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Editorial on the Research Topic

Computer-Aided Biodesign Across Scales

INTRODUCTION

Computer-aided design (CAD) has revolutionized many engineering fields, enabling the quick
exploration and testing of designs in silico, that minimizes the need for expensive and laborious
physical assembly and experimentation. We believe that CAD will become similarly important to
synthetic biology. However, synthetic biology presents some unique challenges for CAD, including
the multi-scale structure of biology, the combinatorial complexity of molecular systems due the
low degree of insulation inside cells, the stochastic nature of many biological processes, and our
limited ability to accurately characterize the components of these living systems. Despite these
challenges, numerous advancements are being made toward CAD for many aspects of biodesign.
These advances are accelerating our abilities to efficiently assemble synthetic biological systems and
revealing underlying principles for their effective design. In this Research Topic we have collated a
broad range of original research, perspectives, and reviews covering some of the current approaches
to computer-aided biodesign across scales (Figure 1).

DE NOVO MOLECULAR PREDICTION AND DESIGN

At themolecular level, the design of proteins andDNA sequences posemany challenges, but reliable
modeling at this level will offer the means to scale-up biodesign, moving our focus from single
molecules to complex multi-component systems. To make this step, modeling and design tools
need to be able to recapitulate experimental data.

To address this need, Frenz et al. analyze the ProTherm database, which contains
thermodynamic information about large numbers of protein mutations, to build a broader
understanding of potential biases and to develop a curated subset to improve the prediction of
mutational effects. Such robust inference is at the core of traditional protein design methods and
Yeh et al. push these approaches further by developing an interactive user interface (Elfin UI) to
build proteins and protein complexes with arbitrary shapes from compatible structural building
blocks. These architectures are much larger (in the range of thousands of amino acids) than
routinely designed proteins and begin to cross the boundary from the molecular to the cellular
scale. Modeling tools are also central to the prediction of desirable features at a genetic level.
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Gou et al. describe SSRMMD, an algorithm for identification
of microsatellites (or simple sequence repeats, SSRs) within
genomes to allow for better navigation and comparison
of genomes.

TOWARD THE DESIGN OF CELL-FREE
SYSTEMS AND WHOLE CELLS

Due to the complexity of molecular biology, the molecular
to cell scale is one of the most difficult scales of biology to
design. Designing cells requires computational systems that help
engineers navigate numerous challenges, including the large
number of distinct molecular species involved in extant cells and
the lack of rigid structures or insulation between parts, which
gives rise to an extraordinary number of molecular interactions.

One potential way to circumvent these challenges is to
focus on cell-free systems, which promise to be easier to
construct, control, test, and model. Laohakunakorn highlights
these advantages and describes how the reduced complexity
of cell-free systems could be a powerful training ground for
model-driven design of cells. Due to the limitations of cell-
free systems, many problems will likely require engineering
complete synthetic cells. For example, cells would likely be
easier to deploy in open environments than cell-free systems.
Designing entire cells requires confronting the complexity of
molecular biology. Marucci et al. describe the models that
will be needed to tackle this challenge and how such models
could revolutionize synthetic biology. Achieving suchmodels will
likely require the collaborative efforts of numerous modelers,
experimentalists, and engineers, which in turn will likely require
standards for exchanging information about synthetic biological

FIGURE 1 | Overview of computer-aided biodesign methodologies, tools, and standards used across scales. Although each methodology/tool has been placed at the

specific scale it is commonly used, it should be noted that many can be applied across scales. Lines in the “Standards and Formats” section denote the range of

scales over which the standard/format can be used. BioPAX, Biological Pathway Exchange; BNGL, BioNetGen Language; SBML, Systems Biology Markup

Language; SBOL, Synthetic Biology Open Language; PDB, Protein Data Bank.

systems. Foreseeing this need, McLaughlin et al. report a new
version of the Synthetic Biology Open Language (SBOL) which
is substantially easier to use. McLaughlin et al. anticipate that
the new version of SBOL will accelerate the adoption of SBOL
and, in turn, the collaborative development of more sophisticated
synthetic biological systems.

COMPUTER-AIDED BIODESIGN BEYOND
SINGLE CELLS

Most synthetic biology efforts to date have focused on
the design of individual cells with basic functionalities
(e.g., implementing basic logic). However, outside the
lab cells rarely exist in isolation and their ability to
interact through chemical signaling and the inherent
heterogeneity in cellular states across a population due to
environmental perturbations can act as a basis for important
collective behaviors. These emergent properties need to be
understood even for simple synthetic circuits to function
reliably and can even be exploited to create more robust
or scalable distributed biological computations. However,
designing individual cells to exhibit desired population-level
behaviors is challenging, requiring novel computational and
theoretical approaches.

Gorochowski et al. propose that multi-agent modeling could
serve as a design framework for engineering living collectives
and offer a way to better understand the underlying causes
and driving factors of emergent properties in protocellular
systems, developmental programs, disease states and industrial
bioprocesses. Karkaria et al. present additional examples where
the engineering of monocultures in synthetic biology has
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reached a bottleneck. Distributed computing is reviewed as
a theoretical framework for understanding and designing
distributed multicellular systems in biology to overcome these
limitations. They consider a wide range of distributed algorithms
used by biology covering the use of bet hedging, organism
development and bacterial colony formation. Finally, Feliú
et al. present original research spanning biological scales
to understand and tune the patterns that emerge within a
population of cells where each cell contains an identical synthetic
oscillator circuit. They use computational modeling spanning
multiple scales and show how a simplified cellular model
coupled to varying environmental conditions can provide a
convenient design tool that closely matches more complex multi-
agent simulations.

CONCLUSION

Being able to scale our ability to harness biology will be crucial
for addressing the many grand challenges we face, such as shifts
toward sustainable manufacturing, clean energy production, and
new forms of advanced medicine. CAD applied to synthetic
biology is likely to play a key role in realizing these ambitions and
the articles presented in this topic provide a broad introduction
to CADs current role, in addition to a glimpse at its possible
development and integration into the bioengineering practices of
the future.
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Many complex behaviors in biological systems emerge from large populations of
interacting molecules or cells, generating functions that go beyond the capabilities of
the individual parts. Such collective phenomena are of great interest to bioengineers due
to their robustness and scalability. However, engineering emergent collective functions
is difficult because they arise as a consequence of complex multi-level feedback,
which often spans many length-scales. Here, we present a perspective on how some
of these challenges could be overcome by using multi-agent modeling as a design
framework within synthetic biology. Using case studies covering the construction of
synthetic ecologies to biological computation and synthetic cellularity, we show how
multi-agent modeling can capture the core features of complex multi-scale systems
and provide novel insights into the underlying mechanisms which guide emergent
functionalities across scales. The ability to unravel design rules underpinning these
behaviors offers a means to take synthetic biology beyond single molecules or cells
and toward the creation of systems with functions that can only emerge from collectives
at multiple scales.

Keywords: synthetic biology, multi-agent modeling, systems biology, emergence, multi-scale, bioengineering,
consortia, collectives

INTRODUCTION

Many living organisms have evolved traits to exploit the capabilities that emerge from large
interacting populations of molecules or cells, which go beyond those of the individual elements.
From bacteria forming biofilms to fight antibiotic treatments to synchronizing their behaviors
through quorum sensing during disease, emergent collective behaviors are pervasive in biology.
Likewise, the engineering of emergent collective behaviors could offer an intriguing path to artificial
biosystems with improved reliability, robustness and scalability. However, current approaches
to biological design are ill-equipped for this task as they tend to focus on a single level of
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organization and ignore potential feedbacks between different
aspects/levels of a system. A common example is the design of
transcriptional gene regulatory networks where it is assumed
that the function of the entire system can be understood solely
by the steady state input-output transcriptional response of
genetic devices (Nielsen et al., 2016). While this simplification
is useful and powerful in some cases, if the genes regulated
link to metabolic processes there is a chance that feedback
via metabolism could break circuit function. Focusing
purely on transcriptional networks makes it impossible to
capture such behaviors.

In physics, great strides have been made through techniques
from statistical mechanics to understand emergent phenomena.
These include the Ising model used to capture magnetic phase
transitions (Taroni, 2015) and the application of renormalization
to understand how physical and biological constraints might
underpin scaling laws that guide evolution (West et al., 2002;
Kempes et al., 2019). There has also been growing interest
over the past few decades in the field of complexity theory
(Nicolis and Prigogine, 1989) and whether laws might exist
that govern self-organization and emergence across diverse
types of complex system composed of many interacting parts
(Prigogine and Nicolis, 1985; Ashby, 1991; Goldstein, 1999;
West et al., 2002).

An approach to capture and explore the emergent features
of complex systems is multi-agent modeling (also termed
agent-based or individual-based modeling) (Hellweger et al.,
2016). This considers key components of a system as explicit
entities/agents and allows for large and diverse interacting
populations of these (Figure 1A). Specifically, a multi-agent
model consists of autonomous agents that represent the
lowest level components of the system. Common types of
agent in biological systems include molecules, cells and whole
multicellular organisms. Each agent is assigned a specific set
of rules governing how it interacts with other agents and the
local environment. The way these rules are modeled is flexible
with the option to use basic finite state-machines, Boolean
logic governing stimuli-response relationships, or more complex
representations like differential equation models (e.g., capturing
the biochemical reaction networks within a cell). Populations
of these agents are then placed in a simulated environment
that encompasses physical processes of relevance to the system.
In biology, this might include the diffusion of chemicals, the
flow of fluids, and the mechanical forces that cells can exert on
one another. Again, the way that these environmental processes
are modeled can vary, resulting in a final model that could
potentially combine stochastic, deterministic, dynamic, discrete
and continuous representations for different aspects of a system.
The integration of such diverse modeling approaches allows
for the most appropriate form of representation to be used
for each aspect and helps simplify the specification of the
multi-scale system, but often comes at the cost of reduced
analytical tractability. Even so, multi-scale modeling has been
shown capable of discovering some of the core ingredients
needed for collective behaviors to emerge (Hellweger et al.,
2016; Gorochowski and Richardson, 2017), but its use to date in
synthetic biology has been limited (Gorochowski, 2016).

Here, we aim to highlight some of the key areas of synthetic
biology where multi-agent modeling offers a unique way to
tackle longstanding problems (Figure 1B). While the examples
we cover are diverse, they all share a core characteristic: the
emergence of behaviors in the systems cannot be explained by
looking solely at their basic parts in isolation. This essence
makes such systems special yet difficult to engineer via traditional
means. We propose to extend bioengineering methods to
encompass principles gleaned from multi-agent models and
use them to guide the design of synthetic biological systems
displaying emergent phenomena. We end by discussing some
of the practical challenges when using multi-agent modeling
in synthetic biology and future directions for the marriage
of these fields.

UNDERSTANDING THE EMERGENCE OF
LIFE

When considering emergent phenomena, the quintessential
example is the emergence of life. Putting aside the difficulty
of defining precisely what life is, the ability of living systems
to self-replicate and create order/information out of chaos is
an inspiration for many engineers. Bottom-up synthetic biology
attempts to build chemical systems that display life-like behaviors
using a minimal set of components. The hope is that these
simplified systems might help us understand how life emerged
from first principles.

One attempt to reach this goal has been via the synthesis of
artificial cells (protocells) with life-like properties. This requires
the ability to bridge length scales by harnessing molecular self-
assembly to create micron-sized compartments (Bayley et al.,
2008; Li et al., 2014) and the intricate interactions between
molecules and enzymes to form biochemical reaction networks
(Hasty et al., 2002). The incorporation of these reaction networks
within protocells has also been demonstrated (Adamala et al.,
2017; Joesaar et al., 2019) and although chemically simple,
such systems display an array of dynamical behaviors including
pattern formation (Niederholtmeyer et al., 2015; Zadorin et al.,
2017) and replication via controlled growth and division (Chen
et al., 2004). By combining these systems with additional chemical
modules and parts, this may offer a route to creating other key
behaviors of living systems.

Building on these capabilities, functionalities can be scaled
further by constructing systems composed of populations of
protocells or through interacting natural and artificial cellular
communities (Lentini et al., 2014; Adamala et al., 2017; Tang
et al., 2018). While such extensions offer a promising platform
for probing emergent behaviors using simple self-contained
chemical units, it is difficult to know what parameters to
engineer into these systems and the level of complexity required
to drive a desired collective behavior. This is where multi-
agent modeling, in combination with more traditional models
of chemical reaction systems, could lead to a quantitative
understanding of the key elements needed for the emergence of
life-like behaviors. In particular, multi-agent models would allow
for the rapid exploration of potential systems using physically
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FIGURE 1 | Multi-agent modeling can support the design of emergent collective functions in synthetic biology. (A) Key components of a multi-agent model.
Populations of autonomous agents following user-prescribed rules are placed in a virtual environment that simulates relevant physical processes (e.g., physical
collisions, chemical diffusion, movement, and fluid flows). Simulations of multi-agent models can be used to derive design principles that capture the basic
ingredients (e.g., specific patterns of interactions) needed for a particular emergent behavior. (B) Potential applications of multi-agent modeling within synthetic
biology and the underlying agents (bottom, dashed boxes) used to generate specific emergent collective behaviors: (top left) exploring how to create life-like
behaviors from basic chemical components with sender protocells (blue) able to spatially propagate a signal to receiver protocells and bacteria (gray when inactive,
red when active) using a small diffusive chemical (small blue dots); (top middle) understanding the developmental programs used during morphogenesis as a step
toward the creation of synthetic multi-cellular life; (top right) improving scale-up of microbial fermentations by accounting for heterogeneity across a bioreactor and
designing engineered microbes able to robustly function under these conditions.

realistic parameters until the right combination of parts was
found that resulted in a desired emergent functionality.

Historically, mathematical models developed using
differential equations have proved effective for understanding
the dynamics of minimal chemical systems (Rovinskii and
Zhabotinskii, 1984) and are widely and successfully used
for modeling all types of biological system (Ellner and
Guckenheimer, 2011; Raue et al., 2013). Furthermore, the
application of bifurcation analysis to these dynamical models
enables the rigorous characterization of emergent phenomena
such as bi-stability, symmetry breaking, non-linear oscillations,
chaos, and pattern formation (Kuznetsov, 2004). However,
while it is possible to use partial differential equations (PDEs)
to capture spatial aspects of a system, the high levels of
heterogeneity in the complex environments of many biological
system (e.g., cellular tissues) and the ability of both agents and
the rules to change over time, can make practical use of PDEs
a challenge (Hellweger et al., 2016; Perez-Carrasco et al., 2016;
Glen et al., 2019).

In comparison, multi-agent modeling is able to explicitly
capture such variation and consider simplified rules to express
internal chemical reactions altering specific characteristics
of each component. Due to the chemical simplicity and
programmability of minimal protocells, this abstraction is a good
fit, allowing iterative refinement of model and experimental
system. For example, due to the limited number of possible
chemical reactions present in a minimal system, comprehensive
direct measurements can be made to create highly predictive

rules for how a protocell’s chemical state will change over
time. These can then drive simulations of accurate protocell
behaviors in a multi-agent model to explore the specific
combination of reactions required for the emergence of
higher population-level functionalities. This two-way cycle of
development would be difficult, if not impossible, when using
natural cells where complex evolutionary baggage masks those
features essential for emergence.

DISTRIBUTED COMPUTATION DURING
DEVELOPMENT

Living cells continually monitor their environment and adapt
their physiology in order to survive. This requires the processing
of information gathered from sensors to make suitable changes
to gene expression. Synthetic biology enables us to reprogram
cells by writing our own genetic programs to exploit the
cells’ computational capabilities in new ways (Greco et al.,
2019; Grozinger et al., 2019). So far, the majority of research
in biological computation has revolved around the concept
of genetic circuits and attempted to repurpose tools and
methodologies from electronic circuit design (Nielsen et al., 2016;
Gorochowski et al., 2017) and automatic verification (Dunn et al.,
2014). While this approach has enabled the automated design
of cellular programs able to perform basic logic, much of the
information processing in native biological systems is distributed,
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relying on collective decision making (e.g., quorum sensing) and
interactions between large numbers of cells.

This feature is most evident in developmental biology where
robust genetic programs must ensure that a complex multi-
cellular organism emerges from a single cell. Cell growth,
differentiation, migration and self-organization are coordinated
by a developmental program with dynamics at both the intra-
and inter-cellular levels. These enable the generation of precise
deterministic patterns from stochastic underlying processes
(Glen et al., 2019). In contrast to simple logic circuits, the
complexity of the molecular interactions and mechanical forces
underpinning these processes motivate the use of multi-agent
modeling to better understand how developmental programs
work in morphogenetic systems. In particular, multi-agent
models are able to capture the role of cellular heterogeneity,
proliferation and morphology, mechanical and environmental
cues, movement of cells as well as the integration of multiple
processes at diverse scales and the feedback between these
(Montes-Olivas et al., 2019). Such models have helped deepen
our understanding of early mammalian embryogenesis (Godwin
et al., 2017), as well as the formation of vascular networks (Perfahl
et al., 2017) and other complex structures and organs, including
the skin, lung (Stopka et al., 2019), kidney (Lambert et al., 2018),
and brain (Caffrey et al., 2014).

Although such work has provided insights into the
computational architecture of native developmental programs,
it has been difficult to apply this information to the creation
of de novo morphogenetic systems because of a limited toolkit
of parts available to build such systems. Synthetic biology may
help solve this issue by facilitating the engineering of simplified
multi-cellular systems (Velazquez et al., 2018) that implement
developmental programs encompassing distributed feedback
regulation (Ausländer and Fussenegger, 2016) and cell-to-cell
communication (Bacchus et al., 2012), to better understand
how these factors can be used to contribute to emergent
self-organization (Morsut et al., 2016).

COLLECTIVE PHENOMENA DRIVING
DISEASE

Many of the challenges treating diseases result from the
malfunction of emergent multi-cellular properties, be it
carcinogenesis (Deisboeck and Couzin, 2009; Ward et al., 2020),
viral infection (Jacob et al., 2004), bacterial biofilm formation
(Wu et al., 2020) or microbiome imbalances (Shreiner et al., 2015;
Kumar et al., 2019). Multi-agent modeling of these conditions has
helped demystify how the collective behavior of large numbers
of diverse cells and their interactions with each other and their
environment can lead to negative clinical outcomes.

Cancer is a complex multi-scale disease that includes
environmental factors, genetic mutations and clonal selection,
and complex interactions with the immune and vascular system.
As a result, computational models of cancer need to account
for many of these factors considering the heterogeneity and
interactions of single cells, yet contain sufficient numbers of
them to predict emergent phenomena at a tumor scale (Metzcar

et al., 2019). Using this approach, multi-agent models have been
used to help understand metastasis (Waclaw et al., 2015) and
show that cancer cells with stem cell-like properties can be a key
determinant in cancer progression with fatal consequences (Scott
et al., 2016, 2019).

Beyond understanding the emergence of some diseases, multi-
agent models can also identify novel ways of fixing their
dynamics by considering how to disrupt cellular behaviors,
and their interactions in space and time (Waclaw et al., 2015;
Gallaher et al., 2018). Treatments themselves can even be
designed to have collective emergent properties. For example,
bacteria have already been engineered to use quorum sensing
to trigger their delivery of drugs (Din et al., 2016) or they
can be controlled using magnetic fields to penetrate cancerous
tissue (Schuerle et al., 2019). Other collective behaviors used in
cancer nanomedicine include self-assembly of nanoparticles to
anchor imaging agents in tumors, disassembly of nanoparticles
to increase tissue penetration, nanoparticles that compute the
state of a tumor, nanoparticle-based remodeling of tumor
environments to improve secondary nanoparticle transport,
or nanoparticle signaling of tumor location to amplify the
accumulation of nanoparticles in tumors (Hauert et al., 2013;
Hauert and Bhatia, 2014).

The emergent properties inherent in many diseases, and
the potential to harness such behaviors for new treatments,
highlight the need for multi-scale modeling tools. Moreover, with
the rapidly expanding field of “systems medicine,” integrated
modeling pipelines able to predict multi-scale disease dynamics
and assess novel synthetic biology treatments via large-scale
simulation and machine learning are positioned to revolutionize
many areas of medicine (Stillman et al., 2020).

CHALLENGES IN SCALING-UP
BIOTECHNOLOGY

The ability for synthetic biology to reprogram cellular
metabolisms offers an opportunity to convert cheap substrates
(or even waste) into valuable chemicals and materials via
microbial fermentation (Nielsen and Keasling, 2016). To make
this economically viable, large bioreactors are often used.
However, while our use of fermentation stems back millennia
(McGovern et al., 2004), we still struggle to reliably scale-up
many processes from shake flasks in the lab to industrial-sized
bioreactors (Lee and Kim, 2015).

A major reason for this problem is the increasing difficulty
and power consumption of mixing or aerating reactors as
their volume increases, causing pockets to form where nutrient
concentration, temperature, oxygen, pH and other factors differ
(Alvarez et al., 2005). As a microbe travels through the bioreactor,
it becomes exposed to a wide variety of environments, each
causing changes in its physiology. Because the path of each
cell is unique, a population of cells will display a wide variety
of physiological states. This differs from lab-scale experiments
where environments are well-mixed and homogeneous, and
causes predictions made from these conditions to significantly
deviate from those observed during scale-up.
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Capturing the combined environmental and cellular
variability present in a large bioreactor is difficult using standard
differential-equation models. In contrast, multi-agent models are
able to explicitly capture and link gene regulation, metabolism,
and the cells’ local environment (Nieß et al., 2017; Haringa
et al., 2018), as well as differences between individual cells and
how cells change over time (González-Cabaleiro et al., 2017). In
particular, hybrid models in which continuous descriptions of
complex physical processes like fluid flows have been coupled
with multi-agent models to allow for the efficient simulation
of these systems. This approach can accurately predict the
emergence of population heterogeneity and overall production
rates and help guide bioreactor design to further improve yields
(Haringa et al., 2018). Some attempts have also been made to use
control engineering principles to design cellular systems able to
adapt to fluctuating environments (Hsiao et al., 2018). To date,
these attempts have mostly focused on the basic genetic parts and
regulatory motifs (e.g., negative feedback) needed to implement
control algorithms (Ceroni et al., 2018; Aoki et al., 2019; Pedone
et al., 2019; Bartoli et al., 2020). Moving forward, multi-agent
models offer a means to make simulations of these systems more
realistic by accurately capturing how individual cells and their
complex environment change over time.

Another challenge faced during large-scale fermentation is
the opportunity for mutants to arise or unwanted microbes
to contaminate a process and out-compete their engineered
counterparts (Kazamia et al., 2012; Louca and Doebeli, 2016).
Multi-agent models of these complex environments and local
competition when multiple types of organism are present, could
help support the development of evolutionarily stable strategies
(ESSs) that prevent the replacement of an engineered population
by competitors (Schuster et al., 2010).

ENGINEERING SYNTHETIC ECOLOGIES

At an even larger organizational level, synthetic biologists
have begun to explore how to engineer interactions between
communities to enable the future construction of synthetic
ecologies (Ben Said and Or, 2017). With climate change, pollution
and many other factors leading to the degradation of ecological
systems, understanding how these systems emerge and function
is crucial. Such knowledge would allow for effective restoration
strategies (Solé et al., 2015) and potentially offer means to
terraform other planets like Mars for future human inhabitation
(Conde-Pueyo et al., 2020).

These applications require an understanding of how diverse
organisms interact to create stable communities (Widder et al.,
2016). This is difficult because the interactions that take place
at the level of a population are governed by choices made
by single organisms (Kreft et al., 2017). By using multi-agent
modeling to rapidly test combinations of cell types, behaviors
and interactions, and synthetic biology tools to engineer real-
world microbial communities, it might become possible to design
and test hypotheses regarding the principles for robust ecosystem
design. For example, multi-agent modeling has been used to help
understand how signaling and mutual cooperation can stabilize

microbial communities (Kerényi et al., 2013). Furthermore, from
a synthetic biology perspective many of the tools needed to
engineer these systems already exist, e.g., biological parts able to
implement cooperation (Shou et al., 2007), signaling (Bacchus
et al., 2012), targeted death (Fedorec et al., 2019), and collective
decision making (e.g., quorum sensing).

Beyond engineering interactions between organisms, spatial
structure can also play a crucial role in the functionalities of
microbial communities. Multi-agent modeling has demonstrated
the significant impact that spatio-temporal organization can have
on soil microbes and the success of auxotrophic interactions
(Jiang et al., 2018). Such interactions are particularly important
for engineering minimal functional synthetic communities as
plant seed treatments and for vertical farming under defined
conditions. In this context, whether or not a single cell or
division of labor is the evolutionarily stable solution depends on
the metabolic flux through the system, with high flux favoring
division of labor (Kreft et al., 2020). Extending this modeling
approach further to consider the thermodynamics of microbial
growth and redox biochemistry could help ensure that resultant
systems are ecologically and evolutionarily stable (Zerfaß et al.,
2018). Alternatively, external control of the environment could be
used to forcibly maintain a desired community structure (Treloar
et al., 2020). In all cases, a combination of multi-agent modeling
and engineerable biological systems provides a unique means to
unravel how these complex systems function.

External feedback control has been proposed as another
approach to control of cellular communities. By employing real-
time single cell measurements (e.g., by time-lapse microscopy or
flow-cytometry) and experimental systems able to send control
signals to the cells via optogenetics (Toettcher et al., 2011) or
chemical release in microfluidics (Menolascina et al., 2014),
a computer can monitor and signal to a population of cells
in order to maintain a desired behavior (e.g., the expression
rate of a protein). More recently, it has been proposed to
implement these control algorithms directly into cells, with the
key aim of distributing tasks among different strains (Fiore
et al., 2017; McCardell et al., 2017). Multi-agent modeling can be
instrumental in the design of robust feedback mechanisms across
multicellular populations, as it can reveal non-obvious effects of
cell density, proliferation dynamics and spatial constraints on the
effectiveness of control actions (Fiore et al., 2017).

DISCUSSION

We have shown how multi-agent models can be applied to many
areas of synthetic biology. The core features of these models
provide insight into some of the basic building blocks and
mechanisms needed for collective behaviors to emerge and, we
believe, may offer a means to support the future predictive design
of collective behaviors.

A major hurdle to the widespread use of multi-agent
modeling is the need to define and simulate complex models
(Grimm et al., 2006). Although computational frameworks
have been available since the 1980s to support this process,
it is only during the past decade that tools have been
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tailored for synthetic biology applications and reached
sufficient performance (Gorochowski et al., 2012; Oishi
and Klavins, 2014; Goñi-Moreno and Amos, 2015). More
recently, the effective use of highly parallel computing
resources has expanded the complexity of biological models
that can be simulated (Rudge et al., 2012; Naylor et al.,
2017; Li et al., 2019; Cooper et al., 2020). Automated
coarse-graining of representations enable faster simulation
without impacting on the accuracy of predictions (Graham
et al., 2017), while advanced tools allow verification,
validation and uncertainty quantification for such simulations
(Richardson et al., 2020).

Improved simulations do not only speed up the time to
an answer but may open up opportunities to create new
types of computational design environments. For example,
high-performance models coupled to virtual reality allow for
multiple researchers to interactively manipulate a system and
immediately observe the outcomes of their design decisions.
Such capabilities have already begun to be used for molecular
design (O’Connor et al., 2018) and when coupled to machine
learning, offer a unique setting in which to explore complex
high-dimensional datasets that are common in biology. They
also allow for essential features to be distilled that can then be
used to guide predictive design. Furthermore, hybrid approaches
become possible where computational models dynamically
augment an experimental setup by controlling physical features
such as light (Rubio Denniss et al., 2019) or magnetism
(Carlsen et al., 2014). If agents within the experimental
system are responsive to these stimuli, then various forms of
interaction can be externally programmed and rapidly explored
to better understand the necessary conditions for a particular
collective behavior to emerge. Once a desired set of rules
for the interactions is found, the agents can be modified
to implement these autonomously, removing the need for
external control.

As synthetic biology moves beyond simple parts and circuits,
and toward large-scale/multicellular systems, the available
repertoire of design tools must also expand to support new
requirements. Multi-agent modeling is perfectly placed to
help make this leap and usher in new biological design
methods focused on the engineering of emergent collective
behaviors. Not only will this allow functionalities to span length
scales, but it will also provide a way to engineer across the

organizational levels of life through hierarchical composition of
multi-scale models, from basic molecules and cells through to
entire ecosystems.
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A distributed biological system can be defined as a system whose components are
located in different subpopulations, which communicate and coordinate their actions
through interpopulation messages and interactions. We see that distributed systems
are pervasive in nature, performing computation across all scales, from microbial
communities to a flock of birds. We often observe that information processing within
communities exhibits a complexity far greater than any single organism. Synthetic
biology is an area of research which aims to design and build synthetic biological
machines from biological parts to perform a defined function, in a manner similar
to the engineering disciplines. However, the field has reached a bottleneck in the
complexity of the genetic networks that we can implement using monocultures, facing
constraints from metabolic burden and genetic interference. This makes building
distributed biological systems an attractive prospect for synthetic biology that would
alleviate these constraints and allow us to expand the applications of our systems
into areas including complex biosensing and diagnostic tools, bioprocess control and
the monitoring of industrial processes. In this review we will discuss the fundamental
limitations we face when engineering functionality with a monoculture, and the key
areas where distributed systems can provide an advantage. We cite evidence from
natural systems that support arguments in favor of distributed systems to overcome
the limitations of monocultures. Following this we conduct a comprehensive overview
of the synthetic communities that have been built to date, and the components that
have been used. The potential computational capabilities of communities are discussed,
along with some of the applications that these will be useful for. We discuss some of
the challenges with building co-cultures, including the problem of competitive exclusion
and maintenance of desired community composition. Finally, we assess computational
frameworks currently available to aide in the design of microbial communities and identify
areas where we lack the necessary tools.

Keywords: synthetic biology, microbial consortia, biological computing, multicellular systems, biotechnology

WHAT DO WE MEAN BY COMPUTING WITH BIOLOGICAL
SYSTEMS?

There may be as many definitions of computing as individuals willing to give one. In this review
we will stick to one which is relatively general in order to allow us to draw analogy between
electronic and biological computing implementations without becoming too restricted. As such,
we define computing as the processing of information, to produce an output, in a manner that is
encoded in a program. There are less ambiguous, yet still broad, definitions that have been used,
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for example to determine when a physical system computes
(Horsman et al., 2014). However, our layman’s definition will
suffice for this review. Although the dangers of analogizing have
been well-documented (Thouless, 1953), even specifically in the
field of synthetic biology (McLeod and Nerlich, 2018), we will
proceed with caution.

The field of electronic computing has made great impact
through the use, and evolution, of two core models: the
Turing machine and the von Neumann architecture. The Turing
machine defines a theoretical automaton which, according to a
set of instructions, reads and writes symbols to an infinitely long
tape (Turing, 1937). This model is used to demonstrate the limits
of computability in what is known as the Church-Turing thesis.
Although many other models of computing machines have been
invented which may be faster or more efficient, none are capable
of computing anything that a Turing machine cannot. The
von Neumann architecture defines a “stored-program” model in
which the instructions for performing computation are stored
in the same way as the data on which the computation is being
performed (von Neumann, 1993). This architecture includes
a central processing unit (CPU) which communicates with a
separate memory unit, an input and an output device. The
CPU executes the instructions of the computer program and
the memory stores data and instructions for the CPU. Although
alternatives to both models have been explored, they remain the
dominant paradigm for the design and programming of most
electronic computers.

At least since Jacob and Monod (1961) famously described the
lac operon in terms of a control system engaged in information
processing, researchers have been exploring the ability of natural
biological systems to compute. The engineering of de novo
biological computation began with a demonstration of the use
of DNA to solve an NP-complete Hamiltonian path problem
(Adleman, 1994). Since then a large number of DNA molecular
computing systems have been detailed: a molecular full-adder
(Lederman et al., 2006), a small neural network (Qian et al., 2011),
a non-deterministic universal Turing machine capable of solving
non-deterministic polynomial (NP) time problems in polynomial
time (Currin et al., 2017), all 16 two input logic gates (Siuti
et al., 2013), a neural network capable of pattern recognition
(Cherry and Qian, 2018), and even simple games (Macdonald
et al., 2006; Pei et al., 2010). While DNA, and RNA, molecular
computing is still actively being pursued, the other dominant
paradigm since the advent of synthetic biology has been the
use of gene regulatory networks (GRNs) within cells. Manzoni
et al. (2016) provide an excellent introduction into the use of
GRNs to produce Boolean logic operations; an approach which
has provided some remarkable successes. However, an excellent
recent perspective persuasively argues that synthetic biologists
need to escape from the Boolean logic paradigm which has
been so successful for electronic computation due to inherent
differences between electronic circuits and biological systems
(Grozinger et al., 2019).

The magnitude of the populations of cells that are used for
most biotechnological applications is vast and, although our
ability to engineer cells has greatly improved, the computational
capabilities that we can implement in each cell is still relatively

small. In computer science, these characteristics have been
taken advantage of in large-scale distributed computer systems.
However, it is only recently that synthetic biologists have started
to move away from attempting to engineer monocultures of
cells, all carrying out the same process. In this review we
will introduce the current state-of-the-art in the engineering
of microbial cells to compute. The limitations of the current
approach of using monocultures are detailed and the concept
of distributed computing is introduced as a potential solution.
We review the tools available to produce distributed biological
systems and suggest the current challenges to implementing such
systems robustly.

ENGINEERING BACTERIA TO COMPUTE

The first synthetic biology papers engineered a toggle switch
(Gardner et al., 2000), oscillator (Elowitz and Leibler, 2000)
and autoregulation (Becskei and Serrano, 2000), which can be
used as fundamental components in engineering a computer
(Dalchau et al., 2018): memory, clock and noise filter. Since then,
the tools necessary for engineering microbes for computation
have been extensively developed over the last two decades of
synthetic biology research. Though some of these tools have
been developed explicitly for their use in cellular computing
applications, many have been used to understand natural
biological systems and to develop applications such as bio-
therapeutics (Ozdemir et al., 2018).

A biological switch is a bi-stable system that can be flipped
between the two states. The first synthetic genetic toggle switch
was built in Escherichia coli and was composed of two repressible
promoters (Gardner et al., 2000). The product of each promoter
repressed the other and chemical inducers could then be used
to flip the switch between the two states. Similar switching
behavior can also be achieved using transcriptional regulation
(Kim et al., 2006). Multi-stable switches have been theorized
(Leon et al., 2016) and implemented (Li et al., 2018) which
would allow for greater than two state memory. The information
storage capability of DNA has also been exploited to create
cellular memory devices (Siuti et al., 2013), lasting for over 100
generations (Bonnet et al., 2012). Unlike a molecular toggle
switch, DNA has the potential to encode complex sequences
of data, allowing the encoding and decoding of a 5.27 megabit
book (Church et al., 2012) and could extend cellular memory
capabilities. However, DNA based memory is not currently
switchable repeatably in the same manner as the transcriptional
toggle switches.

A minimal sustained oscillator can be created with only a
negative feedback loop and a time delay (Stricker et al., 2008;
Hasegawa and Arita, 2013), but most biological oscillators are
more complex. The repressilator (Elowitz and Leibler, 2000)
was the first synthetic oscillator and consisted of a system of
three cyclically inhibitory proteins. Oscillators are used in natural
systems to coordinate the timing of events; the most ubiquitous
example being the circadian clock, which keeps time with the
day/night cycle and is found in even the most primitive organisms
(Schippers and Nichols, 2014). A fast oscillator with tuneable
periods as short as 13 min (Stricker et al., 2008) represents
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a programmable timing device that could be used to time or
synchronize cellular events with high precision, such as the
release of a therapeutic dose (Danino et al., 2010). The robustness
of the oscillations can be improved through the addition of
autoregulation (Woods et al., 2016) or a “sponge” on one of the
nodes (Potvin-Trottier et al., 2016).

As previously mentioned, transcriptional networks that
produce Boolean logic gates have been extensively investigated.
An AND gate that integrates the output of two promoters has
been implemented in single cells (Anderson et al., 2007) and later
more complex logical circuits were created by wiring together
multiple layers of orthogonal AND gates (Moon et al., 2012).
We now have libraries of orthogonal repressor-promoter NOT
gates (Stanton et al., 2014), as well as the ability to produce de
novo CRISPR-dCas9 gates (Zhang and Voigt, 2018), that can be
wired together to make complex logical functions (Nielsen et al.,
2016). These advances, along with tools to reduce DNA context
effects (Davis et al., 2011; Lou et al., 2012; Mutalik et al., 2013)
have enabled the construction of logic circuits with a great deal
complexity in common lab strains of bacteria as well as strains
relevant to microbiome engineering (Taketani et al., 2020). This
level of circuit complexity is only achievable through the use of
automated design tools, such as Cello (Nielsen et al., 2016), which
match the empirical properties of genetic logic gates to ensure
they will function together.

Biological processes in cells, based on the continuous
concentration of metabolites and other molecules, are naturally
analog. Analog computing is more efficient, in terms of the
rate of ATP consumption and the number of protein molecule
required, for doing addition with a genetic circuit at the
ranges of precision that are metabolically feasible in single
cells (Sarpeshkar, 2014). This is due to the mathematical
dependence of precision on ATP consumption and number of
protein molecules differing for analog and digital genetic circuits
(Sarpeshkar, 2014). Additionally, it has been shown that building
the equivalent circuit using analog logic can require orders of
magnitude fewer genetic parts (Qian and Winfree, 2011; Daniel
et al., 2013). Analog sensing, addition, and ratiometric and
power law computations were implemented using only three
transcription factors (Daniel et al., 2013). This was achieved by
developing tuneable positive and negative logarithm circuits and
connecting them through a common output to produce more
complex circuits. Perceptrons, the building blocks of artificial
neural networks, produce an output that is a function of the
weighted sum of multiple inputs. They have been implemented
using enzymes that transduce different inputs into a common
output molecule, benzoate, and a synthetic actuator circuit
that sensed benzoate (Pandi et al., 2019). This was used to
build a cell based adder and cell free metabolic perceptrons in
which enzyme concentrations acted as weights between nodes
(Pandi et al., 2019).

LIMITATIONS OF MONOCULTURE
ENGINEERING

Components of electrical circuits are, to a great degree, insulated
from one another and the environment, with interactions enabled

FIGURE 1 | Illustration of the limitations of monocultures and how they are
overcome by constructing distributed systems from multiple cell types.
(A) Signaling pathways in monocultures can often suffer from unintended and
unexpected crosstalk between processes. Compartmentalizing independent
functions in separate subpopulations will prevent crosstalk. (B) Applications in
biosynthesis suffer from high metabolic burden due to the expression of
multiple heterologous processes. Division of labor between multiple
subpopulations can alleviate the metabolic burden.

explicitly by wiring. Heterologously expressed genetic circuits
lack insulation from one another within a cell. While efforts
to create subcellular compartments in prokaryotes are ongoing
(Giessen and Silver, 2016), these approaches will be difficult to
generalize across different circuits and applications (Menon et al.,
2017). Our construction of genetic circuits in a single strain
is thus limited by fundamental and interconnected concerns:
non-orthogonality, retroactivity, load, and burden (Figure 1).

The library of transcriptional regulators available for the
construction of genetic circuits has vastly expanded in the
last two decades, particularly in model organisms such as
E. coli. However, as we cannot directly wire one component
to another, we cannot reuse components without there
being a confounding interaction. Even more frustratingly,
several non-identical components share similarities that lead to
non-orthogonality between those components, perturbing the
intended functionality of the engineered circuit (Figure 1A). As
the scale of genetic circuits grows, the number of opportunities
for non-orthogonal interactions grows exponentially, making it
difficult to scale complexity. Efforts to circumvent this include
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“part-mining” to build libraries of orthogonal parts (Stanton
et al., 2014) and computational design tools to incorporate
known non-orthogonal interactions as part of the design process
(Kylilis et al., 2018; Nguyen et al., 2019). Even the vast space
of de novo parts enabled by CRISPR-dCas9 is limited by the
number of sgRNAs that can be co-expressed before severely
depleting the pool of dCas9 (Zhang and Voigt, 2018). The
largest genetic circuit within a single cell, at the time of
writing, consists of 55 genetic parts (Nielsen et al., 2016). In
addition to such unwanted molecular interactions, sequence
similarities between components can lead to mutation of genetic
circuits due to homologous recombination. Libraries of parts,
for example terminators, have been specifically designed that
can be used together in order to circumvent this (Chen
et al., 2013). Retroactivity describes a type of non-orthogonal
interaction, whereby an upstream process is perturbed by
a downstream species (Jayanthi and Del Vecchio, 2011).
Retroactivity is common in signaling pathways with reactions
that operate on different time scales, causing the accumulation
of intermediate species that may interact with the upstream
process (Jayanthi and Del Vecchio, 2011; Kim and Sauro, 2011;
Pantoja-Hernández and Martínez-García, 2015).

The expression of genes draws from a pool of shared
resources within the host. As such, the co-expression of two
genes within a circuit can become coupled due to limited
resource availability (Gyorgy et al., 2015). This has been
compared to the load that is experienced in electrical circuits
when components are placed in parallel (Carbonell-Ballestero
et al., 2016). One is therefore limited in the number of
components that can utilize the output from another component
as their input. Since recombinant and host processes use
the same resource pool, recombinant gene expression will
also draw resources away from host processes causing a
metabolic burden, exhibited as reduced growth rate (Glick,
1995; Figure 1B). The slower growth can encourage selection
for cells which manage to lose or mutate their genetic circuit
(Rugbjerg et al., 2018); strains not expressing the burdensome
circuit have a competitive advantage and can outgrow the
burdened population (Summers, 1991). Furthermore, metabolic
burden can induce stress responses in the host, increasing
mutation rates (Matic, 2013; Couto et al., 2018). Whole cell
models, combining the impact of load and metabolic burden,
show how changing resource availability in a host strain can
produce different circuit behavior (Gorochowski et al., 2016;
Boeing et al., 2018). Efforts to reduce load and metabolic
burden include optimizing circuits for low copy plasmids or
chromosomal integration (Lee et al., 2016), and using orthogonal
ribosomes to allocate recombinant gene expression to different
resource pools (Darlington et al., 2018; Boo et al., 2019).
Expression of burdensome circuits can be regulated dynamically
in response to population density (Gupta et al., 2017) or
using promoters that are directly sensitive to burden (Ceroni
et al., 2018). Mishra et al. (2014) developed a load driver
for Saccharomyces cerevisiae, demonstrating consistent levels of
expression regardless of load induced.

All of these limitations can be overcome by dividing the
functionality of a circuit between subpopulations of cells, in what

we will call a distributed biological system, rather than attempting
to engineer a monoculture to achieve everything (Figure 1).

FROM SEQUENTIAL TO DISTRIBUTED
COMPUTING

Before discussing distributed biological systems, it is sensible
to provide a short introduction to distributed computing and
how it relates to other approaches to computing. In simple
terms, a computer program is a set of instructions for reading,
operating on, and writing data. A sequential computer processes
the instructions from programs, one after the other, until the
program halts. Concurrency is the execution of many programs
during the same period of time, but not necessarily at the
same instant. This can be achieved on a single processing unit
by interleaving the instructions from multiple programs. This
produces the appearance of programs running in parallel and
allows the computer to respond to input from devices such
as a keyboard. Although parallel and distributed computing
are inherently forms of concurrent computing (many programs
being run during the same time period), single processor
concurrency is not true parallelism as there is still only one
instruction being processed at a time.

Parallelism is the execution of instructions on separate
processing units, simultaneously. There are many forms of
parallelism and many ways of categorizing them but the most
common is Flynn’s taxonomy (Flynn, 1972). This taxonomy,
shown in Figure 2, uses the number of streams of instructions
and data to create four categories: SISD, SIMD, MISD, and
MIMD. Single-instruction single-data (SISD) corresponds to
the sequential computer; one instruction is being carried out
using one location in memory. In a single-instruction multiple-
data (SIMD) architecture, the same operation is synchronously
performed by different processor units on data from different
locations in a shared memory. Graphics processors use this
architecture to, for example, parallelize operations on pixels
within an image. Multiple-instruction single-data (MISD) is an
uncommon form of parallelism but has been employed in safety
critical systems as a redundancy methodology i.e., agreement
must be reached by multiple systems, exposed to the same input,
for an operation to be accepted.

Multiple-instruction multiple-data (MIMD) is a form
of parallelism that is now ubiquitous in modern personal
computers. Here we choose to further subdivide MIMD systems
to discriminate between single-program multiple-data (SPMD)
and multiple-program multiple-data (MPMD). The former
is a commonly used parallel programming paradigm used to
speed up the runtime of a program by allowing instructions,
that do not depend on results from one another, to run
simultaneously on separate processing units. The limits of the
speedup that can be achieved are given by Amdahl’s (fixed
problem size) (Amdahl, 1967) and Gustafson’s (problem
size scales with number of processors) (Gustafson, 1988)
laws. It is often hard to achieve significant speedup as the
requirement for independence excludes many steps within
common algorithms.
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FIGURE 2 | Models of computing categorized using Flynn’s taxonomy.
A program consists of a number of instructions which are executed by a
processing unit. A computer, or computational unit, consists of one
(sequential) or more (parallel) processing units which can access data and
instructions from memory. Concurrency is achieved by interweaving
instructions from different programs in order to produce the appearance of
parallelism. Distributed models include separate computational units which
communicate by passing messages through a network. The individual
computational units in a distributed system may be sequential or parallel.

MPMD is the category within which distributed systems
lie. Here, different programs are run on separate processing
units, accessing their own data. Distributed systems are a special
case in which each processor does not have access to a shared
memory and instead programs must communicate with one

another through message passing. This tends to have a far higher
latency (the time it takes for information to be transferred) but
also higher bandwidth (the amount of information that can
be transferred at once) than accessing local memory and, as
such, message passing should be limited to infrequent but large
transfers of data. When a distributed system is used for a common
goal, there is often a control computer which assigns tasks
to computers within the network and receives and synthesizes
resulting data, as is common in high performance computing.
Alternatively, computers within the network may have their own
compulsion and the network merely allows for the sharing of
resources. It is important to note that each individual computer
within a distributed system can be operating in any of the
categories of Flynn’s taxonomy; each computer may run the
program(s) it is tasked to run sequentially or in parallel.

Models developed for describing concurrency have become
the dominant models of distributed systems. Petri nets use
graphs of “transitions” and “places,” analogous to instructions
and memory, connected by “arcs,” to describe dynamic systems of
discrete events (Petri, 1966). If the state of the places connected
to a transition meet the defined requirements, the transition
fires and the states of the connected places will change. Petri
nets have been extensively used to model discrete chemical and
biological processes (Wilkinson, 2018). The actor model consists
of “actors” with their own private state (Hewitt et al., 1973). They
are able to communicate only through addressed message passing
and can act, concurrently, based on the messages received by
sending messages, creating new actors and queuing behaviors.
Finally, process calculi are a collection of algebras for modeling
concurrent systems using “channels” to communicate between
processes. Several variants exist that enable reasoning about, for
example, systems with mobility (ambient calculus; Cardelli and
Gordon, 1998), systems with changing network configuration
(pi-calculus; Milner et al., 1992) and probabilistic systems (PEPA;
Hillston, 1996).

Challenges specific to distributed systems relate to
communication and coordination. Two foundational concepts
that should be discussed here, as they have strong parallels with
biological systems, are common knowledge and faulty agents.
The former is detailed in an important paper in the field of
distributed systems (Halpern and Moses, 1990). Individual
computers within a distributed system act solely on their own
local information which is learnt from their own processes
and receiving messages from other computers. However, some
applications require the agreement or simultaneous action
of multiple computers which can only be achieved through
“common knowledge,” globally known information. Halpern and
Moses demonstrate that common knowledge is unattainable but
detail weaker forms, such as time limited common knowledge,
which allow some actions to be performed (Halpern and Moses,
1990). The problem of faulty agents is related as it concerns
reaching agreements via communication of information between
computers. In this scenario some of the computers in the network
are faulty or malicious and, as such, the messages that they pass
are unreliable. It is provably possible to reach agreement if
less than one third of the network is faulty, as long as each
computer knows the sender of each message it receives (Lamport
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et al., 1982). However, this solution requires synchronization
which is not possible without common knowledge and in an
asynchronous system consensus is theoretically impossible with
even one faulty computer (Fischer et al., 1985), though pragmatic
solutions exist (Chandra and Toueg, 1996).

There have been many attempts to draw analogies between
electronic computers and biological systems as computers.
The main features of a distributed system are concurrency of
components, lack of a global clock, and independent failure
of components (Attiya and Welch, 2004), all of which apply
naturally to biological communities. From the above description
of computational systems, we believe it is reasonable to consider
an individual cell as a computational unit. More detailed
analogies could be made, for example, between fetching an
instruction and the transcription process, or performing an
operation and enzymatic reactions. However, these analogies
often differ depending on the abstractions that one is working
on within the cell. Cells are capable of parallel processing; they
are able to execute multiple tasks simultaneously. Synthetic
biology to date has predominantly been undertaken using
monocultures in well mixed liquids with the assumption that all
cells are performing the same operation in the same environment.
However, we know that heterogeneity between cells and across
the environment make these systems much more analogous to
distributed systems in which cells are asynchronously running
the same program, exposed to different environments, alongside
numerous other programs running in parallel. Further, the
necessity to distribute genetic circuits across heterogenous
communities of engineered cells in order to tackle the limitations
of monoculture computing compels us to think of synthetic
biology through the prism of distributed systems.

DISTRIBUTED SYSTEMS IN NATURE

Several naturally occurring biological phenomena involving
cellular communities and multicellular organisms can be
considered naturally occurring distributed systems. Individual
cells are able to process information intracellularly and share
and receive information extracellularly through, for example, the
secretion of molecules.

Bet Hedging
A solution to the problem of changing environments often
encountered by natural microbial communities is bet hedging.
This is a strategy in which a certain percentage of a population
adopt a sub-optimal state for the current environment in
anticipation that the environment can change (Figure 3A). In
this way the long term fitness of the community is increased by
reducing the current fitness of a subset of the community. This
can be entirely stochastic (Wolf et al., 2005) or biased by sensors
that pick up environmental signals (Kussell, 2005). A game
theoretic analysis found that switching between different losing
strategies produces a winning strategy when environmental
transitions cannot be sensed (a Parrondo paradox) (Wolf et al.,
2005). Further, the optimal switching rates are a function of
environmental properties and that diversification is favorable

upon entering new environments with noisy information. It
was separately shown that stochastic switching can be favored
over sensing when the environment changes infrequently and
that the optimal switching rates are again dependent on the
properties of the environment (Kussell, 2005). Bet hedging has
been demonstrated to be even more favorable when colonizing
new environments, supporting the view that expanding into
novel environments supports diversification (Villa Martín et al.,
2019). This research shows that bacterial colonies leverage the
capacity for phenotypic heterogeneity to produce a community
that is optimized, according to the principles of game theory,
for survival or expansion in uncertain environments. This has
analogs in various forms of search and optimization algorithm,
in which multiple, simple heuristics or algorithms can be
explored in parallel to provide a solution (Huberman et al., 1997;
Deng et al., 2012).

Development of Multicellular Organisms
The process of development, by which a single cell becomes a
morphologically complex organism composed of well-organized,
heterogeneous tissue has been shown to be largely orchestrated
by signaling using diffusible molecules called morphogens
(Figure 3B). A theoretical model of morphogenesis was first
presented by Alan Turing (Turing, 1952). This model is based
on systems of multiple morphogens that react with each other
and diffuse through tissue. Simulation results showed that the
reaction diffusion model could correctly predict the spacing of
angelfish stripe patterns (Kondo and Asai, 1995). Later work
concluded that there are universal mechanisms of specifying
cell spatial information, based on fields and polarities (Wolpert,
1969). A field is a group of cells that have their position specified
with respect to the same set of points and polarity is the
direction in which spatial information is specified. Francis Crick
proposed that the fields might be produced by sources and sinks
of diffusible molecules (Deuchar, 1970). This model has since
been shown to be accurate for the Fgf8 morphogen in zebrafish
embryos (Yu et al., 2009). A further proposed explanation of
a field is that it constitutes a group of cells that are oscillating
synchronously and are tightly coupled (Newman and Bhat, 2009).
This could be the mechanism behind clusters of cells in the
insect wing disc that progress through the cell cycle together and
could also help explain how some developmental fields work over
longer distances than would be possible by diffusion (Giribet,
2009). The epigenetic landscape (Waddington, 1957) for a simple
regulatory network consisting of two genes has been quantified
and found to behave as a potential function, with basins of
attraction at the differentiated states (Wang et al., 2011). The
idea of a fitness landscape has also been applied in areas such
as cell signaling (Sekine et al., 2011), cell death (Zinovyev et al.,
2013), and pattern formation in Drosophila (Lepzelter and Wang,
2008). Recent attempts to quantify spatial information during
development include a demonstration that the expression level
of just four gap genes can be used to specify a cell’s position with
1% uncertainty in the Drosophila embryo (Dubuis et al., 2013).
The developmental process has been compared to mathematics
(Apter and Wolpert, 1965) in which a set of basal rules is
used to derive a complex structure. In this way development

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 6 July 2020 | Volume 8 | Article 83421

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00834 July 21, 2020 Time: 13:13 # 7

Karkaria et al. Microbial Communities to Distributed Systems

FIGURE 3 | Examples of distributed systems in nature. (A) Bet hedging in natural bacterial communities, variation in the phenotype of the cells confers resistance to
environmental change to the community (adapted from Wolf et al., 2005). (B) During multicellular development spatial information can be specified by gradients of
diffusible molecules (adapted from Yu et al., 2009). (C) Bacteria can use electrical signaling to organize metabolism so that both interior and exterior cells can grow
(adapted from Martinez-Corral et al., 2019).

can be seen as the efficient compression of the spatial and
cell type information required to generate a complex organism
from a single cell.

Bacterial Colony Organization
Microbiomes are diverse communities of organisms that
exhibit a group metabolism (Gill et al., 2006), resistance to
pathogenic invasion (Stein et al., 2013; Buffie et al., 2015)
and temporal stability of community function through dynamic
adaptation of community members (Coyte et al., 2015). Bacteria
have developed multiple methods of exchanging information
including diffusible quorum sensing molecules (Nealson and
Hastings, 1979), exchanging DNA via conjugation (Tatum and
Lederberg, 1947), and even electrical communication (Prindle
et al., 2015; Martinez-Corral et al., 2019). This allows the assembly
and maintenance of spatial structure in a colony (Jacob et al.,
2004; Ben-Jacob and Levine, 2006) and the spatial coordination
of metabolism so that nutrients are shared across a community
(Figure 3C; Prindle et al., 2015; Martinez-Corral et al., 2019).
Additionally, using the ability of individual bacteria to sense
environmental inputs and respond accordingly, bacterial colonies
can adapt their spatial configuration to a changing environment,

reacting to food availability or optimizing foraging. The bacteria
Paenibacillus vortex forms highly modular colonies (Ben-Jacob
et al., 1998; Ben-Jacob, 2003; Jacob et al., 2004; Ben-Jacob and
Levine, 2006) in which circular modules of bacteria move around
a common center. P. vortex can also form snake like swarms
which can sense and collectively respond to input signals, for
example swarming to collect multiple sources of extracellular
material (Ingham and Jacob, 2008). This has also inspired an
optimization algorithm called Bacterial Foraging Optimization
(BFO) (Passino, 2002), a distributed optimization algorithm that
mimics the foraging behavior of a colony of bacteria. BFO can be
described as a variant of particle swarm optimization (Kennedy
and Eberhart, 1995) that incorporates selection by using aspects
of genetic algorithms (Holland, 1992). BFO has been found to
be effective on real world problems such as signal estimation
(Mishra, 2005) and controller optimization (Mishra and Bhende,
2007), in both cases it was found to outperform a conventional
genetic algorithm in terms of convergence time or solution
accuracy. Microbes can also interact through the exchange of
metabolites. In this manner a bacterial community can exhibit
an optimized group metabolism enabling the community to
survive with minimal resources and persist in environments
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inhospitable to the individual microbes (Schink, 2002; Morris
et al., 2013; Lau et al., 2016). Mathematical modeling suggests
that syntrophy can often emerge spontaneously between pairs
of microbial metabolisms (Libby et al., 2019) and much work
shows that syntrophy leads to the loss of functional independence
as genes are lost to minimize the energy usage of the
community (Morris et al., 2012; Hillesland et al., 2014; D’Souza
and Kost, 2016; McNally and Borenstein, 2018). Syntrophy
commonly occurs within bacterial communities, for example
during methanogenesis (Zhu et al., 2020), and the metabolic
reactions within the human gut (Ruaud et al., 2020).

DIFFERENCES BETWEEN BIOLOGICAL
AND SILICON SYSTEMS

There are a few key differences between natural and man-made
distributed systems that deserve highlighting. The first is the
main method of communication; in a computer, components
are connected by electrical wires and individual computers
can communicate through wired networks which allow specific
message passing. Even in wireless networks in which messages
are broadcast, enough information can be attached to a message
so that it is only readable by the target computer. This means
that nodes in a distributed system can send messages specifically
and communication networks can be set up to include arbitrary
groupings of nodes. Although systems exist for the passage
of messages specifically between cells (Goñi-Moreno et al.,
2013), due to its ubiquity in bacteria and the relative low
level of complexity quorum sensing is the dominant method
of communication engineered into synthetic bacterial consortia.
When communicating via quorum sensing, bacteria secrete
the message in the form of a diffusible molecule. A secreted
molecule sent by a cell will reach any cell within its vicinity
and the requirement to read the “message” is only expression
of the associated, or closely related, sensor, meaning that this
is a form of broadcast communication. The rigidity of the
connections between a set of computers in, for example, a local
area network mean that the network can be classified as a solid
network, meaning that the connectivity of the network does
not change with time. This is in contrast to a community of
cells, where agents can move relative to each other and agents
communicate with other agents in their local area. This means
that connectivity will change with time, and the community
can be classified as a liquid network (Solé et al., 2019). This
distinction has important implications for message passing and
communication within a microbial community. For example, the
“wiring problem” occurs when more than one communication
channel is required within a bacterial community. Later, we
discuss the current communication tools available for synthetic
biologists and detail their limitations. Microbial communities
are also composed of reproducing biological organisms, meaning
that they are subject to selective competition and potential
disruptions via mutations. This also allows natural communities
to adapt to changing environments but is a fundamental
challenge in synthetic biology, as will be discussed below.
However, the merits of liquid networks have been investigated

(Langton, 1986; Miramontes et al., 1993; Solé and Miramontes,
1995; Solé and Delgado, 1996; Vining et al., 2019) and it has
been shown that liquid networks are capable of reaching a
global consensus (Vining et al., 2019) and universal computation
(Solé and Delgado, 1996).

A second key difference is that the great majority of
electronic computers use digital memory and logic. Analog
systems are often emulated on digital computers, which
introduces inefficiencies in terms of power consumption and
simulation time (Guo et al., 2016). Microbes are not limited
to digital computation and often use analog computations
to their advantage, for example the continuous responses of
environmental sensors (Mannan et al., 2017) or the addition of
the concentration of quorum molecules from multiple sources
(Long et al., 2009). This in turn relates to how the different
systems treat noise. In a digital computer variability in the
output from a component is considered undesirable and, as such,
error checking and correcting mechanisms are built into every
level of a computer (Johnson, 1984; González et al., 1997). As
detailed in the previous section natural communities, however,
often harness noise in both gene expression and the genetic
makeup of the community (Kussell, 2005; Wolf et al., 2005;
Villa Martín et al., 2019).

DISTRIBUTED SYSTEMS IN SYNTHETIC
BIOLOGY

The challenges, described previously, of non-orthogonality, load,
and burden in synthetic biological systems have been confronted
by the expansion of genetic parts libraries (Chen et al., 2013;
Mutalik et al., 2013; Stanton et al., 2014). However, more
and better parts will only push our problems further into
the future. The ever-increasing capabilities of computers has
enabled, and perhaps been driven by, the development of ever
more demanding software. The same will happen with synthetic
biology; the complexity of the systems we design will always push
the limits of the parts that are available to us.

Using the principles developed over several decades of
work on distributed computing and insights from research
into natural biological distributed systems offers an alternative,
and complementary, approach to expanding parts libraries.
Distributing a system between subpopulations of cells means
that we can reduce the number of parallel tasks that we are
asking host cells to perform, reducing load and burden, and
enabling the reuse of parts in different subpopulations without
orthogonality issues.

Available Tools for Building Distributed
Synthetic Biological Systems
Liquid and Solid State Environments
Distributed synthetic biological systems can be assembled as
liquid or solid cultures. The choice of which will be dictated by
the intended application, with each choice possessing important
advantages and disadvantages.

In a well-mixed liquid culture, microbial cells exist as
independent entities that are free swimming. All subpopulations
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share approximately the same environment, offering a constant
intermediary for the exchange of resources and information.

Bioreactors and microfluidic devices allow different scales of
control over liquid culture environments, the choice of which
plays an important role in the behavior of the populations.
Over the past several years a number of low-cost bioreactors
have been developed (Takahashi et al., 2015; Hoffmann et al.,
2017; Steel et al., 2019). Turbidostats are a class of continuous
bioreactor that maintain the culture at a constant optical
density (OD) by varying the dilution rate. A turbidostat can
maintain the culture in the desired growth phase indefinitely
(Takahashi et al., 2015; Hoffmann et al., 2017). This is of
particular interest for implementing distributed systems since
gene expression profiles often differ between phases of growth
(Klumpp et al., 2009). Some of these bioreactor devices can
be configured to measure the output of several fluorescent
proteins simultaneously and control multiple inputs dynamically
(Steel et al., 2019). Dilution rate has been cited several times
as a critical controllable parameter; the rate of removal of
molecules from the environment can produce very different
population dynamics (Balagaddé et al., 2008; Weiße et al., 2015;
Yurtsev et al., 2016; Fedorec et al., 2019). As such, possessing
the correct tools is important for building distributed systems
in liquid culture.

Microfluidic devices have been developed that enable batch,
chemostat and turbidostat cultures (Lee et al., 2011; Ullman
et al., 2013). These have been used for a range of applications,
such as high-throughput gene expression analysis (Lee et al.,
2011; Ullman et al., 2013), elucidating the relationship between
population density and antibiotic effectiveness (Karslake et al.,
2016), the evolution of antimicrobial resistance (Toprak et al.,
2012), and screening for fitness under different environmental
conditions (Wong et al., 2018). Such devices are suited to
assessing community cultures and have been applied in the
microbial ecology field to understand multi-faceted interactions
(Kehe et al., 2019). Microfluidic traps can be used to monitor
cells in a fixed position and enable the establishment of local
microenvironments while still having a regular turnover of
cells and nutrients (Bennett and Hasty, 2009). Microbial traps
capture some properties of solid state cultures. In some cases
trap-like structures are essential for generating a critical cell
density and ensuring short diffusion distances (Chen et al.,
2015). Microfluidic traps can also be used to investigate the
spatiotemporal dynamics of consortia and how strain interaction
and signaling efficacy is affected by trap size (Alnahhas et al.,
2019). A further microfluidic device has been used to investigate
quorum sensing over different lengths. The effect of distance on
information transmission, the robustness of a distributed genetic
oscillator and mutualistic interaction between two strains was
investigated (Gupta et al., 2020).

Liquid cultures provide the closest analog to a shared
memory model of computing in which all processing units (the
cells) have direct access to the same data (the environmental
state). However, the common assumption that liquid cultures
are homogenous does not stand up to scrutiny (van ’t Riet
and van der Lans, 2011). Accounting for the latency in a
communication network and spatial distribution of species are

important characteristics to include. For example, changing flow
rates in a microfluidic device can turn synchronized population
oscillations into spatiotemporal traveling waves because dilution
occurs non-uniformly in space (Danino et al., 2010). This
suggests that, rather than using a model of shared memory that
is implicit in most models of bacterial liquid cultures may be
insufficient under some circumstances.

In solid state cultures, microbes will often assemble into a
biofilm. Biofilms are a mass of microorganisms which adhere
to a self-produced extracellular matrix (ECM) (Flemming et al.,
2016). The ECM density allows for the establishment of local
concentration gradients (Flemming et al., 2016) which in turn
allows the formation of local niches (Poltak and Cooper,
2011). Biofilm formation itself is a form of computation
through communication, invoking a pattern of gene expression
to drive a developmental process (Davies et al., 1998; Sauer
et al., 2002; Liu et al., 2017; Abisado et al., 2018), similar
to how morphogen gradients that define cell fate are a
well-characterized form of computation in mammalian cells
(Christian, 2012). Members of a biofilm often experience direct
cell-to-cell contact with one another, required for horizontal
gene transfer through conjugation (Flemming et al., 2016;
Madsen et al., 2018). Microbial ecology studies show that
the community metabolic output of a biofilm is positively
associated with ecological diversity (Boles et al., 2004; Poltak
and Cooper, 2011). Since biofilms are often naturally diverse
systems, they possess attractive characteristics for building
spatially distributed systems. Studies have demonstrated control
over biofilm formation in a variety of ways. Optogenetically
induced gene expression systems can be used to produce defined
patterns of biofilm formation (Huang et al., 2018). Quorum
sensing and antimicrobial peptides can be used to generate
tuneable bandpass patterns (Kong et al., 2017) or control the
dispersal and colonization of biofilms in multiple subpopulations
(Hong et al., 2012).

Explicit distribution of subpopulations in 3D structures may
prove to be an important tool for building distributed systems
in solid states. 3D-printing offers a manufacturing platform
for rapid prototyping from CAD designs to three-dimensional
structures (Savini and Savini, 2015). The more recent falling cost
of desktop 3D-printers have made this technology an attractive
option for bioengineering, replacing extruded plastics with
bioinks. These are made from biocompatible materials such
as hydrogels, gelatin or alginate and are designed to cross-link
immediately after or during bioprinting (Gungor-Ozkerim
et al., 2018). They are seeded with living cells which can be
printed directly into the desired 3D conformation (Connell
et al., 2013; Schaffner et al., 2017; Huang et al., 2018; Qian
et al., 2019). Structures can be designed to increase mass
transfer, leading to improvements in product yield (Qian
et al., 2019) and distinct populations can be layered on top
of one another (Lehner et al., 2017; Schmieden et al., 2018).
Bacteria can be used to functionalize these materials. For
example, hydrogels mixed with Pseudomonas putida conferred
the degradation of phenol (bioremediation functionality);
while improved mechanical robustness can be harnessed by
mixing hydrogels with cellulose producer Acetobacter xylinum,
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suitable for biocompatible medical applications (Schaffner
et al., 2017). Connell et al. (2013) demonstrated generation of
“core-shell” geometries, where an internal core population can
be protected from external environmental conditions by being
encompassed by a distinct shell population. Such cross-species
protection interactions can be observed in the oral microbiota
(Marsh, 2005).

Modeling Approaches
The field of microbial ecology frequently uses genome scale
metabolic models to infer the interactions between community
members and can serve as an important guide for building
large scale synthetic systems (Biggs et al., 2015). It has become
common practice to build metabolic models of individual
community members that can then be combined to make
quantitative predictions about the metabolic dependencies and
interactions. This approach has been applied to the prediction
of metabolic interactions between species in the gut microbiome
(Shoaie et al., 2015). Similarly, genome-scale metabolic models
have been used to aide in the design of large scale communities
by predicting metabolites that can be released by the producer
without detriment to fitness, and conditions that encourage
the establishment of stable communities (Pacheco et al., 2019).
Thommes et al. (2019) used genome scale metabolic models
of E. coli to compute feasible division of labor strategies
that could arise from an initial monoculture through loss
of function in genes, giving insight into possible avenues
for engineering community formation. Angulo et al. (2019)
demonstrated a mathematical method for identifying “driver
species” in an ecological network. External control of the
driver species allows the user to manipulate the state of
the entire network. Approaches such as these could be a
steppingstone between ecological communities and building
entirely synthetic networks.

Agent-based models are a class of computational model
that simulate a system of autonomous agents and their
interactions. Agent-based models are effective for modeling
systems with discrete elements and are useful for representing
heterogenous environments and spatial distribution of species
(Gorochowski, 2016). This approach has been used extensively
to model formation and interactions in biofilms (Kreft et al.,
1998; Lardon et al., 2011). Gro is a high-level framework
for defining and simulating bacterial colony growth (Jang
et al., 2012). Gro has more recently been extended to include
nutrient uptake and cell-cell signaling, enabling the simulation
of spatial patterning in 2D (Gutiérrez et al., 2017). Agent-
based modeling frameworks DiSCUS and BactoSIM have been
used to simulate conjugation processes in biofilms and how
this effects the population as a whole (García and Rodríguez-
Patón, 2015; Goñi-Moreno and Amos, 2015); an important
form of information propagation bacterial systems. BSim
2.0 is a flexible modeling framework that can be used to
simulate microbial community systems in microfluidic devices
(Matyjaszkiewicz et al., 2017). The software can simulate signal
expression, diffusion and response, and has been used to identify
optimal microfluidic chamber design for a particular community
behavior (Matyjaszkiewicz et al., 2017).

Implemented Synthetic Biological
Distributed Systems
Modular Logical Circuits
One of the key engineering principles that synthetic biology
strives to adhere to is modularity so that biological components
can be recombined and interchanged to build new systems rather
than needing to design full systems from scratch. A successful
example within the context of synthetic biological distributed
systems is the decomposition of a complex logical function into
multiple subunits, each engineered within a different population
of cells that communicate with each other (Figure 4A). This
mirrors a common approach in electronics where two universal
logic gates, for example NOR and NAND, are wired together
to produce any logical function. In this manner all 16 two
input logic gates have been created using bacterial colonies on
agar plates, containing genetically engineered NOR gates, and
communicating via diffusible molecules (Tamsir et al., 2011).
A similar approach consisted of a community of yeast cells
that carried out the functions AND, NIMPLIES, NOT, and
IDENTITY (Regot et al., 2011). These are chemically wired
together using diffusible communication molecules to produce
complex functions. The output was also distributed across
multiple cell types, helping to reduce wiring requirements and
enabling the construction of all the two input logic gates,
multiplexer and 1-bit adder with carry (Regot et al., 2011).
Mathematical work into the optimal design of computational
communities implementing distributed genetic logic gates given
realistic constraints on the number of logic gates possible per cell
and the number of orthogonal quorum molecules has been done
(Al-Radhawi et al., 2020). It was found that under the assumption
that any cell is limited to a maximum of seven logic gates the use
of a community composed of two cell types increased the number
of logic gates by 7.58-fold over the capabilities of a monoculture.
Another automated design framework for the construction of
user specified logical functions using DNA recombinase NOT
and IDENTITY gates distributed over multiple cell types enables
the design of a consortium of bacteria to perform the desired
digital function (Guiziou et al., 2018). This framework was
then used to build consortia capable of four input digital logic
(Guiziou et al., 2019). The standard mathematical proof that any
Boolean function can be decomposed into a double summation
of IDENTITY and NOT logics was used to build multicellular
circuits encoding the IDENTITY and NOT logic into cells and
then performing sums by mixing cell cultures together (Macia
et al., 2016). In this manner arbitrary logic functions can be
built. A different approach using antibiotic sensitivity has been
used to construct a three-bit full adder and full subtractor using
E. coli cells with a calculator like display (Millacura et al.,
2019). Combinatorial resistance was used to distinguish between
different combinations of three antibiotics, then a visual output
was distributed across cell types arranged in a spatial display.

Memory
A key component for computation is memory. Quorum sensing
has been combined with a genetic toggle switch, resulting
in a population level toggle switch (Kobayashi et al., 2004).
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FIGURE 4 | Example capabilities of computational communities. (A) A complex circuit can be split into modules, distributed across different populations of cells
(adapted from Regot et al., 2011). (B) Computational methods can be used to find networks capable of stripe formation, these can be programmed into cells using
genetic circuits, the expressed phenotype of each cell depends on its position relative to a source of signaling molecule (adapted from Schaerli et al., 2014).
(C) Reconfigurability could be a key capability of biological computing. Here the composition of a bacterial community can be controlled through inducers I1 and I2.
This capability could be used to task switch in a computational bacterial community (adapted from Kerner et al., 2012). (D) Bacterial communities are naturally
applicable to complex functions such as ensemble classification (adapted from Kanakov et al., 2015).

A synthetic community composed of E. coli strains has been
used to record the order, duration and timing of chemical events
(Hsiao et al., 2016). Here the stochasticity of the intercellular
processes was harnessed to do the encoding of memories at
the population level. This facilitated functionality not possible
at the level of individual cells, including recording the order
and time difference between two events and the start time and
pulse width of an inducer signal. A bistable switch was built
across two distinct cell types, controllable by two different yeast
pheromones, that switched the community between two states
(Urrios et al., 2016). The simulation of a design for a flip
flop memory device distributed over four populations of cells

show that its function is robust to changes in parameters and
that circuit behavior can be tuned by changing experimental
conditions (Sardanyés et al., 2015). This design leveraged the
modularity possible with a microbial community, the flip flop
logical circuit was broken down into four modules that were
distributed across the four cell types and the modules were wired
together using diffusible molecules. Another computational
investigation showed how a co-culture of two bacterial strains
could be used to do associative learning, with both short-
and long-term memory (Macia et al., 2017). The microbial
community responds to an input (A) but not a second input (B)
unless both A and B have been simultaneously present in the
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past. This results in a computational system that can respond
differently depending on its history. Here the modularity of a
co-culture was exploited again to prevent cross talk and simplify
the genetic constructs required by distributing different logical
components into different populations.

Edge Detection
A genetic light sensor and communication with diffusible signals
was used to create a lawn of E. coli capable of edge detection
(Tabor et al., 2009), an important algorithm in image recognition
and artificial intelligence. An image is applied to the lawn by
placing an image mask in front of a light source. Cells produce
a quorum sensing molecule when not exposed to light and
fluoresce when exposed to both light and the quorum signal; a
combination which is only present at a light-dark interface.

Reconfigurable “Hardware”
Unlike electronic computers, biological systems are able to
change their “hardware” depending on the task at hand by,
for example dynamically controlling the constituents of a
community (Figure 4C). Two independent auxotrophic E. coli
populations have been designed so that their growth is tuneable
by inducing production of amino acids (Kerner et al., 2012).
Using a community of microbes that inhabit slightly different
temperature niches, a temperature cycling scheme is able to
dynamically tune the community (Lin et al., 2020). Methods
of intrinsic community composition control can be built into
cells genetically. This has been done using self-inhibition
using quorum molecule signaling (Dinh et al., 2020). One
strain produces an N-Acyl homoserine lactone (AHL) quorum
molecule which leads to a reduction in its own growth rate when
at a high concentration. This was used to control co-culture
composition as the two strains of cells grew together and resulted
in a 60% increase in productivity. Simulation results also show
that a population of cells containing a reconfigurable logic gate
that can be switched between NOR and NAND behavior (Goñi-
Moreno and Amos, 2012). Furthermore, a rock-paper-scissors
system of three populations of E. coli that cyclically inhibit
one another, combined with population dependant synchronized
lysis, shows the capability to cycle the community composition
through the three strains (Liao et al., 2019). This was built with
the intention of plasmid stability, but by using three functionally
different strains a community could be built that can be cycled
between different functions as required.

Classification
Classifiers aim to identify which category an observation belongs
to. Biological classifiers have been built to identify cancer cells
using miRNA (Xie et al., 2011; Mohammadi et al., 2017). A key
concept in machine learning is the use of ensemble methods.
These combine the output of many individual weak classifiers,
which perform at least slightly better than random choice,
and produce an overall output with much greater accuracy.
This methodology can naturally be applied to a community
of cells, where each cell contains a genetically encoded weak
classifier and the overall community output is computed by
combining the individual outputs of all cells (Figure 4D). This

approach has been investigated in silico. For each data point in
a training data set a heterogenous population of cells containing
weak classifiers vote on the answer (Kanakov et al., 2015). The
community learns as cells are stochastically pruned from the
population; cells that voted incorrectly are removed with a higher
probability. A multi-input classifier composed of a community
of cells containing either a linear or a bell-shaped classifier was
simulated and found to be able to represent practically arbitrary
shapes in the input space (Kanakov et al., 2015). Other numerical
results on a similar population of cells showed that complex
classification problems could be tackled (Didovyk et al., 2015).
In both papers, soft training, in which cells are removed with a
certain probability according to their decision, outperforms hard
training, in which incorrect cells are always removed and correct
cells are always retained.

Noise Reduction
Noise in biological systems can arise due to a number of intra-
cellular and environmental reasons. Although noise seems to be
important to the functioning of many biological systems (Rao
et al., 2002), engineered systems are required to be predictable
and therefore resilient to noise. Mechanisms have been developed
to reduce gene expression noise within cells. Buffer systems
have been built using miRNA to degrade mRNA transcripts
in a controlled manner, reducing gene expression variability
at the cost of a reduced maximal expression (Strovas et al.,
2014). A genetic integral feedback controller with the potential
to maintain cellular system variables at desired levels despite
noisy dynamics was shown to be able to control growth rate
(Aoki et al., 2019). Mundt et al. (2018) dampened noise in gene
expression by tuning transcription rates and the degradation
rate of mRNA. Instead of implementing a complex intracellular
mechanism to reduce noise, computational communities have
the potential to repeat a computation over multitudes of cells
and integrate the results by reaching a global consensus, vastly
improving the robustness of the computation to noise inside any
single cell. This is particularly important in analog computing
as the continuous states of an analog computer are susceptible
to small perturbations (Sarpeshkar, 2014). The global consensus
problem is a fundamental problem in distributed computing
(Wang et al., 2014), where multiple independent agents converge
to a global consensus that is robust to failure or noise of individual
agents. Modeling work on a community of agents, resembling
a microbial community, that are capable of movement and
local communication shows that the community is capable
of solving the global consensus problem (Vining et al., 2019)
and is an indication that this could be implemented in a
bacterial community.

Patterning
Both multicellular organisms and communities of unicellular
organisms have the ability to cooperate to produce spatial
structures that allow them to better perform complex functions.
The prime example of this phenomena is development in
multicellular organism, in which cells containing identical DNA
differentiate and organize themselves spatially to assemble a
complex organism. Harnessing this capability could mean the
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realization of biological computers that can self-assemble and
reproduce in a manner that is not currently possible with silicon
systems. The first step in this direction was taken by engineering
E. coli “receiver cells” which respond to a quorum molecule
with a band detect activation (Basu et al., 2005). Sources of
the quorum molecule could then be used to produce different
patterns of fluorescence in a lawn of E. coli. This approach
was complemented by the development of quorum molecule
producing “sender” cells (Basu et al., 2004). Work has also been
undertaken using senders and receivers to produce 3D patterning
of mammalian cells (Carvalho et al., 2014). It is possible that
sender and receiver cells could be combined to produce dynamic
pattern formation in response to environmental changes. The
value of using computational modeling to investigate pattern
formation and design spatially structured synthetic communities
has been shown (Figure 4B; Schaerli et al., 2014). Here the space
of two and three-node, stripe forming networks was investigated
computationally, and used to inform wet laboratory experiments.
Further computational investigation using the modeling platform
GRO (Jang et al., 2012; Gutiérrez et al., 2017) acts as a proof
of concept for the design of bacterial colonies capable of self-
assembling into spatial structures including L and T shapes
(Pascalie et al., 2016). It has also been shown that synthetic
communities engineered to grow with a ring shaped pattern
show scale invariance, similar to natural systems (Cao et al.,
2016). An artificial symmetry breaking mechanism was combined
with domain specific cellular regulation resulting in artificial
patterning and cell differentiation reminiscent of a simple
developmental process (Nuñez et al., 2017). Interactions between
motile and non-motile bacteria when grown together in a biofilm
have been shown to trigger the emergence of complex patterns
over time (Xiong et al., 2020).

CHALLENGES (AND POTENTIAL
SOLUTIONS) IN DESIGNING AND
IMPLEMENTING DISTRIBUTED
SYNTHETIC BIOLOGICAL SYSTEMS

Although several steps have been taken down the path toward
distributed synthetic biological systems, some hurdles stand in
the way of the paradigm becoming ubiquitous in the field.

Building Stable Communities
In distributed computing the execution of tasks is dependent
upon limited resources such as available memory or processors.
Tasks are allocated resources by central schedulers upon request,
aiming to distribute resources in a “fair” and “efficient” manner
while accounting for task priority (Figure 5A; Haupt, 1989).
Similarly, distributed biological systems in liquid cultures are
constrained by limited resources including carbon sources and
essential amino acids (Jacob and Monod, 1961). Microbes tend
to maximize growth, consuming the resources in a system
without request. Biological systems lack a central scheduler
to allocate resources fairly between subpopulations, multiple
subpopulations sharing an environment therefore compete for
limited resources, a single subpopulation with the highest
fitness will drive the others to extinction, this is a principle
known as competitive exclusion (Butler and Wolkowicz, 1985).
Evidence from natural microbial systems and ecological studies
shows us stability can arise through interactions between
subpopulations. These interactions alter the resource demand
of a subpopulation by changing its population density or
metabolic activity (Figure 5B). Both cooperative and competitive
interactions are important for stabilizing communities (Czárán

FIGURE 5 | (A) Schematic of resource allocation in distributed computational systems. Tasks communicate with a central scheduler which in turn allocates
resources to tasks. (B) Resource allocation in distributed biological systems is decentralized. Subpopulations communicate and interact with one another to
modulate the demand for resources, which can optimally allocate resources and prevent competitive exclusion.
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FIGURE 6 | Illustration of ecological interactions that can be used to dynamically manipulate resource allocation within co-cultures. Table summarizes the ecological
interactions engineered in discussed studies where the colored dots refer to the methods used to implement the interaction.

et al., 2002; Hibbing et al., 2010; Freilich et al., 2011; Foster
and Bell, 2012; Zelezniak et al., 2015; May et al., 2019).
Using these principles, groups have attempted to engineer
interactions as a means to ensure coexistence within synthetic
microbial communities. Engineered pair-wise interactions are
analogous with ecological interactions, Figure 6 summarizes
studies discussed in this section, highlighting the ecological
analogs that have been demonstrated synthetically, and the tools
used to implement them.

Predator-prey interactions are pervasive in nature and are
well-known for producing coexistence over prolonged periods.
A predator has detrimental effects on the prey, while the
predator is dependent upon the prey for survival. Predator-
prey interactions are prevalent in natural environments and are
predicted to produce limit cycle behavior indefinitely (Volterra,
1926). Planktonic predator-prey communities have been used
to demonstrate long term persistence under experimental
conditions and show robustness to stochastic events (Blasius
et al., 2020). In synthetic biology, predator-prey interactions can
be engineered between subpopulations to enable the persistence
of a community that would otherwise undergo competitive
exclusion. Balagaddé et al. (2008) demonstrated the use of
quorum sensing (QS) coupled with toxin/antitoxin systems to
implement predator-prey-like interactions. Liu et al. (2019) used

modulation of a shared environment to create predator-prey
dynamics. Media containing the antibiotic chloramphenicol
(CM) kills the predator strain which is dependent upon the prey
strain to degrade CM. In turn, the predator strain expresses
IcnA, killing the prey. By providing CM exogenously, the authors
created a tuneable environmental parameter that is directly
involved in the social interaction.

The expression and secretion of antimicrobial peptides
(AMPs) can be used to engineer amensal effects on sensitive
subpopulations within a community. The signaling and AMP
properties of nisin have been used with a second AMP to
produce a modular system for building predatory, cooperative
and competitive interactions in Lactococcus lactis (Kong et al.,
2018). AMP microcin-V has been used with QS regulation
to stabilize a two species community by engineering a single
strain to have an amensal effect on another faster growing
strain (Fedorec et al., 2019). Co-existence can also be achieved
without engineering interactions between subpopulations. Using
two strains with orthogonal QS controlled expression of lysis
proteins, Scott et al. (2017) ensured that neither strain could
grow beyond a threshold, thereby preventing competitive
exclusion occurring through self-limitation. This effectively
behaves as a block on the maximal resource occupation by any
single subpopulation.
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Controlling the flux of metabolites essential for growth
through different pathways has been demonstrated in a
monoculture using QS. The expression of a burdensome
heterologous circuit was regulated, switching between “growth
mode” and “production mode” in response to population
density (Gupta et al., 2017). It has also been demonstrated
that control over the growth rates of one strain, through
modulating expression of the ptsH sugar transport gene, can be
used to control the composition of co-cultures (Stephens et al.,
2019). A similar approach was used to distribute a naringenin
production pathway between two strains (Dinh et al., 2020).
By using QS to self-regulate the growth of a high growth rate
subpopulation combined with a low growth rate population
the authors were able to generate a stable co-culture and
significantly improve production yields. These examples prevent
overutilization of a resource by a single strain by modulating
growth directly.

Metabolic interdependencies are pervasive in microbial
communities and are an important interaction that can be
used to produce stable co-existence (Zelezniak et al., 2015).
Interdependencies decouple the growth of a subpopulation from
the limited environmental resource. Instead resources must
be made available by another subpopulation in the system.
Previously discussed modeling frameworks can be used to
inform cross-feeding strategies and identify conditions that
encourage establishment of cooperative communities (Pacheco
et al., 2019). A sustainable multi-species system was generated
by engineering amino acid auxotrophies and overproduction
in E. coli, Salmonella typhimurium, Bacteroides fragilis, and
Bacteroides thetaiotaomicron (Ziesack et al., 2019), forcing
dependencies between community members. Synthetic metabolic
interdependent co-cultures have been shown to undergo
significant adaptation over long term co-cultures resulting in
improved growth rates (Zhang and Reed, 2014). An E. coli
– S. cerevisiae stabilized co-culture has been demonstrated on
xylose based feed stock (Zhou et al., 2015). E. coli metabolizes
xylose producing acetate, which is in turn used by S. cerevisiae.
Since acetate is an inhibitor of E. coli growth, it is dependent on
S. cerevisiae to remove it from the environment.

These ecological interactions manipulate the resource
consumption of each subpopulations by regulating population
densities and metabolic activity, providing opportunities for
autonomously regulated systems. This contrasts with the
centralized resource allocation commonly seen in computing.
A hybrid of these approaches has been achieved through external
regulation of the environment to maintain coexistence of
competing. Reinforcement learning was used to train an agent
that controls the supply of essential nutrients to two competing
auxotrophs in a chemostat, in principle demonstrating the
use of a centralized controller to regulate a biological system
(Treloar et al., 2020).

Orthogonal and Directed Communication
Quorum sensing (QS) systems are a key set of tools that
enable us to engineer communications between and within
subpopulations of a community. QS systems consist of one or
more proteins that produce small, freely diffusible molecules.

These quorum molecules bind to regulatory proteins that can
activate or repress gene expression at specific promoters (Miller
and Bassler, 2001). QS can be used to regulate the expression
of genes in a population, but because cells broadcast to all
other cells in their vicinity, each communication channel must
utilize a different quorum molecule. However, in practice there
are a limited number of QS systems available and even distinct
QS systems may not be totally orthogonal (Grant et al., 2016).
Kylilis et al. (2018) performed a comprehensive characterization
of the crosstalk between several QS systems in conjunction with
computational tools to identify conditions in which channels
can be used simultaneously. Moreover, these tools can be used
to account for and incorporate crosstalk into system design.
Studies have also reduced crosstalk through rational sequence
mutation (Grant et al., 2016; Scott and Hasty, 2016). Quorum
quenching refers to the enzymatic degradation of quorum
molecules allowing controllable degradation of QS molecules in a
system. The AiiA quorum quenching enzyme and LuxI quorum
molecule synthase have been used to produce oscillations in
a bacterial population (Danino et al., 2010) and to introduce
a negative feedback layer in a two strain oscillating system
(Chen et al., 2015).

While QS is the dominant choice for engineering
communication in synthetic biology, alternative channels
are being developed. The γγ-butyrolactone system (derived
from Streptomyces coelicolor) has been demonstrated E. coli to
implement orthogonal signaling that can be used alongside QS
(Biarnes-Carrera et al., 2018). Other signaling channels exist
between different species of bacteria (Hughes and Sperandio,
2008), however, the synthetic biology field has yet to embrace
these channels to the same degree as QS for controlling. Signal
response mechanisms have also been observed between the host
and bacteria of the human gut through polyamine compounds,
highlighting the clear potential for host-community interfacing
(Lopes and Sourjik, 2018).

A potential limitation of quorum sensing based approaches
is that communication is non-specific and global. Cells
communicate through broadcast signaling which, in contrast
to the targeted information transfer afforded by electrical
wires, means that each communication molecule in a bacterial
community must be different in order to address different
subpopulations. This acts as a constraint on the possible
complexity of a distributed computation for a given number
of quorum sensing molecules. In electrical engineering, circuits
are only marginally constrained by the number of wires
and are often optimized to minimize the number of logic
gates. An analogous approach has been carried out by using
an evolutionary algorithm to optimize a distributed bacterial
community to reduce the number of wires (Macia and Sole,
2014). In optimized electronic circuits NOR and NAND
gates are widely used. Interestingly, when optimizing for the
communication constraints within a microbial community using
quorum sensing, a high number of non-standard logic gates
(NIMPLIES, NOT, and AND) are selected, highlighting the
differences between electrical and biological computing. The
optimal design of computational communities will require new
tools, such as an algorithm to distribute genetic NOR gates
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among cell populations communicating via diffusible molecules
(Al-Radhawi et al., 2020).

Other communication channels could be exploited to
overcome the wiring problem. For example, the transfer of
DNA between bacterial cells. The packaging and transfer of
DNA messages using bacteriophage has been demonstrated
in E. coli (Ortiz and Endy, 2012). Although this is still a
broadcast approach, as in wireless networking, the amount of
information that one can encode may allow selective reading of
the message, for example using non-native RNA polymerases or
state dependent expression. Alternatively, direct message passing
has been achieved by bacterial conjugation (Goñi-Moreno et al.,
2013). The sharing of conjugative plasmids has been used to
design, in silico, a community of distributed NOR gates wired
together for a population level XOR gate (Goñi-Moreno et al.,
2013). Finally, electrical signaling is another potential method
of communication that could allow specific message passing
at a much higher speed than conjugation. Natural bacterial
communities can communicate using ion channel based electrical
waves similar to neurons (Prindle et al., 2015; Martinez-Corral
et al., 2019) and networks of fibrous cables are used as electrical
communication channels (Meysman et al., 2019). It will be
exciting to see how synthetic biology can harness these behaviors
over the coming years.

CONCLUSION

Distributed systems are ubiquitous in modern computing, from
the Internet to scientific high-performance computing. Thinking
about biological systems through this lens will offer unique
opportunities in the development of biological computing.
A great deal of effort has been put into developing de
novo biological systems that compute and some magnificent
advances have been made. However, we are, and will remain,
fundamentally limited in the systems we can build if we stick
to the prevailing paradigm of engineering a single strain to
do everything. The prevalence of genetically and phenotypically
diverse distributed systems in nature is clear, and in this review
we have highlighted some examples that we believe to be
particularly relevant in the pursuit of engineering biological
computation. While the prospective rewards of distributed
systems cannot be overlooked, challenges in the establishment
of robust and controllable distributed systems are significant but
not insurmountable.

The majority of engineered biological communities
demonstrated to date have focused on the establishment of
co-existing populations. Building these methodologies and
experimental frameworks will allow us to take the next step
in focusing on exploiting communities as distributed systems.

The demonstration of the advantages held by distributed
systems in functionality and productivity over a monoculture
will be paramount for advancing the field. The fundamental
differences between microbial communities and computer
networks (competition, communication and naturally analog
processes) highlight opportunities for the development and
advancement of the theory. These differences also present
some of the greatest opportunities for functionality that is
hard to achieve in digital hardware, including adaptability, self-
assembly and analog information processing (Grozinger et al.,
2019). Many of the competitive advantages communities have
in nature are due to the ability to adapt to noisy, diverse and
changing environments.

Although success has been found in overcoming these
limitations and implementing familiar digital computations,
focus should also be on exploiting these capabilities to build
useful biological computers. Evidence indicates that the optimal
organization of a bacterial computer differs from that of a
digital computer (Macia and Sole, 2014). This means that new
methodologies will have to be developed, extending our current
capabilities of automatic circuit design in single cells (Nielsen
et al., 2016) to computational communities. To realize the
advantages of biological computing we will have to move away
from replicating feats of electrical engineering. We envisage
the biological computers will find their application niche
in interfacing with biological systems. Immediately attractive
applications lie in disease diagnosis through biosensing and
reactive treatment through in situ production of biological
material (Slomovic et al., 2015; Courbet et al., 2016). An
open challenge to the field lies in converting the immense
progress demonstrated in laboratory environments into real-
world applications, validating with demonstrable improvements.
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Cell-free gene expression systems present an alternative approach to synthetic biology,

where biological gene expression is harnessed inside non-living, in vitro biochemical

reactions. Taking advantage of a plethora of recent experimental innovations, they

easily overcome certain challenges for computer-aided biological design. For instance,

their open nature renders all their components directly accessible, greatly facilitating

model construction and validation. At the same time, these systems present their own

unique difficulties, such as limited reaction lifetimes and lack of homeostasis. In this

Perspective, I propose that cell-free systems are an ideal proving ground to test rational

biodesign strategies, as demonstrated by a small but growing number of examples of

model-guided, forward engineered cell-free biosystems. It is likely that advances gained

from this approach will contribute to our efforts to more reliably and systematically

engineer both cell-free as well as living cellular systems for useful applications.

Keywords: cell-free synthetic biology, cell-free protein synthesis, in vitro transcription translation, model-guided

design, rational design

1. INTRODUCTION

A basic aim of synthetic biology is to design and construct biological systems which perform a
given function. An extension of this, inspired by common engineering practice, is to additionally
demand that the systems perform robustly, predictably, and with quantitative precision. Some
practitioners of synthetic biology explicitly adopt the conventional engineering approach of rational
design, where a system is constructed predictively (Endy, 2005; Heinemann and Panke, 2006). In
contrast to non-biological engineering, synthetic biological systems are also open to the possibility
of evolutionary design (Arnold, 1998), where function is obtained through directed evolutionary
screens. It is still an open question as to whether or not a purely rational engineering approach can
ultimately be successfully applied to engineer complex biomolecular systems (Davies, 2019).

A fully rational approach adopts all conventional engineering principles, such as standardization
and quantitative characterization of parts, mathematical models to describe their behavior, and
abstraction which allows hierarchical assembly of parts into modules, subsystems, and systems
(Endy, 2005; Arkin, 2008; Canton et al., 2008). For any system of non-trivial complexity, this
approach relies on computational methods to enable predictive design (MacDonald et al., 2011).

To a large extent, strict adherence to this approach has not yet been widely successful in synthetic
biology, with a few notable exceptions (e.g., Nielsen et al., 2016). Typically, biodesign involves
multiple iterations through a so-called “design-build-test-learn” (DBTL) cycle. While eventually a
functioning system is produced, the path to get there is not directly through predictive design, but
rather informed trial-and-error. The current necessity of DBTL cycles is due to partly to the fact that
the complexity associated with biomolecular systems eludes simplifying black-box approximations
common in other physical scenarios. Additionally, interrogating biosystems with controlled inputs
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and perturbations is difficult, and system parameters can be
context-dependent and varying. However, with the emergence
of high-throughput automation and biofoundries (Hillson et al.,
2019), the promise is that DBTL efforts will ultimately enable fully
predictive, rational biodesign.

Cell-free systems (Garenne and Noireaux, 2019) can
contribute in several ways to improve the design process
of synthetic biological systems, which span scales from the
molecular (genetic regulatory elements, proteins, enzymes),
to the systemic (gene regulatory and metabolic networks),
and all the way to the extracellular levels (synthetic cells,
communication, self-assembly). First, they can accelerate
DBTL cycles through rapid prototyping (Chappell et al., 2013;
Niederholtmeyer et al., 2015; Takahashi et al., 2015). Second, they
can be used efficiently for in vitro directed evolution (Contreras-
Llano and Tan, 2018). In this Perspective I would like to focus
on a third contribution, and suggest that they offer an ideal
proving ground to test the approach of rational computer-aided
biodesign as applied to biomolecular systems (Figure 1). In
particular, they present features which overcome some of the
difficulties associated with engineering living cells, and so can be
used to more easily develop and calibrate mechanistic models, as
well as generate sufficient data for machine learning approaches.

To understand their strengths and weaknesses in the context
of synthetic biology, it is first important to consider the
differences between cell-free and living cellular systems.

2. BIOPHYSICAL DIFFERENCES BETWEEN
CELL-FREE AND CELLULAR SYSTEMS

Today, cell-free technology generally refers to cell-free protein
synthesis (CFPS), which rests on the foundational processes
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FIGURE 1 | Rational computer-aided biodesign with cell-free systems: cell-free gene expression systems perform in vitro transcription, translation, and metabolism in

reactions which are open and transparent to measurement and perturbation. Data sets generated are kinetically resolved and high-throughput, facilitating

development of both mechanistic as well as machine learning models.

of in vitro transcription and translation (Silverman et al.,
2019a; Laohakunakorn et al., 2020). Strictly speaking, CFPS
belongs to the much broader field of in vitro reconstitution,
which consists of recapitulating biological processes outside
of the living cell. This involves combining relevant enzymes
(either purified or extracted in crude cellular lysate) with a
reaction mixture containing substrates, cofactors, and specific
ionic and pH conditions. Constructing such a reaction isolates
specific biological processes, and has historically served as a
key approach to elucidate molecular biological mechanisms,

including deciphering the genetic code itself (Nirenberg and
Matthaei, 1961; Zubay, 1973). While this article will focus
predominantly on bacterial cell-free systems due to their current
widespread use, cell-free systems have also been successfully
prepared from a number of prokaryotic and eukaryotic
organisms (Perez et al., 2016).

In addition to developing fundamental understanding, this
approach also enables technological applications: examples of
these are the use of CFPS to carry out in vitro biomanufacturing,

where the production of exogenous protein is advantageously

decoupled from cellular growth (Karim and Jewett, 2018;
Gregorio et al., 2019); and biosensing, where robust, lyophilized

cell-free gene circuits can be activated and used to detect

environmental contaminants and pathogens directly in the
field (Pardee et al., 2014).

One predominant viewpoint of cell-free systems is that they
are cellular mimics. The crude cellular lysate is a representation
of the cellular cytosol, and contains, in addition to transcription
and translation, a number of intact and functional core metabolic
pathways (Kim and Swartz, 2001; Kim and Kim, 2009). Thus,
cell-free systems have been successfully used as a prototyping
platform for synthetic biology, a so-called “cellular breadboard”

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 2 July 2020 | Volume 8 | Article 78839

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Laohakunakorn Cell-Free Systems for Rational Biodesign

where synthetic gene circuit designs can be quickly implemented,
validated, and ported back into a living cell (Siegal-Gaskins
et al., 2014; Garamella et al., 2016). The success of this approach
relies on a basic similarity between the cell-free and cellular
environments, an assumption that has been verified in a number
of notable examples (Chappell et al., 2013; Niederholtmeyer et al.,
2015; Borkowski et al., 2018; Halleran and Murray, 2018; Hu
et al., 2018).

On the other hand, cell-free systems do contain fundamental
differences from cells. In addition to being non-living, there
are a number of key biophysical differences. Below I highlight
these, and consider their consequences in the context of the
implementation of a generic synthetic gene regulatory network
(GRN). In some cases, strategies for making the system more
“lifelike” by bottom-up construction are briefly discussed.

1. Accessible system: Without a barrier between the reaction
and the environment, the cell-free reaction is transparent
to observation and perturbation, allowing the reaction
conditions to be adjusted at will. This property can be
leveraged, for example, to change redox environments to
promote disulphide bond formation (Matsuda et al., 2013).
The kinetic progress of reactions can be followed using
fluorescence from proteins and mRNA, as well as real-
time metabolomic profiling, which has allowed the internal
metabolism of cell-free systems to be dissected at high
resolution (Bujara et al., 2011; Vilkhovoy et al., 2019). For
GRN design, parameters, such as dissociation and kinetic
constants between a transcription factor and promoter may be
measured in situ (Geertz et al., 2012; Swank et al., 2019), and
perturbations applied to the reaction composition to facilitate
parameter identification and model selection (Hu et al., 2015;
Moore et al., 2018). These key properties of controllable
inputs, perturbations, and consistency between conditions
where parameter measurement and system operation take
place directly address challenges faced in engineering living
cells. Crucially, this enables a close coupling of cell-free

experiments and computational models.
2. Dilute, well-mixed reaction environment: The lack of

compartmentalization is also related to a number of other
physical effects, including a loss of stochasticity, slower

enzymatic rates, a reduced level of macromolecular crowding,

a loss of spatial organization, and a loss of membrane-
associated processes [although lysates can contain inverted
membrane vesicles which permit oxidative phosphorylation
(Jewett et al., 2008)]. A useful consequence of such a
simplified reaction environment is that the system can be
described with deterministic kinetics; a practical side-effect
is that exogenous protein aggregation is minimized, which
facilitates bioproduction. In order to recreate more lifelike
reaction environments, there is much ongoing effort to
encapsulate cell-free reactions in a variety of compartments
including liposomes, polymersomes, and droplets, as well as
introducing crowding and organization into cell-free systems
(Laohakunakorn et al., 2020).

3. Relaxation to equilibrium: Living cells are maintained in
a homeostatic, non-equilibrium steady state by a constant

flux of energy and metabolites through the system, while
cell-free reactions relax to biochemical equilibrium as the
reaction proceeds. This sets a limit on the lifetime of the cell-
free reaction. The lifetime may be extended by engineering a
more homeostatic metabolic system [for instance, rationally-
designed in vitrometabolic systems can operate autonomously
for days (Korman et al., 2017)], but ultimately to maintain
cell-free systems in a steady state, an energy and metabolite
flux must be set up between the system and environment.
This can be achieved using continuous flow or continuous
exchange reactors (Spirin et al., 1988; Niederholtmeyer et al.,
2013; Karzbrun et al., 2014), or by compartmentalizing and
coupling the reaction to transport processes (Noireaux and
Libchaber, 2004). A consequence of limited lifetime is that
after a few hours, any synthetic cell-free gene circuit ceases to
be functional. Thus, recent efforts have focused on extending
reaction lifetimes (Caschera and Noireaux, 2015) as well as
accelerating the computational and output steps in the circuit
(Alam et al., 2019).

4. No regulation: While living cells are actively regulated
at multiple levels of organization, from molecular-
to network-scale, cell-free systems contain no active
regulatory mechanisms. This simplifies the identification
and measurement of host-chassis interactions, allowing
resource allocation within the cell-free system to be elucidated
in detail (Siegal-Gaskins et al., 2014; Gyorgy and Murray,
2016; Borkowski et al., 2018; Halter et al., 2018). On the
other hand, cell-free systems lose the robustness conferred
by homeostasis (Lewis et al., 2014). They are thus sensitive
to effects which would otherwise be regulated, for example
partial degradation products (Kim and Winfree, 2011),
stochasticity in gene expression (Karig et al., 2013), and
variable partitioning of reactants during system encapsulation
(Altamura et al., 2018). This property may thus be an
impediment to predictive design.

5. No self-regeneration: Self-regeneration is a defining hallmark
of life (Luisi et al., 2006), and cell-free systems do not
regenerate their components, implying that the lifetime of cell-
free reactions is also limited by enzyme stability (Stögbauer
et al., 2012), in addition to resource depletion and metabolic
arrest. The possibility of programming regeneration directly
in the cell-free system leads to the tantalizing prospect of a
cell-free system capable of maintaining its components, which
could form the basis of an engine to power artificial cells
(Schwille et al., 2018).

6. No replication: In addition to not regenerating their
components, cell-free systems also do not replicate their
genetic material. This has been considered an opportunity for
bottom-up reconstruction, from early demonstrations of in
vitro replication of plasmids and viral DNA in prokaryotic
and eukaryotic lysates (Diaz and Staudenbauer, 1982; Li and
Kelly, 1984; Stillman and Gluzman, 1985) to more recent
studies involving phi29 DNA polymerase (Sakatani et al.,
2015; van Nies et al., 2018), which have culminated in the
replication of up to 116 kb of DNA in the PURE system
(Libicher et al., 2020). Lack of replication implies genetic
stability of introduced DNA, unlike living cells which can
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mutate away exogenous gene circuit function. Steady-state
in vitro replication of nucleic acids would form a necessary
subsystem of self-replicating artificial cells as well as enable in
vitro evolutionary studies (Meyer et al., 2012).

These properties have influenced the approaches used in cell-
free engineering. In particular, the accessibility of the reaction
environment has made cell-free systems particularly suited for
rational biodesign strategies, as will be discussed next.

3. RATIONAL BIODESIGN STRATEGIES
FOR CELL-FREE SYNTHETIC BIOLOGY

3.1. Model-Guided Design
The most ambitious approach to rational biodesign uses a
quantitative and predictive model to guide the design process,
adopting workflows fromwell-established fields, such as electrical
and aerospace engineering. For synthetic biology, the largest
obstacles to this involve unknown, uncharacterized, or changing
interactions among biomolecular components, and the difficulty
of accessing and perturbing system components. In general, we
can envisage two broad approaches which aim to mitigate this
knowledge gap in cell-free systems: a “bottom-up” approach,
where purified, reconstituted systems are constructed one
component at a time, allowing interactions to be taken into
account as they arise; and a “top-down” approach, where crude
cellular lysates are interrogated and potentially modified to
remove unwanted interactions, exposing the minimal system
beneath. These approaches mirror the bottom-up and top-down
approaches to the construction of artificial cells, with the final
result being a minimal system that is maximally understood.

Recently, efforts have been made to combine the development
of reconstituted cell-free systems with mathematical modeling
(Mavelli et al., 2015; Matsuura et al., 2017, 2018; Carrara
et al., 2018; Doerr et al., 2019). Reconstituted systems
are composed of purified cellular enzymes and an energy
solution, mixed together in a known composition, and are
available commercially [e.g., commonly-used variants based
on the PURE system (Shimizu et al., 2001)]. Compared to
lysates, reconstituted systems are dramatically simplified. In
principle, since the exact system composition is known, a
model incorporating all predicted interactions can be written
down. In practice, it is infeasible to calibrate such fine-grained
models to experimental measurements, although properties,
such as robustness of the system can be investigated in
silico (Matsuura et al., 2017). Current coarse-grained models
are generally not sufficient to globally capture all observed
experimental effects (Doerr et al., 2019). The overarching
aim is therefore to search for computational models of
appropriate granularity which can describe all experimental
observations, and yet remain feasible for calibration. The success
of this is likely to be borne out through approaches which
combine automation and high-throughput measurements with
improved cost-efficient methods for preparing recombinant
systems (Lavickova and Maerkl, 2019).

The top-down, systems-level approach aims to develop
mechanistic understanding by interrogating lysates, which

contain significantly more unknowns. The ‘black-box’ of lysates
has slowly been opened over the last two decades, motivated
by a desire to improve productivity and lifetime of the
system (Silverman et al., 2019b). Using a combination of
strain engineering and data from biochemical and metabolic
analyses, it is now possible to rationally redirect metabolic flux
and energy usage. Energy regeneration schemes of increasing
complexity have been developed in order to improve lysate
reaction lifetime and yield, proceeding initially from single-step
(Zubay, 1973; Kigawa et al., 1999) to multi-step pathways which
regenerate ATP using enzymes present within the extract (Kim
and Swartz, 1999, 2001; Jewett and Swartz, 2004; Sitaraman
et al., 2004; Calhoun and Swartz, 2005; Jewett et al., 2008;
Caschera and Noireaux, 2015). While the complexity of lysates
is considerable, in contrast to cellular systems biology, cell-free
systems are amenable to essentially unconstrained perturbation,
which greatly facilitates model testing and validation. This
has been demonstrated by a number of modeling studies of
increasing sophistication (Karzbrun et al., 2011; Stögbauer et al.,
2012; Tuza et al., 2015; Gyorgy and Murray, 2016; Nieß et al.,
2017; Marshall and Noireaux, 2019), as well as notable examples
of model-guided forward engineering of genetic circuits (Hu
et al., 2015, 2018; Agrawal et al., 2019; Lehr et al., 2019;
Westbrook et al., 2019). Recent development of integrated gene
expression and metabolic models have elucidated the factors
limiting CFPS (Wayman et al., 2015; Vilkhovoy et al., 2018, 2019;
Horvath et al., 2020), suggesting that combined computational
and experimental metabolomic studies are poised to contribute
significantly to our understanding of CFPS in lysates.

3.2. Control Theoretic Approaches for
Robust Operation
Even if all interactions could be measured, many are unlikely
to remain constant with time. Additionally, cell-free reactions
operate dynamically, in an equally dynamic, fluctuating
environment. It is clear, then, that knowledge of interactions is
not generally sufficient to ensure robust performance.

Control engineering attempts to maintain the performance of
a dynamic system within certain specified bounds, while parts of
the system are subject to uncontrolled disturbances. A specific
example of this is reference tracking using feedback control,
where an output, such as the gene expression level follows a
reference signal despite the presence of perturbations. Achieving
this requires the system to sense the reference as well as its
output, which involves redirecting the output back into the
system in a feedback loop. Another example is buffering outputs
against upstream variability using feed-forward regulators which
balance each other’s activity. Feedback and feedforward loops
are ubiquitous in natural biological systems, making it a natural
extension to develop synthetic biology within a control theoretic
framework (Vecchio et al., 2016; Del Vecchio et al., 2018; Hsiao
et al., 2018; Baetica et al., 2019).

Feedback control has been successfully implemented in a
number of in vivo examples, for instance to regulate exogenous
gene expression in response to burden (Ceroni et al., 2018), or
to control growth rate using robust perfect adaptation (Aoki
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et al., 2019). Feedforward architectures have also been used
to control variations in the amount of DNA template present
in cells (Bleris et al., 2011). In the context of control circuits,
a significant advantage of cell-free over cellular systems is
that they are free from biological noise, and operate in the
deterministic regime. Despite these benefits, surprisingly little
work has been carried out on cell-free control; recent examples,
including a computational study (Agrawal et al., 2018) and an
experimental demonstration of a feedback integral controller
based on molecular sequestration (Agrawal et al., 2019), as well
as feedforward loop circuits (Guo andMurray, 2019), suggest that
such approaches are starting to become more widespread within
the cell-free community.

3.3. Active Learning
While a mechanistic or phenomenological model may lead to
transparent understanding of the system, they are not the only
models offering sufficient predictive capabilities for rational
design. Statistical or non-parametric models, developed from
data using machine learning approaches, can be equally or more
strongly predictive, albeit with the well-known challenges of
interpretability (Doshi-Velez and Kim, 2017).

An example problem is to determine the composition of
a cell-free reaction to maximize its protein productivity. In
the absence of a predictive model fully connecting all its
components to protein output, Caschera et al. (2018) used an
evolutionary design of experiments approach to iteratively train
an ensemble neural network model to optimize conditions for
cell-free protein synthesis. More recently Borkowski et al. (2020)
trained a similar model on ∼4,000 reactions, improving yields
by 34 times. Importantly, they discovered a training dataset of
only 20 compositions which was informative enough to allow
the model to generalize its predictions to different lysates and
conditions. These examples demonstrate that the throughput
afforded by cell-free systems is sufficient for informing data-
driven modeling approaches.

Data-driven cell-free techniques could also potentially be
applied to other long-standing questions in systems biology, for
instance, determining the mapping of sequence to phenotype for
a genetic element (Cuperus et al., 2017; Sample et al., 2019).
Cell-free implementations of massively parallel reporter assays,
perhaps using droplet microfluidic technology to maintain
genotype-phenotype linkage, may yield datasets of sufficient
quality and size to contribute to this problem.

4. CONCLUSIONS

Cell-free systems are ideally suited for rational engineering
approaches: their open reactions facilitate construction and
validation of mechanistic and phenomenological models, and
their throughput allows them to generate sufficient data to
train machine learning models. Developing these models,
and designing experiments to calibrate and validate them,
are general strategies which can be tested on the cell-free
platform, but eventually also applied to the more challenging
problem of engineering living systems. In this sense, cell-free
systems can be thought of as a proving ground for rational
design strategies.

Cell-free systems do however present unique challenges for
predictive design. As discussed above, a lack of homeostasis can
imply ultrasensitivity of cell-free reactions to various effects. It is
also well-known that strong batch-to-batch variation of lysates
can limit the predictability of results to within-batch repeats,
constraining the usefulness of the approach; however recent
efforts have been made to identify and control these effects (Cole
et al., 2019; Silverman et al., 2019b). And finally, while examples
were given of successful transfer of cell-free designs back into
cellular hosts, the generality of this approach has so far remained
unclear. These are all avenues for future research within the field.

In this Perspective, I have deliberately left out a discussion
of directed evolution, a complementary and powerful strategy
for biodesign. Cell-free systems have also been extensively
deployed for in vitro evolution (Contreras-Llano and Tan, 2018),
maintaining genotype-phenotype coupling through the use of
display technologies and compartmentalization.

Reliable engineering of synthetic biological systems remains a
great challenge, and it is likely that a number of complementary
efforts including rational as well as evolutionary design, and
cellular and cell-free systems, will be required to eventually
achieve this grand goal.
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Microsatellites or simple sequence repeats (SSRs) are short tandem repeats of DNA
widespread in genomes and transcriptomes of diverse organisms and are used in
various genetic studies. Few software programs that mine SSRs can be further
used to mine polymorphic SSRs, and these programs have poor portability, have
slow computational speed, are highly dependent on other programs, and have low
marker development rates. In this study, we develop an algorithm named Simple
Sequence Repeat Molecular Marker Developer (SSRMMD), which uses improved
regular expressions to rapidly and exhaustively mine perfect SSR loci from any size
of assembled sequence. To mine polymorphic SSRs, SSRMMD uses a novel three-
stage method to assess the conservativeness of SSR flanking sequences and then
uses the sliding window method to fragment each assembled sequence to assess
its uniqueness. Furthermore, molecular biology assays support the polymorphic SSRs
identified by SSRMMD. SSRMMD is implemented using the Perl programming language
and can be downloaded from https://github.com/GouXiangJian/SSRMMD.

Keywords: bioinformatics, algorithm, simple sequence repeats, conservativeness, uniqueness, polymorphism

INTRODUCTION

Owing to their abundance, codominant inheritance, multi-allelic nature, transferability, and
ease of analysis via PCR (Varshney et al., 2005; Ramu et al., 2009; Kaur et al., 2015), simple
sequence repeat (SSR) markers have been successfully adopted in various genetic studies such as
quantitative trait loci mapping (Qin et al., 2015; Wang et al., 2017), genotyping (Gramazio et al.,
2018), genetic diversity (Nachimuthu et al., 2015; Zhou R. et al., 2015), and DNA fingerprinting
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(Zhang et al., 2015). Indeed, numerous genome-wide SSR
markers have been identified in plants and animals in recent
years, such as those in rice (Zhang et al., 2007), maize (Xu et al.,
2013), cucumber (Liu et al., 2015), bee (Liu et al., 2016), tobacco
(Wang et al., 2018), and snake (Liu et al., 2019).

During the development of SSR markers, the first step is
the mining of potential SSR loci from assembled sequences.
Based on the repetitive architecture of their motifs, SSRs
can be classified as perfect (e.g., AGAGAGAGAGAG), and
imperfect (including nucleotide substitutions or indels, e.g.,
AGAGAGACAGAG). However, the application of perfect SSRs
in genetic studies far exceeds that of imperfect SSRs because
of its higher allelic variability (Zalapa et al., 2012; Xu et al.,
2013). Numerous algorithms and software programs have
been reported for mining perfect SSRs. For instance, SSRIT
(Temnykh, 2001), MISA (Thiel et al., 2003), and GMATo
(Wang et al., 2013) use regular expressions based on the
greedy matching algorithm to mine SSRs. SA-SSR (Pickett
et al., 2016) uses a suffix array-based algorithm to mine SSRs.
Kmer-SSR (Pickett et al., 2017) uses Kmer decomposition
to identify SSRs. PERF (Avvaru et al., 2017) matches each
potential substring in accordance with a set of pre-computed
repeat strings. Other programs including TROLL (Castelo et al.,
2002), MfSAT (Chen et al., 2011), ProGeRF (Silva et al., 2015),
and FullSSR (Metz et al., 2016) have also been developed.
In addition, imperfect SSR detection algorithms have also
been reported, such as IMEx (Mudunuri and Nagarajaram,
2007), and Krait (Du et al., 2017). However, these programs
have many common undesirable features. First, they rely on
additional software or modules, often with complex software
configuration; second, they have poor portability and can only
be run on Linux or Windows platforms; third, they have slow
computational speed; and most importantly, polymorphic SSRs
cannot be directly found.

With rapid advancements in genomics, software and pipelines
for mining polymorphic SSRs have been reported. For instance,
CandiSSR (Xia et al., 2016), a candidate polymorphic SSRs
identification pipeline, is based on multiple assembly sequences.
GMATA (Wang and Wang, 2016) provides a complete process
for SSR markers development. IDSSR (Guang et al., 2019) has
recently been reported to identify polymorphic SSRs in a single
genome sequences using a similar pipeline. However, these
programs or pipelines also share certain issues. First, they rely
on numerous other programs, such as MISA (Thiel et al., 2003),
Primer3 (Untergasser et al., 2012), BLAST (Altschul et al., 1997),
and ClustalW (Thompson et al., 2002); second, they have slow
computational speed for mining polymorphic SSRs; finally, they
have low rates of SSR markers development.

To overcome these limitations, we developed the Simple
Sequence Repeat Molecular Marker Developer (SSRMMD)
program using the Perl programming language. This program
rapidly and exhaustively mines perfect SSR loci through
improved regular expressions. For mining polymorphic SSRs,
this program uses a high-stringency sequence alignment
algorithm to assess the conservativeness and uniqueness of SSR
flanking sequences. Compared with other software programs,
SSRMMD is more rapid, accurate, and convenient. SSRMMD

can be downloaded from https://github.com/GouXiangJian/
SSRMMD.

MATERIALS AND METHODS

Implemented Algorithm
The algorithm of SSRMMD involves the mining of perfect
SSR loci and the discovery of polymorphic SSRs. The internal
methodological details are provided in Figure 1, primarily
including the following steps:

(1) Mining perfect SSR loci. Similar to programs such as SSRIT
(Temnykh, 2001) and MISA (Thiel et al., 2003), SSRMMD uses
regular expressions with the greedy matching algorithm to mine
SSRs. However, to improve computational speed, SSRMMD was
optimized in three aspects: (i) use of multi-threading technology.
To maximize the function of each thread, we proposed a novel
optimal allocation algorithm to averagely distribute assembled
sequences to each thread in accordance with the length of
sequences (TOS), including the following: (a) sort sequences by
TOS; (b) assignment of the longest i sequences to i threads;
(c) thread sorting based on the total TOS; (d) assignment of
subsequent sequences to the thread with the smallest TOS; (e)
thread sorting in step (d) using the insertion sorting algorithm;
and (f) iterative performance of steps (d) and (e) until complete
sequence allocation. (ii) Fragmented sequences. After a specific
thread is assigned to store each sequence, SSRMMD fragmented
each sequence into short 500-kb fragments. At this length, the
computational speed was the highest. Furthermore, 5 kb was
added to each fragment to prevent potential SSRs from being
cut off. (iii) Improved regular expression. Ordinary regular
expressions can only mine one type of motif in each match, as
indicated using MISA (Thiel et al., 2003). However, by integrating
all patterns, SSRMMD can mine all types of motif in each match,
indicating that irrespective of the arrangement of the threshold
motifs, SSRMMD will only traverse the sequence once. Notably,
to completely mine compound SSRs, SSRMMD backtracks
after each successful match, and the size of backtracking (B)
is as follows:

size (B) =



length
(
motifi

)
− 1, sum

(
motifi

)
== 1

max {L1, L2, . . . , Ln} ,
min {S1, S2, . . . , Sn} > max {L1, L2, . . . , Ln}
min {S1, S2, . . . , Sn} − 1,

min {S1, S2, . . . , Sn} ≤ max {L1, L2, . . . , Ln}

where n is the number of motif types, Si is the length of the ith
motif types of SSR, and Li is the length of the ith type of motif.

(2) Assessment of the conservativeness of SSR flanking
sequences. To develop polymorphic SSRs, we initially assessed
the conservativeness of SSR flanking sequences. To maximize
the computational speed, we used a novel three-stage method
to align flanking sequences between two assembled sequences
files, which included the following steps: (i) first, absolutely
conserved flanking sequences were filtered out using HASH
structure. Herein, we considered these flanking sequences in
the first assembled file as a library, and then we compared
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FIGURE 1 | Internal implementation algorithm of Simple Sequence Repeat Molecular Marker Developer (SSRMMD).

these flanking sequences in the another assembled file with the
aforementioned library to rapidly identify absolutely conserved
flanking sequences. (ii) Second, conservativeness pre-alignment
was performed using x% [default is 5% (each side is 5 bp)]
flanking sequences near SSRs. Assuming that flanking sequences
near SSRs were highly conserved, SSRMMD allowed flanking
sequences near SSRs to tolerate up to 2-bp mismatches.
Moreover, after extensive assessments, additional mismatches
(≥3 bp) did not further benefit the results, consistent with
the aforementioned assumption. SSRMMD iteratively replaced
mismatched bases and aligned flanking sequences between two
assembled files, using a method similar to (i). (iii) Finally,
SSRMMD used Levenshtein distance (LD; Levenshtein, 1966),
or the Needleman–Wunsch (NW) algorithm (Needleman and
Wunsch, 1970) to accurately assess the conservativeness of
the flanking sequences retained through pre-alignment. LD
was defined as the minimum number of edits required to
convert one string to another, thus indirectly reflecting the
identity of two DNA sequences. However, the NW algorithm
based on dynamic programming has been extensively used
for global sequence alignment, directly reflecting the identity

of two DNA sequences. Compared with NW algorithm, the
LD did not require backtracking; hence, it had a higher
computational speed; furthermore, the NW algorithm had a
more comprehensive scoring system than LD, thus facilitating
more accurate elucidation of the identity of the SSR flanking
sequences. The iterative formulae of the LD and NW algorithms
are as follows:

LDa,b(i, j) =


max

(
i, j
)

min
(
i, j
)
= 0

min


LDa,b

(
i− 1, j

)
+ 1

LDa,b
(
i, j− 1

)
+ 1 otherwise

LDa,b
(
i− 1, j− 1

)
+ 1(ai 6=bj)

NWa,b(i, j) =



0 i, j = 0

max



NWa,b
(
i− 1, j

)
+

Sgap ai aligned to a gap
NWa,b

(
i, j− 1

)
+

Sgap bj aligned to a gap
NWa,b

(
i− 1, j− 1

)
+

Smatch/mismatch ai aligned to bj

Frontiers in Genetics | www.frontiersin.org 3 July 2020 | Volume 11 | Article 70648

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00706 July 27, 2020 Time: 8:43 # 4

Gou et al. Algorithm for Mining Polymorphic SSRs

where a and b are 2 strings; i and j are subscripts of a and b,
respectively; Smatch is the score of match; Smismatch is the score of
mismatch; and Sgap is the score of gap.

(3) Assessment of the uniqueness of SSR flanking sequences.
After conservativeness was assessed, SSRMMD further assessed
the uniqueness of SSR flanking sequences. Again, assembled
sequences were evenly distributed to each thread and were
fragmented through the sliding window method, wherein
window size was the length of flanking sequences, the step
size was 1 bp, and all fragments were stored in a HASH
database. Thereafter, flanking sequences with the equal sizes in
the aforementioned HASH database were aligned to identify
SSRs with unique flanking sequences. Finally, polymorphisms
were compared in the two unique SSR sets to distinguish
monomorphic and polymorphic SSRs. Notably, to meet different
needs, SSRMMD used two computational methods, (i) running
in a time-saving manner and (ii) running in a memory-
saving manner, indicating that SSRMMD functions adequately,
irrespective of the use of a personal computer, or high-
performance server.

Input and Output
Assembled sequences (e.g., genome, transcriptome, or a single
gene) with a standard FASTA format is required for mining
SSRs; to further develop candidate polymorphic SSRs, another
assembled sequence is required. Certain parameters can be set
to change the SSR mining conditions, including motif threshold
and the length of flanking sequences. SSRMMD is allowed to
set any size motif (>6 bp), and SSRMMD would then assess the
conservativeness and uniqueness of SSR flanking sequences when
mining polymorphic SSRs. Notably, setting more threads would
significantly enhance the computational speed.

Upon completion of the computation, SSRMMD yields three
types of outputs: (i) detailed information record file of SSRs; (ii)
statistical file of SSRs, which analyzes the various distribution
characteristics of SSRs and helps understand the distribution
pattern of the SSRs [including the following: (a) SSR number
and density in each assembled sequence; (b) SSR number and
proportion per unit length of the motif; and (c) SSR number
among different numbers of repeats in each motif]; and (iii)
detailed information record file of candidate polymorphic SSRs.

Performance Test Datasets
To assess SSRMMD, we downloaded six genomes of three plants
from National Center for Biotechnology Information (NCBI)1

and Unité de Recherche Génomique Info (URGI)2. Three
genomes were used to assess the potential for mining SSR feature
loci, including rice (Zhenshan97, ∼0.39 Gb), cotton (TM1,
∼2.29 Gb), and wheat [Chinese Spring (CS), ∼14.23 Gb]. All six
genomes were used to assess the potential to mine polymorphic
SSRs, including two rice genomes, two cotton genomes, and
two wheat genomes. To evaluate the complexity and multi-
threading of SSRMMD, we extracted 2-Gb sequences from the
wheat CS and AK58 genomes, which were evenly divided into 20

1https://www.ncbi.nlm.nih.gov/
2https://urgi.versailles.inra.fr/

sequences. The GenBank assembly accession numbers of the rice
genomes were Zhenshan97 (GCA_001623345.2) and Shuhui498
(GCA_002151415.1). The GenBank assembly accession numbers
of cotton genomes were TM1 (GCA_006980745.1) and ZM24
(GCA_006980775.1). The wheat CS and AK58 genomes were
obtained from URGI.

Performance Test Parameters
Perfect repeats have higher allelic variability than imperfect
repeats, and any SSR used to develop genetic markers should
contain a perfect repeat (Xu et al., 2013). Therefore, to assess the
potential of SSRMMD for mining SSR loci, we avoided imperfect
repeats detection tools, and we selected six popular existing
software programs including SSRIT (Temnykh, 2001), MISA
(Thiel et al., 2003), GMATA (Wang and Wang, 2016), SA-SSR
(Pickett et al., 2016), Kmer-SSR (Pickett et al., 2017), and PERF
(Avvaru et al., 2017). In particular, SA-SSR was not included in
the results owing to its markedly low computational speed. In
each software program, based on previously described methods
(Zhang et al., 2007; Xu et al., 2013; Liu et al., 2015), the minimum
repeat times of SSR motif lengths of 1, 2, 3, 4, 5, and 6 bp were
set to 10, 7, 6, 5, 4, and 4, respectively. Because Kmer-SSR can use
multi-threads, we tested SSRMMD and Kmer-SSR with 1 and 12
threads, respectively, to assess its multi-thread support. However,
other software programs could only use a single thread.

To assess the potential for mining polymorphic SSRs,
we compared two popular existing software programs with
SSRMMD, including GMATA (Wang and Wang, 2016), and
CandiSSR (Xia et al., 2016). In each software program, SSR
flanking sequences were set to 150 bp (Zhang et al., 2007).
Because CandiSSR can use multi-threads, we assessed SSRMMD,
and CandiSSR with 12 threads; however, GMATA can only use
a single thread. On assessing SSRMMD, LD was used to assess
the conservativeness of flanking sequences, and the threshold was
set to 5% to correspond to the BLAST identity of CandiSSR,
and the other parameters (not indicated herein) were retained
as default setting. Similarly, parameters not included in GMATA
and CandiSSR were used with default setting.

Performance Evaluation Criteria
The performance of SSRMMD and existing software programs
for mining perfect SSRs was evaluated in accordance with six
criteria. Table 1 shows the portability, dependence, and function
of existing software programs and SSRMMD. The computational
accuracy, speed, and memory consumption were evaluated for
the test datasets. We used the Linux time command to record the
computational time and pmap command to record the memory
peak. All tests were performed using a personal computer with an
Intel R© Xeonl R© CPU E5-2683 v3 @ 2.00 GHz with CentOS Linux
release 7.4.1708 and 64 GB RAM.

Experimental Validation
To verify the accuracy of the output through SSRMMD, 80
pairs of polymorphic SSRs were randomly selected from the
computational results of wheat for molecular biology assays.
These selected polymorphic SSRs were evenly distributed on each
chromosome, encompassing differently sized motifs. Genomic
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TABLE 1 | Various features of SSRMMD and existing software programs for
mining perfect SSRs.

Software Year Portability Dependencea Function

SSRIT 2001 Windows/Linux No Mining SSR feature
loci

TROLL 2002 Windows/Linux Staden Mining SSR feature
loci

MISA 2003 Windows/Linux No Mining SSR feature
loci

MfSAT 2011 Windows No Mining SSR feature
loci

GMATo 2013 Windows/Linux No Mining SSR feature
loci

ProGeRF 2015 Linux No Mining SSR feature
loci

CandiSSR 2016 Linux MISA, BLAST,
Primer3, Clustalw

Developing
polymorphic SSRs

FullSSR 2016 Windows/Linux BioPerl,
Bio:Tools:Run:
Primer3

Mining SSR feature
loci

GMATA 2016 Windows/Linux Primer3, e-PCR Developing
polymorphic SSRs

SA-SSR 2016 Linux No Mining SSR feature
loci

Kmer-SSR 2017 Linux No Mining SSR feature
loci

PERF 2017 Windows/Linux tqdm, biopython Mining SSR feature
loci

IDSSR 2019 Linux SSRIT, BLAST,
Primer3

Developing
polymorphic SSRs

SSRMMD this Windows/Linux No Developing
polymorphic SSRs

Note. SSRMMD, Simple Sequence Repeat Molecular Marker Developer.
aDependence on additional programs or modules.

DNA was extracted using the cetyl trimethylammonium bromide
(CTAB) method from fresh leaves of 10 wheat popularized and
local cultivars of CS, AK58, CM107, CN16, MM37, ZM012542,
ZM000652, ZM018703, ZM003222, and ZM003284.

Additionally, we provided a tool named connectorToPrimer3
to associate SSRMMD with Primer3 (Untergasser et al., 2012);
hence, a primer design can be easily performed. The primary
parameters were as follows: (1) minimum, optimal, and
maximum primer sizes of 18, 20, and 27 bp, respectively;
(2) minimum and maximum GC contents of 20% and 80%,
respectively; (3) minimum, optimal, and maximum Tm values
of 57, 60, and 63◦C, respectively; and (4) product lengths
of 100–300 bp. Primers were synthesized by Beijing Qingke
Biotechnology Co., Ltd.

PCR was performed in 10-µl reactions containing 5 µl of
mix buffer (2×), 1.0 µl of template DNA (100 ng/µl), 0.5 µl of
primers, and 3 µl of ddH2O. The PCR conditions were as follows:
1 cycle at 94◦C for 5 min, 35 cycles at 94◦C for 30 s, 60◦C for 30 s,
72◦C for 30 s, and 1 cycle at 72◦C for 10 min. The PCR products
were electrophoresed on a 6% denaturing polyacrylamide gel.
SSR polymorphisms in different wheat genotypes were identified
on the basis of differences in mobility, as revealed through the
electrophoretic bands.

RESULTS

Assessment of Complexity and Threads
On the basis of the 2-Gb base sequences from wheat, we tested
the time and space complexity of SSRMMD in a single thread.
As shown in Figures 2A,B, as the amount of data increased, the
time and space consumed by SSRMMD increased linearly when
mining SSR feature loci. Similarly, when SSRMMD was used
to mine polymorphic SSRs (assessing uniqueness in a memory-
saving manner), the time and space were also linearly associated
with the amount of data (Figures 2C,D). These results suggest
that the algorithm of SSRMMD has linear time complexity
[T(n) = O(n)] and space complexity [S(n) = O(n)].

Furthermore, we assessed the multi-threading support of
SSRMMD. As shown in Figures 2E,F, whether mining in SSR
feature loci or polymorphic SSRs, as the number of threads
increased, time consumption decayed as a power function with
the number of threads; however, memory consumption scaled
linearly. Notably, despite using 10 threads, memory consumption
of SSRMMD did not exceed the size of test data (2 Gb). In total,
SSRMMD adequately supported multi-threading.

Verification of the Performance of
SSRMMD to Mine Simple Sequence
Repeat Feature Loci
Based on the high citation rate and novel principles, six
software programs were compared with SSRMMD (SA-SSR
is not indicated). As shown in Table 2, SSRMMD identified
the most SSRs. This was larger than other regular expression-
based programs including MISA and GMATA. Furthermore,
SSRMMD had the highest computational speed when running on
a single thread and better supported multi-threading than Kmer-
SSR. Additionally, we analyzed the validity of SSRs found by
SSRMMD and compared them with four other programs (PERF,
Kmer-SSR, GMATA, and MISA). As shown in Figures 3A–C,
numerous common products were identified in these software
programs, accounting for 76.95% (rice), 85.96% (cotton), and
74.21% (wheat) of SSRMMD, respectively.

Verification of the Performance of
SSRMMD to Mine Polymorphic Simple
Sequence Repeats
CandiSSR and GMATA were compared with SSRMMD. First,
compared with CandiSSR, SSRMMD mined approximately
doubled the number of polymorphic SSRs, and CandiSSR
discarded numerous monomorphic SSRs from among
these candidate markers (Table 3). Second, compared with
GMATA, SSRMMD mined more polymorphic SSRs in rice
and cotton, but less in wheat. However, because GMATA
identified polymorphisms through e-PCR amplification
products, which yield two forms of false positives, (1) the
target SSR did not exist in the product and (2) the target
SSR in the product was the same size as the reference
SSR. Hence, we generated a script3 to rectify the output of

3https://github.com/GouXiangJian/CorrectGMATA
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FIGURE 2 | Assessment of complexity and threads of Simple Sequence Repeat Molecular Marker Developer (SSRMMD). (A) The time complexity in mining SSR
feature loci. (B) The space complexity in mining simple sequence repeat (SSR) feature loci. (C) Time complexity in developing polymorphic SSRs. (D) The space
complexity in developing polymorphic SSRs. (E) The impact on time and space when increasing threads in mining SSR feature loci. (F) The impact on time and
space when increasing threads in developing polymorphic SSRs.

TABLE 2 | Performance comparison between SSRMMD and other software programs for identifying genome-wide SSR feature loci.

Software Thread Rice (Zhenshan97, ∼0.39 Gb) Cotton (TM1, ∼2.29 Gb) Wheat (CS, ∼14.23 Gb)

Number Time (m:s) Mem (Mb) Number Time (m:s) Mem (Mb) Number Time (m:s) Mem (Mb)

SSRIT 1 111,960 5:53 131.55 384,488 34:45 343.04 1,345,128 210:47 2,503.85

MISA 1 111,905 5:50 205.52 384,400 35:31 382.60 1,343,830 212:45 4,195.61

GMATAa 1 111,905 7:28 85.48 384,400 42:15 361.72 1,343,831 254:46 1,739.50

PERF 1 111,960 8:49 211.60 384,488 52:32 522.91 1,345,128 320:36 3,325.42

Kmer-SSR 1 111,960 14:08 123.05 384,488 83:14 169.00 1,345,128 516:19 1,028.44

Kmer-SSR 12 111,960 5:28 321.95 384,488 28:20 353.96 1,345,128 205:19 1,251.40

SSRMMD 1 111,960 4:49 139.38 384,488 28:36 421.95 1,345,128 175:19 2,404.68

SSRMMD 6 111,960 1:08 466.19 384,488 6:46 1,044.88 1,345,128 43:40 5,972.30

SSRMMD 12 111,960 0:49 731.02 384,488 4:28 1,717.92 1,345,128 27:05 11,248.89

Note. SSRMMD, Simple Sequence Repeat Molecular Marker Developer; SSR, simple sequence repeat. aBecause GMATA and Kmer-SSR could not simultaneously mine
different types of motifs in one task, these two programs were multiply performed to identify SSRs, then the time was added, and memory peak was selected as the
maximum among all tasks.

GMATA, and we found that the actual polymorphic SSR
numbers of GMATA were 7,452 (rice), 21,675 (cotton), and
188,342 (wheat). GMATA had a high false-positive rate,
being 36.86% (4,350 of 11,802), 30.06% (9,317 of 30,992),
and 25.33% (63,902 of 252,244) for rice, cotton, and wheat,
respectively, thus implying a defect in the GMATA pipeline.
SSRMMD required markedly less time, especially in the wheat
genome (Table 3). Unfortunately, we could not quantify

memory consumption because GMATA and CandiSSR
called numerous other programs and scripts for mining
polymorphic SSRs. Furthermore, we compared the output
of polymorphic SSRs between SSRMMD and two other
software programs. As shown in Figures 3D–F, approximately
70.48% (rice), 37.11% (cotton), and 49.19% (wheat) of the
SSRMMD outputs were novel in comparison with other two
software programs.
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FIGURE 3 | Overlapping simple sequence repeats (SSRs) calculated by five programs [Simple Sequence Repeat Molecular Marker Developer (SSRMMD), PERF,
Kmer-SSR, GMATA, and MISA], and overlapping polymorphic SSRs calculated by three programs (SSRMMD, GMATA, and CandiSSR). If the sequence name, start,
and end position were the same in all programs, the SSR was considered overlapping. (A) Rice. (B) Cotton. (C) Wheat. (D) Rice. (E) Cotton. (F) Wheat. Notably,
CandiSSR only mined 5,187 polymorphic SSRs of wheat chromosome 5D.

Experimental Verification of the
Accuracy of Polymorphic Simple
Sequence Repeats
To verify the accuracy of the output by SSRMMD, 80 pairs
of polymorphic SSRs were randomly selected to identify
polymorphisms in 10 wheat cultivars. As shown in Figure 4
and Supplementary Table 1, 56 independent products were
successfully amplified using 56 primer pairs. However, the
remaining 24 primer pairs did not yield stable or clear bands, and
the reasons may include the following: (1) we did not optimize
the PCR amplification conditions for each primer pair and used a
uniform annealing temperature for all primer amplifications; and
(2) some primer designs were created in batches generated under
uniform conditions, which may have defects. Forty-four (∼79%)
among these 56 primer pairs revealed polymorphisms in CS and
AK58, suggesting that SSRMMD had a high accuracy.

DISCUSSION

With rapid innovations in sequencing technologies,
third-generation DNA markers such as single-nucleotide

polymorphisms have become widely used (Zhou Z. et al., 2015;
Yang et al., 2017). However, SSRs are still used in various genetic
studies such as quantitative trait loci mapping, genotyping,
genetic diversity, and marker-assisted selection because of
their codominant inheritance, multi-allelic nature, and ease of
amplification via PCR operation (Varshney et al., 2005; Ramu
et al., 2009; Kaur et al., 2015). These features are not applicable
to single-nucleotide polymorphisms. Therefore, development
of SSR markers from diverse organisms still is important in
biological studies.

In vitro SSR marker development based on the creation of
a genomic library, screening of positive clones, and subsequent
sequencing is time-consuming and expensive. Song et al. (2005)
only developed 540 SSR flanking primer pairs in the wheat
mapping study by in vitro methods. However, we easily obtained
millions of SSR loci from the wheat CS genome using our
in silico methods (Table 1). Undoubtedly, it is more rapid and
economical to develop SSR markers by using bioinformatics tools
and genotypic data, and in silico methods have gradually replaced
in vitro methods.

Although numerous software programs have been developed
for mining perfect SSRs from assembled sequences, the accuracy,
speed, and flexibility of these programs need to be balanced
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TABLE 3 | Performance comparison between SSRMMD and other two software programs for developing candidate polymorphic SSRs.

Organism Rice (∼0.39 Gb) Cotton (∼2.29 Gb) Wheat (∼14.23 Gb)

Software SSRMMD GMATA CandiSSRc SSRMMD GMATA CandiSSR SSRMMD GMATA CandiSSRd

Total number of SSRa 111,960 111,905 111,905 384,488 384,400 384,400 1,345,128 1,343,831 1,331,146

Number of candidate marker 68,242 34,667 8,230 292,307 166,813 16,315 572,023 477,531 129,461

Candidate marker rate (%) 60.95 30.98 7.35 76.02 43.40 4.24 42.53 35.54 9.73

Number of monomorphic SSR 50,895 22,865 0 259,972 135,821 0 364,279 225,287 0

Number of polymorphic SSR 17,347 11,802 8,230 32,335 30,992 16,315 207,744 252,244 129,461

Polymorphic rate (%) 15.49 10.55 7.35 8.41 8.06 4.24 15.44 18.77 9.73

Time (min:s)b 6:08 16:15 8,117:37 30:30 119:06 1,746:23 184:55 6,363:45 118,953:53

Note. SSRMMD, Simple Sequence Repeat Molecular Marker Developer; SSR, simple sequence repeat. aTotal number of SSR referred to Zhenshan97 (rice), TM1 (cotton),
and CS (wheat). bBecause GMATA could not simultaneously mine different types of motifs in one task, it was multiply performed to identify SSRs, and then the time was
added. cBecause CandiSSR could not normally calculate chromosome 8 of rice (the program stopped at the BLAST stage), the results of CandiSSR did not include
chromosome 8. dBecause CandiSSR spent numerous time to mine polymorphic SSRs of wheat, we only selected chromosome 5D (closest to the total SSR density of
wheat) to estimate the number of polymorphic SSRs.

FIGURE 4 | Experimental validation of seven randomly selected polymorphic
simple sequence repeats (SSRs) in 10 wheat genotypes. Lanes 1–10 were
PCR products of CS, AK58, CM107, CN16, MM37, ZM012542, ZM000652,
ZM018703, ZM003222, and ZM003284, respectively.

to suit the users’ needs. SSRIT can completely mine SSRs
(Table 2); however, when used only for mining a certain motif,
such as tetra-nucleotide and hexa-nucleotide motifs for rice
(Zhenshan97), SSRIT displayed 82.94% and 87.36% error rates,
respectively (data not shown), implying a defect in the algorithm
of SSRIT. In contrast, MISA and GMATA were inadequate for
SSR mining. Although Kmer-SSR supported multi-threading,

this support was inadequate, and this program can only be run
on Linux. Furthermore, GMATA and Kmer-SSR had inflexible
motif thresholds; these two programs needed to be performed in
multiple tasks to identify SSRs. PERF was inflexible owing to its
dependence on other modules (Table 1), and the computational
speed was highly dependent on the motif thresholds, thus
displaying a poor performance in the present tests. However,
SSRMMD displayed an adequate performance in all aspects.
SSRMMD completely mined credible SSRs (Figures 3A–C);
furthermore, SSRMMD was rapid, especially for large genomes
(Table 2); moreover, SSRMMD was flexible and did not rely
on additional modules and could theoretically be run on any
machine with PERL5 installed (Table 1).

The ever-increasing availability of plant and animal genomes
and transcriptomes (Kersey et al., 2017; Marschall et al., 2018) has
resulted in large data resources for developing polymorphic SSRs.
In the past 3 years, certain software programs were reported for
this purpose; however, they were all based on a complex pipeline
and utilize numerous other software programs, increasing their
dependence and decreasing their portability. For example,
CandiSSR called numerous other programs during development,
including MISA, Primer3, BLAST, and ClustalW (Table 1),
among which BLAST was the most prominent reason for its
low computational speed. Furthermore, the formatdb program
in BLAST could not build an entire wheat genome library;
hence, to complete the assessment, we artificially modified the
source code of CandiSSR to enable it to normally perform
computations with wheat. Similarly, GMATA depended on other
programs when developing polymorphic SSRs, including e-PCR
and Primer3. However, our proposed SSRMMD did not have
these limitations, and SSRMMD used a stringent algorithm
to assess the conservativeness and uniqueness of SSR flanking
sequences. Performance assessments revealed that SSRMMD
identified more novel polymorphic SSRs at extremely high speed
(Table 3 and Figures 3D–F).

Furthermore, we performed molecular biology assays for 80
randomly selected polymorphic SSRs of wheat to confirm the
accuracy of SSRMMD, and we found that SSRMMD had an
accuracy of up to 79% (Figure 4 and Supplementary Table 1).
We further examined 24 pairs of SSRs not yielding stable or
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clear bands, and we found that 19 of them were developed
through GMATA. Similarly, 7 of the 12 non-polymorphic SSRs
were developed using GMATA (data not shown), indicating
that these inaccurate results may have been obtained from the
wheat genome itself.

Nonetheless, Gao et al. (2019) recently used SSRMMD to
assess the barley genome in quantitative trait loci mapping study,
and they reported that SSRMMD has an excellent algorithm for
mining polymorphic SSRs.

CONCLUSION

In this study, we proposed a rapid, accurate, and flexible
algorithm named SSRMMD for mining perfect SSR loci and
further mining candidate polymorphic SSRs in accordance with
any size of assembled sequence. Our program can easily collect
numerous polymorphic SSRs from genomes and transcriptomes
of diverse organisms and will undoubtedly accelerate numerous
types of genetic studies including those of quantitative trait loci
mapping, genotyping, and genetic diversity.
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Computer-aided design (CAD) for synthetic biology promises to accelerate the rational
and robust engineering of biological systems. It requires both detailed and quantitative
mathematical and experimental models of the processes to (re)design biology, and
software and tools for genetic engineering and DNA assembly. Ultimately, the increased
precision in the design phase will have a dramatic impact on the production of designer
cells and organisms with bespoke functions and increased modularity. CAD strategies
require quantitative models of cells that can capture multiscale processes and link
genotypes to phenotypes. Here, we present a perspective on how whole-cell, multiscale
models could transform design-build-test-learn cycles in synthetic biology. We show
how these models could significantly aid in the design and learn phases while reducing
experimental testing by presenting case studies spanning from genome minimization
to cell-free systems. We also discuss several challenges for the realization of our vision.
The possibility to describe and build whole-cells in silico offers an opportunity to develop
increasingly automatized, precise and accessible CAD tools and strategies.
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INTRODUCTION

Whole-cell models (WCMs) are state-of-the-art Systems Biology
formalisms: they aim at representing and integrating all cellular
functions within a unique computational framework, ultimately
enabling a holistic, and quantitative understanding of cell biology
(Tomita, 2001; Karr et al., 2015a). Quantitative and high-
throughput in silico experiments generated from WCMs promise
to significantly shorten the distance between hypothesis/design
formulation and testing (Carrera and Covert, 2015).

While simplified models for specific cellular functions were
first developed over 30 years ago [e.g., gene expression regulation
(McAdams and Arkin, 1997), signaling (Morton-Firth and Bray,
1998) and metabolic pathways (Cornish-Bowden and Hofmeyr,
1991), cell growth (Shu and Shuler, 1989) and the cell cycle
(Goldbeter, 1991; Tyson, 1991; Novak and Tyson, 1993)], the
first WCM, the E-Cell model, was only derived in the 1990s for
Mycoplasma genitalium, which has the smallest genome among
freely living organisms (Tomita et al., 1999). The so-called virtual
self-surviving cell (SSC) model is partially stochastic; it includes
only a subset of protein-coding genes and enables dynamic
simulations which encompass various subcellular processes,
including enzymatic reactions, complex formation and substance
translocation. In parallel, the first genome-scale metabolic models
(GSMMs) were developed by Palsson’s group (Varma and
Palsson, 1994) using flux balance analysis (FBA) in the 1990s.

More recently, hundreds of GSMMs have been reconstructed
for different organisms, with an increasing number of
represented genes (McCloskey et al., 2013; Yilmaz and Walhout,
2017; Mendoza et al., 2019). GSMMs have been complemented
with a mathematical description of other processes, such as
transcription, translation, and signaling (Lee et al., 2008; Thiele
et al., 2009). Less than a decade ago a more complete, hybrid
WCM, representing all genes and molecular functions known
for an organism, was reported by Covert’s group (Karr et al.,
2012). In this pioneering work, Karr and colleagues integrated
28 sub-models to represent one cell cycle of M. genitalium; each
sub-model is represented with a distinct formalism, including
ordinary differential equations (ODEs), FBA, stochastic
simulations and Boolean rules.

Substantial research and effort are still needed to improve
WCMs’ descriptive power and to increase the complexity
of organisms they can represent. Developing a WCM is a
challenging task, which requires the collection of extensive
experimental data, integration of sub-cellular models and
in silico/in vivo model validation. A complete WCM should
ideally integrate multiscale interactions at the cellular level (Karr
et al., 2012; King et al., 2016) while accounting for the overall
cellular structure (Betts and Russell, 2007), the dynamic structure
of molecular interactions (Noske et al., 2008; McGuffee and
Elcock, 2010; Yu et al., 2016), and the spatial compartment of the
subcellular components (Ander et al., 2004; Takahashi et al., 2005;
Thul et al., 2017). Ensuring an accurate representation of all of
the cellular processes across organisms of increasing complexity
is highly challenging (Bouhaddou et al., 2018; Singla et al., 2018;
Szigeti et al., 2018). It is therefore not surprising that, to date,
only the M. genitalium and, very recently, E. Coli (Macklin

et al., 2020). WCMs have been released, although several other
WCMs are currently under development1. We refer the reader
to recent efforts which provide an overview of the state-of-
the-art in the development of WCMs (Goldberg et al., 2018;
Feig and Sugita, 2019).

Here, we focus on the enormous potential we believe WCMs
have for design-build-test cycles integrating synthetic with
systems biology (Figure 1). While the applications are diverse,
they share a high degree of complexity which would require
extensive trial and error experimental cycles in the absence
of robust computational design algorithms based on predictive
models. We conclude by considering relevant challenges that
must be addressed by interdisciplinary communities to fully
realize our vision, discussing future directions for integrating
WCMs through synthetic and systems biology.

WHOLE-CELL DESIGN STRATEGIES IN
SYNTHETIC BIOLOGY

Model Granularity of Gene Network
(re)Design
Mathematical models can be instrumental for the (re)design of
network circuits that recapitulate definite biological functions.
Knowledge of regulatory mechanisms in biological pathways has
been gained by considering living systems as a composition
of functional modules, which are investigated through
minimal computer models. Examples include controllable
oscillators (Marucci et al., 2009; Purcell et al., 2010, 2013;
Tomazou et al., 2018), circadian clocks (Gerard et al., 2009;
Ananthasubramaniam et al., 2020), signaling networks (Prescott
and Abel, 2017), the metabolism (Castellanos et al., 2004; Pandit
et al., 2017), and transcriptional regulation (Carrera et al.,
2009). Existing minimal and detailed computer models
span a broad range of granularity in their biochemical
details. However, one may expect that, if the core design
of a minimal and a detailed model is similar, their general
properties will match.

The understanding of a living organism at a system’s level may
be reached through decomposing it into functional modules or
modular circuits (Hartwell et al., 1999; Kitano, 2002; Ravasz et al.,
2002). The capability to sustain viability through autonomously
generated offspring is essential. It is therefore a feature that
WCMs shall account for through modeling cell division, which
is intimately integrated with various layers of cellular regulation
(metabolism, signaling, gene regulation, transcription, etc.).
A number of minimal models have been developed for the
eukaryotic cell cycle by Barberis’, Tyson’s and Novák’s groups
(Battogtokh and Tyson, 2004; Barberis et al., 2012; Gerard et al.,
2013, 2015; Linke et al., 2017; Mondeel et al., 2020).

Currently, the majority of multiscale models (not WCMs) lack
components able to bridge cellular networks or function (cell
cycle, metabolism, signaling, gene regulation, etc.). Identification
of hubs, i.e., elements with high connectivity in the cellular
environment that integrate cellular networks, is a critical feature

1https://www.wholecell.org/
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FIGURE 1 | Integrated design-build-test-learn cycles in synthetic biology encompassing whole-cell model-guided approaches, and relative applications.

of WCMs. Transcription factors have recently been identified as
hubs that integrate multiscale networks, potentially connecting
the cell cycle to metabolism (Mondeel et al., 2019), and can be
among the parts of a system that influence its state as a whole.
Multiscale frameworks coupling networks of differing granularity
are being developed, by identifying the relevant regulations
occurring among common network nodes and through the use
of different mathematical formalisms (van der Zee and Barberis,
2019). These and other strategies are also being developed to
integrate networks of cellular functional modules (Prescott et al.,
2015). Together with the identification of networks underlying
the cell’s autonomous oscillations, these strategies can rationalize
the proper timing of offspring generation accounted by WCMs.

Designing synthetic gene networks by modeling and
integrating them within WCM formalisms [as in Purcell et al.
(2013)] could be critical to investigate how gene expression
correlates with codon usage, explore possible cell burden effects
(Borkowski et al., 2016), and predict modularity of synthetic gene
networks and tools to modulate gene expression across different
chassis (Way et al., 2014; Pedone et al., 2019; Gomide et al., 2020).

Design and Engineering of Reduced
Genomes
Minimal genomes can be defined as reduced genomes containing
only the genetic material which is essential for a cell to
reproduce (Glass et al., 2017). Studying and engineering minimal
genomes can be instrumental both to understand the most
essential tasks a cell must perform to sustain life, and to
obtain optimal chassis for synthetic biology applications, with
reduced cell burden and superior robustness (Moya et al., 2009;

Hutchison et al., 2016; Ceroni and Ellis, 2018; Mol et al., 2018;
Landon et al., 2019).

Exhaustive experimental characterization of a minimized
genome is unfeasible: even for an organism as small as M.
genitalium (0.58 mb and 525 genes), there are thousands of
possible combinations of gene knockouts to be performed. Of
note, this figure is most probably underestimated, accounting for
the fact that the order in which gene deletions are performed can
alter the resulting phenotypes (Gawand et al., 2015). Genome-
scale computational models of cells could be instrumental to
fully understand the dynamic and context-dependent nature of
gene essentiality (Rancati et al., 2018), and to rationally design
minimized genomes in silico. Computer-aided minimal genome
engineering could significantly reduce the time and cost to reduce
genomes compared to current approaches based on extensive
experimental iterations (Posfai et al., 2006; Iwadate et al., 2011;
Hirokawa et al., 2013; Hutchison et al., 2016; Zhou et al., 2016;
Reuss et al., 2017; Breuer et al., 2019).

To the best of our knowledge, two top-down genome
reduction approaches have been proposed so far based on
genome-scale models. The MinGenome algorithm applies a
mixed-integer linear programming (MILP) algorithm to a
GSMM of Escherichia coli, using information pertaining to
essential genes and synthetic lethal pairs within the optimization
(Wang and Maranas, 2018). In contrast, Minesweeper and
GAMA are top-down genome minimization algorithms based
on the M. genitalium WCM. They exploit a divide-and-
conquer approach and a biased genetic algorithm, respectively,
to iteratively simulate reduced genomes (Rees-Garbutt et al.,
2020); their in silico predictions have not been tested in
the laboratory yet.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 August 2020 | Volume 8 | Article 94258

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00942 August 6, 2020 Time: 20:26 # 4

Marucci et al. Whole-Cell Models in Synthetic Biology

GSMM-based genome reduction algorithms such
as MinGenome or analogous, adaptable metaheuristic
techniques [e.g., (Burgard et al., 2003; Tang et al., 2015;
Mutturi, 2017)] are currently more broadly applicable
across organisms given the large availability of these
formalisms. Still, as more WCMs become available, we
expect WCM-based genome reduction algorithms to
provide superior predictions of cellular processes and genetic
interactions, thanks to their richness of multiscale cellular
process representation.

Design and Prototyping of Cell-Free
Systems
Cell-free transcription/translation systems, based on crude
cellular extracts, are a valuable platform to address fundamental
biological questions in a controllable and reproducible way.
In recent years, the decrease of costs associated with this
technology and significant improvements in synthesis yield
capabilities (Calhoun and Swartz, 2005) have made cell-
free systems increasingly popular in synthetic biology for
the prototyping and testing of engineered biological parts
(McCloskey et al., 2013; Reuss et al., 2017; Yilmaz and Walhout,
2017; Mendoza et al., 2019) and networks (Noireaux et al.,
2003; Siegal-Gaskins et al., 2014; Takahashi et al., 2015).
As the possible applications of cell-free systems grow [see
(Silverman et al., 2020) for a recent review], mathematical
models are being developed to quantitatively formalize
how biological processes perform within cell-free platforms
(Koch et al., 2018).

So far, deterministic models (ODEs, or constraint-based)
have been proposed to describe specific processes within cell-
free platforms such as transcription and translation (Karzbrun
et al., 2011; Stogbauer et al., 2012; Siegal-Gaskins et al., 2014),
resource competition (Underwood et al., 2005; Borkowski et al.,
2018; Matsuura et al., 2018; Moore et al., 2018), and metabolism
(Vilkhovoy et al., 2018). The integration of mathematical
formalisms across scales for cell-free platforms, building toward
WCMs, could be highly beneficial to both facilitate de novo
design of circuits, and to quantitatively compare in vitro cell-free
products with their in vivo counterparts.

Whole-Cell Biosensor Design and
Testing
Biosensors are analytical devices which can convert a biochemical
reaction into a measurable signal. The recognition unit in
a biosensor can be composed of whole cells, nucleic acids,
enzymes, proteins, antibodies or combinations thereof. Synthetic
biology has significantly accelerated biosensor development;
new generation whole-cell biosensors (i.e., sensors implemented
throughout living cells) have been engineered, allowing, for
example: arsenic detection (Diesel et al., 2009), detection of
pollutants and antibiotics (van der Meer and Belkin, 2010),
microbial detection in industrial settings (Lu et al., 2013) and
in vivo diagnostic applications [e.g., detection of environmental
signals in the gut (Kotula et al., 2014) and diagnosis of liver

metastases (Danino et al., 2015); see (Slomovic et al., 2015) for
an overview].

The application of WCMs to the design, prototyping and
testing of whole-cell biosensors could suggest rational approaches
to tune their sensitivity, stability, and dynamic range while
facilitating the choice of the ideal chassis and, if needed, guide
its re-engineering to optimize biosensor performance (Hicks
et al., 2020). If WCMs become available for different chassis and
entire organisms, they could also support the design of optimized
targeted delivery of genetically encoded biosensors.

Industrial Implications of Whole-Cell
Models
Although the intellectual merit of pursuing a computer-aided
whole-cell design approach is unquestioned, it is clear that
the success of this endeavor will ultimately be judged by its
impact on science, medicine, and industry. The increasing
drive of computer-aided designs (CADs) toward “green”
chemistry approaches, allied to increases in gene synthesis
speed and capability and associated cost reductions, are
making biosynthesis an increasingly appealing route for the
manufacture of high-value chemicals (El Karoui et al., 2019). This
includes a plethora of opportunities across the pharmaceutical,
agrochemical, commodity chemical, and materials sectors,
amongst others.

A major challenge, however, remains the development of
robust, scalable microbial chassis, whose metabolic processes
can be predictably tuned for a desired outcome (Xu et al.,
2020). Currently, chassis choice is largely restricted to a
subset of genetically tractable microorganisms, whose physiology
and performance during fermentation are well understood,
and for whom effective molecular genetic tools required
for their manipulation exist. Chassis optimization to date
has relied exclusively on incremental, stepwise improvements
in desired host strain characteristics, including growth rate,
feedstock utilization, and product yield (Calero and Nikel,
2019). For these reasons, the process of chassis optimization
remains prohibitively slow and expensive, accounting in
part for the paucity of high-value small molecules that
are currently manufactured using synthetic biology processes.
Targeted manipulations often lead to unanticipated off-target
effects, linked to the co-dependency of metabolic processes,
which generally function in concert within interdependent
cellular networks (Woolston et al., 2013): perturbations may
compromise rather than enhance desirable characteristics,
leading to undesired outcomes. Clearly, robust, predictable
WCMs represent an attractive solution to the problem of chassis
optimization, affording a catch-all tool that can be used to
unpick dependencies and ensure that performance criteria can
be met.

Additionally, the complexities associated with population
heterogeneity during chassis fermentation must be resolved
(Danchin, 2012). For fermentation-based industrial processes to
be tractable, product yields must be sufficiently high to make
biosynthesis financially viable. The emergence of “cheaters” or
slow-growers within microbial populations should be tackled
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with tunable regulatory processes that operate throughout
populations. The introduction of such characteristics is a major
challenge to conventional chassis design approaches. WCM-
driven approaches could more easily implement and test
these processes.

Critical to the success of a computer-aided whole-cell
design approach is the quality of the employed model
(Fernandez-Castane et al., 2014). Microbial systems with small
genomes represent a compelling entry point for study, with
model development possibly being facilitated by ongoing
studies focused on establishing the core constituents of a
functional genome. These studies are in part driven by genome
minimization experiments, which in turn can be used to
further refine model performance. Importantly, fundamental
gaps remain in our understanding of microbial metabolic
processes, and this will unquestionably hinder progress (Price
et al., 2018). However, the capacity of WCMs to predict
previously unidentified metabolic dependencies should be viewed
as an acid test of model validity. Indeed, GSMMs often fail
due to their inability to account for metabolic dependencies,
a feature which has led to skepticism within industrial circles,
questioning the value of such models. Whole-cell approaches
offer a mechanism to circumvent this issue. This is of particular
significance when developing chassis for “non-natural” products
whose chemistries sit outside those of metabolites found in
nature (Calero and Nikel, 2019). Expanding the metabolic
capacity of chassis organisms to deliver such novel products
risks introducing additional complexities, including excessive
depletion of core metabolite pools or the generation of toxic
products or intermediates. Design approaches driven by WCMs
are uniquely placed to identify such issues and provide a route to
their circumvention.

The capacity to design-in explicit control over cellular
behavior is also critical for industrial adoption of model-derived
chassis. It can be argued that the ability to regulate cellular
processes is as important as defining the processes themselves.
Tunable regulatory systems must afford a degree of both intrinsic
and extrinsic control. Synthetic biology-based approaches for
constructing genetic circuitry are now placing us on a path to
broad-reaching cellular regulation, though issues still exist. These
systems are often insufficiently orthogonal, with bespoke designs
required for different chassis due to variations in core metabolic
process (Pandit et al., 2017). Again, whole-cell design approaches
offer a solution to this issue, as such systems can be predefined
and tested for functionality in silico prior to undertaking costly
lab experimentation.

WHAT’S NEXT? GOING BEYOND THE
PROTOTYPE

In recent years, advances in genomic measurement technologies
for data generation, the establishment of data repositories,
and the development of WCM simulation platforms have
significantly facilitated the derivation of WCMs [see (Goldberg
et al., 2018) for a review]. Nevertheless, the implementation
of WCM-based design-build-test cycles for genome-scale

engineering requires further challenges to be addressed
(Bartley et al., 2020).

If a model has to be used for the design and prototyping
of an engineered living system, the model needs to be
reliable. Even for a simple organism, the number of kinetic
parameters raises as the complexity and the level of detail
of a mathematical model increase; constraining parameters
thus becomes harder and requires extensive experimental data.
Mathematical models can be used to produce predictions of
missing data, however, they often abstract physical processes
using simplifying assumptions which might hold in specific
conditions (Babtie and Stumpf, 2017). To set the 1,462
quantitative parameters of the M. genitalium WCM, values
from related organisms were incorporated due to a lack of
organism-specific data (Macklin et al., 2014); a combination
of parameter values reported from previous experiments and
numerical optimization on a reduced model was performed.
While, ideally, we would like to measure all kinetic parameters
directly from experiments, we still lack the ability to measure
each state in individual cells over time, and across all possible
environmental conditions. A combination of direct experimental
estimation and parameter inference will likely be needed for
genome-scale formalisms and WCMs.

Sensitivity analysis, usually performed by perturbing
parameters to understand how uncertainties affect the model
outputs (Erguler and Stumpf, 2011), can become extremely
computationally expensive when applied to genome-scale
models. Alternatively, statistical approaches such as those
based on Bayesian methods (Vernon et al., 2018) or the Fisher
information matrix (Rand, 2008) could be carefully carried out
at least at the sub-model level, and possibly scaled up to WCMs.
The Reverse Engineering Assessments and Methods (DREAM8)
parameter estimation challenge (Karr et al., 2015b) was organized
to develop new parameter estimation techniques specific for
WCMs. It suggested possible interesting avenues for WCM
parameterization (i.e., model reduction and a combination of
differential evolution and random forests), and highlighted that
the availability of comprehensive data is critical to ensure the
model is practically identifiable (Ashyraliyev et al., 2009), and to
calibrate WCMs.

Researchers have started to collect data needed for WCM
development into public repositories [e.g., (Wittig et al., 2012;
Kolesnikov et al., 2015; Sajed et al., 2016; UniProt Consortium,
2018; Caspi et al., 2020)]; still, the data needed to derive and fit
WCMs are dispersed across many repositories and publications
and often not annotated or normalized, ultimately requiring
a massive manual effort. Federated archives of repositories,
such as the PDB-Dev system to deposit Integrative/Hybrid
models and corresponding data (Burley et al., 2017), also
exist and might be well placed to archive and disseminate
both data and models, while enabling different researchers
to attempt alternative modeling/parameterization approaches.
Covert’s group developed the WholeCellKB database (Karr
et al., 2013) to organize the quantitative measurements (over
1,400) from which the M. genitalium WCM was derived; it
would be ideal to enable automatic access and querying in
such databases.
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To enhance WCM reproducibility and collaboration, new
standards and simulations software are also needed (Medley et al.,
2016). Researchers should invest efforts to use and expand the
capabilities of standard formats such as the Systems Biology
Markup Language (SBML) (Hucka et al., 2003) and the Systems
Biology Graphical Notation (SBGN) (Le Novere et al., 2009)
to be suitable for WCMs. For example, several aspects of the
M. genitalium WCM cannot be represented by SBML, such as the
multi-algorithmic nature of the model (Waltemath et al., 2016).
Further development of standard modeling formats is needed
to enable reproducible WCM simulations, e.g., by including in
the SMBL Hierarchical Model Composition package ontologies
which could represent the algorithm needed for specific sub-
models (Courtot et al., 2011). In the context of synthetic biology
applications, we believe it would be appropriate and beneficial to
report and deposit data related to various iterations of WCM-
generated in silico predictions, in vivo testing and possible
model/design refinement; this would establish the predictive
power of WCMs and illuminate steps to make design-build-test-
learn cycles more effective.

It is also important to consider the structural uncertainties
in the model, which depend on model assumptions. While, for
certain sets of models (e.g., small ODE systems for signaling
pathways), likelihood- and Bayesian-based approaches have been
proposed for model selection (Wilkinson, 2007; Kirk et al., 2013)
and semidefinite programming for model invalidation (Anderson
and Papachristodoulou, 2009), no suitable techniques for WCMs
have been proposed to date.

We foresee that automation will play a fundamental role
in the derivation of WCMs for eukaryotic organisms and in
their application to design complex processes. Ideally, we would
like to introduce automation at different stages, such as data
extraction from the literature, model derivation, and model/data
integration both within the model fitting and validation steps,
and when comparing in silico design prediction with in vivo
tests (Bartley et al., 2020). This, in turn, will require the
adoption of standards for both data and model repositories. Also,
laboratory automation, coupled to WCM-based CAD, is expected
to transform design-build-test cycles. As the use of robotics
becomes increasingly common in both academia and industry,
the throughput and reproducibility of experiments needed
for both WCM derivation and validation can be significantly
increased, and protocol sharing across research communities
facilitated (Jessop-Fabre and Sonnenschein, 2019).

To assist the adoption of WCMs for synthetic biology
applications, high-performance parallelized computer clusters
are required to run the models with lengthy runtimes, coordinate
the corresponding databases, parameterize and validate the
models, and then to integrate WCMs in design cycles in
combination with optimization algorithms (Macklin et al., 2014;
Chalkley et al., 2019).

The implementation of standardized tools to share data and
simulate WCMs would, in turn, facilitate model validation. This
should involve the definition of proper metrics and formal
model verification techniques such as those developed for SBML-
encoded models (Kwiatkowska et al., 2011).

(RE)THINKING SYSTEM APPROACHES:
A COLLABORATIVE EFFORT

In addressing the aforementioned challenges, we believe
there is a tremendous opportunity to rethink approaches
used so far to generate genome-scale models, including
WCMs, and to integrate with broader communities including
software engineers, computer scientists, structural biologists,
bioinformaticians, and systems and synthetic biologists.

We do anticipate that, as diverse communities synergize
on WCM-related research, different kinds of formalisms might
be integrated within genome-scale models. Symbolic reasoning
provides a range of expressive and intuitive logical frameworks
that could potentially complement and help glue together sub-
models at different scales. Such methods are routinely applied
to complex systems in the electronics and software industries,
and have been applied to biological systems for nearly a
decade (Iyengar, 2011). Recent work showed the feasibility of
applying logic programming methods to signaling pathways (Ray
et al., 2011), metabolic networks (Bragagli and Ray, 2015) and
automating a mechanistic philosophy of scientific discovery in
simulated organisms (Rozanski et al., 2015); it should be feasible
to integrate such sub-models within a WCM framework.

We believe there is scope to further increase the descriptive
and predictive ability of WCMs across spatial and temporal scales
by integrating the structural biology and the molecular modeling
communities to carefully consider not only the biochemical,
but also the physical, molecular and structural components
of cells. The development of the so-called “physical” WCMs
[see (Feig and Sugita, 2019) and (Feig and Sugita, 2013)
for comprehensive reviews] is an emerging field, with the
first models describing minimal cellular environments in full
atomistic detail (Feig et al., 2015; Yu et al., 2016). With the
final aim to integrate biochemical and physical WCMs within
a multiscale framework (Sali et al., 2015), we need approaches
which can cope with the limitations of atomistic models of
biomolecules (mainly in terms of computational resources),
possibly exploiting coarse-grained (Ando and Skolnick, 2010;
Hyeon and Thirumalai, 2011) or continuum (Solernou et al.,
2018) approaches.

By collaborating with software engineers, we need to develop
tools which can enable, and possibly automate, the integration
of different data types across scales, model derivation, fitting
and validation, and visualization and interpretation of results
(Szigeti et al., 2018).

Moreover, rule-based models might become the new standard
to represent each molecular species with the required level of
granularity and multi-algorithmic sub-models (e.g., FBA and
stochastic dynamical models). Frameworks where intuitive logic
is coupled to rule-based models have started to be developed
recently (van der Zee and Barberis, 2019).

As we produce ever-increasing amounts of experimental
data and increasingly sophisticated computational tools to
realize detailed and complex representations of actual cells,
approaches instead focusing on deliberately abstract and
parsimonious simulations of artificial cellular systems provide
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a valuable change of perspective. Such “toy models” might
be a valuable tool to test different algorithms for model
derivation and fitting, while offering an opportunity to engage
with broader research communities and with the public
(Castiglione et al., 2014).

Finally, we believe there is tremendous potential for applying
machine learning techniques to both WCM derivation and their
applications in synthetic biology. Two recent works (Lin et al.,
2017; Ma et al., 2018) showed that deep neural networks are
well placed to reconstruct the architecture of living systems
[namely, the hierarchical organization of nuclear transcriptional
factors in the nucleus (Lin et al., 2017) and of a basic eukaryotic
cell (Ma et al., 2018)] and predict cell states and phenotypes.
In both cases, the configuration of network layers and thus
the biological structure were formulated using extensive prior
knowledge, ultimately enabling fully “visible” systems, where all
the internal biological states can be interrogated mechanistically
(Yu et al., 2018). Machine learning could be beneficial to
systematically process large in vivo and in silico whole-cell data-
sets, for example by applying Bayesian inference, to integrate
data from diverse sources and supplement sparse data (Perdikaris
and Karniadakis, 2016), and to help to automatically classify
WCM simulations and link phenotypes to genotypes (Alber
et al., 2019). Ensemble methods, which combine multiple
independent models into a single predictive model for increasing
the overall robustness of predictions, might also be adopted to
develop subcellular formalisms and support their integration
across chassis (Camacho et al., 2018). Additionally, machine
learning might assist in WCM parameter identification, for
example applying Bayesian parameter estimation (Vyshemirsky
and Girolami, 2008), regression models and reinforcement
learning techniques (Alber et al., 2019). Optimal experimental
design techniques might also offer a valuable methodology to
select the best experimental datasets for both model identification
and validation (Smucker et al., 2018).

DISCUSSION

We have shown that WCMs are likely to be instrumental
to inform design-build-test cycles across synthetic biology
applications. WCMs can accelerate the realization of “designer”
cells and organisms tailored to specific functions, reducing
experimental iterations and increasing the predictive power of
computational formalisms used so far.

In the (re)design of cellular network functionalities, it is
therefore important to quantitatively analyze and predict,
through dedicated modeling strategies, the dynamics of
interactions between various layers of cellular regulation. Thus,
WCMs should take into account how different cellular layers
are integrated, and how regulatory feedback among these layers
occurs in time. These challenges must be tackled through
integrative computational and experimental collaborative efforts
aimed, respectively, toward: (i) engineering in vivo network
designs which, through predictive systems biology, may be able
to autonomously oscillate, sustaining generation of offspring,
and (ii) extraction, visualization and functional exploration of

regulatory interactions among cellular layers through novel
multiscale modeling frameworks.

As synthetic biology moves toward the (re)engineering of
entire genomes and multicellular systems, interdisciplinary
communities need to collaborate for the development of tools
that are required to improve the predictive power of WCMs.
Although challenges remain, it is clear that the adoption of
model-based methods has the potential to transform both basic
research and the current bioproduction development process,
leading to marked improvements in host performance and
product yield on an industrial scale.

Ultimately, as the development of human genome-scale
kinetic models becomes more feasible (Bordbar et al., 2015;
Szigeti et al., 2018), we anticipate that whole-cell formalisms will
become an indispensable tool to study human variation, and
design treatments and synthetic cellular screening systems.
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Multicellularity, the coordinated collective behavior of cell populations, gives rise to the

emergence of self-organized phenomena at many different spatio-temporal scales. At the

genetic scale, oscillators are ubiquitous in regulation of multicellular systems, including

during their development and regeneration. Synthetic biologists have successfully

created simple synthetic genetic circuits that produce oscillations in single cells. Studying

and engineering synthetic oscillators in a multicellular chassis can therefore give us

valuable insights into how simple genetic circuits can encode complex multicellular

behaviors at different scales. Here we develop a study of the coupling between the

repressilator synthetic genetic ring oscillator and constraints on cell growth in colonies.

We show in silico how mechanical constraints generate characteristic patterns of growth

rate inhomogeneity in growing cell colonies. Next, we develop a simple one-dimensional

model which predicts that coupling the repressilator to this pattern of growth rate

via protein dilution generates traveling waves of gene expression. We show that the

dynamics of these spatio-temporal patterns are determined by two parameters; the

protein degradation and maximum expression rates of the repressors. We derive

simple relations between these parameters and the key characteristics of the traveling

wave patterns: firstly, wave speed is determined by protein degradation and secondly,

wavelength is determined by maximum gene expression rate. Our analytical predictions

and numerical results were in close quantitative agreement with detailed individual based

simulations of growing cell colonies. Confirming published experimental results we also

found that static ring patterns occur when protein stability is high. Our results show that

this pattern can be induced simply by growth rate dilution and does not require transition

to stationary phase as previously suggested. Our method generalizes easily to other

genetic circuit architectures thus providing a framework for multi-scale rational design of

spatio-temporal patterns from genetic circuits. We use this method to generate testable

predictions for the synthetic biology design-build-test-learn cycle.

Keywords: genetic circuits, repressilator, biodesign, spatio-temporal patterns, traveling waves, cellModeller,

synthetic biology
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1. INTRODUCTION

Multicellularity and collective cell behavior exemplify the
emergence of complex patterns and structures across scales in
living systems. When cells interact they can generate higher
order patterns of gene expression (differentiation) as well as
patterns of mechanical stresses and strains (Chan et al., 2017;
Vining and Mooney, 2017). This process takes place in natural
phenomena such as embryonic development, tumor formation,
wound healing, among others (Velardo et al., 2004; Aboobaker
et al., 2005; Khain and Sander, 2006; Gjorevski and Nelson, 2010;
Santos-Moreno and Schaerli, 2019). Understanding how these
patterns are generated and maintained will enable applications
in tissue engineering and regenerative medicine. However,
natural emergent multicellular phenomena present numerous
unknown processes that pose difficulties for understanding the
fundamental mechanisms underlying pattern formation.

Synthetic biology applies design principles to generate
combinations of genetic parts that perform a given function,
for example oscillation, which at the same time helps us to
understand the complexity inherent to natural systems. The
prototypical engineering process is the design-build-test-learn
cycle, which is an iterative process relying heavily on models
of genetic circuit function. A variety of genetic circuits have
been designed, analyzed, simulated, and then implemented in
this way. These synthetic circuits simplify biological systems
reproducing a specific function (Xie and Fussenegger, 2018) such
as toggle switches (Gardner et al., 2000; Yeung et al., 2017),
oscillators (Elowitz and Leibler, 2000; Stricker et al., 2008; Danino
et al., 2010; Potvin-Trottier et al., 2016), logic gates (Tamsir et al.,
2011; Nielsen et al., 2016; Green et al., 2017; Kim et al., 2018), and
arithmetic operators (Wong et al., 2015; Ausländer et al., 2018).

While these circuits are often studied as dynamical systems
in single cells or well mixed populations, the function of genetic
circuits has also been studied in cell colonies (Luo et al., 2019;
Santos-Moreno and Schaerli, 2019) through the engineering of
patterns of gene expression such as symmetry breaking (Nuñez
et al., 2017), Turing patterns (Karig et al., 2018), fractal
patterns (Rudge et al., 2013), tissue like structures (Toda et al.,
2018; Healy and Deans, 2019), among others. These emergent
spatio-temporal patterns depend on mechanical constraints
on cells, which are the result of cell-cell and cell-substrate
interactions. Thus, synthetic gene circuits can be engineered to
generate higher order spatio-temporal patterns when coupled to
mechanical constraints.

We focus here on the repressilator (Elowitz and Leibler,
2000), a gene network that encodes a ring oscillator topology
consisting of three repressors, where repressor 1 inhibits
repressor 2, repressor 2 inhibits repressor 3, and repressor 3
inhibits repressor 1 (Figure 1). In the original realization of
this circuit topology (Elowitz and Leibler, 2000) the circuit was
subject to significant effects of noise and oscillations quickly
became desynchronized. Recently, the circuit was revisited by
Potvin-Trottier et al. (2016) with microfluidics systems that
allowed them to observe single cells oscillating synchronously
in chemostatic conditions for long periods of time. In this
work sources of noise were reduced in several ways. Firstly, the

fluorescent reporters were integrated into the same low-copy
plasmid as the repressilator reducing the standard deviation in
amplitude greatly. They also removed the degradation tags and
used a protease deletion strain (1clpXP) as the chassis to remove
noise from enzymatic queuing (Cookson et al., 2011; Steiner
et al., 2016). They also increased the effective repression threshold
with a high-copy titration “sponge” plasmid that sequesters
a proportion of the TetR repressor, since low repression
thresholds imply sensitivity to noisy repressor expression levels.
These modifications allowed regular and sustained synchronous
oscillations that peaked around every 14 generations. The circuit
oscillated for approximately 18 periods before accumulating half
a period of drift, demonstrating that cells remained synchronized
for more than 250 generations. Strikingly, Potvin-Trottier et al.
(2016) were able to observe whole flasks of liquid bacterial culture
oscillate synchronously, and bacterial colonies form coherent
ring patterns at macroscopic scale. These findings show that the
repressilator can be effectively isolated from noise, function in
a robust and synchronous fashion, and is capable of forming
spatial patterns.

Models are essential in the design process, they allow
engineers to screen the parameter space looking for possible
functional constructions (Endy and Brent, 2001; De Jong,
2002). Synthetic biology has gone from intracellular dynamic
models using ODEs (Elowitz and Leibler, 2000; Gardner
et al., 2000), and SSA (Potvin-Trottier et al., 2016; Karig
et al., 2018) to sophisticated collective behavior models
based on individual agents (Rudge et al., 2012; Gorochowski,
2016) and integrated circuit-host models (Sickle et al., 2020).
Using cellular scale individual-based models (IBMs) gives rich
information about the emergent collective properties of cell
populations due to the interactions between themselves and
their environment. These models track cell growth and gene
expression in ways analogous to experiments performed in
controlled environmental conditions with specified properties
such as viscosity, chemical concentrations, etc. This makes them
an essential tool in the analysis and design of emergent properties
of genetic circuits operating in multicellular chassis. However
these models are complex and require significant computation
time, highlighting the need for simple tractable mathematical and
computational methods.

In this study we uncover novel spatio-temporal patterns of
gene expression generated by the repressilator in growing cell
colonies, and establish a simple method for their design. Since
it is generalizable, this work provides a quantitative framework
for multi-scale rational design of spatio-temporal patterns
from genetic circuits. We provide testable predictions for the
synthetic biology design-build-test-learn cycle for engineering
repressilator spatio-temporal pattern.

2. RESULTS

2.1. Growth Rate Variation in Growing
Microcolonies
We consider the case of Escherichia coli, the cellular
chassis for which the repressilator (Figure 1) was designed,
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FIGURE 1 | Repressilator genetic oscillator circuit. (A) Network representation

of the repressilator, in the schematic 1 represses 2, 2 represses 3, and 3

represses 1. (B) Genetic circuit diagram of a plasmid encoding the

repressilator. (C) Oscillating repressor concentrations over time computed by

solving Equation (11) with fixed growth rate. CDS 1, 2, and 3 are the

complementary DNA sequences coding for each repressor, and Ori is the

origin of replication.

growing on a viscous substrate such as a hydrogel or PDMS
(polydimethylsiloxane) and supplied with fresh nutrients
via microfluidic channels. Growth is constrained by forces
between cells and between cells and the substrate due to
viscous drag (Rudge et al., 2012). The cells in such a system are
constrained to a monolayer and form a quasi-two-dimensional
array of extending rod shapes (Farrell et al., 2013; Grant et al.,
2014). We used an individual-based model (Rudge et al., 2012)
to characterize the distribution of cell growth rates across a two
dimensional cell monolayer growing in such conditions over
time. We simulated the growth of microcolonies from single
cells to populations of approximately 60,000 cells with a radius
of approximately 200 cell diameters. Figures 2A–C show the
development of a colony from approximately 5,000 to 50,000
cells. The distribution of growth rates across the colony has a
clear radially symmetric pattern with a maximum at the edge
of the colony (Figure S1). This is as expected (Vicsek et al.,
1990; Smith et al., 2017) since the cells at the edge of the colony
are relatively unconstrained. Thus individual bacteria inside
microcolonies perceive a different biophysical environment
depending on their spatial position. Taking radial averages of
growth rate on growing colonies over a range of time points
we see the same exponential decay relative to the colony edge
(Figure 2E), leading to a simple model for the cell growth rate
as a function of the radial position of the cell with respect to the
colony edge r(t),

µ̄(t) = e−r(t)/r0 , (1)

where r0 (8.23 ± 1.69 cell diameters) is the characteristic
length scale of the radial variation in growth rate, and we have
normalized by µ0—the maximal unconstrained growth rate of
the cells. These results suggest that growth rate time dynamics

are determined by radial distance from the colony edge. After
a short transient, the colony edge moves with constant velocity
vfront = 5.00 so that Rmax increases linearly (Figure 2F).

Assuming a two-dimensional densely packed monolayer with
random cell orientations, growth is isotropic and expansion is
equal in all directions. The area expansion rate approximates the
growth rate and is given by the divergence of the velocity field,

∇ · v =
1

A

dA

dt
, (2)

where A is the cell area and v is the velocity. Since growth
is isotropic we may decompose the expansion rate equally
into its radial and perpendicular components. Considering the
velocity v in the radial direction r, and velocity w in the
perpendicular direction s, and expanding the divergence term,
Equation (2) gives,

dv

dr
+

dw

ds
= 2

dv

dr
= µ(r). (3)

Hence, with v = dr/dt, and considering only the radial direction,
we can rescale time as t → tµ0 and radial distance as r → r/r0
to obtain,

d

dr

(

dr

dt

)

=

1

2
e−r . (4)

Integrating by r and t results in,

v(t) =

1

2

(

1+ exp

(

τ − t

2

))

−1

, (5)

r(t) = log

(

1+ exp

(

t − τ

2

))

, (6)

µ̄(t) =

(

1+ exp

(

t − τ

2

))

−1

, (7)

where τ = −2log(exp(r(0)) − 1), and r(0) is the initial radial
position of the cell.

Equations (5)–(7) give us valuable insights into the system
behavior (Figure 3). The velocity in the radial direction (away
from the colony edge) is a sigmoidal logistic function and
saturates to a velocity of v = 1/2 as r increases (Figure 3A).
This gives the front velocity as vfront = 1/2 in rescaled units.
Correspondingly the radial position relative to the colony edge
r tends toward linear increase at velocity v = 1/2 as the
cell becomes effectively stationary relative to the colony center
(Figure 3B). In real units this means that the front velocity
is vfront = r0/2, where r0 is the length scale of growth rate
variation (Equation 1). This is consistent with our individual
based simulations (Figure 2F), in which vfront = 5.00 and r0 =

8.23 ± 1.69. The growth rate is also sigmoidal and tends from
maximum at the colony edge to zero as the cell moves away from
the growing front of the colony (Figure 3C).

The critical time τ , depending on the initial cell position, is
the time at which the growth rate and velocity are at their half
maximum values, and the cell is at radial position r = log(2)
(Figure 3, dashed lines). At this time the cell switches from a high

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 August 2020 | Volume 8 | Article 89369

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Yáñez Feliú et al. Tunable Patterns

FIGURE 2 | Average growth rate decays exponentially with distance relative to the edge. (A–C) Are growing colonies at 5,000, 25,000 and 50,000 cells, respectively.

(D) Is a zoom from the white square region in (C). Single cells are colored according to their growth rate, which ranges between 0 and 1. (E) Average growth rate 〈µ〉

at different distances from the colony edge, blue line is an exponential function (e−r/r0) with r0 = 8.23 fitted to the binned data (blue dots). Inset shows the log scale of

the average growth rate 〈µ〉 at different distances from the edge. (F) Colony radius (Rmax ) over time (dashed red line), linear fit to data at t>10 giving vfront = 5.00 the

velocity of the colony edge (blue line).

growth, low velocity regime (remaining close to the colony edge),
to a high velocity, low growth regime (remaining stationary
while the colony edge propagates). The time τ for this switch
to occur is greater for cells closer to the colony edge, that is
they remain in the fast growing regime for longer. Thus, cells
effectively experience a switch in growth rate and velocity at their
critical time τ , which depends on their initial radial position in
the colony.

2.2. Dynamic Growth Rate Dependent
Mathematical Model of the Repressilator
Here we develop a simple mathematical model coupling the
repressilator genetic circuit to growth rate variation via simple
dilution of proteins. The repressilator can be considered as an
abstract genetic circuit topology.We consider an implementation
of this topology following the design modifications made by
Potvin-Trottier et al. (2016), which essentially isolated the circuit
from noise and allowed sustained and synchronous oscillations
over time scales up to 250 generations. Stochastic simulations
performed with relevant parameters reproduced this behavior,
showing essentially deterministic behavior (Figure S2), therefore
we may use a simpler differential equation model to track the
repressor concentration of each cell over time. A simple two-step

model of the balanced repressilator genetic circuit (Figure 1), a
type of genetic ring oscillator, can be formulated as follows,

dmi

dt
=

a+ b(pj/Kj)
n

1+ (pj/Kj)n
− δmi, (8)

dpi

dt
= cmi − γ pi − µ(t)pi, (9)

where i is one of the three genes, j is its corresponding
repressor gene, mi, pi are the mRNA and protein concentrations
respectively, a is the constitutive transcription rate, b is the
leaky or repressed transcription rate, µ is the instantaneous
growth rate of the cell or population of cells, γ is the
protein degradation rate, and δ is the mRNA degradation rate.
Order of magnitude estimates of these parameters are given in
Supplementary Material.

Since mRNAs are typically short lived (see
Supplementary Material), we may assume quasi-steady
state concentrations and the system is,

dpi

dt
=

c

δ

a+ b(pj/Kj)
n

1+ (pj/Kj)n
− γ pi − µ(t)pi. (10)

Rescaling protein concentration as pj → pj/Kj and time by
t → tµ0 with µ0 the maximal growth rate, assuming that basal
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FIGURE 3 | Analytical solutions for cell velocity (A) and position (B) relative to

the colony edge, and growth rate (C), based on exponential decay of growth

rate with distance from colony edge. At critical time τ the system switches

between two regimes: high growth/low velocity, and low growth/high velocity.

expression is negligible, and combining with (Equation 7),

dpi

dt
=

α

1+ pnj
− γ̄ pi − pi

(

1+ exp

(

t − τ

2

))

−1

, (11)

where α = ca/δµ0K (order of magnitude 104, see
Supplementary Material) is the steady state maximal gene
expression rate and the constant γ̄ = γ /µ0 is the protein
degradation rate as a fraction of the maximal growth rate (order
of magnitude 1). This model depends on three dimensionless
parameters α, γ̄ , and n.

In this model we assume that the dominant effect of
growth rate variation is by dilution of proteins. While there
is evidence for growth rate dependencies of transcription and
translation rates and plasmid copy number (Neubauer et al.,
2003; Klumpp et al., 2009; Klumpp, 2011), all of which affect
the parameters of the model, these effects have only been
observed due to different biochemical environments. In spatially
constrained cell populations the shape of the growth profile

µ̄(t) depends both upon the biochemical environment and
mechanical constraints (Andersen and von Meyenburg, 1980;
Matsushita and Fujikawa, 1990; Tuson et al., 2012; Farrell et al.,
2013; Rudge et al., 2013; Smith et al., 2017; Winkle et al.,
2018). At the typical bacterial microcolony scale the biochemical
environment is essentially uniform in space due to the fast
diffusion of small molecules like sugars and aminoacids (Matson
and Characklis, 1976; Fraleigh and Bungay, 1986; Guélon et al.,
2012). Using microfluidic devices cells can be maintained in
constant fresh media allowing observation of the long term
dynamics of genetic circuits (Danino et al., 2010; Long et al.,
2013; Potvin-Trottier et al., 2016). Under these conditions then
the predominant factors determining growth rate are physical
forces and constraints.

2.3. Protein Dilution Enables the
Repressilator to Produce Traveling Waves
in Growing Microcolonies
The model presented above (Equations 5–7 and 11) describes
the trajectories of cells as they move in the radial direction and
change their protein concentrations over time. Assuming that
the motion and growth of cells is not affected by the expression
of repressor genes, this model describes the mean behavior of
cells starting from some initial radial position. It is obvious
from these equations that in the absence of growth the system
can only produce plane wave, homogeneously synchronized
oscillations. However, in the presence of growth we have an
explicit relation between cell position and protein expression rate,
enabling spatio-temporal pattern formation.

Since growth dilutes proteins the effective degradation rate of
the repressors is γ̄ + µ̄(t). The effect of the sigmoidal growth rate
switch on the repressilator is therefore to decrease the effective
degradation rate of the repressors from γ̄ + 1 to γ̄ as cells move
out of the growing regime (Equation 7). Potvin-Trottier et al.
(2016) showed that increasing the degradation rate of repressors
by appending a degradation tag reduced the period of oscillations
T. This decrease was by approximately a factor of two at 37◦C,
with less effect at lower temperatures likely due to decrease in
protease activity (Purcell et al., 2012). We confirmed this result
using ourmodel by numerically integrating Equation (11) at fixed
effective degradation rates γ̄ + µ̄ (Figure 4). The frequency of
oscillations f = 1/T was proportional to the degradation rate,
with a slope depending on α, the maximum gene expression
rate. Hence in colonies, as cells move away from the edge due
to mechanical constraints the effective repressor degradation rate
decreases and the period of their oscillations increases.

After the critical time τ the period of oscillations increases
as the cell switches from high growth rate and low velocity to
low growth rate and high velocity (Equations 5–7). This means
that there is effectively an interior region oscillating with long
period Tint and an exterior region oscillating with short period
Text . The phase offset between peaks of the two signals after some
time 1t is,

1T =

(

Tint − Text

Tint

)

1t. (12)
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FIGURE 4 | Oscillation frequency f (or period T ) depends on the effective

degradation rate of repressors γ̄ + µ̄. For a given maximum gene expression

rate α the frequency is proportional to the effective degradation rate, and

increasing α decreases the frequency.

When the phase offset 1T = Text we have in phase oscillations.
The time required for a cell to achieve this phase offset is the time
spent in the high growth regime τ , plus the time spent in the low
growth regime, hence,

t∗ = τ + 1t = τ +

TintText

Tint − Text
, (13)

is the time at which the cell is in phase with the edge of the colony,
the wave source. At time t∗ the distance from the edge r(t∗) of
this cell can be obtained from Equation (6), and since this is the
peak-to-peak distance it gives the wavelength λ. Assuming that
exp(t∗)≫ 1,

λ =

TintText

2(Tint − Text)
. (14)

The wave propagation velocity is vp = λ/Text− v̄front = λ/Text−

1
2 , where v̄front is the velocity of the colony edge in normalized
distance units, hence,

vp =
Text

2(Tint − Text)
. (15)

Equations (14) and (15) show that when Text < Tint the system
generates traveling waves with finite wavelength and wave speed.
When Tint = Text , there is no effect of mechanical constraint on
oscillation period and we find that vp = ∞ and λ = ∞, meaning
that the system forms homogeneous plane waves with the whole
colony oscillating synchronously. As Tint → ∞ the interior does
not oscillate and we find that vp → 0 and λ → Text/2 and we
thus have static rings of gene expression with spatial wavelength
Text/2 = v̄frontText . This is the case when protein degradation
is negligible (γ̄ = 0), a condition under which the repressilator
has been shown to form static rings in growing colonies (Potvin-
Trottier et al., 2016). Thus we have shown analytically that growth

rate heterogeneity induces the repressilator to form either static
rings or traveling waves in growing cell colonies, depending on
the degradation rate of the repressors.

2.4. Novel Spatio-Temporal Patterns
Emerging From Repressilator Dynamics
To test the predicted spatio-temporal patterns we integrated
Equation (11) from a range of initial cell radial positions
to construct the kymograph pi(R, t), where R = t/2 −

r is the rescaled distance from the center of the colony. A
kymograph (Figures 5A–C) represents the spatial dynamics of
a one-dimensional system, such as ours, evolving over time.
Each point in the kymograph represents the state of the system
at a given time (x-axis) and position (y-axis) with a color.
By taking radial averages the kymograph fully characterizes
radially symmetric spatio-temporal patterns with the vertical
axis representing distance from the center of the colony. Here
we reflect the kymograph to represent the symmetric structure
of the pattern (Figures 5A–C), whereby the growth of the
colony can be seen as two linearly expanding borders forming
a triangular shape. The slope of this border is the front speed
v̄front = 1/2. The color represents the radially averaged
repressor protein concentrations (red, green, and blue) at each
position at each time point, normalized to their maximum
values. The corresponding predicted colony pattern is shown
inset in Figure 5C. Stripes in the kymograph represent rings
of gene expression. Horizontal stripes show static rings since
their radial position does not change (Figure 5A). Vertical
stripes would represent in-phase homogeneous oscillations
since they do not vary in space (Figure 5B). Diagonal
stripes represent traveling waves, moving rings of repressor
expression, since they vary in both space and time (Figure 5C).
Hence we confirm our theoretical prediction of traveling
wave patterns.

The spatio-temporal dynamics of the system are described by
two parameters that can be extracted from the kymographs. The
slope of each stripe gives the wave speed vp, and the vertical peak-
to-peak distance gives the spatial wavelength λ = (vp+v̄front)T =

(vp +
1
2 )T, where T is the period of oscillations at the colony

edge (the wave front) and v̄front is the front velocity in normalized
distance units (Figure 5C).

2.5. Tuning the Repressilator to Control
Spatio-Temporal Pattern Formation
In order to quantitatively test our theoretical predictions and to
characterize the design space of these traveling wave patterns
we scanned the parameter space within physiologically relevant
ranges. We measured the wave speed vp and wavelength λ of the
system for 625 combinations of α and γ̄ spanning four orders
of magnitude to construct the phase space (Figures 5D,E). We
see that wavelength was predominantly determined by α, while
wave speed depended on γ̄ . Traveling waves were observed for
all values of α but clearly require non-zero protein degradation
rate γ̄ (Figure 5F).

We observed that wave speed was proportional to γ̄ , with
vp ≈ γ̄ /2 (linear fit vp = 0.535γ̄ + 0.0214) . Static
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FIGURE 5 | Parameter dependence characterization for 1D model. (A–C) Kymographs of growing colonies show protein concentrations as a function of radial

position over time, with no protein degradation (A, γ̄ = 0, α = 104) we obtain static rings, with no growth rate dilution (B, γ̄ = 1.5, α = 104) we see plane waves, and

with growth rate dilution and protein degradation (C, γ̄ = 1.5, α = 104) we have traveling waves. White dashed lines show wave trajectories. The distance between

two trajectories is the wavelength λ, and the slope is the wave speed vp. Inset in (C) is the whole colony at the end of the experiment. (D,E). Heatmaps of wave speed

vp and wavelength λ, respectively over a range of α and γ̄ . (F). Effect of γ̄ on wave speed vp at different α. (G). Effect of α on wavelength λ at different γ̄ . Triangles in

(F,G) show analytical estimates for α = 100 and γ̄ = 1, respectively.

rings (vp = 0) form when γ̄ = 0. As γ̄ → ∞, as
is the case at growth arrest (µ0 = 0), we saw earlier that
the system can only form plane waves with all parts of the
colony oscillating in phase, which corresponds to vp = ∞.
Wavelength was predominantly but weakly affected bymaximum

gene expression rate α (Figure 5G) following approximately
α ≈ 10λ−1 [from the linear fit λ = 1.01 log10(α) + 0.998
]. These results are consistent with our theoretical predictions
based on the oscillation period from Equations (14) to (15)
(Figures 5F,G triangles).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 7 August 2020 | Volume 8 | Article 89373

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Yáñez Feliú et al. Tunable Patterns

We demonstrate the tuning parameters α and γ̄ above
using kymographs in Figure 6. With no protein degradation
(γ̄ = 0) the system produces static rings of gene expression
following the phase of each repressor (Figures 6A,B). In the
kymograph this spatio-temporal pattern is observed as horizontal
stripes of consecutive red, green, and blue, representing the
three repressors. This confirms the observation of fixed ring
patterns in colonies hosting a repressilator with stable repressor
proteins (Potvin-Trottier et al., 2016). The static ring patterns
observed are therefore a special case of the more general traveling
wave solution with velocity vp = 0. These traveling waves
are induced and modulated by protein degradation. In the
intermediate case when protein degradation and growth are
similar (Figures 6C,D,F) we see the clear emergence of a traveling
wave solution. This spatio-temporal pattern is characterized by
diagonal stripes in the kymograph, with steeper sloped lines
indicating higher velocity of the waves (Figure 5A). At lower
protein degradation rate (γ̄ = 0.3) we see traveling waves with
lower velocity (Figures 6C,D). Hence protein degradation rate
tunes the speed of the traveling waves. Changing α however
does not affect the speed of the waves (Figures 6A–F) but does
change the wavelength of the traveling waves resulting in more
spatial rings at lower α values. We note that increasing α also
stabilizes the oscillations as found by Osella and Lagomarsino
(2013) and Potvin-Trottier et al. (2016) (Figure 6 panels below
each kymograph).

2.6. Growing Cell Colonies Generate
Traveling Waves in Quantitative Agreement
With Predictions
To test if these predictions hold in constrained growing
microcolonies of cells we used our individual based biophysical
model of bacterial cell growth and division. We grew colonies
from a single cell up to 60,000 cells, tracking each cell’s
motion and protein expression levels according to Equation
(11) without the growth rate term (dilution was computed
by the biophysical model). The results show, as predicted,
the formation of symmetrical rings relative to the center
of the colony (Figure 7A, Supplementary Material, Video 1

and Video 2).
In order to test the dependency of wavelength and wave

speed on protein degradation and maximal expression rate, we
simulated a range of γ̄ and α (kymographs in Figures 7B–E).
Our findings matched with the prediction of the 1D model;
no waves were formed for γ̄ = 0, wave speed increased
when γ̄ was increased, and wavelength increased when α was
increased. The spatio-temporal dynamics of each repressor is
regulated by protein dilution (γ̄ ), which moves the system from
fixed rings (Figure 7B) to an oscillatory behavior which gives
rise to traveling waves with different wavelengths controlled by
maximum expression levels and speeds controlled by protein
degradation (Figures 7C–E).

Since we tracked every cell as they grow, replicate, and
express proteins (Figures 7B–E right column) we could follow
the dynamics of individual cells as they move through the colony,
changing their growth rate depending on their mechanical

environment (Figures 7B–E middle column). We selected
central and peripheral cells for each of the colonies to study the
most restricted and the most unconstrained cells. For colonies
with traveling waves the constrained non-growing central cells
oscillated with constant frequency and phase. Cells starting at the
periphery of the colony however experience changes in growth
rate as they move away from the colony edge that cause a sharp
decrease in frequency and a resulting phase offset with respect
to the central cell. We found that cells in the periphery exhibit
higher frequency oscillations compared to central cells, and that
difference is increased when increasing γ̄ (Figures 7B–E central
column). This is consistent with our theoretical prediction that
growth rate reduction increases the period of oscillations, causing
a phase offset between the interior and peripheral regions of
the colony.

The wavelength and wave speed obtained from growing
microcolonies was closely correlated to the predictions of
our simple model (Pearson’s correlation coefficient 0.983 for
wavelength and 0.999 for wave speed, Figure 8). The length
scale of wave speed and wavelength is set by r0, hence fitting
a linear model between the predicted and simulated speed and
wavelengths gives an estimate of r0 for the growing colony.
From the wave speed values we obtained r0 = 11.6 and
from wavelength r0 = 9.01, which is in close agreement
with that estimated from the growth rate distribution of
colonies (Figure 2). Our one dimensional model predicts that
the front velocity of the colony should be vfront = r0/2. From
wave speed we obtain a value of vfront = 5.80 and from
wavelength vfront = 4.51, which is extremely close to the
estimated value of vfront = 5.00 for our individual based
model (Figure 2).

2.7. Manipulating Mechanical Growth
Constraints to Control Pattern Formation
Microfabricated cell culture devices and microfluidics provide
fine control over the mechanical as well as biochemical
conditions in which cells grow. As well as providing fresh
nutrients via flow, maintaining cells in steady state, these
devices provide techniques to physically constrain cell growth
and therefore another mode of design of spatio-temporal
patterns induced by growth rate heterogeneity as we have
demonstrated. Commonly microfluidic devices are designed to
constrain cells to a monolayer, while allowing loading of seed
cells into a chamber or channel (Figures 9A,B). We imposed
two such constraints on our colonies. In a long thin channel
(400 × 20 × 1 cell diameters) cells form one dimensional
traveling waves directed along the channel axis (Figure 9A,
See Supplementary Material, Video 4, Video 5, Video 6).When
constrained to a chamber (80 × 80 × 1 cell diameters) we
observed the emergence of traveling waves during unconstrained
growth (Figure 9B, t+4, See Supplementary Material, Video 3).
These waves were sustained over long time periods after the cells
became constrained and stopped growing altogether (Figure 9B,
t + 8, t + 12). Growth is necessary to form traveling waves but
the established phase offsets between different radial positions
are maintained after growth arrest, continuing to produce
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FIGURE 6 | 1D model simulations for selected parameters. Each panel shows: kymograph of the emerged pattern, where stripes show wave trajectories; trace of the

three repressor concentrations over time in the center of the colony; the whole colony showing the final ring pattern. (A) γ̄ = 0.0, α = 10,000. (B) γ̄ = 0.0, α =

100. (C) γ̄ = 0.3, α = 10,000. (D) γ̄ = 0.3, α = 100. (E) γ̄ = 1.0, α = 10,000. (F) γ̄ = 1.0, α = 100.

traveling waves. The history of the shape of wavefront is
therefore retained in the pattern. Finally, we demonstrate that
growth rate heterogeneity in three dimensional colonies also

generates traveling waves as layers (Figure 9C), showing that
the spatio-temporal pattern is not specific to monolayers (see
Supplementary Material, Video 7 and Video 8).
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FIGURE 7 | Simulations of growing colonies. (A) Colonies with 5,000, 20,000, 35,000, and 50,000 cells, equally spaced 9.3 doubling times apart, with γ̄ = 0.3,

α=10.000. (B–E) Each panel shows: kymograph of repressor concentrations (51 doublings, approximately 60,000 cells); time dynamics for central cell and peripheral

cell in colony; close up of edge of colony at end of experiment. Parameters: (B) γ̄ = 0, α = 10, 000. (C) γ̄ = 0.3, α = 10, 000. (D) γ̄ = 0.3, α = 100. (E) γ̄ = 1.0,

α = 1, 000.
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FIGURE 8 | Comparison of wave speed (A) and wavelength (B) between 1D

model and growing cell colonies (IBM). The length scale of wave speed and

wavelength is set by r0 and the slope of these plots gives estimates for r0 as

11.6 (wave speed) and 9.01 (wavelength) cell diameters. Speed and

wavelength of traveling waves were closely correlated between the models,

with Pearson’s correlation coefficient 0.999 for wave speed, and 0.983

for wavelength.

3. DISCUSSION

Here we demonstrated how biophysical constraints on growth
can induce spatio-temporal pattern formation from a simple
genetic circuit. By coupling the repressilator (Potvin-Trottier
et al., 2016) to a heterogeneous growth rate pattern via
protein dilution we generated emergent traveling waves of gene
expression. These traveling waves can be characterized by two
properties; the wavelength and the wave speed. These properties
are determined by two simple parameters that are feasible
to control experimentally; the protein degradation rate, which
controls the wave speed, and themaximal protein expression rate,
which controls the wavelength. Our results make quantitative
and qualitative predictions about the spatio-temporal patterns
produced by the repressilator in growing cell colonies.

Our analysis predicts that traveling waves will be observed
if the ratio of protein degradation to growth rate γ̄ = γ /µ0,
is sufficiently high for the waves to form in the time of the

experiment. For γ̄ = 0 we predict the formation of static
rings of gene expression as observed in experiments (Potvin-
Trottier et al., 2016), however we show here that this pattern
could be generated purely by protein dilution and does not
require cells to transition into stationary phase. We show
that increasing γ̄ , which means increasing protein degradation
rate or decreasing growth rate, will increase the speed of the
waves. This could be achieved by choosing one of several
protein degradation tag sequences that target the proteins for
proteolysis (Purcell et al., 2012). Further, our model suggests that
increasing maximum protein expression rate α, for example by
choosing a more efficient ribosome binding site (RBS) (Salis
et al., 2009) will increase the wavelength of the pattern. We
parameterize simple empirical models for the effects of each of
these genetic design modifications; log10(α) = λ − 1 and vp =

γ̄ /2 . Thus, we have effectively generated a quantitative datasheet
for the repressilator gene circuit topology operating in a simple
microcolony chassis.

We derive a simple model of coupling genetic circuits to
growth rate via protein dilution, and show that it accurately
predicts traveling wave patterns in growing cell colonies, their
speed, and wavelength. The model also accurately predicts the
colony front velocity. The mathematical and computational
approach outlined here is not specific to the repressilator nor
to bacterial colonies and could make predictions about spatial
patterns produced by other circuit topologies and chassis. Here
we did not consider gene circuits that affect growth rate, for
example by regulation of metabolism, which may produce
more complex spatial patterns (Nuñez et al., 2017), however
it could be included in our framework leading to a more
complex set of coupled differential equations. Thus, this analysis
approach implements the rational design of spatio-temporal
patterns of gene expression, enabling the design stage of the
design-build-test-learn cycle.

Oscillators are important in regulation of multicellular
systems and many studies have reproduced oscillations in
synthetic genetic circuits by assembling different devices
combining modular parts (Liu et al., 2015; Niederholtmeyer
et al., 2015; Perez-Carrasco et al., 2018; Riglar et al., 2019).
Studying and engineering synthetic oscillators can direct us to
understand complex multicellular behaviors at multiple scales,
in particular here the emergence of traveling waves of gene
expression in populations of cells. There are a wide range of
phenomena in which a key element to a developmental process
is the appearance of a traveling wave of chemical concentration,
mechanical deformation (Espeso et al., 2016), electrical or other
type of signal (Murray, 2002). Two examples are the chemical
and mechanical waves which propagate on the surface of many
vertebrate eggs (Deneke and Di Talia, 2018). A developing
embryo presents a large number of wave like events that appear
after fertilization (Kimmel et al., 1995). Thus, one importance of
this work is that we were able to rationally design andmanipulate
in silico genetic circuits to recapitulate such patterns with tunable
wavelength and wave speed.

Noise is known to affect oscillators in various ways
including stochastic coherence which makes the oscillations
more consistent (Hilborn and Erwin, 2008), and may therefore
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FIGURE 9 | Traveling waves in microfluidic devices. (A) Simulations of a monolayer of cells in a narrow infinite channel 20 cell diameters wide and one cell diameter

tall. Traveling waves start at the sides and merge in the center (white arrows). (B) Growing colony in a square simulated microfluidic chamber. Before the colony

reaches the constraints it grows with radial symmetry and initiates traveling waves (t, t+4). At t+12 the colony has used all the space and is constrained by chamber,

growth arrest occurs, but the traveling waves continue (white arrows). (C) Spherical colonies grow when not constrained to a plane, forming traveling layers of gene

expression. Image shows a cutaway of half the colony. (D) Transversal section of (C).

stabilize spatio-temporal patterns to stochastic fluctuations in
gene expression. We do not consider the role of noise in
this study because at the parameter values we explore, the

stochastic behavior approximates the continuous model, with
regular and sustained synchronous oscillations (Woods et al.,
2016) (Figure S2). We also note that since (Potvin-Trottier et al.,

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 12 August 2020 | Volume 8 | Article 89378

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Yáñez Feliú et al. Tunable Patterns

2016) observed synchronous long-term oscillations that form
ring patterns in growing colonies, cells must be synchronized
on average over long length and time scales, and so noise is not
likely to be important in the pattern formation process described
here. However, it would be interesting to consider the role
of noise in the generation of spatio-temporal patterns (Sagués
et al., 2007; Zhou et al., 2008) due to lower gene copy or other
circuit properties (Vilar et al., 2002; Lestas et al., 2010).

We reason that the traveling waves described here are
generated by phase and frequency changes induced by reduction
in growth rate as cells become more distant from the edge of the
colony, but maintained by protein degradation. In the absence
of protein degradation no traveling waves but simple static rings
form (Potvin-Trottier et al., 2016). The phase differences are
locked in as growth rate decays to zero, such that even after total
growth arrest the traveling waves continue (Figure 9B). The scale
of the waves, their speed and their wavelength are determined
by r0, the characteristic length scale of decay in growth rate.
However, the radius of the colony also scales with r0 and so
the overall pattern is in a sense scale invariant, showing the
same relative wavelength and speed for any exponential growth
rate profile.

Our results show that the speed of traveling waves in growing
bacterial colonies is approximately 10 cell diameters per doubling
time (approximately 10µm per hour for E. coli) toward the
colony center, but the colony border grows at only around 4
cell diameters per doubling. Hence gene expression information
can be transferred faster via a traveling wave than by the
physical transmission of cells. The ability to tune the wavelength
λ and wave speed vp of these patterns could enable design
of novel cell-cell communication systems based on oscillatory
signals. Further, coupling the oscillator to production of pulses
of diffusing chemicals such as acyl-homoserine lactones (AHLs)
could be used to enhance information transmission (Hopfield,
1974; Mangan et al., 2003). We note also that in a sense the
traveling wave pattern, its speed and wavelength encode the
history of the shape of the wavefront as the colony expands, which
may be useful for example for information storage.

A fundamental result of this work is to demonstrate that
mechanical constraint gives rise to higher order gene expression
patterns in cell colonies, and provide such a system for analysis.
There are a vast number of experimental conditions which
could be created to induce different spatio-temporal patterns in
such microcolonies. Microfluidics has shown to be of particular
help to control mechanical constraints (Ruprecht et al., 2017),
substrate stiffness (Wang et al., 2018), nutrients (Alnahhas
et al., 2019), chemical inducers (Danino et al., 2010), cell-cell
signaling (Alnahhas et al., 2019), and pattern formation (Kantsler
et al., 2020). As we showed in Figure 9, controlling biophysical
constraints using different channel layouts and mechanical
properties of the substrate could produce different patterns
of growth rate that give rise to structures that mimic
different stages of the development of organisms (Johnson
et al., 2017; Toda et al., 2018). A simple example is
the one dimensional channel (Figure 9A) which mimics
in a simple way an embryo growing along its axis and
sending back waves of gene expression from the front of the
cell population.

In summary we report here novel traveling wave spatio-
temporal patterns resulting from the growth rate dependent
dynamics of a repressilator genetic oscillator circuit. We
developed an analytical framework to predict the spatio-temporal
behavior of such genetic circuits in growing colonies. This
framework allows multi-scale rational design of spatio-temporal
patterns from genetic circuits and makes testable predictions for
the synthetic biology design-build-test-learn cycle.

4. MATERIALS AND METHODS

Computation and analysis in this work were performed in
Python (Van Rossum and Drake, 2009) with the use of the
packages NumPy (Oliphant, 2006), SciPy (Virtanen et al., 2020),
Pandas (McKinney, 2010), Jupyter (Pérez and Granger, 2007),
Matplotlib (Hunter, 2007), Seaborn (Waskom et al., 2017), and
NetworkX (Hagberg et al., 2018).

4.1. Individual Based Model
We grew colonies from 1 up to 60,000 cells, simulated using
CellModeller (Rudge et al., 2012) with parameters Ŵ = 10
and 1t = 0.05. Ŵ = γcell/γs is the ratio of cell stiffness to
substrate stiffness, which we estimate order of magnitude 10 (see
Supplementary Material). Briefly, CellModeller simulates cells
as rods extending along their axis but otherwise rigid. As cells
expand the resulting constraint energy is minimized to find the
new arrangement of cells. Cells experience viscous drag with the
substrate (γs) and along their length axis (γcell), and divide when
they reach a target length set to l0 = 3.5 cell diameters. At
division the cell is divided into two equal sized rods, which are
randomly perturbed slightly in their axis orientation. Cells were
constrained to lie in a plane, except in Figure 9C in which cells
grew in three dimensions.

Colonies were grown for approximately 48 doubling times
and the final radius of the colonies was approximately ∼230 cell
diameters. Since these simulations correspond to E. Coli cells,
these units represents approximately∼230µm. Simulations were
stored in a file for each time step. This file contains information
about the state of each cell present in the colony, including the
position, protein concentrations, growth rate, volume, length,
among other variables.

4.2. Colony Growth Analysis
Growth rate µ and radial position R were obtained for each cell
from 3 growing colonies from 5,000 up to 60,000 cells. At each
time point the colony radius Rmax(t) was calculated and divided
into n bins of size 1r = 5 cell diameters from the edge b0 to the
center bn. The growth rates µ of all cells with r ∈ [bn, bn+1) were
averaged to get 〈µ〉. An exponential of the form e−r(t)k was fitted
to 〈µ〉 at each time, obtaining k at colonies with different Rmax. A
linear model was fitted to the colony radius Rmax(t) when t > 10
to compute the front velocity vfront using numpy.polyfit.

4.3. Kymograph Construction for 1D Model
To obtain values of pi(r, t) we integrate Equation (11). Starting
from some initial colony radius R0 we initialize pi(r, 0) for r a
regularly spaced lattice on (0,R0). We use p2(r, 0) = 5 for all r,
that is homogeneous expression of only p2. At each step of an
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explicit Euler integration scheme we find the new cell positions
and construct a new regularly spaced lattice in (0,R(t)) = (0,R0+
t/2) and interpolate pi(r, t + 1t) onto this grid before taking the
next integration step. The algorithm is as follows:

1. Initialize r(0) as a regular lattice on (0,R0) and p∗i (r, 0) to
some values.

2. Compute pi(r, t + 1t) by an explicit Euler step of Equation
(11) , and r(t + 1t) using Equation (6).

3. Compute a new regular mesh r′(t + 1t) on (0,R(t + 1t)).
4. Interpolate the protein concentrations to get pi(r

′, t + 1t).
5. Set t → t + 1t, and r(t + 1t) → r′(t + 1t), and repeat from

step 2.

At the end of this procedure we have constructed a set of samples
pi(r, t) which we then interpolate to form the kymograph.

4.4. Dynamical Simulations of Gene
Expression
Using the file stored for each simulation in the IBM, we have
a representation of the biophysical model decoupled from the
genetic circuit. Using these data we performed simulations of
the gene expression model derived in Equation (11). In order
to keep updating the state of the cells, which is affected by cell
division, we constructed a graph of parent-child relations. Thus,
we integrate Equation (11) forward using explicit Euler method
between each state of the biophysical model. One assumption
made is that when a cell divides the children inherit the value of
the protein concentration his parent. We assume the number of
proteins divides equally between the two cells, as does the volume
of the cell, keeping protein concentration constant. Resultant
simulations then serialized to a JSON file. These files were later
used to perform analysis and create visual representations.

4.5. Kymograph Construction for Individual
Based Simulations
Using the JSON file obtained in the temporal simulation of gene
expression with the biophysical model, we generated positions
and growth rates of cells. Then we binned cells according to their
radial position using bin size 1R = 5. Finally we take the average
protein concentration in each bin and repeat for all time steps to
get pi(R, t).

4.6. Wave Speed Estimation
First we take each row of the kymograph and identify the radial
peaks (scipy.signal.find_peaks) in each protein concentration for
each time step. Next the peaks are paired with the nearest peak
in the previous time step, and the average distance between them
used to calculate the wave speed as v = 〈1x〉/δt, where 〈1x〉 is
the mean peak to peak distance and δt is the simulation time step.

4.7. Wavelength Estimation
In order to estimate the wavelength λ of the traveling waves we
note that λ = (vp + vfront)T, where vp is the wave speed, T is

the period of oscillations, and vfront =
1
2 is the velocity of the

colony edge or wavefront. To estimate the oscillation period we
take the leading edge of the colony and compute the peaks in its
time varying protein concentration pi(r = 0, t). Then as above

we estimate the period as the mean of the peak to peak times so
that T = 〈1t〉. The wave speed is taken from the calculations
described above, and the resulting estimate for wavelength is
λ = (vp +

1
2 )T = (vp +

1
2 )〈1t〉.

4.8. Analytical Estimates of Wavelength
and Wave Speed
We used Equations (14)–(15) to estimate the wavelength and
wave speed of traveling waves that the repressilator would
produce with an exponential growth rate profile (Equation
1). First we numerically integrated Equation (11) with fixed
growth rate µ̄. For each combination of parameters we simulated
oscillations at the colony edge (µ̄ = 1) and the colony interior
(µ̄ = 0), and measured the periods Text and Tint as described
above. These values were then substituted into Equations (14)–
(15) to compute the estimated wavelength and wave speed.
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The Synthetic Biology Open Language (SBOL) is a community-developed data

standard that allows knowledge about biological designs to be captured using a

machine-tractable, ontology-backed representation that is built using Semantic Web

technologies. While early versions of SBOL focused only on the description of DNA-

based components and their sub-components, SBOL can now be used to represent

knowledge across multiple scales and throughout the entire synthetic biology workflow,

from the specification of a single molecule or DNA fragment through to multicellular

systems containing multiple interacting genetic circuits. The third major iteration of the

SBOL standard, SBOL3, is an effort to streamline and simplify the underlying data model

with a focus on real-world applications, based on experience from the deployment of

SBOL in a variety of scientific and industrial settings. Here, we introduce the SBOL3

specification both in comparison to previous versions of SBOL and through practical

examples of its use.

Keywords: synthetic biology, data standards, data exchange, knowledge representation, SBOL

1. INTRODUCTION

Synthetic biology builds upon advances in genetics, molecular biology, metabolic engineering, and
other related disciplines by applying principles such as modularization, standardization, and a
design-build-test-learn workflow to enable the engineering of biological systems, just as software
engineering does to the design of computer programs (Endy, 2005). The design-build-test-learn
workflow is heavily dependant on data exchange. A standardized knowledge representation, or
data standard, for exchanging information is critical from the initial stage of knowledge gathering—
where data about existing biological parts and systems must be integrated into a common model—
through to the entire design-build-test-learn lifecycle. Data standards are also crucial for the
effective dissemination of final products or the publication of novel designs to ensure precise
and unambiguous details of a system are accessible for oversight, management, and potential
future re-use.
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The unique requirements of synthetic biology present a
major barrier to the development of such standards. Biological
designs often involve engineering activities across a wide range
of scales, from single molecules to genes, pathways, strains,
and complex multi-cellular systems. Consequently, synthetic
biologists need to exchange a wide variety of information,
including the intended behavior of the system and actual
experimental measurements. Information being exchanged also
often covers multiple aspects of a design, including nucleic
acid sequences (e.g., the sequence that encodes an enzyme
or transcription factor), molecular interactions that a designer
intends to result from the introduction of a chosen sequence
(e.g., chemical modification of metabolites or regulation of gene
expression), as well as details regarding the construction of the
final engineered strain (e.g., nucleic acid synthesis, assembly,
and the transformation of a chosen cell type) and associated
experiments and data. All of these diverse perspectives need to
be effectively integrated to facilitate the effective engineering of
biological systems.

While there already exist many computational representations
of biological entities, these are almost all designed for the
annotation of natural systems and therefore struggle to describe
the specifics of engineered designs. For example, simple
formats for representing sequences such as FASTA (Pearson,
1990) are focused purely at the scale of nucleic or amino
acid sequences and cannot capture higher-level aspects of a
design (e.g., a sequence composition from constituent sub-
sequences/parts). More sophisticated formats such as GenBank
(Benson et al., 2013) or GFF (Stein, 2013) provide a flat
representation of sequence features that is well-suited to
describing natural systems, but again are fundamentally focused
on annotation at the nucleic or amino acid level and are therefore
unable to effectively represent functional relationships between
regions of a sequence (e.g., description of protein-protein
interactions) and localization (e.g., intracellular transport, cell-
to-cell communication), not to mention engineering concepts
such as interfaces and specifications or information capturing the
intent of the designer.

The Synthetic Biology Open Language (SBOL) has been
developed to address these challenges. SBOL is a standard to
support the specification and exchange of biological design
information in synthetic biology (Galdzicki et al., 2014),
following an open community process involving both “wet”
bench scientists and “dry” scientific modelers and software
developers across academia, industry, and other institutions (see
Methods). One of the primary aims motivating the development
of SBOL is the need to make the knowledge involved in
the synthetic biology lifecycle computationally tractable and
therefore amenable to process automation. The research question
of how domain knowledge can be decomposed into a form
accessible to computational methods is long-established in
computer science. The Resource Description Framework (RDF)
(W3C, 2014) is a data model formalized by the World Wide
Web Consortium (W3C) to describe named properties and
their values that is already widely used by the bioinformatics
community, with some of the largest biological datasets such
as UniProt and PubChem publishing official RDF versions

(Redaschi and UniProt Consortium, 2009; Fu et al., 2015).
SBOL is built upon RDF, and is also backed by a formally
defined ontology (Misirli et al., 2019), allowing design data to be
machine-navigable as a knowledge graph.

Since its initial publication in 2011, SBOL has become the
recommended format for engineered nucleic acid constructs in
ACS Synthetic Biology (Hillson et al., 2016), and is supported by
many biological design tools. For instance, Eugene (Bilitchenko
et al., 2011; Oberortner et al., 2014; Oberortner and Densmore,
2015), GEC (Pedersen and Phillips, 2009; Dalchau et al., 2019),
Cello (Vaidyanathan et al., 2015; Nielsen et al., 2016), GenoCAD
(Czar et al., 2009), ShortBOL (Crowther et al., 2020), and
GeneTech (Baig and Madsen, 2017) provide computational
frameworks for combinatorial design space exploration, where
users can specify structural, functional, and performance
constraints. The outputs generated by these tools in SBOL can
then be directly used by DNA assembly planning software tools
such as BOOST (Oberortner et al., 2017), Raven (Appleton
et al., 2014), j5 (Hillson et al., 2012), and DeviceEditor (Chen
et al., 2012) to automate the process of physically building DNA
constructs. Tools such as iBioSim (Myers et al., 2009; Watanabe
et al., 2018), MoSeC (Misirli et al., 2011), and SBOLDesigner
(Zhang et al., 2017) support the same SBOL data format and
support the modeling, analysis, and simulation of biosystems.
There are also a number of data repositories, registries, and
databases that support and store data in the SBOL format, such
as SynBioHub (McLaughlin et al., 2018), SBOLme (Kuwahara
et al., 2017), JBEI-ICE (Ham et al., 2012), and the Virtual
Parts Repository (VPR) (Cooling et al., 2010; Hallinan et al.,
2014; Misirli et al., 2014). The SBOL community has also
developed a graphical language for the visualization of biological
designs (Quinn et al., 2015; Beal et al., 2019), which has been
used in combination with the data standard in tools such as
Pigeon (Bhatia and Densmore, 2013), DNAPlotlib (Der et al.,
2017; Bartoli et al., 2018), VisBOL (McLaughlin et al., 2016),
Constellation, and SBOLCanvas. These tools help to visualize
constructs in the computational synthetic biology space such as
genetic circuits, biochemical components, and possible design
spaces based on structural or functional constraints. There are
many other examples that highlight the utility of the SBOL
data exchange format to connect and integrate data to create a
seamless computational workflow. For instance, Cello (Nielsen
et al., 2016) adopted the concept of a User Constraint File (UCF)
used in digital logic design to specify the library of genetic
gates and the associated properties and meta-data required to
synthesize combinational Boolean logic circuits. In addition
to this UCF file, the same library is also available in SBOL
format, which allows the data from Cello to be used in other
tools and workflows as highlighted in a recent effort to use
the Cello library and Virtual Parts Repository API to build
computational models encoded in the Systems Biology Markup
Language (SBML) (Hucka et al., 2003) that could be simulated
using iBioSim (Misirli et al., 2018).

The first version of SBOL (Galdzicki et al., 2011) defined
a simple data model for the description of engineered DNA
components and their sequences. Since then, SBOL has evolved
to support the capture of information at many different levels
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of representation across entire synthetic biology workflows
(Figure 1). In particular, the previous major revision, SBOL2
(Bartley et al., 2015; Roehner et al., 2016), generalized the
data model to allow for designs to include not only DNA
components, but also other molecular species such as RNAs,
proteins, larger components of a system such as whole cells,
and links to models encoded using complementary standards
such as SBML (Hucka et al., 2003). The standard was also
incrementally expanded with several minor revisions (Beal
et al., 2016; Cox et al., 2018; Madsen et al., 2019b) to capture
information about combinatorial design libraries, external file
attachments, sequence construction, experimental tests, and
measurements. Furthermore, by leveraging the Provenance
Ontology (PROV-O) (Lebo et al., 2013), SBOL2 can capture
provenance information to link and trace information and
processes throughout the entire design-build-test-learn cycle.

The incremental expansion in the scope of SBOL2 over the
past few years has resulted in a significant increase in the
complexity of the SBOL data model and has revealed aspects of
the representation that limited future developments.While SBOL
Enhancement Proposals (SEPs) to address this complexity had
been accepted by the community, they were considered toomajor
for a 2.x release, and therefore the need for a new major iteration
of SBOL became apparent.

Here, we present SBOL version 3 (SBOL3), a substantially
simplified standard that addresses these limitations, building
upon the experience of the SBOL community applying SBOL
across scientific and industrial settings. This new version (Baig
et al., 2020) provides for a more direct and elegant expression
of the diverse types of biological design information in use today,
while at the same time reducing the complexity of the data model,
which helps simplify the development of supporting libraries
and data exchange with compatible tools. SBOL3 is an attempt
to learn from the application of the previous SBOL standards,
take stock of new developments and directions in the field, and
establish a strong foundation for improved data exchange and
computational-accessibility across synthetic biology.

2. RESULTS

SBOL3 contains ten main top-level classes to support the various
aspects of the design-build-test-learn workflow (Figure 2). In
particular, designs can be expressed using the Component,
Sequence and CombinatorialDerivation classes. The
Component class is intended to be widely applicable across
all scales of biodesign, and can be used to describe not only
genetic designs, but also the design of other biological entities
such as proteins, functional RNAs, strains, multicellular systems,
media, and experimental samples. For those Components that
have a defined primary structure, such as nucleic acids and
proteins, an instance of the Sequence class can be assigned. A
CombinatorialDerivation allows one to specify a design
pattern where individual SubComponents can be selected from
a set of variants.

Beyond design, the Implementation class corresponds to
the build stage of the synthetic biology lifecycle and is used

to represent physical entities such as a sample of plasmid, a
stab of transformed bacteria, or an aliquot of liquid culture.
The Experiment and ExperimentalData classes support
the test stage, allowing for the linking of data generated during
an experiment. The Model class associates learned information
with a design. All of this information can be linked together
using the Activity class from PROV-O (Lebo et al., 2013). For
example, a design Activity may describe how a Component
is designed from a Model description. A build Activity
describes how an Implementation is constructed to the
specification of a Component description. A test Activity
describes how an Experiment is conducted using an
Implementation artifact. Finally, a learn Activity may
describe how a Model is updated using information from
an Experiment. The Collection class has members
which can be of any of these types or even Collections
themselves. Finally, all of these objects can refer to objects of
the Attachment class, which is used for links to external
data (images, spreadsheets, textual documents, experimental
instrument outputs, etc.).

2.1. SBOL3 Components
The main design entity in SBOL3 is the Component class.
Figure 3 provides an overview of the classes used by or linked
to by the Component class. The “structural” classes have
existed in various forms since the original SBOL1 specification.
SBOL2 introduced the “functional” classes of Interaction,
Participation, and Model. When SBOL2 introduced these
classes, they were intentionally kept separated from structural
information in a parallel “module” class hierarchy, with the aim
of allowing a simpler core “component” hierarchy to focus on
the construction of nucleic acid sequences and to be largely
shared with SBOL1. As SBOL has been applied to an expanding
range of designs, engineering scales, and workflows, however,
it has become clear that this dichotomy often tended to create
additional complexity by separating elements of a design that
would more naturally exist in the same scope. A summary of the
changes to the “component” hierarchy is provided in Table 1.

For example, consider a simple auto-regulatory device: a
transcriptional unit comprising a promoter, ribosome binding
site (RBS), coding sequence (CDS), and terminator, where a
transcription factor encoded by the CDS represses the activity
of the promoter (Figure 4). In SBOL1 (or an annotation format
such as GenBank or GFF), only the genetic structure of the
transcriptional unit can be represented, omitting the regulatory
relationship. An SBOL2 representation begins similarly, with a
ComponentDefinition to represent the transcriptional unit
as a whole, with its parts each a Component instantiations of
the ComponentDefinition for the respective constituent
promoter, RBS, CDS, and terminator parts, with these
functions identified using terms from the Sequence Ontology
(SO) (Eilbeck et al., 2005). The auto-regulatory interaction must
then be expressed separately in a ModuleDefinition
which, like the ComponentDefinition, describes
the transcriptional unit, but this time, from a functional
perspective. To do this, the transcriptional unit must
be instantiated in the ModuleDefinition using a
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GenBank

FASTA TATAATAGGATT CCGCAATG GATTACAGGGTTAGC AAATGGCAGC CTGATTA CAGG GTTAGCAA ATGGCAGCCT

TATAATAGGATT CCGCAATG GATTACAGGGTTAGC AAATGGCAGC CTGATTA CAGG GTTAGCAA ATGGCAGCCT

Promoter RBS CDS Terminator Promoter RBS CDS Terminator

TATAATAGGATT CTGATTA CAGG ATGGCAGCCT
version 1

version 2

version 3

TATAATAGGATT CTGATTA CAGG ATGGCAGCCT

TATAATAGGATT CTGATTA CAGG ATGGCAGCCT

Combinatorial designs

Add information for the entire

Design-Build-Test-Learn cycle

Connect to external data

sources and knowledge

graphs via semantic web

D

B

T

L

Simplified components,

interactions and hierarchy

FIGURE 1 | The evolution of SBOL from earlier FASTA and GenBank formats. FASTA was developed to capture pure sequence information. GenBank extends upon

this allowing sequences to have annotations, thereby capturing some structural and functional information. SBOL1 adds the ability to use hierarchical composition

when describing a design as well as only partially specifying sequences. The complementary SBOL Visual standard (Beal et al., 2019; Madsen et al., 2019a) enables

the visual representation of biological design information in an unambiguous way (SBOL version 1, 2, and 3 designs are all shown using SBOL Visual). SBOL2 added

the ability to specify modules and functional interactions between parts. Finally, SBOL3 simplifies the SBOL2 data model and greatly improves interoperability with

other computational tools through the use of a standardized knowledge graph representation.

FunctionalComponent, but its parts are still contained
within the ComponentDefinition and are not exposed
at the level of the ModuleDefinition. To document
the interaction, therefore, it is also necessary to create
promoter and CDS FunctionalComponent objects at
the level of the ModuleDefinition and a MapsTo
relation for each that identifies the promoter and CDS in the

ModuleDefinition as being the same promoter and CDS
in the ComponentDefinition. Finally, an Interaction
can be created in the ModuleDefinition to indicate that
the CDS has a regulatory effect on the promoter. While this
representation does capture all of the information desired,
synthetic biologists do not typically separate their thinking in
this manner: the promoter and CDS are being composed as
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Implementation

Collection

Model

Component

Sequence

Combinatorial 

Derivation
Experiment

Experimental Data

Attachment

Build

Test

Learn

Activity

Design

FIGURE 2 | Main top-level classes of SBOL3 and their relationships. The color of each class corresponds to its role in the design (green), build (orange), test (pink),

and learn (yellow) stages of the synthetic biology workflow. Additional utility classes are represented by gray boxes.

Constraint Feature

Component Interaction

Model

Location

Sequence

Participation

Structure

Function

FIGURE 3 | The SBOL3 Component object and related objects. Solid arrows indicates ownership and dashed arrows represent a reference to an object of another

class. Red and blue boxes represent structural and functional objects, respectively. To represent structural aspects, a Component can include Features, which may

refer to Locations within a Sequence. A Component can also include Constraints between these features. To represent functional aspects, a Component can

include Interactions that can refer to relationships between participating Features. A Component can also have its behavior described using a Model.

they are in the sequence structure precisely because of their
expected interaction. As a result, rather than deriving advantage
from the separation, SBOL tools instead tend to try to hide the
distinction from the user, further increasing both complexity and
opportunity for error.

In SBOL3, structural and functional aspects are both
captured using a single Component class (Figure 3). Namely,
to represent structural aspects, a Component can include
Features, some of which may be at some Location within
a Sequence, and which may have Constraints expressing
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TABLE 1 | Table of usage scenarios and their corresponding classes in SBOL version 1, 2, and 3.

SBOL1 SBOL2 SBOL3

DNA part DnaComponent ComponentDefinition Component

Non-DNA part N/A ComponentDefinition Component

Part uses SequenceAnnotation Component SubComponent

Functional groups N/A ModuleDefinition Component

Func. group uses N/A Module SubComponent

Sequence features SequenceAnnotation SequenceAnnotation SequenceFeature

References N/A MapsTo ComponentReference

External definitions N/A N/A ExternallyDefined

Placeholders N/A N/A LocalSubComponent

other relations in identity or space. To represent functional
relationships a Component can include Interactions that
can refer to relationships between participating Features.
Finally, a Component can refer to an externally defined
model using the Model class. The SBOL3 representation in
Figure 4 shows how much simpler this unified approach can
be, with the functional information added through a single
Interaction rather than an entire parallel construct and set
of identity mappings.

A more complex example illustrating the advantage of
this approach is shown in Figure 5 for the classic genetic
toggle switch (Gardner et al., 2000). As with the auto-
regulatory device, the SBOL2 representation has compact
structural representations of each transcriptional unit, but
the functional representation “explodes” these back into a
collection of copies and identity mappings for all of the
elements that participate in interactions. In SBOL3, on the
other hand, the combination of structural and functional
information into a single Componentmeans that every element
of the system appears precisely once and no identity mappings
are necessary.

The generalization of Component in SBOL3 enables a single,
unified hierarchy to capture designs comprising components
across multiple scales of a design, from individual molecules
to entire cells. For example, the system depicted in Figure 6

illustrates how the SBOL3 Component class can be used to
represent a multicellular system where a signaling molecule
(AHL) is used for communication between “sender” and
“receiver” cells. Moving to these larger scales is also enabled by
expanding Component type information beyond the Sequence
Ontology to additionally use appropriate classes of terms from
the Systems Biology Ontology (SBO) (Courtot et al., 2011) and
Gene Ontology (GO) (Harris et al., 2004). In this multicellular
system, for example, each cell is assigned the roleSBO:0000290
(physical compartment) and type GO:0005623 (cell), while
the subsystems for the sender and receiver are each assigned
the role SBO:0000289 (functional compartment). Constraints
are then used to express the spatial structure of the systems,
with the sender cells acting to produce AHL molecules initially
contained within those cells, the receiver cells responding to
the AHL molecules contained within those cells, and the fact
that AHL is being shared between the two types of cells is

represented by an identity relation between the two instances of
the molecule.

Finally, to better support the expanded range of design
elements that can be represented, SBOL3 also changes the
ontology used for specifying the type of a Component.
Previous versions of SBOL used the BioPAX (Demir et al.,
2010) definitions for molecular species, such as DNA and
protein ComponentDefinition instances. However, this
set of species is restricted, making it difficult to describe
designs across different molecular scales. The Systems Biology
Ontology (SBO) (Courtot et al., 2011) provides a much richer
and more extensible set of terms, already used by SBOL2
in the Interaction and Participation classes and by
SBOL Visual. SBOL3 standardizes the definition of molecular
species on SBO in order to have a more expressive and
consistent specification of component types. For example,
a DNA Component can be labeled using the SBO term
SBO:0000251 (Deoxyribonucleic acid), while a complex can
be labeled using SBO:0000254 (Non-covalent complex). A
Component used to represent primarily functional rather than
structural relationships, on the other hand, such as a metabolic
synthesis pathway spanning multiple integration sites, uses the
SBO:0000241 (Functional entity) term.

2.2. Features
In SBOL3, the Feature class is used to specify elements of
interest within a Component. SBOL3 introduces several other
classes of Feature to enable simpler representation of synthetic
biology designs.

2.2.1. SubComponents and SequenceFeatures
The original SBOL1 and SBOL2 structural representations
focused on the hierarchical composition of parts, such as the
inclusion of the pBAD promoter in the design of an arabinose
sensor. This was accomplished in SBOL2 using a Component
(now a subclass of Feature called SubComponent in SBOL3)
to refer to a definition of the included part, while its location
or locations on the sequence (if known) were expressed using a
SequenceAnnotation.

However, there are many simpler features (such as a
restriction site or -35 region) which are useful to annotate
but do not have any meaningful separate hierarchical existence
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DnaComponent

Autoregulatory device

SBOL1

SubComponents

Component

Autoregulatory device

SBOL3

SubComponents

Interaction

ComponentDefinition

Autoregulatory device

Components

ModuleDefinition

Autoregulatory device

FunctionalComponent

Autoregulatory device

MapsTo MapsTo

Interaction

FunctionalComponents

SBOL2

FIGURE 4 | A simple auto-regulatory device represented using SBOL versions 1, 2, and 3. In the SBOL1 example, the structure of the unit is captured, but the

regulatory function is not. In the SBOL2 example, the structure is captured using a ComponentDefinition, the function is captured in a separate

ModuleDefinition, and the two objects are connected using MapsTo relations. In the SBOL3 example, both the structure and function are captured by a single

Component, under which the SubComponent and Interaction objects can co-exist. Diagrams are drawn using SBOL Visual notation (Beal et al., 2019).

within a design. As SBOL2 evolved, such annotations were
simplified by allowing a SequenceAnnotation to provide
feature information about a sequence directly, without the need
to link the annotation to a Component, but the two classes could
not be separated fully without breaking backward compatibility.

In SBOL3, sub-components and feature annotation are now
fully refactored into two separate subclasses of Feature. The
SubComponent subclass describes a hierarchical part-subpart
relationship, with the option to directly specify its location on a
sequence if known and relevant, while the SequenceFeature
subclass describes a feature that must be associated with a
location, but does not indicate a part-subpart relationship.

2.2.2. Local and External Design Elements
SBOL3 also simplifies the handling of two other common cases
where defining a full Component is not useful. First, similar
to SequenceAnnotation, a LocalSubComponent is used
to represent components whose only purpose is to be local
placeholders or composites that only really make sense within
the context of their parent Component, being defined in terms
of their relationships with other Features. For example, a
LocalSubComponent may be used to specify a variable
in a template for a combinatorial library, with the local
subcomponent indicating information such as “put a promoter
in this location” and “put a barcode in that location.” In another
example, a LocalSubComponent can be used to specify a
plasmid assembled from several SubComponents, which then
goes on to be transformed into a cell strain.

Another important case is when an established collection
of knowledge is better kept outside of SBOL entirely. For
example, knowledge about small molecules or proteins is already
thoroughly encoded in a standard format in databases such
as ChEBI (Degtyarenko et al., 2007) or UniProt (UniProt
Consortium, 2007). In SBOL3, an ExternallyDefined
feature allows such elements to be included in a design by
pointing to the canonical non-SBOL definition, while still giving
sufficient information to reason about its use within a design
via type and role properties from ontologies such as SBO
and GO. In SBOL2, by contrast, such elements were required to
be mirrored in “empty” ComponentDefinition objects that
still essentially just served as a link to the definition while tending
to obfuscate the sharing of common design elements.

2.2.3. Simplified References
Finally, SBOL3 also introduces a ComponentReference class
that allows a Feature within a SubComponent to be used
directly in an Interaction or Constraint relationship.
For example, a ComponentReference can be used in an
Interaction indicating that the TetR protein represses the
pTet promoter on a plasmid that is included in a design as
a SubComponent.

This greatly simplifies such representations relative to SBOL2.
In SBOL2, such a reference was constructed by importing
a copy of the element as an immediate child of the object
where the relationship was expressed and then linking this
copy to the original with a MapsTo identity relation. The
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tetR
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FIGURE 5 | Gardner et al. (2000) toggle switch represented using SBOL versions 2 and 3. In the SBOL2 representation, the structure of the lacI and tetR units are

defined in ComponentDefinitions and instantiated in a ModuleDefinition as FunctionalComponents. Their function-linked sub-structures are then

mapped into the ModuleDefinition using MapsTo to assign corresponding FunctionalComponents for the promoter and CDS components, which can then

(Continued)
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FIGURE 5 | be used as participants in Interactions. In the SBOL3 representation, the creation of a ModuleDefinition and MapsTo relations as in the SBOL2

example is no longer necessary as sequence information and interactions can co-exist in the same parent Component object. Diagrams are drawn using SBOL

Visual notation (Beal et al., 2019). A serialized SBOL3 representation of this construct is available on GitHub at https://github.com/SynBioDex/SBOLTestSuite/tree/

master/SBOL3/toggle_switch.

Component

Receiver genetic circuit

Organism A
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SequenceConstraints

Interaction
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LuxR GFP
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AHL
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SequenceConstraints
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AHL

Constraint
contains

Constraint
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contains

Constraint
verifyIdentical
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FIGURE 6 | A multicellular communication system represented using SBOL3. Two different organisms implement a sender and receiver system, which uses a small

molecule (AHL) as a signal. The sender and receiver systems are represented by Components and use constraints to show that each of these cell types contains

AHL (not shown are details of the genetic system and its interactions with the molecule). These sender and receiver systems are SubComponents of the overall

multicellular system, which is also represented by a Component. The fact that AHL is shared between the two systems is captured using an identity constraint. A

serialized SBOL3 representation of this construct is available on GitHub at https://github.com/SynBioDex/SBOLTestSuite/tree/master/SBOL3/multicellular.

ComponentReference approach also enables multi-layer
references, which were not possible in SBOL2 without also
modifying the description of the intermediate layer designs.

2.3. Generalized Constraints
While the Interaction class can be used to express functional
relationships between biological components, it is also often
useful to be able to express information about the non-functional
design relationship between components. Such relationships
include identity (e.g., replacing a placeholder in a template with a
complete definition), relative positions in a sequence (e.g., “pLac
precedes tetR”), and general spatial relations (e.g., containment

of a plasmid in the chassis strain it transforms). The incremental
growth of SBOL2 resulted in this information being expressed in
a limited manner across a mixture of different classes: identity
relationships were expressed using a mix of MapsTo and
SequenceConstraint objects, while spatial relationships
were expressed with a mix of SequenceConstraint and
Interaction objects. SBOL3 combines and generalizes these
into a unified Constraint class, in which two components (a
subject and an object) are linked using a restriction to express
their relationship.

In SBOL3, identity relationships between components are
expressed with the verifyIdentical, differentFrom,
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and replaces relationships. The SBOL2 relationships for
expressing relative positions in a sequence—precedes,
sameOrientationAs, and oppositeOrientationAs—
are expanded with additional restrictions that cover
the full range of sequential relationships (Allen, 1983):
strictlyPrecedes, meets, overlaps, contains,
strictlyContains, equals, finishes, and starts.

Likewise, the set of constraints is further expanded to deal with
the spatial relationships of physical objects in general, rather than
just the special case of directional linear sequence. In particular,
these relations are based on the set of all topological relationships
between two spatial regions without holes (Egenhofer and
Herring, 1991), including common unions and omitting
symmetric relations that can be expressed by swapping subject
and object. These new topological restrictions include:

• isDisjointFrom – subject and object do not overlap in
space. Example: a plasmid is disjoint from a chromosome.

• strictlyContains – subject entirely contains object: they
do not share a boundary. Example: a cell contains a plasmid.

• contains – subject contains object and they might or might
not share a boundary. Example: a cell contains a protein that
may or may not bind to its membrane.

• meets – subject and object are connected at a shared
boundary. Example: two strains of adherent cells meet at
their membranes.

• covers – subject contains object but also shares a boundary.
Example: a bacterial cell encloses its transmembrane proteins.

• overlaps – subject and object overlap in space, but portions
of each are outside of the other. Example: a transmembrane
protein overlaps the cell membrane.

Taken all together, these three sets of relationships provide a
much simpler and more expressive system for expressing design
constraints in SBOL3 than existed in SBOL2.

2.4. Interfaces
In SBOL2, information about the recommended interface
for a component/module was dispersed into the “access”
field of ComponentInstance and the “direction” field of
FunctionalComponent. This makes the interfaces implicit
rather than explicit, scatters the information, and forced
premature definition of information about interfaces. As SBOL
is now being used to build designs that comprise more complex
devices on a larger scale, a clear specification of how components
work together is highly important.

In SBOL3, this information is instead collected into an
explicit Interface object with input, output, and
non-directional properties. Each of these properties refers
to a set of Feature objects in the same Component
that owns the Interface. Specifying any Interface is
optional, however, so this information only need be added to
systems where it makes sense and at an appropriate stage of
engineering. For example, a NOR gate from (Gander et al.,
2017) could be described as an SBOL3 Component with four
SubComponents: two gRNA inputs, the DNA component that
they regulate (comprising two binding sites, a promoter, and a
gRNA coding sequence), and the gRNA output. It would then be

assigned an Interface with two input relations (to the input
gRNA SubComponents) and one output relation (to the output
gRNA SubComponent).

2.5. Relationship With RDF and the
Semantic Web
All versions of SBOL have used RDF as a serialization format.
However, the relationship between SBOL and its underlying
Semantic Web representation has previously been unclear.
SBOL3 addresses these issues by following Semantic Web related
best practices where possible, enabling better integration with
existing Semantic Web tools.

2.5.1. Consistent Property Names
SBOL uses many terms from existing ontologies, such as Dublin
Core and PROV-O. The SBOL1 and SBOL2 specifications were
written in a manner such that those terms were given a new
“SBOL alias” that was sometimes, but not always, distinct from
the name assigned to them by the ontology. For example,
instead of defining the concept of a “title” or “description,”
the SBOL2 specification used the dcterms:title and
dcterms:description properties from the Dublin Core
ontology. However, the dcterms:title property is first
introduced as the “SBOL alias” of name, and then later
“mapped” to an ontology term in the serialization section of
the specification.

This makes serialized SBOL confusing to read, because
the ontologically-defined names used in the serialization
do not always match the specification-defined names
used by SBOL libraries. For example, SBOL2 renames the
prov:wasDerivedFrom property to wasDerivedFroms for
consistency with other aliases used in the specification. This also
meant that integrating terms from other ontologies into SBOL2
required a two-step process of writing their description as SBOL
“aliases” and then writing their “serialization.”

In SBOL3, the use of external ontologies has been made
explicit and consistent throughout the specification. For example,
dcterms:title has been replaced with an sbol:name
property, and all of the diagrams in the specification have
been updated to display the singular, prefixed form of property
names (e.g., prov:wasDerivedFrom) rather than an “SBOL-
adjusted” version (wasDerivedFroms).

2.5.2. Differentiating SBOL Entities (Concepts) and

Properties
The SBOL2 data model has several labels that are both used
to refer to entities and property names. In SBOL2, they were
differentiated by using the uppercase letter when referring
to entities and using the lowercase letter when referring to
property names. However, not all RDF tools are case-sensitive.
Moreover, referring to the data model makes it more difficult
to explain in papers. In SBOL3, this ambiguity is removed and
the labels are made as unique as possible. Additionally, prefixing
and suffixing is applied to property names, e.g., “has...” or
“is...Of,” as is the Semantic Web convention. For example, the
SBOL2 interaction property is now hasInteraction in
SBOL3. Additionally, all entities that are represented as RDF
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resources now begin with an uppercase letter, again following
RDF convention. For example, the public specifier in SBOL2
is now Public in SBOL3.

2.5.3. Serialization
Before SBOL3, the standard specified a bespoke file format used
for data exchange. This file format required the development of
libraries specifically for serializing and parsing SBOL data. In
contrast, SBOL3 no longer specifies a particular file format for
data exchange. Rather, it specifies how SBOL data structures map
to an RDF graph representation. This graph may then be easily
serialized to and parsed from a number of file formats, such
as XML, Turtle, N-Triples, and JSON, using standard software
packages. In addition to simplifying the underlying software
implementation, different serialization formats may provide
advantages for certain users. For example, Turtle increases
human-readability of SBOL documents, and even allows them to
be edited manually, while JSON is particularly convenient when
developing web applications using JavaScript, and N-Triples is
better for minimal difference detection version control systems.

2.6. Namespaces and Identifiers
Finally, one of the important considerations for enabling design
data interoperability is the need for consistent and compatible
identifiers. As SBOL is built upon RDF, it inherits theWorldWide
Web concept of a Uniform Resource Identifier (URI), a superset
of the Uniform Resource Locator (URL) standard. Consequently,
most SBOL resources, whether in a local SBOL file or in an online
repository, have an identifier that resembles a Web address.

In SBOL1, the format of these URIs was left unspecified,
meaning there is little consistency in the URIs created by
different SBOL1-enabled tools. SBOL2 introduced the concept
of “compliant URIs,” which comply with a set of optional
best practice rules. Broadly, compliant URIs take the form
of <URI prefix>/<displayId>/<version>, where the
URI prefix of child objects must be prefixed with the persistent
identity of their parent.

While SBOL2 compliant URIs are an improvement over the
lack of specification in SBOL1, they also suffer from several
practical issues. First, the positioning of the version at the end
of the URI is contrary to the established RDF convention of
positioning the identifier at the end, meaning existing RDF
tooling often displays the version of SBOL2 resources in place of
the identifier. Second, URI-suffix versioning is too granular (at
object level, when changes are often made across many objects
in a design) but also too contagious (changing an object version
requires making duplicate copies of everything that points to it
as well). Finally, these rules remain optional, meaning there is no
guarantee that SBOL2 data has compliant URIs, and it is unclear
when implementing tooling how to handle the case of mixed
compliant and non-compliant URIs.

SBOL3 addresses these issues by replacing the best practice
of compliant URIs with a required SBOL3 URI structure of the
form <URI prefix>/<displayId>, leaving the handling
of versioning and placement (if any) of the version up to the
tooling. For example, the version could become part of the
prefix (e.g., http://example.com/toggleswitch/1/lacI, part of the

displayId (e.g., http://example.com/toggleswitch/lacI_1, or even
omitted entirely (e.g., handled instead via git versioning).

Another challenge in SBOL2 was determining which portion
of a URI to rewrite when moving it from one namespace to
another. This often occurs when an SBOL document is migrated
from hosting on one server to a new location on a different server,
due to the dual role of a URI as both identifier and Web locator.
SBOL3 addresses this by introducing a Namespace class that
can be used to explicitly encode which portion of a set of URIs
should change and which should be retained.

3. DISCUSSION

SBOL supports the representation of abstraction hierarchies
across multiple scales of bioengineering, from individual
molecules to multi-cellular compositions and complete synthetic
genomes (Bartley et al., 2020). The SBOL data model supports
a wide variety of important use cases for synthetic biology and
bioengineering, including visualization (McLaughlin et al., 2016),
sequence design automation (Zhang et al., 2017), sharing of
genetic design information (McLaughlin et al., 2018), metabolic
engineering (Kuwahara et al., 2017), and generation of dynamical
models from sequence representations (Misirli et al., 2018).
Additionally, SBOL can be used to capture information about
the workflows used to engineer biological systems, supporting
reproducibility and automation of these processes.

As described in this paper, the SBOL community has
drawn upon several years of experience with the real-world
use of SBOL in scientific and industrial settings to produce
a specification for SBOL3 that is simultaneously simpler and
more expressive. Improvements to the standard in SBOL3
generally fall into one of two categories: simplification of the
data model, or closer conformance with Semantic Web best
practices. Major simplifications in the data model include the
unification of structural and functional compositions into a single
component hierarchy; simplification of the description of sub-
components and sequence features; and simplifying connections
between inputs and outputs across modular interfaces (e.g.,
transcriptional logic gates).

The other category of improvements in SBOL3 adjust the
standard to take better advantage of Semantic Web technologies.
By embracing existing developments, this shift will enable more
rapid development of SBOL tools and libraries and simplify
their maintenance. It will also enable users of SBOL to more
easily integrate biological knowledge in the context of their tools
through the use of ontologies, which are already widely used in
the life sciences to explicitly define biological entities and their
relationships. In addition to building upon existing ontologies
wherever possible such as the Sequence Ontology (Eilbeck et al.,
2005) and the Systems Biology Ontology (Courtot et al., 2011),
SBOL itself is now represented as a machine-readable ontology,
SBOL-OWL (Misirli et al., 2019). Similar to how ontologies are
built upon the RDF layer to provide the meaning of RDF graphs,
SBOL-OWL defines data model entities that are used to build
SBOL graphs. Formal representation of the data model as an
ontology opens up the possibility of using different Semantic
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Web tools, such as using existing reasoners to infer information,
or validating SBOL data against a schema. Logical axioms are
then used to constrain how different SBOL entities can be used
together. SBOL-OWL is also embedded into the SBOL Visual
Ontology (Misirli et al., 2020), which has been developed as a
machine-accessible catalog of glyphs. This integration further
facilitates searching for standard SBOL glyphs using ontological
terms, and a web service layer enables accessing these glyphs via
the Internet.

Overall, these improvement produce a new version of SBOL
that provides for a more direct and elegant expression of a broad
range of bioengineering information, while at the same time
reducing the number of complex classes and rules to a functional
minimum, thus providing a significantly improved means of data
exchange. These improvements will thus facilitate easier adoption
by new users and more rapid development of software tools and
datasets that make use of the standard.

3.1. Future Work
The dramatic expansion in scope from the simple DNA
components of SBOL1 to the complex systems across multiple
scales captured by SBOL3was driven by the needs of the synthetic
biology community, as the field of synthetic biology matured
and its applications became both more widespread and more
complex. The SEP process by which SBOL3 was developed
ensures the standard can continually adapt to the changing
requirements of an evolving discipline, while ensuring that
proposed changes are ratified by the community. For example,
proposals for SBOL 3.0.1 have already been made to improve
internationalization by adopting a file encoding and replacing
Uniform Resource Identifiers (URIs) with Internationalized
Resource Identifiers (IRIs).

While the nature of future requirements can only be
speculated, there are many aspects of the synthetic biology
lifecycle which remain largely unspecified by SBOL. For example,
while SBOL recommends the use of the prov:Plan class, it
does not yet recommend any domain-specific properties for its
annotation. Equally, while the concept of an experiment can be
captured in SBOL, it does not yet standardize metadata about
the experiment or experimental data. Future revisions of the
SBOL standard will therefore undoubtedly concern not only
its expressiveness in describing design elements, but also its
ability to capture and formalize the synthetic biology lifecycle as
a whole.

4. METHODS

Since its inception, the SBOL Standard has been developed as a
community effort by the SBOL Development Group, which is
open to any interested person. However, the development process
was largely informal until the SBOL Enhancement Proposal
(SEP)mechanismwas introduced in 2015 (Grünberg and Bartley,
2015), shortly after the finalization of the SBOL2 specification.
Development of SBOL3 has been driven by this formal process
of documenting user experiences, developing proposals, and
constructively debating the merits of these proposals.

Under this process, any SBOL user can propose a change by
drafting a document with a specific format (an SEP), which is
then discussed by the community on the mailing list and in
GitHub issues associated with the SEP. Once the current elected
editors of the standard judge that an SEP has been discussed
sufficiently and an approximate consensus achieved, a voting
form is posted, and any member of the SBOL Developers Group
can vote for or against it. The SEP is immediately accepted if at
least a two-thirds majority of votes cast are in favor. Otherwise,
there is a further period of discussion, during which the SEP
can be modified or withdrawn by its original author(s), followed
by a second vote in which only a simple majority is required
for acceptance.

Since the publication of SBOL2 in 2015, 46 SEPs have been
opened, as community experience in deployment of SBOL
revealed some of the practical challenges and opportunities
for enhancement. Of these SEPs, twelve were implemented as
incremental updates to SBOL2, resulting in significant milestones
in SBOL version 2.1.0 (Beal et al., 2016), which introduced feature
annotation and the encoding of provenance information to trace
the history of designs; SBOL version 2.2.0 (Cox et al., 2018),
which introduced support for combinatorial designs; and SBOL
version 2.3.0 (Madsen et al., 2019b), which introduced extensions
to support measurements, parameters, and the organization and
attachment of experimental data.

Other SEPs were deemed too major to be integrated into a 2.x
release of SBOL, since they would create backwards compatibility
problems. Therefore, they were scheduled for SBOL version
3. After a series of community votes, a working group met
to assemble the SBOL3 specification at the HARMONY 2020
Workshop at EMBL-EBI in Cambridge, UK. The resolution of
conflicts between these SEPs resulted in a final SEP summarizing
all changes in the SBOL3 data model. After voted acceptance
of this SEP by the community, the SBOL3 specification
was finalized.

Though there are not yet any complete software
implementations of SBOL3, the SBOL community has established
an SBOL3 implementation working group comprising many
of the developers of libraries for previous SBOL versions
and other interested parties. The first software libraries are
expected to be released within the coming months for Java,
Python, and JavaScript. Preliminary support for SBOL3 has been
implemented in ShortBOL (Crowther et al., 2020), a tool for
composing SBOL using a shorthand syntax.
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Software to predict the change in protein stability upon point mutation is a valuable tool
for a number of biotechnological and scientific problems. To facilitate the development
of such software and provide easy access to the available experimental data, the
ProTherm database was created. Biases in the methods and types of information
collected has led to disparity in the types of mutations for which experimental data
is available. For example, mutations to alanine are hugely overrepresented whereas
those involving charged residues, especially from one charged residue to another, are
underrepresented. ProTherm subsets created as benchmark sets that do not account
for this often underrepresent tense certain mutational types. This issue introduces
systematic biases into previously published protocols’ ability to accurately predict the
change in folding energy on these classes of mutations. To resolve this issue, we have
generated a new benchmark set with these problems corrected. We have then used the
benchmark set to test a number of improvements to the point mutation energetics tools
in the Rosetta software suite.

Keywords: mutation, protein, mutation free energy, protein design and engineering, thermodynamics

INTRODUCTION

The ability to accurately predict the stability of a protein upon mutation is important for numerous
problems in protein engineering and medicine including stabilization and activity optimization of
biologic drugs. To perform this task a number of strategies and force fields have been developed,
including those that perform exclusively on sequence (Casadio et al., 1995; Capriotti et al., 2005;
Kumar et al., 2009) as well as those that involve sophisticated physical force fields both knowledge
based (Sippl, 1995; Gilis and Rooman, 1996; Potapov et al., 2009), physical models (Pitera and
Kollman, 2000; Pokala and Handel, 2005; Benedix et al., 2009), and hybrids (Pitera and Kollman,
2000; Guerois et al., 2002; Kellogg et al., 2011; Jia et al., 2015; Park et al., 2016; Quan et al., 2016).

To facilitate the development of these methodologies and provide easy access to the available
experimental information the ProTherm database (Uedaira et al., 2002) was developed. This
database collects thermodynamic information on a large number of protein mutations and makes
it available in an easy to access format. At the time of this writing it contains 26,045 entries.
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Due to its ease of access the ProTherm has served as the
starting point for a number of benchmark sets used to validate
different stability prediction software packages, including those
in the Rosetta software suite. However significant biases exist in
the representation of different types and classes of mutations in
the ProTherm, as it is derived from the existing literature across
many types of proteins and mutations. The most obvious example
of this is the large number of entries involving a mutation from
a native residue to alanine as making this type of mutation
is a common technique used to find residues important for
protein function. Therefore a large number of the benchmark
sets derived from the ProTherm, which did not account for this
bias, have significantly under or overrepresented these classes
of mutations. These findings suggest previous reports on the
accuracy of stability prediction software does not accurately
reflect these tools’ ability to predict stability changes across all
classes of mutations.

To address this issue we have generated a novel benchmark
subset which accounts for this bias in the ProTherm database
(Supplementary Table 1). We then used this benchmark set to
validate and improve upon an existing free energy of mutation
tool within the Rosetta software suite, “Cartesian 11G,” first
described in Park et al. (2016).

RESULTS

In order to benchmark our Rosetta-based stability prediction
tools we classified the possible mutations into 17 individual
categories as well as reported results on four aggregate categories.
We analyzed five previously published benchmark sets to
determine their coverage across the different classes of mutations
and found them inadequate in a number of categories, especially
involving charged residues (Figures 1A–E). For example, the
number of data points for mutational types ranged from 0 to
24 for negative to positive, 0 to 50 for positive to negative, 3
to 28 for hydrophobic to negative, and 3 to 44 for hydrophobic
to positive entries across the benchmark sets tested. Mutations
to and/or from hydrophobic residues dominated the benchmark
sets ranging from 75 to 92% of the total entries.

To compare the composition of these benchmark sets to that
of the database we examined the curated ProTherm (ProTherm∗)
provided by Ó Conchúir et al. (2015)1 which is a selection of
entries containing only mutations which occur on a single chain
and provide experimental 11G values (Supplementary Table 2).
We find that significant biases still exist here, with several
categories having fewer than 50 unique mutations. These include:
positive to negative, 42; hydrophobic to negative, 43; and non-
charged polar to positive, 47. Mutations involving hydrophobic
residues are still overrepresented, with 62.2% of all mutations in
the database being mutations to hydrophobic residues, compared
to the expected 39.8% if mutations from the starting structures
were chosen randomly (Figures 1F–G).

We also analyzed the benchmark sets with respect to the
number of buried vs. exposed residues in the data sets. No large

1https://guybrush.ucsf.edu/benchmarks/benchmarks/DDG

biases were observed. All benchmark sets were within 6% of what
would be expected if mutations were random (data not shown).

To sample more broadly across all types of mutations and
remove sources of bias in our algorithm development we created
a new benchmark set of single mutations that are more balanced
across mutational types and avoid other biases. To generate this
set we performed the following operations:

(1) Removed any entries from the curated ProTherm∗ that
occur on the interface of a protein complex or interact
with ligands—the energetics of these mutations would
include intra-protein and inter-molecular interactions that
would alter the desired intra-protein energetics of a free
energy calculation.

(2) We removed entries of identical mutation on similar-
sequence (>60%) backbones. For mutations occurring at
the same position in similar sequences, if the mutation is
identical (e.g., L → I) and the sequence identity >60%,
then that mutation is included only once in the database;
if the mutation is not identical (L→ I in one protein and
L→ Q in another) then the mutation is included.

(3) We populated each mutation category, excluding small to
large, large to small, buried, and surface, with 50 entries
except for the cases where insufficient experimental data
points exist. Statistics on the excluded categories were
derived from data points that were already present in the
other categories.

(4) When multiple experimental values (including identical
mutations as identified in point 2 above) were available we
chose the 11G value taken at the pH closest to 7.

The resulting benchmark set contains 767 entries across a
range of different types and classes of mutations (Figure 2).
This constitutes a reduction from the 2,971 total entries in the
curated ProTherm∗, with mutations to hydrophobics being the
most frequently being eliminated. This reduction does eliminate
potentially useful data, and introduces a slight bias toward solvent
exposed residues: 66% of the mutations being on residues with
greater than 20% solvent exposed surface area compared to
54% if chosen randomly. This change is useful to reduce bias
toward favoring hydrophobic mutations and has been controlled
for by checking our algorithm’s performance when residues are
classified by burial.

We tested Protocol 3 described in Kellogg et al. (2011) on this
benchmark set (Table 1). To assess method quality, we analyzed
prediction power by a number of different methods including
Pearson’s R, Predictive Index (Pearlman and Charifson, 2001),
and Matthews Correlation Coefficient (MCC) (Matthews, 1975).
We also analyzed classification errors instead of correlation.
A mutation is classified as stabilizing if the change in free
energy is ≤-1 kcal/mol, it is classified as destabilizing if the
change is ≥1 kcal/mol, and neutral if it falls between these
values. Each mutation is assigned a value of 0 for destabilizing,
1 for neutral, and 2 for stabilizing. We then scored each entry
by taking the absolute value of the difference between the
value for the experiment and the prediction. A value of 0
indicates the prediction was correct, 1 indicates the prediction
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FIGURE 1 | This figure shows the population of different mutation classes used to benchmark a number of methods ability to predict the change in free energy upon
mutation. The citations for these benchmark sets are as follows: (A) Guerois et al. (2002), (B) Potapov et al. (2009), (C) Kellogg et al. (2011), (D) Jia et al. (2015), (E)
Quan et al. (2016), curated ProTherm* (F) Ó Conchúir et al. (2015). The probability of these classifications occurring given the amino acid composition of the
structures in the Curated ProTherm* database are shown in (G). Classes involving charged residues are colored in red. All data sets are significantly biased in their
types of mutations present, especially when it comes to mutations to hydrophobics. All data sets contain greater than 27% hydrophobic to hydrophobic mutations
vs. the expected 18.4% (G).
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FIGURE 2 | Categorically Balanced Benchmark mutational category statistics.
This figure shows the metrics of our new benchmark set selected to provide a
more balanced representation of different mutation classifications. Classes
involving charged residues are shown in red.

was moderately incorrect, i.e., the mutation is destabilizing and
the prediction was neutral, and 2 indicates the prediction was
egregiously wrong.

To address some metrics on which Protocol 3 performs poorly,
we were interested in using a more modern Rosetta 11G
protocol, Cartesian 11G, first briefly described in Park et al.
(2016). We refactored the Cartesian 11G code to utilize the
Mover framework described in Leaver-Fay et al. (2011), keeping
the underlying science the same (other than changes highlighted
here) while eliminating bugs and improving efficiency and
modifiability (Supplementary Table 3).

We tested changes to the preparation phase of the
protocol relative to what was used in Park et al. (2016;
Figure 3). To improve the preparation step (step 1), we
tested Cartesian Relax (as opposed to traditional torsion
space Relax, used in Kellogg’s Protocol 3) (Kellogg et al.,
2011) both with and without all atom constraints and found
that Pearson’s R correlations were worse when models were
prepared without constraints but the Predictive Index
and MCC improved. The variability between runs also
dropped when models were prepared without constraints.
The biggest impact was on the classification of mutations,
however, with the number of egregiously wrong predictions
falling from 34.00 ± 2.0 to 24.67 ± 0.6 (Supplementary
Table 2). This likely has to do with the use of Cartesian
minimization during step 4, and the importance of preparing
a structure with similar sampling methods to those used
during mutational energy evaluation. We consider the
MCC and Predictive Index improvements more valuable
and thus recommend model preparation without all
atom constraints.

FIGURE 3 | Diagram of Protocol 3 and Cartesian 11G. This figure diagrams
the steps involved in the older Protocol 3 as well as the Cartesian 11G
protocol. Novel changes described in this paper include the removal of
constraints during step 1 of the Cartesian 11G protocol, the addition of Step
2.1 for mutations involving proline as well as the choice to repeat testing until
the protocol converges on a lower energy score instead of a fixed number (3)
of times.

We also examined a potential runtime improvement for
Cartesian 11G. In Park et al. (2016), the final energy for a
mutation is the average of three replicates. We examined a multi-
run convergence criterion, described in further detail below, and
settled on the convergence criterion method due to its equivalent
accuracy with reduced run time.

Finally, we tested adding increased backbone sampling around
residues that are being mutated to or from proline, which had
no impact on the Pearson’s R, Predictive Index, and MCC, but
reduced the number of egregious errors slightly from 25.33± 0.6
to 24.67± 0.6 (Supplementary Table 3).

This updated Cartesian 11G algorithm has improved
performance overall when compared to Protocol 3, especially in
the ability to accurately classify mutations including the large
reduction of egregious errors in classification (Tables 1, 2). For
example, the number of mutations predicted as stabilizing when
they are destabilizing or vice versa fell from an average of 53
with Protocol 3 to an average of 24.6 across three replicates. “Off
by 1” errors are also lower (317.3 vs. 289.3) (Supplementary
Table 2). This trend is much stronger than the improvement in
correlations, and more importantly reflects the practical value
of correctly classifying mutational categories. For example in
protein engineering, a protein designer’s practical interest is
whether any given mutation is stabilizing at all, more than which
of two mutations is more stabilizing.

The overall level of accurate classification predictions
increases from 51.7 to 59.1% from the Protocol 3 to Cartesian
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TABLE 1 | Correlations and Predictive Index for Protocol 3 and our improved Cartesian 11G across different mutation categories.

Protocol 3 Cartesian 11G

Mutation Type Pearson’s R Pearson’s R
Filtered

Predictive
Index

MCC Pearson’s R Pearson’s R
Filtered

Predictive
Index

MCC

Small to large 0.54 ± 0.000 0.68 ± 0.000 0.57 ± 0.001 0.36 ± 0 0.48 ± 0.0041 0.66 ± 0.006 0.55 ± 0.0096 0.55 ± 0.0221

Large to small 0.57 ± 0.000 0.76 ± 0.000 0.59 ± 0.000 0.37 ± 0 0.62 ± 0.0199 0.8 ± 0.0015 0.71 ± 0.0239 0.46 ± 0.0176

Positive to negative 0.40 ± 0.000 0.79 ± 0.000 0.28 ± 0.000 0.00 ± 0 0.65 ± 0.0024 0.88 ± 0.0072 0.74 ± 0.0054 0.5 ± 0.0891

Negative to positive 0.34 ± 0.000 0.61 ± 0.000 0.26 ± 0.000 0.19 ± 0 0.36 ± 0.0128 0.57 ± 0.0176 0.48 ± 0.0312 0.53 ± 0.0302

Negative to hydrophobic 0.27 ± 0.000 0.55 ± 0.000 0.27 ± 0.000 0.15 ± 0 0.58 ± 0.0064 0.71 ± 0.0124 0.64 ± 0.0068 0.43 ± 0.0228

Hydrophobic to negative 0.83 ± 0.000 0.87 ± 0.000 0.84 ± 0.000 0.27 ± 0 0.73 ± 0.0554 0.81 ± 0.0477 0.8 ± 0.0867 0.5 ± 0.0551

Positive to hydrophobic 0.06 ± 0.000 0.23 ± 0.000 0.01 ± 0.000 0.35 ± 0 0.46 ± 0.0266 0.62 ± 0.0326 0.51 ± 0.0283 0.66 ± 0.0016

Hydrophobic to positive 0.57 ± 0.000 0.73 ± 0.000 0.63 ± 0.002 0.37 ± 0 0.51 ± 0.0112 0.7 ± 0.0031 0.67 ± 0.0074 0.44 ± 0.0858

Non-charged polar to
positive

0.40 ± 0.000 0.67 ± 0.000 0.39 ± 0.004 0.43 ± 0 0.28 ± 0.0075 0.78 ± 0.0148 0.4 ± 0.0196 0.28 ± 0.0

Positive to non-charged
polar

0.32 ± 0.000 0.67 ± 0.000 0.52 ± 0.000 0.26 ± 0 0.43 ± 0.0042 0.8 ± 0.0178 0.72 ± 0.0084 0.55 ± 0.0602

Non-charged polar to
negative

0.64 ± 0.000 0.73 ± 0.000 0.69 ± 0.000 0.00 ± 0 0.62 ± 0.0196 0.83 ± 0.0042 0.66 ± 0.0153 0.67 ± 0.0

Negative to non-charged
polar

0.13 ± 0.000 0.44 ± 0.000 -0.07 ± 0.000 0.22 ± 0 0.37 ± 0.0076 0.69 ± 0.0138 0.44 ± 0.0135 0.53 ± 0.028

Non-charged polar to
hydrophobic

0.70 ± 0.000 0.70 ± 0.000 0.64 ± 0.001 0.38 ± 0 0.74 ± 0.0014 0.78 ± 0.0012 0.66 ± 0.0027 0.38 ± 0.0

Hydrophobic to
non-charged polar

0.41 ± 0.000 0.66 ± 0.000 0.39 ± 0.000 0.47 ± 0 0.57 ± 0.0105 0.75 ± 0.022 0.58 ± 0.0027 0.11 ± 0.022

Non-charged polar to
non-charged polar

0.76 ± 0.000 0.76 ± 0.000 0.66 ± 0.002 0.15 ± 0 0.52 ± 0.0049 0.84 ± 0.0038 0.79 ± 0.0021 0.49 ± 0.0313

Hydrophobic to
hydrophobic

0.67 ± 0.000 0.74 ± 0.000 0.72 ± 0.000 0.57 ± 0 0.61 ± 0.0051 0.75 ± 0.0068 0.68 ± 0.0111 0.28 ± 0.0282

charge to charge 0.31 ± 0.000 0.73 ± 0.000 0.36 ± 0.000 0.26 ± 0 0.32 ± 0.0067 0.7 ± 0.0143 0.35 ± 0.0055 0.44 ± 0.0397

Involves cysteine 0.25 ± 0.000 0.63 ± 0.000 0.27 ± 0.000 0.26 ± 0 0.07 ± 0.0428 0.49 ± 0.0946 0.16 ± 0.0498 0.08 ± 0.0708

Involves proline 0.02 ± 0.000 0.54 ± 0.000 0.33 ± 0.000 0.30 ± 0 0.51 ± 0.0277 0.76 ± 0.0264 0.54 ± 0.0271 0.51 ± 0.1401

Same size 0.36 ± 0.000 0.38 ± 0.000 0.37 ± 0.000 0.22 ± 0 0.45 ± 0.0035 0.45 ± 0.0035 0.51 ± 0.0091 0.31 ± 0.0251

Buried 0.20 ± 0.000 0.54 ± 0.000 0.55 ± 0.000 0.35 ± 0 0.43 ± 0.0022 0.43 ± 0.0022 0.54 ± 0.0104 0.26 ± 0.0056

Surface 0.31 ± 0.000 0.34 ± 0.000 0.35 ± 0.000 0.23 ± 0 0.47 ± 0.006 0.5 ± 0.0064 0.6 ± 0.0076 0.42 ± 0.0165

Everything 0.25 ± 0.000 0.47 ± 0.000 0.48 ± 0.000 0.28 ± 0 0.49 ± 0.0025 0.49 ± 0.0025 0.61 ± 0.0062 0.41 ± 0.0127

This table contains the Pearson’s R correlations for each class of mutations in our benchmark set for both Protocol 3 and Cartesian 11G. Each is repeated three times
using the same inputs and the average and standard deviation are shown. Given the sensitivity to outliers of Pearson’s R we also report it as Pearson’s R filtered after
removing up to five outliers from each set. An outlier is defined as any single entry which, when removed, changes the correlation coefficient by 0.025 or greater. We
also report the Predictive Index and the Matthews Correlation Coefficient which are less sensitive to the absolute free energy of a prediction but rather whether it can be
correctly classified. Cartesian 11G significantly outperforms Protocol 3 both in the unfiltered Pearson’s R, Predictive Index, and Matthews Correlation Coefficient. In each
analysis metric the higher value indicates greater accuracy.

11G Rosetta methods. We also note that over all charged
residues the category predictions accuracy was 47.9% for protocol
3 and increases to over 60.5% with Cartesian 11G. The Cartesian
11G algorithm is more broadly useful across any type of protein
mutation, while Protocol 3 had uneven applicability.

DISCUSSION

Here we describe a number of issues in previous benchmark sets
used to assess the quality of protein stability prediction software.
In particular we have found a lack of adequate experimental data
being included for mutations involving charged residues.

Using these updated benchmarks we show that protein
stability prediction tools in Rosetta vary widely across different

types of mutation classes. In addition, given that this problem
is pervasive throughout the field, it is likely that the reported
accuracy of many methods for stability prediction may not
reflect the diversity of possible mutation types. We encourage
other developers to analyze the performance of their tools across
different types of mutations using our benchmark set or one
which has appropriately accounted for the biases that exist within
the databases (Supplementary Table 1). The reduced size of this
data set may also be useful for rapid training or situations with
computational limitations.

Last, we have refactored the Cartesian 11G protocol code
to improve consistency and modifiability, and have also made
minor modifications to the structure preparation and analysis
step as well as to how mutations involving proline are sampled.
By analyzing these algorithms with the new benchmark set, and

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 October 2020 | Volume 8 | Article 558247102

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-558247 October 7, 2020 Time: 11:37 # 6

Frenz et al. Classifying Protein Mutational Free Energy

TABLE 2 | The ability of Protocol 3 and Cartesian 11G to correctly classify mutations.

Protocol 3 Cartesian 11G

Mutation class Same
class (%)

Off by one
(%)

Off by two
(%)

Same
class (%)

Off by one
(%)

Off by two
(%)

Total
entries

Small to large 55.7 42.7 1.6 67.7 29.2 3.1 64

Large to small 60.4 34.1 5.5 53.5 42.9 3.7 91

Positive to negative 32.3 61.3 6.5 67.7 32.3 0.0 31

Negative to positive 26.1 56.5 17.4 55.1 35.5 9.4 46

Negative to hydrophobic 32.0 50.0 18.0 56.0 38.0 6.0 50

Hydrophobic to negative 53.8 43.6 2.6 70.9 29.1 0.0 39

Positive to hydrophobic 50.0 42.0 8.0 47.3 50.0 2.7 50

Hydrophobic to positive 73.0 18.9 8.1 79.3 18.0 2.7 37

Non-charged polar to positive 50.0 50.0 0.0 61.1 35.6 3.3 30

Positive to non-charged polar 58.0 38.0 4.0 61.3 36.7 2.0 50

Non-charged polar to negative 48.0 48.0 4.0 58.0 40.0 2.0 50

Negative to non-charged polar 44.0 36.0 20.0 50.7 47.3 2.0 50

Non-charged polar to hydrophobic 48.0 48.0 4.0 48.7 49.3 2.0 50

Hydrophobic to non-charged polar 56.0 42.0 2.0 66.0 28.7 5.3 50

Non-charged polar to non-charged polar 57.3 38.7 4.0 67.3 30.7 2.0 50

Hydrophobic to hydrophobic 76.0 22.0 2.0 72.0 26.0 2.0 50

Charge to charge 65.7 34.3 0.0 51.4 48.6 0.0 35

Involves cysteine 55.1 40.8 4.1 49.3 44.0 6.7 49

Involves proline 54.0 38.0 8.0 52.0 44.0 4.0 50

Buried 65.4 26.5 8.1 65.0 29.4 5.6 260

Surface 44.7 49.0 6.3 56.1 41.9 2.0 507

Everything 51.7 41.4 6.9 59.1 37.7 3.2 767

This table shows the ability of Protocol 3 and Cartesian 11G to correctly classify a mutation. Mutations are assigned a value of 0 for destabilizing, 1 for neutral, and 2 for
stabilizing. The absolute value of the difference between the predicted class and the experimental class represents no error, mild error (off by one class), or egregious error
(off by two classes). Performance across the benchmark is reported here as a percentage of mutations in each class. Cartesian 11G correctly classifies more entries
(59.1 vs. 51.7%), and produces fewer catastrophic off by two errors (3.2 vs. 6.9%).

focusing on previously underrepresented categories of mutations
(e.g., uncharged to charged), we are able to demonstrate
the Cartesian 11G algorithm has improved correlation to
experimental values and improved ability to correctly classify
(stabilizing/destabilizing/neutral) a mutation relative to the older
Protocol 3 methodology. These results show the importance
of diverse datasets in algorithm benchmarking, and the need
to look beyond the surface when analyzing the results of
these algorithms.

METHODS

Benchmark Set Pruning
To create our benchmark set, we began by making a copy of
the curated ProTherm∗ database (Ó Conchúir et al., 2015) and
began removing entries that were unsuitable. Because we wished
to develop a point mutation algorithm without the complexities
of multiple mutation interactions, we excluded any entry which
did not represent a single mutation. Because the algorithm
is intended to represent 11G of monomer folding and not
binding interactions, we also removed entries on the interface
of a protein-protein complex, or interacting with a non-water
ligand. Interactions were defined as any atom in the mutated

TABLE 3 | Residue category assignments and category combinations.

Type and 1 letter codes Combination categories

Small GAVSTC Positive to negative Non-charged polar
to hydrophobic

Large FYWKRHQE Negative to positive Hydrophobic to
non-charged polar

Negative DE Positive to non-charged polar Non- charged polar
to non-charged polar

Positive RK Negative to non-charged polar Hydrophobic to
hydrophobic

Polar YTSHKREDQN Non-charged polar to positive Like to like charge

Non-charged polar
YTSNQH

Non-charged polar to negative Involves proline

Hydrophobic FILVAGMW Negative to hydrophobic Involves cysteine

Cysteine C Hydrophobic to negative Small to large

Proline P Positive to hydrophobic Large to small

Hydrophobic to positive

On the left, we list the nine residue groupings considered in this benchmark and
annotate which residues go in each class. At center and right, we list the 19
mutational types considered by combining these classes.

residue within 5 Å of an atom not on the same chain. To increase
experimental diversity, we wished to remove duplicate mutations.
To identify duplicates, we performed an all to all sequence
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alignment to find parent backbones with≥60% sequence identity.
Within these clusters of sequences, any entries in which the
same native residue is mutated to the same target were treated
as identical. When multiple experimental 11G values were
available for an identical mutation we chose the value taken at
closer to neutral pH.

Benchmark Category Population
We identified 21 categories of mutation type by combinations
from nine residue type classifications (Table 3). We then
populated each narrowly defined category (e.g., polar non-
charged to negative) with up to 50 entries. Some categories (large
to small, small to large, buried, and surface) are supersets of the
more narrowly defined categories and were sufficiently populated
by the experiments selected from the other groups.

A few categories involving charged residues (positive to
negative, negative to positive, non-charged polar to positive,
hydrophobic to negative, hydrophobic to positive, and like to
like charge) did not have enough data to hit 50 entries so every
available unique experiment was added.

11G Prediction
To prepare models for 11G calculations, structures were
stripped to only the chain in which the mutation occurs.
Rosetta local refinement, consisting of alternating cycles of side
chain packing and all atom minimization (“Relax”), was then
performed 20 times on the chain of interest and the model with
the lowest Rosetta energy was selected as input. As noted in
the Results, this was done without all atom constraints and in
Cartesian space, not torsional space.

11G predictions were then performed using Protocol 3
described in Kellogg et al. (2011), the version of the Cartesian
11G application described originally in Park et al. (2016),
or the refactored and improved version of Cartesian 11G
elaborated upon here.

To provide context for our modifications, a brief description
of the Cartesian 11G protocol as presented in Park et al.
(2016) is warranted. Cartesian 11G calculates the change in
folding energy upon mutation by taking the prepared starting
structures, then mutating the target residue. This residue and
its neighbors within 6 Å are then repacked. After repacking the
mutated residue, the side chain atoms of residues within 6 Å
of the target residue and the side chain and backbone atoms
of sequence-adjacent residues are minimized in Cartesian space.
The same optimization, without the change in sequence, is done
on the starting structure to determine the baseline energy. The
process is performed three times for both the mutant and the
wild type sequence and the 11G is calculated from the average

of each. There is no particularly different handling of mutations
involving proline.

Our modifications to the Cartesian 11G tool include a
change to the analysis and a change to proline handling
(Figure 2). In the analysis step, we changed the number of mutant
models generated using the following convergence criterion: the
lowest energy 2 structures must converge to within 1 Rosetta
Energy Unit, or take the best of 5 models, whichever comes first.
In either case the lowest, not the average, energy is used. In order
to address changes in the backbone resulting from mutations to
and from proline we added additional fragment based sampling
around mutations involving proline. By default 30 fragments
of 5 residues in length, centered on the mutation, are sampled
and the best scoring structure is carried forward for analysis.
This uses the Cartesian Sampler system described in Wang et al.
(2016). Command line flags and XML files can be found in
Supplementary Material.
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Molecular models have enabled understanding of biological structures and functions
and allowed design of novel macro-molecules. Graphical user interfaces (GUIs) in
molecular modeling are generally focused on atomic representations, but, especially
for proteins, do not usually address designs of complex and large architectures, from
nanometers to microns. Therefore, we have developed Elfin UI as a Blender add-on for
the interactive design of large protein architectures with custom shapes. Elfin UI relies
on compatible building blocks to design single- and multiple-chain protein structures.
The software can be used: (1) as an interactive environment to explore building blocks
combinations; and (2) as a computer aided design (CAD) tool to define target shapes
that guide automated design. Elfin UI allows users to rapidly build new protein shapes,
without the need to focus on amino acid sequence, and aims to make design of proteins
and protein-based materials intuitive and accessible to researchers and members of the
general public with limited expertise in protein engineering.

Keywords: protein design, blender, GUI, repeat proteins, computational modeling

INTRODUCTION

Visualization and simulation of macromolecules have enabled our understanding of biological
structures and have led to the development of a variety of tools for research, teaching and outreach,
working at multiple scales (Johnson and Hertig, 2014).

Visualizing structures made also possible to design them, by taking into account the spatial
relationship between different parts of the molecules. Dedicated software packages have emerged
over the years for protein design, reviewed by Gainza et al. (2016), and popular viewers such
as Chimera (Pettersen et al., 2004), PyMOL (The PyMOL Molecular Graphics System, Version
2.0 Schrödinger, LLC) (DeLano, 2002), and VMD (Humphrey et al., 1996) have now integrated
design capabilities.

Protein design tools focus largely on atomic models and sequence design from a given backbone
structure. Additionally, several approaches allow to build completely new structures by relying
on secondary structure description and fragments assembly, like Rosetta remodel and blueprint
builder (Huang et al., 2011; Koga et al., 2012), parametric design, as in Isambard (Wood et al., 2017),
idealized secondary structures, e.g., CoCoPOD (Ljubetič et al., 2017) and TopoBuilder (Sesterhenn
et al., 2020), or building blocks with super-secondary structures, as in SEWING (Jacobs et al.,
2016) and Elfin (Yeh et al., 2018). Protein complexes have been successfully designed for symmetric
systems, e.g., point group symmetry (Lai et al., 2012; King et al., 2014; Hsia et al., 2016) and lattices
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(Lanci et al., 2012; Gonen et al., 2015), but large, precise
and asymmetric assemblies are still a challenge. However, such
scaffolds could prove particularly interesting in modulating
cell surface receptor clustering and signaling via precise ligand
organization and placement (Grochmal et al., 2013; Jost et al.,
2013; Shaw et al., 2014; Mohan et al., 2019).

To address the challenge of building large structures, both
symmetric and non-symmetric, DNA nanotechnology groups
have led the way in developing Computer Aided Design (CAD)
software, e.g., Tiamat (Williams et al., 2009), cadnano (Douglas
et al., 2009), CanDo (Veneziano et al., 2016), vHelix (Benson
et al., 2015), taking advantage of base pairing and regularity of
DNA double helix structure.

Graphical User interfaces (GUI) have indeed a key role
in making software accessible to a broad group of users,
who are not necessarily expert, by enabling work on design
principles, rather than biochemical details. While CAD tools for
DNA nanostructures allow users to work purely on intuitive
geometric concepts, e.g., shapes to achieve, protein design tools
often require a more in-depth programming and biochemical
knowledge. GUIs have been developed for the Rosetta modeling
suite to improve usability (Adolf-Bryfogle and Dunbrack, 2013;
Schenkelberg and Bystroff, 2015) and the protein folding game
Foldit (Cooper et al., 2010) has successfully attracted a broad base
of users from the general public. Its standalone interface (Kleffner
et al., 2017) has become an instrument to interactively design new
proteins, although designs are effectively limited to a few hundred
amino acids, if systems are not symmetric.

Size is one of the major limitations in interactive protein
design using atomic models, as the number of atoms quickly
becomes the computational bottleneck. However, it is possible to
take a more coarse-grained approach to design large and complex
protein architectures, akin to DNA nanostructure designs.

In this work we have developed a user interface to allow
design of protein structures using modular structural building
blocks. Elfin user interface (Elfin UI) was developed as a
graphical interface and an interactive editor to the Elfin software
package (Yeh et al., 2018) for design of custom protein
architectures (Figure 1). Elfin uses structural compatible building
blocks (referred to as modules) derived from experimentally
validated structures of repeat proteins to build large and
complex architectures. The goals were to provide (1) a CAD-like
environment for design of user-defined shapes, to which Elfin
could find solutions in terms of protein sequence and structures,
and (2) a sandbox framework to interactively explore potential
protein architectures. We envision Elfin UI to be used in the
design of protein origami, custom shaped nanoparticles and
scaffolds for organization of enzymes and signaling molecules.

We have implemented Elfin UI as a Blender add-on. Blender
is a popular free, open source and cross-platform 3D modeling
application, which has been successfully extended with add-ons
to integrate molecular viewers, like BlendMol (Durrant, 2019),
BioBlender (Andrei et al., 2012), ePMV (Johnson et al., 2011),
Pyrite (Rajendiran and Durrant, 2018).

By using modular compatible building blocks and a coarse-
grained representation, we aim to provide a tool accessible to
scientists, both expert and novice in protein design, and a new

way to engage the public with the concepts of modular design
and manufacturing using biological macromolecules.

METHODS

The Elfin software package is built around the Elfin solver,
a genetic algorithm for the assembly of modular structures
matching a user defined shape (Yeh et al., 2018), and contains
an updated database with information about modular building
blocks, a graphical user interface (Elfin UI) built as Blender
add-on, and ancillary utility scripts (e.g., for installation,
database preparation, file conversion). Code, documentation,
installation scripts and tutorials are available on https://github.
com/Parmeggiani-Lab/elfin.

Elfin UI’s approach to protein design is similar to the
idea of Model-Based UI Design (Calvary et al., 2003). In this
framework, Elfin UI uses a database of individual proteins
and termini compatibility matrix as the domain model. The
task of protein design is undertaken by arranging and joining
two or more protein modules to form the shape desired by
the user. Each protein module is abstractly represented by
attributes such as its center-of-mass, collision radius, and module
pairwise transformation matrices. A design assembled by the
user is converted into an atomic model by projecting atomic
coordinates of each protein module onto their respective position
and adding capping modules to each “free” termini to protect
the otherwise exposed hydrophobic core and improve solubility
(Supplementary Figure S1). Finally, if the designed protein’s
atomic structure passes third party verification (e.g., Rosetta,
see Supplementary Materials), it is considered suitable to be
produced and characterized experimentally.

Database
Elfin builds protein architectures using combinations of
structural building blocks. Building blocks are stored as
collection of atomic coordinates in The Protein Data Bank (PDB)
format and used to precompute: (1) a JSON database, which
includes, for each module, the center of mass and radius, a list
of compatible modules and relative orientation of the pairs,
expressed as rigid body transforms; (2) a Blender database that
stores meshes of each module with cartoon representations of
secondary structure elements.

Modules are classified as: core, when they are extracted from
designed repeat proteins (Parmeggiani and Huang, 2017) and
contain repeated super-secondary structure (e.g., helix-loop-
helix-loop); junction, if they contain two contiguous and merged
super-secondary structures typical of core modules (so that the
module acts as a junction between core modules); or hub, if they
are formed by multiple interacting chains. Core and junction
modules are single chains that can be extended by adding a
further module to the chain either at the N- or C- terminus. Some
hubs’ chains can be extended only at one terminus, if the other is
involved in binding another chain.

Core modules have a specific name, like D4, proA, darp.
Junctions include the name of the core modules that they bridge
with a j (for junction) followed by a number, since there can be

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 2 October 2020 | Volume 8 | Article 568318107

https://github.com/Parmeggiani-Lab/elfin
https://github.com/Parmeggiani-Lab/elfin
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-568318 October 18, 2020 Time: 19:6 # 3

Yeh et al. Elfin UI

multiple junctions between two core modules: e.g., D14_j1_D79,
D14_j2_D79. The name indicates that they are compatible at the
N-term with modules that possess a C-term interface of the same
kind (anything ending in D14 in this case). Same for the C-term.
Core modules are compatible, by definition, with themselves and
with junctions with compatible ends. Hub names indicate the
type of core module that they contain and eventually information
about the number of subunits and type of symmetry, e.g., D4_C4
is a cyclic homo-tetramer of D4-derived units.

Modules form a continuous hydrophobic core that runs
through each chain. As for repeat proteins (Parmeggiani and

Huang, 2017), the core needs to be sealed off at the termini
by modified repeating units, called capping repeats or caps,
with the same structural unit of the last module: e.g., a D14
and a D49_j1_D14 module, placed at the C-term, require
capping by Ccap_D14. Caps are added only at the final stage
when a JSON file from Elfin UI or Elfin solver is converted
into an atomic model in mmCIF format by the stitch.py
script. mmCIF is the standard format for the Worldwide
Protein Data Bank (wwPDB) and removes limitations on the
number of atoms and chains present in the previous PDB
format. Modules in the database are still stored as PDB

FIGURE 1 | Elfin UI is a Blender (blender.org) add-on that enables interactive coarse-grained design of proteins using combinations of pre-existing and validated
building blocks. The shaded orange area indicates the functionalities of Elfin UI within the design process. Designs can be built by defining the desired shape and
searching for matching building blocks combinations, by manually placing the building blocks, or by a combination of the two methods. Coarse grained
representations are then converted to atomic model outputs in mmCIF format.

FIGURE 2 | The Elfin UI Blender add-on interface. The Elfin panel on the left shows the accessible operators. On the Blender scene, on the left is a path guide
composed of three joints (blue icospheres) and two bridges (red), and on the right a protein formed by three modules, in different colors.
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FIGURE 3 | Path guide building. Elfin UI allows to define a network of joints and bridges that can be used as input for Elfin solver. The designed output can be
superimposed on the initial path guide. The colors indicate the different building blocks highlighted in the sequence at the bottom.

files, as the number of atoms is limited and within the
capacity of the format.

Current modules are derived from published and
experimentally verified structures. Core modules are extracted
from designed helical repeats (DHRs) (Brunette et al., 2015),
designed ankyrin repeats proteins (darpins) (Kramer et al., 2010)
and protein A (Youn et al., 2017). Junctions were designed using
either an helix fusion method (Wu et al., 2017; Youn et al., 2017)
or de novo connecting helices (Brunette et al., 2020). Hubs were
derived from oligomeric repeat proteins (Fallas et al., 2017).
Supplementary Table S1 contains a detailed list of modules
and sources. Custom databases can be created using the scripts
provided with the Elfin source code. The workflow is described
in the Supplementary Figure S2.

FIGURE 4 | Manual module placement. The single chain protein is built as a
sequence of compatible modules, depicted in different colors.

Blender Add-On Implementation
Elfin UI was developed in python 2.7 as an add-on to blender
2.79. Currently it is not yet compatible with Blender 2.8. As
Blender add-on, Elfin UI creates a context menu and adds
sections in the side panel, but primarily interacts with objects
in the scene by defining “operators” that apply some routine on
selected objects. These operators can be invoked using shortcuts,
by clicking context menu buttons, or looked up and called
from the search menu. Elfin UI plugin defines many such
operators to facilitate two main design processes: (1) path guide
building, and (2) manual module placement (see results for
description). Whenever objects (either protein modules or path
guide components) are created through Elfin UI’s operators, the
object is spawned with a property group dedicated to storing
Elfin’s information. It stores the object type (module or path
guide), link occupancy (who are the neighbors), and helper
attributes such as a flag to indicate whether the object needs to be
cleaned up by Elfin’s object lifetime watcher. Other than object-
specific information, data such as module compatibility and 3D
models are loaded only once and stored in a singleton object until
either Blender is closed, the add-on is reloaded, or when the user
explicitly calls the reload operator.

Module compatibility is explicitly embedded in the prototype
naming convention for module operators. Place Module and
Extrude Module operators prompt the user with a filtered list
of actionable module names (filtered prototypes). There could be
many modules in a scene, but modules with the same name (e.g.,
D4.001, D4.002) are of the same prototype (D4). For extrusion,
prototypes are filtered by compatibility and also terminus
occupancy (i.e., is the N and/or C terminus already occupied?).

For Place Module, the name of each module is bounded by
two period marks. These marks make it easy to search the exact
module the user is looking for: e.g., a search for .D4 will return all
modules with a name starting in D4.
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For Extrude Module, names are in the form:
: < chain1 > (< term1 > ) -

> (< term2 > ) < chain2 > : < name2 > .
The chain1 and term1 are chain ID and terminus type of the

module being extruded from. The term2, chain2, and name2
are corresponding attributes of the new module to be extruded
into. For instance: when D49 is selected and extrusion on the N
terminus is chosen, one of the items in the list could be:A(N)
- > (C)A:D49_aC2_24. This means the terminus N of chain
A of D49 can be extruded and connected to a yet-to-be-added

D49_aC2_24 hub. In the latter, terminus C of chain A would
be used for this connection. The first letter, if there is one,
denotes the C-Terminus chain ID of the extrusion. This is needed
because hub modules have more than one chain to extrude to and
from. The last letter is therefore the N-Terminus chain ID in the
to-be-extruded module.

Groups of modules or path guide primitives are organized
in networks that keep track of which modules or path guides
are “connected.” Networks are displayed in Blender outliner
view. While individual path guide “joints” can be freely rotated

FIGURE 5 | Symmetric structures. (A,B) Show respectively two and four chain architectures. The oligomeric module (hub) is indicated by the repeated vertical and
horizontal dashes.
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and translated, Elfin UI locks individual modules. However,
whole networks can be rotated and translated because they
preserve the interface relationship of each connected group of
modules. Creation and splitting of networks are automatic, and
ease processing when exporting. Joining of two networks is also
possible, subject to termini compatibility.

When designing using Elfin UI, live collision detection
between protein modules can be turned on or off from the left
side pane (default shortcut is T). When it is turned on, newly
placed protein objects that result in collision will raise a clear
warning on screen.

Since Elfin UI supports “partial design”—a design
specification consisting of a network of path guide components
overlapping manually placed modules, sanity checks such
as overlap intention and link availability are conducted
behind the scenes.

RESULTS

Elfin UI is part of the Elfin tool set that allows the user to design
proteins with complex 3D shapes protein designs. In Elfin, a
three-dimensional structure, defined as a network of nodes and
edges, is translated into a protein structure using a combination
of compatible structural building blocks, referred to as modules.
Different module databases can be used and users can build their
own, as described in the Supplementary Materials.

As an add-on, Elfin UI borrows Blender’s graphical interface
to enable the generation of 3D structures to facilitate two
main design processes: (1) path guide building, and (2) manual
module placement.

Path guides are 3D objects, formed by nodes and edges, that
describe the geometry of a three-dimensional shape. Path guides
can be exported to Elfin Solver (the core algorithm in Elfin),
which generates a protein structure to fit, as close as possible, the
defined 3D shape.

Alternatively, protein modules, which correspond to super-
secondary structural elements (e.g., sets of alpha helices and beta
sheets), can be manually placed. The protein chain can be then
extended by adding compatible modules, allowing for a stepwise
and interactive building of protein structures.

Elfin UI introduces a new panel of options in Blender and
new import and export features that enable path guide building,
manual module placement and hybrid designs.

Blender Interface
Elfin UI specific controls are located in an “elfin” panel
in the Blender interface (Figure 2). The commands, called
operators, allow paths guide building and module placement.
Depending on current selected objects, only allowed operators
can be used. Operators are also available in the search menu,
accessible using the spacebar, in Blender 2.79. Every operator
has a hashtag-three-letters-shortcut that, when entered in the
search menu, immediately brings up that operator, speeding
up the design process. E.g., the module extrusion operator is
“#exm.” Operators’ detailed descriptions are available in the Elfin
UI tutorial: https://github.com/Parmeggiani-Lab/elfin-ui/blob/

master/resources/tutorial/README.md. Blender operators, like
delete, work on these objects.

Modules are represented by meshes, derived from PyMol
(DeLano, 2002) that depict protein secondary structures (helices,
beta sheets and loops) and have been scaled appropriately: each
square in the reference plane of the default Blender working
space is 1 nm long. Interactions and relative positions are
precomputed and stored in a database file, therefore, to preserve
the relationships, module scaling is not allowed.

Elfin UI allows export of path guides and designed proteins as
JSON files, which contain information about connectivity, type
of modules (if present) and three-dimensional coordinates. Elfin
solutions, produced as JSON files, contain a network of modules
and can be imported in Elfin UI for visualization. JSON was
chosen for its human-readability (which facilitates debugging
and easy extension), ease to parse, and because there is not
a large amount of data to justify size-efficient formats, such
as binary formats.

Elfin UI is a module-centric interface and does not
support atom or residue level views. Atomic models,
in mmCIF format, are generated from json files by a
script (stitch.py) in the Elfin tool set (see Supplementary
Figure S1 for details). Output files can be then visualized
using molecular viewers (e.g., PyMol, Chimera, VMD)
or loaded in any program that supports mmCIF files for
energy minimization, molecular dynamics simulations or
further design. After conversion from the modular coarse-
grained representation to atomic coordinates, we perform
energy minimization and relaxation in Rosetta (Leman et al.,
2020) to ensure that the design shape is maintained (see
Supplementary Materials).

Path Guide Building
Path guides are the objects that guide Elfin Solver to
build a protein that most resembles the user’s design
intent. Path guides are not protein modules; they are
simple geometry specifications expressed as “joints”
and “bridges.” These are synonymous to “nodes” and
“edges” in mathematical terms, and in Blender, they are
represented with premade icosphere and elongated cubes
respectively (Figure 2).

The main path guide operators are:

• Add joint: place a new joint in space
• Extrude joint: create a new joint in the desired position

connected to the current joint with a bridge
• Bridge two joints: create a new bridge between joints

When connecting between joints, bridges will stretch and
contract visually according to the actual distance between the
joints. Joints and bridges can be used to define complex networks.
Since the distance between joints can be arbitrarily defined,
there may not always be a solution in which protein modules
can satisfy the path guide design, but Elfin Solver always
tries to optimize.

After a design has been drawn out by the user, it can
be exported into a JSON format that Elfin Solver reads and
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processes. The optimized solution is saved into a JSON file
that Elfin UI can read back into Blender and display as a 3D
model (Figure 3).

Path guides are used to define arbitrary shapes that the user is
interested in. If the goal is a precise geometry in 2D or 3D, the
coordinates for each node can be inputted directly in Blender.

FIGURE 6 | Hybrid design. Elfin UI allows users to build shapes that include selected modules in specific positions. The path guide parts are solved by Elfin solver
and merged in Elfin UI. (A,B) Show single-chain and two-chains hybrid designs, respectively.
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Manual Module Placement
Elfin UI can be used as a sandbox environment to
interactively explore the construction of complex protein
architectures. Users can select modules and place them
directly into the scene, growing chains progressively by
addition of new compatible modules (Figure 4). When a
new module is placed the color can be changed. If a new
module causes clashes with the existing chains, an error
box is raised, preventing the addition. This check can
be disabled by toggling the auto_collision_check box in
the elfin panel.

The main module operators are:

• Place modules: place a new module in the scene
• Extrude module: place a new module next to the current

one extending the protein chain; the new module is selected
among the compatible ones

• Link by mirror: associate two or more identical modules;
when one of these modules is extruded, all the linked ones
are extruded accordingly, if the extrusion is possible. Added
modules are considered linked to each other

• Unlink mirror: remove the mirror linkage, so that extrusion
can be performed independently.

Modules are derived from existing experimental structures
(Kramer et al., 2010; Brunette et al., 2015, 2020; Wu et al., 2017;
Youn et al., 2017) and connected through peptide bonds. The
interfaces between modules and their relative orientation are
also derived from crystal structures and SAXS-confirmed models,
ensuring a correct module placement. This information is stored
in the elfin and Blender databases (see section “Methods”).

Mirror linking is used to build symmetric structures or
structures containing only some symmetric parts (Figure 5).
Mirror-linked modules need to be of the same type. Modules
derived from experimentally validated oligomers (Fallas et al.,
2017) contain multiple chains that can potentially grow
in a symmetric fashion, when the same module is added
to each chain. Symmetric hubs are automatically mirror-
linked. Modules extruded from mirror-linked modules are
automatically mirror-linked.

Hybrid Design
Manual module placement can be used in conjunction with path
guides to partially define a design, if the user already knows what
protein module needs to be positioned (e.g., predefined binding
sites) and in which orientation (Figure 6). The user places
modules directly into the scene and translates and rotates them.

When a protein module is placed directly on a path guide
joint, Elfin UI infers that the bridges connecting to that joint are
intended to be “extrusions” from the protein module. The “move
joint to module” operator allows to place an existing joint on a
module, after selecting both.

Hybrid design can be used when the position and orientation
of specific modules of the desired protein are known. By building
a guide path from them, elfin will search for a compatible
solution to connect the modules. The initial input and the design
output should be then combined in a single network, using the

FIGURE 7 | Design of multivalent ligands. (A) Tetramer binder for epoR, top
and side view. The receptor is in green, the elfin UI design in cyan and the
repacked and energy minimized model in magenta, showing only small
deviation from the coarse-grained design. (B) Bispecific binder, top and side
view. In orange is the dimeric design, in green epoR and in cyan and magenta
the Fab fragment. Each design chain binds one copy of the receptor and one
Fab fragment, orienting the antibody binding site toward the plasma
membrane (bottom, gray) where it could engage with a target receptor of
interest.

“join network” operator to obtain the combined structure. This
approach can be used, for example, to build multivalent ligands
to engage multiple cell receptors at the same time, by placing
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binding interfaces in the desired positions and orientation and
searching for structures that can accommodate them.

Designing With Elfin UI: Multivalent
Erythropoietin Receptor Ligands
Elfin UI can be used to rapidly design rigid protein scaffolds to
control the display of ligands for cell surface receptors. Dimeric
ankyrin-based ligands for the erythropoietin receptor (EpoR)
have been shown to induce receptor dimerization and modulate
the signaling output as a function of the distance and orientation
of binding sites (Mohan et al., 2019). We have used this system as
a test case to assess the ability of Elfin UI to rapidly design models
for alternative geometries and increased valency through manual
module placement.

The first design has been generated by choosing a central
tetrameric hub, extending it progressively, and ending with an
ankyrin module that hosts the EpoR ligand, while avoiding
clashes with the receptors (Figure 7A). The second model has
been designed to provide multiple specificities. The scaffold
contains two EpoR binding sites and two protein A domains able
to bind a conserved region of a Fab antibody fragment, which
can provide additional specificity for a desired cell surface target
(Figure 7B). The designed structures are preserved after cycles of
minimization and side chain repacking.

Each design with Elfin UI required about 1 h of work,
including energy minimization and side chain repacking with
Rosetta. In the second case, the Elfin UI design was used as
a starting point for further engineering, shortening the proA
module and moving the binding site to allow the placement of
FAB in a position more compatible with multivalent binding. The
output files are provided in the Supplementary Materials.

DISCUSSION

Elfin UI is a dedicated tool for coarse-grained design of custom
protein architectures through building blocks combinations.
Modular units are connected to form a single or multiple
chains structure, depending on the modules used. The process
is much faster than other backbone building methods, but it
requires a highly curated database containing already all the
possible pairs of modules in the correct orientation. Because
of the nature of the database, interfaces between modules are
already defined and further sequence design is not needed,
contributing to improve the design speed, both in terms of
automated solutions and feedback to users that build structures
interactively. However, repacking and energy minimization are
recommended to eliminate small discrepancies at the connection
points between modules. External software tools (e.g. Rosetta) are
required for modifications at atomic level, including repacking,
energy minimization and point mutations.

Elfin UI represents a new type of interactive design software
for protein design. While other tools traditionally operate directly
on atomic models, Elfin UI allows the user to act at a higher
level, enabling a rapid design for a desired shape which is
not arbitrary, but it is connected to the information in the
module database. Quality, size and fit to the design task of the

database are key factors for successful designs. The precomputed
database is one of the factors influencing design speed, together
with the visualization of our modules, which are represented
by rigid meshes, appearing in blender as full-fledged secondary
structures. Moreover, all calculations (e.g., collision detection,
partial overlap, distance) are performed with each module
considered as a sphere with defined radius, therefore drastically
reducing the computational costs.

This setup allows for rapid prototyping of potential
structures of interest, exploring sequences with different
lengths and shape. The option to generate custom databases
allows for greater flexibility in cases where only specific
types of modules could be used, e.g., peptide or protein
binding domains.

Elfin UI’s intuitive approach makes protein design of novel
protein structures, and in particular large custom scaffolds,
accessible to non-experts and to the general public, and
represents a new educational and outreach tool.

Precise and reliable design of biological systems is one of the
goals of synthetic biology. With Elfin, custom structures with
functional domains in specific positions and orientations can be
easily and rapidly designed, bringing proteins into the realm of
DNA nanotechnology.
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