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Editorial on the Research Topic

Immunological Challenges Following Pediatric Hematopoietic Transplantation

Advancements in hematopoietic stem cell transplantation (HSCT) has made this treatment
modality a viable option for hematopoietic based diseases. With the expansion of donor options
and the reduced toxicities of preparative regimens, the risk/benefits of HSCT are becoming more
and more favorable, making it preferable than to face the complications of a patient’s primary
disease. Opportunities to improve upon the transplant procedure centrally weighs on improving our
understanding of the immune system as most of the primary obstacles for success lie within the
immunologic challenges either from the host or the donor. Whether it is overcoming the threats of
rejection, the complications of excessive immunosuppression leading to infections, or post-
transplant lymphoproliferative disease, (PTLD), or the emergence of immune dysregulation
leading to autoimmunity or graft versus host disease, achieving the full potential of this
treatment modality rests on our ability to safely eradicate the pre-existing immune system and to
establish a competent, regulated one from the donor cells. The pathway to success rests on our
ability to sustain 1) Hematopoietic engraftment, 2) Immunologic competence, and 3) Donor cell
tolerance (Figure 1). Failure to maintain all three will invariably lead to life threatening
complications. The collection of manuscripts for this Research Topic spans the full scope of
immunological challenges that lay before us, providing insights on what future investigations are
needed to overcome them.

Establishing engraftment and minimizing long term toxicity necessitates a thoughtful approach
in the selection of the preparative regimen The repertoire of agents for consideration are reviewed in
this Research Topic (Hayashi), and although the correct selection invariably differs with the disease
of interest, the optimal regimen for most conditions has yet to be defined. Further complicating the
issue is the degree of chimerism required to establish a curative outcome for a particular disease. As
discussed by Zimmerman and Shenoy, the lack of the necessity for complete donor chimerism to
provide efficacy for some diseases gives the clinician flexibility to refine preparative regimens to
establish minimum level of donor engraftment to achieve disease control. Challenges remain with
our lack of understanding of not only the degree of engraftment needed for each disease but also the
variables that ensure stable engraftment in a partial chimera state.

Establishing a new immune system with donor engraftment requires a keen awareness of the
essential elements of immune reconstitution along with the vulnerabilities the host experiences to
different pathogens at different time points as the new immune system is generated. The elements of
org July 2021 | Volume 12 | Article 73226114
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establishing a robust donor immune system rather than one
which leads to infectious risks and rejection was reviewed
by Bhatt and Bednarski. A prolonged incompetent immune
system leads to susceptibility to viral pathogens and can also
lead to additional complications such as PTLD. Our current
struggles in promptly establishing immune competence in the
post-transplant period incentivizes us to pursue alternative
strategies to protect the patient, harnessing our knowledge of
effector mechanisms to aid host defenses until sufficient immune
reconstitution is achieved. As summarized in Basso et al.’s
review, means of generating anti-pathogen effector cells are
being developed via a variety of strategies and the optimization
of such therapies will be a substantial advancement in the battle
against infections where effective antibiotics may be lacking.
Such efforts can also be utilized to combat Epstein Barr virus
driven disease processes such as PTLD (Compagno et al.).

Once donor immunity establishes itself, the threats of
rejection and immunodeficiency are supplanted by the
Frontiers in Immunology | www.frontiersin.org 25
threat of dysregulated immunity. As reviewed by Buxbaum
and Pavletic, most autoimmune processes are B cell mediated
and can be a consequence from residual donor B cells, or
donor cells responding to host antigens with dysregulated
T cells. In contrast, chronic graft versus host disease is much
more complex complication, recruiting all elements of the
immune system.

Chronic graft versus host disease remains one of the most
debilitating and life threatening immune mediated complication
of the transplant process. Fully elucidating the mechanisms and
identifying targetable elements can provide opportunities to
improve outcomes. Rozmus’ suggestion that the study of
monogenic diseases may give us novel insights in identifying
new targets against graft versus host disease is a provocative one,
and pursuit of investigations along this strategy will hopefully
provide new therapeutic opportunities in a disease in need of
new treatments. Increasing our understanding of how the
elements of the immune system is organized in chronic graft
FIGURE 1 | Competing immunologic forces in hematopoietic stem cell transplantation. Disease control requires the balance of hematologic engraftment,
immunologic competence, and donor cell tolerance. Failure to achieve all three leads to the clinical complications of transplantation represented.
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versus host disease is also of critical importance to formulate
thoughtful treatment strategies. Cuvelier et al.’s manuscript that
the cells responsible for chronic graft versus host disease differ
between adults and children highlights a paradigm that requires
further study. This observation suggests that the challenges that
we must overcome to understand this disease are even more
formidable that what we have traditionally thought; and future
efforts must take age related issues into account if we are going to
improve transplant outcomes for the pediatric population.

Still, optimism exists, as novel therapies continue to emerge
with time. Ringden et al.’s report of their experience using
mesenchymal stem cells to treat steroid refractory graft versus
host disease illustrates the wide scope of therapeutic avenues that
are being explored to find impactful therapies for this
challenging condition.

Thus, it is clear that there remain many immunologic
challenges that need to be overcome to improve the outcomes
of HSCT for pediatric non-malignant disease. This collection of
reports provides clarity, not only on where we are in this journey,
Frontiers in Immunology | www.frontiersin.org 36
but also highlights potential pathways for success. The pace by
which we gain greater command of transplant immunology will
dictate the pace in which HSCT becomes the primary therapeutic
choice in the treatment of hematopoietic diseases.
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Hematopoietic stem cell transplantation (HCT) is a curative intervention in non-malignant

disorders (NMD) that benefit from donor-derived hematopoiesis, immunity, and

establishment of vital cells or enzyme systems. Stability or reversal of disease symptoms

depends on adequacy and long-term stability of donor cell engraftment in the

compartment of interest. Unlike hematologic malignancies where complete replacement

with donor derived hematopoiesis is desirable for a cure, NMD manifestations can

often be controlled in the presence of mixed chimerism. This allows for exploration

of reduced intensity conditioning regimens that can limit organ toxicity, late effects,

and increase tolerability especially in young recipients or those with a large burden of

disease related morbidity. However, the levels of donor chimerism conducive to disease

control vary between NMD, need to focus on the hematopoietic lineage necessary to

correct individual disorders, and need to be assessed for stability over time, i.e., a

whole lifespan. An enhanced ability to reject grafts due to recipient immune competence,

alloimmunization, and autoimmunity add to the complexity of this balance making NMD

a highly diverse group of unrelated disorders. The addition of donor factors such as stem

cell source and Human-Leukocyte-Antigen match extend the complexity such that ‘one

size does not fit all’. In this perspective, we will discuss current knowledge of the role of

chimerism and goals, approach to HCT, and emerging methods of boosting engraftment

and graft function, and monitoring recommendations. We draw attention to knowledge

gaps and areas of necessity for further research and research support.

Keywords: chimerism, chimerism after allo-HSCT, non-malignant diseases, hematopoeietic stem cell

transplantation, bone marrow failure disorders, hemoglobinopathies, immunodeficiencies, metabolic disorder

INTRODUCTION

Hematopoietic stem cell transplantation (HCT) is a curative option in a variety of inherited and
acquired non-malignant disorders (NMD) that present at varying age groups, progress at variable
rates, and have a wide range of clinical manifestations. These can vary from chronic supportive
care needs and poor quality of life to rapid progression and early mortality. The overall aim of
HCT is to correct the pathologic basis of hematologic, immunologic, or enzymatic dysfunction
that is the etiology of the underlying disease. HCT results in immunohematologic replacement and
thus corrects pathophysiology in NMD such as immune deficiencies and dysregulation, metabolic
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disorders, hemoglobinopathies, and bone marrow failure
disorders. As identification of genetic abnormalities become
more sophisticated, indications for curative transplant are
expected to rise. As the number of disorders benefiting from
transplant increase, expansion of donor sources that will
best serve to mitigate disease manifestations is advantageous.
Though HCT is curative, the risk-benefit ratio between
disease manifestations and HCT outcomes should be carefully
considered. The safety and efficacy of the procedure factors
into the decision on how to, when to, and what to monitor
post-transplant. Ensuring adequate and stable donor engraftment
to effectively suppress disease manifestations or afford a cure in
timely manner has a major role in determining outcomes and
success when HCT is contemplated for NMD. Successful HCT
does not guarantee reversal of non-hematopoietic abnormalities
and outcomes are variable depending on disorder, graft source,
conditioning regimen, toxicity, and other factors. We will focus
on the chimerism aspect of success following HCT for NMD.

CHIMERISM

Full donor chimerism is often unnecessary in NMD provided
lineage specific engraftment is adequate to cure or suppress
disease manifestations. However, a few scenarios give
pause to this conclusion and disease specific assessment of
chimerism requirement is necessary. Examples include metabolic
neurodegenerative disorders where prompt and high percentage
donor engraftment is required to stem neurodegeneration as
early as possible and ensure an early rise in protective enzyme
levels (1). Patients with inherited marrow failure disorders
have a predisposition to myeloid malignancies. The stress of
hematopoiesis has been implicated in malignant transformation,
a stress relieved by successful HCT. It is not known whether this
is adequate protection against transformation to leukemia in the
setting of mixed chimerism post-HCT, making a case for regular
long-term follow up in all HCT recipients.

Frequency
Chimerism should be monitored at regular intervals after
HCT. Though the duration of monitoring is variable, it is
recommended that chimerism be monitored for at least 5 years
post-HCT. The frequency of monitoring is higher in the first
year post-HCT starting from the time of established engraftment,
∼30 days post-HCT. In the presence of complete chimerism,
monitoring every 3 months in the first year, 6 months in
the second year and yearly for at least 5 years is a general
guideline. In the event of unstable or mixed chimerism, intervals
between testing should be shorter to determine additional
interventions such as immunosuppression, stem cell boosts, or
second transplant. Chimerism analysis should be paired with
disease specific evaluations such as hemoglobin analysis in
hemoglobinopathies, blood counts in marrow failure disorders,
immune recovery in immunodeficiency disorders, and enzyme
levels in metabolic disorders. In the event of poor marrow
function it is important to determine whether the problem is
due to lack of engraftment or poor graft function. Since etiology
is often immune mediated in the former and a product of the

marrow environment or donor source in the latter, the approach
to investigation and mitigation vary. In general, a rapid drop of
donor chimerism early post-HCT is difficult to halt. A gradual
loss of engraftment over timemay bemore conducive to planning
interventions that can help slow or prevent graft loss.

Methods
Chimerism is detected by short tandem repeat (STR) polymerase
chain reaction (PCR) analysis that quantifies donor and recipient
DNA using individual specific repeats. It is read as a percentage of
donor and recipient DNA in the sample, which can be peripheral
blood or marrow. This procedure is the most sensitive and
accurate method of testing. Pre-transplant samples from both
donor and recipient are necessary for reporting post-HCT results.
Alternate methods include florescent in-situ hybridization
(FISH), chromosome analysis for sex chromosomes in the
presence of sex discrepancy between donor and recipient,
markers of donor hematopoiesis such as change in blood type,
and a rise in previously absent enzyme levels in hereditary
metabolic disorders. Disease specific testing such as neutrophil
oxidative burst in chronic granulomatous disease or CD40 ligand
expression in hyper-IgM syndrome can also assist in determining
transplant efficacy. The latter tests are cheaper and can be used for
screening but are not an accurate prediction of chimerism status.

Lineage Specific Assessment
Most non-malignant disorders require lineage specific chimerism
assessment which provides valuable detail despite the cost.
Tracking chimerism in this manner allows for prediction of the
role of chimerism on disease status and correction of deficit.
Lineage specific evaluation is based on positive selection from
peripheral blood cells and includes antibody column mediated
cell separation into myeloid (CD15, CD33), T lymphoid (CD3),
and B (CD19) lineage specificity followed by STR analysis.
Additional less frequently used assessments of lineage specific
chimerism include NK cells (CD16/CD56) or erythroid lineage
cells (CD71) for appropriate disorders. Lower levels of mixed
chimerism in non-essential lineages with stable full or adequate
donor chimerism in the lineages of interest is capable of
providing a cure. Serial tracking is necessary until stability
is ensured.

In disorders where single lineage abnormalities cause disease,
relevant lineage specific engraftment may be curative. For
example, complete lymphoid engraftment with low myeloid
chimerism (<50% donor) in Wiskott Aldrich syndrome can
reverse the immune deficiency but not the thrombocytopenia.
Serial determination of lineage specific chimerism can help
predict impending rejection specific to each disease and facilitate
earlier intervention (2).

Lineage specific chimerism requires an adequate number of
lineage specific cells to determine chimerism levels. In the case
of T-cell depleted transplants, reconstitution of the lymphoid
compartment may be delayed. This may delay meaningful T-
cell engraftment analyses. Similarly in the event of bone marrow
suppression from factors such as infection, myeloid chimerism
analyses may need to be performed after myeloid recovery.
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DISEASE SPECIFIC CHIMERISM

Children transplanted for NMD have a wide range of mixed
chimerism where donor cell engraftment ranges from 33 to 78%
(3–5). This variability is attributed to disease characteristics,
immune competence, conditioning regimen, donor source, and
transplant related complications. A retrospective review of
an Italian cohort of 101 patients who underwent transplant
for NMD found that chimerism remained a dynamic process
where 55.4% of patients with early mixed chimerism post-HCT
improved to only 12.8% with mixed chimerism at last follow-
up (6). However, late graft failure though rare was still prevalent,
making the case for continued follow-up. Early complete donor
chimerism can correct disease manifestations sooner. However,
early alloreactivity from donor lymphocyte engraftment can
be associated with a higher incidence of both acute and
chronic graft-versus-host (GVHD) disease. Mixed chimerism
and gradual donor lymphoid engraftment invites tolerance and
has a lower incidence of GVHD (6). A retrospective review
of 56 patients transplanted for NMD showed that chimerism
assessment on day+14 was significant in predicting 5-year event-
free survival (EFS). It was higher in patients with complete or
predominant donor chimerism compared to those with low-level
mixed chimerism (86.1 vs. 71.4%, p < 0.001) (7). Our experience
is similar in that a rapid decrease in donor engraftment early
post-transplant suggests robust immunologic rejection and is
harder to control without consideration of a second transplant.

The extensive variability in NMD makes it worthwhile to
summarize chimerism studies by disease groups.

IMMUNE DEFICIENCIES

Immune deficiencies that benefit from HCT are widely variable
in the range of immune defects exhibited, some with additional
hematologic manifestations. The most common disorders
include severe combined immunodeficiency (SCID), Wiskott-
Aldrich syndrome (WAS), and chronic granulomatous disease
(CGD). The majority present during early childhood and SCID
patients may be identified at birth with newborn screening.
Immune dysregulation disorders that respond to treatment with
HCT include hereditary hemophagocytic lymphohistiocytosis
(HLH), immunodysregulation polyendocrinopathy
enteropathy X-linked syndrome (IPEX), and autoimmune
lymphoproliferative syndrome (ALPS). Non-SCID immune
disorders are diagnosed at various ages most commonly due
to infectious complications or hematopoietic/autoimmune
manifestations. HCT provides the opportunity to establish a
normal immune system but is a serious undertaking due to the
risks associated with treating very young, or patients already
exposed to serious infections. HCT is considered successful
if patients demonstrate successful immune reconstitution in
all lymphoid compartments, normal immunoglobulin levels,
vaccine response, and T-cell repertoire. Achieving this in
the presence of a dysregulated host immune system can be
challenging given the propensity for selective engraftment and
partial correction.

Patients with SCID have excellent survival rates post-HCT.
Due to T-cell deficiency and the associated inability to reject
grafts, for many years, the standard of care for SCID patients was
to infuse donor stem cells without conditioning. This led to donor
T-cell engraftment while other lineages remained of recipient
origin resulting in lifelong dependency on immunoglobulin
(IVIG) infusions due to a lack of functional B-cells in some SCID
subtypes such as RAG1/2 deficiency.

Recently, retrospective reviews have shown that T-cell
reconstitution was poorer with RAG and DCLRE1C mutations
than other phenotypes. B-cell engraftment was poorer in
IL2RG/JAK3, RAG and DCLRE1C mutation phenotypes
especially with mismatched grafts (8, 9). With T-cell replete
grafts, if at day +100, recipients had <300 CD3 cells/µL, <50
CD8 cells/µL, <10% CD45RA cells or a T cell repertoire of <13
of 24 families, a second HCT was likely needed (10). Global
immune reconstitution has been successfully achieved in typical
or leaky SCIDs transplanted after reduced intensity conditioning
regimens. In contrast to T-cell engraftment, myeloid and B-cell
reconstitution is improved by conditioning strength with
myeloablative HCT affording better engraftment than reduced
intensity HCT (11). Factors to be considered for toxicity of
intensive regimens however include age of the patients, potential
for late effects, pre-existing infections, and toxicity due to
DNA repair defects (DCLRE1C). Another strategy to improve
outcomes may be to avoid conditioning before an initial stem
cell infusion if toxicity is imminent. This will need to be followed
by a subsequent HCT with conditioning complete immune
reconstitution when the recipient can tolerate it better.

All other immune deficiency disorders other than SCID
require conditioning for engraftment. While myeloablative
regimens have been associated with significant morbidity,
reduced intensity regimens have better survival but higher
rejection rates (12). Donor chimerism of >30% if stable, can
protect against disease reactivation in HLH (13). Stable myeloid
chimerism levels of >50% are desirable in conditions such
as CGD for functional correction, and platelet count recovery
in WAS. If familial donors are considered, the presence of
heterozygosity for disease in the donor will need to be considered
as it may interfere with full correction of the disease (e.g., HLH,
X-linked CGD). Here, carrier donors are best avoided. Some
immune dysregulation disorders such as STAT1 or CTLA-4
deficiency may require full donor chimerism for correction.
Reducing the intensity or toxicity for safety may have secondary
or late rejection rates of 10–15%, (14), autoimmunity with mixed
chimerism (15) or delayed myeloid engraftment (16) and need
to be tracked. Despite this, success rates continue to improve for
these disorders.

METABOLIC AND STORAGE DISORDERS

Metabolic and storage diseases are a heterogeneous group of
disorders leading to accumulation of enzymatic by-products
in multiple organs with associated toxicities, predominantly
neurologic. HCT from unaffected donors can supplement
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enzyme following hematopoietic engraftment and migration
to affected organs. Timely HCT is important to offset
irreversible changes making early engraftment a key determinant
of success.

Hurler Syndrome, a lysosomal storage disorder caused by
deficiency of the enzyme alpha-L-iduronidase (IDUA) is themost
commonly transplanted inheritedmetabolic disorder. Transplant
is considered successful when patients attain normal leukocyte
IDUA levels best achieved with full donor chimerism. In a study
of more than 200 patients transplanted for Hurler’s followed for
neurodevelopmental outcomes and growth, factors supporting
successful enzyme reconstitution included early transplantation,
non-carrier donors, cord blood grafts due to higher inherent
enzyme levels, and preparative regimens designed to achieve
complete chimerism (1, 17). Speed of HCT for engraftment
has no better illustration than early infantile Krabbe disease
where donor engraftment following HCT <30 days of age had
improved outcomes in domains of mobility, communication and
feeding (18).

Leukodystrophies such as adrenoleukodystrophy (ALD), an
X-linked disorder resulting in the inability to transport fatty acids
into the peroxisome for degradation leads to accumulation in
tissues specifically the central nervous system. HCT has been
shown to halt neurological disease progression in a significant
majority attributed to monocyte engraftment in the brain. It is
important to proceed to transplant at diagnosis and with a low
Loes radiologic score. Neurologic stability after engraftment takes
time and occurs over the span of the first year so delays could
accelerate deterioration. ALD patients with 70–100% donor
chimerism in the myeloid compartment on day +60 and those
with faster recovery of neutrophil counts had better resolution of
gadolinium uptake on brain MRI scans post-HCT, a measure of
blood brain barrier recovery (19).

Osteopetrosis, characterized by dysfunctional osteoclasts, also
responds to HCT. Stabilization of vision and hearing, nasal
obstruction and motor deterioration requires transplant in
infancy and prompt engraftment is able to rescue 40–70%
of patients. Graft failure despite intensive conditioning is the
major cause of failure and death after HCT in osteopetrosis.
However, donor chimerism in myeloid cells as low has
5–10% prevents death and provides sustained hematopoietic
recovery in contrast to many other hereditary metabolic
disorders (20).

HEMOGLOBINOPATHIES

Hereditary hemoglobinopathies with severe manifestations can
be cured by HCT. The common disorders eligible for HCT are
sickle cell disease (SCD) and transfusion dependent thalassemia.
Variables influencing donor engraftment in hemoglobinopathy
patients include age, HLA alloimmunization due to transfusion
history, immune competence, and paucity of matched sibling
donors. SCD manifestations are reversed in the presence of
successful donor-derived erythropoiesis and normal erythroid
precursors may have a survival advantage resulting in abatement
of SCD symptoms even in the presence of low lymphoid

engraftment. Myeloid lineage chimerism is a good surrogate
for erythropoiesis in the absence of red cell chimerism (CD71)
evaluation. Lymphoid engraftment can remain low or increase
over time but there are no threshold levels necessary to maintain
myeloid engraftment (21, 22).

Stable donor chimerism >20–25% paired with a hemoglobin
S level <50% is associated with resolution of disease symptoms
such as vaso-occlusive episodes and strokes (23, 24). However,
hemolytic anemia was detected in SCD patients who had
<50% donor cells after myeloablative conditioning and higher
engraftment levels (>30%) were better if donors had sickle
trait (25). The acceptability of stable mixed chimerism and
the presence of mixed chimerism even with myeloablative
conditioning (up to 44%) allows the exploration of less toxic
regimens for HCT in SCD. Younger patients and donors, those
with mismatched donors, low cell dose, and weaker stem cell
sources such as cord blood have a higher risk of graft rejection
in SCD and should be taken into consideration when fashioning
regimens targeting intensity (26).

Thalassemia is cured when a patient no longer requires blood
transfusions, regains growth, and restores iron related changes.
A cohort of 106 patients with beta-thalassemia major when
studied retrospectively revealed that half had sustained mixed
donor chimerism with cure. Mixed chimerism was associated
with a good transplant outcome and decreased risk of acute
or chronic GVHD, a finding that was not noted in SCD. High
erythroid lineage engraftment with low level donor chimerism in
other lineages is compatible with cure in thalassemia (27). Mixed
chimerism though acceptable, needs monitoring for stability over
time in patients with hemoglobinopathy irrespective of intensity
of conditioning regimens.

TABLE 1 | Classification of non-maligant disorders with associated lineage

specific engraftment, and recommended donor chimerism levels for adequate

disease mitigation.

Non-malignant disorder Lineage specificity Minimum goal for

donor Chimerism

Immunodeficiencies

HLH NK cell/Lymphoid >30% (13)

IPEX, ALPS Lymphoid >50% (32)

Severe Combined

Immunodeficiency

T, B, NK cell 100% (8)

Chronic Granulomatous

Disease

Myeloid >50% (5)

Wiskott-Aldrich Syndrome Lymphoid/Myeloid >50% (16)

Hemoglobinopathies

Sickle Cell Disease Erythroid/myeloid 20–25% (23)

Thalassemias Erythroid/myeloid 20–25% (27)

Metabolic disorders

ALD, Hurlers, Krabbe’s Myeloid 70–100% (1)

Osteopetrosis Myeloid >10% (20)

Bone marrow failure syndromes

SCN, SDS, DBA, FA Myeloid 100% (30)

Lymphoid >50% (31)
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BONE MARROW FAILURE SYNDROMES

Bone marrow failure syndromes (BMFS) such as aplastic
anemia, severe congenital neutropenia, dyskeratosis congenita,
Shwachman-Diamond, Diamond-Blackfan or Fanconi anemias
(FA), and congenital amegakaryocytic thrombocytopenia include
genetic and acquired pathologies resulting in inadequate
hematopoiesis. HCT is curative. Since many are pre-leukemic
conditions, full donor chimerism in the myeloid compartment
is desirable and mixed chimerism in lymphoid lineages is
acceptable. Patients with Fanconi and DNA repair defects are
unable to tolerate regimen intensity or alkylating agents. The
resulting need for balance between toxicity of intensification
and engraftment is delicate. Graft rejection rates can be as high
as 20–25% even with myeloablation. Both myeloablative and
immunosuppressive regimens have been successful in curing
BMFS following successful myeloid engraftment. In FA, with
mixed chimerism in the lymphoid lineage, patients can be
left with some lymphocytes exhibiting the increased sensitivity
to DNA damage and others exhibiting a normal response
(28–31). Long-term follow-up post-HCT in all BMFS should
include both chimerism evaluation and monitoring for clonal
hematopoiesis, a risk that should technically be mitigated with
myeloid engraftment.

DISCUSSION

Donor chimerism requirements to achieve disease control are
widely variable in NMD and can range from as low as 10%
to >90% (Table 1). Variables influencing chimerism include
age, inflammatory status, immune competence, and transfusion
history. Transplant and donor characteristics include donor
age, HLA match, stem cell source, cell dose, and intensity of
conditioning regimens. In general, reduced intensity regimens
are more appropriate for disorders that are conducive to mixed
chimerism. As transplant approaches change to accommodate
more donors, increase safety and tolerability, and reduce toxicity,
chimerism should be tracked and described long-term.

Our understanding of chimerism and adequate interventions
for the same continue to evolve. Stable donor chimerism off
immunosuppression for over 2 years is unlikely to dwindle.
However, continued monitoring is still recommended for
occasional late graft rejections as described in thalassemia. These
patients are usually identified by gradually dwindling donor

chimerism levels in the lineage of interest. The old dogma
that T-cell engraftment was necessary to maintain myeloid
chimerism has not held true in NMD following the expanded
ability to monitor chimerism in a lineage specific manner.
While stable mixed chimerism is fully acceptable, dropping
chimerism has prompted immune suppression withdrawal in
myeloablated or immunoablated recipients whereas continuing
immune suppression has been advantageous in low intensity
regimens. Donor lymphocyte infusions are generally not of
benefit, can induce unwanted GVHD, and should be avoided
in NMD. An early rapid drop in chimerism usually requires
a second stem cell infusion after reconditioning whereas a
gradual decline can be salvageable with immune suppression
adjustments. Reduced intensity conditioning does not preclude a
second early transplant whereas a time lag is better for toxicity
reasons after a myeloablative transplant. The ability to infuse
products such as high dose CD34 selected stem cells is valuable
in NMD to avert GVHD risks.

CONCLUSIONS

The tracking of lineage specific donor chimerism for
stability with time should be routinely incorporated into
evaluations post-HCT for NMD. The definition of adequate
chimerism for successful HCT varies by disorder and as
our understanding of the same matures, our remedial
interventions will evolve. The definition and durability of
adequate chimerism has direct application to gene-modified
therapy that is now under evaluation for many genetic
disorders. In both the allogeneic and in the gene-modified
autologous HCT setting, chimerism requirements will drive
conditioning needs and transplant methods to achieve
a cure.
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Allogeneic hematopoietic cell transplant (HCT) is curative for pediatric patients with
non-malignant hematopoietic disorders, including hemoglobinopathies, bone marrow
failure syndromes, and primary immunodeficiencies. Early establishment of donor-
derived innate and adaptive immunity following HCT is associated with improved overall
survival, lower risk of infections and decreased incidence of graft failure. Immune
reconstitution (IR) is impacted by numerous clinical variables including primary disease,
donor characteristics, conditioning regimen, and graft versus host disease (GVHD).
Recent advancements in HCT have been directed at reducing toxicity of conditioning
therapy, expanding donor availability through use of alternative donor sources, and
addressing morbidity from GVHD with novel graft manipulation. These novel transplant
approaches impact the kinetics of immune recovery, which influence post-transplant
outcomes. Here we review immune reconstitution in pediatric patients undergoing
HCT for non-malignant disorders. We explore the transplant-associated factors that
influence immunologic recovery and the disease-specific associations between IR and
transplant outcomes.

Keywords: immune reconstitution, hematopoietic stem cell transplant, non-malignant disorders,
hemoglobinopathy, severe combined immunodeficiency, aplastic anemia

INTRODUCTION

Allogeneic hematopoietic cell transplant (HCT) is a key therapeutic approach for many
non-malignant hematopoietic diseases in pediatric patients, including hemoglobinopathies,
bone marrow failure syndromes, and immunodeficiencies. Effective reconstitution of donor-
derived innate and adaptive immune cell number and function following HCT is critical for
promoting donor cell engraftment, restoring protection against infections, and improving overall
survival (1, 2).

Recovery of immunity after HCT is influenced by various clinical factors, including primary
diagnosis, donor type, stem cell source, graft manipulation, conditioning regimen (i.e., intensity
of conditioning, use of irradiation, serotherapy), and pharmacologic prophylaxis, development
and treatment of graft-versus-host disease (GVHD) (1, 2). After HCT, establishment of donor
immunity is variable and occurs in phases. Innate immune reconstitution (IR) occurs first with

Abbreviations: ATG, anti-thymocyte globulin; BM, bone marrow; CMV, cytomegalovirus; GVHD, graft-versus-host disease;
HCT, hematopoietic cell transplant; IR, immune reconstitution; MAC, myeloablative conditioning; MRD, matched related
donor; MSD, matched sibling donor; NK, natural killer; PB, peripheral blood; RD, related donor; RIC, reduced intensity
conditioning; RTC, reduced toxicity conditioning; UCB, umbilical cord blood; URD, unrelated donor.
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neutrophils, monocytes, natural killer (NK) cells, and dendritic
cells expected to normalize in the first weeks to month after
HCT (1). Adaptive immune system recovery occurs more slowly
with B cell and CD8 T cell numbers normalizing between
100 days and 6 months post HCT and thymic-dependent CD4
T cell reconstitution occurring between 6 and 9 months (1).
Initial T cell reconstitution occurs through peripheral expansion
of CD8 memory T cells from the donor graft or recipient
T cells remaining after conditioning (3). These peripherally
expanded CD8 T cells are responsive to cytokines and previously
encountered viruses; however, they have limited ability to
respond to novel antigens (3). The second phase, leading
to full T cell reconstitution, relies on lymphoid progenitors
undergoing thymic differentiation into naive CD4 or CD8 T cells
expressing MHC-restricted, antigen-specific T cell receptors (3).
The kinetics of reconstitution of these distinct components of the
immune system correlate with post-transplant morbidity related
to infections, graft loss and GVHD. Here we review the factors
that influence recovery of innate and adaptive immunity in
pediatric patients undergoing HCT for non-malignant disorders
and the impact of this reconstitution on general and disease-
specific outcomes.

TRANSPLANT-ASSOCIATED FACTORS
AFFECTING IMMUNE RECONSTITUTION

Stem Cell Source
Peripheral blood (PB), bone marrow (BM), or umbilical cord
blood (UCB) stem cells can be utilized for HCT from either
related (RD) or unrelated donors (URD). These donor sources
vary in cellular composition with PB grafts having 10-fold
higher T and B cells than BM grafts and single UCB grafts
having 10–100-fold fewer nucleated cells compared to BM (1,
4, 5). The differences in graft composition impact donor IR
and infectious complications following HCT. Regarding innate
immunity, neutrophil engraftment occurs at approximately 14,
21, and 30 days after a PB, BM, and UCB HCT, respectively (6).
Interestingly, NK cell numbers normalize by 1 month post HCT
independent of graft source (6). Yet, UCB recipients have been
found to have higher numbers of NK cells at 3, 9, and 12 months
after transplant (7).

Graft source also impacts reconstitution of adaptive
immunity. HCT with UCB has been associated with higher naive
and memory B cell numbers at 6 months post HCT compared to
BM and PB grafts (8). In contrast, T cell reconstitution is delayed
after UCB HCT (7–9). UCB contains antigen-inexperienced
naive T cells; therefore, T cell recovery is entirely thymic
dependent resulting in profound early lymphopenia (7, 10, 11).
Recipients of UCB HCTs have a slower recovery of thymopoiesis
than patients receiving BM stem cells as evidenced by a lower
thymic-derived naive CD4 T cells at 6 months post HCT (7).

T cell reconstitution also differs between BM and PB
recipients. In a single institution randomized trial, patients
who received PB grafts had faster lymphocyte recovery, most
significantly CD4 T cells, compared to BM graft recipients (4).
Consistent with slower IR, BM stem cell recipients had a 2.4-fold

higher rate of severe infections and a higher risk of infection-
related mortality (4). A larger, phase 3 trial confirmed earlier IR
and lower infection risk in patients receiving PB grafts but did not
identify any differences in mortality (12). Thus, donor IR after
HCT is highly impacted by distinct properties of the different
stem cell sources (Figure 1).

Alternative Donor Sources
While an HLA matched donor is preferred, less than 25% of
patients will have an available sibling donor and the likelihood
of identifying a matched URD in the registry is impacted
by numerous factors, including ethnicity of the patient (13).
Consequently, alternative donors have been increasingly used for
HCT with unique implications for post-HCT IR (Figure 1).

UCB has been utilized as an alternative donor source and
has distinctive IR properties as discussed above. However,
there are significant barriers to success of UCB transplants,
including graft failure and delayed neutrophil and T cell recovery,
resulting in infectious complications (10, 11, 14). Addressing
these obstacles has been an active area of investigation (6,
10, 15). UCB has lower total nucleated cell and CD34 + cell
dose (per recipient’s weight), which has been associated with
delayed hematological recovery and graft failure (11). Strategies
to improve cell dose for UCB have included double cord
blood transplant and ex vivo expansion of cord blood units.
While IR data on double UCB HCT is limited in pediatrics,
in adults, it has not consistently demonstrated an improvement
in IR compared to single UCB HCT (10, 16, 17). This may
be, in part, related to confounding factors, including the use
of T cell depletion (10). Further studies are needed to better
address this question. In contrast, recent early phase clinical
trials using ex vivo cord blood expansion have demonstrated
that neutrophil engraftment can be shorted to 9 days from
21 days (15, 18). In regard to T cell recovery, lower doses of
anti-thymocyte globulin (ATG) have been associated with faster
recovery of CD4 and CD8 T cells after UCB transplant (14,
19, 20). Additionally, use of better HLA-matched cord blood
units with higher CD3 T cell counts has been shown to improve
immune recovery (21).

The use of haploidentical donors as an acceptable alternative
stem cell source has surged with recent studies aimed to reduce
the risk of GVHD, sustain donor engraftment, and support
earlier IR (13, 22). The kinetics of IR following haploidentical
donor HCT depends on conditioning regimen, stem cell source,
and graft manipulation strategy utilized. For example, time to
neutrophil engraftment varies from a median of 11–12 days
after T cell depletion with high dose CD34 + cells to 13 days
after GCSF-mobilized haploidentical unmanipulated PB graft to
15 days after unmanipulated haploidentical BM (23). Similar
to HLA-matched transplant, monocyte and NK cell recovery
is rapid and occurs by day 15 and 30, respectively, after
haploidentical HCT (23). Regarding adaptive immunity, patients
receiving T cell replete haploidentical grafts have more rapid T
cell IR during the first 6 months after HCT compared to patients
who received T cell-depleted grafts (23). T cell function and
new naive T cell production remain low for 12–24 months after
unmanipulated haploidentical HCT (23).
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FIGURE 1 | Effects of transplant-related factors on immune reconstitution. Different types of immune cells and their differentiation are depicted. After allogeneic HCT
innate immunity (blue) recovers early (within 30 days). Reconstitution of adaptive immunity (red) is later and more variable (often up to 1 year). The kinetics of immune
recovery is influenced by primary diagnosis (&), conditioning regimen ($), use of serotherapy (‡), stem cell source (¶), and GVHD (#). Each transplant-associated
factor distinctly impacts different immune populations and differentiation stages.

Due to delayed recovery of adaptive immunity and associated
infection risks, strategies for ex vivo elimination of αβ T cells
and CD19 B cells with no pharmacologic prophylaxis for GVHD
has been utilized for haploidentical transplant in patients with
non-malignant disorders (13, 22). In a study of 23 patients,
γδ T cell recovery occurred early (∼1 month post HCT), but
αβ T cell and CD19 B cell repopulation was delayed to 9–
12 months, respectively (13). Alternative donor sources are often
used in patients with non-malignant disorders who have no
available familial or registry donor. Improving IR in this patient
population remains an active area of investigation.

Conditioning Strategies
IR is also impacted by conditioning regimen, including intensity
of chemotherapy, use of radiation, and use of serotherapy
(Figure 1). In particular, conditioning therapy can damage the
thymus and impair its function, which is essential for full T cell
reconstitution. For example, cyclophosphamide and radiation
induce acute thymic injury with loss of cellularity whereas ATG
and alemtuzumab serotherapy significantly deplete thymocytes
resulting in prolonged T cell aplasia (3).

Patients with non-malignant disorders often receive reduced
toxicity (RTC) and reduced intensity conditioning (RIC)

regimens in order to limit the morbidity associated with
myeloablative conditioning (MAC). RIC regimens are non-
myeloablative while RTC regimens are myeloablative. Both
approaches have fewer side effects and organ toxicities compared
to traditional MAC. Law et al. reported that following a RTC
regimen of alemtuzumab, busulfan, and fludarabine median
time to neutrophil recovery was 16 days while time to B cell
and T cell reconstitution was 3 and 6 months, respectively
(24). A RIC approach with alemtuzumab, fludarabine and
melphalan has been used by our group and others (25–
28). We recently reported IR and infectious complications in
patients after HCT with early alemtuzumab (day -21) (26). NK
cell recovery was rapid by day 100 and lymphocyte recovery
was dependent on donor source, namely related (RD) versus
unrelated donor (URD). Mean CD3, CD4, and CD8 T cell
numbers normalized by 6 months after RD HCT and by 1 year
in the URD group (26). B cell recovery occurred by day 100
for RD recipients and by 1 year for URD recipients (26).
Despite these differences, infections did not differ between the
groups (26).

Timing and dose of serotherapy significantly impact IR (20, 29,
30). Admiraal et al. reported on IR in patients with malignant and
non-malignant disorders receiving ATG as part of conditioning
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(20). They found that successful CD4 IR was related to the area
under the curve (AUC) of ATG after donor stem cell infusion
(20). Patients who received UCB HCT had delayed IR with an
AUC ≥ 20 AU × day/mL while patients who received BM and
PB HCT had decreased IR only at an AUC ≥ 100 AU × day/mL
(20). Notably, an ATG AUC≥ 40 AU× day/mL prior to stem cell
infusion resulted in a lower incidence of graft failure and acute
and chronic GVHD (20). Marsh et al. similarly demonstrated
that alemtuzumab level at time of transplant impacts outcomes
(30). They found patients with a level <0.15 mg/mL had
threefold higher rates of acute GVHD than patients who had
levels >0.16 mg/mL at the time of transplant. Alemtuzumab
levels above 0.57 mg/mL were associated with delayed T cell
recovery and very high levels (4 mg/mL) were associated with
mixed chimerism (30). The approach to conditioning is often
dictated by primary disease/graft source and requires careful
consideration to balance IR with risks of GVHD and graft failure.

DISEASE-SPECIFIC OUTCOMES

Hemoglobinopathies
HCT for pediatric patients with thalassemia and sickle cell disease
is potentially curative and the impact of IR on transplant-
associated morbidity and outcome has been investigated by
several groups. Rajasekar et al. detailed IR patterns in patients
with β thalassemia major following MAC and matched related
donor (MRD) HCT with BM graft (31). They found that NK
cells, monocytes and dendritic cells recovered within 1 month
of transplant (31). CD8 T cells and B cells repopulated at 2
and 4 months, respectively, while CD4 T cell recovery did not
occur by 1 year post HCT (31). Consistent with this, naive CD4
T cell (CD45RA+) recovery was delayed more than a year and
correlated with age, with younger patients having faster recovery
(31). Interestingly, multivariate analysis showed that NK cell
count correlated with transplant success as patients with NK cells
below a median of 142/µL at 28 days post HCT had a significantly
higher rejection rate and lower event free survival (31).

In order to prevent graft failure/rejection, in vivo T
cell depletion is increasingly utilized in patients with
hemoglobinopathies (32). An evaluation of IR in children

with severe β thalassemia major following matched sibling donor
(MSD) HCT found that the addition of ATG led to delayed
CD8 T cell recovery at 6 months but no change in CD4 T cell
reconstitution, which occurred at 12 months (33). Use of ATG
containing conditioning regimens was associated with variable
rates of bacterial infection (17–70%) and cytomegalovirus (CMV)
reactivation (36–45%) (32, 33). These infectious complications
are similar to those in patients transplanted without in vivo T
cell depletion (32). However, rates of GVHD were lower after
ATG-based conditioning (32).

Our group has reported similar outcomes in patients with
hemoglobinopathies undergoing HCT with in vivo T cell
depletion utilizing alemtuzumab (34). Lymphocyte recovery of
CD4, CD8, and CD19 occurred by 1 year post transplant and was
impacted by duration and intensity of immunosuppression for
GVHD prophylaxis/treatment (34). Infection risk was highest in
the first 6 months post HCT with bacterial infections and CMV
reactivation in 28 and 43% of patients, respectively (34).

Aplastic Anemia
Patients with severe aplastic anemia undergo HCT as first line
therapy if a MSD is available or as salvage therapy if they fail
immune suppression therapy. A retrospective review of patients
who failed immune suppression therapy and received MUD
HCT after fludarabine, cyclophosphamide, and alemtuzumab
conditioning therapy demonstrated that the majority of children
achieved normal lymphocyte subsets by 12 months post HCT
(35). Infectious complications included adenoviremia (2.3%),
EBV viremia (22.7%), and CMV viremia (22.7%) (35). Our
group published a report of 17 patients undergoing HCT with
alemtuzumab, fludarabine and melphalan conditioning (36).
While NK cells recovered early, T cell (both CD4 and CD8)
and B cell recovery was markedly delayed with all populations
normalizing by 1 year after HCT (36). Consistent with these
kinetics, infection rates were higher in the first 6 months
post HCT (36).

A recent study of pediatric and adult patients (median age of
14 years) with aplastic anemia treated with haploidentical HCT
utilizing busulfan, cyclophosphamide and ATG reported rapid
neutrophil recovery at median of 12 days and monocyte recovery
by 30 days after transplantation (37). CD8 T cell recovery

TABLE 1 | Immune reconstitution with and without conditioning for SCID.

Genotype Immune phenotype Conditioning CD8 T Cell CD4 T Cell B Cell References

IL2RG/JAK3 T- B + NK- No + + – (38–42, 44, 45)

Yes + + +

ADA T- B- NK- No + + +

Yes + + +

RAG1/2/Artemis T- B- NK + No – – –

Yes + + +

IL7R T- B + NK + No + + +*

Yes + + +

+Indicates reconstitution is likely after HCT. −Indicates unlikely to reconstitute after HCT. *Indicates recipient reconstitution aided by donor cells.
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occurred at 60 days while CD4 T cell repopulation was delayed
to 1 year post HCT, resulting in an inverted CD4:CD8 ratio
during that time period (37). Interestingly, patients with a lower
CD4:CD8 ratio on day 30 post HCT had higher overall survival
(37). Younger recipient age, female gender, high mononuclear
cell count in the graft, and absence of CMV reactivation were all
independently associated with improved IR after transplant (37).

Primary Immunodeficiency
Severe combined immunodeficiencies (SCID) are a
heterogeneous group of genetic disorders characterized by
a lack of T cell progenitors available to develop within the
thymus resulting in failure of T cell maturation as well as
impaired cellular and humoral immunity (38). IR following HCT
for SCID is variable based on intrinsic factors related to the
underlying genetic defect (i.e., timing of developmental arrest)
and modifiable factors, such as conditioning therapy (Table 1)
(38–41). HCT without conditioning from an HLA-matched
donor (related or unrelated) or T cell-depleted haploidentical
donor allows successful thymopoiesis and T cell IR in SCID
patients with IL2 receptor gamma chain (IL2RG), Janus-
associated kinase 3 (JAK3), and adenosine deaminase (ADA)
mutations (38). However, patients with IL2RG- and JAK3-
mutant SCID transplanted without conditioning have lower
(often absent) donor stem cell engraftment and, consequently, do
not have donor B cell repopulation (42). In the absence of donor B
cell engraftment, patients often require lifelong immunoglobulin
replacement. In contrast, patients with interleukin-7 receptor
(IL7R)-deficient SCID have intact function of B cells, which can
produce immunoglobulin with help from donor T cells (38).
Notably, without donor stem cell engraftment, patients are at
risk of early T cell exhaustion due to limited donor-derived
thymopoiesis (38). In ADA-deficient SCID, the majority of
patients who receive non-conditioned MRD HCT graft engraft
donor stem cells and have sustained cellular and humoral IR
(43). SCID patients with mutation of RAG1, RAG2 or DCLRE1C
(ARTEMIS) have arrest of thymopoiesis at later developmental
stages and require conditioning to achieve recovery of donor
immunity (38).

A recent prospective study demonstrated that patients
with SCID who received conditioning (RIC or MAC)
prior to HCT had significantly higher levels of T, B, and
myeloid cell donor chimerism at day 100, which persisted
at 1 year post HCT (44). Furthermore, use of conditioning
correlated with higher CD4 cell counts and greater likelihood
of independence from immunoglobulin therapy at 1 year
post HCT (44). There was no difference in overall survival
based on receiving conditioning (44). While IR is improved
with pre-transplant conditioning, there are significant
potential toxicities and optimal conditioning therapy is still
not known (38, 44).

In addition to conditioning, many other variables impact IR
after HCT in SCID patients. HCT with an URD is associated
with better T cell reconstitution whereas HCT with a mismatched
related donor has poorer B cell reconstitution (45). IR also varies
based on SCID genotype. RAG1/2 and DCLRE1C mutations
have poorer T cell reconstitution after transplant (45). In

regard to B cell reconstitution, in non-MSD recipients, ADA,
IL7R, CD45, and CD3 genotypes have a higher probability of
stopping immunoglobulin replacement therapy compared to
IL2RG, JAK3, RAG1/2, and DCLRE1C genotypes (45).

Regardless of genotype or conditioning, a CD4 T cell count
≥500 cells/cumm at 6 and 12 months post HCT correlates with
significantly better long-term overall survival (45). Furthermore,
in SCID patients receiving T cell replete grafts, low numbers of
total T cells, CD8 T cells, naive CD4 T cells, and polyclonal Vβ

diversity at day 100 were all linked to higher risk of death or need
for a second transplant at 2 years (44).

DISCUSSION

Reconstitution of the donor-derived immune system is essential
for achieving optimal outcomes for pediatric transplant
recipients. The timing and extent of recovery of immune cell
numbers and function directly impact infectious complications,
development and treatment of GVHD, and long-term survival.
Innate immunity establishes rapidly after transplant and,
generally, is only modestly impacted by transplant-associated
variables. In contrast, adaptive immunity recovers with
highly variable kinetics that are strongly influenced by
numerous factors. Indeed, the timing and characteristics of
IR can be adjusted by modifiable factors, including stem cell
source and dose, conditioning regimen, and use/timing of
serotherapy. The establishment of donor immunity uniquely
impacts the post-transplant course based on initial diagnosis
and disease presentation. As such, it’s critical to not only
assess general patterns of IR but to evaluate these within
disease-specific contexts.

Newer transplant approaches utilizing alternative donor
sources, novel preparative regimens, and innovative graft
manipulation strategies will invariably impact recovery of
immune function. Additionally, identifying therapies that
enhance IR remains an important focus of investigation.
Innovative approaches include use of cytokines (IL-7 and IL-22),
keratinocyte-growth factor, sex steroid ablation, and adoptive cell
therapies (3, 46–51). Cellular therapies, such as viral-specific T
cells, provide opportunities to support immune function while
awaiting establishment of full IR. Careful evaluation of immune
recovery will be essential in determining the impact of these
therapeutic advances on transplant outcomes.
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Autoimmune manifestations after allogeneic hematopoietic stem cell transplantation
(AHSCT) are rare and poorly understood due to the complex interplay between the
reconstituting immune system and transplant-associated factors. While autoimmune
manifestations following AHSCT have been observed in children with graft-versus-
host disease (GvHD), an alloimmune process, they are distinct from the latter in that
they are generally restricted to the hematopoietic compartment, i.e., autoimmune
hemolytic anemia, thrombocytopenia, and/or neutropenia. Autoimmune cytopenias
in the setting of ASHCT represent a donor against donor immune reaction. Non-
hematologic autoimmune conditions in the post-AHSCT setting have been described
and do not currently fall under the GvHD diagnostic criteria, but could represent
alloimmunity since they arise from the donor immune attack on the antigens that
are shared by the donor and host in the thyroid, peripheral and central nervous
systems, integument, liver, and kidney. As in the non-transplant setting, autoimmune
conditions are primarily antibody mediated. In this article we review the incidence,
risk factors, potential pathophysiology, treatment, and prognosis of hematologic and
non-hematologic autoimmune manifestations in children after AHSCT.

Keywords: autoimmunity, alloimmunity, hematopoietic stem cell transplantation, allogeneic, immune
reconstitution, non-hematologic, autoimmune hemolytic anemia, autoimmune cytopenia

INTRODUCTION

Allogeneic hematopoietic stem cell transplantation (AHSCT) has the potential to cure refractory
hematopoietic malignancies as well as acquired and inherited non-malignant immune diseases,
hemoglobinopathies, and inherited metabolic disorders. For inherited disorders, emerging genetic
therapies may offer an alternative (1, 2) while immunotherapeutic approaches, including AHSCT,
will likely continue to be widely used for malignant diseases. Children are more likely to experience
long term survival after AHSCT, but are also susceptible to harmful effects of AHSCT on growth
and development of many organ systems (3). As more children undergo ASHCT, identification of
biological risks that are unique to this population, and the underlying biological processes is needed.

Reconstitution of the adaptive immune system following AHSCT is primarily mediated through
peripheral non-thymic expansion of donor-derived T cells in the host (4, 5). Even in children,
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thymic output is significantly reduced in the immediate post-
HSCT period due to transplant-related insults. Thus, peripheral
(non-thymic) immune tolerance mechanisms appear to be
critical during this time of immune recovery and for the
emergence of both alloimmune and autoimmune complications
of AHSCT. Alloimmunity stems from the donor recognition of
host and can be detrimental when it manifests as graft-versus-
host disease (GvHD) due to the resultant attack on the recipient
tissues (6) or beneficial when directed against the malignant
cells, i.e., the graft-versus-leukemia (GVL) effect. GvHD is a
common HSCT complication that has acute and chronic forms.
Both have well-characterized clinicopathologic features involving
the gastrointestinal tract, liver and skin, with additional organ
involvement in chronic GvHD (7). Chronic GvHD (cGvHD)
typically affects tissues that form the physical and immune barrier
between the host and potential infectious pathogens and thus
are enriched with immune cells, i.e., skin, eyes, pulmonary tract,
mouth, gastrointestinal tract, and genital tract. Autoimmunity
after HSCT affects tissues that are often targeted by idiopathic
autoimmune diseases (AD).

Outside of the AHSCT setting the pathophysiology of
autoimmunity is multifactorial and the exact timing and type of
the inciting event is usually unknown. In the AHSCT setting,
the timing of the autoimmunity initiating cascade starts with
the donor cell infusion. AHSCT adds a number of potentially
detrimental effects that can skew the reconstituting immune
system toward AD and represents a unique clinical model for AD
research (8, 9). Whether GvHD and AD after HSCT have shared
pathophysiology is an active research question. Both are driven by
donor immune reaction, in the former the targets are host, while
AD is directed against the donor hematopoietic compartment, or
non-hematopoietic targets that are common to the donor and
host. Children experience lower rates of GvHD (3) but those
that undergo AHSCT for non-malignant indications appear to
have a higher risk of hematologic autoimmune manifestations
(9). Despite non-hematologic autoimmune-like manifestations
being less frequent in children than adults they too have a higher
incidence in the setting of non-malignant AHSCT (10). Although
isolated ADs following AHSCT are rare they are observed in
higher frequency in patients with GvHD (8, 9).

A recent comprehensive review of the literature on
hematologic AD in children identified non-malignant indication
for AHSCT, the use of unrelated transplant donor, omission of
total body irradiation in the conditioning regimen, presence of
cGvHD, and the use of peripheral or cord blood stem cell grafts
as significant risk factors (9). These provide important clues
about potential pathophysiology of AD. AD after AHSCT is
characterized by impaired immune reconstitution that may stem
from either incomplete lymphodepletion prior to HSCT, possibly
leaving partially intact the antigen presenting compartment, or
permitting donor B cell expansion concomitant with significant
T cell depletion of the graft and/or peri-transplant use of
immunosuppression that preferentially suppresses donor T
cell reconstitution. As a result, an imbalance in T and B
cell immunity may lead to an impaired peripheral tolerance,
facilitating immune dysregulation that allows emergence of
autoimmunity after AHSCT (8, 9, 11, 12). In hematological AD

after AHSCT, the reaction direction is most consistent with
donor immune recognition of donor antigens. In cases of non-
hematologic AD after AHSCT, donor immune recognition of
shared donor-host antigens is likely, but residual tissue resident
antigen presenting cells may be of host origin even when full
donor chimerism is confirmed in circulating immune cells. Thus,
the potential for non-hematologic AD to be of host against host
direction cannot be eliminated at the present time. Future studies
may enable delineation of immune cell chimerism in tissue and
thus may provide clarity on the ontogeny of the immune reaction
in non-hematologic AD after AHSCT.

The goal of this article is to comprehensively review
hematologic and non-hematologic AD after AHSCT in children,
summarized in Table 1. Furthermore, features of adult AD
following HSCT and corresponding ADs observed outside of
the HSCT setting are described with the aim of improving the
combined understanding of the underlying biology, risk factors,
and identifying potential interventions or changes to existing
HSCT platforms that may need to be implemented.

HEMATOPOIETIC AUTOIMMUNE
MANIFESTATIONS FOLLOWING AHSCT

Incidence
The most common autoimmune manifestations following
AHSCT in pediatric and adult recipients are hematologic, i.e.,
autoimmune cytopenias (AICs) (8, 9). AICs are classified based
on the affected lineage/s and include autoimmune hemolytic
anemia (AIHA), immune thrombocytopenic purpura (ITP),
Evans syndrome (AIHA and ITP), autoimmune neutropenia
(AIN), and tri-lineage autoimmune cytopenia (AIHA with
ITP and AIN) (12–14). While AIHA is the most commonly
diagnosed AIC following AHSCT, accurate reporting of ITP in
this setting is challenging because there are several alternate
potential transplant related causes of thrombocytopenia that have
to be excluded prior to making the diagnosis and laboratory
confirmation of AIHA is more readily obtained compared with
detection of anti-platelet antibodies, which are not uniformly
observed in ITP (8, 9, 14). Of note, in the setting of AHSCT for
acquired aplastic anemia, ITP incidence reportedly exceeds that
of AIHA (14), and is the same as that of AIHA in autologous
HSCT for ADs (15). Meanwhile, the incidence of AIHA in the
general population is lower than in the post-AHSCT setting and
far less common in children compared to adults (16, 17).

Despite AICs being rare following AHSCT with an estimated
incidence of ∼3% in adults (14, 18–26) and ∼5% percent in
children (9, 13, 26–31), they occur with much greater frequency
in certain AHSCT settings. The highest AIC rates, over 50%,
were reported in very young infants that received unrelated
cord blood (UCB) grafts for inherited metabolic disorders (12)
and those who received AHSCT for Wiscott-Aldrich syndrome
(WAS) (32), with antithymocyte globulin (ATG)-containing
conditioning used in both studies. Several additional case series
that demonstrated higher than average AIC incidence of 20–
35% (10, 11, 33) also involved children undergoing AHSCT for
non-malignant indications following intense lymphodepletion.
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TABLE 1 | Incidence, risk factors, associated clinical features, and proposed mechanisms for autoimmune disease after AHSCT.

Disease Incidence Risk factors and clinical features Proposed mechanism

Autoimmune cytopenia/s, including
AIHA, ITP, Evans syndrome, AIN,
and tri-lineage autoimmune
cytopenia

Rare, but common in subsets of pediatric
ASHCT compared to adult recipients

Non-malignant transplant indication Skewing of immune reconstitution toward
unregulated B cell proliferation and
auto-antibody production due to impaired
peripheral tolerance in the absence or reduced
function of T cells

Unrelated donor

Lack of TBI

cGvHD

peripheral or UCB stem cell source

additional risk factors in adult HSCT: T cell depleted grafts, ATG and
alemtuzumab in the peri-transplant setting, GvHD

Autoimmune thyroid disease,
including Hashimoto thyroiditis and
Graves’ disease

Rare, except for one pediatric study reporting
25% rate

Non-malignant transplant indication Unchecked autoantibody production against
thyroid antigens In adults, transmission of
autoantibody in the graft has been described

T cell depleted graft and/or ATG or alemtuzumab peri-transplant

Lack of TBI

Immune recovery (albeit dysfunctional)

Guillain-Barre syndrome Rare, 10 pediatric cases described Malignant indication for AHSCT Potentiation of Ara-C neurotoxicity Possible
molecular mimicry of PNS antigens by viral
antigens

Associated with infection or viral reactivation

Antecedent use of high dose Ara-C (practice discontinued after this
association was identified)

Myasthenia Gravis Exceedingly rare, 2 pediatric cases reported Non-malignant transplant indication Unchecked autoantibody production against
acetylcholine receptor

Acute and chronic GvHD

Manifested upon tapering of immunosuppression

Generalized severe presentation

No association with thymoma

Transverse myelitis Exceedingly rare, 1 pediatric case and several
adult cases

Non-malignant transplant indication Unchecked inflammatory milieu

Unrelated donor

Lack of TBI

Peri-transplant use of alemtuzumab

Other CNS manifestations,
including vasculitis, white matter
lesions and atrophy

Exceedingly rare, in children and adult
recipients

Unrelated donor Lymphocytic infiltration of CNS vasculature or
parenchyma by immune cells of donor origin

Manifested upon tapering of immunosuppression

(Continued)
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One such study reported a combined 50% rate of hematologic
and non-hematologic AD in children following AHSCT for
chronic granulomatous disease (CGD) following conditioning
that included alemtuzumab (10).

Risk Factors
The following significant risk factors for the development of AIC
in children undergoing HSCT have been recently confirmed:
non-malignant primary diagnosis, the use of an unrelated
donor, lack of total body irradiation (TBI) in the conditioning
regimen, chronic GvHD, and the use of peripheral or UCB
stem cell source (9). Similar risk factors have been identified
in the adult AHSCT literature with the strongest association
seen between AIC and the use of unrelated donors, T cell
depleted grafts, conditioning regimens that include ATG and
alemtuzumab, and GvHD (8). These studies provide important
clues about the pathophysiology of AIC following AHSCT
since randomized clinical trials and pre-clinical modeling to
understand mechanisms of AIC are lacking.

Proposed Pathophysiology of AIC After
AHSCT
As stated above, non-malignant disease and the use of unrelated
donor grafts are most strongly (9) and consistently (10–12, 27,
28) associated with the development of AIC in children. The
proposed pathophysiologic mechanism that could explain their
combined role in the emergence of autoimmunity after HSCT
is that AD may be driven by an impairment in peripheral
immune tolerance due to the lack of functional T cells, in
particular T regulatory cells (Tregs) with resultant inability to
suppress B cell expansion after HSCT (11), Figure 1A. In
the post-transplant time frame when AICs typically emerge,
the thymus has yet to recover from transplant related insults.
Thus, peripheral tolerance mechanisms are likely dominant
in keeping autoimmunity in check. Peripheral tolerance is
mediated by T cells, which are expected to be preferentially
eliminated in conditioning regimens used in unrelated donor
HSCT that include ATG and alemtuzumab. Alemtuzumab targets
CD52, which is expressed on T cells with greater density than
other lymphocytes (34, 35), and can be particularly effective at
inhibiting CD4 + T cell recovery compared to other T cell types
(36). Both drugs have long lasting in vivo effects and would be
expected to provide sustained T cell suppression in the post-
HSCT period. T cell depletion is also commonly performed on
haploidentical grafts, which too have been associated with greater
propensity for AIC (33). Unregulated polyclonal B cell expansion
would be more likely in the absence of T cell immunoregulatory
signals combined with the anticipated pro-inflammatory viral
stimuli commonly encountered in the immediate post-transplant
period, such as CMV, EBV, and HSV infection or reactivation
(23). In patients with cGvHD, another established risk factor
for AIC after AHSCT (30), B cell alloantibody production
is a common feature that stems from the inability of Tregs
to dampen alloimmunity (37). Furthermore, cGvHD has been
shown to respond to adoptive Treg transfer in multiple pre-
clinical and clinical studies (38, 39) and demonstrated the
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FIGURE 1 | Biological and clinical features of autoimmune manifestations following AHSCT. (A) Proposed pathophysiology for the development of autoimmune
manifestations after AHSCT as a result of donor T regulatory (T reg) cell impairment. (B) Donor immune reactions directed against donor red blood cell (RBC) antigens
mediate autoimmune hemolytic anemia after AHSCT. (C) GvHD versus “autoimmune” non-hematologic tissue/organ targets outlined in red and blue, respectively.

ability to prevent AIHA in animal models (17). Additionally,
Treg impairment is implicated in idiopathic AIHA (17, 40).
Immunophenotyping of patients with AIC post AHSCT has
confirmed low circulating CD4 and CD8 T cell numbers, low
Treg numbers (11, 26, 41), as well as Th2 skewing (13). The latter
is a shared feature of idiopathic and AD associated AIHA (17,
40), and animal models of the former. Th17 polarization has also
been implicated in the pathogenesis of idiopathic AIHA (40), but
has yet to be confirmed in AHSCT-associated AD. Cyclosporine
(CSA), the most common form of GvHD prophylaxis used
in the multiple case series with higher AD rates presented
above, would also be expected to have a greater impact on

T rather than B cell subsets, in particular on IL-2 dependent
expansion of Tregs (42). Of note, cyclosporine-, and calcineurin-
based immunosuppression and incomplete lymphodepletion are
associated with AICs after both solid organ transplantation
(SOT) (41, 43–46) and non-malignancy HSCT and could point
to shared biological mechanisms. Supporting this notion is
the observation in the AHSCT AIC where withdrawal of
CSA followed by anti-B cell directed therapy with rituximab
or anti-CD38 resulted in clinical responses (11, 47). Finally,
decades ago cyclosporine was shown to induce autologous
GvHD-like reaction purportedly via disruption of peripheral
tolerance (48).
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While the pathophysiology of AICs is not fully understood,
it does appear that AIHA is primarily driven by donor immune
reactions against donor erythrocytes (9, 23) (Figure 1B). Donor
chimerism was not uniformly reported in studies of AIC after
AHST, but was usually full donor at the time of AIC diagnosis
when reported (13, 23, 24, 31, 41), which implicates a donor
against donor process. Thalassemia HSCT is characterized by
higher AIC incidence, which could implicate prior transfusion
and resultant alloimmunization playing a role in AIHA via the
host versus donor response. Although if true, this would also be
expected with other non-malignant indications, such as sickle cell
disease, which have not been identified as risk factors for AIHA
after AHSCT. Other AICs after AHSCT, ITP, and AIN, are also
antibody mediated and evidence suggests that they too are donor
against donor (12, 13, 41).

Distinguishing AIHA From Major and
Minor ABO Mismatch Hemolysis
While ABO mismatched AHSCT can be associated with delayed
engraftment and other complications, it is often unavoidable in
the HSCT setting (49) where HLA matching is prioritized over
ABO and the two are not genetically linked (49). AIHA following
AHSCT is distinct from ABO mismatch driven hemolysis, which
can arise from either major or minor ABO mismatch between
the donor and host (49). The ABO mismatch driven hemolysis
can present with (1) immediate intravascular hemolysis mediated
by host ABO antibodies directed against donor RBCs in the
graft; (2) delayed hemolysis from residual host cells reacting to
RBCs produced by the engrafted donor marrow, and (3) pure
red cell aplasia (PRCA). Immediate intravascular hemolysis is
more common when marrow is used as an HSCT source due
to potential transfer of donor RBC in the stem cell graft, which
can be minimized with RBC removal prior to graft infusion.
Additionally, the timing of this clinical presentation readily
distinguishes this alloimmune process from AIHA (49). Delayed
hemolysis from residual host cells reacting to RBCs produced
by the engrafted donor marrow typically occurs later in the
post-HSCT period and mediates delayed engraftment commonly
observed with ABO mismatched HSCT that typically occurs
∼5 weeks after graft infusion compared to ∼3 weeks that is
routinely observed with ABO matched HSCT or peripheral blood
stem cell grafts. Delayed hemolysis can present months after
HSCT if full chimerism is not yet established and requires
chimerism studies to distinguish it from AIHA. PRCA results
from destruction of erythroid progenitors within the marrow
by residual anti-donor antibodies. It may present in the same
time frame as AIHA, within 6 months of HSCT, and have a
similar clinical presentation despite the mechanisms between
these entities being distinct, i.e., with ABO mismatch being host
antibody driven and with AIHA being donor antibody driven
(23) reactions against donor RBC.

AIHA Diagnosis
Diagnosis of AIHA is established by performing a direct anti-
globulin test (DAT), also called direct Coombs test, which detects
in vivo coating of erythrocytes with antibodies (16). In the
DAT, non-specific anti-human globulin will agglutinate RBCs

coated by all antibody isotypes, IgA, IgM, IgG, etc. (16, 40)
with agglutination more likely to be detected at warm testing
temperatures when IgG antibody subtypes (IgG1, IgG2, IgG3,
and IgG4), and/or C3 (complement) are present on the RBC
and cold testing temperatures when IgM is bound. IgG mediates
extravascular hemolysis via the reticuloendothelial system that
is mainly splenic (Figure 1B). The pentameric antibody IgM
is most efficient at fixing complement both in laboratory
testing and in vivo and can cause significantly greater in vivo
RBC destruction than other isotypes mainly via intravascular
hemolysis. Meanwhile, C3-mediated hemolysis predominantly
occurs in the liver. The majority of AIHA after AHSCT is
warm type, followed by cold, then mixed (41). The type is
important to ascertain because it can guide treatment, with cold
agglutinin disease being less likely to respond to splenectomy
since the RBC destruction would not be expected to occur in the
reticuloendothelial system. If the DAT is positive, monospecific
anti-IgG, anti-IgM, and anti-C3 antisera are used to further
define the autoantibody. In cases of AIHA following AHSCT
when monospecific testing was reported, IgG was commonly
detected in combination with C3, with some cases of IgG,
and IgM co-occurring. IgG when present was eluted to test
for specificity. When looking at available studies, there was a
suggestion that co-occurrence of warm and cold AIHA may have
a more severe course (11), but no consistent pattern of severity
of hemolysis or likelihood of response to treatment was clearly
apparent for a particular type of antibody in post-AHSCT AIHA.

Treatment and Prognosis of AIHA After
AHSCT
Post-AHSCT AIHA is most commonly treated with intravenous
immunoglobulin (IVIG) or steroids, rituximab monotherapy,
plus a variety of other approaches. Only a third of the cases
are steroid responsive. Rituximab has a reported ∼60–80%
response rate. Other combinatorial immunosuppressive
approaches have been described, including azathioprine,
cyclosporine, 6-mercaptopurine, mycophenolate mofetil,
danazol, cyclophosphamide and vincristine, bortezomib,
alemtuzumab, sirolimus, and second stem cell infusion (9).
A treatment strategy of reducing immunosuppression that is
more heavily directed against T cells (i.e., CSA and calcineurin
inhibitors) and instead using anti-B cell directed therapies in
a subset of patients resulted in resolution of AIHA once T
cell reconstitution was achieved (11). While prognosis appears
to be marginally better in children than in adults, mortality
in some cases did occur (9) and overall higher mortality in
AHSCT recipients with AIHA compared to those without
was reported (13). Also, AHSCT associated AIHA appears to
be more treatment refractory (9) compared to non-AHSCT
associated cases with the latter having ∼80% of response rate
to corticosteroids within 3 weeks, splenectomy having a 70%
response rate, and rituximab having a 60% response rate. Several
recalcitrant cases of post-AHSCT AIC, including AIHA, have
been recently reported to respond to daratumumab (47, 50,
51), which targets CD38 that is expressed on plasmablasts
and plasma cells.
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Other Hematologic Autoimmune
Manifestations
Immune thrombocytopenic purpura after ASHCT appears to
have slightly higher incidence in children than adult recipients
(9, 52), but is quite rare in both, limiting understanding of its
pathophysiology and prognostication. Idiopathic (53) and post-
AHSCT ITP (54) have been associated with Treg dysfunction.
In both clinical settings, ITP diagnosis is that of exclusion.
Antibodies against platelets were not consistently obtained across
the reported case series and reviews of ITP occurring after
AHSCT, but when testing was reported, ∼75% of the clinically
determined cases were associated with detectable direct and
indirect anti-platelet antibody (12, 28). The antigenic specificity
of the antibody was even less frequently reported, but when
available appeared to be directed against similar thrombocyte
antigens as non-HSCT associated ITP, i.e., platelet membrane
glycoproteins IIb-IIIa or Ib-IX. As already described for AIC
in general, donor chimerism was most often full donor at
the time of diagnosis, confirming that the post-AHSCT ITP
is frequently autoimmune, i.e., donor against donor. Passive
transfer of donor ITP has been described in the adult AHSCT
literature (31, 52), but not in the pediatric setting. For post-
AHSCT ITP and Evans syndrome, systemic corticosteroids and
IVIG were the typical first line treatment, with a majority
of the patients eventually receiving multiple lines of therapy,
including rituximab, which resulted in a few complete responses
(30, 31), daratumumab (47, 51), vincristine, cyclophosphamide,
azathioprine, 6-mercaptopurine, alemtuzumab, plasma exchange,
stem cell boost, splenectomy, rapamycin, romiplostim, and
eltrombopag (28). It appears that ITP after AHSCT is often
chronic, recalcitrant to treatment, and can result in mortality (15,
28, 31, 55).

Autoimmune neutropenia after AHSCT is also an antibody
driven process, although in most AIC studies confirmatory
testing of direct or indirect anti-neutrophil antibodies was not
reported, and when reported was infrequently positive (12, 14,
48). Similar treatment approaches for AIN have been reported as
for AIHA, ITP, and Evans syndrome, but again, given the rarity
of this AHSCT complication, prognostication is not appropriate.
Acquired hemophilia, i.e., development of factor VIII inhibitors,
has been reported in the setting of autologous HSCT for AD
(15, 20, 48, 56, 57), but not in the setting of adult or pediatric
AHSCT. Thrombotic microangiopathic manifestations following
AHSCT as a result of high ADAMTS 13 inhibitor levels have been
described (8) albeit not in children.

NON-HEMATOLOGIC “AUTO” IMMUNE
DISEASES AFTER AHSCT

Non-hematologic manifestations after AHSCT that are
potentially autoimmune in mechanism, involving the thyroid,
central and peripheral nervous systems, integument, liver, and
kidney are far less common in children than in adults and have
not been extensively described or reviewed in the setting of
AHSCT (Figure 1C). Whether these conditions are autoimmune

or alloimmune is an ongoing research question because immune
effectors are of donor origin but are directed against targets that
are common to the donor and host, e.g., acetylcholine esterase
receptor, thyroid peroxidase, etc. These conditions are antibody
mediated, which is also the case outside of the AHSCT setting
when they are truly autoimmune. Such ADs have also been
reported in the setting of dysregulated immunity associated with
immunosuppression after SOT where the autoimmune reaction
is that of host against host. In contrast, GvHD is a common, well-
recognized, and better described immune driven complication
of AHSCT that is mediated by donor immunity against non-
hematopoietic host organs and tissues. Donor against host
directed antibodies are implicated in GvHD pathophysiology.
While myasthenia gravis (MG) and peripheral neuropathies
are not formally part of cGvHD diagnostic criteria, they are
considered “other” or “associated features” of cGvHD when
present concomitant with classical GvHD manifestations and are
observed in the setting of cGvHD. Whether non-hematologic
thyroid, peripheral and central nervous system (PNS and CNS)
manifestations and vitiligo should be considered “other GvHD”
or referred to as autoimmune is not clear at this time. Since
in the adult HSCT literature they are most often described as
autoimmune, in this review they will be referred to as such
for consistency.

Autoimmune Thyroid Disease
Thyroid ADs after AHSCT, mainly Hashimoto thyroiditis and
Graves’ disease, are mediated by antibodies against thyroid
antigens and have been described primarily in the setting
of autologous and allogenic HSCT for AD in adults (8, 15,
22, 48, 58–60), and AHSCT for non-malignant indications in
children (10, 55, 61–63). For the reported series in children,
common features were T cell depletion (graft ex vivo, ATG
or alemtuzumab peri-transplant), non-malignant indication (all
cases described here), lack of TBI (in all cases summarized
here), and an incidence of 1–25%. The highest Autoimmune
Thyroid Disease (AITD) incidence was described in a cohort of
24 boys that received matched sibling or unrelated donor AHSCT
after alemtuzumab conditioning (10), with 5 cases of Graves’
disease and one case of Hashimoto thyroiditis, which represents
an unusually high rate. Of note, non-AHSCT AITD has also
been associated with alemtuzumab treatment in multiple sclerosis
(62). Multiple reports discussed in this review of autoimmune
hematologic manifestations in children did not observe AITD
and three pediatric case series that described AITD had also
reported on hematologic AD occurring at higher rates than AITD
(55). In the pediatric series that reported the highest AITD rate,
above average incidence of AIC of 20% was also observed, as
was the rate of CNS and PNS manifestations with 8% and 4%,
respectively. Thus, this series appears to have had unique features
resulting in significantly higher rates of AITD, an otherwise
rare complication of AHSCT. In both children and adults,
AITD diagnosis after AHSCT was established with appropriate
antibody detection and treatment approaches were supportive,
i.e., thyroid suppression for hyperthyroidism and replacement
hypothyroidism. Unlike hematologic AD, there were no deaths
attributable to AITD in the pediatric studies. In adult AHSCT
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reports of AITD, possible transmission of donor autoantibodies
in the graft has been reported (8, 48, 64–66) while in children this
etiology does not appear to play a role. Interestingly, one study
noted that recovery of CD4 T cell counts was coincidental with
onset of AITD, similar to the setting of immune restoration in
patients with HIV in whom AITD has also been reported (62). In
many of the pediatric post-AHSCT AITD cases reviewed here,
onset was typically later than that of AICs, perhaps suggestive
that immune recovery, albeit dysfunctional since it resulted in a
manifestation of autoimmunity, may play a role in the emergence
of AITD in the post-AHSCT setting.

Intriguingly, another autoimmune mediated endocrinopathy,
type 1 diabetes mellitus, has not been described in the pediatric
studies reviewed here for hematological and non-hematological
AD after AHSCT or otherwise, while insulin resistance after
AHSCT is commonly described in adults and children after
AHSCT (67–69).

Neurological Autoimmune and
Graft-Versus-Host Disease
Manifestations After AHSCT in Children
Neurological manifestations of autoimmunity after AHSCT and
cGvHD have been reported to affect central and peripheral
nervous systems (8, 70). Neurological manifestations are not
included in the definitive cGvHD diagnostic criteria, but
nonetheless are considered “associated” with cGvHD when
involving the PNS: peripheral nerve, including Guillain-Barre
syndrome (GBS), neuromuscular junction, i.e., MG, and muscle.
Of the latter, myositis and polymyositis are deemed the
only “distinctive” neurological manifestations of cGvHD (70);
however, these entities are not described in this review due to
paucity of reports on these manifestations in pediatric AHSCT
setting. MG and peripheral neuropathies are considered “other”
GvHD or “associated with GvHD” in the presence of classical
cGvHD manifestations in other organs. For CNS manifestations
to be regarded as “definitively” cGvHD, they have to occur
with classic cGvHD manifestations in other organs, other
causes have to be excluded, and presence of imaging, CSF, and
biopsy proven evidence of alloreactivity and proven response to
immunosuppression are necessary (70). Notably, most antibody
driven neurological entities after ASHCT manifest in the setting
of full donor chimerism, hence the cGvHD or autoimmune
processes again arises.

PNS Manifestations
Guillain-Barre syndrome is a rare complication of AHSCT in
children and adults (8, 48, 71, 72), and in the latter more
likely in allogenic than autologous HSCT (72). We found 10
reported cases of pediatric GBS after HSCT in the literature
(10, 71, 73–75). Of those, 8 were in the setting of HSCT for a
malignant indication and 2 for CGD (10). In the former, 2 cases
were reported following autologous HSCT (71, 74), and 2 were
associated with infection, bacterial sepsis, and parainfluenza 1.
No evidence of GvHD had been described in all 10 cases, although
4 occurred within the immediate post-transplant window, hence
potential association with GvHD would not be evaluable (73,

75). In adult recipients, GBS has been associated with GvHD
(70) and with infection/reactivation of CMV, HSV, and HHV6
(8, 71, 76, 77) as well as antecedent infections (70). A strong
association between GBS in the first week after AHSCT and the
use of antecedent high dose Ara-C was observed in two reports
involving 4 children (73, 75), and resulted in 3 fatalities (75).
The remaining patients responded to treatment with systemic
corticosteroids, IVIG, plasmapheresis, and rituximab.

Two cases of MG after HSCT have been reported in children,
both in the setting of non-malignant indication and mismatched
sibling AHSCT (78, 79). In both instances, MG was generalized
(non-focal), was associated with cGvHD and manifested as
immunosuppression was being tapered, with one patient having
also experienced acute GvHD and the other engraftment
syndrome. Acetylcholine receptor antibodies were present in
both cases. One patient was treated with pyridostigmine,
atropine, AZA, thymectomy and plasmapheresis, and was
eventually responsive to thalidomide (78). The other patient was
found to be initially ANA positive prior to the development
of MG manifestations and presented with severe generalized
MG that required intubation and eventually resolved after
treatment, which consisted of MMF, IVIG, methylprednisolone,
pyridostigmine, cyclosporine, plasma exchange, and finally a
course of rituximab. Notably, outside of the HSCT setting, MG
is quite rare in children and when it occurs in pre-pubertal
setting is often ocular and remains so without generalization.
In such settings it is also less likely to be antibody positive
and has a favorable prognosis, including reported spontaneous
remissions (80). In the adult HSCT literature, 23 cases of MG
have been reported after allogeneic and autologous HSCT (8,
48, 70), with a majority of the patients having acetylcholine
receptor antibodies and few with musculoskeletal receptor
antibodies. The majority were associated with cGvHD and
most presented upon discontinuation or tapering of cGvHD
immunosuppression. Treatment was similar to idiopathic
MG, i.e., pyridostigmine, acetylcholine esterase inhibitors, and
immunosuppression. In contrast to MG in adults in the
non-HSCT setting there was no observed association with
thymoma (8). Of note, MG in the setting of immunosuppression
(ATG or alemtuzumab) after renal transplantation has been
reported (81).

Myositis and polymyositis although rare after AHSCT
are associated with cGvHD (70), but have not been well
described in children.

CNS Manifestations
CNS immune manifestations that are cGvHD related have been
rarely reported in adult HSCT literature and can be ascribed
to cerebrovascular, stroke-like presentations, encephalopathy
with resultant seizures, and demyelination processes (70, 82–
84). Isolated cases of immune CNS disease after HSCT have
been reported in children (85–88), and only one of these
presented as transverse myelitis (TM) that was not associated
with GvHD, but was associated with AIC and GBS (10), while
several cases of TM after HSCT have been reported in adults
(8, 89). Isolated optic neuritis has also been described in the
adult AHSCT literature (70), but has not been reported in
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the pediatric AHSCT setting. A case of CNS granulomatous
angiitis/vasculitis was described in an 18-year old recipient
of mismatched unrelated graft, in association with weaning
of immunosuppression for resolving acute GI GvHD. The
patient was found to have generalized CNS atrophy on
MRI, which was obtained due to progressive spasticity and
seizures. The patient’s cognitive dysfunction worsened further to
progressive encephalopathy with concurrent skin cGvHD onset
that manifested 5 months after HSCT (87). Interestingly, short
tandem repeat (STR) analysis of a micro dissected section of
her inflamed arteriole confirmed that the lymphocytic infiltrate
was of donor chimerism. The patient improved following very
high doses of steroids, stabilized, but eventually lost her graft
and died 2 years after HSCT. Similarly, in adult patients with
CNS-GvHD, infiltrating lymphocytes were of donor origin (70,
83) suggesting that CNS-GvHD can be appropriately classified
as a GvHD manifestation. Two case reports have described
diffuse white matter lesions in children with GvHD and a case
of cortical atrophy associated with cGvHD (85, 86). While CNS
immune manifestations after HSCT in children are extremely
rare, they are primarily associated with GvHD and tapering of
immunosuppression and likely represent alloimmune rather than
autoimmune processes.

Skin Autoimmune GvHD-Associated
Manifestations After AHSCT
Vitiligo is a rare manifestation in the AHSCT setting, which
is mostly observed with concomitant acute or chronic skin
GvHD. A total of 8 pediatric vitiligo cases after HSCT have
been described in the literature in several case series combining
adult and pediatric patients (55, 90–93). Cathcart et al. described
one pediatric case of extensive vitiligo developing 4 years
after mismatched sibling T cell depleted HSCT for malignancy,
interestingly without concomitant chronic GvHD, albeit with
a history of resolved acute skin and liver GvHD (92). In
the same series, nine adult cases of post-HSCT vitiligo were
described. All had been transplanted for a malignant indication
and were associated with acute or chronic GvHD. Another
case series reporting on vitiligo after AHSCT for malignant
indications included a pediatric patient with extensive vitiligo
after AHSCT for ALL associated with skin and GI GvHD
(91). Sanli et al. described six cases that were observed in a
single transplant center in 421 consecutive patients (93). One of
these 6 cases occurred in a 19-year-old who developed vitiligo
6 months after matched sibling HSCT for CML, and which was
associated with liver cGvHD, alopecia areata, and subsequently
oral and lichenoid skin GvHD. Finally, five additional cases
of vitiligo in children were reported, one in association with
lichenoid skin cGvHD after AHSCT for aplastic anemia (94)
and four in the setting of peripheral blood stem cell grafts
for hemoglobinopathy (55) without an association with GvHD
or other AD. Vitiligo has been associated with autoimmunity
outside the HSCT setting (95) and can be mediated by antibodies
directed against melanocytes (55, 96), and thus could represent
an autoimmune process. Nevertheless, alloimmunity cannot be
excluded in this clinical entity as half of the reported pediatric

cases of vitiligo after AHSCT were associated with concomitant
classic skin cGvHD.

Other Rare Autoimmune Manifestations
After HSCT
Whether autoimmune-like hepatitis (AIH) occurring after HSCT
truly represents an autoimmune manifestation versus drug-
associated hepatitis, i.e., by cyclosporine, is difficult to ascertain
since only two pediatric cases (55, 97) and one adult case have
been reported (98). The liver biopsy in all three cases showed
portal eosinophilia and plasma cell infiltration, with chimerism
of the lymphocytic infiltrate demonstrated to be of donor origin
in the adult patient. In one pediatric case after AHSCT for a
metabolic disorder there was no concurrent or prior history of
GvHD (55) and in the other AIH was associated with GvHD
(97), as was the case reported in the adult. All three cases were
steroid responsive. In the adult patient, azathioprine was used
in combination with steroids and in one pediatric case ursodiol
was combined with steroid (97). This was the only patient
that had been on cyclosporine prior to AIH diagnosis, upon
which it was discontinued. It was not clear from the description
of the case whether the other pediatric patient had been on
cyclosporine after HSCT.

Whether the kidney is a target of autoimmunity after AHSCT
or a manifestation of GvHD-associated alloimmunity is not
clear. Reports of membranous nephropathy and minimal change
disease have been described in the post-HSCT setting, most
commonly observed in association with cGvHD and particularly
upon weaning of immunosuppression (99). However, a few
cases have occurred in the autologous HSCT setting without
GvHD (100), with two such reports in children (101, 102).
The pathophysiology of these renal manifestations appears
to be mediated by antigen-antibody complexes deposited in
the glomerular subendothelium as a result of either kidney
antigens being targeted or indirect injury from deposition of
the complexes targeting antigens exogenous to the kidney (99).
The pediatric cases of immune-mediated nephropathy after
HSCT had been reportedly treatment responsive to systemic
immunosuppression with corticosteroids, which are also used
outside of the HSCT setting for these clinical entities.

Rheumatologic diseases possibly autoimmune in etiology have
been described after autologous and allogeneic HSCT, including
rheumatoid arthritis, psoriatic arthritis, spondyloarthropathy,
vasculitis, and antiphospholipid antibody syndrome, more
commonly after AHSCT for autoimmune indications (8, 15, 48).
In one report, two young adult patients had been described
as having possible autoimmune arthritis (103). A 24-year-old
man who underwent AHSCT for a T cell lymphoma and
antecedent history of arthritis (concomitant ANA titers negative)
developed acute symmetrical polyarthritis involving the proximal
interphalangeal (PIP) and metacarpophalangeal (MCP) joints,
wrists, and knees 1 month after discontinuation of post-HSCT
immunosuppression. This was associated with a high ANA titer.
The patient experienced spontaneous resolution of symptoms
6 months later. The other patient was a 2l year-old woman
who received matched sibling HSCT for AML, with resolved
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acute skin GvHD skin and ongoing lung cGvHD. She developed
bilateral shoulder and unilateral hip and knee pain, with
arthrocentesis finding of coagulase-negative Staphylococcus.
Despite appropriate antibiotic treatment, synovitis now involving
bilateral knees and several PIP joints persisted and was then
treated with anti-inflammatory medications (not specifically
stated) and intra-articular injection of the knee with a
corticosteroid, which resulted in complete resolution of the
symptoms. Whether the arthritis was immune- or infection-
driven in the latter case is not entirely clear. Otherwise,
autoimmune arthritities have been almost exclusively described
in the setting of HSCT for autoimmunity (15, 22), which indicates
that a predisposition toward autoimmunity in combination with
the transplant factors likely plays a pathophysiological role in
such manifestations.

FUTURE DIRECTIONS AND SUMMARY

Identification of risk factors for autoimmune manifestations in
children and adults undergoing ASHCT as well as comprehensive
diagnostic characterization of these rare cases are imperative to
advance the understanding of the biological mechanisms behind
these complex set of conditions. Many AD manifestations remain
poorly understood due to lack of prospective studies and pre-
clinical models. The former would be difficult to implement due
to rarity of these complications, but subsets of patients have
been identified to have higher inherent risks for developing AD
(8, 9), which could facilitate such efforts. Such studies should
include the collection of clinically well annotated samples of
blood and tissue. Innovative study designs adapted to rare entities
and development of novel minimally invasive biological sampling
techniques suitable for pediatric patients are imperative to move
this area of research forward. Emerging diagnostic approaches
could provide further mechanistic insights into pathophysiology
of manifestations. For example, single cell sequencing approaches
are now able to capture TCR diversity, and as analytical
methods advance valuable insights into antigenic targets, i.e.,
TCR specificity, may be identified (104). Patient outcomes could
be improved by selection of targeted treatments (if targets
are known), which would potentially be more effective and
less toxic than general immunosuppression (105). For example,
unregulated B cell expansion had been implicated as a potential

mechanism of AD and the use of anti-B cell agents has
demonstrated clinical efficacy in steroid refractory cases (28, 48).
Treg dysfunction is a common feature of GvHD (106) and AD
after AHSCT and perhaps in vivo Treg expansion is a strategy
that could be attempted in the setting of AD after ASHCT. Janus
tyrosine kinase (JAK) inhibitors were developed for ADs outside
of the AHSCT setting (107) and have elicited clinical responses in
patients with steroid refractory GvHD (108), which indicates they
may also be efficacious in AD after AHSCT. In conclusion, AD
likely stems from T and B cell dysfunction in the context of pro-
inflammatory post-AHSCT milieu in which immunoregulatory
processes are impaired. As risk factors for the development of AD
after ASHCT are better characterized and the underlying biology
is better understood, patients and families can be appropriately
advised about the risks, changes to the existing BMT platforms
can be implemented, and therapeutic targeting of underlying
biology can be explored.
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Post-transplant lymphoproliferative disorders (PTLDs) are life-threatening complications

of iatrogenic immune impairment after allogeneic hematopoietic stem cell transplantation

(HSCT). In the pediatric setting, the majority of PTLDs are related to the Epstein–Barr

virus (EBV) infection, and present as B-cell lymphoproliferations. Although considered

rare events, PTLDs have been increasingly observed with the widening application of

HSCT from alternative sources, including cord blood and HLA-haploidentical stem cell

grafts, and the use of novel agents for the prevention and treatment of rejection and

graft-vs.-host disease. The higher frequency initially paralleled a poor outcome, due to

limited therapeutic options, and scarcity of controlled trials in a rare disease context. In

the last 2 decades, insight into the relationship between EBV and the immune system,

and advances in early diagnosis, monitoring and treatment have changed the approach

to the management of PTLDs after HSCT, and significantly ameliorated the prognosis.

In this review, we summarize literature on the impact of combined viro-immunologic

assessment on PTLD management, describe the various strategies for PTLD prevention

and preemptive/curative treatment, and discuss the potential of novel immune-based

therapies in the containment of this malignant complication.

Keywords: epstein-barr virus, T cell immunity, virological monitoring, prophylaxis, preemptive treatment

INTRODUCTION

Post-transplant lymphoproliferative disorders (PTLD) are heterogeneous lymphoproliferative
diseases that stem from the unchecked proliferation of neoplastic lymphoid or plasmacytic cells
in the setting of immunosuppression after transplantation (1–3).

PTLD in the hematopoietic stem cell transplantation (HSCT) setting are almost exclusively
related to Epstein-Barr virus (EBV) infection; they usually develop between 3 and 6 months
post-transplant, when virus-specific T cell immunity has not yet reconstituted, and are generally of
donor origin. Although recipient-derived PTLDs have been described, they occurmainly in patients
with poor graft reconstitution.
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This review outlines our current understanding of the
interplay between the virus and the immune system in the
pathogenesis of these disorders after HSCT, and how our
knowledge has improved current approaches to the management
of PTLD in this clinical setting.

INTERACTIONS BETWEEN EBV AND THE
HOST

EBV is a human γ-herpesvirus that infects more than 90% of
the individuals worldwide (4–6). The virus enters the organism
through the oropharyngeal route, and, in healthy subjects,
causes a self-limiting primary infection. In normal, seropositive
individuals, virus neutralizing antibodies control the spread of
infectious virus particles and EBV-specific, HLA class I restricted,
CD8+ cytotoxic T lymphocytes (CTL) specific for the early lytic
cycle proteins kill cells entering the lytic cycle before they are able
to release infectious virus particles (7).

The virus is B lymphotropic, and persists in resting memory B
cells for the lifetime of the host in a non-pathogenic state that is
invisible to the immune response (8). Initially, EBV infects naïve
B cells in tonsillar lymphoepithelium, driving their activation
through the expression of nine latent proteins (EBV nuclear
antigens, EBNAs 1, 2, 3a, 3b, 3c, and LP and membrane antigens
LMP 1, 2a and 2b), two small non-translated RNAs and about
40 microRNAs that constitute the EBV growth program (9). CTL
directed to EBV latent cycle antigens prevent the outgrowth of
cells latently infected with the virus (7).

Thence, the virus biology parallels that of normal mature B
lymphocytes. EBV-infected naïve B-cells migrate to germinal
centers in lymph nodes, lymphoid tissue present in mucosa,
or the spleen. In germinal centers, normal B-cells undergo
activation-induced somatic hypermutation and class switch
recombination of the antigen-binding variable region of
immunoglobulin genes. Within the germinal center, EBV-
positive B cells shift to a more restricted virus transcription
program, the default program (EBNA1, LMP1, and LMP2a
expression), that helps rescue them into the memory
compartment where the virus persists (6). Expression of
viral proteins provides EBV-infected naïve B-cells with a selective
advantage in the germinal center, and stimulates maturation into
memory B-cells, which are the presumed reservoir of EBV (10).

Memory cells latently infected with EBV in the peripheral
blood are in the latency program, and do not express any of the
known latent proteins, unless they undergo division, in which
case they express EBNA1, essential for the maintenance of the
viral episome in dividing cells (8, 9). The frequency of infected
memory B cells in a healthy carrier is stable over time, although
it varies among different individuals, and has been calculated to
be around 0.5 × 106, with only 1% residing in the peripheral

Abbreviations: PTLD, Post-transplant lymphoproliferative disorders; HSCT,

hematopoietic stem cell transplantation; EBV, Epstein-Barr virus; CTL,

Cytotoxic T lymphocytes; a/cGVHD, acute/chronic graft-vs.-host disease;

ATG, antithymocyte globulin; Mab, monoclonal antibody; CBT, cord blood

transplantation; PTCy, post-transplant cyclophosphamide; PCR, polymerase

chain reaction; IS, immunosuppression; UD, unrelated donor.

blood (10). The virus is no longer pathogenic to the host, as the
genes that drive cellular proliferation and may lead to neoplastic
disease are no longer expressed. Likewise, the virus is safe from
immune surveillance, as immunogenic viral protein expression,
which serves as a target for the immune system is absent.

INTERPLAY BETWEEN EBV AND THE
IMMUNE SYSTEM: PATHOGENESIS OF
PTLD AFTER HSCT

EBV is considered an oncogenic virus, because of its association
with tumors. EBV has latent proteins that can drive cellular
proliferation, at least in B lymphocytes, such as LMP1 and LMP2,
and these likely play a causative role in tumor development
through inappropriate or deregulated gene expression (4, 8).
HSCT recipients have impaired T-cell mediated immunity due
to the pre-transplant conditioning regimen, immunosuppressive
agents for prophylaxis of graft-vs.-host disease (GVHD) and
GVHD itself (11–16). The reduced numbers of EBV-specific
CTLs facilitate uninhibited growth of EBV-infected cells (17, 18).
However, only a small number of EBV-positive patients develop
PTLD after HSCT or other conditions of immunosuppression
(11), and advanced PTLD is an oligoclonal rather than
polyclonal disease, suggesting that other rare events contribute
to the pathogenesis of the disorder. Thus, in order to have
PTLD development, the growth program must be erroneously
expressed in a B cell that cannot exit the cell cycle, and
immunosuppression must prevent the elimination of these rare
cells. At this stage, the disease may still be controlled by
intervening on the immune status. Indeed, PTLD patients in
early stages of disease may regress in response to the reduction
of immunosuppression (19, 20) or after donor lymphocyte
(DLI) (21) or EBV-specific CTL infusion (18, 22), strongly
pointing to the essential role played by the underlying state
of immunosuppression. However, in the absence of T cell
immunity, such as it is often observed after T-cell depleted
HSCT, proliferating cells acquire additional genetic or epigenetic
damage, and these new cell clones may become unresponsive to
immune surveillance (23).

A similar pathogenetic mechanism may be hypothesized in
the rare cases of EBV-positive PTLD of T-cell origin. It has been
postulated that some T cells may express CD21, the EBV receptor
on B cells, and thus may allow viral entry (24).

RISK FACTORS FOR EBV-PTLD AFTER
HSCT

Development of PTLD after HSCT is mainly associated with
T-cell depletion of the graft before transplantation and the
type/duration of immunosuppression employed to prevent
and treat graft-vs.-host disease, and the degree of mismatch
between recipient and donor (1, 2, 25–28). Consequently,
PTLD is more often observed in T-cell depleted HSCT from
haploidentical donors.

Among ex-vivo approaches, elective T cell depletion methods
are associated with a greater increase in PTLD risk (26), as donor
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EBV-targeted cytotoxic T cells are removed from the inoculum,
thus compromising specific immune surveillance. However, the
use of lymphocyte depletion strategies that target both T and B
cells, such as in vitro alemtuzumab (26) or combined depletion
of αβ T-cell and CD19 B-cells (29), have a lower risk of PTLD, by
delaying potential EBV-infected B cell proliferation until recovery
of functional T cell immunity. This observation supports the
concept that an imbalance between EBV-infected B cells and
EBV-specific T cells favors neoplastic outgrowth of EBV-positive
B cells. Likewise, in vivo depletion of T-cells using antithymocyte
globulin (ATG) is associated with a higher risk of developing
PTLD than the use of broad lymphocyte-targeting alemtuzumab
monoclonal antibody (Mab) (26, 30, 31). Rabbit ATG was
suggested to be more likely to cause profound lymphodepletion
than horse ATG (32). However, a recent study in the setting of
pediatric and adult haploidentical HSCT show comparable rates
of EBV DNAemia and PTLD (33). The effect of ATG seems dose-
dependent, as high-dose ATG had a 2.3-fold higher risk of PTLD
than low-dose (30, 34).

The degree of HLA matching between donor and recipient
correlates with the development of PTLD. HSCT from a HLA-
mismatched donor has been observed to be associated with a
higher risk of PTLD than the use of a HLA-identical donor (26,
27). Although a certain degree of mismatch between recipient
and donor may impair EBV antigen recognition by HLA-
restricted donor T cells, the risk associated with HLAmismatch is
mainly due to the in vitro and/or in vivoT-cell depletion strategies
employed in mismatched transplants to facilitate engraftment
and prevent GVHD: the combination of different depletion
approaches results in additive risk (26).

The incidence of PTLD with regard to the different types of
donors ranges from 1% in HSCT from matched related donors
to 4% for matched unrelated and 11% for mismatched unrelated
donors (20). Among different stem cell sources, cord blood was
associated with a greater risk of PTLD (30), due to low numbers
and naiveté of infused T cells that likely delay early immune
reconstitution, although there is no evidence of delayed virus-
specific immune recovery in pediatric CBT recipients beyond
the first 100 days post-transplant (35). Moreover, there is in
vitro evidence that CB lymphocytes may mediate a sizeable
immune response directed against autologous EBV-infected
cells, exerted by both NK cells and CD4+ T lymphocytes
(36). The development of graft engineering strategies and
pharmacologic GVHD prevention protocols, together with
optimal conditioning regimens, have significantly ameliorated
the outcomes of haploidentical HSCT, and this progress has
led to a widespread use of the procedure (18, 29, 37–46).
Interestingly, despite the high degree of mismatch and the
procedures employed to facilitate engraftment and prevent
GVHD, the incidence of PTLD with the newest platforms for
haplo-HSCT, either T-cell and B-cell depleted (29, 43) or T-
cell repleted with post-transplant cyclophosphamide (PTCy)
(44–46), are unexpectedly low. In the case of PTCy, the
incidence is <3% (47), possibly due to the destruction of EBV-
infected B cells, together with an immune reconstitution that
is hypothesized to be faster than that observed after the use of
ATG (48).

Among other risk factors relevant for pediatric HSCT
recipients, a higher incidence of PTLD has been observed in
recipients of allogeneic HSCT conditioned with a reduced-
intensity regimen (49), and the development of acute or chronic
GVHD (20, 26, 27, 30), due to a delay in the reconstitution of
functional specific immunity. Finally, EBV serology mismatch,
in particular EBV-seronegative patients receiving grafts from
seropositive donors, are also at increased risk for PTLD
development (25, 27).

Some studies have suggested that significant factors could be
combined within a prognostic model. Three single-center risk
factor scoring systems have been published, but their use in
common clinical practice is limited and needs to be validated
(25, 27, 30).

EPIDEMIOLOGY, CLINICAL
PRESENTATION AND DIAGNOSIS

EBV-PTLD is a severe complication that occurs in 1–3.5%
of HSCT recipients (20, 50), although incidence rates may
exceed 10% in patients with established risk factors (2, 20,
27, 28, 50). An expansion in the indications for HSCT from
alternative donors, including haploidentical family members,
and the use of novel T-cell depletion strategies, together with
improved diagnostic protocols, have led to the observation of an
increased incidence of PTLD in the last 2 decades (20). However,
greater awareness of the disorder has fueled studies that have
addressed PTLD preemptive/preventive strategies, and facilitated
patient management.

Patients with PTLD after HSCT generally present with fever,
lymphadenopathy, tonsil enlargement or discrete organ lesions,
although the disease may manifest as a systemic process that
mimics fulminant sepsis syndrome (2, 28). Primary central
nervous system (CNS) localization of PTLD is rare, and generally
burdened with a dismal prognosis (20), partly due to the
challenges associated with limited drug penetration across the
blood-brain barrier. In order to overcome this peculiar feature,
intrathecal drug delivery has been proposed (51).

The diagnosis of EBV-PTLD is based on symptoms and/or
signs consistent with PTLD, together with the quantitative
determination of EBV-DNAemia or detection of EBV in
a specimen from the involved tissue (1, 2), and imaging
studies, such as computed tomography (CT) or positron
emission tomography CT (PET-CT). Definitive diagnosis of EBV-
PTLD requires biopsy of sites suspected for EBV disease and
histological examination. EBV detection requires identification
of viral antigens or in situ hybridization for the EBER
transcripts. The histological WHO 2016 classification includes
six morphological types of PTLD: plasmacytic hyperplasia,
infectious mononucleosis-like, florid follicular hyperplasia,
polymorphic, monomorphic (B-cell or T-/NK-cell types), and
classical Hodgkin lymphoma PTLD (52).

EBV-PTLD may be diagnosed at the probable or proven
level (53). Probable EBV disease is defined as the presence of
symptoms and/or signs of lymphoproliferative disease in the
absence of tissue biopsy, but without other documented causes,
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together with significant EBV DNAemia, measured in any blood
specimen. Diagnosis of proven EBV-PTLD requires detection of
EBV nucleic acids or EBV-encoded proteins in a tissue sample.

EARLY IDENTIFICATION OF PATIENTS AT
RISK OF PTLD

The development of EBV-PTLD after HSCT represents a life
threatening event; mortality is still relevant, at 30 and 40%
of diagnosed cases (20, 54). The onset of PTLD is preceded
by a pre-clinical phase denoted by increased EBV DNA levels
in the peripheral blood. Indeed, it has been demonstrated
that, irrespective of baseline characteristics, the post-transplant
monitoring of peripheral EBV viral load after HSCT is effective
in predicting risk of EBV-PTLD (18, 55–61).

Thus, according to international guidelines, prospective
monitoring of EBVDNA should be started within the first month
after HSCT, and continued on a weekly basis at least until the
fourth post-transplant month (1). The frequency and duration of
EBV DNAemia screening should be based on the risk profile of
the transplanted patients (62).

EBV DNA analysis is an indispensable tool for early diagnosis
and the application of preemptive strategies to avoid progression
of early-stage PTLD to oligoclonal/monoclonal disease (18, 63).
However, even with the available data there is not a defined
EBV-DNA threshold for prompt initiation of preemptive therapy
(1), as EBV PCR assays are not standardized (63), and evidence
has been obtained in cohorts with heterogeneous clinical
characteristics using different peripheral blood specimens.
Thresholds for assays using mononuclear cells, plasma, or
whole blood in the reported studies range from 1,000 to
40.000 copies/ml according to the source, and data on the best
specimen source are inconclusive (1, 59–61, 64, 65). Moreover,
probable/proven PTLD has been described in a proportion
of patients with EBV DNA levels below commonly adopted
intervention thresholds (66, 67). Thus, it seems rational to adopt
validated center-specific cut-off values, tailored on the specific
cohort characteristics, and employ the rate of EBV DNA level
increase, that is an indicator of EBV-infected B cells, as a
predictor of when to start preemptive interventions. Regarding
peripheral blood specimen choice, a recent study including 121
pediatric and adult HSCT recipients evaluated the kinetics of
EBV DNA, assessed with a molecular method approved by
regulatory agencies, in paired whole blood and plasma samples
during episodes of post-transplant EBV infection, and found
that plasma had a low sensitivity for identifying PTLD, thus
suggesting a preferential use for whole blood in the post-
transplant management of infection (64). Some studies indicated
that plasma measurement may be useful in the follow-up after
treatment, but these studies included high numbers of solid organ
transplant recipients, and data are yet not conclusive (60).

EBV DNA analysis is not a precise predictor of PTLD
development, and tailoring screening on the basis of a whole
cohort is not always practical, feasible, or successful. As the
other central factor determining progression to PTLD is the
lack of a protective immune response, it seems reasonable

to associate DNAemia screening with analysis of immune
reconstitution. This approach has been used successfully for
other viral infections in HSCT or solid organ transplant patients
(13, 68–75), and has been proposed by some groups also in the
setting of EBV infection and PTLD after HSCT (18, 76–82).
Although studies are largely descriptive and based on the use
of different technologies, the results suggest that numbers and
function of virus-specific T cells inversely correlate with viral
DNA levels and risk of disease, whereby strong cellular immune
responses are associated with containment of viral replication
or EBV-infected B cell outgrowth. The key obstacles to the
introduction of EBV-specific T cell quantification into clinical
practice is the definition of reliable cutoffs for clinical decision
making for the different assays, and the absence of controlled
interventional clinical trials.

PREVENTION OF PTLD AFTER HSCT

There are two possible approaches for prevention of EBV-PTLD
after HSCT: prophylaxis and pre-emptive therapy (53, 83, 84).
Prophylaxis of EBV disease includes any intervention applied to
an asymptomatic patient to prevent EBV DNAemia. Pre-emptive
therapy includes any intervention given to a patient with EBV
DNAemia to prevent EBV disease.

Prophylaxis
In the setting of HSCT, there are two strategies to prevent EBV
DNAemia. The first is based on interventions on the graft or
the patient prior to HSCT, in order to decrease the risk of EBV-
infected B cell outgrowth. As we have already seen, in the case
of T-cell depleted HSCT, the use of in vitro or in vivo methods
that deplete B cells as well as T cells reduce the risk of PTLD
by temporarily removing the EBV reservoir and potential EBV-
transformed B lymphoblasts, at least until functional immune
reconstitution is achieved (28, 29, 43, 44, 47). If no T-cell
depletion is employed, but the risk of PTLD is high due to the use
of ATG and/or the presence of HLA mismatches between donor
and recipient, peri-transplant B-cell depletion by rituximab may
be considered (85). The efficacy of peritransplant rituximab was
suggested by observations in adult patients receiving anti-CD20
monoclonal antibody close to HSCT, as part of their treatment
for B cell malignancies (85), and was tested in a study from
the European Group for Blood and Marrow Transplantation
(EBMT) as part of the conditioning regimen for pediatric and
adult patients with severe aplastic anemia (86). Based on these
studies, peritransplant rituximab has been employed in pediatric
recipients of αβ T-cell/B-cell depleted haploidentical HSCT, and
the combination of in vitro and in vivo B cell depletion succeeded
in counteracting the risk of PTLD given by T-cell depletion,
ATG and HLA mismatch (29, 87). Relevantly, rituximab role in
controlling acute and chronic GVHD may also favorably impact
PTLD development (29, 85–87).

Regarding the use of ATG to prevent rejection and GVHD,
given that the increased risk of PTLD is dose-dependent, in
pediatric allogeneic HSCT a lower therapeutic dose may be
administered. Indeed, a recent multicenter randomized trial has
shown that 15 vs. 30 mg/kg rabbit ATG was equally effective in
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TABLE 1 | Results of published trials using EBV-specific T cells to prevent or treat EBV infection and PTLD.

References Pt n. EBV stimulation (other targeted

viruses)

Clinical design Clinical and virologic effects on EBV

and PTLD

GVHD

HSCT donor-derived, single-VST

Rooney et al. (22) and Heslop

et al. (94)

113 EBV-LCL Prophylaxis 11/13 pts achieved CR, none PTLD 8/51 pts aGvHD; 13/108

cGvHD (11 limited, 2

extensive)

Doubrovina et al. (95) 14 EBV-LCL PTLD Treatment 10 pts achieved CR, 4 pts progressive

disease

None

Gustafsson et al. (96) 6 EBV-LCL Pre-emptive 5 pts had EBV-DNA decreased, 1 pts died

of PTLD

None

Lucas et al. (56) 1 EBV-LCL PTLD treatment CR Limited skin aGvHD

Imashuku et al. (97) 1 EBV-LCL PTLD treatment No response None

Comoli et al. (18) 4 EBV-LCL Preemptive or PTLD

treatment

3 pts achieved CR, 1 pt had decreased

EBV-DNA level without PLTD

None

Moosmann et al. (98) 6 Peptide mix from lytic and latent EBV

antigens

PTLD treatment 3 pts had CR, 3 pts had no response None

Icheva et al. (99) 10 Recombinant EBNA1 protein or EBNA1

peptides and direct selection

Pre-emptive or PTLD

treatment

7/10 pts achieved CR 1 grade II aGVHD

Jiang et al. (100) 15 DCs pulsed with EBV-LCL lysate PTLD treatment (+

rituximab and/or CHOP)

7/8 pts achieved CR 5 pts (33%) aGVHD (1 gr. I,

3 gr. II, 1 gr. III)

2 (13%) limited cGVHD

Velvet et al. (101) 2 unknown CNS-PTLD treatment 1 pt achieved remission None

HSCT donor-derived, multi-VST

Leen et al. (102) and Melenhorst

et al. (103)

26 EBV LCLs transduced with Ad5f35-pp65

(ADV, CMV)

Prophylaxis/preemptive 6/6 pts with EBV cleared infection; 2 grade I aGVHD

Leen et al. (104) 14 EBV LCLs transduced with Ad5f35 vector

(ADV)

Prophylaxis 11 pts treated as prophylaxis remain

negative

3 grade I aGVHD

Dong et al. (105) 3 DCs pulsed with EBV IE1 and LMP2

peptides

(CMV)

Prophylaxis/preemptive 1 pt cleared viremia; 1 pt treated as

prophylaxis remains negative

1 grade I aGVHD

Gerdemann et al. (106) 10 DCs nucleofected with plasmids encoding

for EBV LMP2 and BZLF1

(ADV, CMV)

Preemptive/PTLD treatment 3/4 pt: complete virologic responses 1 skin rash due to GVHD or

BKPyV infection

Papadopoulou et al. (107) 11 Peptides pool from immunodominant

antigens

(ADV, CMV, PyVBK, HHV6)

Prophylaxis/preemptive 3 pts treated as prophylaxis remain

negative; 4/4 pts cleared EBV viremia

1 grade I aGVHD

Ma et al. (108) 10 Ad5f35-EBNA1/LMP

(ADV, CMV, VZV)

Prophylaxis no EBV reactivation 1 grade II aGVHD

1 grade III aGVHD

Third-party donor-derived single-VST

Haque et al. (109) 33 EBV-LCL PTLD treatment 14 pts attained EBV CR, 3 pts had PR, 16

pts no response at 6m

None

Barker et al. (110) 5 EBV-LCL PTLD treatment 4 pts attained EBV CR, 1 pts progressive

disease

None

(Continued)
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preventing acute and chronic GVHD, but was associated with
lower relapse and non-relapse mortality in pediatric patients
receiving UD HSCT for hematologic malignancies (88). An
alternative GVHD prophylaxis, that may have a direct impact on
PTLD development due to its anti-tumor activity, is the use of
mTOR inhibitors (89, 90).

Post-transplant prophylactic administration of agents, such
as antiviral drugs, rituximab and EBV-CTLs has been proposed.
Treatment of latent EBV with antivirals has been unsuccessful, as
latently infected B cells do not express the EBV thymidine kinase
enzyme (1, 84).

In a large retrospective study, prophylactic post-transplant
rituximab significantly reduced the risk of EBV DNAemia (91);
however, no statistically significant impact on PTLD incidence,
treatment-related mortality, and overall survival in comparison
to a pre-emptive approach was shown. Post-transplant rituximab
is associated with cytopenias (92) and delayed B cell recovery
with an increased risk of infections (93), that seem less evident
with peritransplant use. Thus, prophylactic rituximab post-
HSCT ought to be employed with caution (1). The use of
prophylactic EBV-CTLs, pioneered by Rooney et al. in high-
risk, pediatric unrelated-donor HSCT recipients, has been highly
successful, and devoid of side effects (22, 94) (Table 1). None of
the 101 patients who received CTLs as prophylaxis developed
PTLD compared with 11.5% of controls. As the donors were
EBV-seropositive, even in the absence of circulating EBV one
may hypothesize that the efficacy of this treatment was due to
stimulation by EBV present in patient tissues or donor B cells, or
just cross-stimulation of low-affinity T cells present in the infused
product by other antigens. Current use of EBV-CTLs is, however,
limited to a few selected centers.

Preemptive Therapy
The mainstay of pre-emptive therapy for EBV PTLD after HSCT
is anti-CD20 antibody rituximab, given at increase in EBV-
DNA load especially in patients lacking T-cell reconstitution
(18, 63, 86, 115), due to its acceptable toxicity and widespread
availability (1, 84). A retrospective study reviewed the results of
more than 300 patients described in reported case series, and
found that successful prevention of PTLDwas observed in almost
90% of treated patients (84). Pre-emptive rituximab is employed
at the dose of 375 mg/m2, once weekly until EBV DNAemia is
found negative. Dose number should be assessed on the basis of
EBV DNAemia monitoring and on the patient’s specific immune
recovery, but 1–4 doses are generally sufficient. However, it
has been shown that, in certain circumstances, clearance of
EBV DNA from peripheral blood may not reflect a long-lasting
response (67). Limitations of this approach are selection for
CD20-negative clones (18), and the fact that rituximab acts on the
EBV reservoir, rather than on restoration of the cellular immune
response to EBV, which is central to the long-term control of EBV
mediated B-cell proliferation (18, 72).

Among the strategies that boost specific immune
reconstitution and immune surveillance, reduction of
maintenance immunosuppression (IS), whenever feasible
in the absence of GVHD, should be employed in association
with anti-CD20 Mab therapy (1). Data on IS reduction employed
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alone are too limited to derive any useful indications (19). The
use of donor EBV-specific T cells in unrelated donor (UD) or
haplo-HSCT in a pre-emptive approach has been very successful
(18, 96, 116–119), with long-lasting EBV viral load clearance
in more than 90% of patients, and responses observed also in
patients with increased viral load after rituximab treatment
(18) (Table 1). In HSCT recipients, EBV-CTL therapy enhances
virus-specific immune responses, and allows establishment of
a memory T cell response, observed for as long as 9 years after
T cell administration (117). No major toxicity was observed
(118), and the reported rate of new-onset GVHD was around 1%
(119). When the donor is not available, or is EBV-seronegative,
or to increase access to T cell treatment, the use of third-party
CTLs has been advocated (109). The first reported study used
banked EBV-specific CTLs to treat PTLD after solid organ or
HSCT, matching by low resolution HLA typing and screening for
absence of alloreactivity, obtaining 50% responses in established
PTLD and no GVHD development (109). Since then, a number
of studies have further explored this option and refined matching
criteria by evaluating activity against viral epitopes through
the shared HLA allele (110–114, 119) (Table 1). A recent study
treated 33 HSCT recipients with third-party CTLs, obtaining a
68% remission rate, with a 89% overall survival. Interestingly,
patients in progression after the first cycle benefited from a
change in CTL donor (9% survival after repeated cycles with
same donor CTLs vs. 60% survival after donor switch) (112).

CONCLUSIONS

Prognosis of EBV PTLD after HSCT is still suboptimal. Because
of the relatively low incidence of this complication, and its
particular situation related to the post-HSCT period, there is
limited evidence on the best treatment strategy for established
disease failing first line treatment.

Thus, therapeutic strategies with high efficacy and minimal
toxic effects for HSCT patients at high risk of PTLD are a
clinical need. Knowledge on the interplay between the virus
and the host immune system (120) has allowed the design

of tailored management approaches, based on longitudinal
combined virological and immunological testing, and the
development of novel cellular therapeutic agents burdened with
little toxicity, and therefore suitable for employment in pre-
emptive therapeutic strategies. Limitations to the pre-emptive
approach are related to the difficulty in establishing viral load
cut-off values for the start and discontinuation of therapeutic
interventions, and standardized and cellular immunity assays
with validated thresholds, together with limited availability of
cellular therapies. These hurdles may be overcome by a general
effort in standardization, which has already begun, and by local
management. So far, the use of EBV-specific T cells has been
limited to the few academic centers with infrastructure resources
to produce advanced cellular therapies. Recently, excellent cell
therapy clinical results, together with the development of new
methodologies to obtain rapid manufacture of third-party T
cells, have fuelled considerable interest from the Pharmaceutical
industry to bring to the market third-party cellular therapies
including EBV CTLs. Further efforts are required to design
the most appropriate clinical trials to rapidly identify efficient
combinatorial approaches, and to invent new and sustainable
reimbursement modalities for novel therapies.
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Dramatic progress in the outcome of allogeneic hematopoietic stem cell transplantation

(allo-HSCT) from alternative sources in pediatric patients has been registered over

the past decade, providing a chance to cure children and adolescents in need of

a transplant. Despite these advances, transplant-related mortality due to infectious

complications remains amajor problem, principally reflecting the inability of the depressed

host immune system to limit infection replication and dissemination. In addition,

development of multiple infections, a common occurrence after high-risk allo-HSCT, has

important implications for overall survival. Prophylactic and preemptive pharmacotherapy

is limited by toxicity and, to some extent, by lack of efficacy in breakthrough infections.

T-cell reconstitution is a key requirement for effective infection control after HSCT.

Consequently, T-cell immunotherapeutic strategies to boost pathogen-specific immunity

may complement or represent an alternative to drug treatments. Pioneering proof of

principle studies demonstrated that the administration of donor-derived T cells directed

to human herpesviruses, on the basis of viral DNA monitoring, could effectively restore

specific immunity and confer protection against viral infections. Since then, the field has

evolved with implementation of techniques able to hasten production, allow for selection

of specific cell subsets, and target multiple pathogens. This review provides a brief

overview of current cellular therapeutic strategies to prevent or treat pathogen-related

complications after HSCT, research carried out to increase efficacy and safety, including

T-cell production for treatment of infections in patients with virus-naïve donors, results

from clinical trials, and future developments to widen adoptive T-cell therapy access in

the HSCT setting.
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INTRODUCTION

Dramatic progress in the outcomes of allogeneic hematopoietic
stem cell transplantation (allo-HSCT) from alternative sources
in pediatric patients has been registered over the past decade,
providing a chance to cure the children and adolescents
in need of a transplant (1–4). Despite encouraging results,
infections are still important causes of morbidity and mortality
in immunosuppressed patients following HSCT (5). Viral
reactivations predominantly develop within the first 6 months
after HSCT. Double-stranded DNA viruses contribute to
substantial morbidity, with herpesviruses, adenovirus (AdV)
and polyomaviruses BK (BKPyV) and JC (JCPyV) as the
clinically most relevant infections (5–14). In addition, respiratory
viruses and fungal infections are also associated with dismal
outcome (15–18).

If the development of single opportunistic infections may
have severe consequences in transplant recipients, it has been
demonstrated that persistent detection of multiple DNA viruses
is frequent after allogeneic HSCT, and had a dose-dependent
association with increased mortality (19). Indeed, cumulative
viral load AUC in the first 100 days post-HSCT was consistently
and independently associated with increased risk for early
and late overall mortality and non-relapse mortality (NRM).
The effects on NRM do not appear to be direct, as only a
small portion of patients succumbed to viral disease. Rather,
viremia may cause indirect effects due to increased production
of proinflammatory and immunomodulatory cytokines that
contribute to the pathogenesis of HSCT complications (20, 21).

In recent years treatment of viral complications after HSCT
has improved in part because of the introduction of new
antivirals, and in part from the preemptive use of antiviral
agents at the onset of viremia. The latter is successful
thanks to the widespread use of surveillance by molecular
detection methods (22, 23). Likewise, the ability to recognize
invasive fungal disease while in the early stages, by means of
imaging and peripheral blood antigen measurement, coupled
with assessment of antifungal immune responses, allowed for
prompt treatment and amelioration of outcome (24). Despite
advances in prophylactic and preemptive pharmacotherapy, anti-
pathogen therapeutics are limited by toxicity, in particular
myelosuppression and renal injury, and to some extent by a lack
of efficacy in breakthrough infections (25).

The development of infections in the post-transplant period
principally reflects the inability of the absent/depressed host
immune system to limit pathogen replication and dissemination;
loss of T cell function is central to this effect (26–28). T-
cell reconstitution is a key requirement for effective infection
control following HSCT, and factors that influence the speed

Abbreviations: allo-HSCT, allogeneic hematopoietic stem cell transplantation;

AdV, adenovirus; BKPyV, polyomavirus BK; JCPyV, polyomavirus JC; CMV,

Cytomegalovirus; HHV6, human herpes virus 6; EBV, Epstein-Barr virus;

PTLD, Post-transplant lymphoproliferative disease; HC, hemorrhagic cystitis;

PML, progressive multifocal leukoencephalopathy; UD, unrelated donor; NRM,

non-relapse mortality; DLI, donor lymphocyte infusions; CTL, Cytotoxic T

lymphocytes; a/cGVHD, acute/chronic graft vs. host disease; VSTs, virus-specific

T cells; CI: calcineurin inhibitors.

of T-cell recovery also impact the risk of infection in this
period (27). A high degree of HLA mismatch between donor
and recipient reduces the efficacy of immune surveillance
due to poor epitope recognition, and increases the risk
of inducing alloimmune responses, thus requiring stronger
immunosuppression to prevent and treat graft-vs.-host disease.
Likewise, delayed immune recovery is associated with T-cell
depletion of the graft before transplantation.

Given the central role of pathogen-specific T cells in infection
surveillance, immunotherapeutic strategies to accelerate
reconstitution of pathogen-specific immunity and to hasten
T cell recovery after HSCT represent a compelling alternative
to drug treatments (14, 23, 27, 29–36). Moreover, preventive
strategies may be expanded toward the use of virus-specific T cell
assays to help identify patients at risk and to tailor therapeutic
intervention (23, 37–40).

Here, we discuss the clinical achievements of T-cell therapy
for infections, describe the impact of technical developments on
clinical applicability, and give indications on future directions to
broaden access.

CELL THERAPY FOR INFECTIONS AFTER
HSCT

Donor Lymphocyte Infusions
The use of donor lymphocyte infusions (DLI) derived from
seropositive stem cell donors is an effective salvage therapy for
viral infections in HSCT recipients prior to T-cell recovery,
but the risk of potentially severe acute or chronic graft-vs.-host
disease (GVHD) is a concern (41). In order to reduce the risks
derived from alloreactivity associated with DLI, non-specific T
cells transduced with a retroviral construct containing suicide
genes, to induce susceptibility to drug mediated lysis in case
of development of alloreactive response, have been employed
with success (42). The use of DLI modified with the iCasp9 cell-
suicide system in a small cohort of children transplanted for acute
leukemia demonstrated the potential advantages in terms of rapid
and consistent cell removal in case of GVHD development (43).

Pathogen-Specific T Cells: Production
Protocols
An alternate strategy consists in delivering infectious antigen-
specific T cells selected by cell culture or by sorting. A major
breakthrough was achieved by the adoptive transfer of virus-
specific cytotoxic T lymphocytes (CTL) reactivated from the
peripheral blood of HSCT donors as prophylaxis/treatment
against CMV disease or EBV-positive post-transplant
lymphoproliferative disease in patients given T-cell depleted,
HLA-disparate, unrelated HSCT (32, 33). This approach has been
successful in preventing and treating CMV and EBV infectious
complications after T-cell depleted haplo-HSCT, both in the
pediatric and adult setting, while limiting the risk of inducing
GVHD (27, 30).

Initially, protocols for production of virus-specific T cells
(VSTs) were all based on complex procedures of stimulation and
in vitro expansion, leading to a final product of polyclonal T cells
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with broad specificity. One of the main advantages of ex vivo
differentiation is the ability to overcome the hurdle of obtaining
substantial numbers of VSTs from donors with low-frequency
memory T cells for a given antigen, and the ability to reduce
alloreactivity by continuous stimulation with viral antigens. This
is counterbalanced by production times, that can be as long as
3–8 weeks, limiting its usefulness in patients with urgent clinical
need and running the risk of inducing cellular exhaustion. The
latter does not seem to be a major obstacle, however, as donor
gene-marked EBV-specific T cells cultured for 4–6 weeks were
able to reconstitute T cell memory in HSCT recipients, and were
detected as late as 9 years after administration in patients with
viral reactivation (44). The availability of synthetic peptide pools,
novel techniques, and progress in culture reagents and vessels
has allowed reduction in production time, bringing it to < 2
weeks (45–47).

A valid alternative to cell culture is direct selection of
pathogen-specific T cells by using viral peptide HLA class I
multimers conjugated to magnetic beads (48), or stimulation
with viral peptides followed by the IFN-gamma capture assay
with magnetic beads (34, 49, 50). The latter has an important
advantage over multimers, as it allows selection of CD4+ in
addition to CD8+ virus-specific T cells, guaranteeing sustained
long-term immune protection (51). Direct selection allows rapid
production of VSTs, but it is generally feasible only for pathogens
inducing an ample memory T cell pool, such as for CMV or EBV,
and requires a leukapheretic procedure to obtain starting cellular
material. In addition, it is not an option for virus-naïve subjects.

Pathogen-Specific T Cells: Clinical Results
for EBV, CMV, ADV, and Aspergillosis
Since the early clinical trials for EBV and CMV, the prophylactic,
preemptive and curative use of T cell therapy for infection
has expanded, due to the reported high rates of response
and low toxicity (Tables 1, 2). The efficacy of virus-specific
adoptive cellular therapy has been difficult to assess, due
to the difficulties of running large prospective multicenter
clinical trials, and heterogeneity of reported studies in study
design, cell product characteristics and treated cohorts. However,
prophylaxis/preemptive treatment of EBV PTLD after HSCT has
shown more than 95% response rate in the 107 patients treated
with cultured single VSTs (23, 33, 44, 52, 53, 85). Treatment of
overt disease was successful in over 80% of the patients treated
for PTLD (52, 54–56, 85) or CMV viremia or disease (32, 35, 58–
62), with little toxicity almost exclusively limited to a 1–10% rate
of GVHD. The rate of GVHD was generally lower in patients
treated for EBV infection/disease, probably due to a prevalence
of CD8+ T cells in the infused EBV-specific CTLs, compared
to a larger portion of CD4+ T cells present in CMV-specific
products. Directly selected cellular products employed in more
recent studies have proven equally effective in reconstituting
post-transplant immunity, but rates of clinical responses were
slightly lower, reportedly 60% in patients with PTLD (50, 57) and
70% in patients treated for CMV (48, 49, 63, 65, 73) or ADV
(34, 66–68, 86) viremia or disease. Moreover, the incidence of
new onset or exacerbation of GVHDwas higher at 15%, likely due

to residual, potentially alloreactive, T cells in the product. Clearly,
as head-to-head controlled studies with cell products obtained
by culture vs. direct selection have not yet been performed, the
reported efficacy and safety rates of the different strategies may
be confounded by the variety of protocols and clinical settings.

Attempts at reconstituting cellular immune responses to
fungal antigens, and controlling invasive aspergillosis (IA) in
HSCT recipients have been also successful. Pioneer work showed
the feasibility to expand T cell clones directed to aspergillus
conidia and devoid of alloreactivity, that were employed to
treat IA in 10 recipients of haplo-HSCT (35). Emergence of
circulating pathogen-specific T cells were associated with control
of Aspergillus antigenemia and infectious mortality.

Pathogen-Specific T Cells: Preliminary
Clinical Results for PyVs and HHV6
Cell therapy has been employed also for the treatment of other
infections, such as polyomaviruses and HHV6. Although very
preliminary, initial experiences with BKPyV-specific cells are
promising (36, 69), as 13 of 14 patients treated for BKV-
associated hemorrhagic cystitis within a clinical trial of third-
party banked multivirus-specific T cell therapy in allogeneic
HSCT experienced complete resolution of gross hematuria
within 1–2 months (36). Of the two patients treated for virus-
related nephropathy, one responded to treatment by ameliorating
renal function. In 50% of the treated patients, an increase in
BKPyV-specific immune response was observed. The main side
effects were recurrence or new onset of GVHD in 16% of the
whole study cohort and transient hydronephrosis and a decrease
in renal function in one patient who received VSTs as treatment
for BKPyV HC. The latter, associated with a concomitant
bacterial urinary tract infection, could have also been due to lysis
of infected cells in renal tubular cells.

Four patients, reported in two studies, were treated for JCPyV
PML (14, 74). One pediatric HSCT recipient received donor
JCPyV-specific T cells, that was associated with reconstitution
of specific viral immunity, clearance of viral DNA from
the cerebrospinal fluid (CSF) and disease control with
remarkable neurological improvement, in the absence of
immune reconstitution syndrome (14). Three patients were
treated with third-party allogeneic BKPyV-specific T cells, based
on reported observations of a certain degree of cross-reactivity
between PyV BK and JC due to high homology (74). The
CBT recipient fully recovered. In the other two patients, viral
load was cleared or reduced in CSF, with the patients showing
neurologic improvement with residual deficit in one case,
and disease progression in the other. Two of the patients had
immune reconstitution syndrome. Phase I or I/II trials are
currently underway.

Two patients with HHV6 infections were treated with T cells
specific for U11, U14, and U90 within a clinical trial of third-
party banked multivirus-specific T cell therapy in allogeneic
HSCT (36). One patient was treated for HHV6 encephalitis
and the other for HHV6 viremia with fevers and symptoms of
bone marrow suppression, including neutropenia. Both patients
showed decreased viral load and normalization of clinical disease.
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TABLE 1 | Published trials using single pathogen-specific T cells.

Virus Pt n. Antigen LTC stimulation Clinical effects GVHD References

HSCT donor-derived

EBV 113 LCLs in vitro culture 11/13 pts achieved CR, none PTLD 8/51 pts aGvHD;

13/108 cGvHD (11

limited, 2 extensive)

(33, 52)

EBV 6 LCLs in vitro culture 5 pts had EBV-DNA decreased, 1 pts died

of PTLD

None (53)

EBV 14 LCLs in vitro culture 10 pts achieved CR, 4 pts progressive

disease

None (54)

EBV 1 LCLs in vitro culture No response None (55)

EBV 4 LCLs in vitro culture 3 pts achieved CR, 1 pt had decreased

EBV-DNA level without PLTD

None (23)

EBV 15 LCLs DCs pulsed with LCL lysate;

in vitro culture

7/8 pts achieved CR 5 pts (33%) aGVHD (1

gr. I, 3 gr. II, 1 gr. III)

2 (13%)

limited cGVHD

(56)

EBV 6 Lytic and latent

EBV antigens

Peptide mix stimulation;

direct selection

3 pts had CR, 3 pts had no response None (57)

EBV 10 EBNA1 Recombinant protein or

peptides; direct selection

7/10 pts achieved CR 1 grade II aGVHD (50)

CMV 14 CMV virions Fibroblasts infected with

CMV strain; CD8T cell

cloning

All pts reconstituted CMV-specific immunity 3 grade I or II aGVHD (32)

CMV 8 CMV lysate PBMCs cultured in the

presence of virus lysate

6 pts cleared infection after 1 or 2 doses;

1 pt NR; 1 pt NE

None (58)

CMV 16 Inactivated CMV

virions

DCs pulsed with lyophilized

CMV antigen; in vitro culture

All pts reconstituted specific immunity;

8/16 pt did not require antivirals

1 grade I aGVHD (59)

CMV 25 CMV lysate PBMCs pulsed with CMV

lysate;

T cell colony expansion

7/25 pts developed CMV antigenemia;

5/25 pts developed CMV disease (3 CR,

2 NR)

1 grade I GVHD (35)

CMV 9 CMV pp65 peptide DCs pulsed with

pp65-derived peptide;

in vitro culture

6/9 pts developed CMV reactivation; no

CMV disease

3 grade III GVHD

(1 fatal)

(60)

CMV 7 CMV pp65 and

IE1 peptides

PBMCs pulsed with CMV

peptide mixes;

in vitro culture

5/7 had increased antiviral immunity in PB None (61)

CMV 16 CMV pp65

peptides

PBMCs pulsed with 15-mer

CMV peptide mixes; in vitro

culture

14/16 pts cleared viremia None (62)

CMV 9 CMV pp65 or IE1 Peptide-HLA tetramer

selection

8/9 cleared CMV infection 2 grade I or II aGVHD (48)

CMV 18 CMV pp65 protein PBMCs pulsed with protein;

direct selection

15/18 pts had reduction or clearance of

viremia

1 cGVHD (63)

CMV 18 CMV pp65 protein

or peptides

PBMCs pulsed with

protein/peptides; direct

selection

1/7 pts treated prophylactically reactivated

11/11 pts treated preemptively

cleared CMV

5 grade I, 3 grade II- III

aGVHD; 6 cGVHD

(49)

CMV 6 CMV pp65

peptides

PBMCs pulsed with

peptides; direct selection

6/6 pts cleared viremia None (64)

CMV 2 CMV pp65

peptides

PBMCs pulsed with

peptides; direct selection

2/2 pts attained CR None (65)

AdV 9 Type C AdV

antigen

PBMCs pulsed with antigen;

direct selection

5/6 evaluable pts attained viral clearance 1 aGVHD

exacerbation

(34)

AdV 30 AdV hexon protein PBMCs pulsed with antigen;

direct selection

21/30 pts had clinical/virological response 1 grade I GVHD (66)

AdV 8 AdV hexon

peptides

PBMCs pulsed with peptide

mix

8/8 pts cleared viremia; 1 pt subsequently

reactivated due to GVHD therapy

1 grade IV GVHD (67)

AdV 11 AdV hexon

peptides

PBMCs pulsed with peptide

mix; direct selection

10/11 pts cleared viremia and/or AdV

disease

1 grade I, 1 grade III

aGVHD; 1 ext. cGVHD

(68)

(Continued)
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TABLE 1 | Continued

Virus Pt n. Antigen LTC stimulation Clinical effects GVHD References

BKPyV 1 BKPyV VP1 and

LT

PBMCs pulsed with

Peptides; direct selection

1 pt cleared infection and had CR None (69)

JCPyV 1 JCPyV VP1 and LT PBMCs pulsed with

overlapping peptides;

in vitro culture

1 pt cleared infection and had CR None (14)

Aspergillus

f.

10 Fungal conidia PBMCs pulsed with conidia;

T cell colony expansion

9/10 pts attained CR None (35)

Third-party donor-derived

EBV 33 LCLs in vitro culture 14 pts attained EBV CR, 3 pts had PR, 16

pts no response at 6m

None (70)

EBV 5 LCLs in vitro culture 4 pts attained EBV CR, 1 pts progressive

disease

None (71)

EBV 33 LCLs in vitro culture CR or PR was achieved in 68% of HSCT

recipients. For patients who achieved

CR/PR or SD after cycle 1, 1 y OS was

88.9%

1 grade I skin aGvHD (72)

EBV 1 EBV peptides Peptide-HLA multimer

selection

CR after 9m, recurrence then response to

2nd infusion

None (73)

CMV 5 CMV pp65 Peptide-HLA multimers

selection

4/5 pts attained viremia clearance None (73)

JCPyV 3 BKPyV VP1, VP2,

VP3, ST and LT

peptides

PBMCs pulsed with

overlapping peptides;

in vitro culture

2/3 pts cleared infection and CR (1 with

sequelae)

1 IRIS (74)

Experience With Multivirus-Specific T Cells
Most of the cell therapy experience regards treatment of CMV
and EBV infections. However, patients with multiple infections
have a worse outcome (19), and in the pediatric population or
in recipients of haplo-HSCT, the impact of other viral infections,
such as adenovirus or HHV6, has important implications for
overall survival (8, 87). Thus, the possibility to produce in a single
process VSTs specific for multiple viruses is crucial for progress
in the field. Proof of principle studies have been conducted, that
demonstrated feasibility and preliminary efficacy of controlling
viral reactivation after allogeneic HSCT by multivirus-specific
VST of HSCT donor or third-party origin, obtained by ex-
vivo stimulation with virus-transduced EBV lymphoblastoid cell
lines (75–77, 82, 84), dendritic cells nucleofected with plasmids
encoding for viral proteins or pulsed with viral peptides (78, 79,
81), or directly with 15-mer peptide pools from immunogenic
viral proteins (36, 80) (Table 2).

Prophylactic or curative administration in a total of 82
patients treated with HSCT donor-derived cells and 96 third-
party donor cells showed responses in the range of 80–95
and 70–100%, respectively (Table 2). Clinical benefit could be
demonstrated also in patients treated for multiple coincident
infections (36). Although clinical responses have been registered
for all targeted viruses, evidence of T cell expansion in the
peripheral blood of treated patients is mainly seen for viruses
with large memory cell pools, such as CMV and EBV, while,
due to the small size of their memory compartment, immune
responses to AdV or HHV6 do not seem to be boosted
unless a reactivation is underway. Indeed, antigenic competition
that will ensue when engaging multiple target antigens within

the same culture, will determine a preferential expansion
of T cells recognizing the immunodominant specificities of
viruses with large memory cell pools. This will impact on
the composition of multivirus-specific T cell products, as T
lymphocytes directed to certain non-immunodominant targets,
as well as to viruses with low-frequency memory T cells,
will be underrepresented, and it may also ultimately impact
on efficacy.

CURRENT LIMITATIONS OF T CELL
THERAPY FOR INFECTIONS

There are several hurdles that concur in limiting the use and
the clinical efficacy of pathogen-targeted T cell therapy. First
of all, production of pathogen-targeted T cells have been so
far mostly confined to a relatively small numbers of academic
centers with required Good Manufacturing Practice (GMP)
expertise and facilities, that have limited ability to provide
widespread access to these therapies. Moreover, for some
patient categories, such as recipients of HSCT from pathogen-
naïve donors, expansion of dedicated T cell products may not
be feasible.

In addition, the appropriate timing and schedule for T
cell delivery, as well as T cell dose or optimal cell product
composition, have not been yet established, due to the
presence of many different confounding variables, such as
transplant ad infectious disease setting, use of in vitro or
in vivo T-cell depletion, and immunosuppressive regimens.
These issues will have to be addressed in future controlled
comparative trials.
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TABLE 2 | Published trials using multivirus-specific T cells.

Virus Pt n. Antigen LTC stimulation Clinical effects GVHD References

HSCT donor-derived

AdV, CMV and

EBV

26 AdV5; CMV pp65;

EBV-LCL

LCLs transduced with

Ad5f35-pp65

6/6 with EBV cleared infection;

5/6 with AdV cleared infection; 10/11 CMV

cleared infection and 1pt progressed

despite VSTs/pharmacotherapy

2 grade I GVHD (75, 76)

AdV and EBV 14 AdV5; EBV-LCL LCLs transduced with

Ad5f35 vector

11 pts treated as prophylaxis remain

negative;

2/3 pts with AdV cleared infection

3 grade I GVHD (77)

CMV and EBV 3 CMV pp65; EBV

IE1 and LMP2

DCs pulsed with peptides 2 pts cleared infection; 1 pt treated as

prophylaxis remains negative

1 grade I GVHD (78)

AdV, CMV and

EBV

10 AdV5 Hexon and

Penton;

CMV IE1 e pp65;

EBV LMP2

and BZLF1

DCs nucleofected with

plasmids encoding for viral

antigens

8/10 pt: complete virologic responses 1 skin rash due to

GVHD or BKPyV

infection

(79)

AdV, BKPyV,

CMV, EBV and

HHV6

11 AdV5 Hexon;

BKPyV LT + VP1;

CMV IE1 + pp65;

EBV LMP2 +

EBNA1 + BZLF1;

HHV6 U11 + U14

+ U90

Peptides pool from

immunodominant antigens

3 pts treated as prophylaxis remain

negative;

94% response rate (15 Cr and 2 PR) in 8

pts with 18 viral infections/reactivations

1 grade I GVHD (80)

AdV, CMV, EBV,

and VZV

10 AdV5; CMV pp65;

EBV EBNA1 and

LMP; VZV vaccine

Ad5f35-pp65,

Ad5f35-EBNA1/LMP,

commercial VZV vaccine

6 pts with CMV reactivation, only 1 receving

antiviral therapy;

no EBV, AdV or VZV reactivation

1 grade II GVHD

1 grade III GVHD

(81)

AdV, CMV and

EBV

3 AdV5; CMV pp65;

EBV-LCL

LCLs transduced with

AdV5-pp65 vector 1 pt cleared infection.

2 pts treated as prophylaxis

remains negative

None (82)

CMV, AdV and

EBV

7 Various source

antigens

T cell culture; in 1 case,

streptamer selection

2 pts with EBV attained CR;

5 pts with CMV:2 CR, 2 PR and 1 failure

1 grade I GVHD

1 grade II GVHD

(83)

Third-party donor-derived

AdV, CMV and

EBV

50 Ad5, CMV pp65,

EBV-LCL

LCLs transduced with

Ad5f35-pp65

6/9 pts with EBV attained CR or PR;

14/18 pts with AdV attained CR or PR;

17/23 pts with CMV attained CR or PR

6 grade I GVHD

2 grade II GVHD

(84)

AdV, CMV and

EBV

4 Various source

antigens

T cell culture 1/2 pts with EBV attained CR or PR;

1 pt with AdV cleared infection;

1 pt with CMV reactivation required

specific pharmacotherapy.

None (83)

AdV, BKPyV,

CMV, EBV and

HHV6

38 AdV5 Hexon;

BKPyV LT + VP1;

CMV IE1 + pp65;

EBV LMP2 +

EBNA1 + BZLF1;

HHV6 U11 + U14

+ U90

Peptide pools from

immunodominant antigens

3/3 pts with EBV attained CR;

8/10 pts with AdV attained CR or PR;

20/21 pts with CMV attained CR or PR;

19/21 pts with BKV attained CR or PR

3/3 pts with HHV6 attained CR or PR;

2 grade I GVHD de

novo;

4 grade I-III

recurrent GVHD

(36)

Finally, HSCT recipients treated with steroids or calcineurin
inhibitors (CI) for GVHD are among those at highest risk
of infectious complications. However, in these patients cell
therapy has the least chance of success, as steroids have a direct
cytopathic effect, and CI impair T cell expansion potential.
Recently, preclinical studies have demonstrated the feasibility
of producing pathogen-specific single or multivirus-specific T
cells resistant to steroids (88), or to CI (89, 90), by genetic
modification, and clinical studies are underway to assess safety
and preliminary efficacy.

IMPROVING ACCESS TO CELL THERAPY

Manufacturing VST From
Antigen-Seronegative Donors
Pediatric recipients who reactivate viral infections after HSCT
from virus-naïve stem cell donors are at high risk of developing
complications. It has been shown that it is possible to prime
tumor- or virus-specific responses by delivering viral antigens
presented by professional antigen-presenting cells in the presence
of activating/homeostatic cytokines (91, 92). Stimulation by
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dendritic cells pulsed with EBV LCL, or stimulation with EBV-
LCL, either with subsequent selection of CD25-positive T-
cells, or in the presence of cytokines, such as IL-7 and/or IL-
12, have all been described (92–94). The latter approach was
demonstrated effective when employed to expand EBV-CTL
that were successfully infused in vivo to treat a disseminated
PTLD, unresponsive to multiple courses of rituximab and
chemotherapy, in a pediatric recipient of unrelated HSCT from
a EBV-seronegative donor (95).

Multivirus (CMV, EBV, and adenovirus)-specific T-cells have
been activated and expanded from CB, by stimulation with DC
or LCL pulsed with a CMV-pp65 overlapping peptide library, in
the presence of IL-7, IL-12, and IL-15. The primed cells were only
able to recognize atypical pp65 epitopes, but when administered
to CBT recipients mediated CMV-directed activity in one patient
experiencing viral reactivation (82).

Third-Party Banked VST
Donor-derived VST infusions are not always feasible in clinical
practice, due to impossibility to obtain starting material from
the donor, as in UD or CB transplantation. Moreover, rapid
disease progressionmay not allow the time required for dedicated
production. A practical approach to overcome these issues is to
employ banked, HLA-typed VST obtained from healthy donors,
selected for a candidate recipients on the basis of the most closely
matched line with specific activity against a given pathogen
through one or more shared HLA epitopes.

Theoretically, third-party VST could have short persistence in
vivo, with limited clinical benefit, as the partial HLA disparity
may induce allorecognition by recipient T cells. Alloresponses
by infused third-party cells may, in turn, cause GVHD. So far,
results have been encouraging, with only one report of bystander-
induced liver GVHD (96). Seminal data were obtained in solid
organ-transplanted patients with EBV PTLD: the response rate
in the 33 patients enrolled in the first phase II trial, that included
6 HSCT recipients, was 52% at 6 months (70). Since then, third-
party VST have been effectively used also in the setting of HSCT
(36, 62, 71–73, 83, 84, 96), demonstrating that the approach
is feasible without inducing a higher rate of GVHD than
HSCT donor-derived VST, while producing significant clinical
responses. A recent study demonstrated safety and efficacy
of third-party rapidly-generated single-culture donor VST that
recognized 12 antigens from EBV, AdV, CMV, BKPyV, andHHV6
in 38 patients enrolled in a phase II trial. Importantly, clinical
benefit could be demonstrated also in seven patients treated for
multiple coincident infections (36). VST banks recently created
include products characterized for epitope specificity and HLA

restriction elements, to further refine selection of the best VST
for each patient.

CONCLUDING REMARKS

It is likely that VSTs will have an increasing role as therapeutics
in the prevention andmanagement of viral infections after HSCT,
due to high rate of response and limited toxicity profile observed
in reported studies. However, many issues are still open, and
will need to be addressed in future studies, such as the most
suitable predictive markers for response, the identification of
patients at risk of treatment failure, optimal treatment schedule
in different clinical settings, and choosing adequate end-point for
future clinical trials.

The majority of subjects treated to date with cell therapy
for infections have received dedicated donor T cells, but
this approach may not be best suited for widespread cost-
effective access, since these are personalized medicines that are
produced on-demand through a complex and costly supply
chain. The development of new methodologies to obtain rapid
manufacture of third-party T cells, refinement of strategies to
allow adequate selection of the “best VST” for each candidate
patient and the possibility to widen applicability to setting
beyond HSCT, has prompted considerable interest from the
industry to bring to the market third-party cellular therapies.
This process will allow to benefit patients through better T cell
therapy access.
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It is established that pediatric hematopoietic stem cell transplant (HSCT) recipients have a
lower rate of chronic graft-versus-host disease (cGvHD) compared to adults. Our group
has previously published immune profiles changes associated with cGvHD of clinically
well-defined adult and pediatric HSCT cohorts. Since all analyses were performed by the
same research group and analyzed using identical methodology, we first compared our
previous immune profile analyses between adults and children. We then performed
additional analyses comparing the T cell populations across age groups, and a sub-
analysis of the impact of the estimated pubertal status at time of HSCT in our pediatric
cohort. In all analyses, we corrected for clinical covariates including total body irradiation
and time of onset of cGvHD. Three consistent findings were seen in both children and
adults, including elevations of ST2 and naive helper T (Th) cells and depression of NKreg

cells. However, significant differences exist between children and adults in certain
cytokines, B cell, and Treg populations. In children, we saw a broad suppression of
newly formed B (NF-B) cells, whereas adults exhibited an increase in T1-CD21lo B cells
and a decrease in T1-CD24hiCD38hi B cells. Prepubertal children had elevations of
aminopeptidase N (sCD13) and ICAM-1. Treg abnormalities in children appeared to be
primarily in memory Treg cells, whereas in adults the abnormalities were in naïve Treg cells.
In adults, the loss of PD1 expression in naïve Treg and naïve Th cells was associated with
cGvHD. We discuss the possible mechanisms for these age-related differences, and how
they might theoretically impact on different therapeutic approaches to cGvHD between
children and adults.
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BACKGROUND

Pediatric hematopoietic stem cell transplantation (HSCT)
recipients have a lower rate and possibly different
presentations of chronic graft-versus-host disease (cGvHD)
compared to adults (1). It has long been hypothesized that
greater thymic function in children is the primary reason for
the lower rate cGvHD, yet little human evidence after HSCT
supports this hypothesis. Previous evaluations of cellular and
plasma markers of cGvHD in adults, by our group and others,
have identified 3 primary cellular populations that characterize
cGvHD, including CD21lo B cells, NKreg cells, and naïve T cells;
as well as consistent changes in ST2 (2–6). Our group recently
concluded the Applied Biomarkers of Late Effects of Childhood
Cancer (ABLE)/Pediatric Blood and Marrow Transplant
Consortium (PBMTC) 1,202 study, which included 302
pediatric transplant patients, 52 of whom had cGvHD (7, 8).
This has allowed us to compare and contrast potential differences
between children and adults in the immune cell and plasma
cytokine profiles seen in our previous adults studies that correlate
with the development of cGvHD.

Puberty is the result of activation of the hypothalamo-
pituitary-gonadal axis and, as a consequence, of the increased
production of androgens and estrogens usually starting between
the age of 8 and 13 years in girls and 9 and 14 years in boys (9).
Onset of puberty is associated with a decline in thymic function,
and possibly splenic function as well (10, 11). Yet, the exact
differences that age and puberty have on the development of
immune reconstitution post-HSCT, GvHD, and the induction of
immune tolerance are still incompletely studied. Comprehensive
approaches to immune profiling, evaluation of thymic and
splenic function, as well as the impact of sex hormones on the
development of cGvHD are needed.

In this manuscript, we use our ability to perform broad
immune cell (including T-, B-, and NK-cell populations) and
plasma cytokine profiling to examine for differences in cGvHD
markers between prepubertal children, pubertal adolescents, and
adults. Based on these preliminary analyses, we develop
hypotheses that could explain how cGvHD might be
influenced by the recipient’s age and pubertal status at the time
of HSCT and provide insight into how cGvHD may be
biologically different between children and adults.
METHODS

Study Populations
Adult Biomarker Studies
Samples from patients ≥18 years of age were collected as part of a
Canadian Institutes of Health Research funded biomarker
companion study based at the BCCH Research Institute,
including 9 Canadian adult HSCT centers [all members of the
Canadian Blood and Marrow Transplant Group (CBMTG)], 2
US centers, and 1 Saudi Arabian HSCT center. The companion
study included patients enrolled on the CBMTG 0601 and 0801
trials as previously described (4, 12). Peripheral blood samples
Frontiers in Immunology | www.frontiersin.org 255
were collected on day 100 ± 14 days after transplantation, as well
as at the time of cGvHD diagnosis, and evaluated for cellular and
plasma markers. All samples were obtained after informed
consent with institutional research ethics board approval.

Pediatric ABLE/PBMTC 1202 cGvHD Biomarker
Study Design
Twenty-seven pediatric transplant centers (6 Canadian, 20 US,
and 1 Austria) enrolled 302 patients <18 years of age between
August 2013 to February 2017. All sites had institutional ethics
board approval. The clinical study was described in detail (7).
Centers assessed children for cGvHD according to the 2005
National Institutes of Health Consensus Criteria, with review by
a central study adjudication committee composed of experts in
cGvHD. Samples were evaluated by a broad immunophenotyping
and plasma cytokine strategy (8).

Assessment of Pubertal Status in Children
Since our pediatric study did not include formal Tanner staging
when designed, we evaluated the impact of the estimated
pubertal status at the time of HSCT on the later development
of cGvHD by approximating pubertal development, based upon
the average signs of visible pubertal changes that reflect the
secretion of gonadal hormones, corresponding to breast Tanner
stage 2 in girls and genitalia (penis) Tanner stage 3 in boys (13).
Based on these assumptions, we estimated a “puberty cut-off”
(pre-pubertal versus pubertal) in girls as reflecting the
50th percentile for Breast Tanner stage 2, occurring at 10.9
years (95% range; 8.9 to 12.9 years), and for boys as the 50th

percentile in penis Tanner stage 3 occurring at 12.4 years (95%
range; 10.1 to 14.6 years) (13).

Shipping of Samples
Two different types of tubes were used for sample collection:
heparinized tubes for plasma (BD Vacutainer) and Cyto-chex®

BCT tubes, STRECK. INC. (Canada distributor: Inter Medico,
Markham, ON, Canada) tubes for immunophenotyping. All
peripheral blood samples were shipped to the Transplantation
Applied Biomarkers laboratory at BC Children’s Hospital
Research Institute in Vancouver, BC, Canada via FedEx
overnight priority shipping (delivered within 24 h after blood
collection). Plasma isolation and storage: upon sample delivery,
plasma was isolated from blood cellular component by primary
centrifugation. Plasma aliquots were kept frozen at -80°C until
usage. The tubes were shipped at room temperature overnight
and phenotyping performed on the same day of sample delivery.

Phenotyping Procedure
Five panels were designed to look for different sub-populations
in T, B, dendritic, and NK cells. All antibodies, corresponding
conjugated dyes, clones, and vendors as previously described
[(8), Supplemental Table 3]. One hundred microliter of blood
was used for all panels except for the Treg panel where 200 ul of
blood was used. Samples were stained in the dark for 12 min at
room temperature (RT) followed by treatment with fix/RBC lyze
solution (eBiosceinces, Thermo Fisher Scientific, Waltham, US).
For intracellular staining, cells were made permeable using BD
October 2020 | Volume 11 | Article 571884
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Perm II solution (BD Biosciences Mississauga, Canada). Flow
cytometry data were acquired using BD LSR Fortessa X-20 Special
Order four channel flow cytometer (BD Biosciences, San Jose, CA,
US). A minimum of 300,000 events were acquired for all panels.
Instrument settings was also standardized using SPHERO™

Rainbow Calibration particles 6 peaks (Sphereotech, Lake
Forest, IL, US) to adjust laser power drifts over time. FCS files
were analyzed using Kaluza software v2 (Beckman Coulter, INC.
Mississauga, Canada). Flow cytometry accuracy, reproducibility
was ensured by the detailed approaches as previously
described (8).

Cytokine Measurement
Samples were collected and shipped as previously described (4,
8). Platelet depleted plasmas were isolated and frozen within 24 h
of collection, as previously described (4). Batches of plasma
samples were thawed and eleven cGvHD-associated markers
were analyzed in both the adult and pediatric cohorts,
including ST2, Osteopontin, sBAFF, sCD25, TIM-3, MMP3,
ICAM-1 , CXCL10 , CXCL9 , CXCL11 , and so lub le
aminopeptidase N (sCD13). Reg3alpha was measured in the
pediatric population only. CXCL9 and CXCL11 were measured
using electrochemiluminescence dual-plex plate (Meso Scale
Diagnostics LLC, Gaithersburg, US). sCD13 was measured
using colorimetric assay based on enzymatic activity, as
previously described (4). The remaining cytokines were
measured by standard colorimetric ELISA (RnD Systems,
Minneapolis, US). We found a high accuracy, reproducibility,
and linearity for all assays measuring soluble biomarkers and a
high stability of analytes upon 24 shipment as have been
previously described in adults (4) and children (8).

Statistical Analysis of Results
Flow cytometry data was pre-processed by removing margin
events, compensating the data, applying a logicle transform and
using flowCut (14) to eliminate artifacts caused by poor flow.
Files were then gated based on a designated gating strategy using
flowDensity (15). After preprocessing the flow cytometry data,
the flowType pipeline was used to identify cell populations as
previously described (3). We looked at the 2-grouping cGvHD-
versus cGvHD+. We conducted a statistical analysis of the cell
frequencies as a percentage of their respective parent populations
for all populations in pre-determined gating strategy. All three
criteria were required to highlight biologically relevant markers
including: a) p ≤0.05, b) receiver operator curve (ROC) area
under the curve (AUC) ≥0.60, and c) effect ratio of ≥1.3 or ≤0.75.
The p-value of each marker was estimated based on the Wald
test. ROC AUC was computed by estimating the true positive
rate (proportion of cGvHD or late aGvHD correctly classified)
against the false positive rate (proportion of controls falsely
classified as cGvHD or late aGvHD) for different marker
thresholds. The effect ratio was calculated as the average
marker value of patients with cGvHD (or late aGvHD) divided
by the average marker value of controls. For the T cell analysis,
when using the flowType pipeline for the 2-grouping, we found
X/Y-values <0.05. Of the immunophenotypes with significant p-
values, we selected those with ROC AUC ≥0.6 and effect ratios of
Frontiers in Immunology | www.frontiersin.org 356
≥1.3 or ≤0.75 for analysis with RchyOptimyx (16) in order to
find the minimal and optimal set of immunophenotyping
markers for the diagnosis of cGvHD.

Patients were assigned as having cGvHD or as a control in the
analysis, as we previously have described (8). As our analyses
were exploratory, no statistical adjustments were made for
multiple testing. Given that there were numerous tests
conducted, the probability of a Type I error likely exceeded
0.05, but this was moderated by the additional ROC AUC and
effect ratio criteria. Because our data base did not include Tanner
staging, we examined the impact of the puberty status at the time
of HSCT on the later development of cGvHD by estimating the
onset of puberty based where the average age of onset associated
with an increase in the production of gonadal hormones that is
sufficient to cause an increase in growth in height velocity: with
breast Tanner stage 2 in girls and genitalia (penis) Tanner stage 3
in boys (13). Based on the puberty “cut-off” established above
(13), each of the pediatric ABLE cohort (cGvHD, aGvHD, and
controls) were divided <10.9 and 12.4 years and ≥10.9 and 12.4
years for boys and girls, respectively, and analyzed for each age
group. The following clinical variables were modeled as
confounding factors in the logistic regression model: a)
prophylaxis or treatment with either alemtuzumab or ATG, b)
prophylaxis or treatment with rituximab, c) recipient age, d) the
use of a peripheral blood donor product or not, e) whether the
donor was HLA-identical or not. In addition, all analyses were
corrected for whether patients received TBI and the time of onset
of cGvHD. All analyses were performed using MATLAB
(MathWorks, Natwick, Mass, USA) and R (17).
RESULTS

Description of the Pediatric and Adult
Population Utilized in the Comparison of
Immune Profiling in cGvHD
For an initial comparison of immune profile differences between
the adult and pediatric cohorts, we utilized the published results
of 2 previously evaluated cohorts. The adult cohort (Table 1; N =
107) has been previously evaluated for B cell population profiles
(18) and NK, T cell, and cytokine, populations at the onset of
cGvHD (4). The pediatric cohort was from the later ABLE
studies (Table 1; N = 302), and to date, only the analyses of
the day 100 samples have been completed and described (8).
The two cohorts are representative of the type of transplants
performed in adults and children. While all HSCTs in the
adult cohort were for malignant conditions, only 59% were
in the pediatric cohort (Table 1). The pediatric cohort was
characterized by greater use of cord blood as a donor source,
compared to G-CSF mobilized peripheral blood progenitor cells
(PBPC) being used more frequently in the adult cohort. Sibling
donor transplants were more common in the pediatric cohort.
The tissue distribution of cGvHD in the two cohorts was
different, in that skin and lung cGvHD was more common in
the adult population compared to the pediatric cohort. Atypical
cGvHD presentations not associated with the diagnostic criteria
October 2020 | Volume 11 | Article 571884
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TABLE 1 | Baseline Characteristics of the pediatric (ABLE) and adult cohorts evaluated in these analyses3.

Characteristic Pediatric Cohort1(Overall Percentages of
Entire Evaluable Cohort n = 243)

Adult Cohort2(Overall Percentages
of Entire Evaluable Cohort n = 107)

No Late Acute GVHD or Chronic GVHD
(n = 132)

Chronic GVHD
(n = 51)

No cGvHD
(n = 63)

cGvHD
(n = 44)

Diagnoses
Malignant 78 (59) 41 (80) 63 (100) 44 (100)
ALL 33 (25) 18 (36) 9 (14) 7 (16)
MDS/AML 37 (28) 15 (30) 25 (40)

9 (14)
11 (25)
12 (27)

Mixed Lineage Acute Leukemia/Other 0 (0) 1 (2) 2 (3) 1 (2)
NHL 4 (3) 3 (6) 10 (16) 7 (16)
JMML 3 (2) 1 (2) 0 (0) 0 (0)
CML 1 (1) 3 (6) 4 (6) 1 (2)
CLL 0 (0) 0 (0) 2 (3) 2 (5)
MM 0 (0) 0 (0) 2 (3) 3 (7)
Non-Malignant 54 (41) 10 (20) 0 (0) 0 (0)
Sex
Male (55.6%) 72 (55) 33 (65) 34 (54) 26 (59)
Female (44.4%) 60 (46) 18 (35) 29 (46) 18 (41)
Age at Transplant
Median Age (Years, Range) 9.3

(0.2–17.9)
11.9
(2-18)

<50 years 25 (40) 16 (36)
≥50 years 38 (60) 28 (64)
Donor and HLA Match
HLA-Matched Family Donor (8/8) 54 (41) 8 (16) 17 (27) 19 (43)
Haploidentical Family Donor (with PTCy) 2 (2) 1 (2) 0 (0) 0 (0)
HLA-Matched Unrelated Donor (8/8) 48 (36) 22 (43) 17 (27) 14 (32)
HLA-Mismatched Unrelated Donor (≤7/8) 9 (7) 12 (24) 29 (46) 11 (25)
Cord Blood Matched and mismatched 19 (12) 8 (16) 0 (0) 0 (0)
Stem Cell Source
Bone Marrow 94 (71) 25 (49) 4 (6) 3 (7)
PBSC 19 (14) 18 (35) 32 (51) 37 (84)
Cord Blood 18 (14) 7 (14) 27 (43) 4 (9)
Double Cord Blood 1 (1) 2 (3) 0 (0) 1 (2)
Conditioning Regimen
Myeloablative 111 (84) 45 (88) 27 (43) 18 (41)
TBI 1200-1320 cGY +/- Other 33 (25) 19 (38) 19 (30) 10 (23)
Chemotherapy + 200-400 cGY TBI 7 (5) 1 (2) 0 (0) 0 (0)
Myeloablative w/o TBI 71 (5) 25 (50) 8 (13) 8 (18)
Reduced Intensity or Non-myeloablative 21 (16) 6 (12) 36 (57) 26 (59)
GVHD Prophylaxis
CNI + MTX/MMF ± Sirolimus 115 (88) 50 (97) 48 (76) 38 (86)
CNI ± Sirolimus 0 (0) 0(0) 10 (16) 6 (14)
PTCy + CNI + MMF 5 (4) 1 (2) 0 (0) 0 (0)
CNI + Steroid 1 (1) 0 (0) 0 (0) 0 (0)
Other 11 (8) 0 (0) 5 (8) 0 (0)
History of Acute GVHD
None 87 (66) 8 (16) 27 (43) 22 (50)
Yes 45 (34) 43 (84) 36 (57) 22 (50)
cGvHD Organ involvement in those affected by cGvHD
Skin involvement 43.1% 61%
Oral involvement 62.7% 66%
GI involvement 39.2% 23%
Eye involvement 29.4% 45%
Joint involvement 5.9% 15%
Lung involvement 23.5% 47%
Liver involvement 27.5% 51%
Genital involvement 2% 16%
Other
• Pericardial effusion
• Eosinophilia
• ITP
• Nephrotic syndrome
• Cardiomyopathy
• Neuropathy

21.7% This data was not collected
Frontiers in Immunology | www.frontiersin.org
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1 Summarized data from the ABLE pediatric cohort (N = 183) as published (7, 8) 2 Summarized data from the adult cohort (N = 107) as published (3, 19); 3These two cohorts were used for
both the summary of the known published results presented in Table 2 as well as the prospective analyses presented in Figures 1–3.
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for National Institutes of Health cGvHD were relatively frequent
(21.7%) in the pediatric cohort, but this data was not reliably
collected in the adult cohort to allow a comparison.

B Cell, NK Cell, and Cytokine Differences
Between Adult and Pediatric Populations
in our Previously Published Studies
We have previously analyzed these two cohorts separately and
published the results (4, 8, 18). While the pediatric analysis is
only focused on immune profiles at day 100 post HSTC (8) and
measured before the onset of cGvHD, and published adult results
(4) were measured at the onset of cGvHD, we felt we could
identify age-related patterns to guide additional comparisons of
the two cohorts. We have previously performed comprehensive
analysis of the B cell profiles in children (8) and adults (18) in
the same laboratory and utilizing similar immune profiling
strategies. For a cell population to be considered increased or
decreased, it had to meet our definition of being a biologically
relevant marker meeting all three of the following criteria
including a) p value ≥0.05, b) ROC AUC ≥0.60; and c) effect
ratio of ≥1.3 or ≤0.75. If it did not meet all three of these rigorous
inclusion criteria we excluded it from the comparison.
Comparison of B cell immune profiles identified population
similarities and differences between the adult and pediatric
cohorts (Table 2). We found that both adults and children
had decreases in newly formed B cell populations (NF-B
cells). Only the pediatric cohort, however, had decreases in
the T2 and T3 transitional B cell populations. By contrast,
CD10hiCD38hiCD19+ B cells, another transitional B cell
Frontiers in Immunology | www.frontiersin.org 558
population commonly associated with the Breg population, was
depressed in adults at the time of cGvHD diagnosis, but not in
children. Two B cell populations had opposite results between
the pediatric and adult cohorts. CD21low B cells were increased in
adult cGvHD, but in children with cGvHD, were significantly
decreased (Table 2). By comparison, an increase in unswitched
memory/Marginal zone-like B cells in pediatric cGvHD was
observed versus a significant decrease in switched memory B
cells in adult cGvHD (Table 2). Both the adult and pediatric
cohorts exhibited decreases in mature naïve B cells.

In adults, we previously observed a similar decrease in NKreg

cells, both in the adult cGvHD cohort described in this paper (4)
and in a separate adult donor cohort that had an evaluation of
the infused donor product (3) (Table 2). In our pediatric cohort,
we also saw a significant decrease in CD56bright noncytolytic NK
cells (8), NK cells that are consistent with regulatory NK cells
(NKreg) (19, 20). Thus, unlike B cells, no age-related differences
in the NKreg population were observed, with decreases in NKreg

cells seen in both the adult and pediatric cGvHD cohorts.
Our group and others have observed plasma differences in a

number of soluble factors between children and adults (4, 5). Our
comparison of the ABLE pediatric cohort (8) found that ST2, in a
similar manner to adults (5), is elevated in children (Table 2).
Other cytokines such as CXCL10 and CXCL9 that were
significantly elevated in adults with cGvHD (4, 6) could not be
confirmed in the pediatric cohort . By comparison,
aminopeptidase N (soluble CD13), originally found at cGvHD
diagnosis by proteomic analysis in children (21), as well as
ICAM-1, both appear increased in children with cGvHD.
TABLE 2 | Summary of Published Immune Profiling Studies Published by the BCCH group for B cells, NK cell and plasma marker populations associated with cGvHD
in Separate Adult and Pediatric Cohorts.

Cell population Pediatric (0–18 years; N = 241)2

Day 100 in cGvHD
Adult (≥ 18 years;N = 107)1

Onset of cGvHD

B cell populations
T1 - Immature/Transitional B cell
population consistent with Breg cells

CD24hiCD38hiCD19+ NS Decreased4

CD21 low B cells CD21lo/CD19+ Decreased Increased
T2 transitional CD38intCD10int of CD19+ Decreased NS
T3 transitional CD38dimCD10lo of CD19+ Decreased NS
Mature Naïve CD27- IgD+CD19+ Decreased Decreased
Unswitched memory/
Marginal-zone like

%CD27+IgD+ of CD19+ Increased Decreased

Classical switched memory %CD27+IgD- of CD19+ NS Increased
NK cell populations
Regulatory CD56bright NK cells Decreased Before onset – day 100

Decreased at onset
NA
Decreased at Onset1

Decreased in Donor cell infusion3

Plasma markers
Day 100 Onset of cGvHD

Aminopeptidase N (sCD13) Increased Increased but variable
ST2 Increased Increased
CXCL10 NS Increased
CXCL9 NS Increased but variable
ICAM-1 Increased but variable Increased but variable
October 20
1Rozmus (19) for adult data – N = 104; 44 with cGvHD onset (median of 207 days post-HCT; range 83–424 days) and 63 patients without cGvHD with sample collection a median of 194
days post-HCT (range 153–430 days); 2 Schultz KR (8) for pediatric data - N = 241 patients evaluated at day 100. 3Adult data on donor product infused as part of the CBMTG0601 trial (N =
79) (3). 4 To be defined as increased or decreased, the marker had to meet our definition of being a biologically relevant marker which included all of the following 3 criteria a) p value ≤0.05;
b) ROC AUC ≥0.60; and effect ratio of ≥1.3 or ≤0.75.
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A Direct Comparison of T Cell Differences
Between Adult and Pediatric Populations
We performed a direct comparison of the T cell populations
evaluated at day 100 in both the adult and pediatric cohorts. Data
was merged into a single data set with flow-cytometry reanalyzed
to ensure identical gating between the two studies. An
unsupervised comparison analyses (Figure 1) was then
performed on the T cell populations at Day 100 after HSCT in
the adult and pediatric ABLE cohort. Overall, T cell patterns
appear to be more complex in the adult cGvHD patients
compared to children at day 100 who would later go on to
develop cGvHD (Figure 2; Supplemental Table 1). The only
markers commonly affected in the same way between adults and
children included an increase in overall CD3+ T cells and Naïve
Th cells (CD31-CD3+CD4+CD45RA+). CD31+ (recent thymic
emigrant or RTE) Naïve Th cells were also affected in both the
pediatric and adult cohorts, but in opposite directions, being
increased in adults compared to decreased in children (Figure 2).
Additional changes in adults included an increase in the PD1-

Naïve Th cell population. While we could demonstrate no
differences in Treg cells in the overall pediatric cohort, we did
see an increase in both PD1- and CD31+ Treg populations in the
adult cohort. Memory Th cells were also significantly different in
adults, with an increase in PD1- memory Th cells and a decreased
in PD1+ memory Th cells (Figure 2).

Impact of Puberty Status Pre HSCT on
Immune Profiles in cGvHD in the Pediatric
Population
The pediatric ABLE cohort included patients 0–18 years of age.
We hypothesized that the differences we had identified between
adults and children potentially would begin to change at the
onset of puberty, with adolescent cGvHD markers becoming
more adult-like after puberty. Based on standardized data for the
onset of puberty in North American children (9), we estimated
the average age of onset of Tanner stage 2 breast development in
girls (10.9 years) and Tanner stage 3 penis development in boys
(12.4 years) as reflecting secretion of gonadal hormones the point
between being prepubertal and pubertal. We divided the <18
year old pediatric cohort from the ABLE study into a prepubertal
(< 10.9 years for girls and < 12.4 years for boys) and pubertal age
group based upon these age cut-offs, (≥ 10.9 years in girls and
≥ 12.4 years in boys) grouping and evaluated the impact of
puberty at the time of HSCT on cGvHD immune profiles. All
analyses were adjusted for a number of clinical factors including
the impact of TBI and the time of onset of cGvHD (Figure 3). We
evaluated the identical T cell populations identified in Figure 2.
We found that naïve Th cells were significantly increased in both
the prepubertal and pubertal cohort (Figure 3; Supplemental
Table 2). PD1 expression on naïve Th cells continued to have no
significance on the pediatric subpopulation analysis. Interestingly,
the significant decrease in CD31+ (RTE) naïve T cells in the
overall pediatric group was due primarily to a decrease in the
prepubertal group (Figure 3; Supplemental Table 2), with an
effect ratio of 0.5 in the prepubertal children (Figure 3), increasing
to an effect ratio of 1.2 in the pubertal group, which approaches
Frontiers in Immunology | www.frontiersin.org 659
that of the adults (effect ratio of 2.1). While we identified no
difference in Treg populations in the overall pediatric cohort, our
sub analysis identified that PD1- memory Treg cells were increased
in the prepubertal group (Figure 3; Supplemental Table 2),
and PD1+ memory Treg cells were significantly increased in
the pubertal group. A second Treg population was altered in the
prepubertal group, with a decrease in RTE (CD31+) naïve Treg

cells, whereas these cells were not significantly different in the
pubertal group.

We evaluated the impact of puberty at the time of HSCT on B
cell populations at day 100 in the ABLE cohort. We selected the
six B cell populations that were significantly different between
the adult and pediatric cohorts (excluding mature naïve B cells,
as they were decreased in both adults and children). We found
that the T2 and T3 transitional B cell populations were only
decreased in prepubertal children, but were not significantly
different in the pubertal population. In prepubertal populations,
the effect ratios of 0.44 and 0.44 for the T2 and T3 transitional B
cell populations, respectively, were significant; however, neither
were significant for the pubertal population. (Figure 3;
Supplemental Table 2). Evaluation of the unswitched
memory/marginal zone-like B cells demonstrated that these B
cells were only significantly increased in prepubertal children
(effect ratio of 3.7) and had a non-significantly lower effect ratio
(1.4) in the pubertal population. By contrast, we saw a
significantly decreased effect ratio in of CD21low B cells in
prepubertal with a non-significant decrease in this population
pubertal children to 0.53. Switched memory B cells continued to
be unchanged in cGvHD in the pediatric cohort.

NKreg cells were decreased with cGvHD (Figure 3) in both
the prepubertal group with an effect ratio of 0.67 (p = 0.006; ROC
AUC = 0.68) and for pubertal children with an effect ratio of 0.68
(p = 0.05; ROC AUC = 0.69). The impact of puberty pre HCT on
cytokines expression in plasma was also evaluated (Figure 3;
Supplemental Table 2). ST2 was significantly elevated in both
prepubertal children with an effect ratio of 1.5 (p = 0.04; ROC
AUC = 0.68) and pubertal children with an effect ratio of 1.5 (p =
0.04 ROC AUC = 0.68). By contrast, Aminopeptidase N or
sCD13 was only significantly increased in prepubertal children
with an effect ratio of 1.6 (p = 0.004; ROC AUC 0.67) and non-
significantly increased in pubertal children with an effect ratio of
1.3 (p = 0.11; ROC AUC = 0.69). Similar to sCD13, ICAM1 was
only significantly elevated in prepubertal children with cGvHD
with an effect ratio of 1.4 (p = 0.01; ROC AUC = 0.63). Neither
CXCL10 or CXCL9 were increased in either group.
DISCUSSION

Although there appear to be consistent cGvHD immune profile
patterns in NKreg cells, naïve Th cells, and ST2, regardless of age
(Table 3), the comparisons we have performed support that
significant differences exist in a number of T and B cell
subpopulations and cytokine profile patterns between pediatric
and adult HSCT patients with cGvHD. For cellular populations
that were different between the pediatric and adult cohorts in our
October 2020 | Volume 11 | Article 571884
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results of the unstructured statistical analysis conducted to find combinations of markers
p-value after including an additional marker.
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studies, pubertal patients often had immune profile values in-
between adults and prepubertal children (Table 3), suggesting a
transition in cGvHD mechanisms associated with the onset
of puberty.

Age Related T Cell Differences
T cell similarities and differences identified appear to involve
primarily Naïve Th cells (Table 3). Thymic function is highest
before puberty, with intermediate function at the onset of
puberty and further decline towards adulthood (10). Both
children and adults in our cohorts had significant expansions
of naïve Th cell associated with cGvHD, although the pattern of
naïve Th cell expansion was different. In adults, we observed that
PD1 expression in naïve Th cells may play a role in the
development of cGvHD, with an expansion of PD1- naïve Th
cells (Figure 2). By contrast, PD1 expression on naïve Th cells
was not important in the cGvHD pediatric cohort. One other
difference in the T cell pattern we observed between pediatric
and adult cohorts was that in adults (but not children) PD1-

memory Th cells were increased, whereas PD1+ memory Th cells
were decreased. This would be consistent with the dependence
on PD1 as a regulator of peripheral tolerance, the primary
mechanism of T cell tolerance in adult and post pubertal
recipients (22). PD1 independent and thymic-dependent
mechanisms may therefore play a greater role in the prepubertal
population in regulating cGvHD development.
Frontiers in Immunology | www.frontiersin.org 861
Age Related B Cell Differences
Our group was the first to identify the critical role of B cells in the
development of cGvHD, in mice (23), followed by identification of
significant B cell abnormalities in children (24). Interestingly, in
the current analysis, the B cell compartment is where we identified
no common B cell profiles and some of the greatest differences
between the pediatric and adult cohort (Table 3). The primary
impact of cGvHD, both in adults and children, appears to be in
what has been recently designated as newly formed B cells (NF-B),
including all transitional and immature B cells (25). In the
pediatric cohort, we saw a broad depression of the NF-B cell
populations associated with cGvHD including the T1-CD21lo, T2,
T3, and mature naive B cell populations, with these differences
primarily seen in the prepubertal subgroup. The only population
that was increased in cGvHD in the pediatric group was the
unswitched memory/marginal zone-like B cell population. In
contrast to the pediatric group, adults had a significant increase
in the transitional T1- CD21lo B cell population (associated with
autoimmunity) and a significant decrease in transitional T1-
CD24hiCD38hi B cell populations (associated with a Breg

population). This suggests that Bregs may play a much greater
role in controlling cGvHD in adults compared to children.

The different B cell patterns seen in NF-B cells between
children and adults suggests there are significant differences in
the role that B cell regulation may play in pediatric versus adult
cGvHD. There is evidence that patients with autoimmune disease
FIGURE 2 | Differences of Day 100 adult and pediatric T cell populations in cGvHD. Volcano plots that met our definition of a biologically relevant markers for
cGvHD were required to meet all 3 criteria of a i) p-value ≤0.05 (y-axis), ii) receiver operator curve (ROC) area under the curve (AUC) of ≥0.60 (circle: ≥0.60 and
cross: <0.6), and iii) effect ratio ≥1.3 or ≤0.75 (x-axis). A circle that is on either the upper right quadrant (higher in cGvHD) or upper left quadrant (lower in cGvHD)
was considered a significant markers whereas a cross in these same quadrants, while meeting the criteria for effect ratio and p value, did not have an ROC AUC
≥0.60. Cell populations are identified by color with green = T cells and light blue = Treg cells. Solid circles = the pediatric cohort and open circles = the adult cohort.
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suffer from defects in early B‐cell tolerance checkpoints in the T1
transitional NF-B cell populations, resulting in selection of
autoreactive NF-B cells (26, 27) that potentially present self‐
antigen to T cells, similar to early murine models of cGvHD
(23). In the area of autoimmunity, increased circulating NF–B cells
are found in SLE, type 1 diabetes, and juvenile dermatomyositis
(28, 29) possibly as an important source of pathogenic
autoantibodies. It is suggested that autoreactive NF-B cells
contains clones that may develop into CD27− CD21−/lo B cells
after the acquisition of somatic hypermutations that improve
affinity for self‐antigens (27). In adults, we observed an inverse
relationship between increased CD21lo B cells and decreased T1
Bregs, suggesting a possible inhibitory impact of Breg cells on
CD21lo B cells at the early B cell checkpoint.

In children, we saw a very different pattern that also appeared
to be a result of an early B cell checkpoint abnormalities that
resulted in a broad suppression of a number of NF-B cell
populations including CD21lo B cells. These two different
patterns of B cell abnormalities resulted in increased classic
switched memory and decreased unswitched B cell in adults
and increased unswitched memory B cell in children. NF–B cell
activation appears to be driven by TLR7 and TLR9 activation by
recognition of RNA and DNA motifs (30–32). Our previous
observation that a TLR-9 responsive B cell population was
Frontiers in Immunology | www.frontiersin.org 962
associated with the onset of cGvHD in children (24) suggests
an aberrant NF-B population in children. In children, there is
one other possible mechanisms by which B cell may impact on
development of post HSCT tolerance whereby intrathymic B
cells may support development of Tregs through cognate help and
can shape the Treg repertoire (33).

Regulatory Cells in cGvHD
Of all of the regulatory populations, NKreg cells (19) appear to have
a consistent age-independent role in suppression of cGvHD.
CD56bright NK cells represent 10% of peripheral NK cells and
are similar to decidual NK cells, with regulatory function, that
inhibit placental rejection (34). The NKreg populations is
characterized by expression of granzyme K rather than
expression of either perforin or granzyme B (35) and many
times are considered as non-cytolytic. With large patient
populations, we have identified in both children and adults, a
non-cytolytic CD56bright NK population (NKreg) closely
correlating with a lack (or inhibition) of cGvHD. In adults, we
have seen increased CD56bright CD335+ CXCR3+ NKreg cells
associated with decreased cGvHD (4); increased CD56bright

NKreg cells in adult donor product that correlated with
suppression of cGvHD (3); and increased NKreg cell numbers
induced by ATG-treatment day at 100 post HSCT in 38 adults on
FIGURE 3 | Evaluation of the impact of estimated pubertal status pre HSCT on cGvHD Immune Profile. Volcano plots that met our definition of a biologically relevant
marker for cGvHD were required to meet all 3 criteria of a i) p-value ≤0.05 (y-axis), ii) receiver operator curve (ROC) area under the curve (AUC) of ≥0.60 (circle: ≥0.60
and cross: <0.6), and iii) effect ratio ≥1.3 or ≤0.75 (x-axis). A circle that is on either the upper right quadrant (higher in cGvHD) or upper left quadrant (lower in
cGvHD) was considered a significant markers whereas a cross in these same quadrants, while meeting the criteria for effect ratio and p value, did not have an ROC
AUC ≥0.60. Cell populations are identified by color with dark blue = B cells, orange = myeloid populations, yellow = NK cells, purple = NKreg cells, green = T cells,
light blue = Treg cells, and dark red = plasma cytokines. Solid circles = the prepubertal group and open circles = the pubertal group. We note the following clinical
variables were modeled as confounding factors in the logistic regression model: (A) prophylaxis or treatment with either alemtuzumab or ATG, (B) prophylaxis or
treatment with rituximab, (C) recipient age, (D) the use of a peripheral blood donor product or not, (E) whether the donor was HLA-identical or not. The onset of
puberty was estimated as 10.9 years in boys and 12.4 years in girls. The results are corrected for both the time of onset after HSCT and for the use of TBI.
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the CBMTG 0801 trial where ATG significantly decreased cGvHD
(12). Similarly, in the pediatric ABLE studies, we found increased
noncytolytic CD56bright NKreg cells in pediatric recipients at 3
months post HSCT in those who did not later develop cGvHD (8).

It has been postulated that Treg cells play a role in cGvHD, but
there are many conflicting studies regarding their role (36–38).
Part of differing findings may be a result of age-related differences
in the role of Treg cell subpopulations in cGvHD (Table 3). We
found that differences in memory Treg cells were more
predominant in prepubertal and pubertal groups whereas naïve
Treg cells appeared to bemore important in adults (Table 3). In the
prepubertal group we observed both an increase in PD1- memory
Treg cells numbers and a decrease in CD31+, RTE memory Treg

cells (Table 3). Interestingly, a previous analysis of our group of
the pediatric cohort at day 100 in those patient that had already
developed cGvHD found an increase in PD1- memory Treg cells
and a concomitant decrease in PD1+ memory Treg cells (8). By
contrast adults had no observable differences in memory Treg cells
but did have an increase in naïve Treg cells either expressing CD31
(RTE) or lacking PD1 expression (Figure 2, Table 3).

The role of PD1 in regulation of memory and naive Treg cells
appears to be inadequate where PD1 blockade increases the
proliferation of highly suppressive PD1+ memory Treg cells and
inhibition of antitumor immunity (25). The absence of PD1
along with partial FoxP3 insufficiency, however, can result in Treg
Frontiers in Immunology | www.frontiersin.org 1063
cells with proinflammatory properties and expansion of effector/
memory T cells that contributed to the autoimmunity (39).
Others have established that PD1 is critical in modulating Treg

homeostasis during low does IL-2 therapy for cGvHD (41). They
observed that PD1- memory Tregs showed rapid Stat5
phosphorylation and proliferation with IL-2 initiation followed
by higher Fas and lower Bcl-2 expression decreased the
effectiveness of IL-2 on memory Tregs (40). The importance of
PD1 expression on either memory or naïve Treg cells is further
supported by a study that demonstrated that PD1 upregulated on
Treg cells and its interaction with PD1 ligand on effector T cells
resulted in potent T cell suppression (41).

The other regulatory population that may be more prominent
in the adult population is the T1- CD24hiCD38hi B cell
population, many times associated with a Breg function. While
we acknowledge that the only definitive way to evaluate Breg cells
is by a functional assay and thus cannot be sure this T1 B cell
population is in fact a Breg cell population, we could identify only
a decrease in the Breg phenotype in adults and not in children.

Age Related Cytokine Differences
Soluble ST2 was the only cytokine consistently increased in all age
groups. Elevation in ST2 associated with cGvHD has been
described in multiple adult studies and in our previous ABLE
pediatric study (4, 5, 8, 22). The ST2-related chemokines, CXCL9
TABLE 3 | Summary of Recipient Age on cGvHD markers.

Pre pubertal Pubertal1 Adult

Naïve T cells
• Naïve Th cells Increased Increased(NS) Increased
• RTE Naïve Th cells Decreased NS Increased2

• PD1- or PD1+ Naïve Th cells NS NS Increased
Memory T cells
• PD1+ memory Th cells NS NS Decreased
• PD1- Naïve Th cells NS NS Increased
Newly formed B cells
• CD21lo B cells Decreased NS Increased
• T2 transitional Decreased NS NS
• T3 transitional Decreased NS NS
Peripheral B cells
• Mature Naïve Decreased NS Decreased
• Unswitched memory/Marginal-zone like Increased Increased(NS)3 Decreased
• Classical switched memory NS Increased(NS) Increased
Regulatory populations
Regulatory T cells
• PD1- memory Treg cells Increased Decreased(NS) NS
• PD1+ memory Treg cells NS. Increased NS
• RTE memory Treg Decreased NS NS
• PD1- Naïve Treg NS NS Increased
• RTE Naïve Treg NS Increased(NS) Increased
Regulatory NK cells Decreased Decreased Decreased
T1 - Transitional population consistent with Breg cells NS NS Decreased
Cytokines and Chemokines
• ST2 Increased Increased Increased
• CXCL10 NS NS Increased
• CXCL9 NS NS Variable
• Aminopeptidase N (sCD13) Increased Increased (NS) Variable
• ICAM-1 Increased NS NS
October 2020 | Volume 11 | Arti
1Prepubertal was defined as a girl aged <10.9 years or boy <12.4 years at time of HSCT and pubertal was defined as a girl ≥10.9 years or boy ≥12.4 years at time of HSCT. 2CD31
expression was not important in adults with both CD31+ and CD31- Th cell populations elevated. 3the effect ratio met criteria of either ≤0.75 or ≥1.3 but was not statistically significant due
to smaller number of patients.
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and CXCL10 were not elevated in the younger population
suggesting a greater role in adults. By contrast, two cytokines
may play a greater role in the pediatric population,
aminopeptidase N (sCD13) and ICAM-1 (Figure 3), neither
which is associated with ST2 functionally. We had initially
found elevation of sCD13 in a pediatric study, COG ASCT0031,
through proteomic discovery and validation (21). Subsequently,
we and others have seen an elevation of sCD13 in adults. Our
current analysis of the prepubertal versus the pubertal group
showed that the association was strongest in prepubertal
children. The source of sCD13 in the HSCT cGvHD
environment is still not known. One group did find an
apparently distinct CD13+CD33+ population of leukemic cells
contributing to a proinflammatory microenvironment that was
detrimental to long-term normal hematopoiesis (42) suggesting
an inflammatory role of sCD13 in the hematopoietic
microenvironment. It is possible that the increased sCD13 may
impact early B cell lymphopoiesis in cGvHD. Support for this
hypothesis is provided by data demonstrating the impact of
Bestatin, a sCD13 inhibitor, on B cell lymphopoiesis. In mice,
treatment with Bestatin increased the total number of thymocytes,
splenocytes, and lymphocytes of mesenteric lymph nodes.
Inhibition of sCD13 by bestatin decreased peripheral Th and Tc
cells and augmented B cells in the peripheral lymphatic sites (43).
In humans, Bestatin had a similar effect, augmenting immune
reconstitution following HSCT with significant increases in NK
cells and B cells (44). Thus, it is possible that the suppression of
NF-B lymphopoiesis and thymopoiesis seen in children with
cGvHD may be impacted by elevations of sCD13.

Impact of Sex Hormones on Immune
Function in HSCT and cGvHD
It is well established that the onset of puberty appears to initiate
the involution of the thymus and a decrease in thymic function
(10). The thymus involutes after estradiol treatment or during
pregnancy, in both mice and humans (45, 46). Since testosterone
partially is converted to estradiol, testosterone treatment probably
also has an identical impact. Moreover, decreasing recipient
thymic function is hypothesized to be one of the major reasons
for the increase in cGvHD seen in adult compared to children.
Some have proposed that using steroid ablation will result in
thymic regeneration in adults and potentially both help in both
immune reconstitution after HSCT, but also may impact on the
development of cGvHD (47). Our studies are limited in that we
evaluated the pubertal status at the time of HSCT and could not
evaluate the impact of hormonal levels on immune reconstitution
after HSCT.We know that all myeloablative preparative regimens,
whether including total body irradiation (TBI). However, steroid-
secreting cells (Leydig cells in boys and granulosa cells in girls) are
more resistant to TBI and high-dose cytotoxic drugs. Whereas
germ cell producing Sertoli cells, in boys, and oocytes, in girls, are
much more sensitive (48). It is also possible that alteration in sex
hormone levels post HSCTmay impact on immune reconstitution
and possible the onset of cGvHD. We attempted to accommodate
for some of these variables in our analysis of the prepubertal and
pubertal sub analysis by considering a number of clinical
covariates including both TBI and time of cGvHD onset as
Frontiers in Immunology | www.frontiersin.org 1164
covariates and none of these factors had a major impact on the
final results.

Proposed Model for Age Related
Differences in cGvHD Immune Profiles
While many questions remain, we conclude that recipient age at the
time of HSCT impacts on the immune profile of cGvHD cell
populations and cytokines and needs to be taken into consideration
when evaluating the biomarkers and immunology of cGvHD. We
summarize the age related differences we have been able to identify
and have attempted to develop a working model for the recipient
impose differences in cGvHD development (Figure 4). In general,
there appears to be some major differences in the immune profiles
of pediatric versus adult cGvHD. In the T cell compartment, all age
groups appear to have an increase in naïve Th cells. Interestingly,
the increase in adults seem to be primarily due to an increase in an
RTE PD1- naïve Th cell population. We saw more striking
differences in B cells (Figure 4). Children had a broad
suppression of NF-B cells where as many of the difference in
adults appeared to be at the T1 transitional stage with an increase
in CD21lo B cells that probably are due to an aberrant early B cell
check point inhibition that may have prevented the development of
this population. We hypothesize that there may be age related
differences in how B cell abnormalities develop in NF-B cells at the
early checkpoint associated with T1-trasnional B cells. In adults,
there appears to be a major divergence to increased CD21low B cells
whereas children develop a broad suppression of almost all
NF-B cell lymphopoiesis.

Three regulatory populations appear to be important in
preventing the development of cGvHD. All age groups appeared
to depend on NKreg cell suppression of cGvHD, but only adults
appeared to have an association with cGvHD suppression by a T1
transitional B cell population that phenotypically is similar to Breg
cells (49). Children seem to develop abnormalities primarily
in memory Treg cells whereas adults had abnormalities in naïve
Treg cells. These findings suggest that the dynamics of the regulatory
losses may be different before and after puberty. While ST2
is consistently elevated regardless of age, aminopeptidase N
(sCD13), which is not known to be affected by ST2, was more
prominently elevated in the prepubertal group and we hypothesize
may be impacting on both dysfunctional B cell lymphopoiesis
and thymopoiesis.

One factor that may have influenced the comparison of adult to
pediatric cGvHD biology are the differences in HSCT approaches
between the two age cohorts including the greater use of
myeloablative regimens, higher number of non-malignant
indications, and low use of PBPC as a donor source in the
pediatric population compared to adults. In our multivariate
analyses, we corrected for these co-variates as much as possible
and still observed significant differences leading to our conclusion
that there are recipient age-related differences. Moreover, our
comparison of the prepubertal to the pubertal subgroups
essentially compared groups receiving he identical transplant
approaches as they were limited to pediatric HSCT centers.

In summary, these data support that the impact of pre HSCT age
and pubertal development may both explain why children have a
lower cGvHD, possible different organ distribution, and most
October 2020 | Volume 11 | Article 571884
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importantly have distinct biological differences in some of the
pathways that result in the development of cGvHD. One thing to
emphasize in that we many times found cell population patterns in
the pubertal group somewhere between that in prepubertal children
and adults suggesting that the onset of puberty begins to affect
cGvHD patterns somewhere between children and adults.
Moreover, the impact of post HSCT sex hormone production on
the development if immune tolerance and cGvHD is also probably
impacted by the pre HSCT pubertal status.We have tried to develop
a model that only partially explains the observed differences and
more information is required.
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The variables that influence the selection of a preparative regimen for a pediatric
hematopoietic stem cell transplant procedure encompasses many issues. When one
considers this procedure for non-malignant diseases, components in a preparative
regimen that were historically developed to reduce malignant tumor burden may be
unnecessary. The primary goal of the procedure in this instance becomes engraftment
with the establishment of normal hematopoiesis and a normal immune system.
Overcoming rejection becomes the primary priority, but pursuit of this goal cannot
neglect organ toxicity, or post-transplant morbidity such as graft-versus-host disease
or life threatening infections. With the improvements in supportive care, newborn
screening techniques for early disease detection, and the expansion of viable donor
sources, we have reached a stage where hematopoietic stem cell transplantation can be
considered for virtually any patient with a hematopoietic based disease. Advancing
preparative regiments that minimize rejection and transplant related toxicity will thus
dictate to what extent this medical technology is fully utilized. This mini-review will provide
an overview of the origins of conditioning regimens for transplantation and how agents
and techniques have evolved to make hematopoietic stem cell transplantation a viable
option for children with non-malignant diseases of the hematopoietic system. We will
summarize the current state of this facet of the transplant procedure and describe the
considerations that come into play in selecting a particular preparative regimen. Decisions
within this realm must tailor the treatment to the primary disease condition to ideally
achieve an optimal outcome. Finally, we will project forward where advances are needed
to overcome the persistent engraftment obstacles that currently limit the utilization of
transplantation for haematopoietically based diseases in children.
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INTRODUCTION

Since its first attempts in the 1950s, allogeneic hematopoietic
stem cell transplantation (HSCT) has rapidly evolved over time
(1). Initially used for the most desperate of situations, it has now
become a standard of care for many disease conditions. This
transformation is a product of many advancements including:
(1) Improving our understanding of hematopoiesis and immune
reconstitution. (2) Improvements in supportive care, (3)
Improvements in the prevention of graft-versus-host disease
(GVHD), (4) Expansion of donor pools, (5) Refinements in
preparative regimen selection and design. These advancements
have produced a steady decline in transplant related mortality
rates which now approach 10% in some instances. Thus, HSCT is
now viewed as a viable option for virtually any disease that
originates from the hematopoietic system. Continued
improvements must now take into account not only mortality,
but also minimizing the long-term toxicities that a
surviving patient must confront after achieving cure of their
primary disease.

Long term toxicities can be a consequence of several variables.
1.) Organ damage from the preparative regimen, 2.) Sequelae from
the transplant course such as mucositis, infection, or excessive
bleeding, 3.) Chronic GVHD, 4.) Toxicity from other medications
administered (calcineurin inhibitors, steroids, etc.) (2). Although
some of these complications may be unpredictable, the choice of
the preparative regimen can have a significant impact. For non-
malignant conditions, the primary goal of the transplant
procedure is to achieve stable engraftment that is sufficient to
rectify the underlying disease yet minimize long term toxicity (3).
In its simplest view, the primary obstacle of HSCT is rejection of
the graft. Thus, the choice of preparative regimen should focus on
its immunosuppressive properties, optimizing engraftment yet
avoiding an excessive immunocompromised state leading to life
threatening infections (4). This “balance” can be difficult to
achieve, and the optimal regimen, which varies with the primary
disease, has not been established for any condition.

This mini-review will summarize both the history and current
state of the repertoire of preparative regimens that have been
utilized for HSCT for non-malignant conditions. We will discuss
the variables which should be considered in choosing the
appropriate preparative regimen and how different conditions
may warrant different approaches. Finally, we will discuss future
directions where advances in preparative regimen design may
improve the outcome for these patients.
INDIVIDUAL AGENTS UTILIZED FOR
PREPARATIVE REGIMEN DESIGN

Established preparative regimens have historically been
developed utilizing standard phase I designs which advance
dose intensity until a dose limiting toxicity was encountered.
Hematologic toxicity was disregarded due to its reversal with the
infusion of hematopoietic stem cells of the graft. Thus, doses and
Frontiers in Immunology | www.frontiersin.org 269
schedules of individual agents were limited by toxicities outside
the hematopoietic system.

Modern day regimens are typically classified into three
categories (3, 5, 6). Myeloablative regimens typically requires a
stem cell graft infusion to reconstitute hematopoiesis. Non-
myeloablative regimens, as the name implies, are less intensive
and, even in the absence of a stem cell infusion, spontaneous
hematopoietic recovery is expected. Reduced intensity regimens,
whose definition has not been rigorously defined, falls somewhere
in-between the two extremes, and is an acknowledgement that non-
myeloablative regimens are associated, by their nature, with an
increased risk of rejection. Reduced intensity regimens thus, fall
short of full myeloablative dosing, but may achieve engraftment
with less toxicity. Regardless of the type of preparative regimen,
below are the components which constitute most modern
day therapies.

Total Body Irradiation (TBI)
One of the first modalities developed, TBI was the primary
modality utilized in early transplant studies in animals because
of its known immunosuppressive and myeloablative properties
(7, 8). Clinical experience in humans quickly raised awareness of
TBI’s effects on the lungs and strategies that fractionated doses
and shielded the lung fields led to improvements in survival (9).
TBI’s toxicity unfortunately does not spare any tissue, often
leading to irreversible damage to exposed organs making it less
attractive for non-malignant diseases. Subsequent investigations
have strived to reduce the dose and presumably the toxicity to
exposed organ systems because of its usefulness in overcoming
rejection particularly in mismatched donors. Long term studies
have failed to identify doses that are free of significant rates of
infertility, thyroid disease, and growth hormone deficiency
making the use of this modality problematic.

Cyclophosphamide
A well-established alkylating agent, cyclophosphamide has
maintained its role in HSCT due to its highly immunosuppressive
properties and the relative resistance of hematopoietic stem cells to
this agent even the highest doses (8, 10, 11). Recent studies have
utilized cyclophosphamide post graft infusion to improve the
outcomes of haploidentical transplant procedures (12–14). The
success of this strategy has probably entrenched this agent as a
major element of transplant therapy. Acute toxicities including
hemorrhagic cystitis, and cardiac toxicity have been reduced with
improved supportive care, with persistent long term toxicities that
include sterility and secondary malignancies.

Busulfan
One of the first agents to be utilized in non-TBI containing
preparative regimens, the establishment of pharmacokinetic
modeling to project optimal dosing for this drug has reduced
rejections and hepatotoxicity (8, 10, 11, 15). Seizures, a common
complication of this agent has been minimized with prophylactic
anti-epileptic drugs. Sinusoidal obstruction syndrome, (SOS)
continues to be a clinical problem, but pharmacokinetic dose
adjustments have reduced its risk.
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Treosulfan
A structural analog of busulfan, its use is increasing with its
potent immunosuppressive properties and favorable toxicity
profile (16–19). Future trials will determine whether it
supplants busulfan as a primary agent for preparative regimens.

Thiotepa
An alkylating agent, thiotepa has gained increasing popularity due
to its immunosuppressive effects and its ability to lower rejection
rates in reduced intensity preparative regimens (8, 20, 21). Its
toxicity profile is comparable to other alkylating agents although
it does have unique properties that lead to significant cutaneous
toxicity which is typically managed with supportive care.

Melphalan
Another popular alkylating agent, its use has increased over the
years as its toxicity is limited outside of the hematopoietic system
particularly at doses used in modern reduced intensity
regimens (22).

Etoposide
A phase specific, topoisomerase II inhibitor, etoposide has
continued to be a common component of modern day
preparative regimens due to its predictable toxicity profile and
its ability to be combined with alkylating agents without adding
excessive side effects (8). Most short term toxicities outside of
myelosuppression has been restricted to gastrointestinal and
dermatologic which can be typically managed, and severe liver
toxicity is observed only with high doses (23). Etoposide’s
association with an increased risk of secondary leukemia limits
its use and makes it a somewhat less attractive agent for
transplantation in non-malignant conditions.

Fludarabine
A purine analog, fludarabine’s popularity in its incorporation
into more modern day preparative regimens is due to its
relatively potent immunosuppressive properties without
significant organ toxicity (10, 11, 24). Early use of this agent
was associated with neurologic toxicity which has been overcome
with dosing adjustments. Its successful incorporation into several
reduced intensity preparative regimens for non-malignant
diseases would indicate that it will a remain central element in
HSCT for the foreseeable future.

Antibody Agents
Antibodies directed at the lymphoid compartment have an inherent
attractiveness due to their lack of toxicities on other organ systems (3).
Such agents can help overcome rejection. In addition, their typical
long half-life allows for its persistence in the recipient where it can
potentially impact GVHD, depleting T cells from the infused donor
product. Appropriate premedication can overcome most infusion
reactions. The greatest challenge is to tailor the dosing and schedule of
administration to minimize rejection yet avoid sustained suppression
of the T cell compartment that would lead to excessive opportunistic
infections. Although many agents have been utilized over the years,
only a few have maintained a stable presence in this field.
Frontiers in Immunology | www.frontiersin.org 370
Anti-Thymocyte Globulin (ATG)
Two sources of anti-thymocyte globulin encompass most of
its use: 1) ATGAM (horse polysera) 2. Thymoglobulin
(rabbit polysera). ATGAM has been utilized for many more
years than the rabbit formulation (25), but the latter is a
more potent agent (26, 27). Studies with ATGAM have
demonstrated that its use reduces the duration of other
immunosuppressive agents (28). Both have been shown to
improve engraftment rates when added to conventional
preparative regimens and given their retained presence in the
host, their use has reduced rates of both acute and chronic
GVHD to varying degrees (29–32).

Anti-T Lymphocytes Globulin (ATLG)
Anti-T lymphocytes globulin, derived from rabbit polysera from
immunization with a Jurkat T cell leukemia line, is also gaining
in popularity (27, 33, 34). Most trials comparing the efficacy
between ATG and ATLG have been performed in patients with
malignant disease where more effective lymphodepletion and
subsequent reductions in GVHD have been offset by increased
rates of relapse of the primary cancer (35). More robust trials in
non-malignant diseases are needed.

Alemtuzumab
A humanized monoclonal antibody against CD52, alemtuzumab
has been shown to target T and B cells, NK cells, and antigen-
presenting cells. It has been incorporated into several reduced
intensity preparative regimens and has been used successfully for
immunodeficiencies, hemophagocytic lymphohistiocytosis,
lysosomal storages disease, thalassemia and sickle cell disease.
Like other anti-lymphocyte products, it is associated with an
increased risk for infections (36). However, since it is a
monoclonal product, the clinical responses may be less variable
from patient to patient in comparison to the polyclonal products
listed above.

Co-Stimulation Blockade
Recent investigations have begun to examine T cell co-stimulation
blockade as an additional means of immunosuppression to both
reduce the risk of rejection and GVHD. Abatacept, a CTLA4-Ig
agents can block the CD28-CD80/86 interactions needed for T cell
activation has been incorporated into newer preparative regimens
(37). Preliminary studies have demonstrated low rates of GVHD
with an acceptable toxicity profile. Further trials are needed to
further define its role.

Agents Less Commonly Used in
Preparative Regimens for Non-Malignant
Disease
Other chemotherapy agents which were initially advanced into
preparative regimens have not sustained their presence in
modern day treatments for non-malignant diseases due to their
inherent toxicities and the lack of a need for their anti-neoplastic
activity. Platinum agents, other alkylating agents, anthracyclines,
are examples of agents that have not sustained their presence in
modern day regimens (8).
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Strategies in Preparative Regimen
Selection for Non-Malignant Diseases
Lacking the necessity of eradicating malignant cells, the
transplant physician contemplating HSCT for a patient with a
non-malignant disease must take several considerations into
account which may or may not be specific to the patient’s
disease state. These include: 1) What are the specific
vulnerabilities of a particular disease population that lead to
transplant related complications from the preparative regimen
selection? 2) How has the patient’s primary disease and the
corresponding treatment to treat that disease impacted the
patient’s vital organs? 3) What are the barriers to achieve
engraftment which would guide minimizing the intensity of
the preparative regimen? 4.) What are other immunological
features beyond rejection that influence transplant outcome?
Thoughtful consideration for each of these variables will
optimize the course of the patient.

Specific Vulnerabilities of a Particular Disease
Population
The different diseases which are considered for HSCT have
different clinical phenotypes which are linked to problems,
some which are severe. Although a successful HSCT procedure
may ultimately alleviate the condition, specific elements of a
particular preparative regimen may exacerbate a patient’s clinical
condition to serious levels. An appreciation of the specific
vulnerabilities for a particular disease will provide insight for
thoughtful decision making to select a preparative regimen
(Table 1). Given the diversity of clinical difficulties that each
disease possesses and given the expected patient to patient
variability in clinical courses, having a transplant team with
sufficient experience for a particular disease will ensure optimal
management of the unique complications that a patient
may experience.

How Has the Patient’s Primary Disease and the
Corresponding Treatment to Treat That Disease Impacted
the Patient’s Vital Organs?
The natural history of a particular disease may lead to organ
compromise that may make the patient less tolerant to
preparative regimens with specific toxicities. For instance,
patients with leukodystrophies with substantial demyelination
of the CNS may not tolerate TBI or high doses of neurotoxic
chemotherapy such as busulfan (66, 67). A patient with sickle cell
disease who has acquired substantial renal injury may handle
agents cleared by the kidney poorly leading to heightened
toxicity (81, 82). Alternatively, a patient with an immune
compromised state such as chronic granulomatous disease may
have incomplete clearance of infections which may worsen and
progress once the full immunosuppressive effects of the
preparative regimen have taken hold (50, 51). Thus, not only
must the clinician be sufficiently familiar with the inherent
vulnerabilities of the patient’s disease state, but an evaluation
that sufficiently characterizes an individual’s susceptibilities to
the procedure is a critical facet of the process. Preparative
regimen selection and agent dosing may need to be
individualized for a patient to minimize the toxicities while
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still striving toward a successful procedure. A sensitivity to
these issues will minimize the transplant related morbidity and
mortality for the patient, who could otherwise survive for a
substantial number of years in the absence of the transplant procedure.

What Are the Barriers to Achieve Engraftment Which
Would Guide Minimizing the Intensity of the
Preparative Regimen?
The barriers to engraftment are primarily immunologic, with its
magnitude dictated by the patient’s underlying disease and past
treatment history (54, 57, 71). Certainly immunodeficiencies are
presumed to be less capable of rejecting infused grafts, but there
is wide variability in the immune competence between primary
diagnoses and even for patients with the same disease. This may
not necessarily be reflective in obvious differences in phenotype,
but it will manifest itself in rejection (43–45). There is a tendency
to provide as minimal intensity as possible for patients with
immunodeficiencies to try and reduce toxicities, particularly if
the patient presents with a preexisting infection. However,
rejections from an inadequate preparative regimen will
invariably lead to a need to repeated procedures of increasing
preparative regimen intensity to avoid another rejection. Such
escalation will invariably result in the accumulation of toxicities
potentially leading to an unsatisfactory result.

Other disease states that are amenable to HSCTmay in fact have
intact immune systems. In contrast to patients with malignancies in
which prior chemotherapy exposure may reduce the likelihood for
rejection, non-malignant diseases, such as lysosomal storage
diseases, leukodytrophies, and hemoglobinopathies may require
preparative regimens with substantial immunosuppressive
properties, perhaps even requiring fully myeloablative regimens
(20, 66, 71, 72, 82). Such transplant procedures will lead to more
severe long term toxicities.

Conditions of bone marrow failure further illustrate the
complexities of choosing the right preparative regimen. Aplastic
anemia, typically a disease of T cell mediated destruction of the
hematopoietic system, is a condition where prior blood product
exposure may sensitize the donor to an even greater risk of rejection
(55). Alternatively, other conditions such as Fanconi’s Anemia or
Dyskeratosis Congenita, possess difficulties in DNA repair with
intolerance to the even most modest doses of radiation or alkylating
agents (57–60, 64). Thus, even conditions of poor marrow function
present with a wide array of clinical challenges.

What Are Other Immunological Features Beyond Rejection
That Influence Transplant Outcome?
Beyond rejection, the immune system plays a central role in the
clinical course of the transplanted patient. The expansion of
alloreactive T cells will ultimately result in varying degrees of
GVHD, and will have a substantial impact on both long term
toxicity and treatment related mortality. Simultaneously, the
newly reconstituting immune system is striving to achieve a
protective state against infections, building new B and T cell
repertoires while priming to new antigens (38, 86–90). Further
complicating this process is the impact specific preparative
regimen agents may have on the newly emerging lymphocyte
population. Antibodies with specificity to different lymphocyte
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TABLE 1 | Disease-specific vulnerabilities and the influence of preparative regimens on HSCT course.

Disease Specific vulnerabilities Impact of preparative
regimen toxicities

Agents to be used
with caution

Agents with less associated
toxicity

SCID (22, 38–42) Pre-existing infection Disruption of mucosal
barriers
Prolonged
myelosuppression/
immunosuppression
Pulmonary
toxicity/Pneumonitis

TBI,
High-dose busulfan,

Fludarabine
Dose adjusted busulfan
Cyclophosphamide
Melphalan
Lymphocyte depleting antibodies
(ATG, ALG, Alemtuzimab)

Other immunodeficiencies (22, 43–49) Pre-existing infection
Autoimmune disease
Higher rates of rejection

Disruption of mucosal
barriers
Prolonged
Myelosuppression
/immunosuppression
Autoimmune cytopenias
Pulmonary
toxicity/Pneumonitis

TBI,
High-dose busulfan,

Fludarabine
Dose adjusted busulfan
Treosulfan
Cyclophosphamide
Melphalan
Lymphocyte depleting antibodies
(ATG, ALG, Alemtuzimab)

Chronic granulomatous disease (21, 50–52) Chronic aspergillus
pneumonitis
Granulomatous lung
disease
Inflammatory bowel
disease
Anti-Kell
alloimmunization

Pulmonary
toxicity/Pneumonitis
Fungal sepsis.
Bowel injury

TBI
High-dose busulfan

Fludarabine
Dose adjusted busulfan
Treosulfan
Cyclophosphamide
Melphalan
Lymphocyte depleting antibodies
(ATG

Aplastic Anemia (53–56) Blood product
sensitization
Iron overload
Chronic
neutropenia/infection

Mucositis
SOS
Hemorrhagic cystitis

TBI Cyclophosphamide
Lymphocyte depleting antibodies
(ATG, ALG, Alemtuzimab)

Fanconi’s Anemia (57–63) Poor DNA repair
Endocrine deficiencies
MDS/AML

Mucositis
SOS
Pulmonary
toxicity/Pneumonitis
Renal insufficiency
Hemorrhagic cystitis

Radiation,
Alkylating agents

Dose adjusted busulfan
Cyclophosphamide
Fludarabine
ATG

Inherited Bone Marrow Failure Syndromes, other
than Fanconi’s anemia (19, 64, 65)

DNA repair defects
(DKC)
Endocrinopathies
Chronic
neutropenia/infection

Severe mucosal injury
Pulmonary toxicity
SOS
Infection
Hemorrhage

TBI, high dose
Alkylating agents

Fludarabine
Cyclophosphamide
Melphalan
Lymphocyte depleting antibodies
(ATG, ALG, Alemtuzimab)

Leukodystrophies (66–70) Leukoencephalopathy,
Adrenal insufficiency

Seizures, decline in
neurologic and cognitive
function,
Adrenal insufficiency
(ALD)
Swallowing difficulties,
Impaired ambulation

Radiation
High dose busulfan

Dose adjusted busulfan
Cyclophosphamide
Fludarabine
Lymphocyte depleting antibodies
(ATG, ALG, Alemtuzimab)

Hurler’s Disease (66, 71–73) Upper airway patency,
Heart failure

Mucositis,
Airway obstruction

Radiation Dose adjusted busulfan
Cyclophosphamide
Fludarabine
Lymphocyte depleting antibodies
(ATG, ALG, Alemtuzimab)

Thalassemia (74–80) Iron overload Mucositis
SOS
Pulmonary
toxicity/Pneumonitis
Hemorrhage

Radiation
High-dose busulfan

Dose adjusted busulfan
Cyclophosphamide
Fludarabine
Treosulfan
Lymphocyte depleting antibodies
(ATG

Sickle cell anemia (81–85) History of
stroke/vasculopathy
Recurrent Chest
Syndrome/Pulmonary
compromise

Mucositis
Seizures
PRES
Renal injury

Radiation
High-dose busulfan

Dose adjusted busulfan
Cyclophosphamide
Fludarabine
Lymphocyte depleting antibodies
(ATG, ALG, Alemtuzimab)

(Continued)
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populations (ATG, ATLG, alemtuzumab etc.) will linger in the
body many days after their infusion and impact not only the
infused lymphocyte populations of the graft but also the newly
emerging populations. The amount of antibody present as the
engrafting lymphocytes develop varies with the agent, dose
administered, and between patients. Thus, the transplant
physician must use information from past clinical trials in
selecting the appropriate regimen for an individual patient in
contrast to making empiric decisions. A reduced effect on the
emerging immune systemmay lead to extensive GVHD, while an
excessive one may lead to life threatening infections (91). The
inability to “fine tune” this effect is a limiting feature of the use of
antibody agents.

Thoughtful Use of Preparative Regimens in HSCT in Non-
Malignant Diseases
It is apparent from this review that many challenges confront the
clinician when choosing a preparative regimen for a transplant
candidate. Over the past several decades, investigators have
reported their successes and challenges exploring different
strategies (Table 2). It is apparent that virtually every element
Frontiers in Immunology | www.frontiersin.org 673
of the transplant course from rejection risk to overall survival
vary tremendously from report to report. Furthermore, variables
such as donor source, age of the patient, and disease status
prior to the transplant procedure can influence the transplant
outcome further obscuring the impact of the preparative
regimen. This variability is in part due to differences in
the condition of the patient population transplanted, the
agents used to formulate the preparative regimen, the graft
selection, (matched sibling, matched or mismatched unrelated
donor, cord blood, peripheral blood verses bone marrow), and
graft manipulation (T cell depletion) which will result in varying
outcomes. Furthermore, many reports merge outcomes of
several different preparative regimens or combine multiple
diseases together, sometimes making it impossible to link
specific outcomes from a preparative regimen to a specific
disease. Thus, comparisons between reports can be difficult.
Programs and groups that commit to a specific preparative
regimen “backbone,” and then refine elements from
this backbone in well-defined cohorts will provide the most
useful information on how to select a preparative regimen for
a patient.
TABLE 1 | Continued

Disease Specific vulnerabilities Impact of preparative
regimen toxicities

Agents to be used
with caution

Agents with less associated
toxicity

Renal insufficiency
Red cell
alloimmunization
October
ATG, anti thymocyte globulin; ALG, anti-lymphocyte globulin; PRES, posterior reversible leukoencephalopathy syndrome; SOS, inusoidal obstruction syndrome; TBI, total body irradiation.
TABLE 2 | Variation of HSCT outcomes.

Disease Successful Preparative
Regimens (#patients)

Graft Failure/
Rejection Rate

aGVHD cGVHD TRM EFS OS

SCID (22, 38–42) Range of Reported
Outcomes0,51,55-58

None (21) (92)
Bu/Cy (9) (93)
Flu/Mel (5) (94)
Bu/Cy/ATG (6) (95)
Bu/Flu/ATG
Treo/Flu
Treo/Cy

0–82%
42%*
11%
0%
0%

0–65%
38%
22%
60%
50%

0–39%
0%
22%
33.3%

-

0–24%
0%
33%
20%
33%

60–95%
95%
67%
80%
67%

67–84%
95%
67%
80%
67%

Other immunodeficiencies Range of Reported Outcomes
22,47,48,67-70

Bu/Cy (7) (93)
Alem/Treo/Flu (13) (48)
Treo/Flu/Thio/RTX/ATG (8) (48)
Alem/Flu/Mel (12) (46)
Flu/Mel/ALG (5) (22)
Bu/Cy/PTN
Bu/Cy/ATG
Bu/Flu/ATG
Treo/Flu/

0–66.7%
0%
0%

12.5%
66.7%
20%

17.4–
87.5%
57%
62%
87.5%

-
50%

0–20%
14.2%
0%
0%
-

20%

0–44%
14.2%
0%

12.5%
25%
20%

33–
100%
86%
100%
87.5%
33%
80%

62.5–
94%
86%
100%
87.5%
62.5%
80%

Chronic granulomatous disease (21, 50–52) Range of Reported
Outcomes9,34,35,63

0–20%
0%

4–60%
33%

0–20%
4.8%

0–40%
4.8%

80–91%
97.2%

60–100
97.2%

(Continued)
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TABLE 2 | Continued

Disease Successful Preparative
Regimens (#patients)

Graft Failure/
Rejection Rate

aGVHD cGVHD TRM EFS OS

Bu/Flu/ATG (96)
Bu/Flu/Alem (96)
Bu/Alem(5) (52)
Bu/Alem/LD TBI (33) (52)
Treo/Flu (5) (21)
Treo/Flu/Alem (22) (21)
Treo/Flu/Thio/ATG(5) (21)
Alem/Flu/Mel (4) (97)
Bu/Cy
Bu/Cy/ATG
Bu/Flu/Cy/ATG

9%
0%
12%
0%
13%
20%
25%

39%-
-
-

60%
40%
40%
50%

9%
-
-

20%
14%
0%
25%

6%
0%
3%
40%
4.5%
0%
0%

91%
100%
76%
60%
90%
80%
75%

91%
100%
85%
60%%
95%
100%
75%

Aplastic Anemia (53–56) Range of Reported Outcomes (7,
40, 41, 51)
Cy/ATG (33) (98)
Flu/Cy/ATG (28) (55)
Flu/Cy/ATG# (29) (55)
Alem/Flu/Mel (17) (99)
Bu/Cy
Bu/Cy/ATG
Cy
Cy/TBI

0–6%
6%
3.6%
3.4%
0%

8–37.5%
-

35.7%
37.5%
29%

6–
37.5%
35.7%
37.5%
35%

5.7–
32.1%
12%
32.1%
3.5%
12%

64.3–
93.1%
81%
64.3%
93.1%
88%

67.9–
96.6
89%
67.9%
96.6%
88%

Fanconi’s Anemia Range of Reported
Outcomes46,52,54,55,74,76

Cy (109) (62)
Cy/TAI/ATG (35) (58)
Bu/Flu/Cy/ATG (45) (100)
Flu/Cy/ATG (44) (60)

0–11%
4%
5.7%
2.2%
0%

6.7–23%
11%
23%
6.7%
27%

4–36%
5%
12%
6.7%
4%

5.7–
44%
12%
5.7%
17.8%
29.5%

70.5–
94%
88%
89%
77.8%
70.5%

53.6–
94%
88%
89%
80%
70.5%

Inherited Bone Marrow Failure Syndromes, other than
Fanconi’s anemia

Range of Reported Outcomes
19,53,77

Bu/Cy/ATG (101)
Treo/Flu/ATG (14) (19)
Alem/Flu/Mel (6) (102)
Alem/Flu/Mel (11) (103)
Bu/Flu/Mel
Mel/Flu/Cy
Flu/Cy
TBI/Mel/Cy

0–17%
10%
0
0%
9%

9–70%
70%
43%
33%
9%

10–
31%
10%
14%
16%
27%

7–33%
20%
7%
33%
18%

62–93%
70%
93%
67%
82%

63.3–
93%
80%
93%
67%
82%

Leukodystrophies Range of Reported Outcomes
38,39,78-80

Alem/Flu/Mel (7) (104)
Bu/Cy/ATG (12) (105)
Bu/Cy/ATG (27) (106)
Bu/Flu/Cy/ATG (4) (107)
Bu/Cy
Bu/Flu/ATG

0–12%
14.2%
9%

11.1%
0%

31–44%
71.4%
40%
40.7%
75%

10–
25.9%
0%
10%
25.9%

-

0–44%
14.2%
25%
25.9%
0%

48–
100%
85.7%
66.7%
66.7%
100%

52–
100%
85.7%
66.7%%
74.1%
100%

Hurler’s Disease (71–73) Range of Reported Outcomes
6,42,73

Bu/Cy (8) (108)
Bu/Cy/ATG (7) (109)
Bu/Cy/ATG (20) (21)
Bu/Flu/Mel/ATG (8) (110)
Alem/Flu/Mel (7) (104)

0–37.4%
12.5%
0%
15%
0%

14.2%

12.2–
16%
12.5%
28.6%
25%
25%
71.4%

0–
14.8%
0%
0%
10%
0%
-

0–
45.8%-
12.5%
0%
15%
0%

14.2%

41.2–
100%
75%
100%
85%
100%
85.7%

60.8–
100%
87.5%
100%
85%
100%
85.7%

Thalassemia (74–80) Range of Reported Outcomes 4-80

Bu/Cy/ATG(12) (76)
Bu/Flu/Cy/ATG (48) (75)
Thio/Treo/Flu/ATG (60) (77)
Thio/Treo/Flu (28) (76)
Bu/Flu/Thio (8)
Bu/Flu/Thio/Abet (24) (111)
Alem/Flu/Mel (9) (112)
Alem/Flu//Thio/Mel (33) (79)

0–16.7%
16.7%
0%
9%
7.1%
0%
0%
0%
3%

14–75%
16.7%
8.3%
14%
14.3%
75%
16.7%

-
33%

2–40%
16.7%
8.3
2%
10%
25%
25%
-

21%

0–
37.5%
0%
0%
7%

21.4%
37.5%
0%
0%
18%

62.5–
100%
83%
100%
84%
71.4%
62.5%
100%
100%
64%

62.5–
100%
100%
100%
93%
78.5%
62.5%
100
100%
82%

(Continued)
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Considerations of the vulnerabilities of the primary disease,
the clinical status of the individualized patient, the essential needs
of overcoming rejection yet temporizing GVHD and life
threatening infections must all be weighed in making the
appropriate decision for the patient. Unfortunately, despite over
three decades of experience, there is no “formula” that can be
utilized to assemble a combination of agents that will give a
predictable outcome fulfilling the needs of both the clinician and
the patient. Large scale studies with detailed reports of outcomes
and toxicities provide our only resource to guide the clinician to
Frontiers in Immunology | www.frontiersin.org 875
make thoughtful decisions for their patient. Further research with
well-designed clinical trials with full characterization of outcomes
are needed to enhance our understanding of this topic.
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Mesenchymal stromal cells (MSCs) are rare precursors in all organs of the body. MSCs

have profound anti-inflammatory effects and reduce alloreactivity in vitro and in vivo. In

pediatric allogeneic hematopoietic cell transplantation (HCT), MSCs have mainly been

used to treat acute graft-versus-host disease (GVHD). MSCs are commercially available

for this indication in Canada, Japan, and New Zeeland. More rare indications for MSCs

in pediatric patients include graft failure and chronic GVHD. MSCs from bone marrow,

adipose tissue, umbilical cord, Wharton’s jelly, placenta tissue, and decidua have been

used, but the optimal clinical stromal cell source has not been compared in clinical trials.

More experimental clinical indications using MSCs, such as sepsis, acute respiratory

distress syndrome, hemorrhages, pneumo-mediastinum, and neuroinflammation have

primarily been explored in animal models or adult HCT patients. MSCs have almost no

if any side-effects. In this pilot study we report the outcome of six children treated with

decidua stromal cells (DSCs) for steroid refractory acute GVHD. At 6 months, complete

response was seen in four patients and partial response in two patients. One child with

high-risk ALL died from relapse and a boy with sickle cell disease died from a cerebral

hemorrhage. Five-year survival was 67% and all survivors showed a Lansky score of

100%. To conclude, MSCs from various organs are well-tolerated and have shown an

encouraging outcome for acute GVHD in pediatric patients.

Keywords: graft-versus-host disease (GVHD), mesenchymal stromal cell (MSC), pediatric haematopoietic stem

cell transplantation, cell theraphy, decidua stromal cells (DSCs)

INTRODUCTION

Hematopoietic cell transplantation (HCT) is an established treatment for children with both
malignant and non-malignant hematopoietic diseases and inborn errors of metabolism (1–4). The
main obstacles to success are relapse of the disease, infections, graft failure, toxicity of various
organs, hemorrhagic cystitis, and graft-versus-host disease (GVHD). To prevent GVHD, patients
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are treated with immunosuppressive drugs, most commonly,
calcineurin inhibitor combined with Methotrexate (5). Despite
this, a majority of the patients developed acute GVHD, with
a considerable mortality, even if this was significantly lower in
children compared to adults (6). To confirm the gastrointestinal
GVHD histopathological biopsies is recommended, since e.g.,
viruses could cause gastrointestinal symptoms (7–9). Cortisone
is first-line therapy for acute GVHD (10) and almost all
immunosuppressive therapies are used as a secondary treatment
with varying degrees of success (11). Friedenstein et al. were
the first to describe MSCs (12). We introduced mesenchymal
stromal cells (MSCs) as a new therapy for acute GVHD (13, 14).
MSCs are rare in all tissues in the body and can differentiate into
several cells of mesenchymal cell lineages, such as bone, cartilage,
tendon, cardiomyocytes, muscles, and fat (15, 16). There is no
specific CD marker for MSCs. However, they stain positive for
CD29, CD73, CD90, CD105, and CD166. They are negative for
hematopoietic markers, CD34, CD45, and CD14. They are not
true stem cells because they cannot regenerate and maintain a
whole tissue compartment. MSCs express HLA class I molecules
and contain intracellular HLA class II that is expressed on the
cell surface after interferon-γ stimulation (17). After injection,
MSCs do not appear to be long lived and have been demonstrated
in the circulation only shortly after infusion into patients who
underwent autologous HCT for breast cancer (18).

IMMUNOSUPPRESSION

MSCs have potent immunomodulatory effects and inhibit
phytohemagglutinin induced T cell proliferation and
alloreactivity in mixed lymphocyte cultures (MLC) (17, 19, 20).
MSCs’ inhibition of alloreactivity in vitro is independent of
the major histocompatibility system (21). Furthermore, after
differentiation into osteocytes, chondrocytes and adipocytes,
immunosuppression was still induced (17). MSCs also
prolonged skin allograft survival in baboons (19). Several
factors and mechanisms are involved in MSC-mediated
immune modulation.

Bone marrow MSCs (BM-MSCs) are susceptible to
complement activation after contact with human blood
(22). This results in cell dysfunction or cell death (23). When in
contact with blood, BM-MSCs also elicit activation of clotting
factors (24).

MSC immunosuppression has been studied extensively
(25–28). Stromal cells from various organs such as BM,
Wharton’s jelly, placenta tissues and cord blood have
varying immunosuppressive effects in the MLC (17, 19–
21, 29, 30). The MLC is also inhibited by skin fibroblasts
(31). Immunosuppressive factors produced by MSCs include
prostaglandin E2 (32), HLA-G5 (33), and galectins (34). MSCs
also produce indoleamine-2,3, dioxygenase (IDO), which
inhibits T cells by converting of tryptophan to kynurenine [(35),
Figure 1]. IDO is involved in the induction of regulatory T cells
and the inhibition of Th17 differentiation (36). IDO produced
by MSCs also promotes differentiation of macrophages toward
M2 phenotypes (37). MSCs also induce contact-dependent

immunosuppression. Among these are activation of the PD-1
pathway (38), by activation of VCAM-1 and ICAM-1 (39),
purification of CD39 and increased adenosine production (40),
and Fas-mediated T-cell apoptosis (41). There are differences
in various species and, in mice, several models failed to
reduce alloreactivity and GVHD (42). To inhibit GVHD in
mice, MSCs need to be licensed by IFN-γ, nitric oxide, or
transduced with IL10 to prevent GVHD. In a colitis model
in mice, it was shown that prevention of colitis by MSCs
requires CD11b+ macrophages (43). In a murine model of
GVHD, it was demonstrated that MSCs are actively induced to
undergo perforin-dependent apoptosis by recipient cytotoxic
T-cells, and that this process is essential to initiate MSC-
induced immunosuppression (44). After IV infusion, recipient
phagocytes engulf apoptotic MSCs and produce IDO, which is
necessary for immune suppression. MSCs produce exosomes
and microparticles, some of which are small complexed entities
that contain both immunomodulatory proteins, micro RNA and
mediators for homing abilities (45). Exosomes were also used to
reverse acute GVHD (46).

MESENCHYMAL STROMAL CELLS FOR
TREATMENT OF ACUTE GVHD

We introduced MSCs, as a therapy for acute GVHD, by treating
a 9-year-old boy with life-threatening grade IV acute GVHD,
as well as a phase-I study in GVHD patients whom were
resistant to several immunosuppressive therapies (13, 14). We
also performed a multi-center phase II study, including 55
patients with severe steroid resistant GVHD (47). Complete
responders had lower transplantation-related mortality 1 year
after infusion than patients with partial or no response (11 [37%]
of 30 vs. 18 [72%] of 25; p = 0.002). Patients with complete
response toMSCs had a 2-year survival of 53% as opposed to 16%
in partial and non-responders. Children had a trend for better
response (64%) as opposed to adults (47%). Subsequently, several
single-center studies were performed with varying results using
various sources of stromal cells, for instance, adipose tissue (48).
Lucchini et al. gave platelet lysate expanded MSCs to children
with severe steroid refractory acute or chronic GVHD with
varying responses (49). Commercial MSCs (prochymal) were
given to 12 children with therapy-resistant grade III and IV acute
GVHD (50). A complete response was seen in seven children
(58%), a partial response in two (17%), andmixed responses were
recorded in three (25%) of the children. The 100-day survival
was 58%. Osiris performed a double-blind placebo controlled
phase 2/3 study using prochymal for severe acute GVHD (51).
The children were given 8 × 106 MSCs/kg twice a week or
placebo. Among 260 patients, including children and adults, who
were randomized in this trial, a complete response at 28 days
was 74% in the MSCs group and 30% in the placebo group
(52). However, the 180-day durable response of liver GVHD
was 29% in the MSC group compared to 5% in the placebo
group (p = 0.047%). Among patients with acute GVHD grades
III–IV, Remestemcell-L demonstrated significantly higher overall
response, 65%, as opposed to 23% in the placebo arm (p =
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FIGURE 1 | The multiple effects of MSCs on immune cells. (A) MSCs increase the proportion of CD4+CD25+ cells and IL-10 production. (B) MSCs decrease

markers for activated T cells, CD25, CD69, and CD38. MSCs delayed maturation of APC and decreased expression of HLA-DR. (C) Dendritic cell type 1 when

stimulated had decreased TNF-α and IL-12, when co-cultured with MSCs. (D) MSCs increased IL-10 secretion by LPS-stimulated dendritic cells type 2, CD4+ cell

had decreased IL5-secretion. (E) T-helper cell type 1 IFN-γ production was significantly decreased by MSCs. (F) T-helper cell type 2 increased IL-4 secretion in the

presence of MSCs. (G) MSCs inhibit mixed lymphocyte cultures and subsequent development of cytotoxic T cells by a soluble factor. (H) Several soluble factors are

produced by MSCs, amongst them are IL-6, IL-8, stem-cell derived factor 1 (SDF1), vascular endothelial growth factor (VEGF). Soluble factors that have been

suggested to inhibit T-cell activation are prostaglandin E2, which induces regulatory T-cells, indoleamine 2,3-dioxygenase (IDO), which is induced by IFN-γ which

catalyzes the conversion from tryptophan to kynurenine and inhibits T-cell responses. Other soluble factors that have been suggested to inhibit T-cell responses are

TGFβ1, hepatocyte growth factor and IL-2. (I) MSC induce macrophage differentiation from M1 to M2. (References are mentioned in the text).

0.05). Children had a better outcome of treatment with MSCs
for acute GVHD as compared to adults. These pediatric patients
were also reported separately (53). Ball and coworkers reported
on 37 children treated with MSCs for steroid-refractory grade
III–IV acute GVHD (54). A response was observed in 65%
of the children. The 3-year survival was 37%. Kurtzberg et al.
reported on 241 children with steroid refractory acute GVHD
who were treated for 4 weeks with infusion of 2 × 106 MSCs/kg
(Remestemcel-L) twice weekly (55). The overall response rate
at day +28 was 65%. Survival at 100 days was 82% among the
responders and 39% among the non-responders (p≤ 0.001). In a
Brazilian multicenter study, involving 16 children and 30 adults
with steroid refractory GVHD, half of the patients responded
and 1-year survival was 20% (56). A study using platelet-lysate-
expandedMSC for steroid refractory acute GVHD included eight
children and 22 adults. The overall response rate at day +28
was 50% in the adults and 88% in the children (p = 0.099). The
survival was 88% in the children as opposed to 25% in the adults
(p= 0.003) (57).

A study used BM-MSCs pooled from multiple third-party
donors (58). The study included 92 adult and pediatric patients
with steroid refractory acute GVHD. The patients received a
median of three doses of pooled MSCs without toxicity. The
overall response was 82% and 6-month survival was 64%. In a

previous separate analysis of children, the overall response at
day 28 was 77% and the 2-year survival was 77% (59). At our
unit, long-term follow up of patients treated with BM-MSCs with
steroid refractory GVHD included nine children and 22 adults
(60). Two-year survival was only 26%. Patients receiving MSCs
from passage 1–2 had significantly better survival than those
receiving MSCs from passage 3–4 (p < 0.01). A meta-analysis
reported that children had a better response to MSCs therapy
for steroid refractory acute GVHD, with an overall response rate
of 82%, as opposed to 70% in adults (p = 0.04) (61). A more
recent meta-analysis included children and adults given MSCs
for prophylaxis (n= 651) and for treatment of acute GVHD (n=
149) and chronic GVHD (n= 76) (62).

MESENCHYMAL STROMAL CELLS FOR
TREATMENT OF CHRONIC
GRAFT-VERSUS-HOST DISEASE

Chronic GVHD is a great burden for many patients after HCT
(63, 64). It seems logical to use MSCs to treat chronic GVHD,
which resembles auto-immune disorders. MSCs were reported to
be successful in many models of autoimmune diseases (65, 66).
There are only a few reports on MSCs for chronic GVHD and
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most are about adults (14, 67, 68). Lucchini et al. used platelets-
lysate expandedMSCs in four children with chronic GVHD (49).
Transient benefits were noted. One child had a complete response
that subsequently re-flared.

DSCs appear to have a stronger immunosuppressive effect
than MSCs from bone marrow (30, 69). Thus, we used DSCs
to treat chronic GVHD in three pediatric patients with severe
grade 3 chronic GVHD (Based on National Institute of Health,
NIH) (70). The three pediatric patients were affected in several
organs such as the skin, mouth, eyes, gastrointestinal tract, liver,
lungs and joints, fascia. Two patients received two doses of DSC
and one patient received one dose. Two patients had a partial
response in the liver, normalization of elevated liver enzymes
and, in one patient, esophageal varices disappeared. However,
the overall grading of chronic GVHD remained very severe (3)
according to NIH grading (71). A meta-analysis of 76 children
and adults with chronic GVHD suggested improved survival
using MSCs (62).

PREVENTION OF GVHD AND GRAFT
FAILURE

In mice, MSCs were shown to prevent the development of
lethal GVHD (72). Lazarus et al. performed co-transplantation
of HLA-identical sibling bone marrow and donor MSCs in 46
patients (73). No patient had graft failure and grades III–IV
acute GVHD were seen in 15% of the patients. We performed
co-transplantation of HCT and MSCs to enhance engraftment
(74). All patients had engraftment and full donor chimerism. A
prospective randomized study of HCT and with co-infusion of
MSCs or placebo reported decreased risk of acute GVHD and
increased likelihood of relapse (75). Engraftment of neutrophils
and platelets was similar in the two groups. Most studies of
co-transplantation of HCT and MSCs are performed in adult
patients or in a combination of pediatric and adult patients
(76, 77). In a pediatric study, parental haplo-identical MSCs
were used to promote engraftment in unrelated donor umbilical
cord blood transplantation (78). In another pediatric study,
MSCs were given to recipients of haplo-identical grafts (79). No
patient had graft failure as opposed to 10% of the retrospective
controls. A meta-analysis, which included 651 children and
adults, showed improved survival in patients treated with MSCs
as prophylaxis (62). MSCs may also be used to treat graft
failure (80, 81).

MSCs FOR METABOLIC DISORDERS

Hurler’s disease is deficiency of the enzyme alfa-L-iduronidase.
HCT may partially prevent disease progression if performed
before the patient is 2 years of age (82, 83). HCT patients
with Hurler’s disease and metachromatic leukodystrophy were
given MSCs to enhance enzyme production after HCT
(84). The rationale for using MSCs was because these cells
express high levels of alpha-L-iduromidase and arylsulphatase-
A. Four out of five patients with metachromatic leukodystrophy
had improved nerve conduction velocity. Five patients with

osteogenesis imperfecta who underwent HCT had donor
osteoblast engraftment, new dense bone, increased total bone
mineral content and improved growth velocity (85). The
frequency of bone fractures decreased. Gene-marked MSCs
were given to six HCT patients with MSC engraftment in
bone and accelerated growth velocity. In a fetus with bilateral
femur fractures due to severe osteogenesis imperfecta, in utero
transplantation of MSCs showed 7% engraftment and the patient
had fewer fractures than expected after birth (86).

MSCs FOR HEMORRHAGES AND
SIDE-EFFECTS

We used MSCs for hemorrhagic cystitis, colon perforation,
and pneumomediastinum after HCT (87). Adult patients
are more vulnerable and had more toxicity after HCT as
opposed to pediatric patients. However, toxicity also occurs
in children with advanced hematological malignancies treated
with multiple rounds of chemotherapy prior to transplantation.
Stromal cells induce clotting and may stop or prevent
bleeding. This effect appears to be stronger for DSCs than
BM-MSCs (88). Yim et al. reported on two patients with
pneumomediastinum/pneumothorax with resolution after MSCs
treatment (89).

MATERIALS AND METHODS

Patients
Six children diagnosed with grade II–IV acute gastrointestinal
GVHD, with or without skin involvement, were treated with
DSCs (Table 1). The patients comprised five boys and one
girl aged from 10 months to l6 years. Informed consent was
obtained from the legal guardians of the patients. Diagnoses
were pre-B-ALL in two children, Langerhans cell histiocytosis
(LCH), sickle cell anemia, osteopetrosis, and severe combined
immunodeficiency (SCID). The conditioning therapy was total
body irradiation and etoposide in the two patients with
leukemia. The four children with other disorders were given
fludarabine together with treosulfan in three patients and with
the addition of thiotepa in one patient with sickle cell anemia.
A boy with osteopetrosis was given a low dose of busulfan,
in addition to fludarabine. Donors were matched unrelated in
three patients, cord blood in two children, and bone marrow
from an HLA-identical sibling donor in one patient. Post-
transplant immunosuppression consisted of tacrolimus together
with sirolimus in four patients (Table 1). Three patients were
given antithymocyte globulin (90).

Acute GVHD was graded according to Seattle criteria
(91). The diagnosis of gastrointestinal GVHD was based
on biopsies from endoscopies (7–9). Skin biopsies were not
performed. Donor recipient chimerism was followed by PCR
and patients with acute GVHD were full-donor chimeras
(9, 92). Cytomegalovirus (CMV) was followed weekly by
PCR and reactivation was treated with ganciclovir (93).
Epstein-Barr virus (EBV) PCR was only regularly followed in
patients with an EBV-mismatched donor (94). Adenovirus was
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was suspected.

Ethics
We received ethical approval from the regional ethic committee
to harvest DSCs from Caesarian section placentas and use them
for treatment of GVHD and toxicity after HCT (2009/418-31-
34 and 2010/2061-32, 2010/452-31/4, and 2014-2132-32). The
procedure for using DSCs was also later approved by the Central
Ethical Review Board in Sweden (Dnr 011-2016). The method
for clinical culture of DSCs was also approved by the Swedish
Product Agency (Dnr 6.1.3-42994/2013).

Decidua Stromal Cell Culture
The method to culture and expand DSCs was previously
published in detail (96). DSCs express CD166, CD105, CD73,
CD44, and CD29. They did not express hematopoietic markers
CD34, CD14, and CD45. DSCs were negative for bacteria,
mycoplasma, and fungi before infusion. The DSCs were cultured
and expanded in a good manufacturing process laboratory.
DSCs were stored in liquid nitrogen, thawed, and resuspended
in CliniMACS PBS/EDTA buffer, supplemented with 10% AB
plasma or 5% albumin (69). The cells were washed three times
and resuspended in NaCl and 10% AB serum or 5% albumin.
The infusion solution was filtered through a 70µM cell strainer
(BD Bioscience, Franklin Lakes, NI) before being transferred to
a heparinized syringe (Leo Pharma, Ballerup, Denmark) at 2 ×

106 cells/ml. The DSC was infused intravenously using a central
venous line. The central venous line was flushed with 2–5mL of
NaCl with 25 IE heparin/ml in children weighing over 15 kg and
12.5 IE heparin/ml in children weighing under 15 kg.

RESULTS

Patient 1 (UPN, unique patient number, 1555). A male baby
boy was presented with disseminated LCH disease including
bone marrow involvement and was pretreated with steroids and
chemotherapy, followed by aHCT. The boy received an unrelated
cord blood transplant. We previously reported that LCH can be
cured by HCT (97, 98). Due to poor engraftment he was treated
with granulocytes colony-stimulating factor (G-CSF) from day
+20 after HCT. He reached absolute neutrophil counts (ANC)
>0.5 × 109/L on day +27. On day +20 after HCT, he started
vomiting and had watery diarrhea 10 times/day. His diarrhea
deteriorated and he developed a skin rash on the back of his
body. He was given high- dose prednisolone (2 mg/kg). Due to
unresponsiveness he was treated with DSCs 3 days later and one
additional dose was administered 3 weeks after the steroids had
been introduced (Table 1). DSC doses were above 2 × 106/kg
and viability was 78 and 95% in the two infusions, respectively
(Table 2). At day 28 after DSC infusion, he had a partial response
(PR). At day 56 and at the 6-month follow-up he showed no
signs of acute GVHD (Table 2). He was diagnosed with a CMV
reactivation on day +61 treated with ganciclovir. He is currently
alive and well more than 8 years after HCT and from last follow
up he showed Lansky score of 100%.
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Patient 2 (UPN 1625). A 16-year-old female with high risk B-
ALL in 2nd complete remission (CR) received bonemarrow from
an unrelated donor. The patient was treated pre-HCT according
to the NOPHO (Nordic Pediatric Hematology Oncology) ALL
protocol 2008 and was in complete remission pre HCT, including
MRD <0.01% (99). She experienced CMV reactivation on day
+19, treated with ganciclovir. ANC reached >0.5 × 109/L on
day +23. Eighteen days post-transplant, she developed steroid
refractory grade II acute GVHD of the gastro-intestinal tract and
a skin rash. She was treated with a high dose of steroids from
day +20, but did not respond. Due to steroid resistance, she was
treated with one dose of DSCs 30 days after HCT (Table 1). The
DSC dose was 1.7 × 106/kg with 91% viability (Table 2). Her
symptoms of acute GVHD disappeared and she was considered
to be in a complete response at day 28 and remained so. However,
the patient died from leukemic relapse 2 years after HCT.

Patient 3 (UPN 1687). A 9-year-old boy with an intermediate
risk of B-ALL in CR2 received a bone marrow graft from his
HLA-identical sister. He was previously treated according to the
NOPHO ALL protocol 2008 (99). Both donor and recipient were
CMV seropositive. He had no CMV reactivation. On day+10 he
had hemorrhagic cystitis grade II that resolved. Already on day 9
after HCT he developed acute GVHD of the gastrointestinal tract
and erythema of the skin. He did not respond to high doses of
steroids and was considered steroid refractory. On day +30 he
also developed a varicella-zoster reactivation. One month after
HCT he was given 1.2 × 106 DSC/ × 106/kg with a viability of
97% (Table 2). At day 28 after DSC treatment was initiated, he
had complete resolution of all signs of acute GVHD but received
another three additional weekly doses (Tables 1, 2). However,
at 6 months, it was evident that he had developed signs of
chronic GVHD as sicca and lichenoid changes of the skin, treated
with extracorporeal psoralene and ultraviolet light (PUVA). After
another 2 months he developed signs of a more generalized
GVHD, with symptoms from both the skin, the liver, and the
gastrointestinal tract. The biopsy from the GI-tract revealed
GVHD, grade II (8) and he was given two more doses of DSC
(Tables 1, 2). The symptoms of acute GI-GVHD disappeared but
one and a half year after transplant he was still having symptoms
of moderate chronic GVHD, mainly symptoms of bronchiolitis
obliterans. 6.5 years after HCT he is suffering from NIH grade
2 chronic GVHD and is now treated with a JAK2 inhibitor, but
from his last follow up he scored Lansky 100%.

Patient 4 (UPN 1692). A 14-year-old boy arrived in Sweden,
from an African country with an untreated severe sickle cell
disease. He had a history of multiple sickle cell crises, as severe
pain, osteonecrosis, cerebral infarctions, and bleedings and was
therefore planned for a HCT. Before HCT he was treated with
Hydrea capsules, but the treatment showed very moderate effect.
He was finally transplanted and received bone marrow (0.25 ×

106 CD34+ cells/kg) from an unrelated donor (12/12 match).
He reached ANC >0.5 × 109/kg on day +19. On day +28 he
was treated with acyclovir for a herpes simplex virus infection.
Immunosuppression was tacrolimus combined with sirolimus.
During discontinuation of immunosuppression on day 182 after
HCT he developed diarrhea diagnosed as gastrointestinal GVHD.
Steroids were administered, but the diarrhea continued. One
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week later he was given 0.9 × 106 DSC/ × 106/kg (Table 2). He
had a partial response at 28 days and at follow-up at 6 months.
Seven months after HCT he had CMV reactivation treated with
ganciclovir. One year after the transplant he developed chronic
GVHD, NIH overall score 2 (Table 2). However, the patient died
from severe cerebral hemorrhage 1 year and 9 months after HCT,
where previous cerebral damage pre HCT probably contributed
to cerebral hemorrhage post HCT.

Patient 5 (UPN 1707). A 1-year-old boy with osteopetrosis
rejected the first graft and was re-transplanted 2 months later.
He received a peripheral blood graft from an unrelated donor
(Table 1). HLA-match was 10/12 with one antigen-HLA-C and
–DP-mismatches. CD34+ cell dose was 34 × 106/kg. He had
CMV reactivation on day +11, treated with ganciclovir. On day
17 after HCT he developed diarrhea grade II that did not respond
to steroids. He was subsequently given five doses of DSC in doses
ranging from 1.5 to 1.9 × 106/kg per kg (Table 2). The viability
of the cells ranged from 82 to 100%. At day 28 after initiation
of DSC therapy, he had a complete response. At day 56 he had
some abdominal pain and a loose stool. At the 6-month follow-
up the stool was normal. He did not develop any chronic GVHD
and is currently alive and well 6 years after transplantation, with
a Lanskys score of 100%.

Patient 6The boy, born at term, non-consanguineous parents,
was admitted to the hospital at the age of 9 months, with
symptoms of severe respiratory infections, failure to thrive,
and low lymphocytes. He was investigated for suspected severe
combined immunodeficiency (SCID). Genetic analysis revealed
a JAK-3 gene mutation (two heterozygous variants, leading to
a frame shift and premature stop codon; p.Ser 449LysfsX71).
At 12 months of age the boy was transplanted, with cord
blood as a stem cell source. Pre-HCT the boy was colonized
with rhinovirus, which also was observed after transplantation.
On day 29, PCR-chimerism analysis revealed 60% donor cells.
Subsequently, during immunosuppressive tapering, he developed
a skin rash and, a few days later, also massive diarrhea due to
gastrointestinal GVHD. This was diagnosed on a colon biopsy
showing crypt destruction with several apoptotic bodies and
regenerated features of grade IV gastrointestinal GVHD (8). He
did not respond to steroids or mycophenolate mofetil therapy
(Tables 1, 2). From day 57 after HCT, he was treated with
weekly doses of DSCs. He had a partial response at day 28 and
continued to need albumin transfusions. He received a total of six
doses of DSCs before the resolution of gastrointestinal GVHD.
At day 56 and 6 months after transplant he had a complete
response and was doing well. Apart from rhinovirus, no viral,
or fungal infections were diagnosed post-HCT. He is currently
alive and well, 5 years after transplantation. He doesn’t need any
medications goes to school and shows Lanskys score of 100%.

Overall Follow Up
The outcome among these six children treated for severe
gastrointestinal and sometimes also acute skin GVHD at the
28-day follow-up was a complete response in three patients
and a partial response in three patients (Table 2). At 6 months,
a complete response was seen in four patients and a partial
response in two patients. Two patients developed moderate

chronic GVHD. One patient with high risk pre-B-ALL died of
leukemic relapse 2 years after transplantation. A boy with sickle
cell anemia died of cerebral hemorrhage 1 year and 1 month
after HCT, although he had a history of multiple severe sickle
cell crises before HCT. Three patients are alive and well and
one patient is suffering from moderate chronic GVHD with
obstructive bronchiolitis but responded to Jak-2 inhibition. Now
he scores Lansky 100%. Overall, there is a 5-year survival of 67%.

DISCUSSION

Although this is only a small series of pediatric patients treated
for acute GVHD, it still holds some promise. None of the children
died from GVHD and 6-year survival was four out of six (67%).
This is similar to what was achieved with DCSs with 21 patients,
most of them older adults with a 4-year survival of 57% (100).
The two deaths were due to relapse in the patient with high-
risk ALL and cerebral hemorrhage in the patient with sickle cell
disease. These are unfortunate yet expected complications after
HCT. Patients who survived acute GVHD have an reduced risk of
leukemic relapse (101). The graft-versus-leukemia (GVL) effect
did not prevent relapse in this girl with high risk B-ALL. She did
not develop chronic GVHD. The study from the International
Registry suggested that acute GVHD had a profound GVL effect
in ALL patients (102). A European study in ALL patients found
that chronic GVHD was more important to decrease relapse
probability (103). There were only two patients who developed
moderate chronic GVHD. Children have a relatively low risk
of chronic GVHD (104, 105). However, there is an increased
risk of chronic GVHD in patients who survive acute GVHD
(101). Children have a better outcome than adults after HCT
and this is striking in patients with severe acute GVHD (6).
In a prospective randomized study performed by Osiris, it was
reported that children treated for severe acute GVHD, as opposed
to adults, had a better outcome (51). The first multicenter study
using MSCs for acute GVHD also showed a better outcome
in children than adults (47). However, this was not supported
by a meta-analysis, which showed that survival following
MSC therapy for acute GVHD did not differ in children and
adults (106).

An advantage of usingMSCs as opposed to other drugs to treat
acute GVHD is safety, with few, if any side-effects (107, 108).
There were no side-effects caused by the stromal cells in any of
the six children treated with DSCs.

The ideal source of stromal cell for treatment of acute
GVHD, MSC from bone marrow, adipose tissue, Wharton’s
jelly, umbilical cord, placenta tissue or DSCs, may be discussed.
In a humanized mouse model, it was shown that MSCs from
BM, umbilical cord, and adipose tissue had different properties
(109). In Table 3 is listed the different properties of MSCs
from bone marrow compared to DSCs. Bone marrow aspiration
is quite a painful procedure. Thus, alternative sources such
as adipose tissue, cord, placenta tissue, or fetal membrane,
stromal cells are more easily accessible. We found that DSCs
had a stronger immunosuppression of alloreactivity in vitro
in mixed lymphocyte cultures compared to MSCs from other
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TABLE 3 | Differences between bone marrow-derived mesenchymal stromal cells

and placenta-derived decidual stromal cells.

Characteristic MSC DSC

Expansion potential ++ ++++

Differentiation to fat and cartilage +++ +/–

Size, volume 4600 fl 2400 fl

Express PDL-1, PDL-2 + ++

Express CD49d, homing to inflammatory tissue (integrin) + ++

Vascular cell adhesion molecule 1 (VCAM-1) expression + –

Express HLA class II after IFNγ stimulation + –

Pro-coagulant tissue factor 6% 39%

CD55 complement regulatory activity 62% 98%

Reduction in clotting time 55% 70%

Prevent alloreactivity in vitro (MLC) ++ +++

Needs direct contact for immunosuppression – +

Overall response in steroid refractory acute GVHD 75% 100%

MLC, mixed lymphocyte culture.

sources. We therefore selected DSCs for further investigation
(30). DSCs also appeared to be more effective for treating acute
GVHD compared to BM-MSCs (69). However, it is unlikely that
different sources of stromal cells will be compared in prospective
randomized studies for the treatment of acute GVHD. Currently,
there are several promising drugs for treating acute GVHD,
such as Ruxolitinib, Vedolizumab and Etanercept (110–112).
However, it seems that an advantage of using MSCs is the
toxicity profile.

The first child (UPN1555) was treated with G-CSF for
poor engraftment. G-CSF was reported to be associated with
severe acute GVHD because it can trigger alloreactive T-
cells (113, 114). G-CSF may have potentiated acute GVHD in
this child.

Several large studies have been using MSCs, as shown from
a single report on children from Kurtzberg et al. who recently
reported on 241 children with grade II–IV steroid refractory
acute GVHD (115). The 28-day overall response rate was 65%
with a 14% complete response. The 100-day survival was 67%.
These results were achieved with the commercially available
MSCs Remestemcel-L. The randomized study by Osiris, which
did not show an overall improvement in the placebo-controlled
trial, showed that pediatric patients had a significantly better
outcome using MSCs compared to the placebo group (53). Bonig
et al. used MSCs pooled from multiple donors to treat acute
GVHD (58). They reported an overall response rate of 82%
following a median of three doses of pooled MSCs. Overall,
6-month survival was 64%.

MSCs have mainly been used for treatment of acute GVHD
in pediatric patients. They have not been used much for
chronic GVHD. This is because stromal cells have a strong
anti-inflammatory effect, which may be more effective for acute
inflammatory processes such as acute GVHD and less effective
in chronic fibrotic processes (116). Another indication for MSCs,
mainly used in adults, is hemorrhagic cystitis (117, 118). MSCs
have also been used for the treatment of acute respiratory
distress syndrome (ARDS). There is a wealth of experimental data
suggesting the potential of MSCs for sepsis and ARDS (119–121).

We treated a young boy who developed ARDS after HCT with
MSCs (122). He died from massive Aspergillus infection. DSCs
were shown to dramatically reverse ARDS in a male patient early
after HCT (123). There is limited clinical experience (124). The
lack of data on pediatric patients for these more novel indications
could be because they are under development. If effective in the
adult studies, MSCs will also be used for hemorrhagic cystitis,
ARDS, and other indications that are more experimental today.

In addition to acute GVHD, MSCs have also been used to
prevent and reverse graft failure, enhance engraftment, or as
prophylaxis to reduce GVHD (74, 79–81). These studies include
pediatric patients and adults.

As discussed above, the immunosuppressive effects of MSCs
are induced by direct contact, as well as via several soluble factors.
Exosomes and microvesicles derived from MSCs were shown
to protect from acute kidney injury (125), myocardial ischemia
(126), and pulmonary hypotension (127) in animal models.
Exosomes for MSCs were also demonstrated to reverse severe
acute GVHD (46). Since exosomes will only transfer soluble effect
by MSCs and not a direct immunosuppressive effect, it is less
likely that exosomes will replace MSCs in the near future.

To conclude, MSCs from various sources are mainly used
in pediatric patients to treat severe acute GVHD and have
shown encouraging response rates and survival efficacy. Thus,
commercially available MSCs are registered as a drug in
Canada, Japan and New Zeeland (128). Furthermore, MSCs
also have the potential to cure other acute inflammatory and
toxic disorders seen in pediatric patients, such as hemorrhages,
ARDS, poor engraftment, and possibly also neuroinflammatory
disorders (129).
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Chronic graft-versus-host disease (GvHD) has become a leading cause of morbidity and
mortality following allogeneic hematopoietic stem cell transplantation (HSCT) and can
burden patients with devastating and lifelong health effects. Our understanding of the
pathogenic mechanisms underlying chronic GvHD remains incomplete and this lack of
understanding is reflected by lack of clear therapeutic approaches to steroid refractory
disease. Observations predominantly from mouse models and human correlative studies
currently support a three phase model for the initiation and development of chronic GvHD:
1) early inflammation and tissue damage triggers the innate immune system. This leads to
inflammatory cytokine/chemokine patterns that recruit effector immune cell populations; 2)
chronic inflammation causes the loss of central and peripheral tolerance mechanisms
leading to emergence of pathogenic B and T cell populations that promote autoimmune
and alloimmune reactions; 3) the dysregulated immunity causes altered macrophage
polarization, aberrant tissue repair leading to scarring and end organ fibrosis. This model
has led to the evaluation of many new therapies aimed at limiting inflammation, targeting
dysregulated signaling pathways and restoring tolerance mechanisms. However, chronic
GvHD is a multisystem disease with complex clinical phenotypes and it remains unclear as
to which cluster of patients will respond best to specific therapeutic strategies. However, it
is possible to gain novel insights from immune-related monogenic diseases. These
diseases either share common clinical manifestations, replicate steps from the three
phase chronic GvHD model or serve as surrogates for perfectly targeted drugs being
investigated in chronic GvHD therapy. In this review, we will summarize the evidence from
these monogenic immune related diseases that provide insight into pathogenic pathways
in chronic GvHD, rationales for current therapies and novel directions for future
drug discovery.
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Rozmus Insights Into Chronic GvHD From Primary Immunodeficiencies
CHRONIC GRAFT-VERSUS-HOST
DISEASE

Chronic graft-versus-host disease (cGvHD) is now the leading
cause of morbidity and mortality post-hematopoietic stem cell
transplantation (1, 2). cGvHD is a pleomorphic syndrome that
resembles autoimmune and other immunologic disorders that
occurs between 3 and 15 months after HCT. Chronic GvHD can
affect almost any organ including skin, liver, eyes, mouth, lungs,
gastrointestinal tract, neuromuscular system, or genitourinary
tract. The spectrum of disease manifestations and diagnostic
criteria were updated in 2014 after the second National Institutes
of Health (NIH) Consensus Conference on cGvHD (3). The rates
of cGvHD depend on several variables and can range from as low
as 6% in matched sibling cord blood transplants to as high as
65% in matched unrelated donor (MUD) peripheral blood stem
cell (PBSC) transplants (4).

Our understanding of the pathophysiology of cGvHD has
improved over the last decade to the point where there is now a
well-accepted three phase model of cGvHD development
supported by mouse models, correlative clinical studies and
clinical trials (5). The three phases are: 1) acute inflammation
and tissue injury trigger inflammatory cytokine/chemokine
patterns, mediated through the innate immune system, that
recruit effector immune cell populations; 2) chronic inflammation
causes a loss of tolerance that disrupts the homeostasis of the
adaptive immune system leading to the emergence of pathogenic
B and T cell populations; 3) the dysregulated immune response
causes altered macrophage polarization causing an aberrant
tissue repair mechanism leading to excessive end organ fibrosis
and scarring.

Despite these insights, clinicians continue to struggle to
identify the optimal therapy for patients with cGvHD who do
not respond to front-line corticosteroids or patients who cannot
be successfully weaned off corticosteroids.
WHY STUDY RARE DISEASES?

Rare inherited monogenic diseases affecting innate and adaptive
immunity provide a unique opportunity to understand the role of
specific genes, molecules, pathways and cell types in our immune
system (6). Unfortunately, in the past these rare diseases were
often consideredmedical outliers and neglected compared to more
polygenic, multifactorial common disorders. However, they all
operate under the same biological principles and these rare
diseases are actually much simpler pathologically then common
diseases. These human models demonstrate the function of a
particular gene in an otherwise controlled experiment of nature, in
which everything else is identical except for the one single factor
which is the root cause of the resulting disease phenotype. Better
understanding rare diseases not only directly benefits those
patients afflicted but the recognition of a molecular defect can
lead to potential therapies. Mutations that alter the level of activity
of gene products can be thought of as surrogates for perfectly
targeted drugs (7).
Frontiers in Immunology | www.frontiersin.org 294
Their study provides the means to better understand complex
acquired diseases in a number of ways:

1. An acquired disease may have a specific phenotype that is
specifically missing in an inherited disease due to the absence
of a key molecule. By pharmacologically inhibiting this factor
you may eliminate the phenotype, therefore the inherited
disease informs a potential new target.

2. An acquired disease may have a specific phenotype that
mimics that seen in an monogenic disease associated with
altered function (gain or loss of function) of a key molecule or
cell type; inherited disease again provides potential new target
or supports the addition of a key factor into treatment, such
as adding an agonist or cell type. The emergence of cellular
therapies has given clinicians the ability to treat disease with a
wide variety of manipulated cell types in addition to the well-
established therapy of hematopoietic stem cell transplant.

3. A new targeted therapy may be trialed based on mouse
models or human correlative clinical studies of a specific
disease and there is a corresponding monogenic disease
involving that factor; the rare disease may provide insights
into unintended consequences of targeting that factor in
other biological pathways.

With these principles in mind, the purpose of this review is to
use our evolving understanding of monogenic immune disorders
to provide a rationale for previous and ongoing therapies in
cGvHD and potentially provide new avenues for intervention
based on the pathophysiology of cGvHD (Table 1).
SIMILARITIES BETWEEN CHRONIC GVHD
AND PRIMARY IMMUNE DISORDERS

Chronic GvHD is fundamentally a disorder of immune
regulation. A successful HCT requires: 1) reconstitution of
normal innate and adaptive cellular immune responses to
infectious pathogens and the 2) induction of immune tolerance
to non-self antigens and in the case of malignant disease, while
preserving the graft-versus-tumor effect.

The persistent alloreactivity in cGvHD is driven step-wise by
increased expression of host-derived molecules that result from
tissue damage. This leads to the expansion of pathogenic T and B
cell populations that escape tolerance and are allowed to
persist due to the failure of suppressive regulatory mechanisms.
This promotes chronic inflammation that triggers aberrant
repair mechanisms. Therefore, this review will focus on
primary immunodeficiencies associated with defects in
intrinsic or innate immunity, autoimmunity and dysregulation
of lymphocyte homeostasis.
DEFECTS INVOLVING THE INNATE
IMMUNE SYSTEM

The intestinal epithelium, an integral component of innate
immunity, is altered in a number of ways during the HCT
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process; complications of the primary disease, gastrointestinal
infections, conditioning chemotherapy and radiation cause
direct intestinal damage and the use of broad-spectrum
antibiotics and varied diets disrupt gut microbiota. Affected cell
types include: 1) intestinal stem cells, impairing epithelial
regeneration, 2) intestinal epithelial cells, which comprises
barrier function, 3) Paneth cells, leading to decreased secretion
of antimicrobial peptides, and 4) goblet cells, which depletes the
mucus barrier. The cumulative effect is a dysbiosis associated with
decreased commensal bacterial function and diversity, increased
gut permeability and bacterial translocation leading to increased
local inflammation that disrupts immune homeostasis (8).

Many primary immune deficiencies are associated with
microbial dysbiosis, which manifests clinically as inflammatory
bowel disease (IBD)-like pathology (9) and may alter the clinical
phenotype of a common genetic susceptibility. Underlying
pathogenic mechanisms include the absence of secretory IgA
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which normally promotes the clearance of antigens and
pathogenic bacteria from the gut microbiota (10) and increased
translocation of lipopolysaccharide (LPS) (11). Therapies such as
the selective use of antibiotics, prebiotics, probiotics and fecal
microbiota transplantation, aimed at restoring the gut
microbiota may prove beneficial in cGvHD and are actively
being investigated (12).

Early inflammation in patients post-HCT is triggered by the
activation of innate pattern-recognition receptors (PRRs) such as
Toll-like receptors (TLRs) and nucleotide oligomerization
domain (NOD)-like receptors (NLRs) on host antigen
presenting cells (APCs) by viral and bacterial components and
endogenous dangerous molecules termed danger-associated
molecular patterns (DAMPs). These signals are released due to
endothelial and epithelial cell damage in the GI tract caused by
underlying disease, infection and transplant conditioning. TLR
signaling in APCs such as dendritic cells enhance antigen
TABLE 1 | Potential therapies targeting the pathophysiology of each phase of chronic graft-versus-host disease.

cGvHD Phase Phase 1 Phase 2 Phase 3

Pathophysiology Acute inflammation and tissue injury activates the innate
immune system including the complement system
leading to the recruitment of pathogenic cell populations

Loss of tolerance mechanisms disrupts the homeostasis
of the adaptive immune system

Aberrant tissue repair
mechanism leading to
excessive end organ fibrosis
and scarring

Relevant
monogenic
diseases

Primary immune deficiencies (PID) with inflammatory
bowel disease (IBD)-like pathology
MyD88 and IRAK-4 deficiencies
Complement deficiencies

Autoimmune polyendocrinopathy-candidiasis-ectodermal
dystrophy (APECED)
Immune dysregulation, polyendocrinopathy, enteropathy,
X-linked (IPEX) syndrome
LPS-responsive beige-like anchor protein (LRBA)
deficiency
Cytotoxic T lymphocyte antigen-4 (CTLA-4)
haploinsufficiency
Autosomal dominant hyper-IgE syndrome (AD-HIES)
IL-12/23 receptor beta 1 (IL-12/23Rb1) and IL-12/23
cytokine p40 subunit deficiency
Glut1 deficiency
Leptin deficiency
Wiskott-Aldrich syndrome (WAS)
B cell activating factor (BAFF) receptor deficiency
Gain-of-function mutations in PIK3CD
X-linked agammaglobulinemia (XLA)

Matrix metalloproteinase-2
(MMP-2) deficiency
Stiff skin syndrome (SSS)

Potential
therapies

Treatment of gut dysbiosis: selective use of
antibiotics, pre- and probiotics, fecal microbiota
transplantation (FMT)
TLR inhibition:
MyD88 and IRAK-4 inhibitors
Statins
Hydroxychloroquine
Complement inhibitors:
Eculizumab [anti-C5 monoclonal antibody (mAb)],
narsoplimab (IgG-4 mAb against MASP-2), and coversin
(C5 inhibitor)

Thymic transplantation:
Medullary thymic epithelial cells (mTECs)
Reduce donor T cell migration:
Sphingosine 1-phosphate receptor (S1PR) agonists
Increase number and function of regulatory T cells
(Tregs):
Rapamycin (mTOR inhibitor), abatacept (CTLA4-Ig),
hydroxychloroquine, low dose IL-2, extracorporeal
photopheresis, and infusion of donor-specific or third
party Tregs.
Targeting the Th17 subset:
ROCK2 inhibitor KD025, tocilizumab (mAb against IL-6
receptor), ustekinumab (IL-12 and IL-23 antagonist),
pirfenidone
Targeting T cell metabolic reprogramming:
Inhibition of glycolysis, leptin, glutamate-oxaloacetate
transaminase (GOT1), and glutaminase (GLS)
Targeting B cell mediated autoimmunity:
Rituximab (anti-CD20 mAb), belimumab (anti-BAFF mAb),
Syk inhibitors, PI3K inhibitors, ibrutinib (BTK inhibitor)

Target activation of
collagen-producing
fibroblasts and
myofibroblasts:
Imatinib mesylate (tyrosine
kinase inhibitor), sonidegib
(sonic hedgehog pathway
inhibitor)
Increase levels of dermal
MMP-2:
Narrowband ultraviolet-B light
therapy
Integrin inhibition:
Natalizumab (mAb against a4-
integrin) and vedolizumab
(a4b7 inhibitor)
February 2021
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endocytosis and autophagy and augments the assembly of
key antigen transport and processing systems (13). In turn,
activated host and donor APCs stimulate donor T cells either
directly through donor T-cell receptors that recognize minor
histocompatibility antigens, foreign MHC molecules and
allogeneic peptides or indirectly through the release of pro-
inflammatory cytokines and chemokines such as IL-1b, IL-6,
IL-8, IL-10, IL-12, IL-21, IL-23, TGFb and TNFa. Compared
with non-GVHD patients after HSCT and healthy donor
controls, TLR4-mediated NF-kB signaling-related genes
including TLR4, NF-kB, IL-6 and intercellular adhesion
molecules 1 (ICAM-1) were significantly increased in patients
with cutaneous cGVHD (14).

In innate immune cells such as dendritic cells, MyD88 is the
critical adaptor molecule that bridges TLRs to the IRAK family of
kinases, which in turn stimulate a signaling cascade that results
in NF-kb activation (15, 16). Germline MyD88 and IRAK-4
deficiencies predispose patients to recurrent life-threatening
bacterial diseases, such as invasive pneumococcal disease in
particular, with weak signs of inflammation (17).

There is evidence that TLR signaling contributes to the early
activation of APCs and priming of donor T cells. TLR inhibition
can be achieved either by blocking the binding of agonists to
corresponding TLRs or inhibiting the intracellular signaling of
the TLR pathways.

The use of a novel MyD88 inhibitor, TJ-M2010-5 in a fully
MHC-mismatched murine model inhibited the LPS-stimulated
activation of dendritic cells and the priming of donor allogeneic
T cell proliferation (18). Administration of the inhibitor
ameliorated the inflammatory environment, increased tissue
repair in GvHD target organs and suppressed lethal GvHD.
Administration of an IRAK-4 inhibitor also ameliorated GvHD
in a mouse model of allo-SCT (19). In this model, MyD88 in
donor T cells was not essential for graft-versus-leukemia (GvL)
effects. There are other well-established medications that have
been repurposed in cGvHD because of their effects on TLR
signaling including statins, which decrease TLR4 expression and
downstream signaling (20, 21) and hydroxychloroquine, an
inhibitor of TLR9 signaling (22). Any strategy to block TLR
signaling pathways incur significant risk, particularly during
post-transplant immune reconstitution as TLR-mediated
inflammation functions to protect the host against infection.

Another major part of the innate immune response, the
complement system, is also implicated in cGvHD. The
complement system is composed of a number of diverse
signaling pathways that causes specific plasma proteins to react
with one another to generate: 1) activated complement proteins
that bind pathogens triggering opsonization by phagocytes, 2)
fragments of some complement proteins that serve as
chemoattractants and 3) membrane attack complexes that
damage bacteria by creating pores in the outer bacterial
membrane. All the pathways merge at the proteolytic cleavage
of C3 to generate a larger fragment, C3b, that marks a target for
opsonization, and a small one, C3a, which serves as an
anaphylatoxin which triggers the release of inflammatory
mediators from nearby cells. Subsequent cleavage of another
Frontiers in Immunology | www.frontiersin.org 496
complement protein, C5, results in C5a, which is also an
anaphylatoxin and chemotactic factor, and C5b which initiates
formation of the membrane attack complex (23). The
anaphylatoxins C3a and C5a exert their biological function by
binding to their cognate G protein-coupled receptors C3aR and
C5aR on cells of the innate and adaptive immune system.

Human C3 deficiency is associated with impairments in
dendritic cell maturation suggesting complement activation
could play a role in the dendritic cell regulation of GvHD in
first acute phase of inflammation (24). The generation of C3 and
C5 complement proteins during complement activation has
previously been implicated in the pathogenesis of GvHD.
Expression of C3aR and C5aR on donor T cells is essential for
GVHD development after HCT (25). Reduced GvHD in C3-
deficient mice is associated with decreased donor Th1/Th17
differentiation (26). C3aR/C5aR-mediated signaling directly
induces secretion of IFN-g and IL-2 from T cells driving Th1/
Th17 differentiation and suppressing Treg generation (27, 28).
C3aR/C5aR signaling suppresses lethal mitophagy in dendritic
cells after HCT. Blockade of C3aR/C5aR activation significantly
enhanced mitophagy in recipient dendritic cells which correlated
with improved GvHD outcomes and the studies also showed that
treatment with C3aR/C5aR antagonists effectively separated
GvHD and GvL responses making it a promising therapeutic
approach for GvHD treatment especially in malignant diseases
dependent on the GVL effect (29, 30).

In the post-allo-HCT setting, complement inhibitors such as
eculizumab, (anti-C5 monoclonal antibody), narsoplimab (IgG-4
monoclonal antibody that inhibits the effector enzyme MASP-2
of the lectin complement pathway), and coversin (C5 inhibitor)
have already been used in the treatment of transplant-associated
thrombotic microangiopathy (TA-TMA) (31–33). It is possible
that these therapies could be used as prophylaxis for cGvHD.

Targeting these innate pathways appears promising as they
would ideally interrupt the early inflammatory cascade
underlying cGvHD development while preserving the GvL effect.

A potential issue would be the timing of these interventions as
they target the early stages of cGvHD which are difficult to
appreciate clinically and maybe better served as prophylactic
agents against GvHD or used in specific patients early post-HCT
with predictive biomarkers (34).
T CELL IMMUNE DYSREGULATION

Ongoing damage to epithelial and connective tissue releases
DAMPs that activate cells of the innate immune system such as
dendritic cells triggering the release of IFNa, IL-1b, TNFa and IL-
6. This inflammatory cytokine profile induces Th1/Th17
differentiation and subsequent recruitment to the injured tissue.
They are activated by APCs and continue the cycle of tissue
damage. Dysfunctional thymic negative selection frees alloreactive
T cells targeting host antigens that continually feed this vicious
cycle leading to chronic tissue inflammation. This part of the
review will focus on two key elements of this pathological process:
1) loss of thymic negative selection and 2) skewing of T cell
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repertoire toward Th1/Th17 lineages at the expense of regulatory
T cells. Both of these biological processes have parallels with
monogenic immune disorders that provide insights into pathology
and the basis for existing and potential new therapies.

Loss of T Cell Thymic Selection
Early after HCT, mature donor alloreactive T cells transferred
with the allograft are activated by host APCs and mediate direct
tissue destruction. In particular, thymic epithelial cells are
damaged leading to release of self-reactive T cells. Severe
histopathological damage to the thymus is a feature of aGvHD
and plays a prominent role in the second phase of cGvHD. Using
murine models of allogeneic HCT it has previously been shown
that donor T cells can damage primary lymphoid tissue
including the thymus. Thymic aGvHD impaired the
compartment of medullary thymic epithelial cells (mTEC) that
express the autoimmune regulator (AIRE) (35, 36). Loss of AIRE
+ mTEC led to a failure to clonally delete self-reactive T cells.
This is likely caused by the decreased heterogeneity of tissue
specific auto-antigens from cGVHD target organs presented by
thymic mTEC cells in order to select functional but tolerant T
cells. Accordingly, donor-derived T cells possessing cGvHD
antigen reactivity escape deletion and expand. This loss of
thymic negative selection is further exacerbated by the
physiologic process of age-related thymic atrophy/involution
(37). This pool of self-reactive T cells is under constant
homeostatic pressure to expand due to overall lymphopenia in
GvHD caused by the dysfunction of the peripheral niches
essential for the survival of naïve T cells (38).

The AIRE gene is mutated in autoimmune polyendocrinopathy-
candidiasis-ectodermal dystrophy (APECED), a rare monogenic
recessive disorder characterized by a variety of autoimmune
diseases that target endocrine organs, liver, intestine and
skin (39). This is caused by immune reactions against an
assortment of autoantigens (40). Murine studies suggest that
AIRE promotes ectopic transcription of self-antigens in mTECs
and therefore important for negative selection of autoreactive T
cells or in the case post-HCT, alloreactive T cells (41). All
patients with APECED also have neutralizing antibodies
against type I interferons and they are present before
the development of autoimmune conditions (42). Antibodies
to IFNa have also been recognized as an autoantibody
that develops after allogeneic BMT in association with
cGvHD (43, 44). Lastly, APECED patients also have a decrease
in the regulatory T cell population (45) similar to patients
with cGvHD.

It is unclear whether thymic transplantation, which has
been used successfully in the treatment of differentiative
thymic disorder related to FOXN1 mutations (46), would
alter the process of negative selection by the thymus. The
transplantation of recipient-type thymus at 4 weeks post-BMT
in an established chronic GvHD model prevented the
development of cGvHD and increased survival (47). Perhaps in
the future it will be possible to generate mTECs from recipients,
for example through the use of induced pluripotent stem cells,
prior to HCT that can be used as prophylactic treatment post-
HCT to support normal T cell development (48).
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Another potential therapeutic target is preventing the
trafficking of alloreactive T cells to the thymus in the early
stages post-HCT thereby limiting damage to the thymus thus
preserving tolerance mechanisms. This same principle could be
applied to the trafficking of pathogenic T cells to target organs
and ideally preserving trafficking of regulatory T cells.
Sphingosine 1-phosphate (S1P) is a sphingosine containing
lipid intermediate obtained from ceramide that plays a key role
in lymphocyte migration through concentration gradients and
binding and activation of G-protein-coupled receptors known as
S1P receptors (S1PR1) (49). It has been shown that prophylactic,
not therapeutic, administration of a S1PR agonist reduced donor
T cell migration to the host thymus, thus significantly
attenuating thymic aGvHD in murine model of unconditioned
recipients of haploidentical donor T cells (50). This approach
was successfully used in a patient with severe CNS GVHD (51).

Skewing of T-Cell Repertoire During
Chronic GvHD Development
The acute inflammation of the first phase of cGvHD creates an
environment that favors excessive pro-inflammatory Th17 cells
over regulatory T cells that suppress inflammation. The
development of cGvHD has been shown to be associated with
a dynamic imbalance that favors the production, expansion, and
persistence of effector T cells, in particular Th17 cells driven by
BCL2 expression over CD4 regulatory T cells (52). Patients with
active cGvHD had a significantly lower frequency of circulating
T follicular helper cells (cTFH) compared with patients without
cGvHD. This was associated with higher CXCL13 plasma levels
suggesting increased homing of TFH to secondary lymphoid
organs. The cTFH phenotype was skewed toward a highly
activated profile with predominance of Th2/Th17 subsets and
demonstrated increased functional ability to promote B cell
immunoglobulin secretion and maturation (53). Again their
survival was preferentially promoted by BCL-2.

The creation of this immune imbalance in patients with active
cGvHD lends itself to potential therapies either previously used
in PIDs associated with T cell disorders or provides information
about which gene products should be targeted to create an effect
that mimics the PID phenotype; if cGvHD is associated with
elevated Th17 cells then we should target affected proteins/
pathways in monogenic diseases associated with loss of
Th17 cells.

The potential impact of current therapies and new avenues of
treatment are discussed in the context of known PIDs with
abnormal T cell homeostasis.

Strategies to Increase the Number of
Regulatory T Cells
The prototypical genetic autoimmune disease involving Tregs is
Immune dysregulation, polyendocrinopathy, enteropathy, X-
linked (IPEX) syndrome which is caused by mutations in the
FOXP3 gene and characterized by markedly decreased or absent
FOXP3+ Tregs (54). Many other primary immunodeficiencies
with prevailing lymphoproliferation, such as LPS-responsive
beige-like anchor protein (LRBA) deficiency and cytotoxic T
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lymphocyte antigen-4 (CTLA-4) haploinsufficiency, are also
associated with decreased or dysregulation of Tregs (55, 56).

Rapamycin is a small molecule inhibitor of mechanistic target
of rapamycin (mTOR) that selectively inhibits effector T cell
proliferation while sparing rapamycin-resistant Treg cells
thereby supporting the relevant expansion and function of
Treg cells (57). Rapamycin has significant clinical benefits in
patients with IPEX syndrome (58) and has previously shown
efficacy as a cGvHD therapy (59, 60).

Abatacept (CTLA4-Ig) is a fusion protein consisting of an
IgG1 Fc domain fused to the CTLA-4 extracellular domain that
has successfully been used to control autoimmune inflammation
and interstitial lung disease in patients with CTLA-4
haploinsufficiency and LRBA deficiency (61, 62). In a phase I
clinical trial, abatacept resulted in a clinical response in 44% of
patients with steroid-refractory cGvHD with both decreased
prednisone use and T cell PD-1 expression in responders (63).

Inhibition of lysosomal degradation via chloroquine/
hydroxychloroquine rescued CTLA4 expression in LRBA
deficient cells in vitro and improved lymphoproliferative lung
pathology in a patient with LRBA mutation in vivo (64) and long
term outcome of patients with LRBA deficiency (65). A phase II
trial of hydroxychloroquine in patients with steroid-resistant or
steroid-dependent cGvHD resulted in a 53% response rate and
all responders tolerated a >50% reduction in their steroid dose
while receiving hydroxychloroquine (66).

IL-2 is a critical cytokine for the maintenance and function of
FOXP3+ Treg cells. High CD25 expression confers to Treg cells
the ability to respond to low doses of IL-2, whereas effector T
cells require higher IL-2 concentrations to support their
proliferation. Patients with Wiskott-Aldrich syndrome who
received low dose IL-2 therapy had statistically significant
increase in platelet counts, a trend toward higher T, B, and NK
cell numbers and higher T regulatory cell percentages (67). Low
dose IL-2 has been shown to provide durable clinical
improvement in active cGvHD and extended therapy is well-
tolerated (68).

It still remains controversial as to whether extracorporeal
photopheresis (ECP) has a clinically significant effect on the
number and function of Tregs in cGvHD (69–71).

Multiple studies have demonstrated that developing mixed
chimerism post-HCT in non-malignant disease is associated
with a lower incidence of aGvHD and cGvHD and among
patients with mixed chimerism, cGvHD is associated with a
more frequent evolution toward complete chimerism (72). The
proportion of Treg cells is increased in patients with mixed
chimerism after SCT and acts to suppress the alloreactive
immune response (73). In non-malignant diseases, especially
those undergoing reduced intensity conditioning resulting in
dynamic chimera states, interventions to increase Tregs may
stabilize mixed chimerism and lead to lower rates of cGvHD.

Lastly, the Infusion of donor-specific or third-party
regulatory T cells have been tested in patients with steroid-
refractory or dependent cGvHD. A phase I trial utilizing donor
derived Tregs enriched by CD25+ immunomagnetic selection
from a non-mobilized peripheral blood apheresis product and
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purified by high speed flow cytometry demonstrated feasibility,
safety and tolerability with encouraging preliminary clinical
responses with a single infusion of cells (74). Patients have also
been treated with umbilical cord blood derived regulatory T
cells (75).

Targeting the Th17 Subset
Autosomal dominant hyper-IgE syndrome (AD-HIES), formerly
known as Job syndrome, caused by loss of function mutations in
STAT3, is associated with impaired Th17 development (76).
Th17 cell development is directed by multiple cytokines,
including IL-1b, IL-6, TGF-b, IL-21 and IL-23 which leads to
activation of the transcription factors STAT3 and interferon
regulatory factor 4 and subsequent expression of retinoic acid-
related orphan receptor (ROR)yt. It has been shown that oral
administration of the selective ROCK2 inhibitor KD025 to
healthy subjects or rheumatoid arthritis patients attenuates the
ability of T cells to secrete IL-17 in response to stimulation ex
vivo via a STAT3-dependent mechanism. ROCK2 inhibition
significantly diminished STAT3 phosphorylation and binding
to IL-17 and IL-21 promoters and reduced interferon regulatory
factor 4 and nuclear hormone RORyt protein levels in T cells
derived from healthy subjects or rheumatoid arthritis patients.
Simultaneously, KD025 also promoted the suppressive function
of regulatory T cells through up-regulation of STAT5
phosphorylation (77). KD025 has been shown to ameliorate
cGvHD in multiple murine models and inhibit the secretion
of IL-21, IL-17 and interferon y along with decreasing
phosphorylated STAT3 and reduced protein expression of
interferon regulatory factor 4 and B-cell lymphoma (BCL6) in
human peripheral blood mononuclear cells purified from active
cGvHD patients (78).

IL-6 is a proinflammatory cytokine that activates the
STAT3 signaling cascade and promotes Th17 differentiation.
Tocilizumab, the monoclonal antibody against the IL-6 receptor,
has been used to treat STAT3 gain of function disease (79).
Tocilizumab appears to be a promising treatment option in
advanced cGvHD but further evaluation within a phase II trial
is required (80).

Inherited IL-12/23 receptor beta 1 (IL-12/23Rb1) and IL-12/
23 cytokine p40 subunit deficiency are rare primary
immunodeficiencies associated with impaired generation of IL-
17 producing cells (81). Anti-p40 treatment attenuated the
severity of sclerodermatous cGvHD in a murine model (82).
Ustekinumab, a human IL-12 and IL-23 antagonist, delivered by
subcutaneous injection on day -1 and day +20 after peripheral
blood mobilized hematopoietic stem transplantation from HLA-
matched sibling or unrelated donors significantly improved
overall survival and National Institute of Health (NIH)
moderate/severe cGvHD-free, relapse-free survival (83). It has
not yet been tested in patients with existing cGvHD.

Pirfenidone has been shown to inhibit IL-17A facilitated
macrophage infiltration in a mouse model of cGvHD lung
disease. In addition, pirfenidone significantly reduced the
percentage of IL-17a-producing CD4+ T cells but did not
affect the percentage of Tregs (84).
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TARGETING METABOLIC
REPROGRAMMING AS A POTENTIAL
THERAPEUTIC STRATEGY

A number of dysregulated metabolic pathways have previously
been identified in PIDs and in turn congenital defects in
metabolism are often associated with immune defects.
Targeting these pathways in cGvHD offers new avenues of
potential therapy.

It has been shown that glycolysis is required for optimal
function of alloantigen-activated T cells and induction of GVHD.
T cells switch from fatty acid b-oxidation and pyruvate oxidation
via the tricarboxylic (TCA) cycle to aerobic glycolysis. Inhibition
of glycolysis through specifically targeting mTORC1 or PFKFB3
ameliorated GVHD in a preclinical BMT model (85).

Glut1 deficiency selectively impairs metabolism and function
of thymocytes and effector CD4 T cells while sparing Treg cells
(86). Allo-reactive Glut1-deficient T cells have dramatically
decreased ability to induce lethal GvHD due to reduced IL-
17 production.

Congenital deficiency of the adipocyte hormone leptin is
associated with reduced numbers of circulating CD4+ T cells
and impaired T cell proliferation and cytokine release (87). In
contrast, increased serum leptin concentrations may contribute
to T cell activation during development of cGvHD (88).

There is literature that shows that by simply inhibiting
transamination in differentiating T cells, Th17 cell fate can be
epigenetically redirected toward the Treg lineage. A recent study
identified a compound, (aminooxy)acetic acid (AOA), that is
able to reprogram differentiating Th17 cells into Foxp3-
expressing iTreg cells by inhibiting the activity of glutamate-
oxaloacetate transaminase (GOT1) (89). Another group were
able to show that transiently inhibiting glutamine metabolism by
targeting glutaminase activity lead to impaired differentiation of
Th17 cells and increased Th1 and CTL effector cell function (90).

Selectively targeting metabolic pathways in order to alter the
balance of TH17/Treg cells may represent a novel strategy to
treat chronic GvHD.
THE ROLE OF B CELL MEDIATED
AUTOIMMUNITY

Chronic GvHD has many clinical, histological and serological
manifestations that resemble the autoimmunity and
dysgammaglobulinemia associated with primary B-cell related
immunodeficiencies. Multiple lines of evidence point to an
important role for B cells in the pathogenesis of cGvHD.
Antibodies to both alloantigens and nonpolymorphic
autoantigens are frequently associated with cGvHD (91, 92).
Stimulatory antibodies to the platelet-derived growth factor
(PDGF) receptor (PDGFR) are selectively found in patients
with extensive cGvHD and activate the generation of reactive
oxygen species which stimulates type 1 collagen gene expression
suggesting a role in the development of fibrosis (93). Allogeneic
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HY antibodies detected at 3 months after female to male HCT
predict cGvHD in humans (94). B cells facilitate autoimmunity
not just by secreting host-reactive antibodies, but also by
secreting proinflammatory cytokines and by presenting
autoantigens to T cells (95). Conversely, an impaired ability of
B cells to produce IL-10 was found in patients with active cGvHD
(96). Perhaps the best evidence for B cell involvement is the
success of rituximab, a chimeric anti-CD20 monoclonal
antibody, in corticosteroid-free primary treatment of cGvHD
(97–99).

The emergence and persistence of host-reactive B cells in
cGvHD results from acquired failures in tolerance mechanisms.
Central B cell tolerance is compromised in cGvHD due to altered
B cell signalling that affects the negative and positive selection of
B cells during development, skewing the emerging B cell
repertoire towards a host or self-reactivity. Autoantibody
production may also occur due to disturbed T cell- B cell
interaction and regulation (100). The highest rate of
autoimmune cytopenias following HCT are reported in
children undergoing HCT for non-malignant indications with
anti-thymocyte globulin (ATG) or alemtuzumab-containing
conditioning regimens (101).

The most important driver of immature bone marrow B cell
tolerance is B-cell receptor (BCR) signaling after encountering
self-antigens. Developmental fate is based on strength and
location of BCR engagement, the form of self-antigen and
synergy with other co-receptor signals (102). It is clear there
are intrinsic and extrinsic factors that can skew this process and
overcome other processes that would normally remove
autoreactive B cells. Two of the most critical signaling
pathways that integrate with BCR signaling in B cell survival
and tolerance are Toll-like receptor (TLR) and B cell-activating
factor receptor (BAFFR) signaling.

TLR activation appears to contribute to both the negative and
positive selection of autoreactive B cells depending on the
developmental stage based on observations in PID patients.
Patients who lack MyD88 or IRAK-4 exhibit defects in central
and peripheral B cell tolerance, implicating TLR-dependent
innate signaling pathways in negative selection of immature
autoreactive B cell clones (103, 104). In contrast, there is
evidence for TLR signaling promoting transitional B cell
positive selection in patients with Wiskott-Aldrich syndrome
(WAS). There is enhanced signaling downstream of both the
BCR and TLRs in B cells from WAS patients that promotes the
positive selection of autoreactive transitional B cells (105, 106).

B cell activating factor (BAFF) plays a fundamental role in the
survival and differentiation of B cells (107). Its’ principal cognate
receptor in early B cell development is the BAFF receptor (BAFF-
R). Without BAFF-R, B-cell development is arrested at the stage
of transitional B cells and the numbers of all subsequent B cell
stages are severely reduced (108). Increased BAFF levels rescue
low-affinity self-reactive transitional B cells by co-opting BCR
signaling through phosphorylation of proximal BCR signaling
components such as spleen tyrosine kinase (Syk) (109). BAFF
also enhances TLR7/9 expression on B cells and TLR-mediated
production of autoantibodies (110). In turn, TLR signaling
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promotes BAFF receptor expression creating a positive feedback
loop (111). Murine models of B cell autoimmunity suggest that
excess BAFF and a reduced pool of naïve B cells are both
necessary to promote the survival of autoreactive B cells (112,
113). BAFF has also been shown to selectively enhance the
survival of plasmablasts which would promote the subsequent
production of host-reactive antibodies (114).

Chronic GvHD is associated with reduced transitional and
naïve B cell counts (115), elevated levels of sBAFF (116) and Syk
hyperresponsiveness in B cells.

Belimumab, a fully human monoclonal IgG1l anti-BAFF
antibody, is currently being tested as prophylaxis against
chronic GvHD in a phase 1 trial (NCT03207958). Inhibition of
Syk with fostamatinib in mice with established cGvHD with
bronchiolitis obliterans was able to reverse disease. It also
decreased the frequency of GCs and expression of the
activation costimulatory molecules CD80 and CD86 in CD11c
+ cells in vivo. Most importantly, human cGvHD B cells had
increased death when treated with fostamatinib (117). Inhibiting
Syk kinase activity abrogates the BCR-driven ex vivo proliferative
and survival advantage of human cGvHD B cells (118).

Another example of a PID with a B cell specific break in self-
tolerance are patients with gain-of-functionmutations in PIK3CD,
encoding the p110d catalytic subunit of phosphoinositide 3-kinase
(PI3K), who present with production of germline autoreactive IgM
antibodies (119). PI3K expression has been shown to be increased
in cGvHD patients (120). The effective treatment of mice with
active cGvHD with PI3K-specific inhibitors support future clinical
trials of approved PI3K inhibitors for cGvHD therapy in
humans (121).

In humans, central B cell tolerance checkpoints are also
abrogated in the absence of Bruton’s tyrosine kinase (BTK), an
essential BCR signaling component (122). Patients suffering
from X-linked agammaglobulinemia, caused by loss of function
mutations in the BTK gene, have a severe decrease of peripheral
B cells and serum immunoglobulin. B cell differentiation is
severely affected at the pro- to pre-B transition but the few B
cells that do develop are paradoxically enriched in autoreactive
clones. The use of antileukemic drugs that inhibit Btk signaling
to promote apoptosis of malignant B cells, especially in chronic
lymphocytic leukemia, theoretically may also affect B cell
selection by interfering with normal BCR signaling leading to
the release of autoreactive B cells. Autoimmune cytopenias have
been observed in patients with chronic lymphocytic leukemia
treated with ibrutinib (123, 124).

Treatment of patients with active cGvHD with inadequate
response to corticosteroid-containing therapies with ibrutinib, a
BTK inhibitor, in a phase II clinical trial resulted in clinically
meaningful responses with acceptable safety leading it to become
the only FDA-approved second-line therapy for steroid-resistant
cGvHD (125, 126).

Targeting Btk in cGvHD patients with ibrutinib also
highlights the potential for phenotypic differences between
germline presentations and the effects of an imperfect
inhibitor. In addition to its critical role in B cell development,
BTK is important for collagen signaling via the collagen receptor
Frontiers in Immunology | www.frontiersin.org 8100
glycoprotein VI (GPVI) in platelets (127). Ibrutinib has been
reported to increase rates of major hemorrhage through selective
inhibition of platelet signaling and functions downstream of the
collagen receptor GPVI and strongly affects firm platelet
adhesion on von Willebrand factor (VWF) under arterial
flow (128). In contrast to ibrutinib-treated subjects, patients
with XLA do not bleed excessively. The risk of bleeding is
attributed to off-target effects of ibrutinib on several other
intracellular molecules important for platelet signaling
including Tec, another kinase of the Tec family of protein-
tyrosine kinases that includes Btk (129). Ibrutinib can also
affect T cells due to the off-target inhibition of IL-2 inducible T
cell kinase (ITK) with shares significant homology with BTK.
Ibrutinib treatment in chronic lymphocytic leukemia (CLL)
patients markedly increases CD4+ and CD8+ T cell numbers,
decreases the Treg/CD4+ T cell ratio and reduced PD-1 and
CTLA-4 expression in T cells (130). It remains unclear if the
efficacy of ibrutinib in targeting B cells in cGvHD will be offset by
changes in T cell populations, significant risk of bleeding and
potential flares of autoimmunity.
FIBROTIC END STAGES OF CGVHD

Fibrosis represents the end stage of the chronic inflammation
that occurs in cGvHD and once fixed is poorly amenable to any
known therapies. It is thought to result from an aberrant wound-
healing process driven by M2-polarized macrophages that in
turn produce transforming growth factor-b (TGF-b) and
platelet-derived growth factor-a (PDGF-a) leading to the
activation of collagen-producing fibroblasts and myofibroblasts
partly through sonic hedgehog signaling (131). The prominent
role of TGF-b, PDGF-a and sonic hedgehog (SHH) in
stimulating fibroblasts has led to the use of tyrosine kinase
inhibitors such as imatinib mesylate and the Hedgehog
pathway inhibitor sonidegib in the treatment of sclerotic
cGvHD (132–134).

Even though there is a lack of a strong association between
primary immune disorders and fibrosis, sclerotic or scleroderma-
like changes, there are other rare monogenic diseases that have
already or may provide new therapeutic avenues. Mutations in
MMP2, an antifibrotic metalloproteinase, may result in
scleroderma-like skin thickening (135). Patients post-HCT
with low levels of plasma MMP-2 were more likely to develop
sclerotic cGvHD (136). Narrowband ultraviolet-B light therapy,
which is known to increase the level of dermal MMP-2 (137), has
successfully been used to treat sclerotic cGvHD (138).

Mutations in fibrillin-1 cause stiff skin syndrome (SSS), an
autosomal dominant congenital form of scleroderma (139).
These mutations all localize to the domain in fibrillin-1 that
harbours a motif needed to mediate cell-matric interactions by
binding cell-surface integrins. Aggressive skin fibrosis in mouse
lines harbouring analogous mutations was prevented by integrin-
modulating therapies and reversed by antagonism of TGF-b
(140). Perhaps there is an role for integrin inhibition in the
prophylaxis or treatment of cGvHD analogous to the use of
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natalizumab (monoclonal antibody against a4-integrin) and
vedolizumab (a4b7 inhibitor) in the treatment of steroid
refractory aGvHD of the gut (141, 142).
CONCLUDING REMARKS

Immune disorders due to single gene defects offer invaluable
insights into understanding the immune dysregulation that
occurs during all three phases of cGvHD development. One of
the issues that clinicians continue to struggle with is the timing of
interventions either as prophylaxis or treatment and the ideal
therapy or combination of therapies depending on the specific
clinical cGvHD phenotype. It is clear that by the time many of
the clinical manifestations of cGvHD, in particular fibrotic and
Frontiers in Immunology | www.frontiersin.org 9101
sclerotic changes, are evident many of the therapies targeting
earlier phases of inflammation may be ineffective. This only
reinforces the urgent need to develop predictive and prognostic
biomarkers that properly identify earlier stages of the disease
where interventions may be more effective.

It is clear the cGvHD is a heterogeneous disease with multiple
pathogenic pathways operating simultaneously and superior
treatments will only emerge from an improved understanding
of disease mechanisms.
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