at 8,000 g. For miRNA extraction, the miRNeasy
and RNeasy MinElute Cleanup Kits were used according to the
manufacturer‘s protocol (Qiagen) for enrichment of small RNAs
from cultured cells. In brief, 700 µL QIAzol lysis reagent was
added to the collection tube containing the defrosted biomaterial
and homogenized by vortexing for 1 min. After incubation at
room temperature for 5 min, 140 µL of chloroform were added
and the lysate mixed by shaking the collection tube for 15 s,
followed by incubation at room temperature for 3 min. Phase
separation was accomplished by centrifugation for 15 min at
12,000 g at 4◦C. 350 µL of the upper aqueous phase were
transferred to a new reaction tube before and 525 µL of
ethanol were added. After thorough mixing, 700 µL sample were
transferred to an RNeasy mini column followed by centrifugation
for 15 s at 8,000 g. This step was repeated with the remainder
of the sample. The flow-through was transferred to a 2 mL
collection tube and 500 µL of ethanol were added. Thereafter,
the sample was transferred to an RNeasy MinElute spin column
and centrifuged for 15 s at 8,000 g. This step was repeated with
the remainder of the sample. The column was washed with
500 µL of buffer RPE by centrifugation for 15 s at 8,000 g
and with 500 µL of 80% ethanol (v/v) by centrifugation for
2 min at 8,000 g. To dry the membrane, the column was
centrifuged at full speed for 5 min. Then, the miRNA was
eluted by adding 14 µL of RNase-free water to the spin column
membrane followed by centrifugation for 1 min at full speed.
The concentrations of the isolated miRNA and RNA of each
condition were quantified using a NanoDrop spectrophotometer
(Thermo Fisher). Thereafter, samples were stored at −80◦C for
further analysis.

Transcriptome/mRNA Expression
Analysis
Cells were cultured in 10 cm petri dishes until day 6
of differentiation. After washing the cells once with PBS,
500 mL RLT buffer (Qiagen, Hilden, Germany), activated
with β-mercaptoethanol (Sigma-Aldrich) according to the
manufacturer’s instructions, was added to the petri dishes.
Total RNA of three replicates was collected in sterile cryotubes
(Sarstedt, Nümbrecht, Germany) using a cell scraper (Carl
Roth, Karlsruhe, Germany) and stored at −80◦C until use. The
expression analysis was performed with Illumina HumanHT-
12_V3 bead chips (Illumina, San Diego, CA, United States). Data
obtained from Illumina HumanHT-12_V3 bead chips (Illumina,
San Diego, CA, United States) measurements was analyzed in
order to detect differentially regulated transcripts. To this end,
the output obtained from the Illumina GenomeStudio Software
(v. 1.0.6) was used as input for further data preprocessing and
differential analyses steps, which were implemented as workflow
within the KNIME analytics platform (1 v3.6.2). However, since
KNIME allows integration of R code, R capabilities (lumi v2.28.0,
affy v1.54.0, genefilter v1.58.1, limma v3.32.10, lumiHumanAll.db
v1.22.0, and lumiHumanIDMapping v1.10.1) were used. All
R packages are available from Bioconductor2. We used the
lumi package in order to carry out basic preprocessing of
the input data. To this end, the lumiExpresso function of
lumi was used with the following settings: For background
correction the forcePositive method has been applied, quantile
normalization was carried out and log2 transformation was used
for variance stabilization. After data preprocessing, expression
values (features) that did not show enough variation to allow
reliable detection of differential expression have been removed.
Using the nsFilter method of the R package genefilter the
interquartile range (IQR) was used as a measure for dispersion
and the 0.5 quantile of the IQR values has been used as
cutoff for removal of unnecessary features. For each of the
remaining features a two-tailed t-test was performed with the
rowttests function from the genefilter package. In order to
control the rate of type I errors, when conducting multiple
t-tests, the Benjamini–Hochberg method was applied (FDR
controlling). Features with adjusted p values < 0.05 (608 features)
are considered differentially regulated and used for further
analyses. As additional data processing steps several mappings
procedures were carried out in order to annotate the data with
additional information. The R packages lumiHumanAll.db and
lumiHumanIDMapping were used to retrieve both gene symbols
and unique Entrez Gene identifiers (GeneIDs).

Next Generation Sequencing of Small
RNAs
50 ng of small RNA enriched fractions were converted
into barcoded cDNA libraries using the NEBNext Multiplex
Small RNA Library Prep kit (New England BioLabs, Ipswich,
MA, United States) for next-generation sequencing on the

1https://www.knime.com/
2https://www.bioconductor.org/
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Illumina platform. The protocol was performed following the
manufacturer’s instruction using the Caliper Sciclone liquid
handler station (Perkin Elmer, Waltham, MA, United States).
Total RNA or small RNA enriched fractions were ligated to
the 3′ SR adaptor (1:4 dilution), hybridized to the Reverse
Transcription Primer (1:4 dilution) and ligated to the 5′ SR
adaptor (1:4 dilution). Reverse transcription was performed on
the ligated RNA using ProtoScript II Reverse. cDNA libraries
were indexed and amplified using the following conditions:
denaturation for 30 s at 95◦C, 16 amplification cycles – 15 s
at 95◦C, 30 s at 62◦C, 15 s at 70◦C–and a final extension for
5 min at 70◦C. Libraries were purified using a QIAquick kit
(Qiagen). Finally, the library size selection was performed using
AMPure XP Beads (Beckman Coulter, Brea, CA, United States)
with 1.3X Beads/DNA ratio for the “1st Bead Selection” and
1.6X Beads/DNA ratio for the “2nd Bead Selection” to obtain
library size distributions in the range of 100–170bp. Library peak
distribution was controlled and the average size was calculated
using 1 µL on the Bioanalyzer High Sensitivity chip (Agilent
Technologies, Santa Clara, CA, United States). The expected
peak for miRNA is 147 bp. The 150 bp peak corresponds to
piRNA. Molarity of the small RNA library was determined using
KAPA Library Quantification Kit (Hoffman-La Roche, Basel,
Switzerland) following the manufacturer’s recommendations.
Sequencing was performed in 6-plex per sequencing lance on a
HiSeq 4000. Bioinformatic analysis was performed with an in-
house developed pipeline. Quality control was performed using
fastqc (V0.11.3), the sequence reads were streamlined using
Trimmomatic (V0.32), with a sequence quality threshold of Q30
and removing short reads (<15 bp). Reads were mapped using
bowtie (V1.1.2) against mature and stem-loop miRNA databases
(miRbase V21) as well as a proprietary in-house developed
database, which takes natural variation of small RNA sequences
into account. The expected peak size of mapped reads of a size
peaking at 22–23 nucleotides was verified. Counts and TPM
of analyzed miRNAs were recorded and filtered for very low
expressed miRNAs (TPM < 10) in all samples. The filtered count
file, with all miRNA with a TPM < 10 removed, was used for the
differential analysis using DESeq2 (V1.6.3) (Love et al., 2014) and
in-house developed R scripts were used to interpret and evaluate
the results. R scripts were used for graphical representations such
as heat maps and volcano plots.

miRNA Target Prediction and
Overrepresentation Test
Two different online databases were used for identifying target
genes of differentially regulated miRNAs (P < 0.01). 2,458
miRNA targets were predicted using the TargetScan 7.2 software3.
Additionally, 280 experimentally validated targets were identified
using MiRTarBase 7.0 software4. For further analysis, a respective
transcriptomic dataset (Padj < 0.05) with 608 differentially
expressed genes was included. Genes that were present in at
least two of the three gene lists were analyzed for enriched
biological processes using PANTHER-GO-Slim version 14.1.

3http://www.targetscan.org
4http://mirtarbase.mbc.nctu.edu.tw

Fisher’s exact test was used to calculate p-values. The GO term
analysis was corrected for a neutral background. Additionally,
the Kyoto Encyclopedia of Genes and Genomes (KEGG) was
used to include genes from cell cycle pathway (hsa0411) in the
overlap analysis.

Reverse Transcription and
Semi-Quantitative Real-Time PCR
Gene expression of selected genes was validated using semi-
quantitative real-time PCR (qRT-PCR) in a Step One Plus
instrument (Thermo Fisher Scientific). 1,000 ng of extracted
RNA of each condition were reverse transcribed using iScriptTM

cDNA Synthesis Kit (Bio-Rad Laboratories, Inc., Hercules,
CA, United States) according to the manufacturer’s protocol.
For qRT-PCR analysis, SYBR Green Select qPCR Supermix
(Thermo Fisher Scientific, Waltham, MA, United States), 5 ng
complementary DNA from total RNA, 0.2 µM forward and
reverse primers, and 0.1 µM 5-carboxy-X-rhodamine (passive
references dye) were used. The PCR primer sequences are
given in Supplementary Table 3. PCR was performed using the
following protocol: 2 min at 50◦C, 2 min at 95◦C, and 40 cycles
of 15 s at 95◦C and 60 s at 60◦C. Melting curves were recorded.
Cycle threshold (CT) values were set within the exponential phase
of the PCR. The correct size of the respective single amplicons
was assured by agarose gel electrophoresis. Data was normalized
to the four housekeeping genes, ACTB, GAPDH, GPBP1, and
RPL22. Comparative normalized relative quantities (CNRQ)
were used to calculate the relative expression levels using qBase
Plus software (Biogazelle, Zwijnaarde, Belgium). Expression
of miRNA hsa-miR-34c-5p was analyzed by miRCURY LNA
Universal RT microRNA PCR system (Qiagen). RNA enriched
fractions (50 ng) for each sample underwent reverse transcription
according to the manufacturer’s protocol (Qiagen). Primers were
purchased from Qiagen (hsa-miR-34c-5p, ID YP00205659; U6
snRNA, ID YP00203907) and RNU6 was used as a reference
gene for normalization. Results were evaluated by quantitative
real-time PCR (StepOne Plus, Applied Biosystems) and analyzed
using the 2-11CT method as described in the manufacturer’s
manual (Applied Biosystems).

Cytotoxicity Assay
On day 6 or 8 of differentiation, 30 µL of medium of each
well were transferred to a 96 well plate and 70 µL of 80 mM
Tris/HCl/200 mM NaCl (pH 7.2) buffer containing 10 mM
NADH and 100 mM pyruvate (Sigma-Aldrich) was added. In the
assay, lactate dehydrogenase (LDH) converts pyruvate to lactate
by consuming NADH. NADH metabolization is proportional to
LDH in the medium and its absorption at 340 nm was monitored
with a reference measurement at 420 nm (absorption minimum
for NADH) by a spectrophotometer (ClarioStar, BMG labtech,
Ortenburg, Germany).

Cell Viability Assay
Calcein acetoxy methylester (-AM) is a cell-permeable dye. It was
used to determine cell viability in 6 and 8 days differentiated cells.
In viable cells, the non-fluorescent calcein-AM is converted to
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green-fluorescent calcein by intracellular esterases. The dye was
added into the medium at a 1:1,000 dilution. The reaction plate
was incubated for 30 min at 37◦C. The medium was replaced
with 50 µL of PBS and the fluorescence intensity measured
at λ = 577/619 nm by a spectrophotometer (ClarioStar, BMG
Labtech, Ortenburg, Germany) using well scan mode with a
9× 9 matrix.

Small Interfering RNA Treatment With
siPOOLs
Cells were treated with OptiMem medium containing
lipofectamine RNAiMax (Thermo Fisher Scientific) and
siPOOLs (SiTools, Martinsried, Germany) comprising 20
individual small interfering RNAs (siRNAs) harboring different
seeding sequences against a respective mRNA species, thereby
minimizing off-target effects. For the treatment, either 96-well
(100 µL medium) or 6-well (2 mL medium) plates were used. For
each condition, different concentrations of siRNAs were tested
in αSyn-transduced LUHMES neurons. Expression levels of each
target were analyzed with qRT-PCR to determine a working
concentration which leads to comparable silencing efficiency for
cell cycle gene cyclin D1 (CCND1) (50 nM), CCND2 (5 nM) or
both in combination.

Statistical Analysis
GraphPad Software Prism 7 (GraphPad Software, La Jolla, CA,
United States) was used for statistical analysis. Each experiment
includes at least three independent repeats. Data are presented as
mean ± standard error of the mean (SEM). Data were generally
compared by ordinary two−way ANOVA with Bonferroni’s or
Sidak’s post hoc test, unless otherwise indicated. If statistically
significant, pairwise comparisons were evaluated by a two-tailed
unpaired t-test.

RESULTS

Study Overview
We studied the effect of early phases of αSyn pathology
on the miRNome in a human neuronal cell model using a
hypothesis-free approach. Figure 1 presents an overview of the
analytical process. A miRNome-wide screen was performed in
LUHMES neurons overexpressing either αSyn or GFP 4 days
post transduction. The resulting differentially expressed miRNAs
with significance (P < 0.01) were analyzed further using two
public databases, TargetScan 7.2 and MiRTarBase 7.0. Predicted
and experimentally validated gene targets of the miRNA hits
were compared by an overlap analysis with the respective
transcriptome data set (BeadChip). Genes present in at least
two overlapping entities were used for enrichment analysis. The
most significantly enriched biological process was analyzed by
validation and subsequent siRNA-mediated functional analysis in
the SNCA overexpression model.

In vitro SNCA Overexpression Model
In order to validate the usability of our in vitro model, we
determined different parameters. Cells were transduced with

FIGURE 1 | Overview of the study workflow. An in vitro SNCA overexpression
model of αSyn-related pathology compared to a GFP-control model served as
basis for the identification and analysis of miRNA target genes.

αSyn adenoviruses (AV) after 2 days in vitro (DIV) and we
determined toxicity, viability and SNCA expression levels at DIV6
and DIV8 days (Figure 2A). A strong SNCA overexpression
[log2 fold change (FC) = 4.83; P < 0.001] was detected by
qRT-PCR 4 days post transduction (DPT; Figure 2B). The
overexpression-induced toxicity, measured by extracellular LDH
activity, significantly increased over time (Figure 2C) and
reached 21.1 ± 0.31% on DIV6 and 46.8 ± 0.20% on DIV8. The
cell viability, measured by the amount of calcein fluorescence,
was significantly decreased in SNCA-overexpressing neurons to
88 ± 2% on DIV6 and to 54 ± 3% on DIV8 (Figure 2D)
in comparison to the respective controls. A disruption of the
cell differentiation process or the presence of non-neuronal cell
populations by SNCA overexpression could be excluded (see
Supplementary Figures 1,2).

In summary, these results confirm the successful adenoviral
SNCA transduction, emerging toxicity and reduced viability
as a measure of αSyn-mediated neurodegeneration at DIV6
(= DPT4). Thus, we used this time point to study the miRNome
in greater detail.

miRNome-Wide Screen and Overlap
Analysis With Transcriptome Data
Aberrant miRNA expression of incipient αSyn-mediated
neurodegeneration was studied by a hypothesis-free
comprehensive miRNome-wide approach using next-generation
sequencing at DPT 4. Among 798 detected miRNAs, 55
were found differentially expressed at P < 0.05 including 23

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 March 2021 | Volume 9 | Article 561086177

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-561086 February 26, 2021 Time: 20:14 # 6

Findeiss et al. Cell Cycle Involvement in Synucleinopathies

FIGURE 2 | In vitro SNCA overexpression model. (A) In vitro treatment scheme. LUHMES neurons were transduced with adenoviral (AV) vectors of SNCA or GFP
(control virus). DIV, days in vitro; DPT, days post transduction. (B) Expression of SNCA mRNA in LUHMES neurons after 4 days of transduction with GFP AV or
SNCA AV vectors. (C) Cytotoxicity measured by release of lactate dehydrogenase (LDH) at indicated read-out times in untreated cells (control) and cells transduced
with AV GFP (virus control) or AV SNCA. LDH release is expressed as percentage of lysed cells (positive control). (D) Cell viability measured by intracellular hydrolysis
of calcein acetoxy methyl (-AM) ester at indicated read-out times in untreated cells (control) and cells transduced with AV GFP (virus control) or AV SNCA. Data of AV
GFP and AV SNCA were normalized to the respective readout control, set as one. Results are presented as mean ± SEM from at least three biological repeats.
Statistical analysis in panel (B) was Students t-test and in panels (C,D) ordinary two-way ANOVA with Bonferroni’s multiple comparison test. +++P < 0.001;
*P < 0.05, ***P < 0.001 vs. respective control.

significantly (P < 0.01; non-adjusted) altered compared to GFP
controls. Among the 23 miRNAs with significance (P < 0.01),
11 miRNAs were downregulated and 12 miRNAs upregulated
(Figure 3A; see Supplementary Table 1 for more details). Out
of these 23 miRNAs, 13 were found without prior evidence for
a relation to synucleinopathies while 10 miRNAs had already
been linked to PD (Supplementary Table 1). A comprehensive
in silico analysis of these 23 altered miRNAs was performed using
TargetScan 7.2 and MirTarBase 7.0. A total of 2,458 predicted
and 280 experimentally validated messenger RNAs have been
identified as probable target genes (Figure 3B). According to
MirTarBase 7.0, hsa-miR-34a-5p and hsa-miR-34c-5p directly
target SNCA mRNA. Predicted and experimentally validated
gene targets of 23 significantly altered miRNAs were compared
by an overlap analysis with a respective transcriptome data
set from our cell model that included 608 genes that were
significantly differentially expressed in comparison between
aSyn overexpressing and GFP expressing cells (Padj < 0.05).
We found 154 genes present in at least two of the three
gene lists. Those 154 genes were further tested for enriched
biological processes with PANTHER GO-Slim (Figure 3C;
see Supplementary Table 2 for more details). We discovered
the highest enrichment for the G0/G1 cell cycle regulation of

cyclin-dependent protein serine/threonine kinase activity (12.44
fold; FDR 3.17E-02) followed by regulation of cell proliferation
(8.36 fold; FDR 1.46E-02), cell proliferation (8.15 fold; 3.58E-02),
positive regulation of signal transduction (7.16 fold; 2.39E-02),
and protein phosphorylation (4.42 fold; 2.49E-03). Within the
highest enriched pathway, we discovered an overrepresentation
of target genes CCND1, CCND2, CCNE2, and CDKN1C involved
in the G0/G1 cell cycle superpathway.

Expression of Cell Cycle Genes Involved
in the G0/G1 Superpathway
According to the KEGG (Kyoto Encyclopedia of Genes
and Genomes) database, CCND1, CCND2, CCNE2, and
CDKN1C are required for the G0/G1 cell cycle transition
(Figure 4A). We compared 124 KEGG-annotated cell cycle
genes with 154 miRNA target genes of our dataset (Figure 4B).
Out of 15 overlapping genes, 10 genes were annotated for
G0/G1 cell cycle phases. We confirmed significant differential
expression levels of six genes in SNCA-overexpressing human
post-mitotic midbrain-derived neurons that are involved
in the G0/G1 cell cycle pathway (Table 1). Five genes were
upregulated: CCND1, CCND2, CDK4, E2F3, MYC; and one
gene was downregulated: CDKN1C. According to MirTarBase,
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FIGURE 3 | miRNome-wide screen and overlap analysis with transcriptome data. (A) Volcano plot shows 796 detected miRNAs in SNCA vs. GFP overexpressing
LUHMES neurons 4 days after adenoviral transduction. 55 miRNAs with P < 0.05 and 23 with P < 0.01 were differentially expressed (non-adjusted p-value).
(B) Identification of 154 overlap genes of predicted miRNA target genes (TargetScan 7.2 database) and experimentally validated target genes (MiRTarBase 7.0
database) with miRNAs of P < 0.01, and significantly regulated mRNAs (Padj < 0.05; Benjamini–Hochberg FDR) from transcriptome analysis (BeadChip).
(C) Overrepresented biological processes identified by PANTHER GO-Slim pathway analysis among 154 overlap genes.

several cell cycle genes are also targeted by hsa-miR-34a-5p
and hsa-miR-34c-5p, which have been shown to directly
target SNCA.

In order to observe effects of αSyn overexpression on the
most upregulated target gene CCND1 (log2FC = 5.09, P < 0.005),
we monitored the expression levels of SNCA and CCND1
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FIGURE 4 | Cell cycle as most significantly altered process. (A) Simplified illustration of the mitotic cell cycle phases. Encoded proteins of the genes CCND1,
CCND2, CCNE2, and CDKN1C (labeled in blue) from the most significantly enriched process after PANTHER GO-Slim pathway analysis are key players for the
transition of the cell from quiescence to initiation of G1 cell cycle phase. (B) Overlap of 154 target genes predicted by current study and 124 KEGG (Kyoto
Encyclopedia of Genes and Genomes) cell cycle genes identified 15 SNCA overexpression-affected cell cycle genes. Gene expression of SNCA (C), CCND1 (D), and
hsa-miR-34c-5p (E) measured over time by qRT-PCR in LUHMES neurons transduced with adenoviral (AV) vectors of SNCA or GFP (control virus) or non-transduced
(control). Values are related to non-transduced control at the corresponding times set as one. Values in panels (C–E) are mean ± SEM from at least three biological
repeats. Statistical analysis was performed by a two-way ANOVA with Sidak’s correction for multiple comparison testing and, if significant, pairwise comparisons
were evaluated by an unpaired t-test. *P < 0.05, **P < 0.01, ***P < 0.001 vs. GFP virus control in panels (C–E); DIV, days in vitro; DPT, days post transduction.
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TABLE 1 | Gene expression of 10 G0/G1 cell cycle-related genes obtained from
the transcriptome analysis (BeadChip) and validated by qRT-PCR analysis.

Gene Transcriptome data qRT-PCR data

Log2 FC Padj Log2 FC P

CCND1* 0.86 0.035 5.09 0.0018

CCND2* 1.98 0.006 2.17 0.0007

CCNE2 n.d. – 0.08 n.s.

CDK4* 0.51 0.043 1.12 0.0082

CDK6 n.d. – 0.31 n.s.

CDKN1A, p21 1.35 0.022 0.26 n.s.

CDKN1C, p57 n.d. – −0.36 0.0004

E2F3* 0.59 0.042 0.87 0.0121

E2F5 n.d. – 0.15 n.s.

MYC 0.06 – 0.98 0.012

*significantly altered in both data sets; n.d., not detected; n.s., not significant.

every 24 h, starting from DIV3 until DIV8 (Figures 4C,D
and Supplementary Figures 3A,B). Expectedly, relative quantity
(RQ) of SNCA expression increased significantly stronger
between DIV3 (24.1 RQ ± 1.6 SEM; P = 0.001) and DIV4 (97.9
RQ ± 4.1 SEM; P < 0.001) and decreased thereafter until DIV8
(10.0 RQ ± 0.5 SEM; P < 0.001) in SNCA AV-transduced cells
compared to the GFP AV-transduced controls (Figure 4C and
Supplementary Figure 3A). We found that CCND1 expression
showed a very similar expression curve to SNCA with a most
significant increase between DIV3 (4.9 RQ± 0.3 SEM; P < 0.001)
and DIV4 (87.4 RQ ± 3.5 SEM; P < 0.001) and a decrease
until DIV8 (10.1 RQ ± 0.5 SEM; P < 0.001) (Figure 4D and
Supplementary Figure 3B).

Within the same time frame, we additionally examined the
expression of SNCA-regulating miRNA hsa-miR-34c-5p which
was significantly upregulated (P < 0.01) in the miRNome-wide
screen on DIV6 (Figure 4E). We found that hsa-miR-34c-5p
expression significantly increased between DIV5 (2.7 RQ ± 0.03
SEM; P = 0.0164) and DIV7 (4.84 RQ ± 0.06 SEM; P < 0.001)
and decreased on DIV8 (3.8 RQ ± 0.9 SEM; P < 0.001) in
AV SNCA samples compared to AV GFP control. While SNCA
expression steadily decreased after peaking on DIV4 (Figure 4C),
hsa-miR-34c-5p expression was significantly upregulated in AV
αSyn-treated cells. In summary, the expression analysis showed
that altered cell cycle gene expression might be correlated with
SNCA overexpression. We also validated the miRNA screening
result for SNCA-regulating miRNA hsa-miR-34c-5p on DIV6
and observed that 1 day after SNCA expression peaked, miRNA
expression was significantly increased.

Functional Analysis of Cyclin D1 and D2
Gene Silencing
To test the relevance of upregulated cell cycle genes in αSyn-
mediated toxicity, we proceeded with a functional analysis of
CCND1 and CCND2 using a siRNA approach. As these particular
cell cycle genes were found to be most upregulated upon SNCA
overexpression on DIV6 (= DPT4) in differentiated LUHMES
neurons, we silenced each gene separately and in combination on

DIV3 (Figure 5A). In order to ensure comparable mRNA levels
between the targets, silencing efficiency of siRNA against CCND1
and CCND2 separately and in combination was assessed using
qRT-PCR (Supplementary Figures 4A–C).

On DIV8 (= DPT6), when the viability of SNCA-
overexpressing neurons was reduced to ∼50% (Figures 2C,D),
cytotoxicity was analyzed by measuring LDH release
into the medium.

Treatment with 50 nM siRNA directed against CCND1
(1.24 ± 0.02) significantly reduced αSyn-induced toxicity
compared to lipofectamine control (LC) (1.66± 0.03; P < 0.0001)
and non-coding (NC) control siRNA (1.60 ± 0.02; P < 0.0001)
(Figure 5B). The CCND2 (1.68 ± 0.03) siRNA treatment at
5 nM did not significantly alter αSyn-induced toxicity in NC
(1.76 ± 0.03; n.s.), only in LC (1.82 ± 0.03; P < 0.0087) control
(Figure 5C). However, the combined application of targeting
siRNAs against CCND1 and CCND2 (1.38 ± 0.03) significantly
decreased toxicity levels under LC (1.62 ± 0.03; P < 0.0001)
and NC (1.61 ± 0.03; P < 0.0001) conditions in SNCA virus-
transduced cells (Figure 5D). In summary, siRNA silencing
of the top-most upregulated cell cycle gene CCND1 identified
through a comprehensive miRNA screen led to considerable
attenuation of LDH release in SNCA overexpressing post-mitotic
neurons by 38.7%.

DISCUSSION

In the present study, we performed a comprehensive miRNome-
wide screen in human post-mitotic midbrain derived LUHMES
neurons with moderate αSyn-induced cytotoxicity levels. We
discovered a significant differential expression of 23 miRNAs
(P < 0.01; non-adjusted) with 12 miRNAs- so far without–and
11 miRNAs with known relation in the scientific literature to
models for synucleinopathies or PD. By including comprehensive
in silico target gene mining and subsequent bioinformatics
analysis of target genes, we observed an enrichment of the
cell cycle superpathway and confirmed significant differential
expression levels of six cell cycle genes in SNCA-overexpressing
post-mitotic neurons. By looking into the daily evolvement
of the SNCA transcriptional upregulation between DIV3 and
DIV8, we noted a very similar expression curve of CCND1 and
SNCA, whereas the expression of CCND1 was not altered in
GFP expressing control cells. We also validated the upregulation
of SNCA-regulating miRNA hsa-miR-34c-5p in a time-delayed
manner after SNCA expression peaked. Silencing of the two most
upregulated genes CCND1 and CCND2, involved in the G0/G1
cell cycle initiation, revealed that siRNA against CCND1 alone
and in combination with CCND2 markedly reduced cytotoxicity
levels. Taken together, early-stage intracellular accumulation of
αSyn in human mesencephalic post-mitotic neurons (Chakroun
et al., 2020) is accompanied by an altered expression of miRNAs,
leading to an enrichment of G0/G1 cell cycle genes. Among them,
CCND1 seems to be functionally involved in αSyn-mediated cell
death, as shown by siRNA-mediated intervention.

In our robust model for αSyn-mediated pathology, we
found the levels of 23 miRNAs to be significantly altered.
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FIGURE 5 | Functional siRNA analysis. (A) Experimental treatment scheme. LUHMES neurons were transduced with adenoviral (AV) vectors of SNCA or GFP
(control virus) and treated with or without siRNAs against CCND1 and/or CCND2. LDH release as measure for cytotoxicity was determined in control 6 days after
transduction. DIV, days in vitro; DPT, days post transduction. (B–D) Quantification of cytotoxicity upon treatment with siCCND1 (B), siCCND2 (C), and
siCCND1 + siCCND2 (D). Experiments in panels (B–D) included lipofectamine controls (LC), non-coding siRNA controls (NC) in parallel to the coding siRNA
treatment. Data was normalized to LC in control cells. Results are presented as mean ± SEM from seven biological repeats. Statistical analysis in panels (B–D) was
performed by a two-way ANOVA with Bonferroni’s correction for multiple testing and, if significant, pairwise comparisons were evaluated by an unpaired t-test.
**P < 0.01, ***P < 0.001; ns, not significant.

Out of these 23 miRNAs, 12 have not been implicated in
the pathogenesis of synucleinopathies and related models so
far. Interestingly, 11 miRNAs (hsa-miR-27a-5p, hsa-miR-34a-
5p, hsa-miR-34c-5p, hsa-let-7e-5p, hsa-miR-184, hsa-mir-320c-
1, hsa-mir-320c-2, hsa-miR-320d-1, hsa-miR-1224-5p; hsa-miR-
92b-3p; and hsa-miR-887-3p) have already been reported to
undergo dysregulation in PD patients or been linked to either
target SNCA or pathophysiological mechanisms of PD (Minones-
Moyano et al., 2011; Sibley et al., 2012; Soreq et al., 2013; Briggs
et al., 2015; Kabaria et al., 2015; Prajapati et al., 2015; Hoss et al.,
2016; Shamsuzzama et al., 2017) (see Supplementary Table 1).
These results substantiate the validity of our model. Our data
is largely confirmed by further studies performed in other PD
models. For instance, in dopaminergic neurons of PD patients,
an upregulation of hsa-miR-27a and hsa-miR-184 was reported
in accordance with our SNCA overexpression PD model (Briggs
et al., 2015). In leukocytes of PD patients, hsa-mir-320c and hsa-
miR-92b-3p were found to be downregulated similarly to the
results of the present screen (Soreq et al., 2013). Additionally,
we found a downregulation of hsa-miR-1224-5p and hsa-miR-
887-3p, which have been reported to be downregulated in the

prefrontal cortex of PD patients (Sibley et al., 2012; Hoss et al.,
2016). However, some of our findings are not in line with
previously reported data. We report an upregulation of both,
hsa-miR-34a-5p and hsa-miR-34c-5p, which have been shown to
directly modulate SNCA expression in another cell model of PD
(Kabaria et al., 2015). By monitoring the expression of SNCA
and hsa-miR-34c-5p between DIV3 until DIV8, we not only
validated the upregulation found in the miRNA screen but also
showed that hsa-miRNA-34c-5p was significantly upregulated
after maximal SNCA expression was reached on DIV4. While
SNCA expression steadily decreased thereafter, hsa-miRNA-34c-
5p stayed upregulated until DIV8. Since hsa-miR-34c can inhibit
SNCA expression by targeting its 3′-UTR (Kabaria et al., 2015),
the upregulation of hsa-miR-34c in our study might be a
counter-regulatory measure of the cell to lower the increased
αSyn levels. In postmortem brain tissue of PD patients at a
late disease stage hsa-miR-34c was shown to be downregulated
(Minones-Moyano et al., 2011). This controversial finding could
be explained by the fact that we used a cell model of early αSyn
overload. Therefore, one could speculate that either miR-34c
expression levels might change depending on disease stage and/or
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are influenced by non-neuronal cell populations, as unsorted
postmortem brain tissues (including glial cells) was used in
the tissue analysis. Furthermore, hsa-let-7 miRNA has been
shown to be upregulated upon oxidative stress in other cell
models of PD (Prajapati et al., 2015; Shamsuzzama et al., 2017),
while we observed a downregulation in our model. This rather
opposite finding could be attributed to the fact that the complex
miRNA expression profile varies depending on the induced stress,
duration and species in different PD models such as human
SHSY-5Y cells and dopaminergic neurons of C. elegans. The
levels of other PD-associated miRNA, such as miR-7, miR-153 or
miR-133b, were not significantly differentially expressed in our
SNCA overexpression model. Since we were modeling an early-
stage αSyn-mediated pathology in dopaminergic neurons, those
miRNAs could be either involved at other stages or in other cell
types relevant for the disease or might be model specific.

A single miRNA might affect several different mRNAs
encoding distinct target genes with a tissue specific expression
profile (Halushka et al., 2018). Hence, investigation and
interpretation of miRNA-mRNA interactions remains very
challenging. In our SNCA overexpression model, we identified
cell cycle and proliferation processes to be overrepresented.
αSyn is a key protein in PD pathogenesis, but its physiological
function is still not fully understood. In addition to its presence
at the synapse, αSyn has been confirmed to be localized in the
nucleus (Goncalves and Outeiro, 2013). Due to its DNA-binding
properties, a regulating role in transcription has been suggested
(Martins et al., 2011) which could result in the miRNA and gene
expression alterations observed in our model. Furthermore, in
accordance with our findings, an emerging body of evidence has
linked PD and αSyn to cell cycle processes (Lee et al., 2003;
Höglinger et al., 2007; Ma et al., 2014; Paiva et al., 2017; Sampaio-
Marques et al., 2019). An increased number of proteins associated
with DNA synthesis and cell cycle re-entry was reported in
dopaminergic neurons of postmortem PD brain tissue (Höglinger
et al., 2007). Similar observations were made in cellular and
animal models of PD (Lee et al., 2003; Paiva et al., 2017). The
atypical re-entry of post-mitotic dopaminergic neurons into the
cell cycle is believed to cause apoptosis (Sampaio-Marques et al.,
2019), as well as nuclear accumulation of αSyn in PC12 cells
(Ma et al., 2014). Both of these effects were shown to promote
neurotoxicity through cell cycle activation (Ma et al., 2014).
Therefore, our finding of cell cycle gene alterations and increased
cytotoxicity upon αSyn overload are in accordance with reports
from PD patients and other PD models. Yet, the exact mechanism
leading to a deleterious cell cycle activation remains unknown.

The control of cell proliferation by distinct miRNAs has
predominantly been described in cancer (Lin and Gregory,
2015). Cell cycle-related genes are regulated by several miRNAs,
which were also present in our post-mitotic neuronal cell
model. Out of the 23 significantly altered miRNAs detected
in this study, eight miRNAs (hsa-let-7e-5p, hsa-miR-184,
hsa-miR-34a-5p, hsa-miR-34c-5p, hsa-miR-92b-3p, hsa-miR-
1246, hsa-miR-143-3p, and hsa-miR-663a) had already been
experimentally validated to regulate cell cycle-related genes
(Hermeking, 2010; Mitra et al., 2011; Wu et al., 2013; Zhang
et al., 2013; Zhen et al., 2013; Chai et al., 2016; Cho et al.,
2016). Interestingly, five of those (hsa-let-7e-5p, hsa-miR-184,

hsa-miR-34a-5p, hsa-miR-34c-5p, and hsa-miR-92b-3p) had
already been implicated in synucleinopathies (Soreq et al., 2013;
Briggs et al., 2015; Kabaria et al., 2015; Prajapati et al., 2015;
Shamsuzzama et al., 2017). The rest of the miRNAs listed in
Figure 3A had, to our knowledge, not yet been reported in the
context of synucleinopathies. For example, in different cancer
types the let-7 miRNA family alone modulates the abundance
of CCND1, CDK4 as well as MYC (Mitra et al., 2011; Fairchild
et al., 2019). MYC was also reported to regulate the expression
of a number of miRNAs, e.g., hsa-let-7 and hsa-miR-34a (Bueno
and Malumbres, 2011). The complexity of this miRNA-mRNA
network presents a challenge to the interpretation of our study
results. Thus, one could speculate that the differential miRNA
expression pattern we report might not only occur in response
to the αSyn-mediated cell cycle alterations, but also contribute
to these alterations. However, as both hsa-miR-34a-5p and hsa-
miR-34c-5p not only target SNCA (Kabaria et al., 2015) but also
CCND1 (Sun et al., 2008; Achari et al., 2014), the upregulation
of both miRNAs could be a response to repress the expression
of both. The decreasing expression levels of SNCA and CCND1
after the upregulation of their regulating miRNA hsa-miR-34c-
5p between DIV5 until DIV8, point toward a counter-regulatory
role of this specific miRNA in our model. Furthermore, due
to the diverse roles of miRNAs in cellular processes, biological
mechanisms apart from cell cycle activation such as the positive
regulation of signal transduction and/or protein phosphorylation
must certainly be considered. Indeed, both processes were
also found to be markedly enriched in our miRNome-wide
screen. As this study did not investigate the immediate effect
of the differentially regulated miRNAs on CCND1 and SNCA
expression, additional functional studies of miRNAs, e.g., hsa-
miR-34a-5p, hsa-miR-34c-5p, and hsa-let-7e-5p, are required
to unravel their role in αSyn-mediated cell cycle alterations
and cytotoxicity.

However, as our results were obtained in post-mitotic
neurons, additional functions such as stress-related cell cycle
induction should be considered. Upon cellular stress, the
activation of the transcription factor p53 was shown to change
the expression of several genes encoding miRNAs (Olejniczak
et al., 2018). For instance, miRNAs hsa-miR-34a-5p and hsa-miR-
34c-5p, which were upregulated in our model, were described to
be regulated by p53 in breast cancer cells (Javeri et al., 2013).
It is conceivable that intracellular accumulation of αSyn and
subsequent aggregation might lead to cellular stress and a p53-
mediated change in miRNA levels. Further studies are needed to
determine possible functional relations and sequence of events of
αSyn, p53 and miRNAs.

Cell cycle activation depends on the delicate balance of
mitogenic factors. Growth factors stimulate the expression of
crucial G1 phase genes, such as CCND1, CCND2, CDK4, which
were upregulated in our model, whereas the cell cycle inhibitor
p57/Kip2 (CDKN1C) was found to be downregulated. During
the G1 phase, cyclin D protein binds to cyclin-dependent
kinases 4 or 6 (CDK4/6) and, through the neutralization of
retinoblastoma protein (Rb), activates E2F transcription factor
which in turn initiates cell cycle progression by regulating the
transcription of S-phase genes (Figure 4; Aktas et al., 1997;
Choi and Anders, 2014). In SNCA-overexpressing neurons, we
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found an elevated expression of CDK4 as well as one gene
of the E2F family (E2F3; Table 1). The passage of different
cell cycle checkpoints usually prevents uncontrolled activation
of the cell cycle machinery. However, a dysfunction could be
compensated by the induction of apoptosis (Pardee, 1974). In
the developing brain, the balance between cell proliferation and
programmed cell death is crucial for establishing a functional
neural network. Both processes are highly conserved and share
common mediators (Pucci et al., 2000). During maturation, cells
no longer undergo mitosis, become post-mitotic and terminally
differentiated. Therefore, our finding that SNCA overexpression
in post-mitotic neurons leads to altered expression of genes
responsible for cell cycle activation was rather unexpected. As
CCND1 expression in SNCA overexpressing human neurons
over time was similar to SNCA levels and successful silencing
of CCND1 reduced neuronal cell death, a correlation between
aberrant cell cycle entry and αSyn-induced neurodegeneration
might be well indicated in our model. The downstream effects
of aberrant cell cycle activation in post-mitotic neurons resulting
in cell death have already been established in multiple studies
(Freeman et al., 1994; Padmanabhan et al., 1999; Ino and Chiba,
2001; Jordan-Sciutto et al., 2003; Sumrejkanchanakij et al., 2003;
Herrup and Yang, 2007; Höglinger et al., 2007; Pinho et al.,
2019; Sampaio-Marques et al., 2019). Our findings suggest that
miRNA dysregulation upon SNCA overexpression might be a
very upstream activation mechanism for cell cycle re-activation
in post-mitotic neurons. In order to conclusively establish the
functional role of the reported altered miRNAs in the activation
or counter-regulation of the cell cycle machinery, further studies,
such as targeted knockdown of specific miRNAs, will be required.

Apart from its cell cycle regulatory functions, several other
roles of cyclin D should be considered. Cyclin D1 has been
shown to inhibit the mitochondrial metabolism (Sakamaki et al.,
2006). Mitochondrial dysfunction is currently proposed as a
central factor in PD pathogenesis (Franco-Iborra et al., 2016).
Additionally, cyclin D was shown to play a critical role for
chromatin remodeling (Hulit et al., 2004), another epigenetic
mechanism that has been associated with PD pathophysiology
(Labbe et al., 2016). Higher levels of histone acetylation have
been found in PD patients (Park et al., 2016) and inhibition of
histone acetylases was shown to protect against αSyn-induced
toxicity (Kontopoulos et al., 2006). The neuroprotective effect of
CCND1 silencing that we report might be mediated by its role
in chromatin remodeling. As cyclin D governs diverse roles in
the cytoplasm and cell nuclei, further investigations are needed
to determine the exact mechanisms underlying the interplay
between cyclin D and αSyn-mediated pathology.

In conclusion, a miRNome-wide screen at an early time
point of SNCA overexpression in post-mitotic human neurons
resulted in 23 differentially regulated miRNAs, including 13
novel miRNAs in the context of PD. Target gene analysis of the
respective miRNAs revealed an enrichment of cell cycle G0/G1
activation, which we confirmed using qPCR analysis. Silencing
of CCND1 under SNCA overexpression conditions proved to be
protective and significantly reduced neurotoxicity. Altogether,
our findings reveal that targeting miRNA regulation of the cell
cycle pathway in post-mitotic neurons offer a viable therapeutic
approach for PD and eventually other synucleinopathies.

Notwithstanding, further research is necessary to determine the
exact pathways and mechanisms involved in aberrant cell cycle
re-entry, and to confirm CCND1 and its regulating miRNAs as
novel drug targets to modulate pathophysiology in PD.
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The aggregation of α-synuclein is a hallmark of Parkinson’s disease (PD) and a variety of

related neurological disorders. A number of mutations in this protein, including A30P

and A53T, are associated with familial forms of the disease. Patients carrying the

A30P mutation typically exhibit a similar age of onset and symptoms as sporadic PD,

while those carrying the A53T mutation generally have an earlier age of onset and an

accelerated progression. We report two C. elegans models of PD (PDA30P and PDA53T),

which express these mutational variants in the muscle cells, and probed their behavior

relative to animals expressing the wild-type protein (PDWT). PDA30P worms showed a

reduced speed of movement and an increased paralysis rate, control worms, but no

change in the frequency of body bends. By contrast, in PDA53T worms both speed and

frequency of body bends were significantly decreased, and paralysis rate was increased.

α-Synuclein was also observed to be less well localized into aggregates in PDA30P worms

compared to PDA53T and PDWT worms, and amyloid-like features were evident later in the

life of the animals, despite comparable levels of expression of α-synuclein. Furthermore,

squalamine, a natural product currently in clinical trials for treating symptomatic aspects

of PD, was found to reduce significantly the aggregation of α-synuclein and its associated

toxicity in PDA53T and PDWT worms, but had less marked effects in PDA30P. In addition,

using an antibody that targets the N-terminal region of α-synuclein, we observed a

suppression of toxicity in PDA30P, PDA53T and PDWT worms. These results illustrate the

use of these two C. elegans models in fundamental and applied PD research.

Keywords: C. elegans, Parkinson’s disease, alpha-synuclein, drug discovery, protein aggregation, protein

misfolding, neurodegenerative diseases, transgenic model
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INTRODUCTION

α-Synuclein (α-syn) is an intrinsically disordered protein
expressed at high levels in the human brain, which in Parkinson’s

disease (PD) and related disorders aggregates to form Lewy
bodies (Gómez Tortosa et al., 1998; Spillantini et al., 1998;
Dawson and Dawson, 2003; Chiti and Dobson, 2006, 2017;
Knowles et al., 2014; Dettmer et al., 2016). Because the aberrant

assembly of α-syn is a common feature in the development of
these diseases (Chiti and Dobson, 2006), intense efforts have been
devoted toward understanding and inhibiting this phenomenon
(Lee and Trojanowski, 2006; Tóth et al., 2014). Growing evidence

shows that the formation of α-syn aggregates may be induced
by aberrant protein-protein or protein-membrane interactions
(Auluck et al., 2010; Galvagnion et al., 2015; Dettmer et al.,
2016), by malfunctions of molecular chaperones (Witt, 2013; Cox
et al., 2014), and by the effects of post-translational modifications
(Fujiwara et al., 2002; Hasegawa et al., 2002; Saito et al., 2003;
Bendor et al., 2013) and familial mutations in the α-syn gene (Li
et al., 2001; Zarranz et al., 2004; Emmer et al., 2011; Sacino et al.,
2013). The pathological phenotype of non-heritable idiopathic
PD has been shown to be close to that associated with familial
PD. However, familial forms of PD, which account for a 10–15%
of all PD cases, can have a different age of onset, severity of the
disease, and resistance to treatments (Kasten and Klein, 2013).

Among the disease-associated mutations (Li et al., 2001;
Zarranz et al., 2004; Emmer et al., 2011; Sacino et al., 2013),
the amino acid substitutions A30P and A53T (Li et al., 2001)
have been shown to be linked with familial PD (Thomas and
Beal, 2007). It has been observed that patients carrying the A30P
mutation typically exhibit a similar age of onset and symptoms
as sporadic PD, while those carrying the A53T mutation have an
earlier age of onset and an accelerated progression of the disease
(Polymeropoulos et al., 1997; Krüger et al., 2001; Schiesling
et al., 2008). Biophysical studies have shown that these mutations
significantly affect the in vitro mechanism of aggregation of α-
syn (Flagmeier et al., 2016), and in particular, A53T α-syn was
shown to aggregate more rapidly than the A30P or wild-type α-
syn (Narhi et al., 1999; Li et al., 2001, 2002). Less agreement,
however, exists as to whether the A30P variant aggregates more
rapidly (Narhi et al., 1999; Li et al., 2001), at a similar rate
(Lemkau et al., 2012) or more slowly (Conway et al., 2000),
than the wild-type protein. Recently, we utilized a three-pronged
strategy to characterize the influence of these mutations on
the mechanism of the aggregation of α-syn in vitro (Flagmeier
et al., 2016) and found that the rates of fibril amplification,
but not of lipid-induced nucleation, were slightly enhanced in
the case of the A30P variant, and were markedly increased
in the case of the A53T mutant compared with the wild-type
protein (Flagmeier et al., 2016). The importance of studying
these mutational variants in animal models has been investigated
using a variety of different animal models such as mice, fish
or flies (Dehay et al., 2015; Jagmag et al., 2016; Visanji et al.,
2016). In several transgenic mice lines, overexpressing human
wild-type, A53T, or A30P α-synuclein showed high correlation
with transgene expression, in combination with toxic gain
of function mechanism for α-synuclein pathogenesis (Visanji

et al., 2016). Overexpression of these genes can indeed lead to
neurodegeneration, loss of striatal dopamine, and locomotors
dysfunction (Dehay et al., 2015). Nevertheless, invertebrates such
as Drosophila have also proven powerful very tools to investigate
the molecular mechanisms of toxicity associated with α-syn
aggregation (Mizuno et al., 2010) due to their 75% homology with
human disease genes, rapid generation cycle (10–14 days), short
life span and cost-effectiveness to maintain (Mizuno et al., 2010).
α-Syn expression in Drosophila can cause dopaminergic neuron
loss, Lewy body-like inclusion body formation and locomotor
dysfunction (Feany and Bender, 2000) making this invertebrate
an attractive model to study PD.

In order to extend these analyses further to another animal
model of α-syn aggregation, we have used the nematode worm
Caenorhabditis elegans (C. elegans), which is characterized by
a simple anatomy, short lifespan, and well-established genetics.
For these reasons, this system has become a powerful tool in
biomedical research, in particular for genetic (Dillin et al., 2002;
Jorgensen and Mango, 2002; Morley et al., 2002; Lee et al.,
2003; Nollen et al., 2004; Hamilton et al., 2005; Kim and Sun,
2007; Sarin et al., 2008; Van Ham et al., 2008, 2010; Van der
Goot et al., 2012) and drug (Wu et al., 2006; Alavez et al.,
2012; Habchi et al., 2016; Perni et al., 2017a, 2018c; Limbocker
et al., 2019). In particular, worms expressing the A30P and
A53T variants in dopaminergic neurons have been reported in
a previous study (Kuwahara et al., 2006) exhibiting accumulation
of α-syn in the cell bodies and neurites of dopaminergic neurons,
failure in modulation of locomotory rate in response to food,
and reduction in neuronal dopamine content. These cell-specific
dysfunctions caused by accumulation of α-syn appear relevant to
the genetic and compound screenings aiming at the elucidation
of pathological cascade and therapeutic strategies for PD. Further
models were developed to evaluate the effect of the α-syn
overexpression in other cell tissues, such as the muscle cells
(Van Ham et al., 2008), and have been widely used for genetic
screenings (Van der Goot et al., 2012).

Building on this evidence, we aimed to create a worm
transgenic model expressing A30P and A53T variants that could
be applied also in high-throughput drug screening studies.
To achieve this goal, we chose to overexpress the A30P and
A53T variants in the big muscle cells of the worms to affect
directly the worms motility. We were then able to directly
monitor the impact of the α-syn mutational variants on the
worm fitness by using our recently developed high-throughput
machine vision system (Perni et al., 2018a,b). We describe
here the creation of two C. elegans models of familial PD
that express the human α-syn gene carrying the A30P and
the A53T mutations, indicated here as PDA30P and PDA53T,
respectively. We used for comparison a well-characterized PD
worm model, which is based on the overexpression of wild type
α-syn tagged with the yellow fluorescent protein (YFP) in the
muscle cells of the worms (Van Ham et al., 2008), indicated
here as PDWT. In order to facilitate a direct comparison between
the variants and the wild-type worms, we also generated a
fusion construct of YFP with the A30P and A53T variants. The
control healthy worms, which express only YFP in the big muscle
cells, are indicated here as the YFP strain. The PDWT reference
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model, in which the presence of α-syn causes characteristic
phenotypic changes (Van Ham et al., 2008), has been used
successfully to probe the nature of a range of neurodegenerative
conditions and has been employed in high-throughput screens
to identify genes and to search for α-syn-related phenotypes
(Van Ham et al., 2010; Van der Goot et al., 2012).

The aggregation of α-syn has been shown to be enhanced
dramatically by its binding to lipid membranes (Flagmeier
et al., 2016), and we recently showed that disrupting this
interactions can be achieved with small molecules (Perni et al.,
2017b; Limbocker et al., 2020). We reported in particular that
the aminosterol squalamine (Moore et al., 1993; Rao et al.,
2000; Zasloff et al., 2001, 2011), and related compounds (Perni
et al., 2018c) can inhibit the binding of α-syn to membranes,
reduce the initiation of its aggregation in vitro, and decrease
its toxicity in human neuroblastoma cells and in a C. elegans
model of PD (Perni et al., 2017b). Squalamine is currently in
clinical trials for the treatment of symptoms associated with
PD (ClinicalTrials.gov Identifier: NCT03781791). In order to
explore the value of these worm models in the context of familial
forms of PD, we used our recently developed high-throughput
screening strategy (Perni et al., 2017b, 2018a,b) to investigate
the effects of squalamine on the A30P and A53T worm variants
developed in this study. We complemented these studies by also
administering to our worm models an antibody that binds to a
region of α-syn that has previously been identified to play a key
structural role in its membrane-associated aggregation (Fusco
et al., 2016) and to mitigate the toxicity of α-syn oligomers
(Fusco et al., 2017).

RESULTS

Effects of the Mutations on the Fitness of
the PDA30P and PDA53T Worms
We first characterized the behavior of the PDA30P and PDA53T

worms in combination with the definition of the aggregation
profile of α-syn in these two strains, and compared the results
with the corresponding data for PDWT worms. We observed that
well-established behavioral characteristics, such as body bends
per minute (BPMs) (Van Ham et al., 2008; Gidalevitz et al., 2009;
Van der Goot et al., 2012; Habchi et al., 2016, 2017; Aprile et al.,
2017; Perni et al., 2017a,b), speed of movement (Morley et al.,
2002; Van Ham et al., 2008; Gidalevitz et al., 2009) and paralysis
rate (Link, 1995; Lublin and Link, 2013; Perni et al., 2017b), were
all affected to different extents by the overexpression of the A30P
and A53T variants (Figure 1). In particular, the PDA30P worms
showed reduced speed of movement and an increased paralysis
rate, but no relevant change in the frequency of body bends
(BPMs) (Figure 1A). By contrast, both the frequency of body
bends and speed of movement were found to be significantly
decreased (P < 0.005) in the PDA53T worms relative to the
YFP and PDWT worms. PDA53T worms also showed a higher
level of reduction in bend frequency and speed of movement,
and higher paralysis rate, when compared with the PDA30P

and PDWT worms (Figure 1A). These results suggest that the
observed effects of the modified protein are related to different
mechanisms of induced dysfunction compared to wild-type

protein. Despite the observed phenotypical differences, the levels
of expression of α-syn present in the PDWT, PDA30P and PDA53T

worms were found to be similar (Supplementary Figure 1).
To assess the influence of the amino acid substitutions on

the behavior of the different worm strains, we first calculated
the total fitness values, in both cases defined by a sum of the
behavioral parameters, and compared these values to these of the
PDWT worms (Perni et al., 2017b, 2018b). The total fitness score
is calculated as the sum of the frequency of body bend, speed of
movement, and paralysis rate, normalized by the value at day
1. In the case of the PDA30P worms, we observed a moderate
reduction in the fitness value compared to the control YFP
worms (Figure 1). A comparison of PDA53T worms with control
YFP worms after day 6 of adulthood, however, demonstrated a
significantly increased level of dysfunction that correlates with
the higher degree of formation of inclusions in the former model
(Figures 2A,B). This dysfunction appeared also more extensive
than the one observed in the case of PDWT and YFP control
worms. This observation is consistent with the reported effect of
the A53T mutation, which is to increase the aggregation of α-
syn in vitro. In particular, in these latter experiments we found
that the lipid-induced nucleation and fibril amplification steps
that result in the formation of an increased number of new
aggregates, are accelerated for the A53T variant compared to the
wild-type protein (Flagmeier et al., 2016), in accord with the in
vivo findings.

Effects of A30P and A53T Mutations on the
in vivo Aggregation of α-syn
Protein aggregation can be studied in vitro by means of a range
of well-established biophysical techniques (Arosio et al., 2014;
Buell et al., 2014; Galvagnion et al., 2015; Flagmeier et al., 2016;
Habchi et al., 2016). As direct observations of the nature and
kinetics of the aggregation processes taking place in vivo provide
opportunities to extend such findings to physiological conditions
(Morley et al., 2002; Nollen et al., 2004; Van Ham et al., 2008;
Van der Goot et al., 2012; Habchi et al., 2016), we investigated
here the development of aggregates in both PDA30P and PDA53T

worms, and compared their aggregation profiles with those of
PDWT worms (Van Ham et al., 2008) (Figure 2). We observed
that until day 6 of adulthood, inclusions in PDWT and PDA30P

worms showed a diffused fluorescence intensity pattern similar
to that of the control worms expressing only YFP, indicating
that they are largely unstructured and diffuse (Figures 2B,D).
After that, we could observe the presence of more well-defined
aggregates (Figures 2B,D).

We further analyzed the nature of the aggregates using
fluorescence lifetime imaging (FLIM), a technique that enables
the specific kinetics of protein aggregation to be followed in vivo
(Schierle et al., 2011; Laine et al., 2019). This methodology is
based on a fluorophore covalently linked to the amyloidogenic
protein of interest (Schierle et al., 2011). We have previously
shown that a reduction in the fluorescence lifetime of a
reporter fluorophore, such as YFP, correlates with the degree of
aggregation of the protein to which it is attached, and that this
effect provides a quantitative measure of the degree of protein
aggregation in vitro, in live cells and in C. elegans (Schierle et al.,
2011). This decrease in lifetime is thought to be associated with
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FIGURE 1 | Behavioral characterization of the PDA30P and PDA53T worm strains. (A) Three common readouts of worm fitness were investigated for each strain using

an automated worm tracking procedure (Perni et al., 2017b). The results are presented with a behavioral time-course map of PDA30P and PDA53T worms over 14 days

of adulthood. The speed of movement, number of body bends per minute (BPMs), and the rate of paralysis were followed during aging; data are normalized with

respect to day 1 to illustrate the progressive decline in all readouts. PD worms overexpressing wild-type α-syn:YFP in the body-wall muscle cells (PDWT ) were used as

a positive control, while worms expressing only YFP were used as negative healthy controls (Control). Shadowed areas represent standard errors of the mean (SEM).

(B) The rate of body bends, speed and paralysis rate were combined into a single score of total fitness and evaluated during the duration of the experiment. For each

experiment, about 1,000 worms were analyzed and each experiment was carried out in triplicate; one representative experiment of three experiments is shown. At

each time point, the mutant worms exhibited lower fitness (p < 0.0005) when compared to healthy worms; error bars represent the standard error of the mean (SEM);

the statistical significance was assessed using the 2-way ANOVA method with Dunnett’s multiple comparison test.

the fluorescence energy transfer to electronic states associated
with the amyloid structure (Schierle et al., 2011). Taken together,
these results indicate that the process of aggregation in vitro
and the ability of A53T to induce dysfunction in nematode
worms from day 6 of adulthood is significantly faster than that of
A30P and that of the wild-type protein, as also observed in vitro
(Flagmeier et al., 2016).

Effects of the Aminosterol Squalamine on
PDA30P and PDA53T Worms
The aminosterol squalamine (Rao et al., 2000; Zasloff et al.,
2001, 2011) was shown to be an effective inhibitor of in vitro
(Perni et al., 2017b), and to suppress α-syn-mediated toxicity
in neuronal cells and in a C. elegans model of PD (Perni et al.,
2017b). The primary mode of action of this compound is the
displacement of monomeric and oligomeric forms of α-syn from
lipid membranes both in lipid vesicles and in cell membranes.

In order to investigate the use of the PDA30P and PDA53T

worm models and obtain insights into the nature of familial
forms of PD, we administered squalamine to both PDA30P and
PDA53T worms by evaluating its effect on the rate and degree of
aggregation of the α-syn variants within the worms.We observed

that squalamine had a smaller effect on the behavior of the
PDA30P compared to PDWT worms, but increased substantially
the rate of body bends, speed of movement and the paralysis
rate of the PDA53T worms, as found with PDWT worms, and
effectively restored their behavior to that of the control YFP
worms (Figure 3A). These results are illustrated further by
comparison of the values of the total fitness in each case
(Figure 3B).

We next investigated the effects of squalamine on the
formation of aggregates of α-syn in the PDA53T and PDA30P

worms (Figures 3C,D). In the presence of squalamine, the
number of α-syn inclusions was reduced in the PDA53T worms,
but less so in the PDA30P worms, despite the fact that the
levels of α-syn expression in PDA30P and PDA53T worms in the
presence of squalamine were similar to that of the PDWT animals
(Supplementary Figure 1). We also found that squalamine did
not significantly affect the lipid-induced aggregation process of
the A30P variant in vitro (Supplementary Figure 2), while it
did so for the wild-type protein (Perni et al., 2017b). As the
A30P variant has been shown to have reduced binding to cell
membranes (Jo et al., 2002), the observation of the reduced
effects of squalamine in the A30P variant compared to the A53T
and wild-type variants further supports the conclusion that the
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FIGURE 2 | Age-dependent formation of inclusions in PDA30P and PDA53T worms. (A) Schematic description of the lifespan of C. elegans. Days 6 and 12 of adulthood

are reported here as representative for the formation of α-syn inclusions in vivo. (B) Quantification of the number of α-syn inclusions in PDA30P and PDA53T worms,

compared to PDWT worms (Van Ham et al., 2008). (C) PDA30P and PDA53T amyloid-like aggregation profiles measured using TG-FLIM (Laine et al., 2019), (left) day 6

and (right) day 12. The average fluorescence lifetime (in ps) was measured for PDA30P (blue) and PDA53T (green) worms, and compared to control worms (gray) and

PDWT worms (red) (Van Ham et al., 2008), and to Q40 (pink) polyglutamine worms, which have a high propensity to form amyloid-like aggregates (Morley et al., 2002).

The FLIM analysis shows no amyloid-like features in the α-syn inclusions in PDA30P worms at day 6 of adulthood, unlike PDA53T, PDWT and Q40 worms. A statistically

significant increase in amyloid-like aggregation was observed in all the strains after day 12 of adulthood (insets) (p < 0.05). For each experiment, 25 worms were

analyzed. (D) Representative images showing the inclusion profile in PDA30P and PDA53T worms and compared to PDWT worms and YFP controls at day 6 and 12 (Van

Ham et al., 2008).

mechanism of action of this small molecule in vivo is mediated by
its competitive binding to cell membranes (Perni et al., 2017b).

Effects of an Antibody Targeting the
N-Terminal Region of α-syn on PDA30P and
PDA53T Worms
In order to probe further the behavior of the various α-syn
forms in C. elegans, we administered to the PDA30P worms a
previously described antibody (Fusco et al., 2016) that binds to
theN-terminal region of the α-syn sequence (residues 1–25). This
region was found to play a key structural role in the membrane-
associated aggregation of α-syn (Fusco et al., 2016) and in

the toxicity of α-syn oligomers (Fusco et al., 2017). When the
antibody was incubated with PDA30P, a reduction in the toxicity
that resulted from the overexpression of α-syn was observed, to
an extent similar to that observed in the case of PDWT (Perni
et al., 2017b). The effect of the antibody on PDA30P appeared to
be slightly greater than that induced by squalamine (Figure 4),
which could be a result of the more specific action of the antibody
in suppressing the toxicity associated with overexpression of
α-syn molecules in the worms, particularly showing a direct
interaction with the exposed N-terminal region of α-syn in the
oligomeric species. By contrast, the antibody was observed to
exert effects similar to those resulting from the addition of
squalamine on the toxicity observed in PDA53T worms, as shown
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FIGURE 3 | Effects of squalamine on the formation of α-syn inclusions and the fitness of PDA30P and PDA53T worms. (A) Behavioral time-course map reporting thee

rate of body bends, swimming speed and paralysis rate for PDA30P and PDA53T worms exposed to 10µM squalamine. (B) Calculation of the total fitness corresponding

to the three readouts in (A) (Perni et al., 2017b, 2018b). The effects of squalamine on control worms were negligible (Perni et al., 2017b), and only a small protective

effect could be observed in PDA30P, while strong protective effects were observed in PDA53T worms consistently with the effects on the PDWT worms (Perni et al.,

2017b). Each experiment was carried out in triplicate, and about 1,000 worms were analyzed in each replicate; one representative experiment of the three is shown.

(C) Quantification of the number of inclusions in PDA30P and PDA53T worms with or without squalamine; squalamine reduced significantly the number of inclusions in

PDA53T worms **P ≤ 0.01, ***P ≤ 0.001 and ****P ≤ 0.0001. (D) Representative images showing a substantial decrease in the number of α-syn inclusions in the

presence of squalamine in PDA53T worms. In order to show the inclusions more clearly, the image focus on only the heads of the worms, although the quantification

was carried out using the whole worms. This result is consistent with previous observations for PDWT worms (Perni et al., 2017b). In the YFP worms, the expression

pattern is not significantly affected while in PDA30P worms the number of inclusions appears mildly reduced. All measurements were carried out at day 12 of adulthood.

by an increase in the rate of body bends and in the speed of
movement, and by a decrease in the paralysis rates (Figure 4).

DISCUSSION AND CONCLUSIONS

We have created and characterized two C. elegans strains, PDA30P

and PDA53T, expressing the A30P and A53T mutational variants,
respectively, which are associated with familial forms of PD.
We have then demonstrated that these two mutational variants

affect the worms in different ways and to different extents. The

expression of the A30P species was shown to reduce specifically
certain aspects of worm behavior, notably speed of swimming,

compared with the wild-type protein. Overexpression of the
A53T mutation, however, had a more dramatic effect than that

found for the wild-type protein, and the worms expressing this

variant behaved in a dysfunctional manner at a significantly
younger age than did those expressing the A30P or the wild-type
forms. Overall, the expression of the A53T variant resulted in a
more significant decrease in the bends, and speed of movement
compared with the A30P and wild-type proteins. We note that
worms expressing the A30P and A53T variants in dopaminergic
neurons exhibited a less severe phenotype (Kuwahara et al.,
2006), suggesting that the overexpression of α-syn in muscle cells
may lead to increased toxicity through additional mechanisms
with respect to those involved in PD.

These findings are broadly consistent with the measurement
and analysis of the kinetics of aggregation in vitro. In particular,
the observation that the expression of the A30P variant alters the
phenotype of the wormsmoderately compared to the dysfunction
associated with the expression of the wild-type protein, is in

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 March 2021 | Volume 9 | Article 552549192

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Perni et al. A30P and A53T α-Synuclein C. elegans Strains

FIGURE 4 | Comparison of the effects of the antibody and squalamine administration to PDA30P and PDA53T worms. (A,B) At a concentration of 10µM, the antibody

rescues the motility dysfunction (relative speed) induced by the over-expression of A30P, with squalamine having a slightly smaller effect. The worm motility is also

rescued in the A53T worms by the antibody and squalamine to similar extents. Errors represent the standard error on the mean (SEM) *P ≤ 0.05, **P ≤ 0.01,

***P ≤ 0.001 and ****P ≤ 0.0001. (C,D) Paralysis rate, reported as the fraction of worms that are mobile, corresponding to the time points shown in (A,B); the

variability between biological replicates is in the 2–9% range, and the variability between technical replicates is in the 1–4% range. (E,F) Number of inclusions at day

12 of adulthood *P ≤ 0.05, ***P ≤ 0.001 and ****P ≤ 0.0001. The scale bar indicates 80µm.

agreement with the findings that the overall rate of aggregation
is only mildly affected for the A30P variants when compared
to wild-type in vitro (Conway et al., 2000; Flagmeier et al.,
2016). Initiation of the in vitro aggregation process, however,

has been found to be faster for the A53T variant than for A30P
or wild-type protein (Flagmeier et al., 2016), an observation
consistent with more rapid decline of the fitness of the PDA53T

related to the PDA30P or PDWT worms. Taken together, these
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results are particularly interesting in the context of the clinical
manifestations of the A30P and A53T mutations, where patients
with the A30P mutation appear generally to exhibit similar age
of onset and rate of disease progression to those suffering of
sporadic PD, while patients carrying the A53Tmutation generally
exhibit an earlier age of onset and have a more rapid rate of
progression of the disease (Polymeropoulos et al., 1997; Krüger
et al., 2001; Schiesling et al., 2008).

The degree of dysfunction of the C. elegans model expressing
human α-syn has recently been shown to be reduced substantially
by the administration of squalamine (Perni et al., 2017b), a
naturally active aminosterol, and we have shown here that this
small molecule decreases the amount of fitness reduction and
aggregation to a lower extent in the PDA30P than in the PDWT

worms, but has a more substantial effect in the PDA53T worms,
which is similar to that observed in PDWT worms. These results
are consistent with the finding that squalamine reduces the
membrane-associated initiation of the aggregation of α-syn by
displacing it from the surfaces of lipid bilayers (Perni et al.,
2017b). In addition, we observed that an antibody targeting the
N-terminal region of the protein, which plays a key role in both
the aggregation process and the induction of cellular toxicity
by α-syn oligomers, was also protective in PDWT and PDA53T

worms, while less so in PDA30P worms. Overall, this analysis
provides support to the strategy of reducing the binding of α-syn
to lipid membranes as a potential therapeutics strategy for PD.

MATERIALS AND METHODS

Extended experimental procedures are described in SI Materials

and Methods. In vitro kinetic experiments and purifications
of wild type and mutant α-syn were carried out as previously
indicated (Flagmeier et al., 2016). TG-FLIM imaging was carried
out on a home-built microscopy platform described elsewhere
(Schierle et al., 2011; Laine et al., 2019). In vivo experiments
were carried out by using a well-studied C. elegans model of
PD (Link, 1995) and custom made A53T and A30P strains.
Microinjection was used to create new transgenic strains and
standard conditions were used for the propagation of C. elegans
(Brenner, 1974). Squalamine was synthesized as previously
described (Zhang et al., 1998) and automated behavioral assays
were carried out as previously described (Perni et al., 2017b,
2018a,b). Measurements on inclusions in vivo were performed
using ImageJ software as previously described (Van der Goot
et al., 2012; Perni et al., 2017b). Western blot analysis was
carried out as previously described (Limbocker et al., 2019).
The transduction of the antibody was carried out as previously
reported (Aprile et al., 2017; Perni et al., 2017a).
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Parkinson’s disease (PD) is a pathological condition characterized by the aggregation
and the resultant presence of intraneuronal inclusions termed Lewy bodies (LBs)
and Lewy neurites which are mainly composed of fibrillar α-synuclein (α-syn) protein.
Pathogenic aggregation of α-syn is identified as the major cause of LBs deposition.
Several mutations in α-syn showing varied aggregation kinetics in comparison to the
wild type (WT) α-syn are reported in PD (A30P, E46K, H 50Q, G51D, A53E, and
A53T). Also, the cell-to-cell spread of pathological α-syn plays a significant role in
PD development. Interestingly, it has also been suggested that the pathology of PD
may begin in the gastrointestinal tract and spread via the vagus nerve (VN) to brain
proposing the gut–brain axis of α-syn pathology in PD. Despite multiple efforts, the
behavior and functions of this protein in normal and pathological states (specifically
in PD) is far from understood. Furthermore, the etiological factors responsible for
triggering aggregation of this protein remain elusive. This review is an attempt to collate
and present latest information on α-syn in relation to its structure, biochemistry and
biophysics of aggregation in PD. Current advances in therapeutic efforts toward clearing
the pathogenic α-syn via autophagy/lysosomal flux are also reviewed and reported.

Keywords: α-synuclein, autophagy, neurotoxicity, gut–brain axis, Parkinson’s disease

Abbreviations: α-syn, α-synuclein; Aβ, amyloid-β; AMPK, AMP-activated protein kinase; AADC, aromatic amino acid
decarboxylase; AFM, atomic force microscopy; CMA, chaperone-mediated autophagy; DMVN, dorsal motor nucleus of
the vagus nerve; DAT, dopamine transporter; ER, endoplasmic reticulum; ETC, electron transport chain; ENS, enteric
nervous system; ERAD, endoplasmic reticulum associated degradation; GI, gastrointestinal; GA, Golgi apparatus; hiPSC,
human pluripotent stem cells; IPANs, intrinsic primary afferent neurons; IRE1, inositol-requiring enzyme 1; lHsc70,
lysosome-associated Hsc70; LAMP2A, lysosome-associated membrane protein type 2a; LBs, Lewy bodies; LBD, Lewy body
disorders; mTOR, mammalian target of rapamycin; NO, nitric oxide; NMR, nuclear magnetic resonance; OB, olfactory bulb;
PP2A, protein phosphatase 2A; PD, Parkinson’s disease; RAb1A, Ras-related protein Rab-1A; SNpc, substantia nigra pars
compacta; SV, synaptic vesicles; TFEB, transcription factor EB; TH, tyrosine hydroxylase; TGN, trans-Golgi network; UPR,
unfolded protein response; ULK1, Unc-51-like autophagy activating kinase 1; VMAT, vesicular monoamine transporter; XBP,
X-box–binding protein 1; ZKSCAN3, zinc finger with KRAB and SCAN domains 3.
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HIGHLIGHTS

- Updated information on the structure and biochemistry of
α-syn aggregation is discussed and explained with suitable
examples.

- Recent evidence on mutations in α-syn (A30P, E46K, H 50Q,
G51D, A53E, and A53T) and its cell-to-cell transmission and
the consequent impact on PD progression is compiled and
discussed in detail.

- Mechanism of transport of pathogenic α-syn from
gastrointestinal tract via the vagus nerve (VN) to brain and
information on various clinical trials that validate the function
of gut–brain axis in Parkinson’s disease (PD) is provided.

- Mechanism of cellular clearance of pathogenic α-syn
via autophagy and clinical trials focusing on autophagy
facilitation are discussed.

- Various reports indicate that native α-syn has physiological
functions, but the mutated and aggregated forms are
neurotoxic which play critical role in PD. Hence,
understanding the mechanism of its origin, aggregation
and cellular clearance will provide new leads in PD drug
discovery.

INTRODUCTION

Parkinson’s disease is a heterogeneous neurological disorder with
progressive loss of dopaminergic neurons in the SNpc region
in the brain (Nepal et al., 2019). One of the major hallmarks
of PD is the accumulation and aggregation of misfolded α-
synuclein (α-syn) protein to form LBs and Lewy neurites that
cause disruption of cellular homeostasis, and degeneration of
neurons (Mahul-Mellier et al., 2020). α-syn is a presynaptic
neuronal protein encoded by SNCA gene and is expressed in
several regions of the brain (Polymeropoulos et al., 1997; Meade
et al., 2019). The presence of α-syn was observed for the first
time by Maroteaux et al. (1988) in the presynaptic nerve terminals
and in the neuronal nuclei, hence it was called syn (synapse) and
nuclein (nucleus) (Maroteaux et al., 1988). Later, the presence of
native and pathogenic α-syn was identified in organelles such as
the GA (Gosavi et al., 2002; Mori et al., 2002), endolysosomal
system (Lee et al., 2004), and mitochondrial surface (Li et al.,
2007; Cole et al., 2008; Parihar et al., 2008). α-syn was also
found to be associated with the inner membrane of mitochondria
(Devi et al., 2008; Shavali et al., 2008; Ludtmann et al., 2018;
Ganjam et al., 2019), ER (Cooper et al., 2006; Hoozemans et al.,
2007; Colla et al., 2012a,b) and the mitochondria-associated ER
membranes (MAM) (Guardia-Laguarta et al., 2014). Recently,
several reports have confirmed the involvement of gut–brain axis
in PD (Ghaisas et al., 2019). Gut dysbiosis affects the ENS and
the contribute for aggregation of α-syn which is then transported
to brain by cell-to-cell contacts exosomes (Danzer et al., 2012;
Freundt et al., 2012; Kim et al., 2019; Jang et al., 2020; Siddu et al.,
2020). Alternative theories also propose on the involvement of
exosomal vesicles from gut microbiome in regulating host gene
expression and the in aggregation of α-syn (Danzer et al., 2012;
Rokad et al., 2019).

The synuclein family consist of three protein members
- α, β, and γ (Lashuel et al., 2013). α-syn and β-syn are
primarily found in brain, whereas, γ-syn in the neoplastic tissues
(Zhang et al., 2011).

Although the physiological function of α-syn is still not
clearly understood, reports suggest that it plays a significant
role in neuronal plasticity (Uversky, 2008; Lashuel et al., 2013;
Wu Q. et al., 2019) and in dopamine synthesis by regulating
TH (Peng et al., 2005). α-syn activates protein phosphatase 2A
(PP2A), a serine/threonine phosphatase, that dephosphorylates
TH (Leal et al., 2002; Peng et al., 2005; Hua et al., 2015;
Qu et al., 2018). Additionally, α-syn is reported to modulate
the release of the neurotransmitters in association with the
SVs. Overexpression of native α-syn inhibits exocytosis (Logan
et al., 2017) and mutations in the SNCA gene that encodes
native α-syn are associated with PD with autosomal dominant
inheritance pattern with a relatively early onset age than
sporadic PD patients (Polymeropoulos et al., 1996; Ikeuchi
et al., 2008). Interestingly, α-synucleinopathies are reported
increase in the propensity of many neurodegenerative diseases
including multiple system atrophy (MSA), Lewy body dementia
(LBD) and NBIA Type 1 (formerly known as Hallervorden-
Spatz disease) (Jellinger, 2003). Higher Aβ and tau expressions
are reported in cortex and striatum in dementia with Lewy
bodies (DLB) compared to PD (Jellinger and Korczyn, 2018).
On the other hand, the hallmark histopathology feature of MSA
is accumulation of α-syn in the cytoplasm of oligodendroglial
cells (Dickson, 2012; Kim et al., 2014). Also, MSA has
aggregated α-syn inclusions in the nuclei, unlike PD (Lin
et al., 2004). Aggregation of α-syn is often observed with
hyperphosphorylated Tau, transactive response DNA binding
protein 43 kDa (TDP-43), Aβ, and prion protein accumulation
in brain (Visanji et al., 2019). The missense mutations in
SNCA cause the substitutions of G51D and A53E that result in
atypical synucleinopathies (mixture of PD and MSA pathologies)
(Schweighauser et al., 2020). Due to the conflicting reports, the
physiological and pathophysiological role of α-syn aggregation
remains elusive.

Fluorescent labeling report showed the presence of α-syn in
several brain regions such as OB, dorsal nucleus of the VN,
amygdala, hippocampus, and neocortex, besides SNpc (Braak
and Del Tredici, 2009). PD was reported to spread to the
connected regions (Braak et al., 2003b). The role of α-syn
misfolding in the initiation of PD is well established (Mahul-
Mellier et al., 2020). Several studies report on targeting α-syn
aggregation and synthesis as a potential therapeutic option in PD
(Fields et al., 2019; Chakroun et al., 2020; Gabr and Peccati, 2020;
Mahul-Mellier et al., 2020; Ryan et al., 2020). Here, it is
important to mention that native α-syn plays a crucial role
in releasing the neurotransmitter associated with SV due to
its greater curvature, but its over-expression is reported to
inhibit the release of neurotransmitters (Sulzer and Edwards,
2019; Cai et al., 2020). Furthermore, mitochondrial localized
monomeric α-syn is reported to enhance the bioenergetics
of mitochondria (Ludtmann et al., 2016), but the oligomeric
form causes detrimental effects and results in mitochondrial
dysfunction, particularly in PD (Tripathi and Chattopadhyay,
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2019). Here, it must be noted that although misfolded α-syn
is reported as a major hallmark of PD, several physiologies
associated with native α-syn remain elusive. Hence, there
is a need to collate information about this protein from
literature and revisit its physiological functions, mechanism of
aggregation and its autophagic clearance in view of the latest
reports. In this review, we have attempted to summarize the
functions of α-syn and various therapeutic approaches that target
this protein in PD.

α-SYNUCLEIN – STRUCTURE AND
BIOCHEMISTRY

Structure
The discovery of α-syn using an antibody against the purified
cholinergic vesicles from the Torpedo electric organ (Torpedo
Californica) gave the first evidence of its existence in the
presynaptic nerve terminal (Maroteaux et al., 1988). Native
α-syn is normally released α-syn into the extracellular space
as exosome via exocytosis (Lee et al., 2005). It is a 14 kDa
protein with 140 amino acids and three domains: a N-terminal
domain (amino acid 1–60) with incomplete KXKEGV motifs,
a non-amyloid-β component of plaques (NAC) domain (amino
acid 61–95), and a C-terminal domain (amino acid 96–140)
(pKa of 4.7) (Jakes et al., 1994; Hashimoto and Masliah,
1999; Lashuel et al., 2013). Protein containing the NAC (non-
amyloid component) domain undergoes three state transition
from original structure to β-sheet and further to α-helical
structure (Figure 1). Other two domains undergo transformation
from native to α-helical structure. Being highly hydrophobic,
β-sheet reacts with 1-anilinonaphthalene-8-sulfonic acid to
undergo self-aggregation (Li et al., 2002). Native α-syn exists
in high concentration in soluble and membrane associated
fraction in the brain and makes for as much as 1% of
the total protein in the soluble brain cytosolic protein (Iwai
et al., 1995). It is predominantly present in the presynaptic
brain and cerebrospinal fluid (CSF) (Rokad et al., 2017).
The native form of α-syn is a monomer. However, there
is a possibility that the protein could form oligomers upon
interaction with other proteins.

Oligomerization of α-Synuclein
Depending on the aggregation conditions of α-syn, heterogenous
and diverse oligomers are formed, which can be identified
by their biophysical and cellular properties. Danzer et al.
(2007) had studied three different aggregation protocols of
oligomerization of α-syn: where type A had high membrane
permeability initiating an elevation of intracellular calcium
(Adamczyk and Strosznajder, 2006; Lashuel and Lansbury, 2006)
and leading to cell death, whereas, type B and C are able
to enter cells directly and seed intracellular α-syn aggregation
(Danzer et al., 2007). The report also confirmed that, type
B and C do not induce caspase activation or cell loss. It is
suggested that this loss might be because of bypassing the
toxic oligomeric intermediates aggregation, which might have

formed due to α-syn overexpression (Danzer et al., 2007). Along
with the ability of self-assemble of α-syn into a variety of
oligomeric species, α-syn has been further reported to interact
with other proteins undergoing co-oligomerization, including
Aβ and tau (Mandal et al., 2006; Qureshi and Paudel, 2011;
Sengupta et al., 2015; Chia et al., 2017). In another study,
β-sheet geometry between different oligomeric species was
reported (Chen et al., 2015) despite mutant variants (A53T,
A30P, and E46K) producing similar concentrations and types
of oligomeric species to WT protein (Tosatto et al., 2015).
High degree of heterogeneity of β-sheet oligomers with the
same type of core architecture with different number of β-
strands and arrangements and permutations of inter-strand
hydrogen bonding interactions is expected as has been observed
to occur in fibrillar structures (Qiang et al., 2012; Fitzpatrick
et al., 2013). Indeed, the same protein subunits within the
same oligomeric species might have different numbers and
lengths of β-strands, in the packing of the oligomers and
the rearrangement of the β-strands from an antiparallel to a
parallel configuration, which might be important for the efficient
elongation of these α-syn oligomers to generate the fibrillar
architecture (Chen et al., 2015). Recently, Kiechle et al. (2019)
had reported that, despite the availability of oligomerization
of α-syn throughout the neuronal cell, the oligomerization
takes place at the pre-synapse in an animal model of PD
(Kiechle et al., 2019). Further in a similar study it was reported
that α-syn oligomers accumulate within synaptic terminals of
autonomic fibers of the skin in PD patients, which could
potentially be a reliable biomarker for detecting the disease
(Mazzetti et al., 2020).

Biochemistry
Despite decades of research, the structure and functional
relationship of endogenous physiological forms of native α-
syn are not elucidated. Anderson et al. (2006) investigated
the property of misfolded α-syn in LBs isolated from DLB
brains. The phosphorylation of α-syn remains elusive, although
kinases including polo-like kinase (PLK), casein kinase (CK)1,
CK2, G protein coupled receptor kinase (GRK) families were
identified to mediate this event (Dzamko et al., 2014). 90%
of α-syn from PD brains is reported to be phosphorylated
while 4% phosphorylation of α-syn is observed in normal
brains (Dzamko et al., 2014). Phosphorylation of α-syn at Ser
129 has gained a significant importance in the pathogenic
aggregation of α-syn (Fujiwara et al., 2002; Paleologou et al.,
2008; Ma et al., 2016; Wang et al., 2019). Minor alterations
in ubiquitination at Lys residues 12, 21, and 23 and specific
truncations at Asp 115, Asp 119, Asn 122, Tyr 133, and
Asp 135 are also seen (Anderson et al., 2006). Some studies
have suggested that phosphorylation at Ser 129 triggers α-
syn-mediated cellular toxicity (Chen and Feany, 2005; Sato
et al., 2011; Karampetsou et al., 2017). However, conflicting
reports suggest that phosphorylation at Ser 129 promotes
proteasomal or autophagic clearance of aggregated α-syn
(Gorbatyuk et al., 2008; Machiya et al., 2010; Kuwahara et al.,
2012; Nübling et al., 2014; Arawaka et al., 2017). Hence, the
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FIGURE 1 | (A) Native α-syn structure (PDB:1XQ8). (B) Mutation regions (A53E, A53T, and H50Q) of α-syn. (C) Multiple sequence alignment of synuclein (α, β, and
γ). Residues are colored according to Zappo color scheme.

exact role Ser 129 phosphorylation in synucleinopathies needs to
be investigated.

α-Synuclein undergoes partial folding in the early stages of
fibril formation (Uversky et al., 2001). Due to its structure,
interactions, and sensitivity to the environment, α-syn is prone
to misfolding. Amyloid fibrils can be formed from α-syn upon
alterations in pH (Buell et al., 2014), temperature (Uversky
et al., 2001), salt concentrations (Munishkina et al., 2004),
air-water interference (Campioni et al., 2014), and contact
with negatively charged lipid membranes (Galvagnion et al.,
2015). Recently, Kurochka et al. (2021) had reported that
formation of fibrils from α-syn monomers is significantly
decreased in presence of lipids (Kurochka et al., 2021).
Anions are also reported to induce partial folding of α-
syn at neutral pH (Munishkina et al., 2004). Molecular
crowding, i.e., intracellular increase in the concentration of
macromolecules (proteins, nucleic acids, and carbohydrates)
beyond 400 gram/liter in a cell has been reported to lead
to the (Munishkina et al., 2004) production of intrinsically
disordered proteins which tend to aggregate. To understand
the impact of molecular crowding on α-syn aggregation, Bai
et al. (2017) used Ficoll70TM and Sucrose as crowding agents.
However, the data did not provide sufficient evidence supporting

the role of molecular crowding in α-syn aggregation in PD
(Bai et al., 2017).

α-SYNUCLEIN AGGREGATION,
TRANSPORT AND PROPAGATION

The exact process of α-syn aggregation is not elucidated.
Reports on random and instant transformation of the α-syn
structure to the unfolded or partially folded state are available
(Uversky, 2007). Under physiological conditions, native α-syn
has a tendency to remain folded (Bartels et al., 2011; Wang et al.,
2011). However, there is other report also, that says native α-syn
is large unstructured monomer and they are aggregation prone
(Burré et al., 2013). Further research in this filed will give the clear
turn of the debate. The first evidence on the role of misfolded
α-syn and amyloid β (Aβ) in neurodegenerative diseases was
in the brains of AD patients (Uéda et al., 1993). The cleaved
peptide from the plaques in AD brains was reported to be the
central hydrophobic core of α-syn and was given the description
of ‘non-amyloidogenic component,’ or NAC region (Uéda et al.,
1993). Native α-syn requires the presence of interacting partner
for aggregation in response to environmental stress, as this
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FIGURE 2 | α-Synuclein aggregation process (α-syn, principal constituent of Lewy’s body). This figure was drawn using Motifolio.

involves changes in the structural configuration of the protein
(Weinreb et al., 1996; Uversky, 2002; Dyson and Wright, 2005;
Villar-Piqué et al., 2016; Candelise et al., 2020).

Apart from interacting with other proteins, α-syn forms
homo-multimers (Bartels et al., 2011; Dettmer et al., 2013,
2015). Native α-syn also self-assembles and forms β-pleated
sheets (Serpell et al., 2000) which further lead to the
formation of insoluble aggregations (Conway et al., 1998). NMR
spectroscopy, AFM and circular dichroism have revealed the
presence of increased β-sheet structure during α-syn aggregations
(Pfefferkorn et al., 2012; Lashuel et al., 2013). The factors that are
involved in the process of forming insoluble α-syn aggregation
include genetic mutation (Conway et al., 1998; Fredenburg
et al., 2007), molecular crowding induced by high concentration
of macromolecules (Conway et al., 1998; Shtilerman et al.,
2002; Uversky, 2002, 2007), alterations in temperature and low
pH (Ahmad et al., 2012). Additionally, minute variations in
ionic strength of α-syn (25 instead of 50 mM NaCl) (Sandal
et al., 2008; Roeters et al., 2017), oxidative stress (Hashimoto
et al., 1999), proteins with lipid bilayer surface (Burke et al.,
2013) or phospholipids (Bodner et al., 2009) also contribute
to the formation of aggregates. Under these alterations in the
environment, α-syn forms oligomers (Figure 2), then proto
fibrils and finally the insoluble fibrils (Uversky et al., 2001;
Kanaan and Manfredsson, 2012). The reaction is reported to
proceed in first-order kinetics (Uversky et al., 2001; Kanaan
and Manfredsson, 2012), where, in each stage the product is
more stable compared to the reactants, signifying the irreversible
process (Uversky and Eliezer, 2009). The hydrophobic core of
various α-syn point mutations (like A30P, E46K, and A53T)
reduces the α-helical content prompting the aggregation of the
protein (Waxman et al., 2009; Burré et al., 2012). Srivastava
et al. (2020) reported the rotenone induced alterations in the
environment. Rotenone increases the hydrophobicity favoring
misfolding of α-syn by reducing the lag phase and triggering
aggregations (Srivastava et al., 2020).

Alerte et al. (2008) reported that the aggregation of α-
syn is associated with the hyperphosphorylation of PP2A in
dopaminergic neurons (Alerte et al., 2008). A small amount of
intracellular α-syn translocates into the lumen of vesicles which
are facilitate aggregation (Lee et al., 2005). Misfolded α-syn is
removed by extracellular proteolytic enzymes or is taken up by

the neighboring cells especially by microglia and astrocytes, and
degraded inside lysosomes (Ahn et al., 2006; Stefanis et al., 2019).
Mitochondrial and proteasomal dysfunctions triggers α-syn
aggregation and further activate microglial neuroinflammation
associated with PD (Ciechanover and Brundin, 2003; Lee,
2003; Zhang et al., 2005). Recent studies also propose that the
aggregated α-syn gets transported like prions to other neurons
(Desplats et al., 2009; Luk et al., 2012). Supporting the data,
George et al. (2019) have reported microglia modulated cell to
cell transfer of α-syn in PD in non-inflammatory conditions
(George et al., 2019). A study has reported that lipid peroxidation
by-product 4-hydroxy-2-non-enal (HNE) plays a crucial role in
oligomerization and cell to cell transmission of misfolded α-syn
(Bae et al., 2013).

The exact mechanism of α-syn spread is yet to be clearly
understood. However, secretion of exosome like vesicles has been
reported to be involved in the spread of intracellular α-syn to
the extracellular space of another cell (Emmanouilidou et al.,
2010; Alvarez-Erviti et al., 2011). Furthermore, exosomes are
also reported to be associated the formation of α-syn oligomers
which are easily uptaken by the neighboring cells (Danzer
et al., 2012). Microglia was reported to uptake the α-syn via
receptor mediated endocytosis (Lee et al., 2008). Along with
the exosomal α-syn, free oligomeric α-syn was also reported
to be up taken by neighboring cells (Danzer et al., 2012).
There are several reported mechanism of cell-to-cell transfer
of α-syn in PD including tunneling nanotubes, trans-synaptic
junctions (Lee et al., 2005; Jao et al., 2008; Jang et al., 2010;
Freundt et al., 2012; Masuda-Suzukake et al., 2014; Abounit
et al., 2016; Dieriks et al., 2017). Recent studies also reported
that the introduction of α-syn exosomes derived from patients
with synucleinopathies to cell culture and mice model leads to
propagating of α-syn aggregation (Stuendl et al., 2016; Ngolab
et al., 2017). The pathological α-syn is also reported to be taken up
by the surrounding microglia, which causes neuroinflammation
(Chang et al., 2013; Bliederhaeuser et al., 2016) and inhibits
autophagy and promotes the transmission α-syn (Xia et al.,
2019). On the other hand, tunneling nanotubes (TnTs), the non-
adherent actin-based cytoplasmic extensions act as a membrane
bridges for intercellular transport of α-syn between two cells
within a short time span of 30 sec (Gousset and Zurzolo,
2009; Abounit et al., 2016; Dieriks et al., 2017; Rostami et al.,
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2017). The TnTs mediated transport is not restricted to α-syn
and may have a general role in transportation (Dieriks et al.,
2017). The spread of α-syn over long distances via axon could
possibly be involved in transferring misfolded α-syn to different
regions of the brain (Jensen et al., 1999; Utton et al., 2005).
Neuronal cell-to-cell transmission of α-syn fibrils is reported
through axonal transport (Freundt et al., 2012). Beyond the
classical exocytosis of exosome in, the transportation of α-syn
from cell-to-cell (Lee et al., 2005; Danzer et al., 2012) has also
been suggested to happen by trans-synaptic spreading (Danzer
et al., 2011; Pan-Montojo et al., 2012; Van Den Berge et al., 2019;
Mezias et al., 2020).

Several drugs inhibit cell to cell transportation of aggregated
α-syn (Schofield et al., 2019; Weihofen et al., 2019; Hijaz and
Volpicelli-Daley, 2020). 14-3-3θ protein was reported to inhibit
the cell to cell transmission of α-syn and its toxicity by reducing
the oligomerization in PD (Wang et al., 2018). Liu et al. (2021)
suggest on the protective role of biocompatible antioxidant
nanozyme, PtCu nanoalloys (NAs) that inhibits the prion-like
spreading of α-syn in PD (Liu et al., 2021).

MUTANT α-SYNUCLEIN AND PD

The SNCA gene is located on chromosome 4. Several mutations
and polymorphisms have been observed in SNCA gene.
Alterations in SNCA expression levels due to mutations have
been associated to PD (Rutherford et al., 2014). The link between
mutant α-syn and PD was established in an autosomal dominant
form of PD with the missense mutation in the chromosome 4q21-
q23 (Polymeropoulos et al., 1996). The change in a single base
pair in the chromosome from guanine to adenosine (G to A
transition) at the position 209 of exon number 4 in SNCA gene
results in alteration of alanine to threonine at position 53 of
the α-syn protein (A53T) (Golbe et al., 1990; Polymeropoulos
et al., 1997). Furthermore, A30P (Krüger et al., 1998), E46K
(Zarranz et al., 2004; Sakai et al., 2019), H50Q (Appel-Cresswell
et al., 2013), G51D (Lesage et al., 2013), A53E (Pasanen et al.,
2014), A53V (Yoshino et al., 2017), A18T and A29S (Hoffman-
Zacharska et al., 2013) mutations are also reported. Remarkably,
all the recognized mutations in the SNCA gene occur at the
N-terminus of the protein which either disrupt the membrane
binding property or result in increase in the aggregation of α-syn,
thereby impairing the native α-syn functions at the pre-synaptic
terminal (Conway et al., 1998; Fredenburg et al., 2007; Burré
et al., 2012; Lesage et al., 2013; Fares et al., 2014). Although single
base changes and small indels have been reported as the most
widely studies DNA variations in PD, Copy Number Variations
are also emerging as a prevalent source of genetic variations in
PD (La Cognata et al., 2017). For example, Singleton et al. (2003)
determined that triplication of the SNCA genomic locus on
chromosome 4q21 is associated with PD (Singleton et al., 2003).

Majority of the identified PD mutations are located within the
lipid-binding domain of α-syn suggesting that alterations in lipid
binding might be associated with α-syn pathology (Pineda and
Burré, 2017). SNCA variants have been shown to have differential
affinity in binding to the phospholipid membranes. SNCA WT

and A53T were reported to bind to rat brain vesicles whereas
A30P was reported not to bind to phospholipid membranes. It
was proposed that mutant α-syn potentially accumulates in the
cells and assembles into Lewy body filaments (Jensen et al., 1998).
Later on, it was reported that familial mutant A30P had a lesser
affinity and A53T had no affinity to bind lipid membranes (Perrin
et al., 2000). However, subsequently, it was confirmed that A30P,
but not A53T shows decreased lipid binding affinity (Bussell and
Eliezer, 2004). This was suggested to be due to the disruption of
local helix formation as a result of A30P mutation (Fares et al.,
2014; Ysselstein et al., 2015). In other reports, A53T mutant
has been shown to have reduced (Samuel et al., 2016; Robotta
et al., 2017) or similar (Middleton and Rhoades, 2010) binding
affinities when compared to WT α-syn. Mutations specifically
in G51D (Fares et al., 2014) and A53E (Ghosh et al., 2014)
have reduced phospholipid binding. E46K variant of α-syn, binds
more efficiently to anionic phospholipids, while the A30P variant
shows less binding, suggesting the alterations in lipid membrane
binding in PD for this variant (Stöckl et al., 2008). However,
H50Q mutation does not alter lipid binding affinity (Ruf et al.,
2019). These observations suggest that lipid-induced generation
of fibrils is highly sensitive to the specific sequence of the SNCA
protein, in particular, the region encompassing residues 46–51
(Flagmeier et al., 2016). However, the question on whether α-
syn aggregation occurs in lipid bound or unbound state is under
investigation (Narayanan and Scarlata, 2001; Cole et al., 2002; Lee
et al., 2002a; Zhu and Fink, 2003; Burré et al., 2015; Perni et al.,
2017; Mori et al., 2019).

The E46K, G51D, and the H50Q mutants of α-syn protein
have significantly delayed degradation compared to WT α-syn,
concurring to the data on higher resistance to degradation
of these mutants in fly model of PD (Mohite et al., 2018;
Sakai et al., 2019). However, H50Q variant of α-syn does not
affect the structure or subcellular localization of α-syn (Khalaf
et al., 2014). α-syn overexpressing SH-SY5Y cells show increased
toxicity and are resistant to degradation and these aggregates
are enriched in A53T α-syn (Paleologou et al., 2008; Sugeno
et al., 2008; Karampetsou et al., 2017). Here it is important
to mention that α-syn mutant A30P has also been reported to
have slower degradation rate compared to WT α-syn (Bennett
et al., 1999; Kasai et al., 2008). Unlike WT α-syn, A53T mutant
has tendency for early-stage aggregation by acquiring β-sheet
structure (Bertoncini et al., 2005; Camilloni and Vendruscolo,
2013) during protofibril growth, explaining the early onset of
familial PD (Kang et al., 2011; de Oliveira and Silva, 2019).
E46K mutations also show the propensity to acquiring β-
sheet structure. However, increased N-terminal and C-terminal
contacts with proteins (Rospigliosi et al., 2009; Wise-Scira et al.,
2013) result in more complex and compact structure compared to
WT α-syn (Fredenburg et al., 2007; Wise-Scira et al., 2013; Boyer
et al., 2020). In a systematic analysis, A30P mutant was shown to
have reduced tendency to form inclusions in comparison to E46K
and G51D mutants. This is probably due to long-range contacts
between the N and C-termini that shield the central domain,
which is reported to promote aggregation (Lázaro et al., 2014).
Further investigations will help to understand the role of point
mutations in the pathogenic aggregation of α-syn.
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POST TRANSLATIONAL
MODIFICATIONS (PTMs) OF α-SYN

α-Synuclein undergoes various post-translational modifications
(PTMs) and plays a crucial role in PD pathology. Until now,
acetylation, phosphorylation, and nitration are the key PTMs.
Phosphorylation and ubiquitination have emerged as consistent
markers of α-syn pathology. Apart from Ser 129, phosphorylation
at Ser 87 (Paleologou et al., 2010) is also reported in α-
syn aggregation. Despite strong evidences of phosphorylation,
synucleinopathic lesions also contain monoubiquitinated α-syn
(Tofaris et al., 2011). However, the ubiquitination mechanism
needs to be understood clearly. A small proportion of aggregated
α-syn is ubiquitinated, despite the presence of ubiquitin chains
in LBs inclusions (Hasegawa et al., 2002). Supporting the data,
transgenic mice expressing a form of α-syn unable to undergo
developmentally down-regulated gene 4 (Nedd4) associated
ubiquitination showed increased α-synuclein aggregation and
un-ubiquitinated synucleinopathy lesions (Periquet et al., 2007).

Nitrative stress plays a critical role in α-syn aggregation. α-
syn has four tyrosine residues Y39, Y125, Y133, and Y136 which
are susceptible to nitration (Chavarría and Souza, 2013; Barrett
and Timothy Greenamyre, 2015). Nitration of α-syn is reported
as a biomarker that is the indicative of nitrative damage in the
PD patients in human and animal models (Good et al., 1998;
Giasson et al., 2000; Sathiya et al., 2013; Ma et al., 2019a). Stone
et al. (2012) reported that overexpression of NO synthase and NO
levels triggers nitration of α-syn followed by its oligomerization
in neurons (Stone et al., 2012).

Oxidation of the four methionine residues: N-terminal (M1
and 5) and the C-terminal (M116 and 127) of α-syn produce

FIGURE 3 | Effect of α-syn mutants on the kinetics of fibril development.
(A) Curves indicate the aggregation kinetics of mutant α-syn, observed by ThT
fluorescence over time up to 150 h. (B) Denotes the quantification of the lag
times (time taken to show ThT fluorescence from the reference line) represent
the slow fibril development of A30P and rapid fibrillation of H50Q, G51D, and
A53T. E46K α-syn shows minor increase of lag times and of A53E α-syn
shows no variance in fibrillation in comparison to WTα-syn. The Single dot
indicates independent value (n ≥ 5) and the Error bars specify standard
deviation, *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. (C) The
electron microscopy images representing fibril development of all α-syn
mutants after incubation of 50 µM monomeric α-syn for 96 h at 37◦C under
1400 rpm (scale bar: 200 nm). Reprinted (adapted) with permission from Ruf
et al. (2019). Copyright (2019) American Chemical Society.

methionine sulfoxides which inhibit fibrillization (Hokenson
et al., 2004). Oxidative modifications of the tyrosine’s via
nitration leads to the partial folded conformation that stabilizes
soluble oligomers and stops elongation into fibrils (Uversky
et al., 2002b, 2005; Yamin et al., 2003). In presence of H2O2
4 methionines converts to sulfoxides (Glaser et al., 2005)
and rotenone leads to methionine oxidation and subsequent
intracellular aggregation (Sanders and Greenamyre, 2013).α-
syn forms either antiparallel α-helices or one contiguous α-
helix when interacting with acidic lipid membrane. α-syn is
believed to be present as an unfolded protein in native form,
which undergoes conformational change (Weinreb et al., 1996)
when interacting with other molecular partners (Uversky, 2002;
Dyson and Wright, 2005). Upon interaction with acidic lipid or
with high curvature membrane, the N-terminus of α-syn folds
into an α-helix that interacts with membranes for physiological
functions (Benskey et al., 2016). Studies have reported that α-
syn directly interacts with SV, SNARE complex proteins, proteins
involved in calcium regulation, and the catalytic subunit of
PP2A (Burré et al., 2010, 2012). Parallelly, Ruf et al. (2019)
have investigated the potential of various mutant α-syn to form
fibrils from monomeric α-syn (Figure 3) (Ruf et al., 2019).
In conditions like genetic mutation, increased α-syn protein
concentrations, post translational modifications and oxidative
stress promote α-syn aggregation (Benskey et al., 2016). α-syn
fibrogenesis impairs mitochondria, disrupts synapses and is toxic
to the lysosome-autophagy axis and results in neurodegeneration
(Lashuel et al., 2013).

It is widely acknowledged that native α-syn exists as an
intrinsically disordered monomeric protein (Conway et al., 1998).
However, physiologically, α-syn exists as a steady tetramer with
rich α-helical structure which is immune to aggregation (Bartels
et al., 2011). α-syn contains a highly amyloidogenic hydrophobic
domain in the N-terminus region (amino acid 61–95), that is
partly absent in β-syn (Hashimoto et al., 2001; Uversky et al.,
2002a). α-syn oligomerization occurs with hydrophobic residue
of the amphipathic helices to form tetrameric structures (Zhu
et al., 2003; Ullman et al., 2011). Anderson et al. (2006) isolated
insoluble α-syn from synucleinopathy patients to investigate
changes in its primary structure in a diseased state. Adding
to this data, Wang et al. (2011) reported that α-syn produced
in Escherichia coli exists as a stable form in absence of lipids
or micelles (Wang et al., 2011). However, the factors that are
responsible for promoting and/or inhibiting the pathogenic α-
syn accumulation are not clearly understood.

O-GlcNAcylation is a dynamic biochemical process, in which
N-acetylglucosamine (GlcNAc) from uridine 5′-diphospho-N-
acetylglucosamine (UDP-GlcNAc) is transferred to the serine
and threonine residues of proteins by O-GlcNAc transferase
(OGT) and removed by O-GlcNAcase (OGA) (Hart et al.,
2007). O-GlcNAcylation identifies threonine (T) residues of α-
syn isolated from mouse and human samples (Wang et al.,
2010; Alfaro et al., 2012; Morris et al., 2015). O-GlcNAcylation
at T72 completely blocks the formation of both fiber and
oligomer aggregates in vitro (Marotta et al., 2015). The full-
length α-syn with O-GlcNAcylation at Ser 87, aggregates with
slower kinetics than the unmodified protein (Lewis et al., 2017).
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Several O-GlcNAcylated sites inhibit the toxicity of extracellular
α-syn fibers that are the likely culprits in the spread of PD
(Levine et al., 2019).

α-SYNUCLEIN PATHOLOGY AND
CELLULAR ORGANELLES IN PD

It is known that α-syn aggregation is linked to various
pathological cascades such as down regulation of mitochondrial
complex I activity, ER stress, neuro-inflammation, disrupted cell
membrane integrity, inhibition of ubiquitin proteasome system
(UPS) and impaired autophagy-lysosomal pathway (ALP) in PD
(Lin et al., 2019; Mahul-Mellier et al., 2020). Also, mitochondrial
dysfunction plays a crucial role in the PD pathogenesis
(Park et al., 2018). Interestingly, α-syn has a high affinity
for mitochondrial membrane compared to other organelles
(Nakamura et al., 2008; Kamp et al., 2010). Colocalization of α-
syn in the mitochondrial and cytosolic fraction of rat brain tissues
(Li et al., 2007) and in the SNpc and the striatum of PD patients
brain is well established (Devi et al., 2008). α-syn is shown to
be present in the inner mitochondrial membrane (IMM), outer
mitochondrial membrane (OMM) and mitochondrial matrix
(Cole et al., 2008; Liu et al., 2009; Kamp et al., 2010; Robotta
et al., 2014). Its translocation to mitochondrial matrix causes
alterations in complex I and increases the oxidative stress
(Martínez et al., 2018). Taken altogether these data indicate that
α-syn is of importance in the mitochondrial function in PD.
Nevertheless, the causal link between secondary effect of PD and
the associated pathogenesis is not clearly understood and needs
investigation. ER is responsible for protein synthesis, folding,
lipid synthesis and trafficking to Golgi. ER activates UPR when
degradation of misfolded proteins is required (Walter and Ron,
2011). Proteins which fail to fold properly are degraded by
proteasomes (Colla, 2019). Aggregation of α-syn triggers UPR
which causes cell death (Cooper et al., 2006; Sugeno et al., 2008).
Glucose regulated protein 78 (GRP78)/BiP, is the key mediator
of the UPR and also senses of ER stress. Oligomeric α-syn is
reported to accumulate in ER thereby triggering PD (Colla et al.,
2012b; Liu et al., 2018a; Yan et al., 2019). Furthermore, the
UPR activation caused by ER stress was also reported in the
histopathological studies of brains of PD patients (Conn et al.,
2004; Hoozemans et al., 2007; Colla, 2019).

Recently, lysosomal dysfunction, oxidative stress, and
apoptosis were reported to trigger the nuclear translocations
of α-syn (Ryu et al., 2019). Accumulation of α-syn in nucleus
is shown to interfere with cell cycle process in PC12 cells and
cause PD like motor symptoms in C57 mice (Ma et al., 2014).
Mutations in GBA gene, which encodes for lysosomal enzyme
glucocerebrosidase (GCase) is also associated with PD (Tayebi
et al., 2003; Lwin et al., 2004; Gegg et al., 2020). Mutations such
as N370S and L444P in GBA protein are reported in various PD
patient based clinical studies (Toft et al., 2006; Marco et al., 2008;
Mata et al., 2008; Hu et al., 2010; Emelyanov et al., 2012) as well
as in in vitro (Maor et al., 2019) and in vivo (Taguchi et al., 2017;
Yun et al., 2018) models of PD. The endo-lysosomal system
regulates vesicle traffic and comprises a unique environment for

proteolysis. Mutations in the endo-lysosomal protein ATP13A2
are reported to increase the aggregation of α-syn (Lopes da
Fonseca et al., 2016). Recently, Tsunemi et al. (2020) reported the
impaired astrocyte mediated α-syn clearance due to the mutation
in ATP13A2 gene (Tsunemi et al., 2020). Overexpression of
α-syn inhibits Ras-related protein Rab-1A (RAb1A), a GTPase,
which in turn causes mis-localization of Atg9 in the TGN, an
important process in autophagosome formation (Winslow et al.,
2010). Mutant (A30P) α-syn suppresses c-Jun N-terminal kinase
activity and inhibits autophagy in dopaminergic neurons which
further increases the intracellular burden of α-syn accumulation
in PD (Lei et al., 2019).

GUT–BRAIN AXIS AND
SYNUCLEINOPATHY: DOES PD STARTS
FROM GUT?

Enteric nervous system and parasympathetic nerves get affected
due to α-synucleinopathies (Edwards et al., 1992; O’Donovan
et al., 2020). The VN is reported to be involved in spreading
the neurogenerative process to the lower brainstem and the
dopaminergic nigrostriatal system (Braak and Del Tredici,
2017; Kujawska and Jodynis-Liebert, 2018). Constipation is a
common non-motor symptoms observed in the early onset of
PD (Yu et al., 2018). GI dysfunction, in particular constipation,
affects up to 80% of PD patients (Poewe, 2008; Cersosimo
and Benarroch, 2012; Noyce et al., 2012; Müller et al., 2013).
Dental deterioration, gastroparesis, delayed intestinal transit
time and constipation are other symptoms associated with
ENS neurodegenerative diseases (Pfeiffer, 2011; Cersosimo and
Benarroch, 2012). These symptoms may appear even before
the loss in motor functions and become established as early
diagnostic information on PD (Braak et al., 2006; Shannon
et al., 2012). The intestinal environmental factors such as the
gut microbiota and the metabolites also exert their influences
primarily via the gut in PD (Braak et al., 2006; Kieburtz and
Wunderle, 2013; Vascellari et al., 2020). Intestinal microbiota
interacts with CNS including ENS and vagal nerve (Carabotti
et al., 2015; Ma et al., 2019b). Pyrosequencing of the V1–
V3 regions of the bacterial 16S ribosomal RNA gene from
the fecal microbiome of PD patients suggested that there are
alterations in intestinal microbiome (Scheperjans et al., 2015).
Extreme stimulus of innate immunity by gut dysbiosis and/or
intestinal pathobionts overgrowth and the consequent increase in
intestinal penetrability triggers systemic inflammation (Figure 4).
Simultaneously, enteric neurons and enteric glial cells activation
contribute to the aggregation of α-syn pathology (Holmqvist
et al., 2014; Sampson et al., 2016). Accumulation of α-syn in
PNS is reported to be associated with impairment of enteric
neurons which in turn is linked to GI dysfunctions (Gold et al.,
2013; Sánchez-Ferro et al., 2015). Impaired intestinal barrier
integrity in PD patients increases the susceptibility of patients
to microbial infections (Forsyth et al., 2011). Increased intestinal
accumulation of α-syn is referred to as “leaky gut” and is common
in PD patients (Chiang and Lin, 2019). Leaky gut promotes
translocation of bacteria and endotoxins (bacterial products)
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FIGURE 4 | Misfolded α-syn and gut–brain axis. Gut dysbiosis, cytokines and endotoxins potentially cause inflammation at ENS which spreads to CNS via VN along
with the aggregated α-syn triggered by ENS, contributing to PD pathogenesis. This figure was drawn using Motifolio.

from the gut to the brain triggering pro-inflammatory conditions
and oxidative stress in the ENS (Forsythe et al., 2014). Pro-
inflammatory factors associated with chronic GI disease lead
to PNS inflammation which is one of the major risk factors
for the observed neuroinflammation in PD (Dobbs et al., 1999;
Villarán et al., 2010).

The gut bacteria synthesize many neurotransmitters as well
as neuromodulators such as γ-aminobutyric acid, serotonin,
dopamine, short-chain fatty acids, etc. (Lyte, 2014; Mayer et al.,
2015). The gut upholds a neuronal connection via VN, as bacteria
can trigger afferent neurons of the ENS (Forsythe et al., 2014).
The local reflexes (migrating motor complex and peristaltic
reflex) are managed by ENS via IPANs (Nezami and Srinivasan,
2010). Enteric dopaminergic neurons are present in GI and
inhibit intestinal motility (Anlauf et al., 2003). The spinal cord
with DMVN accepts and gives rise to the afferent and efferent
fibers of the VN and influences the GI tract (Chang et al., 2003).

Electrogastrography examination of patients in early and
advanced PD state confirmed the persistent gastric motility
irregularities (Soykan et al., 1999). Reduced amplitude of stomach
contractions in PD is reported in real-time magnetic resonance
imaging (Ajaj et al., 2004). The lesions in the medullar, spinal and
peripheral autonomic nervous system in PD are the reasons for
GI disturbances (Wakabayashi and Takahashi, 1997; Benarroch
et al., 2005). In normal physiological circumstances, native α-syn
is highly expressed in the CNS and is associated with regulating
neurotransmission. The α-syn pathology begins in submucosal
plexus of the ENS and spreads retrogradely to the CNS through
vagal preganglionic axons of the DMVN (Figure 5) (Braak et al.,
2006). From the DMVN a predictable caudo-rostral spread of
α-syn associated pathology to other parts of the brain α-syn
associated (SNpc, basal forebrain and finally neocortex region
(Del Tredici et al., 2002; Braak et al., 2003b; Hawkes et al., 2007;
Reichmann, 2011). This α-syn pathology spread has recently also
been observed in non-human primates (Arotcarena et al., 2020).

Recently, Musgrove et al. (2019) reported that oxidative stress
increases at VN increasing cell to cell transmission of α-syn and
promotes PD (Musgrove et al., 2019).

In early PD, phosphorylated and aggregated α-syn is identified
in the ENS neurons and OB (Braak et al., 2006; Shannon et al.,
2011). α-syn deposition in the neurons might start from ENS and
OBs, through VN and olfactory tract, respectively (Braak et al.,
2003a; Hawkes et al., 2009, 2010; Klingelhoefer and Reichmann,
2015). Interestingly, the evidence for α-syn pathology spread
from the GI tract to the brain in a rat model is available
(Holmqvist et al., 2014; Kim et al., 2019). Interestingly, decreased
gastric motility observed in 6-hydroxydopamine-model of PD
lesion in rats is also reported (Zheng et al., 2014). Also, decrease
in the levels of short chain fatty acids (SCFA), the prime metabolic
product of certain gut bacteria, causes alterations in the ENS and
contributes to GI dysmotility in the PD (Unger et al., 2016). Lai
et al. (2018) reported that a chronic low-dose MPTP may be
used to assess the development of intestinal pathology as well
as gut microbiota dysbiosis. This may provide new insights into
the pathogenesis of PD (Lai et al., 2018; Kim et al., 2019). Many
chemical signals from the gut to specific regions of the brain are
also speculated to affect blood brain barrier integrity through
formation of endothelial clusters, which is often recorded in
PD (Guan et al., 2013). Further investigations are warranted to
elucidate the exact role of the gut–brain axis in PD (Table 1).

MECHANISM OF NEURONAL
CLEARANCE OF MISFOLDED
α-SYNUCLEIN BY AUTOPHAGY

Cellular aggregation and impaired clearance of α-syn are the
major pathological hallmarks of PD. Cellular clearance of
misfolded proteins including α-syn is regulated by the ALP and
the UPS (Lopes da Fonseca et al., 2015). Monomeric α-syn is
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FIGURE 5 | Accumulated α-syn in the surface of gastric wall. (a) Denotes immunoreactive inclusions in axons within the peripheral nerve. (b–d) Lewy neurites and
LBs in the Auerbach plexus. (b) Presence of Lewy body pathology. (c) Punctate α-syn aggregations (arrows) in ENS neurons in the fundus, indicates the early signs
of LBs. (d) Fiber-like Lewy neurites associated with the ganglia of the Auerbach plexus. (e) Immunoreactive fibers produced from the Auerbach plexus (A) bifurcate
recurrently and fragmented into terminal ramifications along with the smooth muscle cells next to muscle layer (m). (f) The nerve fiber bundle of Meissner’s plexus
coursing via the gastric submucosa. Reused (adapted) with the permission from Copyright Clearance Centre (License Number 5057740321467) (Braak et al., 2006).

degraded by both ALP and UPS (Liu et al., 2003; Cuervo et al.,
2004) by compensatory mechanisms, i.e., when one fails the other
will execute (Yang et al., 2013).

In an compensatory mechanism of ALP, a peptide based
therapy protects α-syn neurotoxicity by activating proteasome
pathway (Betarbet et al., 2006; Qu et al., 2020). Purified human
20S proteasomes are also reported to degrade accumulated
α-syn in an ubiquitin-independent manner in PD (Tofaris
et al., 2001; McKinnon et al., 2020). Supporting the data
further, activation of UPS by natural alkaloid (Cai et al.,
2019) and Orobol derivatives (ethanolic extracts of Cudrania
tricuspidata fruits) is reported to decrease α-syn accumulation
in PD. Additionally, phosphorylated α-syn (Ser 129) aggregates
are reported to degrade via proteasome pathway (Machiya

et al., 2010). Interestingly, α-syn oligomers and fibril are
reported to inhibit the activity of 20S/26S proteasome subunits
(Snyder et al., 2003; Zhang et al., 2008; McKinnon et al., 2020;
Suzuki et al., 2020).

In the case of removal of high molecular weight proteins,
including oligomers and aggregates, the disposal mechanism
shifts to autophagy (Lee et al., 2004). Based on its cargo
delivery process, it is divided into CMA, macroautophagy and
microautophagy. As of today, and to the best of our knowledge,
there is no report on microautophagy clearing α-syn aggregation.
The other two types of autophagic processes are discussed
below (Figure 6).

Wild-type soluble α-syn is efficiently degraded in lysosomes by
CMA, but the mutant α-syn is poorly degraded by CMA despite
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TABLE 1 | Clinical trials on gut–brain axis in PD.

Study Drugs Phase Status NCT number

Investigate the digestive microbiota and
bacterial translocation during IBD and PD

– Not applicable Recruiting NCT04159727

Treatment is able to restore the gut
microbiota

Rifaximin Phase 2 Recruiting NCT03958708

Resistant maltodextrin for gut microbiome
in Parkinson’s disease

Maltodextrin Phase 2 Recruiting NCT03667404

Brain–gut–microbiota axis and initiation of
α-syn misfolding

– Not applicable Not yet recruiting NCT03710668

Gut-derived neuropeptides in cerebrospinal
fluid of patients with Parkinson’s disease
and healthy controls

Certain gut-derived
peptides (ghrelin,
GLP-1)

– Completed NCT01792193

Effects of resistant starch on bowel habits,
fecal short chain fatty acids and gut
microbiota in Parkinson disease
(RESISTA-PD)

Resistant starch – Completed NCT02784145

Study of the genome, gut metagenome and
diet of patients with incident Parkinson’s
disease (16S rRNA gene sequencing)

– Recruiting NCT04119596

Increased gut permeability to
lipopolysaccharides (LPS) in Parkinson’s
disease

– – Completed NCT01155492

Possible role of bacteria of the nose and
gut in the pathogenesis of PD

– – Completed NCT01536769

Role of gut flora in Parkinson’s disease – – Recruiting NCT04148326

Gut microbiota across early stages of
synucleinopathy

– – Recruiting NCT03645226

Parkinson’s disease and digestive health
(neuroenteric dysfunction)

– Recruiting NCT04032262

Probiotics-prebiotic fiber therapy in
Parkinson’s disease patients with
constipation

Probiotics with
prebiotic

Phase 3 Completed NCT04451096

Study of the fecal microbiome in patients
with Parkinson’s disease

PRIM-DJ2727 Phase 1 Recruiting NCT03671785

Dietary intervention and gastrointestinal
function in patients with Parkinson’s
disease (MED)

Mediterranean diet Not applicable Active, not
recruiting

NCT03851861

Fecal microbiota transplantation for
Parkinson’s disease

– – Recruiting NCT03808389

Study of the enteric nervous system using
colonic biopsies in Parkinson patients with
LRRK2 mutation (EnteroLarc)

– – Terminated (lack of
patients)

NCT01618383

having an affinity for the CMA receptor. The lysosome-associated
Hsc70 (lHsc70) protein helps in translocation of the targeted
substrates for degradation (Chiang et al., 1989; Agarraberes
et al., 1997). Mutant α-syn (A53T and A30P) also inhibits CMA
substrates and lysosomal uptake that results in compensatory
activation of macroautophagy (Cuervo et al., 2004). α-syn
monomers and dimers, but not oligomers, are degraded via CMA
(Martinez-Vicente et al., 2008; Xilouri et al., 2009). Alvarez-Erviti
et al. (2010) had reported that decreased expression of LAMP2A,
slows down the degradation of wild-type α-syn (Alvarez-Erviti
et al., 2010). Hence, it was concluded that CMA is not involved
in the degradation of misfolded α-syn directly. In contrast,
Wu J.-Z. et al. (2019) reported that two bioactive ingredients
dihydromyricetin and salvianolic acid B extracted from natural
medicinal plants downregulate α-syn aggregation by activating
both CMA and macroautophagy processes (Wu J.-Z. et al., 2019).

Endoplasmic reticulum stress is mainly an outcome of
accumulated misfolded proteins, for example, α-syn, that
undergoes ER associated degradation (ERAD) (McCracken and
Brodsky, 2003). Misfolded/mutated proteins impair the ERAD
system and contribute to PD pathogenesis (Lehtonen et al.,
2019). GA regulates post-translational protein modifications, for
example, glycosylation and proteolytic cleavage that occurs in the
ER (Rabouille and Haase, 2016). Misfolded α-syn inhibits ER-
Golgi transportation and leads to the aggregation of proteins in
ER and triggers cell death in PD (Cooper et al., 2006; Wang and
Hay, 2015). Furthermore, α-syn inhibits Rab1a which not only
alters the ER-Golgi transportation, but also causes mislocalization
of Atg9 trafficking, thereby, inhibiting autophagy (Winslow et al.,
2010; Xilouri et al., 2016; Tomás et al., 2020).

Inositol-requiring enzyme 1 (IRE1), a key UPR signal
activator, under ER stress clears protein aggregation via
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FIGURE 6 | Clearance of α-syn occurs through three major ways. If the α-syn is in the unfolded dimer or the small oligomer state it undergoes proteasomal
degradation (A) or chaperone mediated autophagy (B), in presence of HSc70, α-syn is engulfed by lysosome through LAMP2A receptor. Else, if the aggregation is
higher than oligomer state, it prefers macro autophagy (C), where it forms autophagosome, which is engulfed by the lysosome. This figure was drawn using Motifolio.

autophagy IRE1-X-box–binding protein 1 (XBP1) (Sado et al.,
2009, 1; Fouillet et al., 2012; Valdés et al., 2014, 1; Ghavidel et al.,
2015; Adams et al., 2019). On the other hand, Yan et al. (2019)
reported that α-syn accumulation promotes neuronal death in
Drosophila model of PD through the hyperactivation of IRE1
via the c-Jun N-terminal kinase (JNK)-dependent manner (Yan
et al., 2019). Further research on the exact mechanisms of α-syn
clearance will help understand the neuroprotective role of IRE1.
Mesencephalic astrocyte-derived neurotrophic factor (MANF),
also known as ARMET (arginine-rich mutated in early-stage
tumors) is present in ER and promotes neuronal cell survival
through UPR regulation (Apostolou et al., 2008; Renko et al.,
2018; Wang et al., 2021). ER stress triggers the accumulation
of misfolded α-syn (Colla et al., 2012a). MANF is shown to
have neuroprotective activity in in vitro and in vivo models of
PD (Voutilainen et al., 2009; Liu et al., 2018b). MANF is also
reported to facilitate the cellular clearance of misfolded α-syn in
a Caenorhabditis elegans model of PD. Inhibition of autophagy
related genes by RNAi approach has been shown to decrease
the expression of MANF suggesting its potential therapeutic role
in PD (Zhang et al., 2018). In a recent clinical study, MANF
level was also reported to be higher in the blood of PD patients.

However further studies are required to reveal if MANF is a
clinical marker for PD (Galli et al., 2019).

Zinc finger with KRAB and SCAN domains 3 (ZKSCAN3), a
zinc-finger family DNA-binding protein initiates autophagosome
biogenesis. However, it works antiparallel to TFEB (Chauhan
et al., 2013). A30P mutant α-syn inhibits ZKSCAN3 and impairs
autophagy in dopaminergic neuron (Lei et al., 2019).

Recent evidence proposes that AMPK signaling plays a crucial
role in neurodegeneration. Rapamycin-induced initiation of
autophagy, or AMPK agonists, promote the clearance of fibril-
mediated α-syn pathology (Gao et al., 2019). Overexpressed
AMPKα1 or α2 subunits integrate into the AMPK complex and
protect dopamine neurons against human α-syn accumulation
toxic effects (Bobela et al., 2017). AMPK also regulates PGC-
1α, which is a transcriptional co-activator and master regulator
of mitochondrial biogenesis (Wan et al., 2014). α-syn binds
to the promoter sequence of PGC-1α and causes promoter
methylation, a sporadic PD associated phenomenon which
ultimately decreases PGC-1α expression (Su et al., 2015). AMPK
inhibits mTORC1 by phosphorylating Raptor (Gwinn et al.,
2008), along with indirect phosphorylation and activation of
TSC2 (Inoki et al., 2003). unc-51-like autophagy activating
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kinase 1 (ULK1) drives autophagosome formation whilst
mTORC1 suppresses (under nutrient condition) autophagy by
phosphorylating ULK1 at Ser 757. In contrast, phosphorylation
of ULK1 at Ser 317, Ser 777 or Ser 555 by AMPK promotes
autophagy (Egan et al., 2011; Kim et al., 2011). Various reports
suggest on the protective role of AMPK against the toxicity
of both intracellular and extracellular α-syn (Choi et al., 2010;
Wu et al., 2011; Dulovic et al., 2014; Anandhan et al., 2017;
Bobela et al., 2017; Gao et al., 2019). α-syn is suggested to reduce
AMPK phosphorylation and downstream target Raptor in SH-
SY5Y neuroblastoma cells (Dulovic et al., 2014). However, several
conflicting reports on AMPK signaling data are available. For
example, Kim et al. (2013) and Xu et al. (2014) reported that
activation of AMPK and inactivation of Akt causes neuronal cell
death via inhibition of the mTOR pathway (Kim et al., 2013; Xu
et al., 2014). Along similar lines, AMPK activation is also reported
to trigger the aggregation of α-syn in primary neurons (Jiang
et al., 2013). Future molecular investigations will help understand
the role of AMPK in PD.

Cellular clearance of expired or damaged organelles is
processed by autophagy, including the selective autophagy
processes such as, (mitochondria) mitophagy, (peroxisomes)
pexophagy, (ribosomes) ribophagy and parts of the nucleus
involved in nucleophagy (Martinez-Vicente and Cuervo, 2007;
Senkevich and Gan-Or, 2019). α-syn has been reported to
impair mitophagy in PD (Shaltouki et al., 2018). α-syn
exosome/extracellular vesicle (EV) fractions range from 60 to
160 nm in diameter, and are cleared by ALP. Inhibition of
ALP increases α-syn levels (Alvarez-Erviti et al., 2011; Danzer
et al., 2012; Minakaki et al., 2018). α-syn fibrils are transported
to an endosomal compartment and lysosomes. The lysosomal
inhibition is shown to accumulate α-syn aggregations, supporting
the autophagy/lysosomal clearance pathway.

STRATEGIES THAT FACILITATE
NEURONAL CLEARANCE OF
α-SYNUCLEIN

Reducing α-Synuclein Production
Many research efforts are focused on protecting neuronal cells
from α-syn toxicity, for example, reducing the synthesis of α-
syn (Figure 7) by the infusion of siRNA in the hippocampal
and cortical regions of mice (Lewis et al., 2008). In another
study, injecting siRNA-containing exosomes is shown to lead
to decrease in α-syn in the SNpc of Ser 129D α-syn transgenic
mice (Cooper et al., 2014). α-syn propagation is also shown to
participate in the neurotoxicity process and here the C-terminus
(CT) of the protein plays a significant role (Games et al., 2014).
Hence, monoclonal antibodies 1H7, 5C1, or 5D12 that target
the CT, decrease α-syn in neurons and rescue TH in striatum
which have been reported to improve motor ability and memory
deficits (Games et al., 2014). Selective silencing of mutant SNCA
gene has been shown to reverse the pathogenic characteristics
of mutated α-syn while preserving the physiological functions
of the native α-syn. These effects are consistently observed both

in in vitro and in vivo studies using lentivirus mediated RNA
interference (Sapru et al., 2006; Takahashi et al., 2015). Naked
small interfering RNA (siRNA) is shown to reduce endogenous
SNCA in hippocampus region, in vitro and in vivo models
of PD. This has been translated to potential neuroprotective
effect in α-synucleinopathies (Lewis et al., 2008). Also, Zharikov
et al. (2015) have reported that knockdown of α-syn exerts
neuroprotective role in a rotenone model of PD (Zharikov et al.,
2015). Also, AAV vectors expressing miSyn4 siRNAs are reported
to downregulate the α-syn (overexpressed) in mice (Kim et al.,
2017). However, long-term RNAi knockdown of α-syn did not
show any beneficial effects on dopaminergic functions in the
adult rats (Zharikov et al., 2019).

Inhibiting α-Synuclein Aggregation
Some reports have focused on inhibiting the aggregation of α-
syn. Bae et al. (2012) used antibodies targeting the Fcγ receptors
present on the surface of microglia to inhibit microglial triggered
α-syn aggregation. Fonseca-Ornelas et al. (2014) reported that
porphyrin phtalocyanine tetrasulfonate delays the aggregation of
vesicle bound α-syn in H4 neuroglioma cells. Similarly, an α-
syn protofibril-selective monoclonal antibody (mAb47) is shown
to decrease its aggregation in A30P α-syn mutant mouse model
(Lindström et al., 2014). Novel compounds NPT200-11 (Price
et al., 2018) and NPT100-18A (Wrasidlo et al., 2016) are also
reported to inhibit the aggregation of α-syn in preclinical models.
It must be mentioned that compound NPT200-11 has cleared
phase 1 of clinical trials (Table 2). A novel compound PBT434,
is reported to slow down the progression of PD in hA53T α-
syn transgenic mouse (Finkelstein et al., 2017). First generation
epitope vaccines targeting the aggregated α -syn, are reported
to be immunogenic in B6SJL mice (Ghochikyan et al., 2014).
Heat shock proteins (HSP), especially small HSPs are molecular
chaperones which have also been reported to inhibit α-syn
aggregation in both in vitro and in vivo (McLean et al., 2002;
Klucken et al., 2004; Gorenberg and Chandra, 2017).

Promoting Degradation of α-Synuclein
Increasing α-syn clearance through lysosomal/or autophagic
process also leads to decrease in the cellular levels. Decressac
et al. (2013) reported that stimulation of TFEB function or
blocking of mTOR prevents the degeneration of dopaminergic
neurons caused by α-syn toxicity (Decressac et al., 2013). Passive
immunization with monoclonal α-syn antibodies (9E4) is also
shown to clear α-syn aggregation via a lysosomal pathway
(Masliah et al., 2011; Bae et al., 2012).

Additionally, deficiency of GD-linked glucocerebrosidase
(GCase) is also reported to impair the lysosomal proteolytic
enzyme in primary cultures or induce hiPSC neurons, triggering
aggregation of α-syn (Mazzulli et al., 2011). Toward this
end, increasing the GCase activity by AAV-GBA1 (gene
encoding glucocerebrosidase) intra-cerebral gene delivery has
also been shown to protect against α-syn toxicity in rodents
(Rocha et al., 2015). Furthermore, NCGC607 (Aflaki et al.,
2016) and NCGC00188758 (Mazzulli et al., 2016) (new leads
against α-syn) are shown to improve the GCase activity and
decrease α-syn accumulation in human neurons. Interestingly,
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TABLE 2 | List the clinical trials targeting α-syn.

Purpose/aim of the study Drugs Phase Status NCT number

To find the presence of pathological α-syn within the CSF – – Not yet recruiting NCT04266457

To measure α-syn in peripheral body tissues and fluids in
Parkinson’s disease

DaTSCAN
(ioflupane-123I)

Completed NCT02572713

To compare oligomeric and phosphorylated α-syn assay in
cerebrospinal fluid and blood

– Completed NCT03170063

Nilotinib’s ability to alter the abnormal protein build up in Parkinson
disease and diffuse Lewy body disease patients

Nilotinib Phase 1 Completed NCT02281474

EGCG as putative neuroprotective agent Polyphenol
(-)-epi-gallocatechin
gallate (EGCG)

Phase 3 Completed NCT02008721

Inhibition of the α-syn aggregations NPT200-11 Phase 1 Completed NCT02606682

Monoclonal antibody, single ascending dose PRX002 Phase 1 Completed NCT02095171

Monoclonal antibody, multiple ascending dose study PRX002 Phase 1 Completed NCT02157714

A study to evaluate the efficacy of Prasinezumab PRX002 Phase 2 Active, not
recruiting

NCT03100149

Vaccine (active immunotherapy) specific for α-syn AFFITOPE R©PD01A Phase 1 Completed NCT01568099

Follow-up study to assess one boost immunization with
AFFITOPE R©PD01A

AFFITOPE R©PD01A Phase 1 Completed NCT02216188

Extension study for patients with Parkinson’s disease after
immunization with AFFITOPE R©PD01A

AFFITOPE R©PD01A Phase 1b Completed NCT01885494

Tolerability and safety of AFFITOPE R©PD01A AFFITOPE R©PD01A Phase 1 Withdrawn NCT02758730

Single-ascending dose study of BIIB054 in healthy participants and
early PD

BIIB054 Phase 1 Completed NCT02459886

Evaluating the efficacy, safety, pharmacokinetics, and
pharmacodynamics of BIIB054 in PD patients

BIIB054 Phase 2 NCT03318523

Expression patterns of GALIG gene (α-synuclein interacts with
Cytogaligin, a protein produced by the proapoptotic GALIG gene)

– – Completed NCT02923297

Diagnostic and prognostic biomarkers in Parkinson disease
(PROBE)

– – Active, not
recruiting

NCT00653783

Phenylbutyrate response as a biomarker for α-syn clearance from
the brain

Glycerol
phenylbutyrate

Phase 1 Active, not
recruiting

NCT02046434

A pilot biomarker study assessing α-syn aggregates across biofluid
reservoirs in patients with synucleinopathies

– – Recruiting NCT04020198

α-Syn as a marker for early diagnosis of Parkinson’s disease in skin
biopsy.

– – Enrolling by
invitation

NCT01380899

Inhibition of α-syn cell–cell transmission by NMDAR blocker Memantine Phase 3 Recruiting NCT03858270

Alpha-synuclein level in saliva to differentiate between idiopathic
Parkinson disease

– – Recruiting NCT03156647

Diagnosis of Parkinson’s disease by means of submandibular gland
needle biopsy

– – Recruiting NCT04264273

Effects of lithium therapy on blood-based therapeutic targets in
Parkinson’s disease.

Lithium Phase 1 Recruiting NCT04273932

Biomarker analysis for GBA associated Parkinson’s disease – – Recruiting NCT03811496

Oligomeric α-syn CSF levels – – Recruiting NCT02114242

Measuring serum alpha synuclein autoantibodies – – Recruiting NCT04062279

Idiopathic rapid eye movement (REM) sleep behavior disorder
(RBD), for the purpose of preparing for a clinical trial of
neuroprotective treatments against synucleinopathies.

– – Recruiting NCT03623672

A first-in-human study of single and multiple doses of anle138b in
healthy subjects

anle138b Phase 1 Recruiting NCT04208152

Drug against glucocerebrosidase (GBA) gene mutation in PD GZ/SAR402671 Phase 2 Active, not
recruiting

NCT02906020

Multiple ascending dose study of MEDI1341 in patients with PD MEDI1341 Phase 1 Active, not
recruiting

NCT04449484

Lu AF82422 in healthy non-Japanese and Japanese subjects and
in patients with PD

Lu AF82422 Phase 1 Recruiting NCT03611569
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FIGURE 7 | Therapeutic approaches against toxic α-syn. (A) Reducing α-syn production. (B) Inhibiting α-syn aggregation. (C) Promoting degradation of α-syn.
(D) Inhibition of uptake of α-syn by neighboring cells.

Kalekrein 6 (KLK6) is a serine protease in PD whose expression
levels are inversely correlated toα-syn and recombinant
KLK6 is reported to degrade of extracellular α-syn directly
(Pampalakis et al., 2016).

Several other studies of active and passive immunization
against α-syn aggregation are reported and are shown to be
neuroprotective (Masliah et al., 2005, 2011; Sanchez-Guajardo
et al., 2013; Christiansen et al., 2016). Here, drugs like PRX002
(Table 2) (a humanized IgG1 monoclonal antibody), that has
successfully entered in Phase 2 (Jankovic et al., 2018) clinical trials
(NCT02157714) needs a special mention. Further, safety and
tolerability is being tested in the PD patients (Schenk et al., 2017).

Inhibition of Uptake of α-Synuclein by
Neighboring Cells
α-Synuclein monoclonal antibodies (mAbs) are reported to
inhibit propagation and uptake of α-syn and prevent the
aggregation of α-syn in a mouse model (Tran et al., 2014).
Mao et al. (2016) have demonstrated that α-syn fibrils bind
to lymphocyte-activation-gene 3 (LAG3) protein and initiate
endocytosis into neuronal cells (Mao et al., 2016). The
involvement of other proteins in the initiating endocytosis is
suggested (Shrivastava et al., 2015). Further research in this area
is ongoing and will help in understanding the role of endocytosis
in removal of pathogenic α-syn. In line with this, it is important
to mention that Gustafsson et al. (2017) had also reported
that, inhibiting Fcγ receptors (FcγRI and FcγRIIB/C) results in
reduced uptake of α-synu oligomer/protofibril (Gustafsson et al.,

2017). Here, astrocytes are reported to take up α-syn preformed
fibrils (pffs) via endocytosis process. Clusterin interacts with α-
syn pffs in the extracellular compartment and the clusterin/α-syn
complexes are internalized by astrocytes. To this end, clusterin
knock-out primary astrocytes and clusterin knock-down hiPSC-
derived astrocytes are also reported that limits the uptake of α-syn
pffs by the cells (Filippini et al., 2021).

“JANUS-FACED” α-SYNUCLEIN

α-Synuclein and cysteine-string protein-alpha (CSPalpha) are
present abundantly in SV. CSPalpha plays a vital role in
neuronal growth and its deletion is shown to cause progressive
neurodegeneration in mouse model. Interestingly, abnormal
expression of α-syn causes neurodegeneration and motor
impairment due to the deletion of CSPalpha. Also, α-syn is
shown to inverse the soluble N-ethylmaleimide-sensitive factor
attachment protein receptor (SNARE)-complex assembly, a
pathological impediment observed in the CSPα knockout mice
(Chandra et al., 2005). α-syn binds at the N-terminus of SNARE
protein synaptobrevin-2 by its C-terminus (Burré et al., 2010).
Greten-Harrison et al. (2010) demonstrated that deletion of α-
syn causes alterations in the synaptic structure and leads to
transferable and age dependent neuronal dysfunction. It further
causes decrease in synapse size by ∼30% both in vivo and
in vitro (Greten-Harrison et al., 2010). These data indicate
the neuroprotective roles of α-syn at the synapse. However,
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Darios et al. (2010) reported indirect inhibitory effect of α-
syn on SNARE-complex assembly by inhibition of arachidonic
acid. Arachidonic acid is reported to stimulate SNARE-complex
formation and exocytosis (Darios et al., 2010). It is widely known
that the mutated form of α-syn is linked to PD pathology
(Chandra et al., 2005; Stefanis, 2012).

Furthermore, α-syn is also reported to exert protection of
neurons against various apoptotic stimuli (da Costa et al.,
2000). Additionally, the involvement of α-syn in various
biological functions such as synaptic transmission, calcium
regulation, mitochondrial homeostasis, gene expression, protein
phosphorylation cannot be ignored (Sharon et al., 2001; Ellis
et al., 2005). α-syn interacts in SV and SNARE proteins,
mediating the vesicular transport to presynaptic membrane
(Maroteaux et al., 1988; Burré et al., 2010, 2012). α-syn inhibits
TH (Perez et al., 2002; Perez and Hastings, 2004) and its
phosphorylation either by increasing PP2A activity or by altering
the binding sites of TH for phosphorylation (Peng et al., 2005;
Wang et al., 2009). Supporting the phenomenon of DA release
from presynaptic membrane of neuronal cells, α-syn also inhibits
AADC, an inhibitor of DA synthesis (Tehranian et al., 2006).
Moreover, α-syn is shown to interact with the DAT, modulate
DAT activity (increasing or decreasing) and increase the amount

of VMAT on vesicles (Lee et al., 2001; Dauer et al., 2002;
Wersinger and Sidhu, 2003; Wersinger et al., 2003; Fountaine and
Wade-Martins, 2007; Fountaine et al., 2008).

The SNCA expression in terms of PD pathogenesis is delicately
balanced. Supporting this concept, a clinical study on well
characterized PD patients described that the low repeat REP1
allele, a complex microsatellite (259 base pairs; resulting in
decreased SNCA expression) is associated with motor and
cognitive dysfunctions, whereas the high-repeat REP1 allele
(263 base pairs; increases SNCA expression) is associated with
improving the motor and non-motor symptoms like cognition
(Markopoulou et al., 2014). Contradictory data by Corrado et al.
(2018) reported that, REP1 allele (263 base pairs) is associated
with inferior cognitive outcome (Corrado et al., 2018) in PD. In
a clinical patients based study it was reported that, long REP1
alleles are associated with motor and non-motor functions in PD
(Ng et al., 2019). Adding to this study, the role of SNCA Rep1
allele length in non-motor functions as well as depression in the
early PD patients was also reported (Yong et al., 2020). It was
argued that Markopoulou et al. (2014) collected the data through
telephonic interviews and hence there could be possibility of
miscommunication. Secondly, the biological effect of REP1 allele
could also vary with the patients, especially in different ethnic

FIGURE 8 | Diagrammatic representation of α-syn distribution and its associated toxicities (Cell death). (A) Physiological distribution of α-syn in healthy neurons
mainly in presynaptic terminal. (B) During the aging distribution of α-syn spreads from the presynaptic terminal to the soma, that causes subsequent toxicity. In PD,
due to genetic mutations, oxidative stress, α-syn aggregates and produce toxicities and cell death. (C) Overexpression or molecular crowding of α-syn causes
toxicities. (D) Knockdown of α-syn below threshold (protein concentration) results in cell death. Image reused as per Creative Commons
Attribution-Non-commercial-NoDerivs License (Benskey et al., 2016).
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groups. Hence, it was concluded that future studies with more
patients are required to resolve these contradictory findings.

Interestingly, in another report both aggregation and
knockdown of α-syn were reported to impair mitochondrial
Ca2+ homeostasis and induce toxicity (Calì et al., 2012).
Ludtmann et al. (2016) had also reported that monomeric
α-syn enters the mitochondria and enhances ATP synthase
function (Ludtmann et al., 2016). α-syn was also reported
to participate in the physiological functions of mitochondria
like fusion, ETC, and VDAC permeability (Ellis et al., 2005;
Kamp et al., 2010; Rostovtseva et al., 2015). Supporting the
protective role of α-syn, Seo et al. (2002) reported that at
nanomolecular concentrations, α-syn is shown to protect the
primary neurons against oxidative stress (Seo et al., 2002).
Recently, Carmo-Gonçalves et al. (2020) had studied the role of
monomeric and fibrillar α-syn on mesencephalic dopaminergic
neurons in primary cultures using neurotoxic salsolinol and 3,4-
dihydroxyphenylacetaldehyde (DOPAL). They reported that the
protective properties of monomeric α-syn involve the inhibition
of caspase 3 mediated apoptosis (Carmo-Gonçalves et al., 2020).

Furthermore, increased oxidative stress is shown to trigger
the aggregation of α-syn in PD (Scudamore and Ciossek, 2018).
Accumulations and overexpression of α-syn further triggers α-
syn misfolding (Hsu et al., 2000; Lee et al., 2002b; Chinta et al.,
2010) leading to mitochondrial fragmentation and dopaminergic
cell death (Menges et al., 2017). Here, it must be mentioned that
overexpression and aggregation of α-syn is linked to decrease
in the neurotransmitters and consequent motor dysfunctions
(Larsen et al., 2006; Gaugler et al., 2012; Scott and Roy, 2012).

It was observed that, in α-synucleinopathy, some neurons
express abundant Lewy pathology than other neuronal
types. For example, dopaminergic, noradrenergic, cholinergic
and the glutamatergic neurons express abundant α-syn
aggregation, whereas, most of the GABAergic neurons are
spared (Wakabayashi et al., 1995; Spillantini et al., 1998; Gómez-
Tortosa et al., 2001; Del Tredici and Braak, 2013; Hall et al.,
2014; Kay et al., 2015; Taguchi et al., 2019). Expression of α-syn
protein is positively correlated with susceptibility to aggregate
(Figure 8) (Wakabayashi et al., 1995; Erskine et al., 2018; Taguchi
et al., 2019). Thus, conflicting reports on α-syn in literature
need to be resolved.

CONCLUSION

α-Synuclein is reported to be involved in the DA release in
the synapse and also has a neuroprotective roles in apoptotic

stimuli. There are many scientific reports which establish the
physiological role of α-syn in healthy individuals. α-syn is
a vital component of LBs which are the major pathological
hallmarks in PD. Reports also suggest that misfolded α-syn
can travel from cell-to-cell (Freundt et al., 2012; Domert et al.,
2016; Tyson et al., 2017; George et al., 2019; Rey et al., 2019).
The point mutations that result in change of amino acid
in α-syn (A30P, E46K, H50Q, G51D, A53E, and A53T) are
studied along with their aggregation kinetics in PD. Further
studies confirming the pathogenic mutations and aggregation
could help to target α-syn and understand its role in disease
pathogenesis. Several studies are being conducted that target
pathogenic α-syn and cause impairing of the autophagy and
proteasomal processes. Furthermore, the pathogenic origin of
α-syn is being explored in relation to gut dysbiosis. Early
diagnosis of PD is a major field of interest in modern science.
The identification of a biomarker which can detect α-syn
toxicity could potentially lead to novel strategies for effective
PD diagnosis and treatment. There is a need to collate and
present latest data on α-syn and provide a unified view of the
protein. This review is an attempt in this direction and aims
to help understand the pathophysiological role of α-syn and its
aggregation in PD.
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Alpha-synuclein pathology driven impairment in adult neurogenesis was proposed as
a potential cause of, or at least contributor to, memory impairment observed in both
patients and animal models of Parkinson’s disease (PD) and Dementia with Lewy
Bodies (DLB). Mice overexpressing wild-type alpha-synuclein under the Thy-1 promoter
(Thy1-aSyn, line 61) uniquely replicate early cognitive deficits together with multiple
other characteristic motor and non-motor symptoms, alpha-synuclein pathology and
dopamine loss. Here we report overt intracellular accumulation of phosphorylated alpha-
synuclein in the hippocampus of these transgenic mice. To test whether this alters adult
neurogenesis and total number of mature neurons, we employed immunohistochemistry
and an unbiased stereology approach to quantify the distinct neural progenitor cells and
neurons in the hippocampal granule cell layer and subgranular zone of 6 (prodromal
stage) and 16-month (dopamine loss) old Thy1-aSyn mice. Surprisingly, we observed
an increase in the number of early stage, i.e., Pax6 expressing, progenitors whereas the
numbers of late stage, i.e., Tbr2 expressing, progenitors and neurons were not altered.
Astroglia marker was increased in the hippocampus of transgenic mice, but this was
not specific to the regions where adult neurogenesis takes place, arguing against a
commitment of additional early stage progenitors to the astroglia lineage. Together, this
uncovers a novel aspect of alpha-synuclein pathology in adult neurogenesis. Studying
its mechanisms in Thy1-aSyn mice could lead to discovery of effective therapeutic
interventions for cognitive dysfunction in PD and DLB.

Keywords: Parkinson’s disease, adult neurogenesis, hippocampus, Dementia with Lewy bodies (DLB), alpha-
synuclein

INTRODUCTION

Parkinson’s disease (PD) is characterized by the presence of proteinaceous cytoplasmic inclusions
termed Lewy bodies (LB), with alpha-synuclein (α-syn) as a main component (Spillantini et al.,
1998). Alpha-syn-associated pathology also plays a major role in neurodegenerative processes
in Dementia with Lewy Bodies (DLB) and multiple system atrophy (MSA), together with PD
collectively known as synucleinopathies (McCann et al., 2014). Degeneration of dopaminergic
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neurons in the substantia nigra pars compacta leads to the
classical motor symptoms of PD (Kouli et al., 2018). In
addition, non-motor symptoms including dementia, cognitive
dysfunction, sleep impairments and mood disorders correlate
with LB pathology in different brain regions, including olfactory
bulb, medulla, pons, and various cortical regions (Braak et al.,
2003; Braak and Tredici, 2011; Pfeiffer, 2016). In fact, PD
and DLB combined are a leading cause of neurodegenerative
dementias, second only to Alzheimer’s disease (Vann Jones and
O’Brien, 2014). Importantly, early or late cognitive decline is
unresponsive to current symptomatic treatments and represents
a tremendous disease burden for patients (Aarsland, 2016).
Thus, there is urgent need to understand the pathophysiology of
cognitive symptoms in synucleinopathies. Alpha-syn-associated
pathology in cortical and hippocampal brain areas is likely
involved, but the precise cellular substrates and mechanisms are
still elusive (Francis, 2009; Liu et al., 2019).

There are several different transgenic animal models available
to investigate the effects α-syn associated pathology in vivo.
The Thy1-aSyn mice over-express human wild-type alpha-
synuclein under the control of the murine Thy-1 promoter.
These transgenic mice replicate widespread α-syn pathology
and are extensively studied in the context of α-syn aggregation
and toxicity, mitochondrial dysfunction, neuroinflammation,
and dopamine loss, all of which are integral parts of the
disease. Furthermore, these mice replicate both classical motor
and a plethora of non-motor symptoms characteristic for PD,
rendering them as one of the most suitable models to investigate
both early, prodromal and eclectic (Chesselet et al., 2012;
Wang et al., 2012; Grant et al., 2014; McDowell et al., 2014;
Magen et al., 2015; Cuvelier et al., 2018), as well as classical
mechanisms involved in PD pathology (Rockenstein et al., 2002;
Fleming et al., 2006; Chesselet et al., 2012; Watson et al., 2012;
Subramaniam et al., 2014). In an effort to understand the cellular
substrate of early cognitive deficits in this line of mice, we found
increased levels of a marker for cell division in the hippocampal
SGZ (Bonsberger et al., under review as perspective in Neural
Regeneration Research). This prompted us to investigate α-syn
pathology in the hippocampus, and whether adult neurogenesis
is affected in Thy1-aSyn mice.

Previous studies, utilizing tissue from patients, animal and
in vitro models, have suggested an impairment of adult
neurogenesis in PD and DLB (Höglinger et al., 2004; Winner
et al., 2004, 2012; Crews et al., 2008; Nuber et al., 2008; van
den Berge et al., 2011; Kohl et al., 2012). In mammals, only
a few brain regions retain the capacity to produce neurons
throughout adult life. The two major brain regions, in which
adult neural progenitor cells (NPCs) reside, are the subgranular
zone (SGZ) of the hippocampus, and the subventricular zone
(SVZ) of the cerebral cortex (Ming and Song, 2011; Braun and
Jessberger, 2014). Non-canonical sites are reported as well and
include different brain regions [reviewed by Feliciano et al.
(2015)]. NPCs need to pass several consecutive developmental
stages before neurons as their progeny become functionally
integrated into the hippocampal circuitry. Radial glial cells
(RGLs, type 1 cells) represent the early NPC subpopulation that
is able to generate both glia and type 2 cells. Type 2 cells are

subdivided in early transit amplifying progenitors (type 2a) and
late transit amplifying progenitors (type 2b), the latter known
to be committed to neuronal lineage defining the first cell of
late stage NPCs subpopulation. Type 2 cells divide to generate
neuroblasts (NBs, type 3 cells), which subsequently exit the cell
cycle and differentiate into DG neurons (Ming and Song, 2011;
Braun and Jessberger, 2014). As NPCs of the adult hippocampus
proliferate, migrate and differentiate, they express stage specific
cellular markers (Ming and Song, 2011; Braun and Jessberger,
2014). It is shown that newborn neurons are important for
brain homeostasis in health and disease (Steiner et al., 2006;
Zhao et al., 2008).

Here we present intracellular accumulation of pathological
forms of α-syn in the hippocampus in Thy1-aSyn mice at
an age where cognitive deficits are apparent. To decipher a
potential mechanism for neuronal dysfunction, we determined
the number of distinct neural NPCs and neurons, as well as
astroglia in this region.

MATERIALS AND METHODS

Animals
In this study, 6 and 16 month-old (mo) WT (WT; 6 month-
old, n = 6, 16 month-old n = 6; Thy1-aSyn, 6 month-old, n = 6,
16 month-old n = 5) mice were used. Transgenic, Thy1-aSyn,
mice overexpressing human wild-type α-syn under the Thy-1
promoter (Rockenstein et al., 2002) are maintained on a mixed
C57BL/6-DBA/2 background as described previously (Chesselet
et al., 2012). Only male transgenic mice were used along with
wild-type littermates. Due to the location of the transgene on
the X-chromosome, female Thy1-aSyn mice show no or subtle
phenotypes in most behavioral assays (Chesselet et al., 2012).
Animals were maintained on a reverse 12 h dark/light cycle, with
food and water ad libitum. All animals were treated in accordance
with the German Animal Welfare Agency (TVV31/14, T46/16)
and the European guidelines (Directive 2010/63/EU).

Immunohistochemistry
Mice were anesthetized with pentobarbital and then perfused
transcardially with PBS first and then with 4% paraformaldehyde.
Brains were removed, post-fixed in 4% paraformaldehyde for
24 h, cryoprotected in 10–30% sucrose in 0.1 M PBS for 3 days,
frozen on dry ice and stored at −20◦C. Brains were cut into
coronal sections of 40 µm thickness and every 8th section from
bregma −0.94 mm to bregma −4.04 mm (Paxinos and Franklin,
2004) containing the hippocampus was collected.

For cell quantification studies, sections were washed with
0.05 M PBS (3 × 10 min). Antigen retrieval for sections
stained with antibodies for PCNA, Pax6, Tbr2, and Tbr1 was
accomplished by heating sections in 0.01 M citrate at 96◦C for
2 h. Afterward, sections were permeabilized with 1% Triton X
in PBS for 40 min, treated with 0.1 M glycine solution and
blocked with 5% Donkey Serum in PBS for 30 min. Gelatin
buffer [0.2% Gelatin, 0.5% Triton X (pH 7.4)] was used to
wash the sections (2 × 5 min). Sections were incubated in
gelatin buffer containing primary antibodies at 4◦C overnight.
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Following, sections were washed with gelatin buffer (2 × 10 min
and 2 × 5 min), and incubated in gelatin buffer containing
Alexa Fluor conjugated secondary antibodies and DAPI for 1 h.
After another round of washing, sections were mounted on glass
slides and covered with Vectashield mounting medium (Vector
Laboratories, Burlingame, CA, United States).

For p-α-syn, Ki-67, nestin and GFAP analysis, sections were
washed with 0.05 M TBS (3 × 10 min) and blocked using 10%
NGS in TBS. Then, sections were incubated overnight in 2%
NGS/0.5% Triton X in TBS with primary antibodies. Following,
sections were washed with 0.05 M TBS (3 × 10 min) and
incubated with secondary antibodies in 5% NGS for an hour.
After another round of washing, sections were covered with
ProLong Gold with DAPI mounting medium (Cell Signaling,
Danvers, MA, United States).

The following primary antibodies were used: rabbit anti-Tbr1
(T-box brain protein 1) (1:100, AB10554; Merck Millipore,
Burlington, MA, United States); sheep anti-Tbr2 (T-box brain
protein 2) (1:100, AF61669; R&D Systems, Minneapolis, MN,
United States), rabbit anti-Pax6 (paired box protein 6) (1:100,
PRB-278P; BioLegend, San Diego, CA, United States); mouse
anti-PCNA (proliferating cell nuclear antigen) (1:100, NB500-
106; Novus Biologicals, Centennial, CO, United States); mouse
anti-NeuN (hexaribonucleotide Binding Protein-3) (1:100,
MAB377, Merck Millipore, Burlington, MA, United States);
rabbit anti NeuN (1:500, ABN78, Merck Millipore, Burlington,
MA, United States); mouse anti p-α-syn (phosphorylated alpha-
synuclein (ser129) (1:500, AB51253, Abcam, United Kingdom);
guinea pig anti GFAP (glial fibrillary acidic protein) (1:500,
173004, Synaptic Systems, DE); rabbit anti Ki-67 (marker
of proliferation Ki-67) (1:500, MA5-14520, Thermo Fisher
Scientific, United States); mouse anti nestin (1:500, #MAB353,
Merck Millipore, Burlington, MA, United States). The following
secondary antibodies (Thermo Fisher Scientific, United States)
were used: Alexa Fluor donkey anti-mouse (488, R37114;
555, A31570); donkey anti-sheep (488, A11015); donkey anti-
rabbit (555, A31572); goat anti-guinea pig (647, A21450); goat
anti-mouse (488, A28175) (1:500).

Unbiased Stereology
Unbiased stereology analysis with optical fractionator probe
within the Stereo Investigator 11.1.2 software (MBF Bioscience,
United States) was used to quantify the number of different
cell populations in the GCL and SGZ of the hippocampus.
For this, 40-µm-thick sections were used to allow for at least
25 µm dissector height within each section after dehydration
and mounting. Systematic sampling of every 8th section was
performed throughout the hippocampus. Sections were imaged
using an Axioscope fluorescence microscope (Carl Zeiss AG,
DE). Hippocampus boundaries were used to outline contours
at 10× magnification. Cells were counted using a randomly
positioned grid system controlled by Stereo Investigator in a
previously defined region in all optical planes. Guard zones
were set at 5 µm to account for damage during the staining
procedure. The grid size for progenitor cell counting was set to
141× 141 µm and counting frame was set to 100× 100 µm. For
counting of neurons, a grid size of 200× 200 µm and a counting

frame of 100 × 100 µm was used. Counting was performed on
40× magnification. Cells were counted throughout the entire
GCL and SGZ of both hemispheres of each mouse to give an
acceptable coefficient error, (CE, Gunderson) of 0.05 using the
smoothness factor m = 1. CE < 0.1 is deemed acceptable within
the field of stereology.

Image Acquisition and Analysis
For NPC and neuronal IF, images were acquired using a Leica
SP8 confocal laser-scanning microscope using a 40× objective.
Images were acquired as single (immunofluorescence Tbr1 and
NeuN) or stacks of 3 (double-immunofluorescence for PCNA
and Pax6 or Tbr2) optical sections. All images were processed
using Fiji [open source software (Schindelin et al., 2012)] and
Adobe Photoshop CS6 software (Adobe, United States).

For p-α-syn, nestin IF and GFAP expression analysis,
and Ki-67 positive cell quantification, ZEISS Axio Observer
(Oberkochen, DE) was used to capture 20× images. Every 6th
section from bregma −0.94 to bregma −4.04 was imaged and
analyzed. For p-α-syn and GFAP expression analysis regions of
interest were selected and the mean pixel intensity was measured
using Fiji software (National Institutes of Health, Bethesda, MD,
United States). For Ki-67 density analysis the number of Ki-67
positive cells was determined and divided by the length of the
SGZ (mm) measured in Image J software (National Institutes
of Health, United States). Images were processed using Adobe
Photoshop CS5 (Adobe, United States). High magnification
images of CA1 and DG regions (63×, oil immersion) and were
obtained using ZEISS Apotome (Oberkochen, DE).

Statistics
Data was analyzed using Prism software (GraphPad Software).
PCNA + cell counts between WT and Thy1-aSyn mice were
compared using two-tailed unpaired Student’s t-test. In order
to examine the NPC subpopulation to which the difference in
PCNA + cell number was attributed and to examine differences
between the downstream cell populations, Pax6+/PCNA+,
Tbr2+/PCNA+, Tbr1+ and NeuN + cell counts and mean
GFAP and p-α-syn pixel intensity values between WT and Thy1-
aSyn mice were compared using one-tailed unpaired Student’s
t-test. P-values below 0.05 were considered significant.

RESULTS

Phosphorylated a-Syn Accumulates in
Specific Hippocampal Subregions of
Thy1-aSyn Mice
Phosphorylation of α-syn on Serin 129 (p-α-syn) is considered
a toxic posttranslational modification and was found at
high levels in the hippocampus using western blotting in
Thy1-aSyn mice (Chesselet et al., 2012). Therefore, we first
examined which subregions of the hippocampus were specifically
affected by the posttranslational modification and performed
immunohistochemistry for p-α-syn. We found, as expected,
virtually no p-α-syn expression in WT mice in all observed
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hippocampal regions (CA1, CA2, CA3, and DG) in both 6 and
16 months old mice (Figures 1A,B). Interestingly, in Thy1-
aSyn mice, the expression of p-α-syn is most abundant in CA1
and CA3 regions (Figures 1C,D). Although staining fills the
entire cell in the CA1 pyramidal layer (CAsp), it appears that
the strongest signal comes from the cell body and cell nucleus.
Further, p-α-syn signal can be observed in extracellular space as
well and in CA1 stratum oriens (CA1so) and stratum radiatum
(CA1sr) (Figure 1E). In granule cell layer (GCL) of DG p-α-syn
is expressed to a lesser extent compared to CA1sp region but in
a similar fashion (Figure 1F). Signal is present in cell body and
processes, being the strongest in cytoplasm and nucleus. Less p-
α-syn is observed outside the cells in GCL and DG molecular
layer (DGmo) in comparison to CA1 region (Figures 1E,F).
Interestingly, larger quantities of p-α-syn were detected in the
extracellular space of the polymorph layer (PL). Cells with p-
α-syn accumulation that follow the same pattern of expression
as in CA1sp and GCL can be observed in PL as well (Figure 1F).

The Number of Early Stage NPCs, but
Not Late Stage NPCs and Neurons Is
Increased in the GCL and SGZ of
Thy1-aSyn Mice
Interestingly, the number of total NPCs as identified by PCNA
immunofluorescence was significantly elevated in 16 months

old Thy1-aSyn mice compared to WT mice of the same age
(Figure 2). Moreover, the number of early stage NPCs that
characteristically express Pax6 was significantly increased in
Thy1-aSyn mice at both 6 and 16 months of age when compared
to their WT littermates (Figure 2). To further confirm this
increase in early stage NPCs we determined nestin expression
as well as the number of Ki-67 positive cells as a marker for
cell division in the hippocampus of 6 months old Thy1-aSyn
and WT mice. Significant increase in nestin expression was
observed in the DG of Thy1-aSyn mice when compared to WT
littermates. While nestin expression could be associated with
individual neurons in WT mice, net-like pattern of expression
was observed in Thy1-aSyn animals (Supplementary Figure 1).
Furthermore, density of Ki-67 positive cells was significantly
higher in Thy1-aSyn compared to WT mice.

No significant changes were observed in the number of
late stage NPCs, which characteristically express Tbr2, between
WT and Thy1-aSyn mice (Figure 3). Moreover, the number of
neurons as identified by Tbr1 or NeuN immunofluorescence did
not differ significantly in the Thy1-aSyn mice when compared to
their WT littermates at both stages analyzed (Figure 3). Together,
this indicates that increased early stage NPCs do not result in
more neurons in the hippocampus.

Finally, we noticed that the genotype difference appears
even more pronounced in 16 months old mice, suggesting
disease progression. This is demonstrated as percentage increase

FIGURE 1 | Expression of the p-α-syn in the hippocampus of the 6 and 16-month-old WT and Thy1-aSyn mice. Double-immunofluorescence for p-α-syn (green)
and NeuN (orange) and DAPI staining (blue) and merged images of 6 and 16 months-old wildtype [WT; (A,B)], and 6 and 16 months-old Thy1-aSyn [asyn; (C,D)]
mice. Cornu ammonis (CA1, CA2, and CA3), dentate gyrus (DG) regions. Scale bars, 200 µm. High magnification Apotome images (63×, oil immersion),
double-immunofluorescence for p-α-syn (green) and NeuN (orange) and DAPI staining (blue) and merged images of Thy1-aSyn mice (E,F). CA1so, CA1 stratum
oriens; CA1sr, CA1 stratum radiatum; CA1sp, CA1 pyramidal layer (E), GCL, DG granule cell layer; DGmo, DG molecular layer; PL, DG polymorph year (F). Arrows
indicate NeuN positive cells and p-α-syn accumulations. Scale bar 50 µm.
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FIGURE 2 | Quantification of PCNA, Pax6 and Tbr2 positive cells in the hippocampal dentate gyrus of wildtype and Thy1-aSyn mice. Double-immunofluorescence
for PCNA (green) and Pax6 (red) and DAPI staining (blue) and merged images of 6-month-old wildtype [WT, (A)] and Thy1-aSyn [asyn, (B)] mice. Number of PCNA+
cells (C), Pax6+/PCNA+ cells (D) in the granule cell layer (GCL) and subgranular zone (SGZ) of 6- and 16-month (mo)-old wildtype (WT) and Thy1-aSyn (asyn) mice.
Double-immunofluorescence for PCNA (green) and Tbr2 (red) and DAPI staining (blue) and merged image of 6-month-old wildtype [WT, (E)] and Thy1-aSyn [asyn,
(F)] mice. Number of Tbr2 + /PCNA + cells (G) in the GCL and SGZ of 6 and 16 month-old (WT) and Thy1-aSyn (asyn) mice. Data represent mean ± SEM. (WT;
6 month-old, n = 6, 16 month-old n = 6; asyn, 6 month-old, n = 6, 16 month-old n = 5; Student’s t-test; ∗p < 0.05, ∗∗∗p < 0.005). GCL, granule cell layer; ML,
molecular layer; SGZ, subgranular zone; PL, polymorphic layer. Scale bars, 50 µm.

in numbers of NPCs and neurons between genotypes across
ages (Figure 3).

Increased Glial Fibrillary Acidic Protein
(GFAP) Expression Throughout the SGZ,
Molecular Layer, Polymorph Layer, and
CA1 Regions of the Hippocampus
Based on IF intensity measurements (Figures 4A–H), we
observed an increased expression of GFAP in the SGZ
(Figure 4E), molecular layer (ML) (Figure 4F), in the polymorph
layer (PL) (Figure 4G), and CA1 region of 6 and 16 months
old Thy1-aSyn mice compared to WT (Figures 4E–H). Observed
increase in NPCs could potentially contribute to increase in
astroglia, however, astrogliosis also correlates with widespread

α-syn accumulation and pathology (Fellner et al., 2011). To
further describe the distribution of GFAP IF across hippocampal
regions, we calculated ratios between CA1 and SGZ, ML or
PL, respectively, for each genotype. Comparing these rations
there was no difference between WT and Thy1-aSyn mice,
suggesting a general increase in reactive astrocytes throughout
the hippocampus. Of note, this does not directly correlate with
the apparent site and subregion specific p-α-syn pathology
observed in the hippocampus (Figure 1).

DISCUSSION

This is the first study to report an increase in the number of
early stage NPCs in the SGZ of DG of mice overexpressing α-syn
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FIGURE 3 | Quantification of Tbr1 and NeuN positive cells in the hippocampal dentate gyrus of wildtype and Thy1-aSyn mice. (A,B) Immunofluorescence for Tbr1
(red) and DAPI staining (blue) and merged images of 6-month-old wildtype [WT, (A)] and Thy1-aSyn [asyn, (B)] mice. Number of Tbr1 + cells (C) in the granular cell
layer (GCL) and subgranular zone (SGZ) of 6-month (mo)-old wildtype (WT) and Thy1-aSyn (asyn) mice. (D,E) Immunofluorescence for NeuN (red) and DAPI staining
(blue) and merged images of 16-month-old wildtype [WT, (D)] and Thy1-aSyn [asyn, (E)] mice. Number of NeuN + cells (F) in GCL and SGZ of 6 month-old wildtype
(WT) and Thy1-aSyn (asyn) mice. (G) Change (percent) in number of PCNA+, Pax6+/PCNA+, Tbr2+/PCNA+ cells and neurons between 6 and 16 month-old
Thy1-aSyn (asyn) and wildtype (WT) mice. Data represent mean ± SEM. (WT; 6 month-old, n = 6, 16 month-old n = 6; asyn, 6 month-old, n = 6, 16 month-old n = 5;
Student’s t-test). Scale bars, 50 µm.

(Thy1-aSyn), which apparently progresses with age. Importantly,
this perturbation of adult neurogenesis does not culminate in
significantly increased numbers of late stage NPCs or neurons.
In addition, we observed overt intracellular accumulation of p-
α-syn, a posttranslational modification thought to be neurotoxic,
in the hippocampus of Thy1-aSyn mice. This demonstrates
that α-syn overexpression can induce an intricate and specific
alteration in the number of NPCs in the hippocampus, which
may contribute to previously reported cognitive dysfunction at
the examined age in these mice (Magen et al., 2015).

Studies of adult neurogenesis in postmortem tissue from
PD patients are challenging and thus rare, and appear to
report conflicting results. For example, a reduced numbers of
proliferating cells in the SGZ and SVZ (Höglinger et al., 2004)
and a decrease in the number of SOX2 (marker of early NPCs)
positive cells were reported in postmortem PD brains (Winner
et al., 2012). However, by using an in vivo and in vitro approach,
another study proposed that adult neurogenesis is unaffected in

PD patients (van den Berge et al., 2011). The decline in adult
neurogenesis with age is well described and also observed in our
mouse model (Figures 2, 3). By design, post mortem studies can
only observe a late disease stage picture, when only few newborn
neurons can be observed and thus quantified (Höglinger et al.,
2004; van den Berge et al., 2011). Therefore, animal models
are specifically relevant to investigate how PD related pathology
may impact adult neurogenesis and thereby hippocampus related
cognitive function. Previous studies observed significantly less
total NPCs and young neurons in the olfactory bulb and in the
SGZ of mice with overexpression of human WT or a rare form
of mutated α-syn under control of the platelet-derived growth
factor-β (PDGF) promoter (Winner et al., 2004; Crews et al.,
2008). In mice with conditional expression of α-syn, a decreased
survival of newly generated cells was observed with no change
in the total numbers of NPCs (Nuber et al., 2008). Interestingly,
in mice overexpressing mutated α-syn, fluoxetine ameliorates
adult neurogenesis impairment via induction of neurotrophic
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FIGURE 4 | GFAP signal intensity in the hippocampal dentate gyrus and CA1 region of wildtype and Thy1-aSyn mice. (A–D) Immunofluorescence for GFAP (red) and
DAPI staining (blue) and merged images of 6 and 16-month-old wildtype [WT, (A,B)] and 6 and 16-month-old Thy1-aSyn [asyn, (C,D)] mice. (E–H) Mean GFAP pixel
intensity in the subgranular zone (SGZ), molecular layer (ML), polymorph layer (PL) and CA1 region of 6- and 16-month (mo)-old wildtype (WT) and Thy1-aSyn (asyn)
mice. Data represent mean ± SEM. (n = 6/group; Student’s t-test; ∗p < 0.05; ∗∗p < 0.01). Scale bars, 50 µm.

factors expression (Kohl et al., 2012). Importantly, a recent
study suggest that intracellular A53T mutant α-syn impairs adult
hippocampal neuronal integration (Regensburger et al., 2020).
Intriguingly, our results present an increase in the number of
early but not late stage NPCs in the hippocampal GCL and SGZ
of Thy1-aSyn mice, coinciding with accumulation of p-α-syn
in the hippocampus and cognitive dysfunction. Controversial
results from different models could for example be related to
expression of WT versus mutated α-syn and region specific
expression levels determined by the choice of promoter and the
insertion site of the transgene among other factors. In Thy1-
aSyn mice, previous western blotting demonstrated moderate
expression of human WT α-syn in the DG, with higher levels
of expression in the CA regions, thus reflecting physiological
expression of the protein and previously found region specific
vulnerability to α-syn toxicity (Chesselet et al., 2012). Mutated
protein with its proposed higher toxicity may be more likely to
induce cell autonomous effects if expressed by DG neurons of
patients with these rare mutations (Regensburger et al., 2020).
Interestingly, p-α-syn which is associated with toxicity and

considered as one of the drivers of PD and DLB associated
pathology (Samuel et al., 2016) was shown to accumulate in the
hippocampus of Thy1-aSyn mice by western blotting (Chesselet
et al., 2012). Here we show that p-α-syn is present in high
abundance in CA regions but only moderately accumulates
in the DG of Thy1-aSyn mice. This may explain why we
did not observe alterations in numbers of adult neurons in
the DG, and why early cognitive deficits in this model are
moderate, rather replicating early dementia in idiopathic PD
(Magen et al., 2015).

What is the destiny of the additional early NPCs generated if
not the majority of them transit to late stage, hence neuronal,
NPCs? GFAP expression was not specifically increased in the
DG compared to CA1 in Thy1-aSyn, but it might be possible
that number of additional astrocytes generated by NPCs is
simply too small to be detected in our analysis. Moreover, as
the genotype differences appear to progress with age, it might
be speculated that hippocampal neurogenesis is altered at far
advanced stages of the disease, i.e., in Thy1-aSyn mice older
than 16 month-old of age. Studies to further characterize the fate
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of the early NPC downstream cell populations, and functional
implications, are underway.

To explain the mechanism that underlie the observed increase
in numbers of early stage NPCs and their potential destiny, we
propose three scenarios. First, Thy1-aSyn mice show an increase
in extracellular dopamine levels at 6 months of age, and a
loss of dopamine at 14 months of age (Chesselet et al., 2012).
Dopamine, through dopamine receptors, plays an important
role in NPCs proliferation, migration, and differentiation (Borta
and Höglinger, 2007; Berg et al., 2013) and induces an increase
in the number of NPCs in animal models of PD (Höglinger
et al., 2004; O’Keeffe et al., 2009; Winner et al., 2009). Another
possible explanation could be the loss of inhibitory input,
circuitry remodeling, and hippocampal network hyperexcitability
which is proposed as present in DLB pathophysiology (Morris
et al., 2015), and has been observed in Thy1-aSyn as well as in
mice overexpressing rare α-syn mutations (Morris et al., 2015;
Singh et al., 2019). As documented for epileptic seizures, such
alterations of neuronal activity may promote adult neurogenesis
(Jessberger and Parent, 2015). Finally, α-syn pathology through
gain or loss of function may directly impact mechanisms of cell
cycle regulation along the process of neurogenesis, leading to
NPCs stuck or shifting in proliferation or maturation processes
(Lee et al., 2003; Winner et al., 2012; Rodríguez-Losada et al.,
2020; Findeiss et al., 2021). If α-syn pathology spreads across
synapses (Chu and Kordower, 2015; Melki, 2018), none of the
above mechanisms require a direct intracellular toxicity in DG
neurons, which could be argued against given the relatively low
expression level of α-syn in this region, physiologically and in
Thy1-aSyn mice as discussed above.

Further studies are needed in order to draw solid conclusions
on the mechanisms of how α-syn overexpression specifically
increases early stage NPC numbers, and the impact on
its downstream cell populations and hippocampal function.
Understanding the role of adult neurogenesis, and more
generally the hippocampus, in cognitive deficits not amenable
to current treatment options in PD and DLB represents an
urgent need. Thy1-aSyn mice could provide a unique tool to
test the above discussed potential mechanisms, and to assess
targeted therapeutic interventions with cognitive dysfunction as
functional endpoint.
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