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Editorial on the Research Topic

Novel Insights into Insect Antiviral Immunity

Insects are the largest group of animals distributed throughout the earth, including economically
important insects (e.g. silkworms, honeybees, pollinators), agricultural and forestry pests (e.g.
locusts, stink bugs, armyworms, weevils), virus vectors (e.g. mosquitoes, midges, blackflies), and
model organisms (e.g. Drosophila in genetics and developmental biology). Viruses are the major
pathogens of insects; however, the mechanism of viral infection and antiviral insect immunity is not
fully understood. The 15 articles of this Research Topic highlight the latest advances regarding
insect antiviral immunity.

Five contributions refer to the interaction between baculovirus and insect host. Jiang et al.
reviewed the arms race between silkworm and baculovirus, including the baculovirus invasion
mechanism, the silkworm immune response and the viral immune evasion mechanism, and surveyed
strategies for the enhancement of host antiviral capacity. The authors also discussed outstanding
major issues and future directions of research on silkworm antiviral immunity. Melanization is
mediated by the prophenoloxidase (PPO) pathway, which is an important humoral response for
killing invading pathogens in insects. Wang et al. identified a conserved PPO activation pathway in
Helicoverpa armigera and confirmed that the three-step SP41/cSP1/cSP6 cascade can convert PPO
into active phenoloxidase (PO), and that the cofactors cSPH11 and cSPH50 can enhance PO activity
activated by cSP6. An in vitro reconstituted PPO activation cascade can block baculovirus infection,
indicating the importance of melanization in controlling baculovirus infection. Baculovirus is
characterized by a restricted host range: the silkworm is permissive for BmNPV infection but is a
non-permissive host for AcMNPV. Lin et al. found that adenosine signaling was upregulated to
enhance host energy levels after infection with non-permissive AcMNPV, and that inhibition of the
adenosine receptor (AdoR), glycolysis and adenosine transport can decrease ATP content and
increase AcMNPV proliferation in BmN cells, suggesting that AdoR modulates permissiveness of
baculovirus infection via regulation of energy metabolism in the silkworm. Viruses also regulate the
development and protein modifications of their hosts. Previous studies have shown that newly
exuviated fifth instar silkworms infected with BmNPV exhibit delayed maturation. Results from Xu
et al. further indicated that day-4 fifth instar larvae infected with BmNPV showed an increase in
org January 2022 | Volume 12 | Article 74098915
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ecdysone titer and precocious maturation, and RNA-seq
was further used to analyze the candidate genes involved in
this process. Mao et al. investigated the effect of HSC70-4
deacetylation on BmNPV infection. The authors found that
lysine 77 (K77) deacetylation promoted the stability and
nuclear import of HSC70-4 and viral proliferation, and that this
process may be modulated by the ubiquitin proteasome system.

Some insects serve as vectors to transmit viruses, which
adversely affect agricultural production (for plant viruses) and
spread human diseases (for arboviruses). Five papers focus on the
molecular mechanisms underlying the interactions between
viruses and insect vectors. Zhao et al. investigated the proteomic
interactions between tomato yellow leaf curl virus (TYLCV) and
its whitefly vector and found that the whitefly protein Tid
interacted with the coat protein of TYLCV. Tid protein content
was increased following viral acquisition, and inhibition of Tid
resulted in increased TYLCV replication in whitefly, suggesting
the inhibitory role of Tid on viral infection. He et al. found that
Toll pathway core genes (Toll, MyD88, and Dorsal) were
upregulated in the planthopper vector after infection with rice
stripe virus (RSV), and observed direct interactions between the
viral nucleocapsid protein and the Toll receptor. RNAi of Toll led
to increased RSV proliferation and mortality in planthoppers,
indicating the antiviral defense of the Toll pathway against the
plant virus in the planthopper vector. Many flaviviruses are
arboviruses and major human pathogens, including Dengue
virus (DENV), Zika virus (ZIKV), West Nile virus, and Yellow
Fever virus. Harsh and Eleftherianos summarized recent studies
about flavivirus infections and antiviral immune mechanisms and
discussed the host tissue homeostasis and pathophysiological
defects in mosquitoes and the model insect Drosophila. Leite
et al. investigated the distinct functional roles of hemocytes at
different stages of infection by DENV and ZIKV in mosquitoes.
The authors showed that hemocytes were recruited to
the midgut in response to virus and that blocking phagocytosis
led to decreased viral replication in the midgut. By contrast,
phagocytosis by hemocytes was essential to restrict viral
dissemination during systemic infection. Results from Weng
et al. showed that TEP1 transcription was induced in
mosquitoes following DENV infection, and silencing of TEP1
resulted in decreased expression of the transcription factor Rel2
and certain antimicrobial peptides (AMPs) as well as increased
viral content, suggesting that TEP1 regulates the immune response
and consequently limits DENV infection in mosquitoes.

Four other contributions have topics that deal more generally
with antiviral pathways and effector molecules. The first topic
highlights intracellular and extracellular degradation as crucial
for restricting viral infection. Jiang reviewed the main antiviral
immune pathways and the virus-modulated signaling pathways
in the silkworm; the former includes RNAi and signaling
pathways mediated by NF-kB, Imd, STING and JAK/STAT
while the latter includes the PPO, PI3K/Akt, and ERK
pathways. Targeting these virus-modulated pathways by gene
editing or inhibitors can enhance host antiviral capacity. Feng
et al. reviewed the roles of (both validated and potential) AMPs
in insect antiviral immune response and their possible
Frontiers in Immunology | www.frontiersin.org 26
mechanisms of synthesis and action. A second topic
emphasizes the requirement for intercellular communication to
mount systemic immune responses. Wang summarized the
intercellular communications in insect antiviral immunity,
including protein-based and virus-derived RNA-based cell-cell
communications, and focusing on the signaling pathway that
induces the production of potential cytokines. Another article
focuses on the symbiont Wolbachia, a maternally transmitted
bacterium in insects, which was recently discovered to protect
insects against RNA viruses. Pimentel et al. described the main
advances and possible mechanisms of the antiviral effect of
Wolbachia. The authors also discussed the potential antiviral
effect of Wolbachia in wild insect populations and its
ecological relevance.

A final article presented by Lin et al. also adds a piece of
interesting data on the regulation of host genes by virus-encoded
miRNAs. The authors showed that the expression levels of
BmCPV-miR-1 and BmCPV-miR-3 were increased while their
common target host gene BmRan was inhibited in silkworms
infected with cypovirus. It is proposed that the two miRNAs can
inhibit BmRan expression and promote viral proliferation.

In summary, all published articles describe exciting new data
of insect immunity against viral infection and provide new
mechanisms of resistance and targets for pest control that can
also have relevance for antiviral research in humans.
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Adenosine Receptor Modulates
Permissiveness of Baculovirus
(Budded Virus) Infection via
Regulation of Energy Metabolism in
Bombyx mori

Yu-Hsien Lin 1,2†, Chia-Chi Tai 3†, Václav Brož 1, Cheng-Kang Tang 3, Ping Chen 3,

Carol P. Wu 3, Cheng-Hsun Li 3 and Yueh-Lung Wu 3*

1 Biology Centre of the Czech Academy of Science, Institute of Entomology, Ceske Budejovice, Czechia, 2 Faculty of Science,
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Although the modulation of host physiology has been interpreted as an essential

process supporting baculovirus propagation, the requirement of energy supply for host

antivirus reactions could not be ruled out. Our present study showed that metabolic

induction upon AcMNPV (budded virus) infection of Bombyx mori stimulated virus

clearance and production of the antivirus protein, gloverin. In addition, we demonstrated

that adenosine receptor signaling (AdoR) played an important role in regulating such

metabolic reprogramming upon baculovirus infection. By using a second lepidopteran

model, Spodoptera frugiperda Sf-21 cells, we demonstrated that the glycolytic induction

regulated by adenosine signaling was a conservative mechanism modulating the

permissiveness of baculovirus infection. Another interesting finding in our present study

is that both BmNPV and AcMNPV infection cause metabolic activation, but it appears

that BmNPV infection moderates the level of ATP production, which is in contrast to

a dramatic increase upon AcMNPV infection. We identified potential AdoR miRNAs

induced by BmNPV infection and concluded that BmNPV may attempt to minimize

metabolic activation by suppressing adenosine signaling and further decreasing the

host’s anti-baculovirus response. Our present study shows that activation of energy

synthesis by adenosine signaling upon baculovirus infection is a host physiological

response that is essential for supporting the innate immune response against infection.

Keywords: glycolysis, baculovirus, adenosine signaling, gloverin, Bombyx mori, Spodoptera frugiperda

INTRODUCTION

Baculoviruses are double-stranded circular DNA viruses with genomes of ∼80–180 kb.
Baculoviruses can infect many species of arthropods, among which lepidopteran
larvae are the most common host (1, 2). Autographa californica nucleopolyhedrovirus
(AcMNPV) is the most thoroughly studied baculovirus, and it has been established as the
primary baculovirus expression system since the 1980’s (3). Another commonly studied
baculovirus is Bombyx mori nucleopolyhedrovirus (BmNPV), which is also used to express
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exogenous recombinant proteins (4). Although AcMNPV and
BmNPV have highly similar genetic structures, they have very
different host ranges (5, 6). AcMNPV is able to infect the broader
range of lepidopteran larvae but has a lower capacity to infect B.
mori, whereas BmNPV can only infect B. mori and is not capable
of infecting the larvae of other Lepidoptera species (1, 7, 8).

Baculovirus infection has significant impacts on host
physiology, establishing optimal conditions for successful
propagation. Several virus-encoded proteins or microRNAs
that regulate the host cell cycle, apoptosis, cytoskeleton
rearrangement, immune responses, and membrane receptors
have been reported for different baculoviruses (9). In addition,
virus growth relies heavily on host resources, and the distribution
and transfer of energy in hosts are important factors that
affect viral replication. Studies of BmNPV and AcMNPV
have demonstrated that baculovirus infection significantly
increases the oxygen consumption and tricarboxylic acid
(TCA) cycle activity in the permissive host (10–12). Increased
expression of metabolic pathway genes, such as citrate synthase
and pyruvate dehydrogenase, as well as genes involved in
mitochondrial respiration, has been observed in AcMNPV- and
BmNPV-infected cells (13).

Although intensification of host biosynthesis by viruses
can provide sufficient substrates for virus replication, the
host can also modulate its own metabolic activity to restrict
viral propagation. For example, expression of samhd1 in
human myeloid cells decreases the dNTP pool, limiting
reverse transcription and suppressing virus replication (14),
and induction of interferon upon virus infection disrupts
sterol biosynthesis and suppresses viral replication (15). In
addition, increased metabolic activity during infection might
prompt the immune response against pathogens. Transcriptomic
and biochemical studies in fruit fly, tobacco budworm,
cockroach, and mosquito demonstrate that genes involved in
energy synthesis, detoxification, and carbohydrate metabolism
are upregulated upon bacterial or fungal infection and that
inhibition of host carbohydrate metabolism decreases the
immune response against pathogens (16–20). The molecular
mechanism involved in the systematic switch of metabolic
homeostasis upon infection was described recently in Drosophila
melanogaster. Upon bacterial and parasitic wasp infection,
Drosophila immune cells release adenosine as a signal to activate
metabolic reprogramming, which shifts energy distribution from
developmental processes toward the immune response (19, 21).

Although previous studies have reported that energy
production is induced after infection in both BmNPV-infected
BmN cells and AcMNPV-infected Sf-9 cells, it is unclear whether
this phenomenon is restricted to permissive infection conditions
(11, 12). Moreover, it could not be ruled out that metabolic
induction might contribute to the host immune response
against virus infection. Therefore, in this study, we compared
the metabolic responses of BmN cells and B. mori larvae upon
non-permissive (by AcMNPV) and permissive (by BmNPV)
infection conditions. We also performed functional analysis by
inhibiting glycolysis with 2-deoxy-D-glucose (2DG) treatment
and examined the baculovirus infective capacity. Furthermore,
through reverse genetic and pharmaceutical approaches, we

identified that adenosine signaling is a conserved mechanism
that regulates metabolic activation and gloverin expressions
upon AcMNPV infection.

MATERIALS AND METHODS

B. mori Larvae, and Cells
B. mori strain is a tetramolted hybrid of (Kou × Fu) × (Nung
× Feng) generated by Taiwan Sericultural Improvement Station,
Miaoli, Taiwan. Larvae were fed mulberry leaves and housed in
a growth chamber at a constant temperature of 26◦C with a
photoperiod of 16 h of light and 8 h of darkness (22).

The S. frugiperda cell line IPLB-Sf-21 and B. mori larval
ovarian cell line BmN were cultured in TC-100 insect medium
containing 10% fetal bovine serum (Gibco BRL) in an incubator
at 26◦C (1).

Titration of Budded Virus
Sf-21 and BmN cells were used for the reproduction of
recombinant AcMNPV and BmNPV budded virus carrying
the enhanced green fluorescent protein gene, respectively,
TCID50 (50% tissue culture infectious dose) values and real-time
quantitative PCR (RT-qPCR) were used to estimate viral titers
(1, 23).

Nucleic Acid Extraction
RNA from infected cells (2 × 105 cells/well) or larvae was
extracted using the TRIzol reagent (Invitrogen). Two third-instar
larvae were pooled together for homogenization. OD values
and RNA concentrations were detected using a microvolume
spectrophotometer (Nanodrop 2000; Thermo Scientific) (24, 25).
cDNA was synthesized using the PrimeScriptTM RT reagent kit
(Takara). Briefly, 500 ng of RNA was dissolved in ddH2O (total
volume of 6.5 µL), after which 2 µL of 5× PrimeScriptTM buffer,
0.5 µL of RT enzyme mix, 0.5 µL of oligo dT primers and 0.5 µL
of random 6-mers (total volume, 10 µL) were added according
to the manufacturer’s instructions. The mixture was incubated at
37◦C for 15min for reverse transcription, after which the reaction
was terminated by heating at 85◦C for 5 s. The obtained product
was stored at 4◦C for subsequent analysis (1). The cDNA was
quantified using a Nanodrop 2000 spectrophotometer.

Analysis of Gene Expression by RT-qPCR
RT-qPCR carried out with SYBR green (Bioline) and the
ABI PlusOne real-time system (StepOnePlusTM, Applied
Biosystems) was used for relative target gene quantification. Each
sample contained 10 µL of SYBR green, 0.8 µL of primer, 1 µL of
cDNA, and ddH2O to adjust the total volume to 20 µL. A list of
primer sequences used in this study is given in Table S1.

siRNA Cell Transfection
siRNAs were synthesized by MDBio Co. (siRNA-AdoR
sequence: 5′-GCGUCU UGUUAGCUGCUUU-3′; siRNA-
control sequence: 5′-AAUUCUCCGAACGUGUC ACGU-3′).
BmN cells were seeded into a 24-well plate at a density of
2 × 105 cells per well and the cells were transfected with
siRNAs (100 pmol) using the Lipofectamine RNAiMAX Reagent
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(Invitrogen). RT-PCR analysis was carried out to determine
the inhibition efficiency of siRNA-transfected cells at 48 h post
transfection (hpt). After transfection for 24 h, AcMNPV and
BmNPV infections were separately carried out at a multiplicity of
infection (MOI) of 1. The cells and supernatants were harvested
to detect viral titers and ATP levels at 48 h postinfection (1).

Pharmacological Treatment of BmN Cells,
Sf-21 Cells, and Larvae
BmN and Sf-21 cells (2 × 105) were preincubated for 2 h
with Dipy (20µM), 2DG (10mM), or adenosine (100µM).
Subsequently, the cells were infected with AcMNPV or BmNPV
at a MOI of 1. Third-instar larvae were injected with AcMNPV
(1 × 106 PFU/5 µL) and Dipy (20mM, 5 µL) or AcMNPV (1 ×
106 PFU/5 µL) and 2DG (0.5mM, 5 µL). The supernatants or
hemolymphs were harvested to detect viral titers and ATP levels
at 48 h postinfection.

To assess the cytotoxicity, we treated the BmN and Sf-21 cells
(2 × 105) with DMSO (0.05%), 2DG (10mM), Dipy (20µM)
and adenosine (10mM) for 24, 48, and 72 h in 12 well-pates, and
cells were stained with propidium iodide (50µg/mL). for labeling
the dead cells. The quantification of live and dead cells was
conducted by flow cytometry in the 585 ± 40 nM channel using
ACEA NovoCyteTM 3,000, and 10,000 events were quantified for
comparison. The results were shown in Figure S1.

B. mori Hemolymph Collection
Late third-instar larvae of B. mori were first placed in a
−20◦C freezer for 2min to prevent the secretion of defensive
fluids. The larval prolegs were cut off, and 10 µL hemolymph
from one late third-instar larva was collected with a pipette
and transferred to 1.5-mL centrifuge tubes. Hemocytes were
removed by centrifugation at 3,000 × g for 1min (26), after
which the supernatant was collected to measure the ATP level.
For the glucose, trehalose, and adenosine measurements, 10
µL hemolymph (without hemocyte) was first mixed with 40
µL of PBS, and 5 µL of hemolymph solution was used for
analysis. Protein concentration of each sample was measured by
Nanodrop (A280).

Glucose, Trehalose, and Adenosine
Measurements
The levels of glucose, trehalose, and adenosine were determined
in B. mori hemolymph using colorimetric methods with a
glucose assay kit (Cell Biolabs, Inc.), trehalose microplate
assay kit (Cohesion Biosciences, Ltd.), and adenosine assay kit
(Fluorometric), respectively. The detailed procedures have been
described previously (19).

ATP Analysis
The level of ATP in the samples was assessed using an ATP
determination kit (Molecular Probes). Virus-infected BmN cells
(2 × 105) were collected by centrifugation at 7,500 × g at
4◦C for 1min. Cells were lysed with 200 µL of cell culture
lysis reagent (25mM Tris-phosphate (pH 7.8), 2mM DTT,
2mM 1,2-diaminocyclohexane-N,N,N,N -tetraacetic acid, 10%
glycerol, 1% Triton R© X-100) and centrifuged at 14,000 rpm

for 3min to remove cell debris. To quantify ATP, 10 µL of
collected supernatant or hemolymph was transferred to a 96-well
black opaque plate that contained 90 µL of the standard assay
solution. Standard solutions of ATP were prepared in the same
manner. The reaction was carried out at 28◦C, after which the
relative light units (RLUs) of the sample and standard solution
were simultaneously measured using a SpectraMax Gemini
EM Microplate Reader at a maximum emission of 560 nm. A
standard curve was plotted using the measured RLUs.

Statistical Analysis
The Ct values obtained from the RT-qPCR assay were normalized
using the 2−11Ct method; the 18 S ribosomal RNA (rRNA)
gene was used as the reference gene (27). Comparisons between
two groups were performed using Student’s t-test, with P <

0.05 indicating a significant difference (marked with an ∗ in
the figures). Significance between three groups was analyzed by
ANOVA with Tukey’s HSD post-hoc test, and different letters
indicate significant differences (P < 0.05).

RESULTS

Different Responses of Glycolytic Gene
Expressions and ATP Synthesis Upon
Permissive and Non-permissive Infections
It is known that AcMNPV and BmNPV have similar genomic
compositions but different host tropisms. To verify their
infection capabilities in the present study, Sf-21 and BmN cells
were infected with both viruses, and virus titers were calculated
after 48 h of infection. The results showed that increased amounts
of the viruses were only observed in the BmNPV-infected
BmN cells or AcMNPV-infected Sf-21 cells (Figure 1A). Viral
titers increased by∼100-fold compared with the non-permissive
infection at 48 h after infection. The results also showed that
under in vivo conditions, increased viral titer were only observed
in Bombyx mori larvae injected with BmNPV but not in those
injected with AcMNPV (Figure 1B).

To assess the response of glycolytic gene expressions under
permissive and non-permissive infection, the transcription levels
of genes involved in glycolysis were evaluated by real-time
quantitative polymerase chain reaction (qPCR) after infecting
BmN cells with AcMNPV or BmNPV (Figure 1C). Notably,
expression of treh was induced by AcMNPV or BmNPV
infection, but the induction level in AcMNPV-infected cells
was significantly higher than that in BmNPV-infected cells
(Figure 1D). No difference between the control and both
baculovirus-infected cells was found for other glycolytic genes,
including pfk, tpi, gadph, and pglym; eno showed increased
transcription after infection, but with no difference between
AcMNPV and BmNPV infection. In addition, ATP production
after AcMNPV infection significantly increased from 24 to
72 h post infection (Figure 1E). Comparing to AcMNPV
infection, BmNPV infection only significantly induced ATP
level at 48 h post infection. These results indicated that the
expression of a glycolytic gene, treh, as well as the production
of ATP, was significantly induced by infection with both
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FIGURE 1 | Virus-host tropisms and host glycolytic activities upon AcMNPV and BmNPV infection. (A) Virus titers were determined by fluorescence intensity and by

qPCR analysis at 48 hpi in BmN and Sf-21 cells infected with AcMNPV or BmNPV. (B) Virus titers quantification by qPCR in AcMNPV- or BmNPV infected B. mori

larvae at 48 hpi (C) Summary of glycolytic and citrate cycle enzymes in insects. (D) RT-qPCR analysis of glycolytic genes trehalase-2 (treh), phosphofructokinase (pfk),

triose phosphate isomerase (tpi), glyceraldehyde 3-phosphate dehydrogenase (gapdh), phosphoglyceromutase (pglym), and enolase (eno) in BmN cells at 48 h after

infection with AcMNPV or BmNPV. All of the results were normalized to expression of the 18S rRNA gene and non-infected control (11Ct). (E) ATP levels were

measured at 48 hpi in AcMNPV- or BmNPV-infected cells. All of the results were normalized to those in the non-infected control. Hemolymph trehalose (F) and

glucose (G) levels in B. mori larvae were measured at 48 hpi; control larvae were injected with 1X PBS. All the values are the mean ± SEM of three (A,C,G) or four

(E,F) replicates. Significances of D, E, F, and G were determined by one-way ANOVA with Tukey’s HSD post-hoc analysis; different letters for the treatment group

indicate significant differences at P < 0.05. Student’s t-test was used for the analysis of A, B, F, *P < 0.05, ***P < 0.001.

baculoviruses but was relatively higher in non-permissive
AcMNPV-infected cells.

To further confirm these in vitro results, we compared
circulating trehalose and glucose levels in infected larvae.
Although no significant difference by ANOVA was observed
for circulating trehalose between PBS-injected larvae and both
virus-infected larvae (P = 0.07), the level of released trehalose
in BmNPV-infected larvae tended to be lower than that in
PBS-injected groups (Figure 1F, P < 0.05 t-test). In addition,
the level of glucose was lowest in AcMNPV-infected larvae
compared to in BmNPV-infected larvae or the PBS treatment
control (Figure 1G). These in vivo results demonstrate different
glycolytic activities between permissive and non-permissive
infection conditions.

Inhibition of Glycolysis Enhances AcMNPV
Replication in a Non-permissive Host
Because BmN cells displayed higher ATP production upon
AcMNPV infection, we sought to understand whether such
metabolic induction is a host physiological response for
enhancing the antiviral immunity against AcMNPV replication
or is induced by virus infection for virus replication. To

address this issue, we treated AcMNPV-infected BmN cells
with the glycolytic inhibitor 2-deoxy-D-glucose (2DG)
(28). The results showed that 2DG successfully suppressed
ATP production in AcMNPV-infected cells (Figure 2A),
and such suppression increased the AcMNPV titer in non-
permissive BmN cells, though infection capacity was still
lower than in BmNPV infection (Figure 2B). To confirm
the in vitro results, we conducted the same experiment
under in vivo conditions. We first confirmed that AcMNPV
infection induced higher ATP production than did BmNPV
infection (Figure 2C) in larvae, which was shown in BmN
cells (Figure 1E), and that ATP production can be further
decreased by 2DG treatment. Moreover, glycolysis suppression
by 2DG injection resulted in a significant increase in AcMNPV
titer in non-permissive B. mori larvae (Figure 2D). Notably,
2DG treatments did not influence the BmNPV titers in
permissive BmN cells or larvae (Figures 2B,D). Our results show
that this glycolytic activation in B. mori upon AcMNPV

infection indeed plays an important role in preventing
AcMNPV replication. Hence, suppression of glycolysis by

2DG treatment increased the AcMNPV replication capacity in its

non-permissive host.
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FIGURE 2 | Inhibition of glycolysis by 2-deoxy-D-glucose (2DG) treatment resulted in decreased ATP levels and increased AcMNPV replication in BmN cells and

larvae. The ATP level was measured at 48 h postinfection (hpi) after 2DG treatment in BmN cells (A) and larvae (C); the values were normalized to those in

non-infected control BmN cells and BmNPV-infected larvae, respectively. Virus titers were estimated at 48 hpi in BmN cells (B) and larvae (D); BmNPV treatment was

used as the positive control. All values are shown as the mean ± SEM of four replicates for ATP measurements and three replicates for virus titer. Significance was

determined by one-way ANOVA with Tukey’s HSD post-hoc analysis; different letters for the treatment group indicate significant differences at P < 0.05.

Adenosine Signaling Is Involved in
Metabolic Induction Upon Baculovirus
Infection
Previous studies inDrosophila have demonstrated that adenosine
signaling regulates glycolytic activity upon pathogenic infection
(19, 21). We examined the temporal and spatial expression
profiles of Bombyx AdoR by using SilkDB 3.0 database
(https://silkdb.bioinfotoolkits.net) (29). We found that AdoR is
expressed ubiquitously from larval to adult stages, and it is also
detectable in immune organs including hemocyte, midgut and
fat body. To confirm the involvement of adenosine signaling
upon baculovirus infection, we compared the expression level
of adenosine receptor (AdoR) after AcMNPV and BmNPV
infection. AdoR expression showed no difference between non-
infected larvae and AcMNPV-infected larvae, but both were
higher than in BmNPV-infected larvae (Figure 3A). In BmN
cells, AdoR expression increased after AcMNPV or BmNPV
infection but was highest in AcMNPV-infected cells (Figure 3B).
In addition, we examined the AdoR expression profiles in
different immune organs (hemocyte, fat body, midgut), and
results showed that BmNPV infection significantly suppressed
AdoR expression in hemocyte (Figure 3C). Both virus infection
significantly induced AdoR expressions in midgut but no impact
on the AdoR expression in the fat body. The results revealed
different profiles of AdoR transcription under in vivo and in
vitro conditions, which might be due to different tissue-specific
responses and the difference in complexity between whole larvae
and BmN cells. Such transcriptional tissue-specific responses

were also observed upon BmCPV infections in Bombyx mori
(30). The lower AdoR expression in the hemocyte of BmNPV-
infected larvae suggested that BmNPV suppresses the AdoR
expression for compromising the host immune defense. Since
AdoR in insect hemocyte has known playing the important roles
on energy metabolism and cellular immune responses upon the
bacterial and virus infections (21, 31) as well as hematopoiesis
(32). Notably, the same patterns of AdoR expression in BmNPV-
infected larvae and BmN cells always being lower than in
AcMNPV infection were found. We further measured the
extracellular adenosine level in the hemolymph of infected larvae
but found no significant difference between the PBS injection
control and AcMNPV- and BmNPV-infected larvae (Figure 3D).
Our results indicate that adenosine signaling is lower under
BmNPV infection than under AcMNPV infection.

To understand whether adenosine signaling regulates host
metabolism and influences the capacity of AcMNPV replication
in its non-permissive host, we inhibited AdoR expression by

RNAi in AcMNPV-infected BmN cells and measured the ATP

level and AcMNPV titer. AdoR transcription was successfully
silenced after 48 h of transfection with AdoR siRNA (Figure 4A);

moreover, induction of ATP levels upon AcMNPV infection was

significantly decreased in BmN cells (Figure 4B). Notably, this

metabolic suppression by AdoR RNAi significantly increased the
AcMNPV titer compared with control siRNA treatment cells,

but the titer was still lower than that in BmNPV infection
(Figure 4C). The result was also visible by observing GFP
(expressed from the viral sequence) signals under a fluorescence
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FIGURE 3 | Regulation of adenosine signaling upon AcMNPV and BmNPV infection. RT-qPCR analyses of AdoR expression in B. mori larvae (A) BmN cells (B) as

well as in different immune organs (C) upon AcMNPV or BmNPV infection at 48 h postinfection (hpi). (D) Measurement of hemolymph adenosine levels of larvae

injected with PBS (control), AcMNPV or BmNPV at 48 hpi. All values are shown as the mean ± SEM of three replicates for qPCR and four replicates for adenosine

measurement. Significance was determined by one-way ANOVA with Tukey’s HSD post-hoc analysis; different letters for the treatment group indicate significant

differences at P < 0.05. MG, midgut; HE, hemocyte; FB, fat body.

microscope. The GFP signal in AdoR siRNA-treated cells was
greater than that in control-treated cells (Figure 4D).

Inhibiting efflux transport of adenosine under stress
conditions has been reported to decreaseAdoR signaling (19, 33).
To further confirm the RNAi results, we pharmaceutically
blocked adenosine transport by treating cells with the
equilibrative nucleoside transporter (ENT) inhibitor
dipyridamole (Dipy). Blocking adenosine transportation
suppressed ATP induction upon AcMNPV infection (Figure 5A)
and significantly increased the AcMNPV titer in BmN cells
(Figure 5B). We conducted the same experiment under in
vivo conditions by injecting infected larvae with Dipy and
observed the same results, whereby Dipy decreased ATP
induction upon AcMNPV infection, increasing AcMNPV
infective capacity in B. mori larvae (Figures 5C,D). We
conclude that AdoR indeed regulates host metabolic induction
upon AcMNPV infection and is essential for the host
antivirus response.

Metabolic Activation Is Essential for the
Antivirus Immune Response
Antimicrobial peptides (AMPs) have been reported to be
involved in antivirus immune reactions in insects (13, 34). Of
these, gloverin was shown that highly induced in the BmNPV-
resistant strain of B. mori upon infection and suppressed
by AcMNPV infection in Spodoptera exigua larvae (35, 36).
Preincubation of Sf-9 cells with gloverin peptides also reduces
the production of budded AcMNPV virus (37). In addition,

suppression of gloverin expression by RNAi increased the
AcMNPV replication in BmN cells (data not shown). To confirm
that metabolic induction is an important factor enhancing the
antivirus response to restrict AcMNPVpermissiveness in B. mori,
we inhibited glycolysis by injecting 2DG into infected larvae
and assessed transcription of four gloverin genes (Figures 6A–D).
The expression levels of the four gloverin genes were increased
after infection by both baculoviruses but relatively higher
with AcMNPV. Notably, 2DG treatment significantly decreased
induction of all gloverin transcripts, confirming our hypothesis
that metabolic activation upon AcMNPV infection is essential for
supporting the immune response against infection. Furthermore,
to again prove that adenosine signaling regulates host metabolic
activation to support the antivirus response, we injected Dipy
to block adenosine transport in infected larvae and measured
expression of the four gloverin genes (Figures 6E–H). Except for
gloverin-1, the other three gloverins showed similar results: Dipy
injection significantly suppressed expression due to AcMNPV
infection. Our results demonstrate that metabolic induction
regulated by adenosine signaling is critical for the antiviral
immune response in B. mori.

Adenosine Signaling Is a Conservative
Mechanism Modulating the
Permissiveness of Baculovirus Infection in
Spodoptera frugiperda Cells
To demonstrate that our observations are not restricted to
B. mori, we tested the role of adenosine signaling in another
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FIGURE 4 | AdoR RNAi suppressed ATP induction and increased AcMNPV titers in BmN cells. (A) Knockdown efficiency of AdoR siRNA treatment in BmN cells by

RT-PCR analysis. (B) The ATP level was measured at 48 h postinfection (hpi) in AdoR and control siRNA-treated cells; values were normalized to those in the

non-infected control. Virus titers were determined by qPCR (C) and fluorescence intensity (D) at 48 hpi in AdoR- and control siRNA-treated cells. All values are the

mean ± SEM of four replicates for ATP level and three replicates for virus titer measurements. Significance was determined by one-way ANOVA with Tukey’s HSD

post-hoc analysis; different letters for the treatment group indicate significant differences at P < 0.05.

FIGURE 5 | Inhibition of adenosine transport by dipyridamole (Dipy) treatment decreased the ATP level, resulting in an increase in AcMNPV replication in BmN cells

and larvae. The ATP level was measured at 48 h postinfection (hpi) with Dipy treatment in BmN cells (A) and larvae (C); values were normalized to those in the

non-infected control BmN cells and BmNPV-infected larvae, respectively. Virus titers were estimated at 48 hpi in BmN cells (B) and larvae (D); BmNPV treatment

represented the positive control. All values are shown as the mean ± SEM of four replicates for ATP level and three replicates for virus titer measurements. Significance

was determined by one-way ANOVA with Tukey’s HSD post-hoc analysis; different letters for the treatment group indicate significant differences at P < 0.05.

lepidopteran model, S. frugiperda Sf-21 cells. We obtained the
same results, showing that inhibition of glycolysis and adenosine
transport in Sf-21 cells increased the BmNPV replication in its

non-permissive host (Figure 7A). Alternatively, enhancement of
adenosine signaling in Sf-21 cells by applying adenosine led
to a significant decrease in the AcMNPV infection capacity
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FIGURE 6 | Antivirus protein expression was regulated by AdoR-meditated metabolic activation upon AcMNPV infection. The expression levels of four gloverin genes

were analyzed by RT-qPCR at 48 h postinfection (hpi) in larvae infected with BmNPV or AcMNPV and cotreated with 2DG (A–D) or Dipy (E–H). Control larvae were

injected with 1X PBS. All values are the mean ± SEM of three replicates. Significance was determined by one-way ANOVA with Tukey’s HSD post-hoc analysis;

different letters for the treatment group indicate significant differences at P < 0.05.

in its permissive host (Figure 7B). Our results indicated that
inhibition of adenosine signaling resulted in a decreased
glycolytic activity and antivirus reaction, which increased
the baculovirus infective capacity in its non-permissive host;
conversely, induction of adenosine signaling enhanced the host
antivirus reaction, which decreased the AcMNPV propagation in
Sf-21 cells.

DISCUSSION

AcMNPV has broader host range in comparing to BmNPV,
which has only one permissive host, silkworm and its derived
cell line Bm cells. Interestingly, despite having a wide range of

host, AcMNPV is not able to achieve successful infection in
Bm cells, making Bm cells non-permissive to AcMNPV (5, 7).
Host tropism may be determined by the following factors: the
ability of baculoviruses to enter host cells, to achieve normal
viral gene expression during infection, and to utilize host cellular
machinery to complete the infection procedure (6, 38). Many
viral genes involved in host range determination have also been
identified, including p143, p35, and hcf-1. Substitution of 2
amino acids in AcMNPV p143 enabled AcMNPV replication in
Bm5 cells. Blocking cell apoptosis and activating origin-specific
DNA replication in AcMNPV can also alter host specificity,
demonstrating that virus-host interactions can also alter host
ranges in some baculoviruses. Baculoviruses produce two distinct
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FIGURE 7 | Glycolysis and adenosine signaling in Sf-21 cells regulate the permissiveness of baculovirus infection. Sf-21 cells were preincubated with 2DG and Dipy

(A) and adenosine (Ado) (B) before BmNPV or AcMNPV infection, respectively. The virus titers were estimated at 48 h postinfection. “Cell only” indicates cells without

virus and drug treatments. All values are shown as the mean ± SEM of three replicates. Significance was determined by one-way ANOVA with Tukey’s HSD post-hoc

analysis; different letters for the treatment groups indicate significant differences at P < 0.05.

types of virions during the infection cycle: budded viruses (BV),
which are responsible for systematic infection within hosts, and
occlusion derived viruses (ODV), which are responsible for
spreading infection to other susceptible species (39). Infective
efficiency might be variable by oral delivery of ODV, since several
antiviral proteins such as Bmlipase-1 and BmSP-2 are highly
expressed in midgut, and virus also needs to passes through the
host’s peritrophic membrane for causing the systemic infection
(39–41). Taking into consideration, our study mainly injected BV
into the hemocoel of silkworms.

Previous studies on the regulation of host tropism of
AcMNPV and BmNPV have mostly focused on how viruses
modulate the cellular function of the host to establish successful
propagation. Conversely, relatively few studies have investigated
the host physiological response, which is important for anti-
baculovirus reactions. Our results showed that expression of
the glycolytic genes treh and eno as well as ATP production
increased after BmNPV infected BmN cells (Figure 1). These
results are consistent with previous observations on BmNPV-
infected BmN cells or AcMNPV-infected Sf-9 cells, which
showed increased citric acid expression, TCA cycle activity,
and ATP levels after infection (11, 12). It was later concluded
that virus induces metabolic activity of a permissive host due
to the requirement of a large energy supply for baculovirus
replication (9, 13). Regardless, the fact that the immune system
of the host also requires a higher energy supply for antivirus
immune responses should not be overlooked. In fact, our results
showed that metabolic induction was more dramatic under
non-permissive infection conditions. Both the treh expression
level and ATP production in AcMNPV-infected BmN cells and
larvae were significantly higher than under BmNPV infection
(Figures 1, 2). It was reported previously that AcMNPV infection
of permissive host (Sf-9 cells) caused cell enlargements and
resulted in increasing intracellular ATP level by 50–80% (42).
In the present study, intracellular ATP level increased by 6 to
7-fold (600–700%) in AcMNPV infection of the non-permissive
host (BmN cells). This increased ATP level was far more than
that in the permissive cell line, suggesting that it was not likely
contributed by cell enlargement after infection.

Trehalose circulation and consumption of glucose were
also higher in AcMNPV-infected larvae (Figure 1). Moreover,
instead of promoting virus infection, as in previous studies
describing permissive infection, this metabolic induction under
non-permissive infection appears to be a host physiological
response against virus replication. Increased AcMNPV titers
and suppressed gloverin induction were observed after applying
the glycolytic inhibitor 2DG to infected BmN cells and larvae
(Figures 2, 6). In general, increased energy consumption upon
pathogenic challenge is essential for supporting both cellular and
humoral immune responses (18). In particular, the production
of AMPs is usually dramatically and rapidly enhanced during
infection, and it has been shown that activation of the IMD
and Toll pathways as well as drosomycin overexpression have
significant metabolic impacts in Drosophila, such as reduced
glycogen and triglyceride stores (43–45). Our results show that
activation and reallocation of energy supply toward the immune
system is necessary for anti-baculovirus reactions.

Our results demonstrated that adenosine signaling is a key
molecular mechanism regulating metabolic induction upon
virus infection. Suppressing AdoR expression in BmN cells or
inhibiting adenosine transport in BmN cells and larvae by RNAi
affected ATP production and gloverin expression, resulting in
increased AcMNPV-infected capability in non-permissive hosts
(Figures 4–6). As a signaling molecule, adenosine is known to be
involved in various stress responses, including immune reactions.
Extracellular adenosine can be derived from the degradation
of extracellular ATP or ADP release by damaged cells, or it
can be converted from intracellular ATP and exported to the
extracellular space via ENTs (46). Increased ATP synthesis under
infection leads to higher extracellular adenosine levels, activating
AdoR signaling, which regulates several immune responses,
such as inflammatory cytokine production in mammals and
hematopoiesis and phagocytosis in Drosophila (21, 47, 48).
Additionally, our results are consistent with previous findings
demonstrating that adenosine signaling regulates carbohydrate
metabolism and energy distribution during bacterial and wasp
infection in Drosophila (18, 19). Based on previous data
and those from our present study, which used two different
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lepidopteran models, we conclude that adenosine signaling may
be a conserved mechanism that modulates host metabolism and
immune reactions during pathogenic infection.

Notably, we discovered that AdoR expression (Figure 3), treh
expression (Figure 1D), and ATP levels (Figure 1E) in BmNPV-
infected cells or larvae were significantly lower than in AcMNPV
infection. As our previous study demonstrated that BmNPV
infection resulted in strong miRNA production in B. mori (1),
we speculated that BmNPV infection may block host adenosine
signaling by stimulatingmiRNA againstAdoR expression, further
suppressing metabolic activation and the antivirus response. We
reexamined the transcriptome data from our previous study
and found several potential miRNAs targeting AdoR (Table S2).
Because induction of host miRNA expression by viral challenge
may be a host antiviral response or it could be triggered by
the virus for host physiology remodeling, further study will be
needed to characterize the major miRNA involved in regulating
AdoR signaling upon BmNPV infection.

Our experimental results confirm that adenosine signaling
affects glycolytic and energy synthesis in B. mori, affecting
the host antivirus immune response and restricting the host
specificity of AcMNPV. Thus, our study provides a basis
for future investigations on the association between host
physiological responses and baculovirus infection, and the
findings may also be relevant for pest control management.
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Figure S1 | Cytotoxicity assessment of Dipy, 2DG and adenosine treatments. The

BmN (A) and Sf-21 cells (B) were treated with DMSO (0.05%, labeled as control

or ctr), 2-Deoxy-D-glucose (10mM, labeled as 2DG), Dipyridamole (20µM,

labeled as Dipy) and adenosine (10mM, labeled as Ado) for 24, 48, and 72 h, and

cells were stained with propidium iodide (50µg/mL) for labeling the dead cells.

The quantification of live and dead cells was conducted by flow cytometry in the

PE-A (585 ± 40 nM) channel using ACEA NovoCyteTM 3000, and 10,000 events

were quantified for comparison. All values of bar graph are shown as the mean ±

SEM of three replicates. Kruskal-Wallis test was used for statistical analysis, and

results suggested that no significant difference of live or dead cell numbers among

all the treatment in both cell line.
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Melanization is a prominent insect humoral response for encapsulation of and killing
invading pathogens. It is mediated by a protease cascade composed of a modular
serine protease (SP), and clip domain SPs (cSPs), which converts prophenoloxidase
(PPO) into active phenoloxidase (PO). To date, melanization pathway in cotton bollworm
Helicoverpa armigera, an important agricultural pest, remains largely unclear. To
biochemically reconstitute the pathway in vitro, the putative proteases along with
modified proteases containing the factor Xa cleavage site were expressed by Drosophila
S2 cell expression system. Purified recombinant proteins were used to examine their
role in activating PPO. It is revealed that cascade is initiated by a modular SP-SP41,
followed by cSP1 and cSP6. The three-step SP41/cSP1/cSP6 cascade could further
activate PPO, and the PO activity was significantly enhanced in the presence of two cSP
homologs (cSPHs), cSPH11 and cSPH50, suggesting the latter are cofactors for PPO
activation. Moreover, baculovirus infection was efficiently blocked by the reconstituted
PPO activation cascade, and the effect was boosted by cSPH11 and cSPH50. Taken
together, we unraveled a conserved PPO activation cascade in H. armigera, which is
similar to that exists in lepidopteran biochemical model Manduca sexta and highlighted
its role in antagonizing viral infection.

Keywords: melanization, prophenoloxidase, serine protease, baculovirus, Helicoverpa armigera

Abbreviations: βGRP, β-glucan recognition proteins; β-ME, β-mercaptoethanol; AS, ammonium sulfate; CPC,
cetylpyridinium chloride; cSP, clip domain serine protease; cSPH, clip-domain serine protease homolog; cSPH, cSP
homologs; HearNPV, Helicoverpa armigera nucleopolyhedrovirus; HP, hemolymph protease; IEAR, acetyl-Ile-Glu-Ala-Arg-
p-nitroanilide; LDLa, low-density lipoprotein receptor class A; MSP, modular serine protease; PAP, PPO activating protease;
PO, phenoloxidase; PPAE, PPO activating enzyme; PPAF, PPO activating factor; PPO, prophenoloxidase; PRRs, pattern
recognition receptors; SAE, SPE activating protease; SPE, Spätzle processing enzyme.
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INTRODUCTION

Melanization is a prominent defense mechanism in arthropods
that plays an essential role in wound healing, killing of
microbes, and parasites encapsulation (1, 2). The key protease
in melanization is phenoloxidase (PO), which can catalyze
phenols to quinines, then form melanin. PO usually exists as the
zymogen, prophenoloxidase (PPO). Its activation depends on the
extracellular serine protease (SP) cascade triggered by invading
microbes. The recognition of pathogen-associated molecular
patterns, such as β-1,3-glucan from fungi, peptidoglycan from
Gram-positive bacteria, or lipopolysaccharide from Gram-
negative bacteria, by host pattern recognition receptors (PRRs)
leads to the activation of modular proteases that sequentially
cleave the downstream SPs and ultimately activate PPO (3).

The extracellular PPO activation pathway usually consists
of a three-step proteolytic cascade initiated by one modular
SP then followed by clip domain SPs (cSPs), which has been
comprehensively revealed in a lepidopteran species Manduca
sexta (4–7) and a coleopteran species Tenebrio molitor (8, 9).
cSPs and the homologs are classified into four subfamilies (A–
D) based on phylogenetic analysis (10, 11). Most PPO activating
proteases that directly activate PPO belong to CLIPB, such as
M. sexta PPO activating protease (PAP) 1-3 (12, 13) and T.
molitor Spätzle processing enzyme (SPE) (8). The proteases
that cleave CLIPB are generally derived from CLIPC. For
example, M. sexta hemolymph protease (HP) 6 and HP21
activates PAP1 and PAP2/3, respectively (4, 7) and T. molitor
SPE activating enzyme (SAE) cleaves SPE (8). The initiating
modular SPs without clip domains that activate CLIPC members
are characterized by containing low-density lipoprotein receptor
class A (LDLa), Sushi and Wonton domains (14, 15). They
could be autoactivated in the presence of pathogens, then
cleaved the downstream proteases. In M. sexta, the modular
SP, HP14, was stimulated to activate by its interaction with
β-glucan recognition proteins (βGRP) 2 before cleaving HP21
(15). T. molitor modular SP (MSP) was also one modular
SP which activated SAE (8). Alternatively, the initiating SP
could be the CLIPD member. For example, M. sexta HP1, a
member of CLIPD, was identified as a recognition protein of
the melanization cascade which was activated without proteolytic
cleavage (3, 16).

CLIPA are cSP homologs (cSPHs) that lost catalytic activity
due to the replacement of catalytic triad residues (11). cSPHs
seem to serve as cofactors that significantly increase PO activity
(6, 12, 13). Although there were three PAPs in M. sexta, PO
activity was very low in the absence of cofactors. Only in the
presence of cSPH1 and cSPH2, PO activity was greatly enhanced
(12). According to the crystal structure of M. sexta PPO, it has
been suggested that the combination of cSPHs and PO might lead
to the conformation change of the latter, enabling the substrate to
be more accessible to the active site of PO (17).

Melanization has also been studied in other insects. In
Drosophila melanogaster, Hayan, Sp7 and ModSP were verified to
function during melanization (18, 19). In Aedes aegypti, immune
melanization proteases (IMP-1 and IMP-2) were identifed to
mediate the cleavage of PPO to combate the malaria parasite

(20). In Anopheles gambiae, CLIPB9 directly cleaves and activates
PPO, whereas CLIPB8 is also part of the PPO activation system
(21, 22). In Bombyx mori, PGRP-S5 functions as a pattern
recognition receptor during melanization (23) and BmSPH-1
interacts with PPO and PPO-activating enzyme (PPAE) (24). In
Ostrinia furnacalis, SP105 could fucntionaly activate PPO (25).
Overall, researches on melanization in other insects are not as
comprehensive as those in M. sexta and T. molitor.

Several studies have suggested that melanization is involved
in defense against virus infection. For examples, silencing PPO-I
gene in Armigeres subalbatus increased Sindbis virus replication
(26). Plasma PO of Heliothis virescens inhibited baculovirus
infection (27). The melanin precursor 5,6-dihydroxyindole
(DHI) showed broad-spectrum antiviral activity (28). PO activity
in Ae. aegypti is required for innate immune response against
Semliki Forest virus (SFV) infection (29). Recently, our study
showed that melanization in Helicoverpa armigera is involved in
baculovirus infection (30).

Cotton bollworm, H. armigera, is a worldwide distributed
agricultural pest. It caused severe damage to many crops
(31). Melanization in H. armigera plays an important role
in defense against invading pathogens (30, 32–35). Previously
transcriptomic and proteomic analyses showed that many
SPs and homologs were up-regulated in response to the
challenge of bacteria or fungi (34), however, they were down-
regulated with baculovirus infection (30). At the same time,
two negative regulators serpin-5 and serpin-9 of the pathway
were sequentially induced by baculovirus infection to inhibit
their target proteases, cSP4 and cSP6, respectively (30). Thus,
baculoviruses have developed efficient strategies to suppress
the host melanization response for their proper proliferation.
Previous studies identified that there were two PPOs (PPO1 and
PPO2) and at least 11 cSPs in H. armigera (34). These include
procSP6, 7, and 8 belonging to CLIPB; procSP1, 2, 3, and 4
of CLIPC; and procSP5, 9, 10, and 29 belonging to CLIPD. In
addition, three potential mudular SPs (proSP41, 42, and 43) were
identified with the LDLa and sushi domains, while procSPH11,
49, and 50 were found to be cSP homologs. Furthermore, it
has been verified that PPO can be proteolytically activated
by cSP6, a member of the CLIPB subfamily (30). However,
so far, the complete PPO activation pathway of H. armigera
remains unclear.

In this study, we identified the members involved in PPO
activation cascade step-by-step using biochemical methods and
finally in vitro reconstructed a complete PPO activation pathway
in H. armigera. Two cSPHs that could significantly enhanced
PO activity were identified. The reconstructed PPO activation
pathway efficiently antagonized viral infection in vitro. The
cascade in H. armigera was conserved compared with that
in M. sexta.

MATERIALS AND METHODS

Cells and Virus
The Drosophila S2 cell line was cultured in ESF921 medium
(Expression Systems, Woodland, CA, United States) at 27◦C.
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The recombinant Helicoverpa armigera nucleopolyhedrovirus
(HearNPV) expressing an egfp reporter gene (HearNPV-egfp)
was previously constructed by our laboratory (36).

Expression of Recombinant Serine
Proteases (SPs)
Total RNA was isolated from the fat body of the day-3 5th
instar H. armigera larvae using TRIzol reagent (Invitrogen,
Carlsbad, CA, United States). The entire coding region of
proSPs (proSP41, procSP1, procSP6) and procSPHs (procSPH11,
procSPH49 and procSPH50) (34) were amplified by reverse
transcriptase polymerase chain reaction (RT-PCR) using the
PrimeScriptTM RT reagent kit with gDNA Eraser (Takara Bio,
Otsu, Japan) with the primers listed in Supplementary Table S1.
The PCR products were cloned into the pMT-BiP/V5-HisA
vector (Invitrogen). Overlap extension PCR was performed to
prepare constructs designated as cSPXa, in which four residues
at the putative activation site were replaced with tetrapeptide
IEGR, a cleavage site of bovine coagulation factor Xa (37).
The putative cleavage sites of proSP41, procSP1, procSP6,
procSPH11, procSPH49 and procSPH50 are VDVL, TDKL,
VGNK, ADLR, VSFI, and LDIR, respectively. The plasmids
were transfected into Drosophila S2 cells along with pCoHygro
hygromycin selection vector (Invitrogen) and stable cell lines
were screened according to the manufacturer’s instruction. The
cell supernatants containing secreted recombinant proteases
were harvested. Recombinant proteins were purified using
nickel-charged resin (Roche Diagnostics, Basel, Switzerland),
eluted with imidazole, and further concentrated by filtration
through an Amicon Ultra 10K cartridge (Millipore, Billerica,
MA, United States). The purified proteins were stored at
−80◦C before use.

Generation of Polyclonal Antibodies
procSP6, procSPH11, and procSPH50 for prokaryotic expression
were subcloned into the pET-28a expression vector using the
primers listed in Supplementary Table S1. Recombinant protein
was expressed in Escherichia coli BL21 cells and purified with
nickel-charged resin. procSP1 was expressed in Drosophila
S2 cells as described above. The recombinant proteins were
used to immune rabbit to generate the respective polyclonal
antibodies as described previously (38). The polyclonal
antibodies against PPO1 and PPO2 were generated as described
previously (30).

Purification of PPO From Larval
Hemolymph
Prophenoloxidase was purified from the hemolymph of day-3
5th instar H. armigera larvae according to the protocol reported
described (30). Briefly, 10 ml hemolymph was collected from
larval body and pooled into ice-cold saturated ammonium
sulfate (AS). AS saturation (35-50%) was collected and loaded
on column prepacked with Ceramic Hydroxyapatite (Bio-Rad,
Hercules, CA, United States). The fractions with cetylpyridinium
chloride (CPC) activated PO activity were combined and applied
through Concanavalin A Sepharose column (Sigma-Aldrich,

St. Louis, MO, United States). The flow-through fraction was
applied to a Phenyl Sepharose 6 Fast Flow (low sub) column
(GE Healthcare, Little Chalfont, United Kingdom). Fractions
containing PO activity were applied to a Superdex 200 column
(ÄKTApurifier; GE Healthcare). Purified PPO were stored at
−80◦C before analysis.

The Activation and Activity of Serine
Protease and PPO
To activate procSPXa with factor Xa, purified procSPXa was
incubated with bovine factor Xa (New England Biolabs, Ipswich,
MA, United States) in buffer [20 mM Tris–HCl, 0.1 M NaCl,
2 mM CaCl (pH 8.0)] at 27◦C for 5 h. Amidase activity of the
reaction mixtures was measured using 200 µL, 50 µM acetyl-
Ile-Glu-Ala-Arg-p-nitroanilide (IEAR) as the substrate (39). One
unit of amidase activity was defined as 1A405 of 0.001 in
one minute. Factor Xa activated procSPXa was incubated with
procSP at 37◦C for 1 h before immunoblot analysis under
reducing conditions containing β-mercaptoethanol (β-ME)
or non-reducing conditions. Mixtures containing sequentially
activated SP cascade components (cSP6Xa, cSP1Xa/procSP6, and
SP41Xa/procSP1/procSP6) were incubated with purified PPO
at room temperature for 10 min to detect PPO cleavage
by immunoblotting. To measure PO activity, samples were
transferred to 96-well plates, and 200 µL of 2 mM Dopa in
50 mM sodium phosphate buffer (pH 6.5) were added. The
activity was determined by measuring the absorbance at 470 nm
with a microplate reader (Synergy H1; BioTek, Winooski, VT,
United States). One unit of PO activity was defined as 1A470 of
0.001 in one minute (30).

Effects of in vitro Activated Melanization
on Baculovirus Infection
HearNPV-egfp (MOI = 0.5 TCID50 units/well) was mixed with
the SP cascade (SP41Xa + procSP1 + procSP6), PPO and its
substrate (PPO + Dopa), the cSPHs (procSPH11 + procSPH50),
and the serine protease inhibitor (serpin-9) with different
combinations. The amount of each agents were as follows: 200 ng
PPO, 10 µL of 20 mM Dopa, 50 ng SP41Xa, 50 ng procSP1,
100 ng procSP6, 200 ng procSPH11, 200 ng procSPH50, and
1 µg serpin-9. Then all of the mixtures were adjusted to a
final volume of 100 µL and incubated at room temperature
for 0, 1, and 3 h, respectively. The mixtures were added to
HzAM1 cells in Grace’s insect medium supplemented with 2%
fetal bovine serum in 24-well plates and incubated for 2 h.
The cells were washed three times with serum-free medium
and incubated at 27◦C for 24 h, and viral infection was
examined under a fluorescence microscope using the EVOSTM
FL Auto Imagine System (Thermo Fisher Scientific, Waltham,
MA, United States).

Statistical Analysis
All statistical evaluations were determined using GraphPad Prism
5 software. Statistical differences between two groups were
performed using the two-tailed Student’s t-tests (n ≥ 3 biological
replicates) ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.
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FIGURE 1 | Prophenoloxidase (PPO) is sequentially activated by cSP1/cSP6. (A) SDS-PAGE and immunoblot analysis of purified recombinant procSP1 and
procSP1Xa. Anti-V5 antibody was used to detect recombinant proteins by immunoblotting. (B) Amidase activity of cSP1Xa. Catalytic activity of activated cSP1Xa

(100 ng) and cSP6Xa (100 ng) were detected using IEAR as a substrate. ***p < 0.001. (C) Factor Xa activated procSP1Xa can cleave procSP6. procSP1Xa (50 ng)
was processed by factor Xa, and then incubated with procSP6 (100 ng) for 1 h. To examine the effect of disulfide bonds on protein mobility, mixtures were treated
with SDS sample buffer with (left panel) or without β-ME (right panel) and separated by SDS-PAGE followed by immunoblotting using an anti-cSP6 antibody.
(D) PPO was sequentially activated by cSP1/cSP6. Activated cSP6 was incubated with PPO (100 ng) for 10 min, and analyzed by immunoblotting using an
anti-PPO2 antibody (middle panel). Higher amount of PPO (300 ng) was used in detecting PO activity (upper panel), and PO activity was represented as mean ± SD
of three independent experiments. ***p < 0.001.

Gene Accession Numbers
All sequence data that support the findings of this study
are available in GenBank with the following accession
numbers: proSP41 (MT182806), proSP42 (MT182807), proSP43
(MT182808), procSP1 (MT182805), procSP6 (KY680241),
procSPH11 (MT182809), procSPH50 (MT182810), PPO1
(KY744277), PPO2 (KY744278), and serpin-9 (KY680239).

RESULTS

cSP1 Cleaves the PPO Activating
Protease cSP6
We decided to in vitro re-constitute the PPO activation cascade of
H. armigera using a “bottom-up” strategy. PPO was purified from
the hemolymph of H. armigera larvae and, after a CPC-induced
conformation changes, PO activity was confirmed by production

of dopamine chrome (or dopachrome) from dopamine (or dopa)
(Supplementary Figure S1A). Immunoblotting analysis further
showed that purified PPO formed a heterodimer constituted of
PPO1 and PPO2 (Supplementary Figure S1B). We previously
identified that cSP6 served as a PPO activating enzyme (30).
This was confirmed as evidenced by the cleavage and enzymatic
activation of PPO by the factor Xa activated recombinant
procSP6Xa (Supplementary Figures S1C,D).

According to the phylogenetic analysis, cSP1 of H. armigera
was classified as a member of CLIPC subfamily, and showed
close phylogenetic relationship to M. sexta HP21 (30), the
upstream cSP of M. sexta PAP2/3 (7), implying that cSP1
might be the protease upstream of cSP6 in H. armigera. To
characterize the function of cSP1, recombinant procSP1 and its
modified form were expressed and purified using Drosophila
S2 cells (Figure 1A). Activity of the cleaved cSP1 and cSP6
was detected as hydrolysis of the IEAR substrate (Figure 1B).
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FIGURE 2 | Prophenoloxidase activation by the melanization cascade initiated by SP41. (A) SDS-PAGE and immunoblot analysis of purified recombinant proSP41
and proSP41Xa. Anti-V5 antibody was used to detect recombinant proteins by immunoblotting. (B) Amidase activity of SP41Xa. Catalytic activity of activated SP41Xa

(300 ng) was detected using IEAR as a substrate. ***p < 0.001. (C) Activation of procSP1 by SP41Xa. Factor Xa (50 ng) activated proSP41Xa was incubated with
procSP1 (100 ng) for 1 h. To examine the effects of disulfide bonds on protein mobility, mixtures were treated with SDS sample buffer with (left panel) or without
β-ME (right panel) and analyzed by immunoblotting using an anti-cSP1 antibody. (D) PPO activation by the melanization cascade initiated by SP41Xa. Activated
cSP1 in (C) was incubated with procSP6 (50 ng) for 1 h, and then mixed with 100 ng PPO with immunoblotting or 300 ng PPO with PO activity for another 10 min.
Immunoblotting was performed using an anti-PPO2 antibody (middle panel). PO activity (upper panel) was represented as mean ± SD of three independent
experiments. ***p < 0.001.

Then, procSP6 was incubated with factor Xa activated procSP1Xa,
and the result showed that cSP1Xa could cleave procSP6
(∼57 kDa), and the separated catalytic domain (∼38 kDa) and
clip domain (∼19 kDa) were clearly detected with the anti-
cSP6 antibody under reducing condition (Figure 1C, lane 4).
Interestingly, procSP6 could be partially cleaved by procSP1Xa
without activation (Figure 1C, lane 3). While under the non-
reducing condition, the disulfide bond linked subdomains of
cSP6 migrated to the same position as the procSP6 (Figure 1C,
lanes 5–8), indicating that procSP6 was specifically cleaved
by cSP1Xa.

Next, PPO was added to the mixtures as described above
and the cleavage of PPO was detected using immunoblotting. As
expected, PPO was efficiently cleaved by cSP6 in the presence of
procSP1Xa and factor Xa (Figure 1D, lane 9). Correspondingly,
high PO activity was detected (Figure 1D, lane 9, upper panel).
Interestingly, procSP1Xa and procSP6 mixed together were able
to activate PPO in the absence of factor Xa (Figure 1D, lane 8),
which was consistent with the finding that procSP6 was partially
cleaved by procSP1Xa (Figure 1C, lane 3). We noticed that PO
activity induced by cSP6 via activated cSP1 (Figure 1D, lane
9) was much higher than that by factor Xa activated cSP6Xa
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FIGURE 3 | Phenoloxidase (PO) activity is enhanced by cSPH11Xa and cSPH50Xa. (A) SDS-PAGE and immunoblot analysis of recombinant procSPH11,
procSPH11Xa, procSPH49, procSPH49Xa, procSPH50, and procSPH50Xa. Anti-V5 antibody was used in immunoblotting. (B) PO activity increased significantly in
the presence of cSPH11Xa and cSPH50Xa. Factor Xa processed procSP1Xa (50 ng) was incubated with procSP6 (100 ng) for 1 h, respectively. At the same time,
procSPH11Xa, procSPH50Xa and procSPH49Xa (100 ng) were activated with factor Xa. Purified PPO (100 ng) was added to the mixture and PO activity was
measured. PO activity was represented as mean ± SD of three independent experiments. ***p < 0.001.

(Figure 1D, lane 5), indicating that cSP6 activated at its native
cleavage site has higher activity than the modified form. To be
noted, PO activity induced by cSP6 via procSP1Xa (Figure 1D,
lane 8) was also higher than that by factor Xa activated cSP6Xa
(Figure 1D, lane 5), suggesting the self-activated procSP1Xa is
likely to be able to active cSP6 at its native cleavage site. Thus,
PPO can be activated by the cascade of cSP1/cSP6.

SP41 Is an Initiating SP of the PPO
Activation Pathway
To find out the initiating SP in the PPO activation pathway of
H. armigera, phylogenetic analysis (Supplementary Figure S2A)
and domain architecture comparison (Supplementary
Figure S2B) were performed. Three modular SPs (SP41,
SP42, and SP43) in H. armigera showed homology (with the
identities of 48, 58, and 44%, respectively) to M. sexta HP14,
which is an initiating SP upstream of HP21 (14, 15), implying
the possible role of the three SPs in activation of procSP1. To
verify their functions, recombinant proSP41Xa, proSP42Xa,
and proSP43Xa were expressed and purified using Drosophila
S2 cells (Supplementary Figures 2A, S3A). The SP activity
was measured using IEAR substrate, and the result showed
that purified recombinant modular SP41Xa exhibited amidase
activity (Figure 2B), so did SP42Xa and SP43Xa (Supplementary
Figure S3B). Then proSP41Xa, proSP42Xa, and proSP43Xa were
tested for their ability to cleave procSP1. Among the three
cSPs, only SP41Xa cleaved procSP1 (Figure 2C, lane 4) and

the catalytic domains of cSP1 migrated to the same position
with procSP1 under non-reducing conditions, indicating
that it was specifically cleaved (Figure 2C, lanes 6–10). In
contrast, proSP42Xa and proSP43Xa failed to activate procSP1
(Supplementary Figure S3C).

We next investigated whether the entire pathway could
activate PPO in vitro. The PO band was clearly detected after
incubation of PPO with the mixtures of factor Xa, proSP41Xa,
procSP1, procSP6 (Figure 2D, lane 5), and PO activity was
also increased (Figure 2D, lanes 5 and 6, upper panel). These
results clearly showed that PPOs were enzymatically cleaved
and activated by the cascade initiated from activated SP41Xa.
Thus, a complete PPO activation pathway in H. armigera was
reconstructed in vitro.

PO Activity Is Enhanced in the Presence
of cSPH11 and cSPH50
Phylogenetic analysis showed that three H. armigera cSPHs
(cSPH11, cSPH49, and cSPH50) were homologs to M. sexta
cSPH1 and cSPH2 (data not shown), suggesting that they may
serve as potential cofactors for PPO activation. Therefore, we
firstly expressed and purified recombinant procSPHs and their
modified forms (Figure 3A). Then, the factor Xa activated
procSPHs, either individually or in different combinations, were
incubated with mixtures of PPO and cSP1Xa activated cSP6 before
measuring of PO activity. Only in the presence of cSPH11Xa and
cSPH50Xa simultaneously, a significant increase of PO activity
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FIGURE 4 | cSPH11 and cSPH50 are cofactors in PPO activation. (A) PO activity was increased significantly in the presence of procSPH11 and procSPH50. The
experimental groups were the same with Figure 3B, instead of factor Xa mutants, wild type procSPHs were used to measure PO activity (upper panel), which was
represented as mean ± SD of three independent experiments. ***p < 0.001. (B) Proteolytic activation of procSPH11 and proSPH50 by cSP6Xa. Factor Xa activated
cSP6Xa (50 ng) was incubated with 100 ng procSPH11 (left panel) or procSPH50 (right panel) for 1 h. The mixtures were analyzed by immunoblotting using
anti-cSPH11 or anti-cSPH50 antibody.

was detected (Figure 3B, lane 6 and 8), indicating that cSPH11
and cSPH50 acted in concert to synergize PO activity. To be
noted, to better reflect the function of cSPHs, the amount of PPO
used in this experiment (Figure 3B) was much lower than the
above results when cSPHs were not present (Figures 1D, 2D).

To further confirm this finding, we performed a similar
experiment as Figure 3B by using purified wild type forms of
procSPH11, procSPH49 and procSPH50 instead of the modified
procSPHs activated with factor Xa. The result showed that PO
activity was also increased in the presence of procSPH11 and

procSPH50 (Figure 4A, lane 6), with even much higher activity
(about fourfold greater) than those using the factor Xa activated
cSPHs. Interestingly, the combination of cSPH11 and cSPH49
also increased PO activity (Figure 4A, lane 5) but the effect
was less prominent than that induced by cSPH11 and cSPH50
(Figure 4A, lane 6).

In M. sexta, cSPHs could be cleaved by PAPs, which were
PPO activating proteases (12). Therefore, we asked whether
cSPHs would be cleaved by the PPO activating protease before
functioning in H. armigera. To examine this hypothesis, factor
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FIGURE 5 | Baculovirus infection is blocked by melanization cascade in vitro. (A) HearNPV-egfp was mixed with PPO and Dopa, SP cascade
(SP41Xa + procSP1 + procSP6), the cSPHs (procSPH11 + procSPH50), and the serine protease inhibitor (serpin-9) with different combinations. These mixtures were
incubated at room temperature for 0, 1, or 3 h before infecting HzAM1 cells. Fluorescence micrographs and normal imagines were acquired 24 h p.i. to assess the
viability of the baculovirus. Scale bars represent 100 µm. (B) Quantification of fluorescent cells. Infected HzAM1 cells in images shown in (A) were counted. All data
were represented as mean ± SD of three independent experiments. Labels 1–7 in the figure represented different treatments as indicated in (A).

Xa activated cSP6Xa was incubated with procSPH11 (Figure 4B,
left panel) or procSPH50 (Figure 4B, right panel) at 37◦C for 1 h,
and then analyzed using immunoblotting. As expected, cleaved
bands corresponding to cSPH11 or cSPH50 were detected, when
cSP6Xa was activated (Figure 4B, lanes 4 and 8).

In vitro PPO Activation Cascade Blocks
Baculovirus Infection
Melanized hemolymph of H. armigera could inactivate the
infectivity of HearNPV in cell cultures (30). Since hemolymph
consists of complicated components, we would like to evaluate
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whether our identified melanization cascade could directly block
viral infection when activated in vitro. To this end, an egfp maker
gene labeled HearNPV-egfp was incubated with purified PPO,
the substrate Dopa, and selected cSP or SP for 0, 1, and 3 h at
room temperature. Then, the mixtures were added to HzAM1
cells for 24 h before observation using fluorescence microscopy.
When the HearNPV-egfp suspension was incubated with the
mixtures of PPO and Dopa, the number of infected cells was
similar among the 0, 1, and 3 h incubation groups (Figure 5,
panel 1), suggesting that inactivated PPO and the substrate did
not affect virus viability. Similarly, when the cascade components
(SP41Xa, procSP1, and procSP6) were incubated with the virus,
respectively, the number of infected cells was similar at 0, 1, and
3 h post infection (h p.i.) (Figure 5, panel 2), indicating that these
proteins alone had no effects on virus infectivity. However, in
the presence of PPO and Dopa in addition to the cSP6 cascade
components, much fewer infected cells were observed after 1 h,
and almost no virus infection was observed after 3 h (Figure 5,
panel 3), demonstrating that the cSP6 mediated PPO activation
could block viral infection efficiently. When procSPH11 and
procSPH50 were added to the above mixtures, a more potent
inhibitory effect was observed after 1 h p.i., and no virus infected
cells were detected (Figure 5, panel 4). Furthermore, when
serpin-9, an inhibitor of cSP6 (30), was added to the mixtures,
viral infection was substantially rescued (Figure 5, panel 6 and 7).
These results demonstrated that the SP41/cSP1/cSP6 cascade can
induce melanization and block baculovirus infection. Moreover,
the inhibitory effect against baculovirus infection was enhanced
in the presence of the cofactors and the inhibition could be
rescued by serpin-9.

DISCUSSION

Although certain components of melanization cascade have
been identified in many insects, such as Ae. aegypti (10, 20,
40, 41), A. gambiae (42–45), D. melanogaster (18, 46, 47), the
complete PPO activation pathway was elucidated only in a
few insects, for example M. sexta (4–7), and T. molitor (8, 9).
To date, the complete pathway in H. armigera was unknown
until this study. Transcriptome-based analysis revealed more
than 60 SPs and homologs in H. armigera. Among these, at
least 11 clip domain-containing members might be involved in
PPO activation cascades (34). However, only cSP4 and cSP6
were confirmed to participate in H. armigera PPO activation
pathway (30). Here, based on the PPO activating protease
activity of cSP6, a PPO activation pathway composed of its
activating protease cSP1 and the initiating protease SP41 was
identified and reconstituted in vitro using biochemical methods.
In addition, cSPH11 and cSPH50, which could be cleaved by
the terminal cSP6, were characterized as the cofactors during
PPO activation. The PPO pathway identified in H. armigera
(Figure 6) resembles the HP14/HP21/PAP2/3 pathway of M.
sexta (48, 49).

The initiating proteases of melanization are generally
autoactivated upon binding of PRRs to pathogens (14, 15, 47,
49, 50). For M. sexta HP14, binding of β-1,3-glucan to βGRP2

FIGURE 6 | Proposed PPO activation pathway in H. armigera. Initiation of
SP41 sequentially cleaves cSP1/cSP6, resulting in PPO activation. The
cofactors cSPH11 and cSPH50 can enhance PO activity activated by cSP6.
Baculovirus infection can be blocked by melanization in vitro.

results in a significant increase in affinity between the N-terminal
LDLa domains of HP14 and βGRP2 (15). MSPs in other insects
such as D. melanogaster (47) and T. molitor (8) are considered as
initiating proteases in SP cascades and they also contain LDLa
domains. Similarly, the three SPs (SP41-43) of H. armigera all
have LDLa domains (Supplementary Figure S2B), however, only
SP41 was able to induce melanization cascade (Figure 2 and
Supplementary Figure S3). In the domain structure, both SP41
and SP42 contain five LDLa domains and two Sushi domains
at their N-termini, while SP43 has only four LDLa domains
(Supplementary Figure S2B). Currently it is unclear why only
SP41, but not the other two SPs serve as the initiating SP. Besides
the modular SPs, cSPs may also function as the initiating SPs.
M. sexta proHP1 utilizes a conventional mechanism to active
its downstream protease which was not induced by proteolytic
cleavage (16). Whether there exists another PPO activation
cascade in H. armigera initiated by a clip domain SP remains
to be determined.
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Various mechanisms of PPO activation by the terminal cSPs
and cofactors have been characterized in insects (2). In B. mori,
PPO1 and PPO2 are cleaved by PPAE belonging to CLIPB, and
the resulting large fragments of PO1 and PO2 directly exhibit
PO activity (51). In M. sexta, cleavage of PPO1 and PPO2 by
three PAPs (CLIPB) yielded large fragments of PPO1 and PPO2
with low PO activity, which was significantly enhanced by the
SPH1 and SPH2 (CLIPA). During this process, SPHs must be
cleaved by PAPs then to play their roles (6, 12, 13). In Holotrichia
diomphalia, PPO-activating factor (PPAF)-I is a CLIPB protease
which cleaves PPO-I to generate a 76 kDa fragment without PO
activity; however, when PPAF-II (CLIPA) and PPAF-III (CLIPB)
were further added, a new 60 kDa fragment with PO activity was
produced (52). The crystal structure of PPAF-II showed that its
clip domain adopted a novel conformation compared to CLIPB
members then may serve as a module for binding the cleaved
PO and forming active PO clusters (53). How PPAF-I, II and III
act in concert to activate PPO remains to be determined. In Ae.
aegypti. ten PPO genes were identified and a 50 kDa PO fragment
was generated challenged by fungi, suggesting a complicated
activation mechanism (40). In H. armigera, our results showed
that the cofactors procSPH11 and procSPH50 were also cleaved
by cSP6 (Figure 4B). There was low PO activity after PPO was
cleaved by cSP6, and PO activity was significantly increased in
the presence of cSPH11 and cSPH50 which are orthologs of M.
sexta SPH1 and SPH2, respectively. Our results suggested that the
mode of PPO activation in H. armigera was similar to that in M.
sexta. It will be interesting to elucidate the mode of actions of the
cofactors in insect melanization responses in the future.

Melanization is essential for combating pathogens in insects.
In Ae. aegypti, PO activity was found to be required for
defense against the SFV (29). Knocking down the only two
PPO genes of Penaeus monodon led to the increased mortality
by white spot syndrome virus (WSSV) infection (54). These
suggest that melanization plays a crucial role in antiviral
immunity. Correspondingly, viruses have evolved versatile
strategies to inhibit or escape host melanization response for their
proper survival, either by inhibiting the signal transduction of
melanization or affecting PO activity directly. The polydnaviruses
(PDV) carried by the Microplitis demolitor expresses Egf1.0 and
Egf1.5 to inhibit the activity of PAP1 and PAP3 of M. sexta
(55, 56). Infection of Ae. aegypti with Egf1.0-expressing SFV led
to increased mortality and virus amplification (29). WSSV453,
a non-structural viral protein, interacts with P. monodon
proPPAE2 and interferes with its activation to active PPAE2
(57). In H. armigera, a transcriptomic analysis showed that cSP6
was markedly repressed during the late stage of baculovirus
infection, and the inhibitor of cSP6 was up-regulated to suppress
melanization (35). Although a previous study demonstrated that
the melanized hemolymph of H. armigera could inactive virus
(30), considering the complexity of hemolymph components,
there might be other antiviral host factors involved in. Through
the reconstruction of melanization in vitro, we demonstrated that
activated melanization reaction itself could inhibit baculovirus
infectivity (Figure 5). Thus, melanization response inH. armigera
was confirmed to play an important and direct role in combating
baculovirus infection. Baculovirus has a bilateral life cycle that

it uses occlusion derived viruses (ODVs) to initiate midgut
infection and budded viruses (BVs) for systemic infection.
As melanization happens in hemolymph and it inactived BV
infection in vitro (Figure 5), we propose melanization prevents
systemic infection of baculovirus by inactivating BVs in the
infected hemolymph.

Recently, a third PPO pathway comprising HP14/HP2/PAP2
was identified in M. sexta, largely activated in wandering larvae
and pupae (58). Considering that there are two PPO activating
proteases (cSP6 and cSP8) in H. armigera (30), it is possible that
there might be at least two branches of melanization pathways in
this species. The multiple melanization cascades may be involved
in specific recognition of different pathogens and may provide
a more complete protection of insects in combating against
invading pathogens. Further efforts are required to characterize
the complete melanization pathways/network in H. armigera.
In addition, how virus interacts with PRRs or initiating SPs
of PPO activation cascade is also worth further exploration.
Taken together, our findings provide an important first step
toward understanding the complicated melanization network
in H. armigera.
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Proteomic Analyses of
Whitefly-Begomovirus Interactions
Reveal the Inhibitory Role of
Tumorous Imaginal Discs in Viral
Retention
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Shu-Sheng Liu*
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In nature, plant viruses are mostly transmitted by hemipteran insects, such as

aphids, leafhoppers, and whiteflies. However, the molecular mechanisms underlying the

interactions between virus and insect vector are poorly known. Here, we investigate

the proteomic interactions between tomato yellow leaf curl virus (TYLCV, genus

Begomovirus, family Geminiviridae), a plant virus, and its vector whitefly (Bemisia

tabaci) species complex. First, using a yeast two-hybrid system, we identified 15

candidate whitefly proteins interacting with the coat protein of TYLCV. GO and KEGG

pathway analysis implicated that these 15 whitefly proteins are of different biological

functions/processes mainly including metabolic process, cell motility, signal transduction,

and response to stimulus. We then found that the whitefly protein tumorous imaginal

discs (Tid), one of the 15 whitefly proteins identified, had a stable interaction with TYLCV

CP in vitro, and the DnaJ_C domain of Tid301−499aa may be the viral binding site. During

viral retention, the expression of whitefly protein Tid was observed to increase at the

protein level, and feeding whiteflies with dsRNA or antibody against Tid resulted in a

higher quantity of TYLCV in the whitefly body, suggesting the role of Tid in antiviral

infection. Our data indicate that the induction of Tid following viral acquisition is likely

a whitefly immune response to TYLCV infection.

Keywords: whitefly, TYLCV, interaction, Tid, antiviral infection

INTRODUCTION

Many plant viruses, such as species of the Luteoviridae, Geminiviridae, and Nanoviridae families,
are transmitted by hemipteran insects in a persistent, circulative manner (1). During the long-term
virus-vector interactions, insect vectors have developed two inevitable physical barriers to virus
movement: midgut and salivary glands (1, 2). Initially, the vector ingests virions from virus-infected
plants; then, virions enter the insect midgut lumen and subsequently cross through the midgut
epithelial cells to be released into the hemolymph. Afterwards, virions move along with the
hemolymph and reach the salivary glands from which they are injected into plants together with
whitefly saliva secretion (1, 2). During this circulative journey, viruses need to interact with the
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insect vector in a coordinatedmanner for successful transmission
to occur; at the same time, viral infection may activate immune
reactions from its vector (3, 4).

Begomoviruses (genus Begomovirus, family Geminiviridae)
are a group of single-stranded circular DNA viruses, which are
transmitted by whiteflies of the Bemisia tabaci species complex
in a circulative manner (5, 6). Some begomoviruses are serious
viral disease agents of many crops worldwide. For example,
tomato yellow leaf curl virus (TYLCV) is transmitted by a
notorious invading species of whitefly, provisionally named as
Middle East–Asia Minor 1 (MEAM1), of the B. tabaci species
complex and has caused enormous damage to the production
of tomato and some other crops in many countries/regions in
the last three decades (7–9). Similar to other begomoviruses and
other circulatively transmitted viruses, ingested TYLCV moves
along the path of stylet-midgut-hemolymph-salivary glands in
whitefly vectors. During the movement, TYLCV depends on
clathrin-mediated endocytosis to enter the midgut cells and then
accumulates in intracellular vesicle-like structures (10–12). At
the same time, a viral infection activates the whitefly autophagy
pathway, which plays an important role in the antiviral
response (13, 14).

Up to now, the coat protein (CP) is the only structural protein
of begomoviruses known to be involved in viral movement
in the vector (15). CP gene replacement results in dramatic
changes in characteristics of viral acquisition and transmission
by whitefly vector (16–19). However, so far, only a few whitefly
proteins have been reported to interact with the viral CP. The
heat shock protein 70 (HSP70) and vesicle-associated membrane
protein–associated protein B (VAPB) show inhibitory roles in
virus transmission (20, 21), and a peptidoglycan recognition
protein BtPGRP acts in whitefly immunity (22). In contrast,
GroEL produced by secondary endosymbionts Hamiltonella or
Arsenophonus may protect the virus from degradation in vector
hemolymph (23, 24), and the midgut protein, cyclophilin B
and collagen protein may assist in viral transmission (25–27).
Vitellogenin may enable transovarial transmission of virus to
the next generation of whitefly (28). The putative roles of
BtHSP16, thioredoxin-like protein (TLP) and protein BtR242
produced by Rickettsia in the viral transmission are yet unclear
(29–31). Despite this progress, the functions of some of the
abovementioned proteins require further validation, and many
more vector components remain to be discovered to achieve an
adequate understanding of begomovirus-whitefly interactions.

In this study, first, using the yeast two hybrid (Y2H)
system, we identified 15 candidate whitefly proteins interacting
with TYLCV CP, including the evolutionarily highly conserved
protein tumorous imaginal discs (Tid). As the mammalian
homolog of whitefly Tid has been implicated for its role
in a variety of signaling pathways and autophagy (32, 33),
we then conducted a series of molecular experiments and
bioassays to examine in vitro interaction between whitefly
Tid and TYLCV CP. Following viral infection, increase of
whitefly Tid at the protein level exerted constraints on viral
retention. Our data provide novel insights into begomovirus-
whitefly interactions, indicating the negative impact of Tid on
viral retention.

MATERIALS AND METHODS

Virus, Plants, and Insects
TYLCV clone isolate SH2 (GenBank accession number:
AM282874.1) was agro-inoculated into tomato plants (Solanum
lycopersicon L. cv. Hezuo903) at the 3–4 true leaf stage. The
tomato plants were then cultivated to the 7–8 true leaf stage,
and plants showing typical symptoms were taken for use in
experiments. Cotton plants (Gossypium hirsutum L. cv. Zhemian,
1793) were cultivated to the 6–7 true leaf stage for whitefly
culture maintenance and experiments. A stock culture of
MEAM1 whitefly was maintained in insect-proof cages on cotton
plants at 26 ± 1◦C, 60% relative humidity and 14 h light/10
h darkness.

Y2H Assay System
The Y2H assay based on the matchmaker gold yeast two-hybrid
system (Cat. No. 630489; Clontech) was used to explore the
interactions between whitefly proteins and TYLCV CP. The
cDNA library of whitefly was constructed in the prey plasmid
of SfiI-digested pGADT7. The full-length of TYLCV CP gene
was cloned into the bait plasmid of pGBKT7 after Nde I
and EcoR I restriction. Primers used for cloning are listed in
Supplementary Table 1. We used the following procedure for
the Y2H assay: (1) transform the recombinant plasmid pGBKT7-
TYLCV CP into the Y2H Gold yeast strain; (2) select the yeast
strain on synthetic defined minimal medium lacking tryptophan
(S.D./-Trp); (3) extract the yeast protein by yeast total protein
extraction kit (Cat. No.C500013; Sangon Biotech) and confirm
the expression of TYLCV CP in yeast in a Western blot by anti-
TYLCV CP antibody (provided by Professor Jian-XiangWu); (4)
conduct the auto-activation detection; (5) transform the cDNA
library of whitefly into the Y2HGold yeast strain containing
the bait plasmid pGBKT7-TYLCV CP; (6) observe the growth
of yeast strain on the double dropout medium (DDO: S.D./-
Leu/-Trp) and triple dropout medium (TDO: S.D./-His/-Leu/-
Trp) with 40µg/ml X-alpha-Gal and 125 ng/ml aureobasidin A
(AbA) (TDO/X/A), select the positive clones on TDO/X/A; (7)
restreak these positive clones on quadruple dropout medium
(QDO: S.D./Ade/-His/-Leu/-Trp) with 40µg/ml X-alpha-Gal
and 125 ng/ml AbA (QDO/X/A) to eliminate the false positives;
(8) recover the prey plasmids from the positive clones and
transform them into Escherichia coli strain DH5α, sequence, and
identify their interactions with TYLCV CP again. The different
fragments screened from the whitefly cDNA library were used
in a BLAST search of the NCBI database (http://blast.st-va.
ncbi.nlm.nih.gov/Blast.cgi), and the sequences of these fragments
screening in the Y2H assay were deposited in GenBank.

Bioinformatic Analysis
Whitefly proteins identified from the Y2H assay system were
categorized according to their gene ontology (GO) annotation
using the Blast2GO software and then performed using the
OmicShare tools, a free online platform for data analysis
(http://www.omicshare.com/tools). The metabolic pathway
analysis of these proteins was conducted according to the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
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annotation (https://www.kegg.jp/blastkoala/). Network diagrams
were created using the database search tool for the retrieval of
interacting genes/proteins (STRING 9.1; http://stringdb.org).
All of these analyses were conducted by the full length of amino
acid sequences.

Real-Time PCR
Quantitative (q) PCR was performed on CFX connect real-time
PCR system (Bio-Rad, USA) using the SYBR Premix Ex Taq
II (Cat. No. RR820A, Takara). β-Actin was used as an internal
reference, and relative abundance of TYLCV or transcript was
calculated by 2−11Ct. Primers used for real-time PCR are listed
in Supplementary Table 1.

dsRNA Synthesis
DNA templates with a T7 promoter at both ends of selected genes
were used to synthesize dsRNA following the manufacturer’s
instruction of the T7 high-yield transcription kit (Cat.
No.TR101-02; Vazyme). Then, dsRNA was purified using
phenol: chloroform extraction, isopropanol precipitation,
and resuspended in nuclease-free water. The size and
quality of the dsRNA were confirmed by 1% agarose gel
electrophoresis, and its quantity was measured using Nanodrop
(Thermo Scientific, USA). DsGFP was used as a control.
Primers used for DNA template synthesis are listed in
Supplementary Table 1.

Membrane Feeding on dsRNA or Antibody
Whitefly adults within 7 days post-emergence were collected
from cotton plants. A group of 250 adults were released into a
glass tube 1.5 cm in diameter and 10 cm in length. According
to Pan et al. (10), for dsRNA silencing, whiteflies were fed
on 15% sucrose solution containing 200 ng/µl dsRNA for
48 h, and 15% sucrose solution with the same amount dsGFP
was used as control. For antibody feeding, Tid polyclonal
antibody (PcAb) was mixed with 15% sucrose solution with
a dilution rate of 1:50 for 24 h, and 15% sucrose solution
with the same dilution of rabbit pre-immune serum was set
as control.

Viral Acquisition
For viral acquisition after dsTid or dsUBR7 feeding (dsGFP was
used as control), whiteflies were caged with leaves from the
same branch of TYLCV-infected tomato plants for 6, 12, or 24 h,
respectively, and then transferred to feed on cotton for 48 h for
viral retention. Female adults were collected in groups of 10
each and homogenized in 100 µL lysis buffer for relative viral
quantity analysis (10). Three biological replicates were conducted
for relative viral quantity analysis by real-time PCR. For the
subsequent experiments of membrane feeding of dsRNA or
antibody against Tid, whiteflies were caged with leaves of two
symmetrical leaves of the same height on the same branch of
TYLCV-infected tomato plants for 12 h and then transferred to
feed on cotton for 48 h for viral retention. Three to five biological
replicates were conducted for relative viral quantity analysis by
real-time PCR.

Structural and Phylogenetic Analysis of
Protein Tid
The amino acid sequence of Tid fragment screened from
the Y2H assay (Tid-S, GenBank: MT505751) was aligned
with the Tid full-length (Tid-FL, GenBank: MT505750) using
Clustal X (2.0). Phylogenetic reconstruction was conducted
using the maximum likelihood (ML) method and the global
transvers time (GTR) model implemented in the MEGA
v.6 program (34). Support for the internal nodes of the
trees was evaluated using the bootstrap method with 10,000
replicates. The protein domain, transmembrane region, and
signal peptide predictions were conducted using the NCBI
conserved domain database (CDD) (http://www.ncbi.nlm.
nih.gov/Structure/cdd/wrpsb.cgi), TMHMM Server v. 2.0
(http://www.cbs.dtu.dk/services/TMHMM/) and SignalP 4.1
Server (http://www.cbs.dtu.dk/services/SignalP/), respectively.
The 3-D structure of protein Tid was predicted using
swissmodel (http://swissmodel.expasy.org).

Full-Length Amplification, Protein
Expression, and Antibody Production
The ORF of Tid-FL (GenBank: MT505750) was amplified
from the whitefly cDNA using PrimerSTAR max DNA
polymerase (Cat. No. R045A; Takara) and then cloned
into pET28a plasmid for fusion with His tag. His-Tid-
FL was expressed in inclusion bodies of E. coli strain
Rosetta, and following renaturation and purification
of inclusion body protein, His-Tid-FL was used to
immunize rabbits to obtain a Tid-specific PcAb by HuaBio
(China). Primers used in this experiment are listed in
Supplementary Table 1. The specificity of Tid rabbit PcAb
is shown in Supplementary Figure 1.

Glutathione-S-Transferase (GST)
Pull-Down
Tid-S, Tid76−138aa (226-414 bp of Tid-FL, DnaJ domain),
Tid239−299aa [715-897 bp of Tid-FL, four repeats of a
CXXCXGX(G) motif], and Tid301−419aa (901-1,257 bp of
Tid-FL, DnaJ_C domain) were cloned into pMAL-c5X for fusion
with MBP tag, accordingly. TYLCV CP was cloned into pGEX-
6p-1 for fusion with GST tag. These recombinant proteins were
expressed in E. coli strain Rosetta and purified. GST-TYLCV CP
was bound to glutathione agarose beads (Cat. No.17-5132-01;
GE Healthcare) for 2–4 h at 4◦C. Then the mixtures were
centrifuged for 5min at 1,000 rpm, and the supernatants were
discarded. Agarose beads were washed five times with 1 ×

phosphate-buffer saline (PBS). Different purified and desalinated
MBP-tag fusion proteins or the native whitefly proteins extracted
by cytoplasmic extraction buffer (Cat. No.SC-003; Invent) were
added to the beads, respectively, and incubated for 4 h at 4◦C.
These mixtures were centrifuged and washed five times with 1
× PBS, and the bead-bound proteins were eluted by boiling in
PAGE buffer (Cat. No. FD 002; FDbio) for 10min. Finally, these
proteins were separated by SDS/PAGE gel electrophoresis and
detected by Western blot using anti-MBP antibody (Cat. No.
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TABLE 1 | Putative interacting proteins with TYLCV CP in whitefly by the Y2H screen.

No. GenBank accessiona NCBI reference sequenceb Identity (%)c Protein name

1 MT505752 XP_018911927.1 94 ATP synthase subunit beta, mitochondrial

2 MT505751 XP_018917603.1 54 Protein tumorous imaginal discs, mitochondrial-like

3 MT505753 XP_018912446.1 59 Gelsolin-like isoform X2

4 MT505754 XP_018903232.1 49 Actin-binding protein IPP-like

5 MT505755 XP_018902418.1 53 Eukaryotic translation initiation factor 4H isoform X2

6 MT505756 XP_018896959.1 65 Titin isoform X14

7 MT505757 XP_018903674.1 59 Twitchin isoform X10

8 MT505758 XP_018899978.1 59 Transcription initiation factor TFIID subunit 1-like

9 MT505759 XP_018904341.1 88 Translation elongation factor 2

10 MT505760 XP_018900124.1 48 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 9

11 MT505761 XP_018914181.1 61 Protein phosphatase 1B

12 MT505762 XP_018910197.1 35 Phospholipase A-2-activating protein

13 MT505763 XP_018905030.1 44 Putative E3 ubiquitin-protein ligase UBR7

14 MT505764 XP_018911353.1 65 Cathepsin L1

15 MT505765 XP_018904178.1 36 Activated CDC42 kinase 1

aSequences of whitefly genes obtained in this study, they were partial CDS which were deposited in GenBank. bNCBI reference full-length sequences of whitefly genes screening in

Y2H assay. The full length of protein Tid was also obtained in this work (GenBank: MT505750), sharing 100% amino acid identity with its NCBI reference sequence (XP_018917603.1).
c Identity: amino acid identity of whitefly proteins with Drosophila melanogaster counterpart.

ab49923; Abcam) or anti-Tid antibody. Primers used are listed in
Supplementary Table 1.

Expression Analysis of Tid
Whitefly adults within 7 days post-emergence from cotton
were transferred to TYLCV-infected tomato for 12 h and then
transferred to feed on cotton for 48 h. Un-infected tomato was
used as a control. Whitefly adults (three biological replicates)
were collected as groups of 30 adults for analyzing gene
expression of Tid at the transcriptional level. Total RNA
of whitefly was isolated with TRIzol (Cat. No. 15596-026;
Invitrogen), and reverse transcription was done using the
PrimeScript RT reagent kit (Cat. No. DRR037A; Takara). For
translational-level analysis, 100 whitefly adults were collected as
one sample for protein extraction by RIPA (Cat. No. P0013B;
Beyotime). Then, we used the BCA protein assay (Cat. No. 23250;
Thermo Scientific) to determine and unify the concentration of
protein samples. Western blot analysis was conducted by anti-
Tid antibody, using anti-β-actin antibody (Cat. No. E021020-
01; Earthox) as a control. The translational-level analysis was
repeated three times, and ImageJ was used to quantify the
relative protein level, Following dsTid membrane feeding, 12 h
viral acquisition, and 48 h viral retention, the expressions of
Tid at transcriptional and translational levels were analyzed as
described above.

Statistical Analysis
Comparison of the relative abundance of virus in whitefly and
expression levels of genes were performed using an independent
t-test with P < 0.05 as the threshold of significant difference (∗P
< 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001). All the statistical analyses
were performed using SPSS 20.0 (SPSS Inc., USA).

RESULTS

Analysis of the Interactions Between
Whitefly Proteins and TYLCV CP
As shown in Supplementary Figure 2A, the Y2H system was
used to examine the interactions between whitefly proteins
and TYLCV CP. The titer of the primary whitefly cDNA
library was ∼5.0 × 106 cfu with an average insert size of
1 kb, meeting the requirements of a standard cDNA library
(Supplementary Figure 2B). The fusion expression of TYLCV
CP with GAL4 DNA-BD in the yeast (≈46 kDa) was
verified usingWestern blot analysis (Supplementary Figure 2C).
The auto-activation detection showed that the bait plasmid
pGBKT7-TYLCV CP could be used in this Y2H system
(Supplementary Figure 2D). After Y2H screening, 26 positive
clones were isolated, and 15 unique whitefly proteins were
identified (Table 1). To identify the one-to-one interaction
between bait and prey protein, the interactions between these 15
screened whitefly proteins and TYLCV CP were validated using
the Y2H assay (Figure 1A), combined with reported interactions
between MEAM1 whitefly and TYLCV, and a protein interaction
network was generated, including the predicted interactions
among whitefly proteins (Figure 1B).

In silico Analysis of the Whitefly Proteins
Screened by Y2H Assay
According to GO and KEGG analyses (Figures 2, 3), the
15 interactors from the Y2H assay (Table 1) were classified
into different groups, mainly including metabolic process, cell
motility, signal transduction, and response to stimulus. The GO
analysis suggests that the 15 proteins may be responsible for
17 different biological processes, mainly involved in cellular
and metabolic processes with different distributions inside and
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FIGURE 1 | Interactions between whitefly proteins and TYLCV CP. (A) Confirmed interactions between TYLCV CP and screened proteins of B. tabaci using Y2H

assay. TYLCV CP and 15 respective prey proteins were used to cotransform yeast for growth on DDO and QDO/X/A selective medium. pGBKT7-p53 and

pGADT7-LargeT were used as positive controls (+); pGBKT7-p53 and pGADT7 were used as negative controls (–). (B) Protein interaction network was constructed

using TYLCV CP and 20 whitefly protein homologs of Drosophila melanogaster; 20 whitefly proteins include 15 candidate whitefly proteins (blue) obtained in this study

and five other whitefly proteins (orange) available in the literature related to MEAM1 whitefly-TYLCV interactions. The red line means the interaction predicted from the

database search tool for the retrieval of interacting genes/proteins (STRING 9.1; http://stringdb.org), the black line stands for the interaction supported by experiments.

outside of cells; most of them shared the binding activity, and
about half of them possess catalytic activity (Figure 2). The
KEGG pathway analysis suggests that the 15 proteins can be
classified into 7 groups (Figure 3). For example, gelsolin-like
isoform X2 belongs to the pathway of cell motility; protein
phosphatase 1B as a member of the MAPK signaling pathway
belongs to the group of signal transduction. The whitefly
autophagy pathway and ubiquitin-proteasome system have been
shown to play a role in antiviral response (13, 14, 35). Among the
15 whitefly proteins, there is a ubiquitin-protein ligase (UBR7)

and a protein Tid related to macro-autophagy (33). Both of these
two proteins belong to the biological process of response to
stimulus (GO: 0050896).

Effects of dsRNA Interference of Tid and
UBR7 on Viral Retention
To examine the role of proteins Tid and UBR7 on virus retention,
whiteflies that had received dsRNA interference treatment were
transferred to feed on a TYLCV-infected tomato for 6, 12, or
24 h, respectively, and then transferred to feed on cotton for
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FIGURE 2 | GO analysis of the 15 putative interactors inferred via screening in the Y2H system. Different colors represent different GO categories. GO annotation was

conducted by the Blast2GO software, and the figure was generated using the OmicShare tools, a free online platform for data analysis (http://www.omicshare.com/

tools).

FIGURE 3 | Pathway distribution of the 15 putative interactors inferred via screening in the Y2H system. The metabolic pathway analysis of these proteins was

conducted according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation (https://www.kegg.jp/blastkoala/); in total, 15 pathways were

identified for the 15 prey proteins.

48 h. At the end of each of the three time points, after dsTid
interference, the relative viral quantity in whiteflies significantly
increased compared to the control (Figures 4A–C) although,
for UBR7 dsRNA interference, following a viral acquisition

access period for 12 h, the defense ability of the whitefly against
TYLCV retention significantly decreased (Figure 4B). When the
intervals of the viral acquisition access period lasted 6 or 24 h,
the defense ability of the whitefly against TYLCV retention had
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FIGURE 4 | Effects of dsRNA interference of Tid and UBR7 on TYLCV

retention. After dsRNA feeding, whiteflies of the interference treatments were

caged to feed on leaves of the same branch of a TYLCV-infected tomato plant

for 6 h (A), 12 h (B), or 24 h (C), and then transferred to feed on cotton for 48 h

to test the viral retention ability of the whitefly by qPCR. GFP was used as a

control. Whitefly females were collected in groups of 10 each and

homogenized in 100 µL lysis buffer for relative viral quantity analysis. In (A),

dsTid: n = 3, t = −11.716, P = 0.0072; dsUBR7: n = 3, t = −1.327, P =

0.3158; in (B), dsTid: n = 3, t = −66.018, P < 0.0001; dsUBR7: n = 3, t =

−7.855, P = 0.0138; and in (C), dsTid: n = 3, t = −4.035, P = 0.0157;

dsUBR7: n = 3, t = −2.058, P = 0.1087. Independent t-test was used here

and the differences between treatments were considered significant when

*P < 0.05; **P < 0.01, ***P < 0.001.

non-significant decrease (Figures 4A,C). Based on these results,
we selected Tid for the following experiments.

Structural and Phylogenetic Analysis of the
Protein Tid
After sequencing the Tid prey plasmid screened from Y2H, we
obtained an 855 bp long (285 aa) Tid-S sequence (GenBank:
MT505751), having a 60% coverage (164–448aa) of Tid-FL.
Tid-FL (GenBank: MT505750, ≈52 kDa) has a DnaJ domain

(N-terminal, 76–138aa), a DnaJ_C domain (C-terminal, 301–
419aa), and four repeats of a CXXCXGX(G) motif (239–
299aa). Tid-S contains only the CXXCXGX(G) motifs and
DnaJ_C domain (Figure 5A). Tid-FL has no transmembrane
domain or signal peptide, and its 3-D structure model is shown
in Figure 5B. Phylogenetic analysis of B. tabaci Tid and 16
other insect Tid proteins showed that B. tabaci Tid forms a
monophyletic lineage with species of Hymenoptera and appears
closely related to the genus Drosophila (Figure 5C). This DnaJ
domain-containing protein is evolutionarily highly conserved;
Tid in mammals and that of Drosophila show 54.9% identity
in amino acid sequences (36), and the Tid of whitefly and
that of Drosophila melanogaster show 54.0% identity in amino
acid sequences.

In vitro Evidence Supports the Interaction
Between Tid and TYLCV CP
TYLCV CP fused with GST and Tid-S tagged with MBP were
used to verify their interaction through GST pull-down analysis
(Figure 6A). Using the fusion protein GST-TYLCV CP as a bait
protein and native whitefly proteins extracted by cytoplasmic
extraction buffer (Cat. No.SC-003; Invent) as prey proteins,
whitefly endogenous Tid could co-elute with GST-fused TYLCV
CP but not with GST (Figure 6B). Further, we tested the
interaction between TYLCV CP and different regions of Tid-FL
mentioned above: Tid76−138aa (DnaJ domain), Tid239−299aa (four
repeats of a CXXCXGX(G) motif), and Tid301−419aa (DnaJ_C
domain). The results showed that Tid76−138aa and Tid239−299aa

show no binding activity with TYLCV CP (Figure 6C); the
binding site of TYLCV CP may be located in the C terminal of
Tid-FL (Figure 6D).

The Increase of Tid at Protein Level During
Viral Retention
Following viral infection, the expression of Tid at both
transcriptional and translational levels was tested. Data
demonstrates that there was no significant change of the
expression of Tid at transcriptional level (Figure 7A).
However, Western blot analysis showed TYLCV infection
could significantly increase the expression of Tid at protein level
(Figure 7B).

Effects of Tid Interference on TYLCV
Retention
Following dsRNA feeding, the adults were transferred to feed
on TYLCV-infected tomato plants for 12 h for virus acquisition
and then were transferred to feed on cotton for 48 h for
observation on virus retention. Data showed that the expression
of Tid in whiteflies was effectively knocked down via dsRNA
interference (Figures 8A,B), and knockdown of Tid expression
resulted in significant increases of relative virus quantity in
whiteflies (Figure 8C). In addition, blocking Tid function by
anti-Tid antibody likewise resulted in significantly higher relative
virus quantity in whiteflies during virus retention (Figure 8D).
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FIGURE 5 | Structural and phylogenetic analysis of the protein Tid. (A) Graphic presentation of the Tid structure. (B) 3-D structure of protein Tid. Asterisk indicates

that the nodes were 100% supported. (C) Phylogenetic tree of B. tabaci-Tid and other arthropods and mammals were constructed using MEGA v.6 with the

maximum likelihood (ML) method. Numbers next to the branches indicated bootstrap value of each internal branch in the phylogenetic tree nodes from 10000

replicates. Tid sequences include Bemisia tabaci (MT505750), Homo sapiens (NM 001286516), Rattus norvegicus (NM 001038596), Mus musculus (NM

001135112), Culex quinquefasciatus (XM 001848856), Drosophila melanogaster (NM 001259554), Drosophila virilis (XM 002059276), Bemisia tabaci (XP

018917603), Nasonia vitripennis (XM 016983982), Copidosoma floridanum (XM 014350678), Linepithema humile (XM 012379048), Athalia rosae (XM 012406140),

Neodiprion lecontei (XM 015659368), Cephus cinctus (XM 015737810), Polistes dominula (XM 015322978), Apis cerana (XM 017059752), Eufriesea mexicana (XM

017897896), and Bombus impatiens (XM 012384798).

DISCUSSION

Investigation of the interactions between begomoviruses and

whitefly proteins can provide new knowledge of the virus

transportation journey in vector. In this study, 15 candidate
whitefly proteins of various categories were detected that may

interact with TYLCV CP. In further tests of Tid and UBR7,
two of the 15 candidate proteins detected showed that both
proteins posed an adverse effect on viral retention, and Tid had a
stronger effect than UBR7. A stable interaction between whitefly
Tid and TYLCV CP was then observed, and the C-terminal of

Tid was observed to be the likely binding site. Viral infection
could increase the expression of whitefly Tid at the protein
level; feeding whiteflies with dsRNA or antibody against Tid
resulted in a significantly higher quantity of TYLCV in the
body of whiteflies following viral acquisition. Altogether, these
data reveal one novel whitefly protein that may function in
antiviral response.

The insect innate immune system incurs physical, cellular,
and humoral responses to invaders (37), and it is common for
insect vectors to take advantage of their immunity to fight against
viral infection. Wang et al. (22) demonstrate that whitefly protein
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FIGURE 6 | Interaction analysis between Tid and TYLCV CP. GST-TYLCV CP was used as bait protein, (A) MBP-Tid-S was used as prey protein, confirmation of the

interaction between GST-TYLCV CP and MBP-Tid-S using GST pull-down; (B) native whitefly proteins extracted by cytoplasmic extraction buffer (Cat. No.SC-003;

Invent) were used as prey proteins, identification of the interaction between whitefly endogenous Tid and GST-TYLCV CP by GST pull-down; (C) MBP-Tid76−138aa and

MBP-Tid239−299aa were, respectively, used as prey protein, the interactions between these two Tid regions and GST-TYLCV CP were conducted via GST pull-down.

(D) The C terminal of Tid301−419aa was used as prey protein, identification of the interaction between Tid301−419aa and GST-TYLCV CP via GST pull-down.

BtPGRP with antibacterial activity acts in multiple immune-
response functions. Wang et al. (38) show that insect vectors
could operate the c-Jun N-terminal kinase (JNK) signaling
pathway for controlling viral transmission, causing a significant
reduction in virus accumulation and transmission. The studies
of Luan et al. (13) and Wang et al. (14) indicate that autophagy
is involved in whitefly repression of begomovirus infection and
triggers complex interactions between virus and insect vector.
A previous study reported a mammalian homolog of whitefly
Tid, which acted as a key regulator in mediating autophagy
independently of HSP70 (33). Data available to date indicate
that both Tid and HSP 70 play a role in repressing virus
infection [(20); this study]; however, the relationships among
whitefly autophagy, Tid, HSP70, and TYLCV CP remain unclear.
Molecular mechanisms underlying the activation of autophagy
pathway by TYLCV-infection in whiteflies warrant further

investigation. Our findings provide clues for future studies on
these issues.

Additionally, the roles of other candidate proteins detected
in this study are also worth exploring. Gelsolin is a key
regulator of actin filament assembly and disassembly (39), and
actin has been shown to interact with several viral proteins
and plays important roles in viral transmission. For example,
interactions between non-structural protein Pns10 of rice dwarf
virus and the cytoplasmic actin of leafhoppers is correlated with
insect vector specificity (40); the non-structural protein P7-1
of reovirus southern rice black-streaked dwarf virus generates
tubules and this tubules associate with the actin cytoskeleton
in insect vector (Sogatella furcifera) cells (41, 42). In addition,
MAPK signaling pathway is known to be activated by a diverse
group of viruses and has important roles in viral replication
(43), such as supporting assembly and maturation of West
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FIGURE 7 | The expression of Tid following TYLCV acquisition. (A) The change of the Tid expression following viral acquisition at transcriptional level was analyzed by

qPCR analysis (n = 3, t = 0.594, P = 0.5842). (B) The expression of Tid following viral acquisition at protein level was analyzed by Western blot analysis; 100 whitefly

adults were collected as one sample for protein extraction and BCA protein assay was used to determine and unify the concentration of protein samples. Three

biological replicates were set, and the results were quantified by ImageJ, t = −3.077, P = 0.0370. Independent t-test was used here and the differences between

treatments were considered significant when *P < 0.05.

FIGURE 8 | Tid restricts viral retention in whiteflies. After feeding with dsRNA, (A) Tid mRNA levels after were analyzed by qPCR analysis. Whitefly adults were

collected as groups of 30 adults for RNA isolation and cDNA synthesis (n = 3, t = 4.46, P = 0.0111); (B) Tid protein levels were analyzed by Western blot analysis;

100 whitefly adults were collected as one sample for protein extraction and BCA protein assay was used to determine and unify the concentration of protein samples.

Three biological replicates were set and the results were quantified by ImageJ, t = 2.82, P = 0.0478. (C) After dsTid interference and viral acquisition, TYLCV levels in

whitefly whole body was analyzed by qPCR analysis. Whitefly females were collected in groups of 10 each and homogenized in 100 µL lysis buffer for relative viral

quantity analysis (Exp. 1, n = 4–5, t = −2.85, P = 0.0565; Exp. 2, n = 5, t = −5.12, P = 0.0009; Exp. 3, n = 3, t = −3.06, P = 0.0375). (D) Effect of feeding

whiteflies with an antibody against Tid: quantity of virus in the whole body (Exp. 1, n = 5, t = −3.11, P = 0.0145; Exp. 2, n = 4, t = −2.96, P = 0.0252; Exp. 3, n =

3–4, t = −5.32, P = 0.0031). Independent t-test was used here and the differences between treatments were considered significant when *P < 0.05; **P < 0.01,

***P < 0.001.

Nile virus and dengue virus (44, 45), regulating multiple steps
of influenza A virus replication (46) and so on. In view of
the potential role of protein phosphatase in regulating the life

cycle of Simian Virus 40 (47), a study of the relationship of
protein phosphatase 1B (a member of the MAPK signaling
pathway) with TYLCV infection may be worthwhile. These
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investigations may lead to a comprehensive recognition of
whitefly binding partners of viral CP and better understanding
of the complex interactions between begomoviruses and their
whitefly vectors.
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Antimicrobial peptides (AMPs) with antiviral activity (antiviral peptides: AVPs) have

become a research hotspot and already show immense potential to become

pharmaceutically available antiviral drugs. AVPs have exhibited huge potential in inhibiting

viruses by targeting various stages of their life cycle. Insects are the most speciose

group of animals that inhabit almost all ecosystems and habitats on the land and are a

rich source of natural AMPs. However, insect AVP mining, functional research, and drug

development are still in their infancy. This review aims to summarize the currently validated

insect AVPs, explore potential new insect AVPs and to discuss their possible mechanism

of synthesis and action, with a view to providing clues to unravel themechanisms of insect

antiviral immunity and to develop insect AVP-derived antiviral drugs.

Keywords: antiviral peptides, antimicrobial peptides, insect, viruses, antiviral drugs

INTRODUCTION

The role that insects have played as models in innate immunity research is unquestionable. Since
the 1990’s, the fruit fly Drosophila melanogaster emerged as an important paradigm of genetic
analysis of innate immunity. Outstanding pioneering achievements were awarded the Nobel Prize,
which has since greatly stimulated interest in this field (1, 2). Studies in insects initially focused
on resistance to bacteria and fungi, and later slowly expanded into antiviral immunity. However,
besides the discovery that RNA interference (RNAi) is crucial in insect antiviral immunity,
knowledge of other antiviral pathways and antiviral factors is very limited (3–7). In contrast, in
mammals, a diverse series of antiviral immune responses including virus recognition, downstream
cascade reactions, and production of effectors were gradually unveiled (8–10). In particular,
hundreds of interferon-stimulated genes (ISGs), which exert numerous antiviral effector functions,
have been identified in multiple vertebrate species (11–15). This raises the question whether
antiviral host factors, similar to interferon-stimulated effectors in mammals, also exist in insects.

In insects, antimicrobial peptides (AMPs) are a group of immune proteins that mainly
function against bacteria and fungi (16, 17). A considerable number of AMP genes have been
identified in Drosophila, the honey bee Apis cerana and the silkworm Bombyx mori (18–20).
However, two antiviral screening experiments failed to show that AMPs are a class of antiviral
factors in Drosophila (21, 22). Intriguingly, other data in the literature have indicated that
AMPs have antiviral function in Drosophila and B. mori (23, 24). On the other hand, it should
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be kept in mind that the interaction between host and virus is a
complex process in which the immune response of the host is
counteracted by the immune escape mechanisms of the virus.
A recent study found that Kallithea virus (DNA virus of D.
melanogaster) gp83 inhibits Toll signaling through the regulation
of NF-κB transcription factors (25). The immunosuppression
by Kallithea virus infection is also accompanied by the general
down-regulation of AMP gene expression (25). Because the
action of AMPs may be neutralized by the virus, simple tests
cannot decide or exclude whether AMPs have antiviral activity.
In fact, AMPs with antiviral activity (antiviral peptides: AVPs)
have become a research hotspot and already show considerable
potential to become pharmaceutically available antiviral drugs
(26). AMPs and AVPs are usually derived from natural sources
but they can be readily modified by adding non-natural amino
acids or chemical groups to further enhance their stability and
activity (27). Insects are an extremely successful and diverse
group of animals that produce a wide range of AMPs which also
could display potent antiviral activity. Accordingly, a review of
insect antibacterial peptides with antiviral activity is considered
timely to provide an assessment of the current knowledge as
well as to stimulate efforts for the identification of additional
insect-derived antiviral AMPs.

Herein, we will summarize the AMPs with antiviral activity
reported in the database and literature and we will predict
the antiviral activity of insect AMPs through AVP prediction
software. This article aims to compile relevant information
from insect AVPs as important components of insect antiviral
innate immunity and to inspire the development of effective
antiviral drugs.

DATABASES AND WEBSITES OF INSECT
AVPS

AVPs are considered as a subset of AMPswhich act as the first line
of defense in many organisms as an innate immune response to
viral infection. Compared to a hot field such as the development
of antiviral and antitumor drugs in human medicine, the concept
of AVP has not appeared often in the field of insect research,
although the idea appeared more than 10 years ago (28, 29).
With increasing interest for natural AMPs as potential new drugs,
many databases, such as APD (30), AVPdb (31) and ParaPep
(32), have been developed to centralize information about AMPs.
Among AMP databases, a few databases integrate the AMPs
with antiviral activity such as APD (30), AVPdb (31), DRAMP
2.0 (33), and dbAMP (34). The information incorporated in
DRAMP 2.0 and dbAMP is relatively new and complete. The
advantage of AVPdb is that it summarizes AVPs according to
various anti-virus mechanisms. In addition, software for AVP
prediction has been developed, e.g., AVPpred (35), AntiVPP 1.0
(36), and Meta-iAVP (37). Based on a series of concepts relevant
to insect AVP research, we have cataloged several user-friendly
and recently released databases and websites that are suitable
for insect AVP research (Table 1). The data of known AVPs and
prediction methods in this article also come from these databases
and websites.

INSECT AMPS WITH ANTIVIRAL
ACTIVITIES: THE INSECT AVPS IN PUBLIC
DATABASES

The dbAMP was recently created as a useful resource for
accumulating synthetic and natural AMPs from public AMP
databases and scientific literature (34). In the dbAMP database, a
total of 305 AVPs and 596 insect AMPs are collected (Figure 1A).
Nine insect AVPs were obtained from the intersection of these
two data sets in the dbAMP (Figure 1A). DRAMP 2.0 is an open-
access comprehensive database containing general, patented
and clinical AMPs (33). From this database, we identified 8
insect AVPs from a total 214 AVPs (Figure 1B). Integrating
the insect AVPs information from the dbAMP and DRAMP
2.0 database, we obtained a total of 13 insect AVPs, which
are shown in Figure 1C. Among hundreds of insect AMPs in
the database, only 13 were associated with antiviral activity,
which suggests that the research on insect AVP is still in
in its infancy and requires more data. It can be assumed
that many insect AMPs need to be explored for potential
antiviral activity. Thus, the 596 insect AMPs in dbAMP database
were further used to predict antiviral activity using Meta-iAVP
(37). Unexpectedly, 392 insect AMPs were predicted as AVPs
(predicted value >0.5) (Supplementary File 1). These predicted
insect AVPs originated from B. mori, Galleria mellonella, Aedes
aegypti, Pachycondyla goeldii (Ponerine ant), Manduca sexta,
D. melanogaster, Danaus plexippus, Anopheles gambiae, Apis
mellifera and others (Figure 1D). Based on this evidence, we
have reason to believe that insect AMPs are a potential source
for identification of AVPs, which is worthy of more in-depth
study. However, at present, there is no special insect AMP
database that can incorporate the latest review articles of
insect AVPs. The existing databases continue to have omissions
unless the information also becomes curated by professional
insect researchers.

INSECT AMPS WITH ANTIVIRAL
ACTIVITIES: THE INSECT AVPS IN
PUBLISHED LITERATURE

Although the study of insect AVP as an important part of
insect antiviral research was promoted more than 10 years ago
(29), the available literature is still very limited. Surprisingly,
until recently, few insect-derived AMPs were reported with
documented antiviral activity. As shown in Table 2, ten insect
AVPs were found to be involved in the antiviral response and
the antiviral action was directed against both mammalian and
insect viruses.

Cecropin-A was one of the first animal antimicrobial peptides
to be isolated and fully characterized from the hemolymph of
the moth Hyalophora cecropia (43, 44). Subsequent research
confirmed that Cecropin-A has inhibitory activity against human
immunodefciency virus 1 (HIV-1; Retroviridae), herpes simplex
virus 1 and 2 (HSV; Herpesviridae) and against the arenavirus
Junin virus (JV) (39, 40).
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TABLE 1 | Databases and websites suitable for insect AVP research.

Name Websites Function References

dbAMP http://csb.cse.yzu.edu.tw/dbAMP/ Search for AVPs and insect-derived AMPs (34)

DRAMP 2.0 http://dramp.cpu-bioinfor.org/ Search for insect AVPs (33)

AVPdb http://crdd.osdd.net/servers/avpdb/index.php Antiviral mechanism of AVPs for reference (31)

SignalP-5.0 http://www.cbs.dtu.dk/services/SignalP/ Prediction of AMPs signal peptide (38)

Meta-iAVP http://codes.bio/meta-iavp/ Prediction of AVPs (37)

FIGURE 1 | Prediction of insect AVPs from published databases. (A) The intersection between AMPs with potential antiviral activity and insect AMPs in the dbAMP

database. (B) Insect AMPs with predicted antiviral activity in the DRAMP 2.0 database. (C) Integration of information on predicted insect AVPs from the dbAMP and

DRAMP 2.0 databases. (D) Top 30 insects with predicted AVPs that were identified using Meta-iAVP.

Melittin belongs to the class of bee venom-derived AVPs and
was isolated from the honeybee A. mellifera (45). This AVP was
also tested against HSV, HIV-1 and JV, showing inhibition of viral
replication for all tested viruses (40, 46). In addition, melittin
also curbs infectivity of a diverse array of viruses including
Coxsackie Virus and other enteroviruses (Picornaviridae),
Influenza A viruses (Orthomyxoviridae), Respiratory Syncytial
Virus (RSV; Pneumoviridae), Vesicular Stomatitis Virus (VSV;
Rhabdoviridae) and the plant virus tobacco mosaic virus (TMV;
Virgaviridae) (47). More information about the antiviral activity
of melittin can be found in a review by Memariani et al. (47).

The insect AMP alloferon 1 and 2, derived from the
hemolymph of blow fly Calliphora vicina, showed antiviral
activity against influenza virus A and influenza virus B (28).

Additional research also found that alloferon 1 inhibits human
herpes virus type 1 (HHV-1; Herpesviridae) and analogs were
active against coxsackievirus in vitro using cell lines (48, 49).
Despite the mechanism of antiviral activity of alloferon is
still unknown, Alloferon 1 and its analogs are considered as
promising candidates for the design of new AVPs (50).

The antiviral compound N-myristoylated-peptide containing
only six amino acids with molecular weight of 916 Da was
purified from larval hemolymph of the tobacco budworm
Heliothis virescens (41). Insect myristoylated-peptide has been
confirmed to be effective against HIV-1 and HSV-1 (41). The
N-terminus of N-myristoylated-peptide contains the fatty acid
myristoyl and the C-terminus contains histidine with two methyl
groups giving the histidine a permanent positive charge (41). The
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TABLE 2 | Insect AVP reported in the literature.

Insect AVP Organism Virus References

Cecropin-A H. cecropia HSV-1/ HIV-1/ JV (39, 40)

Melittin A. mellifera HSV-1/HIV-1/JV/

influenza A viruses/

RSV/VSV/TMV/

enterovirus/

coxsackievirus

(39, 40)

Alloferon 1 C. vicina Influenza viruses A/B/

HHV-1

(28)

Alloferon 2 C. vicina Influenza viruses A/B (28)

Myristoylated-

peptide

H. virescens HIV-1/HSV-1 (41)

TnGlv1 T. ni AcMNPV (42)

TnGlv2 T. ni AcMNPV (42)

attC Drosophila SINV (23)

dptB Drosophila SINV (23)

C-lysozyme B. mori BmNPV (24)

structure of the antiviral compound resembles the “myristate plus
basic” motif present in particular viral proteins for binding to
the cytoplasmic side of the plasma membrane to initiate virus
assembly and budding from a host cell (41). It is speculated that
the N-myristoylated-peptide is therefore able to specifically block
or inhibit viruses like HIV-1 and HSV-1 that use this motif for
exit from a host cell (41, 51).

Gloverin, a small cationic antibacterial protein, has been
isolated from the hemolymph of various insects such as the
giant silk moth Hyalophora (52) and the cabbage looper
Trichoplusia ni (53). Two T. ni gloverin peptides named
TnGlv1 and TnGlv2 showed resistance to the budded virus
(BV) of Autographa californica multiple nucleopolyhedrovirus
(AcMNPV; Baculoviridae) (42). The antiviral mechanism was
speculated to be based on the accumulation of gloverin on the
surface of BVs that may cause membrane strain or formation of
pores that disrupt the BV envelope (42).

Two Drosophila AMP coding genes, diptericin B (dptB) and
attacin C (attC), are upregulated in transgenic flies expressing
a Sindbis virus (SINV) replicon. Silencing their expression
led to a significant increase in SINV titers, suggesting that
dptB and attC involved in Drosophila antiviral response to
SINV (23). However, their mechanism of action remains to
be elucidated.

Lysozyme is a ubiquitous peptide that is widely distributed
in animals, plants, bacteria and viruses (54). The antibacterial,
immunomodulatory and antiviral functions of lysozyme are well-
known in vertebrates (55–57). More than fifty lysozyme genes
have been identified from several insects (58), but the antiviral
activity of insect lysozymes has not been widely investigated. In a
recent study, the overexpression of C-lysozyme of B. mori could
reduce B. mori nucleopolyhedrovirus (BmNPV) production and
progeny virus virulence in vivo and in vitro (24). Further
research is required to elucidate the antiviral mechanism of
lysozyme peptides.

POTENTIAL AVPS IN FRUIT FLY,
HONEYBEE AND SILKWORM

Insects are the most speciose group of animals that inhabit
almost all ecosystems and habitats on the land (17, 59).
Although insects are a rich source of natural AMPs (17),
only few insect AMPs have been confirmed with antiviral
activity (Figure 1C, Table 2). In this study we have predicted
392 potential AVPs from 596 insect AMPs in the dbAMP
database (Figure 1D, Supplementary File 1). This information
may stimulate researchers to carry out in-depth and extensive
research on the activity of the predicted insect AVPs. Insects,
especially D. melanogaster, has been widely used as model for
the study of innate immunity and microbial pathogens and for
assessing the in vivo efficacy of antimicrobial agents (60). The
silkworm and honeybee are well-known representative economic
insects. In the following section, we will elaborate on potential
AVPs in the fruit fly D. melanogaster, the two honeybee species
A. mellifera and A. cerana and the silkworm B. mori.

D. melanogaster
In general, seven well-characterized families including 21
inducible AMP/AMP-like genes have been identified in
Drosophila (61, 62). The functions of Drosophila AMPs are
not only involved in host defense, but expand also to gut
microbiota homeostasis, tumor control, lifespan regulation and
neurological processes (62, 63). However, to our knowledge,
only two Drosophila AMPs, attC and dptB, have been reported
to have antiviral function (23). Since the first animal AMP was
discovered in insects (44), D. melanogaster has emerged as a
powerful model for their characterization. Unfortunately, the
research on antiviral immunity involving Drosophila AMPs has
not received enough attention. After downloading the latest
updated Drosophila AMP/AMP-like genes (including lysozyme)
and their corresponding peptides from the NCBI database,
their antiviral activity was predicted using Meta-iAVP (37).
For AMP genes for which the mature peptide sequence was
not determined, SignalP-5.0 was employed to predict the signal
peptide and mature peptide (38).

Following this procedure, as shown in Table 3, a total of
23 potential AVPs were identified in D. melanogaster. We
further analyzed these potential AVPs for their induction by
viral infection in published transcriptome studies. Expression
of Defensin, Cecropin A1, Cecropin B, Andropin, Drosocin,
Drosomycin, Metchnikowin, Lysozyme S, Attacin-B, Attacin-C,
Diptericin A, and Lysozyme X was found to be induced after
viral infection in cell lines or adult flies (Table 3). Screening of
transcriptome data for identification of key viral host factors is
based on this concept (13). However, viruses may also interfere
with the expression of antiviral factors as an immune escape
strategy. Determination of antiviral activity based by induction
of expression during viral infection is only indicative and cannot
be considered as conclusive. But for screening of antiviral
genes it can turn out to be a simple and effective method.
Therefore, AMPs/AVPs that are up-regulated by a specific virus
may be relatively reliable candidate host antiviral factors, for
which further verification experiments have to be performed. It
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TABLE 3 | Predicted AVPs in Drosophila.

Predicted AVP Gene ID Peptide ID Value/

precursor

Value/mature Up-regulated by virus

Defensin 36047 NP_523672.1 0.524 1 DCV (64, 65), DXV (64)

Cecropin A1 43596 NP_524588.1 0.908 0.946 DCV (66, 67), Sigma virus (64),

CrPV (68)

Cecropin A2 43597 NP_524589.1 0.908 0.64

Cecropin C 43599 NP_524591.1 1 0.744

Cecropin B 43598 NP_524590.1 1 1 DCV (67)

Andropin 43595 NP_524587.1 0.762 0.524 DCV (67), FHV (69)

Drosocin 36635 NP_001246324.1/NP_523744.1 1 0.508 DXV (70), Sigma Virus (64)

Drosomycin 38419 NP_523901.1 0.992 0.524 DCV (64, 65, 71), DXV (64)

Drosomycin-like 5 38409 NP_647803.1 1 0.716

Drosomycin-like 2 38408 NP_728860.2 1 0.946

Drosomycin-like 3 317955 NP_728861.1 1 0.954

Drosomycin-like 6 38416 NP_728873.1 0.92 0.892

Drosomycin-like 1 326207 NP_728872.1 0.928 0.668

Metchnikowin 36708 NP_523752.1 1 0.962 DCV (64, 65, 67, 71), DXV (64),

SINV (23), CrPV (68)

Lysozyme P 38129 NP_476828.1 0.43(Non-AVP) 0.966

Lysozyme S 38130 NP_476829.1 0.93 0.892 DCV (64), CrPV (68)

Attacin-B 36637 NP_001163152.1 0.64 0.07(Non-AVP) DCV (66, 71), DXV (70), Sigma

Virus (64), FHV (71), CrPV (68)

Attacin-C 36484 NP_523729.3 0.616 0(Non-AVP) DCV (67, 71), SINV (23), FHV

(71), CrPV (68)

Diptericin A 37183 NP_476808.1 0.86 0(Non-AVP) Sigma Virus (64), CrPV (68)

Lysozyme B 38125 NP_001261245.1 0.986 0.282(Non-AVP)

Lysozyme X 38122 NP_523881.1 0.774 0.272(Non-AVP) FHV (71)

Lysozyme E 38128 NP_476827.2 1 0.008(Non-AVP)

should also be noted that dptB has been shown to inhibit SINV
replication (23), but it is not among the predicted candidate AVPs
(Table 3). Thus, a strategy that screens virus-inducible genes
clearly will not identify all potential AVPs.

In addition, some non-classical AMPs such as Bomanins
(72), Daishos (73) and Listericin (74) in Drosophila have also
attracted our attention. An effector peptide family encoded by
twelve Bomanin (Bom) genes has been found to be essential
for effective Drosophila Toll-mediated immune responses (72).
Daisho peptides, a new class of innate immune effectors in
Drosophila, were recently found to have humoral activity against
a set of filamentous fungi (73). Currently, these Drosophila
peptides have not been confirmed to have antiviral activity.
Using Meta-iAVP (37) prediction, we found that BomS1, BomS4,
BomS6, BomT1, BomBc2, and Listericin have potential AVPs
activity (Supplementary File 2).

A. mellifera and A. cerana
Honeybees are important plant pollinators in both natural and
agricultural ecosystems (75). Through pollination of flowering
plants, honeybees do not only help tomaintain biodiversity but in
addition they also supply commodities such as honey, royal jelly,
propolis (bee glue), pollen and wax. Viruses are significant threats
to the health and well-being of the honeybee (76). Due to the
abundance and economic importance of the honeybee, research

on the interaction with bee viruses has received a lot of research
interest. Honeybee antiviral defense mechanisms include
RNAi, endocytosis, melanization, encapsulation, autophagy,
pathogen-associated molecular pattern (PAMP)-triggered signal
transduction cascades, and generation of reactive oxygen species
(7, 77). There is currently no evidence that AMPs are involved
in the antiviral response of honeybees (7, 77). However, melittin,
the principal constituent in the venom of A. mellifera, has
been demonstrated to be effective against the infectivity of a
diverse array of mammalian viruses such as HIV and HSV
(47). Venom-derived AMPs may not play a role in the antiviral
response of its host, but the results of the antiviral experiments in
vitro are an important reference of which the significance is not
clear yet.

Following infection by pathogens, AMPs of four families
comprising apidaecins (78), abaecins (79), hymenoptaecins
(80), and defensins (81) are synthesized, representing a broad
spectrum of antimicrobial activity in the haemolymph. Detailed
comparison of these four AMP gene families betweenA. mellifera
and A. cerana revealed that there are many similarities in
the number and amino acid composition of the peptides in
the abaecin, defensing, and apidaecin families, while many
more hymenoptaecin peptides are found in A. cerana than in
A. mellifera (19). Compared to A. mellifera that has a longer
history of domestication, selection on A. cerana has favored
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TABLE 4 | Predicted AVPs in A. mellifera and A. cerana.

Predicted AVP/

A. mellifera

Gene ID (NCBI) Peptide ID Value/

precursor

Value/mature Up-regulated by virus

Defensin 1 406143 NP_001011616.2 0.966 0.772 DWV+SBV (82)

Defensin 2 413397 NP_001011638.1 0.916 0.43 (Non-AVP) DWV+SBV (82)

Abaecin 406144 NP_001011617.1 1 0.64 DWV+SBV (82), BQCV (83)

Apisimin 406093 NP_001011582.1 0.586 0.974 DWV+SBV (82)

Hymenoptaecin 406142 NP_001011615.1 0.282 (Non-AVP) 0.542 DWV+SBV (82), IAPV (84),

BQCV (83)

Lysozyme 1/2 724899 XP_026300526.1 0.078 (Non-AVP) 0.548

lysozyme 3 409663 XP_393161.3 0.64 0.98 DWV+SBV (82)

A. cerana

Defensin-2 108000415 XP_016916212.1 0.992 1

Abaecin 108002218 XP_016919244.1 0.354 (Non-AVP) 0.906 CSBV (85)

Apidaecins type

22

108000468 XP_016916307.1 0.542 0.876

Hymenoptaecin 107993492 XP_016905415.1 0.694 0 (Non-AVP) CSBV (85)

Apisimin 108003250 XP_016920890.1 0.994 0.98

AcDef7 EU727274 ACH96390.1 0.986 0.932

AcHym3 EU727299 ACH96415.1 0.508 0.752

AcHym16 EU727312 ACH96428.1 0.104 (Non-AVP) 0.536

AcHym18 EU727314 ACH96430.1 0.696 0.028 (Non-AVP)

AcHym1 EU727297 ACH96413.1 0.268 (Non-AVP) 0.696

AcHym4 EU727300 ACH96416.1 0.716 0 (Non-AVP)

AcHym7 EU727303 ACH96419.1 0.072 (Non-AVP) 0.876

AcHym9 EU727305 ACH96421.1 0.694 0 (Non-AVP)

AcHym25 EU835174 ACJ22829.1 0.508 0.752

Lysozyme-like 108000169 XP_028523646.1 0.078 (Non-AVP) 1

Lysozyme-like 114577830 XP_028523645.1 0.746 1

the generation of more variable AMPs as protection against
pathogens (19).

Using the predictive tools of Meta-iAVP (37), a total of 7
and 16 AVPs were obtained from A. mellifera and A. cerana,
respectively (Table 4). Potential AVP genes of A. mellifera such
as defensin 1, defensin 2, abaecin, apisimin, hymenoptaecin,
and lysozyme 3 were found to be up-regulated after infection
with viruses such as Deformed wing virus (DWV), Sacbrood
virus (SBV), black queen cell virus (BQCV), and Israeli
acute paralysis virus (IAPV) in transcriptome data (Table 4).
Almost all honeybee transcriptome studies that analyze virus
infection are restricted to A. mellifera while little related
research has been conducted on A. cerana. Recent research
found that in A. cerana the predicted AVP genes abaecin
and hymenoptaecin were significantly upregulated by Chinese
Sacbrood virus (CSBV) infection (85). These potential AVPs,
which are up-regulated by a specific honeybee virus, are
important leads for future research on the antiviral immunity of
honeybee AMPs.

B. mori
The domestic silkworm B. mori, is an important lepidopteran
insect of high scientific and economic value (86). Like in
apiculture, the viral disease can cause enormous economic loss

in sericulture (87). For viral diseases of silkworm, currently
there is no effective treatment. Although there exist specific
strains of silkworm that are resistant to some viruses, the
specific mechanism is unclear (88–90). Like other insects,
RNAi was considered as the major defense strategy against
viral infections in B. mori (91). However, the antiviral innate
immune response of silkworm has not been systematically
studied although specific antiviral molecules such as PP2A (92),
BmSTING (93), BmAtlastin-n (94), BmNOX (95), Bmlipase-
1 (96), were identified. In a review article the involvement
of AMPs in the antiviral response of silkworm was claimed
(6), but in fact very few specific cases of antiviral activity of
silkworm AMPs are known, an exception being a recent article
on inhibition of BmNPV by lysozyme (24). Interestingly, a
study reported that B. mori peptidoglycan recognition protein
S2 (BmPGRP-S2) overexpression could activate the Imd pathway
and induce AMP upregulation, enhancing silkworm antiviral
resistance (97).

Following the publication of the genome of the silkworm
(86), 35 silkworm AMP genes were identified based on
the silkworm genome sequence and expressed sequence tags
databases (20). These silkworm AMP genes belong to six
families including cecropins, moricins, gloverins, attacins,
enbocins, and lebocin (20). Following analysis of updated
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TABLE 5 | Predicted AVPs in B. mori.

Predicted AVP Gene ID Peptide ID Value/

precursor

Value/mature Up-regulated by virus

Attacin1 692555 NP_001037006.1 0.936 0.044 (Non-AVP) BmNPV (98)

Attacin-like 101743224 XP_004926758.1 0.726 0.986

Cecropin B 732858 NP_001096031.1 1 0.992 BmCPV (99)

Cecropin A 693029 NP_001037462.1 1 0.964 BmCPV (99)

Cecropin-like 101739821 NP_001037392.1 0.962 0.998

Cecropin-D-like peptide 101740228 NP_001036924.2 1 0.694

Cecropin D 692369 NP_001036833.1 0.988 0.892

Cecropin CBM2 692583 NP_001037031.1 0.536 0.97

Defensin 692778 NP_001037370.1 0.982 0.924

Enbocin1 693035 NP_001037472.1 0.982 0.616

Enbocin3 100101217 NP_001093310.1 0.854 0.998

Gloverin 2 692527 NP_001037683.1 0.668 0.506 BmNPV (100)

Gloverin 3 692476 NP_001093312.1 0.068 (Non-AVP) 0.678 BmNPV (98, 100)

Gloverin 4 751090 NP_001037684.1 0.07 (Non-AVP) 0.81 BmNPV (98, 100)

Gloverin 4-like 692477 NP_001036932.1 0.038 (Non-AVP) 1

Lebocin 100146108 NP_001119732.2 0.536 0.164 (Non-AVP) BmNPV (98, 100)

Moricin 692365 NP_001036829.2 0.992 0.964

Moricin-1-like 105842862 XP_012552566.1 0.536 0.908

Moricin-1-like 101742278 XP_012551343.2 0.996 0.908

Moricin-1-like 101742127 XP_012551345.2 0.554 0.818

Lysozyme 693015 NP_001037448.1 0.968 0.678 BmNPV (100)

AMP gene data in the NCBI database, 21 potential silkworm
AVPs (Table 5) were obtained using Meta-iAVP prediction
(37). Among these potential AVP genes, gloverin-2, gloverin-
3, lebocin, attacin 1, and lysozyme have been found to be
induced by BmNPV infection in both resistant and susceptible
silkworms (98, 100). It is worth noting that the expression
of the potential AVP gene gloverin-4 was significantly up-
regulated only in BmNPV-infected resistant silkworm, while
no changes were found in the BmNPV-infected susceptible
silkworm and BmN cells, further suggesting that gloverin-
4 is an AVP against BmNPV infection (98). The expression
of the potential AVP gene cecropin A and cecropin B also
tended to be up-regulated during infection with B. mori
cytoplasmic polyhedrosis virus (BmCPV), but expression levels
were too low to be considered as biologically important (99).
Moreover, it is curious that although many omics data related
to silkworm virus infection have been published, no more clues
were obtained about the involvement of AMPs in the defense
against B. mori bidensovirus (BmBDV), BmNPV and BmCPV
infection (101–105).

THE PROGRAM OF AVP SYNTHESIS AND
ITS MECHANISM OF ACTION IN INSECTS

Universally, after the virus invades the host, the host will
initiate a recognition mechanism and induce a downstream
antiviral cascade reaction. In vertebrates, during various
viral infections, virus-associated PAMPs are recognized by

pathogen recognition receptors (PRRs) such as Toll-like
receptors (TLRs), retinoic acid-inducible gene I (RIG-I)-
like receptors (RLRs), NOD-like receptors (12), interferon-γ-
inducible protein 16 (IFI16), AIM2 (absent in melanoma 2)
and cyclic GMP-AMP synthase (cGAS) that subsequently lead
to the activation of inflammatory cytokines and chemokines
as well as interferon (IFN) and ISG production through a
cascade reaction (106). However, similar antiviral response
systems have not been systematically studied in insects. At
present, we have very limited knowledge of how insects
recognize virus invasion and initiate cascade reactions to exert
antiviral functions.

In insects, a number of actual and potential PRRs such

as TLRs, peptidoglycan recognition proteins (PGRPs), Gram-
negative bacteria-binding proteins (GNBPs), scavenger receptors

(SRs), thioester-containing proteins (TEPs) and lectins have

been identified (107, 108). Unfortunately, there is currently no

evidence that any of the above-mentioned PRRs are involved

in insect virus recognition, with the exception of the nucleic
acid sensor Dicer-2 that can act as a PRR of double-stranded
RNA in parallel to the RNAi pathway (107). Recently, B. mori
cGAMP and PGRP2 were confirmed to be involved in host
responses to BmNPV (93, 109). In Drosophila, Toll, IMD and
JAK/STAT pathway may be involved in antiviral immunity
(4, 65, 110). In addition, JAK/STAT pathway could also be
activated by challenge with BmNPV and BmBDV (111). The
classical innate immune pathways are also transcriptionally
induced during pathogenic infection of Bm5 cells with RNA
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FIGURE 2 | General hypothesis of AVP synthesis and possible mechanism of action in insects. (A) Immune recognition of insect viruses. The PAMPs of insect RNA

and DNA viruses are recognized by specific PRRs located in the cell membrane or cytoplasm of hemocytes, epithelia or fat body. (B) Potential downstream signaling

cascade reactions including JAK-STAT, Toll, Imd, and other pathway to produce AVPs. (C) The mechanism of action of AVPs covers stages in almost the entire life

cycle of the virus: virion inhibition; adsorption; viral entry; endosomal escape; viral uncoating; viral genome transcription and translation, and release of mature virions.

Additionally, AVPs may inhibit viral infection by regulating the host immune system. As a counterdefense, insect viruses may employ several strategies to escape the

antiviral effect of AVPs.

virus (112). However, the insect PRRs for viral recognition and
signaling pathway activation have not been fully elucidated.
Thus, there is currently no exact mechanism identified for the
generation of AVPs and more in-depth research is needed.
Based on evidence obtained in vertebrate (mammalian) systems,
we can make the hypothesis that insect viral PAMPs are
recognized by specific PRRs located in the cell membrane
or cytoplasm of hemocytes, epithelia or fat body which then
triggers downstream signaling cascades for the production of
AVPs (Figure 2).

The AVPs possess diverse structures as well as might act
according to differentmechanisms. Based on the antiviral peptide
database AVPdb (Table 1), a total of 45 virus targeting strategies
employed by AVPs can be distinguished such as “Virus entry,”
“Virucidal on progeny virions,” “Viral assembly,” “Release,”
“Transcription,” “Translation,” “Transport,” and “Replication”
(31). The mechanism of action of AVPs summarized in the
AVPdb database covers almost the entire life cycle of the virus
(Figure 2). Additionally, AVPs may act against viral infection by
regulating the host immune system (Figure 2). For instance AVP
like alloferons from the blow fly are able to stimulate natural killer
cells (NK) activity and interferon synthesis in animal and human
models (28).

FUTURE RESEARCH

Many scientific questions about the identities of insect AVPs
and their modes of action remain unresolved. Besides, viruses
are the causative agents of various dreadful diseases in humans
and animals. Recently, the testing and discovery of AVPs
was accelerated because extraordinary advantages. Insects are
considered an important source of natural AMPs, and their
potential to act as AVPs is worthy of in-depth studies. In
future research, the research on insect AVPs can mainly focus
on the following key issues: (1) Identification of insect AVPs;
(2) Recognition by PRRs and downstream cascade reactions
involved in insect AVPs production; (3) Molecular mechanism
of action of AVPs against insect viruses and vertebrate viruses;
(4) AVP counter defense (immune escape) mechanisms by
viruses; (5) Evaluation and application of insect AVPs as
antiviral drugs.
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BACKGROUND

Flaviviruses are enveloped single-stranded RNA viruses and major human pathogens. They are
responsible for causing outbreaks and therefore they represent a serious health issue worldwide (1).
Because of the clinical significance of flaviviruses and the severity of epidemics they cause globally,
developing efficient vaccines and drugs is critical for the success of disease control measures.
Importantly, many flaviviruses, including Dengue virus (DENV), Japanese Encephalitis virus (JEV),
West Nile virus (WNV), Yellow Fever virus (YFV), and Zika virus (ZIKV), are vectored though
arthropods (arboviruses), mainly mosquitoes and ticks (2). Although most previous efforts have
primarily focused on advancing the design of therapeutic strategies for alleviating the disease
symptoms caused by flaviviruses, it is equally significant to also be able to interpret the molecular
nature of the interactions that take place between flaviviruses and the insect vector and determine
whether these interactions affect pathophysiological processes during infection and transmission.

Interactions between mosquito vectors and flaviviruses have been studied in several occasions
(3). For instance, ZIKV is mainly transmitted by Aedes aegypti mosquitoes and recent studies have
begun to examine vector-virus relationships and transmission dynamics of this virus pathogen (4).
Ae. aegypti mosquitoes infected with ZIKV activate the RNA interference (RNAi) mechanism by
upregulating several virus-produced short interfering RNAs (siRNAs), piwi-interacting RNAs and
microRNAs. Many of the latter are also regulated by DENV and WNVs, but not by the alphavirus
Chikungunya, indicating conservation in the mosquito response to flavivirus infection (5).
Flavivirus infection in mosquito vectors activates innate immune signaling, which promotes the
induction of antiviral response through the production of effector molecules (6). Activation of JAK/
STAT together with Toll signaling elevates the Ae. aegypti resistance to ZIKV infection, silencing the
Toll pathway adaptor MyD88 increases DENV infection in the Ae. aegypti midgut, and DENV
infection in this mosquito vector decreases the signaling activity of immune deficiency (Imd)
pathway (7–9). Interestingly, the secreted protein Vago limits WNV replication in Culex mosquito
cells through induction of JAK/STAT signaling (10). Studies in mosquitoes are expected to
contribute toward developing efficient procedures for preventing the spread of flaviviruses.

Results from research with insect vectors further stress the need for insect immunologists
studying antiviral immunity to draw more attention to the outcome of flavivirus infection in insects
rather than focusing exclusively on the replication efficacy of the virus. Therefore, this opinion
article aims at highlighting recent studies that have started to dissect the interaction between
org November 2020 | Volume 11 | Article 618801155

https://www.frontiersin.org/articles/10.3389/fimmu.2020.618801/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.618801/full
https://www.frontiersin.org/articles/10.3389/fimmu.2020.618801/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:ioannise@gwu.edu
https://doi.org/10.3389/fimmu.2020.618801
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.618801
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.618801&domain=pdf&date_stamp=2020-11-30


Harsh and Eleftherianos Flavivirus and Regulation of Host Tissue Homeostasis
antiviral immune mechanisms and flavivirus tropism as well as
host tissue homeostasis and pathophysiological defects in
mosquitoes and the model insect Drosophila. Such information
is critical because it has the potential to lead to the development
of novel therapeutics that will be directed against the ability of
flaviviruses to multiply in certain insect organs. This will be
valuable knowledge for understanding and potentially predicting
the severity and extent of flavivirus infection and the efficiency
of transmission.
FLAVIVIRUS INTERACTION WITH
MOSQUITO IMMUNE AND METABOLIC
ORGANS

The insect fat body is a diffused organ that functions similarly to the
mammalian liver and is responsible for metabolism and storage of
nutrients as well as the production and secretion of antimicrobial
peptides and other immune factors (11). Flaviviruses present in the
mosquito hemocoel (the insect body cavity) replicate in
the abdominal and thoracic fat body before they disseminate to the
salivary glands and other insect tissues (12). For instance, WNV
replicates primarily in the fat body of Culex pipiens quinquefasciatus
(13), butDENVreplicationhas not been associatedwith this tissue in
Aedes albopictus andAe. aegyptimosquitoes (14, 15).However,more
recentfindings indicate thatDENVreplication in the fat body cells of
A. albopictus alters the expression of Actin and alpha Tubulin (16),
and downregulates the transcription of Toll pathway related genes in
Ae. aegypti (8). InAe.aegypti, YFVreplicates in the fat bodyandother
organs and feeding mosquitoes with a DENV-infected blood meal
leads to activation of autophagy in the this tissue and themidgut and
increases the expression of genes related to apoptosis such as the
effector caspase Casps7 (17–19). Notably, activation of JAK/STAT
signaling specifically in the fat body of Ae. aegypti restrains DENV
efficiently but fails to restrict ZIKV infection, and priming of these
mosquitoes with inactive DENV induces the activation of Notch
signaling upon infection with active DENV and reduces viral
propagation in the midgut and carcass (20, 21). Flaviviruses
transmitted by mosquitoes are taken up through a blood meal and
migrate to themosquito gutbefore theymove to the salivary glands in
order to be passed on to another vertebrate host and maintain their
lifecycle (22). Main barriers to systemic infection include the midgut
infection barrier, midgut escape barrier, salivary gland infection
barrier, and salivary gland escape barrier (23). In the gut, flavivirus
infection triggers the induction of antiviral pathways through
interaction with receptors in the midgut epithelial cells (24).
Interfering with the expression of certain RNAi signaling
components in Ae. aegypti adult mosquitoes reduces DENV titers
in the midgut following oral infection (25). Although Toll signaling
plays a crucial role in the anti-DENV response in the midgut of Ae.
aegypti (26, 27), the involvement of this pathway in the mosquito
immune response againstWNVandYFV is not fully determined yet
(28). Also, Imd signaling activity participates in the induction of anti-
DENV immune functions in themosquito gut, because inhibition of
this pathway leads to higher DENV load in Ae. aegyptimidgut (29).
Similar role has further beendemonstrated for twoDENVrestriction
Frontiers in Immunology | www.frontiersin.org 256
factors, which are regulated by the JAK/STAT pathway and their
expression lowersviral titers in theAe.aegyptimidgut (30).Apoptosis
events have been found to occur in the midgut of C. pipiens and Ae.
aegypti refractory strains during infection with WNV or DENV,
respectively, indicating a potential role in restricting virus
propagation by these mosquito vectors (31, 32). Strikingly, the
presence of gut microbiota in Ae. aegypti can have a direct or
indirect influence on DENV infection and spread either by
enhancing the mosquito innate immune response or suppressing
virus replication through the secretion of unknown molecules [(24,
33) and references therein]. DENV infection in Ae. aegypti can be
affected by themidgut-inhabiting bacterium Serratia odorifera or the
fungusTalaromyces, which both increasemosquito sensitivity to this
virus. This is achieved through the production of a bacterial
polypeptide that interacts with the virus or the modification of
trypsin enzyme activity by the fungus. Both microbially mediated
effects lead to considerable changes in mosquito physiology (34, 35).
Interestingly, variation in Wolbachia-mediated DENV blocking in
Ae. aegypti has been previously attributed to the production of nitric
oxideor other free radicals (36).Also, serum ion canbeutilizedby the
Ae. aegypti iron metabolism pathway to strengthen reactive oxygen
species activity in the gut epithelium in order to oppose DENV
infection (37). In addition, expression of the redox-sensing gene
nuclear factor erythroid-derived factor 2 (Nrf2) limits ZIKV infection
by maintaining midgut homeostasis through modulation of reactive
oxygen species in the midgut as well as microbiota growth and stem
cell proliferation (38).

The association between flavivirus infection and lipid droplet
regulation in mammalian cells has been previously reported (39–
41). For example, infection of BHK-21, HepG2, and C6/36 cells by
DENV increases markedly the number of lipid droplets per cell.
This interaction possibly occurs between lipid droplets and various
conserved residues in the core protein of the virus and probably
indicates a link between viral replication and modulation of lipid
metabolism (42). Also, during DENV infection of the hepatocyte
derived cellular carcinoma cell line Huh7, HMG-CoA reductase
activity increases, leading to higher cholesterol levels in the
endoplasmic reticulum necessary for virus replication complex
formation (43). In a similar fashion, infection of the Ae. aegypti
cell lineAag2withDENVincreases lipiddroplet accumulation (44).
This phenotype in the DENV infected cells is associated with
substantial upregulation of transcript levels of genes encoding
factors related to lipid droplet biogenesis and lipid storage. These
effects are connected with changes in immune signaling regulation,
given that ectopic activation of Toll or Imd pathways further result
in higher numbers of lipid droplets in the midgut.
LESSONS FROM THE DROSOPHILA-
FLAVIVIRUS MODEL

Due to ZIKV outbreaks in several countries over the past five years,
recent research has used the Drosophila model for leveraging the
powerful genetic andgenomic tools in thefly inorder to understand
flavivirus pathogenesis (Figure 1). ZIKV possesses a positive-sense
single-stranded RNA genome encoding three structural (capsid,
November 2020 | Volume 11 | Article 618801
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pre-membrane, envelope) and seven non-structural proteins (NS1,
NS2A, NS2B, NS3, NS4A, NS4B, and NS5) (45). Expression of the
ZIKVnon-structural proteinNS4Ain thebrainofDrosophila larvae
induces apoptosis and leads to microcephaly, while expression of
humanAnkyrin Repeat And LEMDomainContaining 2 (ANKLE2)
gene, which is involved in brain development and has been
previously implicated in hereditary microcephaly, in flies
overexpressing ZIKV NS4A abolishes these defects. These results
provide proof that ZIKV NS4A interacts physically with the
ANKLE2 protein and causes microcephaly in an ANKLE2-
dependent manner (46) (Figure 1A). More recently, these
findings were extended by showing that mutations in ANKLE2
gene perturbs an asymmetric cell division pathway in Drosophila
neuroblasts and causes neurological disease and microcephaly,
whereas overexpression of ZIKV NS4A in neuroblasts produces a
similar phenotype observed in Ankle2mutants (47).

Also, it has been shown that ZIKV infection induces antiviral
autophagy in the brain of adultDrosophila and this process depends
on the activity of the Imd transcription factor Relish (48). The fly
ortholog of the mammalian polyubiquitin-binding scaffold protein
p62, the autophagy cargo receptor Ref(2)P, is also directed against
ZIKV in the brain and protection against this pathogen is not
dependent onRNAi signaling activity (48). Interestingly, ZIKValso
replicates in the fat body, crop and gut of the adult fly and this tissue
tropism disrupts gut and fat body lipid droplet homeostasis (49)
(Figure 1B). This tissue-specific phenotype is further intensified in
loss-of-function flies mutant for Dicer-2, the RNase of the RNAi
pathway and is accompanied by reduced insulin signaling activity
that leads to increased ZIKV replication and fly sensitivity to the
infection (49). A genetic screen using naturally derived Drosophila
lines revealed the insulin-like receptor InR as essential for fly
survival to arbovirus infection (50). Insulin signaling was further
found to suppress RNAi activity, but priming with mammalian
insulin enhances the immune response to control ZIKVandDENV
infection through induction of genes regulated via the JAK/
STAT pathway.

Recently, it was demonstrated thatZIKV infection inDrosophila
adult flies upregulates several gene targets that act as negative
regulators of the JAK/STAT pathway and expression of certain
Frontiers in Immunology | www.frontiersin.org 357
ZIKV structural and non-structural proteins in different tissues of
transgenic flies results in restricted eye growth, which is due to
reduced rate of proliferation in eye imaginal epithelia (45). In
particular, overexpression of ZIKV NS4A, a dominant negative
form of domeless, and co-expression of dominant negative form of
domeless andNS4A driven under an eye-specific promoter induces
restricted eye phenotype in a JAK/STAT dependent manner. Of
note, overexpression of ZIKV NS4A in the wing reduces the size of
the pouch domain, an effect that is associated with decreasedNotch
signaling. This information points toward a relationship between
ZIKV gene expression, JAK/STAT and Notch signaling activity
which is necessary for Drosophila growth and development, and
induction of pathological defects in the fly (Figure 1A). In a similar
manner, expression of the DENV NS3 protein (which promotes
virus replication) in Drosophila transgenic flies reduces their
survival response to bacterial infection, but not to abiotic stress,
indicating a link between DENV NS3 activity and antimicrobial
immune capacity (51). Finally, a genome-wide RNAi screen in
Drosophila cells has identified a large number of genes encoding
cellular factors, many of which are able to restrict WNV infection.
Intriguingly, all these genes are conserved in mosquitoes and the
majority have human orthologs. Furthermore, a subset of those
genes (e.g., dRUVBL1 and dXPO1) reduces flavivirus infection in
adult flies demonstrating the power ofDrosophila for the discovery
of novel host molecules with anti-flavivirus activity (52).
CONCLUSIONS AND PERSPECTIVES

Flaviviruses have recently expanded globally by causing severe
health impacts. Animal models are critical for understanding the
molecular and physiological basis of host antiviral response and
flavivirus pathogenesis. Because host innate immune responses are
evolutionary conserved across many phyla, investigating the effect
of flavivirus infection on the immune signaling and function of
animal models is particularly informative because it can lead to the
identification of anti-flavivirus immune processes in humans. Also,
elucidating the scale of interactions between the host innate
immune system and flaviviruses can lead to tissue-specific
A

B

FIGURE 1 | Zika virus and host pathologies in Drosophila. Zika virus results in perturbed homeostasis of different organs in Drosophila larva and adult.
(A) Overexpression of Zika virus NS4A results in microcephaly in brain and restricted growth of the wing and eye imaginal epithelia. In the wing and eye imaginal
epithelia, Zika virus NS4A interacts with Notch and JAK/STAT signaling pathways while in case of the brain, Zika virus NS4A targets ANKLE2, a highly conserved
mitotic regulator. (B) Infection of Zika virus in Drosophila adult flies results in perturbed intestinal and adipose tissue homeostasis marked by increased intestinal stem
cell proliferation and increased size of the lipid droplets.
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pathological deficits that modulate host functional changes
associated with the disease. Probing the exact nature of
interactions that take place during transmission of flaviviruses by
mosquitoes and ticks and exploring the impact of the pathogens on
tissue homeostasis during this process is considered a future
research priority. Due to the close taxonomic relationship
between mosquitoes and the common fruit fly (they are both
members of the order Diptera), the use of Drosophila offers many
advantages for studying these insect-borne viruses. Recent studies
in Drosophila adult flies and larvae have been pivotal for the
identification of fundamental mechanisms in insects that
participate in the control of flaviviruses in the mosquito vector. If
Drosophila factors interacting with flavivirus proteins are identified
and characterized functionally, such findings could be extrapolated
to mosquitoes after verification in the natural host (53). This
approach could in turn put us in a better position to control the
Frontiers in Immunology | www.frontiersin.org 458
spread of flaviviruses in the mosquito vector, and thus enable us to
prevent flavivirus dissemination to the human population.
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and Jun-Min Li2*
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Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of
China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China

The Toll pathway plays an important role in defense against infection of various pathogenic
microorganisms, including viruses. However, current understanding of Toll pathway was
mainly restricted in mammal and some model insects such as Drosophila and
mosquitoes. Whether plant viruses can also activate the Toll signaling pathway in
vector insects is still unknown. In this study, using rice stripe virus (RSV) and its insect
vector (small brown planthopper, Laodelphax striatellus) as a model, we found that the Toll
pathway was activated upon RSV infection. In comparison of viruliferous and non-
viruliferous planthoppers, we found that four Toll pathway core genes (Toll, Tube,
MyD88, and Dorsal) were upregulated in viruliferous planthoppers. When the
planthoppers infected with RSV, the expressions of Toll and MyD88 were rapidly
upregulated at the early stage (1 and 3 days post-infection), whereas Dorsal was
upregulated at the late stage (9 days post-infection). Furthermore, induction of Toll
pathway was initiated by interaction between a Toll receptor and RSV nucleocapsid
protein (NP). Knockdown of Toll increased the proliferation of RSV in vector insect, and the
dsToll-treated insects exhibited higher mortality than that of dsGFP-treated ones. Our
results provide the first evidence that the Toll signaling pathway of an insect vector is
potentially activated through the direct interaction between Toll receptor and a protein
encoded by a plant virus, indicating that Toll immune pathway is an important strategy
against plant virus infection in an insect vector.

Keywords: Toll pathway, rice stripe virus, small brown planthopper, immune perception, protein interaction
INTRODUCTION

In invertebrates, host defense against pathogens, including bacteria, fungi, and viruses, is known to
rely on innate immunity, while in vertebrates, the innate immune system provides the first defense
line against pathogens before activation of acquired immune response (1). In insects, various
evolutionarily conserved signaling pathways mediate antiviral immunity, including small RNA
interference (RNAi), Toll, the immune deficiency (IMD), and JAK-STAT (2, 3). These pathways
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mainly rely on different pattern recognition receptors (PRRs),
which recognize signature molecules of pathogens, known as
pathogen associated molecular patterns (PAMPs) and induce
downstream effectors against viral infection (4, 5). Toll receptor
superfamily, including invertebrate Tolls and vertebrate Toll-like
receptors (TLRs), is important class of PRRs and the primary
sensor of pathogens in all metazoans (6). The activation of Toll
pathway in vertebrate is initiated by TLRs binding to various
PAMPs, whereas in invertebrate, it is activated indirectly by Toll
receptors binding to the cytokine-like molecule Spätzle (Spz) (7).
Tolls and TLRs are characterized by an extracellular domain
containing leucine-rich repeats (LRRs), a transmembrane
domain, and a cytoplasmic tail that contains a conserved
region called the Toll/IL-1 receptor (TIR) domain (8). The first
identified Toll (Toll1) is the receptor of the Toll pathway, and to
date, nine Toll genes have been identified in Drosophila (8). In
invertebrate, pathogen infection is censored by extracellular
recognition and the inactive precursor of the Spz is cleaved to
active form. Then the activated Spz binds to Toll receptor and a
cassette of proteins (MyD88, Tube and Pelle) are recruited to
assemble a receptor-proximal oligomeric complex (9–11). In
Drosophila, the complex further trigger the phosphorylation
and degradation of Cactus, freeing Dorsal or Dif (Dorsal-
related immunity factor) to transfer from the cytoplasm into
the nucleus for the regulation of different antibacterial peptides
(AMPs) expressions (12).

Although the importance of the Toll pathway against bacteria
and fungi has been well demonstrated, accumulated evidences
suggested that it also plays essential antiviral roles in
invertebrate, such as the fly (Drosophila) and mosquitoes
(Culex, Aedes, and Anopheles) (1, 13). The importance of Toll
pathway against virus was firstly reported in Drosophila when
challenged with Drosophila X virus (DXV) infection (1). Further
studies indicated that the Toll pathway also mediate resistance to
other RNA viruses including Drosophila C virus, cricket paralysis
virus, flock house virus, and norovirus (14). In mosquito, Toll
immune pathway was activated upon viral infection, and they
controlled the conserved anti-dengue defenses across diverse
Aegypti strains and against multiple dengue virus serotypes (13,
15). Interestingly, recent studies found that several members of
Toll receptors can also act as PRRs analogous to the TLRs in
mammal, triggering conventional or non-conventional Toll-
Dorsal pathway. RNAi screening suggested that Toll-4 might
be one of upstream PRR to detect white spot syndrome virus
(WSSV) infection in shrimp, and thereby leading to conventional
Toll-Dorsal pathway (16). Another example is three shrimp Tolls
(Toll1-3) directly bind to PAMPs from bacterial infection,
resulting in Dorsal translocation into nucleus to regulate the
expression of different AMPs (17). In contrast, Drosophila Toll-7
can also act as a PRR and directly interact with vesicular
stomatitis virus (VSV) at the plasma membrane, but induces
antiviral autophagy independent of the canonical Toll-Dorsal
signaling pathway (2).

Rice stripe virus (RSV) is a filamentous, negative-strand RNA
virus of the genus Tenuivirus that causes rice stripe disease, one
of the most severe rice diseases in East Asia (18–20). RSV is
Frontiers in Immunology | www.frontiersin.org 261
transmitted by the vector insect, small brown planthopper
(SBPH, Laodelphax striatellus), in a persistent-propagative
manner. RSV can replicate in L. striatellus, and can be
transmitted to the progeny of the planthopper through
infection of the embryos or germ cells in the female insects
(21). The viral genome of RSV consists of four single-stranded
RNA segments: RNA1-RNA4. RNA1 is negative-sense RNA and
encodes a 337-kDa protein referred to as RNA-dependent RNA
polymerase (22). The other three genomic segments exhibit
ambisense coding features and each RNA encodes two
proteins. Sense and antisense strands of RNA2 encode RNA
silencing suppressor NS2 and the putative membrane
glycoprotein NSvc2, respectively (23–25). RNA3 encodes a
second viral suppressor NS3 (26), and complementary sense
RNA3 (vcRNA3) encodes the nucleocapsid protein (NP) (27,
28). RNA4 encodes the disease-specific protein NS4 (29), and
vcRNA4 encodes the movement protein (MP) (30, 31). Previous
studies suggested the induced active response of L. striatellus
during RSV infection. For example, analysis of viral-derived
small interfering RNAs (siRNAs) revealed that RNAi-mediated
antiviral response can successfully be induced by the infection of
RSV and another reovirus, rice black-streaked dwarf virus (32).
Activation of c-Jun N-terminal kinase (JNK) promoted RSV
replication in L. striatellus, whereas JNK inhibition caused a
significant reduction in virus production and thus delayed
disease incidence in plants (33). In addition, silencing of the
autophagy-related-8 (Atg8) expression of L. striatellus
significantly decreased the phosphorylation of JNK in the
midgut of the planthoppers, suggesting that ATG8 might
activate the JNK machinery (34). Nevertheless, to date,
whether the classical Toll-Dorsal pathway involved in antiviral
response of L. striatellus or other plant virus vectors have never
been investigated.

In this study, open reading frames (ORFs) of four core
components from Toll pathway, including Toll, Tube, MyD88,
and Dorsal, were identified from L. striatellus and their potential
antiviral roles were further explored. Our results revealed that
the Toll signaling pathway in L. striatellus is potentially induced
through the direct interaction between Toll and RSV-NP.
Knockdown of Toll increased the replication of RSV, indicating
that Toll in insect vectors might act as PRR in perceiving plant
viruses, similar to that of TLRs in mammalian.
MATERIALS AND METHODS

Insects
The planthopper populations are maintained on susceptive
japonica rice seedlings (cv Wuyujing No. 3) in a temperature-
controlled room at 25 ± 1°C, with 70–80% relative humidity, and
a light/dark photoperiod of 14/10 h. The infection ratio of the
viruliferous planthopper population (RSV-infected) was around
80% and monitored every 3–4 generations by reverse
transcription polymerase chain reaction (RT-PCR) as described
previously (32).
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Gene Cloning and Phylogenetic Analysis
Four Toll pathway core genes (Toll, Tube, MyD88, and Dorsal)
were obtained from transcriptome of L. striatellus (Accession
Number: SRR4020768) by homology search based on the
corresponding genes of Nilaparvata lugens as query sequences
(nlToll, XP_022198839; nlTube, XP_022207725; nlMyD88,
XP_022187892; nlDorsal, XP_022195378). Conserved protein
domains were predicted using NCBI conserved domains
database (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.
cgi). Phylogenetic trees were constructed based on the deduced
amino-acid sequences in MEGA 6.0 using the maximum
likelihood (ML) algorithm with 1,000 bootstrap replications.
The full-length ORFs of the four identified genes were
amplified with the respective primer pairs (Supplementary
Table 1) from planthoppers using RT-PCR and further
confirmed by Sanger sequencing (Sangon, China).

Yeast Two-Hybrid Assay
For the yeast two-hybrid assay (Y2H) interaction assay, the full-
length of RSV NS2, NSvc2-C (C-terminal of glycoprotein),
NSvc2-N (N-terminal of glycoprotein), NS3, NP, NS4, and MP
were cloned into the DNA-binding domain of the vector pGBK-
T7 to create bait plasmids. The full-length ORF of Toll was
cloned into the activation domain of the yeast vector pGAD-T7.
Yeast cells (AH109) were co-transformed with RSV protein
libraries and pGAD-T7-Toll. Positive clones were selected on
quadruple dropout medium (SD/-Leu/-Trp/-His/-Ade).

Bimolecular Fluorescence
Complementation Assays
To further confirm the protein interactions, the full-length genes
of RSV proteins NS2, NSvc2-C, NSvc2-N, NS3, NP, NS4, and
MP were amplified and cloned into pCV-nYFP expression
vector, respectively. The full-length ORF of Toll was cloned
into pCV-cYFP expression vector. Constructed vector pCV-
cYFP-Toll were then transformed into Agrobacterium
tumefaciens GV3101 by heat transfer method, and co-
transformed with pCV-nYFP-NS2, pCV-nYFP-NSvc2-C, pCV-
nYFP-NSvc2-N, pCV-nYFP-NS3, pCV-nYFP-NP, pCV-nYFP-
NS4, and pCV-nYFP-MP, into Nicotiana benthamiana,
respectively. YFP fluorescence signal was observed under
Nikon confocal (Nikon, Japan).

Total RNA Extraction and Quantitative
Real-Time PCR
The total RNA was extracted using TRIzol (Invitrogen, USA)
according to the manufacturer’s instructions. The concentration
and quality of total RNA was determined using a NanoDrop
spectrophotometer (Thermo Scientific, USA). The first strand of
complementary DNA (cDNA) from 1,000 ng of total RNA was
synthesized with HiScript ®II Q RT SuperMix for qPCR
(+gDNA wiper) (Vazyme, China) following the manufacturer’s
protocol. In brief, quantitative real-time PCR (qPCR) was
performed in 10 µl-reaction agent containing 0.5 µl of template
cDNA and 5 µl of Hieff ® qPCR SYBR Green PCR Master Mix
(YESEN, China), 0.2 µl of 1 µM forward and reverse primers, and
Frontiers in Immunology | www.frontiersin.org 362
4.1 µl of ddH2O on LightCycler® 480 II (Roche, Switzerland).
The thermal cycling conditions were 95°C for 5 min, 40 cycles of
95°C for 30 s, 60°C for 30 s, and 70°C for 30 s, followed by
melting curve analysis. The data were analyzed using the 2−DDCT

method and statistically significant differences at P < 0.05 (*) and
P < 0.01 (**) level are indicated according to one-way analysis of
variance (ANOVA) test.

Expression Profiles of the Four Toll
Pathway Genes
Planthopper samples of different developmental stages (eggs, 1st

to 5th instar nymphs, female adults, and male adults) and various
tissues (salivary gland, gut, ovary of female adult, epidermis,
hemolymph, fat body, and testis of male adult) from non-
viruliferous L. striatellus were collected. For the collection of
hemolymph and fat body, the PBS solution after the dissect of
planthoppers was centrifuged at 5,000 × g for 5 min at 4°C, and
the hemolymph in supernatant and fat body in precipitate were
separately collected, respectively. Five independent replicates
were used in this experiment. For the collection of different
developmental stages, various numbers of insects were obtained
according to the sample size for each replicate. While for tissues,
each replicate contains different tissues derived from
approximately 40–50 individual adult planthoppers.

To determine the expression of Toll, Tube,MyD88, and Dorsal
in response to RSV infection, approximately 20 adult planthoppers
from non-viruliferous and viruliferous cultures were collected for
RNA extraction individually. In addition, to further investigate the
response of Toll pathway core gene expressions during the whole
process of RSV infection, approximately 1,000 2nd instar nymphs
of non-viruliferous planthoppers were transferred and feeding
onto RSV-infected rice seedlings for 2 days. Then the
planthoppers were transferred to healthy rice seedlings and
collected at various time points (1, 3, 6, 9, or 12 days post-
infection). About 20 planthoppers were collected at each time
point and expressions of Toll pathway genes were determined
from individual insect by qPCR as described above.

Double-Stranded RNA Synthesis and
Delivery
Toll, Tube, MyD88, and Dorsal fragments of L. striatellus were
amplified using gene-specific primer ligated with a T7-promoter
sequence, and the green fluorescent proteins (GFP) fragment was
used as a negative control. The primers used for the amplification
were listed in Supplementary Table 1. The double-stranded
RNA (dsRNA) was synthesized using the T7 RiboMAX Express
RNAi System (Promega, USA) following the manufacturer’s
instructions. The quality of synthesized dsRNA was evaluated
using agarose gel electrophoresis. Each planthopper was injected
with 40 nl of dsRNA into the insect ventral thorax with a glass
needle (35).

Quantification of Rice Stripe Virus
Proliferation
Adult planthoppers from viruliferous culture were collected and
injected with dsToll, dsTube, dsMyD88, and dsDorsal,
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respectively. dsGFP was used as a negative control. Each of the
injected planthopper was used for RNA extraction and the RNAi
efficiency was determined at 48 h post-injection using qPCR. The
accumulation level of RSV was quantified by qPCR as described
above with specific primer pairs for RSV-NP.

Accumulation of Rice Stripe Virus and
Mortality of Planthoppers During Rice
Stripe Virus Infection
Second instar planthoppers from non-viruliferous culture were
injected with dsToll individually and maintained in healthy rice
seedling for 2 days. The injected planthoppers were then
transferred onto RSV-infected rice seedlings for another 2
days for virus acquisition. Finally, the planthoppers were
moved to healthy rice seedling again and collected at various
time points for the detection of virus accumulation. dsGFP was
used as a negative control. Each of the injected planthopper was
used for RNA extraction at 0, 1, 3, 9 days post-RSV acquisition.
The expression of RSV-NP was measured by qPCR after
silencing of Toll. Approximately 20 planthoppers were used
for the detection at each time point. Meanwhile, the mortality
rate of dsToll injected planthoppers was investigated. Three
biological replicates were performed for each treatment in
this experiment.
RESULTS

Identification of the Toll Pathway Core
Genes in Laodelphax striatellus
To explore the potential antiviral roles of classic Toll pathway in
L. striatellus, full ORF of Toll pathway core genes (Toll, Tube,
MyD88, and Dorsal) were identified and cloned. The ORF of Toll
consists of 3336 bp nucleotides encoding a predicted protein of
1,111 amino-acid residues with a calculated molecular mass of
125.82 kDa. The predicted Toll protein contains five conserved
domains including a PRK15370 super family (type III secretion
system effector E3 ubiquitin transferase SlrP), a LRR_8 (Leucine
rich repeat), a PCC super family (polycystin cation channel
protein), a LRR, and a TIR (Toll—interleukin 1—resistance)
(Figure 1A); Tube contains a 1,500 bp ORF, encoding a
predicted protein of 499 amino-acid residues with a calculated
molecular mass of 55.58 kDa. The putative Tube protein contains
a Death_Tube domain and a PKc (protein kinases) domain
(Figure 1B); MyD88 consists of 1,230 bp and encodes a
predicted protein of 409 amino acids. The putative MyD88
protein contains two conserved domains Death_MyD88 and
TIR_2 (a family of bacterial TLRs) (Figure 1C). Dorsal
contains a continuous 2,712 bp ORF, encoding a predicted
protein of 903 amino-acid residues. The putative Dorsal
protein contains domains including a Dorsal_Dif, a
RHD_dimer (Rel homology dimerization), and an AidA
superfamily (Figure 1D). The full ORF sequences of Toll,
Tube, MyD88, and Dorsal were submitted to GenBank with the
accession numbers of MW048393, MW048395, MW048396,
and MW048394.
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Homology analysis showed that the predicted amino acids of
the four Toll pathway proteins of L. striatellus share highest
homologies to the other two rice planthoppers, N. lugens and
Sogatella furcifera, with identities of 88.44 and 88.07% for Toll,
70.18 and 60.39% for Tube, 77.64 and 31.05% for MyD88, 65.11
and 49.77% for Dorsal, respectively. Phylogenetic analysis based
on the putative amino-acid sequences suggested the four proteins
of L. striatellus clustered together with the other two
planthoppers (N. lugens and S. furcifera) with high strap value
support (Figure 1).

Interaction Between Laodelphax striatellus
Toll and Rice Stripe Virus-NP
To investigate the potential interaction between Toll and RSV
proteins, seven viral proteins (NS2, NSvc2-C, NSvc2-N, NS3,
NP, NS4, and MP) were used as baits to screen against the L.
striatellus Toll. We found that Toll interacted with RSV-NP
protein, but not the other six RSV proteins, and similar results
were found when Toll was used as a bait and RSV-NP as a prey
(Figure 2A, and Figure S1). In addition, yeast two-hybrid
assay result showed that Toll could not interact directly with
SPZ family including SPZ1, SPZ2, SPZ3, SPZ4, SPZ5, and
SPZ6 proteins in SD/–Leu/–Trp/–His/–Ade medium (Figure
S2). To confirm the interaction between planthopper Toll and
RSV-NP, bimolecular fluorescence complementation (BiFC)
assays were further performed in N. benthamiana. When
pCV-cYFP-Toll and pCV-nYFP-NP were transiently co-
expressed in N. benthamiana leaves, strong YFP fluorescence
signals were observed in the cytomembrane, whereas no
visible signal was detected in the negative control of pCV-
cYFP–Toll and pCV–nYFP (Figure 2B). Similar results were
found when pCV-cYFP-NP and pCV-nYFP-Toll were
transiently co-expressed (Figure 2B). These results indicated
that Toll and RSV-NP proteins interact directly and the L.
striatellus Toll might act as PRR in recognizing signaling
molecules of pathogen.

Temporal and Spatial Expression of
Laodelphax striatellus Toll
To explore the expression pattern of Toll receptors, non-
viruliferous planthopper samples from eight developmental
stages and seven tissues were collected and quantified by qPCR.
The results showed that Toll was ubiquitously expressed in all
collected developmental stages and tissues of L. striatellus (Figures
3A, B). Messenger RNA (mRNA) of Toll was most abundant in
the first instar nymphs of non-viruliferous planthopper, followed
by eggs (Figure 3A). Furthermore, highest expression of Toll was
observed in salivary glands compared with the other tissues of
non-viruliferous planthoppers (Figure 3B).

Active Response of the Canonical Toll
Pathway During Rice Stripe Virus Infection
To illustrate the potential roles of Toll signaling pathway in RSV
infection, the expressions of Toll, Tube,MyD88, and Dorsal were
compared between viruliferous planthopper and non-
viruliferous planthopper. Significantly increased expressions of
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all the four genes were observed in viruliferous planthopper
population (Figures 3C–F), suggesting that Toll pathway might
be actively involved in the stable maintenance of RSV
in planthopper.
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Moreover, previous studies demonstrated that virus infection
activated the Toll pathway within a short period (16).
Considering the remarkable upregulation of Toll, Tube,
MyD88, and Dorsal in viruliferous planthopper, how the Toll
A B

DC

FIGURE 1 | The architecture and phylogenetic analysis of Toll, Tube, MyD88, and Dorsal. (A) Toll contains five conserved domains: PRK15370, TIR, LRR_8,
leucine-rich repeat (LRR), and PCC. (B) Tube contains two conserved domains: Death and S_TKC. (C) MyD88 contains two conserved domains: Death_MyD88 and
TIR_2. (D) Dorsal contains three conserved domains: Dorsal_Dif, RHD_dimer, and AidA. Phylogenetic tree analysis with the maximum likelihood method was based
on homologous amino-acid sequences of Laodelphax striatellus and other insects.
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pathway of non-viruliferous planthoppers responded to RSV
infection is of interest. As a result, Toll, Tube, and MyD88, but
not Dorsal, were actively responded during early stage of RSV
infection (Figure 4). The expressions of MyD88 and Toll were
significantly increased after 1 and 3 days post-infection (dpi)
(Figures 4A, C), whereas Tube was notably decreased after 1 dpi
compare to that of the control (0 dpi) (Figure 4B). No significant
change was detected after 6 dpi of RSV infection for both Toll,
Tube, and MyD88. However, all of the four Toll pathway core
genes were up-regulated after 9 and 12 dpi (at the late stage) of
RSV infection (Figure 4). These dynamic expressions of Toll,
Tube, MyD88, and dorsal imply the active and complexed
involvement of the canonical Toll signaling pathway in
response to the infection process of RSV.
Frontiers in Immunology | www.frontiersin.org 665
Potential roles of the Toll Pathway in the
Maintenance of Rice Stripe Virus
Proliferation
To investigate the potential roles of Toll, Tube, MyD88, and
Dorsal in RSV infected planthoppers, dsRNA fragments
corresponding to these four genes were synthesized and
injected into the viruliferous planthoppers. Assessment of
silencing efficient indicated the significant transcripts reduction
(70%) for all of the four genes after 2 dpi (Figures 5A, C, E, G).
Meanwhile, significant increase in titer of RSV was observed in
dsToll- and dsDorsal-treated planthoppers (Figures 5B, H),
whereas RNA level of RSV-NP was notably reduced for
dsTube-injected insects when compared with that of the
control (dsGFP) (Figure 5D). In contrast, no significant
difference was detected in RSV-NP between dsMyD88 and
dsGFP-treated planthoppers (Figure 5F).

The Toll Pathway Is Involved in the Anti-
Rice Stripe Virus Defense
In view of the direct interaction between Toll and RSV-NP, the
accumulation of RSV-NP transcripts was further examined in
dsToll-treated planthoppers when non-viruliferous planthoppers
were infected by RSV. Injection of dsToll successfully and stably
inhibits the Toll expression in planthoppers after RSV
acquisition for various days (Figure 6A). The effects of dsToll-
injection on the RSV proliferation in planthoppers were further
determined. Significant increase in RSV-NP transcripts were
observed in dsToll injected planthopper compared to that of
the control (dsGFP) at various infected time point (1, 3, and 9
dpi) (Figure 6B). Additionally, the mortality of RSV-infected
planthopper was significantly higher after dsToll treatment in 3
and 9 dpi than that of dsGFP control (Figure 6C). These data
suggested that Toll might play an essential role in restricting
RSV proliferation.
DISCUSSION

Accumulated evidence demonstrated that the innate immune
system plays an important role in defense against viruses in
mammal and some model insects such as Drosophila and
mosquitoes (1, 13–16). However, whether the canonical
pathway of vector insects also involved in defense against plant
viruses remained unknown. In this study, we found that RSV
activated the Toll immune pathway of L. striatellus through
direct interaction between Toll protein and RSV-NP.
Knockdown of Toll significantly increased the proliferation of
RSV in vector insect, and the dsToll-treated insects exhibited
higher mortality than that of dsGFP-treated ones. Our results
suggested a potential role of Toll pathway in restrict plant
virus infection.

Activation of immune pathways relies on an array of PRRs to
recognize the PAMPs, and subsequently induce an appropriate
effector response to clear the infection (36). For Toll pathway, this
process was mainly accomplished by Toll, which is the upstream
receptor of this pathway. In Drosophila, Toll-7 is a PRR that
A

B

FIGURE 2 | Protein-protein interaction analysis of Toll and rice stripe virus
(RSV)-NP. (A) Yeast two-hybrid assay result showed that Toll interacted with
RSV-NP protein in SD/–Leu/–Trp/–His/–Ade medium. (B) Bimolecular
fluorescence complementation assays showed that pCV-cYFP–Toll and pCV–
nYFP–RSV-NP, pCV–cYFP–RSV–NP and pCV–nYFP–Toll fluorescent strong
YFP signals in the cytomembrane but there were no detectable signals in the
negative control combinations pCV-cYFP–Toll and pCV–nYFP, pCV–cYFP,
and pCV–nYFP–Toll. Bars, 50 µm.
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interacted with VSV at the plasma membrane and induced
antiviral autophagy (2). In shrimp, knockdown of Toll4 results
in elevated viral loads and renders shrimp more susceptible to
WSSV infection. Furthermore, Toll4 could act as an upstream
PRR to detect WSSV, and lead to nuclear translocation and
phosphorylation of Dorsal for the trigger of AMP production
against the virus (16). Our study identified a strong interaction
between Toll and RSV-NP, indicating that Toll in L. striatellus
might be an upstream receptor to recognize RSV, and Toll
pathway was associated with plant virus infection in insect vector.

Toll pathways is the major constitute of insect immune
pathways that activate a battery of immune proteins in
Frontiers in Immunology | www.frontiersin.org 766
response to various microorganism invasion. Remarkable
upregulation in Toll pathway genes were reported in Aedes
aegypti challenged with Plasmodium gallinaceum (37),
Drosophila challenged with Vesicular stomatitis virus (2), and
Litopenaeus vannamei challenged with WSSV (16). Our study
demonstrated that Toll, Tube, and MyD88 were actively
responded during early stage of RSV oral infection (Figure 4),
in accordance of previous work. For the transcription factor
Dorsal, it is stable expressed at the early stage of viral infection,
but significantly upregulated at the late stage (Figure 4). Since
Toll, Tube, MyD88, and Dorsal are the four core genes of the
canonical Toll-Dorsal signaling pathway, the upregulation of
A B

D

E F

C

FIGURE 3 | Expression patterns of Toll and relative transcript levels of Toll, Tube, MyD88, and Dorsal in non-viruliferous and viruliferous planthopper. For qPCR
detection of Toll, samples from different developmental stages (eggs, nymphs from 1st to 5th instars, female and male adults) (A) and different tissues (salivary gland,
gut, ovary, epidermis, hemolymph, fat body, and testicle) (B) were collected from non-viruliferous planthoppers. Five biological replicates were performed. For
analysis of relative transcript levels of Toll (C), Tube (D, E) MyD88 (E), and Dorsal (F), non-viruliferous and viruliferous planthopper samples were collected
individually. Actin gene was used as housekeeping gene. Each point represents a biological replicate. Statistically significant differences at P < 0.01 (**) level are
indicated according to one-way analysis of variance (ANOVA) test.
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these four genes at various stages during RSV infection (Figure
4), the interaction between Toll and RSV-NP (Figure 2), as well
as the increased viral titers observed in dsToll-treated
planthoppers (Figure 6), implying that this classical pathway
was actively involved in response to RSV infection. Nevertheless,
more studies are needed to further investigate on the detail of
downstream antiviral response, such as how does Dorsal
translocate from cytoplasm into the nucleus, and which
downstream effectors are regulated by Dorsal induced with
RSV infection. In addition, for viruliferous planthopper, they
can harbor the viruses for several generations, and no significant
phenotype can be found in the RSV-infected insects. In this
study, it is interesting to find that the expression level of four Toll
pathway core genes were significantly higher in viruliferous
planthopper than that in non-viruliferous one (Figure 3).
Sustained activation of defense pathway inevitably consumes
extra resources, which is detrimental to insects (38). We
presumed that it might be more important for planthoppers to
restrict RSV infection than other physiological metabolisms.
Interestingly, higher mortality rate was recognized in dsToll-
treated viruliferous planthoppers (Figure 6C), suggesting that
dsToll-treatment might interfere with the established delicate
balance between innate immunity of planthopper and persistent
RSV infection, as described in mosquitoes (39). Our results also
consist with the previous report that TLR4 knockdown mice
exhibited greater viral replication (Vaccinia virus) and mortality
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compared to the wild-type mice following respiratory infection
(40), indicating that the Toll signaling pathway of the host might
be essential for the virus persistent infection.

Involvement of Toll pathway in restrict virus infection has
been well documented in previous work. In Drosophila, Toll and
Dif mutant lines showed increased susceptibility to Drosophila X
virus (1), and Toll-7 depletion promoted vesicular stomatitis
virus replication (2). In shrimps, silencing of Toll-4 resulted in
high WSSV titers, with the average viral DNA burden
approximately 150 times higher than that of the control (16).
In A. aegypti, silencing of MyD88 led to a significant increase in
dengue virus titers, demonstrating the importance of this innate
immune pathway in the defense against different dengue virus
serotypes at the early stages of infection (13). Our study
demonstrated that Toll-inhibition and Dorsal-inhibition
significantly increased the RSV titer, suggesting the potential
antiviral roles of Toll pathway against plant virus. However, for
dsMyD88-treatment viruliferous planthoppers, no significant
change in RSV titer was observed when compared to the
control (dsGFP) (Figure 5F), which is inconsistent with the
previous studies in mosquitoes (13) and mice (41). Considering
the increased expression of MyD88 in response to RSV infection
(Figure 4C), we presume that MyD88 might play more
important roles during the process of RSV infection, rather
than the maintenance of RSV persistent infection in
planthoppers. Furthermore, unexpectedly, RSV titer in dsTube-
A
B

DC

FIGURE 4 | The expression pattern of Toll, Tube, MyD88, and Dorsal when non-viruliferous planthoppers were infected with rice stripe virus (RSV). Non-viruliferous
planthoppers were fed on RSV-infected rice seedlings, and the samples were collected at 1, 3, 6, 9, and 12 days post-infection (dpi). Relative transcript levels of Toll
(A), Tube (B), MyD88 (C), and Dorsal (D) at the indicated time points were analyzed by qPCR. The non-viruliferous planthopper that did not contact with RSV was
used as a control. Actin gene was used as housekeeping gene. Each point represents a biological replicate. Statistically significant differences at P < 0.05 (*) and P <
0.01 (**) level are indicated according to one-way ANOVA test.
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treatment was significantly decreased compare to control
(dsGFP) (Figure 5D). It will be interesting to further explore
the possibility that whether Tube can interact directly with the
protein of RSV and might be hijacked by the virus to promote
its proliferation.
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CONCLUSION

In summary, we found that Toll pathway was activated upon
RSV infection, and the viruliferous planthopper exhibited higher
level of Toll, Tube, MyD88, and Dorsal. More intriguing, unlike
A B
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G H

C

FIGURE 5 | The influence of double-stranded RNA (dsRNA) treatment on viruliferous planthoppers. Approximately 25 viruliferous planthopper were injected with
dsToll, dsTube, dsMyD88, and dsDorsal. The silencing efficiency of Toll (A), Tube (C), MyD88 (E), and Dorsal (G) were determined. Meanwhile, the relative transcript
level of RSV-NP after silencing of Toll (B), Tube (D), MyD88 (F), and Dorsal (H) were analyzed by qPCR. Planthopers treated with dsGFP were used as a negative
control. Each point represents a biological replicate. Statistically significant differences at P < 0.05 (*) and P < 0.01 (**) level are indicated according to one-way
ANOVA test. ns, not significant.
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the classical Toll signaling pathway which rely on the Spz
binding to the Toll receptor, our study provide the first
evidence that the antiviral Toll signaling pathway of L.
striatellus is potentially activated through the direct interaction
between Toll receptor and PAMPs (RSV-NP), suggesting that
Toll immune pathway is an important strategy against plant
viruses in insect vectors.
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Wolbachia is a maternally transmitted bacterium that lives inside arthropod cells.
Historically, it was viewed primarily as a parasite that manipulates host reproduction,
but more recently it was discovered that Wolbachia can also protect Drosophila species
against infection by RNA viruses. Combined with Wolbachia’s ability to invade insect
populations due to reproductive manipulations, this provides a way to modify mosquito
populations to prevent them transmitting viruses like dengue. In this review, we discuss
the main advances in the field since Wolbachia’s antiviral effect was discovered 12 years
ago, identifying current research gaps and potential future developments. We discuss that
the antiviral effect works against a broad range of RNA viruses and depends on the
Wolbachia lineage. We describe what is known about the mechanisms behind viral
protection, and that recent studies suggest two possible mechanisms: activation of host
immunity or competition with virus for cellular resources. We also discuss how association
with Wolbachia may influence the evolution of virus defense on the insect host genome.
Finally, we investigate whether the antiviral effect occurs in wild insect populations and its
ecological relevance as a major antiviral component in insects.

Keywords: antiviral, Wolbachia, insects, arboviruses, evolution, wild populations, review, endosymbiont
INTRODUCTION

Wolbachia pipientis is a maternally transmitted alphaproteobacterium that lives obligatorily within
the cytoplasm of arthropod cells (1). Until recently it was viewed primarily as a parasite that
manipulates host reproduction, most commonly by inducing cytoplasmic incompatibility (2, 3).
Cytoplasmic incompatibility allows Wolbachia to invade insect populations by causing embryonic
mortality when uninfected females mate with infected males, thus conferring a selective advantage
to infected females (4, 5). In 2008, two studies discovered that Wolbachia can protect Drosophila
melanogaster against RNA viruses (6, 7). Subsequently, it was discovered that Wolbachia can block
dengue virus replication in mosquitoes (8, 9). These findings provided a new way in which
Wolbachia can be used to control human arboviruses, since previous attempts relied on using
cytoplasmic incompatibility as a transgene driver, or reduction of mosquito longevity by a virulent
Wolbachia strain. Wolbachia lineages from different insects that were transferred to the mosquito
Aedes aegypti can limit the replication of arboviruses such as Dengue virus (DENV), Chikungunya
virus (CHIKV), Yellow Fever virus (YFV), Zika virus (ZIKV) and West Nile virus (WNV) (9–12).
Wolbachia can spread quickly through mosquito populations by cytoplasmic incompatibility (13–
15), and large field trials have been successful in reducing dengue prevalence in human populations
(16, 17).
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In this Mini Review, we discuss the main advances in the field
since the Wolbachia antiviral effect was discovered 12 years ago,
current research gaps, and potential future developments. First,
we address the generality of the antiviral effect and how it
depends on Wolbachia lineage and on virus identity. Second,
we discuss the possible mechanisms of antiviral protection.
Third, we discuss how association with Wolbachia may
influence the evolution of virus defense on the insect host
genome. Finally, we discuss the virus blocking ecological
relevance by addressing if it occurs in wild insect populations.
GENERALITY: DIFFERENT VIRUSES AND
DIFFERENT WOLBACHIA LINEAGES

After the first studies showing that Wolbachia protects flies and
mosquitoes against RNA viruses (6–8) and its potential to
control insect-born human diseases (8–10, 14), there was a
great interest in the area. Many studies conducted on
mosquitoes tested for their vector competence and revealed
that Wolbachia reduces infection and, in some cases, the
dissemination and transmission of diseases such as dengue,
chikungunya, yellow fever, zika, and West Nile fever (Table 1).
In flies, Wolbachia protects mostly against Flock House virus
(FHV), and Drosophila C virus (DCV). However, DCV is not
commonly found in wild Drosophila populations (41) and there
is limited information on protection against viruses that are
common in nature, such as Nora (6) and Kallithea virus (36)
(Table 1). Although many studies report Wolbachia protection
against different viruses, there are a few cases in which
Wolbachia provides no protection or even increases the host
susceptibility to viral infection (Table 1). Furthermore, only
three studies investigated Wolbachia protection against DNA
viruses (6, 36, 40) and none found evidence of protection
(Table 1). Therefore, Wolbachia protection in insects is a
general phenomenon only against RNA viruses.

The level of protection against viruses varies among
Wolbachia strains and depends on their density within the
host (22, 42). It is common to transfer high density strains into
new hosts, such as mosquitoes, to test for protection against
viruses (Figure 1A). Thus, protection generally occurs in host-
Wolbachia interactions that are not natural, but artificial (43).
For example, the virulent strain wMelPop, originally isolated
from D. melanogaster (44, 45), protects against different viruses
in Aedes aegypti (Table 1). However, wMelPop is a strain that
was identified only in laboratory and there is no record of it in
nature. Other Wolbachia strains commonly used in experiments
that have broad protection against viruses are wMel, wMelCS,
both isolated from D. melanogaster, wAu, isolated from
D. simulans, wAlbB, isolated from Aedes albopictus, and wStri,
isolated from the planthooper Laodelphax striatellus (Table 1).
Martinez and colleagues investigated antiviral protection in
many Wolbachia strains originated from different Drosophila
species after transfer into the same genetic background of D.
simulans. Interestingly, they found that protection is not
determined by host genotype, but by Wolbachia strain (23). All
Frontiers in Immunology | www.frontiersin.org 272
these studies showing that different strains protect different hosts
against many RNA viruses were conducted in the laboratory, and
there is still little evidence of the Wolbachia antiviral effect in
nature (see last section below).

Another issue is that most studies that test for virus
protection by Wolbachia are carried out using only the adult
stage. So far, only Graham et al. (40) tested for viral protection in
larval stages of Spodoptera exempta, and we still have no
information of protection on pupae. Moreover, these results
may be affected by the inoculation method in the laboratory.
All studies in flies use systemic infection (stabbing or
microinjection), while in mosquitoes some studies use oral
infection besides microinjection. Although methods such as
microinjection allow greater viral dose precision, we know that
in nature insects acquire many pathogens by feeding (46, 47).
Therefore, although there is a general pattern of protection
against viruses in laboratory studies, there are some limitations
on the methods used. Further studies testing Wolbachia’s
antiviral protection in insect host using methods that
approximate of how infections occur in nature, such as oral
infection (46, 47), are essential to understanding the dynamics
between Wolbachia and viruses in wild populations.

Wolbachia infects about 50% of all insect species (48), and we
can hypothesize that the antiviral protection may be one of the
reasons forWolbachia being so widely spread among arthropods.
However, studies onWolbachia’s viral protection are still limited
to flies and mosquitoes, with the exception of one study on a
Lepidoptera host (40) and one study on a Hemiptera host (33).
Thus, more studies on different insect families are essential to test
if the antiviral effect also occurs in other insects, and how likely it
may be one of the main reasons for the high prevalence of
Wolbachia in natural insect populations.
THE POSSIBLE MECHANISMS

Since the discovery of Wolbachia antiviral protection different
mechanisms of action have been proposed, but up to now, there
is no consensus on the underlying mechanism [reviewed by
Lindsey et al (49)]. Current studies work on two main hypotheses
to explain Wolbachia interference in viral replication: the
activation of host immunity and competition with virus for
cellular resources (Figure 1B).

The first hypothesis is that Wolbachia can directly activate
innate immunity of the host prior to virus infection (immune
priming), interfering with virus replication. The presence of the
bacterium in host cells leads to cellular stress, including oxidative
stress that activates host immune pathways (50). Wolbachia
preactivates mosquito innate immunity by the oxidative stress,
upregulating Toll pathway genes, known to be responsible for
protection against dengue virus (8, 9, 50). Immune effector genes
upregulation in A. aegypti suggests that the protection due to
immunity priming is responsible for the viral interference (8, 9).
However, the upregulation in the immune pathway genes is
variable in different species and it seems to be influenced by the
time of host-Wolbachia coevolution. For instance, there is no
January 2021 | Volume 11 | Article 626329
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TABLE 1 | Wolbachia antiviral effect on insects.

Wolbachia
effect

Wolbachia
strain

Natural host
species

Tested host
species

Tested virus Study

Protection wAlbB Aedes
albopictus

Aedes aegypti,
Aedes
polynesiensis

DENV, SFV, ZIKV Bian et al., 2010b (8), Bian et al., 2013b (18), Ant et al., 2018b (19),
Joubert et al., 2016b (20)

wAlbB + wMel Aedes
albopictus +
Drosophila
melanogaster

Aedes aegypti DENV Joubert et al., 2016b (20)

wAlbA + wAlbB Aedes
albopictus

Aedes
albopictus

DENV Mousson et al., 2012b,e (21)

wC.
quinquefasciatus

Culex
quiquenfasciatus

Culex
quiquenfasciatus

WNV Glaser & Meola, 2010b (12)

wAna Drosophila
ananassae

Drosophila
simulans

DCV, FHV Martinez et al., 2014a,b (22), Martinez et al., 2017a (23)

wAra Drosophila
arawakana

Drosophila
simulans

DCV, FHV Martinez et al., 2014a,b (22)

wAu Drosophila
simulans

Aedes aegypti,
Drosophila
simulans

DENV, ZIKV, SFV, DCV,
FHV

Ant et al., 2018b (19), Martinez et al., 2014a,b (22), Martinez et al.,
2017a,b (23), Osborne et al., 2009a,b (24)

wHa Drosophila
simulans

Drosophila
simulans

DCV, FHV Martinez et al., 2017a (23), Osborne et al., 2009a (24)

wMel Drosophila
melanogaster

Aedes aegypti,
Aedes
albopictus,
Drosophila
simulans,
Drosophila
melanogaster

CHIKV, DCV, DENV, FHV,
Flavivirus OTU2, ZIKV, SFV,
WNV

Amuzu et al., 2018b (25), Ant et al., 2018b (19), Blagrove et al.,
2012b (26), Martinez et al., 2014a,b (22), Fraser et al., 2017b (27),
Hussain et al., 2013b,f (28), Joubert et al., 2016b (20), Martinez
et al., 2017a,b (23), Osborne et al., 2009a,b (24), Van den Hurk et al.,
2012b,c,e,g (10), Walker et al., 2011b,c (14), Ye et al., 2016b,c,e (29),
Rancés et al., 2012b (30)

wMelCs Drosophila
melanogaster

Aedes aegypti,
Drosophila
simulans,
Drosophila
melanogaster

CHIKV, CrPV, DCV, DENV,
FHV, WNV

Martinez et al., 2014a,b (22), Hedges et al., 2008a (7), Fraser et al.,
2017b (27), Hussain et al., 2013b (28), Martinez et al., 2017a,b (23),
Glaser & Meola, 2010b (12)

wMelPop Drosophila
melanogaster

Aedes aegypti,
Drosophila
melanogaster

CHIKV, DCV, DENV, FHV,
Nora virus, YFV

Hedges et al., 2008a (7), Joubert et al., 2016b (20), Martinez et al.,
2017a,b (23), Teixeira et al., 2008a,b (6), Van den Hurk et al.,
2012b,c,e,h,i (10), Walker et al., 2011b,c (14), Moreira et al., 2009b,c (9)

wStv Drosophila
sturtevanti

Drosophila
simulans

DCV Martinez et al., 2014a,b (22)

wTei Drosophila
teissieri

Drosophila
simulans,
Drosophila
teissieri

DCV, FHV Martinez et al., 2014a,b (22), Martinez et al., 2017a (23)

wTro Drosophila
tropicalis

Drosophila
simulans,
Drosophila
tropicalis

DCV, FHV Martinez et al., 2014a (22), Martinez et al., 2017a,b (23)

wMa Drosophila
simulans

Drosophila
simulans

FHV Martinez et al., 2014a (22), Martinez et al., 2017a (23)

wRi Drosophila
simulans

Aedes aegypti,
Drosophila
simulans

DCV, DENV, FHV Fraser et al., 2017b (27), Martinez et al., 2017a (23), Osborne et al.,
2009a (24)

wPro Drosophila
prosaltans

Drosophila
prosaltans,
Drosophila
simulans

FHV Martinez et al., 2017a (23)

wYak Drosophila
yakuba

Drosophila
simulans

FHV Martinez et al., 2014b (22)

wInn Drosophila
innubila

Drosophila
innubila

FHV Unckless and Jaenike et al., 2012a (31)

wSuz Drosophila
suzukii

Drosophila
suzukii

DCV, FHV Cattel et al., 2016a,b,d (32)

wStri Laodelphax
striatellus

Nilaparvata
lugens

RRSV Gong et al., 2020b (33)

(Continued)
Frontiers in Im
munology | www.f
rontiersin.org
 373
 January 2021 | Volume 11 | Article 626329

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Pimentel et al. Wolbachia Antiviral Effects in Insects
TABLE 1 | Continued

Wolbachia
effect

Wolbachia
strain

Natural host
species

Tested host
species

Tested virus Study

No
protection

wPip Culex pipiens Culex pipiens CpVD Altinli et al., 2019b (34)

wNoto Aedes
notoscriptus

Aedes
notoscriptus

DENV Skelton et al., 2016b,c (35)

wMel Drosophila
melanogaster

Aedes aegypti,
Drosophila
melanogaster,
Drosophila
simulans

CHIKV, DENV, Flavivirus
OTU1, Flavivirus OTU3,
Flavivirus OTU16, Flavivirus
OTU25, Flavivirus OTU20,
Flavivirus OTU21, FHV,
ZIKV, WNV, YFV

Amuzu et al., 2018b (25), Ant et al., 2018b (19), Martinez et al.,
2014b (22), Martinez et al., 2017b (23), Hussain et al., 2013b,f (28),
Van den Hurk et al., 2012b,c,e,g,h,i (10), Ye et al., 2016b,c,e (29)

wMelPop Drosophila
melanogaster

Aedes aegypti,
Drosophila
melanogaster

FHV, IIV-6, YFV Teixeira et al., 2008a,b (6), Van den Hurk et al., 2012b,c,e,h,i (10)

wMelCS Drosophila
melanogaster

Drosophila
melanogaster

Kallithea virus, La Crosse
virus

Palmer et al., 2018a (36), Glaser & Meola, 2010b (12)

wAlbB Aedes
albopictus

Aedes aegypti,
Culex tarsalis

CHIKV, DENV, WNV Ant et al., 2018b (19)

wAlbA Aedes
albopictus

Aedes aegypti SFV Ant et al., 2018b (19)

wAlbA + wAlbB Aedes
albopictus

Aedes
albopictus

CHIKV, DENV Mousson et al., 2010b (37), Mousson et al., 2012a,b,e (21)

Male-killing wD.
bifasciata

Drosophila
bifasciata

Drosophila
bifasciata

DCV, FHV Longdon et al., 2012a (38)

wBai Drosophila
baimaii

Drosophila
simulans

DCV, FHV Martinez et al., 2014a,b (22)

wBic Drosophila
bicornuta

Drosophila
simulans

DCV, FHV Martinez et al., 2014a,b (22)

wBor Drosophila
borealis

Drosophila
simulans

DCV, FHV Martinez et al., 2014a,b (22)

wHa Drosophila
simulans

Drosophila
simulans

DCV, FHV Martinez et al., 2014a,b (22), Martinez et al., 2017b (23), Osborne
et al., 2009b (24)

wRi Drosophila
simulans

Drosophila
simulans

DCV, FHV Martinez et al., 2017b (23), Osborne et al., 2009b (24)

wNo Drosophila
simulans

Drosophila
simulans

DCV, FHV Martinez et al., 2017a,b (23), Osborne et al., 2009a,b (24)

wInn Drosophila
innubila

Drosophila
simulans

DCV, FHV Martinez et al., 2014a,b (22)

wMa Drosophila
simulans

Drosophila
simulans

DCV, FHV Martinez et al., 2014a,b (22), Martinez et al., 2017b (23)

wPro Drosophila
prosaltans

Drosophila
simulans,
Drosophila
prosaltans

DCV, FHV Martinez et al., 2014a,b (22), Martinez et al., 2017b (23)

wSan Drosophila
santomea

Drosophila
simulans

DCV, FHV Martinez et al., 2014a,b (22)

wSh Drosophila
sechellia

Drosophila
simulans,
Drosophila
sechellia

DCV, FHV Martinez et al., 2014a,b (22), Martinez et al., 2017a,b (23)

wTri Drosophila
triauraria

Drosophila
simulans,
Drosophila
triauraria

DCV, FHV Martinez et al., 2014a,b (22), Martinez et al.2017a,b (23)

wTei Drosophila
teissieri

Drosophila
simulans,
Drosophila
teissieri

FHV Martinez et al., 2017b (23)

wYak Drosophila
yakuba

Drosophila
simulans

DCV, FHV Martinez et al., 2014a,b (22)

wAna Drosophila
ananassae

Drosophila
simulans,

FHV Martinez et al., 2014a,b (22), Martinez et al., 2017a,b (23)

(Continued)
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upregulation on Toll or IMD genes by Wolbachia in its native
host Aedes fluviatilis, but other immune-related genes are indeed
modulated, as oxidative stress-related genes (51). The generation
of oxygen reactive species itself is an example of immune
response that vary between novel and native host, ranging
from triggering oxidative stress to redox homeostasis
restoration [reviewed by Zug and Hammerstein (52)]. But
there is evidence that Wolbachia-induced oxidative stress is
involved in virus blocking both in transinfected mosquito and
Drosophila with a natural Wolbachia infection (50, 53).

The second hypothesis is that resources shared byWolbachia
and the virus can represent a limitation for development of the
latter when they are co-infecting their host. As discussed in the
previous section, Wolbachia protects mainly against RNA
viruses which depends on specific cellular resources, the
integrity of intracellular membranes for replication, and the
host translation apparatus for virus protein production (49).
Any disturbance caused by Wolbachia on these cellular
components presumably interferes with virus replication. For
instance, depletion, reduction, or modification of certain host
lipids affect virus replication (54, 55). In particular for
cholesterol, providing or restoring its intracellular traffic
recover virus replication in a Wolbachia-infected host,
indicating both the role of cholesterol in virus development
and Wolbachia interference in host lipid availability (55, 56). In
another recent example, it was found that Wolbachia and virus
Frontiers in Immunology | www.frontiersin.org 575
have antagonistic effect in the host expression of prat2, a gene
involved in nucleotide synthesis (57).

Additionally, several approaches have shown that antiviral
protection occurs in host bearing high density of Wolbachia,
with no detectable protection is host with low symbiont density
(22, 24). The same result is obtained in experimental
manipulation of Wolbachia density with antibiotics (58). The
control of symbiont density is dependent on the symbiont
genotype and, in the case of Wolbachia strains isolated from
D. melanogaster, the genetic basis of density determination has
been assigned to the Octomom region which presents several
duplications, or a deletion of the entire region, in high-density
symbionts (59–61). However, one recent study with controlled
genetic background showed an intriguing example ofWolbachia
with no antiviral action in A. aegypti, even in relatively high
density (62). Other than density, host development stage and
temperature seem to modulate Wolbachia antiviral properties
(61, 63).

The mechanism behind Wolbachia antiviral protection
became an active area of research. New experimental
approaches, such as the forward genetic screens applicable on
genetically intractable bacteria (61), are extremely promising to
pursue this question. One example of how recent experimental
advances can bring progress to long standing questions is the
case of cytoplasmic incompatibility caused by Wolbachia.
Cytoplasmic incompatibility has been studied since 1971, yet
TABLE 1 | Continued

Wolbachia
effect

Wolbachia
strain

Natural host
species

Tested host
species

Tested virus Study

Drosophila
ananassae

wStv Drosophila
sturtevanti

Drosophila
simulans,
Drosophila
sturtevanti

FHV Martinez et al., 2014a,b (22), Martinez et al., 2017a,b (23)

wA. subalbatus Armigeres
subalbatus

Armigeres
subalbatus

JEV Tsai et al., 2006c (39)

wTro Drosophila
tropicalis

Drosophila
simulans,
Drosophila
tropicalis

DCV, FHV Martinez et al., 2014b (22), Martinez et al., 2017b (23)

wSuz Drosophila
suzukii

Drosophila
suzukii

DCV, FHV Cattel et al., 2016a,b,d (32), Martinez et al., 2017a,b (23)

Increase in
susceptibility

wMel Drosophila
melanogaster

Aedes aegypti Flavivirus OTU1, Flavivirus
OTU2, Flavivirus OTU3,
Flavivirus OTU20, Flavivirus
OTU21

Amuzu et al., 2018b (25)

wExe1 Spodoptera
exempta

Spodoptera
exempta

SpexNPV Graham et al., 2012a (40)

wHa Drosophila
simulans

Drosophila
simulans

DCV Martinez et al., 2014b (22)

wSan Drosophila
santomea

Drosophila
simulans

FHV Martinez et al., 2014b (22)
Study measured: a) host survival, b) viral titer, c) infection rate.
Result varied among: d) host genotype, e) infection/transmission/dissemination, f) days post infection, g) infection type (oral or intratoraxic), h) virus strain, i) viral titer inoculated in the host.
CHIKV, chikungunya virus; CrPV, cricket paralysis virus; CpVD, Culex pipiens densovirus; DCV, Drosophila C virus; DENV, dengue virus; FHV, Flock House virus; IIV-6, insect iridescent
virus 6; JEV, japanese encephalitis virus, RRSV, rice ragged stunt virus SFV, Semliki Forest virus, SpexNPV, Spodoptera exempta nucleopolyhedrovirus; WNV, West Nile virus; YFV, yellow
fever virus; ZIKV, zika virus.
For each Wolbachia strain tested we report if there was protection, no protection or increase in susceptibility to viral infection. We present the natural host species of the strains, the hosts
species in which the strains were tested, and the virus that were tested in the hosts.
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only recently its mechanism was uncovered (1, 64, 65). The
cytoplasmic incompatibility is controlled by two phage WO
genes, cifAwMel and cifBwMel, present in the Wolbachia
genome (66). Similar advances are likely to figure out the
specific antiviral mechanism in the following years.
INFLUENCE ON EVOLUTION OF HOST
“INTRINSIC” IMMUNOLOGICAL
RESISTANCE MECHANISMS

Although Wolbachia confers viral protection to insects, natural
insect populations have other means to fight against viruses (67,
68). Insects usually rely on the mechanisms of RNA interference,
apoptosis, NF-kB pathways and translation control from its
innate immune system to get along viral pathogens (69).
Nevertheless, the population’s ability to resist the plethora of
viruses present in nature lies on its standing genetic variation on
these mechanisms or the sudden appearance of beneficial
mutations (70). However, in the presence of Wolbachia, the
extended mutualistic genotype could mask or even substitute
host’s intrinsic mechanisms of antiviral defenses, shifting its
adaptive landscape (71) (Figure 1C). Some recent experimental
evolution studies have addressed how the presence ofWolbachia
Frontiers in Immunology | www.frontiersin.org 676
can alter the evolution of intrinsic antiviral mechanisms
in insects.

In a pioneer study, Martins and colleagues used an
experimental evolution approach in which Drosophila
melanogaster populations were subjected to continuous DCV
injections for a few generations (72). Compared with control
populations that were not exposed to the virus, infected
populations showed increased survival after DCV infection,
and also increased survival after infection by cricket paralysis
virus (CrPV) and FHV (72). This increased resistance to viral
infection was associated with three candidate genes on the fly’s
genome - pastrel, Ubc-E2H and CG8492 (72). In another
experimental evolution study, Martinez and colleagues directly
tested how the presence of Wolbachia can alter evolution of
intrinsic antiviral mechanisms (71). They focused on a
polymorphism of the gene pastrel that explains most of the
variation on DCV resistance in D. melanogaster populations (73,
74). They infected populations with and without Wolbachia for
nine generations. Resistance to DCV and the frequency of the
resistant pastrel allele increased in all populations exposed to the
virus compared with virus-free control populations (71). Most
interestingly, the frequency of the resistant pastrel allele after
nine generations was lower in Wolbachia infected populations
than in the symbiont-free populations. After experimentally
removing Wolbachia, the populations that had Wolbachia
A B

C D

FIGURE 1 | Wolbachia antiviral effect in insects. (A) Wolbachia protects insects against RNA viruses. The protection is dependent on Wolbachia density, which
varies between strains. Strains can be experimentally transferred to new hosts, such as mosquitoes. (B) Wolbachia can activate host immune system in some cases,
but the mechanism of defense can also be related to competition with virus for cellular resources. The specific mechanism is not yet known. (C) Host immune
response fight against virus, but its action and evolution are slowed down in the presence of Wolbachia. Colored arrows and their width represent genome and its
participation in antiviral effect, respectively. (D) Environmental conditions, as temperature, determine Wolbachia antiviral response. In hot climate, Wolbachia may
have a more important role protecting the host, and this can lead to higher Wolbachia prevalence on hot climate regions. But it is not yet known if Wolbachia
reduces the virome in wild insect populations. This figure is made in conjunction with icons provided by thenounproject.com. The icons are: “Bacteria” by farra
nugraha; “Virus” by KonKapp; “Immune System” by Bartama Graphic; “Immunity” by Timofey Rostilov; “Forest” by ProSymbols; “Sun” by Alice Design; and, “Cold”
by Landan Lloyd.
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during the selection experiment was much less resistant to the
virus than the Wolbachia-free populations. This experiment
shows that the presence of Wolbachia resulted in weaker
selection on the host intrinsic antiviral defenses, making the
host addicted to the protection caused by the symbiont (71).
Another study showed that DCV infection selected for a
particular Wolbachia strain that enhances survival and
fecundity in the presence of DCV (75). Finally, Faria and
colleagues showed that intrinsic antiviral defenses can replace
symbiont protection (72, 76). They used previously selected
populations for increased virus resistance (72), and removed
the symbiont from these populations. They first observed a
severe drop in survival after DCV infection, but resistance
significantly increased in subsequent generations reaching the
same levels as seen in the presence of Wolbachia after 20
generations (76).

These studies show thatWolbachia can change the strength of
selection on host antiviral mechanisms, leading to evolutionary
addiction (71, 72, 75, 76). Because Wolbachia prevalence varies
in natural populations, this may be one mechanism that
maintains genetic variation in intrinsic antiviral resistance in
populations (76). One interesting interplay is that different
Drosophila clades respond differently to viral infections (77),
therefore, variation in resistance and susceptibility of hosts could
be mirrored by the success and establishment of Wolbachia in
some clades but not others in nature (78). In addition, it would
be remarkably interesting to investigate how the presence of
Wolbachia in some clades may affect the evolution of host-shifts
by viruses (79).
IMPORTANCE IN WILD POPULATIONS

The Wolbachia antiviral effects were intensely studied in the last
decade because of its importance in the field of public health.
However, their ecological importance in wild populations has
rarely being addressed. Around 50% of insect species may carry
one or more strains of Wolbachia (48), meaning that almost 3
million insect species are infected. Therefore, Wolbachia may be
a major component of antiviral defenses in nature (43). But just
recently some studies started to test if Wolbachia can confer
protection against viruses in wild insect populations. The
antiviral effects of Wolbachia may mean that in nature it is
frequently a mutualist that protects its host against infection.
This may explain why Wolbachia strains that do not cause
cytoplasmic incompatibility and have no obvious phenotypic
effect can invade and be maintained in populations (80). Theory
predicts that cytoplasmic incompatibility can only invade when
local infection frequencies becomes sufficiently high to offset
imperfect maternal transmission and infection costs (81, 82).
However, recent data suggested that Wolbachia can spread from
arbitrarily low frequencies (80). In this scenario, there appears to
be a fitness advantage for the host caused by Wolbachia in
natural populations (83). This fitness advantage may be
Wolbachia antiviral effects. This is expected by the studies
carried out in the laboratory showing the antiviral effect, but
Frontiers in Immunology | www.frontiersin.org 777
just now some studies started to test this in wild populations. It is
interesting to notice that Wolbachia can also protect insects
against bacteria and entomopathogenic fungi (84–86), and
this can also add to the possible mutualistic effect in
natural populations.

Drosophila flies have been used as the main model to study
insect virus interactions, but until recently we knew
extraordinarily little about the virus community that infect
wild Drosophila populations. This is changing rapidly with
recent studies using metagenomic approaches (87). In 2015,
Webster and colleagues used metagenomic techniques in more
than 2000 wild collect Drosophila melanogaster flies and
discovered more than 20 new viruses (41). They found a high
prevalence of virus infection with more than 30% of the wild
collected individuals carrying a virus. There was also large
variation in prevalence among the 17 sampled locations across
the world. Because Wolbachia prevalence in these locations
varied from 1.6% to 98% - with a mean of about 50% - they
tested for associations between the prevalence of Wolbachia and
the different viruses among and within populations. They could
not find any association, indicating that Wolbachia is not an
important determinant of virus incidence in the wild (41).
However, as pointed by the authors, they had a small sample
size per population resulting in low statistical power to detect an
association. In addition, they looked only on the effect of
Wolbachia on prevalence, but Wolbachia can also be
influencing virus titer on infected flies.

In 2018, Shi and colleagues tested the effect of Wolbachia on
viral abundance on six D. melanogaster populations sampled in
Australia (88). They first sequenced total transcriptome of pools
ofWolbachia-infected and Wolbachia-free lines to estimate viral
abundance. Despite finding high RNA virus’ abundance in all
pools, they did not find any Wolbachia protective effect. They
also sequenced the transcriptome of individual Wolbachia-
infected and Wolbachia-free flies from one location, but again
did not find any Wolbachia protective effect (88). These results
should be interpreted with caution as well, since they sequenced
only 122 flies in the pools, plus 40 individual flies. Given the large
variation among pools in viral abundance and in the prevalence
that varied from two to five viruses per pool, the statistical power
to detect an effect was low. Additionally, they did not sequence
wild collected flies, but F1 or F3 of laboratory cultured lines that
were kept at 19°C. Unfortunately, it was discovered, very
recently, that the antiviral effect of the Wolbachia strain wMel
in D. melanogaster depends on temperature (63). The strong
protection observed when flies develop from egg to adult at 25°C
is greatly reduced or disappear when flies develop at 18°C (63).
Therefore, the development conditions used by Shi et al. may
have masked any possible Wolbachia protective effect.

Interestingly, the recent study on the effect of temperature on
the Wolbachia antiviral effect (63) offers a hint on this puzzle. It
is interesting that the Wolbachia antiviral effect observed at high
development temperature is extremely reduced when flies
develop at low temperatures. This was observed with different
genotypes of D. melanogaster, different Wolbachia lineages, and
different viruses, suggesting this is a general phenomenon (63).
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These results suggest that in nature the mutualistic effect of virus
protection will vary geographically and seasonally depending on
climate, and this will result in the prevalence ofWolbachia being
higher in tropical regions (Figure 1D). This is indeed what is
observed in nature, where the frequency of Wolbachia is
generally higher in populations from tropical regions (89). This
pattern, although only a correlative suggestion, indicates that
the antiviral protection may be the mutualistic effect in
natural populations responsible for the widespread success
of Wolbachia.
CONCLUSIONS

Since the Wolbachia antiviral effect in insects was discovered 12
years ago (6, 7), researchers have intensely studied this
phenomenon. Wolbachia has even been successfully used to
control the prevalence of human arboviruses, such as dengue,
in mosquito populations (16, 17, 90). We learned a lot about the
basic biology of the host-Wolbachia-virus interaction, but there
are still many knowledge gaps. We now know the antiviral effect
depends on Wolbachia strain, with only high-density strains
having the antiviral effect. However, it is still unknown whether
the antiviral effect occurs in insect species other than mosquitoes,
flies and a planthopper. Importantly, the specific mechanism
underlying antiviral protection has not been fully elucidated;
upregulation of the host immune system or competition between
Wolbachia and RNA viruses inside the host cell for some yet
unknown resource necessary for virus replication are likely
Frontiers in Immunology | www.frontiersin.org 878
hypothesis (49, 52, 56). We have also learned that Wolbachia
can alter the intensity of selection on host antiviral defenses,
making the host more dependent on the symbiont for protection
(71). We still do not know if the antiviral effect occurs in natural
populations of insects and if it is the major mutualistic effect
responsible for the extremely high prevalence of Wolbachia in
insects. If it does, Wolbachia may be a major component of
antiviral defense in nature.
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Insects are the largest group of animals. Nearly all organisms, including insects, have viral
pathogens. An important domesticated economic insect is the silkworm moth Bombyx
mori. B. mori nucleopolyhedrovirus (BmNPV) is a typical baculovirus and a primary
silkworm pathogen. It causes major economic losses in sericulture. Baculoviruses are
used in biological pest control and as a bioreactor. Silkworm and baculovirus comprise a
well-established model of insect–virus interactions. Several recent studies have focused
on this model and provided novel insights into viral infections and host defense. Here, we
focus on baculovirus invasion, silkworm immune response, baculovirus evasion of host
immunity, and enhancement of antiviral efficacy. We also discuss major issues remaining
and future directions of research on silkworm antiviral immunity. Elucidation of the
interaction between silkworm and baculovirus furnishes a theoretical basis for targeted
pest control, enhanced pathogen resistance in economically important insects, and
bioreactor improvement.

Keywords: antiviral immunity, baculovirus, Bombyx mori nucleopolyhedrovirus, immune evasion, silkworm
INTRODUCTION

Insects are globally distributed and play vital roles in the biosphere. Lepidoptera is a major insect
taxon with an estimated 150,000 to 180,000 described species (1, 2). Many lepidopterans are pests
that adversely affect agricultural production. However, the silkworm moth Bombyx mori, the only
fully domesticated insect, is an economically important lepidopteran used for silk production in
many developing countries (3, 4). China is the largest producer of silkworm cocoons, with an annual
value for the output of the silk industry of about 200 billion Yuan (about 30 billion USD) (3).
Pathogenic viruses are severe threats to all organisms and silkworm viruses cause losses of almost
16% of potential cocoon production each year. Bombyx mori nucleopolyhedrovirus (BmNPV) is a
primary silkworm pathogen. This typical baculovirus causes major economic losses in sericulture
(3). Baculovirus is also used as a biological control agent against insect pests and as a bioreactor. The
Silkworm Genome Project was completed >10 years ago (5–8) and promoted B. mori to model
insect status in basic and applied research (9). Here, we present a broad overview of silkworm–
baculovirus interactions. We also discuss the major challenges and future directions of research in
silkworm antiviral immunity.
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BACULOVIRUS HOST INVASION
MECHANISM

Baculovirus consists of a circular double-stranded DNA genome
that combines with capsid proteins to form an enveloped
nucleocapsid (3, 10). Autographa californica multiple
nucleopolyhedrovirus (AcMNPV) is a close relative of BmNPV
and the most well studied baculovirus (11, 12). Both NPVs are
models for basic molecular research which have been used to
elucidate the baculovirus infection cycle. The baculovirus
replication cycle includes two virion phenotypes, an occlusion-
derived virus (ODV) and a budded virus (BV). ODVs are
packaged in occlusion bodies and induce host infection,
whereas BVs spread throughout the host after infection (12,
13). ODVs and BVs have the same nucleocapsids but different
envelopes. BVs mature early during infection and acquire their
envelopes from modified host cell membranes. In contrast,
ODVs mature late in infection and form their envelopes within
host nuclei (14, 15). BVs and ODVs interact differently with host
cells: ODVs fuse with the midgut epithelial cell membrane,
whereas BVs are internalized by adsorptive endocytosis (15).

Baculovirus occurs in the environment in the form of
occlusion bodies. For infection, it invades insect larvae mainly
by ingestion (3). ODVs are released after these occlusion bodies
dissociate in the alkaline environment of larval gut juice. They
pass through the peritrophic membrane, invade the midgut, and
cause primary infection (Figure 1) (11–13). Several envelope
proteins known as per os infectivity factors (PIFs) are unique to
ODVs. They mediate specific ODV binding to midgut columnar
epithelial cells and initiate oral infection by binding to receptors
(16–19), after which nucleocapsids enter the epithelial cells via
envelope-mediated membrane fusion (3, 11). Viral DNA is then
released from the nucleocapsids and used as a template to
generate new DNA and mRNA (3, 11).

Baculoviral gene expression occurs in four phases: immediate
early, delayed early, late, and very late. In an infected cell, viral
DNA replication starts at 8 h post infection (hpi) and represents
the transition from the early stage to the late stage (20, 21).
During early infection, host RNA polymerase transcribes the
viral DNA and produces the elements required for its replication
(15). Viral DNA replication and transcription then form
nucleocapsid progeny that acquire envelopes by budding from
Abbreviations: AcMNPV, Autographa californica multiple nucleopolyhedrovirus;
AMP, antimicrobial peptide; B. mori, Bombyx mori; BEVS, baculovirus expression
vector system; BmEGFR, B. mori epidermal growth factor receptor; Bmhsp19.9, B.
mori heat shock protein 19.9; BmNPV, Bombyx mori nucleopolyhedrovirus; BV,
budded virus; Co-IP, coimmunoprecipitation; CRAC, cholesterol recognition
amino acid consensus; cSPs, clip-domain serine proteases; ECs, effector
caspases; egt, ecdysteroid (UDP)-glucosyltransferase; GM, genetically modified;
HGT, horizontal gene transfer; hpi, h post infection; IAP, inhibitor of apoptosis;
iap-A, iap-antagonist; ICs, initiator caspases; miRNA, microRNA; ODV,
occlusion-derived virus; PGRP, peptidoglycan recognition protein; PIF, per os
infectivity factor; piRNA, PIWI-associated RNA; PO, phenoloxidase; PPO,
prophenoloxidase; pre-miRNA, precursor miRNA; ptp, protein tyrosine
phosphatase; RFPs, red fluorescent proteins; RGs, reference genes; RNAi, RNA
interference; ROS, reactive oxygen species; siRNAs, short interfering RNAs; SPs,
serine proteases; vfgf, viral fibroblast growth factor; VSRs, viral suppressors
of RNAi.
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the host cell membrane. The latter is modified mainly by virally
encoded fusion protein GP64 to generate a BV, which causes
systemic infection via the host tracheal system (13, 22, 23). At the
latter infection stages, progeny ODVs acquire envelopes in the
nucleus, possibly derived from nuclear membranes modified by
several viral proteins (24), are subsequently assembled into
occlusion bodies and released into the environment after host
disintegration (11, 22).

BmNPV BV utilizes multiple strategies to invade host cells
(Figure 1). Binding and penetration into host cells by BV of both
BmNPV and AcMNPV are mediated by the GP64 envelope
glycoprotein which is specific to BV (12, 25, 26). GP64 contains a
cholesterol recognition amino acid consensus (CRAC) domain which
is known to be essential for fusion between the BV envelope and
mammalian cell membrane (26, 27). The BmN and BmE cell lines are
derived from the ovary and embryonic cells of silkworm, respectively.
Various endocytic inhibitor assays disclosed that BmNPV BV
penetrates BmN cells by clathrin-independent macropinocytic
endocytosis mediated by cholesterol on the cell membrane (28).
The cholesterol transporter BmNPC1 interacts with GP64. Its
deficiency inhibits viral penetration rather than viral binding to
BmE cells (29). In contrast, BmNPV BV uses clathrin- and
dynamin-dependent endocytosis pathways to penetrate BmN cells.
Successful BV entry also requires low pH (25). A number of studies
were performed to identify the host receptor of GP64 (12). The
membrane protein BmREEPa is not a direct NPV receptor but
interacts with GP64 andmay participate in BV attachment or binding
(30). Yeast two-hybrid and coimmunoprecipitation (Co-IP) assays
demonstrated that the silkworm protein SINAL10 binds GP64, is
concentrated near the cell membrane, and stimulates BmNPV
proliferation in BmN cells (14). Nevertheless, to date, unequivocal
identification of a receptor for GP64 remains elusive (12).

Baculovirus encodes some auxiliary genes to enhance its
infection in insect larvae, including viral fibroblast growth
factor (vfgf), ecdysteroid (UDP)-glucosyltransferase (egt), and
p35 (31). Horizontal gene transfer (HGT) between host and
pathogen might augment pathogen survival and propagation.
Several BmNPV auxiliary genes were acquired from the
silkworm genome via HGT. These include egt, vfgf, and
protein tyrosine phosphatase (ptp) (32). BmNPV PTP is a
virus-associated structural protein which might have originated
from insect ptp-h (32). Deleting it reduces production of progeny
in larval silkworm hosts; moreover, the mutation can be rescued
by inserting Bmptp-h into BmNPV ptp-deleted virus (33), and
overexpression of Bmptp-h accelerates BmNPV multiplication in
BmE host cells (34). Other experiments involving deletion and
insertion of ptp and egt (34, 35) showed that HGT-derived genes
are dispensable for virus production in certain cell lines but affect
progeny contents and may control host physiology.
SILKWORM IMMUNE RESPONSE TO
BACULOVIRUS

Innate immune responses in insects control and clear pathogens
following infection (36, 37). Lepidopteran insects have several
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antiviral immune responses which they use against baculovirus
infections. These include global protein synthesis shutdown,
rRNA degradation, inactivation by gut juice antiviral proteins,
melanization, apoptosis, RNAi-based antiviral response, and
host gene-encoded resistance (Figure 2) (3, 36–39). Among
these immune responses, there are relatively few studies on the
mechanisms of the first two processes. After AcMNPV infection
of B. mori cells, rRNA degradation is triggered by six amino acid
residues (positions 514 and 599) of viral protein P143 as a
primary antiviral response. Global protein synthesis shutdown
then follows viral DNA replication, resulting in abortive
infection (38, 40). The latter processes are more clearly
delineated, and each process is described in turn here.

The insect midgut is the first tissue to be infected after
baculovirus ingestion. Hence, it is an important immune organ
which acts as a first line of defense against pathogens (41, 42).
Several insect gut juice proteins secreted from the midgut have
strong antiviral capacity. The antiviral proteins Bmlipase-1 (43),
BmSP-2 (44), BmNOX (45), red fluorescent proteins (RFPs)
(46), Bmtryp (47), and BmLHA (48) have been isolated from
Frontiers in Immunology | www.frontiersin.org 383
silkworm larva gut juice, which inhibit BmNPV at an initial
infection stage. The activation of energy synthesis by adenosine
signaling following baculovirus infection is a physiological
response in the silkworm that supports its innate immunity
(49). Melanization is a prominent humoral response in insects. It
consists of a cascade of clip-domain serine proteases (cSPs) that
converts zymogen prophenoloxidase (PPO) into active
phenoloxidase (PO), which is negatively regulated by serpins.
PO catalyzes melanin formation to encapsulate and kill invading
pathogens (50, 51). Baculovirus infection is efficiently blocked by
the PPO activation cascade (50). Bmserpin2 knockdown
increases PO activity and decreases viral DNA content in
silkworm haemolymph infection with BmNPV (52). The stage
of infection at which melanization inhibits baculovirus infection
needs further exploration.

Apoptosis is a genetically controlled process that removes
unwanted or damaged cells. It serves as an important antiviral
defense mechanism in insects (15, 37, 53–55). The apoptotic
caspase cascade comprises upstream initiator caspases (ICs) and
downstream effector caspases (ECs) (15, 53) (Figure 3). To
FIGURE 1 | Schematic diagram of baculovirus entry. Occlusion-derived viruses (ODVs) are released from occlusion bodies in the alkaline environment of larval gut
juice after ingestion. Several insect gut juice proteins have strong antiviral capacity against ODVs. Intact ODVs pass through the peritrophic membrane and
nucleocapsids enter the midgut epithelial cells via envelope-mediated membrane fusion to cause primary infection. Progeny budded viruses (BVs) spread through the
host via the tracheal system to cause secondary infection. Binding and penetration into host cells by BV of both Bombyx mori nucleopolyhedrovirus (BmNPV) and
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) are mediated by the GP64 envelope glycoprotein which is specific to BV. BmNPV BV penetrates
nonmidgut host cells by multiple strategies, including clathrin-independent macropinocytic endocytosis mediated by cholesterol on the cell membrane and clathrin-
and dynamin-dependent endocytosis pathways. Successful BV entry also requires low pH. Nucleocapsid uncoating in the nucleus results in the subsequent virus
infection process.
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initiate apoptosis, ECs are activated by ICs, and then cleave other
signaling proteins (56). In lepidopterans, caspase-1, caspase-2,
and caspase-3 are ECs while caspase-5 (Dronc) and caspase-6
(Dredd) are ICs (57). A cellular inhibitor of apoptosis (IAP)
binds caspases, blocks their function, and prevents apoptosis
activation in normal cells (15, 58). In BmN cells, B. mori iap1
(BmIAP1) interacts with BmDronc and Bmcaspase-1 and
downregulates apoptosis (58). Apoptotic signaling, which is
initiated upon baculovirus infection, promotes iap-antagonist
(iap-A) binding to cellular IAP and releases free caspases to
facilitate apoptosis (15, 53). The host p53 protein is pro-
apoptotic and triggers antiviral apoptosis upon viral DNA
replication. It elevates caspase-3-like protease activity and
enhances BmDronc processing in BmN cells after BmNPV
infection (53) (Figure 3). Nevertheless, a DNA damage
response, which is elicited upon viral DNA replication,
depletes cellular IAP protein, activates apoptosis, and promotes
baculovirus multiplication in infected cells (59–61). Although
apoptotic pathways and their associated viral and cellular factors
play important roles in regulating the outcome of baculovirus
infection in insect cells, their mechanisms and interactions are
complex and remain to be fully elucidated.

RNA interference (RNAi) is an ancient post-transcriptional
antiviral regulatory process in insects (36, 62) whereby the host
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RNAi response degrades baculovirus transcripts (63). In this
process, viral infections generate dsRNAs that trigger the RNAi
machinery and process them into viral short interfering RNAs
(vsiRNAs) that target viral RNA sequences and inhibit viral
proliferation (64). Another RNAi response involves the
microRNA (miRNA) pathway in which precursor miRNA
(pre-miRNA) is cleaved into mature miRNA that regulates
gene expression by targeting specific mRNAs (65). Cellular
miRNAs also affect viral infections and play important roles in
host–pathogen interactions. The silkworm-encoded miRNA
bmo-miR-2819 is upregulated at the delayed early stage in
infection, and its overexpression inhibits BmNPV proliferation
by downregulating viral ie-1 (66). Similarly, bmo-miRNA-390
downregulates the expression of BmNPV-cg30 (67). The PIWI-
associated RNA (piRNA) pathway is also involved in an antiviral
response but little information is reported in silkworm (68).
Results from published reports reveal that the siRNA pathway is
the major mechanism, whereas the contribution of the miRNA
pathway is minor in RNAi antiviral defense of insects (Figure 2).

Innate immune signaling pathways and resistance-related
genes play an important role in antiviral defense. The Imd and
Toll signaling pathways participate in the antiviral immune
response (36, 54) but do not seem to play roles in the
silkworm BmNPV response. BmNPV infection induces
FIGURE 2 | Model of the arms race of silkworm and baculovirus. Silkworms have several antiviral immune responses which they use against baculovirus infections.
These include global protein synthesis shutdown, rRNA degradation, inactivation by gut juice antiviral proteins, host gene-encoded resistance, NF-kB antiviral
pathway, apoptosis, melanization, and RNAi-based antiviral response. The prophenoloxidase (PPO) activation cascade causes melanization to block baculovirus
infection, which is negatively regulated by serpins. RNAi antiviral defense of insects includes the major mechanism of the siRNA pathway and the minor contribution
of the miRNA pathway. The silkworm-encoded miRNA bmo-miR-2819 and bmo-miRNA-390 inhibit BmNPV proliferation by downregulating viral genes. As a
confrontation, baculovirus have developed several strategies to escape host immunity and promote their own replication and proliferation, including inhibition of
antiviral apoptosis, melanization, RNAi and regulation of the cell cycle. For example, Bombyx mori nucleopolyhedrovirus (BmNPV) induces Bmserpin2 to inhibit host
melanization. Meanwhile, Autographa californica multiple nucleopolyhedrovirus (AcMNPV) p35 inhibits siRNA pathway. Additionally, baculoviruses exploit the miRNA
pathway to encode their own miRNAs (such as BmNPV-miR-1 and BmNPV-miR-3) for viral propagation.
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cGAMP production in BmE cells and BmSTING responds to the
cGAMP and activated Dredd caspase-mediated NF-kB antiviral
signaling pathways (69). Antimicrobial peptides (AMPs),
humoral immunity, and reactive oxygen species (ROS) may
also be involved in the antiviral response (45, 70). Dozens of
candidate genes regulating the silkworm immune response to
baculovirus have been screened via multi-omics using various
resistant hosts. However, the functions of only a few of them are
verified in cells or individuals. For example, the BmLHA level in
the digestive juice of resistant silkworm strains is relatively
higher than that of susceptible silkworms, and recombinant
BmLHA inhibits BmNPV proliferation in silkworm larvae (48).
Similarly, BmAtlastin-n is highly expressed in resistant BmE-
SWU2 cells but not in BmE-SWU1 cells susceptible to BmNPV,
and BmAtlastin-n overexpression inhibits BmNPV reproduction
in BmE-SWU1 cells and transgenic silkworms (71). Additionally,
B. mori heat shock protein 19.9 (Bmhsp19.9) is upregulated at the
late stage after BmNPV challenge in BmE cells and silkworms,
and its overexpression markedly inhibits BmNPV proliferation
in the hosts (72). Finally, overexpression of lysozyme BmC-LZM,
which is upregulated at the very late stage of BmNPV infection in
BmE cells, inhibits BmNPV virus in BmE cells but does not
decrease mortality in silkworm larvae (73). The anti-BmNPV
Frontiers in Immunology | www.frontiersin.org 585
mechanisms of the aforementioned resistance-related genes are
unclear and merit further investigation.
VIRAL IMMUNE EVASION MECHANISM

Viruses have developed several strategies to escape host
immunity and promote their own replication and proliferation,
including inhibition of antiviral melanization, autophagy,
apoptosis, RNAi and regulation of the cell cycle (Figure 2).
Baculoviruses can suppress host melanization so that they can
proliferate. Several SPs (serine proteases) and their homologs are
upregulated in response to bacterial or fungal challenge but
downregulated in response to baculovirus infection (50, 51).
For example, when serpins 5 and 9 are induced by HearNPV in
Helicoverpa armigera, they inhibit SPs and melanization and
promote viral infection (51). Similarly, Bmserpin2 is upregulated
and PO activity is diminished in haemolymph following BmNPV
infection in silkworm. Hence, BmNPV inhibits host
melanization by regulating Bmserpin2 expression (Figure 2)
(52). Additionally, several potential resistance-related genes
such as BmPP2A (74) and BmPEPCK-2 (75) are downregulated
by BmNPV to allow robust viral proliferation.
FIGURE 3 | Antiviral apoptosis and its modification by baculoviruses. The apoptotic caspase cascade comprises upstream initiator caspases (ICs) and downstream
effector caspases (ECs). The cellular inhibitor of apoptosis (cIAP) binds caspases and blocks apoptosis in normal cells. Apoptotic signaling is initiated upon
baculovirus infection, which causes iap-Antagonist (iap-A) to bind cIAP and release free caspases that facilitate apoptosis. Viral DNA replication triggers host p53
pro-apoptosis, which accelerates IC and EC activity. Progression of antiviral apoptotic signaling cascades is prevented by baculovirus-encoded apoptosis
suppressors such as viral IAP (vIAP), p35, p49, and Apsup. When the apoptotic signal is initiated, vIAP blocks apoptosis by interacting with unstable cIAP such that
the cIAP levels and antiapoptotic activity are maintained. Viral p35 binds ECs and p49 binds ICs and ECs to block apoptosis. Apsup inhibits apoptosis by preventing
IC activity. BmNPV induces the pattern recognition receptor protein PGRP2-2 to suppress PTEN and prevent it from inhibiting PI3K/Akt signaling and activating p-
Akt. In this manner, cell apoptosis is inhibited. The resultant increase in cell survival is conducive to NPV proliferation.
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Autophagy is a catabolic biological process in the body, which
has antiviral efficacy by targeting viruses and sending them to the
lysosome for phagocytosis and degradation. At the same time,
viruses can also use autophagy to enhance their own replication
(76). However, little is known about the association between
BmNPV and autophagy. Atg 6, Atg 7, Atg 8, and Atg 13, proteins
involved in various stages of autophagy, are all upregulated in
BmN-SWU1 cells (77) but downregulated in BmE cells (75)
following BmNPV infection, possibly because of the relative
differences among cell lines and internal reference genes used
in these experiments. Understanding the roles and mechanisms
of such immuno-suppressive processes during BmNPV infection
is clearly important for future applications to enhance their
impact (for pests) or protecting their hosts (for beneficials) and
merit further examination.

Baculoviruses can inhibit host antiviral apoptosis through a
variety of strategies (Figure 3). The progression of apoptotic
signaling cascades is prevented by virus-encoded apoptosis
suppressors such as viral IAPs, p35, p49, and Apsup (55, 78,
79). Six IAPs (iap1-6) have been identified in baculoviruses that
inhibit apoptosis in insects (78–80). Unlike their cellular
counterparts, they lack an N-terminal instability motif (81)
and stabilize cellular IAPs (82). In a model mechanism, Op-
IAP3 derived from OpMNPV blocks apoptosis by interacting
with an unstable auto-ubiquitinating host IAP such that cellular
IAP levels and antiapoptotic activity are maintained (82).
Similarly, IAP1 and IAP2 from BmNPV interact with BmIAP,
and both BmIAP and viral IAPs increase BmNPV proliferation
in infected silkworm cells (80). Numerous studies have shown
that viral protein p35 blocks apoptosis by binding ECs (79, 83,
84), and p49 protein binds ICs and ECs and blocks apoptosis (85,
86). Additionally, Apsup from LdMNPV inhibits apoptosis by
preventing proteolytic Dronc (IC) processing (87). Recently, our
research demonstrated that peptidoglycan recognition protein
(PGRP) is regulated by virus to inhibit host antiviral apoptosis,
which is well known to recognize invading bacteria and fungi to
activate host immune defenses (54). For example, BmNPV
induces BmPGRP2-2 to suppress PTEN and the inhibition of
PI3K/Akt signaling, increase p-Akt production and activation,
and inhibit cell apoptosis (54). Clearly, enhanced host cell
survival is beneficial for viral proliferation (Figure 3).

Viruses have evolved strategies to circumvent host antiviral
RNAi (siRNA and miRNA pathways). Almost all plant viruses
and some insect viruses encode viral suppressors of RNAi (VSRs)
to counteract the host siRNA pathway and inhibit vsiRNA
production (88, 89). AcMNPV p35 is responsible for the
suppression of RNAi in various insect cells; its VSR activity
acts downstream in the RNAi pathway and is not associated with
its antiapoptotic activity (89). The identification of BmNPV
VSRs and clarification of their modes of action require further
research. On the other hand, it is evident that baculoviruses
exploit the miRNA pathway for their own propagation, suppress
cellular miRNAs after infection, encode their own miRNAs, and
disrupt host defense mechanisms that interfere with viral
propagation (90–92). For example, BmNPV-miR-1 suppresses
host miRNA biogenesis by regulating the exportin-5 cofactor
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Ran and enhancing viral multiplication (92). Simultaneously,
BmNPV-miR-3 facilitates viral infection by modulating the
expression of P6.9 and other late BmNPV genes (91) (Figure
2). Several miRNAs have been predicted in the BmNPV genome;
however, only four miRNAs (BmNPV-miR-1, BmNPV-miR-2,
BmNPV-miR-3, and BmNPV-miR-4) have been empirically
identified (90) and biological functions of only two miRNAs
have been uncovered thus far. Deciphering viral miRNA targets
and functions remains a challenging task.

Virus regulation of the host cell cycle might be an important
immune evasion strategy and could promote its proliferation.
The normal insect cell life cycle is characterized by a complex
series of events ranging from cell growth to replication, but this
process is disrupted during infection (15). Baculovirus infection
arrests the cell cycle at S or G2/M. The AcMNPV protein EC27
arrests the host cell cycle in the G2/M phase, and this arrest
enables ODV maturation (93, 94). ERK regulates cell
proliferation, differentiation, and apoptosis and is conserved
among different species (95). The ERK signaling pathway is
activated during the late phase of BmNPV infection via the B.
mori epidermal growth factor receptor (BmEGFR). The latter
inhibits cell proliferation and increases viral replication by
increasing the G2/M phases of the cell cycle (96). BmSpry is a
negative feedback regulator of the BmEGFR-ERK cascade; its
inhibitory activity is upstream of ERK. It is downregulated by
BmNPV to elevate ERK phosphorylation (p-ERK), thereby
enhancing viral reproduction (95, 97). The modification
mechanisms of cell cycle phases during baculovirus infection
are only partially elucidated and need more experimentation.
ENHANCEMENT OF HOST ANTIVIRAL
CAPACITY

No fundamental strategies have been established to cope with
BmNPV during sericulture; instead, this industry mainly relies
on thorough disinfection and strict breeding operation
techniques to prevent virus infectivity. Breeding resistant host
insect strains would help contend with baculovirus infection in
sericulture (3, 98, 99). However, enhancing pathogen resistance
in the host is usually accomplished at the expense of
economically important traits, which is a major constraint in
traditional silkworm breeding methods. This compromise may
be avoided by applying transgenic and gene editing techniques
(3). The antiviral capacity of transgenic silkworms could be
enhanced using strategies based on the BmNPV infection
process such as inhibiting BmNPV at the initial infection stage
via Bmlipase-1 overexpression (100), targeting BmNPV mRNA
with RNAi (21), inhibiting BmNPV protein synthesis by hycu-
ep32 overexpression (101), and suppressing BmNPV by
regulating the host immune pathway (54). Antiviral capacity
could be further increased by optimizing and integrating the
aforementioned anti-BmNPV strategies (41, 42, 102). Transgenic
CRISPR/Cas9 system-mediated mutagenesis randomly targeting
and inactivating the viral genome has been studied as a potential
approach against BmNPV infection in silkworm (103).
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Theoretically the inhibitory effect of the CRISPR/Cas9 system
(knock out) on the virus should be higher than that of the RNAi
system (knock down) when targeting the same viral genes.
However, silkworms with inserted DNA fragments expressing
dsRNA (21) or gRNA (103) are all transgenic strains and security
assessment is an unavoidable challenge under the conditions of
mass rearing practiced in sericulture.

Several drugs have been evaluated for their antiviral activity
against BmNPV. The bacterial secondary metabolite prodigiosin
inhibits BmNPV in BmN cells and is a potential antiviral
compound (104). However, its antiviral efficacy must be tested
in insect larvae. The single-crystal compound seselin extracted
from Aegle marmelos (a kind of citrus fruit) shows antiviral
activity against BmNPV in silkworm larvae (105). AZD8835,
AMG319, HS173, AS605240, GDC0941, BEZ235 are PI3K
inhibitors and afuresertib is an Akt inhibitor. These seven
drugs target the PI3K/Akt pathway to decrease p-Akt and all
inhibit BmNPV in BmE cells; nevertheless, only AMG319 and
AZD8835 inhibit viral proliferation in silkworm larvae. Of these
two, AZD8835 exhibits a stronger antiviral efficacy which might
be due to lower drug toxicity in larvae and stronger inhibition of
p-Akt (106). The development of drugs with high antiviral
capacity in silkworms could decrease mortality in sericulture.
However, their absorption and utilization efficiency, inhibitory
efficacy, and cost-effectiveness must be increased while their
cytotoxicity is decreased (106).
MAJOR ISSUES IN SILKWORM ANTIVIRAL
STUDIES

Several conflicting results have been reported for the same genes in
previous studies on the interaction between silkworm and
baculovirus. These discrepancies may be explained by the use of
different silkworm strains and cell lines as well as inappropriate
internal reference genes (RGs). RGs must not be affected by
experimental conditions and should be expressed at the same
constant level in all samples. Unsuitable RGs lead to the incorrect
interpretation of gene expression patterns and functions (107). As a
widely used example, actin participates in baculovirus proliferation
and expression after viral infection in silkworms (107). Hence, actin
cannot serve as the RG for mRNA and protein detection in studies
involving the interaction between silkworms and viruses. In
contrast, TIF-4A is an appropriate RG for gene expression
analysis (107) and GAPDH (54) is an appropriate internal
reference for protein content measurements following viral
challenges in silkworms.

Transgenic silkworms with high antiviral capacity have been
constructed (102, 103, 108, 109). Nevertheless, their commercial
application still faces great challenges. Security assessment must
be performed on transgenic silkworms before they are
commercialized (3). There are operational guidelines for safety
assessments of genetically modified (GM) vertebrates and plants
but not for insects, including silkworms. Thus, safety evaluations
are difficult to execute on transgenic silkworms. Based on GM
animal safety assessment guidelines, we conducted a preliminary
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evaluation of transgenic silkworms in our laboratory. A classical
genetic analysis and molecular characterization of 11 successive
generations showed that an inserted foreign DNA fragment was
stably inherited in transgenic silkworms (110). The disposition of
the inserted DNA in transgenic silkworms fed to chickens was
also examined, with no apparent transfer of transgenic DNA
from silkworms to chickens (111). A subacute toxicity test
comprising a 28 d feeding study in rats showed that transgenic
silkworms are toxicologically equivalent to normal silkworms
and are safe for rats (112). Transgenic silkworms are unable to
survive and reproduce in the field and would not cause
environmental risks of competition with other insects, and no
interspecific hybridization of transgenic silkworms and Bombyx
mandarina was observed in nature, so transgenic silkworms have
no risks to biodiversity (113). The transgenic silkworms that
produce green fluorescent silk have been reared in a sericulture
farm in Japan since 2017 (113). Nevertheless, the design of safety
assessment procedures and identification of transgenic antiviral
silkworm indicators are urgently required as they cannot be the
same as those already implemented for GM vertebrates. A
notable difference in appropriate safety assessment design is
that although GM vertebrates are used for food and feed,
transgenic silkworms are used only in silk production.
FUTURE DIRECTIONS OF SILKWORM
ANTIVIRUS RESEARCH

Current research on the mechanisms by which baculovirus
penetrates its host has focused mainly on BVs and insect cell lines
(25, 28–30). Some of the constraints of investigations into the
interactions between individual insects and baculovirus include
limitations in insect genetic manipulation, long experimental
periods, and intensive labor. The PIFs of ODV envelopes form
complexes that mediate viral invasion in the insect midgut (16–19).
The receptors involved in ODV invasion may also be part of a
complex. Screening and identifying ODV receptor genes in the
silkworm midgut are difficult exercises. The process of ODV entry
must first be clarified in order to develop methods to block BmNPV
infection in silkworm. Earlier studies reported that the resistance of
silkworms to BmNPV is controlled by major genes and modified by
minor genes (98); however, a major resistance gene has not yet been
identified despite numerous attempts using various methods.
Identification of resistance genes and analysis of silkworm
antiviral mechanisms against BmNPV merit further investigation.
In future experiments, we will screen for negative regulatory factors
in the immune pathway using genome-wide CRISPR (114) and
identify the host proteins that bind the virus by use of inhibitors.
The target genes will be knocked out via gene editing to improve
silkworm resistance. Immune priming is a new strategy to increase
host antiviral capacity (115, 116) and we will clarify its mechanism
of action in silkworm. The influences of gut microbes, heat shock
response, and DNA methylation on viral silkworm infections will
also be evaluated.

The baculovirus expression vector system (BEVS) is a
bioreactor for the production of recombinant proteins and
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vaccines. Several vaccines produced by BEVS have been
approved for human and/or veterinary use (15, 117, 118). The
BEVS was invented using AcMNPV in combination with an
insect cell system (117). However, the cost of silkworm rearing is
much lower than that of insect cell culture, promoting the use of
BmNPV to generate foreign proteins using silkworm larvae as
bioreactors. Understanding the baculovirus infection mechanism
including modification of host and viral proteins will facilitate
application of a combined BmNPV-silkworm system in
production of high value-added medical proteins. Explorations
of the silkworm immune response to baculovirus will help
construct silkworms less sensitive to BmNPV by inhibiting the
host immune system and resistance genes, and in combination
with BmNPV with attenuated virulence, further reduce the costs
of foreign protein fabrication.

Baculoviruses have been applied worldwide as biopesticides for
the control of various insect pests (119, 120). Compared to chemical
pesticides, baculoviruses are environmentally safe. Nevertheless,
their killing rates are low, and their host range is narrow (15, 31,
119). In the future, baculovirus should be modified to expand its
target pest host range. Its antagonism against the host immune
defense must be strengthened by accentuating viral host immune
evasion mechanisms which will enable use of lower viral titers to kill
pests faster. Less sensitive insect bioreactors for baculovirus-based
biopesticides should be designed to reduce production costs. Further
investigations into silkworm antiviral mechanisms will provide a
reverse theoretical basis and reference for biological insect
pest control.
CONCLUSION

Viruses exert strong selection pressure on their hosts to evolve
resistance pathways. In turn, these genetic modifications enable
viruses to escape host antiviral mechanisms. This arms race
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favors host defense diversification and the development of viral
escape mechanisms (37). Several factors contribute to viral
coevolution with its natural host. A complete elucidation of
antiviral immunity and immune evasion is challenging as
numerous complex pathways are involved (37). Hence,
BmNPV research should focus on actual silkworms rather than
cell lines and novel technologies such as gene editing and value-
added protein biosynthesis. Studies involving the silkworm–
baculovirus model are highly informative as they disclose
original antiviral strategies, immune evasion mechanisms, and
weaknesses of viruses. In this way, genetic antiviral improvement
of silkworms may be achieved along with the development of
more effective approaches to control lepidopteran and other
insect pests. These applications, along with the realization of
more productive and efficient bioreactors for novel baculovirus-
insect-derived products, are promising applications for
the future.
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113. Kômoto N, Tomita S. Risk Assessment of Transgenic Silkworms. GMOs
Topics Biodiversity Conserv 19. (2020). doi: 10.1007/978-3-030-53183-6_10

114. Chang J, Wang R, Yu K, Zhang T, Chen X, Liu Y, et al. Genome-wide
CRISPR screening reveals genes essential for cell viability and resistance to
abiotic and biotic stresses in Bombyx mori. Genome Res (2020) 30(5):757–67.
doi: 10.1101/gr.249045.119

115. Valdez A, Yepiz-Plascencia G, Ricca E, Olmos J. First Litopenaeus vannamei
WSSV 100% oral vaccination protection using CotC::Vp26 fusion protein
displayed on Bacillus subtilis spores surface. J Appl Microbiol (2014) 117
(2):347–57. doi: 10.1111/jam.12550

116. Tidbury HJ, Pedersen AB, Boots M. Within and transgenerational immune
priming in an insect to a DNA virus. P Roy Soc B-Biol Sci (2011) 278
(1707):871–6. doi: 10.1098/rspb.2010.1517

117. Smith GE, Summers MD, Fraser MJ. Production of human beta interferon in
insect cells infected with a baculovirus expression vector.Mol Cell Biol (1983)
3(12):2156–65. doi: 10.1128/MCB.3.12.2156

118. van Oers MM, Pijlman GP, Vlak JM. Thirty years of baculovirus-insect cell
protein expression: from dark horse to mainstream technology. J Gen Virol
(2015) 96(Pt 1):6–23. doi: 10.1099/vir.0.067108-0

119. Moscardi F. Assessment of the application of baculoviruses for control of
Lepidoptera. Annu Rev Entomol (1999) 44:257–89. doi: 10.1146/
annurev.ento.44.1.257

120. Lacey LA, Grzywacz D, Shapiro-Ilan DII, Frutos R, Brownbridge M, Goettel
MS. Insect pathogens as biological control agents: Back to the future.
J Invertebr Pathol (2015) 132:1–41. doi: 10.1016/j.jip.2015.07.009

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Jiang, Goldsmith and Xia. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original author(s)
and the copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
February 2021 | Volume 12 | Article 628151

https://doi.org/10.1016/j.virol.2007.05.043
https://doi.org/10.1073/pnas.95.19.11205
https://doi.org/10.1073/pnas.95.19.11205
https://doi.org/10.1016/j.dci.2019.04.001
https://doi.org/10.1016/j.dci.2019.04.001
https://doi.org/10.1111/imb.12386
https://doi.org/10.1371/journal.pone.0099200
https://doi.org/10.1673/031.014.76
https://doi.org/10.1016/j.pestbp.2018.12.012
https://doi.org/10.1007/s00705-012-1309-8
https://doi.org/10.1371/journal.pone.0041838
https://doi.org/10.1016/j.antiviral.2013.02.015
https://doi.org/10.1128/JVI.02465-16
https://doi.org/10.1007/s00253-015-7242-5
https://doi.org/10.1016/j.jep.2019.112155
https://doi.org/10.3390/molecules24071260
https://doi.org/10.1007/s00438-015-1125-4
https://doi.org/10.1016/j.dci.2017.07.020
https://doi.org/10.1016/j.dci.2018.06.002
https://doi.org/10.1016/j.dci.2018.06.002
https://doi.org/10.1016/j.ibmb.2014.03.006
https://doi.org/10.1016/j.ijbiomac.2019.09.102
https://doi.org/10.1093/toxres/tfaa089
https://doi.org/10.1007/978-3-030-53183-6_10
https://doi.org/10.1101/gr.249045.119
https://doi.org/10.1111/jam.12550
https://doi.org/10.1098/rspb.2010.1517
https://doi.org/10.1128/MCB.3.12.2156
https://doi.org/10.1099/vir.0.067108-0
https://doi.org/10.1146/annurev.ento.44.1.257
https://doi.org/10.1146/annurev.ento.44.1.257
https://doi.org/10.1016/j.jip.2015.07.009
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


MINI REVIEW
published: 11 February 2021

doi: 10.3389/fimmu.2021.639092

Frontiers in Immunology | www.frontiersin.org 1 February 2021 | Volume 12 | Article 639092

Edited by:

Jun-ichi Hikima,

University of Miyazaki, Japan

Reviewed by:

Hiroshi Hamamoto,

Teikyo University, Japan

Kunlaya Somboonwiwat,

Chulalongkorn University, Thailand

*Correspondence:

Liang Jiang

jiangliang@swu.edu.cn

Specialty section:

This article was submitted to

Comparative Immunology,

a section of the journal

Frontiers in Immunology

Received: 08 December 2020

Accepted: 26 January 2021

Published: 11 February 2021

Citation:

Jiang L (2021) Insights Into the

Antiviral Pathways of the Silkworm

Bombyx mori.

Front. Immunol. 12:639092.

doi: 10.3389/fimmu.2021.639092

Insights Into the Antiviral Pathways
of the Silkworm Bombyx mori

Liang Jiang 1,2*

1 State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China, 2 Biological Science Research

Center, Southwest University, Chongqing, China

The lepidopteran model silkworm, Bombyx mori, is an important economic insect.

Viruses cause serious economic losses in sericulture; thus, the economic importance

of these viruses heightens the need to understand the antiviral pathways of silkworm

to develop antiviral strategies. Insect innate immunity pathways play a critical role in the

outcome of infection. The RNA interference (RNAi), NF-kB-mediated, immune deficiency

(Imd), and stimulator of interferon gene (STING) pathways, and Janus kinase/signal

transducer and activator of transcription (JAK/STAT) pathway are the major antiviral

defense mechanisms, and these have been shown to play important roles in the

antiviral immunity of silkworms. In contrast, viruses can modulate the prophenol oxidase

(PPO), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), and the extracellular

signal-regulated kinase (ERK) signaling pathways of the host to elevate their proliferation

in silkworms. In this review, we present an overview of the current understanding of the

main immune pathways in response to viruses and the signaling pathways modulated by

viruses in silkworms. Elucidation of these pathways involved in the antiviral mechanism

of silkworms furnishes a theoretical basis for the enhancement of virus resistance in

economic insects, such as upregulating antiviral immune pathways through transgenic

overexpression, RNAi of virus genes, and targeting these virus-modulated pathways by

gene editing or inhibitors.

Keywords: immunity, signaling pathway, virus, antivirus, insect, silkworm

INTRODUCTION

Virus infection poses a serious threat to human health and agricultural production. As the
only fully domesticated insect, the lepidopteran model silkworm, Bombyx mori, is economically
important for silk production. Sericulture is one of the main sources of income for farmers in
many developing countries (1, 2). However, viral diseases have caused losses of nearly 16% of the
potential cocoon production each year in sericulture, which are induced mainly by the Bombyx
mori nucleopolyhedrovirus (BmNPV), Bombyx mori cytoplasmic polyhedrosis virus (BmCPV), or
the Bombyx mori bidensovirus (BmBDV) (1).

Insects mainly rely on innate immunity to defend against invading pathogens, and immune
pathways play an important role in this process. Although some host signaling pathways can be
modulated by viruses to elevate virus proliferation, targeting these pathways can also inhibit virus
infection. In this review, we present an overview of the main pathways involved in the antiviral
mechanism of silkworms. Such knowledge could provide a theoretical basis for strategies for control
of viral diseases in economic insects.
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CHARACTERISTICS OF SILKWORM
VIRUSES

Among the three major pathogenic viruses of silkworms, the
BmNPV, a member of the Baculoviridae family having a circular
double-stranded DNA genome (3), is the most prevalent threat to
sericulture in almost all countries (1). The viral DNA combines
with capsid proteins to form a nucleocapsid that is contained
within an envelope (1, 3). The BmNPV replication cycle has
two virion phenotypes: (1) the occlusion-derived virus that is
transmitted among hosts, and packaged and protected in an
occlusion body (4, 5), and (2) the budded virus that spreads
throughout the host. The BmCPV belongs to the Cypovirus
genus of the Reoviridae family, and its genome consists of
ten discrete double-stranded RNA (dsRNA) segments (6, 7).
The BmCPV particles contain nucleic acid and protein capsid,
and they are non-enveloped and occluded within polyhedral
bodies (6, 7). The BmBDV belongs to the Bidensovirus genus of
Bidnaviridae family, and has two geographical variants, BmDNV-
2 and BmDNV-Z (8–10). The BmBDV virions are non-enveloped
and assembled by a protein capsid and nucleic acid, with their
viral genome consisting of two linear non-homologous single-
stranded DNA segments (8–10).

These viruses invade the silkworm larvae mainly via oral
infection. The BmNPV can infect almost all tissues of the
silkworm whereas the BmCPV and BmBDV can only infect the
silkworm midgut (1). Some silkworm strains are resistant to the
viruses at any viral dose (1, 9). For example, the nsd-2 mutation
is caused by a 6-kb deletion in the open reading frame of
+nsd−2 and imparts resistance to the BmDNV-2 (9). However, the
receptor and major resistance genes to the BmNPV and BmCPV
have not been identified in silkworm. The BmN and BmE are two
cell lines commonly used in silkworm research, which are derived
from the ovary and embryonic cells of silkworm, respectively.
The BmNPV can infect the two cell lines, unlike the BmCPV and
BmBDV; therefore, most silkworm antiviral research is focused
on the BmNPV (11–17), a few on the BmCPV (18, 19), and very
few on the BmBDV (20).

SILKWORM ANTIVIRAL IMMUNE
PATHWAYS

The antiviral defense mechanism of silkworms mainly relies
on innate immunity, including the RNA interference (RNAi),
NF-kB-mediated pathways, and Janus kinase/signal transducer
and activator of transcription (JAK/STAT) pathway (19, 21–24).
Among these immune responses, RNAi is the major defense
strategy against viruses in insects (23, 25).

RNAi Pathways
There are three RNAi-related pathways in insects, including the
small interfering RNA (siRNA) pathway, microRNA (miRNA)
pathway, and the PIWI-associated RNA (piRNA) pathway (26).
When challenged with viruses, the siRNA pathway is activated
by the dsRNA that is commonly generated as a byproduct of
viral replication (27, 28). The Dicer2 enzyme recognizes viral

dsRNA and processes the dsRNA into siRNAs. One strand of
duplex siRNA is associated with Ago2 to form the RNA-induced
silencing complex (RISC), and then directs RISC to the viral
RNA target through base pairing. Subsequently, Ago2 cleaves the
viral RNA, inhibiting viral replication (25, 27, 28) (Figure 1A).
The expressions of both Ago2 and Dicer2 were not induced by
silkworm viruses (21). However, the results of deep sequencing
revealed that a large number of viral siNRA (∼20 nucleotides)
was generated in insect hosts infected with baculovirus (29) and
BmCPV (30), indicating that the RNAi response is an important
antiviral defense of hosts. Overexpression of Ago2 andDicer2 can
improve the susceptibility of silkworm to dsRNA (31). Expression
of dsRNA targeting the viral genes of BmNPV (13), BmCPV (18),
and BmBDV (20) in transgenic silkworms substantially decreased
the viral mRNA content and silkworm mortality after viral
infection. The siRNA pathway is the predominant mechanism
responsible for antiviral activity in insects (27, 28). For the
applications and challenges of insect RNAi, please refer to the
recent reviews (32, 33).

The miRNAs are small noncoding RNAs that can bind
to target genes and regulate their expression (34). The
miRNA pathway is involved in the interaction between
silkworm and viruses (23, 35). Virus-encoded miRNA can
facilitate viral multiplication. For example, BmNPV-miR-1 (35)
and BmNPV-miR-3 (36) can enhance BmNPV infection via
regulating the exportin-5 cofactor Ran and the viral P6.9
expression, respectively; BmCPV-miR-1 could facilitate target
gene BmIAP expression and BmCPV replication (37). Similarly,
silkworm-encoded miRNA could be regulated to promote viral
proliferation. For example, bmo-miR-274-3p, whose inhibition
enhances target viral NS5 expression and facilitates BmCPV
replication, was downregulated in a BmCPV-infected silkworm
midgut (38). Additionally, host miRNA can inhibit viral
proliferation. For example, bmo-miR-2819 can downregulate
the ie-1 gene of BmNPV to suppress viral multiplication (39);
although bmo-miR-278-3p could decrease target gene IBP2
expression and increase BmCPV mRNA, it is downregulated
and IBP2 is upregulated in BmCPV-infected silkworms (40).
The contribution of the miRNA pathway is minor in the RNAi
antiviral defense of insects. In contrast to siRNAs and miRNAs,
piRNAs are derived from single stranded RNA precursors (23).
The role of the piRNA pathway in the antiviral response of insect
models has been reviewed recently (41), however, of which the
exact roles in the interaction between silkworm and its major
pathogenic viruses are unclear, having few relevant reports so far
(42, 43).

NF-kB-Mediated Antiviral Pathways
The Imd and Toll pathways are canonical NF-kB-dependent
pathways involved in the innate immunity of insects, wherein
they activate the downstream antimicrobial peptide (AMP) genes
transcription mediated by two distinct orthologs of the NF-kB
transcription factor (19, 25, 44). The NF-kB ortholog Relish is
the terminal transcription factor for the Imd pathway, whereas
the Dorsal and Dorsal-related immune factor (Dif) function
in the Toll pathway (25). Toll pathway responds to Gram-
positive bacteria and fungi infections, whereas Imd pathway
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FIGURE 1 | Antiviral pathways in silkworm. (A) The siRNAi pathway is activated by viral dsRNA, which is cleaved into siRNAs by Dicer2. Ago2 is associated with one

strand of siRNA to form RISC that can target and cleave the viral RNA to inhibit viral replication. (B) The NF-kB-mediated, Imd, and STING pathways. BmCPV induces

the extracellular BmPGRP-S2 to active Imd and the downstream NF-kB ortholog Relish; BmNPV infection triggers the production of cGAMP to activate BmSTING for

processing Relish. Activated Relish is translocated to the nucleus to initiate the transcription of AMP. Whether AMPs have antiviral function in silkworms needs further

study. (C) The JAK/STAT pathway. The extracellular ligands bind to JAK associated receptors upon stimulation, leading to the activation of JAKs, and then cytosolic

STATs are phosphorylated, forming the STAT dimers, which are translocated to the nucleus to regulate the expression of antiviral genes. (D) The PPO pathway is

initiated by recognizing invading microbes, and then the extracellular cSP cascade is activated to convert the zymogen PPO to active PO. PO catalyzes the formation

of melanin, resulting in melanization that kill the microbes. This pathway is negatively regulated by serpins, and baculovirus can induce serpins to suppress the

melanization response of host insects for survival. (E) The PI3K/Akt pathway. Activated PI3K converts PIP2 into PIP3 to cause Akt phosphorylation (p-Akt). PTEN is a

negative regulator of the PI3K/AKT pathway. BmNPV induces BmPGRP2-2 to suppress PTEN, resulting in increased p-Akt that inhibits cell apoptosis. Upregulated

p-Akt also causes the inhibitory phosphorylation of the transcription factor FOXO, decreasing the expression of BmPEPCK-2 and resulting in reduced autophagy

genes (ATGs) expression, thereby blocking host autophagy. The inhibited apoptosis and autophagy are beneficial for viral replication. The PI3K inhibitor AZD8835 can

decrease the mortality of silkworms infected with BmNPV. (F) The ERK pathway. Upon viral infection, the extracellular ligands activate EGFR (a receptor tyrosine

kinase) to promote ERK phosphorylation (p-ERK) through the activation of Ras to the Raf/MEK/ERK phosphorylation cascade. p-ERK can regulate the transcription of

viral genes and inhibit apoptosis. The Spry protein is a negative regulator of EGFR/ERK pathway that inhibits Ras or Raf, and both DNA and RNA viruses can

downregulate Spry to increase p-ERK to ensure viral reproduction. AG1478 is a specific inhibitor of EGFR and U0126 binds to MEK to prevent p-ERK. The EGER also

participates in the activation of PI3K by BmNPV. These pathways are integrated and are responsive to one another, which are complex and merit further investigation.
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responds Gram-negative bacteria (19, 25). The transmembrane
receptors peptidoglycan recognition protein (PGRP)-LC and
the intracellular PGRP-LE sense the diaminopimelic acid-type
peptidoglycan of Gram-negative bacteria, and transmit the signal
to the adaptor molecule Imd, which is essential for the activation
of Relish (25, 45). The Imd and Toll pathways have been shown
to play a role in the antiviral immunity ofDrosophila (25, 46–48).
AMPs seems to have antiviral function in Drosophila, but their
exact antiviral mechanisms are still unknown and more in-depth
researches are needed (49).

Our research showed that BmPGRP-S2 was induced by
BmCPV in the silkworm midgut (7). Further experiments
revealed that BmPGRP-S2 was a secreted protein, which may
recognize a certain viral component and then transmit the
signal to downstreammolecules, and its overexpression increased
the expression of BmImd, BmRelish, and AMPs and decreased
silkworm mortality after BmCPV infection (19) (Figure 1B).
These results indicate that the Imd pathway is involved in
the defense against the RNA virus in silkworms. However,
the function of this pathway in DNA virus-infected silkworms
is not yet known. There have been few reports on the
Toll pathway involved in antiviral immunity in silkworms.
Recently, the stimulator of interferon genes (STING) has been
reported to provide antiviral immunity against BmNPV in
silkworms by promoting NF-kB activation (22). Production
of cyclic guanosine monophosphate–adenosine monophosphate
(cGAMP) is triggered upon BmNPV infection, inducing the
BmSTING activation to process BmRelish, and then the
activated BmRelish is translocated to the nucleus to initiate the
transcription of AMP (22) (Figure 1B). The aforementioned
result revealed that the NF-kB-mediated, Imd, and STING
pathways play important roles in silkworm antiviral defense, but
the antiviral mechanisms of the two pathways are only partially
elucidated and need more experimentation. Deciphering the
roles of Toll pathway in silkworm antiviral immunity remains a
challenging task.

JAK/STAT Pathway
JAK/STAT signaling is an important pathway involved in
multiple cellular processes such as cell proliferation and immune
regulation in insects (21, 25). This pathway contains a diverse
family of extracellular ligands such as cytokine and growth
factors, transmembrane receptors, JAK tyrosine kinases that are
associated with the intracellular part of the receptor, and STAT
proteins (25, 50). Following stimulation, a ligand binds to the
extracellular part of the JAK-associated receptors, leading to the
activation of JAKs. Subsequently, cytosolic STATs are recruited
to the JAK/receptor complex, and then phosphorylated, forming
the STAT dimers, which are translocated into the nucleus and
bound to the DNA promoters of the target genes to regulate their
expression (25, 50) (Figure 1C).

The insect JAK/STAT pathway activationmechanism has been
well-established in Drosophila and mosquito (25, 51–53). There
has been growing evidence that the JAK/STAT pathway may
be functionally analogous to the mammalian interferon system
(51). The JAK/STAT pathway has been shown to respond to
viral infections in Drosophila by regulating the production of

downstream effectormolecules, including the AMPs (25, 53). The
BmNPV and BmBDV, unlike the BmCPV, induce the expression
of BmSTAT in silkworms, implying that the JAK/STAT pathway
could be activated by the DNA viruses in silkworms (21).
Overexpression of BmSTAT in BmN cells increased the number
of cells in the G2 phase of the cell cycle (54) and host resistance
to BmNPV, but not to BmCPV (55). Additionally, inhibition
of Hsp90 can cause upregulation of BmSTAT expression and
suppression of BmNPV replication in the BmN cell (56), but
it is not clear how Hsp90 can be linked to JAK/STAT. The
extracellular ligand and effector molecules of this pathway in
response to viral infection in silkworms have not been clearly
identified and merit further investigation.

VIRUS-MODULATED HOST SIGNALING
PATHWAYS

During the interaction between the insects and viruses, several
host signaling pathways including the prophenol oxidase (PPO),
phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt),
and the extracellular signal-regulated kinase (ERK) pathways
have been reported to be modulated by viruses to elevate
viral proliferation. For example, baculovirus induces Bmserpin2
to inhibit the melanization reaction mediated by the PPO
pathway, which also induces BmPGRP2-2 to suppress PTEN,
resulting in increased p-Akt that can inhibit cell apoptosis
and autophagy. Meanwhile, silkworm viruses usurp the ERK
pathway by downregulating BmSpry (57–60). It is noteworthy
that targeting these hijacked host pathways can inhibit viral
proliferation in silkworm.

PPO Pathway
Melanization reaction, mediated by the PPO pathway, is an
important immune response in insect plasma and plays an
essential role in the wound healing and killing of microbes
(61, 62). This process is initiated by the recognition of invading
microbes, and then the extracellular clip-domain serine protease
(cSP) cascade is activated to convert the zymogen PPO to active
phenoloxidase (PO). PO catalyzes the oxidation of phenols to
form quinones and melanin, wherein the rapid polymerization of
melanin at infection sites can kill and immobilize microbes (61–
63) (Figure 1D). The melanization can kill baculovirus in vitro
(64, 65). However, the PPO pathway is negatively regulated
by serpins, and baculovirus can induce serpins to suppress
the melanization response of host insects for survival (57, 64).
Bmserpin2was upregulated in silkworms after BmNPV infection.
Furthermore, knockdown of Bmserpin2 can increase PO activity
and decrease viral multiplication (57). The mechanism by
which melanization contributes to the killing of pathogens
remains elusive.

PI3K/Akt Pathway
The PI3K /Akt pathway plays an important role in regulating
a number of cellular processes (66–68). Activation of PI3K can
occur through the binding of a variety of ligands, including
several growth factors to the receptor tyrosine kinases (RTKs).
Activated PI3K then converts the substrate phosphatidylinositol
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4, 5-bisphosphate (PIP2) into phosphatidylinositol (3,4,5)-
trisphosphate (PIP3), and PIP3 causes the phosphorylation of
Akt (p-Akt). Akt is considered a central mediator of the PI3K
pathway. Active Akt drives cell proliferation, survival, apoptosis,
and metabolism through the inhibitory phosphorylation of
several substrates, including related kinases, signaling proteins,
and the transcription factor forkhead box O (FOXO) (66, 69–71).
BmFOXO directly upregulates BmPEPCK-2, and overexpression
of BmFOXO and BmPEPCK-2 can increase the expression of
autophagy genesATG6/7/8 (17, 72). In addition, phosphatase and
tensin homolog (PTEN) protein causes the dephosphorylation of
PIP3, resulting in the suppression of the PI3K/AKT pathway (73).

A number of studies have demonstrated that many viruses can
activate the PI3K/AKT pathway for their efficient proliferation
(58, 66, 74, 75). The BmNPV induces the peptidoglycan
recognition protein BmPGRP2-2 to suppress PTEN, resulting in
increased p-Akt that can inhibit cell apoptosis (58). Meanwhile,
the upregulation of p-Akt attenuates the activity of FOXO and
decreases the expression of BmPEPCK-2 and ATG6/7/8, thereby
blocking host autophagy (17, 58, 72) (Figure 1E). The inhibited
apoptosis and autophagy are beneficial for viral replication.
However, which viral components are recognized by BmPGRP2-
2 is unclear and needs further study. The PI3K/AKT pathway
is a target for the treatment of many diseases (68, 70). The
PI3K inhibitor AZD8835 can decrease the mortality of silkworms
infected with BmNPV by blocking the p-Akt and suppressing
viral proliferation (76), implying a promising antiviral strategy
for silkworms.

ERK Pathway
ERKs are serine/threonine kinases activated by a variety
of extracellular stimuli such as growth factors, environmental
stresses, andmicrobial infections, and can transduce downstream
cellular responses, including cell differentiation, survival,
and apoptosis (77–80). Activation of the ERK pathway is
required for efficient infection by many viruses (59, 80).
One major class of ERK regulators is the RTK family. Upon
stimulation, the extracellular ligands activate RTKs to promote
the phosphorylation of ERK (p-ERK) by the activation of the
small GTPase Ras to the Raf (MAP3K)/MEK (MAP2K)/ERK
(MAPK) phosphorylation cascade. The ERKs then control
transcription by phosphorylating various transcription factors in
the nucleus or control targets in the cytoplasm (77, 78, 81, 82).

The epidermal growth factor receptor (EGFR) belongs to the
RTK family (78, 81). The BmEGFR plays an important role
in BmNPV infection, which participates in the activation of
ERK and PI3K/Akt pathways by the virus. Moreover, activated
ERK regulates the transcription of late viral genes and inhibits
apoptosis (83). Additionally, Spry is a negative regulator of the
EGFR/ERK pathway through the inhibition of Ras or Raf, and
the overexpression of BmSpry suppressed p-ERK and BmNPV
replication in BmE cells (84) (Figure 1F). Further research has
found that BmSpry was decreased and p-ERK was increased in
silkworms after infection with BmNPV, BmCPV, or BmBDV,
and the knockdown of BmSpry in transgenic silkworms caused
increased p-ERK, viral content, and mortality after infection
with the three viruses, revealing that both DNA and RNA

viruses usurp the ERK pathway to ensure viral reproduction (60).
AG1478 is a specific inhibitor of EGFR tyrosine kinase activity
(85) and the inhibitor U0126 binds to MEK to prevent p-ERK
(86). The two inhibitors can inhibit p-ERK and BmNPV in BmE
cells (83), but the inhibitory effect in silkworm larvae needs
further test. The ERK pathway plays important roles in regulating
the outcome of viral infection in silkworms, and the mechanisms
remain to be fully elucidated.

CONCLUSIONS AND FUTURE
PROSPECTS

Antiviral mechanisms are a worldwide problem and research
hotspot. Insect-virus interactions may provide information on
a vast repertoire of antiviral immune mechanisms (27). Results
from the silkworm-virus model clearly show that there are
multiple layers of antiviral defense that rely on conserved but also
divergent pathways. For example, RNAi is a conserved antiviral
mechanism among different insects, and it is the major antiviral
response against both DNA and RNA viruses in silkworms.
Meanwhile, NF-kB-mediated pathways are involved in antiviral
immunity in silkworms but divergent responses to different
viruses, such as BmCPV induces BmPGRP-S2 and Imd to activate
Relish whereas BmNPV activates cGAMP and STING to process
Relish. Additionally, RNAi inhibits viral replication by cleaving
the viral RNA while NF-kB-dependent antiviral immunity may
based on AMPs. The multi-level response is beneficial to antiviral
defense of host.

It is now apparent that these antiviral pathways are integrated
and are responsive to one another, providing a pathogen-
specific response. For example, the ERK and PI3K/Akt pathways
have all been reported to interact with the JAK/STAT pathway
(25), and the melanization and Toll pathways have also been
found to interact (63). However, the integrated mechanisms of
these pathways are complex, that is, the mechanisms by which
baculovirus activate the ERK and PI3K/Akt pathways through
EGFR may be different (83) and merit further investigation.
Meanwhile, some mechanisms are tissue-specific or virus-
specific, highlighting the importance of the investigation of
virus–host interactions in the right context.

Coevolution between hosts and viruses favors the
development of immune evasion mechanisms through
modulation of the host signaling pathways by the pathogen
(87). Targeting these hijacked pathways using inhibitors and
knocking out their key regulators via gene editing would be a
promising strategy to improve silkworm resistance. Meanwhile,
RNAi of viral genes and overexpression of antiviral genes
can enhance antiviral capacity of transgenic silkworms (1).
Additionally, upregulation of antiviral immune pathways in
transgenic silkworms is an available antiviral strategy. For the
enhancement of host antiviral capacity and major issues in
silkworm antiviral studies, please refer to our other review (87).
These studies on antiviral pathways would be very instructive as
they would reveal original antiviral strategies for the protection
of beneficial insects and the target pathways hijacked by viruses
for pest control.
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Silkworm (Bombyx mori) is a model organism with great agricultural economic value
that plays a crucial role in biological studies. B. mori nucleopolyhedrovirus (BmNPV)
is a major viral pathogen found in silkworms, which leads to huge silk loss annually.
In a recent lysine acetylome of silkworm infected with BmNPV, we focused on the heat
shock cognate protein 70-4 (HSC70-4) lysine acetylation change due to the consequent
nuclear accumulation and viral structure assembly. In this study, the genome replication,
proliferation, and production of budded viruses (BVs) were arrested by HSP/HSC70
inhibitor treatment. However, HSC70-4 overexpression enhanced BmNPV reproduction.
Furthermore, site-direct mutagenesis for acetylated mimic (K/Q) or deacetylated mimic
(K/R) mutants of HSC70-4 demonstrated that lysine 77 (K77) deacetylation promotes
HSC70-4 stability, viral DNA duplication, and HSC70-4 nuclear entry upon BmNPV
challenge, and the nuclear propulsion of HSC70-4 after viral stimulus might be
dependent on the interaction with the carboxyl terminus of HSC70-interacting protein
(CHIP, an E3 ubiquitin ligase), followed by ubiquitin-proteasome system assistance.
In this study, single lysine 77 deacetylation of HSC70-4 was deemed a part of the
locomotive pathway for facilitating BmNPV proliferation and provided novel insights into
the antiviral strategic development.

Keywords: HSC70-4, BmNPV, deacetylation, nuclear import, proteasome

INTRODUCTION

Silkworms play an essential role in the ancient Silk Road trade because of their derivative silk
with high tremendous economic value, but are also of significance in research with respect to
ease of rearing, acquisition of genome sequence, and availability of mutants from genetically
homogeneous inbred lines (Xia et al., 2004). Bombyx mori nucleopolyhedrovirus (BmNPV), the
primary pathogenic agent in silkworm viral disease, includes a large circular double-stranded DNA
genome with putative 143 open reading frames (Shen et al., 2018). In addition, two distinct virion
phenotypes are responsible for disseminating in insects or cells, respectively (Jiang and Xia, 2014).
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One is the occlusion-derived virus (ODV), which contains
numerous virions within a crystallized protein, called
polyhedron, that promotes oral infection. The other is the budded
virus (BV) that spreads between internal tissues. A detailed
baculovirus invasion mechanism and silkworm immune
response still need further understanding (Jiang et al., 2021a).

Heat shock proteins are involved in the interaction between
baculovirus and silkworms (Mao et al., 2020; Shang et al.,
2020; Jiang et al., 2021b). Heat shock protein 70 (HSP70)
is conserved across evolution from archaebacteria to higher
mammals (Lindquist and Craig, 1988). Differing from the
HSP70 response to stress condition, heat shock cognate
protein 70 (HSC70) is constitutively expressed to maintain
the protein folding under normal conditions (Gething and
Sambrook, 1992). Several investigations recently indicated
that baculovirus infection induces HSP/HSC70s expression
to promote viral genome replication, protein synthesis,
and BV production (Lyupina et al., 2010, 2011, 2013,
2010; Breitenbach and Popham, 2013). For BmNPV and
silkworm, HSC70 was found in the protein composition
of ODV virion (Liu et al., 2008), and the transcriptional
activity of the HSC70-4 promoter was elevated by the
BmNPV homologous region 3 (Tang et al., 2005). In
addition, HSC70-4 was accumulated in the nucleus at a
very late BmNPV infection phase and identified the embedded
assembly in ODV and BV structure, including the envelope
and capsid (Iwanaga et al., 2014). During the polyhedrin
aggregates/aggresomes formation upon BmNPV infection,
HSP/HSC70s and ubiquitinated proteins colocalized with
polyhedrin aggregates/aggresomes (Guo et al., 2015). Moreover,
HSC70-4 interplays with the E3 ubiquitin ligase, carboxyl
terminus of HSC70-interacting protein (CHIP), in B. mori
(Ohsawa et al., 2016). Interestingly, BV production and
polyhedrin expression of BmNPV is dependent on the intact
ubiquitin-proteasome system (Katsuma et al., 2011). Based on
the above reports, although HSC70-4 plays a crucial role in
BmNPV infection, the elaborate molecular mechanisms need to
be elucidated further.

Post-translational modifications, such as acetylation
(Mawatari et al., 2015), phosphorylation (Muller et al.,
2013), methylation (Gao et al., 2015), and ubiquitination
(Kundrat and Regan, 2010), are essential for flexible regulation
of HSP/HSC70s functional alternatives. Acetylation, which
used to be studied in histone proteins, is also a commonly
reversible molecule switch for non-histone proteins, affecting
many cellular processes (Verdin and Ott, 2015). Currently,
HSP/HSC70 acetylation has been widely studied in many aspects
of cellular homeostasis, which is associated with protein folding,
degradation, apoptosis, and autophagy (Yang et al., 2013; Wu
et al., 2014; Seo et al., 2016; Park et al., 2017; Sun et al., 2019).
For example, in the early stress period, the acetylated K77 lysine
site of HSP70 led to increased protein refolding via interaction
with HSP70/90 organizing protein (HOP) and HSP90; however,
in the late stimulus phase, deacetylated K77 contributed to
protein degradation by association with CHIP and HSP40
(Seo et al., 2016). In addition, K77 acetylation also hinders
the caspase-dependent/independent apoptosis via interplay

with Apaf1/AIF, respectively (Park et al., 2017). Similarly,
HSP/HSC70s K88, K126, K159, and K246 acetylation-mediated
protein-protein interaction, apoptosis, and autophagy have
been widely investigated in cancer cells (Yang et al., 2013;
Wu et al., 2014; Sun et al., 2019). Our previous proteomic
profiling presented that BmN cellular histone deacetylase
(HDAC) was upregulated upon BmNPV challenge (Mao
et al., 2018). Nowadays, due to the analogous hydrophobic
property, glutamine (Q) and arginine (R) are typically used
for mimicking lysine (K) acetylation and deacetylation,
respectively (Fujimoto et al., 2012; Huang et al., 2015).
Nonetheless, how the HSP/HSC70s acetylation modulates viral
proliferation is yet unknown.

Silkworm protein acetylation was studied in pro-survival,
apoptosis, and autophagy (Zhou et al., 2016; Xue et al., 2019;
Yang et al., 2020). Our recent acetylome upon BmNPV infection
also stimulated a focus on HSC70-4 acetylation performance
in baculovirus replication (Hu et al., 2018). In this study, we
used the HSP/HSC70 inhibitor or overexpression of HSC70-
4 to determine viral genome replication, propagation, and
BV release. Furthermore, we detected several lysine sites by
acetylation-mimic (K/Q) or deacetylation-mimic (K/R) in viral
DNA duplication, and K77 deacetylation of HSC70-4 increased
the number of viral genome copies by enhanced stability and
nuclear import that may be dependent on the interaction
with CHIP, followed by the ubiquitin-proteasome system for
propulsion. This finding unveils the baculovirus-host interaction
mechanism and provides novel insights into the antiviral
strategy development.

MATERIALS AND METHODS

Plasmids, Cells, and Viruses
Bombyx mori BmN cell line, originated from the silkworm
ovarian tissue, was preserved at 27◦C in Sf-900 medium (Thermo
Fisher Scientific, United States) supplemented with 10% fetal
bovine serum (FBS; Corning, United States). BmNPV and
the enhanced green fluorescent protein (EGFP)-tagged virus
(BmNPV-EGFP), harboring the EGFP under the polyhedrin
promoter without any protein fusion, were sustained in our
laboratory with the multiplicity of infection (MOI) 10 for
differently treated cells. The recombinant plasmid pET28a-
HSC70-4(898-1801) for the induction of target protein expression
and purification was constructed as described previously
(Iwanaga et al., 2014). The transient expression vector in
eukaryotic BmN cells with pIEx-1-HSC70-4 was achieved for
overexpression studies, and the target genes HSC70-4, CHIP, and
HOP were amplified from the BmN cells. For this, RNA was
isolated from BmN cells using TRIzol reagent (Thermo Fisher
Scientific, United States), and the cDNA was reverse-transcribed
by RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher
Scientific). Site-directed mutagenesis in HSC70-4 (K71Q, K71R,
K77Q, K77R, K88Q, K88R, K126Q, K126R, K246Q, K246R,
K524Q, and K524R) was carried out by overlapping polymerase
chain reaction (PCR), as described previously (Ho et al., 1989).
The method was also applied for fusing EGFP with HSC70-4
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(wild-type, K77Q, K77R) followed by insertion into the pIEx-
1 vector. Pairs of yeast two-hybrid plasmid pGBKT7-HSC70-
4/K77Q/K77R and pGADT7-CHIP/HOP were constructed to
test the protein-protein interaction. All primers are listed in
Supplementary Table 1.

Antibodies, Reagents, and Transfection
pET28a-HSC70-4(898-1801) plasmid was transformed into
E. coli (BL21 DE3) competent cells for recombinant HSC70-4
expression, induced by isopropyl-β-D-thiogalactopyranoside
(IPTG), followed by the Ni-NTA column (Qiagen,
Germany) purification. Subsequently, the refined protein
was utilized for immunizing rabbits to obtain polyclonal
antibodies (HuaAn Biotechnology, China). Gp64, His-
tagged (Santa Cruz Biotechnology, United States), β-tubulin,
and horseradish peroxidase (HRP)-conjugated secondary
antibodies (Biosharp Life Sciences, China) were employed.
VER155008 (VER) and MG132 were purchased from
MedChemExpress (United States) and solubilized in
dimethyl sulfoxide (DMSO) for the stock concentration
of 50 mM. Transfection was performed as described
previously (Xue et al., 2019) using SuperFectinTMII
in vitro DNA Transfection Reagent (Shanghai Pufei
Biotechnology, China).

Chemicals Treatment and MTT Assay
After the chemical treatment with 1, 5, 10, and 20 µM VER for 24
or 48 h, the cells were harvested for cell viability assay. The MTT
assay was performed as described previously (Yu et al., 2013b).
Then, BmN cells were treated with 5 µM MG132 to bypass the
cytotoxicity, based on the previous study (Katsuma et al., 2011).

Western Blotting
Disparate treated, transfected, or infected samples were
collected and lysed for extraction of total protein in cell
lysis buffer containing 0.5% NP40, 150 mM NaCl, 1 mM
ethylenediaminetetraacetic acid (EDTA), 50 mM Tris pH 7.5,
and protease inhibitor cocktail (Bimake, United States). After
30 min lysis on ice, the whole protein extract was subjected to
centrifugation at 12000 rpm, 4◦C for 15 min. The protein samples
were quantified by Bradford assay, and an equivalent of 20 µg
was resolved by 12% sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE), followed by electroblotting on
polyvinyl difluoride (PVDF) membranes. Then, the membranes
were blocked with 5% skim milk for 2 h and probed with
the corresponding primary antibody. Subsequently, the
membrane was incubated with a secondary antibody, and
the immunoreactive bands were visualized using SignalFire ECL
Reagent (Cell Signaling Technology, United States).

Viral Titer Determination
The viral titer of all the different groups was measured by the
50% tissue culture infective dose (TCID50) of BmN cells. First,
the cells were transfected with empty vector pIEx-1 or pIEx-1-
HSC70-4 or treated by VER (10 µM) or DMSO, respectively,
and then infected with BmNPV at an MOI of 10 for 72 h.

Subsequently, the virus in the supernatant was harvested and
serially diluted 10-fold from 10−1 to 10−8. A volume of 100 µL
of the different gradient virus was inoculated into 96-well plates,
and the titer was recorded at 0, 24, 48, 72, and 96 h p.i. by TCID50
endpoint dilution assay.

Quantitative Analysis of Viral DNA
Synthesis
qPCR was used to analyze viral DNA duplication as described
previously (Yu et al., 2013a; Zhao et al., 2016). gp41, the viral gene,
was applied to quantify viral DNA load and the specific primers
used in qPCR to amplify the corresponding product. The qPCR
was carried out using a GoTaq qPCR Master Mix kit (Promega,
United States) on an ABI Prism 7500 Sequence Detection System
(Applied Biosystems, United States). The PCR procedure was as
follows: pre-denaturation at 95◦C for 10 min, followed by 40
cycles of denaturation at 95◦C for 10 s, annealing at 50◦C for 10 s,
and elongation at 72◦C for 12 s. Each assay was carried out in
biological triplicates.

Fluorescence Microscopy
Bombyx mori nucleopolyhedrovirus-EGFP was used for
the determination of viral propagation under differentially
transfected/treated BmN cells and were observed using
an inverted fluorescence microscope (Eclipse, TE2000-U,
Nikon, Japan). The EGFP-HSC70-4/K77Q/K77R subcellular
nucleocytoplasmic distribution upon BmNPV infection
was detected under a confocal microscope (IX81-FV1000,
Olympus, Japan).

Yeast Two-Hybrid Assay
Recombinant pGBKT7-HSC70-4/K77Q/K77R and pGADT7-
HOP/CHIP (2.5 µg each) constructs were simultaneously
co-transformed into Y2HGold yeast competent cells AH109.
The transformed yeasts (100 µL) were plated on SD-Trp/-
Leu/-His/-Ade/X-α-gal nutrient-deficient medium for 3–5 days.
A single colony of blue yeast was picked for another round of
color observation.

Statistical Analysis
All experiments were independently repeated at least three times,
and the data are shown as means ± standard deviation. The
cell viability, viral DNA amount, and viral titer were determined
using Student’s t-test and GraphPad Prism 7. ∗p < 0.05 indicates
a statistically significant difference.

RESULTS

Impaired ATPase Activity of
HSP70/HSC70 Interferes With Viral
Proliferation
Based on previous studies about ATP-mimic molecule
HSP/HSC70 specific inhibitor VER (Figure 1A) suppressing
flavivirus (Taguwa et al., 2015, 2019), nairovirus
(Surtees et al., 2016), and baculovirus (Lyupina et al., 2014;
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FIGURE 1 | The effect of HSP/HSC70s inhibitor VER for viral proliferation. (A) The schematic illustration of HSP/HSC70s inhibitor VER effect on intact nucleotides’
binding cycle. (B) Determination of BmN cell viability by MTT assay with different concentrations (1, 5, 10, and 20 µM) inhibitor VER or DMSO incubation for 24 or
48 h in the absence of BmNPV. Cell viability is presented relative to the data of 0.5% DMSO. (C) Endogenous stability of HSC70-4 after inhibitor (10 µM) was added
at 0 h post-infection (p.i.) or combined with inhibitor (10 µM) at 0 h p.i. and BmNPV treatment at several different time points and assessed by immunoblotting
analysis. The viral structure protein Gp64 represented the BmNPV infectious process successfully. β-tubulin served as the loading control. (D) qPCR analysis of viral
genome copies by HSP/HSC70s inhibition (10 µM) at 0 h p.i. in distinctive viral phases. DMSO groups were assessed as a negative control. (E) VER or
DMSO-treated BmN cells were incubated with BmNPV-EGFP (enhanced green fluorescent protein). Infected cells (EGFP-positive) were detected at 0, 24, 48, and
72 h p.i. by fluorescence microscopy. Scale bar was 100 µm. The bright field represented the cell numbers and state control. (F) The yield of infectious BVs in the
supernatants of corresponding treated cells was measured by TCID50 endpoint dilution assay. Each data point represented the average titer of independent
biological triplicates. *p < 0.05 indicated significant difference and **p < 0.01, ***p < 0.005 indicated extreme significant difference.

Mao et al., 2020), we also applied this inhibitor for determining
the HSP/HSC70 ATPase activity for BmNPV reproduction.
Initially, the BmN cell viability after VER treatment was
measured (Figure 1B), showing that the different doses of
chemicals had no cytotoxicity at the early stage of 24 h, but
10 µM inhibitor reduced cell survival after 48 h. However,
during the BmNPV infectious phases, host cell viability was
mainly governed by the virus rather than the inhibitor. Thus,
considering relevant investigations about VER-treated Sf9 cells
and AcMNPV (Lyupina et al., 2014), we consequently selected
10 µM for subsequent viral trials. We also assessed whether
the stability of HSC70-4 was affected when the ATPase activity
was blocked or combined with viral disruption. Consequently,
the protein level did not show any obvious change by chemical
treatment, but a gradual decline after simultaneous virus and
HSP/HSC70 inhibitor stimulus was noted (Figure 1C). Next, we
incubated the virus with VER or DMSO-treated BmN cells, and
the different infectious stages were collected. The findings were
consistent with the total viral DNA amount (Figure 1D), BmNPV
propagation (Figure 1E), and BVs production (Figure 1F) that
declines after HSP/HSC70s ATPase activity impairment with
infection progress. The intact HSP/HSC70s played crucial roles
in BmNPV proliferation.

Overexpression of HSC70-4 Facilitates
BmNPV Infection
In this present study, the exogenous transient transfection
indicated that overexpression of HSC70-4 is capable of being
recognized explicitly as the endogenous cellular HSC70-4 by
the customized polyclonal antibody (Figure 2A), and the
overexpressed HSC70-4 reached a substantial level after 48 h
post-transfection. Therefore, in the subsequent experiments,
we adopted this time point for studying the overexpression
of HSC70-4 effect in viral challenge. With this consequence,
the viral genome replication (Figure 2B), BmNPV proliferation
(Figure 2C), and BV yield (Figure 2D) were measured in empty
vector or HSC70-4-transfected BmN cells, respectively. These
data demonstrated that HSC70-4 enhances viral replication.

Potential Lysine Acetylation of HSC70-4
Upon Baculovirus Challenge
To study the acetylation of HSC70-4 in BmNPV, several lysine-
acetylated sites (Kac) were identified in our previous relevant
acetylome profiling post-BmNPV challenge (Hu et al., 2018).
Also, some key Kacs, such as K71, K88, K126, K159, and
K246, were investigated in recent studies (Yang et al., 2013;
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FIGURE 2 | Overexpression of HSC70-4 for viral proliferation. (A) The transient expression level of exogenously transfected BmN cells in the absence of BmNPV
challenge was measured by immunoblotting analysis. (B) After 48 h transfection, empty vector or HSC70-4-transfected cells were incubated with BmNPV for 24, 48,
72, and 96 h infection. The viral genome replication of the corresponding treated cells was analyzed by qPCR. (C) At 48 h post-transfection of pIEx-1 or
pIEx-1-HSC70-4 in BmN cells, BmNPV-EGFP was added, and the infected cells (EGFP-positive) were evaluated at 0, 24, 48, and 72 h post-infection by fluorescent
microscope. Scale bar was 100 µm. (D) The collected infectious BVs in the supernatants of differentially transfected cells were determined by TCID50 endpoint
dilution assay. Each point was measured in biological triplicates. *p < 0.05 indicated a significant difference.

Wu et al., 2014; Seo et al., 2016; Park et al., 2017; Sun et al.,
2019). Thus, the relatively comprehensive profile of Kac in
different domains of HSC70-4 was created to represent a
clear atlas (Supplementary Figure 1A). In the previous profile
post-baculovirus challenge, five Kac sites were determined
and analyzed by HPLC/MS/MS (Supplementary Figure 1B),
while K77 and K246 in other species HSP/HSC70s had been
investigated in-depth in protein folding/degradation, apoptosis,
and autophagy (Wu et al., 2014; Seo et al., 2016). Related
reports and the above results about HSC70-4 in BmNPV further
prompted us to investigate whether the Kac response to viral
stress plays functional roles in viral progress. Hence, we selected
six conserved and well-studied lysine residues for further viral
effects (Figure 3A). Then, overlapping PCR was employed
for site-directed mutagenesis of lysine to mimic acetylation
(glutamine, K/Q) or deacetylation (arginine, K/R) for viral
genome replication analysis (Figure 3B). The results showed
that acetylated K77 and K246 of HSC70-4 decrease the BmNPV
genome copies but deacetylated K77 increases the number of
copies (Figure 3C).

K77 Deacetylation Promotes HSC70-4
Stability and Nuclear Import Upon
BmNPV
In order to explore if the acetylation of K77 affected HSC70-4
stability under normal conditions or viral stress, Western blot

analysis was performed to observe the protein abundance after
BmNPV 48 h transfection. Results showed that deacetylated
K77 was able to increase the HSC70-4 level in the presence
of a virus or a virus-free situation (Figure 4A), which might
contribute to enhancing viral genome copy. Based on HSC70-
4 nuclear accumulation upon BmNPV (Iwanaga et al., 2014),
we deduced the differential modification of this protein that
would make a difference in the nuclear movement by viral
propulsion. The confocal microscopy (Figure 4B) confirmed
the hypothesis that the deacetylated K77 residue is valuable for
HSC70-4 nuclear import under BmNPV stimulation; however,
the acetylated lysine 77 site is unable to accomplish the nucleus
transportation. In conclusion, the results suggested that K77
deacetylation-mediated HSC70-4 stability and nuclear import
potentially facilitates BmNPV replication.

K77 Deacetylation Is Crucial for HSC70-4
Interacting CHIP
A previous study reported that the K77 acetylation enhances
the interplay between HSP70 and HOP, while K77 deacetylation
contributes to HSP70 and CHIP interaction to implement
the protein degradation (Seo et al., 2016). In B. mori,
HSC70-4 was also capable of interacting with the E3
ubiquitin ligase CHIP (Ohsawa et al., 2016). Thus, we
detected whether the K77 acetylation or deacetylation
influenced the interplay between HSC70-4 and CHIP/HOP
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FIGURE 3 | Six conserved lysine residues mutated for viral genome analysis. (A) K71, K77, K88, K126, K246, and K524 conserved in B. mori HSC70-4 were
aligned with their homologs in other species among Drosophila melanogaster, Spodoptera frugiperda, Caenorhabditis elegans, Mus musculus, and Homo sapiens.
(B) Sequences of HSC70-4 site-mimic acetylation/deacetylation mutants were corrected by BLAST against GenBank. (C) Wild-type or 12 lysine
acetylated/deacetylated mimic mutants of HSC70-4 48 h post-transfection were followed by BmNPV genome replication analysis after infection for 48 h. *p < 0.05
represented a significant difference, and **p < 0.01 indicated extreme significant difference.

by yeast two-hybrid assay. The findings revealed that K77
acetylation or deacetylation did not cause any difference
in the association between HSC70-4 and HOP in yeast
two-hybrid assay (Supplementary Figure 2); however, the
wild-type and deacetylation-mimic HSC70-4 still maintained
the interaction with CHIP, but the acetylation-mimic K77
hindered the association with CHIP (Figure 5). Consistently,
these phenomena also reached a consensus with a previous
report (Seo et al., 2016). The above trials showed that this

lysine 77 residue deacetylation is essential for HSC70-4 and
CHIP cooperation.

HSC70-4 Propulsion by K77
Deacetylation Requires the
Ubiquitin-Proteasome System
The previous investigation demonstrated that the intact
ubiquitin-proteasome system is crucial for BV production and
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FIGURE 4 | K77 residue deacetylation is vital for HSC70-4 stability and nuclear import upon BmNPV. (A) After 48 h post-transfection of wild-type or mutant
HSC70-4, virus-treated 48 h or virus-free 48 h for determining protein level. 6× His antibody was used for detecting exogenous HSC70-4 and mutants. HSC70-4
polyclonal antibody was used for confirming the His-tagged results. Tubulin was loading control, and Gp64 represented successful infection. (B) Confocal
microscopy was applied to analyze the subcellular localization of EGFP-tagged HSC70-4/K77Q/K77R after the BmNPV challenge. Scale bar was 10 µm. DAPI was
used for nuclear indication.

FIGURE 5 | Preferential interaction between K77 deacetylation and CHIP. Yeast two-hybrid assay of the interaction between HSC70-4/K77Q/K77R and B. mori
CHIP. pGBKT7-HSC70-4/K77Q/K77R and pGADT7-CHIP is the experimental group; pGBKT7-53 and pGADT7-T is a positive control; pGBKT7-Lam and
pGADT7-T, pGBKT7 and pGADT7-CHIP, pGBKT7-HSC70-4/K77Q/K77R, and pGADT7 constitute the negative control.

polyhedrin expression during BmNPV infection (Katsuma et al.,
2011). Combined with the K77 acetylation-induced difference
between E3 ubiquitin ligase CHIP interaction and HSC70-4,
we attempted to find if the ubiquitin-proteasome is a potential
alternative pathway for HSC70-4 propulsion to the nucleus.
Therefore, the application of proteasome inhibitor MG132

for analyzing BmNPV genome replication and proliferation
manifested that the robust proteasome played vital roles in
viral pathogenesis, such as genomic duplicates (Figure 6A)
and propagation (Figure 6B), which was in agreement with
the previous results (Katsuma et al., 2011). Furthermore, the
damaged proteasome hampered HSC70-4 nuclear import

Frontiers in Physiology | www.frontiersin.org 7 February 2021 | Volume 12 | Article 609674106

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-609674 February 15, 2021 Time: 18:36 # 8

Mao et al. HSC70-4 Deacetylation Promotes BmNPV Proliferation

(Figure 6C), viral protein synthesis (Figure 6D), and viral
genome copies (Figure 6E) after BmNPV invasion irrespective
of whether it is acetylated or deacetylated. Although HSC70-4
is essential for the substrate degradation through the ubiquitin-
proteasome system (Fernández-Fernández et al., 2017), the
BmNPV utilized in this pathway demands more elucidation.
These consistent consequences potentially indicated that HSC70-
4 nuclear accumulation upon baculovirus challenge might be
modulated by ubiquitin-mediated proteasome function.

DISCUSSION

Bombyx mori nucleopolyhedrovirus (BmNPV) is a pathogen that
threatens the survival of silkworms; however, the baculovirus
expression vector system could be used for the commercial
manufacture of protein mass. Owing to the ambiguous
mechanism between BmNPV and silkworm, we pursued
the molecular machinery underlying this sophisticated
process. Based on our previous BmN cellular acetylome
upon BmNPV infection, five lysine residues with acetylated
change were identified in HSC70-4 (Hu et al., 2018). This
finding stimulated us to deduce whether this posttranslational
modification played regulatory roles in the pathogenesis and
development of baculovirus. In our study, K77 deacetylated
HSC70-4 interacted with CHIP, assisted by the proteasome
to accumulate in the nucleus for facilitating BmNPV
genome replication.

Firstly, in the present study, we applied a wide-spectrum
HSP/HSC70 inhibitor VER to test its function for BmNPV.
VER was previously used to determine the Autographa
californica multiple nucleopolyhedrovirus (AcMNPV) viral
protein synthesis, genome replication, and BV production
(Lyupina et al., 2014). In agreement with this phenomenon,
VER also exerted an inhibitory role in BmNPV genome
replication (Figure 1D), proliferation (Figure 1E), and BV yield
(Figure 1F). Different from 20 µM or 100 µM VER treatment
for Sf9 cells (Lyupina et al., 2014), the moderate application of
10 µM VER in BmN cells was able to diminish the cytotoxic
effect (Figure 1B). Surprisingly, HSC70-4 protein level declined
upon VER and BmNPV combined treatment (Figure 1C),
which could be inferred as proper functions of HSC70-4 in
baculovirus propagation.

Several studies investigated HSP/HSC70 in AcMNPV-infected
Sf9 cells and reported that gene expression and protein
abundance of HSP/HSC70 is upregulated in infected cells
(Lyupina et al., 2010, 2011, 2013). However, Iwanaga et al.
(2014) reported that HSC70-4 is steady during BmNPV invasion
(Liu et al., 2008), which is consistent with our confirmation
(Supplementary Figure 3). Combined with the above results of
BmNPV and VER treatment, it is speculated that the inhibitor-
impaired HSC70-4 would be degraded after the virus challenge,
which possibly meant that BmNPV could distinguish the intact
or damaged HSC70-4 for further utilization. The following
data also supported that HSC70-4 is beneficial for baculovirus
proliferation (Figure 2C), genome replication (Figure 2B), and
BV release (Figure 2D).

In light of our recent silkworm cell acetylated profiling on
baculovirus infection (Hu et al., 2018), several lysine residues
(K77, K100, K246, K524, and K557) were identified in HSC70-4
with dynamic acetylation triggered by BmNPV (Supplementary
Figure 1B). Hence, in association with the above results and other
existing HSP70 acetylation reports (Yang et al., 2013; Wu et al.,
2014; Seo et al., 2016; Park et al., 2017; Sun et al., 2019), we chose
six relatively conserved lysine sites (K71, K77, K88, K126, K246,
and K524) to continue the exploration of HSC70-4 in the virus
progression (Figure 3A). After site-specific mimic acetylation
(lysine/glutamine, K/Q) or deacetylation (lysine/arginine, K/R)
mutation (Figure 3B), the viral genome analysis indicated that
K77 and K246 acetylation of HSC70-4 showed a compromised
effect in comparison to that of wild-type HSC70-4, while K77
deacetylation of HSC70-4 had a more robust influence than
that of wild-type HSC70-4 (Figure 3C). Wu et al. (2014)
investigated that K246 deacetylation of HSP70 was deacetylated
by HDAC1 and HDAC7 that, in turn, inhibited autophagic
cell death. Seo et al. (2016) demonstrated that HSP70 with
K77 acetylation was effectuated by ARD1 acetyltransferase. The
protein interacted with HSP90 and HOP for refolding as a
response to early stress. In the late stimulus, HSP70 with K77
deacetylation tended to interplay with HSP40 and CHIP for
protein degradation (Seo et al., 2016). Furthermore, deacetylated
K77 would weaken HSP70 ATP hydrolysis and ATP binding
ability, but the deacetylated K126 could enhance HSP70 ATP
binding (Seo et al., 2016; Sun et al., 2019). Hence, in the
subsequent study, K77 will be the superior target to unravel the
role of HSC70-4 in BmNPV invasion. Also, K246 acetylation of
HSC70-4 would still be our research goal for future baculovirus
analysis about autophagy, and in a recent study, we reported
that the autophagy-related gene 8 (Atg8) acetylation triggered by
BmNPV regulates autophagy initiation (Xue et al., 2019).

Recent studies reported that the lysine acetylation could
compete with ubiquitination to stabilize the protein (Ma
et al., 2020). In the current study, different from VER-
induced HSC70-4 degradation upon BmNPV stimulus, the
deacetylation-mimic K77R blocked the ubiquitination of lysine,
which might contribute to avoiding its degradation under
normal circumstances (Figure 4A), which may be associated with
allosteric conformational change failure of the ATP/ADP binding
cycle (Seo et al., 2016). According to a previous study, HSC70-4
accumulated in the nucleus at the late infectious stage (Iwanaga
et al., 2014). Similarly, the K77 deacetylation had a vital role in
this nuclear import during BmNPV infection (Figure 4B), which
might be associated with increased genome replication.

To detect whether the K77 acetylation affects the interacting
partner of HSC70-4, we applied the yeast two-hybrid assay
(Y2H). These results were consistent with those of a previous
study that K77 acetylated HSP70 completely blocked its
interaction with CHIP without any protein sequence mutation
(Seo et al., 2016), and the consensus between HSP70 and
HSC70 may provide novel insights into the categorization of
these analogous molecules. HSC70-4, HSC70-3, HSC70-5, and
HSC70-2 in Bombyx mori are constitutively expressed HSP70.
HSC70-2 and HSC70-4 were located in the cytoplasm; HSC70-3
was in the endoplasmic reticulum. HSC70-5 was expressed in
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FIGURE 6 | Proteasome is required for HSC70-4 nuclear accumulation and viral DNA replication. (A) 5 µM proteasome inhibitor MG132 (0 h p.i.) effect for BmNPV
genome copies at 24, 48, 72, and 96 h p.i. DMSO was used as the normal control. (B) BmNPV-EGFP proliferation upon MG132 treatment after 0, 24, 48, and 72 h
p.i. was recorded by a fluorescence microscope. Bright field indicated the BmN cell number and cellular state. Scale bar was 100 µm. (C) After 48 h transfection of
EGFP-HSC70-4/K77Q/K77R, MG132/DMSO (0 h p.i.), and BmNPV treatment, BmN cells were cultured for another 48 h post-infection and observed through
confocal microscopy. DAPI was used to indicate the nucleus. Scale bar was 15 µm. (D) MG132 (0 h p.i.) or BmNPV was added simultaneously at 48 h
post-transfection of wild-type or mutant HSC70-4 for 48 h incubation, followed by Western blot analysis. 6× His antibody was used for detecting exogenous
HSC70-4 and mutants. Tubulin was used as a loading control. Gp64 represented viral infection progress. (E) Correspondingly, HSC70-4 or mutants at 48 h
post-transfection were supplemented with inhibitor and virus to the transfected cells 48 h p.i. for the analysis of viral DNA amount. n.s. means non-significant
difference. *p < 0.05 represents significant difference and **p < 0.01, ***p < 0.005 indicates extremely significant difference.

Frontiers in Physiology | www.frontiersin.org 9 February 2021 | Volume 12 | Article 609674108

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-609674 February 15, 2021 Time: 18:36 # 10

Mao et al. HSC70-4 Deacetylation Promotes BmNPV Proliferation

the mitochondria (Wang et al., 2012). Different cellular
localization of HSP70 possibly decides the functional variety.
A previous study showed differential effects of HSC70 and
HSP70 on the intracellular trafficking and functional expression
of epithelial sodium channels (Goldfarb et al., 2006), while the
difference between HSC70 and HSP70 in baculovirus infection
needs to be elucidated further.

In several investigations, the HSP/HSC70 colocalized
with ubiquitinated proteins during the baculovirus infection
(Lyupina et al., 2011, 2013; Guo et al., 2015). Linked to
K77 deacetylation and interaction with E3 ubiquitin ligase
CHIP, we found that the ubiquitin-proteasome system might
contribute to the HSC70-4 nuclear import during the infectious
process. A recent study also found that the ubiquitin-
proteasome system is crucial for BmNPV polyhedrin expression
and BV production (Katsuma et al., 2011). In the present
study, the ubiquitin-proteasome is also required for viral
genome replication (Figure 6A) and proliferation (Figure 6B)
and can compromise K77 deacetylation-mediated HSC70-
4 nuclear import (Figure 6C); also, the number of genome
copies increase (Figure 6E) after BmNPV challenge. This
phenomenon might imply that HSC70-4 nuclear accumulation
is dependent on the ubiquitin-proteasome system for facilitating
BmNPV replication.
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Supplementary Figure 1 | Kac sites of HSC70-4 response upon BmNPV
stimulation. (A) The miniature architecture of HSC70-4 functional domains,
including nucleotide-binding domain (blue section, 1–382 aa), substrate-binding
domain (green section, 383–537 aa), and C-terminal domain (yellow section,
538–649 aa), was determined with a myriad of acetylated lysine sites in disparate
segments (Kundrat and Regan, 2010; Muller et al., 2013; Gao et al., 2015; Verdin
and Ott, 2015; Seo et al., 2016), and lysine sites in the red bar were identified in
our previous profile. (B) Five Kac sites of HSC70-4 upon BmNPV trigger were
identified by nano-HPLC/MS/MS.

Supplementary Figure 2 | K77 acetylation affects the interaction between
HSC70-4 and HOP. Yeast two-hybrid assay of the interaction between
HSC70-4/K77Q/K77R and B. mori HOP. pGBKT7-HSC70-4/K77Q/K77R and
pGADT7-HOP is the experimental group; pGBKT7-53 and pGADT7-T are positive
control; pGBKT7-Lam and pGADT7-T, pGBKT7 and pGADT7-HOP,
pGBKT7-HSC70-4/K77Q/K77R, and pGADT7 are regarded as negative controls.

Supplementary Figure 3 | Stability of HSC70-4 upon BmNPV challenge. BmN
cellular endogenous HSC70-4 stability dynamics after BmNPV infection were
assessed at several different time points by immunoblotting assay. The viral
structure protein Gp64 represented the BmNPV infectious process successfully.
β-tubulin is used as loading control.

Supplementary Table 1 | The primers involved in this study.
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Viral infection triggers insect immune response, including RNA interference, apoptosis and
autophagy, and profoundly changes the gene expression profiles in infected cells.
Although intracellular degradation is crucial for restricting viral infection, intercellular
communication is required to mount a robust systemic immune response. This review
focuses on recent advances in understanding the intercellular communications in insect
antiviral immunity, including protein-based and virus-derived RNA based cell-cell
communications, with emphasis on the signaling pathway that induces the production
of the potential cytokines. The prospects and challenges of future work are
also discussed.

Keywords: insect, antiviral immunity, cytokine, Dicer-2, intercellular transfer
INTRODUCTION

Viral infection has posed a significant threat to human and animal health, agricultural production
and environmental safety. The frequent outbreaks of pandemics caused by viral infection taught us
bitter lessons that the long-standing battles between the hosts and viruses are much rougher than
expected. As obligate intracellular pathogens, viruses heavily rely on the host cell machinery and
resources to replicate and propagate. Accordingly, host cells develop multiple strategies, including
intrinsic antiviral response that directly restricts viral replication and assembly, and induced
antiviral response that potentiates the antiviral activity of viral-restricting factors or cells to suppress
and eliminate the invading pathogens (1–4).

Insects are the most abundant and diverse group of animals in the world. Some of them are
regarded as model organisms, disease vectors, agriculture and household pests or industrial animals.
A lot of studies have been carried out to investigate molecules, pathways and mechanisms that are
involved in the immune response of different insects upon viral challenges. Among them, a few
attentions are given to how extracellular signaling networks cooperate with intracellular pathways to
mount a robust systemic immune response. Pieces of evidence have proposed that intricate
intercellular communications occur in response to viral infection in insects, and helped us better
understand the insect antiviral immunity in a systematic way.

The best characterized antiviral immune response in insects is RNA interference (RNAi) (3, 5).
Three RNAi pathways have been identified in insects, including the small interfering RNA (siRNA)
pathway, the microRNA (miRNA) pathway and the (PIWI-interacting RNA) piRNA pathway.
Among them, siRNA has been most intensively studied as a potent antiviral defense strategy. siRNA
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is initiated by recognition and cleavage of double-stranded RNA
(dsRNA) produced either as viral replication intermediate or as
base-pairing viral transcript by Dicer-2 in host cells. Dicer-2, an
RNase III family endonuclease, processes dsRNA into 19-23-
nucleotide (nt) long siRNA duplex, which is subsequently loaded
onto Argonaute-2 (Ago-2) endonuclease and integrated into a
multiple protein complex, RNA-induced silencing complex
(RISC). siRNA duplex is then unwound to generate the guide
strand, which targets viral mRNA or genomic RNA containing
complementary sequence for degradation through the RNase
activity of Ago-2, thereby restricting viral infection. miRNA
pathway was previously charactered in post-transcriptional
regulation of gene expression during development, in which a
22-nt duplex miRNA processed by RNase III enzyme Drosha
and Dicer-1 sequentially forms miRNA programmed RNA
induced silencing complex (miRISC) with Ago-1 protein.
Recently, both virus derived miRNAs that regulate insect gene
expression and insect-encoded miRNAs that target virus mRNA
were reported, highlighting its role in host-virus interaction (6,
7). The antiviral role of piRNA which commonly involves in
genomic control of transposable elements is controversial in
Drosophila (8, 9), while in mosquito piRNAs that are derived
from acquired viral cDNA with the characteristic size range of
24–30 nt and features of ping-pong amplification cycle were
discovered to specifically inhibit viral replication (10, 11).

Besides RNAi, viral-induced apoptosis and autophagy also play
important roles in restricting viral infection (12, 13). The
expression level of several pro-apoptotic genes, such as reaper,
hid, and p53, increased in response to virus-induced stress, while
anti-apoptotic genes, such as diap1 decreased, resulting in onset of
apoptosis and subsequent phagocytosis of viral-infected cells by
haemocytes (14–17). Interestingly, sometimes this antiviral
apoptosis is suppressed by host protein, as evidence found in
silkworm that peptidoglycan recognition protein (PGRP) 2-2,
inhibited baculovirus-induced apoptosis via Akt activation,
reflecting arms race between insect and virus (18, 19). Recently,
a few studies found autophagy occurs after Drosophila infected
with vesicular stomatitis virus (VSV), Rift Valley fever virus
(RVFV) or Zika virus as evidenced by the elevation of lipidated
Atg8 (Atg8-II) level and accumulation of Atg8 in autophagic
punctae (20–24). Silencing core autophagy genes, such as atg5
or atg8, led to significant increase of viral load. Plasma membrane
receptor Toll-7 has also been demonstrated to activate autophagy
upon sensing VSV glycoproteins or RVFV (24, 25), which is
independent of transcription factor NF-kB, whereas eliminating
Zika virus by autophagy in Drosophila appears to be NF-kB-
dependent (23).

In addition, genome-wide RNAi screening and transcriptional
profiling has revealed a plethora of genes involved in antiviral
immune response. Some of them have broad antiviral activity. For
instance, negative elongation factor (NELF) and positive elongation
factor b (P-TEFb) collaboratively mediate transcriptional pausing to
potentiate the rapid activation of some inducible genes and are
required to restrict viral replication in adult flies and mosquito cells
(26). Some have been reported to be involved in anti-microbial
immunity with uncharacterized antiviral activity. For instance, two
Frontiers in Immunology | www.frontiersin.org 2113
anti-microbial peptide (AMP) coding genes, diptericinB and
attacinC were up-regulated in transgenic flies expressing a
Sindbis virus (SINV) replicon (27). Knocking-down their
expression led to a modest but significant increase in SINV load,
confirming their antiviral functions. In mosquito cells, Dengue
virus (DENV) infection up-regulated the expression of a cecropin-
like peptide which does not only have anti-bacterial activity, but
also have anti-DENV and anti-Chikungunya virus activity (28).
The enhanced expression of gloverin, lebocin, attacin was also
observed in silkworm larvae infected with Bombyx mori
nucleopolyhedrovirus (BmNPV) (29). Based on these facts, the
Toll and IMD pathways, which are the two canonical NF-kB
pathways responsible for immune response against bacterial and
fungi infection, are considered to be implicated in anti-viral
immunity (30, 31). But most of viral-induced genes remain
enigmas in terms of the molecular mechanism underling their
antiviral activity. For instance, virus-induced RNA 1 (vir-1), a
marker of the induction of anti-viral response, is mainly regulated
by JAK/STAT pathway (32). Loss of function of JAK (named
Hopscotch in Drosophila) caused decreased expression of vir-1,
increased viral load and decreased survival after Drosophila C virus
(DCV) infection. However, the molecular mechanism of antiviral
activity of Vir-1 is unknown.
INTERCELLULAR COMMUNICATIONS

Although intracellular degradation is crucial to virus elimination,
intercellular communication is believed to orchestrate and
coordinate the cellular events. In the following, we will review
the recent studies on extracellular signaling networks during
antiviral immune response (Figure 1) and discuss the prospects
and challenges of future work.

Protein Based Intercellular
Communication: Cytokines
As a comparison, the potent antiviral immune response in
mammalian cells is largely dependent on a group of secretory
protein collectively named cytokines, which are produced and
secreted by viral-infected cells, and bind specific receptors on its
own, neighboring or distant cells to initiate intracellular signaling
mainly via JAK/STAT pathway (33, 34). Cytokines are divided
into several subgroups, including interferon, chemokine,
interleukin and tumor necrosis factor, among which interferon
is particularly important for the immune response to virus. Cells
activated by interferon synthesize various molecules that inhibit
virus entry, replication and assembly, or produce inflammatory
reactions to initiate apoptosis, autophagy and necrosis (35).
Although comparative genomic analysis and evolutionary
study revealed that insects do not possess the homologous
molecules to vertebrate cytokines, the core components of
JAK/STAT pathway including Hopscotch (JAK), STAT92E
(STAT), negative regulators SOCS and PIAS have been
identified in insects, and parallels between gain-of-function
studies with mammalian homologs suggests the functional
similarity of insect JAK/STAT pathway to vertebrates. Thanks
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to the genetic analysis of mutants defective in embryonic
development, ligands and receptor of JAK/STAT pathway were
first discovered in Drosophila (36). All three ligands, named
unpaired (Upd), Upd2, and Upd3 bind the same receptor named
Domelss (Dome) which shares sequence similarity with
mammalian IL-6 receptor (37), but only Udp2 and Upd3 are
induced by viral infection and provide protection from a viral
infection (38). Notably, JAK/STAT pathway has been considered
to be triggered in bystander cells rather than in infected cells,
since vir-1 was not induced in DCV-infected fat body and
periovarian sheath, but was substantially induced in epithelial
cells of the ventral epidermis or in the oviduct, in which no viral
load was detected, suggesting that vir-1 was induced after a signal
generated by the DCV-infected cells (32).

The signaling pathways responsible for induction of
mammalian cytokines may also give some clues to whether
there exists any “cytokine” that transmits antiviral signals
between insect cells. Viral nucleic acids in mammalian cells are
recognized by diverse cytosolic RNA or DNA sensors, including
toll-like receptors (TLRs), retinoic acid-inducible gene I (RIG-I),
Frontiers in Immunology | www.frontiersin.org 3114
absent in melanoma 2 (AIM2), DNA-dependent activator of
IFN-regulatory factors (DAI) and cyclic GMP-AMP synthase
(cGAS) (39). The signal is eventually relayed to transcriptional
factors, including interferon regulatory factor 3 (IRF3) and NF-
kB via signaling adaptors, such as antiviral-signaling protein
(MAVS) and stimulator of interferon genes (STING) to activate
interferon expression (40, 41). Despite the fact that far less
nucleic acids sensors have been identified in insects, STING-
mediated antiviral immunity has been discovered in Drosophila
and Bombyx mori recently (23, 42, 43). Epistatic analysis showed
that dSTING acts upstream of IKKb and NF-kB transcriptional
factor Relish to regulate the expression of a set of antiviral
molecules, including a putative transmembrane protein named
Nazo. Flies bearing dSTING or Relish mutant displayed higher
susceptibility to infection of DCV, VSV or Cricket paralysis virus
(CrPV). Activation of Relish by BmSTING was also detected in
silkworm cell as evidenced by the cleavage of Relish carboxy-
terminal Ankyrin repetitive sequence, which releases Relish from
sequestration in cytoplasm, when BmSTING was over-expressed.
The evolutionary conservation in STING- and NF-kB-dependent
A

B

C

FIGURE 1 | Intercellular communications in insect antiviral immune response. (A) Cytokines produced and released from viral infected cells bind to receptors and
activate antiviral immune response in target cells. (B) Double-stranded RNA (dsRNA) and Ago-2 is transferred through tunneling nanotubes bridging infected cells
and neighboring cells. (C) Viral-derived dsRNAs (vsRNAs) produced in viral-infected cells engulfed by haemocytes are reverse-transcribed into vDNAs by
endogenous transposon reverse transcriptase. vDNAs then serve as template for transcription of secondary vsRNAs which are secreted in exosome-like vesicles and
processed into siRNA by cells taking up these vesicles.
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antiviral signaling pathway between insects and mammals
suggests functional similarity in their downstream effectors.
Indeed, a few years ago an antiviral factor Vago which bears no
sequence homology to mammalian cytokines was first reported
to be induced in the fat body of flies upon DCV infection, later
its mosquito homologs that may act like interferon have been
identified in Culex, Aedes and Anopheles (44, 45). CxVago
was produced and secreted by West Nile virus (WNV)-infected
cells. Incubating naïve cells with supernatant collected from
Vago-expressing cells activated the JAK/STAT signaling
pathway and induced the expression of vir-1 in naïve cells
independent of Dome. A NF-kB binding site was identified in
CxVago promoter region afterwards, and Culex Rel2 which is a
Drosophila Relish homolog has been demonstrated to be required
for induction of CxVago subsequently. In addition, activation of
Rel2 upon SINV infection was observed in mosquito cells (46).
Intriguingly, after incubating with supernatants harvested from
cells expressing Relish activated form, naïve silkworm cells
displayed substantial resistance to BmNPV infection. Certain
polypeptides purified from the supernatants of DNV-infected
mosquito cells also acted like cytokines, conferring antiviral
activity to naïve cells (47, 48).

Interestingly, in both flies and mosquito cells, induction of
Vago has been characterized to be Dicer-2 dependent, since Dicer-
2-mutant flies or Dicer-2-silenced mosquito cells had significantly
lower levels of Vago induced by viral infection compared to Dicer-
2-intact controls. But mutation of other RNAi key players, such as
Ago-2 and R2D2 had no impact on Vago expression, indicating
that induction of Vago is independent of RNAi pathway.
Phylogenetic analysis revealed Dicer-2, which is a key player in
RNAi, is closely related to mammalian RIG-I in terms of their
DExD/H-box helicase domain (49, 50). Both of them belong to
RIG-I-like receptor (RLR) family along with some other
cytoplasmic RNA sensors, including MDA5 and Laboratory of
Genetics and Physiology 2 (LGP2). More recently, Dicer-2 has
been reported to modulate viral DNA production via acting as a
pattern recognition receptor similar to RLR that senses defective
viral genomes (DVGs) (51). The absence of RIG-I proteins in
insects but presence of the activity of RNA sensing and induction
of antiviral factors which is carried out in a Dicer-2 dependent
manner suggests Dicer-2 may be the archetypal RLR that activates
the antiviral signaling pathway in insects. It is worth exploring
whether Dicer-2, STING and Relish constitute a signaling axis that
leads to the production of antiviral effectors and contributes to
cell-cell communication.

Apparently, not all viral-induced molecules potentiate antiviral
immunity, some may promote host survival by preventing
immune signaling from over-activation. Diedel has been
characterized as an immunomodulatory cytokine in Drosophila
that was strongly induced following infection with slowly
replicating viruses, such as SINV and VSV (52). diedel mutant
flies developed persistent inflammation as a few immune-related
genes, most of which are considered to be controlled by the IMD
pathway, were up-regulated in the absence of viral infection. They
also showed reduced survival after immune challenges without an
increase in viral load, suggesting the IMD pathway which may
Frontiers in Immunology | www.frontiersin.org 4115
contribute to viral-induced pathogenesis is required to be down-
regulated. Interestingly, Diedel homologs have also been identified
in the genome of three different and unrelated families of DNA
viruses that infect Lepidoptera, including Entomopoxvirinae,
Baculoviridae, and Ascoviridae (53). Transcriptome analysis
found elevated expression of ascovirus diedel in infected
Spodoptera frugiperda larvae (54), and expression of the
ascovirus diedel partially rescued the reduced viability of diedel
mutant flies (52). The possible horizontal transfer of
immunomodulatory genes from host to virus represents a
strategy that virus exploits to manipulate host immune response
in favor of its own replication and dissemination.

RNA Based Intercellular Communication:
Transferring of Virus-Derived RNA
Between Cells
Intercellular transferring of virus- or host-derived RNA, DNA
and proteins from infected cells to neighboring cells are
increasingly recognized as an important mean to mount a self-
sustaining and even amplified innate immune response. Gap
junctions, exosomes, microvesicles and plant plasmodesmata
have been reported to deliver the substances originated from
viral infected cells to immunize the other cells before arrival of
the virus (55–58). Although the open circulatory system in
insects is always believed to allow fast spread of virus in the
hemolymph and migration beyond the primary site of
replication, the possible cell-cell communication is supported
by evidence of intercellular transferring of virus-derived RNA.
Flies defective in dsRNA endocytosis or intracellular transport
were hypersensitive to viral infection, and the high mortality was
accompanied by hundredfold increase in viral titer, suggesting a
systemic spread of dsRNA is required for antiviral immunity
(59). Nanotube-like structures made of actin and tubulin were
first reported in a study of the intercellular communication
between Drosophila cells (60). Those membrane projections
generated by viral-infected cells bridge neighboring cells for
transferring of components of RNAi machinery, including
Ago-2 and dsRNA between cells. A more recent study
discovered that haemocytes acquire virus-derived dsRNA
(vsRNA) by phagocytosing virus-infected cells and reverse-
transcribe the viral RNA through endogenous transposon
reverse transcriptases into DNA which serves as a template for
transcription of secondary vsRNA in an Ago-2 dependent
manner (61). The secondary vsRNA is secreted by haemocytes
in exosome-like vesicles (ELVs) and spreads through the
haemolymph. It is then processed into siRNA by cells taking
up these ELVs and confers virus-specific immunity. Of note, this
systemic antiviral potential of haemocyte-derived ELVs persists
weeks after the onset of viral infection, thus it was proposed as an
RNAi-based “adaptive immunity” in Drosophila.
DISCUSSION

Extracellular signaling network coordinates the systemic immune
response through alarming or even arming the non-infected cells
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with messages from viral infected cells. Although it is one of the
most important parts of immune response, much less have we
learnt about the molecules or vesicles secreted by viral infected
cells, ways to deliver them or the pathways they influence.
Integrated omics approaches might be required to characterize
the soluble substances in the fractionated extracellular fluid of viral
infected cells in the future research, screening of target genes under
regulation of signaling pathways that are activated by viral sensors
would also help to narrow down the candidates. Furthermore, the
absence of viral loads in tissues expressing antiviral marker genes
(32) or passive protection of naïve flies against viral challenges
conferred by injection of purified ELVs from viral infected flies
(61) suggests a tissue-targeted delivery or diffusion throughout the
entire body, therefore identification of molecules that act as
receptors or carriers of those extracellular substances will
decipher how the antiviral signal is transmitted between cells,
which tissues or organs are targeted and which intracellular
pathways are activated.

Although the lack of sequence similarity between insect and
vertebrate cytokines impedes a sequence-function relationship
analysis, the structural features they share suggest they are
functionally related. For example, one subdomain of Diedel,
consisting of an antiparallel b-sheet covered by an a-helix,
resembles certain CC or CXC chemokine family members (62),
which modulate immune response by maintaining proliferative
homeostasis and attenuating apoptosis. Interestingly, recombinant
human IL-8 was reported to promote the phagocytic activity of
Drosophila S2 cells and enhance the expression of Upd-3 as well as
some AMP genes, including defensin, cecropin A1, and diptericin
(63), implying that certain membrane bound molecule may
function as receptor to ligand that resembles the structure of IL-8.

Some danger signals, such as metabolites produced by viral-
infected cells or damage-associated molecular pattern (DAMP)
released by dead or damaged cells, may also serve as mediator for
systemic inflammatory response. For instance, in mammalian
models nitric oxide (NO) generated through NO synthase (NOS)
which is upregulated upon viral infection can diffuse freely across
cell membranes and activate antiviral mechanisms in various
ways, including direct and indirect damage to viral genomes (64,
65). In insects, it is well documented that NO regulates immune
response to bacteria, nematode and parasites characterized by
AMP expression and melanin production (66–68), and a cell-
based assay showed that NO inhibits DENV replication partly
through suppressing RNA-dependent RNA polymerase (69),
although its role in insect antiviral immunity has not been
characterized. Actin, an evolutionarily-conserved DAMP was
reported to selectivity induce JAK/STAT target genes through
cytokine Upd3 in Drosophila, whether it confers antiviral activity
needs further investigation (70).

Antiviral immune response induced by different viruses varies,
which might be another factor that complicates the understanding
of insect antiviral immunity. For instance, Vago/Vago-like
expression was down-regulated upon the infection of virulent
virus but not with avirulent virus in bumblebee (71). Fast
replicating viruses, such as DCV, CrPV and Flock House virus
(FHV), unlike slowly replicating viruses, did not induce Diedel
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expression (52). In the mosquito midgut, transcriptional level of
Rel2 and its canonical target genes, such as diptericin and attancin,
was not induced by DENV (72), but the activation of Rel2 was
detected on protein level and knockdown of Rel2 significantly
increased WNV viral load (44). The seemingly disagreement on
the involvement of certain molecules in antiviral immunity
suggests a careful assessment of their general or specific
functions is required.

In addition to their potential roles in the antiviral immune
response, some molecules also participate in the defense against
other microbial challenges. For example, knock-down of
dSTING resulted in more susceptibility to Listeria infection
(73) and mutation of BmSTING led to defective autophagy of
microsporidia in silkworm larvae (74), suggesting insect STING
mediates immune signaling pathways in response to various
pathogens. However, some cytokines that have been identified in
insect immune defenses against bacteria or parasites, such as
growth blocking peptide (GBP) which has been characterized as
a cytokine switching humoral and cellular immune response (75,
76), and TNF ortholog Eiger which promotes apoptotic cell
death via JNK pathway and aids clearance of extracellular
pathogens (77, 78), are not reported in the antiviral response.
Therefore, it will be interesting to investigate whether there exist
multifaceted mediators in insect innate immunity.

While studies on the viral-induced intercellular communication
are still preliminary in insects, they provide valuable insights into
artificial manipulation of host immune response. Insulin/insulin-
like peptide has been recently reported to potentiate JAK/STAT
pathway via ERK to broadly inhibit flavivirus replication in fly and
mosquito cells, and insulin-supplemented meal effectively reduced
WNV titers in infected Culex mosquitos (79, 80). Although the
change in insulin level induced by viral infection was not yet
reported in insects or even linked to antiviral immunity prior to
this report, the decrease in insulin secretion was found to be
common in mammals after viral infection. Research efforts aimed
at characterizing the intercellular communication will not only
provide a greater depth of knowledge regarding extracellular
signaling networks, but also potential targets for pest or disease
control based on interfering intercellular communication or
priming insects with molecules transmitting antiviral messengers.
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The mulberry silkworm (Bombyx mori) is a model organism, and BmNPV is a
typical baculovirus. Together, these organisms form a useful model to investigate
host–baculovirus interactions. Prothoracic glands (PGs) are also model organs, used
to investigate the regulatory effect of synthetic ecdysone on insect growth and
development. In this study, day-4 fifth instar silkworm larvae were infected with BmNPV.
Wandering silkworms appeared in the infected groups 12 h earlier than in the control
groups, and the ecdysone titer in infected larvae was significantly higher than that of the
control larvae. We then used RNA sequencing (RNA-seq) to analyze silkworm PGs 48 h
after BmNPV infection. We identified 15 differentially expressed genes (DEGs) that were
classified as mainly being involved in metabolic processes and pathways. All 15 DEGs
were expressed in the PGs, of which Novel01674, BmJing, and BmAryl were specifically
expressed in the PGs. The transcripts of BmNGDN, BmTrypsin-1, BmACSS3, and
BmJing were significantly increased, and BmPyd3, BmTitin, BmIGc2, Novel01674, and
BmAryl were significantly decreased from 24 to 72 h in the PGs after BmNPV infection.
The changes in the transcription of these nine genes were generally consistent with
the transcriptome data. The upregulation of BmTrypsin-1 and BmACSS3 indicate that
these DEGs may be involved in the maturation process in the latter half of the fifth
instar of silkworm larvae. These findings further our understanding of silkworm larval
development, the interaction between BmNPV infection and the host developmental
response, and host–baculovirus interactions in general.

Keywords: Bombyx mori, Bombyx mori nucleopolyhedrovirus, prothoracic gland, transcriptome, 20-
hydroxyecdysone

INTRODUCTION

The mulberry silkworm (Bombyx mori) has been reared for the past 5,000 years in China due
to its importance for silk production. In addition to this economic importance, B. mori has
recently played an essential role as a model organism in scientific research, molecular biology, and
genetics studies (Mita et al., 2004; Xia et al., 2004). B. mori undergoes complete (egg–larva–pupa–
adult) metamorphosis within each generation; however, only the larval stage feeds. In general,
silkworm larvae are tetramolters that proceed through four instars, molting between each instar.
The durations of the larval instar stages are as follows: 3–4 days in the first instar, 2–3 days in
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the second instar, 3–4 days in the third instar, 5–6 days in the
fourth instar, and 6–8 days in the fifth instar. However, the
duration of the larval stage depends on the silkworm strain
and rearing temperature. Silkworm larvae grow rapidly, and the
weight of a terminal fifth instar larva is ∼10,000 times that of
a newly hatched larva (Xu et al., 2019). In particular, day 3 of
the fifth instar larvae is the boundary for the larval stage, where
the larvae feed and grow quickly from day 1 to day 3 of the fifth
instar. The larvae then (in the gluttonous stage) greatly synthesize
silk proteins in the silk gland (Xu et al., 2019), which indicates
maturation and leads to spinning in the terminal fifth instar stage.
After the completion of silk spinning, the silkworms proceed with
larval–pupal metamorphosis.

Sericulture is one of the main sources of income for farmers
in many developing countries, such as China, India, Brazil,
Vietnam, and Thailand (Jiang and Xia, 2014). China produces
almost 80% of cocoons worldwide. Sericulture faces biological
challenges from pathogenic fungi, bacteria, and viruses, which
can cause annual cocoon production losses of 20–30% (Jiang
et al., 2013a). Although antibiotics are administered to silkworms
to prevent and treat bacterial diseases, and fresh lime and
chlorine-containing preparations are used to disinfect the rearing
seat to prevent fungal diseases, there are no effective prevention
and treatment methods for viral diseases. Viral diseases are
responsible for almost 80% of the annual cocoon production
losses, and B. mori nucleopolyhedrovirus (BmNPV) is one of
the major pathogens and the most prevalent threat to sericulture
in almost all countries worldwide (Jiang et al., 2013a; Jiang and
Xia, 2014). BmNPV is an enveloped double-stranded DNA virus
that presents a biphasic infection process throughout its viral
life cycle, generating progeny with two different phenotypes,
namely, occlusion-derived virus (ODV) and budded virus (BV)
(Gomi et al., 1999). ODVs are packaged in occlusion bodies
(OBs). Both forms play different roles during pathogenesis.
The alkalinity of the silkworm midgut triggers the dissolution
of OBs and the release of ODV in the midgut lumen. The
ODV is responsible for the primary infection through oral
transmission of the virus among silkworm larvae, while the
BV is responsible for the secondary infection, causing systemic
spreading all over the host within the infected silkworm larvae
(Jiang, 2021).

Bombyx mori is a model organism, and BmNPV is a typical
baculovirus (Gomi et al., 1999; Mita et al., 2004; Xia et al., 2004),
and together, they present an important model to assess host–
baculovirus interactions (Jiang and Xia, 2014). Insights from
previous host studies revealed that innate antiviral immunity in
lepidopteran insects plays important roles in host–baculovirus
interactions (Jiang, 2021). Antiviral proteins, including red
fluorescent proteins (RFPs) (Sunagar et al., 2011; Manjunatha
et al., 2018), Bmlipase (Bmlipase-1 and Bmlipase member H-A)
(Ponnuvel et al., 2003; Zhang S. Z. et al., 2020), serine proteases
(SPs), and serine protease homologs (SPHs) (Nakazawa et al.,
2004; Ponnuvel et al., 2012), show strong antiviral activity in the
digestive juice of the silkworm. Moreover, heat shock protein
19.9 (Bmhsp19.9) is involved in antiviral immunity against
BmNPV function (Jiang et al., 2021b). BmNPV has also evolved
diverse mechanisms to counter host responses and ensure its

replication. For example, BmNPV activates the expression of
BmPGRP2-2 to inhibit phosphatase and tensin homolog (PTEN),
which relieves its suppression of the PI3K-Akt pathway and
triggers an increase in Akt phosphorylation (p-Akt) to inhibit
cell apoptosis; the resulting increased cell survival is beneficial
for viral replication (Jiang et al., 2019). BmSpry is upstream
of ERK and JNK and is downregulated by BmNPV to elevate
p-ERK and ensure viral reproduction in the silkworm (Guo et al.,
2019). BmNPV activates the host ERK and JNK signal pathways
for efficient replication (Katsuma et al., 2007). The baculovirus
ecdysteroid UDP-glucosyltransferase gene (egt) encoding the
enzyme ecdysteroid UDP-glucosyltransferase catalyzes the
transfer of glucose from UDP-glucose to ecdysteroid molting
hormones, and the expression of this enzyme blocks the molting
of infected larval insects (O’Reilly and Miller, 1989). The BmNPV
egt gene prolongs the survival time of infected silkworms to
increase virus reproduction (Katsuma and Shimada, 2015).

The expression of NPV genes occurs in four phases: immediate
early phase (0–4 h post-infection, hpi), delayed early stage (5–7
hpi), late stage (8–18 hpi), and very late stage (>18 hpi). Viral
DNA replication starts at 8 hpi and represents the transition
from the early stage to the late stage (Huh and Weaver, 1990;
Jiang et al., 2013b, 2021a). Global shutoff of host gene expression
and protein synthesis in insect cells begins at the early stage
at around 12–18 h after NPV infection (Du and Thiem, 1997;
Shirata et al., 2010; Ikeda et al., 2013). However, previous studies
that investigated the interactions between BmNPV and its hosts
have mainly focused on newly exuviated fifth instar silkworm
larvae infected by BmNPV and the systemic process of infection
by BmNPV within 48 hpi (i.e., silkworm larvae in the first half
of the fifth instar). Until now, no studies have investigated the
interactions between BmNPV and silkworm larvae in the latter
half of the fifth instar.

The use of next-generation sequencing technologies in
genome-wide studies of silkworms and BmNPV interactions is
a recent development and is rapidly advancing. Recently, several
studies have reported on the transcriptional response of silkworm
larvae against BmNPV infection in the major innate immune
tissues of the fat body and midgut (Chen et al., 2019; Huang
et al., 2019; Jiang et al., 2019; Toufeeq et al., 2019; Zhang X. et al.,
2020). However, the gene expression of prothoracic glands (PGs)
infected by BmNPV has not yet been analyzed.

In the present study, we first investigated the precocious
molting and metamorphosis of silkworm larvae under BmNPV
infection, and the ecdysone titer in infected larvae was
significantly higher than that of the control larvae. We then
used RNA sequencing (RNA-seq) to analyze silkworm PGs 48 h
after BmNPV infection. The classifications of the 15 differentially
expressed genes (DEGs) were mainly involved in the metabolic
processes and pathways. The reverse transcription quantitative
PCR (RT-qPCR) results of the DEGs in the PGs of BmNPV-
infected larvae at 24, 48, and 72 h were generally consistent
with the transcriptome data. The transcripts of BmTrypsin-1 and
BmACSS3 were significantly increased from 24 to 72 h after
BmNPV infection, indicating that they may be involved in the
maturation process in the latter half of the fifth instar of silkworm
larvae. This study was conducted to further our understanding
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of the complex biological processes in the interactions between
BmNPV and its precocious metamorphic insect hosts.

MATERIALS AND METHODS

Study Animals and Virus
Bombyx mori F50 strain larvae were reared on fresh mulberry
leaves under a 12:12 h day/night cycle at 25 ± 1◦C and
60% relative humidity. The majority of the fifth instar larvae
started wandering on day 8, depending on the batch of the
silkworm. The larvae underwent oral inoculation with a wild
BmNPV T3 strain, and the OBs were obtained from the larvae
hemolymph before the larvae died. The OBs were purified by
repeated and differential centrifugation, as previously described
(Rahman and Gopinathan, 2004).

Sample Collection
In total, 500 day-4 fifth instar larvae were orally infected with
BmNPV using 2.0 × 106 OB/larva. Control larvae (n = 500) were
fed the same volume of sterile distilled water. The larvae of the
infected and control groups were maintained in isolation and
reared under the same conditions. The PGs were entwined in
pairs in the tracheal bush of the first spiracle (Supplementary
Figure 1). The PGs were carefully removed from the larvae
of the infected and control groups after 24, 48, and 72 h
(Supplementary Figure 2). Hemolymph was collected from day 6
(48 hpi), day 6.5 (60 hpi), day 7 (72 hpi), and day 7.5 (84 hpi) fifth
instar larvae of the infected and control groups for use in assays of
the ecdysteroid titers among the different developmental stages.

Statistics of Precocious Maturation of
Silkworms After BmNPV Infection
Day-4 fifth instar larvae were divided into 6 groups with 200 in
each group. All 200 larvae used in each of the three independent
experiments were orally infected with BmNPV using 2.0 × 106

OB/larva. The 200 control larvae used in each of the three
independent experiments were fed with the same volume of
sterile distilled water. The larvae of the infected and control
groups were maintained in isolation and reared under the same
conditions. Diseased and dead larvae were removed and counted
during rearing. When the proportion of mature silkworms
was > 5% (first gate), the statistics was started.

Cholesterol and 7-Dehydrocholesterol
Feeding Experiments
As previously described (Wu et al., 2016), silkworm larvae were
fed mulberry leaves supplemented with 8,000 mg/L of cholesterol
and 7-dehydrocholesterol (7dC). Mulberry leaves supplemented
with the same volume of sterile distilled water were used as the
control. Day-5 fifth instar larvae were initially fed (first feed
session) with cholesterol and 7dC supplemented leaves and then
again 24 h later (second feed session). Replacement mulberry
leaves were added 6 h after each feeding session. The proportion
of mature vs. immature larvae was counted, and the second gate
was determined to be the point at which the majority of the larvae

had started maturing. The point at which all larvae (100%) had
reached maturity defined the third gate. All experiments were
repeated three times per group.

Assay of Ecdysteroid Titers in
Hemolymph and Examination of Viral
DNA in PGs
The hemolymph samples were homogenized in 50% MeOH
(800 µl). The resultant homogenates were centrifuged, and the
supernatant was used to assay the ecdysteroid titers using an
Insect Ecdysone ELISA Kit (Shanghai MEILIAN Biotechnology
Co., Ltd.) according to the manufacturer’s instructions. RT-PCR
was used to analyze the BmNPV virus replication level. The total
DNA was extracted from the PGs of the BmNPV-infected larvae
at 24, 48, and 72 h, as well as from the control larvae at 48 h. The
DNA templates (10 ng) were PCR amplified using primers for the
BmNPV GP41 gene. The silkworm glyceraldehyde-3-phosphate
dehydrogenase (BmGAPDH) was used as the internal control.
The specific primers for each gene used in the RT-PCR are shown
in Supplementary Table 1. The RT-PCR product of each gene
was defined as previously described (Zhang et al., 2019).

Transcriptome Analysis
Total RNA was isolated from the PGs of the silkworm
larvae using the TRIzol reagent (Invitrogen, New York, NY,
United States) according to the manufacturer’s instructions. RNA
purity was quantified using a NanoDrop 2000 spectrophotometer
(Thermo Fisher Scientific, New York, NY, United States).
Poly(A)-tailed RNA prepared using magnetic oligo (dT) beads
was broken into short fragments using a fragment buffer
and was then reverse transcribed to synthesize first-strand
complementary DNA (cDNA) with a random primer. DNA
polymerase I was then mixed with RNase H, deoxyribonucleotide
triphosphate (dNTP), and the buffer solution to synthesize
the complementary strand. The libraries were constructed
using the Illumina methods and protocols, following the
manufacturer’s instructions. The insert size and concentration
of the cDNA library were both checked and quantified by
an Agilent Bioanalyzer 2100 (Agilent Technologies, Inc., Santa
Clara, CA) and Qubit R© RNA Assay Kit (Life Technologies,
CA, United States), respectively. RNA-seq was carried out
using an Illumina HiSeq 2500 instrument (Illumina, San Diego,
CA, United States). To obtain clean reads and ensure the
quality of information analysis, the raw reads were filtered
by removing the adapter sequences, empty reads, unknown
nucleotides (ratio ≥ 10%), and low-quality reads with a basic
mass value of Q ≤ 20, which accounted for more than 50% of
the whole read length. The clean read assembly was performed
according to a previous report (Grabherr et al., 2011). The paired-
end clean reads were mapped to the B. mori genome using the
software package TopHat2 (version 2.0.12) (Kim et al., 2013).
The genome sequences and annotation file were downloaded
from SilkDB. The RNA-seq reads were aligned and then used
to construct transcripts with Cufflinks (version 2.1.1) (Trapnell
et al., 2012). HTSeq (version 0.6.1) was used to count the reads
mapped to each gene to quantify the gene expression levels

Frontiers in Physiology | www.frontiersin.org 3 May 2021 | Volume 12 | Article 650972121

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-650972 May 4, 2021 Time: 16:33 # 4

Xu et al. Silkworm Precocity Resisting BmNPV

(Anders et al., 2015). The fragments per kilobase of transcript
per million mapped reads (FPKM) of each gene were then
calculated based on the length of the gene and read count
mapped to a given gene. Genes with a FPKM ≥ 1.0 were
identified as “expressed.” A ratio (log2 fold change) between
the infected and control groups of ≥ 1.5 was identified as the
determinant of the DEGs. The raw data have been submitted to
the Gene Expression Omnibus (GEO) database with the accession
number GSE167875. The functional annotation of DEGs was
performed using the Gene Ontology (GO) assignments (Gotz
et al., 2008) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichments (Kanehisa et al., 2012).

Tissue Expression Patterns of DEGs
The PGs are important endocrine organs that are significantly
different from other tissues in both their morphology and
function. In silkworms, the day-3 fifth instar is the boundary for
the whole larval development stage (Xu et al., 2019). To analyze
the tissue expression patterns of the identified DEGs in the PGs,
the PGs, head, integument, midgut, fat body, hemocyte, ovary,
testis, Malpighian tubule, trachea, anterior silk gland (ASG),
median silk gland (MSG), and posterior silk gland (PSG) of day-
3 fifth instar larvae were collected. We detected the expression
patterns in the multiple tissues of day-3 fifth instar larvae.
Total RNA was extracted using the TRIzol reagent (Invitrogen,
Carlsbad, CA, United States). Total RNA concentrations were
quantified, and single-stranded cDNAs were synthesized. The
BmGAPDH gene was used as an intrinsic control.

RT-qPCR Analysis
The genes selected according to the RNA-seq results were
compared by RT-qPCR. Total RNA was extracted from the PGs
samples of the infected and control groups at 24, 48, and 72 h.
The first-strand cDNA was synthesized using the PrimeScript
Reverse Transcriptase kit (TaKaRa, Dalian, China) according
to the manufacturer’s instructions. RT-qPCR was performed as
previously described (Xu et al., 2019). The BmGAPDH gene was
used as an intrinsic control (Guo et al., 2016).

RESULTS

Statistics of Precocious Maturation of
Silkworm After BmNPV Infection
The point when the proportion of mature silkworms was >5%
was considered as the first gate, the point when the majority
of larvae started maturing was considered as the second gate,
and the point when all larvae had reached maturity (100%) was
considered as the third gate. The duration of the fifth instar larval
stage of the B. mori F50 strain was almost 8.5 days (Figure 1).
The day-4 fifth instar larvae infected with BmNPV matured early.
The times that both the first- and second-gate mature silkworms
appeared in the infected groups were 12 h earlier than in the
control groups (Figure 1). The weights of mature silkworms in
the infected groups were significantly decreased when compared
with the control groups (Supplementary Table 2). The spinning

process was normal, and there was no difference between the
infected groups and the control groups. Approximately half of the
larvae in the infected groups died during the larval–pupal stage.
Compared with the control groups, the cocoon sizes and the
weights of the pupae (female and male) were observably reduced
in the BmNPV-infected groups (Supplementary Table 2).
The fifth instar larvae underwent precocious maturation after
infection with BmNPV. Moreover, the day-5 fifth instar larvae
were fed with 8,000 mg/L cholesterol and 7dC (via supplemented
leaves). The results of feeding with cholesterol and 7dC were
also shown to induce precocious maturation when compared
to the control, where a certain number of larvae exhibited
an anal prolapse in each group fed with cholesterol and 7dC
(Supplementary Table 3).

Assay of Ecdysteroid Titers and RT-PCR
Analysis of Viral DNA After BmNPV
Infection
Based on the findings of precocious maturation of silkworms
after BmNPV infection, the molting and metamorphosis of
silkworm requires the presence of 20-hydroxyecdysone (20E).
We speculated that the BmNPV infection would have some
influences on the ecdysone titer. Thus, the titers of ecdysone
in infected and control larvae were determined by ELISA.
The results indicated that the ecdysone titers were significantly
higher in infected larvae than in the control larvae (Figure 2A).
Meanwhile, RT-PCR was used to analyze the virus genomic DNA
copies in the PGs at 24, 48, and 72 h after BmNPV infection. The
expression of the BmNPV GP41 gene was detected in the PGs
from 24 to 72 hpi (Figure 2B). The expression of the GP41 gene
was not detected in the PGs from the uninfected larvae at 48 h
(Figure 2B). These results were useful for selecting the time point
for the RNA-seq experiments.

General Information of RNA-Seq and
DEGs
The square of the Pearson correlation coefficient (R2) between
the four samples was > 0.938 (Supplementary Figure 3).
The Q20 values for the clean reads (for each group) were
above 95% (Supplementary Table 4). The percentage of clean
sequences located on the genome was > 80%. These results
indicated that the transcriptome data were assembled with high
quality and can be used for further research. The number of
expressed genes was 10,152 in the control groups and 10,404
in the BmNPV-infected groups (Supplementary Table 5). In
total, seven upregulated and eight downregulated DEGs were
screened out (Table 1 and Supplementary Table 6). The
functions of the 15 DEGs were primarily located in the binding
proteins of nucleic acids, ions, and proteins, and BmTrypsin-
1 had a serine-type endopeptidase activity (Table 1). The
DEGs were then annotated by GO analysis to determine their
involvement in biological processes, molecular functions, and
cellular components (Supplementary Figure 4). The upregulated
expression genes were related to biological processes that
were mainly focused on metabolic and biological processes
(Supplementary Figure 4 and Supplementary Table 7). The
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FIGURE 1 | Statistics of the duration of the fifth instar and precocious maturation for day-4 fifth instar silkworm larvae infected with BmNPV. Values represent
means ± SDs of three independent investigations. Significant differences are indicated by (*p < 0.05) or (**p < 0.01).

FIGURE 2 | Assay of ecdysteroid titers in hemolymph and examination of virus genomic DNA copies in the prothoracic glands (PGs). (A) ELISA analysis was
repeated three times for each set of protein samples. Values represent the means ± SDs of three independent determinations. Significant difference is indicated by
(*p < 0.05). (B) The expression of the BmNPV GP41 gene was detected in the PGs of the BmNPV-infected silkworm larvae at 24, 48, and 72 h, as well as the
control larvae at 48 h. M: DL2000 DNA marker; numbers 1–4 indicate the control group at 48 h and the BmNPV-infected groups at 24, 48, and 72 h, respectively.

downregulated expression genes were focused on biological
and metabolic processes and respond to stress factors and
stimuli in biological processes (Supplementary Figure 4 and
Supplementary Table 7). Regarding the cellular components,
only the downregulated expression genes were involved in
the membrane and integral components of the membrane,
and the upregulated expression genes were not enriched
(Supplementary Figure 4 and Supplementary Table 7). Within
the molecular function, the upregulated expression genes were
primarily located in the catalytic activity, and the down regulated
expression genes were involved in protein binding, hydrolase
activity, and catalytic activity (Supplementary Figure 4 and
Supplementary Table 7). There were some differences in
the GO functional annotations between the upregulated and
downregulated genes (Supplementary Figure 4). The KEGG

pathway enrichment analysis of the identified DEGs showed
that the enriched genes were mainly involved in pathways,
including metabolic pathways, propanoate metabolism, beta-
alanine metabolism, drug metabolism with other enzymes,
pyrimidine metabolism, and pantothenate and coenzyme A
(CoA) biosynthesis (Table 2 and Supplementary Table 8). The
KEGG pathway enrichment analysis of BmACSS3 revealed that
acyl-coenzyme A (AcCoA) synthase activity and BmACSS3 could
be involved in the acyl-CoA to cholesterogenesis pathways.

Spatial Expression Patterns of the
Identified DEGs
We investigated the spatial expression patterns of the identified
DEGs in multiple tissues of the PGs, head, integument, midgut,
fat body, hemocyte, ovary, testis, Malpighian tubule, trachea,

Frontiers in Physiology | www.frontiersin.org 5 May 2021 | Volume 12 | Article 650972123

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-650972 May 4, 2021 Time: 16:33 # 6

Xu et al. Silkworm Precocity Resisting BmNPV

TABLE 1 | List of the differentially expressed genes in silkworm prothoracic glands with a 1.5-fold change after BmNPV infection.

Gene name Description log2 fold change Function ID in silkDB

Upregulated

1 BmNGDN Eukaryotic translation initiation factor 4E binding protein 1.92 EIF4E binding protein BGIBMGA003191

2 BmGag-p Gag-pol polyprotein 1.59 Retrotransposon protein BGIBMGA004024

3 BmNord Neuron-derived neurotrophic factor 2.78 N/A BGIBMGA008935

4 BmTrypsin-1 Trypsin-1 serine protease 2.32 Serine-type endopeptidase activity BGIBMGA008938

5 BmACSS3 Acyl-CoA synthetase short-chain family member 3 1.90 AMP-binging enzyme BGIBMGA010070

6 BmJing Zinc finger protein jing 3.10 Nucleic acid binding Novel00232

7 BmMar1 Mariner transposon Bmmar1 transposase gene 2.35 DNA binding Novel00602

Downregulated

8 BmPyd3 Carbon–nitrogen hydrolase protein −2.39 Carbon-nitrogen hydrolase BGIBMGA001595

9 BmTitin Muscle proteins −2.82 Protein binding BGIBMGA002033

10 BmUnc-89 Muscle M-line assembly protein unc-89 −2.93 Heterocyclic compound binding BGIBMGA002034

11 BmIGc2 Immunoglobulin C-2 Type −3.89 Hexosaminidase activity BGIBMGA004546

12 BmAryl Arylphorin subunit alpha −1.51 N/A BGIBMGA008860

13 BmTitin2 Muscle proteins −4.06 protein binding Novel00168

14 BmKettin Muscle proteins −5.98 Protein binding Novel00554

15 Novel01674 Uncharacterized protein LOC105842185 −3.84 Ion binding Novel01674

TABLE 2 | The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis.

Number Map_Name KEGG_ID Gene_ID Definition log2 fold change

1 Metabolic pathways bmor:100329149| BGIBMGA001595 Beta-ureidopropionase −2.39

bmor:101743386| BGIBMGA010070 Fatty acid CoA ligase 1.90

2 Propanoate metabolism bmor:100329149| BGIBMGA001595 Beta-alanine synthase −2.39

3 Beta-alanine metabolism bmor:101743386| BGIBMGA010070 Acyl-CoA synthetase 1.90

4 Drug metabolism with other enzymes bmor:100329149| BGIBMGA001595 Cyanide hydratase −2.39

5 Pyrimidine metabolism bmor:100329149| BGIBMGA001595 Beta-alanine synthase −2.39

6 Pantothenate and CoA biosynthesis bmor:100329149| BGIBMGA001595 Pantetheine hydrolase −2.39

ASG, MSG, and PSG of day-3 fifth instar larvae. Such findings
can further our understanding of the PGs and elucidate the
expression characteristics of DEGs. Expression signals of all of
the 15 DEGs were detected in the PGs (Figure 3). The genes
of Novel01674, BmJing, and BmAryl were expressed only in PGs
(Figure 3). BmACSS3 was expressed only in the PGs, head, and
integument (Figure 3). The other 11 genes were expressed in
multiple tissues (Figure 3).

Expression Analysis of the Identified
DEGs
We used RT-qPCR to investigate the relative expression levels
of nine randomly selected genes of the DEGs in the PGs of
BmNPV-infected larvae at 24, 48, and 72 h. The expression
levels of BmNGDN, BmTrypsin-1, BmACSS3, and BmJing were
upregulated in the transcriptome data, i.e., their transcripts were
significantly increased from 24 to 72 h after BmNPV infection
(Figures 4A–D). Meanwhile, the expression levels of BmPyd3,
BmTitin, BmIGc2, Novel01674, and BmAryl were downregulated
in the transcriptome data, i.e., their transcripts were significantly
decreased from 24 to 72 h after BmNPV infection (Figures 4E–I).
The changes in the transcription of the nine genes were generally
consistent with the transcriptome data.

DISCUSSION

The mulberry silkworm is one of the best models to study insect
physiology and biochemistry, especially to better understand the
relationship between induction factors (external and internal)
and development. In general, the larvae of tetramolter silkworms
proceed through five instars and undergo molting between each
instar. The last instar larva completes the larval–pupal transition.
The developmental speed of silkworm larvae has been shown to
be regular and constant within the same silkworm strain and
when maintained under the same rearing conditions. The day-
3 fifth instar larval stage is considered to represent the boundary
for the larval stage.

In this study, the day-4 fifth instar larvae infected with
BmNPV (using 2.0 × 106 OB/larva) matured early, and the
ecdysone titer in infected larvae was significantly higher than
that of the control larvae. In addition, BmNPV infection (using
2.0 × 107 OB/larva) also caused larvae precocious maturation
(only at the first gate), followed by illness and death (data not
shown). Meanwhile, day-5 fifth instar larvae fed with cholesterol
and 7dC also exhibited precocious maturation. Cholesterol
and 7dC supplementation in the latter half of the fifth instar
shortened the fifth instar period. In contrast, cholesterol and 7dC
supplementation in the first half of the fifth instar (days 1–3)
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FIGURE 3 | Expression patterns of the differentially expressed genes (DEGs) in multiple tissues of day-3 fifth instar silkworm larvae. RT-PCR was performed, and the
BmGAPDH gene was used as the internal control.

prolonged the fifth instar period, but no results were observed
for BmNPV infection in the first half of the fifth instar because
the larvae died. Briefly, the prothoracicotropic hormone (PTTH)
secreted by the brain stimulates the PGs to release ecdysteroid,
which in turn induces larval or metamorphic ecdysis depending
on the presence of juvenile hormone (JH) secreted by the corpora
allata. Throughout the latter half of the fifth instar, the first step of
the ecdysteroid titer increased in a stepwise manner, the second
step of the ecdysteroid titer showed a small increase (which led
to the silkworms wandering) followed by a plateau, and the third
step of the ecdysteroid titer showed an initially gradual but then
steep increase to reach a peak 1 day later (Mizoguchi et al., 2001).

Insights from host studies reveal that baculoviruses
manipulate host behavior to enhance transmission to new
victims. For example, baculoviruses enable infected larvae
to continue to seek foliage and prolong insect feeding after
infection, thus resulting in an increased OBs production
(O’Reilly and Miller, 1989). The egt gene of NPV, expressed
immediately, encodes an enzyme that inactivates the molting
hormone 20E by transferring a sugar moiety from a nucleotide
sugar donor to a hydroxyl group on 20E (Hoover et al., 2011).
The ecdysone blood level is reduced by up to 90% in silkworms
as a result of the transgenic expression of the egt gene of
BmNPV and because egt expression in egt-transgenic silkworms
prolongs the duration of the larval and pupal stages resulting
in the arresting of the pupal-to-adult metamorphosis (Zhang

et al., 2012). Interestingly, in the present study, silkworm
larvae infected with BmNPV in the latter half of the fifth
instar showed precocious molting and metamorphosis and
a higher level of hemolymph ecdysone titer. The egt gene of
BmNPV is dispensable for normal virus production (Katsuma
et al., 2008). The fast-killing phenotype is observed in the
three egt-mutated BmNPVs only when the infection process
progresses through silkworm larval–larval transition, but
under infection in the middle stages of the fifth instar, the
slow-killing phenotype is observed than that of the wild-
type virus-infected larvae (Katsuma and Shimada, 2015).
In particular, in the gluttonous stage, silkworms synthesize
an enormous amount of silk proteins in the silk gland (Xu
et al., 2019), and silk proteins are dispensable for normal
silkworm development. A certain amount of silk proteins can
remain in the body (incomplete spinning) that can lead to an
incomplete larval–pupal transition. Silkworm and BmNPV
interactions are largely dependent on the developmental
stage of the host larvae infected by the virus. In addition,
the overproduction of silkworm PTTH induces higher than
normal levels of hemolymph ecdysteroids, which have been
found to inhibit the pathogenicity of the virus, but did not
have any observable effects on the development of infected
Spodoptera frugiperda larvae (O’Reilly et al., 1995). Moreover,
insect innate immunity can be activated by 20E and 20E, which
induce antimicrobial peptide (AMP) gene expression and thus
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FIGURE 4 | Analysis of the nine randomly selected genes of the differentially expressed genes (DEGs) in the prothoracic glands (PGs) of BmNPV-infected silkworm
larvae. The expression levels of BmNGDN (A), BmTrypsin-1 (B), BmACSS3 (C), BmJing (D) were upregulated and the expression levels of BmPyd3 (E), BmTitin (F),
BmIGc2 (G), Novel01674 (H), BmAryl (I) were downregulated from 24 to 72 h after BmNPV infection, respectively. Here, BmGAPDH was used as the internal
control. The experiments were repeated three times. Values represent the means ± SDs of three independent experiments. Significant differences are indicated by
(*p < 0.05) or (**p < 0.01).

act as immune activators (Dimarcq et al., 1997; Roxstrom-
Lindquist et al., 2005; Flatt et al., 2008). The ecdysteroid titer
showed a small increase followed by a plateau that occurred
1 day before the silkworms started wandering. Thereafter,
the titer increased gradually and then steeply to reach a peak
(where the majority of silkworms had started wandering)
the following day (Mizoguchi et al., 2001). Therefore, we
speculated that BmNPV infection in the latter half of the fifth
instar of silkworm larvae induced precocious molting and
metamorphosis and a higher level of hemolymph ecdysone
titer, which would enable infected larvae to complete their
larval–pupal transition.

Briefly, PGs are an important endocrine organ with
characteristically cholesterol-rich tissue as the main site of
synthetic ecdysteroids (Igarashi et al., 2018). In this study, the

RT-PCR results confirmed that the silkworm PGs were infected
by BmNPV through oral inoculation. Seven upregulated and
eight downregulated DEGs were identified from silkworm
PGs sequenced by RNA-seq 48 h after BmNPV infection. The
RT-qPCR results of the DEGs in the PGs of BmNPV-infected
larvae at 24, 48, and 72 h were generally consistent with the
transcriptome data. The classifications of the 15 DEGs were
primarily located in binding activity of nucleic acids, ions, and
proteins that were mainly involved in the metabolic processes
and pathways. The spatial expression profiles of Novel01674,
BmAryl, and BmJing indicated that they were specifically
expressed in the silkworm PGs. The KEGG pathway enrichment
analysis of BmACSS3 (BGIBMGA010070) revealed that acyl-
coenzyme A (AcCoA) synthase activity and BmACSS3 could
be involved in the acyl-CoA to cholesterogenesis pathways.
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The acyl-coA synthetase catalyzes fatty acids to form a thioester
with CoA, which is a common initial step of all fatty acid
metabolic processes (Watkins, 1997). Fatty acids are the building
blocks of many lipids, including triacylglycerol and cholesteryl
esters. RNAi-mediated knockdown of the acyl-coenzyme A
synthetase gene prolongs and extends the maximum lifespan
(Eisenberg et al., 2014). Trypsin-1 serine protease (BmTrypsin-
1) had serine-type endopeptidase activity. SPs play crucial
roles in insect development and innate immunity. RNAi-
mediated silencing of SPs results in severe molting defects,
specifically by reducing the expression of genes in the 20E
synthesis and signaling pathway, and increases larval sensitivity
to bacteria (Broehan et al., 2010; Yang et al., 2019). In
silkworm PGs, the transcripts of BmTrypsin-1 and BmACSS3
were significantly increased from 24 to 72 h after BmNPV
infection. BmTrypsin-1 and BmACSS3 may be involved in the
maturation process in the latter half of the fifth instar of
silkworm larvae.
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Aedes aegypti mosquitoes are vectors for arboviruses of medical importance such as
dengue (DENV) and Zika (ZIKV) viruses. Different innate immune pathways contribute to
the control of arboviruses in the mosquito vector including RNA interference, Toll and Jak-
STAT pathways. However, the role of cellular responses mediated by circulating
macrophage-like cells known as hemocytes remains unclear. Here we show that
hemocytes are recruited to the midgut of Ae. aegypti mosquitoes in response to DENV
or ZIKV. Blockade of the phagocytic function of hemocytes using latex beads induced
increased accumulation of hemocytes in the midgut and a reduction in virus infection
levels in this organ. In contrast, inhibition of phagocytosis by hemocytes led to increased
systemic dissemination and replication of DENV and ZIKV. Hence, our work reveals a dual
role for hemocytes in Ae. aegypti mosquitoes, whereby phagocytosis is not required to
control viral infection in the midgut but is essential to restrict systemic dissemination.
Further understanding of the mechanism behind this duality could help the design of
vector-based strategies to prevent transmission of arboviruses.

Keywords: Zika virus, dengue virus, cellular immunity, macrophage-like cells, Aedes aegypti,
vector mosquitoes, hemocytes
INTRODUCTION

Aedes aegyptimosquitoes are vectors for a wide variety of arthropod-borne viruses (arboviruses) (1).
How these mosquitoes recognize and respond to viral infection is a central question that directly
affects their vector competence. The understanding of antiviral responses in insects has greatly
benefited from work in the fruit fly Drosophila melanogaster (2). Work in this model organism has
identified many important antiviral defense mechanisms such as RNA interference (RNAi), Jak-
STAT and STING (3–12). Later work in mosquitoes has shown that RNAi and Jak-STAT are
important for the control of arbovirus infections (13–18). Interestingly, despite being widely
conserved throughout evolution, STING has been lost in mosquitoes (19).

In addition to these well-known innate immunity pathways, the Drosophila model has also
highlighted the role of circulating macrophage-like cells, referred to as hemocytes, in the control of
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viral infection (20–22). Cellular immunity in insects includes
phagocytosis of foreign bodies, nodulation, wound healing and
the encapsulation of pathogens (23–27). Hemocytes can be freely
circulating in the insect hemolymph or associated with tissues but
these populations seem to be highly dynamic and interchangeable
(28). Hemocytes are often recruited to infected tissues, which
increases the chances of coming into contact with the pathogen to
be cleared by phagocytosis (28, 29). A good example of hemocyte
recruitment during an infection is in the case of Plasmodium, the
malaria parasite. Invasion of the midgut ofAnophelesmosquitoes by
Plasmodium ookinetes promotes hemocyte recruitment and release
of components of the mosquito complement system, promoting
pathogen elimination (30–34). Despite the importance of
hemocytes for the clearance of bacteria and Plasmodium in
mosquitoes, little is known about their role during viral infections,
particularly arboviruses such as dengue (DENV) and Zika (ZIKV)
viruses. DENV and ZIKV belong to the Flaviviridae family and,
together with the alphavirus chikungunya virus (CHIKV) are
among the most important arboviruses transmitted by Ae. aegypti
mosquitoes causing infections worldwide (1). Similar to the malaria
parasite, arboviruses are acquired orally during blood feeding by
mosquitoes, and the gut represents a physical barrier that hinders
the passage of the viral particles to the mosquito hemocele (35).
Reaching the hemocele is a necessary step for the virus to spread
systemically and reach the salivary glands where it can be
transmitted to a vertebrate host (21–23). During systemic
infection, several tissues may host viral replication, including
hemocytes themselves, but it is unclear how they contribute to
amplification of the virus (36–38). Despite this increasing
knowledge about the functions of hemocytes in mosquitoes, the
role of cellular immunity in the antiviral defense remains
largely unknown.

In this work, we investigated the involvement of hemocytes in
the control of DENV and ZIKV in Ae. aegypti mosquitoes. Our
results suggest a complex role for hemocytes. We show that
hemocytes were recruited to the midgut in response to the
presence of the virus but, once there, their phagocytic activity
seems to facilitate viral replication although other functions my
play a role in the antiviral defense. In contrast, during the
systemic phase of the infection, inhibition of phagocytosis by
hemocytes led to increased viral infection pointing to a more
traditional role in antiviral immunity. Together our results
indicate that hemocytes have dual roles in the control of
arboviruses in Ae. aegypti mosquitoes depending on tissue
affected and the stage of the infection in the vector.
MATERIALS AND METHODS

Indirect Immunofluorescence Assays
Mosquitoes were anaesthetized on ice and then were inject with
250 nanoliters of 20% paraformaldehyde for hemocyte fixation in
midgut basal lamina. After 20 minutes, midguts were dissected in
4% paraformaldehyde diluted in phosphate-buffered saline (PBS)
(13 mM NaCl, 0.7 mM Na2HPO4, 1 mM NaH2PO4 at pH 7.2)
(PBS). The remaining midguts were fixed in the same solution
Frontiers in Immunology | www.frontiersin.org 2131
for 20 minutes, and then washed three times in PBS and then
incubated with blocking solution PBSBT (1× PBS + 1% BSA +
0.1% Triton X-100) for 15 minutes at room temperature.
Samples were then incubated overnight with 4G2 monoclonal
antibody for Flavivirus E protein (ATCC: HB-112, used at 1:50 in
PBST) at 4°C. Midguts were washed three times with PBSBT
(5 min each) and incubated for 2 h with constant rocking at 25°C
with goat anti-mouse IgG antibody (Invitrogen). Midguts were
washed three times with PBST (5 min each) and incubated for
15 min with DAPI (Molecular Probes, 1:500), and phalloidin-
rhodamine (Molecular Probes, 1:500). Then the midguts were
washed in PBS and placed onto slides. Images were obtained with
an LSM 880 microscope (Zeiss).

Mosquito Perfusion to Obtain Circulating
Hemocytes
Circulating hemocytes were obtained by perfusion of adult
mosquitoes as described (39) with modifications. Briefly,
mosquitoes were injected with 1 uL of anticoagulant buffer
solution (70% PBS 1x (pH 7.0) + 30% citrate buffer (98 mM
NaOH, 186 mM NaCl, 1.7 mM EDTA and 41 mM citric acid,
buffer pH 4.5) and were incubated on a petri dish on ice for
10 min to let hemocytes dissociate from tissues. The last two
segments of abdomen were cut to create an opening, which was
positioned onto a microscope slide. Each individual mosquito was
positioned vertically and then injected with 3 uL of the same
anticoagulant buffer solution in the lateral side of torax using a
microinjector (Nanoject III). The injection pressure forced the
diluted hemolymph to exit the opening made in the final portion
of the abdomen and onto the microscope slide. The hemolymph
was incubated at room temperature for 20 min in order to let the
hemocytes adhere to the slides. Hemocytes were fixed in 4%
paraformaldehyde for 20 min, washed three times in PBS and
then incubated with blocking solution PBSBT (1× PBS + 1% BSA
+ 0.1% Triton X-100) for 15 minutes at room temperature. Slides
were incubated for 15 min with DAPI (Molecular Probes, 1:500)
and phalloidin-rhodamine (Molecular Probes, 1:40), followed by 3
washes in PBS. Cells were visualized in a fluorescence microscope
for counting. To visualize infected hemocytes, the 4G2
monoclonal antibody against Flavivirus E protein was used.

Hemocyte Labeling In Vivo
For in vivo hemocyte staining we used Vybrant™ CM-DiI Cell-
Labeling Solution (Invitrogen™) essentially as described (29).
Briefly, female mosquitoes were placed on petri dish on ice and
injected with 150 nanoliters containing 100 mM CM-DiI, freshly
prepared in sterile water, after blood or sugar meal at specific time
points. Injections were done using a nano-injector Nanoject III
(Drummond Scientific Company). After injections, mosquitoes are
placed on cages at 28°C until specific time points for
midguts dissections.

Quantification of the Infection Area
in the Midgut
Area measurements and hemocyte counting were performed
using ImageJ v1.53c (https://imagej.nih.gov/ij/). All images
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were acquired under identical conditions, digitized, converted to
RGB image and stored in an uncompressed tagged image file
format (.tiff). Infection area computing was performed using
ImageJ. The following steps were performed for all images to
quantify the area of infection in the midgut, as shown in
Supplementary Figure 1: step 1, color-deconvolution was used
to isolate red, green and blue spectra and select the image
corresponding to virus infection staining; step 2, a projection
final image was generated using all acquired series of z-stack
confocal images using the tool “Image > Stacks > Z-project
function”; step 3, the projection image was processed into 8 bits
image type; step 4, the midgut outline was delimited; step 5, the
area outside of midgut delimitation was erased by using the
“clear outside” function; steps 6 and 7, optical density was
assessed by setting a threshold using the “threshold tool”, and
a maximum threshold was set; steps 8 and 9, the function
“Measure” in the ‘Analyze’ tool menu was used to calculate the
optical density and compute the midgut infection area.

Quantification of Hemocytes in the Midgut
Hemocyte numbers were quantified in the confocal microscopy
images of midguts. The following steps were performed using
ImageJ for all images: step 1, color-deconvolution was used to
isolate red, green and blue spectra and select the images
corresponding to hemocytes cell tracker and DNA staining;
step 2, for each color, a projection final image was generated
using all acquired series of z-stack confocal images using the tool
“Image > Stacks > Z-project function”; step 3, the projection
image was processed into 8 bits image type; step 4, the number of
hemocytes was then counted using the ITCN (Image-based Tool
for Counting Nuclei); step 5, for all hemocytes automatically
identified in the hemocytes cell tracker color we additionally
confirmed the presence of nuclei using the DNA staining image
and reject the counts that do not presented a nucleus.

Inhibition of Phagocytosis by Injection
of Latex Beads
To block the phagocytic activity of hemocytes in mosquitoes, we
adapted protocols previously used for Drosophila (20). Adult
mosquitoes were injected with 69 nanoliters of latex
microspheres (CML Latex Beads, 4% w/v, 0.3 µm,
ThermoFisher). Latex beads were washed and resuspended at a
2X concentration in PBS before injections. In order to quantify
the inhibition of phagocytosis, we first injected regular latex
beads followed by injection of red fluorescent beads (FluoSpheres
™ Carboxylate-Modified Microspheres, 0.2 mm, dark red
fluorescent (660/680), 2% solids, ThermoFisher) two days later.
Perfusions were done 4 and 8 days after the first injection and the
total number of hemocytes was counted as well as the percentage
of cells with red beads.

RT-qPCR
Total RNA (200 ng) extracted from individual insects or
individual tissues was reverse transcribed using Moloney
murine leukaemia virus reverse transcriptase. cDNA was
subjected to quantitative PCR (qPCR) using the kit Power
SYBR Green Master Mix (Applied Biosystems), following the
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manufacturer’s instructions. Primers used for quantitative PCR
(qPCR) were as follows: RPL32 (forward, 5´-ACTTCTTCGTC
CGCTTCTTG-3´; reverse, 5´-AGCCGCGTGTTGTACTCTG-
3´), DENV1 (forward, 5´-TCGGAAGCTTGCTTAACGTAG-
3´; reverse, 5´ TCCGTTGGTTGTTCATCAGA-3´), ZIKV
(forward, 5´-TCAAACGAATGGCAGTCAGTG-3´; reverse,
5´-GCTTGTTGAAGTGGTGGGAG-3´) as previously
described (14).

Mosquito Rearing and Infections
All experiments were carried out using Ae. aegypti Bangkok strain.
Mosquitoes were maintained in an incubator at 28°C and 70–80%
relative humidity, in a 12:12 h light:dark photoperiod, and with 10%
sucrose solution ad libitum. For mosquito infections, we used
previously described models for flavivirus infections using mice or
artificial membrane feeding. Isolates of DENV4 (H241 strain),
DENV1 (MV09) and ZIKV (PE243/2015) were previously
described (14). As a mouse model, we utilized DENV1 and ZIKV
infection of interferon alpha/beta and gamma receptor-deficient
(AG129) animals (14). Mice were injected intraperitoneally with 106

pfu/mL of virus. Infected mice were anaesthetized at 3 days post
injection (peak of viraemia) using ketamine/xylazine (80/8 mg kg−1)
and placed on top of the netting-covered containers with 5- to 6-
day-old adult mosquito females. For infections by artificial
membrane feeding, 5-6 day old adult females were starved for
24h and fed with a mixture of blood and virus supernatant
containing 107 pfu/mL of DENV4 or 106 pfu/mL of ZIKV
utilizing a glass artificial feeding system covered with pig intestine
membrane, essentially as described (14). Mosquitoes were allowed
to feed for 1 h. After blood feeding, fully engorged females were
selected and harvested individually for midgut dissection at different
time points. For direct systemic infections by intrathoracic
injections, mosquitoes were anaesthetized with CO2 and kept on
ice during the whole procedure. 4-day-old females were
intrathoracically injected with 69 nL of L15 media containing
virus (5 or 50 pfu), using a nano-injector Nanoject III
(Drummond Scientific Company). Mosquitoes were harvested at
different days post injection for RNA extraction. Tissues or
mosquitoes were ground in TRIzol (Invitrogen) using glass beads.
Total RNA was extracted from individual mosquitoes or individual
tissues according to the manufacturer’s protocol.
RESULTS

DENV and ZIKV Trigger Accumulation of
Hemocytes in the Mosquito Midgut
Hemocytes play an important role in mosquito immunity but
their function in the antiviral response against arboviruses
remains unclear. Here, we first analyzed whether hemocytes
would respond to the presence of arboviruses, DENV and
ZIKV, in the blood meal (Figure 1A). Others have observed
that blood feeding induces an increase in the numbers of
hemocytes in mosquitoes (40, 41). Here we observed that there
is also an increase in the number of hemocytes associated with
the midgut compared to mosquitoes that were kept on sugar at 4
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and 8 days post feeding (Figures 1B, C). At the earlier time
point, there was no significant difference between the number of
hemocytes associated with the midgut of mosquitoes fed with
blood or blood and virus (Figure 1B). However, at 8 days post
feeding, numbers of midgut-associated hemocytes were
significantly higher in the presence of DENV or ZIKV when
compared to a control blood meal (Figure 1C). Notably, these
hemocytes do not seem to be recruited to sites of viral replication.
We observed that hemocytes were often found dispersed
throughout the midgut and not necessarily concentrated
around regions with staining of the viral E protein as an
indication of infection (Figures 1D–G). These results suggest
that the presence of virus particles in the blood meal increases the
number of hemocytes associated to midgut possibly by providing
signals for increased recruitment or longer retention of these cells
in the organ. The delayed effect at later times post infection also
suggests that the accumulation of hemocytes may require
prolonged stimuli.

Phagocytosis by Hemocytes Does Not
Contribute to the Control of DENV and
ZIKV in the Midgut
Increased numbers of hemocytes in the midgut in response to
arboviruses in the blood meal suggests that these cells may play a
role in the antiviral defense. Phagocytosis is a major function of
hemocytes. Indeed, blocking phagocytosis by hemocytes or
complete genetic ablation of these cells leads to decreased
resistance to viruses in Drosophila (20–22). Here, we decided to
use injection of latex beads into mosquitoes, which is often used as a
strategy to over-load hemocytes and inhibit their phagocytic
capacity (20, 21, 42). In our experiments, we observed that
injection of beads seemed to decrease the number of circulating
hemocytes in the mosquito but that was not significant
(Supplementary Figure 2A). The number of hemocytes was
estimated in a fraction of the hemolymph obtained by perfusion
of mosquitoes with a low volume of buffer. Although this strategy
recovered smaller numbers of hemocytes compared to other
methods (39, 40), it still allowed us to compare numbers of cells
between two conditions, which was our objective. Using the same
strategy, we observed that phagocytosis by hemocytes was
significantly inhibited by latex beads 2 days after their injection
into Ae. aegypti mosquitoes (Supplementary Figure 2B). We next
analyzed the effect of latex beads in mosquitoes that were given a
blood meal containing DENV or ZIKV 2 days later, during the time
when phagocytosis is inhibited (Figure 2A). Blocking phagocytosis
did not affect significantly the area of infection by DENV or ZIKV
in the midgut at 4 days post feeding (Figures 2B, C). In contrast, at
8 days post feeding, we observed that midgut of mosquitoes injected
with latex beads had a significantly decreased area of infection by
DENV and ZIKV compared to controls (Figures 2B–G).
Importantly, injection of latex beads did not significantly change
the total size of the midgut at the same time point but affected the
absolute infection area suggesting that the kinetics of viral
replication itself was affected (Supplementary Figure 3). At 4
days post feeding, injection of beads caused a reduction in viral
RNA levels in DENV and ZIKV infected mosquitoes, although it
Frontiers in Immunology | www.frontiersin.org 4133
was only significant for the latter (Supplementary Figure 4). At 8
days post feeding, DENV and ZIKV RNA levels were also
significantly decreased in midguts from mosquitoes injected with
latex beads compared to controls (Figures 2H, I). These results
suggest that blocking the phagocytic activity of hemocytes using
latex beads led to decreased viral replication in the midgut of
mosquitoes. Notably, we consistently observed that latex beads
increased the number of midgut-associated hemocytes in sugar
and blood fed mosquitoes, independent of virus infection
(Supplementary Figure 5). Latex beads also increased numbers
of hemocytes in the midgut of DENV and ZIKV infected
mosquitoes at 4 and 8 days post feeding (Figures 2J, K). During
viral infection, latex beads had a less striking effect on hemocyte
numbers at later time points since infection itself led to
accumulation of hemocytes in the midgut (Figure 1C). This
increased accumulation of hemocytes in the midgut induced by
latex beads preceded the reduction in viral levels. Thus, we cannot
rule out that increased accumulation of hemocytes in the midgut
induced by beads is helping control viral infection but this would
have to occur independently of their phagocytic activity.

Phagocytosis by Hemocytes Is Required
for Systemic Control of DENV and ZIKV
The above results suggest that phagocytosis is not involved in the
control of viral infection in the midgut of Aedes mosquitoes. This
contrasts with the well-known roles of phagocytosis by hemocytes
in insect immunity especially in the antiviral defense of Drosophila.
However, these cells have also been shown to host replication of
arboviruses such as DENV, Sindbis and O’nyong’nyong virus,
which could help explain a proviral function (36–38). We
confirmed that hemocytes could be directly infected by ZIKV as
indicated staining for the viral E protein (Supplementary Figure 6).
Thus, phagocytosis of viral particles by hemocytes could help
promote viral replication in mosquitoes. In order to look further
into this possibility, we analyzed dissemination of DENV and ZIKV
infection from the midgut to the carcass in mosquitoes injected with
latex beads (Figure 3A). Although the midgut infection rate was
significantly reduced when phagocytosis was inhibited (Figures 2B–
I), this did not significantly affect the prevalence of mosquitoes with
disseminated infection (Figures 3B, C). Nevertheless, we observed a
significant increase in viral RNA levels in the carcass of mosquitoes
infected with DENV and ZIKV when phagocytosis by hemocytes
was inhibited (Figures 3D, E). Here we note that mosquitoes fed on
viremic mice show over 80% prevalence of infection. Therefore, to
further analyze a possible effect of latex beads on the dissemination,
we decided to analyze a model of artificial blood feeding where virus
concentrations could be more easily controlled to reach closer to
50% prevalence (Figure 3F). In this model, injection of beads into
mosquitoes prior to blood feeding containing DENV or ZIKV lead
to a significant decrease in the prevalence of infection (Figures 3G,
H). At the same time, viral loads were not significantly different for
DENV and were increased in ZIKV infected individuals when
phagocytosis was inhibited (Figures 3I, J). This reinforces the
idea that blocking phagocytosis by hemocytes leads to decreased
midgut replication that results in lower systemic dissemination. In
order to bypass the midgut and directly analyze the role of
May 2021 | Volume 12 | Article 660873
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FIGURE 1 | Hemocyte accumulation in the midgut of Ae. aegypti mosquitoes in response to DENV and ZIKV. (A) Mosquitoes fed with sugar, blood or blood and
virus were dissected at different times and their midgut was analyzed by confocal microscopy. Virus-infected mice were used as a source of blood.
(B, C) Quantification of the number of midgut-associated hemocytes between mosquitoes fed with sugar, blood or blood and virus at 4 (B) and 8 (C) days post
feeding. DENV and ZIKV were analyzed together. 2 independent experiments for each virus were pooled. Each dot represents an individual midgut. Total number of
midguts tested is indicated below each box plot. Upper, middle and lower bars in the boxplot represent the 75th percentile, the median and the 25th percentile,
respectively. Statistical analyses were performed using the Kruskal-Wallis test followed by Dunn’s test to correct for multiple comparisons. ns, non-significant.
(D–G) Representative confocal microscopy images of mosquito midguts showing CM-DiL stained hemocytes in magenta, DNA in yellow, viral E proteins in green and
actin in blue. Midguts from mosquitoes fed with sugar (D), blood (E), blood + DENV (F) and blood + ZIKV (G) are shown at 8 days post feeding.
Frontiers in Immunology | www.frontiersin.org May 2021 | Volume 12 | Article 6608735134
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FIGURE 2 | Phagocytosis by hemocytes is not required to control DENV and ZIKV infection in the midgut of Ae. aegypti mosquitoes. (A) Mosquitoes injected with
latex beads were fed 2 days later with blood + virus and dissected at different times to be analyzed. Virus-infected mice were used as a source of blood. (B, C)
Percentage of total midgut infection area that shows staining for the viral protein at 4 and 8 days post infection was determined by immunofluorescence. Total
number of midguts tested is indicated below each box plot. DENV (B) and ZIKV (C) were analyzed separately. 2 independent experiments for each virus were
pooled. Each dot represents an individual midgut. (D–G) Representative confocal microscopy images of mosquito midguts showing CM-DiL stained hemocytes in
magenta, DNA in yellow, viral E proteins in green and actin in blue. (D, E) Midguts from mosquitoes fed on blood + DENV. (F, G) Midguts from mosquitoes fed on
blood + ZIKV. (D, F) Midguts from control mosquitoes injected with buffer; (E, G) Midguts from mosquitoes injected with latex beads. (H) DENV and (I) ZIKV RNA
levels measured by RT-qPCR at 8 days post feeding. The number of positive midguts over the total tested is indicated below each boxplot. (J, K) Number of
midgut-associated hemocytes in individual midguts from control and virus infected mosquitoes at 4 and 8 days post feeding. DENV (J) and ZIKV (K) were analyzed
separately. Total number of midguts tested is indicated below each box plot. 2 independent experiments for each virus were pooled. (B, C, H–K) Each dot
represents an individual midgut. Upper, middle and lower bars in the boxplot represent the 75th percentile, the median and the 25th percentile, respectively.
Statistical analyses were performed using the Mann-Whitney-Wilcoxon test.
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FIGURE 3 | Systemic dissemination of ZIKV and DENV infection is controlled by hemocyte phagocytosis. (A) Mosquitoes injected with latex beads were fed 2
days later with blood and virus and dissected at 8 days post feeding to be analyzed. Virus-infected mice were used as a source of blood. (B, C) Prevalence of
DENV (B) and ZIKV (C) infection in the mosquito carcass at 8 days post feeding. The number of positive mosquitoes over the total tested is indicated below
each column. One representative experiment is shown. This experiment was repeated 3 times for DENV and once for ZIKV. Statistical analyses were performed
using two-tailed Fishers exact test. (D, E) Viral RNA levels at 8 days post feeding for DENV (D) and ZIKV (E). One representative experiment is shown. This
experiment was repeated 3 times for DENV and once for ZIKV. Each dot represents an individual mosquito. (F) Mosquitoes injected with latex beads were given
an artificial blood meal with virus 2 days later and analyzed at 8 days post feeding. (G, H) Prevalence of DENV (G) and ZIKV (H) infection in mosquitoes injected
with buffer or beads. The number of positive mosquitoes over the total tested is indicated below each column. One representative experiment is shown. This
experiment was repeated twice for DENV and once for ZIKV. Statistical analyses were performed using two-tailed Fishers exact test. (I, J) DENV (I) and ZIKV (J)
RNA levels in mosquitoes injected with buffer or beads. Each dot represents an individual mosquito. The number of positive mosquitoes over the total tested is
indicated below each boxplot. One representative experiment is shown. This experiment was repeated twice for DENV and once for ZIKV. (D, E, I, J) Upper,
middle and lower bars in the boxplot represent the 75th percentile, the median and the 25th percentile, respectively. Statistical analyses were performed using
the Mann-Whitney-Wilcoxon test.
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hemocytes during systemic viral replication, we used a model of
intrathoracic injection of the virus (Figure 4A). Consistent with
results using the oral infection models, we observed that inhibition
of the phagocytic activity of hemocytes led to a clear increase in
systemic viral replication after injection of DENV and ZIKV
(Figures 4B, C). This effect was highly significant and did not
depend on the dose of virus used or the kinetics of infection.
Together, our data indicate that phagocytosis by hemocytes is
essential to control systemic viral replication, which is consistent
with their important roles in cellular immunity.
DISCUSSION

Here we have studied the role of phagocytosis by insect
macrophage-like cells in the control of DENV and ZIKV in
Ae. aegypti mosquitoes. These macrophage-like cells, known as
hemocytes, are important components of the mosquito immune
system (25). We and others have previously shown that
phagocytosis by these cells plays an important function in the
antiviral defense of Drosophila (20–22) but their role during viral
infections in mosquitoes remain unclear.

Our results show that hemocytes accumulate in the midgut of
Ae. aegypti mosquitoes in response to the presence of ZIKV and
Frontiers in Immunology | www.frontiersin.org 8137
DENV in the blood meal. Interestingly, increased numbers of
hemocytes in the midgut are not observed at 4 days post
infection but only later at 8 days, suggesting it either requires
continuous stimulation or is triggered only after certain levels of
viral replication. Since the infection did not significantly change
the number of circulating hemocytes, these results suggest that
these cells were recruited or retained more efficiently in the
midgut. Increased numbers of hemocytes in the midgut suggests
an important role for these cells in the response to viral infection.
However, our results were less clear regarding their possible
function in the midgut. We observed that blocking phagocytosis
by hemocytes using latex beads led to decreased virus replication
in the midgut after 8 days post infection when these cells
accumulate significantly. We show that phagocytosis is
inhibited at 2 days post injection of latex beads at the time of
viral infection in the midgut. Although it is unclear how long this
inhibition lasts, these results suggest that phagocytosis by
hemocytes has a proviral function during the early stages of
DENV and ZIKV infection in the midgut. However, when
phagocytosis was blocked by latex beads, we also observed
increased numbers of hemocytes in the midgut of mosquitoes
as early as 4 days post infection. This effect was independent of
viral replication or blood feeding and could be related to lower
motility of hemocytes after phagocytosis since we do observe a
A

B C

FIGURE 4 | Phagocytosis by hemocyte is required to inhibit systemic replication of ZIKV and DENV. (A) Mosquitoes injected with latex beads were subsequently
injected with virus 2 days later and samples were analyzed at different time points. (B) Viral RNA levels in mosquitoes injected with 5 or 50 PFU of DENV at 8 days
post injection. (C) Viral RNA levels in mosquitoes injected with 5 PFU of ZIKV at 2, 4 and 8 days post injection. One representative experiment is shown. This
experiment was repeated twice for DENV and once for ZIKV. (B, C) Each dot represents an individual mosquito. The number of positive mosquitoes over the total
tested is indicated above each boxplot. Upper, middle and lower bars in the boxplot represent the 75th percentile, the median and the 25th percentile, respectively.
Statistical analyses were performed using the Mann-Whitney-Wilcoxon test.
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tendency of decreased numbers of circulating hemocytes after
injection of beads. Nevertheless, increased numbers of
hemocytes in the midgut precede and could be responsible for
the inhibition of viral replication independent of phagocytosis.
Phagocytosis of latex beads does not seem to prime hemocytes
for wound healing in Drosophila (26), which would suggest that
these hemocytes in the mosquito midgut are not activated but
rather inert. Our current data do not allow us to rule out that
there are other antiviral functions by hemocytes triggered by
latex beads (e.g. production of antiviral cytokines) but it is clear
that phagocytosis is not required to control viral infection in the
midgut of mosquitoes. Paradoxically, when the infection
disseminates from the midgut, phagocytosis by hemocytes has
an important role controlling systemic viral replication.
Together, our data point to a dual role for phagocytosis by
hemocytes in the antiviral response of Ae. aegypti mosquitoes
against DENV and ZIKV. Phagocytosis does not affect virus
replication in the midgut but is essential to control systemic
infection. Notably, work by our groups and others have pointed
to important differences in the requirements to control viral
replication in the midgut compared to systemic infection in
mosquitoes (14, 36). For example, RNA interference plays a
major role during systemic infection but has little contribution to
the control of viral replication in the midgut (14). Similarly,
apoptosis, which is coupled to phagocytosis by hemocytes to
restrict viral infection in Drosophila (20, 21), may not be
efficiently induced in response to virus infection in the midgut
epithelium of Aedes mosquitoes

The reason for contrasting roles of hemocytes during
infection of the midgut compared to systemic dissemination of
DENV and ZIKV suggests a complex scenario. It is possible that
hemocytes might carry out immune functions that have
opposing impacts over viral infection whether in the midgut or
systemically. For example, phagocytosis might be important to
clear viruses from the circulation but, in the midgut, could help
virus dissemination. However, recent single cell analyses have
indicated that hemocytes are composed of many subgroups that
likely have distinct functions in immunity (43–46). Based on
these data, it is possible that epithelial and systemic responses to
viral infections mobilize different subtypes of hemocytes. Upon
blood feeding, there is extensive damage to the basal lamina of
the midgut and this is further exacerbated by infection by
chikungunya virus (47, 48). ZIKV causes similar damage to the
basal lamina (49) and that is likely true for other arboviruses.
Damage to the basal lamina presumably leads to the recruitment
of certain subtypes of hemocytes to these damaged regions with
high concentration of the virus (47, 49). It is possible that
hemocytes that are recruited to repair this damage become
infected and help amplify local viral replication. Alternatively,
these hemocytes could promote enterocyte survival or intestinal
stem cell proliferation (50–53) and thus favor viral replication in
the midgut. In contrast, during systemic dissemination of ZIKV
and DENV, other subtypes of hemocytes would then play a more
classical antiviral role by clearing particles and infected cells (20).
Hemocytes may also participate in a systemic antiviral RNA
interference of mosquitoes, as proposed in Drosophila (22), and
Frontiers in Immunology | www.frontiersin.org 9138
this may not be functional in the midgut. Notably, recent work in
Anopheles mosquitoes has suggested that subtypes of hemocytes
may have different roles during specific stages of Plasmodium
infection (34). These are pressing questions that we are currently
investigating to elucidate the mechanism by which hemocytes
contribute to the antiviral defense. Alternative methods for
hemocyte depletion (34, 54) or genetic approaches to ablate or
interfere with cell function in mosquitoes will be important tools
for the field going forward. These studies will help understand
how vector mosquitoes recognize and fight viral infections that
could lead to novel strategies to control transmission
of arboviruses.
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Complement-like proteins in arthropods defend against invading pathogens in the early
phases of infection. Thioester-containing proteins (TEPs), which exhibit high similarity to
mammalian complement C3, are thought to play a key role in the innate immunity of
arthropods. We identified and characterized anti-dengue virus (DENV) host factors, in
particular complement-like proteins, in the mosquito Aedes aegypti. Our results indicate
that TEP1 limits DENV infection in Ae. aegypti. We showed that TEP1 transcription is
highly induced in mosquitoes following DENV infection. Silencing TEP1 resulted in the up-
regulation of viral RNA and proteins. In addition, the production of infectious virus particles
increased in the absence of TEP1. We generated a transgenic mosquito line with a TEP1
loss-of-function phenotype under a blood meal-inducible promoter. We showed that viral
protein and titers increased in transgenic mosquitoes after an infectious blood meal.
Interestingly, expression of transcription factor Rel2 and certain anti-microbial peptides
(AMPs) were inhibited in transgenic mosquitoes. Overall, our results suggest that TEP1
regulates the immune response and consequently controls the replication of dengue virus
in mosquitoes. This finding provides new insight into the molecular mechanisms of
mosquito host factors in the regulation of DENV replication.

Keywords: Aedes aegypti, dengue virus, thioester-containing protein (TEP), innate immunity, transgenic mosquito
INTRODUCTION

Dengue fever is one of the most important arthropod-borne viral diseases. It is caused by four
different serotypes of dengue virus (DENV1−4). DENV is a positive-stranded RNA virus that
belongs to the Flaviviridae family and is transmitted to humans through the bite of infected Aedes
genus mosquitoes. A current estimate suggests that more than 390 million DENV infections happen
worldwide every year (1–3). DENV infection causes a range of symptoms, including
undifferentiated fever, dengue fever (DF), and dengue hemorrhagic fever or dengue shock
syndrome (DHF/DSS) (2, 4, 5). Dengue is spread through the bite of female mosquitoes, mainly
Aedes aegypti and, to a lesser extent, Aedes albopictus. Mosquitoes acquire the virus when feeding on
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the blood of an infected person. The virus then replicates within
midgut epithelial cells, where it starts to disseminate via
hemolymph three to five days post-infection (dpi) to infect
other tissues, such as fat cells, the trachea, and nervous tissue.
Finally, the virus reaches the salivary glands, where it replicates
before transmission to another host (6, 7).

Mosquitoes have developed a complex innate immune
response system for defense against invading pathogens (6, 8).
Complement-like proteins in arthropods function as defense in
the early phases of infection (9). Thioester-containing proteins
(TEPs), which exhibit high similarity to the mammalian
complement C3, are thought to play a key role in the innate
immunity of arthropods (10–13). In vertebrates, TEP family
members range from broad-spectrum serine protease inhibitors
such as a2-macroglobulins to complement factors involved in
the recognition and destruction of pathogens (9, 14).
An Anopheles TEP, induced by Plasmodium berghei, was
demonstrated to bind and kill ookinetes in the mosquito
midgut (13, 15). TEPs in Anopheles were shown to play crucial
roles in scavenging bacteria via phagocytosis (16). It has also
been suggested thatDrosophila TEPs are required for the efficient
phagocytosis of Gram-positive or Gram-negative bacteria in S2
cells (17). Additionally, TEPs in the yellow fever mosquito
Ae. aegypti were identified as key factors for the restriction of
flaviviral infections (11, 18). Previous functional studies indicate
that TEPs exert potent anti-DENV activity. Some studies also
indicate that TEPs may play a role in DENV suppression through
the activation of antimicrobial peptides (AMPs) (18). However,
the relationship between TEPs and AMPs is still unclear.

AMPs are the effectors of innate immunity in insects and are
regulated by a wide variety of signal transduction pathways in
response to different microbial infections (6, 8, 19). To date, 17
AMPs have been discovered in the Ae. aegypti genome and are
categorized into five independent groups: defensins (4),
cecropins (10), attacin (1), diptericin (1), and gambicin (1)
(19). The mechanisms involved in the regulation of AMPs via
immune pathways have mainly been studied in Drosophila (6, 8,
19). In mosquitoes, Toll, Imd, and JAK-STAT pathways are
activated during pathogen infection (6, 8, 19, 20). Pathogenic
surface proteins are recognized by immune receptors and trigger
downstream transcription factors, such as Rel1 (Toll pathway),
Rel2 (Imd pathway), and STAT (JAK-STAT pathway) (21).
Then, the activated transcription factors bind to specific
regulatory elements for AMP gene transcription initiation (6,
8, 19). The JAK-STAT pathway has been shown to be activated
by viral infection in mosquitoes (6, 8, 20). Previous studies also
report that AMP expression may be induced by DENV infection
in mosquitoes, and AMPs exhibit antiviral activity (6, 8, 18, 20).

In this study, we show that TEP1 limits DENV infection in
Ae. aegypti. Silencing TEP1 using a reverse genetic approach
resulted in an up-regulation of viral RNA and proteins in
mosquitoes. In addition, the production of infectious viral
particles increased in the absence of TEP1. We generated a
midgut-specific TEP1 microRNA (TEP1-miR) expression
mosquito with a TEP1 loss-of-function phenotype using the
carboxypeptidase (CPA) promoter. We demonstrated that both
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the viral RNA and titer increased in mosquitoes from this line
after an infectious blood meal. Interestingly, transgenic
mosquitos with TEP1 loss-of-function inhibited the
transcription factor Rel2 of the Imd pathway. Overall, our
results suggest that TEP1 regulates the mosquito immune
response and consequently controls the replication of dengue
virus. These findings provide new insight into the molecular
mechanisms of mosquito host factors in the regulation of
DENV replication.
MATERIALS AND METHODS

Mosquitoes
UGAL/Rockefeller strain Ae. aegypti mosquitoes were kept at 28°C
and 70% relative humidity under a light-dark cycle of 12:12 hours as
previously described (22, 23). Hatched larvae were transferred to
plastic containers with sufficient water and fed with yeast extract
daily. Pupae were collected and transferred to a plastic container in
an insect dorm. Emerged mosquitoes were fed using cotton balls
soaked with a 10% sucrose solution. Female mosquitoes three to five
days post- eclosion (PE) were used for our experiments. The
sucrose-soaked cotton balls were removed at least 12 hours before
blood feeding. Female mosquitoes were permitted to blood-feed on
an anesthetized ICR strain mouse for 15 to 30 minutes. ICR strain
mice were anesthetized with an intraperitoneal injection of Avertin
at a dose of 0.2 mL per 10 g of weight. All animal procedures and
experimental protocols were approved by AAALAC-accredited
facility, the Committee on the Ethics of Animal Experiments of
the National Taiwan University College of Medicine (IACUC
approval No: 20200210).

Cell Culture and Virus
Ae. albopictus C6/36 cells were cultured in DMEM/MM (1:1)
containing 2% heat-inactivated fetal bovine serum (FBS) and
1× penicillin–streptomycin solution. For virus production, cells
were infected with the DENV2 strain 16681 at 0.01 multiplicity
of infection (MOI). The culture supernatant was harvested at 7
dpi and stored at −80°C. To determine the viral titer, the virus
stock was subjected to examination with a plaque assay, as
previously described (24). Approximately 1.0 × 107 PFU/mL
DENV2 was used to infect the mosquitoes.

RNA Extraction and Reverse
Transcription (RT)
The whole bodies of three to five mosquitoes or the midguts of 20
to 30 mosquitoes were collected in 1.5 mL tubes containing 0.5
mL Trizol Reagent (Invitrogen). Tissue was homogenized with a
rooter-stator homogenizer at room temperature for 5 minutes
and centrifuged at 13000 rpm for 10 minutes at 4°C. After
centrifugation, the supernatant was transferred to a new
micro-tube with 0.1 mL chloroform (J. T. Baker) and mixed
thoroughly at room temperature for 3 minutes. Samples were
then centrifuged at 13000 rpm for 15 minutes at 4°C and the
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supernatant was transferred carefully to a new micro-tube with
0.25 isopropanol (J. T. Baker). Samples were gently mixed and
stored at −80°C for 30 minutes. After precipitation, the samples
were once again centrifuged at 13000 rpm for 30 minutes at 4°C.
The supernatant was discarded and 0.5 mL 75% ethanol (Taiwan
Burnett International Co., Ltd) was used to wash the RNA pellet.
All resulting samples were centrifuged at 8000 rpm for 5 minutes
at 4°C and the supernatant was discarded. Finally, the RNA pellet
was dried in a laminar flow hood and dissolved in DEPC-H2O.
After Baseline-ZEROTM DNase (Epicentre) treatment, the RNA
sample was stored at −80°C.

The RNA concentration was quantified with a spectrophotometer
(Nanodrop 2000, Thermo) and was diluted with DEPC-H2O at a
concentration of 1 mg/mL. The RNA samples were reverse-
transcribed to cDNA with a High-Capacity cDNA Reverse
Transcription Kit (Applied Biosystems). The cDNA samples were
stored at −20°C for further use. Gene expression was analyzed with a
polymerase chain reaction (PCR) using ProTaq Plus DNA
Polymerase (Protech). The ribosomal protein S7 gene was used as
an internal control.

Quantitative PCR (qPCR)
The qPCR system used in this study was the SYBR Green dye
binding system. SYBR Green binds to the minor groove of DNA
and the target gene is quantified by detecting the resulting
fluorescence signal. The cDNA sample was quantified with the
KAPA SYBR FAST Universal qPCR kit (KAPA) and the qPCR
primers were designed using ABI Primer Expression Software.
PCR consisted of an initial denaturation at 95°C for 3 minutes,
followed by 40 cycles at 94°C for 3 seconds, and 40 seconds at
60°C. Fluorescence readings were measured at 72°C after each
cycle. The target gene signal was detected and analyzed with the
ABI 7900HT Fast Real-Time PCR System, and relative
quantification results were normalized using the ribosomal
protein S7 gene as an internal control.

Double-Stranded RNA (dsRNA)
Preparation
RNAi primers were designed with the E-RNAi webservice
(http://www.dkfz.de/signaling/e-rnai3//). The T7 promoter
sequence (5′- TAATACGACTCACTATAGGG) was incorporated
into all forward and reverse RNAi primers. The target gene
fragment was amplified with Ex Taq DNA Polymerase (Takara).
Fragments were amplified and cloned into a pCR 2.1-TOPO
vector at 23°C for 30 minutes using a TOPO TA Cloning
Kit (Invitrogen). The constructed plasmid was transformed
into HIT-DH5a competent cells. Plasmids from positive
colonies were purified using a FarvoPrep Plasmid DNA
Extraction Mini Kit (Favogen) and sequenced to confirm that the
cDNA was in frame.

The plasmid was digested by a restriction enzyme and
fragments were separated using 1% agarose gel. Target
fragments were isolated and purified from the gel using a
FarvoPrep GEL/PCR Purification Kit (Favogen). The fragments
were then amplified with Ex Taq DNA Polymerase (Takara) and
purified with the FarvoPrep™ GEL/PCR Purification Kit
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(Favogen). The purified PCR product was used as the template
for synthesizing the dsRNA in vitro using a T7-Scribe™

Transcription Kit (Epicentre). The reaction was performed at
37°C for 4 to 12 hours. A solution of 95 mL of DEPC-H2O and
ammonium acetate (stop solution) was added to stop the
reaction and the supernatant was transferred into a new
Eppendorf tube with 150 mL of a phenol/chloroform
(AMRESCO) solution. Samples were centrifuged at 13000 rpm
for 5 minutes at 4°C and the supernatant was transferred to a
new Eppendorf tube with 150 mL of chloroform. After another
centrifugation at 13000 rpm for 5 minutes at 4°C, the
supernatant was transferred to a new Eppendorf tube with 110
mL isopropanol. Samples were gently mixed and stored at −80°C
for 30 minutes. Finally, each sample was centrifuged at 13000
rpm for 30 minutes at 4°C. The dsRNA pellets were dried in a
laminar flow hood and dissolved in DEPC-H2O.

The dsRNA was diluted to a final concentration of 5 mg/mL.
Between day three to five post-eclosion (PE), female mosquitoes
were injected with 280 nL of dsRNA (5 mg/mL) using a Nanoject
II AutoNanoliter Injecter (Drummond Scientific Company).
dsRNA against LacZ was used as control dsRNA (dsLacZ).
Silencing efficiency was confirmed by collecting the total RNA
of mosquitoes three days post-injection for RT-PCR analysis.

Western Blot Analysis
The whole bodies of three to five mosquitoes or the midguts of 10
to 30 mosquitoes were collected in 1.5 mL Eppendorf tubes
containing 100 µL of protein lysis buffer and homogenized with a
rooter-stator homogenizer. Each homogenized sample was
centrifuged at 13000 rpm for 30 minutes at 4°C and the
supernatant was transferred to a QIAshredder column
(QIAGEN). The eluted samples were collected and transferred
to new Eppendorf tubes at −80°C. The protein concentration was
quantified using the Bradford method with a Bio-Rad Protein
Assay Dye Reagent (Bio-Rad Laboratories, Inc.). Each protein
sample was mixed with the same volume of sample buffer,
Laemmli 2× Concentrate (SIGMA), and adjusted to the same
volume with 1× sample buffer. To denature proteins for
electrophoresis, protein samples were incubated at 98°C for 18
minutes. The protein samples (10 µg in midguts or 60 µg in
whole body mosquitoes per lane) were subjected to SDS-PAGE
and blotted onto a PVDF membrane (Pall Corporation) for 1.5
hours. The membranes were blocked with 5% skim milk in PBST
(1× phosphate-buffered saline, 0.4% tween 20) at room
temperature for one hour. Afterwards, the membranes were
incubated in the blocking solution with the primary antibody
(Anti-NS1, anti-Anopheles gambiae TEP1, or Anti-GAPDH)
overnight at 4°C. The anti-Anopheles gambiae TEP1 antibody
used was a gift from Dr. Stephanie Blandin at the Institute of
Molecular and Cellular Biology, French National Centre for
Scientific Research (CNRS) in Strasbourg, France. Membranes
were washed in a PBST solution and incubated with a secondary
antibody (anti-rabbit IgG) in the blocking solution at room
temperature for one hour. Finally, membranes were washed in
PBST and developed using WesternBright Peroxide and ECL
(Advansta Inc.) as the substrate for horseradish peroxidase
following the manufacturer’s instructions.
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Immunofluorescence Assay
Mosquito midguts were dissected in PBS and fixed in 4%
paraformaldehyde (Electron Microscopy, Hatfield, PA) for at
least four hours. The fixative was then removed and the midguts
were rinsed in PBS, incubated for one hour in 0.1% Triton X-100
in PBS for cell permeabilization, and blocked with a PAT
blocking buffer (1% Bovine serum albumin (BSA), 0.5% Triton
X-100 in PBS) for one hour. A monoclonal mouse anti-NS1
antibody (YH0023) (Yao-Hong Biotechnology Inc., Taipei, Taiwan)
was used as the primary antibody to examine DENV antigens in the
midguts. They were then incubated with a 1:500 dilution of goat
anti-mouse antibody conjugated with Alexa-488 fluorochrome
(Molecular Probes Inc., Eugene, OR). Finally, midguts were
mounted with a DAPI-containing medium for confocal
microscopy (ZEISS, LSM 510 META Confocal Microscope).

Plaque Assay
The whole bodies or midguts were collected from TEP1 silenced,
dsLacZ-treated, or wild type (control) mosquitoes in 100 mL serum-
free medium with antibiotics (penicillin–streptomycin) and stored
at −80°C. C6/36 cells were seeded in a 24-well tissue culture plate
and incubated at 28°C overnight. The homogenized suspensions of
infectious mosquitoes were centrifuged at 18,928 × g for 30 minutes
and kept on ice. The cell monolayers were rinsed with PBS and
200 mL of the 10-fold serial dilutions of infectious mosquito
suspensions were added for two hours. After viral adsorption,
500 mL 1% methyl cellulose cell media with antibiotics
(penicillin–streptomycin) was added and the plates were kept in
an incubator at 28°C for five days. The plates were fixed with 4%
formaldehyde for one hour at room temperature and stained with
1% crystal violet for 30minutes. Plaques were quantified viamanual
counting (24).

Generation of Transgenic Mosquitoes
Female mosquitoes were allowed to lay eggs for 50 minutes three
days after the blood meal. The DNA of donor and helper
plasmids was mixed at the ratio of 500:300 ng/µL and diluted
in a 1× injection buffer (2 mM KCl, 0.1 mM sodium phosphate,
pH 6.8). Approximately 500 injected embryos were kept on the
filter paper for four days before hatching. Each surviving male
and female adult from the injected generation 0 (G0) was
outcrossed with three control females or males at a male/
female or female/male ratio of 1:3. eGFP fluorescence driven
by the 3xp3 promoter manifests at the optic nerve and tracheal
gills of G1 transgenic larvae, which were screened with the help
of a stereoscopic fluorescent microscope (SZX10, Olympus)
(25, 26).

pMOS1-AeCPA-miR-TEP1-2miR-3xp3-
eGFP Vector
The functional stem-loop structure of the artificial mir-based
RNAi_TEP1 miRNA was created through the first primer sets,
AeTEP1-mir-1-1/Ae-TEP1-mir-1-2 or AeTEP1-mir-2-1/Ae-
TEP1-mir-2-2, by PCR. This functional stem-loop miRNA was
then extended and flanking sequences with restriction enzyme
sites were added with the second primer set, Mir6.1_5′EcoRI/
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BglII and Mir6.1_3′BamHI/XhoI, to get the precursor TEP1
miRNA unit. The BglII and BamHI restriction enzyme sites of
the precursor TEP1 miRNA unit were used for assembling
TEP1-miR-1 and TEP1-miR-2 to generate the TEP1-2miRNA
cassette (27). Based on the above, following double digestion
by the restriction enzymes, EcoRI/BamHI-TEP1-miR-1 and
BglII/XhoI-TEP1-miR-2 were integrated concurrently into
the EcoRI and XhoI sites of pMOS1_AePUb-Den3-4miR_
3xp3-eGFP (GenBank accession: MG603748) to generate
a pMOS1_AePUb-miR-TEP1-2miR_3xP3-eGFP transition
plasmid with a truncated AePUb promoter (26). The AeCPA
promoter was amplified from Ae. aegypti genomic DNA by
using the following primers: pMOS1_fusion_AeCPA-pr-F
and pMOS1_fusion_AeCPA-pr-R (28). Finally, the AeCPA
promoter fragments were cloned into the FseI and EcoRI
double-digested pMOS1_AePUb-miR-TEP1-2miR_3xp3-eGFP
transition plasmid with In-Fusion HD Cloning technology
(Clontech), generating the pMOS1-AeCPA-miR-TEP1-2miR-
3xp3-eGFP vector.

Statistical Analysis
All statistical analyses were performed using GraphPad Prism 5
software. Gene expression and fecundity data were analyzed
using ANOVA for all independent experiments.
RESULTS

An Infectious Blood Meal Activates TEP1
Expression in the Mosquito Midgut
To identify the immune-responsive genes involved in DENV
replication in mosquitoes, we selected several immune-
responsive genes previously identified as potential inducible
genes (29, 30). Total RNA was extracted from the midguts of
mosquitoes at three and seven days after an infectious or normal
blood meal. The transcriptional profiles of the immune-
responsive genes from normal (BF) and infectious DENV2
blood-fed (DENV2) mosquito midguts were examined with
qRT-PCR analysis. Interestingly, our results showed that
transcription of TEP1 was significantly up-regulated three days
post DENV2 infection (Figure 1). This indicates that TEP1 is
sensitive to DENV infection in the mosquito midgut. Therefore,
we investigated the role of TEP1 in DENV2 replication further.

TEP1 Is Involved in DENV Replication in
the Midgut of Mosquitoes
First, we examined the expression profiles of TEP1 between
normal and infectious DENV2 blood-fed in mosquito midguts.
Midguts from female mosquitoes were collected 6, 12, 24, 48, and
72 hours after a normal or infectious blood meal. Equal amounts
of total RNA from each group were used for cDNA synthesis.
The transcriptional profiles of TEP1 were examined with qRT-
PCR analysis. Our results showed that TEP1 RNA expression
was higher in the midgut of the mosquito after a blood meal
(Figure 2A). The RNA expression level was significantly higher
after an infectious blood meal. In order to examine the translational
May 2021 | Volume 12 | Article 670122
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pattern of TEP1, total protein from the midgut of the mosquito was
collected 6, 12, 24, 48, and 72 hours after a normal or infectious
blood meal. Equal amounts of total protein from each group were
used for western blot analysis. Our results show that TEP 1 was
activated at 6 hours with a blood medium and decays at 12 hours
after feeding, while the expression is higher at 6 hours when the
blood includes virus and this was maintained up to 24 hours post
infection (Figure 2B). To clarify the role of TEP1 in DENV2
replication, we used a reverse genetic approach by introducing TEP1
dsRNA into the mosquito to silence TEP1 expression. The viral
genome and NS1 protein expression were activated in the absence
of TEP1 (Figures 2C, D). These results indicate that TEP1 plays a
crucial role in regulating DENV2 replication in the midgut
of mosquitoes.

TEP1 miRNA-Mediated Loss-of-Function
Transgenic Mosquitoes Enhance
DENV Replication
To investigate the function of TEP1 in mosquitoes, we generated a
TEP1 loss-of-function transgenic mosquito using anti-TEP1 miR
expression (Figure 3A). The expression of anti-TEP1 miR was
regulated by a mosquito midgut-specific CPA promoter, which is
activated after a blood meal. First, we examined the efficiency of
TEP1 silencing in the transgenic mosquitoes. The total RNA of wild
type and anti-TEP1 miR-expressed transgenic mosquitoes was
collected 6, 12, 24, 48, and 72 hours after a normal blood meal.
The expression levels of both TEP1 (Figure 3B) and GFP
(Figure 3C) were determined by qRT-PCR. Compared with wild
type mosquito, our results indicate that the TEP1 mRNA level was
down-regulated 24 and 48 hours after the blood meal in the
transgenic mosquitoes (Figure 3B). GFP expression was used as a
marker for anti-TEP1 miR-expressed transgenic mosquitoes
(Figure 3C). To investigate the role of TEP1 in DENV2
replication in the mosquito midgut, replication efficacy in
Frontiers in Immunology | www.frontiersin.org 5145
transgenic mosquitoes was examined. Total protein from wild
type or anti-TEP1 miR-expressed transgenic mosquitoes were
collected 1, 2, 4, 6, 8, and 10 days after a normal or infectious
blood meal (Figure 3D). Expression of the viral proteins were
significantly increased in the transgenic mosquitoes after an
infectious blood meal compared to the wild type mosquitoes
(Figure 3D). Combined, our results suggest that TEP1 is crucial
for boosting DENV2 replication in the midgut of mosquitoes.

TEP1 Silencing Enhances DENV Particle
Production in Mosquitoes
We examined the effect of TEP1 on infectious virus particle
production by comparing the efficiency of particle production
between wild type and anti-TEP1 miR-expressed transgenic
mosquitoes. Whole body samples of wild type or transgenic
mosquitoes were collected 2, 4, 6, 8, 10, and 14 days after an
infectious blood meal. They were examined with a plaque assay for
infectious virus particle quantification. Our results show that, in
response to TEP1 silencing, infectious virus particle production
efficiency was higher in transgenic mosquitoes than in wild type
mosquitoes after the infectious blood meal (Figure 4A). This
supports the notion that TEP1 plays a key role in DENV
replication. In addition, we examined the effect of TEP1 on
infectious virus particle production in the mosquito midgut with
a plaque assay (Figure 4B). Combined, our results indicate that
TEP1 serves as a negative regulator for DENV2 replication in the
midgut of mosquitoes.

TEP1 Silencing Enhances AMP Expression
in Mosquitoes
A previous study reported that a TEP-related protein, Ae. aegypti
macroglobulin complement-related factor (AaMCR), is an
essential factor in resisting flaviviral infection in Ae. aegypti
(18). Moreover, AaMCR interacts with DENV through a
FIGURE 1 | Transcriptional Analysis of Immune-Responsive Genes in the Mosquito Midgut. The relative mRNA levels of the immune-responsive genes from three
and seven days after normal (BF) and infectious DENV2 blood-fed (DENV2) mosquito midguts were examined with qRT-PCR analysis. Midguts of mosquitoes fed
with non-infectious blood were used as controls. An equal amount of total RNA from each group was used for cDNA synthesis. Ribosomal protein S7 was used for
normalization of relative target gene mRNA expression. Values are mean ± S.E. (error bars) of the copy number of each gene. At least three biological cohorts from
each time point were used for analysis.
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homologue of the scavenger receptor-C (AaSR-C), which
interacts with DENV and AaMCR. The expression of AMPs is
regulated by the AaSR-C/AaMCR complex for potent anti-
DENV activity. Additionally, previous studies have also
suggested that AMPs play crucial roles in mosquito immune
defense against DENV (31–33). Therefore, we hypothesized that
TEP1 controls DENV replication by regulating the expression of
AMPs. To examine this hypothesis, total RNA was extracted
from the midgut of either the wild type or anti-TEP1 miR-
expressed transgenic mosquitoes 6, 12, 24, 48, and 72 hours after
a normal blood meal. The transcriptional profiles of immune-
responsive genes from normal blood-fed mosquitoes were
examined with qRT-PCR analysis. Our results showed that
Rel1 remained unchanged in TEP1 silenced mosquitoes
(Figure 5A) whereas Rel2, and defensins were significantly
suppressed in TEP1 silenced mosquitoes (Figures 5B, C). On
the other hand, cecropins was also suppressed at PE stage in
TEP1 silenced mosquitoes (Figure 5D). Our results point out the
crucial role TEP1 plays in controlling immune response in
Ae. aegypti.
Frontiers in Immunology | www.frontiersin.org 6146
DISCUSSION

Hosts have developed complex immune systems to defend
themselves from invading pathogens before they cause
significant physiological damage (6, 8). In mammals, both the
innate and adaptive immune systems fight viral infections. In
contrast, insects only rely on the innate immune and potentially
cytokine-like responses for viral infection defense (6, 8, 15, 30).
Without an antibody-based immune response, insects have
developed a functional complement-like system to combat
pathogens (14, 15). Previous studies on Anopheles mosquitoes
have shown that TEPs bind to pathogens, such as the malaria
parasite Plasmodium berghei, and activate phagocytosis to
mitigate infection (10, 13, 16). TEP1, TEP3, and TEP4
promote phagocytosis to limit Gram-positive and Gram-
negative bacterial infections, and both TEP1 and TEP3 are able
to bind to the surface of malaria parasites and activate lysis and
melanization (10, 13–16). In Drosophila, complement-like
protein DmMCR has been shown to bind specifically to the
surface of Candida albicans to opsonize and promote subsequent
A C

B D

FIGURE 2 | TEP1 Silencing Resulted in an Increase in Viral Load. (A) The relative mRNA levels of thioester-containing protein 1 (TEP1) in the midgut of female mosquitoes
were quantified by real-time PCR after a normal or dengue virus (DENV) infectious blood meal. Midguts were collected 6, 12, 24, 48, and 72 hours after a normal or infectious
blood meal. Equal amounts of total RNA from each group were used for cDNA synthesis. Ribosomal protein S7 was used for normalization of relative target gene mRNA
expression. Values are mean ± S.E. (error bars) of the copy number of TEP1. At least three biological cohorts from each time point were used for analysis. (B) Midguts were
collected 6, 12, 24, 48, and 72 hours after a normal or infectious blood meal. Total protein was extracted and western blot analysis was performed using the polyclonal
antibody against Anopheles gambiae TEP1. Anti-b-actin antibody was used as the loading control. (C) The midguts were collected three or seven days after a naïve blood
meal or infectious blood meal. Midguts of 3-day-old, non-blood-fed female mosquitoes were used as controls. Midguts from female mosquitoes were collected and treated
with TEP1 double-stranded RNA (dsRNA) three or seven days after an infectious blood meal. Total RNA was extracted and quantified, followed by cDNA synthesis and
subjected to quantitative real-time PCR analysis with a specific primer for DENV2. Values are mean ± S.E. (error bars) of the copy number of DENV2. At least three biological
cohorts from each time point were used for analysis. Ribosomal protein S7 was used for normalization of relative target gene mRNA expression. (D) Mosquitoes pre-treated
with TEP1 dsRNA were collected for infectious DENV blood feeding. Mosquito midguts were dissected and collected seven days after feeding with infectious blood for
immunofluorescent analysis. The anti-DENV NS1 protein antibody was used to detect the expression of DENV in the midgut of mosquitoes. Alexa Fluor 488 goat anti-mouse
IgG was used as a secondary antibody. The images were analyzed by confocal microscopy with single planes presented. Mosquitoes pre-treated with LacZ dsRNA fed
infectious blood were used as controls. PE means post-eclosion.
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phagocytosis (17). TEPs have been identified as key factors in the
restriction of flaviviral infections (11, 18). Functional studies
indicate that TEPs exert potent anti-DENV activity by regulating
AMP activation (18). However, the detailed mechanisms underlying
the TEPs-based complement-like system for regulating mosquito
immunity against viral infections remain unclear.

More than 30 secreted and membrane-bound proteins have
been identified in the human complement network (9, 14).
Foreign antigens are recognized by pattern receptors, including
C1q, ficolin, and mannose-binding C-type lectin (MBL), which
subsequently activate a complement cascade (9). Recent reports
have shown that mosquito extracellular C-type lectins, which are
the putative homologues of the human MBL, rather than acting
as antiviral pattern recognition receptors, act as cellular receptors
facilitating West Nile virus and DENV infection (34, 35). We
have demonstrated that Ae. aegypti TEP1 is highly expressed in
the midgut of mosquitoes after an infectious blood meal at both
Frontiers in Immunology | www.frontiersin.org 7147
the transcriptional and translational levels. In addition, viral
titers were significantly higher in the absence of TEP1. Therefore,
these results indicate that TEP1 is an important anti-DENV
protein in mosquitoes. We have successfully developed a
transgenic mosquito line with TEP1 loss-of-function
phenotypes and a blood meal-inducible CPA promoter. The
viral titer and RNA in transgenic mosquitoes were higher after an
infectious blood meal, further confirming the anti-DENV role
of TEP1.

We also demonstrated that TEP1 is an important factor in
regulating the replication of DENV. This may be achieved by
modulating the expression of AMPs in Ae. aegypti. AMPs in
insects are effectors of innate immunity, and are regulated by a
wide variety of signal transduction pathways in response to
different microbial infections (6, 8, 19). To date, 17 AMPs have
been discovered in the Ae. aegypti genome and they are
categorized into five independent groups (defensins, cecropins,
A

CB

D

FIGURE 3 | Signal Pathways involved in Dengue Virus (DENV) Replication and Transmission in Aedes aegypti. (A) Development of a thioester-containing protein 1
(TEP1) loss-of-function transgenic mosquito line with a blood meal-inducible carboxypeptidase (CPA) promoter. Based on the mariner transposon system, the
midgut-specific blood meal-inducible CPA promoter (AaCPA) was used for expressing the downstream synthetic miRNAs. AaCPA promoter, Ae. aegypti
carboxypeptidase A promoter; AaTEP1_2miR, anti-TEP1 miRNA. (B, C) miRNA-mediated TEP1 silenced transgenic mosquitoes. The whole bodies of female wild
type or transgenic mosquitoes (AaCPA>2miR-TEP1) were collected 6, 12, 24, 48, and 72 hours after a normal blood meal. Total RNA was extracted and quantified,
followed by cDNA synthesis and subjected to quantitative real-time PCR analysis with a specific primer for TEP1 (B) or GFP (C). Values are mean ± S.E. (error bars)
of the ratio of each gene to ribosomal protein S7. At least three biological cohorts from each time point were used for analysis. Ribosomal protein S7 was used for
normalization of the relative target gene mRNA expression. (D) Anti-DENV phenotype of transgenic mosquitoes. The whole bodies of female mosquitoes were
collected 0, 1, 2, 3, 4, 6, 8, and 10 days after an infectious DENV blood meal. Total protein was extracted and western blot analysis was performed with the
antibody against DENV NS1 protein. Anti-GAPDH antibody was used as the loading control. PE means post-eclosion.
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A B

FIGURE 4 | Thioester-Containing Protein 1 (TEP1) Transgenic Mosquito Enhances Dengue Virus (DENV) Infection. (A) Aedes aegypti control and loss-of-function
transgenic (AaCPA>2miR-TEP1) mosquitoes were fed an infectious DENV blood meal. The whole bodies of infected mosquitoes were collected 0, 2, 4, 6, 8, 10, and
12 days after the infectious blood meal and viral titers were determined and quantified with a plaque assay. (B) Ae. aegypti mosquitoes with silenced TEP1 or
mosquitoes from the loss-of-function transgenic line were fed an infectious DENV blood meal. Midguts from infected mosquitoes were collected seven days after the
infectious blood meal and the viral titers were determined by plaque assay. Letters indicate the statistical significance according to Tukey’s multiple comparison test.
There is no significant difference between them (p > 0.05). Control: Aedes aegypti UGAL/Rockefeller strain without any transgenic materials or dsRNA treatment.
A C

B D

FIGURE 5 | Role of Defensins and Cecropins in Thioester-Containing Protein 1 (TEP1) Transgenic Mosquitoes after Blood Meals. (A–D) The whole bodies of female
wild type or transgenic mosquitoes (AaCPA>2miR-TEP1) were collected 6, 12, 24, 48, and 72 hours after a normal blood meal. Total RNA was extracted and
quantified, followed by cDNA synthesis and subjected to quantitative real-time PCR analysis with a specific primer for Rel1 (A), Rel2 (B), defensins (C), and
cecropins (D). At least three biological cohorts from each time point were used for analysis. Ribosomal protein S7 was used for normalization of relative target gene
mRNA expression. PE means post-eclosion.
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attacin, diptericin, and gambicin) (19). The immune pathway
mechanisms for AMP regulation have been mainly studied in
Drosophila (6, 8, 19). In mosquitoes, Toll, Imd, and JAK-STAT
pathways are activated upon pathogen infection (6, 8, 19, 20).
Pathogenic cell surface proteins are recognized by immune
receptors and trigger downstream transcription factors such as
Rel1 (Toll pathway), Rel2 (Imd pathway), and STAT (JAK-STAT
pathway). Previous studies have evaluated how the expression of
AMPs are induced by DENV infection in mosquitoes, and they
exhibit antiviral activities (6, 8, 18, 20). We further demonstrated
that transgenic mosquitoes with TEP1 loss-of-function inhibited
the expression of two AMPs and the transcription factor Rel2
of the Imd pathway. Our results indicated that, compared
with wild type mosquitoes, the levels of AMPs expression are
suppressed in TEP1-silenced mosquitoes after the mosquitoes
take a blood meal. Similar results also descript in previous study.
The study shows that mosquito blood meal results in robust
activation of the GABAergic system through glutamate-derived
GABA production from blood digestion. The enhancement of
GABA signaling suppresses antiviral responses, such as AMP
induction by the Imd signaling pathway (36). These results
suggest that TEP1 play an important role in AMPs production.
Our results coincide with previous findings reporting that TEP1
plays an important role in regulating the immune response
of mosquitoes.

In conclusion, we demonstrated that TEP1 limits DENV
infections in Ae. aegypti. Silencing TEP1 using a reverse
genetic approach resulted in an up-regulation of viral RNA
and proteins in mosquitoes. The production of infectious virus
particles increased in the absence of TEP1. Next, we generated a
midgut-specific TEP1-miR expression mosquito with a TEP1
loss-of-function phenotype through the CPA promoter. We
showed that viral RNA and titer increased in this transgenic
mosquito line after an infectious blood meal. Interestingly,
transgenic mosquitoes with a TEP1 loss-of-function phenotype
inhibited the transcription factor Rel2. Our current results
suggest that TEP1 regulates the mosquito immune response
and consequently controls DENV replication. These findings
provide new insight into the molecular mechanisms of mosquito
host factors in regulating DENV replication.
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microRNA (miRNA) plays important roles in regulating various biological processes,
including host-pathogen interaction. Recent studies have demonstrated that virus-
encoded miRNAs can manipulate host gene expression to ensure viral effective
multiplication. Bombyx mori cypovirus (BmCPV), a double-stranded RNA virus with a
segmented genome, is one of the important pathogens for the economically important
insect silkworm. Our present study indicated that two putative miRNAs encoded by
BmCPV could promote viral replication by inhibiting the gene expression of B. mori
GTP-binding nuclear protein Ran (BmRan), an essential component of the exportin-
5-mediated nucleocytoplasmic transport of small RNAs. BmCPV-miR-1 and BmCPV-
miR-3 are two of the BmCPV-encoded miRNAs identified in our previous studies.
BmRan is a common target gene of them with binding sites all located in the 3′-
untranslated region (3′-UTR) of its mRNA. The expression levels of the two miRNAs
in the midgut of larvae infected with BmCPV gradually increased with the advance of
infection, while the expression of the target gene BmRan decreased gradually. The
miRNAs and the recombinant target gene consisting of reporter gene mCherry and
3′-UTR of BmRan mRNA were expressed in HEK293T cells for validating the interaction
between the miRNAs and the target gene. qRT-PCR results revealed that BmCPV-miR-
1 and BmCPV-miR-3 negatively regulate target gene expression not only separately but
also cooperatively by binding to the 3′-UTR of BmRan mRNA. By transfecting miRNA
mimics into BmN cells and injecting the mimics into the body of silkworm larvae, it was
indicated that both BmCPV-miR-1 and BmCPV-miR-3 could repress the expression of
BmRan in BmN cells and in the silkworm, and the cooperative action of the two miRNAs
could enhance the repression of BmRan expression. Furthermore, the repression of
BmRan could facilitate the replication of BmCPV genomic RNAs. It is speculated that
BmCPV-miR-1 and BmCPV-miR-3 might reduce the generation of host miRNAs by
inhibiting expression of BmRan, thus creating a favorable intracellular environment for
virus replication. Our results are helpful to better understand the pathogenic mechanism
of BmCPV to the silkworm, and provide insights into one of the evasion strategies used
by viruses to counter the host defense for their effective multiplication.
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INTRODUCTION

Bombyx mori cypovirus (BmCPV) is one of the important
pathogens of the silkworm (Cao et al., 2012). It is a typical RNA
virus belonging to the Cypovirus genus of Reoviridae. Its genome
consists of 10 segmented double-stranded RNAs with a total
length of more than 24 kbp, each encoding a structural or non-
structural protein (Hagiwara et al., 2002; Hu et al., 2019). The
virus infects only midgut epithelial cells in the silkworm and
produces polyhedra in the cytoplasm. The intact virus particles
are generally embedded in the polyhedra and must be released
in the larval midgut to infect the silkworm. The infection of
the virus to the silkworm always causes serious cytoplasmic
polyhedrosis disease resulting in big losses to the commercial
sericultural production. The mechanism of interaction between
the virus and silkworm needs to be further explored for the
development of effective strategies to control the occurrence and
prevalence of the disease. In the silkworm, major antiviral defense
mechanisms such as RNA interference (RNAi), NF-kB-mediated,
Imd (immune deficiency), stimulator of interferon gene (STING),
and Janus kinase/signal transducer and activator of transcription
(JAK/STAT) pathways have been shown to play important
roles in antiviral immunity (Jiang, 2021). In contrast, viruses
can modulate prophenol oxidase (PPO), phosphatidylinositol
3-kinase (PI3K)/protein kinase B (Akt), and extracellular signal-
regulated kinase (ERK) signaling pathways of the host to elevate
their proliferation in the silkworm (Jiang, 2021). Transcriptome
studies of silkworm have revealed a complex response against
BmCPV infection. While, studies of deep sequencing of viral
small RNAs have indicated the importance of the RNAi pathway
in the control of cypovirus infection although many functional
aspects still need to be elucidated and conclusive evidence is
lacking (Swevers et al., 2020).

microRNA (miRNA) is a type of 19–25 nt single-stranded
non-coding small RNAs, which is widely found in animals,
plants, and nematodes, and regulates the expression of target
genes at the post-transcriptional level (Filipowicz et al., 2008).
A miRNA can target and regulate multiple target genes, and
a target gene may also be regulated by multiple miRNAs. At
the same time, studies have shown that the increase in the
number of miRNA binding sites in mRNA 3′-untranslated region
(3′-UTR) can enhance the translational repression of a target
gene (Heiss et al., 2012). Similar studies also showed that co-
operativity between two or more miRNA-binding sites enhanced
repression of mRNA translation via an unknown mechanism
when sites were separated by 13–35 nucleotides (Saetrom et al.,
2007). Many viruses also encode miRNAs and 569 miRNAs of
virus origin have been registered in the miRBase database version
22.1 (2018)1. Virus-encoded miRNAs play an important role
in the intricate interaction between virus and hosts, including
regulation of host immune response, evasion from recognition
by the host immune system (Liang et al., 2014), inhibition of
apoptosis (Zhao et al., 2011), regulation of cell cycle (Gottwein
et al., 2007), mimicking host miRNAs (Grimson et al., 2007;
Zhao et al., 2009), and so on. At present, most viral miRNAs

1http://www.mirbase.org/

reported are encoded by DNA viruses, but some RNA viruses
can also encode functional miRNAs (Swaminathan et al., 2013;
Qiu et al., 2018). Our previous deep sequencing of small RNA
in the midgut of silkworm larvae infected by BmCPV virus
identified some virus-derived non-coding RNA sequences similar
to miRNA. Further study proved that a BmCPV-encoded miRNA
can regulate the expression of host genes and affect the replication
and proliferation of the virus (Guo et al., 2020).

The present work studies the functions of two putative
BmCPV-encoded miRNAs, namely BmCPV-miR-1 and BmCPV-
miR-3. Target gene prediction against the silkworm genome
identified that the B. mori GTP-binding nuclear protein ran
gene (BmRan) is the common target gene of the two miRNAs.
Their regulation on the target gene and its influence on
BmCPV virus replication were analyzed. Studying the BmCPV-
encoded functional miRNAs and revealing their functions in the
process of pathogen-host interaction would enrich the miRNA
family encoded by viruses and help to reveal the miRNA-
mediated new mechanism of regulation on RNA virus replication
and proliferation.

MATERIALS AND METHODS

Silkworm Strain, Cell Lines, and Virus
The domesticated silkworm of strain 4008 used in this study
was supplied by Silkworm Germplasm Conservation Center,
Chinese Academy of Agricultural Sciences. BmCPV, BmN
cell, and HEK293T cell (human embryonic kidney cells)
lines were maintained in our laboratory. miRNA mimics,
inhibitors, and negative controls (NCs) were synthesized and
chemically modified by Shanghai GenePharma Co., Ltd. The
pmCherry-N1 plasmid, lentiviral expression vector pLNHX,
pLKO.3G, and packaging plasmids pVSV-G, pSPAX2, and
pMD2.G were purchased from Wuhan MiaoLingBio Inc. and
kept in our laboratory.

Virus Inoculation and Tissue Collection
Bombyx mori cypovirus polyhedra suspension at a concentration
of 1.0 × 108 mL−1 was coated on fresh mulberry leaves cut into
5 × 3 cm. The leaves coated with the virus suspension were fed
to the 5th instar silkworm larvae and the average amount of
virus ingested by each larva was calculated to be about 1.0 × 106

polyhedra. Another group of larvae fed with mulberry leaves
coated with sterile water were used as blank control. When the
mulberry leaves coated with virus or water were all eaten up
(about 6 h), the larvae were given fresh mulberry leaves and
reared under the standard condition of 14 h light and 10 h
darkness and relative humidity of about 90%.

The larvae were dissected at 12, 24, 48, 72, and 96 h,
respectively after inoculation to collect midguts. The collected
midgut was rinsed in DEPC water to remove the attached
mulberry leaf pieces and put into a cryotube after the extra water
was absorbed with tissue paper. The midguts of every five larvae
were mixed as one sample and three samples were taken at each
time point. Then the samples were stored at −80◦C after quick
freezing in liquid nitrogen.
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RNA Extraction
In this study, the expression level of both the virus-derived
miRNAs and the host target gene, and the replication level of
viral genome in the midgut of the silkworm larvae needed to
be quantitatively detected, respectively. Therefore, total RNA
was extracted with a classic manual method of the following
steps. The frozen silkworm larval midguts were ground into fine
powder with liquid nitrogen, put into an RNase free centrifuge
tube. A total of 1 mL of lysate RL was added into the tube,
and the mixture was shaken and mixed, then incubated at room
temperature for 5 min. It was centrifuged at 4◦C, 12000 rpm
for 15 min. Then the supernatant was mixed with 200 µL
of chloroform in a new tube, shaken sufficiently, and kept at
room temperature for 10 min, followed by centrifugation at 4◦C,
12000 rpm for 15 min. The upper aqueous phase was mixed with
an equal volume of pre-cooled isopropanol in a new RNase free
centrifuge tube, kept at 4◦C for 10 min, then centrifuged at 4◦C,
12000 rpm for 10 min. The supernatant was discarded, the pellet
was washed with 1 mL of 75% ethanol and centrifuged at 4◦C,
7500 rpm for 5 min. Then, the supernatant was discarded and
the pellet was kept at room temperature for 5–10 min to allow
the RNA pellet to dry. The RNA precipitate was dissolved with
30–50 µL of RNase-free water, and stored at −80◦C after the
concentration was measured.

cDNA Synthesis
cDNA was synthesized with a TaKaRa Primer ScriptTM

RT reagent kit for reverse transcription (Takara Biomedical
Technology Co., Ltd., China) according to the manufacturer’s
instructions. For the first step, 2 µL of 5 × gDNA Eraser Buffer,
1 µL of gDNA Eraser, and 1 µg of RNA were mixed in the
reaction tube to a total volume of 10 µL by adding ddH2O, then
kept at 42◦C for reaction for 2 min. Then, 10 µL of the reaction
solution, 4 µL of 5 × Prime Script Buffer 2, 1 µL of Prime Script
RT Enzyme Mix I, 1 µL of RT Primer, and 4 µL of ddH2O
were mixed, and the reaction was performed with the program
37◦C, 15 min, 85◦C, 5 s, and 4◦C + ∞. After the reaction, the
synthesized cDNA was stored at −20◦C. The cDNA for miRNA
detection was synthesized with stem-loop RT primers. The stem-
loop primers were designed with reference to literature (Chen
et al., 2005) and the sequences are shown in Table 1.

qRT-PCR
Primer Premier 5.0 software was used to design quantitative
primers (Table 1) for target gene BmRan, reporter gene mCherry,
and internal reference gene β-actin (Table 1), and the stem-
loop primers for miRNA quantitative detection were designed
with reference to literature (Chen et al., 2005). The reaction
system was prepared according to the instructions of the SYBR
premix Ex TaqTM kit (Takara Biomedical Technology Co., Ltd.,
China) (2 × SYBR Premix Ex TaqTM: 10 µL, ROX Reference
Dye: 0.4 µL, upstream primer: 0.8 µL, downstream primer:
0.8 µL, cDNA: 1 µL, ddH2O: 7 µL, total volume: 20 µL). Three
technical replicates were set for each quantitative reaction and the
reaction was run on an ABI Prism fluorescence quantitative PCR
instrument (Applied Biosystems, Foster City, CA, United States).

TABLE 1 | Primer sequences for qRT-PCR.

Primer name Sequence (5′–3′)

Stem-loop reverse-transcribed PCR for BmCPV-miR-1

RT: GTCGTATCCAGTGCAGGGTCCGAGGT
ATTCGCACTGGATACGACTAGTGT

F: ACACTCCAGCTGGGGAAATGGACACAGGC

Stem-loop reverse-transcribed PCR for BmCPV-miR-3

RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCA
CTGGATACGACATCAAGCC

F: ACACTCCAGCTGGGTAGGAGAATTAGCGCGG

Universal R: CCAGTGCAGGGTCCGAGGTA

mCherry F: CTCAGTTCATGTACGGCTCCAAGG

R: GGAGTCCTGGGTCACGGTCAC

Human β-actin F: CTCCATCCTGGCCTCGCTGT

R: GCTGTCACCTTCACCGTTCC

BmRan F: GCCGTAACGACTTTGCTTTGGAAC

R: TTGCCAGTACCACCATCTCCTACC

Genomic RNA S2 F: GTTGAGCGTCAGCAGTCAGATCG

R: TGTTTACCCTGAGCAGCGTTATCG

Genomic RNA S5 F: CGCTTACAGGCAGTGGAATAGGAC

R: GCTCTAACACATCGCTGGGCTAAG

Genomic RNA S10 F: ACCGTCAGTGATTGCTCGTGTAAC

R: AGCGTCACCCTATCCGAAGACC

Bmβ-actin F: CCGTATGAGAAAGGAAATCA

R: TTGGAAGGTAGAGAGGGAGG

The reaction program was 95◦C for 45 s followed by 45 cycles
of 95◦C for 5 s, and 60◦C for 31 s. Bmβ-actin and BmTIF-
4A were used as internal reference genes for detection of
target gene expression. The differences in gene expression levels
were calculated using the relative quantitative 2−11CT method
(Chang et al., 2009).

Target Gene Prediction
The target genes of BmCPV-miR-1 and BmCPV-miR-3 was
predicted against the silkworm genome by the miRanda and
Targetscan2 software. The genes that could be predicted by
both the two software programs and that mainly participated
in immune response, escape of immune recognition, regulation
of cell apoptosis, regulation of cell cycle, etc. were selected
as the candidate target genes. The minimum free energy of
hybridization between miRNA and target gene mRNA was
calculated via software RNAhybrid3.

Construction of Lentiviral Expression
Vectors and Transfection of HEK293T
Cells
To verify the miRNA regulation on target gene expression by
binding to its target site in 3′-UTR of mRNA, the lentiviral
expression vectors for expression of the target gene and
the miRNAs were constructed respectively and transfected
into HEK293T cells. The reporter gene mCherry sequence

2http://www.targetscan.org/vert_71/
3https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid
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(731 bp) was obtained from the plasmid pmCherry-N1.
The 570 bp sequence encoding 3′-UTR of the target gene
(BmRan) mRNA was amplified from the midgut cDNA of
the experimental silkworm strain 4008. They were ligated into
lentiviral vector pLNHX sequentially to construct the expression
vectors pLNHX-mCherry-RanUTR, carrying a recombinant
target gene consisting of the reporter gene mCherry and
the 3′-UTR of BmRan mRNA. The mCherry gene serves
not only as the reporter for successful transfection but
also as the substituent target gene for miRNA regulation.
At the same time, the miRNA binding sites on the target
gene mRNA 3′-UTR were mutated by Mut Express II Fast
Mutagenesis Kit V2 (Vazyme Biotech Co., Ltd., China) to
construct the expression vector pLNHX-mCherry-RanUTR-mut,
in which the miRNA binding sites were destroyed. On the
other hand, the miRNA precursor sequence was cloned from
the BmCPV genome and inserted into the lentiviral vector
pLKO.3G (carrying EGFP reporter gene) to construct the
expression vectors pLKO.3G-miR-1 and pLKO.3G-miR-3. The
lentiviral vector inserts and primer sequences are shown in
Table 2.

HEK293T cells were inoculated into a 60 mm cell culture
dish in which the cell density should be over 60%, and the
transfection was conducted 20 h later. In a 1.5 mL EP tube, 5.3 µg
of expression plasmid pLNHX-mCherry-RanUTR or pLNHX-
mCherry-RanUTR-mut and 2.7 µg of packaging plasmid pVSV-
G were mixed to 125 µL with serum-free DMEM medium
(Shanghai Thermo Scientific, China). In another EP tube, 20 µL

of transfection reagent (EntransterTM-H4000, Beijing Engreen,
China) was mixed with 105 µL of serum-free medium and
kept at room temperature for 5 min. Then the transfection
reagent mixture was mixed thoroughly into the expression
plasmid mixture and left to stand for 15 min. For transfection,
the medium in the petri dish was removed and the above
mixed solution was added to the cells then fresh medium was
added up to 5 mL. At 6 h after the transfection, the culture
medium was replaced by the fresh medium containing fetal
bovine serum (FBS) (Shanghai Thermo Scientific) and the cells
were cultured for 24–48 h before the next transfection. When
the cells showing red fluorescence accounted for about 80%,
they were inoculated into a six-well plate in which the cell
density should be over 60%. In a 1.5 mL EP tube, 2 µg
of pLKO.3G-miR-1 or pLKO.3G-miR-3, 1.5 µg of packaging
plasmid pMD2.G, and 0.5 µg of packaging plasmid pSPAX2
were mixed with serum-free medium to 50 µL. At the same
time, 10 µL of transfection reagent (EntransterTM-H4000, Beijing
Engreen) and 40 µL of serum-free culture medium were mixed
in another EP tube and kept at room temperature for 5 min.
Then the solution in the two tubes was mixed thoroughly
and left to stand for 15 min. The medium in the cell culture
was removed, the mixture was added to the cells, and then
serum-containing medium was added up to 2 mL. The cells
were collected 24 h and 48 h after transfection for RNA
extraction and for detection of changes in the expression of
reporter gene mCherry by qRT-PCR with human β-actin as the
internal reference.

TABLE 2 | Sequences for construction of lentivirus expression vectors.

Name Sequence (5′–3′)

Sequences for construction of lentivirus vectors

BmRan-3′UTR GTCGACGCACAAAATACTGCTCTTCCTGAGGAAGATGAAGACTTATAAATATGATCAACGGATGTACCCAGTGCCCATTTTGTGA
TTGGAGGATCATGCAAATGTGTTCAGTGTAGCGTACACTAAATTTTTTCATTCCATTAGGTGATCGCAAATGAACATTATTTTAATAA
CTTATTAAACCTTCAATCATTTGCTTTAATTAATGTAAAATCATTAGATAATTTAACACGTAGCTCCTCTAGTTTGAGTTTTATAAAACT
GTAATTCTAAACTTTTATATTGAAAGGCAACAAAAATATGAGTATTATTTATGTGTAGTTCATTTTTGTTACAGTTGTCATAAAAACATT
TTGCATTGATTGC

:::::::::::::::::::
CCAATATGTGTTAATGCCTATTTGGTCACTGTTATTTATAATACACATGTAAACAAATTTGTATGATAACTCTTTG

TAAACCCATAGCATGTACACACATAATATTATAATCTTGAAATTATTTCTTACTTTTGTTACATGCAAGGACTGACAATATTTCACTGA
AAAATTGAATTGTGGTGATACTTTTTAAATAAAGTGTAAAAAATGAAGCTT

pre-miR-1 GCCCCTAGCTCATATGAAATGGACACAGGCACACTA TCAAGGAATGGTGATTTACTCTATAGTCCAGTTGCGAATGGGCAAGTCGGG

pre-miR-3 CTCAAGACGTTAATCGCGGACTATAATTTAAGAATGCGCAGAGATGCACTGCTAGGAGAATTAGCGCGGCTTGAT GAGTTGAGAGATA

Primer sequences for constructed lentiviral expression vectors

mCherry F: CGGGATCCCCACCGGTCGCCACCAT
R: ACGCGTCGACGGCCGCTACTTGTACAGC

BmRan-3′UTR F: ACGCGTCGACCCAGAAGTTACAATGGATCC
R: CCCAAGCTTTGTCAGTCCTTGCATGTAAC

3′UTR-miR-1-mut F: AGAGGCAACCAAGGCTAGCGCGGTGATTGGAGGATCAT GCAAATG
R: CTAGCCTTGGTTGCCTCTGTTGATCATATGTCGA CCTTGTACAGC

3′UTR-miR-3-mut F: AGATACAGAGCCGCGAAGGTTTGGTCACTGTTATTTATA ATACACATGTAA
R: TTCGCGGCTCTGTATCTGGCAATCAATGCAAAATGTTTTT ATG

pre-miR-1 F: GGAATTCGCCCCTAGCTCATATG
R: TTAATTAACCCGACTTGCCCATTC

pre-miR-3 F: GGAATTCCTCAAGACGTTAATCGC
R: TTAATTAATATCTCTCAACTCATCAAGCC

The single-underlined sequence is the restriction site, the double-underlined is the binding site for BmCPV-miR-1, the wavy-underlined is the binding site for BmCPV-miR-3,
the boxed sequences are mature miRNAs.
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BmN Cell Transfection
To verify the miRNA regulation on target gene expression in
BmN cells, miRNA mimics were transfected into the BmN cells
to detect the changes in expression of the target gene. miRNA
mimics and NC (sequences shown in Table 3) were synthesized
by Shanghai GenePharma Co., Ltd. BmN cells were inoculated
into a six-well plate 16 h before transfection in which the
cell density should be over 60%, and they were divided into
three groups, i.e., blank control, NC, and mimics, each group
was set for three replicates. In a 1.5 mL EP tube, 3.33 µg of
mimics or NC was mixed with serum-free TC-100 medium
(Sangon Biotech Co., Ltd., Shanghai, China) up to 25 µL.
In another tube, 5 µL of transfection reagent (EntransterTM-
R4000, Beijing Engreen) was mixed with 20 µL of serum-free
medium and kept at room temperature for 5 min. The solution
in the two tubes was mixed thoroughly and left to stand for
15 min before transfection. For the transfection, the medium
in the six-well cell culture plate was removed, the mixture
solution was added to the cells, and culture medium was added
up to 2.5 mL. Cells were collected at 24, 48, and 72 h after
the transfection for RNA extraction and qRT-PCR detection
of the changes in target gene expression with Bmβ-actin as
internal reference.

Verification of miRNA Function in
Silkworm
To study the regulation of miRNAs on target genes and
their influence on virus replication and proliferation in
silkworm larvae, the synthesized miRNA mimics, inhibitors
(sequence shown in Table 3), and NC were respectively
injected into the fifth instar larvae of normal silkworm,
2 µg for each larva. The midgut was dissected at 24,
48, 72, and 96 h after the injection. Total RNA was
extracted as described above and the expression level of
target gene was detected by qRT-PCR with Bmβ-actin as the
internal reference gene.

At the same time, the 5th instar larvae of the silkworm
were orally infected with BmCPV, 12 h later, miRNA mimics,
inhibitors, and NC were injected respectively into the body cavity
of the larvae. At 24, 48, 72, and 96 h after the injection, the midgut
tissues were dissected for RNA extraction. Then the replication
levels of the second, fifth, and tenth segment of BmCPV genomic
RNA were detected respectively by qRT-PCR with Bmβ-actin as
internal reference.

TABLE 3 | Sequences of miRNA mimics, inhibitors, and NC.

Name Sequence (5′–3′)

BmCPV-miR-1 Mimic GAAAUGGACACAGGCACACUA
GUGUGCCUGUGUCCAUUUCUU

Inhibitor UAGUGUGCCUGUGUCCAUUUC

BmCPV-miR-3 Mimic UAGGAGAAUUAGCGCGGCUUGAU
CAAGCCGCGCUAAUUCUCCUAUU

Inhibitor AUCAAGCCGCGCUAAUUCUCCUA

Negative control (NC) AGAAGCUUAGUCGUGUCGGAUGA

Statistical Analysis Methods
One-way ANOVA analysis in the GraphPad Prism package was
used to analyze the experimental data statistically. The results are
shown as the mean ± standard error (SE) of three independent
treatments. Asterisks denote significant differences as compared
with the control group, as indicated by ∗p≤ 0.05, ∗∗p≤ 0.01, and
∗∗∗p ≤ 0.001.

RESULTS

Stem-Loop PCR Identification of
BmCPV-miR-1 and BmCPV-miR-3
In our previous small RNA sequencing data (data deposited
in NCBI Sequence Read Archive Database4, accession
number SRP158739) of the midgut of BmCPV-infected
silkworm larvae, we found two miRNA-like small RNAs
encoded by the first and third segment of BmCPV genomic
RNA, with the sequencing abundances 1375 and 2710,
respectively. They were named BmCPV-miR-1 (sequence:
GAAAUGGACACAGGCACACUA, located at the 5P arm
of its precursor sequence) and BmCPV-miR-3 (sequence:
UAGGAGAAUUAGCGCGGCUUGAU, located at the 3P
arm of its precursor sequence). With stem-loop RT-PCR
detection, obvious bands were detected in midgut tissue
of the 5th instar silkworm larvae infected with BmCPV
(Figure 1A), with a band size of 70–80 bp respectively, while
no bands were detected in midgut tissues of normal larvae,
indicating that both BmCPV-miR-1 and BmCPV-miR-3 are
derived from BmCPV.

Target Gene Prediction
miRanda and Targetscan software were used to predict the
target genes of both BmCPV-miR-1 and BmCPV-miR-3 against
the silkworm genome5. As a result, B. mori GTP-binding
nuclear protein Ran gene (BmRan, NCBI accession number:
NM_001046809.1) was predicted to be the common target gene
of these two miRNAs. The binding sites for the two miRNAs
are all located in the 3′-UTR region of the BmRan mRNA
sequence with an interval of 284 nt. The binding site of BmCPV-
miR-1 is located at 11∼34 nt and that of BmCPV-miR-3 is
located at 319∼339 nt, both with an individual specific region
complementary to the seed sequence of the miRNAs. The binding
free energy of the two miRNAs to their respective target sites
is lower than −20 kcal/mol (BmCPV-miR-1: −20.8 kcal/mol,
BmCPV-miR-3: −22.7 kcal/mol). GTP-binding nuclear protein
Ran is a 25 kDa protein and an important component of
exportin-5-mediated nucleocytoplasmic transport. It is mainly
involved in the transport of small RNA from nucleus to cytoplasm
(Bischoff and Ponstingl, 1991). In the process of nuclear export
of pre-miRNA, exportin-5 binds pre-miRNA in a Ran-GTP
dependent manner. The depletion of Ran protein level leads to
a significant reduction in nuclear export of pre-miRNA (Yi et al.,
2003; Bohnsack et al., 2004; Lund et al., 2004; Wang et al., 2011).

4http://www.ncbi.nlm.nih.gov/sra/
5https://www.ncbi.nlm.nih.gov/genome/?term=silkworm
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FIGURE 1 | Detection of expression patterns of BmCPV-miRNAs and target gene BmRan in the midgut of silkworm larvae infected with BmCPV. (A) BmCPV-miR-1
and BmCPV-miR-3 detected by stem-loop RT-PCR. The bands sized about 70–80 bps were the putative miRNAs. c: control; t: BmCPV infected; t1: BmCPV-miR-1;
t2: BmCPV-miR-3. (B) Expression pattern of BmCPV-miR-1. (C) Expression pattern of BmCPV-miR-3. (D) Expression pattern of BmRan with normalization to
different internal reference genes. The expression of BmCPV-miRNAs gradually increased, while the expression of the target gene BmRan gradually decreased, as
the infection advanced (n = 3 replicate samples, each containing five larvae).

Drosophila exportin-5 can transport pre-miRNA and tRNA
(Shibata et al., 2006). However, the mechanism of small RNA
transport in the silkworm and its influence factors have not
been reported yet. Therefore, the BmRan gene of the silkworm
was selected in this study to evaluate the function of the two
BmCPV-derived miRNAs.

Expression of BmRan Is Inversely
Correlated With Both BmCPV-miR-1 and
BmCPV-miR-3 Levels in the Larvae
Infected With BmCPV
Fifth-instar silkworm larvae were inoculated per os with BmCPV,
and midgut tissues were collected at 12, 24, 48, 72, and 96 h
post-infection. Total RNA was extracted for reverse transcription
and for detection of the expressional changes of miRNAs and
the target gene. The results indicated that the expression level of
BmCPV-miR-1 and BmCPV-miR-3 in the virus-infected midgut
gradually increased with the advance of infection (Figures 1B,C),
while the expression of the target gene BmRan was gradually
downregulated as the time advanced after infection (Figure 1D).

To ensure the detection objectivity of the target gene expression,
two internal reference genes (Bmβ-actin and BmTIF-4A) were
used to normalize the qRT-PCR detection data. The overall trend
in changes of the target gene expression among the different
time points after BmCPV infection was the same, although
the calculated expression level of the target genes was slightly
different at a specific time point as normalized to different
reference genes (Figure 1D). It implies that BmCPV-miR-1 and
BmCPV-miR-3 might be inversely correlated with the expression
of the target gene BmRan. It can be speculated that BmCPV-miR-
1 and BmCPV-miR-3 have negative regulatory effects on BmRan.

BmCPV-miR-1 and BmCPV-miR-3
Negatively Co-regulate Target Gene
Expression by Binding to 3′-UTR of
BmRan mRNA
The constructed expression vectors pLNHX-mCherry-RanUTR
and pLNHX-mCherry-RanUTR-mut, both carrying the
recombinant target gene consisting of the 731 bp mCherry
reporter gene and the 570 bp sequence encoding the BmRan
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mRNA 3′-UTR, were confirmed to be correct by restriction
enzyme digestion and sequencing of the inserted fragments.
The mCherry gene serves here not only as the reporter for
successful transfection but also as the substituent target gene for
miRNA regulation. On the other hand, the constructed miRNA
expression vectors pLKO.3G-miR-1 and pLKO.3G-miR-3 were
confirmed by PCR amplification and the specific bands of 87 bp
pre-miR-1 and 88 bp pre-miR-3 were detected, then the PCR
products were further sequenced as the miRNA precursors of the
two miRNAs. These results indicated that the expression vectors
were all constructed successfully.

To evaluate the effect of BmCPV-miR-1 and BmCPV-miR-
3 bound to the binding sites in 3′-UTR on the expression
of the mCherry gene (that served as a substituent target
gene), HEK293T cells were transfected successively with
the above constructed lentiviral expression vectors for
mCherry, BmCPV-miR-1, and BmCPV-miR-3. HEK293T

cells were firstly co-transfected with the recombinant plasmid
pLNHX-mCherry-RanUTR or pLNHX-mCherry-RanUTR-mut
and packaging plasmid pVSV-G. After 48 h, about 80% of cells
showed red fluorescence (Figures 2A,B), indicating that the
recombinant expression vector was successfully transfected into
the cells and the red fluorescent protein was stably expressed.
Then, the HEK293T cells were further transfected with the
plasmid pLKO.3G-miR-1 and pLKO.3G-miR-3 respectively,
meanwhile another group of cells transfected with the pLKO.3G
plasmid were used as NC. The transfection efficiency was
about 60% (Figures 2C–F) at 20 h post-transfection based on
the number of cells showing green fluorescence. Then, cells
were collected at 24 and 48 h after transfection of the miRNA
expression vectors, and the expression of the miRNAs and
the red fluorescent protein gene was quantitatively detected.
The expression level of both the miRNAs BmCPV-miR-1 and
BmCPV-miR-3 gradually increased with the progression of time

FIGURE 2 | HEK293T cells transfected with the targe gene expression vector pLNHX-mCherry-RanUTR (A,B), the miRNA expression vectors pLKO.3G-miR-1
(C,D) and pLKO.3G-miR-3 (E,F) respectively. (A,C,E) Observed under fluorescent microscope (A, under green light; C,E, under red light); (B,D,F) Observed under
optical microscope. Cells showing red fluorescence indicate successful transfection and transfection efficiency of target gene expression vector (A); cells showing
green fluorescence indicate the successful transfection and transfection efficiency of miRNA expression vectors (C,E).
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after transfection of the miRNA expression vectors as detected
by qRT-PCR, indicating that the miRNA expression vectors
were not only successfully transfected into HEK293T cells, but
the miRNAs were also expressed (Figure 3A). At the same
time, the expression of the mCherry gene in the experimental
groups transfected with the miRNA expression vectors decreased
(Figure 3B), furthermore the downregulated expression of the
mCherry gene in the cells co-transfected with both pLKO.3G-
miR-1 and pLKO.3G-miR-3 was more significant than that in the
cells transfected with only pLKO.3G-miR-1 or pLKO.3G-miR-3
(Figure 4B). While, the expression level of the mCherry gene in
the NC cells transfected with pLKO.3G was stable (Figure 3B).
However, neither pLKO.3G-miR-1 nor pLKO.3G-miR-3 could
downregulate the expression of the mCherry gene after mutation

of the miRNA binding sites on 3′-UTR (Figure 3B). These
results implied that both pLKO.3G-miR-1 and pLKO.3G-miR-3
could inhibit the expression of the target gene by binding to
3′-UTR of mRNA, and their cooperative action could enhance
the repression of the target gene expression.

BmCPV-miR-1 and BmCPV-miR-3
Mimics Negatively Regulate BmRan
Expression in BmN Cells
In order to validate the regulation effect of the two BmCPV-
miRNAs on target gene BmRan, BmN cells were transfected
respectively with BmCPV-miR-1 and BmCPV-miR-3 mimics or
NC. Cells were collected at 24, 48, and 72 h after transfection, and

FIGURE 3 | Regulation of BmCPV-miRNAs on the target gene in HEK293T cells and in BmN cells. (A) BmCPV-miRNAs were expressed in the transfected HEK293T
cells. (B) BmCPV-miRNAs downregulate the expression of the substituent target gene mCherry in HEK293T cells. pLNHX-Ran: pLNHX-mCherry-RanUTR;
pLNHX-Ran-mut: pLNHX-mCherry-RanUTR-mut. (C) Regulation of BmCPV-miRNA mimics on expression of target gene BmRan in BmN cells (n = 3, *p < 0.05,
**p < 0.01, ***p < 0.001).

Frontiers in Physiology | www.frontiersin.org 8 August 2021 | Volume 12 | Article 663482158

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-663482 July 29, 2021 Time: 16:22 # 9

Lin et al. Cypovirus miRNAs Co-regulate BmRan Gene

FIGURE 4 | Regulation of miRNA mimics on expression of target gene BmRan in midgut of silkworm larvae. Result shows that BmCPV-miRNAs downregulate the
expression of BmRan in vivo in the silkworm. (A) In midgut of normal silkworm larvae. (B) In midgut of silkworm larvae infected with BmCPV. (C) Regulation of
BmCPV-miRNA inhibitors on expression of BmRan in midgut of silkworm larvae infected with BmCPV (n = 3 replicate samples, each containing five larvae,
*p < 0.05, **p < 0.01, ***p < 0.001).

the expression changes of the target gene were detected by qRT-
PCR. The quantitative detection results (Figure 3C) showed that
compared with the cells transfected with NC, the expression of
the target gene BmRan was downregulated in the cells transfected
with the BmCPV-miR-1 mimics or BmCPV-miR-3 mimics. At
the same time, the expression of the target gene BmRan was
downregulated more significantly in the cells co-transfected with
both the two miRNA mimics (Figure 3C). It indicated that the

mimics of BmCPV-miR-1 and BmCPV-miR-3 could effectively
repress the expression of the BmRan gene, and furthermore the
repression of the expression was enhanced when the mimics
of the two miRNAs acted cooperatively. This is consistent with
the regulatory effect of BmCPV-miRNAs on the target gene
verified by lentiviral expression vectors in HEK293T cells. These
results implied the negative regulation of both BmCPV-miR-1
and BmCPV-miR-3 on expression of the target gene BmRan.
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BmCPV-miR-1 and BmCPV-miR-3
Downregulate BmRan Expression in the
Midgut of Silkworm Larvae
To verify the regulatory effects of BmCPV-miR-1 and BmCPV-
miR-3 on the expression of the target gene in vivo in the silkworm,
the mimics of BmCPV-miR-1 and BmCPV-miR-3 were injected
into the normal fifth instar larvae separately or jointly to detect
the expressional changes of BmRan. The larvae injected with NC
were used as NC. The results showed that the expression level
of the target gene BmRan in the midgut of larvae injected with
mimics was lower than that in the NC injection group at all the
time points of 24, 48, 72, and 96 h after the injection (Figure 4A),
and further lower in the larvae injected with both the two miRNA
mimics. The results indicated that BmCPV-miR-1 and BmCPV-
miR-3 could also inhibit the expression of the target gene BmRan
in silkworm larvae and have a co-operativity in the repression.

At the same time, the mimics and the inhibitors of BmCPV-
miR-1 and BmCPV-miR-3 and the NC were injected into the
fifth instar larvae infected with BmCPV to further validate the
expression changes of the BmRan gene. The results showed that
the expression level of the BmRan gene in the mimic injection
groups was also lower than that in the NC group, with the largest
decrease of 40.9 times at 48 h (Figure 4B), while the expression
level in the inhibitor injection groups was higher than that in the
NC group (Figure 4C) with the highest increase of 4.28 times
at 72 h. Furthermore, in the larvae injected with both the two
miRNA mimics, the repression of BmRan expression was more
significantly enhanced, while inhibition of both the miRNAs
by injecting both miRNA inhibitors resulted in a much higher
BmRan expression level. These implied that increasing the level of
the BmCPV-miRNAs could inhibit the expression of the BmRan
gene, while inhibiting the effect of the miRNAs could effectively
increase the expression level of the target gene.

Effect of the BmCPV-miRNAs on BmCPV
Replication in the Midgut of Silkworm
Larvae
The above results verified the negative regulation of the two
BmCPV-miRNAs, BmCPV-miR-1 and BmCPV-miR-3, on the
target gene BmRan both in BmN cells and in vivo in the
silkworm body. Whether the regulation of BmCPV-miR-1 and
BmCPV-miR-3 on the BmRan gene affects the replication of the
BmCPV genome was also evaluated by injecting the miRNA
mimics, inhibitors, and NC into the fifth instar larvae infected
with BmCPV and detecting the replication of the second (S2),
fifth (S5), and tenth (S10) segment of BmCPV genomic RNA
at the time points of 24, 48, 72, and 96 h post-injection. The
results showed that the replication levels of the three RNA
segments of the viral genome exhibited the same trend, and
they all gradually increased with advanced time (Figure 5),
which indicated viral replication. While, compared with the
NC group, the replication level of the three RNA segments
in the silkworm larvae injected with the miRNA mimics
increased much faster (Figures 5A1,B1,A2,B2,A3,B3). However,
the replication level of the three RNA segments in the larvae

injected with inhibitors was lower than that in the NC group
(Figures 5A1,B1,A2,B2,A3,B3). Furthermore, increasing the
level of both the miRNAs by injecting the two mimics promoted
viral replication more significantly than by any single miRNA,
while inhibition of both the two miRNAs resulted in further lower
replication than inhibition of any single miRNA (Figures 5C1–
C3). This indicated that the replication of BmCPV was enhanced
by increasing the level of miRNAs, but repressed by a decrease of
the miRNA level. Therefore, it can be speculated that BmCPV-
miR-1 and BmCPV-miR-3 could create a favorable intracellular
environment and thus promote virus replication by inhibiting the
expression of the target gene BmRan.

DISCUSSION

Virus-encoded miRNA plays an important role in the process
of virus-host interaction. Its small molecules, non-antigenicity,
and target specificity make it a potential strategy for the virus to
counter host defense mechanisms. Most of the presently reported
viral miRNAs are encoded by DNA viruses, but some RNA
viruses can also encode functional miRNAs (Swaminathan et al.,
2013; Fani et al., 2018), such as Ebola virus (EBOV) (Liang et al.,
2014; Chen et al., 2016; Qiu et al., 2018), hepatitis A virus (HAV)
(Shi et al., 2014), bovine leukemia virus (BLV) (Rosewick et al.,
2013), and Marek’s disease virus (MDV) (Zhao et al., 2011), etc.
Studies have shown that one miRNA can target multiple genes,
and a target gene can also be regulated by several miRNAs.
Generally, miRNA mainly binds to the 3′-UTR of mRNA to
repress the target gene translation, and co-operativity between
two or more miRNA-binding sites can enhance repression of
the mRNA translation (Saetrom et al., 2007; Fang and Rajewsky,
2011; Trobaugh et al., 2014; Liu et al., 2015). On the other hand,
some miRNAs bind to the 5′-UTR of mRNA and upregulate
the expression of target genes (Jopling et al., 2005; Ørom et al.,
2008; Helwak et al., 2013; Hussain et al., 2013). In addition, some
miRNAs can also bind to the CDS region and downregulate the
expression of the target gene (Hausser et al., 2013; Pan et al.,
2017).

Bombyx mori cypovirus has a larger and double-stranded
RNA genome, which makes the virus potentially able to encode
functional miRNAs, and the miRNAs encoded by the virus might
play an important role in the virus-host interaction and in virus
replication. In the present study, two miRNAs namely BmCPV-
miR-1 and BmCPV-miR-3, which are encoded by the first and
third segment of BmCPV genomic RNA, respectively, and their
regulatory effects on target genes and then on virus replication
and proliferation were studied. BmCPV-miR-1 and BmCPV-
miR-3 share a common target gene, B. mori GTP-binding nuclear
protein Ran (BmRan), and their binding sites on BmRan mRNA
are all located in the 3′-UTR region. qPCR results showed that
the expression levels of BmCPV-miR-1 and BmCPV-miR-3 in
the midgut of virus-infected larvae gradually increased with the
progression of infection, while the expression level of the target
gene BmRan gradually decreased, indicating that both the two
miRNAs were negatively correlated with the expression of target
gene BmRan. Many virally encoded miRNAs were reported to
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FIGURE 5 | Regulation of miRNA mimics and inhibitors on replication of the BmCPV genome in midgut of silkworm larvae. Result shows that the BmCPV-miRNAs
could enhance the replication of BmCPV genomic RNAs. (A1) BmCPV-miR-1 to S2; (B1) BmCPV-miR-3 to S2; (C1) BmCPV-miR-1 + BmCPV-miR-3 to S2; (A2)
BmCPV-miR-1 to S5; (B2) BmCPV-miR-3 to S5; (C2) BmCPV-miR-1 + BmCPV-miR-3 to S5; (A3) BmCPV-miR-1 to S10; (B3) BmCPV-miR-3 to S10; (C3)
BmCPV-miR-1 + BmCPV-miR-3 to S10. S2, S5, and S10 represent the 2nd, 5th, and 10th segment of BmCPV genomic RNA, respectively (n = 3 replicate samples,
each containing five larvae, *p < 0.05, **p < 0.01, ***p < 0.001).

downregulate the expression of host target genes via binding to
the 3′-UTR of their mRNA (Stern-Ginossar et al., 2007; Singh
et al., 2012; Skalsky et al., 2012; Fani et al., 2018). Therefore, our
results implied that BmCPV-miR-1 and BmCPV-miR-3 might
downregulate the expression of the target gene BmRan.

At present, the regulation of miRNAs on target genes is
mostly verified using the dual luciferase reporter system, but both
miRNA and the target gene can only be expressed transiently.
However, the lentivirus expression system has the characteristics
of high transfection efficiency and expression stability. Therefore,
we employed the lentivirus expression vectors to express the
miRNAs and the target gene respectively, and to evaluate the
interaction between the BmCPV-encoded miRNAs and their
shared target gene. In the system, the mCherry gene and
the cDNA sequence encoding 3′-UTR of BmRan mRNA were

combined into an expression vector, in which the mCherry gene
served as both the reporter gene for successful transfection
and the substituent target gene for the miRNAs. The results
showed that both BmCPV-miR-1 and BmCPV-miR-3 could
downregulate the expression of the target gene, and furthermore
they had a co-operativity in the regulation.

At the same time, the negative regulation of BmCPV-miR-1
and BmCPV-miR-3 on the target gene BmRanwas also confirmed
in the cultured BmN cells by transfection of miRNA mimics, and
in vivo in the silkworm by injecting miRNA mimics into both
the normal and BmCPV-infected silkworm larvae. Furthermore,
injecting miRNA mimics into the larvae enhanced the replication
of the tested second, fifth, and tenth segment of the viral
genome RNA. This implied that BmCPV-miR-1 and BmCPV-
miR-3 encoded by BmCPV might promote the replication and
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proliferation of the virus by inhibiting the expression of the target
gene BmRan.

In plants and invertebrates such as insects, host miRNAs serve
as an important antiviral mechanism and degrade viral RNA into
siRNAs, which then bind to the virus genome to inhibit viral
replication (Ding and Voinnet, 2007; Carl et al., 2013; Bernier and
Sagan, 2018). The biological generation of host miRNAs includes
the transcription of pri-miRNA containing a stem-loop structure
(Lagos-Quintana et al., 2003), which is then digested into pre-
miRNA containing a hairpin structure by the Drosha enzyme
in the nucleus. Then the pre-miRNA is transported from the
nucleus to the cytoplasm, where it is cleaved into mature miRNA
by the Dicer enzyme.

GTP-binding nuclear protein Ran is a 25 kDa transporter
and serves as an important part of the exportin-5-mediated
nucleocytoplasmic transport. It plays an important role in the
transport of various non-coding RNAs and proteins from the
nucleus to the cytoplasm, and mainly participates in the transport
of small RNAs (Bischoff and Ponstingl, 1991). The exportin-
5 of Drosophila can transport pre-miRNA and tRNA (Shibata
et al., 2006). Research has shown that the nuclear export protein

exportin-5 (Exp5) binds specifically to pre-miRNA in a Ran-GTP
dependent manner (Yi et al., 2003; Bohnsack et al., 2004; Lund
et al., 2004). Then, the pre-miRNA/Exp5/Ran-GTP complex
migrates to cytoplasm, where the hydrolysis of Ran-GTP to Ran-
GDP induces the release of pre-miRNA. The released pre-miRNA
is further processed by the RNase III enzyme called Dicer to
release the mature miRNAs (Hutvágner et al., 2001; Ketting et al.,
2001). The depletion of Ran results in significant reduction of
pre-miRNA export (Yi et al., 2003; Bohnsack et al., 2004; Lund
et al., 2004). Other studies have shown that the combination
of the pre-miRNA/Exp5/Ran-GTP complex can significantly
reduce the efficiency of Dicer cutting pre-miRNA (Kim, 2004;
Zeng and Cullen, 2004). In addition, overexpression of the pre-
miRNA/Exp5/Ran-GTP complex increased the level of miRNA
in the transfected cells, while RNAi-mediated knock-down of the
pre-miRNA/Exp5/Ran-GTP complex inhibited the production
of mature miRNA. Therefore, the pre-miRNA/Exp5/Ran-GTP
complex not only acts as a nuclear export factor for pre-miRNA,
but also protects pre-miRNA from degradation, thus promoting
the formation of miRNA. Our results indicate that BmCPV-
miR-1 and BmCPV-miR-3 may enhance the replication and

FIGURE 6 | Proposed function mechanism of BmCPV-miR-1 and BmCPV-miR-3 on regulation of the target gene BmRan and on replication of BmCPV.
BmCPV-miR-1 and BmCPV-miR-3 negatively regulate the translation of the BmRan protein, thus inhibit the transport of pre-miRNA from the nucleus to the
cytoplasm in host cells, thereby the population of host miRNAs decreases, consequently creating a favorable intracellular environment for BmCPV genome
replication and virus multiplication is enhanced.
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proliferation of BmCPV by inhibiting the expression of target
gene BmRan. The probable reason is that BmCPV-miR-1 and
BmCPV-miR-3 bind to the 3′-UTR region of BmRan mRNA,
negatively regulate the translation of the BmRan protein, thus
inhibit the transport of pre-miRNA from the nucleus to the
cytoplasm in host cells, reduce the population of host miRNAs,
and consequently create a favorable intracellular environment
for BmCPV genome replication and virus multiplication. Based
on this speculation, the function mechanism of BmCPV-miR-
1 and BmCPV-miR-3 on regulation of target gene BmRan and
on replication of BmCPV is proposed (Figure 6). B. mori
nuclear polyhedrosis virus (BmNPV) is another important virus
pathogen of the silkworm, which is a double-stranded DNA
virus belonging to Baculoviridae. The miRNA bmnpv-miR-
1 encoded by BmNPV also represses the expression of Ran
in the silkworm, leading to the reduction in the host small
RNA population, as a consequence, the BmNPV load increases
significantly in the infected larvae (Singh et al., 2012). In contrast,
blockage of the host miRNA, bmo-miR-8, which targets the
immediate-early gene of the virus and whose production was
repressed upon bmnpv-miR-1 and Ran dsRNA administration,
also resulted in a significant increase in the virus load in the
infected silkworm larvae. While inhibition of BmNPV-miR-1
resulted in the significant expression of Ran and the decrease
in BmNPV load in the BmNPV-infected larvae (Singh et al.,
2012). These results, including those in our present study, provide
insights into one of the evasion strategies used by these viruses to
counter the host defense for their effective multiplication.

Research on the mechanism of biogenesis of miRNAs by
RNA viruses indicated that RNA viruses generate functional
miRNAs through non-canonical miRNA biosynthesis pathways.
For example, the Drosha enzyme also exists in cytoplasm to
cleave pri-miRNA to form pre-miRNA (Shapiro et al., 2012),
viruses can encode a protein with the function of the Drosha
enzyme to cleave the initial transcripts of miRNA (Kreuze
et al., 2005), the tRNase Z in the cytoplasm can cut pri-
miRNA into pre-miRNA (Bogerd et al., 2010), and the small
stem-loop structure transcripts of the viral genome in the
cytoplasm can be directly processed into miRNAs or miRNA-
like molecules by the Dicer enzyme (Okamura et al., 2007).
Our previous studies identified several miRNAs encoded by
BmCPV and have proven that they can regulate the expression
of silkworm target genes (Pan et al., 2017; Guo et al., 2020).
For example, BmCPV-miR-1 upregulated the expression of

another target gene, B. mori inhibitor of apoptosis protein
(BmIAP), by binding to the 5′-UTR of its mRNA and then
inhibited the apoptosis of the infected cells, thus facilitating
the replication of BmCPV (Pan et al., 2017; Guo et al., 2020).
The enhanced replication of the BmCPV genome in the present
study should include the contribution from the BmCPV-miR-1
upregulation on BmIAP. However, the mechanism with which
BmCPV generates the miRNAs requires a further in-depth
study in the future.

In summary, the present study revealed the negatively
regulatory and co-regulatory function of two BmCPV-encoded
putative miRNAs, BmCPV-miR-1 and BmCPV-miR-3, on the
host target gene BmRan. Furthermore, repression of BmRan
expression by the two BmCPV-miRNAs enhanced replication of
the viral genome. The results might imply one of the strategies
employed by the insect virus to modulate miRNA-mediated host
antiviral defense by generating miRNAs that inhibits Ran, an
important component in miRNA generation.
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